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Abstract We review the background behind the notions of spontaneous and intrin-
sic curvatures of lipid membranes with a goal to make clear a fundamental physical
difference between them. We recall the underlying mechanical and thermodynamic
models for intrinsically curved lipid monolayers, whose geometry is described by
the intrinsic curvature, and for flat monolayers whose elastic stresses are captured
by the spontaneous curvature. We describe the existing ideas concerning the sponta-
neous and intrinsic curvatures of mixed lipid membranes.Wemention the conditions
upon which the values of the spontaneous and intrinsic curvatures are expected to
be similar and the specific systems for which each of the notions is relevant.

Keywords Membrane bending elasticity · Spontaneous curvature · Intrinsic
curvature · Bending modulus

1 Introduction

Biological membranes form physical boundaries between the inner volume of a
biological cell and the external medium as well as, within the cell, between the
lumens of intracellular organelles and cytosol. The structural base of any biological
membrane is a lipid bilayer—an about 3–4 nm thick film consisting of two
monolayers of amphiphilic phospholipid molecules referred to below as the lipids.
As described in more detail below, the lipid monolayer formation and coupling into
bilayers in aqueous solution are driven by the hydrophobic effect [1].

Upon common physiological conditions, each monolayer has properties of a two-
dimensional fluid, which is due to the ability of the lipid molecules to undergo
two-dimensional diffusion in the membrane plane referred to as the lateral diffusion.
Moreover, while being coupled in the direction perpendicular to the membrane
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plane, the two monolayers are free to slip with respect to each other in the in-
plane direction to the extent permitted by external geometrical constraints. In
addition, flipping of lipid molecules between the monolayers is possible and referred
to as flip-flop [2], which also contributes to an effective in-plane decoupling of
the monolayers. Because of this mechanical decoupling in the lateral (in-plane)
direction, a lipid monolayer represents the basic mechanical units of the membrane,
whereas the mechanical properties of a bilayer can be derived from those of its
constituent monolayers. Therefore, this review will be concerned, mostly, with
elastic properties of lipid monolayers, which, using a loose terminology, will be
also referred to as the membranes.

Since early 70th, acquiring by membranes of curved shapes and the underlying
physical properties of lipid bilayers andmonolayers became one of the central topics
of soft matter physics. This was motivated, on the one hand, by the attempts to
understand the physical mechanisms behind the shapes adopted by erythrocytes
[3, 4] and, on the other hand, by X-ray investigations of three-dimensional phases
formed by lipids in aqueous solutions [5]. About 30 years later, the interest to
membrane curvature expanded to bona fide cell biology (see for recent review [6]),
which has been motivated by the necessity to understand the intricate and strongly
bent shapes of membrane-bound intracellular organelles such as endoplasmic
reticulum (ER), Golgi complex, mitochondria, and transport intermediates [7, 8].

A central notion used in the curvature-related fields of membrane physics and
biology is that of spontaneouscurvature,whichhasbeencommonlymeant to describe
the inherently preferable membrane shapes. In parallel, although less commonly, the
term of intrinsic curvature has been used in the membrane literature to describe,
basically, the same membrane property. In some cases, the two notions appeared
interchangeably in the same article. The goal of this review is to go back to the
original physical contents of the concepts of spontaneous curvature, as defined by
Wolfgang Helfrich [4], and of intrinsic curvature as introduced, originally, by Sol
Gruner [9]. We will make clear that there is a fundamental rather than semantic
difference between the two notions.

We will show that the spontaneous curvature does not have a direct meaning
of a geometrical characteristic of the membrane surface but rather describes the
stresses existing within a flat membrane and provides tools for computing the energy
of the membrane deviation from the flat shape. In contrast, the intrinsic curvature
does have a geometrical connotation describing the local membrane shape in the
mechanically relaxed and, hence, energetically preferable state. We will indicate
the conditions under which the spontaneous and intrinsic curvatures are expected to
have approximately equal values meaning that, for practical purposes, one can be
used instead of the other.

This consideration will give us a reason to come back to the “first principles”
of the two alternative approaches to physics of membrane bending and discuss,
specifically, the current views on the bending elastic properties and, in particular, on
the spontaneous/intrinsic curvatures of membranes with mixed lipid compositions.

Although the concept of spontaneous curvature was formulated more than 10
years ahead of introduction of the intrinsic curvature, we will first overview the
latter notion, which is more intuitive, and then the former, whose physical content
is somewhat more involved.
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R0

Fig. 1 Illustrations of the structure of HII-phase, R0 being the intrinsic radius of the monolayer so
that the intrinsic curvature is J0 = 1/R0

2 Intrinsic Curvature

The concept of intrinsic curvature as a quantitative structural characteristic of lipid
monolayers has originated from understanding the so-called lipid mesophases,
which result from lipid self-assembly in aqueous surrounding [5]. Usually,
mesophases are formed by continuous hydration of initially dry lipid samples up to
a saturating limit. Driven by the hydrophobic forces, lipid molecules self-assemble
into monolayers, which segregate in such a way that their hydrocarbon moieties are
shielded from the aqueous surrounding by the layers of polar heads. Depending on
the lipid composition, the monolayers adopt a plethora of shapes [10–12], the most
familiar of which is the flat shape. Flat monolayers form planar bilayers, which in
turn pack into stacks where they are separated by few nanometer-thick layers of
water. The resulting mesophase is called the lamellar phase (see, e.g., [5, 12]).

Lipids, which do not form flat bilayers, are often called the non-bilayer lipids.
The most common monolayer shape formed by such lipids is that of a narrow
cylindrical tube whose internal surface of few nanometer cross-sectional diameter is
covered by the lipid polar heads and engulfs a water cylinder. These lipid tubes get
oriented in parallel, contact each other along the hydrophobic surfaces, and pack in
such a way that their cross-sections form a two-dimensional hexagonal lattice (Fig.
1). The resulting structure is referred to as the inverted hexagonal (HII) phase [11].
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In addition to the HII- phase, few other non-lamellar mesophases characterized
by curved monolayer shape can form such as HI- phase consisting of cylindrical
micelles packed in hexagonal lattice and bicontinuous and micellar cubic phases.
Here we discuss only HII-phases, whereas thorough description of other phases can
be found in numerous reviews (see, e.g., [10, 12]).

