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Abstract. Band selection is of great important for hyperspectral image pro-
cessing, which can effectively reduce the data redundancy and computation time.
In the case of unknown class labels, it is very difficult to select an effective band
subset. In this paper, an unsupervised band selection algorithm is proposed which
can preserve the original information of the hyperspectral image and select a low-
redundancy band subset. First, a search criterion is designed to effectively search
the best band subset with maximum information entropy. It is challenging to
select a low-redundancy spectral band subset with maximizing the search criteria
since it is a NP-hard problem. To overcome this problem, a double-graph model
is proposed to capture the correlations between spectral bands with full use of the
spatial information. Then, an improved Determinantal Point Process algorithm is
presented as the search method to find the low-redundancy band subset from the
double-graph model. Experimental results verify that our algorithm achieves
better performance than other state-of-the-art methods.

Keywords: Unsupervised band selection � Maximum information
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1 Introduction

Hyperspectral data is a three-dimension image with the spatial information and abundant
spectral information which makes great development of hyperspectral images in the
field of remote sensing [1, 2]. Multidimensional spectral bands can improve the rep-
resentation of the ground objects. However, not all the bands play an important role in
hyperspectral image processing [3]. That is because high dimensional hyperspectral data
may cause a lot of problems, such as redundancy of information, noise bands and
Hughes phenomenon. Therefore, an effective dimension reduction method is necessary
for the hyperspectral data. Traditional dimensionality reduction methods mainly include
two types: band selection and feature extraction [5–7]. Compared with feature extrac-
tion, band selection can effectively protect the original information as much as possible.

The research of band selection can be mainly divided into two directions: super-
vised band selection [8, 9] and unsupervised band selection [10–12]. Supervised band
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selection method can select a spectral band subset that have a strong correlation with
class labels. However, it’s time-consuming to label the hyperspectral images. There-
fore, the unsupervised band selection method is more applicable. In this paper, we
propose an unsupervised band selection method to select a low-redundancy band subset
with maximum amount of information.

The unsupervised band selection process mainly contains two steps: the selection
criteria and search strategy. At present, the unsupervised selection methods can be
divided into the ranking-based methods [13], clustering-based methods [17], and
greedy-algorithms [15]. However, most of the above-mentioned band selection meth-
ods only consider the property of the band combination ignoring the latent structure
between spectral bands in the high dimensional space [3]. This defect will cause the
lack of global considerations. In addition, most band selection methods do not consider
the correlation between pairwise bands from the spatial information. Spatial informa-
tion helps to make the measurement of spectral redundancy more comprehensive. In
[3], Yuan et al. proposed a multiple graph to measure similarity between spectral bands
by spectral clustering method. However, the spectral clustering has very high com-
putation complexity and high memory requirements. In view of this, this paper pro-
poses a double-graph structure to describe the complex correlation between spectral
bands with both pixels information and neighborhood information of pixels.

In addition, selecting a low-redundancy band subset from the graph model with
traditional search methods is a challenging work. DPP [16] is a probabilistic model that
can select a diverse subset of features. The k-DPP [17], as an improved algorithm of the
DPP, can select a low-redundancy band subset with dimension k. The original k-DPP
can only be applied to select from single graph model without full use of the spatial
information of hyperspectral images. Furthermore, it does not consider the physical
properties of each band in the selecting process.

To solve the above problems, a double-graph model DPP is proposed with full use of
pixel information and its domain information. To attain a high-performance band subset,
a spectral band selection criterion: maximum band subset information [4] is used which
means that the selected spectral band subset has a rich amount of information.

2 The Proposed Framework

2.1 Hyperspectral Data Representation

A hyperspectral dataset is represented by B ¼ b1; b2; b3; . . .; blf g 2 Rn�l, where
n represents the number of pixels in each spectral band and l is the total number of all
spectral bands. bi 1� i� lð Þ indicates the i-th spectral band. Given a pixel point p j

x, we
use p̂ j

x to represent the mean of the neighbourhood of pixel p j
x. Then, the neighbour

information can be rewritten as a new dataset B̂ ¼ b̂1; b̂2; b̂3; . . .; b̂l
� � 2 Rs�l, where

s is the total number of b̂i 1� i� lð Þ.

