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Abstract. Previous research has shown that automatically combining
low-level behaviors into a probabilistic finite state machine produces con-
trol software that crosses the reality gap satisfactorily. In this paper, we
explore the possibility of adopting behavior trees as an architecture for
the control software of robot swarms. We introduce Maple: an automatic
design method that combines preexisting modules into behavior trees.
To highlight the potential of this control architecture, we present robot
experiments in which we compare Maple with Chocolate and EvoStick

on two missions: foraging and aggregation. Chocolate and EvoStick

are two previously published automatic design methods. Chocolate is a
modular method that generates probabilistic finite state machines and
EvoStick is a traditional evolutionary robotics method. The results of
the experiments indicate that behavior trees are a viable and promising
architecture to automatically generate control software for robot swarms.
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1 Introduction

In swarm robotics, a group of simple robots works together to achieve a common
goal that is beyond the capabilities of a single robot [2,4,5,11,19,34]. The collec-
tive behavior of the swarm is the result of the local interactions that each robot
has with its neighboring peers and with the environment. One of the biggest
challenges is to conceive the control software of the individual robots [11]. Often
control software is designed manually in a trial-and-error process [5]. This app-
roach is time-consuming, prone to error and bias and difficult to replicate [4,14].
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A promising alternative is automatic design. In automatic design, the design
problem is transformed into an optimization problem. The design space of the
possible instances of control software is mapped into a solution space on which an
optimization algorithm searches a solution that maximizes a mission-dependent
performance measure. Due to numerous constraints (of which time and hardware
properties are the most notable ones), automatic design is often performed in
simulation. As simulation is unavoidably only an approximation of reality, the
so-called reality gap has to be faced by control software developed in simulation.
It has been observed that different design methods might be more or less robust
to the reality gap [16]. When assessing an automatic design method, it is there-
fore fundamental to perform tests with real robots to study its ability to cross
the reality gap satisfactorily.

A popular approach to the automatic design of robot control software is
evolutionary robotics [13]. Evolutionary swarm robotics is the application of
evolutionary algorithms to generate control software for swarm robotics [37]. In
this approach, robots are controlled by artificial neural networks that map sensor
readings to commands that are fed to the actuators. Other approaches have been
proposed that generate control software by assembling predefined modules. For
example, Duarte et al. [12] generated a set of neural networks to perform low-level
actions. These neural networks were then combined into a finite state machine.
The benefit of the approach is that it is easier generate multiple neural networks
that perform low-level actions rather than a single one that performs the whole
mission. The limitation is that the designer still needs to decompose the task into
suitable subtasks. Francesca et al. [15,16] defined AutoMoDe, a method in which
a set of preexisting mission-agnostic constituent behaviors and conditions are
assembled into a finite state-machine by an optimization process that maximizes
a mission-specific performance measure. The authors developed two instances of
AutoMoDe: Vanilla [16] and Chocolate [15], which differ in the optimization
algorithm adopted. They compared them with a standard evolutionary method
they called EvoStick [16]. While EvoStick performs better in simulation, Va-
nilla and Chocolate proved to be more robust to the reality gap and obtain
better results in reality.

In this paper, we explore the possibility of automatically assembling preex-
isting modules into a behavior tree. Behavior trees are a control architecture
that was initially developed as an alternative to finite state machines for speci-
fying the behavior of non-player characters in video games [8,23]. Behavior trees
gained popularity in the video game industry mainly because of their inher-
ent modularity [8]. Subsequently, they attracted the attention of the academia,
mostly in the robotics domain [9]. Compared to finite state machines, behavior
trees promote increased readability, maintainabilty and code reuse [10].