Essentially, a lipid monolayer within HII-phase is almost free to acquire the
most favorable shape dictated by the monolayer intrinsic properties. Ideally, this
is possible if the inter-monolayer spatial gaps, which unavoidably form as a result
of the monolayer packing within the phase, can be filled by non-lipid substances
coming from external reservoirs. In a fully hydrated HII-mesophase, the water
cylinders inside the lipid tubes unrestrictedly exchange water molecules with the
external aqueous medium. Filling of the hydrophobic gaps between the lipid
tubes, which form as a result of the hexagonal packing and are referred to as
the hydrophobic interstices [13], is more problematic since, usually, there are no
required reservoirs of hydrophobic substances in contact with the mesophases.
However, even these restrictions can be reduced or even lifted by introduction
into the system of hydrophobic substances, such as tetra- or hexadecane, which
redistribute into the hydrophobic interstices [9, 14–16]. As a result, the shapes
adopted by lipid monolayers within HII-phases can be considered as representing
the intrinsically favored shapes.

The intrinsic curvature, J0 [9], is the inverse of the radius, R0 (Fig. 1), of a
cylindrical tube formed by an unrestricted monolayer of HII-phase, J0 = 1/R0.
It has to be noted that the intrinsic curvature value must be related to a specific
surface chosen within the monolayer as a reference plane [17]. The most convenient
reference plane is the neutral surface, for which the deformations of the membrane
stretching and bending are energetically decoupled [17, 18].

Due to three-dimensional long-range order of lipid packing, the structural
parameters of lipid mesophases in general and of HII-phases, in particular, can be
measured with high precision by X-ray scattering [13]. This enables quantitative
determination of the monolayer intrinsic curvatures, which needs, however, some
theoretical treatment of the measured parameters [18–20].

2.1 Intrinsic Curvatures of Individual Lipids and Lipid
Mixtures

A direct measurement of intrinsic curvature of a specific individual lipid requires
generation of unconstrained HII-phase of this lipid. In practical terms, only one
such lipid, dioleoylphosphatidylethanolamine (DOPE) [13], has been found to date,
which is considered to be a “king” of non-bilayer lipids [21]. The radius of water
cylinder, ρw, within the DOPE phase is close to 2 nm so that the hydrophobic
interstices, whose dimension is proportional to ρw, are relatively small and do not
require much of the hydrophobic solvent to be introduced. The intrinsic curvature
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of DOPE measured at its neutral plane located close to the level glycerol backbones
of the lipid molecules [19, 20] was found to constitute JDOPE

0 = 1/2.75 nm for the
room temperature [22].

The HII-phase of DOPE enables also determination of the intrinsic curvature
values of a series of other biologically relevant lipids, such as phosphatidylcholine
(PC), diacylglycerol (DAG), lysolipids, and others, which are commonly found
within biological membranes but do not form HII-phases by themselves. This is
based on the ability of the DOPE monolayers to accommodate some amounts of
these lipids. Whereas the resulting lipid mixtures keep forming the inverted hexag-
onal phase, the radii of the monolayer tubes deviate from that of the purely DOPE
monolayer and depend on the composition of the mixed monolayer. Essentially,
although not expected a priori, the dependence of the intrinsic curvature of a mixed
cylinder on the mole fraction, φ, of the added lipid, J0(φ), has a linear character for
all investigated lipid mixtures J0 (φ) = JDOPE

0 +φJL
0 [20, 23–26]. The slope of this

linear dependence, JL
0 , has been defined as the intrinsic curvature of the lipid under

question. The values of the intrinsic curvatures of quite a few biologically relevant
lipids measured by the described method can be found in several reviews (see, e.g.,
[27].). It has to be emphasized that the resulting JL

0 values may not have a universal
character since the conformation of a lipid molecule must depend to some extent
on the surrounding lipids within the mixture, as recently confirmed by numerical
simulations [28]. Therefore, strictly speaking, the intrinsic curvature values, JL

0 ,
obtained for individual lipids by the described method of mixed HII-phases, have to
be considered within the DOPE context.

2.2 Bending Elasticity of Lipid Monolayers in the Intrinsically
Curved State

Experimentation with HII-phases led to understanding the structure and mechanics
of lipid monolayer in their intrinsic state beyond determination of the lipid
intrinsic curvatures. The experiments consisted in application to the lipid sample
of external compressing pressures and measuring the resulting deformations of HII-
phases. These pressures, which can have either a gravimetric (within an aqueous
vapor atmosphere) (see, e.g., [13]) or osmotic (in bulk water) (see, e.g., [16])
character, change the lipid tube radii [13, 16, 19, 20] . The obtained dependence
of the monolayer radius change on the applied pressure represents a stress-strain
relationship, which, generally, enables determination of the system elastic constants.
For weak compressions leading to small deviations of the monolayer curvature, J,
from the intrinsic value, J0, the elastic energy, FB, accumulated with the monolayer
was presented as [9]

FB = 1

2
KB(J − J0)

2, (1)
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where KB is the membrane bending modulus determined for the intrinsic state.
While this equation captured the essential physics of the system, treatment of
the experimental data required a more rigorous approach taking into account that
the bending modulus must be an intensive rather than extensive thermodynamic
value and that the choice of the dividing surface within the membrane becomes
of primary importance for the strongly curved monolayers of HII-phases. This
approachwas developed in a series of articles [18–20], which enabled determination
of the monolayer bending moduli in the intrinsic state for pure DOPE and mixed
monolayers [20, 22–26, 29]. In all cases the value of the bending modulus was close
to 10kBT ≈ 4 × 10−20 J (where kBT is the product of Boltzmann constant and the
absolute temperature).

3 Spontaneous Curvature

The concept of membrane spontaneous curvature was introduced by W. Helfrich
in his seminal article establishing a model for bending elasticity of nearly flat
membranes [4].

The way of reasoning, which underlies Helfrich’s derivation of the energy
associated with bending deformations of membrane surface, is analogous to and,
possibly, inspired by the previous consideration by F.C. Frank of three-dimensional
bending deformations of nematic and cholesteric liquid crystals [30]. Specifically,
the notion of the membrane spontaneous curvature is parallel to that of a nematic
elastic parameter defined by Frank, which can be referred to as the spontaneous
splay.

