
Membrane-Mediated Interactions

Anne-Florence Bitbol, Doru Constantin, and Jean-Baptiste Fournier

Abstract Interactions mediated by the cell membrane between inclusions, such as
membrane proteins or antimicrobial peptides, play important roles in their biological
activity. They also constitute a fascinating challenge for physicists, since they test
the boundaries of our understanding of self-assembled lipid membranes, which are
remarkable examples of two-dimensional complex fluids. Inclusions can couple
to various degrees of freedom of the membrane, resulting in different types of
interactions. In this chapter, we review the membrane-mediated interactions that
arise from direct constraints imposed by inclusions on the shape of the membrane.
These effects are generic and do not depend on specific chemical interactions.
Hence, they can be studied using coarse-grained soft matter descriptions. We deal
with long-range membrane-mediated interactions due to the constraints imposed
by inclusions on membrane curvature and on its fluctuations. We also discuss the
shorter-range interactions that arise from the constraints on membrane thickness
imposed by inclusions presenting a hydrophobic mismatch with the membrane.

Keywords Lipid bilayer · Continuum elasticity · Membrane inclusion ·
Hydrophobic matching · Membrane-mediated interactions · Fluctuation-induced
interactions

A.-F. Bitbol (�)
Sorbonne Université, CNRS, Laboratoire Jean Perrin (UMR 8237), Paris, France

Lewis-Sigler Institute for Integrative Genomics and Department of Physics, Princeton University,
Princeton, NJ, USA
e-mail: anne-florence.bitbol@sorbonne-universite.fr

D. Constantin
Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay,
France
e-mail: doru.constantin@u-psud.fr

J.-B. Fournier
Laboratoire “Matière et Systèmes Complexes” (MSC), UMR 7057 CNRS, Université Paris 7
Diderot, Paris Cedex 13, France
e-mail: jean-baptiste.fournier@univ-paris-diderot.fr

© Springer Nature Switzerland AG 2018
P. Bassereau, P. Sens (eds.), Physics of Biological Membranes,
https://doi.org/10.1007/978-3-030-00630-3_13

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00630-3_13&domain=pdf
mailto:anne-florence.bitbol@sorbonne-universite.fr
mailto:doru.constantin@u-psud.fr
mailto:jean-baptiste.fournier@univ-paris-diderot.fr
https://doi.org/10.1007/978-3-030-00630-3_13


312 A.-F. Bitbol et al.

1 Introduction

Although membrane proteins were traditionally described as free to diffuse in the
cell membrane [1], it was soon acknowledged that the lipid bilayer can influence
their organization and thus have an impact on many aspects of their activity [2].
Hence, interactions between proteins and the host membrane, as well as the resulting
protein–protein interactions, have become fundamental topics in biophysics.

Membrane inclusions such as proteins can couple to various degrees of freedom
of the membrane (curvature, thickness, composition, tilt, etc.), thus giving rise
to several types of membrane-mediated interactions. It is noteworthy that these
interactions are often nonspecific, i.e., they do not involve the formation of chemical
bonds between the various components. Thus, understanding these interactions calls
for a description of the membrane as a self-assembled system whose properties are
collectively determined, and not merely given by the chemical properties of the
molecules involved [3]. Over the last few decades, it has become clear that the
concepts developed in soft matter physics to describe self-organized systems are
extremely useful in this context, and that coarse-grained effective models such as
the Helfrich model of membrane elasticity [4] can yield valuable insight.

In this chapter, we review the membrane-mediated interactions between inclu-
sions such as membrane proteins that arise from direct constraints imposed by these
inclusions on the shape of the membrane. Our point of view is mostly theoretical, in
agreement with the history of this research field, but we also discuss the numerical
and experimental results that are available. For clarity, we treat separately the effects
that result from the coupling of the inclusions with membrane curvature and those
that arise from their coupling with membrane thickness. Note however that a given
inclusion can couple to both of these degrees of freedom. The first case, presented in
Sect. 2, leads to interactions with a much larger range than the characteristic size of
the inclusions, which will be referred to as “long-range interactions.” Such effects
can be described starting from the coarse-grained Helfrich model [4]. The second
case, discussed in Sect. 3, yields a much shorter-range interaction and requires more
detailed effective models of the membrane.

Other types of membrane-mediated interactions, arising from other underlying
membrane degrees of freedom such as lipid composition and tilt, will not be
discussed in detail. Besides, important applications such as the crystallization of
membrane proteins and the interaction between constituents of such crystals are
outside of the scope of this chapter.

2 Long-Range Membrane-Mediated Interactions

Inclusions such as proteins are generally more rigid than the membrane. Therefore,
they effectively impose constraints on the shape of the membrane, especially on its
curvature, which plays a crucial part in membrane elasticity. These constraints in
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turn yield long-range membrane-mediated interactions between inclusions. While
our focus is on inclusions, we note that similar interactions have been predicted
between objects adsorbed on the membrane, e.g., grafted polymers [5], which can
be described as imposing a force distribution (with zero mean) rather than a shape
constraint.

We will review the first theoretical predictions of these interactions, before
moving on to further results in the analytically tractable regime of distant inclusions
embedded in almost-flat membranes, including anisotropy, multi-body effects, and
dynamics. Extensions to other geometries will then be discussed, including the
compelling but tricky regime of large deformations, where numerical simulations
provide useful insight. Finally, we will examine the available experimental results.

2.1 First Predictions

2.1.1 Seminal Paper

The existence of long-range membrane-mediated forces between inclusions in lipid
membranes was first predicted in Ref. [6]. (Note that a related collective effect
of curvature instability induced by inclusions imposing a spontaneous curvature
had been discussed previously [7].) In Ref. [6], the curvature elasticity of the
membrane was described by the tensionless Helfrich Hamiltonian [4]. For an up-
down symmetric membrane, it reads

H =
∫

dA
[κ

2
(c1 + c2)

2 + κ̄ c1c2

]
, (1)

where κ is the bending rigidity of the membrane and κ̄ is its Gaussian bending
rigidity, while c1 and c2 denote the local principal curvatures of the membrane, and
A its area. This elastic energy penalizes curvature. For small deformations of the
membrane around a planar shape, Eq. (1) can be approximated by:

H [h] =
∫

dr

{
κ

2

[
∇2h(r)

]2 + κ̄ det[∂i∂jh(r)]
}

, (2)

where h(r) is the height of the membrane at position r = (x, y) ∈ R
2 with respect

to a reference plane, and (i, j) ∈ {x, y}2. The Hamiltonian in Eq. (2) is massless
and features a translation symmetry (h → h + C where C is independent of
position), yielding Goldstone modes. The associated long-range correlations give
rise to long-range membrane-mediated interactions. Neglecting the effect of the
membrane tension σ , as in Eqs. (1) and (2), is legitimate below the length scale√

κ/σ . Note that the simplified Hamiltonian in Eq. (2) is quadratic in the field h,
i.e., the field theory is Gaussian.
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Fig. 1 Ground-state shape of a membrane containing two rigid disk-shaped inclusions that impose
the contact angles α1 and α2, obtained by solving the Euler–Lagrange equation (see Ref. [8]). The
membrane shape is described by its height h with respect to the plane z = 0. The radius of the
inclusions is denoted by a, and the center-to-center distance by d

In Ref. [6], inclusions are characterized by bending rigidities different from
those of the membrane bulk. A zone with slightly different rigidities (“perturbative
regime”) can represent a phase-separated lipid domain, while a very rigid zone
(“strong-coupling regime”) can represent a protein. Both regimes are discussed,
in the geometry of two identical circular domains of radius a at large separation
d � a (see Fig. 1). An interaction potential proportional to 1/d4 is obtained in both
regimes.

Besides, a low-temperature interaction is obtained for rigid inclusions that
impose a contact angle with the membrane, e.g., cone-shaped inclusions [6, 9]:

U1(d) = 4πκ(α2
1 + α2

2)
a4

d4 , (3)

where α1 and α2 are the contact angles imposed by inclusion 1 and inclusion
2 (see Fig. 1). This interaction is obtained by calculating the membrane shape
that minimizes the membrane curvature energy in Eq. (2) in the presence of
the inclusions. It arises from the ground-state membrane deformation due to the
inclusions and vanishes for up-down symmetric inclusions. It is repulsive. Note
that this interaction does not depend on the Gaussian bending rigidity of the
membrane [9], as the Gaussian curvature energy term only depends on the topology
of the membrane and on boundary conditions. Hence, in most subsequent studies of
the membrane-mediated forces between rigid membrane inclusions, the Gaussian
curvature term in Eq. (2) is discarded. In the perturbative regime, however, the
interaction depends on the perturbation of the Gaussian bending rigidity [6].

Another interaction, which is attractive and originates from the thermal fluctu-
ations of the membrane shape, was predicted as well, and its expression for rigid
inclusions reads [6, 10]:

U2(d) = −6 kBT
a4

d4 . (4)
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Importantly, this fluctuation-induced interaction is independent of elastic constants
and of contact angles. It exists even for up-down symmetric inclusions (imposing
α1 = 0 and α2 = 0) that do not deform the ground-state membrane shape.

Multipole expansions valid for a � d were used to calculate these interactions
for rigid inclusions. Details on these expansions are presented in Refs. [8, 10]. Only
the leading-order terms in a/d were obtained in Ref. [6]. This method was recently
pushed further, yielding higher-order terms in a/d [8].

In the perturbative regime, the interaction depends on the perturbations of κ and
κ̄ in the inclusions and on the value of κ in the membrane as well as on kBT [6].

