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Abstract. Collective decision-making is one of main building blocks of
swarm robotics collective behaviors. It is the ability of individuals to
make a collective decision without any centralized leadership, but only
via local interaction and communication. The best-of-n problem is a sub-
class of collective decision-making, whereby the swarm has to select the
best option among a set of n possible alternatives. Recently, the best-
of-n problems has gathered momentum: a number of decision-making
mechanisms have been studied focusing both on cases where there is an
explicit measurable difference between the two qualities, as well as on
cases when there are only delay costs in the environment driving the
consensus to one of the n alternatives. To the best of our knowledge,
all the formal studies on the best-of-n problem have considered a site
quality distribution that is stationary and does not change over time.

In this paper, we perform a study of the best-of-n problems in a
dynamic environment setting. We consider the situation where site quali-
ties can be directly measured by agents, and we introduce abrupt changes
to these qualities, whereby the two qualities are swapped at a given time.

Using computer simulations, we show that a vanilla application of one
of the most studied decision-making mechanism, the voter model, does
not guarantee adaptation of the swarm consensus towards the best option
after the swap occurs. Therefore, we introduce the notion of stubborn
agents, which are not allowed to change their opinion. We show that
the presence of the stubborn agents is enough to achieve adaptability to
dynamic environments. We study the performance of the system with
respect to a number of key parameters: the swarm size, the difference
between the two qualities and the proportion of stubborn individuals.
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1 Introduction

Collective decision-making is a central cornerstone in most natural and artificial
collective systems. In the context of artificial systems, collective decision-making
is one of the most important building blocks for swarm robotics systems [3]. Many
swarm robotics problems such as deciding a common direction for coordinated
motion [8], or a common area in the environment to aggregate to [6], can be
seen as instances of collective decision-making [28]. When a swarm needs to
make a collective decision by choosing among a set of discrete alternatives, the
resulting problem is called the best-of-n problem in a robot swarm, and has been
thoroughly reviewed in [28].

In this paper, we consider a version of the best-of-n problem whereby a swarm
of robots with minimal capabilities has to achieve consensus to one among n
options, and in particular to the one with the best quality, while interacting
only locally in an environment that is symmetric with respect to the distribu-
tion of the n options (that is, all options can be evaluated on average in the
same amount of time). The robots do not communicate the perceived option
quality. On the contrary, they can only advertise one option at the time, the one
corresponding to their current opinion, and they use a decision mechanism to
change their current opinion after observing their neighbors in local proximity.
Many decision mechanisms have been utilized in the past, the most common ones
being the voter model [2,30] and the majority rule [14]. Consensus is built over
time using a mechanism called positive feedback modulation [11], whereby fluc-
tuations in robot’s opinions distributions will eventually produce a bias towards
one of the two options, which will make that option more likely to be observed
and henceforth reinforcing this bias, until consensus is reached. To date, the
literature on the best-of-n for a mobile robot swarm has mainly focused to the
static environment case, whereby both environment and option quality do not
change over time, with only few exceptions [28].

In this paper, we consider the best-of-n problem in dynamic environments.
More precisely, we consider the case where the environment is static and sym-
metric with respect to option distribution, but the quality is asymmetric and
furthermore abruptly changes over time. The goal of the swarm is collectively
select the option corresponding to the best quality, and at the same time to adapt
this decision and shift its consensus state to another option if this becomes the
best one. We consider the voter model as the main decision mechanism, and the
positive feedback modulation mechanism first proposed in [30], which consists in
robots advertising each option to their neighbors for a time that is proportional,
on average, to the quality of each option, an idea that is inspired by the waggle
dance behavior exhibited by honeybees [25].

We perform experiments using multi-agent computer simulations where the
spatial dimension is taken into account, and each robot is abstracted by an agent.
We show that the vanilla application of the voter model does not allow the swarm
to adapt to a dynamic change of the options quality. To solve this problem, we
introduce the notion of stubborn agents, that is, agents that do not apply any
decision mechanism and therefore never change their opinion. Stubborn agents
can be seen as scouts, constantly exploring their favorite opinion, irrespective
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of the opinion of others and of the consensus state of the swarm. We perform
simulated experiments where we analyze the above idea by studying the effect
of the key parameters: swarm size, proportion of stubborn individuals, and ratio
of the option quality. We also perform preliminary experiment with another
decision mechanism, the majority rule, showing that in this case the dynamics
are completely different.

