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Abstract. Traditional saliency detection via Markov chain only con-
sider boundaries nodes. However, in addition to boundaries cues, back-
ground prior and foreground prior cues play a complementary role to
enhance saliency detection. In this paper, we propose an absorbing
Markov chain based saliency detection method considering both bound-
ary information and foreground prior cues. The proposed approach com-
bines both boundaries and foreground prior cues through bidirectional
Markov chain. Specifically, the image is first segmented into superpixels
and four boundaries nodes (duplicated as virtual nodes) are selected.
Subsequently, the absorption time upon transition node’s random walk
to the absorbing state is calculated to obtain foreground possibility.
Simultaneously, foreground prior as the virtual absorbing nodes is used
to calculate the absorption time and obtain the background possibility.
Finally, two obtained results are fused to obtain the combined saliency
map using cost function for further optimization at multi-scale. Exper-
imental results demonstrate the outperformance of our proposed model
on 4 benchmark datasets as compared to 17 state-of-the-art methods.
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1 Introduction

Saliency detection aims to effectively highlight the most important pixels in
an image. It helps to reduce computing costs and has widely been used in
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various computer vision applications, such as image segmentation [6], image
retrieval [36], object detection [8], object recognition [21], image adaptation [23],
and video segmentation [26]. Saliency detection could be summarized in three
methods: bottom-up methods [22,33,37], top-down methods [10,15,35] and
mixed methods [7,27,31]. The top-down methods are driven by tasks and could
be used in object detection tasks. The authors in [34] proposed a top-down
method that jointly learns a conditional random field and a discriminative dic-
tionary. Top-down methods could be applied to address complex and special
tasks but they lack versatility. The bottom-up methods are driven by data,
such as color, light, texture and other basic features. Itti et al. [13] proposed
a saliency method by using these basic features. It could be effectively used
for real-time systems. The mixed methods are considered both bottom-up and
top-down methods.

In this paper, we focus on the bottom-up methods, the proposed method is
based on the properties of Markov model, there are many works based on Markov
model, such as [3,4]. Traditional saliency detection via Markov chain [14] is based
on Marov model as well, but it only consider boundaries nodes. However, in
addition to boundaries cues, background prior and foreground prior cues play a
complementary role to enhance saliency detection. We consider four boundaries
information and the foreground prior saliency object, using absorbing Markov
chain, namely, both boundary absorbing and foreground prior are considered
to get background and foreground possibility. In addition, we further optimize
our model by fusing these two possibilities, and exploite multi-scale processing.
Figure 1 demonstrates and compares the results of our proposed method with
the traditional saliency detection absorbing Markov chain (MC) method [14],
where the outperformance of our method is evident.

Fig. 1. Comparison of the proposed method with the ground truth and MC method.

2 Principle of Absorbing Markov Chain

In absorbing Markov chain, the transition matrix P is primitive [9], by definition,
state i is absorbing when P (i, i) = 1, and P (i, j) = 0 for all i �= j. If the Markov
chain satisfies the following two conditions, it means there is at least one or more
absorbing states in the Markov chain. In every state, it is possible to go to an
absorbing state in a finite number of steps (not necessarily in one step), then we
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call it absorbing Markov chain. In an absorbing Markov chain, if a state is not
a absorbing state, it is called transient state.

An absorbing chain has m absorbing states and n transient states, the transfer
matrix P can be written as:

P →
(

Q R
0 I

)
, (1)

where Q is a n-by-n matrix, giving transient probabilities between any transient
states, R is a nonzero n-by-m matrix giving these probabilities from transient
state to any absorbing state, 0 is a m-by-n zero matrix and I is the m-by-m
identity matrix.

