
Simulating Kilobots Within ARGoS:
Models and Experimental Validation

Carlo Pinciroli1(B) , Mohamed S. Talamali2 , Andreagiovanni Reina2 ,
James A. R. Marshall2 , and Vito Trianni3

1 Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
cpinciroli@wpi.edu

2 Department of Computer Science, University of Sheffield, Sheffield, UK
{mstalamali1,a.reina,james.marshall}@sheffield.ac.uk

3 ISTC, National Research Council, Rome, Italy
vito.trianni@istc.cnr.it

Abstract. The Kilobot is a popular platform for swarm robotics
research due to its low cost and ease of manufacturing. Despite this, the
effort to bootstrap the design of new behaviours and the time necessary to
develop and debug new behaviours is considerable. To make this process
less burdensome, high-performing and flexible simulation tools are impor-
tant. In this paper, we present a plugin for the ARGoS simulator designed
to simplify and accelerate experimentation with Kilobots. First, the plu-
gin supports cross-compiling against the real robot platform, removing
the need to translate algorithms across different languages. Second, it is
highly configurable to match the real robot behaviour. Third, it is fast
and allows running simulations with several hundreds of Kilobots in a
fraction of real time. We present the design choices that drove our work
and report on experiments with physical robots performed to validate
simulated behaviours.

1 Introduction

Simulators are key tools for swarm robotics research. Many studies were per-
formed mainly (when not exclusively) in simulation [3,7]. Swarm simulations
tend to be “minimalistic”, in that they include only few relevant features of the
robots. Often, robots are modeled as abstract particle-like agents. For instance,
a simulator often used for swarm robotics research is MASON [14], specifically
developed for multi-agent systems research and not tailored to represent any spe-
cific robotic platform. This kind of simulations are useful to prove the validity of
decentralised coordination algorithms, but fall short when physical interactions
need to be taken into account, e.g., to simulate pulling and pushing forces among
robots [23]. Simulations in this case need to move beyond simple kinematics and
include the full dynamics of modern rigid-body simulation engines [16,17,19].

When a reference robotic hardware is available, simulations need to account
for all its components, including sensors, actuators and communication devices.
These can make simulations very costly in terms of computational requirements,
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 176–187, 2018.
https://doi.org/10.1007/978-3-030-00533-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_14&domain=pdf
http://orcid.org/0000-0002-2155-0445
http://orcid.org/0000-0002-2071-4030
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0002-1506-167X
http://orcid.org/0000-0002-9114-8486


Simulating Kilobots Within ARGoS 177

placing a tradeoff between the accuracy of the simulation and its speed [16].
However, even with accurate simulations, the “reality gap” cannot be completely
filled [11]. This is especially apparent when using automatic design techniques
that might exploit the idiosyncrasies of the simulated experimental setup [7,8].
To support swarm robotics experimentation and minimise errors when moving
to real-world experiments, simulations not only need to implement techniques
that reduce the reality gap (e.g., sensor sampling [15] and introduction and
configurability of noise [10]), but should also provide cross-compiling solutions
to directly reuse the control software developed for simulation also with the real
robot hardware. In this way, any issue related to translating the algorithm from
the one to the other platform can be removed.

Among the simulators developed for swarm robotics research, ARGoS [17]
offers a number of desirable features. ARGoS has a modular design conceived
to allow the user to select which aspects of the simulation should be assigned
more computational resources (thus increasing accuracy) and which aspects can
be simulated coarsely (thus improving scalability). For example, ARGoS sup-
ports the use of different types of physics engine—from simple kinematics to
fully 3D dynamics. In addition, ARGoS is designed for parallel computation, an
important feature to fully exploit the computational power of modern multi-core
machines. Several robotic platforms, both custom and off-the-shelf, are currently
available in ARGoS either as part of the core package or as extensions.

One robotic platform currently having momentum in swarm robotics is the
Kilobot [20,22]. The Kilobot design is driven by the need for low cost (to allow
for production of a thousand robots), small size (to fit the spaces of a typical
research lab), robustness (to reduce faults), and ease of use [20]. Meeting these
design goals meant sacrificing important features for swarm robotics research,
such as accurate environmental sensing and remote access to the robot state. To
compensate for missing features, devices such as the Kilogrid [24] and the ARK
virtualisation environment [18] have been proposed, greatly expanding the realm
of experimental activities attainable with Kilobots.