Behavior trees are a promising control architecture to be adopted in swarm
robotics. Indeed, they can be seen as generalizations of three classical architec-
ture already studied in the literature: the subsumption architecture [6], sequen-
tial behavior compositions [7], and decision trees [30].
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In this paper, we show that behavior trees can be used as a control architec-
ture in the automatic design of robot swarms. We propose Maple, an automatic
design method that fine-tunes and assembles preexisting modules (constituent
behaviors and conditions) into a behavior tree. We present the results of experi-
ments in which we automatically design control software for two missions: for-
aging and aggregation. In our experiments, Maple outperforms EvoStick
and obtains results that are comparable with those of Chocolate.

The research presented in this article prompts us to reconsider the original
definition of AutoMoDe, which arbitrarily restricts AutoMoDe to the generation
of probabilistic finite state machines [16]. The defining purpose of AutoMoDe–
automatic modular design – is to generate control software for robot swarms
by assembling and fine-tuning preexisting modules. The architecture into which
modules are assembled is a secondary issue which we find it should not limit the
methods defined as automatic modular design. In the following, we will consider
as instances of AutoMoDe all methods that assemble and fine-tune preexisting
modules, irrespective of the architecture into which they are cast and of the
optimization algorithm used to generate the solutions. In this precise sense, we
consider Maple to be an instance of AutoMoDe.

The paper is structured as follows: Sect. 2 provides an overview of the behav-
ior tree architecture. Section 3 introduces Maple. Section 4 describe the experi-
mental setup and Sect. 5 presents the results. Section 6 discussed related research
and Sect. 7 concludes the paper and sketches future developments.

2 Behavior Trees

Behavior trees have been used as an alternative to finite state machines [27]. In
this paper, we follow the definition given by Marzinotto et al. [27]. A behavior
tree is a tree structure that contains one root node, control nodes, and execution
nodes (actions or conditions). Execution is controlled by a tick generated by
the root and propagated through the tree. When ticked by its parent, a node
is activated. After execution, it returns one of three possible values: success,
running , or failure. Condition nodes that are ticked observe the world state
and return success, if their condition is fulfilled; and failure, otherwise. Action
nodes that are ticked returns success, if their action is completed; failure, if
their action cannot be completed; and running , if their action is still in progress.
Control nodes distribute the tick to their children. Their return value depends
on those returned by the children. There are six different types of control nodes:
selector, selector*, sequence, sequence*, parallel and decorator—see Table 1.

Additionally, behavior trees implement the principle of two-way control trans-
fers [31]. Not only can control be passed from a parent node to its child node,
but the child can return execution to its parent, along with information about
the state of execution. In a finite state machine, the control flow is only one-
directional, that is, a state cannot return control to the predecessor.

Perhaps the most important property of behavior trees is their inherent mod-
ularity [10]. Each subtree of a behavior tree is, by definition, a valid behavior
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Table 1. Overview of possible control nodes in a behavior tree.

Name Symbol Description

Selector ? Ticks children sequentially as long as they return failure

Selector* ?∗ Ticks children sequentially as long as they return failure Resumes
ticking at last ticked node, if it returned running

Sequence → Ticks children sequentially as long as they return success

Sequence* →∗ Ticks children sequentially as long as they return success. Resumes
ticking at last ticked node, if it returned running

Parallel ⇒ Ticks all children simultaneously. Returns success (or failure), if a
majority of the children return success (or failure). Otherwise it returns
running

Decorator δ Executes a custom function on its only child. The function can either
manipulate the number of ticks given to the child, or the value returned
to the parent

tree as well. Thanks to the modularity, it is possible to adjust, remove, or add
subtrees without having to account for new or missing interactions [31]. Combin-
ing subtree modules in a behavior tree leads to a hierarchical structure, which
can simplify the analysis, for both humans and computers [10].

The aforementioned properties are appealing in the automatic design of con-
trol software for robot swarms. The enhanced expressiveness and the two-way
control transfers could allow the representation of behaviors that cannot be eas-
ily implemented using finite state machines. The structural modularity could
greatly simplify the implementation of optimization algorithms based on local
manipulations. It could also allow pruning unused parts to increment readabil-
ity. Finally, subtrees could be optimized independently of each other and used
afterwards as building blocks to generate more complex behaviors.