2.1.2 Point-Like Approach

Reference [11] extended the study of Ref. [6]. Membrane elasticity was described by
Eq. (2) as in Ref. [6], but different membrane-inclusion couplings were considered.
Rigid inclusions were treated through a coupling Hamiltonian favoring a relative
orientation of their main axis and of the normal of the membrane. The membrane-
mediated interaction was calculated in the limit of very small inclusions, where the
ultraviolet cutoff of the theory � appears. The radius a of the inclusions was related
to � through � = 2/a [11], yielding agreement with the results of [6]: the total
interaction energy obtained is the sum of U1 and U2 (Eqs. (3) and (4)).

This opened the way to direct point-like descriptions of membrane inclusions.
In Ref. [12], a perturbative approach was taken, where the coupling with the
membrane and the inclusions was assumed to be linear or quadratic in the local
mean curvature at the point location of the inclusion. In Ref. [13], the insertion
energy of a protein in the membrane was approximated by a term proportional to the
Gaussian curvature of the membrane at the insertion point. Then, in Refs. [14, 15],
inclusions were modeled as more general local constraints on the membrane
curvature tensor. Considering inclusions as point-like is justified in the case of
membrane proteins, since their typical radius is comparable to membrane thickness,
which is neglected when the membrane is considered as a surface, as in Eq. (2).
This description simplifies the calculation of membrane-mediated interactions, by
eliminating the need for a multipole expansion. In practice, one writes the partition
function of the membrane described by the elastic energy in Eq. (2) (discarding
Gaussian curvature), modeling inclusions as point curvature constraints [14, 15].
For one inclusion imposing a local isotropic curvature c in r0, these constraints read
∂2
xh(r0) = ∂2

yh(r0) = c and ∂x∂yh(r0) = 0. Then, the part of the free energy that
depends on the distance d between the inclusions is the sum of U1 and U2 (Eqs. (3)
and (4)), where the effective radius a of the point-like inclusions appears through
the cutoff � = 2/a, and the effective contact angle is α = ac.

References [16, 17] formalized the connection between the original description
of inclusions as rigid objects [6] and the more convenient point-like description.
The effective field theory formalism developed in Refs. [16, 17] for membranes (see
also Ref. [18] for fluid interfaces, and Ref. [19] for a review) considers inclusions
as point-like particles and captures their structure and the boundary conditions they
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impose via localized coupling terms. In practice, a series of generic scalar localized
terms consistent with the symmetries of the system is added to the curvature
energy describing the bare membrane. Each term in the series is polynomial
in the derivatives of the membrane height h, taken at the point position of the
inclusion. The coefficients of each term of the series are then obtained by matching
observables, such as the ground-state membrane shape responding to an imposed
background, between the full model with extended inclusions and the effective field
theory [17]. These Wilson coefficients are analogous to charges, polarizabilities,
etc. of the inclusions and describe the interplay between the membrane and
the inclusions, by encoding the long-range effects of short-range coupling [19].
Membrane-mediated interactions can be obtained from this effective field theory.
It gives back the leading terms in a/d obtained previously, with a generalization
to inclusions with different radii, and yields higher-order corrections [16, 17]. This
general and powerful method could be extended to complex inclusions with specific
Wilson coefficients, and also enables general derivation of scaling laws through
power counting. However, one should bear in mind that its existing application to
rigid disk-shaped inclusions a priori yields results specific to this particular model
of the inclusions. In particular, the discrepancy obtained with previous point-like
approaches on certain higher-order terms [17] should be regarded as a different
result obtained for a different model, since previous point-like approaches did not
aim to fully mimic rigid disk-shaped inclusions. Note that higher-order terms were
recently calculated in the framework of extended disks [8], showing agreement
with [17] and pushing the expansion further.

2.1.3 Two Types of Interactions

The long-range membrane-mediated interaction between rigid inclusions comprises
two leading-order terms that both depend on the fourth power of a/d (Eqs. (3)
and (4)) [6]. Subsequent works [11, 14–17] demonstrated that the total interaction
is the sum of these two terms, one coming from the ground-state deformation of
the membrane by the inclusions (Eq. (3)) and the second one arising from entropic
effects (Eq. (4)). However, it should be noted that the separation of these two terms
is mostly of formal interest, since the ground-state shape, which is obtained by
minimizing the Hamiltonian of the system, may not be of much practical relevance.
In practice, one may be able to measure experimentally the average shape of a
membrane, but in general it would not coincide with the ground-state one, except in
the Gaussian regime of small deformations (for an anharmonic potential, the mean
value, and the most likely value are not necessarily the same). In this regime, which
has been the focus of most theoretical work, the membrane Hamiltonian is quadratic
(Eq. (2)): then, the separation of the two terms makes sense. Let us now discuss each
of these two terms.

The first term, U1 (Eq. (3)), arises from the overlap of the ground-state
deformations of the membrane due to the presence of each individual inclusion,
and it was first obtained in Ref. [6] by taking the (fictitious) zero-temperature
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limit. It also corresponds to the membrane-mediated interaction within a mean-field
approximation.

The second term, U2 (Eq. (4)), is a fluctuation-induced or entropic effect, which
exists even if both inclusions impose vanishing contact angles. Remarkably, in the
case of rigid inclusions, the only energy scale involved is kBT : this interaction is
universal. It arises from the constraints imposed by the inclusions on the thermal
fluctuations of the shape of the membrane, which is a field with long-range
correlations. It is analogous to the Casimir force in quantum electrodynamics (see,
e.g., [10, 11, 14, 15, 20]), which arises from the constraints imposed by non-charged
objects (e.g., metal plates) on the quantum fluctuations of the electromagnetic
field [21, 22]. This fluctuation-induced interaction is thus often termed “Casimir”
or “Casimir-like.” In Ref. [23], the fluctuation-induced force between membrane
inclusions was recovered from the entropy loss associated to the suppression of
fluctuation modes, thus reinforcing the formal analogy with the Casimir force.
Fluctuation-induced forces analogous to the Casimir force exist in several other
soft matter systems, where thermal fluctuations play an important part [24, 25].
They were first discussed by Fisher and de Gennes in the context of critical binary
mixtures [26]. This “critical Casimir” force has been measured experimentally
between a colloid and a surface immersed in a critical binary mixture [27].
Interestingly, such critical Casimir forces have been predicted to exist in membranes
close to a critical point in lipid composition, and they are very long range, with
power laws up to (a/d)1/4 [28]. Their sign depends on the boundary conditions
imposed by the inclusions [28], as in the three-dimensional critical case [25].

Let us now compare the magnitude of these two types of interactions. For two
identical inclusions imposing the same contact angle α, the interactions in Eqs. (3)
and (4) have the same modulus if

|α| =
√

3

4 π

kBT

κ
. (5)

Using the typical value κ ≈ 25 kBT gives |α| ≈ 6◦: for larger contact angles, the
mean-field repulsion dominates over the fluctuation-induced attraction.

2.2 Further Developments on Distant Inclusions Embedded
in Almost-Flat Membranes

2.2.1 In-Plane Anisotropy

Until now, we discussed the simple case of two inclusions with isotropic (i.e., disk-
shaped) in-plane cross-section, which was the first case investigated [6]. However,
real membrane inclusions, such as proteins, have various shapes. Figure 2 shows
a schematic of the different cases at stake: those in panels a and b were discussed
above, and those in panels c and d will be discussed here.
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a b

c d

Fig. 2 Schematic representation of the different cases for inclusions with separation d much larger
than their characteristic size a, embedded in a membrane with small deformations around the flat
shape. In each case, a view from above and a longitudinal cut are presented. Thermal fluctuations
of the shape of the membrane are only represented in the bottom right cut of panel a. (a) Isotropic,
up-down symmetric. (b) Isotropic, not up-down symmetric. (c) Anisotropic, up-down symmetric.
(d) Anisotropic, not up-down symmetric

In Ref. [11], the case of anisotropic cross-sections was treated through a coupling
between membrane curvature and symmetric traceless tensor order parameters
constructed from the main direction of the inclusion cross-section, integrated over
the surface of the inclusion cross-section. The interaction energies obtained are
anisotropic, and depend on d as 1/d4 for up-down symmetric inclusions that interact
only through the fluctuation-induced interaction (see Fig. 2c), just as in the case of
isotropic cross-sections. However, inclusions that break the up-down symmetry of
the membrane feature an anisotropic interaction with a stronger 1/d2 power law.
Its angle dependence is cos(2(θ1 + θ2)), where θi is the angle between the main
in-plane axis of inclusion i and the line joining the two inclusion centers (Fig. 2c).
This orientation dependence is that of a quadrupole–quadrupole interaction [29, 30],
and the interaction energy is minimized whenever θ1 + θ2 = 0 (or equivalently
θ1 + θ2 = π). This interaction is attractive for a wide range of relative orientations,
while the analogous interaction between inclusions with an isotropic cross-section
is always repulsive (see Eq. (3)).

The in-plane anisotropic case of rigid up-down symmetric rods imposing vanish-
ing contact angles to the membrane on their edges was treated in Refs. [10, 29]. Only
the fluctuation-induced interaction is then at play (as in Fig. 2c). In this study, thin
rods were considered in the limit of vanishing width, and in the “distant” regime
where their length L is much smaller than their separation d . The opposite case
d � L will be discussed in Sect. 2.4.2. The power law obtained is in 1/d4, as in
the case of isotropic cross-sections (Eq. (4)), and the only energetic scale involved
in this fluctuation-induced force is kBT . The angular dependence of the interaction
is cos2[2(θ1 + θ2)], yielding energy minima for θ1 + θ2 = 0 and π/2.

