
Chapter 9
Structure Determination by Continuous
Diffraction from Imperfect Crystals

Kartik Ayyer, Oleksandr M. Yefanov, and Henry N. Chapman

9.1 Introduction

The far-field diffraction pattern of a finite and isolated object is continuous,
unlike that of an ideal perfect crystal which consists of discrete spots, called
Bragg peaks. The arrangement of macromolecules in a crystal lattice provides
an enormous amplification of the diffraction signal in these peaks over that of
a single molecule. This has been the key strategy for structure determination
using X-rays from the earliest days, since it makes possible the measurement of
a diffraction signal above background scattering within the very low exposure that
can be tolerated before radiation damage modifies the structure under investigation.
However, measurements confined only to Bragg peaks represent but a fraction of
the information about a structure that could possibly be acquired in a diffraction
experiment. This information loss, due to the fact that the Bragg peaks are too sparse
to measure the entire content of the object’s Fourier spectrum, usually prevents the
possibility to derive the diffraction phases that are needed to synthesize the electron
density from that spectrum. This so-called phase problem is the usual state of affairs
in crystallography, requiring additional measurements such as multiple wavelength
anomalous diffraction or isomorphous replacement to provide the needed missing
information. The problem can also be overcome if extremely high resolution
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is available, such that the information content of the measurement exceeds the
information needed to describe all atomic degrees of freedom (the positions of
the atoms and their amplitudes of vibration). By contrast the measurement of the
fully sampled continuous diffraction pattern of an isolated non-periodic object does
not suffer from the phase problem since there are generally more independent
measurements in the diffraction intensities than needed to describe the object,
independent of resolution. For this reason, and because it is often difficult to produce
highly ordered crystals of macromolecules, many approaches have been considered
that may give access to the continuous diffraction.

Since there are more crystallographers than those who carry out coherent
diffractive imaging of non-periodic objects, we have assumed that most who read
this chapter are more familiar with the concepts of coherent diffraction as applied
to crystalline systems. We therefore introduce, in Sect. 9.2, coherent diffraction
generally, our nomenclature and conventions, and examine some insights about
the information content of diffraction patterns and phase retrieval that have been
developed in the field somewhat independently of crystallography. In Sect. 9.3,
various situations are described where high-resolution continuous diffraction of
macromolecules can be observed, many of which have long fascinated crystallo-
graphers and diffraction microscopists alike. Given the recent success of utilizing
the continuous diffraction of translationally disordered photosystem II crystals
for structure determination [1], summarized in Sect. 9.4.8, we devote Sect. 9.4 to
such cases and show that the continuous diffraction of rigid units is remarkably
resilient to different forms of disorder and correlation that might occur in such
crystals, especially if one considers the structural information that can be extracted
from the autocorrelation function (the generalized Patterson function [10], equal
to the Fourier transform of the diffraction intensities). The exposition laid out in
this section might inspire those working in coherent diffractive imaging to apply
concepts such as partial-coherent diffraction analysis to macromolecular structure
determination. Finally, in Sect. 9.5, we describe procedures and lessons learned to
accurately measure macromolecular continuous diffraction, especially using X-ray
free-electron lasers, which is somewhat more challenging to do than for Bragg
peaks.

9.2 Coherent Diffraction of a General Object

Consider a diffraction experiment where a collimated quasi-monochromatic X-ray
beam is elastically scattered by an object with a three-dimensional electron density
distribution ρ(r). The incident beam, of wavelength λ, can be described by a
wave-vector kin pointing in the direction of beam propagation with |kin| = 1/λ.
The diffraction intensities are recorded in the far field on a pixelated detector. A
particular detector pixel records radiation travelling from the object with a wave-
vector kout as shown in Fig. 9.1a. In the Born approximation, in which multiple
scattering is neglected, the counts measured in this pixel are given by
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where q = kout − kin is the photon momentum transfer vector, I0 is the
incident fluence (number of photons per unit area within the exposure time of the
measurement), P the polarization factor, Ωp the solid angle subtended by the pixel
from the sample, and re the classical radius of the electron.

Equation (9.1) can be explained in terms of a ray description of scattering and
considering the density ρ(r) to be given by the sum of point scatterers of strength
fi located at positions ri : ρ(r) = ∑

i fi δ(r − ri ) (Fig. 9.1). A ray scattered in a
direction kout from atom 1 will acquire a path difference of �1 = (r1 · k̂out − r1 · k̂in)

relative to a ray scattering from the origin O, where k̂ are unit vectors. This is the
difference of the lengths of the thick lines in Fig. 9.1a. The accumulated phase,
relative to this arbitrary origin, will therefore be φ1 = (2π/λ)�1 = 2πr1 · q.
The point scatterer itself may cause a modification to the scattered wave by the
complex value f1, giving a scattering amplitude f1 exp(iφ1) = f1 exp(2πir1 · q).
Equation (9.1) is simply the coherent summation of all scattered waves as obtained
by integrating over all point scatterers in the object. The measured distribution
of counts depends strongly on the phases φ of the scattered waves (and thus on
the three-dimensional arrangement of scatterers), since these may lead to complete
constructive or destructive interference, or something in between.

Equation (9.1) is further identified as the square modulus of the Fourier transform
of the electron density of the object. The strength of the diffraction in a given
direction kout only depends on the Fourier component ρ̃(q) where we use the
definition of the Fourier transform, for any integrable function g, as

g̃(q) ≡ Fq{g(x)} ≡
∫

g(x) exp(2πix · q) dx. (9.2)

This component is a particular spatial frequency in the object, which may be thought
of as a volume grating of a particular wavenumber 2π |q| and direction q̂. From
Fig. 9.1b, it is seen that the magnitude of q is given simply by

|q| = 2|k| sin θ = 2

λ
sin θ (9.3)

for a scattering angle 2θ , and that due to the conservation of |k| (that is, elastic
scattering) the vector q lies on the surface of a sphere (called the Ewald sphere). We
see from the diagram in Fig. 9.1b that the scattered ray appears to reflect at an angle
θ from a plane normal to q. That is, the ray reflects from the volume grating which
is tilted at the angle θ relative to the incoming wave-vector. The ray only reflects
if the period of the volume grating, d = 1/|q|, satisfies Eq. (9.3), which is to say
d = λ/(2 sin θ) which is well recognized as Bragg’s law.

For a given orientation of the object, there are only a subset of spatial frequencies
(volume gratings) that can be observed by the diffraction measurement. These are
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Fig. 9.1 (a) Far-field scattering can be described in terms of paths of rays scattered from atoms.
(b) The Ewald-sphere construction

the frequencies that have the right periods d to obey the Bragg condition for given
scattering angle 2θ and which happen to be in the right orientation for this to occur
(by “reflection”). These are described exactly by the vectors q that lie on the Ewald
sphere. In order to measure other spatial frequencies, not present on the Ewald
sphere, the object must be rotated to bring these into the reflecting condition. It
should be stressed that although Bragg’s law and the Ewald sphere construction
are well-known concepts in crystallography, there is no requirement of periodicity
of the object in the derivation or application of these concepts. Diffraction from a
crystal is a special case (a periodic object), as discussed next.

9.2.1 Diffraction of a Periodic Object

A crystal can be thought of as a special case of the general object (and thus
crystallography as a special case of coherent diffractive imaging!). The electron
density of an ideal finite crystal can be described as a sum of the unit cell contents
convolved with a periodic lattice:

ρ(r) =
Nb∑

b=1

ρb(Rbr − ab) ⊗
Nc∑

c=1

δ(r − ac) , (9.4)

where ρb(r) is the asymmetric unit or rigid body which occurs Nb times in each
unit cell in positions and orientations given by ab and Rb, respectively (relative to
an arbitrary cell origin), and ac are the positions of all the Nc unit cells that make
up the crystal.1 These positions are usually periodic in all three dimensions. Below,

1Throughout this chapter we will use the indices abc to uniquely distinguish atom a of rigid body
b in unit cell c. When it is not needed to report on which body or cell an atom is part of, we just
use the index i.
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we use the simplified notation of ρb representing each of the Nb differently oriented
and translated asymmetric objects in the unit cell:

ρ(r) =
Nb∑

b=1

ρb(r) ⊗
Nc∑

c=1

δ(r − ac) . (9.5)

The diffraction of a periodic object takes on a special form. Since the density is
given by the convolution of the unit cell and the lattice, the Fourier transform ρ̃(q)

is given by the product of the Fourier transform of the unit cell with the Fourier
transform of the lattice The diffraction pattern |ρ̃(q)|2 is therefore also given by a
product, where the diffraction intensities of the unit cell are modulated by Bragg
peaks given by

L(q) =
∣
∣
∣
∣
∣
Fq

{
Nc∑

c=1

δ(r − ac)

}∣
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∣

2

(9.6)
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exp(2πiac · q)
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∣

2

. (9.7)

As the number of unit cells tends to infinity, L(q) approaches a sum of delta
functions, the reciprocal lattice, with spacing inversely proportional to the real-space
lattice spacing. The existence of peaks can be easily explained by considering a
crystal of symmetry P1 (i.e., with no additional symmetry) with unit cell dimensions
in all directions of w. The electron density of this crystal is given by Eq. (9.4) with
Nb = 1, ρ(r) = ∑

c ρb(r − ac). The diffraction from each object in the crystal is
coherently added, as described in Eq. (9.1). Since the phase of the diffracted wave of
an object varies with its displacement ac as 2πac ·q, the diffraction from the various
cells c in the crystal will usually destructively interfere, since their relative phases
would tend to uniformly take on values from 0 to 2π . The exception is in directions
where constructive interference occurs, which is when ac · q forms whole numbers,
or at values of q spaced by ΔqB = 1/w for a unit cell spacing w. For a crystalline
sample, one can therefore only make measurements of the unit cell transform at this
minimum spacing of ΔqB . As discussed below, this limits the information content
of the diffraction pattern.

The idealized situation of an infinite crystal and delta function Bragg peaks is not
realized in practice. For a coherently illuminated finite crystal (such as discussed
in Sect. 9.3.3) Bragg peaks have a width given by the transform of the shape of
the crystal, with widths inversely proportional to the crystal width and a total
integrated value proportional to the number of cells in the crystal. More usually, such
as for measurements at synchrotron radiation beamlines, the transverse coherence
length of the X-ray beam is smaller than the crystal size, and is what determines
the width of peaks. The partially coherent diffraction pattern in this case can be
well approximated by the convolution of the coherent diffraction I (q) of Eq. (9.1)



258 K. Ayyer et al.

with the angular extent of the source (as seen by the sample). At such beamlines
this angular extent is usually governed by the divergence of the beam, and not
surprisingly this has the effect of matching the width of Bragg peaks to this angular
extent. There also may be a length scale of the crystal over which strict periodicity
persists, discussed in Sect. 9.4, again giving rise to a convolution of intensities. The
convolution of I (q) with a correlation function or coherence function of the incident
radiation, Γ (q), is to modulate the autocorrelation function of the object (described
below in Sect. 9.2.4) with the Fourier transform Γ̃ . As will be seen in this chapter,
knowledge of the precise form of the correlation function over length scales of many
unit cells is not necessarily required to determine the structures of the molecular
constituents of crystals.

9.2.2 Diffraction from an Atomic Object

At the high spatial resolution that can be accessed by X-ray wavelengths, the
electron density can be described in terms of the constituent atoms of the sample.
Since the electron density is highest around the nuclei rather than the bonds, this
density can be accurately modelled as a sum over all atoms as

ρ(r) =
N

∑

i=1

ζi(r − ri ) , (9.8)

where ζi(r) is the density of the ith atom, and there are N atoms in the entire object.
The coherent diffracted intensity from this collection of atoms is therefore

I (q) =
∣
∣
∣
∣
∣

∑

i

fi(q) exp(2πiri · q)

∣
∣
∣
∣
∣

2

=
∑

ii′
fi(q)f ∗

i′ (q) exp(2πi(ri −ri′)·q) , (9.9)

where ∗ is the complex conjugate and we have dropped the pre-factors in Eq. (9.1).
The structure factors f (q), equal to the Fourier transform of the atom density ζ̃ (q)

of each atom, can be modelled as a sum of Gaussian functions [54] but are often
considered to be constant (due to point-like atoms).