3 AutoMoDe-Maple

Maple is an automatic design method that, by combining and fine-tuning pre-
existing modules, generates control software in the form of behavior trees. In
defining Maple, our goal was to explore the possibility of using behavior trees in
the modular design of control software for robot swarms. We wished to define
a method that we could then compare with Chocolate, the existing state-of-
the-art in modular design, which generates finite state machines. We thought
that, at this stage of our research, the comparison would have been the most
informative if we reduced the differences between Maple and Chocolate as much
as possible, so as to isolate the element we wished to study: the architecture.
Therefore, we conceived Maple so that it shares with Chocolate the modules
to be assembled and the optimization algorithm. The only difference between
Maple and Chocolate is the architecture: behavior trees for the former, finite
state machines for the latter.
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Table 2. Reference model RM1.1 [21]. Sensors and actuators of the extended version
of the e-puck robot. Period of control cycle: 100 ms.

Sensor/actuator Variables Values

Proximity prox i, with i ∈ {0, ..., 7} [0, 1]

Light light i, with i ∈ {0, ..., 7} [0, 1]

Ground ground i, with i ∈ {0, ..., 2} {black , gray ,white}
Range-and-bearing n {0, ..., 19}

Vd ([0, 0.7]m, [0, 2π] radian)

Wheels vl, vr [−0.12, 0.12]m/s

The modules assembled by Maple are those used by both Vanilla [16] and
Chocolate [15]. To use these modules within a behavior tree, we included in
Maple only a subset of the control nodes described in Sect. 2.

3.1 Robotic Platform

Maple generates control software for an extended version of e-puck [18,29]. For-
mally, the subset of sensors and actuators that are used by Maple, along with the
corresponding variables, are defined by the reference model RM 1.1 [21], which
we reproduce in Table 2 for the convenience of the reader.

The e-puck is a two wheeled robot. The control software can adjust the veloc-
ity of the motors of each wheel (vr and vl). The e-puck can detect the presence
of nearby obstacles (prox i), measure ambient light (light i), and tell whether the
floor situated directly beneath itself is white, gray, or black (ground i). Finally,
thanks to its range-and-bearing board [20] the e-puck is aware of the presence
of its peers in a range of up to 0.7 m: it knows their number (n) and a vector
Vd indicating the direction of attraction to the neighboring peers, following the
framework of virtual physics [35].

3.2 Set of Modules

Maple uses the set of preexisting modules originally defined for Vanilla [16].
The set is composed of six low-level behaviors (i.e., activities performed by the
robot) and six conditions (i.e., assessments of particular situations experienced
by the robot). In a behavior tree, a leaf node is either an action or a condition.
Maple selects the action nodes among the set of Vanilla’s low-level behaviors,
and the condition nodes among the set of Vanilla’s conditions. In this section,
we briefly describe Vanilla’s low-level behaviors and conditions. We refer the
reader to the work of Francesca et al. [16] for more details.

Low-Level Behaviors. Exploration is a random walk strategy. The robot goes
straight until an obstacle is perceived by the front proximity sensors. Then, the
robot turns on the spot for a random number of control cycles drawn in {0, ..., τ},
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where τ is an integer parameter ∈ {0, ..., 100}. Stop orders the robot to stay still.
Phototaxis moves the robot towards a light source. If no light source is perceived,
the robot goes straight. Anti-phototaxis moves the robot away from the light
source1. If no light source is perceived, the robot goes straight. Attraction moves
the robot in the direction of the neighboring peers (Vd). The speed of convergence
towards the detected peers is controlled by a real parameter α ∈ [1, 5]. If no peer
is detected, the robot goes straight. Repulsion moves the robot away from the
neighboring peers (−Vd). The real parameter α ∈ [1, 5] controls the speed of
divergence. Obstacle avoidance is embedded in all low-level behaviors, with the
exception of stop. As stated earlier, this is not a design choice we made for Maple
but rather an earlier decision from Vanilla [16] that is kept to allow comparison
with previosly obtained results. The parameters τ and α must be tuned by the
automatic design process.