The rest of the paper is organized as follows. In Sect. 2, we analyze the litera-
ture in collective decision making and we relate our work considering also the few
cases where the environment can be considered dynamic. In Sect. 3, we define the
dynamic best-of-n problem, the collective decision-making mechanism, and the
idea of having the stubborn individuals. In Sect. 4, we present our experimental
setup by explaining the specific task and the parameters that have been studied.
In Sect. 5 we present the results, while in Sect. 6 we conclude and we discuss the
other possible directions in which this work can be extended.

2 Related Work

The direct biological inspiration of the best-of-n problem and in particular of the
scenario chosen here comes from the collective behaviors of social insects such as
ants [9] and more specifically bees [13,25]. The literature on the best-of-n related
to swarm robotics will be reviewed using two categories introduced in [28]. We
conclude this section by analyzing the few works in the best-of-n that can be
considered conducted in a dynamic environment.

In the first category, we find work whereby robots cannot measure directly
the quality of the different options. Instead, there are asymmetries in the envi-
ronment that bias the collective decision towards one of the n options. For exam-
ple, in [5,10], a classical aggregation task inspired by cockroaches is presented.
Here, the asymmetry in the environment is represented by the different size of
a number of shelters, that are perceived by the robots in the exact same way.
Thanks to this environmental effect, robots are able to select the right shelter to
aggregate in. Another example of environmental asymmetry is shown in [14,27],
whereby the environment is represented by a classical double bridge [7] and
robots have to find the shortest path between two bridges connecting the nest
to the food source. Differently from our work, here the asymmetries between the
two paths induces agents selecting the shortest path to appear more frequently
in the nest, therefore biasing the process towards that path. In this work, the
majority rule was used as decision mechanism. In a subsequent work [23] per-
formed on the same scenario, another mechanism called the k-unanimity rule
(the agent switches opinion only after observing the same option k times in a
row) was used.

In the second category, we find works in which the quality can be directly
measured, as per our case, but are conducted in a static environment. The base-
line studies on direct modulation of positive feedback through quality was per-
formed in [29–31], whereby the authors thoroughly analyzed the voter model and
the majority rule through real robot experiments, simulations, ordinary differ-
ential equations, and chemical reaction network models, and studied the speed
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versus accuracy trade-off. The authors in [19–21] developed a decision-making
strategy that, differently from our work, includes also an uncommitted opinion
(neither of the n alternative), a recruitment mechanism, and an inhibition mech-
anism, as in honeybees [26]. In a recent follow-up study [18], they have shown
how this model can be general to encompass not only decision-making in social
insects but also in the human brain [13]. Finally, in [15], the authors considered
the best-of-n problem in an aggregation task. Here, agents use a direct recruit-
ment mechanism and are able to commit by using a quorum-based mechanism
that makes the swarm aware of the consensus level reached.

In the context of dynamic environment, relatively little effort has been put,
however the idea of having the swarm not converging to a full consensus is not
new in this paper. For example, biological studies have found that having only
a large majority committing to an option rather than the unanimity allow fish
schools to swiftly adapt to perturbations [4]. Back to artificial systems, in [16],
the authors considered a task-sequencing problem that can be seen as a best-
of-2 with two options: task complete and task incomplete. These have dynamic
qualities because the task completion level, corresponding to the size of the
cleared area, changes over time. The authors of [1] studied a dynamic version of
aggregation. Here, each shelter emits a different sound that varies over time, and
the swarm has to aggregate in the shelter with the loudest sound. The method
is based on a fuzzy version of the original BEECLUST algorithm [12,24]. In the
original BEECLUST, after a waiting period, each agent chooses a new direction
of motion at random, while in [1] a fuzzy controller that maps the loudness and
the bearing of the sound determines the new direction of motion. Differently
from all this work that focused on specific application scenarios, in this paper
we perform a systematic study of a minimal model of the dynamic best-of-n
problem, in order to understand better the effect of the most important key
parameters.

3 The Model

In this section, we define the dynamic best-of-n problem (Sect. 3.1) and the
collective decision-making model introduced (Sect. 3.2).

