
Motor Imagery EEG Recognition Based
on FBCSP and PCA

Banghua Yang1, Jianzhen Tang1(&), Cuntai Guan2, and Bo Li2

1 Department of Automation, School of Mechanical Engineering and
Automation, Shanghai University, No. 149, Yanchang Road,

Shanghai 200072, China
{yangbanghua,tjz31521}@shu.edu.cn
2 School of Computer Science and Engineering,

Nanyang Technological University, 50 Nanyang Avenue,
Jurong West 639798, Singapore

Abstract. In motor imagery-based Brain Computer interfaces (BCIs), the
classification accuracy of using the Common Spatial Pattern (CSP) algorithm to
deal with the electroencephalogram (EEG) is closely related to the frequency
range selected. Due to individual differences, the frequency range selected that
reaches the best performance is different, which limits the generality and the
actual use of the algorithm. To solve this problem, this paper proposes a motor
imagery recognition method based on Filter Bank Common Spatial Pattern
(FBCSP) and Principal Components Analysis (PCA), which is called FBCSP
+PCA. The feasibility of the FBCSP+CSP is preliminary verified using the 2008
BCI competition data and further verified using data collected by our laboratory
with wireless dry electrode device. The average classification accuracy of the
data collected by our laboratory reaches 75.7% in the absence of individual band
selection. That is also to say that the proposed method has good generality and
and practical value because it can obtain high performance without the need of
giving each individual a specific optimum frequency band.
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1 Introduction

Currently, a Brain-Computer Interfaces (BCI) system based on motor imagery is slowly
approaching public view as a newly emerging rehabilitation method in the field of
clinical rehabilitation. It achieves the human-computer interaction between the human
brain and the computer by real-time measurement and analysis of the electroen-
cephalogram (EEG) generated when motor imaging [1].

Effective and rapid feature extraction and classification methods are important in
the practical application of BCI systems. The feature extraction method of Common
Spatial Patterns (CSP) has good performance and is the most widely method used in the
BCI system based on motor imagery [2]. However, the CSP method itself lacks fre-
quency domain information, and the classification accuracy is closely related to the
frequency range selection of EEG signals [3]. In actual use, because of the individual
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differences of EEG signals, it is necessary to manually adjust a specific frequency range
for each individual to obtain a higher correct rate, which limits its generality and
practical application.

In order to solve the problem of manually selecting the subject-specific frequency
range for the CSP algorithm, several methods have been proposed, including the
Common Spatio-Spectral Pattern (CSSP) [4], the Common Sparse Spetral Spatial
Pattern (CSSSP) [5], the Sub-band Common Spatial Pattern (SBCSP) and Filter Bank
Common Spatial Pattern (FBCSP) [3, 6]. In the method of CSSP and CSSSP, due to
the inherent nature of the optimization problem, the solution of filter coefficients is also
strongly dependent on the choice of initial parameters. When using SBCSP, a com-
parative study of using different sub band score fusion techniques and classification
algorithms are not available [6]. FBCSP algorithm comprises four stages: frequency
filtering, spatial filtering, feature selection and classification. In the first stage, the EEG
measurements are band-pass filtered into multiple frequency bands. In the second stage,
CSP features are extracted from each of these bands. In the third stage, the Mutual
Information (MI)-based feature selection algorithm is used to automatically select
discriminative pairs of frequency bands and corresponding CSP features. In the fourth
stage, a classification algorithm is used to classify the CSP features. And the FBCSP
has been shown to yield superior classification accuracy compared against SBCSP on a
publicly available dataset [3].

In this paper, a motor imagery recognition method based on FBCSP and Principal
Components Analysis (PCA), which is called FBCSP+PCA, is proposed. The method
uses a set of band-pass filters to decompose the EEG signal from 4–40 Hz into a
plurality of frequency bands with a specific bandwidth, which enriches the frequency
domain information. Meantime, intercepting a specific time period of EEG during
imaging task through a time window eliminates the brain waves caused by the state
conversion of thinking and visual evoked [7]. The CSP algorithm is used to extract the
features of EEG from multiple frequency bands. The extracted multidimensional fea-
tures are filtered by PCA for feature dimension reduction, which can solve the problem
manually selecting a specific frequency caused by individual differences. Finally, the
feature after dimension reduction are classified by Support Vector Machine (SVM) and
K-NearestNeighbor (KNN). The method has achieved good experimental results,
which lays the foundation for the practical application of the algorithm in BCIs.