The analogy between Helfrich’s and Frank’s approaches is based on a fundamen-
tal physical similarity existing between the two systems in spite of the fact that the
nematic liquid crystal is a three-dimensional phase characterized by bulk properties
(Fig. 2a), whereas a lipid membrane has been described as a surface, i.e., a two-
dimensional system immersed in three-dimensional space (Fig. 2b). This similarity
includes the physical variables by which the nematics and the lipid membranes can
be described and the intrinsic material properties, which determine the common
symmetry rules underlying the physical models of the two systems.

Specifically, the bulk of a uniaxial nematic liquid crystal, on one hand, and
the membrane surface, on the other, can be described by, basically, the same
physical variable, whose essence is the direction of the local orientation. (It has
to be emphasized that we consider only membranes in high-temperature phase
exhibiting laterally isotropic behavior and do not describe the low-temperature
gel phase of lipid characterized by a collective tilting of the lipid hydrocarbon
chains within the monolayer and the related lateral anisotropy of the mem-
brane properties.) For a nematic, this variable, referred to as the director, is
a unit vector, �L, which determines the direction of the molecular orientation
in any infinitesimal volume element of the bulk (Fig. 2a) [30]. Similarly, the
membrane surface can be described at every point by a unit normal vector,
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Fig. 2 Illustration of (a) the nematic liquid crystal characterized by the director �L and (b) a lipid
membrane described by the unit normal vector, �n

�n, characterizing the local surface orientation (Fig. 2b). Further, provided that
the initial state of the liquid crystal is the state where the director, �L, is uni-
formly oriented all over the volume, the essence of the nematic bending defor-
mation is a generation of differences in the director orientations between the
adjacent volume elements throughout the system (Fig. 2a, right panel) [30].
Analogously, if the membrane is considered to be, originally, flat with the nor-
mal vector, �n, uniformly oriented all over the membrane surface (Fig. 2b, left
panel), the membrane bending leads to deviations of �n belonging to every pair
of adjacent membrane elements from the initial parallel orientation (Fig. 2b, right
panel).

In terms of the material properties, both nematic liquid crystals and lipid
membranes in high-temperature phase exhibit a liquid-like behavior. The molecules
constituting a nematic phase can switch their positions within the available volume,
which is not accompanied by any stress generation. The same is true for swapping of
the lipid molecule positions in the membrane plane within the givenmembrane area.
As a result, neither nematics nor lipid membranes resist the shear deformations. A
nematic phase does not develop any stress against three-dimensional shear, whereas
a lipid membrane behaves as a two-dimensional liquid complyingwithout resistance
with in-plane shear.
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Our goal here is to thoroughly describe the physics behind the notion of
membrane spontaneous curvature. Therefore, we start with the elements of Frank’s
analysis of nematics [30] and then present the essence of Helfrich’s consideration
of the membrane elastic parameters [4, 31] by mentioning the analogy and the
differences between the two systems.

3.1 Spontaneous Splay and Twist of Nematic Liquid Crystal

As already mentioned, the initial state of a nematic bulk is considered to exhibit a
uniform orientation of the director, �L, throughout the whole system (Fig. 2a, left
panel). Generally, any deformation imposed on a three-dimensional elastic phase
by external forces acting on its boundaries leads to development at any point of the
phase of the internal stresses, σ ik, and strains, uik, so that the volumetric density of
the deformation energy can be presented as [32]

f =
∫

σikduik, (2)

where the integration is performed from zero to a final strain. The total energy, F,
is given by integration of the energy density, f, over the whole volume of the system
F = ∮

dV(
∫
σ ikduik). Here and below we use the conventions of summation over

the repeated indices.
To proceed, based on Eq. (1), one needs to specify the types of the strains, uik,

and stresses, σ ik, developing in the system and establish the explicit stress-strain
relationships, σ ik(uik).

Since the essence of the nematic bending deformations is the deviation of the
director, �L, from the initial uniform orientation (Fig. 2a, right panel), the resulting
strains, ei, can be represented by the local gradients of �L. The only stresses
emerging as a result of generation of the director gradients are the local torques, τ i,
counteracting the local rotation of the director, �L [30]. In general, the three-
dimensional bending of the nematic phase leads also to the shear stresses, but, due
to the liquid nature of the system, the corresponding stresses must relax due to a
rearrangement of the constituent molecules.

To express the strain components explicitly, we introduce at any point of the
nematic phase a local Cartesian coordinate system, {z, x, y}, with z-axis parallel to �L
in the origin, x = 0, y = 0. Since our goal here is to follow the similarity between
the nematics and the membranes, we consider only the deformations for which the
director does not change in z-direction so that ∂Lx

∂z
= ∂Ly

∂z
= 0. Therefore, the
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relevant for our consideration strain components are the two “splay”,

esx = ∂Lx

∂x
,

esy = ∂Ly

∂y
, (3)

and two “twist”,

etx = −∂Ly

∂x
,

ety = ∂Lx

∂y
, (4)

components [30]. In the initial state of uniform director, �L, both splay and twist
components vanish, e0sx = e0sy = e0tx = e0ty = 0.

The stress-strain relationships, τ i(ej), which have to be used for computation
of the energy density according to Eq. (2), are set by the molecular interaction
within the system and have, generally, a nonlinear character. However, they can
be presented in a simple form for small strains. The smallness of the strains means,
specifically, that the dimensionless parameters equal to the products of the absolute
values of the strain components, |ej|, and the internal molecular scale of the system,
δ, whose essence in the effective size of molecules constituting the nematic phase
remain much smaller than one,

∣∣ej

∣∣ · δ � 1, (5)

which means that the angles, θ i, by which the directors deviate from the initial
orientations remain small, θ i � 1. In this case, it is possible to use the approximate
stress-strain relationships, accounting only for the contributions up to the first order
in the small parameters, |ej| · δ, and neglecting the higher-order terms,

τi = τ 0i + εij · δ · ej . (6)

This expression [Eq. (6)] represents the Hooke’s approximation for the relation-
ships between the torque and the strain components.

