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Abstract The reshaping of the cell membrane is integral in many important cellular
pathways, such as division, immune response, infection, trafficking, and communi-
cation. This process is generally modeled by considering lipid membranes to be thin
elastic sheets that resist bending and stretching deformations. However, biological
membranes are much more complex, as the macroscopically observed behavior
of the membrane is deeply connected to the underlying atomic-level interactions
between proteins and lipids. Computational methods can be developed to tackle
this complex and innately multiscale phenomenon, as they can model the behavior
at both the molecular and the macroscopic levels. In this chapter, we discuss
the general mechanisms of membrane curvature generation and computational
tools developed and applied to study this problem. We focus especially on finite-
temperature simulation methods that are designed to model the complex behavior
of the system. We review recent efforts in multiscale simulation designed to study
the large-scale membrane reshaping by proteins.
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Mesoscopic simulations · Membrane curvature · Lipid model · Computational
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1 The Multiscale Nature of Lipid Membranes

Structural features of lipid membranes are observable at multiple scales. In other
words, to understand how lipids form membranes of various shapes, we need to
approach the problem frommolecular, mesoscopic, and macroscopic points of view.
Let us first consider the molecular perspective. The key ingredients of biological
membranes are the phospholipids. Chemically speaking, they are considered to be
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Fig. 1 The multiscale nature of lipid membranes. (a) Separation of scales: a bilayer spans microns
in length and width where it is governed by macroscopic mechanics, while at the level of its
thickness (inset), it only spans two molecules where it is governed by hydrophobic and polar
interactions. (b) A membrane is modeled as a thin elastic sheet that resists bending and stretching
deformations

amphipathic molecules, because their phosphate head group is polar, i.e., it attracts
water, whereas their lipid tails are hydrophobic, i.e., they attract apolar molecules
[1]. The consequences of such interactions are that when phospholipids are mixed
with water, lipid tails stick to one another and the hydrophilic moieties are solvated
by water. Various geometries can accommodate such interactions, but the most
relevant to biology is a lipid bilayer (Fig. 1) [2].

Although the thickness of the bilayer only spans two molecules, lipids form
macroscopic assemblies in lateral dimensions, and understanding their behavior
at this level demands a macroscopic point of view (Fig. 1a). At larger scales,
the membrane behaves like an elastic sheet, resisting bending and stretching
deformations (Fig. 1b). Its long-wavelength dynamics is seemingly unconnected to
its molecular nature; however, the two scales actually strongly couple [3]. How is
this so? Imagine immersing a bilayer patch in water. The hydrophobic repulsion
at the interface of water and lipid tails gives rise to line tension that works to
minimize the edge of a bilayer. This molecular interaction has a macroscopic impact
as it forces the membrane into a closed surface. The interactions among lipid
molecules set the preferred area they occupy, giving rise to surface tension, i.e., the
membrane’s elastic resistance to stretching. Furthermore, line and surface tension
compete with the elastic energy associated with the cost of bending the membrane.
Finally, a result of these opposing forces—that operate at different scales—gives
biological membranes a wide range of geometries [3].

The elastic description of the cell membrane has been remarkably successful
in explaining the physical basis of large-scale membrane behavior, and it has
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provided a very useful analytical framework for analyzing and understanding the
experimental data. However, biological membranes are far more complex than thin
elastic sheets. First, they are fluid, which means that they do not resist shearing—
sliding of layers past each other—and they cannot tear or form sharp corners, unlike
solid bendable materials. Second, membranes can contain hundreds of different
components that are likely not homogenously mixed along the length of the cell
membrane. Therefore, predicting its actual phase behavior seems nearly impossible.
Lastly, the cell membrane is not at equilibrium, making the thermodynamic
treatment all the more difficult.

Accounting for all the complexities and the innate multiscale character of a cell
membrane in modeling its behavior is a daunting task. An approach uniting molec-
ular, mesoscopic, and macroscopic scales is essential in accessing a fuller scope
of membrane phenomena in biology. In this chapter, we describe computational
methodologies used to study lipid membranes, specifically focusing on methods
applied to investigate how proteins can change membrane shape.

2 The Reshaping of Biological Membranes

It has been widely accepted that membrane curvature plays significant roles in
the cell. On the one hand, cells use curvature on larger scales to form complex
intracellular structures or for motility of the whole cell. For example, the high
curvature of the inner mitochondrial membrane significantly adds to the total
membrane area (compared to a flat membrane enveloping the same volume), which
is why the mitochondrion can host an enzymatic power source of the cell. On the
other hand, membranes can be temporarily curved—usually on sub-μm scales—
enabling dynamic processes, such as communication and trafficking [4].

How is membrane curvature generated in the cell? Thermal fluctuations give
rise to membrane curvature, however only transiently, as the energy associated with
randomfluctuations is an order of magnitude lower than the bending stiffness of bio-
logical membranes [5–7]. Themost commonly understoodmechanism of generating
curvature is by imposing an asymmetry into the bilayer, either by lipid composition
or by protein binding. Consider enriching one membrane layer with a non-
cylindrically shaped lipid, such as sphingomyelin or phosphatidylethanolamine.The
bulky head of sphingomyelin will force one layer to expand and hence generate
curvature (the first cartoon in the upper left of Fig. 2). Another way lipids may
induce curvature is by phase separation. The energy resulting from the formation
of edges between domains will tend to minimize, which is achieved either (a) by
coalescence of like phases or (b) by squeezing the domain boundary, which results
in budding [8]. Numerical calculations have been carried out to understand the
morphological consequences of phase-separated vesicles, and they have resulted
in a very rich shape diagram of such systems. The ultimate shape of the membrane
depends on the size of domains, the elastic properties of the membrane, as well as
surface and line tensions [9–17].
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Fig. 2 Mechanisms of generating membrane curvature

Although lipids can affect the shape of membranes, the main role of curvature
generators in cells belongs to proteins. It has been shown that conically shaped
proteins spontaneously redistribute into membrane tubules, likely because their
packing is more efficient in curved membranes [18]. In light of this discovery, the
accumulation of conically shaped proteins, such as the nicotinic acetyl receptor [19]
and the voltage-gated potassium channel [20], in principle could induce membrane
curvature (Fig. 2).

Another way proteins may induce curvature is by inserting their amphipathic
domains into the membrane [21]; however, this process is more complicated to
understand with simple shape arguments (Fig. 2). Theoretical calculations have
demonstrated that the magnitude of spontaneous curvature depends on the insertion
depth in a non-monotonous way, which means that a deeper insertion does not lead
to more curvature. Instead, there is a maximum, achieved at the insertion depth at
approximately one-third of one layer [22, 23]. Many cytosolic and peripherally bind-
ing proteins contain amphipathic helices. Apolipoproteins, for example, solubilize
lipids, including cholesterol, for their transport through the blood [24, 25]. Many
proteins involved in endocytosis contain amphipathic helices, such as epsins and
Bin/amphiphysin/Rvs (BAR) proteins, implicated in various forms of membrane
remodeling [26, 27].