2 Method

2.1 Introduction of CSP

The CSP technique has become a popular feature extraction approach in EEG-based
BCI applications and it essentially finds spatial filters that maximize the variance for
one class and simultaneously minimize the variance for the other class [8]. This method
decomposes the raw EEG signals into spatial patterns, which are extracted from two
classes of single trial EEG. Suppose the EEG signals of each trial are ED�N , where D is
the number of channels and N is the number of samples. The detailed computing
process of the CSP can be seen in [9]. After the feature extraction by using CSP, a
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feature vector F ¼ f1; f2; � � � ; f2mf g, where m is the number of feature pairs chosen, is
obtained and used as an input for the feature dimension reduction.

2.2 Filter Bank Common Spatial Pattern

In this paper, the FBCSP algorithm comprises four stages: frequency filtering, spatial
filtering, feature reduction and classification. In the first stage, the EEG signal is band-
pass filtered into multiple frequency bands. In the second stage, CSP features are
extracted from each of these bands. In the third stage, the PCA-based feature reduction
algorithm is used to automatically get the most effective CSP features. In the fourth
stage, the SVM algorithm and KNN algorithm are used to classify the CSP features.
The specific description is as follows: (1) two groups of IIR (Infinite Impulse
Response) band-pass filter are respectively used to divide EEG signals from 4–40 Hz
with bandwidth 4 Hz and 2 Hz, which leads to a group of 9 bands signal and a group of
18 bands signal. According to the bandwidth selection in the reference [3] and that the
smaller the bandwidth is, the more sub-bands are decomposed, the more frequency
information is provided in principle. So the bandwidth of 4 Hz and 2 Hz are selected to
decompose EEG. (2) The each band signal of two groups is respectively as input of the
CSP filter to extract 2-dimensional features. The group of signals with a bandwidth of
4 Hz obtains a feature vector F1 ¼ ff1; f2; � � � ; f18g and the other group of signals with a
bandwidth of 2 Hz obtains a feature vector F2 ¼ ff 01; f 02; � � � ; f 036g. (3) The PCA algo-
rithm is used for the feature reduction from two groups of CSP features. (4) The two
groups of features after dimensionality reduction are used as input of SVM and KNN
algorithm to obtain classification results. The processing of EEG signal is shown in
Fig. 1.

2.3 PCA Algorithm

PCA is a multivariate statistical method that examines the correlations among multiple
variables, which derives a small number of principal components that retain the
information of the original variables as much as possible from the original variables.
Using PCA to extract features of multidimensional features, we can extract the most

(a)Single-band bandwidth 4HZ decomposition signal     (b)Single-band bandwidth 2HZ decomposition signal

Fig. 1. The processing of EEG signal
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relevant signal features of EEG from motor imagery, and remove the noise signals and
irrelevant components to improve classification accuracy and speed.

Suppose there is an extracted multidimensional feature matrix fn�M where we can
consider n is the total task number of left-handed imaging tasks and right-handed
imaging tasks, and M is the dimension of the extracted features. The detailed steps of
PCA can be described as follows:

• Step 1: Center features

An�M ¼ fn�M � �f ð1Þ

where f is the matrix formed by the average of each dimension in fn�M .
• Step 2: Calculate the covariance matrix of the centralized matrix

BM�M ¼ ATA
n

ð2Þ

• Step 3: Calculate the eigenvector matrix U and the eigenvalue matrix Lðl1; l2; � � � lMÞ
of the covariance matrix B, where l1; l2 � � � lM is the eigenvalue of the B matrix and
is expressed as descending order.