In Eq. (6) the first contributions, τ 0i , are the torques existing within the nematic
phase in the initial state of the uniform orientation of the director, �L, before the
onset of the bending deformations. The values of the initial torques, τ 0i , depend on
the intermolecular interactions of the specific liquid crystal. In case of vanishing
initial torques, τ 0i = 0, the uniform state is free of the torque stresses, meaning
that there is no intrinsic tendency of the director, �L, to splay and/or twist. In
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the case of nonvanishing initial torques, τ 0i �= 0, the inter-molecular interactions
favor a deviations of the liquid crystal from the initial state of uniformly oriented
director, �L.

The coefficients, εij, in Eq. (6) represent the elastic parameters of the system.
Commonly, the molecular length, δ, is included into the definition of the system
elastic parameters so that one uses κ ij = εij · δ, instead of εij, and the torque-
curvature relationships are introduced in the form

τi = τ 0i + κij · ej . (7)

Symmetry considerations taking into account the liquid-like properties of the
system reduce the number of the independent initial torques to two, τ 0s and
τ 0t , associated with the splay and twist, respectively [30]. The number of the
independent and nonvanishing elastic parameters, κ ij, is reduced to four associated
with the splay-only, twist-only, and mixed splay-twist deformations [30]. Using
these conclusions and [Eq. (7)], the integration [Eq. (2)] from zero to the final values
of the splay and twist components of the strains results in the explicit expression for
the energy density, f, which can be presented in the form

f = τ 0s
(
esx + esy

) + τ 0t
(
etx + ety

) + 1
2κss

(
esx + esy

)2 + 1
2κtt

(
etx + ety

)2+
κst

(
esx + esy

) (
etx + ety

) + κ
(
esxesy + etxety

)
. (8)

The first two terms of [Eq. (8)] correspond, respectively, to the thermodynamic
work performed against the initial splaying torque, τ 0s , on generation of the total
splay strain, es = esx + esy, and against the initial twisting torque, τ 0t , on producing
the total twist strain, et = etx + ety. The third and fourth terms are quadratic in the
total splay, es, and twist, et, meaning that they represent the elastic contributions to
the energy with the corresponding elastic moduli of the pure splay, κss, and the pure
twist, κ tt. Fundamentally, these two elastic moduli must be positive, κss > 0, κ tt > 0,
to guarantee the thermodynamic stability of the system. The fifth contribution to
Eq. (8) is determined by the interplay between the splay and twist deformations,
the coefficient, κst, setting the extent to which the splaying torque, τ s, is influenced
by the total twist strain, et, and vice versa, how the twist stress, τ t, depends on
the total splay strain, es. Finally, the sixth contribution has a more complicated
geometrical origin depending on the product of the splay components, esxesy, and
the twist components, etxety. This energy contribution does not vanish only if the
deformation occurs simultaneously in x- and y-directions so that both the x- and
y-components of the splay and twist strains differ from zero. If the deformation
is unidirectional, the last term in Eq. (8), which can be referred to as the saddle-
splay energy, does not contribute. The coefficients, κst and κ, may adopt positive as
well as negative values, which do not violate the requirement of the thermodynamic
stability of the system.
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The expression [Eq. (8)] can be presented in a more compact form by introducing
the parameter combinations

es0 = − τ 0s

κss

(9)

and

et0 = − τ 0t

κt t

and changing the energy of the reference state by a constant value,− 1
2 κsses0

2− 1
2

κ ttet02. The energy density is then presented as

f = 1

2
κss(es − es0)

2 + 1

2
κtt (et − et0)

2 + κst eset + κ
(
esxesy + etxety

)
. (10)

The first two terms of Eq. (10) have a familiar form of Hooke’s law for the
total splay, es, and the total twist, et, respectively. The parameters es0 and et0
play the roles of apparent equilibrium values of the local total splay and twist
for which Hooke’s splay and twist stresses would vanish. Therefore, es0 and
et0 can be, formally, considered as structural parameters determining the stress-
free state of the nematic and referred to as the spontaneous splay and twist,
respectively.

It is important to emphasize, however, that the real meaning of es0 and et0
is directly related to the stresses existing in the uniform state of the nematic,
as it follows from the derivation above and the expressions [Eq. (9)]. In other
words, the spontaneous splay and twist do not really describe the structure of the
stress-free state of the system but rather quantify, together with the elastic moduli,
κss and κ tt, the internal stresses existing within the liquid crystal in the uniform
state.

This point has not just a semantic meaning but rather an important physical
content. To illustrate that, let us consider, for simplicity, a nematic with vanishing
elastic moduli, corresponding to the third and fourth contributions to Eq. (10),
κst = 0, κ = 0. The energy density, f, is determined in this case by Hooke’s law
only. Assume that a sample of such liquid crystal is not subjected to any constraints
imposed on its boundaries and there are no external forces acting on the system.
A practical question would be: is such liquid crystal expected to adopt the state
with total splay and twist having the spontaneous values es0 and et0? The answer is
that, generally, this is not the case. Indeed, our consideration above was not limited
to small values of the initial torques, τ 0s and τ 0t . Therefore, the spontaneous splay
and twist, es0 and et0, do not have to be small in the sense that their products with
the inverse molecular dimension, |es0|δ and |et0|δ, can be comparable to or even
larger than one. In such cases, adopting by the system a state characterized by es0
and et0 would mean a strong deviation from the initial uniform state so that the
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resulting strains do not satisfy the condition of smallness [Eq. (5)], and, hence, the
quadratic formula for the energy [Eq. (9)] is invalid a priori. Specifically, in the case
of large initial torques, τ 0s and τ 0t , the relaxation of the system from the state of
uniform director, �L, generates large strains for which the nonlinear contributions to
the stress-strain relationships [Eq. (6)] are, generally, expected to become essential.
This will lead to the additional substantial contributions to the energy density [Eq.
(10)] of higher than quadratic orders in splay and twist resulting in an equilibrium
state different from that characterized by es0 and et0.