3.1 The Dynamic Best-of-n Problem

The best-of-n problem requires a swarm of agents to make a collective decision
among n possible alternatives towards the choice that has the best quality. A
typical example is the choice of best location for honeybees’ swarm foraging.
Each of the n options has an intrinsic quality ρi with i ∈ 1, . . . , n. Qualities
ρi are defined in [1.05, 1.5, 3]. A best-of-n problem reaches the optimal solution
when the collective decision of the swarm is for the option with maximum quality.
That means that a large majority M ≤ N(1 − δ) of agents agrees on the same
option, where δ is a small number chosen by the experimenter. In the case where
δ = 0 there is perfect consensus.
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In this paper, as for the majority of the studies [29], we restrict n to 2
options, labeled a and b, having intrinsic quality ρa and ρb. Without loss of
generality, one option quality ρa is set to 1 while ρb > 1. No cost is included in
the current model, which means that the time needed to explore and assess the
quality of both options is symmetric [28]. Each agent can measure the quality of
different options, but cannot communicate it but rather can only advertise the
option itself using local communication (see Sect. 3.2). In dynamic environments
as introduced here, qualities can change over time: ρa = ρa(t) and ρb = ρb(t).
In this study, we only consider qualities that are piece-wise constant: at a given
time TC , the two qualities are swapped. Namely ρa(t) and ρb(t) remains constant
for t < TC , they are swapped at TC (ρa(TC) = ρb(TC −1), ρb(TC) = ρa(TC −1)),
and again remain constant afterwards.

3.2 The Decision Mechanism and the Stubborn Agents

We consider two kinds of agents: normal and stubborn. Each agent has an initial
opinion, which consists in one of the two options a or b. Normal agents are able
to change their opinion by applying a decision mechanism that relies on the
observation of other agents in local proximity. Stubborn agents instead never
change their opinion and keep the one they have at the very beginning, either a
or b.

Initially agents are positioned inside the nest. Then, they move toward
the region corresponding to their opinion. They spend there an exponentially-
distributed amount of time (sampled independently per agent) that does not
depend on the option, during which they measure the quality of that site. Then
they go back to the nest, each at a different time, and they start disseminat-
ing their opinion. Agents within the nest needs to be well-mixed in order to
avoid agents with same opinion clustering near each other. A random walk is
implemented in order to meet this well-mixed assumption as much as possible.

The agents controller is represented by the finite state machine in Fig. 1a.
Accordingly, agents can have one of the following 4 possible states: dissemination
state of opinion a (Da), dissemination state of opinion b (Db), exploration state
of opinion a (Ea), exploration state of opinion b (Eb). In the figure, solid lines
represent deterministic transitions, while dotted lines stochastic transitions. The
symbol V R indicates that the voter model is used at the end of the dissemination
state (in the case where the majority rule is used, this will be mentioned). In
the dissemination state, the agent disseminates his opinion continuously to other
agents he meets that are also in the dissemination state. The time spent by the
agent disseminating its opinion is randomly sampled from an exponential distri-
bution characterized by a parameter proportional to the quality of the region.
As a consequence it is more probable to meet neighbors with the best opinion
than meeting those with the worst one. This mechanism is called modulation of
positive feedback and it is the driving mechanism to make the group converge
on the option with the best quality. At the end of dissemination, each agent
can change its opinion based on the opinions of other agents and using either
the voter model or the majority rule. Both the voter model and the majority
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Fig. 1. Panel a: Probabilistic finite state machine. Da, Db, Ea and Eb represent the
dissemination and exploration state. Solid lines represent deterministic transitions,
while dotted lines stochastic transitions. The symbol V R indicates that the voter model
is used at the end of the dissemination state. Panel b: Screenshot of the simulation
arena. This image is taken from NetLogo software.

rule depend on the opinion of neighbors, that is the agents within a specified
spatial radius (in our experiments set to 10 units). In the voter model, the agent
switches its opinion to the one of a random neighbors. In the majority model,
the agent changes its opinion to the one held by the majority of its neighbors.

4 Experimental Setup

The experiments have been conducted first on NetLogo simulator for fast pro-
totyping. Then, the systematic simulations have been run using the simulator
developed in [29].

Agents move on a 2-dimensional arena of size 200 (width) × 100 (height)
units (see Fig. 1 for a screenshot within NetLogo). In the binary model, the
arena comprises a central region called the nest, where initially all agents are
and where they meet to perform the decision-making process. The two external
areas are the sites and represent the two options: option a on the left and option
b on the right.

In order to test the robustness of the model, the most important parameters
have been studied. For the voter model, as evident from Table 1, the total num-
ber of agents has three different values: 40, 100, 500. Without loss of generality,
the interplay between ρa and ρb can be studied simply by keeping one of them
fixed (ρa before the environment changes, and ρb after it changes) to a value of
1 and by changing the other one. The values of the second quality studied are:
1.05, 1.5, 3, indicating small, medium, and large difference in quality, respec-
tively. The proportion of stubborn individuals have been studied in the range
{5%, 10%, 20%}, equally distributed between the two opinions.

