
Chapter 4
Applications of Deep Eutectic Solvents

Since their advent in 2003, deep eutectic solvents have found applications in
numerous fields where their properties as solvents, permitting the dissolution of a
large variety of solutes, and their being “green”, i.e., ecologically friendly as
described in Chap. 1, gave them advantages over more conventional solvents. It is
possible in the present chapter to present only examples of the numerous appli-
cations that have been proposed over less than a score of years that have passed
since the first publication regarding the deep eutectic solvents. Deep eutectic sol-
vents (among other neoteric ones) have recently been reviewed for their use as
green and sustainable solvents in chemical processes [1].

An application that cannot be classified under the headings of the following
sections nor under those in Chap. 5 is the preparation of solid composite elec-
trolytes for lithium/lithium-ion batteries. The deep eutectic solvent comprises 1:4
lithium bis(trifluorometanesulfonyl)imide as the hydrogen bond acceptor and N-
methylacetamide as the hydrogen bond donor. This liquid was mixed with 1:8.7
tetraethoxysilane and formic acid in a sol–gel process, to form the so-called
eutectogel as the battery electrolyte that is thermally stable to 130 °C and elec-
trochemically stable up to 4.8 V [2].

4.1 Applications as Reaction Media

The use of deep eutectic solvents as reaction media is predicated on their being able
to dissolve the reactants and any catalyst that is to be used, on their not being
consumed in the reaction, on the ability to recover the product(s) of the reaction,
and on the ability to recycle the solvent and catalyst, if used. With these conditions
in mind, deep eutectic solvents have been chosen due to their being inexpensive,
readily produced, and readily (bio)degradable, i.e., being “green”. When
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commercially available DESs have been used as reaction media, they are noted in
the following by their commercial names, as referred to in Chap. 2: Reline,
Ethaline, Glyceline, and Maline.

Several reports for the use of deep eutectic solvents in the synthesis of inorganic
materials have been published, many of them under the heading of “ionothermal
synthesis”. Metal oxides are soluble in DES based on choline chloride: Reline,
Ethaline, and Maline [3]. The latter shows the largest solubility of metal oxides,
being >0.5 mass% at 50 °C for V2O5, CrO3, MnO, Mn2O3, FeO, and Co3O4, and
>1.4 mass% for Cu2O, CuO, and ZnO. Appreciable but lower solubilities are
manifested in Maline by CoO, Fe3O4, V2O3, Fe2O3, and NiO. In Reline appreciable
solubilities have V2O3, CrO3, and ZnO, whereas in Ethaline the solubilities of metal
oxides are generally small, except for Cu2O and ZnO. The solutions have the metal
ions complexed with chloride anions and may be used for the preparation of other
complexes and compounds based on the metal ions. In a previous paper [4], sol-
ubilities at 50 °C of CuO, Fe3O4, and ZnO in Maline, and in choline chloride 1:1
with oxalic acid and 1:2 with phenylpropanoic acid were reported. When
CuCl2�2H2O is dissolved in a series of DES (at 0.02 mol dm−3), it forms trans-
parent colored solutions ranging from yellow (in Ethaline) through yellowish-green
(in Reline), blue (in Ethaline with added NH3) to purplish blue (in Ethaline with
added ethylenediamine) [5]. Lead oxide is added to the 3d elements dealt with
above, and the solubilities of ZnO, Cu2O, and PbO2 in Reline at 60 °C, which are
considerably larger than those of other metal oxides present in electric arc furnace
dust, are described [6, 7] and this DES may be used for their processing.

Ionothermal synthesis of various inorganic materials in deep eutectic solvents
that are liquid at room temperature has often been reported. A feature of the
ionothermal synthesis is the structure directing ability of the eutectic solvent
mixture, besides acting as the solvent. A list of such applications is presented in
Table 4.1.

Eutectic mixtures based on choline chloride with various urea derivatives
(1,3-dimethylurea, 2-imidazolone (1,2-ethyleneurea), and tetrahydro-2-
pyrimidinone (1,3-propyleneurea)) have been employed for the production of alu-
minum phosphates [8], the urea derivative decomposed during the reaction and
provided the template for the desired structure of the product. A layered gallium
phosphate was prepared in an eutectic mixture consisting of choline chloride and
imidazolidone [9] or tetrahydro-2-pyrimidinone [10] as a solvent and as a structure
directing agent. Cobalt aluminophosphates were prepared by ionothermal synthesis
in eutectic mixtures of choline chloride with succinic and glutaric acids (at 1:1
ratios) and with citric acid (at a 1:2 ratio) [11].

Novel vanadium fluorides and oxyfluorides were synthesized in a deep eutectic
solvent based on choline chloride and 1,3-dimethylurea or 2-imidazolone
(1,2-ethyleneurea) in the presence of hydrogen fluoride [12]. However, these
template producing solvents are not proper deep eutectic solvents as defined in this
book, since they are not liquid at room temperature and because a component of the
solvent, the urea derivative, is consumed in the structure directing reaction. Only
the eutectic formed from tetramethylammonium bromide and 1,3-dimethylurea,
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among those tested in the study [8], has a melting point <25 °C and is a proper deep
eutectic solvent.

There is an extensive list of reports dealing with the production of organic
compounds in deep eutectic solvents, a subject that has also been reviewed in
several publications [13–23]. These all stress the “green” aspect of the deep eutectic
solvents: environmental friendliness, sustainability, biodegradability, as well as
their direct utility in metal-catalyzed or non-catalyzed organic reactions.
Biocatalysis by means of enzymes was another feature that was pointed out in these
reviews [14, 16] and elsewhere [24–26].

The reactions that were reported as using deep eutectic solvents were Lewis
acid-catalyzed dehydration of carbohydrates, hydrogenation of olefins, isomeriza-
tion, cycloaddition to terminal azides and alkynes, and cross-coupling [16] as well
as replacement, condensation and oxidation, and reduction reactions [18]. The
synthesis of heterocyclic compounds as well as esterification and halogenation
reactions in deep eutectic solvents featured in [23]. The hydrogen bond accepting
(HBA) components of the deep eutectic solvents dealt with in these reviews

Table 4.1 Ionothermal synthesis of inorganic materials in deep eutectic solvents

Deep eutectic solvent Product Ref.

Reline MPO4 (M = Mn, Fe, Co) [295]

Nanostructured nickel compounds [296]

Aluminum phosphate [218]

Cu(I) in chloride media [297]

Surface-modified silica particles [298]

Fe2O3 (haematite) nanospindles [216]

Fe3O4 magnetic nanoparticles [299]

Mg–A; layered double oxides [300]

CoFe2O4@B2O3–SiO2 [28]

Ethaline Nickel phosphide nanoparticles [301]

Nickel phosphide coatings [302]

Nickel oxide nanostructured films [218]

Maline Iron(III) hexacyanoferrate nanospheres [251]

Choline chloride/oxalic acid Oxalate-bridged lanthanide(III) chains [303]

Oxalate-bridged gadolinium polymers [304]

Choline chloride/diethylene glycol Zinc oxide nanoparticles [224]

Choline chloride/pyrazole Tin(II) phosphite alone and Mn-doped [305]

Choline chloride/imidazolidone Gallium phosphate, layered [9]

Ethylammonium chloride/oxalic acid Zirconium phosphate open framework [306]

Me4NCl/urea Zirconium fluorophosphates [307]

Me4NCl/1,6-hexanediol Sodalite, zeolite ZSM-39 [308]

Et4NCl/pentaerythritol Silicalite-1 [308]

Pr4NBr/pentaerythritol Silicalite-1, zeolite ZSM-5 [308]

Pr4NBr/oxalic acid Layered a-Zr(HPO4)2�H2O [306, 309]
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included choline chloride, ethylammonium chloride, and betaine (trimethylglycine)
hydrochloride and the commonly used hydrogen bond donating (HBD) components
included urea, ethylene glycol, glycerol, oxalic acid, malonic acid, and lactic acid
[17], but many other HBA and HBD agents have also been used in deep eutectic
solvents for organic reactions.

