
Chapter 2
The Variety of Deep Eutectic Solvents

The following definition is generally used in this book: deep eutectic solvents
(DESs) are binary mixtures of the definite composition of two components, one of
which being ionic, that yield a liquid phase at ambient conditions, � 25 °C. Some
cases that do not conform to this restrictive definition are, however, also included,
since they have properties and uses similar to those that do. The general mode of
preparation of deep eutectic solvents, if their ingredients are solids at ambient
conditions, is to mix the components at the prescribed molar ratio and heat the
mixture to a moderately elevated temperature (generally 60–100 °C) for a few
hours until the entire mass is converted to a homogeneous clear liquid. If one of the
ingredients is itself liquid at ambient conditions the other component is dissolved in
it, if necessary by moderate heating for some time. A variant is to dissolve both
components in water, which is then vacuum evaporated or removed by
freeze-drying, and to dry the resulting deep eutectic solvent in a desiccator [1, 2].

One general mode for the formulation of a deep eutectic solvent is to have one
component of the binary mixture a hydrogen bond acceptor (HBA), e.g., an ionic
component with an anion such as chloride, and the other a hydrogen bond donor
(HBD), such as an amide, an alcohol, or a carboxylic acid. The deep eutectic
solvent keeps the identities of the components which interact via hydrogen bonding,
and no covalent compound between them is formed. The optimal ratio of the
hydrogen bond acceptor and hydrogen bond donor that forms the eutectic depends
on the mutual hydrogen bonding abilities of the components.

The concept of natural deep eutectic solvents (NADES) involves as the
hydrogen bond donor components of the binary mixtures any of the many sub-
stances from natural origins that form deep eutectic solvents with choline chloride
(itself a natural product) or other hydrogen bond acceptor ingredients of natural
origin. The advantage of natural deep eutectic solvents over other deep eutectic
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solvents is that the natural ones are expected to be nontoxic, biodegradable, hence
more environmentally friendly, and to be prepared easily from readily available
low-cost materials.

Figure 2.1 shows the structures of commonly used hydrogen bond acceptor
ingredients of deep eutectic solvents and Fig. 2.2 shows the corresponding struc-
tures of the hydrogen bond donor components [3].

Some publications consider eutectic mixtures that have melting/freezing points
above 25 °C as deep eutectic solvents, but here mainly those that melt/freeze below
this temperature are dealt with. However, some mixtures do not crystallize on
cooling but have a glass transition point rather than having a freezing/melting point.
Such mixtures are termed ‘low transition temperature mixtures’ (LTTMs) and act
like deep eutectic solvents in most respects and are dealt with here. The scope of
deep eutectic solvents is extended by the addition of a third component, another
hydrogen bond donor agent, as, for example, water. However, here mostly binary
mixtures of one hydrogen bond acceptor agent and one hydrogen bond donor agent
are dealt with.

Fig. 2.1 Structures of hydrogen bond accepting components of deep eutectic solvents (from [3],
by permission of the publisher, Elsevier)
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2.1 Deep Eutectic Solvents Based on Choline Chloride
and Analogs

The first deep eutectic solvent (DES) was suggested by Abbott et al. [4]: the
eutectic combination of choline chloride and urea. This deep eutectic solvent is
nowadays known under the trade name “Reline” and is commercially available.
However, it is simply prepared by mixing the solid components at the appropriate
molar ratio, 1 choline chloride: 2 urea, heating while stirring to 80 °C, and the
homogeneous transparent liquid deep eutectic solvent is thereby formed. For the 1:2
eutectic, the melting point is tme/°C = 12 [4] (but see Sect. 3.1 for disagreeing
values), making the liquid mixture an attractive solvent so that Reline is widely
used as a solvent for a host of applications.

The raw materials for this particular deep eutectic solvent, Reline, are widely
available natural products and are biodegradable, hence environmentally friendly,
i.e., ‘green’, making this combination a NADES. Choline chloride (2-hydroxyethyl-
N,N,N-trimethylaminium chloride (HOC2H4N(CH3)3

+Cl−, CAS No. 67-48-1) is
mass produced as a growth-promoting chicken feed additive at a price of
*850 USD/ton. It is a white deliquescent crystalline solid, has a molar mass of
M/g mol−1 = 139.62 and has a melting point of tm/°C = 302 (but it decomposes on
melting). It is very hydrophilic: its octanol/water distribution constant is
logKO

W ¼ �5:16, and it is highly soluble in water: s/g dm−3 > 650 at room tem-
perature. Choline chloride is a skin irritant and hazardous in case of ingestion, but

Fig. 2.2 Structures of commonly used hydrogen bond donor components of deep eutectic
solvents (from [3] with permission of the publisher, Elsevier)
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potential chronic health effects are not known. The material is combustible but not
readily flammable.

Urea (O=C(NH2)2, CAS No. 57-13-6) is mass produced as a nitrogen fertilizer at
a price of *200 USD/ton. It is a white crystalline solid, has a molar mass of
M/g mol−1 = 60.06, and has a melting point of tm/°C = 132.7. It is moderately
hydrophilic: its octanol/water distribution constant is logKO

W ¼ �1:52, and it is
highly soluble in water: s/g dm−3 = 1080 at 20 °C. Urea is a skin irritant and
hazardous in case of ingestion and inhalation, but potential chronic health effects
are not known. Urea is nonflammable, but may be combustible at high
temperatures.

The eutectic distance for the 1:2 choline chloride: urea eutectic combination is
Dtm/°C = 178, in view of the melting points of the ingredients: 302 and 133 °C. The
hydrogen bond acceptor chloride anion of the choline salt may be exchanged for
other anions that also have good hydrogen bond accepting abilities, such as nitrate
(tme/°C = 4) or fluoride (tme/°C = 1) for the resulting deep eutectic solvent [4].
However, for a choline salt with an anion less prone to accept hydrogen bonds the
melting point of the 1:1 combination is considerably above ambient: tme/°C = 67 for
the tetrafluoroborate salt.

Choline chloride may be substituted by other similar quaternary ammonium salts
that form deep eutectic solvents with urea [3, 4]. A change of one of the methyl
groups of the choline cation to an ethyl or benzyl group lowers the melting point of
the quaternary ammonium salt/urea deep eutectic solvent. The chloride of
2-hydroxyethyl-ethyl-N,N–dimethylaminium has tme/°C = –38 and that of
2-hydroxyethyl-benzyl-N,N–dimethylaminium has tme/°C = −33. Other substitu-
tions of choline, such as 2-acetylethyl-N,N,N–trimethylaminium, tme/°C = –14,
N,N-bis(2-hydroxyethyl)-benzyl-methylaminium, tme/°C = −6, and 2-chloroethyl-
N,N,N–trimethylaminium, tme/°C = 15, are further examples [4].

Table 2.1 summarizes the compositions regarding deep eutectic solvents based on
choline and its analogs, their molar masses M and their melting/freezing points tme.
Some amides besides urea also produce deep eutectic solvent with choline chloride,
the most effective being trifluoroacetamide (CF3C(O)NH2, CAS No. 354-38-1) at a
molar ratio of choline chloride: amide of 2:5, with tme/°C = −43.6. The eutectic
distance, in this case, is Dtm = 184 °C [5, 6], slightly larger than for urea as a com-
ponent. Some other amides than urea and trifluoroacetamide have also been tried with
choline chloride, but do not produce deep eutectic solvents: they have melting points
above ambient. Methyl-substituted ureas are examples: 1-methyl-, 1,2-dimethyl-,
1,1-dimethyl-urea eutectics with choline chloride have tme/°C = 29, 70, 149,
respectively. The eutectic of choline chloride with acetamide has tme/°C = 80, with
benzamide has tme/°C = 129, and with thiourea has tme/°C = 175 [4].

Choline chloride is an ingredient of a wide range of other deep eutectic solvents,
for instance, those formed with a carboxylic acid as the hydrogen bond donating
ingredient. When a monobasic acid is employed, the ratio 1:2 choline chloride: acid
produces the low-melting eutectic: tme/°C = 20 for phenylpropanoic acid
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Table 2.1 Deep eutectic solvents based on choline chloride and its analogs formed at the
indicated ratios of HBA:HBD, their molar masses M, and the melting point of the eutectics, tme

HBA HBD M/kg mol–1 tme/°C Ref.