Anisotropic cross-sections were revisited within the point-like approach in
Refs. [14, 31]. In this model, inclusions couple to the membrane by locally imposing
a generic curvature tensor, with eigenvalues (principal curvatures) denoted by K+J

and K − J . The interaction between two such identical inclusions then reads, to
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leading order in a/d [14, 31]:

U3(d) = −8πκ
a4

d2

{
2J 2 cos(2(θ1 + θ2)) + JK [cos(2θ1) + cos(2θ2)]

}
, (6)

where θi are angles between the line joining the inclusion centers and their axis of
smallest principal curvature (see Fig. 2d). This term ∝ 1/d2 vanishes for isotropic
inclusions (J = 0), consistently with Refs. [6, 11]. Furthermore, in the fully
anisotropic case K = 0, corresponding to a saddle, the power law and the angular
dependence both agree with the up-down symmetry-breaking and anisotropic cross-
section case of Ref. [11]. Equation 6 shows that in the generic case where J and
K are nonzero, the angular degeneracy of the lowest-energy state is lifted, and
(assuming without loss of generality that K and J have the same sign) the inclusions
tend to align their axis of smallest principal curvature along the line joining their
centers. Their interaction is then attractive [14]. This interaction (Eq. (6)) was
recovered in Ref. [16] (with different angle notations), and generalized to inclusions
with different radii.

Subleading terms in 1/d4 were also calculated in Refs. [14] and [16], featuring
different results (as for the subleading terms in the isotropic case). One should keep
in mind that the models at stake are different, since Ref. [14] considers fully point-
like inclusions while Ref. [16] models disk-shaped ones with finite radius through
the effective field theory. While the agreement of these models on the leading-order
term is a nice sign of robustness, there is no reason to expect an exact agreement at
all orders.

Reference [14] also investigated the fluctuation-induced interaction, but its
leading-order term was found not to be modified with respect to the isotropic case
(Eq. (4)). This is at variance with the anisotropy obtained in Refs. [10, 29] for the
flat rods, but one should keep in mind that the point-like saddles do not correspond
to the limit of the distant flat rods.

2.2.2 Multi-Body Effects and Aggregation

A crucial and biologically relevant question is how long-range membrane-mediated
interactions drive the collective behavior of inclusions, in particular aggregation.
One would be tempted to start by summing the pairwise potentials discussed above,
but these long-range membrane-mediated interactions are not pairwise additive.
Non-pairwise additivity is a general feature of fluctuation-induced interactions.
For instance, the existence of a three-body effect in the van der Waals–London
interaction was demonstrated in Ref. [32]. The interaction due to the ground-state
membrane deformation is not additive either. Indeed, if one considers inclusions that
impose boundary conditions to the membrane on their edges, a shape minimizing
the energy in the presence of one inclusions will generically not satisfy the boundary
conditions imposed by the other one, yielding nonadditivity [19].
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Three-body and four-body long-range membrane-mediated interactions were
first calculated within a perturbative height-displacement model, breaking up-down
symmetry but retaining in-plane isotropy, in Ref. [11]. The distance dependence
of the three-body term involves terms in 1/(d2

12d
2
23) where dij is the distance

between particles i and j . These interactions were also investigated in Ref. [12],
in a different perturbative approach, considering in particular inclusions that favor
a given average curvature, and then in Ref. [13] in a point-like framework, but this
particular calculation was recently shown to miss some contributions [16].

In Ref. [14], the multi-body interactions and the aggregation of point-like
inclusions locally imposing a curvature tensor were investigated. This generic model
can include both up-down symmetry-breaking and in-plane anisotropy depending
on the curvature tensor imposed. The leading three-body interaction was found to
involve terms in 1/(d2

12d
2
23), as in Ref. [11], and to vanish for inclusions imposing

a zero curvature tensor [14]. Monte Carlo simulations including the full multi-body
interactions were performed, allowing to study the phase diagram of the system
(see Fig. 3). Polymer-like linear aggregates were obtained for sufficient values of
K and J , as predicted from the leading pairwise term (Eq. (6)). A gas phase was
found for small J , consistent with the fact that for isotropic inclusions (J = 0) that
break the up-down symmetry (K �= 0), the leading pairwise interaction is repulsive
(Eq. (3)). Finally, for small K and large J , aggregates were obtained, some of which
had an “egg-carton” structure. This is made possible by the angular degeneracy
of the lowest-energy state for K = 0 in the leading pairwise term (Eq. (6)).
Multi-body interactions were shown to be quantitatively important, but the effect
of the fluctuation-induced interaction (Eq. (4)) was found to be negligible [14].
The analytical calculation of multi-body effects was performed in this framework in
Ref. [31], where the “egg-carton” aggregates were also further studied and related
to experimentally observed structures.

Coarse-grained molecular-dynamics simulations of the highly anisotropic
curvature-inducing N-BAR domain proteins adhering on membranes have
demonstrated linear aggregation of these proteins on the membrane. This is a
first self-assembly step, which then yields the formation of meshes enabling
budding [33]. This is qualitatively in good agreement with the predictions of
Ref. [14].

The influence of the long-range elastic repulsion between isotropic inclusions
that break the up-down symmetry of the membrane on their aggregation was also
discussed in Ref. [34], but within a less specific framework including other types
of interactions. In this work, this repulsive interaction (Eq. (3)) plays the role of an
energetic barrier to aggregation.

In Ref. [35], the collective behavior of inclusions locally penalizing local
curvature (either only mean curvature or also Gaussian curvature) was studied using
a mean-field theory for the inclusion concentration and Monte Carlo simulations.
Since the inclusions considered retain both up-down symmetry and in-plane
isotropy, the only membrane-mediated interaction at play is an attractive fluctuation-
induced one similar to that in Eq. (4). Direct interactions were also included.
Aggregation was found to occur even for vanishing direct interactions, provided
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Fig. 3 Typical equilibrium aggregates obtained from Monte Carlo simulation of 20 identical
point-like anisotropic curvature-inducing inclusions. Each panel represents a different set of (J,K)

values. Reproduced from P.G. Dommersnes and J.-B. Fournier. N-body study of anisotropic
membrane inclusions: Membrane mediated interactions and ordered aggregation. Dommersnes
and Fournier [14], with kind permission of the European Physical Journal (EPJ), Copyright EDP
Sciences, Società Italiana di Fisica and Springer-Verlag (1999)

that the rigidity of the inclusions was sufficient [35]. Hence, fluctuation-induced
interactions may be relevant for aggregation, at least in the absence of other,
stronger, interactions. Note that Eq. (4) shows that the amplitude of fluctuation-
induced interactions is quite small. For instance, d = 4a yields U2 ≈ 0.02 kBT (all
the results discussed so far are strictly relevant only for d � a).

In Ref. [16], the general effective field theory framework was used in the
case of in-plane isotropic inclusions. The leading-order and next-order three-body
interaction terms due to the ground-state membrane deformation between up-down
symmetry-breaking inclusions were obtained, as well as the leading three-body and
four-body fluctuation-induced interactions.
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2.2.3 Membrane Tension

Until now, we have focused on the regime where bending rigidity dominates over
membrane tension. This is appropriate for length scales below

√
κ/σ . As σ is in

the range 10−6 − 10−8 N/m for floppy membranes, while κ � 10−19 J, this length
scale is then of order 1 μm. However, membrane tensions can span several orders
of magnitude [36] depending on external conditions (e.g., osmotic pressure), so it
is relevant to go beyond

√
κ/σ . For small deformations around a planar shape, the

quadratic Hamiltonian of a membrane including tension reads

H [h] =
∫

dr

{
κ

2

[
∇2h(r)

]2 + σ

2
[∇h(r)]2

}
, (7)

where notations are the same as in Eq. (2), and where the Gaussian curvature
term has been discarded. Note that, in a self-assembled membrane not submitted
to external actions, each lipid adopts an equilibrium area. Hence, a membrane has
no intrinsic surface tension (contrary to a liquid–gas interface), and stretching the
membrane has an energy cost quadratic in the area variation. However, one usually
considers a patch of membrane in contact with a reservoir made up by the rest of
the membrane, so the tension term in Eq. (7) can be interpreted as arising from the
chemical potential of this reservoir.

For length scales much larger than
√

κ/σ , tension dominates and Eq. (7) can be
simplified into:

H [h] = σ

2

∫
dr [∇h(r)]2 . (8)

This case applies to a tense membrane at large scales, but also to a liquid interface
(neglecting gravity). From a formal point of view, techniques similar to those
employed in the bending-dominated case can be used, since the Hamiltonian is also
quadratic with a single term.

Let us first focus on inclusions that do not break the up-down symmetry of the
membrane. In Refs. [10, 29], the fluctuation-induced interaction between two distant
up-down symmetric rigid thin rods embedded in such a surface was calculated. It
was found to be similar to the analogous bending-dominated case (see above), with
the same 1/d4 power law, but with a different angular dependence.

References [37, 38] considered the tension-dominated case of ellipsoidal colloids
trapped at a fluid interface. In the case where the colloid height fluctuations are
included but their contact line with the fluid is pinned, long-range fluctuation-
induced interactions were obtained. This case is analogous to that of rigid in-plane
anisotropic membrane inclusions preserving the up-down symmetry. Interestingly,
the power law obtained was found to depend on whether or not in-plane orientational
fluctuations of the colloids were allowed. If they are not allowed, the result of
Refs. [10, 29] with the 1/d4 power law is recovered in the limit of full anisotropy.
If they are allowed, a weaker anisotropic interaction with 1/d8 power law is
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obtained [38]. This strong dependence of the power law of fluctuation-induced
forces on boundary conditions was confirmed in Ref. [18] through the effective
field theory method, in the specific case of in-plane isotropic (disk-shaped) rigid
inclusions [16, 19]. In the case of membranes, the physical case should allow
orientational fluctuations of the inclusions, and hence the 1/d8 power law should
be considered. It is attractive and reads

U4(d) = −9kBT
a8

d8 . (9)

Hence, we expect a crossover between a 1/d4 power law (Eq. (4)) and a 1/d8 power
law (Eq. (9)) as the tension becomes more important.