Reline is featured in a majority of the detailed reports on the use of deep eutectic
solvent that are summarized in Table 4.2, which are but a sampling of the existing
relevant publications. Some special features in the use of deep eutectic solvents as
reaction media for organic synthesis is the use of ultrasound [27, 28], highly acidic

Table 4.2 Examples of organic reactions in deep eutectic solvents

Deep eutectic solvent Reaction/product Ref.

Reline Bromination of a substituted
quinone

[310]

N-arylphthalimide derivatives [311]

Amino acid dithiocarbamates [312]

Peptide synthesis,
chymotrypsin-catalyzed

[39]

Oxazole synthesis,
ultrasound-assisted

[27]

Tricyanovinylated aromatics [40]

Redox isomerization of allyl
alcohols to carbonyls

[31]

Imine and hydrobenzamide
synthesis

[313]

Butyl acetate, lipase-catalyzed [41]

Disubstituted isoxazoles and
isoxazolines

[314]

Substituted pyridines [315]

Stereoselective reactions [35]

Aminoimidazoles [316]

Stereoselective organocatalyzed
reactions

[36]

Enantioselective aldol reaction [37]

Regio- and stereoselective
synthesis

[38]

Peroxidation reactions [42]

Benzofused seven-membered
heterocycles

[317]

Dihydroquinazolinones, catalytic
synthesis

[28]

Crude heavy oil hydrogenation
with MoO3

[56]

(continued)
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media [29, 30], metal catalysis [16, 17, 19, 31–34], stereo- or enantioselectivity
[35–38], and biocatalysis [20, 24, 39–43].

Catalysis by the deep eutectic solvents themselves or as enzyme-friendly media
has been stressed in some further publications, where, for instance, Candida

Table 4.2 (continued)

Deep eutectic solvent Reaction/product Ref.

Ethaline Butyl acetate, lipase-catalyzed [41]

Peroxidation reactions [42]

Glyceline Butyl valerate, lipase-catalyzed [13]

N-arylphthalimide derivatives [311]

Biocatalyzed reactions,
transesterification

[14]

Peptide synthesis,
chymotrypsin-catalyzed

[39]

Redox isomerization of allyl
alcohols to carbonyls

[40]

Butyl acetate, lipase-catalyzed [41]

Stereoselective reactions [35]

Aminoimidazoles [316]

Stereoselective organocatalyzed
reactions

[36]

Enantioselective aldol reaction [37]

Peroxidation reactions [42]

Cycloisomerization of a terminal
alkyne

[31]

Maline N-arylphthalimide derivatives [311]

Butyl valerate, lipase-catalyzed [13]

Choline chloride 1:1 fructose Stereoselective reactions [35]

Stereoselective organocatalyzed
reactions

[36]

Choline chloride 1:2 lactic acid Redox isomerization of allyl
alcohols to carbonyls

[31]

Choline chloride + levulinic, + oxalic, or + p-
toluenesulfonic acids

Cellulose nanocrystal production [30]

Choline chloride + xylitol or + isosorbide Peptide synthesis,
chymotrypsin-catalyzed

[39]

Ethylammonium chloride + acetamide Butyl valerate, lipase-catalyzed [13]

+ urea, + ethylene glycol, + glycerol Peroxidation reactions,
biocatalyzed

[42]

Betaine hydrochloride + glycerol Biocatalyzed reactions,
transesterification

[14]

Betaine monohydrate + glycerol Interaction with palmitic acid [15]

Benzyltrimethylammonium
methylsulfonate + p-toluene sulfonic acid

Esterification of carboxylic acids
with alcohols

[30]
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antarctica lipase A (CALA) and Escherichia coli TG1/pPBG11 are active in deep
eutectic solvents [25, 44]. The activity, stability, and structure of the enzyme lactase
from Bacillus HR03 in betaine-based natural deep eutectic solvents were studied in
[26].

The eutectic solvent prepared from 1:2 choline chloride with zinc chloride is the
solvent as well as the catalyst for transesterification reactions for biodiesel pro-
duction [45]. It was also effective for the cycloaddition reaction of organic nitriles
with sodium azide [46] and for acylation of secondary alcohols, phenols, and
naphthols [47]. Deep eutectic solvents consisting of choline chloride with urea,
glycerol, or p-toluene sulfonic acid act as both solvents and catalysts [48]. Deep
eutectic solvents consisting of benzyltrimethylammonium chloride with p-toluene
sulfonic acid, citric acid, or oxalic acid act as both solvent and catalyst in the
esterification of acetic acid with butanol [49] or with 2-ethylhexanol [50]. Selective
alkylation of imines and quinolines with organolithium reagents could be carried
out fast at room temperature and in the presence of air in Glyceline solvent [51].

Deep eutectic solvents are also used for the preparation of heterogeneous cata-
lysts used in catalytic reactions. Metallic gold with a large surface area is featured in
several publications. Gold nanowire networks were prepared in Reline and in
Ethaline, and were used in the catalytic reduction of 4-nitroaniline [52].
Monodisperse gold microparticles were prepared in Maline and used in the
reduction of 4-nitrophenol [53]. Gold nanoparticles on a titania support were pre-
pared in Reline and used in the selective hydrogenation of butadiene as catalysts
[54]. Gold nanofoams were prepared in Ethaline and used in the reduction of
aromatic nitro-compounds [55]. Molybdenum oxide catalyst for the upgrading of
heavy crude oil was dissolved in Reline [56]. Reline was used for the preparation of
nickel and nickel nitride nanoparticles used in catalytic reactions [57]. A sulfonic
acid functionalized nanocatalyst based on a magnetic Fe3O4 on silica and titania
surfaces was prepared in Reline [58]. A palladium catalyst with a pyridinophos-
phine ligand, usable in cross-coupling reactions, was successfully prepared in
Reline [59]. A cross-dehydrogenative coupling reaction using copper oxide
impregnated on magnetite as catalyst was carried out in Ethaline [60].

In those cases in which either the hydrogen bond accepting (HBA) or the
hydrogen bond donating (HBD) component of the deep eutectic solvent is a
monomer capable of polymerization, functional polymeric materials can result from
free-radical polymerization, in this kind of solvent as well as of the solvent itself.
An example of the monomeric HBA is choline methacrylate bromide at 2:1 with
malonic acid and an example of the monomeric HBD is acrylamide at 1:2 with
choline chloride forming the solvent [61]. Choline chloride was polymerized with
methacrylic acid (1:2) while incorporating magnetite in order to produce a magnetic
molecularly imprinted polymer for the selective recognition and separation of
bovine hemoglobin [62]. Deep eutectic solvents were also used as reaction media
for the production of molecularly imprinted polymers of which the solvent was not
a monomer [63].

116 4 Applications of Deep Eutectic Solvents



4.2 Biomass and Biodiesel Processes

Biomass from vegetation consists mainly of cellulose, with hemicellulose and
lignin being minor components. The processes that are involved aim at decom-
position of the biomass to sugars on the one hand and at esterification of the
polysaccharides to useful products, such as cellulose acetate films or to fuels. For
this purpose, the cellulose, hemicellulose, and lignin have to be solubilized in
suitable solvents, and deep eutectic solvents have been suggested as neoteric
“green” solvents for this purpose. The use of deep eutectic solvents for the frac-
tionation of lignocellulosic biomass was reviewed in [61, 64] and along with ionic
liquids in [65].