The peripheral binding or adhesion of proteins and particles can also lead to
membrane curvature (Fig. 2). The mechanisms of curvature generation by such
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proteins are even more complex and seem to tightly depend on the shape of the
proteins, their surface density, and the material and morphological properties of
the membrane [27, 28]. Several simplified mechanisms have been proposed: (1)
each bound protein or particle alters the underlying lipid organization [29, 30], (2)
proteins form a three-dimensional network that imposes a shape as a mold or a
scaffold (e.g., clathrin or dynamin; see Fig. 2) [31, 32], and (3) crowding of bound
particles forces membrane bending to maximize the distance between particles. An
entropy-driven mechanism has also been proposed, based on a computational study
showing that polymers grafted on the membrane may induce curvature [33, 34]. In
this case, the loss of conformational entropy is compensated by pushing away the
underlying surface from the polymers. The calculations were later experimentally
demonstrated by tethering DNA and proteins on the membrane [35, 36].

Finally, membrane can be actively reshaped by an external pulling force (Fig. 2),
such as with the cytoskeleton machinery and molecular motors [32]. For example,
the polymerization of actin filaments gives rise to many curved cellular geometries,
such as filopodia, pseudopodia, and axonal growth cones [37]. In vitro reconstitution
has demonstrated that molecular motors, such as kinesins and myosins, can attach to
the membrane and, walking along cytoskeletal filaments, they can extrude a tubule
from a vesicle [38, 39].

Let us briefly focus on the superfamily of BAR domain proteins, key regulators
of cell membrane curvature [40]. They have been implicated in many important
cellular tasks, from generating membrane curvature and maintaining complex
membranous geometries to helping assemble multiprotein machineries in a number
of membrane-remodelingphenomena [26]. Numerous experiments have isolated the
effects of BAR proteins, e.g., with overexpression in the cell, chemical targeting of
BAR proteins to specific organelles, or in vitro reconstitution, all demonstrating that
BAR proteins are powerful membrane remodelers [41–45]. Although BAR proteins
are structurally quite diverse, they all contain a banana-shapedBAR domain [42]. To
make matters even more complicated, the BAR domain itself varies in size, charge,
and the magnitude of intrinsic curvature from member to member (Fig. 3). The
membrane-binding region of this domain is lined with positively charged residues,
so they are highly reliant on negatively charged lipids, such as phosphatidylserine
and phosphatidylinositol 4,5-bisphosphate (PIP2). Most BAR proteins also contain
an N-terminal amphipathic helix, thus termed N-BAR proteins, which enhance their
curvature-sensing and curvature-generating capabilities (Fig. 3, first structure on the
left).

The way N-BAR proteins interact with the membrane is a combination of
adhesion of an anisotropic BAR domain, the shallow insertion of amphipathic
helices, and under some conditions, the scaffolding by a BAR oligomer [27,
28, 31, 46, 47]. BAR proteins often interact with other proteins, such as with
molecular motors in scission of membrane nanotubes [48], making this problem
very challenging. Many of these phenomena have been addressed by multiscale
computer simulations, and we will outline these results below.
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Fig. 3 Ribbon structures of various BAR protein dimers—the functional protein unit—each
monomer colored differently. The N-terminal helices in endophilin (colored red) are added by
hand, as they were not resolved in X-ray structural imaging. Top views along the bottom line of
images represent viewing from above the bilayer surface

3 Computational Simulations of Biomembranes

Theoretical and computational approaches to studying biological phenomena have
seen appreciable advancements in the past decade, allowing detailed structural
and thermodynamic descriptions of fundamental cellular processes, such as protein
folding, lipid vesicle formation, and large-scale structural rearrangements of macro-
molecules. Computational simulations are particularly attractive as they provide
direct visualization of the complex evolution of the system, along with a wealth
of thermodynamic and high-resolution structural data. In addition, simulations give
insights into the distribution and time-dependent properties of the system and not
just their average as in most experimental techniques [49].

The basic steps in computational modeling of a biomolecular system are (1)
choosing the resolution of the model and the number of degrees of freedom (the
so-called level of theory), (2) calculating the forces between particles (the so-
called force field), and (3) simulating the movement of particles (i.e., generating
a trajectory).

The choice of level of theory depends on the resolution of the system and
the number of degrees of freedom we wish to simulate. For example, if we are
interested in the submolecular details of the structure of a protein, we will opt for
an atomic-level simulation. On the other hand, if we wish to understand processes
that do not rely on specific atomic interactions, such as the large-scale remodeling
of lipid membranes, we will prefer mesoscopic models. When considering the level
of theory, we also need to be aware that simulating systems with many degrees
of freedom is computationally very costly. Most biological problems involve many
atoms so we are often forced to compromise resolution for computational feasibility.
In this chapter, we will focus on three levels of theory relevant to biological
membranes: (1) atomic, (2) coarse-grained (CG), and (3) continuum or mesoscopic.
The scheme in Fig. 4 depicts scales associated with these three levels of theory.
It also shows the flow of information from atomic to continuum descriptions, and
back, in the context of N-BAR-mediated remodeling (The reader should not focus
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Fig. 4 A scheme of multiscale simulations of membrane remodeling by N-BAR proteins. Arrows
pointing to the right represent coarse-graining (from atomic, to CG, to mesoscopic). Arrows
pointing to the left depict the reverse approach—fine-graining—in which information at low
resolution is used to build a model of higher resolution (see text)

on the meaning of the particular membrane phenomena shown in the figure at this
point; we will refer to this scheme later in the chapter).

The dynamics of particles can be simulated in multiple ways. Molecular dynam-
ics (MD) is the most commonly used method in biological simulations. In MD, the
movement of particles is simulated by numerically integrating Newton’s equations
of motion, wherein the force on each atom is calculated based on the interactions
defined by the force field. MD is particularly attractive because it is computationally
feasible and it gives, in principle, both the static and the time-dependent properties
of the system [50]. In Monte Carlo (MC) simulations, new configurations are
generated by a random movement of particles, in a way that ensures the Boltzmann
distribution. The strength of MC is that it does not require smooth derivatives of
the potential and, considering that it permits unphysical random moves, it helps the
system sample more space than allowed by MD for the same computational effort.
However, it cannot be used to study the time-dependent dynamics of the system
[50].