In Ref. [39], a scattering-matrix approach analogous to the one developed for the
study of Casimir forces [40–42] was developed, and applied to the full Hamiltonian
in Eq. (7) including both tension and bending. The focus was on disk-shaped elastic
inclusions preserving the up-down symmetry, and on their fluctuation-induced
interaction. The results obtained in the case of rigid inclusions were consistent
with Eq. (4) in the bending-rigidity–dominated regime, and with Eq. (9) in the
tension-dominated regime. Moreover, the crossover between these two regimes
was studied numerically. The method developed in Ref. [39] can potentially deal
with more general cases, involving multiple complex inclusions. It appears to be
complementary to the effective field theory method of Refs. [16, 19], and was
more straightforward in the transition regime where both tension and bending are
relevant [39].

Let us now focus on the interaction due to the ground-state deformation of the
membrane. Reference [43] studied the case of conical inclusions breaking up-down
symmetry but retaining in-plane isotropy, and considered the full Hamiltonian in
Eq. (7). They showed that for nonvanishing tension, this interaction has a sign that
depends on the relative orientation of the cones with respect to the membrane plane
(i.e., on the signs of the angles they impose), contrary to the vanishing-tension case
(see Eq. (3)). Furthermore, at long distances between inclusions, the interaction is
exponentially cut off with a decay length

√
κ/σ (it involves Bessel K functions).

This property was confirmed in Ref. [44]. Hence, at long distances, the fluctuation-
induced force in Eq. (9) should dominate over the force due to the ground-state
deformation. Conversely, in the case of colloids or inclusions with anisotropic cross-
sections, Refs. [30] and [18] demonstrated the existence of a long-range interaction
due to the ground-state deformation of the membrane. The leading term of this
interaction is anisotropic and decays as 1/d4.

In Ref. [45], the effect of tension on the aggregation of the highly anisotropic
curvature-inducing N-BAR domain proteins adhering on membranes was investi-
gated through coarse-grained molecular-dynamics simulations. Increasing tension
was shown to weaken the tendency of these proteins to linear aggregation, in
agreement with the predicted weakening of the ground-state membrane-mediated
interaction.
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2.2.4 Summary of the Interaction Laws

Table 1 presents a summary of the power laws of the leading-order term of the
membrane-mediated interactions in the various situations discussed until now.

2.2.5 External Forces and Torques

Until now, we have only discussed cases where inclusions couple to the membrane
shape through its curvature, either explicitly or implicitly (e.g., through rigidity).
This is the relevant case in the absence of external forces or torques. External forces
can yield local constraints directly on the height of the membrane, e.g., quadratic
ones in the case of local trapping or linear ones in the case of local pulling [12].
More specifically, inclusions may experience direct mechanical constraints if they
are attached to the cytoskeleton, and torques in the presence of electrical fields
because of their dipole moments [15]. In these cases, one expects membrane-
mediated interactions to be enhanced, because the ground-state deformations will
generically be stronger than in the case where inclusions can freely reorient to
minimize them, and because the constraints imposed on fluctuations will be stronger
too.

The case of inclusions subjected to external torques was studied in Ref. [15], for
point-like inclusions setting a curvature tensor, in the in-plane isotropic case. Both
external fields strong enough to effectively pin the orientations of the inclusions,
and finite external fields that set a preferred orientation, were considered. In both
cases, membrane-mediated forces are strongly enhanced, even more in the strong-
field case. A logarithmic fluctuation-induced interaction was obtained, as well as an
interaction due to the ground-state deformation which either scales as 1/d2 if the

Table 1 Summary of the power laws obtained for the leading-order terms of the two types of
membrane-mediated interactions, as a function of the separation d between the inclusions, in the
regime of small deformations of a flat membrane and distant inclusions

Dominant term in
the Hamiltonian in
Eq. (7) Geometry

Fluctuation-induced
interaction

Interaction due to the ground-state
deformation—vanishes if up-down
symmetric

Bending rigidity κ Disks 1/d4 [6, 11, 14] 1/d4 [6, 11, 14]

Disks +
anisotropy

1/d4 [11, 14] 1/d2 [11, 14]

Distant rods 1/d4 [10, 29]

Tension σ Disks 1/d8 [38, 39] Exponentially suppressed

Disks +
anisotropy

1/d8 [38, 39] 1/d4 [18, 30]

Distant rods 1/d4 [10, 29]

Different inclusion geometries are considered. In the case labeled “disks + anisotropy,” the
anisotropy can be either in the inclusion shape (e.g., ellipsoidal [11]) or in the constraint it imposes
(e.g., an anisotropic local curvature [14])
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preferred orientations are the same for both inclusions, or logarithmically if they
are different. Interestingly, these interactions depend on the relative orientation of
the preferred curvatures set by the inclusions, while in the torque-free case, the
interaction only depends on their absolute values (see Eq. (3)) [15].

In Ref. [37], colloids at a fluid interface were considered, with different types of
boundary conditions. In the case where the position of the colloids is considered to
be frozen (both in height and in orientation), strong logarithmic fluctuation-induced
interactions are obtained.

2.2.6 Fluctuations of the Interactions

Until now, we have discussed the average values at thermal equilibrium of
membrane-mediated forces. Thermal fluctuations already play an important part
since they are the physical origin of fluctuation-induced forces. But, membrane-
mediated forces themselves fluctuate as the shape of the membrane fluctuates. The
fluctuations of these forces have been studied in Ref. [46], using the stress tensor
of the membrane [47, 48]. This approach is inspired from those used previously for
the fluctuations of Casimir forces [49], and of Casimir-like forces between parallel
plates imposing Dirichlet boundary conditions on a thermally fluctuating scalar
field [50].

The case of two point-like membrane inclusions that locally impose a curvature
tensor was studied in Ref. [46], for in-plane isotropic inclusions but including
the up-down symmetry-breaking case. Integrating the stress tensor on a contour
surrounding one of the two inclusions allowed to calculate the force exerted on
an inclusion by the rest of the system, in any shape of the membrane [51]. The
average of the force obtained gives back the known results Eqs. (3) and (4) that
were obtained from the free energy in previous works. The variance of the force
was also calculated, showing that the membrane-mediated force is dominated by its
fluctuations. The distance dependence of the fluctuations, present in the sub-leading
term of the variance, was also discussed. Interestingly, it shares a common physical
origin with the fluctuation-induced (Casimir-like) force [46].

2.3 Dynamics

Fundamental interactions, e.g., electrostatic ones, are usually considered as instanta-
neous, in the sense that they propagate at a velocity much higher than that of the par-
ticles experiencing them. This is not the case for membrane-mediated interactions,
as the spreading of membrane deformations involves slow dissipative phenomena.
The dynamics of membrane-mediated interactions is a promising subject for future
research. Studying out-of-equilibrium membrane-mediated interactions intrinsically
requires taking into account the dynamics of the membrane. Taking care both
of the motion of the membrane and of that of the inclusions is very difficult.
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Hence, the first theoretical study in this direction to our knowledge, Ref. [52],
considered two immobile inclusions that simultaneously change conformation, i.e.,
that simultaneously create a source of deformation, and therefore trigger a time-
dependent interaction as the membrane deformation spreads dissipatively.

In Ref. [52], inclusions were modeled as simple point-like sources of mean
curvature that are triggered simultaneously at t = 0. One could imagine cylindrical
integral proteins such as ion channels transforming into conical ones upon receiving
a chemical signal. The time-dependent Hamiltonian of these inclusions is Hinc(t) =
θ(t)

∑
i Bi∇2h(r i ), with θ(t) the Heaviside step function, Bi the curving strength,

and r i the position of inclusion i. The dynamical reaction of the membrane to such
a perturbation was studied in Ref. [52].

As shown in the pioneering works of Refs. [53, 54], the dominant dissipation
mechanism at short length scales is the friction between the two monolayers of the
membrane. The corresponding dissipated power per unit area is b(v+ −v−)2, where
v± are the velocities of the two lipid monolayers (the monolayers are denoted by +
and −) and b ≈ 109 J s/m4 is the intermonolayer friction coefficient. In addition,
the membrane is subjected to viscous forces from the bulk solvent, of viscosity
η ≈ 10−3 J s/m3, and each monolayer behaves as a compressible fluid with
elastic energy density 1

2k(ρ± ± e∇2h)2. In this expression, ρ± are the monolayer
relative excess densities (normalized by their equilibrium density), measured on
the membrane mid-surface, e ≈ 1 nm is the distance between this surface and
the neutral surface of the monolayers (where density and curvature effects are
decoupled), and k ≈ 0.1 J/m2. For most practical purposes, the two-dimensional
viscosities of the monolayers can be neglected [55].

Taking into account all these effects, Ref. [52] showed that the relaxation
dynamics of a Fourier mode {h(q, t), ρ±(q, t)} in the membrane with two identical
triggered inclusions is given, to linear order, by a set of two first-order dynamical
equations:

2b
∂(ρ+ − ρ−)

∂t
= −kq2(ρ+ − ρ−) + 2keq4h, (10)

4ηq
∂h

∂t
= −(σq2 + κ̃q4)h + keq2(ρ+ − ρ−) + F(q, t), (11)

where F(q, t) is the Fourier transform of −δHinc/δh(r, t), σ is the membrane
tension, and κ̃ = κ + 2ke2 the bending rigidity at frozen lipid density [53]. Solving
these linear differential equations for time evolution and integrating over the Fourier
modes q yields the time-dependent membrane deformation produced by one or
more inclusions. Then, the force f (t) exerted by one inclusion on the other can
be obtained by integrating the membrane stress tensor [47, 48, 56] around one
inclusion.

