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Abstract. This paper investigates the use of boundary constraint han-
dling mechanisms to prevent unwanted particle roaming behaviour in
high dimensional spaces. The paper tests a range of strategies on a
benchmark for large scale optimization. The empirical analysis shows
that the hyperbolic strategy, which scales down a particle’s velocity as it
approaches the boundary, performs statistically significantly better than
the other methods considered in terms of the best objective function
value achieved. The hyperbolic strategy directly addresses the velocity
explosion, thereby preventing unwanted roaming.

1 Introduction

Particle swarm optimization (PSO) is a stochastic, population-based optimiza-
tion algorithm [9]. A swarm consists of a number of particles. Each particle’s
position in the search space represents a possible solution to an optimization
problem. The particles move through the search space, guided by local and
global information. This paper considers PSO with inertia weight [20].

Previous studies in literature have emphasized the importance of bound-
ary handling techniques for PSO, especially in high dimensional spaces [12,15].
As problem dimensionality increases, the particles become increasingly likely to
leave the search space and exhibit unwanted roaming behaviour [12]. Applica-
tion of boundary constraint handling techniques may mitigate particles’ roaming
behaviour and allow the search to continue even in high dimensional spaces.

A number of constraint handling strategies are examined that may be
employed to mitigate particle roaming behaviour. Classical boundary constraint
handling methods have been suggested [8,17], but the methods utilize infor-
mation about the optima locations and/or gradient information. For black-box
optimization problems, such information is typically not available. The bound-
ary constraint handling techniques considered in this paper do not make use of
additional information about the optimization function.
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Boundary constraint handling techniques bias the particles towards certain
parts of the search space [10,11]. Thus, the best choice in technique usually
depends on the location of the optima. However, additional information about
the optima locations may not be known. This paper considers minimization prob-
lems that have been shifted by a random vector, distributed uniformly through-
out the search space. There is thus no clear pattern regarding the optima loca-
tions, i.e. they are not near the boundaries or near the center of the search space
in all dimensions. The paper discusses the performance of a selection of boundary
handling techniques so that practitioners are guided in choosing a strategy when
the locations of the optima are unknown or differ widely among dimensions.

The paper proceeds as follows: Sect. 2 discusses the boundary constraint han-
dling techniques being considered. Section 3 describes the experimental method.
Section 4 presents the empirical results and Sect. 5 concludes the paper.

2 Background

This section discusses a number of the most common boundary constraint han-
dling techniques. Section 2.1 discusses position repair methods. Section 2.2 intro-
duces velocity repair strategies that can be combined with the position repair
strategies. Section 2.3 discusses techniques that do not fall into either category.

2.1 Position Repair Strategies

This section lists position repair strategies, which modify a particle’s position so
that it no longer violates the boundary.

Infinity: The first strategy, suggested by [3] only modifies the PSO algorithm
by constraining the personal and global best positions to be within the search
space. Thus, the particles may leave the search space, but their local and global
attractors will always be within bounds, thereby encouraging the particles to
return to the search space. There have been suggestions in literature to make
this approach standard practice [3]. This method is also known as the “invisible
wall” [18]. The infinity method has the advantage of not modifying the velocity
or position vectors directly, thereby preventing the algorithm from becoming
biased as a side effect of the boundary handling technique.

Random: The random method [4,11,16] re-initializes any invalid position com-
ponent uniformly within the search space. A possible side effect of this method
is to inject diversity into the swarm by randomly selecting position components
that particles would have been unlikely to encounter otherwise. Another variant,
random-half [19], re-initializes any invalid position components within the half
of the search space nearest the violated boundary.

Absorb: The absorb strategy repairs a particle’s position by moving it back
onto the boundary in every violated dimension. This approach biases particles
towards solutions that are on the boundary of the search space. The absorb
strategy is also known as truncate [1], nearest [10], or boundary [16].
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Exponential: The exponential method as originally proposed [1] repairs a par-
ticle’s position in every dimension by moving the particle to a point between its
previous position and the violated boundary. The new position is sampled from a
truncated exponential distribution, oriented so that there is a higher probability
of sampling a position near the boundary. An alternative method [16] samples
from a truncated exponential distribution spread across the entire search space
in the violated dimension (oriented so that positions near the violated boundary
are more likely). The original method is referred to as exponential-confined and
the latter as exponential-spread. The exponential method introduces less arti-
ficial diversity than the random and random-half methods, and also preserves
search information about good solutions near the boundaries by sampling from
a biased distribution.

2.2 Velocity Repair Methods

A particle’s velocity vector contains information about favourable search direc-
tions in relation to its local and global attractors. If the particle is relocated,
then the relative direction of its attractors change. Modifying a particle’s position
without also adjusting its velocity may cause the particle to move in directions
that are unfavourable due to its outdated momentum component. Additionally,
if the particle left the search space due to high velocity in a given dimension,
then the particle is likely to leave the search space again after being moved inside
the search space (because it still has a large, outward momentum component).
A variety of velocity repair methods are discussed below:

Zero: Set the velocity to zero in violated dimensions.