Choline chloride urea (1:2), Reline 0.25974 12 [4]

Thiourea (1:3) 0.36790 <10 [5]

trifluoroacetamide (1:2) 0.36570 –44 [6, 7]

propanoic acid (1:2) 0.28778 <–80b [8]

chloroacetic acid (1:2) 0.32862 <–80c [8]

trichloroacetic acid (1:2) 0.46640 <–80d [8]

phenylacetic acid (1:2) 0.42595 25 9

phenylpropanoic acid (1:2) 0.43998 20 [9]

malonic acid (1:1), Maline 0.24368 10 [9]

glutaric acid (1:1) 0.27174 –16 (tge) [3]

glycolic acid (1:1) 0.21507 –16 (tge) [9]

lactic acid (1:2) 0.31978 –78 [9]

levulinic acid (1:3) 0.48795 –11 [10]

oxalic acid dehydrate (1:1) 0.26569 –40 [3]

malic acid (1:1) 0.27371 –56 [9]

Trifluoromethanesulfonic acid < 25 [11]

p-toluenesulfonic acid (1:2) 0.52007 <–80e [8]

ethylene glycol (1:2), Ethaline 0.26376 –66 [12]

diethylene glycol (1:3) 0.45738 < –20 [13]

triethylene glycol (1:3) 0.58953 -19.8 [14]

glycerol (1:2), Glyceline 0.32380 –40 [15]

1,2-propanediol (1:3) 0.36732 < –20 [16]

1,4-butanediol (1:2) 0.31986 –32 [2, 9, 10]

2,3-butanediol (1:3) 0.40938 < –20 [16]

PEG 200 (1:2) 0.53902 < 25 [17]

furfuryl alcohol (1:3) 0.43392 –36 [10]

xylitol (1:1) 0.29177 LRTa [19, 20]

d-sorbitol (1:1) 0.32179 9 [7]

d-isosorbide (1:2) 0.43190 LRTa [19, 20]

xylose (1:1) 0.28915 LRTa [21]

fructose (2:1) 0.43237 10 [3]

glucose (2:1) 0.43237 15 [3]

Sucrose (1:1) 0.48132 LRTa [21]

phenol (1:3) 0.42195 –20 [3, 22]

o-cresol (1:3) 0.43597 –24 [3, 22]

p-cresol (1:2) 0.33699 <20 [23]

2,3-xylenol (1:3) 0.50613 18 [3, 22]

4-chlorophenol (4:5) 0.29972 < 20 [3, 22]

2-methoxyphenolf (1:3) 0.51144 <20 [24]
(continued)
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(C6H5C2H4CO2H, CAS No. 501-52-0), but when a dibasic acid is used, the ratio is
1:1, e.g., with malonic acid (CH2(CO2H)2, CAS No. 141-82-2) tme/°C = 10 [7].
The deep eutectic solvent with malonic acid is commercially called “Maline”.
However, some other carboxylic acids produce with choline chloride eutectics with
melting points above ambient: so do phenylacetic acid, tme/°C = 25, oxalic acid,
tme/°C = 34, and succinic acid, tme/°C = 71 among others [7]. With glutaric acid
(1,3-propanedicarboxylic acid, CAS No. 110-94-1) a low transition temperature
mixtures (LTTMs), tge/°C = –16, is produced, where tge is the glass transition
temperature, i.e., the deep eutectic solvent is a liquid above this temperature but
does not crystallize. Oxalic acid dihydrate (CAS No. 6153-56-6) forms with choline
chloride at a 1:1 ratio a low transition temperature mixtures, tge/°C = −40.2 [3],
contrary to the anhydrous oxalic acid.

Table 2.1 (continued)

HBA HBD M/kg mol–1 tme/°C Ref.

ethanolamine (1:2) 0.27168 < –20 [25]

triethanolamine (1:2) 0.43800 LRT [31]

Choline acetate urea (1:2) 0.28334 18 [4]

glycerol (1:1.5) 0.30175 13 [32]

Choline bromide levulinic acid (1:4) 0.53240 10.7 [4]

Choline fluoride urea (1:2) 0.24329 1 [4]

Choline nitrate urea (1:2) 0.28630 4 [4]

Me3-(2-ClEt)N
+Cl- urea (1:2) 0.27619 15 [4]

Me2Et-(2-HOEt)N
+Cl- urea (1:2) 0.27377 –38 [4]

Me2Bz-(2-HOEt)N
+Cl- urea (1:2) 0.33574 –33 [4]

levulinic acid (1:2) 0.44794 < 20 [33]

xylose (1:1) 0.36585 –30b [34]

ribose (1:1) 0.36585 –28b [34]

glucose (1:1) 0.39588 –7b [34]

mannose (1:1) 0.39588 –16b [34]

fructose (1:1) 0.39588 –47b [34]

Acetylcholine+Cl- urea (1:2) 0.26627 –14 [4]

imidazole (1:3) 0.38590 –66 [35]

Triazole (1:1) 0.25073 –65 [35]

xylose (1:1) 0.33179 –11b [34]

ribose (1:1) 0.33179 –49b [34]

glucose (1:1) 0.36382 –7b [34]

mannose (1:1) 0.36382 –45b [34]

fructose (1:1) 0.36382 –49b [34]

2-methoxyphenolf (1:3) 0.55408 <20 [24]
a LRT = liquid at room temperature. b Glass transition temperatures tge/°C = –64. c tge/°C = –40.
d tge/°C = –53. e tge/°C = –55. f Guaiacol
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Hydroxy- and keto-carboxylic acids may produce with choline chloride
low-melting deep eutectic solvents. Levulinic acid (4-ketopentanoic acid CH3C(O)
CH2CH2CO2H, CAS No. 123-76-2) of natural origin has been promoted as an
ingredient of deep eutectic solvents, the 1:3 choline chloride: levulinic acid deep
eutectic solvent has a tme/°C = −11.2 [8]. With other hydroxylic acids considerably
lower melting eutectics are produced, thus with the monocarboxylic glycolic acid
(HOCH2CO2H, CAS No. 79-14-1) tge/°C = −16 (glass transition), with lactic acid
(2-hydroxypropanoic acid, CH3CH(OH)CO2H, CAS No. 50-21-5) at a 1:2 ratio
tme/°C = −78 and with the dicarboxylic malic acid (2-hydroxybutanedioic acid,
HCO2CH(OH)CH2CO2H, CAS No. 617-48-1) at a 1:1 ratio tme/°C = −56 [7]. Two
carboxylate groups are seen to be needed to hydrogen bond with the chloride anion.
On the other hand, citric acid (2-hydroxypropane-1,2,3-tricarboxylic acid,
HO2CCH2C(OH)(CO2H)CH2CO2H, CAS No. 77-92-9) produces with choline
chloride a eutectic melting above ambient: tme/°C = 69 [7]. The deep eutectic
solvent formed by choline chloride with glycolic, oxalic, malonic, and glutaric acids
at 1:1 molar ratios and with levulinic acid at a 1:2 ratio have also been described in
[9], but without their melting points, only glass transition temperatures <−12 °C
having been reported.

Some of these carboxylic acids are natural products, hence they form with
choline chloride natural deep eutectic solvents (NADES). Malonic acid, the
hydrogen bond donating agent in Maline, was listed as one of the top 30 chemicals
to be produced from biomass by the US Department of Energy. Its reference price is
USD 7400/ton, i.e., it is rather expensive. In food and drug applications, malonic
acid can be used to control acidity, either as an excipient in pharmaceutical for-
mulation or natural preservative additive for foods. Glutaric acid is naturally pro-
duced in the body during the metabolism of some amino acids. It is used in the
production of polymers such as polyesters and polyamides, the odd number of
carbon atoms being useful in decreasing polymer elasticity. Its reference price is
USD 4300/ton, less expensive than malonic acid. The glutaric acid may cause
irritation to the skin and eyes and it may be harmful by ingestion, inhalation, or skin
absorption. Levulinic acid occurs naturally in papaya and rice bran, among other
natural products. Its largest application is its use in the manufacturing of DALA a
biodegradable herbicide used in South Asia. Another key application is its use as
ethyl levulinate in cosmetics, fragrances, and perfumes. The reference price for
levulinic acid is USD 3500/ton and this substance is relatively nontoxic. Lactic acid
occurs naturally in sour milk and is produced by bacterial fermentation of sugar and
starch. Its reference price is USD 1300/ton, its annual production is 300,000 tons
globally, and it is used in cosmetics to adjust acidity and for its disinfectant and
keratolytic properties.

Polyols have been used to produce deep eutectic solvents with choline chloride,
foremost among which is ethylene glycol (1,2-ethanediol, HOC2H4OH, CAS
No. 107-21-1), forming at the 1:2 molar ratio the deep eutectic solvent, commer-
cially available and called “Ethaline”, tme/°C = −66. Very useful is also glycerol
(1,2,3-propanetriol, HOCH2CH(OH)-CH2OH, CAS No. 56-81-5), forming at the
1:2 ratio the so-called “Glyceline”, tme/°C = −40. Also useful is 1,4-butanediol
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(OHC4H8OH, CAS No. 110-63-4) at a ratio of 1:3 forming deep eutectic solvents
with tme/°C = −32 [2, 7, 8]. Other polyols, derived from sugars, are also effective
with choline chloride: furfuryl alcohol (2-furylmethanol, CAS No. 98-00-0) at a 1:3
ratio has tme/°C = −36 [10] or −35.8 [8] and d-sorbitol (hexahydroxyhexane, CAS
No. 50-70-4) at the 1:1 ratio has tme/°C = 8.6 [6]. Two further polyols are men-
tioned in [11] that form deep eutectic solvents with choline chloride, i.e., mixtures
that are liquid at room temperature: xylitol (pentahydroxypentane, CAS
No. 87-99-0) at a 1:1 ratio and d-isosorbide (CAS No. 652-67-5) at a 1:2 ratio, but
the melting points were not reported [12]. Sugars, such as d-fructose and d-glucose,
also form deep eutectic solvents with choline chloride at 1:2 molar ratios, with
tme/°C = 10 and 15, respectively [3].