Despite the success of the Kilobot as an experimental platform, a fast and
accurate simulation environment is still important to enable fast design cycles
and educational activities based on the Kilobot. In the recent past, several simu-
lators have appeared that include the Kilobot platform. Among these, it is worth
mentioning V-REP [19], KBSim [9], and Kilombo [12]. V-REP is a generic,
modular framework originally designed for complex 3D simulations of robotic
arms and mobile robots. V-REP simulations tend to be very accurate, at the
cost of long run-times when hundreds of robots are involved in the simulation.
KBSim and Kilombo are designed to provide fast simulations for large numbers
of robots. Kilombo, in particular, can perform simulations involving thousands
of Kilobots hundreds of times faster than real time. Both KBSim and Kilombo,
however, achieve scalability by drastically simplifying the motion and communi-
cation models of the robots, and proper validation of these models is currently
unavailable. Another important aspect is that all these platform impose limita-
tions when one is to transfer code developed in simulation onto real platforms.



178 C. Pinciroli et al.

V-REP and KBSim do not target the Kilobot API, and thus require a complete
rewrite of the code. This is likely to introduce bugs and it makes convincing
model validation hard to achieve. Kilombo, on the other hand, achieves direct
interoperability with physical Kilobots by modifying the original Kilobot API
and imposing limitations on how the code can be written. Specifically, users are
not allowed to use global variables and must resort to conditional compilation
techniques to transfer the code successfully. Modifying the Kilobot API also
means that future improvements and bug fixes must be ported to the Kilombo
version, if compatibility is to be preserved.

In this paper, we present a plugin for the ARGoS simulator [17] that offers
accurate models, scalability sufficient to run one-thousand-robot experiments
in real-time, and full compatibility with the original Kilobot API. We present
the Kilobot and the reference behaviour in Sect. 2, along with experiments con-
ducted to determine the real-world behaviour and extract features to be imple-
mented in simulation. In Sect. 3, we validate the simulations against the real-
world behaviour in representative experimental conditions. We demonstrate that
ARGoS closely predicts the Kilobot behaviour, and offers sufficient efficiency to
run large-scale simulations in a fraction of real-time. Section 4 concludes the
paper.

2 Kilobot: Reference Behaviour and Simulation Models

The Kilobot is a small autonomous robot with a circular shape (diameter: 3.3 cm)
standing on three rigid legs, which moves thanks to two vibrational motors
and a slip-stick locomotion principle [20]. The robot is provided with infrared
transceivers for communication and range detection of neighbours, as well as
with an ambient light sensor and a coloured LED for displaying the robot state.
In the following, we detail the simulation design for the various components.

2.1 Body Model

The Kilobot is simulated as a small cylinder with the same radius as the real
robot, resting on three thin cylinders representing the legs. When the simulation
is performed with ARGoS’s 2D physics engine, the robot body is the circular
projection of the main board on the plane. The Kilobot locomotion is provided by
the two vibrational motors, which implement a classical differential-drive model.
The forward and rotational speeds are determined by the difference between the
velocity v� and vr, resulting respectively from the left and right motor activation.

Although the motors can be finely controlled, the normal practice with Kilo-
bots is to use only 3 motion modes: straight motion, clockwise and counterclock-
wise rotation. We calibrated the parameters of the ARGoS model so as to result
in a forward speed of 1 cm/s and a rotation speed of 45 ◦

/s, corresponding to the
nominal speed of real Kilobots [20].



Simulating Kilobots Within ARGoS 179

2.2 Noise and Inter-individual Variations

Real Kilobots have strong inter-individual variations, which are due to the simple
design and the slip-stick locomotion system. This system is strongly dependent
on small variations in the position of the motors and the bending of the legs.
To obtain acceptable locomotion, calibration of individual robots is necessary
to find good values for the motor parameters that provide straight motion and
rotations at the desired speed. Most researchers rely on manual calibration,
but this process is cumbersome and dependent on the surface on which the
Kilobot maneuver. The ARK platform [18] enables the parallel calibration of
tens of robots. While ARK shortens calibration time, it cannot guarantee error-
free precision due to the intrinsically high noise of Kilobot motion. As a result,
through either manual or automatic calibration, Kilobots hardly move straight
or rotate at the nominal speed, and present strong inter-individual variations.