Two striking behaviors were observed in Ref. [52] (see Fig. 4): (1) the force
f (t) reaches a maximum fm and then decreases to the equilibrium force feq. (2)
While feq decreases exponentially with the separation d between the inclusions, the
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a b

Fig. 4 (a) Force f (t) normalized by B2/(κe3) exchanged by two inclusions separated by d versus
time t after the triggering of the inclusions, normalized by 4ηe3/κ × 103 ∼ 40 ns. The parameters
are d = 20e, σ = 10−3κ/e2, ke2/κ = 1, and be2/η = 1000. (b) Dependence of the equilibrium
force, feq, and of the maximum of the dynamical force, fm, as a function of d normalized by e

maximum force fm decreases as a power law ∼ d−3 until it reaches feq. Hence, fm
is long-ranged. Although these results were obtained with a simplified Hamiltonian
for the inclusions, it is likely that the general trends observed will also apply to
more realistic cases. It should be straightforward to extend the model of Ref. [52]
to inclusions that trigger at different times, but considering the movement of the
inclusions at the same time as the movement of the membrane would be more
challenging.

2.4 Other Geometries

Until now, we focused on the case of inclusions with separation d larger than their
characteristic size, embedded in a membrane with small deformations around the
flat shape. This is the case that has attracted the most attention in the literature,
because of its relevance for proteins embedded in the membrane, and because of its
technical tractability. We now move on to other geometries.

2.4.1 Spherical Vesicle

Reference [57] focused on the membrane-mediated interaction arising from the
ground-state deformation between two disk-shaped inclusions embedded in the
membrane of a spherical vesicle, and imposing contact angles. The case of the
spherical vesicle is practically relevant both in biology and in in vitro experiments.
The energy of the membrane was considered to be dominated by bending rigidity,
which requires the length scales at play (in particular the vesicle radius) to be
small with respect to

√
κ/σ . The covariant Helfrich Hamiltonian (Eq. (1) with



328 A.-F. Bitbol et al.

no Gaussian curvature term) was adapted to small deformations with respect to a
sphere.

The interaction was evaluated thanks to an expansion of the energy-minimizing
profile of the membrane, and it was found to be strongly enhanced with respect to
the flat-geometry interaction (Eq. (3)) at length scales where the spherical shape of
the vesicle is relevant. At sufficient angular separation, the effective power law of the
interaction is ∼1/d1/3 [57]. This sheds light on the strong impact of the underlying
geometry of the membrane on membrane-mediated forces. Qualitatively, in a flat
membrane, the interaction is weaker because the curvature energy in Eq. (1) can
be minimized quite well between the inclusions (with an almost perfect saddle that
has very little curvature energy), which is not possible in the spherical geometry.
Similarly, in the case of external torques (Sect. 2.2.5), the imposed orientations did
not allow for this low-energy saddle, thus enhancing the interaction.

2.4.2 Close Parallel Rods

We already discussed the case of rigid rods of length L, at a distance d � L [10, 29],
which is close to the point-like case. The opposite regime d � L is also relevant
biologically, since it can model semiflexible polymers adsorbed on the membrane. In
Ref. [58], the effect of the reduction of the membrane fluctuations by the presence of
a semiflexible (wormlike) polymer was discussed. An effective nematic interaction
was found between different segments of the polymer, and it was shown that this
interaction can yield an orientational ordering transition.

Let us first consider rods that do not break the up-down symmetry of the
membrane. The case of such stiff parallel rods in the limit d � L (see Fig. 5a)
embedded in a membrane with energy dominated either by bending rigidity (Eq. (2))
or by tension (Eq. (8)) was studied in Ref. [20]. A constant scale-free Casimir-
like interaction per unit length is then expected [59], and indeed the Casimir-like
interaction potential is then proportional to −kBT L/d [20]. This interaction is much
stronger than the one between point-like objects (Eq. (4)), because the constraints
imposed on fluctuation modes are much stronger in the geometry of parallel close
rods. Reference [20] further showed that such rods tend to bend toward one another
below a certain critical distance, and that their interaction is screened by out-of-
plane fluctuations if the rigidity of the polymer is finite.

This situation was further studied in Ref. [60]. Rods were modeled as constraints
imposed on the membrane curvature along a straight line, allowing to define four
types of rods, according to whether the membrane can twist along the rod and/or
curve across it (see Fig. 5b, c for two examples of these rod types). The numerical
prefactors of the potential in L/d were obtained for interactions between the
different types of rods, and they were all found to be attractive, provided that the rods
are rigid, i.e., that they impose ∂y∂yh = 0 along them, with the notations of Fig. 5.
However, repulsion was obtained between objects imposing completely antagonistic
conditions (i.e., a rigid rod only imposing ∂y∂yh = 0 along it, see Fig. 5b, and
a nonrigid “ribbon” only imposing ∂x∂xh = 0 along it), which is reminiscent of
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Fig. 5 Rods embedded in membranes. (a) Geometry: two parallel rods of length L at separation
d � L. (b) and (c) Two examples of rod types. All rigid rods impose a vanishing curvature along
them: ∂y∂yh = 0 on the rod. (b) Rod that allows curving (“c”) and twisting (“t”) across it. (c) Rod
that does not allow curving or twisting across it: it imposes ∂x∂xh = 0 and ∂x∂yh = 0 as well as
∂y∂yh = 0 (see Ref. [60])

the results obtained in critical binary mixtures [25]. In addition, the interaction
energy was studied numerically versus d/L, thanks to a discretization scheme [61],
showing the transition between the asymptotic behaviors at large d/L [29] and at
small d/L [60] were recovered. Finally, the bending and coming into contact of the
rods due to the fluctuation-induced interaction was discussed: it was predicted to
occur below a certain value of d [60].

The L � d geometry gives insight into what happens between two generic
inclusions that are very close to one another, through the proximity force approxi-
mation [62]. This approximation was used in the case of disk-shaped inclusions in
Refs. [39, 60], showing that the fluctuation-induced interaction potential then scales
as 1/d1/2.

In Ref. [63], the interaction due to the ground-state deformation between parallel
rigid cylinders adsorbed on a membrane and interacting with it through an adhesion
energy was studied. The membrane was assumed to be in the regime of small
deformations, but both tension and bending were accounted for (see Eq. (7)), and
the geometry where d � L was considered. The interaction due to the ground-
state deformation was calculated explicitly in this effectively one-dimensional case.
It was found to be repulsive for a pair of cylinders adhering to the same side of
the membrane, and attractive for cylinders adhering to opposite sides (and hence
imposing an opposite curvature). This is at variance with the point-like case, where
the interaction only depends on the modulus of the curvatures imposed (see Eq. (3)).
The dependence in d is in tanh(d/

√
κ/σ) in the first case, and in coth(d/

√
κ/σ ) in

the second one [63].

2.4.3 Large-Deformation Regime

All cases discussed until now focused on small deformations. Then, the Hamiltonian
of the membrane is quadratic, and the field theory is Gaussian. This provides
tractability, both to solve the Euler–Lagrange equations that give the ground-state
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shape, which are then linear, and to compute thermodynamical quantities such as
the free energy. Here, we will discuss the biologically relevant but much trickier
regime of large deformations.

In Ref. [64, 65], the covariant membrane stress and torque tensors associated to
the full Helfrich Hamiltonian [47] were used to determine formal expressions of the
forces between objects adsorbed on fluid membranes that are due to the ground-state
deformation of the membrane. These expressions are valid without assuming small
deformations, but the ground-state shape needs to be determined in order to obtain
a more explicit expression. This is not an easy task in the large-deformation regime.
Equilibrium shapes in the large-deformation regime were further investigated in
Ref. [66], allowing to plot the force between cylinders, in the case of a fixed
adhesion area between them and the membrane. The direction of the force and its
asymptotic exponential decay at large d/

√
κ/σ were found to remain the same as in

the small-deformation regime [63]. This situation was also investigated numerically
in Ref. [67] in the case of cylinders interacting with the membrane through an
adhesion energy, yielding phase diagrams of the system.

In Ref. [68], the entropic contribution to the membrane-mediated interaction
between two long cylinders adsorbed on the same side of a membrane was studied
in the regime of large deformations, in the case of a fixed adhesion area between
the cylinders and the membrane. The free energy of the system was calculated
by assuming Gaussian fluctuations around the ground-state shape. Interestingly,
this entropic contribution enhances the ground-state repulsion between the two
cylinders [68], while the fluctuation-induced interaction between identical rods in
the small-deformation regime is attractive [20, 60]. This is presumably a nontrivial
effect coming from the nonlinearities at play in the large deformations. It would
be interesting to go beyond the approximation of Gaussian fluctuations around the
ground-state shape.