Conditions. Black-, gray- and white-floor are true with probability β ∈ [0, 1]
if the ground sensor perceives the floor as black, gray, or white, respectively.
Neighbor-count is true with a probability computed as a function z (n) ∈ [0, 1] of
the number of robots detected via the range-and-bearing board. A real parameter
η ∈ [0, 20] and an integer parameter ξ ∈ {0, ..., 10} control the steepness and the
inflection point of the function, respectively. Inverted-neighbor-count is true with
probability 1 − z (n). Fixed-probability is true with probability β ∈ [0, 1]. The
parameters β, η and ξ must be tuned by the automatic design process.

3.3 Control Software Architecture

We use the preexisting low-level behaviors of Vanilla [16] without any modi-
fication. In the traditional implementation of behavior trees, an action node is
able to tell whether the system it controls (i) successfully executed,(ii) is still
executing, or (iii) failed to execute the required activity. The action node then
returns the corresponding state variable (i.e., success, running , or failure).

The low-level behaviors of Vanilla were designed to be used as states of prob-
abilistic finite state machines, and were meant to be executed until an external
condition was enabled. Because of their implementations, when used as action
nodes within Maple, the low-level behaviors can only return running . As a conse-
quence, part of the control-flow nodes of behavior trees do not work as intended.
For example, a sequence node with two Vanilla’s behaviors as children would
always directly return running after the first behavior is executed once, and
would never execute the second one—see Table 1.

To use Vanilla’s behaviors as action nodes, Maple instantiates behavior trees
that have a restricted topology and use only a subset of all available control
nodes. The root node must be of the type sequence* and can only have selector
nodes as children. Within Maple, each subtree defined by a selector node is forced
to have two children: a condition node as the left child, and an action node as
the right child. In order to stay close to Vanilla’s restriction of a maximum of

1 In biology this behavior is known as negative phototaxis [28].
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Fig. 1. Illustration of a behavior tree that can be generated by Maple. Maple determines
the number of selector subtrees (highlighted by the dashed box) and specifies the
condition and action nodes for each of them. The type of the root node is predefined.

four states in the finite state machine, the behavior tree is allowed to contain
a maximum of four selector subtrees. Figure 1 illustrates an example (with only
three out of four possible subtrees) of the restricted topology of the behavior trees
that Maple can produce. In this example, action node A1 is executed as long as
condition node C1 returns failure. When condition node C1 returns success, the
sequence* node ticks the next selector subtree, and so forth. Similarly to Choco-
late [15], Maple uses Iterated F-race [26] as the optimization algorithm to search
for the best possible instance of behavior tree among all the possible ones.

4 Experimental Setup

In this section, we describe the automatic design methods under analysis, the
missions on which we test them, and the protocol we follow.

4.1 Automatic Design Methods

We compare Maple with Chocolate [15] and EvoStick [15,16]. As Maple, Choc-
olate and EvoStick are based on reference model RM1.1. We briefly describe
these methods and we refer the reader to Francesca et al. [15,16] for the details.

Chocolate selects, fine-tunes, and combines preexisting modules into prob-
abilistic finite state machines. It uses the same twelve modules as Vanilla and
Maple. Chocolate is restricted to create probabilistic finite state machines com-
prising up to four states and up to four outgoing edges per state. Similarly to
Maple, Chocolate uses Iterated F-race [26] as optimization algorithm.

EvoStick is an implementation of the evolutionary robotics approach: the
topology of a neural network is fixed, and an evolutionary algorithm is used to
optimize the weights of the connections. The network considered in EvoStick is
fully connected, feed-forward and does not contain hidden neurons. It comprises
24 input nodes for the readings of the sensors described in the reference model
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Fig. 2. foraging (left) and aggregation (right).