Adjust: The adjust strategy [10,11] performs a backward calculation to obtain
the repaired velocity after applying a position repair strategy, vt+1

i = xt+1
i −xt

i,
where vt+1

i denotes the velocity and xt+1
i denotes the position of the i-th particle

at iteration t + 1. This strategy records a particle’s movement to a feasible
location. For certain position repair strategies, this may help to prevent the
particle from leaving the search space again or from moving in unfavourable
directions due to an outdated momentum component.

Reflect: The reflect strategy reflects the particle’s velocity in the violated dimen-
sion. Reflection ensures that particles do not have large, outward momentum
components after their positions have been repaired, with the aim of reducing
their propensity to leave in the following iteration.

Random Damping: Random damping.[13] is a hybrid between reflection and
absorption. If a particle exceeds the boundary in a given dimension, its velocity
is partially reflected and partially absorbed. This forces the particle back into
valid space and decreases its velocity. The fraction of the velocity to be reflected
or absorbed is uniform random.

Damping: Damping is a deterministic version of the random damping method
in [13]. The parameter λ is used to determine how much of the velocity is reflected
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or absorbed. λ may be a constant value or, as in [14], may depend on the particle’s
distance from the boundary. In this paper, λ = 0.5.

2.3 Other Strategies

This section lists strategies that prescribe how a particle’s position and velocity
should be repaired or interpreted when a boundary is violated.

PBest: The pBest method, as proposed in [14], re-positions a particle to its
personal best position and sets its velocity to 0 if it leaves the search space
(in any dimension). Since particles frequently leave the search space in high
dimensions, this may lead to most of the swarm being relocated frequently.
Relocating a particle encourages highly exploitative behaviour: in the following
iteration, the velocity’s cognitive component will be zero and the momentum
component is zero, since the velocity was zeroed. Thus, the particle’s movement
depends only on its social component, causing the particles to move towards
the global best position. In this paper, another version of the pBest strategy is
suggested in which only violated dimensions are reset. This method is referred
to as pBest-dim. Resetting only violated dimensions will reduce the chances of
premature convergence since fewer dimensions will rely on social-only velocity
updates.

Hyperbolic: The hyperbolic strategy [6] prevents a particle from ever reaching
the boundary by scaling its velocity. The closer a particle is to the boundary,
the smaller its scaled velocity is. Scaling is performed as follows:

vt
i,j =

⎧
⎨

⎩

vt
i,j

1+|vt
i,j/(Uj−xt

i,j)| if vt
ij >

Uj+Lj

2

vt
i,j

1+|vt
i,j/(x

t
i,j−Lj)| if vt

ij ≤ Uj+Lj

2

(1)

where Uj and Lj denote the upper and lower boundaries in the j-th dimension.

Resampling Stochastic Scalars: The RES or resampling method [1] resam-
ples the stochastic scalars r1,j and r2,j in every dimension until the resulting
velocity does not cause the particle to leave the search space. This strategy will
have a non-deterministic run time. Particles close to the boundary may have to
draw many random numbers to obtain satisfactory values for r1,j and r2,j .

Periodic PSO: The periodic strategy [22] does not modify particle positions
or velocities. Instead, the search space is extended with infinitely many copies
that the particles can traverse without further consideration to the boundaries.
A particle’s position is mapped back to the original search space for evaluation,
where each dimension is mapped by Mj as described below:

xt
i,j

Mj�→ Lj + (xt
i,j%(Uj − Lj)) (2)

where % is the modulo operator. A particle’s score or fitness is given by
f(M(xt

i)), where f denotes the objective function. Although the strategy works
well on some search spaces, adjoining copies of the search space may introduce
sharp discontinuities, which make the search space more difficult to traverse.
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3 Experimental Method

This section describes the empirical method. The experiments used PSO with
inertia weight [20] with the global best topology. The selected inertia weight,
w = 0.7298 and the acceleration coefficients c1 = c2 = 1.49618 are known good
values suggested by Clerc [7] that guarantee convergence of the swarm (in terms
of expectation and variance of particle positions [5]). Each swarm consisted of 50
particles. The different boundary-handling techniques were tested on problems
from the CEC 2010 Benchmark Suite for Large Scale Optimization [21] with
dimensionality of 1000 (n = 1000). The suite consists of minimization problems
that includes separable, non-separable, and partially separable problems. The
degree of separability is controlled by a parameter m which was set to 10 for
these experiments. The original definition of the benchmark suite uses a vec-
tor of random numbers distributed normally throughout the search space (in
each dimension). However, this will bias the location of the optima to be near
the center of the search space. In order to prevent such bias, the shift vectors
used in this paper are distributed uniformly throughout the search space. Every
boundary-handling technique was run on each of the 20 benchmark problems 30
times for statistical significance. Every simulation was allowed 5000 iterations.