For an absorbing chain P , all the transient states can achieve absorbing states
in one or more steps, we can write the expected number of times N(i, j) (which
means the transient state moves from i state to the j state), its standard form
is written as:

N = (I − Q)−1, (2)

namely, the matrix N with invertible matrix, where nij denotes the average
transfer times between transient state i to transient state j. Supposing c =
[1, 1, · · ·, 1]N1×n, the absorbed time for each transient state can be expressed as:

z = N × c. (3)

3 Bidirectional Absorbing Markov Chain Model

To obtain more robust and accurate saliency maps, we propose a method via
bidirectional absorbing Markov chain. This section explains the procedure to
find the saliency area in an image in two orientations. Simple linear iterative
clustering (SLIC) algorithm [2] has been used to get the superpixels. The pipeline
is explained below (Fig. 2):

Fig. 2. The processing of our proposed method
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3.1 Graph Construction

The SLIC algorithm is used to split the image into different pitches of superpix-
els. Afterwards, two kinds of graphs G1(V 1, E1) and G2(V 2, E2) are constructed,
where G1 represents the graph of boundary absorbing process and G2 represents
the graph of foreground prior absorbing process. In each of the graphs, V 1, V 2

represent the graph nodes and E1, E2 represent the edges between any nodes
in the graphs. For the process of boundary absorbing, superpixels around the
four boundaries as the virtual nodes are duplicated. For the process of foreground
prior absorbing, superpixels from the regions (calculated by the foreground prior)
are duplicated. There are two kinds of nodes in both graphs, transient nodes
(superpixels) and absorbing nodes (duplicated nodes). The nodes in these two
graphs constitute following three properties: (1) The nodes (including transient
or absorbing) are associated with each other when superpixels in the image are
adjacent nodes or have the same neighbors. And also boundary nodes (super-
pixels on the boundary of image) are fully connected with each other to reduce
the geodesic distance between similar superpixels. (2) Any pair of absorbing
nodes (which are duplicated from the boundaries or foreground nodes) are not
connected (3) The nodes, which are duplicated from the four boundaries or fore-
ground prior nodes, are also connected with original duplicated nodes. In this
paper, the weight wij of the edges is defined as

wij = e
− ‖xi−xj‖

σ
2 , i, j ∈ V 1 or i, j ∈ V 2 (4)

where σ is the constant parameter to adjust the strength of the weights in
CIELAB color space. Then we can get the affinity matrix A

aij =

⎧⎪⎨
⎪⎩

wij , if j ∈ M(i) 1 ≤ i ≤ j

1, if i = j

0, otherwise,
(5)

where M(i) is a nodes set, in which the nodes are all connected to nodes i.
The diagonal matrix is given as: D = diag(

∑
j aij), and the obtained transient

matrix is calculated as: P = D−1 × A.

3.2 Saliency Detection Model

Following the aforementioned procedures, the initial image is transformed into
superpixels, now two kinds of absorbing nodes for saliency detection are required.
Firstly, we choose boundary nodes and foreground prior nodes to duplicate as
absorbing nodes and obtain the absorbed times of transient nodes as foreground
possibility and background possibility. Secondly, we use a cost function to opti-
mize two possibility results together and obtain saliency results of all transient
nodes.
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Absorb Markov Chain via Boundary Nodes. In normal conditions, four
boundaries of an image rarely have salient objects. Therefore, boundary nodes
are assumed as background, and four boundaries nodes set H1 are duplicated as
absorbing nodes set D1, H1,D1 ⊂ V 1. The graph G1 is constructed and absorbed
time z is calculated via Eq. 3. Finally, foreground possibility of transient nodes
zf = z̄(i) i = 1, 2, ···, n, is obtained, and z̄ denotes the normalizing the absorbed
time vector.

Absorb Markov Chain via Foreground Prior Nodes. We use bound-
ary connectivity to get the foreground prior fi without using the down-top
method [38].

fi =
N∑

j=1

(1 − exp
( − BC2

j

2σ2
b

)
)da(i, j)exp

( − d2s(i, j)
2σ2

s

)
(6)

where da(i, j) and ds(i, j) denote the CIELAB color feature distance and spatial
distance respectively between superpixel i and j, the boundary connectivity (BC)
of superpixel i is defined as BCi =

∑
j∈H wij

√∑N
j=1 wij

in Fig. 3, σb = 1, σs = 0.25. H
denotes the boundary area of image and wij is the similarity between nodes i
and j. N is the number of superpixels. Afterwards, nodes ({i|fi > avg(f)}) with
high level values are selected to get a set H2, which are duplicated as absorbing
nodes set D2, H2,D2 ⊂ V 2. The graph G2 is constructed and absorbed time z
is calculated using Eq. 3. Finally, the background possibility of transient nodes
zb = z̄(i) i = 1, 2, · · ·, n, is obtained, where z̄ denotes the absorbed time vector
normalization.