2.2 Double Graph Model

In [3], a multi-graph structure with spectral clustering method is proposed that can
effectively represent the relationship between bands. In this section, we construct a
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double graph model to capture the complex relationships between pairwise spectral
bands with statistical property of space. In graph model, each vertex represents a band
bi and each edge corresponds to the correlation between pairwise bands. The corre-
lation of vertices can be described as an adjacency matrix which can be defined by a
Gram matrix. The adjacency matrix of bands is defined as follows:

LB ¼ BTB ð1Þ

And the adjacency matrix of neighbour information data can be expressed as follows:

LB̂ ¼ B̂T B̂ ð2Þ

LB and LB̂ are both l � l positive semidefinite similarity matrices. According to the
reference [18], it is clear that

det LYð Þ ¼ Vol2 bif gi2Y
� � ð3Þ

where det LYð Þ is equal to the squared k-dimensional volume of the parallelepiped
spanned by the bif gi2Y of B corresponding to bands in subset Y, where k is the
dimension of subset Y.

2.3 Search Criterion

To select a band subset with rich information, the evaluation criteria of maximum
information entropy [4] is used here. The information entropy of the spectral band
subset is defined as:

max Hk ¼ � 1
k

Xk

i¼1

Xn

x¼1
P pix
� �

logP pix
� � ð4Þ

where pix represents the pixel value of the i-th spectral band and k is the number of band
subset. Equation (4) can be used as the evaluation criteria for the performance of each
band subset, which is called MI for short.

2.4 MI-DPP Band Selection Method

The k-DPP [14] can be expressed as follows:

X
Y 0j j¼k

det LY 0ð Þ ¼ det Lþ Ið Þ
X

Y 0j j¼k
PL Y 0ð Þ ð5Þ

where PL Y 0ð Þ represents the probability of any band subset Y 0 with dimension
k. According to Eq. (5), k-DPP can be expressed as follows:

Pk
L Yð Þ ¼ det LYð ÞP

Y 0j j¼k det LY 0ð Þ ð6Þ
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According to reference [13], we can get

Pk
L ¼

1
eNk

det Lþ Ið ÞPL ¼ 1
eNk

X
Yj j¼k

PVY Y 0ð ÞPn2Ykn ð7Þ

Equation (7) is the mathematical expression of k-DPP which shows that Pk
L is a

mixture of the elementary DPPs PVY .
With full use of the spatial information, our algorithm can be written as follows:

Pk
LB; LB̂

Yð Þ ¼ 1
eNB; k

X
Yj j¼k

uPVB
Y Y 0ð Þ

Y
n2Y k

B
n þ

1
eN
B̂;k

X
Yj j¼k

ûPVB
Y Y 0ð Þ

Y
n2Y k

B̂
n ð8Þ

where u and û are scalars that balance the weight of two k-DPPs. Equation (8) shows that

our algorithm is a mixture of two elementary DPPs PVB
Y and PVB̂

Y , where kBn and k
B̂
n are the

eigenvalues of the adjacent matrices LB and LB̂ respectively. e
N
B;k ¼

P
Yj j¼k

Q
n2Y k

B
n and

eN
B̂;k

¼ P
Yj j¼k

Q
n2Y k

B̂
n are the eigenvalue polynomials of the adjacent matrices LB and

LB̂, respectively. P
k
LB;LB̂

Yð Þ is the probability of sampling a band subset Y. Combined with

the search criterion MI mentioned in Sect. 2.3, we call the proposed algorithm as MI-
DPP. Details of the sampling process of MI-DPP are summarized in Algorithm 1.

