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Abstract. In the this work it is emphasized that fusion of the diverse data
obtained from sources of primary information (sensors, the measuring equip-
ment, systems, subsystems) for adoption of diagnostic decisions at a research of
faults of devices, is one of the main problems in information processing.
A generalized scheme of fusion of diverse data reflecting features of this process
is considered. Classification of levels, modern methods of fusion of diverse data
in the conditions of incomplete, indistinct basic data is also considered. The
article develops a new hybrid approach to the diagnosis of technical objects
based on multisensory data in terms of heterogeneity of the original information.
We consider a new class of adaptive network models focused on the imple-
mentation of the procedures of logical-probabilistic inference using the
Dempster-Shafer methodology and fuzzy logic. The adaptive Dempster-Shafer
model (DS model) is a multilayered network of neurons mapped to the elements
of the hypothesis space together with the current values of their base proba-
bilities, on the basis of which the confidence probabilities of hypotheses are
calculated. The original training algorithm for the neural network model with the
attraction of experimental data is based on the principle of the distribution of the
total error in the neural network in proportion to their confidence probabilities.
The network model of Dempster-Shafer functions is trained together with the
neural network model, which simulates the process of forming empirical esti-
mates of hypotheses on the basis of subjective preferences of experts for the
influence of various factors on diagnostic solutions. The principal advantage of
the hybrid system is the ability to jointly adapt the parameters of both models in
the learning process, which increases the reliability of the results of calculations
due to the diversity of the used expert statistical information. The adaptability of
the hybrid system also makes it possible to implement a new approach to the
calculation of probability estimates of hypotheses based on a combination of
several evidence by training a hybrid system based on data from several sources.
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1 Introduction

Currently, in the field of technical diagnostics at the peak of application, there are
hybrid approaches to the detection and prediction of faults based on the combination of
heterogeneous data obtained from different sensor systems [1-7]. For the development
of hybrid diagnostic technologies, the key methods are the combination (fusion) of
heterogeneous data and, in particular, the approach based on the combination of
probabilistic and intellectual methods [8—12].

The Dempster-Shafer (D-Sh) methodology [13], which is used in conjunction with
adaptive network models, is an effective and promising means of modeling and pro-
cessing heterogeneous data used together with network models. Neural network models
are able to give adaptability to the D-Sh methodology and improve its “accuracy” due
to the possibility of training on experimental data, and network models of the D-Sh
methodology will make it possible to process quantitative information on fuzzy
judgments and confidence ratings on the basis of strict mathematical methods.

The main objects and parameters of the D-Sh theory are confidence functions, basic
probabilities and probability estimates of hypotheses. However, in practice, there are
serious problems with the quantitative evaluation of these parameters, due to the
combinatorial “explosion” of the space of hypotheses, on the set of which the expert
should evaluate these parameters. However, in reality, it is always possible to obtain
estimates for some of the hypotheses for which expert or statistical information is
available. To extend partial estimates to the entire area of hypotheses, methods are
needed to calculate these parameters based on the attraction of additional expert
information.

The approach discussed below is based on the identification of the most important
parameters of the D-Sh methodology, called basic probability hypotheses or masses,
with the involvement of statistical and empirical information obtained from experts.
The proposed approach also makes it possible to implement procedures for combining
information in the process of obtaining new certificates.

2 The Generalized Scheme of Fusion of Diverse Data

At the heart of the offered approach to fusion of the diverse data obtained from a set of
various sensors is the use of the generalized scheme presented in Fig. 1.
From Fig. 1 we can see that fusion of data can be classified on three levels [14]:

1. Low level of fusion. This level is often called the level of raw data (raw data level)
or level of signals (signals level). The raw data are considered as entrance data, then
unite. As a result of association it is expected to obtain new more exact and
informative data, than the raw entrance data. For example, in work [15] the example
of low-level fusion to use of the filter of moving average is given.

2. Medium level of fusion. This level is called the level of signs (attributes, charac-
teristics) (feature level). There is a fusion of signs (a form, texture, edges, corners,
lines, situation) as a result of which new objects, or cards of objects which can be
used for other problems, for example, of segmentation and recognitions turn out.
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Fig. 1. The generalized scheme of fusion of diverse data.

Also at this level there is a data processing, namely a filtration (fight against noisy
data), normalization (transformations to one type of data), correlation, classification
of data, to use of methods of “soft calculations” and methods of data mining.
Examples of medium-level fusion are given in [16, 17].

3. High level of fusion. This level is called the level of decision (decision level) or
level of symbols (symbol level). There is a fusion at the level of the decision as a
result of which the global decision turns out. The most traditional and known
methods of fusion of data are probabilistic methods (Bayesian networks, the theory
of proofs); computational intelligent methods (Dempster-Shafer, theory of indistinct
sets and neural networks). These methods allow to present the coordinated and
uniform opinion on diagnostic process to the person making the decision. High
level fusion is considered, e.g. in [18].