Molten salt hydrates have since many years been studied for their dissolving
abilities of cellulose. Although these melts by themselves are not the eutectics dealt
with in Chaps. 2 and 3, they readily are turned to the eutectics on dilution with the
appropriate amount of water. This may have as a consequence the gelation of the
dissolved cellulose, or its remaining in solution, depending on the salt, the tem-
perature, and the concentration. The presence of small strongly hydrated cations
(Li+, Ca2+, Zn2+) and highly polarizable anions (I−, SCN−, ClO4

−) is conducive to
the dissolution of cellulose from biomass.

Zinc chloride hydrates featured in several of the investigations of cellulose
dissolution. The tetrahydrate, ZnCl2�4H2O, is liquid at room temperature and is
highly acidic (more than neat phosphoric acid) [66]. It forms a eutectic with water at
a mole ratio of 2.17 water per unit ZnCl2�4H2O with a melting point of −62 °C
[67], but its use for the preparation of cellulose aerogels did not specify the com-
position of the salt hydrate solvent nor the temperature at which the dissolution of
the cellulose was effected [68, 69]. The tetrahydrate was said to be able to swell
cellulose but without forming a clear solution [70]. Other reports on the use of
aqueous zinc chloride for the dissolution of cellulose did not specify a definite
hydrate, but just salt hydrate melts. Dissolution of cellulose in aqueous 70 mass%
zinc chloride has been described [71]. Conversion of cellulose to isosorbide men-
tioned molten hydrated zinc chloride (at mole fractions of ZnCl2 > 0.66) as a
solvent that solubilized cellulose due to interactions between the ionic species and
hydroxyls, breaking the hydrogen-bonded network of the cellulose [72]. The
presence of vicinal hydroxyl groups on the glucopyranoside rings of the cellulose
was essential for the formation of the zinc chloride complex [70, 73]. The solubility
of cellobiose increased with the aqueous zinc chloride concentration, this salt being
more efficient than LiCl [74]. Cellulose dissolved to a clear solution in 68 mass%
aqueous zinc chloride, from which solution cellulose-based films were readily
prepared [75]. Aqueous zinc chloride, at concentrations above 29.6 mass%,
effectively dissolves starch, another manifestation of a polysaccharide biomass [76].

Aqueous calcium thiocyanate is another medium commonly used for the dis-
solution of cellulose, although no information could be found on eventual eutectic
formation from the salt hydrates with water. A solution boiling between 135 and
150 °C dissolves bleached cotton or wood pulp when heated to 80–100 °C, the
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fiber gradually passing into a colloidal solution, but solutions boiling above or
below these limits are not solvents for cellulose [77]. A 59 mass% solution dis-
solved cellulose at 120 °C, the solution turning to a porous gel on cooling [78].
A solution of calcium thiocyanate in water at 59 mass%, a composition corre-
sponding to the hexahydrate, produced aerogels on the dissolution of the cellulose
[69]. A lower concentration, >48.5 mass%, corresponding to the tetra- (or lower)
hydrate was able to dissolve cellulose [79] and changes in the structure of
wood pulp take place at 55 mass% concentration of this salt [80], whereas NaSCN
at 60 mass% was rather ineffective for the dissolution [81].

Aqueous lithium salts are other media used for the dissolution and processing of
cellulose. Molten lithium perchlorate trihydrate and iodide dihydrate, which do
form deep eutectic solvents (see Chap. 2), yield transparent but viscous solutions of
cellulose [82, 83]. In addition to these lithium salts, also the molten thiocyanate
dihydrate dissolves cellulose [84]. Molten lithium acetate, chloride, and nitrate are
not effective for the dissolution, although they do cause swelling of the cellulose
[72, 84, 85]. On the contrary, molten lithium bromide hydrate, or the aqueous
solution at 54–60 mass%, is quite effective for this purpose [86, 87].

Dissolution of cellulose in hydroxide media is possible but less effective than the
aqueous salt media mentioned above. Dissolution in 8.5 mass% aqueous sodium
hydroxide required hydrothermal and ethanol–acid pretreatments [88] and when
applied to rice husks aqueous alkalis are able to dissolve the lignin (and the silica)
but not the cellulose, whereas the latter can be dissolved in aqueous tetrapropyl- and
tetrabutylammonium hydroxide [89].

No dissolution but in some cases fine dispersion and swelling was observed in
several molten salt hydrates, including LiCH3CO2�2H2O, LiNO3�3H2O, Na2S�H2O,
NaCH3CO2�3H2O, MgCl2�6H2O, CaCl2�6H2O, Al(NO3)3�18H2O, and Zn
(NO3)2�6H2O. The dissolution of cellulose in molten salt hydrates, summarized in
Table 4.3, was reviewed in [90, 91], where the solvents were also used as reaction
media for carboxymethylation and for acetylation of the dissolved cellulose.

Conventional deep eutectic solvents have also been tested as pretreatment agents
of cellulose for various processes. Glyceline pretreatment was more effective than
the use of Reline or the choline acetate/glycerol eutectic for subsequent enzymatic
hydrolysis [91]. Reline was used, however, for studying the dissolution of cellulose
fibers or their chemical derivatization [92]. Hydrothermal pretreatment of date palm
residues served for the reduction of the recalcitrance of this biomass for dissolution
in Glyceline and subsequent enzymatic digestion [93]. Microwave assistance was
useful for the fractionation of lignocellulose in choline chloride/lactic acid deep
eutectic solvent [94]. Lignin could be solubilized in a deep eutectic solvent con-
sisting of betaine/lactic acid and be subsequently transformed into uniform
nanoparticles [95]. Lignocellulosic biomass processing was tested with some deep
eutectic solvents, such as those using betaine or choline chloride as the hydrogen
bond accepting components and lactic, malic, oxalic, and other acids as the
hydrogen bond donating components [96–98]. Of these, only the 1:2 betaine/lactic
acid and 1:10 choline chloride/lactic acid were markedly effective, and only lignin
but not starch nor cellulose were dissolved. In a two-stage process, using choline
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chloride/oxalic acid in the first stage and Reline in the second, rice straw was
effectively pretreated for enzymatic hydrolysis [99].

Biodiesel, referring to diesel fuel based on vegetable oil or animal fat, consists of
methyl, ethyl, or propyl esters of long-chain alkyl carboxylic acids. It is typically
made by chemically reacting lipids, such as vegetable oil, soybean oil, or animal fat
(tallow), in a suitable solvent with an alcohol. A by-product of such reactions is
glycerol that should be separated from the fuel, and deep eutectic solvents have
been proposed for this task. The 1:1 mixtures of glycerol with choline chloride (i.e.,
not Glyceline, the 1:2 mixture), chloroethyltrimethylammonium chloride, and
ethylammonium chloride were effective for the removal of the glycerol on biodiesel
production from soybean and rapeseed oils [100]. Glyceline was tested for this
purpose for biodiesel produced from palm oil [101]. More effective than Glyceline
for this purpose were Ethaline and the choline chloride/trifluoroacetamide deep
eutectic solvents [102] or those based on methyltriphenylphosphonium bromide
with ethylene glycol or triethylene glycol [103]. Artificial neuron networks were
employed in order to predict the efficiency of the removal of glycerol from the
produced biodiesel and showed that phosphonium-based solvents were superior in
this respect to ammonium-based ones [104]. Indeed, allyltriphenylphosphonium
bromide/p-toluenesulfonic acid was the preferred medium for the esterification of
oleic acid with glycerol to produce di- and triclycerides [105].