Algorithm 1  Sampling  Process of MI-DPP
Input: 

: a hyperspectral image 
: number of selected bands 

Output: 
: index of feature vectors 

1) Computing similarity matrix:
2) Characteristic decomposition:
3) for  do 
4) select eigenvectors sets  and  with cardinality  with probability 

 and 

5) end for 
6) while do
7) select band  with probability: 

8) If

9) end if
10) ,  an orthonormal basis for the subspace of ,

orthogonal to 
11) end while 

Output:
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We repeat Algorithm 1 for a times to obtain a spectral band subsets Y with the
dimension k. Then we select the band subset that meets the maximum search criteria Hk

from the a spectral band subsets. With the proposed algorithm MI-DPP, the selected
band subset will have the advantages of low redundancy and high information.

3 Experimental Result

In this section, we test the performances of the proposed algorithm and compare with
several well-known unsupervised selection algorithms, including MIC [18] and Lscore
[19].

3.1 Hyperspectral Datasets

AVRIS sensor: Indian Pines dataset
The India Pines dataset was obtained by the Airborne Visible/Infrared Imaging

Spectrometer sensor (AVIRIS) in 1992 [20]. The image covers Indian Pines test site in
North-western Indiana which has 220 spectral bands covering the spectrum range of
0.2–2.4 lm. And 20 water absorption spectral bands [104–108], [150–163] are
removed and remaining 200 spectral bands form the dataset. It has 145 � 145 spatial
pixels, including 16 classes ground truth.

Table 1. The numbers of training and test samples for each category of the Indian Pines image

Class Training Test Samples

1. Alfalfa 4 50 54
2. Corn - notill 142 1292 1434
3. Corn - mintill 83 751 834
4. Corn 23 211 234
5. Grass - pasture 49 448 497
6. Grass - trees 73 674 747
7. Grass - pas - turemowed 3 23 26
8. Hay - windrowed 48 431 489
9. Oats 2 18 20
10. Soybean - notill 97 871 968
11. Soybean - mintill 245 2223 2468
12. Soybean - clean 59 555 614
13. Wheat 20 192 212
14. Woods 127 1167 1294
15. Building - grass-trees 39 341 380
16. Stone - steel-towers 9 86 95
Total 1023 9343 10366
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3.2 Experimental Parameter Setup

In this section, we will introduce the parameter settings. The weight scalar u and û are
set to be u = û = 0.5. The number of iterations a = 5. The number of selected bands
increased by 10 and up to 100 bands. We use the SVM algorithm [21] to test the
performance of the selected bands. The parameters C and c of RBF kernel of SVM are
in the range of 10{1:4} and 2{-4:4}, and are determined by five-fold cross validation. In
all experiments, 10% of the samples were randomly selected for training, and the rest of
the samples were used for testing. In Table 1, we show the numbers of training samples
and test samples for Indian Pines dataset. The results of the experiment are evaluated
through three widely used indexes: overall accuracy (OA), average accuracy (AA) and
kappa coefficient [22].

3.3 Runtime Analysis

As showed in [18], k-DPP has a time complexity of O Nk3ð Þ. It spends O N3ð Þ time to
decompose s adjacent kernel matrices of bands. The MI-DPP algorithm takes total time
O nN3 þ nNk3ð Þ to sample k bands, where n is the number of the similar kernel
matrices. The computation time of the algorithm will greatly increase when N and k are
large. However, the numbers of N and k are normally small in the selecting progress.
We pre-calculate the information entropy for each band and establish lookup tables for
Indian Pines dataset. Establishing lookup tables for Indian Pines dataset takes only
0.05 s. All the experiments are carried out on Matlab with Intel CPU E5-
1620@3.5 GHz with 32 GB RAM.

In Fig. 1, the computing time of the three algorithms is shown as the number of
selected spectral bands increases from 10 to 100. It’s obvious that the calculation time
of the proposed MI-DPP is the least comparing with the other algorithms when the
dimension of band subset is low. As the number of selected spectral bands increases,

Fig. 1. Runtime of MI-DPP, MIC, Lscore on the Indian Pines
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the calculation time of the MIC and Lscore does not change significantly. The cal-
culation time of the algorithm MI-DPP will increase as the dimension of selected band
subset increases. In general, the proposed algorithm MI-DPP takes less time than the
other band selection algorithms.