9.2.3 Information Content of Diffraction Data

The three-dimensional (3D) map of the electron density ρ(r) of any general object
can be synthesized from its Fourier amplitudes through an inverse Fourier transform.
This is simply a coherent sum of all the volume gratings in real space that combine
to make up the object,
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m(r) = F−1
r {ρ̃(q)} ≡

∫

ρ̃(q) exp(−2πiq · r) dq . (9.10)

Each period and orientation of these gratings must be summed not only with the
correct strength (or amplitude |ρ̃(q)|) but also with the correct shift (or phase
arg{ρ̃(q)}) with respect to other frequencies. While the modulus of the Fourier
amplitudes can be obtained from the square root of the measured diffraction
intensities,

√
I (q), the phases are missing.

This so-called phase problem is perhaps one of the most studied inverse problems
in science, and can be generally overcome from complete measurements of the
independent diffraction intensities (except in some pathological cases) in two and
three dimensions [2] (see Sect. 9.2.4). Unfortunately, the arrangement of objects in
crystal lattices does not allow the required complete measurements to be made. For
the simple example of a single molecule in a crystal of P1 symmetry, the Bragg
peaks only provide half of the possible independent diffraction measurements that
can be made in each direction, or an under-representation by a factor of 8 for a three-
dimensional object, as is described below. This spells the difference between the
feasibility or infeasibility of recovering the electron density directly from intensity
measurements when no other information about the object is available.

9.2.4 Shannon Sampling and the Constraint Ratio

The diffraction pattern of a coherently illuminated finite object is “band limited,”
which is to say that the modulation of the diffraction intensity as a function of
scattering angle θ or momentum transfer q has a certain minimum modulation
period. This smallest period is inversely proportional to the width of the object.
This is true even for diffraction of crystals, where the finest features in the pattern
are the Bragg peaks themselves. As mentioned above, the width of a Bragg peak is
inversely proportional to the width of the entire crystal, or at least the width that is
coherently illuminated.

The frequency content of a diffraction pattern can be examined through Fourier
analysis, by taking the Fourier transform of the diffraction intensities I (q). That is

Ĩ (u) ∝ F−1
u

{

|ρ̃(q)|2
}

= ρ(r) ⊗u ρ∗(−r)

=
∫

ρ(r)ρ∗(r − u) dr

≡ Aρ(u). (9.11)

This is the autocorrelation function of the object, a 3D map of all pair correlations
of points within the object, and is a function of the real-space difference vector
u. This function is zero for all u that are larger than the maximum separation of
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any two points in the object. For an object that has a largest width w, for example,
the autocorrelation function extends from the origin by w, as well as by −w. Its
extent is thus 2w. Since the diffraction pattern I (q) is a Fourier transform of the
autocorrelation function, we see that the pattern is band limited with a minimum
period equal to 1/w. In essence, this means that the pattern is smooth at that
reciprocal length scale. This can be verified from the Fourier transform of two delta
functions spaced apart by 2w:

F−1
q {δ(r − w) + δ(r + w)} = exp(−2πiwq) + exp(2πiwq) = 2 cos(2πwq) .

(9.12)

Shannon’s theorem [43] states that a band-limited function can be completely
specified from discrete samples of that function as long as there are at least two
samples per smallest period. Thus, the diffraction pattern discussed above can be
completely measured with samples spaced no more than Δq = 1/(2w) apart.
Measuring samples more finely than this does not increase our knowledge of
the diffraction pattern, and so this defines the information content of the pattern.
It specifies the quantity of independent measurements that can be made of the
diffraction intensities. (In practice, a finer sampling than this may help overcome an
effective decrease in coherence due to the finite pixel width, or to effectively increase
dynamic range and signal to noise.) If the diffraction pattern is measured to a
maximum resolution qmax, or a range from −qmax to qmax, then NS = 2qmax/Δq =
4wqmax samples across the diffraction pattern completely define it. Expressing the
resolution as qmax = 1/d, we find NS = 4w/d. In two dimensions, there are
thus N2

S independent measurements possible for an object whose extent fits in a
square of width w, and N3

S for the corresponding case in three dimensions. Here we
have assumed a complex-valued object, which gives a diffraction pattern that has no
symmetry. If the object is real valued, then the diffraction pattern is centrosymmetric
and the number of independent measurements is reduced by half.

How much information is needed to fully specify the complex-valued electron
density ρ(r) to a specific resolution? This time the minimum period to be considered
is that of the finest volume grating that makes up the map m(r) at resolution
qmax = 1/d, which is d. This modulation must be sampled at a spacing no larger
than d/2. Since the object has an extent of w, then at least 2w/d samples are
required in each dimension. The number of “unknowns” in the object is two per
independent sample, considering that the density is complex-valued, and so the
total is given by 2 (2w/d)n for an n-dimensional object, compared with (4w/d)n

possible independent diffraction intensity measurements. Thus, for such an object
(fitting within a cube of width w), the potential excess of measurements to unknowns
is given by the ratio Ω = 2n−1 [16, 30]. That is, for a one-dimensional object
there are an equal number of measurements to unknowns, two times as many in two
dimensions, and a four times excess in three dimensions.

Now coming back to the crystal of symmetry P1 with unit cell dimensions in all
directions of w, measurements of the intensity can only be made at the Bragg peaks
which are spaced apart by ΔqB = 1/w for a unit cell spacing w. These are twice as
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far apart as the minimum Shannon spacing ΔqS = 1/(2w) required to completely
measure the intensities from one of the objects on its own. That is, in this case of
P1 symmetry, the Bragg peaks undersample the single-object diffraction pattern by
a factor of two in each dimension, leading to Ω = 2n−1/2n = 1/2.

The ratio Ω of the excess of measured intensities to those required to describe
the object has been termed the constraint ratio [16]. Obviously, the recovery of the
structure of the object from the measurements alone requires Ω > 1. This condition
is sufficient for reconstruction in the case of zero noise [2, 5], except in certain
pathological cases where several different structures give rise to the same diffraction
pattern. These cases are so-called homometric structures, defined as those with the
same sets of interatomic distances (the same autocorrelation function, and hence
the same diffraction pattern). Trivial examples are mirror images, but a homometric
pair of objects can be constructed from the convolution of two non-centrosymmetric
structures with one of the structures either being inverted or in its original position.
The handedness of alpha helices in proteins means that such cases will not exist for
macromolecules. Experience shows on the whole that the larger Ω , the easier it is
to directly recover the electron density map.

Elser and Millane [16] have pointed out that since the diffraction intensities
are equally represented by their Fourier transform, Ω is equal to the number of
independent coefficients in the autocorrelation function divided by the number of
independent object coefficients. Since the autocorrelation function of any complex-
valued object ρ is Hermitian with A∗

ρ(−u) = Aρ(u), the number of independent
coefficients is equal to half the non-zero area (or volume) of the autocorrelation
function divided by the area (or volume) of a resolution element in two (or three)
dimensions. Since the resolution element is the same for the autocorrelation function
and the object, Ω is equal to the ratio of areas or volumes of the autocorrelation and
object, divided by two. For shapes other than cuboid discussed above, this may differ
from 2n−1. For example, triangular objects have Ω = 3, making these structures
potentially easier to determine directly from the diffraction observations. Crystal
diffraction need not only result in Ω = 1/2 as described above. If the volume of the
asymmetric unit in the crystal is less than half the volume of the unit cell, there may
indeed be sufficient measurements to determine the structure directly from Bragg
intensities [22, 32].

The utilization of the excess of measured intensities to determine the structure
presumes a shape of the constraint region to be used. This need not exactly conform
to the actual boundary of the object, but must fully contain the object. The constraint
that is applied in the process of phase retrieval is that the density is known outside
this constraint volume (for example, it may be uniform or zero), consistent with the
premise that the information required to describe the object is finite. Allowing this
constraint volume to exceed the actual extent of the object reduces Ω , but may avoid
applying an incorrect constraint. Prior knowledge about the shape of the object may
therefore be helpful, which may indeed be available from microscopy or solution
scattering. However, it is possible in many cases to determine the shape of an object
from the shape of its autocorrelation function [12]—that is from the diffraction
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intensities themselves. Another strategy is to gradually improve the estimate of
the constraint volume (known as the “support” of the object) based on the image
obtained by phase retrieval based on a previous larger estimate [29]. This approach,
known as “shrinkwrap,” has been extremely successful because a more constraining
tighter support produces an improved estimate of the image, which itself provides
the means, by a simple threshold and blurring, to obtain an improved support
constraint.

9.2.5 Iterative Phasing Algorithms

The feasibility of phasing sufficiently sampled diffraction data, as discussed in the
previous section, has led to a vibrant field of research in applied mathematics to
create phasing algorithms. This situation and activity has been pursued quite sepa-
rate to developments in crystallography, where refinement of models constrained by
the rules of chemistry or the use of anomalous diffraction are common approaches
to solve structures. For continuous diffraction, the measured diffraction and the
support constraint alone are sufficient to determine a 3D map of the electron density,
without the need for a chemical model. Additional constraints that can be added,
such as the positivity of electron density (if appropriate) or a presumed histogram
of the electron density (generally known for protein structures for particular spatial
resolutions), will improve the ability to phase the diffraction data and may make
the solution more robust in the presence of noise. Recently, some of the ideas from
phase retrieval of continuous diffraction have been successfully applied to crystal
diffraction, including charge flipping [38] and the hybrid input–output algorithm
[22, 23].

Much analysis of iterative phasing algorithms has been carried out in the
context of images or maps of electron density m(r) as finite-dimensional vectors.
A particular map is represented by a point in an N -dimensional space, with the
value along each coordinate given by the complex value at each of the N voxels.
Out of all possible maps that can be formed, only a particular volume of the vector
space will contain maps that obey a particular constraint, such as all maps that have
Fourier amplitudes equal to the square root of the measured diffraction intensities.
A different volume contains all maps that have zero density outside the support.
The intersection of these volumes gives the solution—a map that obeys both sets of
constraints. One possible strategy would be to exhaustively calculate images in an
N -dimensional sphere of the vector space whose radius is limited by the maximum
total intensity of the map, and test if they are in one or both constraint sets. One
would need only compute maps within the volume of the support constraint (those
that are zero outside the support boundary) and test if the Fourier amplitudes of
the map |m̃(r)| agree with the square root of the measured diffraction intensities,√

I (r). Such an approach is obviously too computationally expensive for maps with
more than a few voxels. A tractable approach would be, starting from a trial point



9 Structure Determination by Continuous Diffraction from Imperfect Crystals 263

in the vector space, to calculate the next map in a direction that minimizes the error
εM = ‖|m̃|−√

I‖, where ‖·‖ is the Euclidean distance equal to the square root of the
sum of the squares of the vector components. This can be easily achieved simply by
setting the magnitudes |m̃| equal to

√
I at each reciprocal voxel q. However, such a

step will tend to move m out of the support constraint, increasing the corresponding
error εS , so a correction will be needed to place the map back in that constraint space
with the consequence of increasing εM from zero.

The error εM is the distance of the map m to the modulus constraint set. The error
εS , equal to the intensity outside the support, is also the distance of the map (a point
in the vector space) to the support constraint set. By iterating the steps indicated
above of bringing the point to first the modulus constraint set and then to the support
constraint set, it may be possible to eventually converge to the intersection point that
we seek. This indeed would be the case if the sets were convex volumes and if the
point m was always brought to its closest point in each constraint set. The latter
condition is accomplished using a projection operator. That is, an updated point
mi+1 is obtained from the current estimate mi as mi+1 = PSPM mi , where PS is
the projection that brings a point in the vector space onto the support constraint
set, and PM is the operator that brings a point onto the set of images that obey the
Fourier modulus constraint. The repeated application of these operations approaches
a fixed point m∗ → (PSPM)n m. This fixed point will be the global minimum of
the distances between the sets if the former condition of the sets being convex is
satisfied. However, the modulus constraint set is decidedly not convex, and so the
procedure may become trapped in a local minimum. Nevertheless, this formalism
of projections has proven valuable in developing robust algorithms that can recover
the phases even when given noisy measured Fourier intensities.