• Step 4: Select the eigenvectors corresponding to the first k largest eigenvalues
according to the cumulative contribution rate G to form a transformation matrix
TM�k .

G ¼
Pk

i¼1
li

PM

i¼1
li

ð3Þ

• Step 5: Reduce dimension

newfn�k ¼ fn�M � TM�k ð4Þ

By the feature dimensional reduction process of PCA, the few most effective
features are automatically obtained, which avoids the need to manually adjust the
optimal frequency range for different individuals and different time segments of the
same individual. It improves the generality and practicability of the CSP algorithm.

3 Datasets

3.1 Dataset I

The first dataset used in this study is from “Data sets 1” of BCI Competition 4, which is
launched on July 3rd 2008. The EEG data from four subjects (c, d, e, g) of the dataset
are selected in this study, because the EEG data from these four subjects include two
classes of motor imagery tasks, left hand and right hand. The main purpose of this
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paper is to distinguish between motor imagery tasks. These EEG signals were recorded
from 59 channels. The signals were band-pass filtered between 0.05 and 200 Hz and
then sampled at 1000 Hz. More details were described in [10].

3.2 Dataset П

The second dataset was from the authors’ laboratory experiments. The experiment used
g.Nautilus-8 wireless dry electrode of g.tec to collect EEG data. Sampling frequency is
250 Hz, cycle of each trial is 8 s. Each experimental cycle is divided into the following
three links, as shown in Fig. 2:

• Link 1: 0–2 s black screen, subjects are in a relaxed state.
• Link 2: Cross appears on 2–4 s screen “+”, subject is ready.
• Link 3: 4–8 s left or right arrow appears on the screen, the subjects carry on left or

right hand motor imagery task according to the arrow instructions.

In the experiment, EEG data of eight subjects were collected. The EEG data of each
subject contains four groups of left and right hand motor imagery EEG data. Each
group of experimental data contains 40 times left-hand motor imagery tasks and 40
times right-hand motor imagery tasks. The electrodes distribution of EEG signals is
shown in Fig. 3.

4 Results

4.1 Experimental Results Based on the First Dataset from BCI
Competition 4

This paper first verifies the EEG data of four subjects (c, d, e, g) from Data sets 1
provided by the 4th BCI competition in 2008. In the competition data, each partici-
pant’s data contains 100 left-handed imaging tasks and 100 right-handed imaging tasks,
with a sampling frequency of 1000 Hz. Fifty left-handed and fifty-right-handed data
were extracted from each set of data for training and the rest were used for testing. The

Fig. 2. Experimental flow chart Fig. 3. The electrodes distribu
tion
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feature extraction method is FBCSP, then PCA is used for feature dimension reduction,
the SVM and KNN methods are used to classify the left hand and right hand motor
imagery. The detailed theory and Implementation of SVM and KNN can be seen in
[11–13]. When the two feature vectors F1 and F2 are reduced by the PCA, the final
feature dimension k needs to be determined in order to obtain the best classification
result. In the experiment, the classification accuracy is closely related to the feature
dimension k. And through the prior verification of the experiment, it is learned that
when k is greater than or equal to 5, the classification effect is less than that k is small.
So k = 2, 3, 4 is selected as the feature dimension for the final selection. The classi-
fication accuracy of the data set with bandwidths of 2 Hz and 4 Hz at different values
of k is shown in Tables 1 and 2 respectively.

The Tables 1 and 2 shows that: (1) When the value of k is 3, the feature dimension
after dimension reduction is 3 dimensions, the highest average classification accuracy
rate can be achieved in both groups of features with bandwidth of 2 Hz and 4 Hz.
(2) The accuracy from two groups features with a bandwidth of 2 Hz are all higher on
average than that with a bandwidth of 4 Hz. The results can also be interpreted as a data
set with a bandwidth of 2 Hz decomposes more frequency bands than a set of signals
with a bandwidth of 4 Hz, and the extracted frequency domain information is more
abundant.