To capture this, the Kilobot model has a noise component for the motion of
a single robot. Given the nominal left (�) and right (r) speeds vi (with i ∈ {�, r})
of the differential drive model, the actual speed v̂i of each wheel is computed
as v̂i = fi(vi + bi), where fi is a per-step actuation noise and bi is a per-robot
bias added to the nominal speed vi. Both fi and bi are Gaussian-distributed
random parameters, with mean and standard deviation defined in the experiment
configuration file. For each robot, the bias bi, with i ∈ {�, r}, are drawn from
the specified Gaussian distributions at the beginning of the experiment. Instead,
the actuation noise fi is drawn at each time-step.

The ARGoS default values are set from measurements performed on a sample
of 120 real Kilobots. The nominal (noise-free) speed is set to a forward speed
of vi � 1 cm/s and a rotation speed of ∼45 ◦

/s (i.e. v� � 2 cm/s, vr = 0 for right
rotation and viceversa for left rotation). To determine the distribution of the
noise observed in reality, we conducted experiments on 120 different Kilobots
(in batches of 6) that have been previously calibrated (60 manually and 60
automatically—we could not notice any remarkable difference). Robots were
asked to move straight for 1 min. Through ARK, we recorded the trajectory
of each robot, we derived the robot displacement every 10 s, and through a
differential drive model we computed the left and right speeds v̂i (with i ∈ {�, r}).
Through v̂i, we could compute the bias bt

i = v̂i − vi (ignoring white noise,
i.e. fi = 1) for each 10 s motion trajectory (thus t ∈ {1, ..., 6} for our 60 s
experiments). Finally, we computed the average bias bi =

∑
bt
i/6 for each robot

and we report the distributions of biases (for both left/right velocities i ∈ {�, r})
of the 120 tested Kilobots in Fig. 1(a). From this distribution, we computed the
mean μb = 0.015mm/s and the standard deviation σb = 1.86mm/s which we use
as default values in ARGoS. Figure 1(b) shows a comparison between the mean
square displacement (MSD) of the 120 Kilobots and the simulated robots. Noise-
free simulations show the robots moving (as expected) at the nominal speed of
∼1 cm/s, whereas the default noise values show that the simulated robots have
motion dynamics remarkably similar to reality.



180 C. Pinciroli et al.

(a) (b)

Fig. 1. (a) Distribution of the bias in straight motion estimated from measurements
over 120 different Kilobots which have been previously calibrated (60 manually, 60
automatically). The bars considers 12 bins in the range [−6, 6] mm. The solid red line
shows the approximated Gaussian distribution Nb(μb, σb) (with mean μb and standard
deviation σb) used in the default configuration of ARGoS. (b) Comparison between
simulation (600 robots) and reality (120 robots) in term of MSD when robots are
asked to go straight for 1 min. The default noise values of ARGoS give an accurate
match between reality and simulation.

2.3 Robot-Robot Communication

Communication among the Kilobots is implemented exploiting the infrared
transceiver positioned under the robot body, which sends a modulated infrared
signal that bounces on the ground and can be perceived by neighbours within
a distance of about 15 cm. The communication protocol implemented in the
most recent firmware (see https://www.kilobotics.com) is Carrier Sense Multiple
Access with Collision Detection (CSMA-CD) with exponential backoff, meaning
that upon detection of the occupied channel, message sending is delayed within
an exponentially increasing range of time slots. To avoid interferences, the max-
imum transmission frequency is set to 2 Hz. Nevertheless, Kilobots may find
the channel busy when transmitting, and collisions can still occur. To evaluate
the impact of concurrent communication, we performed an experiment with 25
Kilobots packed in a 5×5 square formation—their bodies touching each other—
and attempting to transmit messages at maximum rate. Messages contained
just the ID of the sender, so that robots getting a message could update the
number of messages received from each other robot. At the same time, robots
stored also the number of messages successfully transmitted. We performed 10
independent runs, and found that the transmission probability—i.e., the ratio
between successfully transmitted messages between the packed robots and soli-
tary robots—was close to maximum (0.992 ± 0.002) and independent from the
position of the Kilobot in the 5×5 formation. On the reception side, we observed
that the probability of receiving a messages depended strongly on the position
of the receiving robot (see Fig. 2). Generally speaking, robots in the periphery
where affected less by interferences than robots in the center (see the left panel
in Fig. 2 showing the reception probability of each robot with respect to all other

https://www.kilobotics.com


Simulating Kilobots Within ARGoS 181

Fig. 2. Communication interference measured on 25 Kilobots packed in a 5×5 grid and
concurrently sending messages to each other. Left: average message reception proba-
bility for each robot in the grid from any other robot. For each panel, the position of
the receiving robot on the grid is indicated by a ×. Right: average message reception
probability with respect to distance, in body lengths, for every Kilobot in the grid.

robots). Additionally, the decrease of the probability of reception is more pro-
nounced for center robots, indicating a stronger effect from interferences (see the
right panel in Fig. 2). Indeed, collisions are more probable in the center, where
robots may receive at the same time messages sent by robots at the periphery
that do not sense each other.