The projection operators can be easily constructed for the constraints mentioned
above. The support projector PS simply sets the values of all voxels outside the
support to zero, which is the closest point in the vector space that satisfies the
constraint. For the modulus constraint, m̃ is brought into agreement with

√
I by

rescaling the modulus of the complex value at each reciprocal voxel to equal
√

I ,
leaving the phase unchanged. In the complex plane, for a particular reciprocal voxel
q, this is the closest point to m̃(q) on the circle of radius

√
I (q). The modulus

projection includes performing the Fourier transformation of the real-space map,
and the inverse after rescaling:

PM m(r) = F−1
r

{√

I (q)

|m̃(q)|2 m̃(q)

}

. (9.13)

The constraint errors can be seen to be equal to εS = ‖PS m − m‖ and εM =
‖PM m − m‖. In the latter case the error εM is invariant to the Fourier transform
(through Parseval’s theorem).

The algorithm mn = (PSPM)n m0 was introduced by Feinup [18] as a gen-
eralization of the first iterative phasing approach of Gerchberg and Saxton [21].
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They considered the related problem of recovering the complex-valued image from
the measured transmission image and measured diffraction pattern in an electron
microscope. Fienup’s introduction of the support constraint brought the possibility
of phasing diffraction data alone (without the need of a microscope). He called it
the error reduction algorithm since the errors ε are non-increasing on each iteration
step due to its equivalence to a steepest descent minimization [18]. However, due
to the non-convexity of the constraint sets, it does not necessarily achieve the
global minimum—often this simple algorithm gets trapped in a local minimum.
This algorithm can be compared with density modification and solvent flattening
that are used in crystal structure refinement, albeit without any structural model
guiding the density in the volume inside the support. Perhaps a better analogy for
the crystallographer is that this is an omit map where the entire molecule is omitted!

Since the error reduction algorithm often stagnates, Fienup introduced concepts
from control theory to design algorithms with “feedback” that improved their
convergence properties. Elser expanded on these ideas with his difference map
algorithm [14] which actively explores space away from the constraint sets in order
to avoid stagnation. He first noted that an algorithm constructed as

mn = (I + βΔ)n m0 (9.14)

converges to a fixed point given by Δm∗ = 0 for any constant β and operator Δ. To
ensure that this point is in the intersection of the two sets, Δ must take the form

Δm = (PMfS − PSfM)m (9.15)

where fS and fM are any linear combination of operators for the support and
modulus constraint, respectively. The key here is that the last operation in each term
of Eq. (9.15) is PM and PS , respectively, taking m to the surface of one or the other
constraint set, and giving zero when these intersect. The other operators fS and fM

can be designed to give optimum convergence properties, which Elser finds to be

fS m = [I + αS(PS − I )] m (9.16)

fM m = [I + αM(PM − I )] m . (9.17)

The real-valued parameter α tunes these operators from the identity at α = 0 to
a projection with α = 1 and a reflector (such as used in charge flipping) when
α = 2. Some particular choices are αS = 0 with αM = 2 [44], or αS = 0 with
αM = 1 + 1/β. The latter is Fienup’s hybrid input–output (HIO) algorithm [17].
The difference map algorithm of Eq. (9.14), like the HIO algorithm, tends to escape
from local minima, sometimes by moving in a direction along the line of shortest
approach between the two sets at the local minimum [28]. The solution is not the
fixed point m∗ to which the algorithm converges, but rather the nearest point on the
constraint set, PM m∗.
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9.2.6 Phasing Twinned Data

As will be seen below, continuous diffraction often arises from ensembles of objects
that are situated in several discrete orientations, without correlation of the relative
positions of those objects. Examples are molecules aligned in a laser field (which
may be oriented parallel or antiparallel to the polarization axis of the laser with
equal probability, Sect. 9.3.1) or the four orientations of molecules in a crystal
with P212121 symmetry and exhibiting displacement disorder (Sect. 9.3.7). This
results in an incoherent sum of the diffraction intensities in Nb various orientations,
I (q) = ∑Nb

b=1 |ρ̃b(q)|2, analogous to the diffraction from a twinned crystal. Such
an incoherent sum cannot be represented by the square modulus of the Fourier
transform of any single object (including the average over all orientations) and
thus the application of the phasing algorithms described above will not succeed.
Assuming that each of the ρb are differently oriented versions of the same rigid
object as described in Eq. (9.4), the modulus constraint PM of Eq. (9.13) must be
modified simply as [16]

PM m1(r) = F−1
r

{√

I (q)
∑

b |m̃b(q)|2 m̃1(q)

}

, (9.18)

where m1 is the iterate of the single object reconstruction and mb are the rotated
versions, mb(r) = m1(Rbr).

As emphasized by Elser and Millane [16], phasing the twinned data is feasible as
long as the constraint ratio Ω > 1. Twinning will always reduce Ω from the ratio
Ω1 for the single object, but it will only be as small as Ω1/Nb for Nb orientations
if the support is invariant under the rotation operations Rb. Generally it will lay
between these bounds as can be understood by constructing the union of the rotated
supports of the object and determining the volume of the unique region as related
by the symmetry operations. A molecule contained within a square prism support,
for example, gives rise to a support autocorrelation that is also a square prism. If the
length of this is greater than the width of the square face and is not oriented along a
symmetry axis of the crystal itself, then the symmetrized support autocorrelation has
some non-overlapping regions, with the possibility that Ω is considerably greater
than unity.

9.3 Observations of Continuous Diffraction

Given that the lack of measured phases does not pose an obstacle to reconstructing
an image of the electron density from a set of sufficiently sampled diffraction
intensities, it is worth reviewing under which conditions the required continuous
diffraction can be measured for the purpose of iterative phasing.
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9.3.1 Single Object and a Gas of Aligned Identical Objects

The most obvious case for iterative phasing is that of a single non-periodic object
illuminated with a coherent beam. The first demonstration of a fully sampled
coherent diffraction pattern measured in the X-ray regime was by Miao et al. [31]
after many years of effort led by David Sayre [41]. That the pattern was sufficiently
sampled was proven by the fact that its Fourier transform gives an autocorrelation
of limited extent. The real test of sufficiency, however, was that it could indeed be
phased, by using an iterative phasing algorithm. The object was two-dimensional,
fabricated by electron-beam lithography, and diffraction in only one view was
needed to obtain the two-dimensional image. Such phasing is much more robust in
three dimensions, for which diffraction must be measured also in three dimensions
by rotating the sample. This is similar to data collection from a crystal, although
still diffraction data frames are recorded as the object is rotated in steps. Each data
frame, a measurement of I (q) on the Ewald sphere, is then interpolated into a three-
dimensional array, as illustrated in Fig. 9.2. In this example [7], the object consisted
of an indent in a silicon nitride membrane that contained a number of colloidal
gold particles. The silicon nitride was practically invisible to the X-rays due to its
low scattering power, giving a compact object whose diffraction could be phased
directly using the Shrinkwrap algorithm [29].

Diffractive imaging of single objects requires a high dose to the sample, which
may exceed the tolerable dose to avoid damage at a particular resolution [25]. All
methods to observe continuous diffraction at near atomic resolution from biological
material therefore require measuring diffraction from many identical objects. One
way to work around the dose limitation is by using femtosecond pulses from free-
electron lasers, as described in the previous chapters in this book. Since the pulses
are destructive, most schemes only give a two-dimensional snapshot diffraction
pattern and so a supply of reproducible objects is still required to obtain a complete
3D diffraction dataset, as discussed in Chap. 14. Continuous diffraction can be

Fig. 9.2 Diffraction data collected from a 3D test object, showing (a) a diffraction pattern recorded
at a single orientation, (b) 3D diffraction intensities collected at orientations from −70◦ to +70◦,
and (c) the reconstructed volume image. Adapted from [7]
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readily combined from many objects if they share a common orientation. The
diffraction will be the incoherent sum of the individual objects, equal to that of a
single object multiplied by the number of objects, if the diffraction from these is
mutually incoherent or the positions of the objects are random (as will be discussed
below). For example, a gas of laser-aligned molecules [24] would give a diffraction
pattern proportional to the single molecule, as would a long exposure made of
a stream of aligned objects that sequentially pass across the beam [48]. Without
alignment, enough signal is required per pattern to determine relative orientations
of the particles, as detailed in Chap. 14.

9.3.2 Single Layers and Fibrils

Objects often come into alignment when placed in contact with each other. The
most spectacular self-assembly of this kind is of course crystallization, but other
examples include liquid crystals in the nematic phase where constituents are aligned
in one of their dimensions. Such arrangements might give useful information about
their cylindrically averaged density, for example. An early example of applying
iterative phasing to such partially oriented systems was to biological membranes
containing proteins. The arrangement of the proteins was disordered within the
plane and with their orientations fixed only in the direction normal to the plane,
but this gives a well-defined density thickness profile of the membrane. Such
membranes can be layered, giving rise to a single column of Bragg peaks in the
ordered direction, or a continuous rod of diffraction intensity, depending on the
regularity of the spacings of the layers. In the latter case the Fourier transform
of the intensity rod gives the entire autocorrelation of the thickness profile of the
membrane. Stroud and Agard introduced the idea to phase this with a compact
support [50] although later understanding as discussed in Sect. 9.2.4 showed that
the density profile is not uniquely specified by 1D Fourier magnitudes without
additional information [2]. Spence et al. [47] showed this could be overcome in
2D crystals where the diffraction is in the form of a lattice of intensity rods. An
analogous case is a one-dimensional crystal, such as a single fibril that is periodic
along its axis. The diffraction from this consists of two-dimensional planes of
continuous diffraction separated by the reciprocal lattice spacing. The information
content of the diffraction is certainly higher than for two-dimensional crystal,
although Millane showed that the phase problem is not generally unique without
an additional constraint such as the positivity of the electron density [33].

9.3.3 Finite Crystals and Finitely Illuminated Crystals

Deviations from an ideal infinite crystal can in principle give access to information
additional to that restricted to the Bragg peaks. The diffraction of a finite crystal
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was considered by Laue [53] who derived the result that the diffracted wavefield
is equal to the convolution of the Fourier transform of the shape of the coherently
illuminated crystal with the delta-function Bragg peaks of the infinite crystal. That
is, the 3D crystal “shape transform” is laid down on each lattice point. For a crystal
with flat facets, this transform consists of continuous truncation rods in directions
normal to the facets, giving an opportunity to measure the underlying molecular
transform at locations away from the Bragg peaks. Elser suggested that this could
be used to obtain, in addition to intensities at Bragg peaks I (qhkl), measurements
of the gradient of the intensities, ∇I (qhkl). The extra three independent values per
Bragg peak increase the constraint ratio Ω and were shown to be enough to solve
the structure by iterative phasing [15]. Spence et al. [49] extended this idea to an
ensemble of crystals measured by serial crystallography, as described in Chap. 8,
by dividing out the shape transform from the 3D diffraction intensity map, allowing
the electron density of the unit cell to be recovered by iterative phasing. A similar
effect can be obtained when a small focused beam illuminates the crystals. If the
relative position of the beam and crystal is known on each shot, the dataset can
be interpreted by the method of ptychography [27]. However, if the diffraction
intensities are summed without regard to this relative displacement, the result is
merely a convolution of the diffraction pattern that would usually be observed
(with a collimated beam) with the angular distribution of the focused probe. This
convolution operation can also be carried mathematically on data recorded with
a collimated beam, or by using a detector with large pixels, and thus does not
bring any new information. The sum described above also simulates the situation
of illumination of a crystal with a beam of limited spatial coherence, showing that
in that case no new information is revealed either, despite hope that this might mask
the periodicity of the crystal and hence provide continuous diffraction of a single
unit cell [52].

9.3.4 Crystal Swelling

In the early days of protein crystallography it was noted that the unit cells of some
crystals expand or contract in different states of hydration. Bernal et al. suggested
that measurements of such crystals could be used to map out the molecular
transform with a fine sampling [3]. This is easy to imagine for a crystal of P1
symmetry, where a change in a unit cell dimension made just by changing the
distance between molecules will cause Bragg peaks to move over the transform
of the single molecule. The measurement of diffraction from crystals in several
states would allow mapping the molecular transform in steps along a direction set
by the swelling (e.g., in the 111 direction for a crystal that uniformly swells in
all directions). For the P1 crystal, this “one dimensional” fine sampling should be
enough to provide complete information for phase retrieval, at least to the resolution
that the molecules remain identical (and in the same orientation) in the different
crystal forms.