Table 1. The classification accuracy of different subjects at 2 Hz bandwidth from the first
dataset

K 2 3 4
Subjects SVM KNN SVM KNN SVM KNN

c 0.72 0.73 0.78 0.75 0.76 0.75
d 0.85 0.83 0.90 0.87 0.90 0.85
e 0.96 0.93 0.97 0.97 0.96 0.95
g 0.87 0.84 0.90 0.89 0.89 0.85

mean 0.85 0.832 0.887 0.87 0.877 0.85

Table 2. The classification accuracy of different subjects at 4 Hz bandwidth from the first
dataset

K 2 3 4
Subjects SVM KNN SVM KNN SVM KNN

c 0.67 0.62 0.70 0.67 0.68 0.63
d 0.83 0.80 0.85 0.84 0.86 0.80
e 0.96 0.94 0.97 0.95 0.93 0.92
g 0.88 0.84 0.92 0.92 0.91 0.90 

mean 0.835 0.80 0.86 0.845 0.845 0.812 
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4.2 Experimental Results Based on the Second Dataset from Laboratory
Data

Twenty left hand and twenty right hand motor imagery data from each set of 8 subjects
collected in our laboratory were adopted for training and the rest for testing. After the
same processing as the above competition data, the average classification accuracy with
bandwidths of 2 Hz and 4 Hz under different k values are shown in Tables 3 and 4
respectively.

The Tables 3 and 4 shows that: (1) When the value of k is 3, the highest average
classification accuracy can be achieved in both groups of features with bandwidths of
2 Hz and 4 Hz. After feature dimension reduction, 3 dimensions is the best feature
dimension for each subject. (2) A set of signals with a bandwidth of 2 Hz is 4.3%
higher on average than that with a bandwidth of 4 Hz, which is more obvious than that
obtained with the competition data. It also shows the method has a good performance
with the data collected from the authors’ laboratory experiments by g.Nautilus-8
wireless dry electrode EEG acquisition equipment.

Table 3. The classification accuracy of different subjects at 2 Hz bandwidth from the second
dataset

K 2 3 4
Subjects SVM KNN SVM KNN SVM KNN

A 0.718 0.743 0.75 0.787 0.675 0.731
B 0.731 0.762 0.756 0.781 0.681 0.718
C 0.706 0.718 0.743 0.756 0.637 0.675
D 0.681 0.681 0.731 0.718 0.675 0.669
E 0.718 0.706 0.737 0.743 0.687 0.693
F 0.743 0.75 0.781 0.775 0.706 0.718
G 0.699 0.706 0.75 0.743 0.675 0.687
H 0.713 0.687 0.756 0.756 0.693 0.687

mean 0.714 0.719 0.751 0.757 0.678 0.697

Table 4. The classification accuracy of different subjects at 4 Hz bandwidth from the second
dataset

K 2 3 4
Subjects SVM KNN SVM KNN SVM KNN

A 0.706 0.681 0.693 0.718 0.637 0.625
B 0.669 0.706 0.7 0.725 0.637 0.675
C 0.681 0.675 0.693 0.706 0.643 0.657
D 0.637 0.625 0.681 0.675 0.625 0.613
E 0.681 0.657 0.706 0.7 0.663 0.675
F 0.718 0.7 0.743 0.718 0.687 0.663
G 0.675 0.687 0.706 0.699 0.675 0.657
H 0.663 0.637 0.687 0.7 0.643 0.663

mean 0.678 0.671 0.701 0.705 0.651 0.655
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Figure 4 shows the most significant Spatial Patterns using the frequency range that
is autonomously selected in FBCSP+PCA. The results show that the left hemisphere
and right hemisphere discriminates the right hand action and left hand action respec-
tively for eight subjects from the authors’ laboratory experiments. These results
verify the neurophysiological plausibility of the CSP projection matrix computed for
these subjects. However, the results for subjects ‘D’ and ‘E’ do not show such patterns.
This is a plausible reason for the relative inferior test accuracy obtained for subjects
‘D’ and ‘E’.