According to these results, we have implemented the Kilobot communication
limiting the maximum transmission frequency to 2 Hz, including a configurable
small error on the transmission side, and modelling message collision on the
receiver side with a tuneable probability when two robots happen to be concur-
rently transmitting.

2.4 Light Sensor

Real Kilobots are provided with a photodiode sensor to detect the ambient
light. In the commercial version1, this sensor is placed looking upward on the
robot body. Simulating the light sensors is highly dependent on the type and
position of the ambient light. ARGoS natively offers light sensor models and can
simulate light sources with a tuneable intensity. The sensor readings decrease
quadratically with the distance from the lights. In the Kilobot plugin, we rescaled
the readings in the range typical of the real robot.

2.5 ARK Simulation

The Augmented Reality for Kilobots system (ARK) [18] overcomes the limita-
tions of Kilobots by providing a flexible set of virtual environments, with which

1 Kilobots are open-hardware and in Europe are produced and sold by K-Team Cor-
poration (see https://www.k-team.com).

https://www.k-team.com


182 C. Pinciroli et al.

BCS

Cameras

OHCExtra IR
light

Fig. 3. Graphical representation of the ARK architecture. See more details in [18].

Kilobots can interact through a variety of user-configurable sensors and actua-
tors. ARK comprises a base station interfaced with an array of cameras, and an
array of overhead controllers (OHCs) for transmitting IR messages to Kilobots
(see the system architecture in Fig. 3). Communication with the Kilobots dur-
ing an experiment is obtained via broadcast of addressed messages, with each
broadcast packet containing three ARK messages (3-bytes long) for different
Kilobots. Kilobot addresses (10 bits) are uniquely assigned by ARK during a pre-
experimental phase. For sensor readings, the other 14 bits of data can be assigned
to multiple virtual sensors as desired by the user. Location-specific information
from the virtual environment can be determined for a Kilobot by its physical
position at the time the message is to be sent, which is determined through
robust tracking of each ID-assigned Kilobot over the duration of an experiment.
Kilobots communicate virtual actuator commands via signalling through RGB
LEDs, which are received via the base station’s camera array and translated
into operations on the virtual environment. Each augmented reality experiment
can be composed of more than one virtual environments. Each environment has
user-defined structure and spatio-temporal dynamics, as exemplified in [6]. As
well as enabling richer experimental paradigms, ARK’s features also lend it to
automatic motor calibration and other house-keeping features [18].

ARK is integrated with ARGoS through the ARK Loop Function (ALF), the
simulated counterpart of the ARK’s base control station. The ALF is executed
every ARGoS time-step and is in charge of simulating the virtual environments
and of sending IR ARK messages to the simulated Kilobots. To facilitate the
transfer from simulation to reality, the ALF uses the same method names and
structure of its real counterpart. Similarly to the ARK’s base control station,
the ALF has real-time access to the state of the simulated Kilobots, i.e., their
position, orientation, and LED colour. This information can be used by the user
to code the functioning of the virtual actuators and sensors. The virtual actua-
tors update the virtual environments, and virtual sensor readings are computed
using the Kilobot’s state, then transmitted to the robot. The ALF automatically
codes the 3-byte ARK messages within standard 9-byte Kilobot messages in the
same way ARK does. Therefore the Kilobot control software needs to decode
the ARK messages in ARGoS in the same way it does in reality. This imple-
mentation choice is particularly helpful because it allows for the use of identical
code in simulation and reality. ALF gives the user the possibility to limit the
communication to a maximum frequency of 60 ARK messages per second (to



Simulating Kilobots Within ARGoS 183

Fig. 4. Two screenshots of the same experiment in simulation (left) and reality (right).
We (re)implemented the Demo C from [18] in which 50 Kilobots sense and modify two
virtual environments. The full video is available at https://youtu.be/kioZR99hnU4.

match the real ARK’s frequency) or to simulate an unlimited ARK message
frequency.