9 Structure Determination by Continuous Diffraction from Imperfect Crystals 269

The situation is not so straightforward when the arrangements of molecules
change upon swelling in crystals of other symmetries. Bragg and Perutz carried out
measurements of a set of hemoglobin crystals with differing amounts of salt content
[4]. In that case the crystals underwent a shear through a change in the angle β,
without any significant change in the unit cell lengths. This could happen if whole
layers of molecules in ab planes would slip relative to each other in the direction
of the b axis. This then allowed for fine sampling of layer lines of the diffraction
pattern in the c∗ direction. However, only in the 00l direction could the ensemble of
measurements be easily interpreted. The 0kl central plane of the diffraction pattern
is the Fourier transform of the projection of the crystal structure down the a axis,
and since molecules were slipping only in the b direction, this projection would be
unchanged along c∗. Even in simpler cases of expansion without shear, the change
of displacements of molecules within a unit cell means that even though fine samples
can be made from different crystal forms, each of these samples possess a different
unit cell transform. So far, a method to apply iterative phasing to such a dataset has
not been found, but it is clear that the information content is twice that of a single
crystal, which should allow de novo phasing. Structure refinement from multiple
crystal forms can be carried out using density modification techniques, as in the
programs phenix.multi_crystal_average and DMMulti [11].

9.3.5 Crystals with Large Solvent Fraction

As discussed in Sect. 9.2.4, iterative phasing should be feasible when the constraint
ratio Ω exceeds unity, regardless of whether the measurements are from a contin-
uous pattern or from Bragg spots. This ratio is equal to the number of independent
coefficients in the autocorrelation function divided by the number of independent
coefficients describing the object’s density. For a P1 crystal (without any disorder)
this will be half, since the autocorrelation function has the same periodicity as the
crystal and it is centrosymmetric. However, if the object only actually accounts
for less than half the volume of the unit cell, and the rest consists of solvent of
uniform average density, then we will have Ω > 1. Furthermore, if there are two
or more identical objects in the unit cell that are not related by crystallographic
symmetry, Ω can exceed unity even for solvent fractions smaller than 50% [34].
Iterative phasing can indeed succeed in this case, using only the Bragg intensities,
as was recently demonstrated by He and Su [22] using Fienup’s hybrid input–output
algorithm (αS = 0 with αM = 1 + 1/β in Eqs. (9.16) and (9.17)).

9.3.6 Crystals with Substitutional Disorder

Bragg peaks are a consequence of translational symmetry. Any deviation from
that symmetry will disturb the constructive interference responsible for the peaks,
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reducing their intensities, and will also prevent the full cancellation of intensity
between the peaks. One way to break this symmetry and still maintain molecular
orientation is through substitutional disorder in the crystal. That is, a random
occupation of lattice sites by a molecule or, more likely, sites randomly occupied
by one or the other of two forms of a molecule can be described as the sum of
a purely periodic density (given by the average structure ρ̄(r)) and the difference
Δρ(r) [10].

As an example consider a time-resolved experiment where an optical excitation
pulse is set to a fluence where only half the molecules are isomerized. This will
occur randomly throughout the crystal volume, and so the crystal can be considered
as randomly occupied by two molecular structures, one in the ground state with
a structure ρ1(r) and one with a structure ρ2(r). Considering for simplicity a P1
symmetry with just one molecule per unit cell, the density of this imperfect crystal
can be described by a modification of Eq. (9.4) as

ρ(r) = ρ̄(r) + Δρ(r)

=
[

ρ̄b(r) ⊗
∑

c

δ(r − rc)

]

+
[

Δρb(r) ⊗
∑

c

pc δ(r − rc)

]

, (9.19)

where pc is equal to either +1 or −1 in the case of 50% excitation. The diffraction
intensity is equal to the Fourier transform of the autocorrelation of the density ρ(r)
as shown in Eq. (9.11). The autocorrelation of the sum Eq. (9.19) gives rise to four
terms, given by the autocorrelation of ρ̄(r), the autocorrelation of Δρ(r), and two
cross correlation terms, ρ̄(r)⊗Δρ(−r)+ ρ̄(−r)⊗Δρ(r). Since ρ̄ is periodic, each
of these cross correlations will essentially carry out a sum of Δρ over all unit cells
which will be equal to zero since (by definition) 〈Δρ〉 = 0. The autocorrelation
is therefore a sum of just the autocorrelations of ρ̄(r) and Δρ(r), showing that

the diffraction pattern is the incoherent sum
∣
∣
∣ ˜̄ρ(q)

∣
∣
∣

2 + |Δρ̃(q)|2, where ˜̄ρ is the

Fourier transform of ρ̄ and Δρ̃ is the Fourier transform of Δρ. Since ρ̄(r) is strictly
periodic, the first term will give rise to Bragg peaks. The residual density Δρ(r)
consists of components that are at lattice positions but differ from each other in a
random manner and hence are not periodic. Again, considering the autocorrelation
of Δρ(r) (see Eq. (9.11)), for small differences u one obtains the sum of cross
correlations of difference densities within common unit cells. If the occupancies
pc are uncorrelated, once u crosses unit cell boundaries the terms pcpc′ cancel out,
leaving just the autocorrelation of the single “object” Δρb. The Fourier transform of
this correlation of limited extent is of course continuous. In general, for a fraction x

of excited molecules in the crystal, the continuous diffraction will be weighted by
x(1 − x) [10] giving

I (q) =
∣
∣
∣
∣
∣

˜̄ρb(q)
∑

c

exp(2πirc · q)

∣
∣
∣
∣
∣

2

+ x(1 − x) |Δρ̃b(q)|2 . (9.20)
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For a crystal consisting of several objects per unit cell (following Eq. (9.5)),
Eq. (9.20) generalizes to

I (q) =
∣
∣
∣
∣
∣

∑

b

˜̄ρb(q)L(q)

∣
∣
∣
∣
∣

2

+ x(1 − x)
∑

b

|Δρ̃b(q)|2 . (9.21)

The second term can be separated from the first by filtering out Bragg peaks
(see Sect. 9.5) and then iteratively phased using a finite support constraint, and
the modulus constraint of either Eq. (9.13) or (9.18) depending on the number of
orientations of molecules in the crystal [51]. Since Δρ can be negative it is not
appropriate to apply a positivity constraint.

Substitutional disorder exists in crystals of tris-t-butyl-benzene tricarboxamide
[45]. This molecule crystallizes into a so-called two-component crystal with random
occupation of one or the other component. In this case the two components consist of
the molecule in one of two different orientations. These actually occur in columns,
parallel to the c axis, of molecules of the same orientation. Looking down this
axis one observes columns in a hexagonal close-packed lattice either pointing away
or towards the observer. Although the occupational fraction x is 50%, there is a
correlation between the positions of “up” and “down” columns due to a preference
of antialignment of neighbors but a frustration in achieving this in a triangular
lattice. This is revealed in the observed continuous diffraction as a characteristic
honeycomb shape. The form of this correlation has been of interest to understand
the solid state of the molecule, and the correlation function could be obtained by
dividing the effect of the molecular contribution Δρ from the pattern [42] in a
process somewhat similar to described in Sect. 9.3.3. (Eq. (9.20) only considers
uncorrelated occupation.) However, in a beautiful analysis, Simonov et al. did the
opposite to extract |Δρ̃(q)|2 which they then phased to obtain an atomic resolution
image of the molecule [46].

9.3.7 Crystals with Displacement Disorder

The least amount of change that needs to be made to a crystal to disrupt translational
symmetry is to randomly displace its elements. As with substitutional disorder
(Sect. 9.3.6), if the mean displacement of the objects in the crystal is zero, then the
imperfect crystal can be described as a repeat of an average unit cell ρ̄ with strict
translational symmetry and a difference term. As before, the correlations between
the differences and the average sum to zero (since, by definition the mean of the
difference is zero), so that the general form of the autocorrelation (and hence the
diffraction intensities) is an incoherent sum of the periodic part, which gives Bragg
peaks, and the non-periodic difference which gives continuous diffraction. However,
as compared with substitutional disorder, the average unit cell is blurred out. We
can assume small normally distributed displacements, which leads to a blurring
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given by the convolution of the unit cell density with a Gaussian. The effect of
this convolution is to modulate the Bragg peaks by the well-known Debye-Waller
factor exp(−4π2σ 2q2), for a root-mean square displacement σ .

The form of the continuous (diffuse) scattering depends on the object undergoing
the displacement, and the nature of correlations of those displacements over the
volume of the illuminated crystal. Below we make a general derivation of the
diffraction intensities for a crystal consisting of randomly displaced molecules
which themselves have randomly displaced atoms, with different correlations
between them. A particularly favorable condition is when whole molecules move
as rigid units. Again, choosing for simplicity the case of P1 symmetry with just one
molecule per unit cell the density of the imperfect crystal is given by

ρ(r) = ρb(r) ⊗
Nc∑

c=1

δ(r − rc − δc) , (9.22)

where δc is the displacement of the molecule in the cth unit cell, with 〈δc〉 = 0 and
〈

δ2
c

〉 = σ 2. The autocorrelation of Eq. (9.22) will be equal to the autocorrelation
of ρb(r) convolved with the autocorrelation of the displaced lattice. This is the
cross correlation of two blurred lattices (each with RMS displacements σ 2). Since
we assume here that there is no correlation between the displacements of different
unit cells the displacements u between the cells will be spread by a distribution of
variance equal to 2σ 2, for all peaks in this autocorrelation except for the lattice
point at the origin (which has perfect correlation). The result, derived below in
Sect. 9.4.2, is

I (q) = |ρ̃(q)|2
[

Nc(1 − e−4π2σ 2q2
) + e−4π2σ 2q2

L(q)
]

. (9.23)

The continuous part of the diffraction pattern consists of the single-object diffrac-
tion modulated by the so-called complementary Debye-Waller factor (1−e−4π2σ 2q2

)

which is zero at q = 0 and increases to 1 for resolution lengths d = 1/q < σ/(2π).
The continuous and Bragg portions of the diffraction pattern can be separated from
each other as discussed in Sect. 9.5, but it is seen in Eq. (9.23) that both sample the
same single-object diffraction pattern. This is only true for a P1 crystal however.
In other cases, the continuous diffraction is twinned in a similar fashion to the case
of substitutional disorder (see Sect. 9.4.4), requiring phasing to be carried out using
the modulus constraint of Eq. (9.18). Phasing with the continuous diffraction alone
misses low-resolution information due to the complementary Debye-Waller factor,
as discussed in Sect. 9.4.8.

The complementarity of the Debye-Waller factors in the two terms within
the square brackets of Eq. (9.23) shows that the strength of the continuous and
Bragg diffraction is comparable. The integrated intensity of Bragg peaks (not
including the molecular transform) scales as Nc, as does the continuous term. The
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difference between these cases is that the Bragg counts are concentrated into easily
measurable peaks whereas the continuous diffraction is spread over all detector
pixels. By energy conservation the total counts in the pattern will not change as
σ is varied, although the resolution at which one or the other dominates will. At a
resolution where the continuous diffraction dominates, the counts per pixel would
be equivalent to the average Bragg counts per pixel at that resolution, had the crystal
been perfectly ordered. In such a case, if Bragg peaks were spaced apart by 10 pixels
on average, for example, then the average count is actually only 1% of the peak
height. Such levels are usually below the background noise, as discussed in Sect. 9.5.

It is interesting to note that the loss of Bragg peaks with resolution, and
the corresponding increase in the continuous diffraction, does not need large
displacements. For example, RMS displacements of 1 Å give a significant loss of
Bragg intensity at a resolution of about 6 Å as can be seen from the expression for
the Debye-Waller factor and the definition of q in Eq. (9.3). This large discrepancy
is due to the fact that Bragg peaks are formed through constructive interference
and are thus a phase effect. At the example resolution of 6 Å, a displacement of
any one object by ac = 3 Å would cause its contribution, as seen in Eq. (9.7), to be
completely out of phase and adding destructively. Displacements of 1 Å will already
give contributions out of phase enough to suppress the formation of Bragg peaks.
This extreme sensitivity of Bragg peaks to displacements may explain to a large
degree the difficulty of recording high-resolution diffraction from protein crystals,
especially those where the molecules are not highly constrained through crystal
contacts. However, we will see in the following section that this very sensitivity
can expose the continuously sampled Fourier transform which opens up exciting
possibilities for de novo structure determination from crystal diffraction using
iterative phasing.