3 Classification of Levels and Methods of Diverse Data
Fusion

Now rather large number of methods is developed for fusion of data. However, at the
choice of this or that method it is necessary to consider some aspects (what are the best
fusion methods for the available data?; what is preliminary processing necessary?; how
to choose from a data set those which fusion will give the best effect?, etc.).

On the basis of systematization of the review of references in Fig. 2, classification
of levels [19-22] and modern methods of diverse data fusion [23-28] in the conditions
of incomplete, indistinct basic data is presented.

Let us note that the given division of methods of fusion of the diagnostic decisions
given for acceptance as conditional character as in practice they are crossed and interact
among themselves.
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Fig. 2. Classification of levels and methods of data fusion.

4 Elements of the Dempster-Shafer Methodology

The main objects of the D-Sh methodology are confidence-building measures and
plausibility, which are calculated on the basis of the basic probabilities of hypotheses.
A set of hypotheses describing the decision-making situation is compared with the
confidence interval, which should belong to the degree of confidence in each
hypothesis. The confidence measure is denoted by Bel(P) changing from zero, indi-
cating full confidence in this hypothesis. A measure of the plausibility of the hypothesis
PI(P) is determined using a measure of credibility:

PI(P) = 1— Bel(not(P)).

Let X be a universal set of conjectures and 2¥ be a set of all subsets of X called an
exponential set. The key in the D-Sh methodology is the notion of mass m(A) of the
element of the exponential set. It expresses the ratio of all relevant and available
evidence that supports the claim that a certain conjecture X belongs to A, but does not
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belong to any subset of A. The value of m(A) refers only to set A and carries no
additional information about other subsets of A, each of which has its own mass.

Based on the assigned masses, the upper and lower limits of the range of possi-
bilities can be determined. This interval contains the exact probability of the considered
subset of hypotheses and is bounded by two continuous measures called trust (belief)
and plausibility. The confidence of Bel(A) to set A is defined as the sum of all masses of
the eigenvectors of the set in question

Bel(A) = > m(B),

BCA

and plausibility PI(A) is the sum of the masses of all subsets corresponding to at least
one element with A:

Pi(A)= > m(B).
BNA+ QG

In practice, the base probability function is often defined as a frequency function
based on statistics: m(A;) = ¢;/N, where N — the total number of observations; c; — the
number of observations of the event A;.

The most important element of the theory of D-Sh is the rule of evidence combi-
nation. The original Union rule, known as the Dempster rule combination [13], is a
generalization of the Bayes rule. In fact, the Union (called the connected mass) is
calculated from two sets of masses m; and m, as follows:

ma(@) =0, ma) == 3 m(Bm(C),
BNC=A#Z
K= > m(B)m(C).

BN C=0

The K factor is a normalizing factor and, at the same time, characterizes the
measure of conflict between the two sets of masses.

5 The Network Dempster-Shafer Model

In the practical application of the D-Sh methodology, an important problem is to
determine the underlying probabilities of m(X) hypotheses on the basis of which
confidence and plausibility estimates are calculated. As a rule, the user a priori does not
have such information in full.

To solve this problem, we use an approach based on the identification of the
Dempster-Shafer model (DS-model) parameters with the involvement of additional
expert statistics. Identification of parameters is based on the unification of the two
network models: adaptive network DS models, performing the calculation and
adjustment of the basic and trust probabilities of the hypotheses, and neuro-fuzzy
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model to obtain probabilistic assessments of hypotheses based on empirical views of
experts.

Consider the organization of the DS-model on the example of one of the diagnostic
subsystems of railway automation [1]. Suppose that the state of a controlled technical
object (TO) is characterized by a set of parameters (numeric attributes), one of which is
X. Based on the analysis of the values of the parameter X, hypotheses are put forward
about the technical state of the object being diagnosed.

For this interval of values of the attribute is under divided into several fuzzy
intervals ay,..., o, characterizing different degrees of efficiency of 7O, including: the
valid values for the parameter X under which 7O is considered fully functional; invalid
values at which the 7O is considered unhealthy; intermediate values characterizing the
pre-failure states of the 70.

Each TO state is associated with an elementary hypothesis o;, which for each
specific value x € X has a certain base probability (mass) m(o;) = p,, (x) where p, (x)
is membership function (MF) of the fuzzy interval o,. All possible combinations of
elementary hypotheses form an exponential set 2“ (L = {a;}) of compound hypotheses.
The mass of composite hypotheses {a,, . . ., o;, } is calculated through a conjunction of
MF constituent elementary hypotheses:

k
m(alm L) uik) :j/:\I l“l:x,»] (X)a
where A is fuzzy conjunction calculated on the basis of the T-norm operator.