Table 4.3 Processing of biomass in aqueous/molten salt hydrates

Salt Process Ref.

Zinc chloride Cellulose aerogel preparation [68, 69]

Swelling of cellulose [70]

Dissolution of cellulose [71]

Conversion of cellulose to isosorbide [72]

Dissolution of cellobiose [74]

Dissolution and film production from cellulose [75]

Dissolution of starch from biomass [76]

Calcium thiocyanate Dissolution of cotton and wood pulp [77]

Dissolution of cellulose, porous gel formed on cooling [78]

Cellulose aerogel preparation [69]

Dissolution of cellulose [79]

Structure change of wood pulp [80]

Lithium bromide Dissolution of cellulose [86, 87]

Lithium iodide Dissolution of cellulose [82, 83]

Lithium perchlorate Dissolution of cellulose [82, 83]

Lithium thiocyanate Dissolution of cellulose [84]

Sodium hydroxide Dissolution of pretreated cellulose [88]

Dissolution of lignin [89]

Pr4NOH, Bu4NOH Dissolution of cellulose [89]
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Another aspect of biodiesel production is the catalyst used for the esterification
reaction. The same phosphonium solvent, namely, allyltriphenylphosphonium
bromide/p-toluenesulfonic acid served well as a catalyst for the production of the
methyl ester from crude palm oil [106]. Low-grade crude palm oil with a high fatty
acid content could be effectively processed in diethylethanolammonium chloride/p-
toluenesulfonic acid deep eutectic that acted both as solvent and as catalyst for the
transesterification [107]. Whereas the glycerol-based deep eutectic solvents,
Glyceline and methyltriphenylphosphonium bromide/glycerol, were not very
effective for the elimination of glycerol from the biodiesel [101–103], they proved
effective for the removal of the residual potassium hydroxide catalyst employed for
the transesterification reaction [108].

Most of these reports dealt with biodiesel production from crude palm oil, but
there are, of course, many other vegetable oil and animal fat sources for biodiesel
fuel production. It ought to be mentioned that the waste glycerol from the biodiesel
production is valuable as a component of deep eutectic solvents [109]. Rapeseed oil
was treated in Glyceline as the solvent with a calcium oxide [110] or with sodium
hydroxide catalyst [111] for the production of biodiesel. The oil from the Indian
beech tree Pongamia pinnata was trans-esterified by methanol in the presence of
sodium hydroxide catalyst in the 1:2 choline chloride/oxalic acid deep eutectic
solvent [112]. Soybean oil was used for biodiesel preparation by transesterification
with propanol or butanol, rather than the commonly used methanol, in choline
chloride/glycerol and /ethylene glycol solvents at various compositions and with
sodium alkoxide catalysis [113]. The 1:2 choline chloride/zinc chloride mixture is
liquid at 25 °C and is an effective solvent for the preparation of biodiesel from
soybean oil [114]. The high Lewis acidity of the mixture is conducive for the
transesterification reaction. The influence of the type and purification of animal fat
on the quality of the biodiesel produced from it in Ethaline was studied in [115].

Enzymatic catalysis was also applied to biodiesel production in deep eutectic
solvents. Millettia pinnata seed oil was treated in a choline acetate/glycerol deep
eutectic solvent with a suitable enzyme as the catalyst to produce biodiesel [116]
the acetate eutectic being more effective than the commonly used chloride one. This
was not the case for the enzymatic preparation of biodiesel from soybean oils,
where the chloride eutectic was more efficient than the acetate one [117]. Both
rapeseed oil and used acidic cooking oil were the sources for the enzymatic syn-
thesis of biodiesel in Reline and Glyceline as solvents [118]. Yellow horn seed oil
was the source for enzyme-catalyzed preparation of biodiesel in deep eutectic
solvents, assisted by microwave irradiation, Glyceline proving to be the most
efficient among the choline chloride-based solvents tested [119].

A microalgal biomass could be pretreated with aqueous choline chloride/oxalic
acid (40 vol% water) or aqueous Ethaline (24 vol% water) to recover the lipid
content for subsequent conversion to biodiesel [120]. The role of the water was to
reduce the viscosity of the deep eutectic solvent. The same biomass was treated in a
1:3 choline chloride/acetic acid eutectic solvent to extract the lipid and convert it to
diesel oil in a one-step process [121], this composition being more effective than
those with formic, oxalic, and malonic acids.
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The use of deep eutectic solvents for biodiesel production was reviewed in [122]
and more recently in [123] and the results are summarized in Table 4.4.

4.3 Metal Electrodeposition and Electropolishing

From their earliest use as solvents, the deep eutectic fluids were found to dissolve
metal oxides (see Sect. 4.1), and then the route to their use as electrolytes for metal
electroplating was opened. Two deep eutectic solvents, now commercially available
but readily prepared from their ingredients: Reline and Ethaline, have by far found
the widest applications, as shown in Tables 4.5 and 4.6.

Electrochemical methods of investigation, cyclic voltammetry, and chronoam-
perometry have been extensively used for studying the electrodeposition of metals
from deep eutectic solvents. The rate of nucleation is one aspect that has been
studied, and its effect on the morphology of the deposited metals has been
determined.

Table 4.4 Biodiesel preparation in deep eutectic solvents

DES HBA DES HBD Ratio Additional feature Ref.

Choline Cl Urea 1:2 Enzymatic catalysis [118]

Ethanediol 1:2 Glycerol removal [99]

Ethanediol 1:2 Addition of water [120]

Ethanediol 1:2 Na alkoxide catalysis [113]

Glycerol 1:1 Glycerol removal [99]

Glycerol 1:2 Glycerol removal [101]

Glycerol 1:2 CaO catalysis [110]

Glycerol 1:2 NaOH catalysis [111]

Glycerol 1:2 Na alkoxide catalysis [113]

Glycerol 1:2 Enzymatic catalysis [117]

Glycerol 1:2 Enzymatic catalysis [118]

Glycerol 1:2 Enzymatic catalysis, microwave asst. [119]

Acetic acid 1:3 [121]

Oxalic acid 1:1 [120]

CF3CONH2 1:2 Glycerol removal [102]

ZnCl2 1:2 Lewis acidity catalysis [114]

Choline acetate Glycerol 1:2 Enzymatic catalysis [116]

EtNH3Cl Glycerol 1:1 [99]

Et2EtOHNHCl pTSAa p-toluene sulfonic acid catalysis [118]

ClEtMe3N Cl Glycerol 1:1 Glycerol removal [99]

MePh3P Br Ethanediol Glycerol removal [103]

TEGb Glycerol removal [103]

AllylPh3P Br pTSAa p-toluene sulfonic acid catalysis [106]
ap-toluene sulfonic acid
btriethylene glycol
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Table 4.5 Metals, metal alloys, and metal composites electrodeposition from Reline

Metal(s) Additional features Ref.