Smoothed particle hydrodynamics (SPH) is a method used for simulating contin-
uum models based on Newtonian hydrodynamics, although originally designed to
study astrophysical problems [51, 52]. SPH is particularly attractive because it dis-
cretizes continuum equations, which allows simulating complicated morphologies
at the mesoscopic scale [53]. A similar method, called dissipative particle dynamics
(DPD), supplements Newton’s equation of motion with a dissipative and a random
force [54, 55]. The combination of forces helps to conserve the momentum and
the temperature of the system. Unlike MD and MC methods, SPH and DPD are by
nature approximate. They are not necessarily designed to yield correct equilibrium
properties; however, they reproduce the hydrodynamic behavior at large scales,
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sufficient for understanding the long-wavelength behavior of the membrane [50,
56, 57].

Each modeling method comes with its own advantages and challenges. Combin-
ing different levels of theory—in what can be called the multiscale approach—can
significantly extend the simulation timescale, while keeping the resolution as
high as possible. A notable example is combining the quantum mechanics with
the molecular mechanics (QM/MM) applied to modeling chemical reactions in
the enzyme’s active site [58]. QM/MM modeling elucidates how electron-level
processes (i.e., the change in chemical bonding) couple with the atomic-level
dynamics of the protein. Another approach in multiscale modeling is using the
calculations from atomic-level simulations to estimate forces in lower resolution
models, such as in CG or continuum models [59]. This approach is especially
appropriate in studying membrane-remodeling phenomena where the interactions
at the molecular scale communicate with much larger scales.

The use of multiscale simulations has exploded in the past decade, and it has
seen tremendous success in modeling complex systems in biology and materials
science. The development of multiscale models has had such an important impact on
modern research that Martin Karplus, Michael Levitt, and Arieh Warshel—pioneers
in certain early aspects of multiscale simulation development—received the Nobel
Prize in Chemistry in 2013 [60–63].

4 Atomic Modeling

In the atomic-level (also called atomistic or all-atom) models, each atom (or in
some cases a small united subset of atoms) is represented with a sphere of defined
volume, mass, charge, and other physical properties (note the atomic representations
of a lipid and a BAR domain in Fig. 4, left). The interactions between atoms are
derived from quantum mechanical calculations or empirically fit from experimental
measurements. One typically casts these interactions in a simple analytical form
and divides them into (a) bonded and (b) nonbonded terms. Bonded interactions
maintain the equilibrium bond length, the angle between neighboring bonds, and,
often, a dihedral angle between four atoms, all modeled as a harmonic potential.
Nonbonded interactions describe electrostatic, polar, and van derWaals interactions,
usually modeled respectively with a Coulomb and a Lennard-Jones potential [49].

A major limitation of all-atomMD simulations is that they become computation-
ally very expensive if the system exceeds a million atoms, roughly corresponding
to a large protein surrounded by a box of water. With a recent development of high-
power computing and efficient parallelization of MD computer codes, it has become
possible to access microsecond dynamics of large biomolecular complexes with a
computer. Notable examples include simulating entire viruses, namely, the tobacco
mosaic virus [64] and the HIV-1 capsid [65]. These simulations have shown to be
complements to experimental biology, as they have provided a more detailed insight
into the structural properties of viral particles than cryo-electron microscopy, X-ray
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crystallography, or NMR. Additionally, atomic-level MD simulations can elucidate
the electrostatic environment of proteins and show the short-scale conformational
dynamics of its subdomains. However, the range of time and length scales that such
simulations sample is very small compared to the relevant scales in the cell and in
many in vitro experiments.

Simulating membranes embedded with proteins thus tends to be more challeng-
ing. The interactions and the initial configuration in protein-membrane systems
can be more complicated to model. Moreover, lipid molecules comprise a higher
number of interactions for the same volume than the water-solvated protein, which
makes these simulations more costly. For these reasons, simulating membrane-
related phenomena at atomic resolution demands significant computational power
or clever tricks that artificially enhance the sampling. For example, researchers have
developed a computer architecture solely purposed for generating milliseconds-long
trajectories of all-atom MD simulations [66]. They have demonstrated conforma-
tional dynamics of a transmembrane protein receptor stimulated by ligand binding
[67, 68]. In addition, noteworthy efforts have been made to elucidate the way ion
channels interact with the membrane and how they respond to chemical, electrical,
and mechanical signals [69–73]. Even though these studies typically access much
shorter timescales than in experiments, they have proven to be valuable to structural
biology, helping to reveal the interactions of transmembrane proteins with the
membrane and the mechanism by which they operate at the atomic level, which
is in turn a difficult task for experiment alone.

In the aforementioned studies, atomic simulations mostly addressed the dynam-
ics of the protein. The focus of this chapter is discussing the dynamics of the
membrane. Several studies have used atomic-level MD simulations to study how
BAR proteins deform membranes. Recall that BAR proteins couple with membrane
curvature in the course of trafficking events such as endocytosis [27, 40, 47].
Simulations of the representative members of the N-BAR and F-BAR subfamilies
have shown that these proteins can bend membranes, generating 20–35 nm in radius
of curvature in only 25–100 ns of the simulated time (Fig. 5) [74–76]. According
to subsequent simulations, however, crucial for bending the membrane are the ionic
interactions between positively charged residues of the protein and the negatively
charged lipids in the bilayer, as well as the screening of those interactions by the
solvent [77]. In other words, these proteins are reliant on general ionic interactions,
as opposed to, for instance, some specific stereochemistry [75, 78].

These works have also demonstrated that amphipathic helices of N-BAR proteins
play an important role in membrane remodeling at the atomic scale. If the helices are
not partially inserted (or wedged) into the bilayer, the binding of the N-BAR domain
is significantly reduced, often leading to its dissociation from the surface. The loss
of binding affinity may be compensated by a higher concentration of highly charged
PIP2 lipids, although PIP2 does not fully recover the membrane-bending power of
the N-BAR protein, at least not at a nanosecond timescale. With this result, we
are tempted to conclude that helices are key factors for bending the membrane.
However, isolated helices could only bend the membrane if their surface density
was significantly increased (Fig. 5) [78]. Interestingly, in addition to surface density,
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Fig. 5 Membrane remodeling by proteins modeled by all-atom simulations. Shown are initial and
final snapshots of all-atom simulations of lipid bilayers embedded with N-BAR, F-BAR domains,
or isolated amphipathic helices of an N-BAR domain protein. Approximate lipid-to-protein ratio
for systems with N-BAR, F-BAR, and amphipathic helices, respectively: 70, 30, and 150. Note that
a higher concentration of proteins is required to remodel a membrane with amphipathic helices
(see text). Membrane composition in all: 30% DOPS, 70% DOPC. Figures adapted from (N-
BAR) [75] copyright (2006) National Academy of Sciences; (F-BAR) [76] licensed under CC
BY; (amphipathic helices) reprinted from [78] with permission from Elsevier

the orientation of the additional small helices at the dimerization interface (termed
insert helices) with respect to the axis of the BAR domain also determines the
magnitude of curvature [79]. The combined result indicates that both modules in N-
BAR proteins—the BAR domain and the helices—are key for efficient remodeling
of the membrane.