9.4 Diffraction from Crystals with Displacement Disorder

After the survey in Sect. 9.3 of the different types of crystal imperfections which
give the opportunity to reveal additional structural information about the molecular
components, not present in Bragg peaks, in this section we expand upon the
analysis of crystals with displacement disorder. This topic has been discussed
previously [35, 36, 39], but here we will focus on the connection with continuous
diffraction of the objects that undergo the displacements. After introducing a general
formalism, we consider different types of random displacements which may be
correlated or uncorrelated. We examine the cases of translation of entire unit cells
in Sect. 9.4.2, the case of displacements of molecules which themselves exhibit
atomic disorder in Sect. 9.4.3, multiple types of rigid object that are independently
displaced (Sect. 9.4.4), and then two models which include correlations in the
displacements. These are the liquid-like motions model of distortions within rigid
bodies examined in Sect. 9.4.5 and displacements of rigid bodies that are influenced
by their neighbors in Sect. 9.4.6. Finally, we look at the effects of rotational
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Fig. 9.3 (a) Molecular transform intensities, Io(q), shown in a single planar slice passing through
q = 0. (b) Ideal crystal intensities, Io(q)

∑
Lcc′ (q) when there are no displacements. In both

cases, for clarity, the atomic form factors have been set to constants (see Box 9.1)

rigid-body disorder in Sect. 9.4.7. Each of these cases is illustrated with a simulation
of crystals of the lysozyme molecule as described in Box 9.1 and depicted in
Fig. 9.3.

In order to give the most general formalism of a crystal with translational disorder
we make use of the description of such an object as a collection of atoms, given by
Eq. (9.8).

ρ(r) =
N

∑

i=1

ζi(r − ri ) . (9.8 revisited)

We separate the position of each atom in the entire crystal into the sum of the
position of the unit cell, the position of the atom within the unit cell, and the
displacement from that ideal position,

ri = rc + ra + δac .

Converting the sum of scattered waves from all atoms into a double sum over all
unit cells and over all atoms within the unit cell, Eq. (9.9) becomes

I (q) =
∑

cc′
e2πi(rc−rc′ )·q

∑

aa′
fa(q)f ∗

a′(q)e2πi(ra−ra′ )·qe2πi(δac−δa′c′ )·q

=
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)e2πi(δac−δa′c′ )·q (9.24)

where Lcc′ is the lattice sum of the crystal which converges to a set of delta
functions at the reciprocal lattice points [35, 36]. Iaa′ is the contribution of each
pair of atoms in their ideal positions (within one unit cell). The term

∑

aa′ Iaa′(q) =
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| ∑a fa(q)|2 = Io(q) is commonly called the molecular transform of the molecule
(Fig. 9.3a) since it is the Fourier transform of the molecular electron density
function. Note that we have made no assumption as to the form of correlations
between atoms, rigid bodies, or unit cells, just that they are statistically random.

Since the displacements are statistically random (though not necessarily uncorre-
lated), one is really interested in the average phase contribution from all the atoms.
Thus, we can rewrite the expression for the intensity as follows:

I (q) =
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)

〈

e2πi(δac−δa′c′ )·q
〉

. (9.25)

Using the harmonic approximation for small displacements, the average over the
exponentials can be simplified as

〈

e2πi(δac−δa′c′ )·q
〉

= e−2π2
〈

((δac−δa′c′ )·q)2
〉

.

With this simplification, we get the following general expression for the intensity
distribution of a disordered crystal:

I (q) =
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)e−2π2(

〈

(δac·q)2
〉+〈

(δa′c′ ·q)2
〉

)e4π2〈(δac·q)(δa′c′ ·q)〉 . (9.26)

The non-trivial behavior is now encoded in the last term which represents the
covariance of the displacements among different atoms. This can be seen more
clearly with the following:

〈(δac · q)(δa′c′ · q)〉 = qᵀ 〈

δᵀacδa′c′
〉

q .

Here, the central term is the 3 × 3 covariance matrix of displacements between any
pair of atoms, Cac a′c′ .2 One can also recognize the self terms

〈

(δac · q)2
〉

as being
the standard anisotropic B-factors (or Debye-Waller factors) for atom a, i.e.,

〈

(δac · q)2
〉

= qᵀUaq .

Here we have made the assumption that the displacement distributions (not the
actual displacements) for the same atom are identical among different unit cells.
Putting it all together, we get

I (q) =
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)e−2π2qᵀ(Ua+Ua′ )qe4π2qᵀCac a′c′ q . (9.27)

2Although Cac a′c′ runs over four subscripts, this is really two dimensional, since any given atom
in the crystal is specified by the indices ac (or a′c′) specifying which atom a in the molecule and
which unit cell c in the crystal.
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It is now possible to consider several kinds of disorder and examine how the
(continuous) diffracted intensities relate to the molecular transform. The first, in
Sect. 9.4.1, is the displacement of every atom in the crystal in an uncorrelated
manner, such as may happen in a Coulomb explosion or simply due to thermal
motion. This will be compared with the displacements of whole unit cells as
single rigid units (Sect. 9.4.2), keeping displacements among different unit cells
uncorrelated. For crystals with more than one asymmetric unit per cell, this choice
is somewhat artificial since the choice of unit cell is arbitrary. Nevertheless, this will
provide a simpler route to understanding what happens in the general case when
there are multiple rigid units in the unit cell which are considered in Sect. 9.4.4 after
first checking the effect of atomic disorder with rigid-body motion. Following that
we investigate motions that are correlated with distance between atoms and units.

Box 9.1
The simulated diffraction images in this section were calculated using the
lysozyme molecule (PDB: 4ET8). Each image represents a planar slice (not
an Ewald sphere) through the 3D intensity distribution of the crystal. The
resolution at the center edge is 2 Å. When showing Bragg peaks, the crystal
unit cell was assumed to be 32 × 32 Å in the dimensions reciprocal to the
displayed diffraction plane. This cell is too small to fit 4 molecules as
demanded by the P212121 space group simulated in Sect. 9.4.4. Nevertheless,
the smaller unit cell leads to a larger Bragg peak spacing in reciprocal space,
which results in a more esthetically pleasing image. In reality, the tetragonal
lysozyme crystal has unit cell 79 × 79 × 38 Å (placing Bragg peaks closer
together than simulated) with the space group P43212.

Another simplification applied was to ignore the q-dependence of the
atomic form factors fi(q) and consider them to be constant. This is equivalent
to assuming point-like atoms. These simplifications from what one would see
in a real experiment were made for the sake of clarity. Experimental details
are discussed in Sect. 9.5.

9.4.1 Uncorrelated Random Disorder

For uncorrelated motions of atoms, the covariance matrix reduces to

Cac a′c′ = 〈

δᵀacδa′c′
〉 =

{

Ua, if c = c′ and a = a′

0, otherwise.
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Separating the two cases of summing over identical or different atoms, from
Eq. (9.27) we obtain

I (q) =
∑

cc′
c �=c′

Lcc′(q)
∑

aa′
a �=a′

Iaa′(q)e−2π2qᵀ(Ua+Ua′ )q

+
∑

c

Lcc(q)
∑

a

Iaa(q)

where the two exponential terms cancel each other out in the second term. From
Eq. (9.24), we can see that Lcc(q) = 1 and Iaa(q) = |fa(q)|2. Completing the
sum in the first term, we obtain the familiar Debye-Waller suppression of Bragg
intensities along with structureless diffuse scattering,

I (q) =
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)e−2π2qᵀ(Ua+Ua′ )q

+ Nc

∑

a

|fa(q)|2
(

1 − e−4π2qᵀUaq
)

. (9.28)

In order to make the interpretation of this expression easier, let us assume isotropic
displacement distributions. Thus, expressions of the form qᵀUaq simplify to σ 2

a q2

where q = |q|. One can always do the complete analysis with anisotropic
distributions with some minor modifications. Applying this approximation and
substituting in the full expression for Iaa′ from Eq. (9.24),

I (q) =
∑

cc′
Lcc′(q)

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·qe−2π2σ 2
a q2

∣
∣
∣
∣
∣

2

+ Nc

∑

a

|fa(q)|2
(

1 − e−4π2σ 2
a q2

)

. (9.29)

The two terms in this expression are conventionally called the Bragg term and
the diffuse term, respectively. In the diffuse term, since each atomic form factor
is spherically symmetric, the pattern as a whole is the same and just adds to
the “background” similar to the solvent scatter. The Bragg term here is just the
lattice sum multiplied by the Fourier transform of the B-factor-blurred molecule as
discussed in Sect. 9.3.7. Thus, if one subtracts the background at each Bragg peak
position and phases the integrated intensity, the electron density obtained can be
thought of as replacing each atom by a Gaussian blob with a width σa . Note also
that this is the average electron density over all unit cells. The total intensity is
shown in Fig. 9.4 where one can see the reduced Bragg resolution as well as the
structureless diffuse background.
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Fig. 9.4 Total intensity
calculated in Eq. (9.28) when
each atom is displaced
independently. Here all atoms
are displaced by an average of
0.8 Å (B = 25.3 Å2) resulting
in the Bragg peaks being
suppressed at high-resolution
and featureless diffuse
scattering. For details see
Box 9.1

Thus, we have seen that in the absence of correlated displacements, the Bragg
peaks just represent the Fourier transform of the average unit cell electron density. In
fact, this turns out to be generally true even in the case of strongly correlated motion.
This is why that by applying the conventional analysis pipeline the crystallographer
need not worry about correlated motion and can solve for the B-factor for each atom.
In a sense, this has been a great boon for the field. One could even argue that the
field may never have taken off as it did over the last 100 years if it were necessary
to solve for the whole Cac a′c′ matrix to solve the structure.

9.4.2 Rigid-Body Translational Disorder of a Unit Cell

We consider now a case in which the whole unit cell moves as a single rigid unit,
with no correlations across unit cells. This is identical to what was discussed in
Sect. 9.3.7, and we will obtain the same result by using the atomistic formalism.
Note that this disorder model is only likely when there is a single asymmetric
unit per unit cell. In other cases, the choice of the original asymmetric unit is
arbitrary, leading to different possible choices of unit cells for the equivalent crystal.
Such choices would, however, lead to different continuous diffraction if randomly
displaced.

The analysis is very similar to the previous section. The covariance matrix
reduces to

Cac a′c′ = 〈

δᵀacδa′c′
〉 =

{

U, if c = c′ for all a

0, otherwise.
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For an isotropic displacement distribution, U = σ 2I3 where I3 is the 3 × 3 identity
matrix. Starting again from Eq. (9.27), separating the cases, and then completing the
sum results in

I (q) =e−4π2σ 2q2 ∑

cc′
Lcc′(q)

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·q
∣
∣
∣
∣
∣

2

+ Nc

(

1 − e−4π2σ 2q2
)

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·q
∣
∣
∣
∣
∣

2

. (9.30)

Once again, the first term represents the Bragg intensities. The Bragg peaks sample
the molecular transform, multiplied by the Debye-Waller factor. In fact, this term
is the same as in Eq. (9.28), showing that the Bragg peak intensities are insensitive
to whether displacements are correlated or not. However the diffuse term becomes
something quite interesting. The same molecular transform term is present but now
sampled everywhere. There is no lattice sum term reducing the sampling to just the
reciprocal lattice points. In addition, there is the so-called complementary Debye-
Waller term which grows with q. As q increases, the Bragg term vanishes and the
intensity is just Nc times the intensity from a single unit cell. This can be seen by
comparing Figs. 9.5 and 9.3a.

Since the diffuse term represents the continuously sampled Fourier transform
intensities of the electron density of the molecule, ρ(r), the constraint ratio Ω is
greater than 1 and iterative phasing algorithms discussed in Sect. 9.2.5 can be used
to recover the phases. It is as if there were Nc copies of perfectly aligned single
molecules whose intensities were added on top of one another, as in Sect. 9.3.1.

Fig. 9.5 Total intensity
calculated in Eq. (9.30) when
the entire unit cell is
displaced as a rigid body. The
Bragg peaks are identical to
Fig. 9.4 but the diffuse
scattering now represents the
continuous diffraction of the
molecule seen in Fig. 9.3a.
For details see Box 9.1
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9.4.3 Rigid-Body Translations Plus Uncorrelated
Displacements

Now it is unlikely that the proteins are exactly rigid bodies with no internal motions.
As a first approximation to address this, the atomic displacements can be modelled
as a combination of rigid-body translation and uncorrelated displacements,

δa = δ + ηa .