Solving the shape/Euler–Lagrange equation for membranes beyond the domain
of small deformations is technically very hard for most geometries, and incorpo-
rating fluctuations too, but numerical simulations can provide further insight. The
coarse-grained molecular-dynamics membrane simulations without explicit solvent
description of Ref. [69] showed that the elastic interaction between two isotropic
curvature-inducing membrane inclusions (quasi-spherical caps) can become attrac-
tive at short separations, provided that the inclusions induce a strong enough
curvature. Recall that the interaction due to the ground-state deformation, which
is dominant with respect to the fluctuation-induced one for large enough curvatures
imposed by inclusions, is always repulsive in the regime of small deformations (see
Eq. (3)). This hints at highly nontrivial effects of the large-deformation regime. The
attractive membrane-mediated interaction was found to be able to yield aggregation
of the caps and vesiculation of the membrane [69] (see Fig. 6). The case of curved
phase-separated lipid domains was explored in Ref. [70] through coarse-grained
molecular-dynamics simulations. The interaction between domains was found to be
attractive, but the angles imposed by the domains were smaller than those yielding
attraction in Ref. [69].
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Fig. 6 Successive snapshots (a–f) of a coarse-grained simulation of a membrane with several
curvature-inducing inclusions. A process of vesiculation is induced by the elastic interaction
between inclusions, which becomes attractive at short separations. Reprinted by permission from
Macmillan Publishers Ltd: Reynwar et al. [69], Copyright (2007)

A numerical minimization via Surface Evolver of the Helfrich Hamiltonian
Eq. (1) for a membrane with two in-plane isotropic curvature-inducing inclusions
was presented in Ref. [71], and forces were calculated by studying infinitesimal
displacements. A change of sign of the membrane-mediated interaction due to
the ground-state deformation of the membrane was obtained, consistently with
Ref. [69]. The repulsive interaction, agreeing quantitatively with Eq. (3) at large d/a

and for small deformations, turned attractive for d/a of order one, provided that the
curvature imposed by the inclusions (and hence the membrane deformation) was
large enough. The separation d is defined as the center-to-center distance projected
on a reference plane, while a is the real radius of the inclusions, so that in the
large-deformation regime where inclusions are very tilted, it is possible to have
d < 2a. Attraction occurs in this regime, which is inaccessible to the small-
deformation approach. Recently, Ref. [72] studied anisotropic protein scaffolds,
modeling, e.g., BAR proteins, in the large-deformation regime, through similar
numerical minimization methods: strongly anisotropic attractive interactions were
obtained.

Reference [73] presented a Monte Carlo simulation of spherical nanoparticles
adsorbed on a spherical vesicle modeled as a triangulated surface. Aggregation of
the nanoparticles and inward tubulation of the vesicle were observed, implying
strong attractive interactions. Note however that adhesion might have a strong
impact on these structures [74]. A similar coarse-grained description of a membrane
vesicle was used in Ref. [75] to investigate the collective effects of anisotropic
curvature-inducing inclusions, modeling, e.g., BAR proteins. Vesicles were strongly
deformed by the numerous inclusions, with sheet-like shapes or tubulation depend-
ing on inclusion concentration, and aggregation and nematic ordering of these
inclusions were observed.
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2.5 Experimental Studies

While membrane-mediated interactions have been the object of significant theo-
retical and numerical attention, quantitative experimental tests of the theoretical
predictions remain scarce to this day. A very active research area in biophysics
deals with the morphological changes of the cell (invagination [76], vesiculation
[69], etc.) under the action of various proteins (see [77] for a recent review).
However, many ingredients other than membranes and inclusions are at play in
these biological systems, for instance the cytoskeleton, out-of-equilibrium events,
etc., which makes it hard to isolate membrane-mediated interactions. Biomimetic
lipid membranes such as giant unilamellar vesicles [78] are a good model system
to study such effects. In principle, the inclusions could be real proteins, but
these molecules have complex shapes, which makes it difficult to test predictions
of models developed for simple geometries. Many studies have focused on the
simpler and more easily controlled system of colloids adhering to membranes
(see Ref. [74] for a review), and some have investigated interactions between
phase-separated membrane domains [79]. However, even in these simpler cases,
membrane-mediated interactions may involve other effects, such as adhesion of the
colloids, variability of contact angles imposed by domains, etc.

An experimental study of the aggregation of spherical colloidal particles adhering
to biomimetic lipid membranes was presented in Ref. [80]. The observed aggrega-
tion of two particles was deemed consistent with a short-range (e.g., exponential)
attractive force, and no signature of a longer-range force was obtained. Note that
theoretical studies predict a mostly repulsive membrane-mediated force in this
geometry, except at very high deformations and small distances. Surprisingly,
triplets were observed to form chains, and a linear ring-like aggregate was observed
around the waist of a vesicle. Linear chain-like arrangements were also obtained
in simulations of a very similar situation in Refs. [81, 82], for certain sizes of
particles and adhesion regimes. Reference [82] used a scaling argument to show
that this was not due to membrane-mediated interactions, but to the adhesion of the
particles to the membrane, as a linear aggregate yields a higher adhesion area than a
compact one. Such a phenomenon would thus not arise in the case of inclusions [74].
Attraction and aggregation of particles adhered to lipid vesicles were also reported
more recently in Ref. [83].

Apart from proteins and colloids, another source of membrane deformation is
the presence of phase-separated (liquid-ordered/liquid-disordered) domains, which
can be partially budded. Contrast between the domains is obtained in fluorescence
microscopy by adding a dye which partitions into one phase [84] or by selectively
labeling one lipid species [85]. Selective deuteration can also be used to induce
contrast in small-angle nuclear scattering [86]. In Ref. [79], the stability of partially
budded domains was interpreted as a signature of repulsive interactions, since flat
ones rapidly fused. The strength of this interaction was evaluated by measuring
the distribution of inter-domain distance, and then by evaluating the effective
spring constant of the confining potential. It was found to be consistent with
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Fig. 7 Shape of the dimpled domains (left), interacting domains on the surface of the same vesicle
(center), and repulsive interaction potential, with a fit to theoretical predictions from Ref. [43]
(right). Adapted from Figures 3 and 4 of Ursell et al. [85], with kind permission of the National
Academy of Sciences

the membrane-mediated interaction arising from the ground-state deformation of
a tension-free membrane in the small-deformation and large-separation regime
(Eq. (3)). In Ref. [85], a good agreement was obtained between the observed in-
plane distribution of the domains and the predictions of the elastic theory in the
presence of tension [43] (see Fig. 7).

3 Short-Range Membrane-Mediated Interactions

In Sect. 2, we dealt with long-range membrane-mediated interactions between
inclusions, which arise from the curvature constraints imposed by rigid inclusions.
There exist several other ways in which inclusions can couple to the surrounding
membrane and thus interact with other inclusions through the membrane, but these
effects are generally short-ranged. The study of these interactions was in fact
initiated before that of their long-range counterparts [6]. Membrane proteins were
shown experimentally to tend to immobilize neighboring lipids [87]. A membrane-
mediated attraction between proteins was predicted to arise due to this local
ordering [88], and to decay exponentially beyond the correlation length of the
membrane order parameter [89]. Proteins can locally perturb the thickness of the
membrane due to this local ordering, but they may also couple preferentially to one
component of a lipid mixture [90].

Here, we are going to focus on the coupling of proteins to membrane thickness.
Intrinsic membrane proteins can have a hydrophobic mismatch with the membrane:
their hydrophobic thickness is slightly different from that of the unperturbed
membrane. Hydrophobic mismatch is ubiquitous, and has important biological
consequences, since the activity of many membrane proteins has been shown to
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depend on membrane thickness [91]. As proteins are more rigid than membranes,
the membrane generically deforms in the vicinity of the protein, in order to match
its thickness and avoid exposing part of the hydrophobic chains of lipids to water.
This local deformation of the membrane thickness yields a membrane-mediated
interaction between two such proteins.

Membrane thickness deformations are not included in the traditional Helfrich
description of the membrane [4]. Describing them is tricky since they occur on
the nanometer scale, which corresponds to the limit of validity of usual continuum
theories where only long-distance terms are kept. Let us focus on these models
before moving on to the actual interactions.

3.1 Models for Local Membrane Thickness Deformations

3.1.1 Early Models

The idea that the membrane hydrophobic thickness must locally match that of
an intrinsic protein was first used in theoretical descriptions of lipid–protein
interactions that focused on the thermodynamic phase behavior of the lipid–protein
system and on protein aggregation. In Ref. [92], a thermodynamic model called the
“mattress model” was proposed in order to describe the phase diagrams of lipid
bilayers containing proteins with a hydrophobic mismatch.

More detailed theoretical investigations of local membrane thickness defor-
mations and of resulting membrane-mediated interactions were motivated by
experimental results on the antimicrobial peptide gramicidin. In lipid membranes,
two gramicidin monomers, one on each side of the bilayer, can associate to form
a dimer, which acts as an ion channel. While isolated monomers do not deform
the membrane, the dimeric channel generically possesses a hydrophobic mismatch
with the membrane [93]. Conductivity measurements yield the formation rate and
lifetime of the channel, which are directly influenced by membrane properties [94–
96]. Hence, gramicidin constitutes a very convenient experimental system to probe
the effects of local membrane thickness deformations.