As for the carboxylic acids, some of the polyol hydrogen bond donors are natural
products that form with choline chloride natural deep eutectic solvents. Glycerol,
the hydrogen bond donor component of Glyceline, is obtained from the hydrolysis
of fats and oils in the manufacture of soap at a reference price of USD 500/ton on a
>1 million tons scale annually. Glycerol serves as a humectant, solvent, and
sweetener in food and beverages, and is also used as filler in commercially prepared
low-fat foods. Xylitol is naturally found in low concentrations in the fibers of many
fruits and vegetables as well as fibrous material such as corn husks and sugar cane
bagasse. Industrial production of xylitol, at a reference price of USD 3000/ton,
starts from a hemicellulose extracted from hardwoods or corncobs, which is
hydrolyzed and catalytically hydrogenated. Xylitol has no known toxicity in
humans and is used as a sweetener. Sorbitol is obtained by reduction of glucose at a
reference price of USD 500/ton. It is used as a sweetener and has no toxicity to
humans. Furfuryl alcohol is manufactured industrially at a reference price of USD
1500/ton by the catalytic reduction of furfural, which is obtained from corncob and
sugar cane bagasse. It is used as a solvent and as a chemical intermediate for furan
resins in thermoset polymer matrix composites, cements, adhesives, and coatings. It
is irritating to eyes, skin, and respiratory tract and harmful if inhaled or swallowed.
The two sugars mentioned above, are, of course, nontoxic ingredients of natural
deep eutectic solvents.

Another kind of hydrogen bond donors for deep eutectic solvents with choline
chloride are phenols at a 1:3 mol ratio. With phenol itself (CAS No. 108-95-2) the
deep eutectic solvents based on choline chloride has tme/°C = −20.1, with o-cresol
(2-methylphenol, CAS No. 95-48-7) it has tme/°C = −23.8, and with 2,3-xylenol
(2,3-dimethylphenol, CAS No. 526-75-0) it has tme/°C = 17.7 [3, 13]. The phenols
are toxic and this should be considered if they are to be employed.

The hydrogen bond donor agent producing with choline chloride a deep eutectic
solvent needs not be an organic substance: calcium chloride hexahydrate provides
water as the hydrogen bond donor agent, and various molar ratios of it with the
choline chloride have freezing temperatures below ambient, ranging from the 1:4
mixture, tme/°C = 16.8 to the 1:10 mixture, tme/°C = 24.1 [14].

It should be noted in Table 2.1 that some of the hydrogen bond donor com-
ponents of the deep eutectic solvents are themselves liquid at ambient temperatures
and that some of the eutectic temperatures are very low indeed, down to more than
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90 °C below ambient (25 °C), i.e. tme/°C < −65, for example, those with ethylene
glycol and lactic acid. In cases where no melting or glass transition points have
been reported but physical properties or applications have been reported down to a
certain temperature t/°C, this is denoted as <t in the appropriate column.

2.2 Deep Eutectic Solvents Based on Other -Onium Salts

Quaternary ammonium salts other than those of choline or its analogs have been
used as hydrogen bond accepting ingredients (HBA) of deep eutectic solvents.
However, non-quaternary alkylammonium salts have also been used for this pur-
pose. Symmetrical tetraalkylammonium salts are not useful as room temperature
ionic liquids (RTILs), of which deep eutectic solvents are a subcategory, because
they have melting points much above ambient. However, when suitable hydrogen
bond donating substances (HBD) are added, they do form low-melting eutectics. In
many cases, the hydrogen bond donating ingredient employed was a liquid at
ambient conditions, so that the solid salt hydrogen bond acceptor and the liquid
hydrogen bond donor could be shaken together in an incubator shaker at 80 °C for
2 h, and the colorless homogeneous transparent liquid deep eutectic solvents was
formed.

Ethylammonium chloride (C2H5NH3
+Cl−, CAS No. 557-66-4) forms a deep

eutectic solvent at a 1:4 ratio with glycerol having a melting point (read from a figure)
of tme/°C = −58 [15]. With urea and trifluoroacetamide, it forms deep eutectic solvents
at 2:3 ratios having melting points (read from a figure) of tme/°C = 30 and 20,
respectively [16]. Alkylammonium bromides form deep eutectic solvents at a 1:2 molar
ratio with glycerol: ethylammonium bromide (C2H5NH3

+Br−, CAS No. 593-55-5)
tme/°C = −6, propylammonium bromide (C3H7NH3

+Br−, CAS No. 4905-83-3)
tme/°C = −4, and butylammonium bromide (C4H9NH3

+Br−, CAS No. 15567-09-6)
tme/°C = −10 [17]. Another example of a non-quaternary ammonium salt is N,N-
diethylethanolammonium chloride ((C2H5)2(HOC2H4)NH

+Cl−, CAS No. 14426-20-1)
that at 1:2 mol ratios with ethylene glycol forms a deep eutectic solvent with
tme/°C = −31.0 and with glycerol it forms one with tme/°C = −1.3 [18]. This tertiary
salt also forms deep eutectic solvents at a 1:1 ratio with malonic acid and with zinc
nitrate hexahydrate as the hydrogen bond donating agents, but their freezing points
were not specified [19].

Tetraethylammonium chloride ((C2H5)4NCl, CAS No. 56-34-8) forms a deep
eutectic solvent at a 1:4 molar ratio with levulinic acid, with tme/°C < −60, i.e., a
freezing point not detectable in the range −60 � tm/°C � 80 [20].
Tetraethylammonium bromide ((C2H5)4NBr, CAS No. 71-91-0) forms deep
eutectic solvent at 1:4 molar ratios with ethylene glycol, tme/°C = −24.4, and with
triethylene glycol (3,6-dioxa-1,8-octanediol, HOCH2CH2OCH2CH2OCH2CH2OH,
CAS No. 112-27-6) and levulinic acid, all with tme/°C < −60 [20]. With
1,2-dimethyl-urea (O=C(NHCH3)2, CAS No. 98-31-1) it forms a deep eutectic
solvent at an unspecified molar ratio with tme/°C in the range 20–25.
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Tetrapropylammonium bromide ((C3H7)4NBr, CAS No. 1941-30-6, TPAB)
forms deep eutectic solvents with some polyols [20, 21]: ethylene glycol, glycerol,
and triethylene glycol. Several ratios of the components were tested, and the lowest
melting eutectics were obtained with 1:4 TPAB:ethylene glycol, tme/°C = −23, 1:3
TPAB:triethylene glycol, tme/°C = −19, 1:3 TPAB:glycerol, tme/°C = −16 [21].
With levulinic acid TPAB and tetrapropylammonium chloride, ((C3H7)4NCl, CAS
No. 5810-42-4) form low transition temperature mixtures at 1:4 molar ratios
tm/°C < −60 [20].

Tetrabutylammonium chloride ((C4H9)4NCl, CAS No. 75-57-0, TBAC) also
forms deep eutectic solvents with ethylene glycol, glycerol, and triethylene glycol:
1:3 TBAC:ethylene glycol, tm/°C = −31, 1:3 TBAC:triethylene glycol,
tm/°C = −13, and 1:4 TBAC:glycerol, tm/°C = −43 [22]. With levulinic acid,
TBAC forms a low transition temperature mixture at 1:4 molar ratios tm/°C < −60
[20]. With urea at a 1:4 molar ratio, the melting point of the eutectic is just above
ambient, 27 °C [23]. With levulinic acid, TBAC forms a low transition temperature
mixture at 1:4 molar ratios tm/°C < −60 [24], and with propanoic acid
(CH3CH2CO2H, CAS No. 79-09-4), phenylacetic acid (C6H5CH2CO2H, CAS
No. 103-82-2), ethylene glycol, and polyethylene glycol (PEG400, CAS
No. 25322-68-3) it forms deep eutectic solvents with tm/°C < 15 [25].

Tetrabutylammonium bromide ((C4H9)4NBr, CAS No. 1643-19-2, TBAB)
forms deep eutectic solvents with carboxylic acids at a 1:1 molar ratio, whether
mono- or dicarboxylic. The deep eutectic solvents with acetic acid have
tme/°C = −18.5, with propanoic acid tme/°C = −19.1, with oxalic acid
tme/°C = −22.2, and with malonic acid tme/°C = −18.0. With formic acid, a deep
eutectic solvent is formed too, but its eutectic melting point was not determined
[26]. TBAB forms deep eutectic solvents also with ethanolamine (2-aminoethanol,
H2NC2H4OH, CAS No. 141-43-5), tme/°C = 0.4 [14], but with diethanolamine
(HN(C2H4OH)2, CAS No. 111-42-2) and triethanolamine (N(C2H4OH)3,
CAS No. 102-71-6) the melting points are much lower: −67.8 and −76.6 °C,
respectively [27].