3.2 Spontaneous Curvature of Lipid Membranes

The physical meaning of the membrane spontaneous curvature, as defined by
Helfrich [4], is, basically, analogous to that of the spontaneous splay of a nematic
liquid crystal described above. We present here the major steps of introduction
of Helfrich model of membrane bending elasticity, which includes definition
of the membrane spontaneous curvature [4]. We use, explicitly, the analogy
between the physical ideas behind modeling the elastic properties of a membrane
with those presented above for description of bending of a nematic liquid crys-
tal.

The membrane is described by a surface whose infinitesimal elements are
characterized by the area, da, and the orientation of the unit normal vector, �n,
playing a role of the director (Fig. 2b). Since we are interested only in the curvature
effects, we do not address here the deformations of area stretching-compression.

In the initial state, the membrane is considered to be flat so that the normal vector,
�n, is uniformly oriented throughout the whole membrane surface (Fig. 2b, left
panel). Bending of the membrane surface results in two kinds of local deformations.
First, the surface elements change their shapes in the membrane plane without
changing their areas, which constitutes the lateral shear deformations. Second, the
normal vector, �n, deviates from the uniform orientation (Fig. 2b, right panel). Since,
as mentioned above, the membrane has properties of a two-dimensional fluid, no in-
plane shear stresses develop in the system. Therefore, the lateral shear strains do not
contribute to the membrane energy. By contrast, generation of inhomogeneity in �n
orientation resulting in a reciprocal rotation of the normal vectors, �n, of neighboring
membrane elements (Fig. 2b) does cost energy. The corresponding strains are
represented by the components of the gradient of �n determined along the surface
plane. The stresses associated with these strains are the torques, τ i, opposing the
mutual turning of the adjacent surface elements.

To express, explicitly, the strains we choose at every point of the membrane
surface a local Cartesian system of coordinates, {z, x, y}, with z-axis parallel to the
normal vector, �n, in the origin (x = 0, y = 0). The membrane shape in the vicinity
of the chosen point is determined by a function z(x, y). Analogously to the liquid
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crystal model, the membrane strain, ej, can be presented as having two “splay”,

esx = ∂nx

∂x
and esy = ∂ny

∂y
,

and two “twist”,

etx = −∂ny

∂x
and ety = ∂ns

∂y
, (11)

components.
The definition of the strain components [Eq. (11)] relates them directly to

the central geometrical characteristics of the membrane surface, the covariant
components of the shape tensor (second fundamental form), bαβ [33],

bxx = ∂nx

∂x
, byy = ∂ny

∂y
, byx = ∂ny

∂x
, and bxy = ∂nx

∂y
. (12)

It can be demonstrated that at the origin of the local Cartesian coordinate system,
(x = 0, y = 0), where ∂z/∂x = 0 and ∂z/∂y = 0, the covariant, contravariant, and
mixed components of the shape tensor are equal, so that bxx = bx

x , byy = b
y
y ,

bxy = b
y
x , and byx = bx

y .
As a result, the splay [Eq. (11)] can be represented by the diagonal,

esx = bx
x , esy = b

y
y , (13)

and the twist is given by the non-diagonal,

et1 = −bx
y , et2 = b

y
x, (14)

components of the mixed shape tensor, bβ
α .

Analogously to the above consideration of the bending energy of liquid crystals,
the membrane bending energy can be computed by integration of the torques over
the strains. In the membrane case however, this integration results in the energy
per unit area of the membrane surface rather than the volumetric energy density.
Since the torque-strain relationships, τ k(ei), are, generally, nonlinear and unknown,
to proceed in the energy determination, we have to make an assumption of smallness
of the strains and use the approximate linear relationships between the torques
and the strains [Eq. (6) or (7)]. In the case of membrane bending, the role of the
characteristic length setting the scale in the system is played by the membrane
thickness, d. The smallness of the strains means that the absolute values of the shape
tensor components are much smaller than the inverse membrane thickness,

∣∣bx
x

∣∣ d � 1,
∣∣by

y

∣∣ d � 1, and
∣∣by

x

∣∣ d =
∣∣∣bx

y

∣∣∣ d � 1. (15)
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Taking into account the relationships [Eq. (12)], smallness of the strains [Eq.
(15)] means that the angles, θ i = ni, generated as a result of membrane bending
between the normal vectors, �n, in the adjacent membrane points, remain much
smaller than one, θ i � 1.

The number of the nonvanishing elastic moduli relating the torques and the
strains in the linear approximation [Eqs. (6) and (7)] is determined based on the
same symmetry consideration as in the case of liquid crystals [30].

Integration of the torques over the strains accounting for [Eq. (7)], the condition
[Eq. (15)], and the relationships [Eqs. (13) and (14)] results in the expression
analogous to [Eq. (8)] relating the energy density to the total splay, es = esx + esy,
the total twist, et = etx + ety, and the products of the strain components, esxesy and
etxety.

It has to be taken into account that the shape tensor, by definition, statisfies,
b

y
x = bx

y [33]. Therefore, the total twist, et = etx + etx, which is equal, according
to Eq. (14), to the difference between the non-diagonal components of the shape
tensor, vanishes,

et = b
y
x − b

y
x = 0, (16)

which is not necessarily the case for nematics [30].
As a result, the expression for the density of the membrane energy simplifies to

f = τ 0s
(
bx
x + b

y
y

) + 1

2
κss

(
bx
x + b

y
y

)2 + κ
(
bx
xb

y
y − bx

yb
y
x

)
, (17)

where τ 0s is the splaying torque existing in the initial flat state of the membrane
and κs and κ are the remaining elastic parameters relating the torque components to
the strains in the linear approximation.