Despite the growth in computer power and parallel MD algorithms over the
past 10 years, simulating large-scale membrane-remodeling phenomena at atomic
resolution is still beyond reach. In fact, since the original simulation of membrane
curvature induced by an N-BAR protein in 2006 [75], larger-scale all-atom MD
simulations of this problem have not been reported. This comes as no surprise as
membrane-remodeling phenomena involve many proteins at the mesoscopic scale
and they typically comprise billions of atoms [32]. To understand these processes by
a computational simulation, we need to significantly decrease the simulated number
of degrees of freedom.
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5 Coarse-Grained Modeling

The sheer size of membrane-remodeling events makes it too difficult a challenge to
simulate at atomic resolution. Even if the system size is computationally tractable,
timescales accessible by all-atom MD simulations are often insufficient to provide
useful thermodynamic information at the mesoscopic level. More importantly, pro-
cesses such as endocytosis invoke certain long-wavelength aspects of the membrane
whose description does not even require modeling the atomic-level interactions.

Coarse-graining is a process of reducing the number of degrees of freedom by
representing many atoms with a single CG particle [80]. Note on the left side in
Fig. 4 the depiction of coarse-graining of lipid and N-BAR domain molecules. The
first choice in coarse-graining is determining the level of resolution, i.e., how many
CG particles to use to describe a molecule, such as a lipid. Figure 6 illustrates a
lipid molecule (or a membrane patch) at different levels of resolution, each further
discussed below. Clearly, low-resolution models will give access to much larger
systems due to their computational efficiency, although deriving their effective

Fig. 6 Various lipid models. Top panel represents one lipid molecule in different degrees of
resolution or coarseness (left to right—from finest to coarsest). Bottom panel shows a cutout of
a triangular mesh and meshless membrane models (the latter may also represent a quasi-particle
continuum model). Each model is described in the text. Image of the triangular mesh courtesy of
Andela Saric
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potentials in a systematic fashion can be more difficult. Eliminating the water
molecules by making their contribution implicit, both in the potential itself and by
adding stochastic terms into the dynamics (e.g., Langevin dynamics), can appre-
ciably decrease the computational cost. No matter the approach, a good lipid CG
model should as best as possible reproduce the molecular, the mesoscopic, and the
macroscopic properties of the membrane, namely, (a) fluidity, (b) phase behavior, (c)
structural factors (e.g., radial distribution functions), (d) material properties (e.g.,
bending stiffness and area compression modulus), and (e) fluctuation spectrum.
However, the lateral diffusion rate of lipids is never reproduced in CG modeling,
because the averaging of high-frequency motions leads to an artificially accelerated
timescale, a drawback of all coarse-graining techniques, unless the effects of the
missing degrees of freedom in the CG model are explicitly accounted for in the
dynamics [81]. Therefore, it is important to note that most CG MD simulations—
albeit providing an apparent time-dependent dynamics of the system—cannot easily
be used to predict the actual timescale of molecular processes [82].

5.1 CG Lipid Models

The most difficult task of coarse-graining is accurately mapping the underlying
atomic interactions onto their CG representation. There are two contrasting ways
of generating a CG force field: (1) a bottom-up approach in which the forces are
somehow derived from all-atom simulations and (2) a top-down approach in which
the interactions are approximated by matching with experimental measurements
[80]. Let us consider some CG lipid models before discussing important compu-
tational studies of membrane remodeling. First, we focus on the bottom-up models.
Multiscale coarse-graining (MS-CG) methodology is a bottom-up approach that
uses a rigorous statistical mechanical framework in designing a CG force field
[59]. As it uses a variational calculation, in principle, MS-CG yields the optimum
CG force field relative to the exact many-body potential of mean force in the CG
variables [83, 84]. Important caveats of the model are that (a) it can be numerically
challenging to solve the equations for complex systems, (b) it requires a reasonable
sampling of the configurational space by an atomic-level MD simulation, and (c)
the resulting interactions may be too complex for seamless transferability to other
physical systems because, in fact, the concept of transferability of rigorously derived
CG interactions from one system to another is not yet founded on clear physical
principles. The MS-CG method has been used, e.g., to develop explicit solvent
[85] and solvent-free models [86, 87] of phospholipids and cholesterol, in which
the lipids were reduced to ten CG sites. Simulations of a binary mixed bilayer
using these models have reproduced the fluidity and the structural parameters of the
membrane; however, they have not yet been used to study membrane remodeling
(Fig. 6).
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Simulating large-scale shape changes requires more aggressively coarse-grained
lipid models due to the large length and time scales involved. Bottom-up devel-
opment of highly coarse models is often compromised by insufficient sampling
in atomic-level simulations, especially in the short-range interactions. A way to
overcome this problem is by supplementing the MS-CG forces, derived from well-
sampled atomic-level simulations, with analytical functions that can be based on
some known physical behavior at short range. This hybrid approach has been used
to develop a solvent-free single-site lipid model [88] in which a lipid molecule
was mapped onto an ellipsoidal particle, whose interactions were modeled using an
anisotropic Gay-Berne potential (Fig. 6) [89]. A similar approach has been applied
to develop a more flexible and physically accurate three-site hybrid CG lipid model
(called HCG) using more traditional spherical CG sites [90]. Both models success-
fully reproduced the structural properties of bilayers at the molecular level and all
of the elastic properties of the membrane at the mesoscopic level. Importantly, both
models have been used in studying membrane remodeling (see more below). The
HCG model has recently been expanded to model the effects of charged lipids
separately from the van derWaals interactions [91]. This improvementwill allow for
quantitative insights into the electrostatic properties in protein-membrane systems.

A number of bottom-up methods, which are similar in spirit, derive the CG force
field not by calculating a multi-body potential of mean force for the CG sites, but
instead by relying on one reduced statistical distribution of the system, such as the
radial distribution function, the distribution of intramolecular distances, or, say, the
stress profile (e.g., [92, 93]). The effective CG potential is computed numerically,
using the inverse Boltzmann [94] or inverse MC methods [95]. The inverse MC
approach was used to derive CG lipid models, comprising one to ten sites, which
reproduced correct structural and phase behavior at the 100-nm length scale [96–
98]. However, in making of some of these models, external constraints were applied
to reproduce the experimentallymeasured elastic parameters. By adding an effective
cohesion term mimicking the hydrophobic effect, a lipid model was developed that
can reproduce both the correct structural and the elastic membrane parameters [99].
The underlying modeling method was the iterative Boltzmann inversion used to
match to atomic-level parameters. Its relatively high resolution (16 sites per lipid)
makes it less suitable for studying long-wavelength phenomena, but it is useful
when the chemical specificity of lipids is essential. Of note, a poor choice of
the underlying atomic-level configuration (such as starting from an unphysical or
biologically irrelevant phase of a bilayer) can adversely affect the bottom-up CG
modeling [100].