Tetrahexylammonium bromide ((C6H11)4NBr, CAS No, 4328-13-6) forms at
molar ratios of 1:2 deep eutectic solvents with ethylene glycol and with glycerol,
but their freezing points were not determined [28]. Benzyltrimethylammonium
chloride (C6H5CH2N(CH3)3

+Cl−, CAS No. 53-93-9) forms with levulinic acid a low
transition temperature mixture at 1:4 molar ratios tm/°C < −60 [15]. It forms with p-
toluene sulfonic acid (CH3C6H4SO3H, CAS No. 104-15-4) a deep eutectic solvent
at 1:2 molar ratio, tme/°C = −1, and with oxalic acid a deep eutectic solvent at 1:1
molar ratio, tme/°C = 2, but with citric acid at a 1:1 molar ratio the freezing point is
above ambient, 31 °C [29]. Benzyltrimethylammonium methanesulfonate
(C6H5CH2N(CH3)3

+ CH3SO3
−) mixed at a 1:1 ratio with p-toluene sulfonic acid

monohydrate (CH3C6H4SO3H�H2O, CAS No. 6192-52-5) forms a clear colorless
deep eutectic solvent after mixing at 60 °C for 10 min, having a melting point (read
from a figure) of tme/°C = −5 [30]. Benzyltriprophylammonium chloride
(C6H5CH2(C3H7)3N

+Cl−, CAS No. 5197-87-5) forms low transition temperature
mixtures with several hydrogen bond donating agents: ethylene glycol, glycerol,
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phenol, and lactic acid at 1:3 mol ratios. They have tm/°C < −90, except that with
lactic acid that has tme/°C = −56.3 [31].

Tetramethyl-, tetraethyl-, and tetrabutylammonium chlorides form low transition
temperature mixtures with lactic acid at a 1:2 ratio that do not crystallize on cooling
but form glasses, with glass transition temperatures of −69, −71, and −66 °C,
respectively [32]. Guanidine carbonate mixed with malic acid at a 2:1 ratio prob-
ably forms guanidinium malate when heated for prolonged periods at 70 °C, and
then forms a deep eutectic solvent with ethylene glycol, useful for the capture of
carbon dioxide [33].

Of the quaternary phosphonium salts, mainly methyltriphenylphosphonium
bromide (CH3P(C6H5)3Br, CAS No. 1779-49-3) has been used to obtain deep
eutectic solvents. With the polyols ethylene glycol tme/°C = −46, with triethylene
glycol tme/°C = −8, and with glycerol tme/°C = −5, all at the 1:3 ratio [3]. With
trifluoroacetamide, it forms a deep eutectic solvent at an unspecified molar ratio
with tme/°C = −69.3, and with levulinic acid, it forms a deep eutectic solvent at a
1:4 molar ratio with tm/°C < −60 [20]. Benzyltriphenylphosphonium chloride
(C6H5CH2(C6H5)3PCl, CAS No. 1100-88-5) forms eutectics with glycerol (1:5)
with tme/°C = 50.4 and with ethylene glycol (1:3) with tme/°C = 47.9, i.e., above
ambient, so they are not proper deep eutectic solvents [34]. However, with glycerol
a deep eutectic solvent is formed at a 1:16 HBA:HBD ratio, tme/°C = −22.0 and the
corresponding allyltriphenylphosphonium bromide (CH2=CHCH2(C6H5)3PBr,
CAS No. 1560-54-9) forms with glycerol a deep eutectic solvent at a 1:14 ratio with
tme/°C = −23.8 [35]. The symmetrical tetrabutylphosphonium bromide
((C4H0)4PBr, CAS No. 3115-68-2) forms with levulinic acid at a 1:4 molar ratio a
deep eutectic solvent with tm/°C < −60 [20]. Such deep eutectic solvents based on
the phosphonium salts have definite toxicity toward bacteria and possibly also
larvae of aquatic organisms [36].

Deep eutectic solvents based on these -onium hydrogen bond acceptors
(HBA) mixed with various hydrogen bond donors (HBD) at appropriate ratios are
summarized in Table 2.2. In cases, where no melting or glass transition points have
been reported but physical properties or applications have been reported down to a
certain temperature t/°C, this is denoted as <t in the appropriate column.

2.3 Unconventional Deep Eutectic Solvents

Prior to the advent of the choline chloride/urea deep eutectic solvent, stoichiometric
mixtures of halide salts of organic cations and certain metal halides were found to
have melting points below ambient, i.e., to be room temperature ionic liquids.
Examples of such moieties are 1-ethyl-3-methylimidazolium chloride mixed at a
1:1 ratio with aluminum chloride forming the tetrachloroaluminate (CAS
No. 80432-05-9) tm/°C = 8 and mixed at a 1:2 ratio forming the heptachlorodia-
luminate (1-ethyl-3-methylimidazolium+Al2Cl7

−), tm/°C = −98 [37]. However,
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Table 2.2 Deep eutectic solvents based on –onium salts as hydrogen bond acceptors, at ratios of
HBA:HBD as noted, their molar masses M, and the melting point of the eutectics, tme

HBA HBD Ratio HBA:HBD M/kg mol–1 tme/°C Ref.

Me4N
+Cl– acetic acid 1:4 0.34980 < –20 [25]

decanoic acid 2:9 0.88477 26f [49]

lactic acid 1:2 0.28975 –69a [47]

EtNH3N
+Cl– glycerol 1:4 0.44990 –58 [27]

urea 2:3 0.34326 30 [28]

trifluoroacetamide 2:3 0.50220 20 [28]

EtNH3N
+Br– glycerol 1:2 0.31017 –6 [29]

2-methoxyphenolf 1:3 0.33430 <20 [24]

Et2(HOEt)NH
+Cl– ethylene glycol 1:2 0.27779 –31.0 [30]

glycerol 1:2 0.33765 –1.3 [30]

Triethylene glycol 1:4 0.60083 –16.6 [14]

Et3MeN+Cl– acetic acid 1:2 0.27178 < –20 [25]

Et4N
+Cl– acetic acid 1:2 0.28589 [25]

butanoic acid 1:2 0.33808 < 25 [50]

hexanoic acid 1:2 0.45024 < 25 [50]

octanoic acid 1:2 0.50632 < 25 [50]

decanoic acid 2:3 0.51031 24f [49]

levulinic acid 1:4 0.63014 < –60 [36]

lactic acid 1:2 0.34586 –71a [47]

Et4N
+Br– ethylene glycol 1:4 0.45844 –24 [36]

glycerol 1:2 0.31017 –6 [29]

triethylene glycol 1:4 1.06632 < –60 [36]

levulinic acid 1:4 0.67460 < –60 [36]

1,2-dimethylurea 20-25 [36]

PrNH3
+Br– glycerol 1:2 0.32420 –4 [36]

Pr4N
+Cl– acetic acid 1:6 0.58211 < –20 [25]

butanoic acid 1:2 0.39803 < 25 [50]

hexanoic acid 1:2 0.45411 < 25 [50]

octanoic acid 1:2 0.51019 < 25 [50]

decanoic acid 2:5 0.65216 15f [49]

dodecanoic acid 1:2 0.62235 25f [49]

levulinic acid 1:4 0.68624 < –60 [36]

ethanolamine 1:4 0.46613 < –20 [25]

Pr4N
+Br– (TPAB) ethylene glycol 1:4 0.51454 –23 [36]

glycerol 1:3 0.53653 –16 [36]

triethylene glycol 1:3 0.90838 –19 [36]

butanoic acid 1:2 0.28248 < 25 [50]

hexanoic acid 1:2 0.33856 < 25 [50]

levulinic acid 1:4 0.73070 < –60 [36]
(continued)
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Table 2.2 (continued)

HBA HBD Ratio HBA:HBD M/kg mol–1 tme/°C Ref.