RM 1.1: 8 for the proximity sensors, 8 for the light sensors, 3 for the ground sen-
sors, and 5 for the range-and-bearing board. Out of the 5 input nodes dedicated
to the range-and-bearing board, one is allocated to the number of neighbors,
and the four others to the scalar projections of the vector pointing to the center
of mass of these neighbors on four unit vectors. The neural network comprises 2
output nodes for the velocities of the left and right wheels.

4.2 Missions

The missions considered are foraging and aggregation. They have already
been studied in [16]. We refer the reader to the original article for the details. In
the two missions, the robots operate in a dodecagonal arena delimited by walls
and covering an area of 4.91 m2. We limit the duration of the missions to 120 s.

FORAGING. The arena contains two source areas (black circles) and a nest
(white area). A light is placed behind the nest to help the robots to navigate
(Fig. 2, left). In this idealized version of foraging, a robot is deemed to retrieve
an object when it enters a source and then the nest. The goal of the swarm is to
retrieve as many objects as possible. The objective function is Ff = Ni, where
Ni is the number of objects retrieved.

AGGREGATION. The swarm must select one of the two black areas and aggre-
gate there [16,17] (Fig. 2, right). The objective function is Fa = max(Nl, Nr)/N ,
where Nl and Nr are the number of robots located on the left and right area,
respectively; and N is the total number of robots. The objective function is com-
puted at the end of the run, and is maximized when all robots are either on the
left or the right area.

4.3 Protocol

We considered a robot swarm composed of 20 e-pucks. The three automatic
design methods—Maple, Chocolate and EvoStick—produce control software
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Fig. 3. Results of the experiments. The gray boxes represent the performance assessed
in simulation; the white boxes represent the performance assessed in reality.

for two missions—foraging and aggregation. Since all the design methods
are stochastic, for each mission, each design method is executed 10 times and
produces 10 instances of control software. The design budget allocated to each
method for each mission is 50000 simulation runs: this is the maximum number
of simulation runs allowed during the design process. To study the generalization
capabilities of the design methods, we assess the performance of each instance of
control software once in simulation, and once in reality [3]. All simulations are
performed using ARGoS3, beta 48. [18,33].

In reality, to automatically measure the performance of the swarm, we use
a system composed of an overhead camera and markers on the robots to track
their position in real time [36]. Experimental runs start from 10 different initial
positions/orientations of the robots. We use the tracking system to automatically
guide the robots to the initial position/orientation of each run. During a run,
we interfere with the robots only if they tip over due to a collision. In this case,
we intervene and put them upright to avoid damages.

We present the results in the form of box-and-whiskers boxplots. For each
method and each mission, we report two boxplots: one for simulation and one
for reality. In the following, statements like “method A is significantly better
than B,” always imply we performed a Wilcoxon rank-sum test that detected
significance with confidence of at least 95%.

5 Results

In this section, we report the results for each mission considered. The instances
of control software produced, the details of their performances both in simulation
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and in reality, and videos of their execution on the robots are available as online
supplementary material [25].

FORAGING. Although the performance of control software produced by the
three automatic design methods is similar in simulation, Maple and Choco-
late are significantly better than EvoStick in reality. The performance of all
three methods drops significantly when passing from simulation to reality, but
EvoStick suffers from the reality gap the most. See Fig. 3(left).

Maple and Chocolate generate control software that displays expected and
similar strategies: the robots explore the environment and once a source of food
(i.e., a black area) is found, they navigate towards the nest (i.e., the white area)
guided by the light. The performance drop that affects Maple and Chocolate
when porting the control software from simulation to reality is probably due to
the fact that simulation does not properly reproduce the frictions experienced by
the robots. In reality, due to friction, robots become sometimes unable to move
and therefore do not contribute to the foraging process. Contrarily to Maple
and Chocolate, and with the exception of a few cases, EvoStick was unable to
generate instances of control software that display an effective foraging behavior
in reality. Indeed, in most cases, the robots seem unable to navigate efficiently.