The basic philosophy of a top-down coarse-graining approach is to fit the CG
interactions so as to reproduce certain experimental observations, usually the self-
assembly into a bilayer, and suchmembranemodels date almost three decades [101].
A top-down model that has become popular in recent years is the MARTINI model
(Fig. 6) [102]. Here, CG interactions—cast in the form of analytical functions—are
fit to some bulk thermodynamic data, namely, the oil/water partitioning free energy.
Due to the empirical nature of MARTINI models, they do not have a connection
to the real atomistic forces that underlie each CG particle; however, they provide a



364 M. Simunovic and G. A. Voth

flexible framework for qualitative modeling of large-scale biomolecular processes.
As the MARTINI model is built upon the amphipathic affinities, it seems suited to
studying lipid systems. Indeed, MARTINI lipids have been shown to spontaneously
form bilayers [103]. However, the downside of such models are that (a) not all
physical interactions can be used in their parameterization and (b) the model could
unintentionally bias the experimental observation that it tries to reproduce.

Some CG models use more sophisticated functional forms to describe the inter-
actions among particles [104–106], and, although these CG lipids readily assemble
into membranes, their elastic parameters are not necessarily in the experimental
range. Driven by this issue, other methods are designed ensuring that the bending
stiffness of the membrane is correctly reproduced, usually via tunable parameters
[107–109].

Finally, there are CG models wherein each particle represents more than one
lipid molecule (see bottom panel in Fig. 6). In one realization of such models, the
membrane is described as a thin elastic sheet composed of a mesh of interconnected
particles. Triangulating the mesh provides a computationally simple and rapid way
of calculating elastic energies associated with bending and stretching deformations
[110–114]. Typically, the forces are calculated using a form of a Helfrich–Canham
Hamiltonian [6, 115]. Mesh-free models provide a more flexible membrane surface,
and they can simulate deformations inaccessible by imposing an unbreakable
meshwork (e.g., pore formation). The abovementioned self-assembly model from
1991 is an example of such a model [101], but there are many other more recent
examples, which employ a combination of attractive and repulsive potentials [116–
120]. These models rarely provide the correct phase behavior of the membrane,
and they are devoid of molecular-level information (e.g., lipid diffusion). However,
they are suited for simulating the very long-wavelength behavior, owing to their
adjustable resolution and the well-reproduced mechanical parameters.

It is difficult to arguewhether the bottom-up or the top-down approach is superior
in practice, as each comes with its own challenges. What is important is that a
CG model needs to be predictive—at least in a semi-quantitative manner—and in
order to do so, it would seem to need connections to real physics. Otherwise, CG
simulations run the risk of becoming solely an animation, or worse, a visualization
tool for biomolecular behavior.

5.2 CG Simulations of Membrane Remodeling

Let us first consider some studies that used CG models to simulate biological
membranes. Simulations employing the relatively high-resolution MARTINI or
derivatives of the MARTINI model have revealed large-scale dynamics at the level
of a single protein molecule, such as the conformational change of proteins and
the local membrane deformation. For example, CG MD simulations have shed light
on the behavior of voltage- and tension-gating of ionic channels [121–125] and
the way in which embedding of small peptides couples with the local membrane
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curvature [126, 127]. Furthermore, simulations of large lipid bilayers with a
complex composition have revealed a transient formation of lipid nanodomains
[128]. Interestingly, according to MARTINI simulations, certain lipids become
enriched in regions of higher curvature [129], a phenomenon called lipid sorting
[28]. The resolution of the MARTINI model is suitable for addressing questions
that require the knowledge of lipid specificity, and for processes that involve a few
protein molecules, such as the protein-mediated fusion [127, 130, 131]. They are
still too finely grained (i.e., their resolution is too high) to address the many-protein
behavior on the membrane leading to large-scale remodeling.

Three-site and lower resolution CG lipid models, on the other hand, are better
suited for simulating long-wavelength phenomenawhile retaining a quasi-molecular
level of detail. A simulation employing a tunable CG lipid model demonstrated that
membrane curvature can give rise to strong attractions among particles adhered to
the membrane—in their case, circular caps and capsids. The consequence of these
interactions is the initial clustering of particles, followed by their engulfment and
transport through the membrane [132]. This study implies that the attraction of
membrane-bound objects, such as viruses and nanoparticles, may be a very general
mechanism. The only requirement is that the object strongly curves the membrane
locally [133]. The assembly of the capsid itself—albeit partially promoted by
membrane curvature—can actually be impeded by diffusion barriers formed by
very strong membrane deformations, as revealed by CG simulations [134, 135].
Interestingly, the formation of microdomains assuages these obstacles, helping the
capsid fully assemble and generate a membrane bud [135].

Let us now return our focus to BAR proteins. As was discussed in the previous
section, atomic-level MD simulations have shed light on the detailed interactions
that give rise to the nanometer-scale membrane curvature. Since BAR proteins
couple with much larger scales associated with membrane reshaping in the cell,
there is high motivation to simulate their behavior with CG simulations. It should
be kept in mind that modeling proteins as particles of arbitrary shape may not be
adequate to capture the relevant phenomena, not even in low-resolution models.
Proteins are more complex than particles: (1) because they are comparable in size to
membrane thickness, (2) their shape is not simple, (3) the way they interact with the
membrane is typically multimodular, and (4) proteins may undergo conformational
changes. BAR proteins are especially challenging to theorists, as they often have
both the shallow insertion domain and the adhesive component; therefore, it is
difficult to correctly account for all these interactions.

Several studies have employed a three-site bottom-up CG lipid model to study
the interaction of N-BAR proteins with the membrane. The internal conformations
of the N-BAR domains were described using an elastic-network approach, which
approximates the vibrational fluctuations of biomolecules using a network of
elastic bonds between CG sites, often based on fluctuations derived from atomic-
level simulations [136–138]. This approximation works very well for proteins
that mostly exist in one conformation, such as BAR proteins. The simulations
started with N-BARs randomly placed on a planar bilayer or on a lipid vesicle of
optically resolvable size. The work showed that N-BAR proteins undergo a specific
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self-assembly mechanism, marked by a rapid formation of long strings of protein
aggregates [139]. Similar to the aforementioned study of capsid aggregation, local
membrane curvature was also the primary driving force in the association of N-
BAR proteins. However, the protein does not induce as high local curvature as
in the capsid model, where it was shown that very high curvature is crucial in
inducing effective attractions [133]. Rather, the anisotropic curvature interactions
with the membrane give rise to long-range quasi-one-dimensional ordering of
proteins on the membrane. This general phenomenon was first predicted with
MC simulations using an analytical N-body potential, which also showed linear
and circular assemblies of nonspecific anisotropic inclusions [140]. Curiously, MC
simulations, using a triangular-mesh membrane model, have shown that spherical
particles adhered to the membrane also undergo linear aggregation [141]. This
work has implicated particle-membrane binding force—a term typically absent in
analytical modeling of membrane inclusions—as the driving force that overcomes
the cost of local deformations. Local deformations then mediate the effective inter-
particle attractions, although, hypothetically, the anisotropic interactions that form
upon the initial particle pairing might also strongly contribute to the formation of
lines.