BuNH3
+Br– glycerol 1:2 0.33823 –10 [29]

DcNH3
+ Br– e hexafluoroisopropanol 1:2 0.57431 –25 [51]

DoNH3
+ Br– e hexafluoroisopropanol 1:2 0.60235 –29 [51]

TdNH3
+ Br– e hexafluoroisopropanol 1:2 0.63039 –33 [51]

Bu4N
+Cl– (TBAC) urea 4:1 1.17174 27 [39]

ethylene glycol 1:3 0.46413 –31 [38]

glycerol 1:4 0.64628 –43 [38]

triethylene glycol 1:3 0.92004 –13 [38]

PEG 400 1:2 1.07792 <15 [42]

acetic acid 1:2 0.39802 < –20 [25]

propanoic acid 1:2 0.42608 <15 [40]

butanoic acid 1:2 0.45414 < 25 [50]

hexanoic, octanoic ac. 1:2 < 25 [52]

decanoic acid 1:2 0.94144 –12.0 [53]

dodecanoic acid ? <25 [54]

phenylacetic acid 1:2 0.55022 < 15 [40]

levulinic acid 1:4 0.74236 < –60 [36]

lactic acid 1:2 0.45808 –66a [47]

aspartic acid 1:9 1.47540 25.0 [55]

glutamic acid 1:10 1.74880 28.8 [55]

arginine 1:6 1.32270 25.0 [55]

serine 1:8 1.11822 25.0 [56]

threonine 9:1 2.62038 20.2 [56]

methionine 11:1 3.20633 19 [56]

a-tocopherol 1:4 2.00034 –50 [57]

Bu4N
+Br– (TBAB) formic acid 1:1 0.36839 LRTc [41]

acetic acid 1:1 0.38242 –19 [41]

propanoic acid 1:1 0.39645 –19 [41]

butanoic acid 1:2 0.49859 < 25 [50]

hexanoic acid 1:2 0.55467 < 25 [50]

octanoic acid 1:2 0.61075 < 25 [50]

decanoic acid 1:2 0.66683 < 25 [50]

oxalic acid 1:1 0.41240 –22 [41]

malonic acid 1:1 0.42643 –18 [41]

levulinic acid 1:4 0.78681 0.4 [58]

ethylene glycol 1:2 0.44651 < 25 [59]

PEG 200, 600 1:2 < 20 [60]

sulfolane 1:7 1.16356 < 25 [61]

ethanolamine 1:6 0.68885 –68 [42]

diethanolamine 1:6 0.95321 –77 [42]
(continued)
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Table 2.2 (continued)

HBA HBD Ratio HBA:HBD M/kg mol–1 tme/°C Ref.

triethanolamine 1:3 0.76994 < –60 [42]

Hx4N
+Br– ethylene glycol 1:2 0.55872 LRTc [43]

glycerol 1:2 0.61876 LRTc [43]

Hp4N
+Cl– decanoic acid 1:2 0.83623 –16.7 [62]

MeOc3N
+Cl– alkanols, alkanediols 1:2 LRTc [63]

decanoic acid 1:2 0.74870 9.0 [62]

Oc4N
+Cl– decanoic acid 1:2 0.84688 2.0 [53]

perfluorodecanoic acid 1:2 1.53050 LRTc [53]

Oc4N
+Br– decanoic acid 1:2 0.89233 9.0 [62]

BzMe3N
+Cl– acetic acid 1:2 0.65013 < –20 [25]

levulinic acid 1:4 0.65013 < –60 [27]

tosylic acidb 1:2 0.53009 –1 [44]

oxalic acid 1:1 0.27572 2 [44]

glycerol 1:2 0.36987 [64]

BzMe3N
+MeSO3

– tosylic acidb 1:1 0.41764 –5 [45]

BzEt3N
+Cl– acetic acid 1:2 0.34787 –20 [25]

oxalic acid 1:1 0.31781 5 [65]

citric acid 1:1 0.41989 26 [65]

tosylic acid 1:2 0.57204 2 [65]

BzPr3N
+Cl– ethylene glycol 1:3 0.45606 < –90 [66]

glycerol 1:3 0.54612 < –90 [66]

phenol 1:3 0.55218 < –90 [66]

lactic acid 1:3 0.54009 –56 [66]

Bu4P
+Br– levulinic acid 1:4 0.80377 < –60 [67]

ethylene glycol 1:2 0.46347 < 25 [59]

MePh3P
+Br– ethylene glycol 1:3 0.54343 –46 [3]

glycerol 1:3 0.63349 –24 [3]

1,2-propanediol 1:4 0.66162 [68]

Triethylene glycol 1:4 0.95790 –18.2 [14]

triethylene glycol 1:3 0.99934 –8 [3]

acetic acid 1:4 0.59742 < –20 [25]

levulinic acid 1:4 0.82166 < –60 [36]

trifluoroacetamide 1:8 1.26154 –69 [36]

EtPh3P
+ I– ethylene glycol 1:6 0.79067 < 30 [69]

sulfolane 1:4 0.89893 < 30 [69]

AllylPh3P
+Br– glycerol 1:14 –24 [70]

diethylene glycol 1:4 0.80774 <20 [71]

triethylene glycol 1:10 –19.5 [14]

BenzylPh3P
+Cl– glycerol 1:5 50 [74]

1:16 –22 [70]
(continued)
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these mixtures constitute a single molten salt, hence are not proper deep eutectic
solvents, for which the two initial components retain their separate identities.

Proper deep eutectic solvents are formed when the metal halide is the hydrogen
bond acceptor and a suitable hydrogen bond donor is added: a mixture of zinc
chloride and urea at a 2:7 mol ratio has tme/°C = 9, with acetamide (CH3C(O)NH2,
CAS No. 60-35-5) at a 1:4 mol ratio it has tme/°C = −16. In the eutectic mixtures,
zinc is present in the cationic species, e.g., [ZnCl(urea)]+, as shown by mass
spectrometry. With ethylene glycol (1,2-ethanediol) at a 1:4 mol ratio, zinc chloride
has tme/°C = −30, and with 1,6-hexanediol at a 1:4 mol ratio it forms a deep
eutectic solvent tme/°C = −23 [38, 39]. Similarly, 2-chloroethyl trimethylammo-
nium chloride (ClC2H4N(CH3)3

+Cl−, Cas No. 999-81-5) produces with zinc chloride
at a 1:2 molar ratio a deep eutectic solvent melting at 23 °C [40], but this may be a
chlorozincate room temperature ionic liquid rather than a deep eutectic solvent in
which each ingredient retains its identity. Zinc nitrate hexahydrate with urea at a
mole ratio of 2:1 forms a deep eutectic solvent with a melting point of 9 °C that
remains stable (does not lose water) up to 50 °C [41]. Choline chloride forms a
deep eutectic solvent with calcium chloride hexahydrate at several molar ratios, the
lowest melting of which is at a 1:2 molar ratio, tm/°C = 2.70 [42]. Other metal
halides also form with asymmetrical quaternary ammonium salts low-melting
mixtures having melting points below 25 °C [43]. There is no certainty, however,
that in all these cases proper deep eutectic solvents are formed, i.e., mixtures in
which the components retain their identities, rather than ionic liquids that are single
components, made up from a cation and an anion. Potassium carbonate forms low
transition temperature mixtures with glycerol at molar rations 1:4–1:6 that are liquid
at 10 °C, but do not crystallize on cooling and have glass transition temperatures
(that for the 1:4 ratio of −38 °C) [44]. Potassium and ammonium thiocyanates form
with amides low-melting eutectics that can be used as solvents for the absorption of
sulfur dioxide [45]. Several deep eutectic solvents have been prepared, based on
lithium bis[trifluoromethylsulfonyl]imide as the hydrogen bond acceptor compo-
nent and amides (urea [46], acetamide [47], N-methylacetamide [48]) as the

Table 2.2 (continued)

HBA HBD Ratio HBA:HBD M/kg mol–1 tme/°C Ref.

ethylene glycol 1:3 48 [74]

triethylene glycol 1:8 –19.5 [14]

Me3S
+TFSI– c formamide 1:1 0.40307 –20 [72]

trifluoroacetamide 2:1 0.82910 LRTc [72]

C(NH2)3
+Cl– ethanolamine 1:2 0.21769 < –20 [25]

C(NH2)3
+ malate ethylene glycol LRTc [48]

Emim+Cl– e ethylene glycol 2:1, 1:1, 1:2 < 20 [72]

LidDecd decanoic acid 1:1 –66c [73]
a Glass transition temperature. b p-toluenesulfonic acid. c Liquid at room temperature. d LidDec =
lidocaine decanoate. e Dc = decyl, Do = dodecyl, Td = tetradecyl. e 1-ethyl-3-methylimidazolium
chloride. f Read from a small figure
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hydrogen bond donor components. To this category could be added the deep
eutectic solvents formed by trimethylsulfonium bis[trifluoromethylsulfonyl]imide
as the hydrogen bond acceptor and formamide or trifluoroacetamide as the
hydrogen bond donor component, although trimethylsulfonium is not a metal cation
[49]. Table 2.3 summarizes the compositions and melting points of the low-melting
mixtures formed from metal salts (or their hydrates) and organic substances. In
cases, where no melting or glass transition points have been reported but physical
properties or applications have been reported down to a certain temperature t/°C,
this is denoted as <t in the appropriate column.

Certain amino acids have served as the hydrogen bond acceptor component of
deep eutectic solvents with several hydrogen bond donor component, such as urea,
1,2-ethanediol, and carboxylic acids. In many cases, glass formation was observed as
the temperature was decreased, but no freezing to a crystalline solid took place
[50, 51]. Exceptions to this general trend are the 1:1 mixture of l-proline
(pyrrolidine-2-carboxylic acid, CAS No. 147-85-3) and oxalic acid (HCO2CO2H,
CAS No. 144-62-7), tme/°C = −14.5 [52] and trimethylglycine ((CH3)3NCH2CO2H,
CAS No. 107-43-7, betaine) and mandelic acid (C6H5CH(OH)CO2H, CAS
No. 90-64-2) tme/°C = 13 [53]. Trimethylglycine (betaine) at 1:2 ratios forms with
glycolic acid (HOCH2CO2H, CAS No. 79-14-2) a deep eutectic solvent
tme/°C = −36, with phenylacetic acid a deep eutectic solvent tme/°C = −7, and with
2-furoic acid (furan-2-carboxylic acid, CAS No. 88-14-2) a deep eutectic solvent
with tme/°C = 11 [53]. When the hydrogen bond donor component is a carboxylic
acid, the zwitterionic amino acid is taken to be protonated, so that an ionic deep
eutectic solvent is produced.