Ag Mechanism of nucleation [318]

Thin film, nanoparticles [129]

Comparison with aqueous process [124]

Underpotential deposition [130]

Au Thin film, nanoparticles [318]

Shape-controlled nanocrystals [131]

Au–Mn Spectroscopic characterization [319]

Co, Co–Sm Magnetic deposits [143]

Co–Pt Magnetic film [144]

Co–Sm Magnetic film, nanowires [132]

Cu Also Al2O3, SiC composites [152]

Cu(I) stabilization in solution [297, 320]

Nanoporous film [133]

Dissolution of CuO [321]

Underpotential deposition [322]

Structural characterization [164]

Cu–Ga Precursor for CuGaS2 [147, 148]

Precursor for Cu(InGa)S2 [149]

Cu–Ga–In Precursor for Cu(InGa)S2 [150, 323]

Cu–In Precursor for CuInSe2 [324]

Cu–Sn–Zn Precursor for CZTS solar cells [151]

Cu–Zn Dissolution of CuO, ZnO [325]

Alloy film [134]

Ga Electrodeposition [147]

In Subsequent phosphoridation to InP [326, 327]

Ni Nanostructures [135]

Electrodeposition [328]

Electrodeposition [173]

Electrodeposition of nanostructures [329]

Pb Dissolution of PbO, submicrometer wires, powder [330, 331]

Dissolution of PbO, PbO2, PbSO4 [155]

Nanoparticle aggregation [332]

Pd Nanoparticles [136]

Nanoparticles, thin film [129]

Shape control of deposited crystals [333]

Pt Nanoflowers for catalysis [137]

Nanocrystals [138]

Sm Electrodeposition [143]

Sn Electrodeposition [163]

Zn Metal nucleation [334]
(continued)
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Table 4.5 (continued)

Metal(s) Additional features Ref.

Brightening by amine additives [175]

Composite with graphene oxide [335]

Deposition from dissolved arc furnace dust [336]

Zn–Co Electrodeposition [337]

Zn–Mn Boric acid additive [338]

Electrodeposition [339]

Electrodeposition [340]

Zn–Ni Electrodeposition [341]

Zn–Sn Effects of additives [156]

Zn–Ti Electrodeposition [342]

Table 4.6 Metals, metal alloys, and metal composites electrodeposition from Ethaline

Metal(s) Additional features Ref.

Ag Application of quartz microbalance [343]

Thin film, nanoparticles [129]

Underpotential deposition [130]

Composites with Al2O3 and SiC [153]

Iodine-assisted extracted from ores [125]

Nanoparticles on a glassy carbon support [187]

Ag–Co Magnetic multilayers [145]

As Electrodeposition [344]

Au Thin film, nanoparticles [297]

Iodine-assisted extracted from ores [125]

Au+ speciation [181]

Bi From chlorometalate salts [345]

Bi–Sn From chlorometalate salts [345]

Effect of boric acid [346]

Cd–Zn Coatings [347]

Co–Cr Structure, corrosion resistance [348]

Co–Fe Magnetic films [146]

Co–Fe–Ni Films [139]

Co–Ni Concentration dependence [349]

Co–Ni–Sn Microstructure, use as cathode [349]

Co–Sm Films [350]

Co–Sn Microstructure, use as cathode [351]

Enhanced corrosion resistance [352]

Cu Composites with Al2O3 and SiC [152]

Dissolution of CuO [321]
(continued)
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Table 4.6 (continued)

Metal(s) Additional features Ref.

Electrodeposition [353]

Galvanic replacement growth kinetics [182]

Superhydrophobic film [354]

Cu–Sn Electrodeposition [355]

Cu–Zn Iodine-assisted recovery from complex mixtures [125]

Fe Films, magnetic properties [140]

Concentration dependence [356]

Ga–As Iodine-assisted recovery from complex mixtures [125]

In Electrodeposition [357]

Ni Nanostructured films [141]

Concentration dependence [349]

Bright deposits, effect of additives [176]

Composite with SiO2 [154]

Comparison with aqueous bath [358]

Ni–P Coatings [302]

Ni–Sn Microstructure, use as cathode [157]

Pb Reduction of PbO to porous lead [359]

Reduction of PbO [360]

Reduction of PbO [361]

Recycling from perovskites [362]

Pd Thin film, nanoparticles [129]

Sn Effect of complexing agents [157]

Thin film, nanoparticles [142]

Application of quartz microbalance [343]

From chlorometalate salts [345]

Electrodeposition [163]

Sn–Sb Alloy powder [363]

Zn Brightening by amine additives [175]

Comparison with aqueous bath [126]

Effect of tartrate ions [158]

Mechanism of deposition [364]

Deposition of alumina support [365]

Effect of electrode potential [366]

Effect of amine additives [159]

Deposition of Ti/TiO2 [367]

Porous TiO2 templates [368]

Zn–Ni Effect of additives [160]

Zn–Sn Speciation of zinc and tin ions [369]

Use for corrosion protection [161]

Effect of additives [156]

Zn–Ni–Sn Electrodeposition [370]
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Comparisons of the performance of deep eutectic solvents as the electrolytes
with that of corresponding aqueous electrolytes have been made [124–127], and the
advantages and drawbacks of each process have been discussed. The potential
windows of deep eutectic solvents are wider (see Sect. 3.6.6) than those of aqueous
electrolytes and the evolution of hydrogen at the cathode is absent in the former
solvents. The effect of ultrasound on the electrodeposition of copper from Glyceline
and from aqueous solutions, increasing the current densities, was studied [127], the
differences being due to the different viscosities. The “green” nature of the deep
eutectic solvents is an advantage [126], and the reduction in the amount of
wastewater is another, but drag-out due to the higher viscosity of the deep eutectic
solvent (in particular of Reline, but also of Ethaline) is a disadvantage. The rate of
nucleation, both for anodic dissolution of silver and for cathodic deposition in
Reline, is smaller than in aqueous solutions [124]. In the case of nickel elec-
trodeposition, the viscosity and conductivity in Ethaline solvent were not the
rate-limiting factors compared with aqueous solutions under the same conditions of
temperature and concentration [125]. However, the speciation of the nickel in the
two kinds of solvents is different, leading to different morphologies of the deposited
metal: that in Ethaline being nanocrystalline, hence bright, compared with the
microcrystalline morphology, hence matt appearance, of the deposit from aqueous
solutions. Nickel was electrodeposited from an Ethaline solution on a stainless steel
mesh with a controllable pore size for efficient oil/water separation [128].

In many cases, special morphologies of the deposited metals and alloys were the
consequence of the choice of the deep eutectic solvents for the electrodeposition.
Thin films consisting of nanoparticles or nanowires, or having nano-porosity have
been the targeted deposits for many investigations [129–142]. Some such deposited
metals are particularly effective as catalysts [131, 137]. Magnetic metal and alloy
deposits have resulted in a number of studies of the use of deep eutectic solvents
[132, 140, 143–146]. Precursors for photovoltaic compounds involving gallium and
indium together with copper have been deposited from deep eutectic solvents [147–
151], and composites involving alumina, silica, and silicon carbide were targeted in
other studies [152–154]. Various additives to the deep eutectic solvent have been
used to affect the deposited metal or alloy, and their effects have been studied [155–
161].

Although Reline and Ethaline have been by far the most widely used deep
eutectic solvents for the electrodeposition of metals and alloys, a few studies
involved other solvents of this kind. Glyceline featured in the electrodeposition of
cobalt [162] and of copper [127]. Choline chloride was also the hydrogen bond
accepting component of the deep eutectic solvent formed with propylene glycol as
the hydrogen bond donating agent for the electrodeposition of tin [163] and with
oxalic and malonic acids for the electrodeposition of copper [164]. The deep
eutectic solvent composed of 1:2 choline chloride/CrCl3�6H2O served well for the
electrodeposition of thick, adherent, and crack-free films of chromium [165, 166].
Choline acetate was preferred over choline chloride as the component of the deep
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eutectic solvent for the electrodeposition of a-brass (copper–zinc alloy) as a bright
coating. The choline acetate contained 20 mass% of water and triethanolamine was
added for obtaining the most suitable solvent [167]. Another chloride-free deep
eutectic solvent that has been suggested is that based on choline dihydrogencitrate
with ethylene glycol, used for the electrodeposition of copper [168].