The corresponding B-factor matrices assuming isotropic displacement distributions
are σ 2I3 and β2

a I3 for rigid-body motion and the individual atomic B-factor
“vibrations,” respectively. Once again, we assume that there are no long range
correlations across multiple unit cells. With these conditions, the covariance matrix
can be written as

Cac a′c′ = 〈

δᵀacδa′c′
〉 =

⎧

⎪⎪⎨

⎪⎪⎩

(σ 2 + β2
a )I3, if c = c′ and a = a′

σ 2I3, if c = c′ and a �= a′

0, otherwise.

The first case describes identical atoms (in the same unit cell), the second different
atoms in the same unit cell, and the third are atoms in different unit cells. Since there
are three cases, Eq. (9.27) must be separated into three terms. After completing the
sum twice we obtain the following expression for the total scattered intensity:

I (q) =
∑

cc′
Lcc′(q)

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·qe−2π2(σ 2+β2
a )q2

∣
∣
∣
∣
∣

2

+ Nc

(

1 − e−4π2σ 2q2
)

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·qe−2π2β2
a q2

∣
∣
∣
∣
∣

2

+ Nc

(

1 − e−4π2σ 2q2
) ∑

a

|fa(q)|2
(

1 − e−4π2β2
a q2

)

. (9.31)

The first term once again represents the Bragg intensities which are modulated by
the Fourier transform of the average electron density. For this signal, each atom
appears to be blurred by both the rigid body and the uncorrelated motion. The
second term represents the same continuous diffraction as before modulated by the
same complementary Debye-Waller factor of the rigid-body displacements, but now
also modulated by the uncorrelated displacements which suppresses the signal at
high resolution. The continuous diffraction sees an average molecule consisting of
blurred atoms with structure factors given by fa(q) exp(−2π2β2

aq2). The last term
is just the remaining signal which appears as background containing no information
about the structure, similar to Sect. 9.4.1. The calculated intensities are shown in
Fig. 9.6.
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Fig. 9.6 Total intensity
calculated in Eq. (9.31) when
the total displacement of each
atom has two components,
rigid and uncorrelated. The
total average displacement is
still 0.8 Å, so the Bragg peaks
are identical resulting in the
Bragg peaks being suppressed
at high resolution and
featureless diffuse scattering.
For details see Box 9.1

A striking feature of the expression of Eq. (9.31) is that the non-spherically
symmetric part of the diffuse intensities can still be phased using iterative phasing
techniques to give the average electron density of the rigid body. A method for
separating the unstructured diffuse background from the structured continuous
diffraction is described in Sect. 9.5. In addition, the q-dependence of these inten-
sities is different from that of the average electron density of the unit cell probed
by the Bragg peaks—the continuous diffraction can extend to higher resolution
than the Bragg peaks depending on the magnitude of the rigid-body mean square
displacement σ 2.

9.4.4 Multiple Rigid Bodies in a Unit Cell

As mentioned earlier, in any realistic situation with more than one asymmetric
unit, the whole unit cell would not move as a rigid body since the unit cell is an
arbitrary construction. This is the case for any space group other than P1. Instead
it is conceivable that each asymmetric unit is displaced as a rigid body, or even
smaller domains of molecules move as such. Different rigid bodies may be different
orientations of the same molecule, as discussed in Sect. 9.3.7. Some units could
consist of identical structures in like orientations, in which case their continuous
diffraction contributions simply sum.

We consider the diffuse scattering intensity from a crystal with Nb rigid bodies
per unit cell, each of which is displaced by an uncorrelated amount with respect to
the other with a variance of

〈

δ2
r

〉 = σ 2
r . Each atom is assigned to a rigid body b and

the position of any atom i can now be expressed as

ri = rc + rb + ra + δabc ,
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representing the position of the atom a within the rigid body b that is located in cell
c, as well as the random displacement of that atom δabc. The covariance matrix for
displacements which are rigid within a body and uncorrelated otherwise is

Cabc a′b′c′ = 〈

δ
ᵀ
abcδa′b′c′

〉 =
{

σ 2
r I3, if c = c′ and b = b′ for all a

0, otherwise,

where we have assumed the same σ for all rigid bodies. This is not unusual since it
is possible that the rigid bodies are symmetric units of the unit cell which are related
by the space group symmetry. For the sake of clarity, we have ignored uncorrelated
atomic displacements. Their inclusion leads to results analogous to Sect. 9.4.3.

Equation (9.27) now gains an extra double sum

I (q) =
∑

cc′
Lcc′(q)

∑

bb′
e2πi(rb−rb′ )·q ∑

aa′
Iaa′(q)e−4π2σ 2q2

e4π2qᵀCabc a′b′c′ q .

Separating into the different cases and then completing the sums as before, we
obtain the following simple relation:

I (q) =e−4π2σ 2q2 ∑

cc′
Lcc′(q)

∣
∣
∣
∣
∣

∑

b

e2πirb·q ∑

a

fa(q)e2πira ·q
∣
∣
∣
∣
∣

2

+ Nc

(

1 − e−4π2σ 2q2
) ∑

b

∣
∣
∣
∣
∣

∑

a

fa(q)e2πira ·q
∣
∣
∣
∣
∣

2

. (9.32)

The first term is once again the familiar Bragg intensity which can be interpreted as
the Fourier transform of the average unit cell, sampled at Bragg peaks. One sums
over the atoms in all the rigid bodies with the positions relative to the origin of the
unit cell (rb + ra).

The second term of Eq. (9.32), however, is seen as the incoherent sum of the
continuous diffraction from each average rigid body. The relative positions of the
bodies (rb) disappear. This equation is identical to that of the initial example
of Sect. 9.4.2 with the scattering factors of individual atoms fa(q) of Eq. (9.29)
replaced with the form factors of the individual rigid bodies,

∑

a fa(q) exp(2πira ·
q). What was a background due to unstructured (almost point-like) atoms, becomes
an incoherent sum of structured molecules or molecular units. The distinction
between the coherent sum of units in the Bragg term of Eq. (9.32) and the incoherent
sum of the second term is important. For rigid units of different orientation, the
incoherent sum is analogous to diffraction of a twinned crystal (see Sect. 9.3.7). For
iterative phasing this requires the modulus constraint of Eq. (9.18).

The calculated intensities are displayed in Fig. 9.7. Close inspection reveals
another crucial difference between the “untwinned” Bragg diffraction and the “twin-
ned” continuous diffraction is that even at reciprocal lattice points, the Bragg and
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Fig. 9.7 Total intensity
calculated in Eq. (9.32) when
each rigid body in the unit
cell is displaced. In this case,
there are four rigid bodies,
each of which is the
asymmetric unit of the
P212121 space group. One
can see the systematic
absences in the Bragg peaks
but since the diffuse
scattering is the incoherent
sum of the intensities, there
are no cancellations due to
the space group at the
forbidden positions. For
details see Box 9.1

Fig. 9.8 The continuous and Bragg diffraction do not necessarily sample the same underlying
transform, as illustrated in a 2D crystal of C4 symmetry consisting of eight rods which are all
randomly displaced independently in the crystal (a). (b) The continuous diffraction consists of
equal weightings of the single-rod diffraction in the two unique orientations, whereas the Bragg
peaks sample the transform of the average unit cell (c). The patterns are markedly different and
even display different symmetries

continuous terms do not sample the same underlying transform. Here is it seen
that absences in the Bragg peaks do not necessarily correspond to minima of the
continuous diffraction and in some places strong Bragg peaks overlay minima of the
continuous diffraction. This situation is in stark contrast to the results of Sect. 9.4.3
where the unit cell transform could be factored out. In that case, the end result
(Eq. (9.30)) is a more complicated lattice function than L(q), as can also be seen
within the square brackets of Eq. (9.23). The difference between incoherent and
coherent addition can also be illustrated with a simple toy problem of diffraction of
a two-dimensional array of rod-like structures, shown in Fig. 9.8. Here there are two
orientations of these independently displaced rigid units. The continuous diffraction
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consists of the incoherent sum of rod diffraction in the two different orientations,
Fig. 9.8b, whereas the Bragg peaks sample the underlying unit cell transform of
Fig. 9.8c.

In Sect. 9.2.4, we saw how the feature size in Fourier space (the Shannon voxel
or speckle) is inversely related to the size of coherently diffracting volume. If
one combines two objects incoherently (by adding the intensities) however, the
feature size does not change and contrast is reduced [8]. This means that the
observed speckle size gives a measure of the size of the rigid bodies that contribute
to the diffraction pattern. This can be examined directly by taking the Fourier
transform of the measured 3D diffraction intensities, giving the autocorrelation
function of the disordered crystal. If the Bragg peaks are first filtered from the
diffraction intensities, the transform Ĩ (u) of the second term of Eq. (9.32) is the
sum of the complete autocorrelation functions of the rigid units (convolved with
a narrow Gaussian given by the Fourier transform of the complementary Debye-
Waller factor). More broadly, as expanded in the next section, the autocorrelation of
the rigid units will be convolved with the correlation function of their displacements,
making it possible to determine if the boundary between the rigid bodies is “soft,”
for example. When small domains of molecules are displaced, a case of great interest
to understand protein dynamics and function, the resulting speckle size will be large,
and the incoherent sum of the continuous diffraction from the many independent
domains will be of low contrast, perhaps not distinguishable from uncorrelated
atomic disorder.

9.4.5 Liquid-Like Motions Within a Rigid Body

A popular model of disorder is liquid-like motions [9, 39]. Here the covariance
matrix between two atoms a and a′ is a diagonal matrix which decays exponentially
with the distance between them. This can be expressed as

Caa′ = 〈

δᵀacδa′c′
〉 = σ 2 exp(−raa′/γ ) I3 . (9.33)

This is termed liquid-like because it treats the molecules like an ideal fluid. There is
no shearing motion which would lead to off-diagonal terms in the covariance matrix
and the correlations are strictly non-negative. One can also have different values for
σ and γ for atom pairs within the same molecule and in different molecules. To
investigate how the scattered intensity is related to the molecular transform in this
case, we consider a P1 crystal with the following covariance matrix:

Cac a′c′ = 〈

δᵀacδa′c′
〉 =

{

σ 2 exp(−raa′/γ ) I3, if c = c′

0, otherwise.

This means that within the unit cell, correlations decay with distance but there are no
correlations across unit cells. Using the now-familiar procedure, Eq. (9.27) becomes
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I (q) =
∑

cc′
Lcc′(q)

∑

aa′
Iaa′(q)e−4π2σ 2q2

+ Nce
−4π2σ 2q2 ∑

aa′
Iaa′(q)

(

e4π2σ 2q2 exp(−raa′/γ ) − 1
)

.

As a sanity check, we see that as γ → ∞, the expression becomes the same as in
Eq. (9.30) with a B-factor suppressed Bragg term and continuous diffraction in the
second term. To evaluate the second term for finite γ , it is helpful to expand the Iaa′
term

ID(q) = Nce
−4π2σ 2q2 ∑

aa′
fa(q)fa′(q)

(

e4π2σ 2q2 exp(−raa′/γ ) − 1
)

e2πiraa′ ·q

= Nce
−4π2σ 2q2

∫

d3u
∑

aa′
fa(q)fa′(q)

(

e4π2σ 2q2 exp(−u/γ ) − 1
)

δ(u − raa′)e2πiu·q

= Nce
−4π2σ 2q2

∫

d3u P(u)e2πiu·q

= Nce
−4π2σ 2q2

Fq [P(u)]

where P(u) is the autocorrelation of the electron density weighted by the covariance
terms and δ(u) is the 3D Dirac delta function. The advantage of this conversion
to a continuous integral is that the Fourier transform is directly evident. The ideal
autocorrelation function is the inverse Fourier transform of the molecular transform
intensities,

Po(u) = F−1
u [Io(q)] .