On the other hand, amino acids have also been suggested as the hydrogen bond
donor component of deep eutectic solvents, with tetrabutylammonium chloride as
the hydrogen bond acceptor component. In such cases, rather large ratios of the salt
to the hydrogen bond donating agent yield the low-melting compositions, but at
near ambient temperatures or somewhat above them. The deep eutectic solvent
formed with aspartic acid at 9:1 HBA:HBD has tm/°C = 25.1, that with glutamic
acid at 10:1 ratio has tm/°C = 28.9, that with arginine at 6:1 ratio has tm/°C = 25.1
[54], that with serine at 8:1 ratio has tm/°C = 24.9, that with threonine at 9:1 ratio
has tm/°C = 20.2, and that with methionine at 11:1 ratio has tm/°C = 19.1 [55].

Water could well be a hydrogen bond donor ingredient to form deep eutectic
solvents with suitable hydrogen bond acceptor components, such as certain salts
and ionic liquids. Alkyl-(2-hydroxyethyl)-dimethylammonium bromide ionic liq-
uids, where alkyl = CnH2n+1 with n = 2, 3, 4 and 6, form with water at a 1:2 mol
ratio deep eutectic solvents [56]. For n = 2 (ethyl) [57] tme = −25.1 °C and for the
other n values tme is somewhat higher, up to −13 °C. It is to be noted that in the
case n = 1, i.e., of alkyl being methyl, choline bromide, water has not been men-
tioned as forming a deep eutectic solvent with this salt. Water forms a deep eutectic
solvent also with ethyl-(2-hydroxyethyl)-dimethylammonium tetrafluoroborate at a
1:3 mol ratio, tme = −27.2 °C [57]. Thus, although stronger hydrogen bond
acceptor anions such as chloride, acetate, and fluoride are required for the con-
ventional deep eutectic solvent formation with amides, carboxylic acids, and
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Table 2.3 Deep eutectic solvents formed between metal salts and organic substances and the
melting point of the eutectics, tme

Metal salt Organic substance Molar ratio tme/°C Ref.

LiClO4 Acetamide 1:4 n.a. [89]

Propionamide 1:4 n.a. [89]

LiNO3 N-methylacetamide 1:2 –75 [90]

LiPF6 N-methylacetamide 1:5 –52 [90]

LiTFSIa urea 1:3.6 –37.6 [86]

acetamide 1:4 –67 [87]

N-methylacetamide 1:2 –72 [90]

K2CO3 ethylene glycol 1:10 -122b [150]

glycerol 1:4 – 1:6 < 10 [83]

1:10 -91b [150]

KSCN acetamide 1:3 5 [85]

caprolactam 1:3 0 [85]

NH4SCN acetamide 1:3 5 [85]

caprolactam 1:3 –10 [85]

urea 2:3 24 [85]

MgCl2∙6H2O choline chloride 1:1 16 [91]

CaCl2∙6H2O choline chloride 1:2 2.7 [66]

ZnCl2 urea 2:7 9 [78]

acetamide 1:4 –16 [78]

1,2-ethanediol 1:4 –30 [78]

1,6-hexanediol 1:4 –23 [78]

chloroethyltrimethylammonium+Cl– 1:2 23 [44]

choline chloride 2:1 23-25 [82]

bromopropyltrimethylammonium+Br– 2:1 22-24 [82]

Zn(NO3)2∙6H2O choline chloride 1:1 <25 [31]

diethylethanolammonium+Cl– 1:1 <25 [92]

SnCl2 benzyldimethylethanolammonium+Cl– 2:1 17 [82]

2-acetyloxytrimethylammonium chloride 2:1 20 [74]

AlCl3 urea 1:1 <25 [78]

acetamide 1:1 –63c [78]

FeCl3 benzyldimethylethanolammonium+Cl– 2:1 21 [82]

tetrabutylphosphonium bromide 1:2 15.7 [70]

CrCl3∙6H2O urea 2:1 9 [81]

FeCl3 benzyldimethylethanolammonium+Cl– 2:1 21 [82]

tetrabutylphosphonium bromide 1:2 15.7 [70]
a lithium bis[trifluoromethylsulfonyl]imide. b Glass transition temperature
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polyols, for water as the hydrogen bond donor even mild hydrogen bond accepting
anions, such as bromide and tetrafluoroborate, suffice for deep eutectic solvent
formation.

Water features also as the hydrogen bond donor component with more con-
ventional ionic liquids, The deep eutectic solvent formed with 1-butyl-3-
methylimidazolium p-toluenesulfonate has tme/°C = −36 at the water mole frac-
tion xW = 0.70 (read from a figure) [58]. N-hexyl-3-methylpyridinium p-toluene-
sulfonate forms with water a deep eutectic solvent that has tme/°C = −10.0 at
xW = 0.879 [59]. The deep eutectic solvent formed between water and 1-butyl-3-
methylpyridinium dicyanamide has tme/°C = −28 at xW = 0.76 (read from a figure)
[60, 61]. The deep eutectic solvent formed between water with 1-butyl-1-
methylpiperidinium thiocyanate has tme/°C = −56 at xW = 0.66 [62] and that with
1-butyl-1-methylpyrrolidinium thiocyanate has tme/°C = −92 at xW = 0.69 [63].
These values were read from a figure with non-random two-liquid (NRTL)-modeled
lines leading to the eutectic point, whereas the experimental points themselves do
not necessarily lead to them. Complete solid–liquid phase diagrams (reaching from
the pure components to the eutectic) were reported in figures also for the deep
eutectic solvents formed between water with 1-butyl-1-methylpyrrolidinium
dicyanamide, tme/°C = −31 at xW = 0.77, with its trifluoromethylsulfonate,
tme/°C = −30 at xW = 0.60, and with its tricyanomethanide, tme/°C = 13 at
xW = 0.42 [64]. Incomplete diagrams were shown there also for mixtures of water
with other ionic liquids, but no eutectic points could be deduced from them.
Complete phase diagrams, but where NRTL-modeled lines lead to the eutectic point
rather than the experimental points themselves, were reported for water with
1-alkyl-1-methylmorpholinium bromide, where alkyl = CnH2n+1 with n = 3, 4, and
5 [65]. The eutectic points (read from figures) have tme/°C = −33 at xW = 0.82 for
n = 3, tme/°C = −42 at xW = 0.82 for n = 4, and tme/°C = −73 at xW = 0.69
for n = 5. For the corresponding water and 1-pentyl-1-methylpiperidinium bro-
mide system, tme/°C = −28 at xW = 0.75 was derived from the NRTL-modeled
lines [65].

Table 2.4 summarizes the deep eutectic solvents formed between water and
organic salts and ionic liquids.

With monohydric alkanols, on the other hand, no real deep eutectic solvents are
formed with room temperature ionic liquids, the observed eutectic temperatures
being only 1–6 °C lower than the freezing points of the alkanols themselves. This
was reported for 1-butyl-3-methylimidazolium p-toluenesulfonate with 1-octanol
and with 1-decanol and presumably holds also with ethanol, 1-butanol, and
1-hexanol, although no complete phase diagrams were shown for these three
alkanols [58]. The same is the case for 1-hexyl-3-methylpyridinium p-toluene-
sulfonate for these five alkanols [59] and for 1-butyl-1-methylpiperidinium thio-
cyanate with 1-alkanols CnH2n+1OH, n = 8, 9, 10, and 12 [62].

It is interesting to note that fairly deep eutectic liquids are formed between benzene,
devoid of hydrogen bond donating properties, and two ionic liquids: tme/°C = −27 at
benzene mole fractions xB = 0.65 for 1-hexyl-3-methylpyrrolidinium thiocyanate and
tm/°C = –13 at xB = 0.55 for 1-butyl-1-methylpiperidinium thiocyanate (where
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tme/°C = 5.5 for benzene itself and 22.2 and 31.1 for the two ionic liquids, respec-
tively) [66]. Benzene (subscript B) also forms with N-butylquinolinium bis
(trifluoromethylsulphonyl)imide (tm/°C = 56.4), a deep eutectic having tme/°C = −8.3
at xB = 0.746 [67] and with N-butylpyridinium bis[(trifluoromethyl)sulphonyl]imide
(tm/°C = 18.2), a deep eutectic having tme/°C = –22.9 at xB = 0.642 [68].