(a)8-16HZ   (b)12-24HZ          (c)8-24HZ      (d)8-24HZ

(e)12-28HZ  (f)8-24HZ     (g)8-16HZ    (h)8-24HZ

Fig. 4. Spatial patterns of using FBCSP on laboratory data for each subject
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4.3 EEG Signal Processing Based on Time Window

The motor imagery time of each trial is four seconds. When subjects perform motor
imagery tasks, there are the problems of visual evoked and delay of imaging especially
in the beginning and end of 4 s, which would produce more volatility and reduce the
signal-to-noise ratio, thus reducing the classification accuracy. To solve this problem,
five time windows (0 to 4 s, 0.5 to 4 s, 0 to 3.5 s, 0.5 to 3.5 and 1 to 3 s) are chosen in
the experiment.

Table 5 shows the average classification accuracy of different time windows for 8
subjects respectively under the bandwidth is 2 Hz and k takes 3. The result shows that
when the time window is set to 0.5 to 4 s and 0 to 3.5 s, the average classification
accuracy is higher than 0 to 4 s, and the classification accuracy of the time window (0.5
to 3.5 s) is the highest, which verifies it can eliminate the problems of visual evoked
and delay of thinking and improves the classification accuracy by time window setting.
When the time window is set to 1 to 3 s, the classification accuracy is down compared
with 0.5 to 3.5 s. It shows that it can diminish the effect of EEG signal amplitude
fluctuations, however, it also lose part of the useful information related to motor
imagery under this time window.

Figure 5 shows the average classification accuracies of the traditional CSP and the
method proposed in this paper for 8 subjects from the authors’ laboratory experiments
respectively. The result shows the average accuracy of the method proposed in this
paper is higher than the traditional CSP and reaches 75.7%. It verifies the method
FBCSP+PCA can effectively eliminate the individual differences of EEG signals and
gets better classification results.

Table 5. When bandwidth is 2 Hz and k takes 3, the average classification accuracy of different
time windows for 8 subjects respectively

Time_window
Subject 0-4s 0.5-4s 0-3.5s 0.5-3.5s 1-3s 

A 0.675 0.718 0.706 0.75 0.725
B 0.669 0.693 0.7 0.756 0.731
C 0.657 0.693 0.706 0.743 0.706
D 0.643 0.681 0.693 0.731 0.7
E 0.65 0.675 0.681 0.737 0.718
F 0.687 0.706 0.731 0.781 0.743
G 0.669 0.681 0.699 0.75 0.718
H 0.657 0.687 0.699 0.756 0.725

mean 0.663 0.691 0.702 0.751 0.721
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5 Discussion

Furthermore, the reason for using PCA as the feature reduction method is the PCA can
reduce the correlation of the components in multidimensional features and so it
increases the significance of each component. However, there is a drawback of the
PCA method. The drawback is it can cause the presence of unexpected observations
within the data to be processed by the PCA, which results in an incorrect de-correlation
of the different features and so it may lacks part of information of motor imagery when
feature reducing. There is a method called Robust PCA (RPCA) based on the Mini-
mum Covariance Determinant (MCD) estimator, which has a good performance on this
problem [14, 15]. Using this method to replace the conventional PCA method in
FBCSP+PCA may has a better performance in getting the most effective features from
different individuals and can improve the practical use of the method proposed in the
paper.

6 Conclusion

In this paper, a motor imagery recognition algorithm called FBCSP+PCA is presented.
The FBCSP algorithm can enrich the frequency domain information of feature
extracted. The PCA algorithm can get the few most effective motor imagery features by
feature reduction. The combination of these two algorithm effectively avoid the
problem that need to manually adjust the certain frequency range selected caused by
individual differences when using traditional CSP algorithm. By verifying two EEG
data set from BCI Competition 4 and the authors’ laboratory experiments, the method
showed a good performance, which lays a foundation for in-depth study of practical
application of portable BCI system based on motor imagery.

Fig. 5. The average classification accuracy of the traditional CSP and the method proposed in
this paper for 8 subjects respectively
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