The decision-making situation is characterized by a specific value of the diagnostic
feature x € X, on the basis of which the probabilistic estimates of all hypotheses
{0, o3} (k=1,2,..., n) on the technical condition of the controlled object can
be calculated.

The network DS model is focused on the calculation and adaptation of the basic and
trust probabilities of the hypotheses {a;,..., o, } and contains n layers of neurons
st = st({o,, ..., &, }), corresponding to the hypotheses of the 2%, so that each k-th
layer contains neurons corresponding to all possible combinations of & elementary
hypotheses, the index k indicates the layer number of the network, and the index j is the
number of the neuron in the layer. Interlayer connections between neurons is organized

in such a way that the output of the j-th neuron s,{({ocjl s+ 0, }) in the k-th layer is
connected to the input /-th neuron s}, ({oy,, ..., o, }) in the subsequent (k + 1)-th
layer if and only if {o,,..., o } C {ou,,..., o, }.

The first (input) layer contains n neurons s} (i =1,..., n) corresponding to ele-

mentary hypotheses a,..., o,, the inputs of which are the value of the parameter x. The
outputs stay for the basic probabilities of the elementary hypotheses m(a;) and at the
same time, of the confidence probabilities Bel(a;) calculated on the basis of the MF:

m(s)) = Bel(o) = W, (x, pi) - K,
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~1
where K = ( S0 om(oy, .. otl-k)> is a normalized coefficient, p; is a vector
(0t 5.0t ) €2F
of MF parameters.
The neurons of the subsequent hidden layers of the DS-model calculate the masses
and confidence probabilities of compound hypotheses by formulas:

m(sy) = A m(si_))-K, Bel(sp) = Y m(s), (I=1,...,k—1),
Skflcsk S[ Csi
k-1="%
where A is fuzzy conjunction defined on the basis of the T-norm operator. Thus, the
DS-model has n inputs and 2n outputs, on which the values of the confidence prob-
abilities of the hypotheses of the exponential set 2L are formed. In Fig. 3 the structure
of a DS model is shown for the four hypotheses a.,..., o4 and distribution error signal
when adapting the network to the received probability estimation P({a, o, 03}) for the
hypothesis {0, o, 03}.

- Bella,.az)
= % Bel(a,) + Bel(a,) + m(as.az)

e} =Pla,.a,a,} - Bella,. a, a;)

i tmeit

e, =1- Bel(a,.aya3,a,)

Fig. 3. The structure of the DS-model for the four-element set of hypotheses {a.;, o, 03, 044} and
the propagation of the error signal from the neuron s} to the input neurons s} &s?.

Training and adaptation of the network model is based on the error back propa-
gation algorithm, a generalized description of which is given below.

Suppose that with respect to some particular decision-making situation character-
ized by the value of the controlled parameter x € X and a hypothesis {0, ..., o},
there was a statistical or expert information about the likelihood of this hypothesis
P(a,, ..., o, ), that is, information about the likelihood of finding something in suitable

condition. The output of the corresponding neuron s} = s({;, ..., o;,}) of the
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network model generates a value of confidence probability of the hypothesis,
BEZ({O(,‘I g e ooy Ol,ik}).

The difference e=P(%,..., o) — Bel({ot,, ..., o }) — Bel(o,, . .., o)
between the expert rating and the confidence value of the hypothesis is considered as an
error of the network model on the given input parameter value x € X. The adaptation
algorithm aims at minimizing the deviation of e by adjusting the baseline probabilities
of hypotheses Bel(a,, . .., o;, ) network model and adjusting the MF of the masses of
the elementary hypotheses m(a,).

Adaptation of the parameters of DS-model is reduced to the error distribution at the
output of the j-th neuron of the current layer k for all neurons of the preceding

(k — 1)-th layer according to the following law:

el =el: Z Bel(si-1)| - Bel(s,_,), (1)
st-1Cs,,
where ¢/ is the total error at the output of the j-th neuron of the K-th layer; ¢} 7 is a
private error between the e,{-th neuron (k — 1)-th layer and the j-th neuron of the K-th
layer.
The total error e,{ at the neuron output is calculated as the algebraic sum of the
partial errors between the given neuron and all related neurons in the subsequent layers:

o= 4" (2)
S5<+ID‘YIZ

The total error at the output of the neuron e} is equal to the total error at its input,
that is:

Z e = Z e 3)

i J J i
Sk 12541 Se125%

The total error at the output of neurons of the input layer is calculated as:

. . .
el =y, (xi, p1) = D> &7 (4)
sosi

Minimization of the error e is reduced to the adjustment of masses of neurons

m({o,, ..., o, }) MF parameters p € p; in accordance with the law:

. det .
Aéi =—1L. ¢l - m, (5)
dpj

where 1 is the coefficient of the speed of learning.
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Correction of neuronal masses is carried out by distributing the total error at the
output of neurons of the k-th layer on all related neurons of the previous k — 1 layer in
proportion to the confidence probabilities of these neurons.