A further group of binary mixtures that nominally can be termed ‘deep eutectic
solvents’, but are not generally recognized as such, are mixtures of ice with certain
salt hydrates or mixtures of two salt hydrates. Some salt hydrates that melt con-
gruently, i.e., crystallize unchanged on cooling their melts, yield deep eutectic
solvents with water. They feature such properties that commonly used or proposed
deep eutectic solvents should have: they are definitely nonflammable, they are
nontoxic (heavy metal salts, such as Cd(NO3)2�4H2O, are avoided), they are
inexpensive (expensive metal salts, such as CsF�H2O, are avoided), and are readily
reconstituted after use. Several lithium and magnesium salt hydrates, among a
variety of other salts, are prone to yield deep eutectic solvents with ice. As for many
other deep eutectic solvents, one of the components (water) is liquid at ambient
conditions and the eutectic temperatures may reach very low values. A large body

Table 2.4 Deep eutectic solvents formed between water as the hydrogen bond donor component
and organic salts and ionic liquids as hydrogen bond acceptor components and the melting point of
the eutectics, tme

HBA Cation HBA Anion xW tme/°C Ref.

ethyl-(2-hydroxyethyl)-dimethylammonium bromide 0.642 –25.1 [98]

BF4
– 0.737 –27.2 [98]

propyl-(2-hydroxyethyl)-dimethylammonium bromide 0.65 –31 [97]

butyl-(2-hydroxyethyl)-dimethylammonium bromide *0.65 –22 [97]

hexyl-(2-hydroxyethyl)-dimethylammonium bromide *0.65 –13 [97]

1-butyl-3-methylimidazolium tosylate 0.70 –36 [99]

1-butyl-3-methylpyridinium N(CN)2
– 0.76 –28 [101]

1-hexyl-3-methylpyridinium tosylate 0.879 –10.0 [100]

1-butyl-1-methylpiperidinium thiocyanate 0.66 –56 [103]

1-butyl-1-methylpyrrolidinium thiocyanate 0.69 –92 [104]

N(CN)2
– 0.71 –37 [105]

N(CN)2
– 0.75 –40 [107]

CF3SO3
– 0.60 –30 [105]

CF3SO3
– 0.60 –28.5 [107]

C(CN)3
– 0.42 13 [105]

C(CN)3
– 0.52 –31 [107]

B(CN)4
– 0.43 6 [107]

1-propyl-1-methylmorpholinium bromide 0.82 –0.33 [106]

1-butyl-1-methylmorpholinium bromide 0.82 –42 [106]

1-pentyl-1-methylmorpholinium bromide 0.69 –73 [106]

1-pentyl-1-methylpiperidinium bromide 0.75 –28 [106]
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of information is available in the compilations by Linke and Seidel [69, 70] and by
Kirgintsev et al. [71], generally in the form of solid/liquid equilibrium at certain
temperatures at compositions given as w = g anhydrous salt per 100 g saturated
aqueous solution. The mole fraction of the n-hydrate (that with n molecules of water
per formula unit of the anhydrous salt) is calculated, using the molar mass of the
anhydrous salt, M/g mol−1, and that of water, 18.015 g mol−1, as

x salt � nH2Oð Þ ¼ 1þ nð Þ w=Mð Þ= w=Mð Þþ 100�wð Þ=18:015½ � ð2:1Þ

The molar ratios of the components are generally not ratios of integers, unlike
most of the deep eutectic solvents with choline chloride, its analogs, and other
-onium salts as the hydrogen bond acceptor components. The eutectic distances,
Dtme/°C, are not as large as those for, say, choline chloride with urea, 178.
Nevertheless, for some salt hydrates, they reach as much as Dtm/°C = 137 for ice/
Mg(ClO4)2�6H2O and 113 for ice/KOH�H2O [72]. If related to the unhydrated salts
the eutectic distances, Dtm, are much more appreciable.

Table 2.5 summarizes the formation of deep eutectic solvents between water and
salt hydrates.

Mixtures of magnesium chloride hexahydrate (MgCl2�6H2O) with nickel chlo-
ride hexahydrate (NiCl2�6H2O) [73] can also be called deep eutectic solvents, see
Chap. 1, Fig. 1.3. The melting points of the components are tm/°C = 112 for
MgCl2�6H2O and 30 for NiCl2�6H2O, and the eutectic at the 1:1 composition has a
melting point tm/°C = 4 and the distance Dtm/°C = 67 is quite appreciable.
Ammonium nitrate forms with manganese and zinc nitrate hexahydrates deep
eutectic solvents with large melting point distances of the eutectics [74]. With Mn
(NO3)26H2O (tm/°C = 25.8) at the ammonium nitrate mole fraction of 0.450, the
eutectic has tme/°C = 4.6 and Dtme/°C = 100.0 (given tm/°C = 169 for NH4NO3

[75]) and for Zn(NO3)26H2O (tm/°C = 36.4) at the ammonium nitrate mole fraction
of 0.447 the eutectic has tme/°C = 12.7 and Dtme/°C = 109.7.

Mixtures of the incongruently melting calcium chloride hexahydrate with a few
other salt hydrates also form deep eutectic solvents [76]. With 0.35 mol fraction
calcium bromide hexahydrate tme/°C = 14, with 0.25 mol fraction calcium nitrate
tetrahydrate tm/°C = 13 and with 0.17 mol fraction magnesium nitrate hexahydrate
tm/°C = 9 (in the latter two cases these are not necessarily the eutectic points) [73].

The deep eutectic solvents described in this and the previous sections are all more
or less hydrophilic, they absorb water from the atmosphere and are soluble in water.
For certain uses, hydrophobic (deep eutectic) solvents would be useful and such have
been proposed in recent years. Certain tetraalkylammonium halides form hydrophobic
deep eutectic solvents with decanoic acid (C9H17CO2H, CAS No. 334-48-5) at 1:2
molar ratios: tetrabutylammonium chloride tme/°C = −12.0, tetraheptylammonium
chloride ((C7H13)4NCl, CAS No. 10247-90-2) tme/°C = −16.7, tetraoctylammonium
chloride ((C8H15)4NCl, CAS No. 13125-07-3) tme/°C = 2.0, and bromide
((C8H15)4NBr, CAS No. 14866-33-2) tme/°C = 9.0, and methyltricotylammonium
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chloride (CH3(C8H15)3NCl, CAS No. 10247-90-2) tme/°C = −0.1, and bromide
(CH3(C8H15)3NBr, CAS No. 35675-80-0) tme/°C = 9.0 [77]. These deep eutectic
solvents being hydrophobic, i.e., immiscible with water, can be used for solvent
extraction purposes.

Lidocaine (2,6-dimethylcyclohexyl-2-diethylaminoglycylamide, CAS
No. 137-58-6) forms with decanoic acid lidocaine decanoate and with further 1, 2,
or 3 molecules of decanoic acid this salt forms hydrophobic deep eutectic solvents
with unspecified freezing temperatures [78]. These hydrophobic deep eutectic
solvents can be used to form a biphasic system with water and to extract various

Table 2.5 Deep eutectic solvents formed between congruently melting salt hydrates with ice as
the hydrogen bond donor component, the melting points of the salt hydrates, tmsh, of the eutectics,
tme, the eutectic composition (mole fraction of the salt hydrate, xeutectic, and the eutectic distance,
Dtme [114]

Salt hydrate tmsh/°C of salt tme/°C of eutectic xeutectic Dtme/°C

Al(NO3)3∙9H2O 71.0 –27.2 0.36 53

CaBr2∙6H2O 38.2 –22.2 0.59 45

Ca(NO3)2∙4H2O 47.7 –28.7 0.38 45

Ca(ClO4)2∙6H2O 45.5 –74.6 0.39 90

Co(NO3)2∙6H2O 55.8 –26.2 0.42 49

FeCl3∙6H2O 36.8 –55.0 0.36 68

KF∙4H2O 18.5 –40.2 0.39 47

KOH∙H2O 126.8 –65.2 0.38 113

K2HPO4∙4H2O 13.0 –13.5 0.40 19.4

LiCH3CO2∙2H2O 57.8 –16.1 0.17 26

LiNO3∙3H2O 29.5 –22.9 0.31 32.1

LiClO3∙3H2O 8.1 –40.2 0.32 43

LiClO4∙3H2O 95.1 –18.2 0.21 38

LiI∙2H2O 75.0 –69.0 0.45 100

Mg(CH3CO2)2∙4H2O 57.2 –29.2 0.31 50

MgBr2∙6H2O 164.4 –42.7 0.38 105

MgCl2∙6H2O 116.2 –33.6 0.34 73

Mg(NO3)2∙6H2O 89.5 –4.1 0.40 40

Mg(ClO4)2∙6H2O 154.8 –68.6 0.44 137

MnCl2∙4H2O 57.8 –25.6 0.44 51

Mn(NO3)2∙6H2O 25.8 –36.2 0.45 48

NaCH3CO2∙3H2O 57.8 –18.2 0.35 38

NaOH∙H2O 65.1 –28.2 0.19 41

NiCl2∙6H2O 30.2 –45.3 0.39 57

Ni(NO3)2∙6H2O 56.7 –34.1 0.41 57

Zn(NO3)2∙6H2O 36.4 –32.0 0.41 46
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solutes from aqueous media. On the other hand, deep eutectic solvents prepared
from tetrabutylammonium chloride and hexanoic, octanoic, decanoic, and dode-
canoic acids, although hydrophobic, are not sufficiently stable in water to serve for
extraction in biphasic systems [79].