For the majority model only one set of parameters has been run (see Table 1).
As initial conditions of each run, 50% of agents have opinion a and 50% of agents
have opinion b.
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Table 1. Model parameters used in experiments

Voter Majority

N {40, 100, 500} 100

ρa (ρb after change) 1 1

ρb (ρa after change) {1.05, 1.5,3} 3

S {0.05, 0.1, 0.2} 0.1

The dissemination time is exponentially distributed with parameter τD = gρ
with g = 100. The time of exploration is also exponentially distributed, with
parameter set to τE = 10, therefore independent of the site.

In the dynamic environment considered in this paper, a new time parameter
TC is introduced: the time when the value of ρa and ρb are abruptly changed
by swapping their values. In this study TC = 2500, a value empirically chosen
as a compromise to allow both consensus to the best option prior to change
and reasonably short runs. For each configuration of parameters, an ensemble of
simulation has been realized, consisting of R = 50 runs.

5 Results

The different configuration sets are compared in terms of temporal evolution
of opinions. In particular only the proportion of agents with opinion a (pa) is
monitored, as the percentage of agents with opinion b (pb) is simply given by
pb = 1 − pa. The plots report all the trajectories of this quantity over time (in
simulated seconds, sampled every Δt = 0.1 steps) for all runs. In the paper
are reported only the most relevant plots to discuss the results. All the plots
of the full study, together with example videos, are available as Supplementary
Material [17]. Table 1 reports in bold the parameters whose plots are included
in the main text.

5.1 The Vanilla Voter Model

Figure 2 shows the results of runs of voter model without stubborn (also called
vanilla voter model) for two different values of quality ratio: 1.05 (low) and 3
(high). It is interesting to note that for a low value of quality ratio the conver-
gence is never reached, while for high value of quality ratio the convergence is
reached but there is no adaptation to the environmental change. We will see
next how stubborn individuals will play a driving role to get convergence and
adaptation in the dynamic best-of-n problem.

5.2 Effect of Quality Ratio and of Proportion of Stubborn
Individuals

Figure 3 reports the results of runs for four different cases of systems of 100
agents: across rows, we vary the ratio ρa/ρb from very low (1.05) to very high
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Fig. 2. Opinion evolution for a voter model with no stubborn, for two different values
of quality ratio: 1.05 (a) and 3 (b). For low quality ratio there is no convergence. For
high quality ratio the convergence to one option is reached but there is no adaptation
to the change of opinion quality

(3). Across columns, we vary the stubborn percentage from 5% to 20%. It is evi-
dent the large role played by quality ratio value: whatever the values of stubborn
presence, in the case of low quality ratio there is no convergence of opinions, nei-
ther adaptation. On the other hand, for large quality ratio value (3) there is good
convergence and adaptation, irrespective of the proportion of stubborn individ-
uals (which only affects the final value of the consensus state in a decreasingly
proportional way). Interestingly, while the presence of stubborn individuals has
been shown to be fundamental to have convergence and adaptation, its percent-
age does not seem to significantly contribute in terms of time nor in terms of
variance of number of agents following the opinion.

5.3 Effect of Swarm Size Versus Proportion of Stubborn Individuals

Keeping constant the percentage of stubborn individuals, a big role of the swarm
size is disclosed by Fig. 4 (the quality ratio varies across rows, while the swarm
size across columns). Increasing the population size decreases the variance of
fraction of agents following a certain opinion (here a), while the convergence or
non-convergence are determined by the value of the quality ratio. In the case
of low quality ratio, for small swarm size there is no convergence; increasing
the size of the swarm show a certain tendency to convergence. Interestingly, in
the case of high quality ratio, increasing the swarm size reduces the variance of
adaptation time.

Since the number of stubborn individuals increases with the swarm size, a
doubt arises if convergence is observed only for an absolute number of stub-
born agents larger than a critical mass. This is denied by the evidence of other
configurations. For instance, in the swarm with N = 100 agents and stubborn
percentage 20% the number of stubborn individuals is 20, which is comparable
to the number of stubborns of the swarm with N = 500 agents and stubborn
percentage 5%, that is 24 stubborns. The first case does not converge while the
second case does converge: therefore it can be concluded that there is an intrinsic
role of the size of the swarm itself, not related to any critical mass of stubborns.
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Fig. 3. Different cases of systems of N = 100 agents. (a) S = 5% and ρa/ρb = 1.05, (b)
S = 20% and ρa/ρb = 1.05, (c) S = 5% and ρa/ρb = 3, and (d) S = 20% and ρa/ρb = 3.
It shows that quality ratio has a higher effect than the percentage of stubborn.