4 Results

Every boundary handling technique was assigned a rank score that depends on
the best score achieved over all simulations as proposed in [2]. These scores
were normalized so that the best rank score is 1 and the worst is 0 (as shown
in Fig. 1). A score is related to the number of statistically significant “wins”
when a strategy is compared in a pairwise manner to all the other strategies
across all benchmark functions (in terms of solution accuracy). Comparisons are
performed using a Mann-Whitney U test with p = 0.05. Additionally, an average
normalized fitness was calculated for each technique according to:

1
|F|

∑

f∈F

f(y)

f̃(y)
(3)

where F denotes the set of benchmark functions, |.| denotes set cardinality, f(y)
denotes the best fitness attained by the strategy on function f , averaged across
all runs and f̃(y) denotes the worst average fitness attained by any strategy on
function f . Thus, if a strategy always performed the worst on all functions, it
would receive an average normalized fitness of 1.

Figure 1, which plots the rank score and average normalized fitness, shows
that the hyperbolic strategy exhibits the best performance in terms of both mea-
sures. Hyperbolic also performed statistically significantly better than the other
four best strategies on 16 out of the 20 benchmark functions. It is known from
literature [12,15] that a large factor in PSO’s poor performance in high dimen-
sional problem spaces is the initial velocity explosion and the consequent roaming
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Fig. 1. Average normalized fitness and rank scores

Fig. 2. Velocity magnitude (top 5) Fig. 3. Velocity variance (top 5)

behaviour. The hyperbolic strategy completely mitigates the effects of the veloc-
ity explosion, since the velocity is scaled down to ensure that the particles remain
in valid space. Although this prevents particles from attaining optima that are
on the boundaries, the strategy does not affect the particles’ search direction or
artificially introduce or inhibit swarm diversity. The reduction in the velocity
explosion is apparent in Figs. 2 and 3 which plot the average velocity magnitude
and the average variance in velocity for the five best-performing strategies.

For 15 out of the 19 strategies, the average normalized fitness was between
0.21 and 0.32. Therefore, although the difference in performance among the
strategies were statistically significant, the actual difference in fitness between
most of the strategies was not very large. This is likely due to the problem-
dependent nature of boundary handling strategies, which is known in literature.

Due to space limitations, only a few of the strategies’ behaviour are discussed
in detail. Although it may be expected that the pBest strategy will converge
prematurely, Fig. 4 shows that the pBest strategy failed to converge. Instead,
the swarm’s diversity oscillates with every iteration, as the particles attempt to
explore, leave the search space immediately and are reset. Since no searching
could take place, the personal bests were almost never updated and thus the
global best was almost never updated. In contrast, the pBest-dim strategy per-
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Fig. 4. Swarm diversity of PBest
strategies on F10 (first 100 iterations)

Fig. 5. Average number of violated
dimensions on F11 (first 500 iterations)

formed quite well and achieved the 3-rd best score. pBest-dim also performed
better than randomly re-initializing, since resetting the position to a known good
location encourages the search to exploit within a known good region.

The two strategies that performed the worst were infinity + zero and infin-
ity + unmodified. All of the particles left the search space and remained out of
bounds for the remainder of the search. The average number of violated bound-
aries was fewer for infinity + zero than for infinity + unmodified (see Fig. 5).
Thus, zeroing the velocity component when a particle is out of bounds does
improve the particle’s ability to return to the search space to some extent.

In all cases where comparison was possible, zeroing the velocity performed
better than adjusting or reflection. Damping and random damping performed
better than zero. However, damping and random-damping are not applicable for
many of the position repair strategies. All three of the best-performing veloc-
ity repair strategies reduce the velocity in some manner, thereby reducing the
velocity explosion and the consequent roaming behaviour.

5 Conclusion

This paper tested PSO with a variety of boundary constraint handling tech-
niques on high dimensional problems with optima that were distributed uni-
formly throughout the search space. The best-performing strategy was hyper-
bolic, which rescales a particle’s velocity so that the particle can never reach the
boundary, thereby preventing the velocity explosion and subsequent unwanted
roaming. The five best performing strategies were hyperbolic, exp spread + zero,
pBest + zero, absorb + damping and random + zero. Although the difference in
performance of these strategies are statistically significant, their performance is
highly problem-dependent and their average normalized fitness values were sim-
ilar. In general, velocity repair strategies such as zero and damping performed
better than the other velocity repair strategies. The worst strategies were infin-
ity+zero and infinity+unmodified, which were also the least restrictive.
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