The first and second contributions to the density of the membrane bending energy
[Eq. (17)] depend only on the total splay, es = esx + esy = bx

x + b
y
y , which can be

presented as the trace of the shape tensor, es = T r
(
b

β
α

)
, referred to as the total

curvature of the surface, J = T r
(
b

β
α

)
[33]. The third contribution depending on

the products of the shape tensor components is proportional to the determinant of

the shape tensor, det
(
b

β
α

)
= bx

xb
y
y − bx

yb
y
x , referred to as the Gaussian curvature

of the surface, K = det
(
b

β
α

)
[33]. It has to be noted that in the mathematical

literature, the notion of the mean curvature, H = − 1
2J , is more common than

that of the total curvature, J. According to their definitions, the total and Gaussian
curvatures are surface scalars, meaning that their values do not depend on the
orientation of the local x , y axes in the membrane plane. For the special local
coordinate system, where x , y-orientation is such that the shape tensor has a
diagonal form, bx

y = b
y
x = 0, the diagonal components of the shape tensor are called

the principal curvatures of the surface, cx = bx
x , cy = b

y
y . The corresponding x- and
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y-directions are called the principle directions [33]. The principle curvatures have a
straightforward geometrical meaning of curvatures of the lines formed by crossing
the membrane surface by perpendicular planes in the principle directions. Therefore,
a frequent presentation of the total and Gaussian curvatures in the literature is as a
sum, J = cx + cy, and a product,K = cx · cy, of the principal curvatures, respectively.

Using the introduced definitions, the energy density [Eq. (17)] can be expressed
through the mean and Gaussian curvatures as

f = τ 0s J + 1

2
κssJ

2 + κK. (18)

The total bending energy of the membrane, FB, is given by integration of the
energy density [Eq. (18)] over the whole membrane surface,

FB =
∮

f dA. (19)

Analogously to the above consideration of the elastic model of liquid crystals
[Eqs. (8) and (10)], the elastic coefficient, κss, coupled to the total curvature
square, J2, has a meaning of an elastic modulus or, equivalently, the membrane
susceptibility with respect to the total curvature, J. In the literature, this elastic
modulus is referred to as the membrane bendingmodulus and denoted by κB instead
of κss [4, 31]. The bending modulus must be positive to guarantee the stability of
the membrane with respect to bending deformations. The bending modulus, κB, has
been measured by different methods for lipid bilayers and monolayers of various
compositions. The characteristic value of this modulus constitutes 10 kBT and 20
kBT for a monolayer and a bilayer, respectively, kBT ≈ 0.6 kcal/mole being the
product of the Boltzmann constant and the absolute temperature (see for recent
review [34]). The elastic coefficient, κ , related to the Gaussian curvature, K, is
referred to as the modulus of Gaussian curvature or the saddle-splay modulus.
This elastic coefficient determines the dependence of the energy density on the first
power of the Gaussian curvature, K, and, therefore, does not have a meaning of
susceptibility with respect to K. Hence, the membrane mechanical stability does
not require κ to be positive, and, in fact, this modulus was shown to be negative
in a few cases where it was accessible for the experimental determinations [35–
37]. It has to be noted that as long as the modulus of Gaussian curvature, κ, has
a constant value all over the membrane, it becomes relevant only for membrane
processes, which include topological remodeling of the membrane by fission, self-
fusion, fusion with other membranes, and/or formations of holes in the membrane
surface accompanied by deformation of surface regions bound by the hole rims. The
reason for that is Gauss-Bonnet theorem according to which integral of Gaussian
curvature, K, which has to be computed for determination of the total bending
energy [Eq. (19)], is independent of the surface shape as long as the surface remains
closed and varies only upon changes of the surface connectivity through topological
rearrangements [33]. Importantly, in the cases where the value of the modulus of
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Gaussian curvature, κ , changes along the membrane surface, which may be the case
in biological membranes, the energy contribution of the Gaussian curvature affects
the membrane shapes also in the absence of topological transformations (see, e.g.,
[38]).

The spontaneous curvature of the surface, Js, is defined through the initial
splaying torque, τ 0s , and the bending modulus, κB, by

Js = − τ 0s

κB

. (20)

Using this definitions [Eq. (20)] and changing the energy of the reference flat
state by a constant, − 1

2κBc0
2, we obtain the familiar Helfrich form for the area

density of the membrane bending energy,

f = 1

2
κB(J − Js)

2 + κK. (21)

Importantly, the dependence of Helfrich bending energy [Eqs. (18) and (21)]
on the total, J, and Gaussian, K, curvatures rather than, separately, on each of
the principle curvatures of the surface, cx and cy, or on different components of

the shape tensor, b
β
α , has a fundamental physical meaning. As mentioned above,

according to their definitions through, respectively, the trace and the determinant
of the shape tensor, the total and Gaussian curvatures are the surface scalars. The
energy dependence only on the surface scalars is the consequence of the membrane
properties of an isotropic two-dimensional fluid with no designated structural
direction in the membrane plane.

In this context and to conclude this section, we mention the relationship between
the Helfrich model of membrane bending elasticity given by Eq. (21) and that
suggested by Canham [3] for explanation of red blood cell shapes [3]. The reason
for this discussion is a frequent reference in the literature to the energy [Eq. (21)]
as the Canham-Helfrich Hamiltonian. Canham [3] considered the membrane as
a homogeneous isotropic solid sheet having no elastic stresses in the flat state
rather than a two-dimensional fluid layer subject to torques while being flat. For
derivation of the membrane bending energy, Canham used the common methods of
the thin-shell mechanics (see, e.g., [32]). As a result, the Canham energy accounts
neither for the membrane spontaneous curvature nor for the contribution of the
Gaussian curvature determined by a separate elastic constant. Canham’s approach
can be extended to include the missing contributions, but in that case the analog of
Helfrich’s modulus of Gaussian curvature turns out to be proportional to the lateral
shear modulus, which must vanish for fluid membranes. Summarizing, because of
the substantial differences in the physical properties of membranes assumed by
Helfrich and Canham’s approaches and due to the crucial factors, the spontaneous
curvature and the modulus of Gaussian curvature, accounted by Helfrich’s but not
Canham’s formula, we find unjustified the association of the model [Eq. (21)] with
Canham’s name.
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3.3 Meaning of Spontaneous Curvature

There is a substantial difference between the notion of the spontaneous curvature,
as set by its definition [Eq. (20)], and the concept of the intrinsic curvature, J0,
described in the previous section. The analogous issue related to the spontaneous
splay and twist of nematic liquid crystals was already addressed above. Never-
theless, because of its importance and frequent misinterpretation in the literature,
we are going to discuss that matter again in a specific relation to the membrane
spontaneous curvature, Js.