AGGREGATION. In simulation, Maple and Chocolate show similar perfor-
mance, but EvoStick performs significantly better than Maple. Also in reality,
Maple and Chocolate perform similarly, but they are both significantly better
than EvoStick. Indeed, the performance of EvoStick drops considerably from
simulation to reality, whereas the performance drop of Maple and Chocolate is
smaller. See Fig. 3(right).

The instances of control software produced by Maple and Chocolate are
able to find the black areas and stop there. Contrarily, the instances of control
software produced by EvoStick do not efficiently search the space. When a black
area is found, the robots tend to leave it quickly. Neither of the three methods
produced control software that displayed effective collective decision making.

6 Related Work

Most of the early research on behavior trees has concentrated on their use for
game development [1,32]. Subsequently, research has been devoted to the appli-
cation of behavior trees in robotics. For example, Marzinotto et al. [27] man-
ually designed a behavior tree for manipulation on the NAO robot. Hu et al.
[22] described an application of behavior trees to semi-autonomous, simulated
surgery.

Jones et al. [24] proposed an automatic design method for robot swarms
in which the control architecture of robots is a behavior tree. To the best of
our knowledge, that is the first and only application of behavior trees in swarm
robotics. The authors used genetic programming to generate control software for
kilobots in a foraging mission. The action nodes are atomic commands, such as
setting motor state, storing information, or broadcasting a signal. The results
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show that behavior trees can be effectively used to control the robots of a swarm
and that the control software generated is human-readable. Our approach differs
both conceptually and methodically from method proposed by Jones et al. [24].
Methodically, we used Iterated F-Race [26] as an optimization algorithm and a
more restricted architecture for the behavior trees. Conceptually, we focussed on
showing that automatic modular design can cross the reality gap in a satisfactory
way, even when using different architectures. Furthermore, for the leaves of the
behavior tree we used complex low-level behaviors instead of atomic actions.

7 Conclusions

AutoMoDe, automatic modular design, is an approach in which control soft-
ware for robot swarms is automatically generated by assembling and fine-tuning
preexisting modules. In previous articles, the control software architecture on
which AutoMoDe operates was arbitrarily restricted to probabilistic finite state
machine. In this article, we went beyond this restriction and we investigated the
possibility of adopting behavior trees as a control software architecture. Behavior
trees are appealing for a number of reasons. Compared to finite state machines,
behavior trees offer greater expressiveness, implement the principle of two-way
control transfers, and posses inherent modularity which allows the creation of a
hierarchical structure, code reuse, and separation of concerns. Behavior trees are
also easier to manipulate without compromising their integrity. This fact could
be extremely useful when designing optimization algorithms based on iterative
improvement.

We proposed a new instance of AutoMoDe called Maple, which fine-tunes and
assembles preexisting modules into a behavior tree. To highlight its potential,
we performed experiments in simulation and reality for two different missions:
foraging and aggregation. The results show that Maple performs similar
to Chocolate—the state-of-the-art AutoMoDe method, which generates proba-
bilistic finite state machines. They both cross the reality gap in a satisfactory
way. EvoStick, which is an evolutionary robotics method, performs better then
Maple and Chocolate in simulation, but significantly worse in reality.

Future work will focus on fully exploiting the potentials of behavior trees.
This implies defining modules that are natively conceived to operate within a
behavior tree—e.g., modules that properly return their state value (success, run-
ning , or failure) and therefore interact correctly with all possible control nodes.
Moreover, we will define an ad-hoc optimization algorithm, possibly relying also
on iterative improvement, that fully exploits the inherent modularity and hier-
archical structure of behavior trees.
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(eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30552-1 1

3. Birattari, M.: On the estimation of the expected performance of a metaheuristic
on a class of instances. How many instances, how many runs? Technical report
TR/IRIDIA/2004-01, IRIDIA, Université libre de Bruxelles, Belgium (2004)
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