The first attempt to explain the dependence of gramicidin channel lifetime
on the membrane thickness was provided by Ref. [95]. It is based on the idea
that the relevant membrane energy variation upon dimer breaking is mostly due
to membrane tension, which pulls apart the monomers in a membrane with
hydrophobic thickness larger than that of the dimer. The resulting estimate of the
gap between the two monomers in the transition state is δ � 1.8 nm [95]. However,
this is far larger than the separation required for the breaking of the hydrogen bonds
that stabilize the dimer [93], which is of order 1 Å. Hence, this first model was not
complete.
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3.1.2 Huang’s Model

The first full continuum model describing membrane thickness deformations was
proposed in Ref. [97]. The Hamiltonian per unit area of the membrane was written
by analogy with a smectic A liquid crystal, in which the elongated molecules
organize in layers with the molecules oriented along the layers’ normal. These two
systems present similar symmetries. The most important energetic terms in smectic
A liquid crystals correspond to compression of the layers, and to splay distortion,
i.e., curvature orthogonal to the layers [98]. In addition, the contribution of the
“surface tension” of the membrane was included [97]. Restricting to symmetric
deformations of the two monolayers, the effective Hamiltonian H of the membrane
reads [97]

H =
∫

dxdy

[
Ka

2 d2
0

u2 + γ

4
(∇u)2 + κ

8

(
∇2u

)2
]

. (12)

In this expression, u denotes the thickness excess of the membrane relative to its
equilibrium thickness d0 (see Fig. 8), Ka is the stretching modulus of the membrane,
γ its “surface tension,” and κ an elastic constant associated to splay. Finally, x and
y denote Cartesian coordinates on the midplane of the membrane.

Reference [97] assimilated γ to the tension of a Plateau border and κ to the
Helfrich bending modulus, which may be questioned (see below). The corre-
sponding typical values allowed to neglect the contribution of the “tension” term.
By minimizing the resulting membrane Hamiltonian, analytical expressions were
obtained for the membrane deformation profiles close to a mismatched protein such
as the gramicidin channel, obtaining a decay length of a few nanometers. This model
yields a satisfactory agreement with the experimental results of Ref. [95].

Fig. 8 Cut of a bilayer membrane (yellow) containing a protein with a hydrophobic mismatch,
represented as a square (orange). The equilibrium thickness of the bilayer is d0, while the actual
thickness is denoted by d0 + u
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3.1.3 Models Based on the Work of Dan, Pincus, and Safran

References [99, 100] proposed another construction of the membrane Hamiltonian
associated to thickness deformations. The energy per lipid molecule in each
monolayer of the membrane was written for small deformations as a generic second-
order expansion in the variation of area per lipid and in the local “curvature” of the
monolayer thickness (different from the curvature of the shape of the membrane
involved in the Helfrich model, which disregards thickness). Incompressibility of
the lipids was used to relate the monolayer thickness and the area per lipid. Using
the same notations as in Eq. (12), and restricting again to up-down symmetric
deformations of the membrane, the membrane Hamiltonian of Ref. [100] reads

H =
∫

dxdy

[
Ka

2 d2
0

u2 + κ c0

2
∇2u + κ

2 d0

(
c0 − c′

00
)
u ∇2u + κ

8

(
∇2u

)2
]

,

(13)

where c0 is the spontaneous curvature of a monolayer, while c′
0 denotes its derivative

with respect to the area per molecule, and 0 the equilibrium area per lipid.
The main difference between this model and that of Ref. [97] is that the effect of

monolayer spontaneous curvature is included in Eq. (13). It was shown in Refs. [99,
100] that this ingredient can yield oscillations in the membrane deformation profile,
and in the resulting interaction potential between two mismatched proteins. Note
that no “tension” term is included in Eq. (13), but the “tension” term in Eq. (12) was
neglected in all the calculations of Ref. [97] too.

The model of Refs. [99, 100] was generalized in Refs. [101, 102], where
results of coarse-grained molecular-dynamics simulations for mismatched proteins
in lipid membranes were also presented. The deformations of the average shape
of the membrane (i.e., those usually described by the Helfrich model), and the
small-scale protrusions were accounted for, as well as the symmetric thickness
deformations [101, 102]. The effect of Gaussian curvature was also included in
Ref. [102], and Ref. [103] added the effect of tilt.

The model of Refs. [99–102] was further generalized in Ref. [104], where an
additional term, proportional to the squared gradient of thickness, was included in
the initial expression of the energy per lipid molecule in each monolayer of the
membrane. Physically, this term should involve a microscopic interfacial tension
contribution, associated to variations of the area per lipid. Note that this is different
from the Plateau border tension discussed and discarded in Ref. [97], since in a
Plateau border, molecules can move along the surface and exchange with the bulk,
yielding a smaller tension. Macroscopic membrane tension was also incorporated
explicitly in Ref. [104], through a chemical potential μ set by the rest of the
membrane on the patch considered: σ = −2μ/0 then plays the part of an
externally applied tension. The Helfrich Hamiltonian with tension Eq. (7) was
recovered from this model for average height deformations. In the case where the
average shape of the membrane is flat, and integrating out antisymmetric thickness
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deformations to focus on symmetric ones, the Hamiltonian reads

H =
∫

dxdy

[
σ

d0
u + Ka

2 d2
0

u2 + K ′
a

2
(∇u)2 + K ′′

a

2
(∇2u)2

]
, (14)

plus omitted boundary terms (see Ref. [104]), with

K ′
a = −κ0

d0
(c0 − c′

00) + k′
a , (15)

K ′′
a = κ0

4
, (16)

and the same notations as in Eqs. (12) and (13), and where the new contribution k′
a

with respect to Eq. (13) arises from the term proportional to the squared gradient of
the thickness u. (The definition of u in Ref. [104] is slightly different from that of
Refs. [99–102], but it does not affect the present discussion.)

The predictions of the model of Ref. [104] were compared with numerical
profiles of membrane thickness close to a mismatched protein [101, 102, 105], and
with experimental data regarding gramicidin lifetime [95] and formation rate [96].
This analysis yielded consistent results for the term stemming from the gradient of
the area per molecule, and its order of magnitude was found to be of order of the
contribution of the interfacial tension between water and the hydrophobic part of the
membrane. In addition, the presence of this new term allowed to explain for the first
time a systematic trend observed in previous numerical data.

3.1.4 Inclusions with Isotropic Cross-Section

The first models of short-range interactions between transmembrane proteins
assumed that the proteins are coupled to a local order parameter describing the
internal state of the membrane, either the conformational/chain-packing properties
of the lipids, or the bilayer thickness u [88, 89]. Both are equivalent for a fully
incompressible membrane hydrophobic core. In Refs. [90, 106], a generic Landau–
Ginzburg expansion of the free energy density in terms of u and its first gradient
was used to investigate the energy of a hexagonal lattice of embedded proteins
imposing a value u0 of the order parameter, i.e., a fixed hydrophobic mismatch,
on their edge. Approximating the Wigner–Seitz cell of the lattice by a circle, which
yields cylindrical symmetry, the authors derived a monotonically attractive short-
range interaction caused by the overlap of the membrane regions deformed by the
inclusions.

As discussed in Sect. 3.1, several models based on the thickness order param-
eter u have been developed. They have been used to study membrane-mediated
interactions. These models essentially introduced terms involving the second-order
derivative of u, based on the (recently questioned [104]) expectation that the term
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proportional to (∇u)2 was negligible. In particular, Ref. [97] introduced a term
proportional to (∇2u)2, by analogy with the splay term for smectic liquid crystals.
Later, Ref. [99] introduced additional terms, linear in ∇2u and in u∇2u, which arise
from the spontaneous curvature of the monolayers and its dependence on the area
per lipid. This initiated a series of works [99, 100, 107] aiming to estimate the elastic
energy of a hexagonal lattice of proteins with hydrophobic mismatch. These works
showed that the interaction potential can be non-monotonic, with short-distance
repulsion and a minimum energy at finite separation. These effects can arise from
the spontaneous curvature term, but also from a fixed contact angle between the
membrane hydrophobic–hydrophilic interface and the inclusion, thereafter referred
to as “slope.” The associated multi-body effects were investigated in Ref. [108]
through a Monte Carlo simulation of inclusions fixing both the membrane thickness
and its slope, in a membrane described by the elastic energy in Eq. (12). This study
also demonstrated the interest of the structure factor to test the models. Another
term involving second-order derivatives of the thickness profile u, proportional to
its Gaussian curvature, was included in Ref. [102], improving the agreement with
coarse-grained molecular-dynamics numerical simulations. Note that oscillations in
the interaction potential were observed in the coarse-grained molecular-dynamics
simulations of Ref. [109].

The term proportional to (∇u)2 in the elastic energy density was originally
discarded on the grounds that it originates from a negligible microscopic surface
tension assimilated to that of a Plateau border [97]. However, it was recently shown
by us to also originate from gradients of lipid density, and therefore to contribute
significantly to the elastic Hamiltonian [104]. Note in addition that the term in u∇2u

introduced in Refs. [99, 100] contributes to the (∇u)2 term once integrated by parts.
In the end, these models converge toward the most general quadratic expansion

in terms of u and its first- and second-order derivatives [104, 110]. In standard
statistical field theory, it is justified to neglect higher-order gradients, because the
focus is on large-scale physics and the coarse-graining length is much larger than
the range of the microscopic interactions [111]. However, here, such arguments do
not hold since the distortions around proteins relax on a length comparable with
the bilayer thickness. Therefore, in practice, one should rather rely on comparison
with experiments and simulations to determine how many terms to include in the
expansion. Our current understanding is that all linear and quadratic terms involving
derivatives of u up to second order should contribute, and that the best strategy is
to try to fit the parameters of the elastic Hamiltonian and of the protein–membrane
coupling using experimental or numerical data [110].

The focus of this chapter is on membrane-mediated interactions arising from
direct constraints on the membrane shape (mean shape and thickness). Hence, we
will not discuss in detail the role of the underlying lipid tilt degree of freedom [103]
in membrane-mediated interactions [112–117]. However, tilt certainly plays a part
in these interactions. For instance, proteins with no hydrophobic mismatch but with
an hourglass shape [112, 113] may induce a membrane deformation due to the
boundary conditions they impose on lipid tilt. A legitimate question, though, is
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how necessary it is to include this degree of freedom. Statistical physics allows
integrating out virtually any degree of freedom [111]. The resulting effective
elasticity for the remaining degrees of freedom takes into account the underlying
distortion energy of the removed ones. For instance, integrating out the tilt degree
of freedom in the presence of an hourglass-shaped inclusion would produce an
effective boundary energy depending on the inclusion thickness and on its angle
with the membrane. What is not clear is how many orders in the derivatives of u,
both in the bulk and in the boundary energy, one would have to introduce in order to
properly account for the removed degrees of freedom. Future works in this direction
could be interesting.