The first contribution to the density of the membrane bending energy, f, presented
by Helfrich’s formula [Eq. (21)], has a form of Hooke’s law with the spontaneous
curvature, Js, playing a role of a geometrical characteristic of the relaxed membrane
state. Therefore, commonly, the spontaneous curvature, Js, would be associated
with the total curvature the membrane tended to adopt spontaneously in case there
were no external forces acting on the membrane surface and the membrane did not
undergo topological transformations by fusion, fission, and rupture. In other words,
the spontaneous curvature, Js, is often identified with the intrinsic curvature, J0,
defined above. Such equating of the two concepts is, generally, misleading since
they have a priori different physical contents. The spontaneous curvature is merely a
measure of the stress, τ 0s , existing within the membrane in the initial flat state rather
than a direct characteristic of the membrane geometry. In contrary, the intrinsic
curvature, J0, is a geometrical feature of a relaxed membrane, which does not carry
any information about the membrane stresses.

At the same time, for applications, it is important to know, whether and under
which conditions, in spite of the difference in the physical meaning, the value of the
spontaneous curvature, Js, can become similar to that of the intrinsic curvature, J0.
A short answer is that such concurrence can be expected in two situations: either
the spontaneous and intrinsic curvatures are both much smaller than the inverse
membrane thickness, |Js|d � 1, |J0|d � 1, or the torque-strain relationship of the
membrane, τ i(ei), remains linear [Eqs. (6) and (7)] not only for small but also for
large membrane curvatures comparable to the inverse membrane thickness.

In general case, however, the spontaneous and intrinsic curvatures are not
expected to have equal or even close values. Indeed, depending on the membrane
lipid composition, the initial stress, τ 0s , can be arbitrarily large so that the spon-
taneous curvature determined according to Eq. (20) can adopt values comparable
with or larger than the inverse membrane thickness, |Js|d ≥ 1. This means that,
in order to reach a shape with the total curvature equal to Js, the membrane has to
deviate from the initial flat state by the extent violating the requirement of smallness
of membrane strains [Eq. (16)]. In that case the Helfrich’s expression for the
membrane energy [Eq. (21)] has to be complemented by the terms of higher orders
in the product of the curvature and the membrane [39]. Because of these additional
energy contributions, the intrinsic curvature, J0, resulting from the complete energy
minimization and describing the equilibrium membrane shape, is not expected to
equal the spontaneous curvature, Js, determined by Eq. (20).
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It has to be kept in mind, however, that some membranes or, more precisely,
lipid monolayers of, at least, certain lipid compositions appear to demonstrate an
unexpectedly long-reaching linearity in the torque-strain relationship, which, as
mentioned above, can lead to the value similarity between the spontaneous, Js,
and intrinsic, J0, curvatures. This conclusion is based on the addressed above
measurements of the bending moduli of monolayers forming the strongly curved
tubes of HII-phases [20, 23–26]. The intrinsic curvatures of these monolayers are,
practically, equal to the inverse monolayer thicknesses, 1/d ≈ 1/2nm. Deformation
of these monolayers in the vicinity of their strongly curved intrinsic shapes revealed
the values of the bendingmoduli of about 10 kBT, which is very close to the bending
moduli determined for nearly flat monolayers, albeit of different lipid compositions
[34]. This consistency of the bending modulus values determined experimentally
over a very broad range of membrane curvatures indicates, although does not prove,
that the bending energy of lipid monolayers is quadratic in the total curvature in
an extremely wide range of the bending deformations including those for which
the curvature radii are comparable to the monolayer thickness. In other words, this
means that the dependence of the monolayer torque on the total curvature may
remain linear up to very large deformations. In this case, the numbers obtained
experimentally for the intrinsic curvatures can be used as substitutions for the
spontaneous curvature in spite of the difference between the physical meanings of
the two notions.

3.4 Spontaneous Curvature of Mixed Lipid Monolayers

As, in contrast to the membrane intrinsic curvature, J0, the spontaneous curvature,
Js, does not have a direct geometrical meaning but is rather related to the torque in
the flat membrane state, τ 0, understanding how Js depends on the membrane lipid
composition requires a thermodynamic analysis rather than a purely geometrical
consideration. Since, as already mentioned, the elastic properties of a lipid bilayer
are determined by the properties of its constituent monolayers, we present here
the thermodynamic description of mixed, weakly, and homogeneously curved lipid
monolayers [40]. For constant temperature, the variation of the monolayer free
energy can be written as [41, 42]

dF = γ dA + Aτ dJ + Aκ dK + �μi dNi, (22)

where γ is the Gibbs tension; A is the monolayer area; Ni is the number of
lipid molecules of i-th type; μi is the chemical potential of i-th lipid type; J and
K are, respectively, the total and Gaussian curvatures of the monolayer surface; τ

is the torque; and κ is the modulus of Gaussian curvature of the monolayer. The
summation in the last term of Eq. (22) is taken over all types of the membrane
lipid components. Eq. (22) provides a thermodynamic definition for the membrane
torque, τ , and modulus of Gaussian curvature, κ , through the derivatives of the free
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energy with respect to the total, J, and Gaussian, K, curvatures, respectively. These
thermodynamic definitions of τ and κ are complementary to the discussed above
definitions by Helfrich [4].

All the thermodynamic functions and variables related to the curvatures depend
on the choice within the membrane of Gibbs dividing surface (reference plane)
[17, 18]. Generally, one can choose any arbitrary plane parallel to the membrane-
bulk interface as the dividing surface. The thermodynamic description simplifies
for several special dividing surfaces such as Gibbs’ surface of tension [41] or
the neutral surface [17, 18]. For our purposes, the most convenient is the neutral
surface, for which the deformation of membrane area stretching-compression and
the deformation of changing the total curvature, J, are energetically decoupled. The
position of the neutral surface has been determined for a series of monolayers of
different compositions and appears to be located near the interface between the polar
heads and the hydrophobic moieties of the constituent lipid molecules [20].