Electropolishing of metal deposits is a process opposing the electrodeposition, in
that it dissolves anodically oxide layers produced on metal coatings exposed to the
atmosphere. The brightening of electrodeposited coatings can also be effected by
the use of certain additives to the deep eutectic solvents that affect the dissolved
metal species. Ethaline has been used effectively for the electropolishing of stainless
steel [169–172] and the surface was characterized. Bright deposits of nickel [173]
and a cobalt–platinum alloy [144] were obtained from Reline and of niobium [174]
from Ethaline by electrochemical polishing. Ethylenediamine and ammonia were
effective brightening agents for the electrodeposited zinc from Reline and from
Ethaline [175]. Four additives: nicotinic acid, methylnicotinate, 5,5-dimethyl
hydantoin, and boric acid were tested for obtaining bright nickel deposits from
Ethaline [176]. The former two direct the crystal growth to the 111 orientation
while the latter two direct it to the 220 orientation. The electrolytic removal of the
iron-rich layer from nickel-based hot isostatic press consolidation was achieved in
Ethaline [177].

A galvanic replacement reaction in Ethaline enabled the fabrication of nickel
nanostructures on a copper-based template by reduction ofNiCl4

2− [178]. Electro-less
galvanic deposition of metallic silver on copper from Ethaline was studied in [179,
180], and the deposits were characterized using acoustic impedance spectroscopy,
scanning electron (SEM), and atomic force (AFM) microscopies. Bright gold on
nickel was produced by electro-less galvanic deposition from a solution of AuCN in
Ethaline [181]. Galvanic replacement of copper was studied in [182].

The subject of electrodeposition of metals and alloys from deep eutectic solvents
was reviewed early in the course of using deep eutectic solvents in [183, 184] and
more recently in [185], where electropolishing was also dealt with. A caveat
regarding the electrochemical decomposition of choline chloride-based deep
eutectic solvents was published in [186]. Over longer periods of electrolysis in
Ethaline several decomposition products were found, such as 2-methyl-1,3-
dioxolane and chlorinated products, such as chloromethane and chloroform.

4.4 Applications in Nanotechnology

In this section are initially discussed non-electrochemical procedures for the
preparation of nanostructured metals and alloys in deep eutectic solvents; the elec-
trochemical procedures having been dealt with in the previous section [129–142,
187]. Subsequently are dealt with nonmetallic nanostructured substances prepared in
deep eutectic solvents, such as metal oxides, other inorganic compounds, carbon
nanotubes and graphene sheets, and nanofibers of organic polymers.
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Silver nanoparticles, of narrow size distribution around 4.5 nm, were prepared
and dispersed in Reline by laser ablation of a metallic silver plate [188]. Reports on
other non-electrochemical nanostructured metals dealt with gold. Shape-controlled
(star-shaped) gold nanoparticles were prepared in Reline by reduction of HAuCl4
with ascorbic acid at room temperature [189]. A low energy sputter deposition of
gold in Reline resulted in spherical gold nanoparticles of 5 nm diameter that tended
to self-assemble at the surface of the liquid and in the bulk as well [190]. The
self-assembly of the gold nanoparticles in Reline was also studied in [191, 192].
Gold microparticles with surface roughness of controlled monodisperse diameters
of 1–5 lm were prepared in the Maline deep eutectic solvent by reduction of
HAuCl4 with ascorbic acid at 50 °C [53]. High-index facetted gold nanocrystals
with enhanced electrocatalytic activities were produced in Reline [193]. Gold
nanowire networks with average widths of 17 and 23 nm were prepared by
reduction of HAuCl4 with NaBH4 in Reline and in Ethaline [52]. Gum Arabic was
used to stabilize gold nanosheets [194] and nanoparticles [195], the deep eutectic
solvent in the latter study consisting of 4:1:1 choline chloride, glycerol, and gallic
acid (3,4,5-trihydroxybenzoic acid) and HAuCl4 was the source of the gold. Gold
nanofoams were produced in Ethaline by reduction of HAuCl4 on a zinc foil [55].
Gold nanoparticles supported on functionalized nanosilica were produced in Reline
for use as an electrochemical enzymatic glucose biosensor [196]. Titania-supported
gold nanoparticles were prepared in 2:3 choline chloride/urea mixtures (not the 1:2
mixture, Reline) [54]. Gold–palladium core–shell nanoparticles were prepared on a
graphite rod in a deep eutectic solvent [197]. Most of the applications of the gold
nanoparticles described in this paragraph were in catalysis, although in one case, the
gum Arabic stabilized nanoparticles, were used as an X-ray contrast agent [195].

Carbon nanotube-supported platinum–cobalt nanocrystallites were prepared in
Ethaline, which showed enhanced methanol electrooxidation performance [198].
High-index facetted platinum concave nanocubes were grown on multi-walled
carbon nanotubes in Reline [199]. Self-supported films consisting of nickel–
molybdenum microspheres were produced electrochemically in Ethaline [200].

The preparation of inorganic oxide nanostructures in deep eutectic solvents has
received an extensive amount of work. Mesoporous silica spheres, useful as
packing materials in size-exclusion chromatography, were prepared in deep eutectic
solvents consisting of Reline (with possible presence of arginine) [201] and in 1:1
ammonium fluoride as the hydrogen bond accepting component and ethylene
glycol, 1,2-butanediol, or glycerol as the hydrogen bond donating one [202].
Self-organized titania “nanobamboos” were prepared in a deep eutectic solvent
consisting of 1:1 choline chloride and succinic acid by anodic dissolution of tita-
nium. The “nanobamboos” are nanotubes decorated with periodic exterior rings
[203]. Titania nanosized powder was produced by anodization of titanium in Reline
or in Ethaline in the presence of tetrabutylammonium bromide and ethanol [204].
The synthesis of nanostructured titania in deep eutectic solvents as well as in room
temperature ionic liquids was recently reviewed in [205]. The synthesis of
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nanoparticles of Mn3O4 was accomplished in an all-in-one system: Ethaline as
solvent, reactant, and template [206]. A deep eutectic solvent resulted from choline
chloride and tin(IV) chloride that was used for the preparation of tin/tin dioxide/
carbon composites as electrodes for supercapacitors [207].

The preparation of magnetic nanoparticles based on iron oxides in deep eutectic
solvents received a great deal of attention. Spherical magnetic Fe3O4 nanoparticles
were prepared in Reline [208] and in Reline, Ethaline or 1:1 choline chloride/oxalic
acid [209] by co-precipitation of hydrated iron(II) and iron(III) chlorides as solutes.
A combined oxidative precipitation and ionothermal method was employed for the
production of magnetic Fe3O4 nanoparticles in Reline or Ethaline [210]. Magnetic
nanoparticles of Fe3O4 were coated by Reline using 3-iodopropyltrimethoxy-silane
as a binder, for use as a catalyst [211]. Magnetic nanoparticles of Fe3O4 were also
prepared in Ethaline [212] and Reline [213]. A core–shell nanoreactor consisting of
Fe3O4@SiO2 in Reline involving HSO3

− sorbed on the silica and NaNO3 was
prepared ultrasonically assisted in [213]. A catalyst consisting of CoFe2O4@B2O3–

SiO2 as a hybrid magnetic composite nanostructure was prepared ultrasonically
assisted in Reline [28]. Porous nanosheets, where much of the iron was replaced by
cobalt to yield Co2.7Fe0.3O4, were prepared in Reline by co-precipitation of
hydrated cobalt(II) and iron(III) chlorides [214]. The iron in ferrite could also be
replaced partly by M = Mg, Co, or Ni to produce MFe2O4 nanoparticles in 1:1
choline chloride/maleic acid deep eutectic solvent [215]. Haematite (Fe2O3)
nanospindles were prepared in a one-step synthesis in Reline [216]. Microwave
assistance was used in the preparation of Fe2O3 nanoparticles in Reline [217].
A prominent use of this magnetic nanostructure is as readily removed heteroge-
neous catalysts [180, 183–185]; other uses include that as readily recoverable
adsorbents of Cu2+ [208] or Cd2+ and Pb2+ [209] or of organic wastes [214], or for
storage of Li as a lithium electrode [216].