3.1.5 Inclusions with Anisotropic Cross-Section

While most theoretical studies of short-range membrane-mediated interactions
have considered cylinder-shaped inclusions, actual membrane proteins have various
shapes. As in the case of long-range interactions, in-plane anisotropy may result
in directional membrane-mediated interactions, which may impact the formation of
multi-protein complexes.

In Ref. [118], an analytical method was developed to study membrane-mediated
interactions between in-plane anisotropic mismatched inclusions. The effective
Hamiltonian H associated to membrane thickness deformations was expressed as:

H =
∫

dxdy

{
Ka

2d2
0

u2 + γ

[
u

d0
+ (∇u)2

8

]
+ κ

8

(
∇2u

)2
}

, (17)

where we have used the notations defined in Eq. (12). This model is based on that
of Ref. [97] (see Eq. (12)), but includes an additional “tension” term in u/d0. Such
a term is also included in Ref. [104] (see Eq. (14)), but without the assumption
that its prefactor is related to that of the squared thickness gradient term. This
assumption should be viewed as a simplifying hypothesis, given the contribution
of monolayer curvature to the squared thickness gradient term [99–102] and the
difference between externally applied tension and interfacial tension [104] (see
Sect. 3.1.3).

In Ref. [118], the solution of the Euler–Lagrange equation associated with
Eq. (17) in the case of a single cylinder-shaped inclusion was expressed using
Fourier–Bessel series. Then, using an ansatz introduced in Ref. [43] in the context
of long-range membrane-mediated interactions, the ground-state shape of the
membrane in the presence of two inclusions was written as a sum of two such
series. The coefficients of the successive terms of these series can be chosen in order
to match the boundary conditions imposed by both inclusions, using expansions in
a/d < 1.
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This method was extended to weakly anisotropic inclusions, modeling
mechanosensitive channels of large conductance (MscL) in Ref. [118]. The in-
plane cross-section of these pentameric proteins was described as a circle perturbed
by a small-amplitude sinusoid, with fifth-order symmetry. Boundary conditions
along the edge of these proteins were expressed perturbatively in the amplitude of
the sinusoid, allowing to use the method described above. The resulting anisotropic
membrane-mediated interaction features an energy barrier to dimerization and
demonstrates that the tip-on orientation is more favorable than the face-on one,
except at very short distances. Gating of the MscL channel was also studied in
Ref. [118], by modeling open and closed channels as having different diameters and
hydrophobic thicknesses [119]. The impact of having different oligomeric states of
MscL on these interactions and on gating by tension (see Ref. [120]) was studied in
Ref. [121].

The method developed in Ref. [118] was used in Ref. [122] to study the
effect of membrane-mediated interactions on the self-assembly and architecture of
bacterial chemoreceptor lattices. Chemotaxis enables bacteria to perform directed
motion in gradients of chemicals. The chemoreceptors that bind to these chem-
icals are transmembrane proteins that organize into large honeycomb lattices of
trimers of dimers at the poles of bacteria [123]. In Ref. [122], it was shown
that membrane-mediated interactions between chemoreceptor trimers of dimers,
modeled as inclusions with threefold symmetry, correctly predict the structure of
the arrays observed in experiments. Indeed, at short distances, the face-on relative
orientation of the trimers is favored by these anisotropic interactions. In addition,
the collective structure of the honeycomb lattice, studied approximately through the
pairwise nearest-neighbor interactions, was shown to be more favorable than other
types of aggregates at realistic densities of proteins. Gateway states to this lattice
were also predicted, and it was shown that membrane-mediated interactions may
contribute to the cooperativity of chemotactic signaling.

3.2 Numerical Studies at the Microscopic Scale

Continuum models account for the microscopic degrees of freedom (i.e., the
positions and conformations of all molecules involved) in a coarse-grained way,
via effective terms in the elastic energy and the associated prefactors. However,
even in the absence of a mesoscopic deformation due to hydrophobic mismatch, the
presence of an inclusion constrains the configurations accessible to the lipid chains
that surround it [88, 114, 124, 125]. Further insight can thus be gained by treating
such microscopic degrees of freedom explicitly, in particular those describing the
conformation of the lipid chains. Recent advances in numerical simulations have
made such approaches possible. Here, we give a brief overview of such studies. Note
that numerical studies focusing on larger-scale features were mentioned above.
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References [125, 126] used the lateral density–density response function of
the alkyl chains, obtained by molecular-dynamics simulations of lipid bilayers, to
determine the interaction between “smooth” (no anchoring) hard cylinders inserted
into the bilayer. Three values were considered for the cylinder radius. For the largest
one (9 Å, comparable to that of the gramicidin pore, for instance), the long-range
interaction is repulsive for all the lipids studied (DMPC, DPPC, POPC, and DOPC),
with an additional short-range attraction for DMPC. This study does not discuss
how the interaction might vary with the concentration of inclusions. Other studies
followed suit [127–130].

A complete description should in principle combine the effects of hydrophobic
mismatch and of these changes in chain order [116, 131]. Such a complete model
is currently lacking, due to the theoretical difficulties but also due to the dearth of
experimental data that could be used to test and validate it. As in the case of lipid
tilt (see Sect. 3.1.4), one can wonder how integrating out these underlying degrees
of freedom would affect an effective model written in terms of u, what effective
boundary conditions non-mismatched inclusions would then impose, and whether
such a model would be sufficient.

3.3 Experimental Studies

It has proven very difficult to directly measure the interactions between membrane
inclusions.

3.3.1 Electron Microscopy

First among such attempts were freeze-fracture electron microscopy (FFEM) studies
[132–135] that analyzed the spatial distribution of inclusions to determine their
radial distribution function g(r). The data was then described using liquid state
theories [136–138] in terms of a hard-core model with an additional interaction,
either repulsive or attractive depending on the system.

These pioneering results were not followed by more systematic investigations,
probably due to the intrinsic difficulty of the technique. It is also very difficult to
check whether the distribution function observed in the sample after freezing still
corresponds to that at thermal equilibrium.

3.3.2 Atomic Force Microscopy

It has been known for a long time that atomic force microscopy (AFM) can resolve
lateral structures down to the nanometer scale [139], but data acquisition used to be
relatively slow. This changed with the introduction of high-speed AFM [140], which
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Fig. 9 Interaction between ATP synthase c-rings. (a) Histogram of the center-to-center distance
of c-rings. (b) Membrane-mediated two-protein interaction energy landscape. Reprinted from
Figure 2 of Casuso et al. [141], with kind permission of Elsevier, Copyright Biophysical Society
(2010)

allows taking “snapshots” of the system and determining the radial distribution
function. The latter gives access to the interaction potential between inclusions, as
illustrated by Ref. [141] for ATP-synthase c-rings in purple membranes (see Fig. 9).

3.3.3 Small-Angle Scattering

A promising way of studying membrane-mediated interactions is through small-
angle radiation (X-ray or neutrons) scattering from oriented samples, as demon-
strated by Refs. [142–144]. This noninvasive technique is very well adapted to
measurements of membrane-mediated interactions since the wavelength used is
of the same order of magnitude as the typical length scales over which one must
probe the system (nanometers). One can thus measure the structure factor of the
two-dimensional system formed by the inclusions in the membrane and obtain the
interaction potential between them.

This strategy was recently used to study alamethicin pores in DMPC membranes
[145], inorganic particles contained in bilayers of a synthetic surfactant [146, 147]
(Fig. 10), and gramicidin pores in several types of membranes [148].
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Fig. 10 Interaction potential
U(r) of BuSn12 particles
within DDAO bilayers. The
lower curve is the interaction
potential of the particles in
ethanol. The solid vertical
line marks the hard-core
interaction with radius 4.5 Å.
Reprinted from Figure 3 of
Constantin et al. [146], with
kind permission of the
American Physical Society,
Copyright APS (2008)

2R r - 2R

4 Conclusion

Membrane-mediated interactions between inclusions constitute a very rich topic.
Their study gives insight into the behavior of complex two-dimensional biological
membranes. In particular, these interactions may have important impacts on mem-
brane protein aggregation, and on the formation of specific biologically functional
assemblies. Interestingly, inclusions can also serve as membrane probes, since
membrane-mediated interactions are in part determined by the properties of the host
membrane.

The field of long-range membrane-mediated interactions has been dominated by
theory, yielding interesting theoretical developments such as the fluctuation-induced
interaction, the general effective field theory and scattering approaches, and the
questions currently raised by the dynamics of these interactions. Some experimental
and numerical studies have enriched this field, and we hope for further progress
allowing for more quantitative comparison with theory.

The study of short-range membrane thickness deformations was motivated by
quantitative experiments on gramicidin. Work on these deformations and on the
associated membrane-mediated interactions has led to several developments of
the theoretical description of membrane elasticity at the nanoscale. Importantly,
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the small-scale deformations involved are at the limit of the domain of validity
of standard coarse-grained continuum theories, making comparison to precise
experimental and numerical data even more crucially important.

An interesting fundamental feature of membrane-mediated interactions is the
existence of many-body effects, arising from the interplay of the deformations
caused by each of the inclusions. It would thus be particularly interesting to vary
the concentration of inclusions in experiments.
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