The only thing that could be further argued is that, rather than being an effect
of the swarm size, it may be an effect of increased density instead. This will be
confirmed or denied in future work.

5.4 The Majority Rule with Stubborn Individuals

Also a majority decision model has been implemented to compare with voter
model results. Results show that the majority model never works, but does a
sort of spontaneous symmetry breaking (more often biased to the option that is
best at the beginning of the experiment, b) and is not sensitive to the presence
of stubborn individuals. We will speculate more about this in the conclusions.

6 Conclusion, Discussion, and Future Work

In this work, we have introduced the dynamic best-of-n problem, and we have
proposed a solution to this problem when the environment is asymmetric with
respect to the option qualities that can be assessed by the robots and symmetric
with respect to the time needed to assess each option [28]. The proposed solution
consists in a combination of direct modulation of positive feedback coupled with
the voter model and with the introduction of stubborn agents, that is, agents
that do not change their opinion and stay committed to their initial option.

Through simulation experiments, we have shown that the voter model alone
(i.e. without the stubborn agents) cannot make the swarm adapt to abrupt
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Fig. 4. The effect of the swarm size 40 and 500 for the two quality differences 1.05
and 3: (a) N = 40 and ρa/ρb = 1.05, (b) N = 500 and ρa/ρb = 1.05, (c) N = 40 and
ρa/ρb = 3, and (d) N = 500 and ρa/ρb = 3. In the case of low quality ratio, for small
swarm size there is no convergence; increasing the size of the swarm show a certain
tendency to convergence. In the other case (high quality ratio), increasing the swarm
size reduces the variance of adaptation time.

changes in the option qualities. After introducing stubborn agents, we have stud-
ied the effect of key parameters: the ratio of the two qualities, the proportion of
stubborn agents, and the swarm size. Firstly, we reported that, as expected and
reported in previous studies [14], the difference in site quality place a crucial role,
whereby the ability to adapt to the environmental changes is strongly linked to
the system accuracy, and higher level of accuracy and adaptability are observed
with increasing ratio between the qualities. Secondly, contrarily to initial expec-
tations, we found that increasing the ratio of stubborn individuals does not have
an effect on neither the accuracy nor the adaptability. Finally, and surprisingly,
we found that increasing swarm size has a beneficial effect on both consensus
and adaptability: when the quality ratio is high (easier problems), the swarm
is able to react faster with smaller variations on the reaction times; when the
quality ratio is low (harder problems), a small swarm is not able to achieve con-
sensus at all, while a larger swarm shows sign of approaching consensus and at
the same time of adaptability to the change in the environment. This trend fur-
ther confirms our speculation that, at least in this system, consensus-reaching
and adaptability are strongly interlinked, as in previous study it was already
found that accuracy increases with increasing swarm sizes as this will eventu-
ally approach a continuum model that, when studied using ordinary differential
equations (ODEs), predicts that the swarm always achieves consensus to the best
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Fig. 5. Majority model for a system of N = 100 agents, ρa/ρb = 3, without stubborn
(a) and with 10% of stubborns (b). Whether there are stubborn individuals or not the
majority model never converge and a symmetry breaking is observed.

quality [30]. We concluded the experimental analysis with a preliminary study
of the majority rule model, by showing that this model is ineffective in reaching
consensus to the right option and at adapting to environmental changes. The
latter is due to the effect of spatiality, as stubborn individuals committed to the
same options are very unlikely to appear next to each other (Fig. 5).

This present study has revealed new insights but at the same time has raised
new questions that we plan to investigate in future studies. Firstly, we would
like to study this system using theoretical models such as ODEs and chemical
reaction network modeling, as in [29], because this allows to study more broadly
the effect of parameters and to have a deeper understanding of the dynamics. To
do so, stubborn agents may be replaced with a spontaneous transition rate of all
agents to a random opinion, as this can be more easily modeled. However, the
equivalence of the two models needs to be tested. Secondly, we plan to system-
atically study the majority-rule to determine whether there is a variant that can
make this mechanism adaptive as well. This study will start by systematically
varying the proportion of stubborn agents, because we suspect that there could
be a higher value which will cancel out the effects of spatiality and make also
this model effective, thus we expect to see a sort of phase transition with respect
to this parameter. Finally, provided enough resources, we plan to perform the
experiments on real robots, likely kilobots [22], in order to have a proof of concept
in the real world and potentially discover new factors influencing adaptability.
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