Other nanostructured metal oxides prepared in deep eutectic solvents include
NiO as a film electrodeposited from a choline chloride-based electrolyte [218] or as
nanocrystals of NiO with high-energy facets prepared in Reline [219] or meso-
porous flower-like NiO electrodes prepared in Reline [220]. Nanostructures of ZnO,
including twin cones and nanorods, were prepared by dissolution of ZnO in Reline
and precipitation of it by an anti-solvent containing ethanol [221] and a similar
procedure was used for the preparation of mesoporous ZnO nanosheets [222] and of
Cu2+-doped ZnO nanocrystals [223]. Ionothermal precipitation was used to obtain
highly dispersive ZnO nanoparticles in Ethaline [224]. These ZnO-based materials
showed good photocatalytic performance. Nanocrystalline SnO2, of *4 nm grain
size, used as anodes for lithium-ion batteries, was prepared from tin(II) chloride
hydrate dissolved in deep eutectic solvents by precipitation with hydrazine hydrate
[225]. An ionothermal method was used in choline chloride-based deep eutectic
solvents to produce mesoporous SnO2 structures involving two crystalline phases:
orthorhombic and tetragonal [226]. Nanostructured ceria, CeO2, was prepared in
Reline that allowed morphology and porosity control [227].

Other nanostructured inorganic materials prepared in deep eutectic solvents
belong mainly to two groups: binary sulfides and analogous materials and salts of

128 4 Applications of Deep Eutectic Solvents



oxyacids. An exception is CuCl nanoparticles, prepared in Reline at room tem-
perature by reduction of copper(II) chloride with ascorbic acid in the presence of
polyvinylpyrrolidone [228]. Another exception is the ionothermal synthesis of
nanoparticles of nickel phosphide with a core/shell structure in Ethaline [229]. The
core is amorphous and is covered by shells of crystalline Ni3P of various thickness.
Such structures can be used for lithium storage in anodes of lithium batteries.
Nanoparticles of BiOCl sensitized by Bi2S3 were prepared in a deep eutectic solvent
and can be used as photocatalysts [230].

Self-supported porous Ni3S2 films were prepared in Ethaline on nanoporous
copper [231], serving as electrocatalysts for hydrogen evolution reactions. The
double sulfide CuInS2 in the form of chalcopyrite-structured nanorods was prepared
in Reline, assisted by microwave heating [232]. Nanoparticles of the triple sulfide
Cu2ZnSnS4, known as CZTS used in photovoltaic devices, were prepared in Reline
with thiourea as the sulfur source, acting as both solvent and template [233]. Porous
NiCo2S4 was prepared by solvothermal synthesis in a deep eutectic solvent con-
sisting of thiourea and polyethylene glycol (PEG 200) [234]. Mesoporous Ni–Mo
sulfides supported on carbon were prepared in deep eutectic solvents consisting of
choline chloride and glucose [235]. The self-assembly of nanoparticles of PbS to
star-like microscale superstructures was studied in Reline as the deep eutectic
solvent [236]. These films of PbS composed of highly oriented nano/microrods
were prepared in Reline on a glass substrate by ionothermal synthesis [237].
A variety of binary metal sulfides is produced in a two-stage process in choline
chloride/thioacetamide denoted as a deep eutectic solvent precursor (DESP). In the
first stage, a metal salt is dissolved in the solvent at a low temperature and in the
second stage, the metal–DESP complex is transformed to the binary metal sulfide
by heating [238].

Various nano-particulate calcium phosphates, hydroxyapatites, and fluoroap-
atites were prepared in deep eutectic solvents. Monetite (CaHPO4) nanoparticles
were prepared in a one-step low-temperature reaction using an all-in-one (reactant,
solvent, template) deep eutectic solvent consisting of 1:1 choline chloride/calcium
chloride hexahydrate [239]. Amorphous calcium phosphate nanoparticles (with
non-specified chemical formulae), evolving to calcium deficient hydroxyapatites
(CDHA), were prepared in Reline and also in Ethaline and Glyceline [240–242].
The effects of reaction time, temperature, and natures of the precursors and the
solvent were studied in these investigations. Mineral substituted hydroxyapatite was
prepared in a choline chloride/thiourea deep eutectic solvent [243]. On the other
hand, nanocrystalline hydroxyapatite powder was prepared in Reline [244] as was
the analogous fluoroapatite [245]. Bioactive fluoroapatite nanoparticles were pre-
pared in a choline chloride–calcium chloride medium [246]. Emphasis in these
studies was placed also on the recovery of the deep eutectic solvent for reuse in the
synthetic processes.

A few other nanoparticles of salts of oxyacids were prepared in deep eutectic
solvents. These include spindle-like nanoparticles of lithium manganese phosphate,
prepared ionothermally in Ethaline by microwave heating [247, 248]. Ferroelectric
barium titanate nanoparticles were prepared in 1:1 choline chloride/malic acid [249]
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and spindle-like nanotubes of bismuth vanadate were prepared in Reline [250]
ionothermally. Non-oxyacid salt nanoparticles that were prepared in deep eutectic
solvents include nanospheres with controlled sizes of Prussian blue, prepared in 1:1
choline chloride/malic acid by addition of FeCl3�6H2O and K4Fe(CN)6�3H2O to the
deep eutectic solvent [251]. Nanostructured electropolymerized poly(methylene
blue) films were prepared in Ethaline [252].

Carbon nanotubes (CNTs) are another kind of materials prepared in deep
eutectic solvents, which may be single-walled or multi-walled or composites with
other substances. Polycondensation of resorcinol with formaldehyde in Ethaline,
containing a small amount of water introduced with the formaldehyde, yielded the
desired multi-walled carbon tubes after heat treatment with ready recycling of the
Ethaline solvent [253]. Single-walled and double-walled carbon nanotubes were
prepared by polycondensation of furfuryl alcohol in the highly acidic 1:1 choline
chloride/p-toluenesulfonic acid deep eutectic solvent [254]. A deep eutectic solvent
comprising choline chloride and acrylic acid was used both as a solvent and as the
reactant to form HNO3-functionalized carbon nanotube composites with poly
(acrylic acid) that were macroporous [255]. Multi-walled carbon nanotube com-
posites with nickel were electrodeposited from Reline containing nickel chloride on
a copper substrate [256]. Carbon nanotubes prepared separately were subsequently
functionalized by treatment with KMnO4 or with HNO3 in two phosphonium-based
deep eutectic solvents: 1:1 methyltriphenylphosphonium bromide/glycerol and 1:16
benzyltriphenylphosphonium chloride/glycerol [257]. The resulting material was
used for the absorption of arsenic species from water. A different deep eutectic
solvent, comprised of 1:1 tetrabutylammonium bromide/glycerol was used to
functionalize carbon nanotubes with KMnO4 for producing a material efficiently
removing mercury species from water [258]. Magnetic multi-walled carbon nan-
otubes (MMWCNTs) were dispersed in a deep eutectic solvent comprised of 1:2
choline chloride/resorcinol for microextraction purposes [259]. MMWCNTs were
also covered with Reline to form magnetic bucky gels for similar purposes [260].
Reline was also used for the electrodeposition of nickel on carbon nanotubes [261].
Multi-walled carbon nanotubes were treated in Reline with nitric acid and then with
PdCl2 and SnCl2 solutions in Reline to produce the PdSn alloy supported on the
nanotubes by sonication to be used as catalysts [262]. Allyltriphenylphosphonium
bromide/glycerol was the deep eutectic solvent used to functionalize carbon nan-
otubes for the removal of mercury from water [263]. Ethaline was used for the
synthesis of carbon nanotubes functionalized with redox-active poly(methylene
blue) [264].