2.4 Nonionic Deep Eutectic Solvents

The definition of the deep eutectic solvents presented at the beginning of this
chapter, namely “Deep eutectic solvents (DESs) are binary mixtures of definite
composition of two components, one of which being ionic, that yield a liquid phase
at ambient conditions” precludes the inclusion of nonionic deep eutectic solvents in
this exposition. However, many such moieties have been described in the literature
and deserve consideration here, perhaps under the changed subtitle: low transition
temperature mixtures (LTTMs). They are characterized by low iconicity, hence by
low electrical conductivity, but such solvents appear to be compatible with enzy-
matic reactions. Most of them consist of naturally originating components and may
be classified as NADES. They are of several types: polyalcohols (including sugars)
with carboxylic acids, zwitterionic amino acids with non-protonating hydrogen
bond donating components, and mixtures of amides. For only very few of
the nonionic mixtures described in the literature as deep eutectic solvents have
the actual freezing points of the eutectics been reported, although in some cases the
glass transition temperatures have been, but in any case, these mixtures are liquid
near ambient temperatures. In addition to binary mixtures, some ternary mixtures
have also been dealt with in this context and are mentioned here.

The sugars glucose, fructose, and sucrose in 1:1 combination with malic, maleic,
and citric acids feature in [1, 80, 81] and in [1] also other sugars and sugar alcohols:
xylitol, adonitol (ribitol), and sorbitol are considered. The 1:1 mixtures of citric acid
with glucose and adonitol are dealt with in [82]. The 1:1 mixture of fructose with
malic acid is used in [83] for extraction purpose and with citric and tartaric acids in
[84] as tools for bioavailability. The latter two acids in 1:1 combination with
glucose are considered and the glass transition points, 9.8 and −18.3 °C are
reported in [85] whereas the polarities of the mixtures are reported in [86]. Menthol
(racemic 5-methyl-2-(propan-2-yl)cyclohexan-1-ol, CAS No. 89-78-1) produces
eutectic solvents with carboxylic acids at various molar ratios: 1:1 with acetic acid,
1:2 with pyruvic and lactic acids, and 2:1 with lauric (dodecanoic) acid. Their glass
transition points are −7.8, −58.8 and −6.8, −61.1, and 7.1 and 13.8 °C, respec-
tively, with two such points detected by thermal analysis for two of the mixtures.
Other physical properties, the density and viscosity, and their temperature depen-
dences are also reported in [87]. Menthol forms deep eutectic solvents with several
other carboxylic acids (benzoic acid, phenylacetic acid, and ibuprophen CAS
No. 15687-27-1) at 3:1 molar ratios [88].
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Two zwitterionic amino acids: proline and betaine (trimethylglycine) have
received considerable attention as components of deep eutectic solvent mixtures.
When mixed with stoichiometric amounts of carboxylic acids, they form ionic
liquids that are outside the scope of this section, but with excess acid or with
nonacidic hydrogen bond donors they may produce nonionic deep eutectic solvents.
Binary mixtures of proline and of betaine with sugars (glucose, mannose, maltose,
sucrose) and with sugar alcohols (sorbitol, xylitol) produce nonionic natural deep
eutectic solvents [1, 85, 89], as they do with glycerol, and betaine does so with
ethylene glycol [47]. Mixtures of betaine and/or carnitine
(3-hydroxy-4-trimethyl-aminobutyric acid, CAS No. 541-15-1) with ethylene gly-
col [89] and with phenol [90] form deep eutectic mixtures that do not freeze down
to −60 and −80 °C, respectively. The 2:5 proline mixture with glycerol forms a
deep eutectic solvent [91] as does betaine with 1:1, 1:2, and 1:3 glycerol [92].
Non-hydroxylic hydrogen bond donors, namely amides, have also been used with
the zwitterionic amino acids to produce nonionic deep eutectic solvents. Thus, 1:1
mixtures of betaine with 1-methylurea and of proline with acetamide yield such
solvents [91]. The glass transition temperatures of mixtures of betaine with urea at
molar ratios of 1:1–2:5 are below −40 °C [93]. The 1:2 mixture of betaine with urea
has been used as a deep eutectic solvent in combination with an aqueous salt
solution for the biphasic extraction of proteins [94]. Twelve sulfobetaines (e.g.,
(CH3)2C4H9NC3H6SO3) form with camphorsulfonic acid (CAS No. 35963-20-3)
deep eutectic solvents with low iconicity [95].

Nonionic deep eutectic solvents are also produced by mixtures of two amides.
Caprolactam forms such solvents at a 3:1 ratio with urea and at a 1:1 ratio with
acetamide, whereas 1:2 urea/acetamide mixtures also form such eutectics, with
melting points of 30, 18, and 48 °C and very small electric conductivities [96]. These
three mixtures are also mentioned in [97]. The latter mixture has a glass transition
point of −67 °C, but its dynamic properties were studied only at >55 °C [98].

Ternary nonionic deep eutectic solvents have also received attention, mainly
based on zwitterionic amino acids. The mixture proline/glycerol/sucrose at a 4:9:1
molar ratio is a sustainable efficient extraction medium [99]. The mixtures com-
prised of betaine/glycerol/glucose at a 4:20:1 molar ratio [100] and betaine/ethylene
glycol/water at a molar ratio of 1:2:1 [101] have also been found useful for the
extraction of natural products. Solvents consisting of betaine with urea, methylurea,
glucose, sorbitol, glycerol, or ethylene glycol and with water as the third component
form with an aqueous salt solution a biphasic system useful for the extraction of
proteins [102]. Mixtures of 2:3 acetamide and urea melt too high for being useful,
but 1 mass of this mixture with 2 masses of PEG 300 (polyethylene glycol with a
mean molar mass of 300 g mol−1) is a eutectic melting at 32 °C, i.e., forming a
nonionic eutectic solvent [103].

The nonionic deep eutectic solvents dealt with in this book are summarized in
Table 2.6. In cases, where no melting or glass transition points have been reported
but physical properties or applications have been reported down to a certain tem-
perature t/°C, this is denoted as <t in the appropriate column.
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Table 2.6 Some non-ionic low transition temperature solvents for which glass transition
temperatures, tg, have been reported

HBA HBD Ratio HBA:HBD tg/°C Ref.

0.6 acetamide + 0.4 urea PEG400 13:1 32a [143]

proline oxalic acid 1:1 –14.5 [144]

glycolic acid 1:1 –30.7 [145]

lactic acid 2:1 –36.7 [144]

malic acid 1:3 –44.4 [144]

malic acid –8.2 [145]

betaine urea 1:2 –42.5 [134]

ethylene glycol 1:4 < –60 [132]

phenol 1:3 < –80 [131]

2-furoic acid 1:2 11a [96]

phenylacetic acid 1:2 –7a [96]

oxalic acid 1:1 –17.2 [144]

glycolic acid 1:2 –36a [96]

lactic acid 2:1 –46.9 [144]

mandelic acid 1:1 13a [96]

malic acid 1:3 –20.0 [144]

levulinic acid 1:2 < 30 [146]

dimethyldodecyl-N-oxide phenylacetic acid 1:1 –34 [68]

dimethyloctadecyl-N-oxide phenylacetic acid 1:1 20 [68]

N-methylmorpholine-N-oxide phenylacetic acid 1:1 –21 [68]

N-dodecylmorpholine-N-oxide phenylacetic acid 1:1 –27 [68]

carnitine ethylene glycol 1:4 < –60 [132]

phenol 1:3 < –80 [131]

menthol acetic acid 1:1 –7.8 [131]

CnH2n+1COOH (n =3,5,7,9) 1:1 < 25 [52]

octanoic acid ? <25 [54]

dodecanoic acid 2:1 7.1 [128]

lactic acid 1:2 –61.1 [128]

levulinic acid 1:1 < 25 [52]

pyruvic acid 1:1 –58.8 [128]

glucose citric acid 1:1 9.8 [147]

tartaric acid 1:1 –18.3 [147]

sucrose citric acid 1:1 –14.0 [147]

BuMe2N(C2H6)SO3 camphorsulfonic acid 1:2 13a [136]

Bu3N(C2H6)SO3 camphorsulfonic acid 1:2 9a [136]

DoMe2 N(C2H6)SO3 camphorsulfonic acid 2:3 –1a [136]

Octanoic acid Dodecanoic acid 3:1 9.0a [148]

Nonanoic acid Dodecanoic acid 3:1 9.0a [148]

Decanoic acid Dodecanoic acid 2:1 18.0a [148]
a Melting temperature, tm/°C
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