What is striking is that three very different membrane models demonstrated the
same association behavior of objects interacting with the membrane (Fig. 7). The
important implication for biology is that proteins that form anisotropic curvature
interactions—and BAR proteins are an excellent example—may rapidly form long-
range anisotropic assemblies on the membrane, even when they are present at low
densities. The linear aggregation phenomenon of particles on membranes has been
shown by experiments using giant vesicles decorated with nanoparticles [142].
Strikingly, a very recent study employing electron and fluorescence microscopy has
confirmed the theoretical prediction that BAR proteins form linear oligomers on the
surface of the membrane [143, 144].

In order to generate global membrane curvature, N-BAR proteins need to be
bound at sufficiently high densities. According to CG MD simulations, at 20%
surface density, proteins form a percolating meshwork on the surface, giving rise
to budding instabilities at the center of protein meshes (see Fig. 7, right) [139].
Interestingly, the sign of curvature of emerging buds is positive, i.e., the membrane
bends toward the proteins. Such geometry is the same as in endocytosis, where
the endocytic vesicle forms on the side where the membrane-remodeling proteins
are bound [31]. The association of spherical particles, on the other hand, leads to
tubulation in the opposite direction, especially at high binding force (Fig. 8) [145,
146]. According to these observations, even though membrane-bound objects start
from the same association geometry, the anisotropy and particle size determine the
ultimate membrane shape (i.e., positive versus negative curvature).

The association of bound particles also couples with membrane’s mechanical
parameters, namely, membrane tension. Increasing surface tension changes the way
N-BARs interact with one another: from changing the geometry of dimerization
and breaking the meshwork topology to, at highest tension, inhibiting association
altogether [147]. Therefore, the anisotropic shape of N-BAR proteins enriches the
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Fig. 7 Linear aggregation of membrane-bound objects [from left to right: (1) analytically modeled
inclusions, (2) spherical particles, and (3) N-BAR proteins] simulated by three very different
models. Left: reprinted from [140] with permission from Springer; center: courtesy of Andela
Saric, based on [141]; right: based on [139]

range of geometries into which they assemble at different conditions. Moreover,
these observations and a recent experimental study [148] implicate membrane ten-
sion as an important effector of membrane remodeling by proteins. Understanding
this mechanism may be key to understanding how BAR proteins assemble in the
course of endocytic events that involve actin, an important tension modulator [149].

When overexpressing BAR proteins in the cell, the typical phenotype is a
massive tubulation of the membrane [42]. Has such remodeling been captured
with CG MD simulations? A recent study using a highly CG meshless model,
in which the rigidity and the spontaneous curvature of the membrane are tuned,
has shown that curved rods, representing BAR proteins, could generate very long
tubules from the membrane (Fig. 8). The study has also shown that the proteins
initially go through stages of linear aggregation and meshing, in line with the
aforementioned simulation studies, although, interestingly, the meshwork forms
only if the spontaneous curvature term is positive in one direction and negative
in the other [150]. In fact, the aforementioned CG study of N-BARs aggregating
on vesicles, where no assumption on local curvature has been made a priori, has
shown that N-BARs imprint this type of curvature on the surface [139]. When
local curvature deformations by the protein have equal sign in both directions, bent
particles (or in one study nematogenic inclusions) do not form a meshwork, but
they still remodel the membrane into tubular and disk-like instabilities, as shown by
a meshless and a triangular membrane model [150–152]. Again, subtle changes in
the way proteins interact locally with the bilayer have a global impact on the shape
of the membrane.

In these three studies, protein-covered membrane tubules grew continuously
from the membrane surface. CG MD simulations, using a bottom-up three-site lipid
model and an internal elastic network N-BARmodel interacting with the membrane,
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Fig. 8 Top: forming membrane tubules by spherical particles (left) and by bent rods (right). Left,
courtesy of Andela Saric and based on work from [146]; right, courtesy of Hiroshi Noguchi and
based on work from [150]. Center: Forming reticular membranes by breaking the bilayer topology
by N-BAR proteins. Scale bar, 20 nm. Based on the work in [151]. Bottom: CG MD simulation
snapshot of a membrane tube coated by an N-BAR domain scaffold. Scale bar, 20 nm. Adapted
from [43], copyright (2016) National Academy of Sciences

have revealed another mechanism of forming membrane tubules. Here, the bilayer
topology breaks due to high in-plane stresses imposed by many protein molecules.
The prerequisites for this pathway are a rapid and a high-density binding of N-
BAR proteins that essentially fold the membrane into a tubule. When they bind to
a vesicle, this process leads to a transformation into a tubular network (Fig. 8), a
structure which has been confirmed by cryo-electron microscopy under the same
conditions [153]. According to simulations, the N-BAR proteins spontaneously
form a nematic arrangement which dictates an average tubule radius of 10 nm,
in remarkable agreement with experimental observations [44, 153]. Apparently,
the radius of the folded tubule is also affected by the way individual proteins
are arranged in this coat, as shown by MARTINI-like simulations of N-BAR
and F-BAR protein lattices on membrane patches with exposed edges [76, 154].
Finally, a different CG MD study, using an internal elastic network N-BAR model
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interacting with a Gay-Berne CG potential to model lipids, addressed the influence
of amphipathic helices on the protein coat dynamics. They found that the presence
of N-terminal helices and their antiparallel orientation (i.e., each helix oriented
on the opposite side of the BAR domain) are important in stabilizing the lattice
organization of the protein and the tubule rigidity [41, 155].

Less is known at the molecular level on how BAR proteins assemble on
already formed tubules, an intermediate step in many endocytic pathways, e.g., in
endocytosis driven by an N-BAR protein endophilin [149]. One simulation study
has shown that curved rods undergo a phase separation on membrane tubules,
modeled with a meshless lipid model. More precisely, the proteins get enriched in
one region of the tubule, squeezing it into an hourglass shape [151]. The formation
of high-density regions could explain the initial constriction of membrane tubules
by BAR proteins, as observed in experiments [156]. A study combining in vitro
reconstitution, CG MD simulations, and mathematical modeling shed light on
the molecular details and the mechanism by which BAR proteins assemble on
membrane nanotubes to form a protein scaffold. Apparently, the strength by which
BAR proteins constrict the underlying tube determines where the protein nucleation
takes place. Proteins that strongly constrict the membrane, such as endophilin,
which creates very thin scaffolds, only 10 nm in diameter, initiate the scaffold
at the base of the nanotube. By contrast, weakly constricting BAR proteins, such
as β2 centaurin, which creates 40-nm-wide nanotubes, uniformly bind along the
tube while making the scaffold [43]. CG MD simulations, employing a three-site
lipid model, have revealed that N-BARs polymerize into a highly ordered helical
structure on the tube, likely contributing to the very strong mechanical properties of
the protein scaffold [43].