Another form of nanostructured carbon is graphene, and this was produced in
deep eutectic solvents too. The interface between graphene and deep eutectic sol-
vents consisting of choline chloride with urea, glycerol, malonic, levulinic, or
phenylacetic acids was elucidated in [265]. Various such solvents (Reline, Ethaline,
Glyceline, 1:2 choline chloride/di- and triethylene glycol, Maline, and methyl-
triphenylphosphonium bromide/glycerol, among several others) were used to
reduce graphene oxide, formed by oxidation with KMnO4, to produce functional-
ized graphene with hydrophilic groups [266]. Magnetic graphene oxide
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nanoparticles were prepared in Ethaline or Glyceline by incorporation of Fe3O4

treated with 3-aminopropyltriethoxysilane in the core/shell structures, which were
used for the extraction of proteins [267]. Carboxamide functionalized graphene
oxide complexed with copper nanoparticles as a catalyst was prepared in Glyceline
[34]. Graphene oxide treated with choline chloride/NaH2PO4 as a deep eutectic
solvent was a high potency flame retardant [268]. Magnetic graphene oxide
nanoparticles coated with a deep eutectic solvent (Glyceline or choline chloride/
phenol or /tetrahydro-tetramethylnaphthol-2) using ultrasound assistance was used
for drug pre-concentration [269]. Fresh seaweed was converted to functionalized
graphene nanosheets (doped with Fe3O4) in a deep eutectic solvent comprising
choline chloride/FeCl3�6H2O [270], which could be used as electrocatalysts.
Graphene sheets derived from seaweeds were treated with deep eutectic solvents,
comprising choline chloride and a metal (iron(III), zinc, or tin(II)) chloride, and
were used for the removal of fluoride from water [271]. Functionalized graphene
oxide nanoparticles dispersed by ultrasonication in 1:3 choline chloride/triethylene
glycol and in 1:4 and 1:5 methyltriphenylphosphonium bromide/ethylene glycol
deep eutectic solvents were proposed as new heat transfer fluids with enhanced
thermal conductivity [272].

Mesoporous silica (SBA-15) was used as a support for deep eutectic solvents to
be used as catalysts. The solvent consisting of N-methylpyrrolidine hydrochloride/
zinc chloride was thus immobilized on mesoporous silica in [273, 274].
Nanoflowers consisting of copper phosphate on which C. antarctica lipase B
enzyme was immobilized were prepared in Reline and in ethylammonium chloride/
ethylene glycol deep eutectic solvents [275].

Nanostructured polymeric materials were prepared advantageously in deep eutectic
solvents both electrochemically and otherwise. Conducting polyaniline films were
prepared electrochemically in 1:2 choline chloride/1,2-propanediol deep eutectic sol-
vent [276]. The films were nano-particulate and could be doped/dedoped reversibly,
exhibiting fast charge transport across the film. Several other choline-based mixtures:
Reline, Ethaline, and Glyceline, could also be used for the electrochemical preparation
of polyaniline [277] the morphology, stability, and electrochromism of the products
having also been studied. These three deep eutectic solvents were used for the elec-
trochemical deposition of the conducting poly(3,4-ethylenedioxythiophene) film on
glassy carbon electrodes [278], that could be used for sensing ascorbic acid, dopamine,
and uric acid. Elastin-like recombinamers were prepared in Reline from several
pentapeptides [279], their conformation in the collapsed state being stable even in the
presence of water. The preparation of porous molecularly imprinted polymers (MIP) in
various deep eutectic solvents for analytical purposes was described in [201].

Natural materials were transformed into nanofibers in deep eutectic solvents, for
example, wood cellulose [280] and paper and board cellulose [281] that were
pretreated in Reline before undergoing nanofibrillation. Cellulose was converted to
nanofibrils by treatment with deep eutectic solvents comprising either ammonium
thiocyanate/urea or guanidinium chloride/urea [282]. Silylated cellulose nanofibrils
that were hydrophobic and super-absorbing aerogels were prepared in Reline [283].
Agar was advantageously made electro-spinnable in Reline [284] compared with
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aqueous media, producing elastic nanofibers. Unbleached mechanical wood pulp
was converted to nanofibers by treatment with a deep eutectic solvent made from
triethylammonium chloride and imidazole [285]. Chitin nanofibers were prepared in
a 1:2 choline chloride/thiourea deep eutectic solvent but not in Reline [286].
Lysozyme from hen eggs was transformed into nanofibers in a deep eutectic solvent
involving choline chloride and acetic acid [287]. Guanine-rich oligonucleotide
quadruplexes have the potential to control the bottom-up synthesis of nanoarchi-
tectures, and two such oligonucleotides were prepared in Reline [288].
Nanocrystalline cellulose could be prepared in deep eutectic solvents comprising
choline chloride and oxalic, p-toluenesulfonic, or levulinic acids, by mechanical
disintegration of the primarily produced nanofibers from wood cellulose [29].
Cellulose nanocrystals were also produced from cotton by treatment with choline
chloride/oxalic acid dihydrate deep eutectic solvent [289]. The cellulose
nanocrystals produced in choline chloride/oxalic acid dihydrate deep eutectic sol-
vent could then be used to stabilize marine diesel oil-in-water emulsions [290].

Microemulsions in the “pre-ouzo” state were obtained in the absence of a sur-
factant and water in Reline and 1:4 choline chloride/ethylene glycol deep eutectic
solvents [291]. These fluctuations in the nonhomogeneous liquid were not due to an
amphiphilic effect. Deep eutectic solvents consisting of alkylammonium chloride or
bromide (alkyl = ethyl, propyl, butyl, or pentyl) and ethylene glycol or glycerol are
nanostructured, as shown by X-ray scattering, and consequently, phospholipids
form bilayer phases or vesicles in them [292]. Bucky gels, consisting of Reline and
magnetic multi-walled carbon nanotubes, were prepared by treating carbon nan-
otubes with nitric acid, then adding FeCl2 and FeCl3 and co-precipitating Fe3O4

with the nanotubes by addition of a base [260]. They could be used as dispersive
solid extractants for the determination of trace organochlorine pesticides.

The field of nanotechnological applications of deep eutectic solvents was reviewed
in [293] and [294]. These solvents can be used to prepare well-defined nanomaterials,
shape-controlled nanoparticles, films, metal-organic frameworks, colloidal assemblies,
hierarchically porous carbons, and DNA/RNA architectures. They act as
supramolecular templates as well as reactants. The moderate to large viscosities of the
deep eutectic solvents are conducive to the ability of nanoparticle dispersions to be
formed, retaining the large surface area-to-volume ratios conducive to catalytic
activity, rather than allowing rapid growth to macrocrystalline moieties. These modes
of operation of deep eutectic solvents make them useful in nanotechnology, additional
to their low costs, ready availability, and “green” nature.
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