If at the beginning of training for some hypotheses the values of the basic proba-
bilities are a priori unknown for these hypotheses, the same starting masses are
assigned and normalized to one.

6 Hybrid Neural-Fuzzy Dempster-Shafer Model

In real-world decision-making situations, the user often does not have complete sta-
tistical or expert information about the probability of finding a particular state with this
combination of features. In such situations, the classical probabilistic inference pro-
cedures developed in the Framework of the D-Sh theory are not applicable.

To solve this problem, the paper proposes a hybrid approach based on the com-
bination of the network DS-model and adaptive fuzzy model that simulates the
empirical process of experts’ formation of probability estimates based on subjective
preferences about the impact of certain sensor readings on diagnostic solutions. As a
fuzzy model, it is proposed to use a neural network model of the first order Takagi-
Sugeno (TS-model) [29].

TS-model is a neural network that describes the relationship between the input
values of the diagnostic feature x € X and probabilistic estimates of hypotheses
P(a,, ..., o). TS-model has one input, which receives the value of the controlled
parameter x, and 2" outputs, which form the probability estimates of hypotheses. The
TS-model knowledge base includes m < 2" fuzzy rules of the form:

R; : (X* = Otil) V...V (x* = 0(,',_) = P(OL,‘I,. o Otil_) = ¢y, (6)

where x are the values of parameter X; oy, are fuzzy terms corresponding to the
conjectures of the exponential set 2°; ¢, are output adaptable parameters of fuzzy rules.

The distinguishing feature of the fuzzy system (6) from the traditional 7.S-model is
the presence of not one, but a set of outputs corresponding to the hypotheses of the
exponential set, relative to which there is expert information about the validity of
hypotheses. Another feature is the aggregation of fuzzy terms in the antecedents of
fuzzy rules based on the disjunction operator implemented in the class of S-norms. This
is due to the fact that the probability of a composite hypothesis about the technical
condition is obviously a non-decreasing function of the probabilities of its elementary
hypotheses.

The output values from 7S-model when entering the input parameter values
x" € X is computed in the standard way:

Pty 0 ) = S(Hy, (X7), - s Ky, (X)) - cr,y

where S(*) is S-standard operator.
TS-model is an adaptive system, in which, in addition to calculating the proba-
bilistic estimates of hypotheses (a;,,..., &;, ), the adaptation of the parameters MF
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Mo, (xi;, 177 ) and the output parameters c, is used. The adaptation properties of the TS-
model are used in the hybrid D-Sk system to replenish information about the probability
of estimates of hypotheses when identifying the parameters of the DS-model, as well as
to adjust the parameters of the TS-model upon receipt of additional expert information
about the probabilities of hypotheses. The overall structure of the hybrid system is
shown in Fig. 4 below.

. j Bel(a,)

DS- model

:}/ ) |Bel(a, @)
_A_UC% X) | Bel(ay, ... @)

I—————— Eala e= P, —Bel,

\V
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Fig. 4. Structure of a hybrid adaptive network based on the TS model and the Dempster-Shafer
network model.

The principle feature of the developed hybrid DS-system is the possibility of joint
adaptation of the parameters p; MF My, (X3, i), representing the basic probabilities of
elementary hypotheses {o},...{o,}, in both models, which, firstly, increases the
flexibility of the system due to its adaptation to both objective statistical and subjective
expert data, and, secondly, increases the speed of learning.

7 Conclusion

A new class of neural network models focused on the implementation of the proba-
bilistic inference methodology developed in the framework of the Dempster—Shafer
theory is developed in the article. A new hybrid approach to the diagnosis of technical
objects using multisensory data, based on the combination of neural network model
Dempster-Shafer and neural network, whose principal advantages are:

1. The possibility of realizing probabilistic inference in the absence of full information
on masses of hypotheses due to the attraction of expert information on probabilistic
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estimates of hypotheses received from a neural network on the basis of the analysis
of subjective preferences of an expert.

. The possibility of implementation of a fundamentally new approach to combining

multiple evidence in the methodology of Dempster-Shafer adaptation of parameters
of neural network models as new evidence from multiple sources and adjusting the
results of the calculations simultaneously for all certificates.

. Joint adaptation of the parameters of both models in the learning process, which

increases the reliability of the results of computation due to the diversity of the
expert statistical information in the process of computing the confidence.
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