Simulating other proteins involved in endocytosis presents even bigger chal-
lenges, because of their more complicated structure or because their activity couples
with an active, energy-driven process. For instance, clathrin is a protein that drives
one of the most prominent pathways to enter cells [157]. The basic unit of clathrin
is shaped like a triskelion, which polymerizes into a fullerene-like basket [158,
159]. This basket is believed to mold the membrane into a vesicle, engulfing the
cargo bound on the opposite side of the bilayer (recall the coating mechanism of
inducing curvature depicted in Fig. 2). Considering that clathrin (a) forms a complex
polymeric structure and (b) it interacts with the membrane via adaptor proteins,
it will be a great challenge to design a bottom-up CG model. Patchy particles—
particles with sticky domains on the surface—have therefore been used to design
shape-based models of clathrin, with interactions motivated from structural biology.
These studies—albeit semi-quantitative—have fleshed out some key interactions
that drive clathrin-like objects to assemble into a basket in the solution [160, 161].
They have also shown how the remodeling of the membrane by a clathrin-like basket
depends on membrane’s flexibility and stiffness [162]. A more flexible CG model,
wherein the interactions have been derived with a parameterization scheme, has
been shown to assemble into a basket both in the solution and on the membrane,
identifying new intermediates in the budding pathway (Fig. 9) [163].
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Fig. 9 The assembly of clathrin from triskelia into a basket-like structure and subsequent
membrane remodeling into a vesicle. Shown are snapshots taken at regular time intervals in the
simulation, viewed from the top of the membrane and from the side. Reproduced from [163] with
permission from The Royal Society of Chemistry

In light of the demonstrated power of CG simulations, one may ask, “Do we
then need atomic-level simulations to study membrane remodeling?” Returning
to our initial discussion on multiscale nature of membranes, we immediately
recognize the importance of understanding the molecular organization at the atomic
scale. Although the collective action of proteins couples with the long-length scale
phenomena, the small-scale interactions of individual proteins with the membrane
and, in cases such as clathrin, the specific protein–protein attractions need to
be studied in detail. Furthermore, CG models at present cannot account for the
conformational changes of proteins that normally alter the way they interact with
one another and with the membrane. Finally, the chemical reactions, such as the
conversion between certain types of lipids and the hydrolysis of GTP or ATP, play
key roles in membrane remodeling and will need to be addressed with atomic-level
or mixed-resolution simulation techniques.

6 ContinuumModeling

Continuum modeling tackles the behavior at the mesoscopic level. The term
mesoscopic in membrane physics encompasses a fairly wide range of scales,
generally much larger than the membrane thickness but much smaller than the cell
membrane. Scales of many CG simulations discussed in the previous section can
surely be described as mesoscopic, such as the CG simulations of vesicles coated
with N-BAR proteins [139]. Continuum models ignore individual molecules and
describe them using collective or field variables, whose dynamics then gives only
the collective properties of the system [164]. The triangular-mesh and the meshless
models described in the previous section are similar to continuum models, as they
do not resolve individual molecules; however, the use of discrete particles and MC
or MD to integrate their motion makes them more similar to CG methods.
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The premise of most continuum models is the assumption that the membrane
can be described as a fluid thin elastic sheet, modeled by the Helfrich–Canham
Hamiltonian [6, 115].Minimizing the free energy functional, usually with numerical
simulations, provides insight into the shape and the statistical properties of the
membrane. Curvature can be modeled in multiple ways, such as by varying the
value of preferred curvature [6, 115] or by imposing various constraints, such as on
the area difference between the two leaflets upon asymmetric inclusion of particles
[165–168]. Historically, these approaches have been used to explain the shapes of
the red blood cell or vesicles embedded with inclusions, for example [169–174] and
many other studies.

In the present discussion, we are more interested in continuum studies focused
on the process of membrane remodeling. For studying membrane reshaping,
such an approach would comprise simulating the finite-temperature dynamics,
compositional variations, membrane fluctuations, and hydrodynamic effects. The
so-called elastic membrane version 2 (EM2) model embodies all of these aspects
of the membrane, and it has been used to study the remodeling of large lipid
vesicles by BAR proteins. Given the complexity of calculating the radii of curvature
for complex surfaces, such as a liposome, the free energy of the continuum
membrane is discretized into quasi-particles immersed into a mesoscopic quasi-
particle solvent, in the spirit of SPH techniques. The discretization allows for
large-scale membrane restructuring, thermal fluctuations, and a more flexible and
efficient computational approach that resembles MD simulations [175]. Equivalent
to triangular-mesh models, bending and stretching energies are explicitly calculated
as a pair-wise potential between two particles. However, an important advance is that
each quasi-particle also has superimposed field variables, namely, lipid and protein
compositions, cast in the form of a phenomenologicalLandau free energy functional
[176]. The morphological effect on the membrane is modeled by coupling protein
and lipid area fractions with the spontaneous curvature of the membrane, bending
stiffness, and other parameters [175]. Other terms can be easily incorporated, for
instance protein–protein interactions in the form of oligomerization energy. Finally,
the composition field variable evolves according to the Landau–Ginzburg equation
by using the smooth particle applied mechanics [177], which is similar to SPH.

EM2 simulations of large vesicles under the influence of a protein field variable
have given insights into an unexpected molecular mechanism of forming tubules
and a range of membrane morphologies. First, rapid protein binding at high surface
densities transformed a vesicle into a tubular (reticulated) network, in the same way
as in the CG simulations discussed in the previous section (Fig. 10). As expected,
increasing the effective spontaneous curvature term in the Hamiltonian increased the
propensity of the membrane to change shape. Keeping in mind that in continuum
simulations the protein is only represented as a field variable, one therefore does
not have knowledge of its molecular scale assembly. However, one can study how
the membrane changes shape depending on how the protein couples with curvature.
It turns out that the ultimate fate of the membrane depends whether the curvature
field of the protein is isotropic or anisotropic [178]. In the case of the anisotropic
curvature field, the vesicle transforms into a tubular network (Fig. 10). This result
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Fig. 10 Formation of tubular networks by N-BAR proteins in continuum mechanics simulations.
Top: the influence of the isotropic (left) versus the anisotropic (right) spontaneous curvature.
Adapted from [178] with permission from Elsevier. Bottom: time lapse of vesicle transformation,
depicting the rapid recruitment of N-BARs from the mesoscopic solvent to the membrane surface.
Color coding: protein concentration (red—high; white—intermediate; blue—low). Reprinted from
[153] with permission from Elsevier

indicates that the proteins initially assemble on the membrane with a preferred
direction, caused by interactions with other proteins. Indeed, recall that N-BAR
proteins simulated at the CG level form linear aggregates when bound on a flat
membrane surface [139]. In the case of an isotropic curvature field, the vesicle
fragments into smaller vesicles [178]. This vesiculation phenomenon has indeed
been experimentally reportedwhen incubating curvature-couplingproteins that have
amphipathic helices (such as N-BAR proteins) with 200-nm-wide liposomes [179].
It is not clear what process may disrupt the anisotropic alignment of proteins, but we
can speculate that the embedding of amphipathic helices, perhaps in a different way
on small liposomes than on quasi-flat membranes, introduces an additional radius
of curvature. Moreover, it is possible that the high spherical curvature prevents the
anisotropic ordering of BAR proteins.