Fig. 3. An illustrative example of boundary connectivity. (a) input image (b) the super-
pixels of input image (c) the superpixels of similarity in each pitches (d) an illustrative
example of boundary connectivity.

3.3 Saliency Optimization

In order to combine different cues, this paper has used the optimization model
presented in [38], which fused background possibility and foreground possibility
for final saliency map. It is defined as

N∑
i=1

zb
i s

2
i +

N∑
i=1

zf
i (si − 1)2 +

∑
i,j

wij(si − sj)2 (7)
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where the first term defines superpixel i with large background probability zb to
obtain a small value si (close to 0). The second term encourages a superpixel i
with large foreground probability zf to obtain a large value si (close to 1). The
third term defines the smoothness to acquire continuous saliency values.

In this work, the used super-pixel numbers N are 200, 250, 300 in the super-
pixel element, and the final saliency map is given as: S =

∑
h Sh at each scale,

where h = 1, 2, 3.

4 Simulation Results

The proposed method is evaluated on four benchmark datasets ASD [1],
CSSD [30], ECSSD [30] and SED [5]. ASD dataset is a subset of the MSRA
dataset, which contains 1000 images with accurate human-labeled ground truth.
CSSD dataset, namely complex scene saliency detection contains 200 complex
images. ECSSD dataset, an extension of CSSD dataset contains 1000 images and
has accurate human-labeled ground truth. SED dataset has two parts, SED1 and
SED2, images in SED1 contains one object, and images in SED2 contains two
objects, in total they contain 200 images. We compare our model with 17 dif-
ferent state-of-the-art saliency detection algorithms: CA [12], FT [1], SEG [20],
BM [28], SWD [11], SF [19], GCHC [32], LMLC [29], HS [30], PCA [18], DSR [17],
MC [14], MR [33], MS [24], RBD [38], RR [16], MST [25]. The tuning parameters
in the proposed algorithm is the edge weight σ2 = 0.1 that controls the strength
of weight between a pair of nodes.

The precision-recall curves and F-measure are used as performance metrics.
The precision is defined as the ratio of salient pixels correctly assigned to all the
pixels of extracted regions. The recall is defined as the ratio of detected salient
pixels to the ground-truth number. A PR curve is obtained by the threshold
sliding from 0 to 255 to get the difference between the saliency map (which is cal-
culated) and ground truth (which is labeled manually). F-measure is calculated
by the weighted average between the precision values and recall values, which
can be regarded as overall performance measurement, given as:

Fβ =
(1 + β2)Precision × Recall

β2Precision + Recall
, (8)

we set β2 = 0.3 to stress precision more than recall. PR-curves and the F-measure
curves are shown in Figs. 4–7, where the outperformance of our proposed method
as compared to 17 state-of-the-art methods is evident. Figure 8 presets visual
comparisons selected from four datasets. It can be seen that the proposed method
achieved best saliency results as compared to the state-of-the-art methods.
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Fig. 4. PR-curves and F-measure curves comparing with different methods on ASD
dataset.
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Fig. 5. PR-curves and F-value curves comparing with different methods on ECSSD
dataset.
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Fig. 6. PR-curves and F-measure curves comparing with different methods on CSSD
dataset.
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Fig. 7. PR-curves and F-measure curves comparing with different methods on SED
dataset.

Fig. 8. Examples of output saliency maps results using different algorithms on the
ASD, CSSD, ECSSD and SED datasets

5 Conclusion

In this paper, a bidirectional absorbing Markov chain based saliency detection
method is proposed considering both boundary information and foreground
prior cues. A novel optimization model is developed to combine both back-
ground and foreground possibilities, acquired through bidirectional absorbing
Markov chain. The proposed approach outperformed 17 different state-of-the-art
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methods over four benchmark datasets, which demonstrate the superiority of our
proposed approach. In future, we intend to apply our proposed saliency detec-
tion algorithm to problems such as multi-pose lipreading and audio-visual speech
recognition.
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