The free energy, F, must be a first-order homogeneous function of its extensive
thermodynamic variables, A and Ni. It can be, therefore presented, according to
Euler’s theorem, as

F = γA + �μi Ni, (23)

where the tension, γ , and the chemical potentials, μi, are functions of the
curvatures. The Gibbs-Duhem-type equations resulting from Eqs. (22) and (23)]
relate the differentials of the chemical potentials, the tension, and the curvatures,

� Nidμi = −Adγ + Aτ dJ + Aκ dK. (24)

From Eq. (24) we can derive a general relationship between the torque and the
chemical potentials of the membrane components,

τ =
(

∂γ

∂J

)
A,Ni

+ 1

A
� Ni

(
∂μi

∂J

)
A,Ni

, (25)

where the subscripts indicate the values, which are kept constant through the
differentiation. In the following we skip this explicit indication. To present Eq. (25)
in a more useful form, we apply Maxwell relationships between the derivatives of
the intensive thermodynamic functions, which follow from the independence of
the mixed derivatives of the energy [Eq. (22)] of the order of differentiation. The
Maxwell relations we substitute in Eq. (25) are

A
∂τ

∂Ni

= ∂μi

∂J
. (26)

Moreover, since we describe the lipid monolayer by its neutral surface, the
derivative of the tension with respect to the total curvature vanishes, ∂γ

∂J
= 0. Taking
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this and Eq. (26) into account, we obtain from Eq. (25) for the case of constant area

τA = � NiA
∂τ

∂Ni

. (27)

It follows fromEq. (27) that for fixedmonolayer area, A, the product of the torque
and the area, τA, is a first-degree homogeneous function of the molecular numbers
of the components, Ni, and, hence, can be presented in the form

τA = (� Ni) · �

(
N2

N1
,
N3

N1
, . . . ,

Nn

N1

)
. (28)

It has to be emphasized that Eqs. (27) and (28) are general thermodynamic
relationships, which must be satisfied by any specificmodel of the elastic parameters
of mixed monolayers.

Importantly, the relationships [Eqs. (27) and (28)] impose constraints on the
models for the torques, τ = − Jsκ , rather than, separately, for the spontaneous
curvature, Js, and bending modulus, κ . In the literature, however, specific models
for Js and κ have been suggested. These models operated with the notions of
spontaneous curvatures, J i

s , and bending moduli, κi
B , of individual components,

whose meanings were the elastic characteristics of monolayer with uniform com-
position consisting only of the i-th lipid. Namely, the spontaneous curvature of
a mixed monolayer containing Ni molecules of i-th type has been suggested
to be equal to a sum of spontaneous curvatures of the individual components,
J i

s , weighted with their molar ratios within the membrane, φi = Ni

�Ni
, so that

Js = �φiJ
i
s . The same assumption was made concerning the inverse bending

modulus, 1
κB

= �
φi

κi
B

[43]. A slight development of this model taking into

account a possibility of differences between the in-plane molecular areas of
the components, ai, presents the spontaneous curvature and the inverse bending
modulus as sums of the characteristics of individual components weighted with
their relative areas, Js = 1

�Niai
�Ni · ai · J i

s ,
1
κB

= 1
�Niai

�Ni · ai · 1
κi
B

[40].

The background for these models was a reasoning based on a mechanical meaning
of the intrinsic rather than spontaneous curvature and ignoring a fundamental
difference between the physical contents of the two notions. It is easy to see that
both versions of the model do not satisfy the thermodynamic constraints [Eqs.
(27) and (28)]. For example, in the latter version of the model, the torque in the

flat membrane state equals τ 0s = −JsκB = − �J i
s Niai

� 1
κi
B

Niai
, which does not fulfill

[Eq. (28)].
A thermodynamically correct model for the spontaneous curvature and bend-

ing modulus of a mixed monolayer, where the contributions of the individual
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components are assumed to be additive, has to propose that Js and κB satisfy [40],

Js = 1

A
�Ni · ai · J i

s (29)

1

κB

= 1

�Niai

�Ni · ai · 1

κi
B

. (30)

The difference between the model presented by Eqs. (29) and (30) and the
previous ones consists in an assumption that the change of the monolayer area, A,
upon a condition of constant number of all components, leads to variation of the
spontaneous curvature [Eq. (29)] but not of the bending modulus [Eq. (30)]. The
resulting expression for the bending moment in the flat membrane state,

τ 0s = −JsκB = −�Niai

A
· �J i

s Niai

� 1
κi
B

Niai

, (31)

fulfills (Eqs. (27) and (28)]. Obviously, also more complex relationships accounting
for nonadditive contributions of different components to the monolayer elastic
characteristics, Js and κB [28], are allowed by the thermodynamic relationships
[Eqs. (27) and (28)].

4 Conclusions

The goal of this review was to recall the physical background behind the notion
of the membrane spontaneous curvature introduced by Helfrich [4], which has
been ubiquitously used in the membrane literature over the last few decades, and
to illustrate its essential difference from the intrinsic curvature defined by Gruner
[9] for lipid monolayers. We emphasized that, while the intrinsic curvature is a
geometrical characteristic of a lipid monolayer determined by X-ray studies of the
inverted hexagonal phase, the spontaneous curvature characterizes the stress existing
in a flat membrane and does not have a direct geometricalmeaning. The spontaneous
and intrinsic curvatures may have similar values, if both of them are much smaller
than the inverse membrane thickness.

Which notion is more useful for the practical characterization of the membrane
elastic behavior? Obviously, the answer depends on the specific membrane system.
In a lipid bilayer constituting the matrix of any biological membrane, the two
monolayers are coupled in the transverse direction so that acquisition of curvature
by one of them leads to acquirement of an opposite curvature by the other. In case
the lipid compositions of the two membrane monolayers are similar, the bilayer
and, hence, the monolayers acquire a flat shape independent of the monolayer
intrinsic curvatures. In this situation, each monolayer is elastically frustrated and



308 M. M. Kozlov

is characterized by a bending stress described by the spontaneous curvature. Thus,
the latter is the relevant monolayer characteristic. Within the membrane structures,
where the two monolayers, locally, deviate from the mutually parallel orientation,
the appropriate value determining the membrane behaviormay be the intrinsic rather
than the spontaneous curvature. Examples are the intermediate structures formed in
the course of membrane fusion and fission, the most common of which is membrane
stalk [44].

While the present article discussed the spontaneous and intrinsic curvatures of
purely lipid monolayers, similar ideas have been used to describe the effects of
proteins on the membrane curvature and elastic behavior.
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