3.4 Classification Results

In this subsection, we test the performance of the selected subsets of spectral bands on
Indian Pines image. In Fig. 2, we compared the classification accuracy of the band
subset selected by different algorithms. When the dimension of band subsets is in the
range of 10–70, our proposed band selection method MI-DPP is significantly better
than other algorithms. The algorithm Lscore performs the worst. When the dimension
of spectral band subsets is in the range of 70–100, the performances of the three
algorithms are similar. This is because as the number of bands is increasing, the amount
of information in the spectral band increases. In the following, we will analyse the
performance of the proposed MI-DPP in the low dimension in detail. We set the
dimension of selected band subset to be 10 for each dataset and perform the classifi-
cation tests. The results are shown in Table 2. In Fig. 3, we show the classification
maps of three band selection algorithms on Indian Pines. It can be seen that among
these three algorithms, Lscore obtains the worse result. Compared with the other two
algorithms, the classification accuracy of the optical band selected by the proposed MI-
DPP in all categories has been significantly improved. This is because the spectral band
subset selected by the algorithm MI-DPP are more diverse and low-redundant which
can provide abundant information.

Fig. 2. Classification accuracy of the three band selection algorithms on Indian Pines
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4 Conclusion

In this paper, an unsupervised band selection algorithm called MI-DPP is proposed for
hyperspectral images. We use the evaluation criterion to evaluate the spectral band
performance, aiming to maintain the maximum band information. A double graph
model is used to capture the complex relationship between bands. Furthermore, an
improved k-DPP is proposed to sample a diversity and low-redundancy band subset
from the two-graph structure. The experimental results on Indian Pines image dataset
show that the proposed algorithm has a good expression in the task of band selection.

Table 2. Classification accuracy of the band set on the Indian pines image selected by Lscore,
MIC and the proposed MIMN-DPP

Class Lscore MIC Proposed

1. Alfalfa 22.0 ± 19.7 32.6 ± 25.1 44.6 – 16.6
2. Corn - notill 46.7 ± 3.5 55.3 ± 3.8 60.2 – 4.8
3. Corn - mintill 34.2 ± 3.4 32.6 ± 5.8 55.6 – 2.5
4. Corn 10.9 ± 7.5 12.4 ± 6.3 53.7 – 7.9
5. Grass - pasture 78.1 ± 3.9 83.2 ± 4.4 88.5 – 2.7
6. Grass-trees 88.4 ± 3.1 90.8 ± 1.9 91.8 – 2.1
7. Grass - pas - turemowed 26.9 ± 78.9 63.4 ± 21.7 82.2 – 10.1
8. Hay - windrowed 82.1 ± 6.1 95.6 ± 1.9 95.7 – 2.5
9. Oats 11.1 ± 11.7 16.1 ± 13.7 57.2 – 27.3
10. Soybean - notill 55.6 ± 3.6 44.3 ± 6.8 65.1 – 6.1
11. Soybean - mintill 71.5 ± 2.3 75.1 ± 2.7 79.6 – 3.1
12. Soybean - clean 36.4 ± 3.4 52.7 ± 4.7 66.1 – 3.1
13. Wheat 91.3 ± 4.7 90.1 ± 4.9 94.4 – 3.1
14. Woods 92.6 ± 1.3 93.6 ± 0.6 94.5 – 1.3
15. Building - grass-trees 24.0 ± 5.4 37.1 ± 3.5 47.2 – 6.5
16. Stone - steel-towers 81.4 ± 8.7 77.0 ± 16.6 87.7 – 8.6
OA (%) 63.1 ± 0.1 66.7 ± 0.9 75.2 – 0.7
AA (%) 53.3 ± 2.6 59.5 ± 3.2 72.8 – 2.4
Kappa (%) 57.4 ± 0.9 61.5 ± 1.5 71.5 – 0.8

Lscore MIC Proposed

Fig. 3. Classification maps of three band selection algorithms on Indian Pines
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