The weighted autocorrelation can be written as the product of the ideal one with the
liquid-like motion weighting

P(u) = Po(u) ×
(

e4π2σ 2q2 exp(−u/γ ) − 1
)

. (9.34)

Using the fact that the Fourier transform maps products to convolutions and using a
Taylor-series expansion, the diffuse term ID can be written as

ID(q) = Nce
−4π2σ 2q2

Fq

[

Po(u) ×
(

e4π2σ 2q2 exp(−u/γ ) − 1
)]

= Nce
−4π2σ 2q2

∞
∑

n=1

(2πσq)2n

n! Io(q) ⊗ Fq

[

e−nu/γ
]

= Nce
−4π2σ 2q2

∞
∑

n=1

(2πσq)2n

n! Io(q) ⊗
[

8πnγ 3

(

n2 + 4π2γ 2q2
)2

]

(9.35)
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Fig. 9.9 Diffuse scattering evaluated from the liquid-like motions model, Eq. (9.35), with the
parameters σ = 0.8 Å in both cases and γ = 100 Å and 10 Å in (a) and (b), respectively. The
pattern in (a) is fairly similar to Fig. 9.3a, except near the corners of the image. But if the correlation
length is significantly smaller than the particle, which is around 40 Å wide, the blurring will make
phase retrieval difficult. For details see Box 9.1

where the last term is the 3D Fourier transform of the spherically symmetric function
e−n|u|/γ . Thus, the effect of liquid-like correlations within the rigid body results
in a series of convolutions with incrementally broader kernels. In addition, the
contribution of each successive term is weighted more at higher q. At very low
resolution, the higher order terms can be neglected and the molecular transform
is only slightly modified. At higher resolution, more terms have to be taken into
account which blur the intensity more. This can be understood intuitively in that at
low resolution (long length scales), the rigid body moves highly coherently since
the deviations from rigid-body motion are small. At higher resolution, the effective
correlation length decreases which broadens the features in Fourier space.

Figure 9.9 shows our standard example pattern modified for different values of
the correlation length γ . In the first case γ is around 2.5 times the size of the rigid
body so it can be approximated well as a rigid body, while in (b), the correlation
length is only a quarter of the size. Thus, at higher resolution, the best approximation
is that of uncorrelated displacements leading to structureless diffuse scattering.

The first line of Eq. (9.35) emphasizes the power of investigating the continuous
diffraction (after filtering the Bragg peaks) in real space by Fourier transformation.
After accounting for the Debye-Waller term, which could be obtained through a Wil-
son plot analysis [20], the transform of ID(q) yields the weighted autocorrelation
function of Eq. (9.34). It may be possible to determine the form of the correlation
function through inspection or modelling, or to solve for an approximation of it
during the phasing process, similar to procedures of partially coherent diffraction
imaging [19, 58].
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9.4.6 Crystal Growth Model

One can consider the case where the bodies such as whole molecules are rigid but
there is an exponentially decaying correlation between the displacements of those
rigid bodies from their ideal positions. This situation can be surmised to be more
likely than uncorrelated displacements of molecules, since molecules are in contact
in the crystal and the position of one molecule is influenced by the positions of these
neighbors. The so-called growth models capture this dependence of the position of
one molecule on the positions of those that came before it [55], which we simplify
here. Again, for simplicity, staying with the P1 model of the whole unit cell being a
rigid body, we obtain the following covariance matrix in analogy to Eq. (9.33):

Cac a′c′ = 〈

δᵀacδa′c′
〉 = σ 2 exp(−rcc′/γ ) I3 .

Since the covariance only depends on the distance between the unit cell origins, this
represents each unit cell moving as a rigid body. Now Eq. (9.27) does not separate
into different terms, but can just be written as

I (q) = e−4π2σ 2q2 ∑

cc′
Lcc′(q)e4π2σ 2q2 exp(−rcc′/γ )

∑

aa′
Iaa′(q)

= e−4π2σ 2q2
Io(q)

∑

cc′
Lcc′(q)e4π2σ 2q2 exp(−rcc′/γ ) .

This is the first time we consider correlated displacements across unit cells, which
has the effect of modifying the lattice sum itself. Now even for an infinite crystal,
the diffraction is not expressed as an array of delta functions. The sum can, however,
be expressed as a sum of convolutions as in Sect. 9.4.5, Eq. (9.35), but with Io(q)

replaced by the ideal lattice sum, which is the array of delta functions (the Dirac
comb).

I (q) = e−4π2σ 2q2
∞
∑

n=1

(2πσq)2n

n!

[
∑

cc′
Lcc′(q)

]

⊗
[

8πnγ 3

(

n2 + 4π2γ 2q2
)2

]

. (9.36)

The Bragg peak is broadened by an increasing amount as q increases until it
disappears at a high enough resolution and one obtains the direct continuous
diffraction term Io(q). This can again be understood intuitively in the following
way. At low resolution (long length scales), a large chunk of the crystal is well-
ordered resulting in sharp, strong Bragg peaks. At smaller length scales, only a
small region of the crystal has the necessary degree of periodicity to interfere
coherently to produce fat Bragg peaks, as discussed in Sect. 9.3.3. Two cases, with
γ respectively bigger and smaller than the unit cell are shown in Fig. 9.10a, b. A
recent investigation discerned correlations over lengths of many unit cells in the
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Fig. 9.10 Scattered intensity evaluated from the growth model, Eq. (9.36), with the parameters
σ = 0.8 Å and γ = 100 Å and 10 Å in (a) and (b), respectively. Even with a relatively high σ ,
since γ is so large in (a), Bragg peaks persist until the edge of the image since many unit cells
move as a group. In (b), the situation is closer to rigid-body disorder of Sect. 9.4.2. For details see
Box 9.1

merged experimental patterns of several protein crystals in which Bragg diffraction
extended to high resolution [39]. The broadening and weakening of Bragg peaks
with scattering angle is consistent with such growth models. As mentioned in
Sect. 9.4.5 and summarized in Box 9.2, iterative algorithms to recover both the
phases and the correlation function offer not only a route to obtain maps of electron
density, but may also give new insights into the arrangements of molecules in
crystals.

9.4.7 Rotational Rigid-Body Disorder

If the rigid body undergoes rotational oscillations (librations), the diffuse scattering
is, in general, not a direct modulation of the continuous diffraction intensities.
This is because rotations displace different parts of the molecule by different
amounts. The atoms on the rotation axis for axial rotations do not displace at all.
This effectively makes the rotationally disordered electron density fundamentally
different from the rigid-body density. The situation is more tractable if translational
disorder is also present and the displacement of all atoms due to rotations is small
compared to translations. In that case, one observes a rotationally blurred copy of
the continuous diffraction, which can still be phased under certain conditions using
partial coherence methods. Figure 9.11 shows the intensity distributions when there
is both translational and rotational disorder. The tolerance to rotation is similar to
that of the Crowther condition for the angular step size of tomography [13], given
by the resolution divided by the molecule width, and thus smaller rigid bodies can
tolerate larger degrees of rotational disorder.
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Fig. 9.11 Intensity distribution from both rotational disorder about the center of mass of the
molecule with standard deviation of 4◦ and rigid-body translational disorder with σ = 0.8 Å and
0.2 Å in (a) and (b), respectively. The pattern in (a) is recognizably a slightly rotationally blurred
version of Fig. 9.3a. As the relative contribution of rotational disorder is increased, additional
features appear and the diffuse scattering cannot be interpreted as simply transformed continuous
diffraction. For details see Box 9.1

Box 9.2
In Sect. 9.4, we have seen the effect on the scattered intensity through
various forms of crystalline disorder. In general, a few or more of these
are likely to occur in all crystals to some extent. In conventional protein
crystallography, uncorrelated disorder is assumed by default since Bragg
intensities are insensitive to correlations in displacements. It is striking by
comparing the figures in this section how persistent the structural information
is in the continuous diffraction. This stems from the fact that the correlation
functions are themselves relatively unstructured and their main effect is to
broadly modulate the pair correlation (autocorrelation function) rather than
to change the distribution of those pair correlations. As such the continuous
diffraction, in combination with Bragg intensities and a suitable treatment
of the correlation function, should provide robust information to obtain
the molecular structure. This is akin to strategies of accounting for partial
coherence, which have brought much success to the field of diffractive
imaging [58].

9.4.8 An Example System: Photosystem II

Continuous diffraction from a disordered crystal was first identified as useful for
structure determination in crystals of the membrane protein complex photosystem
II (PS II) [1]. Membrane protein surfaces have both hydrophobic and hydrophilic
parts. One way to generate a stable crystal in an aqueous environment is to use
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Fig. 9.12 (a) An X-ray FEL snapshot “still” diffraction pattern of a PSII microcrystal shows a
weak speckle structure beyond the extent of Bragg peaks, which is enhanced in this figure by
limiting the displayed pixel values. (b) Structure factors obtained from Bragg peak counts from
25,585 still patterns, displayed as a precession-style pattern of the [001] zone axis. (c) A rendering
of the entire 3D diffraction volume assembled from the 2848 strongest patterns. (d) A central
section of the diffraction volume in c normal to the [100] axis. Speckles are clearly observed
beyond the 4.5-Å extent of Bragg diffraction (indicated by the white circles in b and d) to the edge
of the detector. Caption and figure from Ref. [1]

detergents which form micelles around the hydrophobic surfaces. These micelles
mediate the crystal contacts, but since they are flexible, the contacts are relatively
soft. The crystals are therefore not perfectly ordered and, in this experiment,
produced observable Bragg peaks to a resolution of only around 4.5 Å. However,
one can observe weak continuous scattering at higher scattering angles all the way to
the edge of the detector (Fig. 9.12). After subtracting the background and combining
the strongest diffraction patterns as described in Sect. 9.5, one can observe a striking
continuous signal. This continuous diffraction data is available as CXIDB Entry 59
(http://cxidb.org/id-59.html).

These molecules crystallize in the orthorhombic P212121 space group, which
means that there are four asymmetric units in each unit cell. Since the choice
of which four units make up the unit cell is arbitrary, we do not consider that

http://cxidb.org/id-59.html
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Fig. 9.13 (a) Electron density autocorrelation projected along the crystal c axis. (b) Point-group
symmetrized autocorrelations calculated from the PS II dimer, and (c) the PS II monomer projected
along the same axis. Reproduced from Ref. [1]

the whole unit cell moves as a single rigid body. In order to verify that this is
indeed continuous diffraction from some rigid bodies, the sizes of the features (or
speckles) in the pattern can be examined. This is done quantitatively by calculating
the autocorrelation as described in Sect. 9.2.4 using small regions (masked with
a Gaussian function) in the high-resolution parts of the 3D intensity distribution.
It is clear from Fig. 9.13a that the autocorrelation is not only of finite extent (or
support) but that it also has the same point-group symmetry as the crystal. From the
previous sections, this suggests a strong possibility that rigid-body translations can
explain the scattering and that each asymmetric unit is an independent rigid body.
For PS II the asymmetric unit is itself a dimer, so it is possible that each monomer is
independently displaced as a rigid body. However, the monomer is too small and the
resulting symmetrized autocorrelation seen in Fig. 9.13c does not match the data. If
the rigid body was smaller than the dimer, the features in the measured diffraction
pattern would be bigger.

Using these parameters as justification, the authors proceeded to perform iterative
phasing on these high-resolution diffuse intensities. As a proof of principle first
step, the low-resolution data, where the Bragg peaks are visible, was replaced
by the molecular transform obtained from the inverse Fourier transform of the
phased Bragg peaks. Thus, the phase problem was reduced to just determining the
high-resolution structure from the 222-twinned intensities. In addition, since the
low-resolution model was assumed to be known, one could also obtain a good
molecular envelope. The use of this envelope encodes the assumption that the
protein is “compact,” i.e., it is a connected volume and it does not consist of thin
tendrils of electron density far from the bulk of the molecule. Both of these are
reasonable for almost any protein, especially if the object moves as a rigid body.
In Fourier space, the modulus projection PM of Eq. (9.18) was applied to the high-
resolution voxels while the entire complex Fourier amplitude was replaced by the
Bragg model at low resolution. With this modified projection, the difference map
algorithm was applied [14, 16] to obtain a higher resolution structure.