It has also been shown that the formation of tubular networks takes place in a
narrow configurational space, favoring membranes with a lower bending stiffness
(<15 kBT) and for a range of spontaneous curvatures characteristic of N-BAR
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proteins [153]. In the same simulation, if the applied spontaneous curvature is
more characteristic of F-BAR proteins—which typically induce tubules of larger
diameter—the EM2 model requires an additional oligomerization term in order
to bend the membrane (Fig. 10) [180]. This result indicates that F-BAR proteins
require explicit protein–protein interactions to reshape the membrane into a tubule,
whereas for stronger curvature generators such as N-BARs, the protein–protein
attractions are mostly driven by the underlying membrane.

Another notable continuous model of a fluctuating membrane that integrates
the motion over time and carefully treats the hydrodynamic effects is the Fourier
space Brownian dynamics [181, 182]. The method received its name because the
shape of the membrane is calculated in the Fourier space, although the forces are
calculated in the real space. The model is designed such that the membrane can
couple with an arbitrary external force and so it can be expanded to study protein-
mediated remodeling; however, it has yet not been used to address this biological
question. One example using this model is a study of a membrane interacting with
the cytoskeleton. The simulations have indicated that thermal fluctuations contribute
to the macroscopic diffusion of proteins on the surface of a red blood cell [182].

7 Outlook: Mixed-Resolution Models

From the present discussion, it is evident that membrane remodeling by proteins
is a complex process that challenges experimentalists and theorists alike. Let us
briefly summarize the advantages and problems of each level of theory applied
to simulating membrane reshaping by proteins. Atomic-level simulations are key
in revealing the detailed interactions at the interface of the protein and the
membrane. For instance, they can show the local orientation of lipids or measure
the thermodynamics of binding. However, the atomic model is unable to access
the mesoscopic scales of membrane remodeling. Fortunately, studying these long-
length and time scale processes does not require knowing the position and the
state of each individual atom in the system. CG simulations, on the other hand,
access much larger scales and provide information on the collective behavior of
proteins on the surface. These models also give the detailed shape of the membrane
embedded by proteins, which is crucial in explaining its macroscopicmorphological
consequences. CGmodels are still limited by the challenges in obtaining an accurate
CG effective force field that will not bias specific protein assembly or membrane
geometry and, similar to atomic-level simulations, they can suffer from rising
computational cost when simulating very large systems. Finally, continuummethods
are crucial in investigating cell-sized membrane phenomena. However, application
of continuum method to study protein-mediated membrane reshaping has been
sparse, likely as these processes rely on thermal fluctuations, hydrodynamics,
bending and stretching mechanics, but also on the lateral distribution of lipids and
proteins, which are very difficult to take into account in a single model.
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How can we overcome the discrepancy in scales? Let us revisit the idea behind
a multiscale approach. One strategy is to connect the information between different
scales in separate simulations, which is essentially the philosophy behind bottom-
up coarse-graining [183]. Recall that this approach is challenging conceptually and
mathematically. We can also choose some averaged properties from one resolution
and take those values as a parameter in a different resolution model. In one
example applied to membranes, the continuum and the atomistic descriptions were
coupled. The approach used material properties of the bilayer obtained in atomic-
level simulations as fixed parameters in solving the elastic free energy in the
continuum model. In the opposite direction, the lateral stress profile extracted from
a mesoscopic undulating surface was applied to the atomic-level simulation [184].

Another strategy is to first use the computationally less expensive simulation to
generate a configuration and then to use it to make a higher-resolution model. One
example employing this strategy is a study of N-BAR proteins on a reticular mem-
brane. The formation of a reticular membrane was simulated using the mesoscopic
continuum EM2 model (see the previous section). Then, the continuum membrane
was fine-grained by mapping CG membrane patches atop of a triangulated mesh of
EM2 quasi-particles [185]. SubsequentCGMD simulations have revealed important
molecular information, such as the strongly hindered lipid mobility underneath a
protein scaffold and especially in tubular junctions. This kind of information cannot
be obtained from continuum models alone [153]. To visualize this fine-graining
procedure, the reader is directed back to Fig. 4, where arrows from the continuum to
the CG model illustrate how the mapping was accomplished. A more sophisticated
approach for the future would include using field variables to accurately map the
protein and lipid distribution in a CG representation.

An alternative strategy—often termed the mixed-resolution approach—consists
of modeling different scales in the same simulation system. As mentioned earlier,
integrating quantummechanics with atomic-level force fields has proven very useful
in modeling enzymatic reactions [58]. Similar hybrid approaches can be envisioned
(1) between atomic and CG levels, (2) between CG and continuum levels, and (3)
even between atomic and continuum levels [186].

Although various approaches have been developed to study proteins in solution
at mixed resolution, let us focus on membranemodels. One way to split a membrane
system between two resolutions is by having some particle types (e.g., lipids)
at one resolution and the rest (e.g., proteins or solvent) at a different resolution.
For instance, one approach treated the membrane using a continuum model while
it described the proteins as particles. The very low resolution of the membrane
significantly accelerated the dynamics, allowing, at the same time, us to study the
diffusion of proteins [187]. An alternative resolution-splitting scheme is to have one
region of the space (typically smaller) at high resolution, and the rest of the system
at low resolution, in the spirit of QM/MM simulations. A recent model employing
a similar strategy combined CG with continuum mechanics in a way to calculate
the intramolecular forces using a CG model (MARTINI in that case), whereas the
computationally expensive nonbonded interactions are averaged out in the style of
the mean field theory [188]. In other words, individual molecules were resolved, but
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instead of interacting with many neighbors, they interacted with a field. The model
has been used to simulate membrane self-assembly [189] and the insertion of carbon
nanotubes into the bilayer [190].

Mixed-resolution models are yet to be used to study membrane remodeling
by proteins; however, they may provide a very promising approach that deserves
attention in the coming years. Future challenges will involve correctly modeling
the collective behavior of proteins on the membrane, so as to permit different
protein orientations at the molecular level and, even further, the interactions between
different types of proteins to simulate their cooperative assembly in the course of
complex membrane-remodeling processes.
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