Further analysis confirmed that the continuous diffraction consisted of the sum
of four independent rigid bodies [8]. This was achieved by examining the statistics
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of the diffraction intensities in shells of reciprocal space. As for Bragg peaks, the
intensities of the continuous diffraction of a molecule closely follow a negative
exponential distribution that would be expected from the coherent diffraction of
a set of atoms in random locations [59]. The most likely intensity value in the
pattern is zero, which is seen in the surroundings of the rarer maxima of speckles.
The distribution changes markedly when summing the intensities of two different
patterns. In this case it is unlikely that all the zeros coincide, and the distribution
changes to a gamma distribution with reduced contrast and variance. Such distribu-
tions form the basis for analyzing the diffraction of twinned crystals [40], and the
same can be applied here. Additionally, this was found to give a way to estimate
the contribution of a spherically symmetric unstructured background (such as the
third term in Eq. (9.31) which gives intensities that are approximately normally
distributed), as described in Sect. 9.5. This analysis showed that the total counts
in the continuous diffraction were about four times that of the Bragg peaks, and the
background contained 100 times more photons. The improved analysis also gave a
Pearson correlation between the modelled diffraction and the measured continuous
diffraction of about 0.77, as shown in Fig. 9.14. This degree of correlation was
achieved by assuming 1◦ of rotational disorder. Without this rotational blurring of
the modelled patterns a correlation of 0.67 was obtained.

As we have discussed in the previous section, the real crystal probably consists of
other kinds of disorder than just uncorrelated rigid-body displacements. There may
be some amount of uncorrelated atomic disorder (Sect. 9.4.1), liquid-like motion
within the rigid body (Sect. 9.4.5), correlations between rigid bodies (Sect. 9.4.6),
and rotational rigid-body disorder (Sect. 9.4.7). In addition, there may be biologi-
cally relevant conformational motions reflecting the dynamic behavior of the protein
in its native state. The exploration of all these possibilities to improve the retrieved
structure is ongoing and will hopefully lead to reliable structure improvement using
this continuous diffraction. Finally, since the continuous diffraction is also visible
at lower resolutions, one could also envision fully de novo phasing using both the
Bragg peaks and the inter-Bragg intensities.

9.5 Measuring and Processing Continuous Scattering

Although the technique of crystallography is well advanced and data collection
at many beamlines is routine, the accurate measurement of continuous diffraction
requires extra preparation and care, and the data analysis is different to conven-
tional measurements. Diffraction patterns are recorded with a quasi-monochromatic
collimated beam following the same source requirements as for monochromatic
macromolecular crystallography. However, diffraction patterns are ideally recorded
as “stills” or “snapshots” (no sample rotation during exposure) so that the pixelated
diffraction pattern recordings can be mapped into voxels in a 3D array in a similar
fashion to tomography or coherent diffractive imaging (see Fig. 9.2). The angular
step size between measurements is set by the Crowther condition of tomography



9 Structure Determination by Continuous Diffraction from Imperfect Crystals 293

Fig. 9.14 (a) Central slices of the merged volume of experimental continuous diffraction inten-
sities, normal to the (010) lattice vector, compared with (b) the same section of the simulated
continuous diffraction assuming a rotational disorder of 1◦ RMS and a translational disorder of
2 Å RMS. (c) The difference of the experimental and simulated intensities, shown on the same
color scale as (a) and (b). (d) Plot of the Pearson correlation coefficient in resolution shells between
the experimental and simulated data, confirming that rigid-body displacements of the Photosystem
II dimer account for the majority of the observed continuous diffraction. Reproduced from Ref. [8]

[13], equivalent to the Shannon sampling of speckles on subsequent patterns at
the highest scattering angles q. This in turn depends on the size of the rigid unit,
which can readily be estimated from the speckle size in any given diffraction
pattern. The required coverage of reciprocal space depends on the point group of
the crystal. For a P1 crystal, this corresponds to the half space (in fact a little
more to compensate Ewald sphere curvature), unless anomalous diffraction is to
be measured. Diffraction can be recorded from one or several crystals, using an
X-ray tube, synchrotron radiation beamline, or free-electron laser, depending on the
crystal size and experiment need. The latter source naturally gives snapshot patterns,
usually of unknown orientation. As with serial crystallography, the orientations
of patterns can be determined by indexing the observable Bragg peaks [56, 57]
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as described in Chap. 7. Once relative orientations are known, patterns must be
corrected for detector artifacts [61], background removed, and patterns scaled,
before interpolating and summing them into a 3D array [60].

For the separate analysis of continuous diffraction from Bragg data, the Bragg
peaks must be filtered from the data, which is best carried out prior to merging
the patterns. There are several kinds of low-pass filters to remove sharp peaks and
other features from the pattern, such as blurring with kernels of several pixels width
or determining values that differ from the median within such a kernel. Since the
locations of Bragg peaks are known, they can be further masked from the 3D array.
Bragg peaks account for only a small fraction of all voxels, and one can quite
aggressively mask out pixels at the peaks and surrounding them without losing
information from the continuous diffraction. Indeed, when in doubt whether the
peaks are influencing the continuous diffraction it is better to increase the mask of
peaks rather than to phase with inappropriate data. The missing data can be allowed
to float during the iterative phasing process, which will be heavily constrained by
the support in any case.

The main difference between the measurement and treatment of Bragg and
continuous diffraction of course stems from the diffuse nature of the contin-
uous diffraction, which is much weaker per pixel than Bragg peaks since the
counts are spread out over many more pixels. The continuous diffraction due to
substitutional disorder in time-resolved measurements is presumably even more
difficult to measure since it stems from smaller units than the entire molecule.
Molecular continuous diffraction tends also to be much weaker than the structureless
background that arises from air scatter, the medium containing the crystal, beamline
optics, and atomic disorder in the crystal (possibly induced by the X-ray irradiation
[6]). In the example of PS II (Sect. 9.4.8), the background was about 100 times
higher than the diffuse scattering.

As compared with Bragg peaks, which can easily be distinguished and separated
from any incoherent background, it is not so easy to separate continuous diffraction
from it. For a crystal with a single rigid unit (P1 symmetry), it may be possible to
use the local minima of the measured pattern or the merged intensities to estimate
the level of the incoherent background. However, when the continuous diffraction
consists of the incoherent sum of multiple rigid units the background estimation can
no longer be guided by the local minima since intensity zeroes in the continuous
diffraction are unlikely in this case. As long as the background is due solely to
scattering from structureless components, such that it is spherically symmetric
(after correction for the polarization of the incident beam), then the statistics of the
intensities can be used to separate continuous diffraction of structured rigid objects
from this unstructured background [8]. Briefly, as mentioned above, the distribution
of intensities in shells of q of the continuous diffraction from a disordered crystal
follows Wilson statistics. For a single rigid object per unit cell the distribution of
intensities is the negative exponential distribution, but when the crystal consists of
Nb rigid bodies (which incoherently sum as in Bragg diffraction from a twinned
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crystal) the intensities follow the Gamma distribution with a probability function

p(I) = N
Nb

b INb−1

�Nb(Nb − 1)! exp

(−NbI

�

)

, I > 0, (9.37)

with a mean of � and a variance of �2/Nb. That is, in the absence of background,
the number of rigid units can be determined by comparing the mean and variance of
intensities in a q shell. As shown by Chapman et al. [8], the addition of an unstruc-
tured background with a normal distribution (or more accurately, Poisson when
photon counts are low) alters the distribution of intensities and their corresponding
moments. The mean of the structured diffraction (�), as well as the mean (μback)
and variance (σback) of the background can be determined from the mean, variance,
and skewness of the measured intensities. This allows the background μback to be
estimated and subtracted in each q shell of every measured pattern, as well as the
estimation of a scaling factor � that can be used when merging patterns into the 3D
array. An improved variation of this method can be applied when photon counts are
known [8].

This method of background estimation relies upon the fact that the background
really is spherically symmetric. It is therefore very important to minimize any
parasitic scattering in the experiment that is not symmetric, such as scatter from
beamline optics and shadowing of that scattering by components downstream of the
optics. The sensitivity of the analysis of continuous diffraction to this kind of artifact
is much greater than for Bragg diffraction, so a beamline set up that is adequate for
conventional crystallography is not necessarily suitable for continuous diffraction
measurements. At synchrotron beamlines, such shadows can originate from a cryo
or humidity jet nozzle, the beamstop holder, or the loop holder. The shadows are
usually produced by the X-rays scattered upstream from the sample, for example
from air. The beamstop and its holder must also be more carefully aligned than
for conventional experiments to ensure that low-angle data is usable in subsequent
analysis. If such shadowing is stable during the course of the measurement, then the
effected regions of the detector should be masked and not used in further analysis.
This may reduce the efficiency of data collection, or in the worst case may cause
an incomplete measurement. A way to determine the detector mask to be used is to
record long exposures with or without the sample or sum a large number of patterns
together (a pixel-based sum in the detector frame of reference), and then subtract
the rotationally averaged pattern after polarization correction. The resulting mask is
then applied to the patterns to recompute the difference from the rotational average,
and perhaps updated. This procedure is repeated several times to ensure the reliable
detector pixels are identified.

Any non-symmetric background that varies over the set of measured patterns
will not be correctable. This is most likely caused by the means to introduce the
sample into the beam. Liquid jets used in X-ray FEL experiments (see Chap. 5)
are particularly good since they tend only to give diffuse scattering from the liquid,
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although the tip of the nozzle may cause shadowing at high angles and misalignment
of the jet to the focused X-ray beam causes streaks perpendicular to the liquid
column at low resolution. Unstable jets can have different and unpredictable
scattering from pattern to pattern. The recent double-flow focus jet is particularly
stable [37]. “Fixed target” raster-scanning of crystals at X-ray FELs (Chap. 5) may
give variable shadowing due to the movement of the sample support, and the
support itself gives diffuse scattering. Chips made of Kapton can produce rather
sharp rings, and single-crystal silicon chips can produce non-symmetric diffuse
scattering due to strain or thermal disorder. For a tomographic series collected at
a synchrotron radiation facility, crystals are often mounted in nylon loops which
give different scattering depending on the angle of rotation of the loop. This can
be avoided by mounting a large crystal sticking out of the loop or by measuring
only in a limited angular range where the loop does not come close to occluding
the beam. Other variable contributions to the dataset include diffraction from ice
or salt, which produce strong Bragg peaks or Debye-Scherrer rings. These can be
identified and removed plotting a radial average curve (intensity vs detector radius
or q), smoothing it and analyzing the difference between the original and smoothed
curves. This method works rather well because ice or salt rings are usually quite
sharp.

Measurement of single crystals at synchrotron radiation beamlines must contend
with radiation damage and care taken not to exceed tolerable doses. While a
thorough study of the effects of radiation damage on continuous diffraction has not
yet been made, global damage will have the effect of increasing background and
reducing contrast of the continuous diffraction, as indicated by an increase in βa in
Eq. (9.31).

The final arrangement of data into a 3D volume is carried out by interpolating
each diffraction pattern onto the voxels of that array that intersect with the
corresponding Ewald sphere. Besides scaling by the mean signal, �, for each
pattern, the voxel values must be divided by the number of observations in that
particular voxel. This tends to be large for low-resolution voxels and reduces
approximately as 1/q until the center edge of the detector is reached. For serial
crystallography from randomly oriented crystals, this usually defines the boundary
of accurately measured data since the detector corners give much lower coverage. In
such experiments we find it is not usually the best strategy to include every indexed
pattern in the 3D merge but to keep only the strongest with the best signal to noise
ratio of the continuous diffraction. Adding a large number of weak patterns usually
increases noise without the benefit of improved signal. Outlying patterns that have
poor correlation with the constructed 3D volume can be excluded, although this
process may introduce bias.
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Box 9.3
Processing of the measured data for further analysis consists of several
steps:

• Determination of the exact geometry of the experiment (relative position
of the detector with respect to the sample) and masking out bad regions or
pixels of the detector.

• Masking of statistically outlying regions in each pattern (such as ice or salt
rings) and the removal of Bragg peaks.

• Correction of polarization and subtraction of symmetric background.
• Scaling of each pattern, either using the Bragg peaks (for example, from

XDS output [26]) or by estimating continuous signal level from Wilson
statistics [8].

• Merging of all diffraction patterns into a single 3D volume using geo-
metrical information and beam parameters. For serial crystallography the
orientation can be obtained by indexing [60].

• Final subtraction of the radially symmetrical background from the 3D
merged data, based on Wilson statistics.

• If several datasets are merged, each 3D volume must be scaled, using again
the procedure described in Chapman et al. [8].
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