To showcase the ALF functioning, we reproduced a simulated version of one
experiment based on ARK, the Demo C of [18]. Figure 4 shows two screenshots
of the experiment in simulation (left) and reality (right) featuring 50 Kilobots
that operate in two virtual environments (flower field and nest).

3 Experimental Validation

We run a set of experiments to assess the reliability of ARGoS in simulating Kilo-
bot swarms and to compare the ARGoS performance with the existing Kilobot
simulator Kilombo [12]. In Sect. 3.1, we tested how reliably ARGoS and Kilo-
mbo simulate physical interactions between Kilobots through a random diffusion
experiment. In Sect. 3.2, we compared the simulation speed of the two simula-
tors. Finally, in Sect. 3.3, we show that ARGoS successfully simulates physical
interactions between the robots and physical objects (e.g. a box) and that force
factors are taken into consideration in the simulation.

3.1 Random Diffusion Experiment

Kilobots are equipped with minimal sensing capabilities which do not allow
robots to implement robust mechanisms of collision avoidance, therefore colli-
sions between robots and objects in the environment are frequent. In this exper-
iment, we assess how realistically the collisions between Kilobots are simulated
in ARGoS and Kilombo. To perform this study, we designed an experiment
that maximises the number of collisions in a repeatable setup. The 50 Kilobots
have an initial compact distribution as illustrated in Fig. 5 (left). The robots are
placed in concentric circles heading toward the centre of the group (more pre-
cisely, the robot are placed on the vertices of four concentric regular polygons,

https://youtu.be/kioZR99hnU4


184 C. Pinciroli et al.

Fig. 5. (left) Initial distribution in four concentric circles with all 50 Kilobots facing
towards the centre. (right) Comparison between real 50 Kilobots (19 runs) and 50
simulated Kilobots (100 runs) in ARGoS and Kilombo. We show the average mean
square displacement (MSD) in a highly dense environment. ARGoS shows a good
agreement with reality, whereas Kilombo does not. Video footage is available at https://
youtu.be/6HYti0ABuxc.

starting from the innermost regular pentagon with radius 35 mm, each polygon
has the same centre, twice the number of vertices, and double radius of its inter-
nal polygon). In this experiment, the 50 Kilobots perform an isotropic random
walk [5] through which they repetitively move forward for ∼10s and turn in a
random direction (left or right) for a random time drawn from a uniform distri-
bution U(0, 4)s. We performed 19 runs of this experiment with real robots and
100 runs with simulated Kilobots in both ARGoS and Kilombo. For every run,
we recorded the trajectory of each Kilobot for a period of 3 min to compute the
mean square displacement (MSD) of each robot. We combined the 50 MSD in
each experiment and we show in Fig. 5 (right) how the average MSD changes
over time. Figure 5 (right) clearly shows that ARGoS correctly simulates physical
interactions between robots while Kilombo does not.

3.2 Speed and Scalability

To test the scalability of the Kilobot plugin, we performed experiments based
on the disperse.c example provided on the Kilobot website. This behaviour
allows a group of Kilobots to evenly disperse in the environment. We deemed
disperse.c a good benchmark because it involves both motion and communi-
cation, and the robots are initially deployed in a tight cluster that stress-tests
the collision management of ARGoS’s 2D physics engine.

Scalability is measured through the wall clock time, which is the real time
elapsed between the beginning and the end of the simulation of 60 virtual sec-
onds. We performed these experiments on a node of a computing cluster with 48
Intel Xeon Platinum 8168 CPUs at 2.70 GHz. The experiments were performed
without graphical visualisation.

We considered several parameters: (i) the number of robots N ∈ {10, 100,
1000}; (ii) the number of “worker” threads used by ARGoS T ∈ {0, 4, 16}; and

https://youtu.be/6HYti0ABuxc
https://youtu.be/6HYti0ABuxc


Simulating Kilobots Within ARGoS 185

Fig. 6. Scalability experiments. We report the median, max and min wall clock time
in a log sec scale for experiments simulating 60 virtual seconds.

(a) t=0 (b) t=10 (c) t=20 (d) t=30 (e) t=0 (f) t=10 (g) t=20 (h) t=30

(i) t=0 (j) t=10 (k) t=20 (l) t=30 (m) t=0 (n) t=10 (o) t=20 (p) t=30

Fig. 7. Box-pushing experiments. Top: real robots. Bottom: ARGoS simulation. Time
in seconds. Video footage at https://youtu.be/fwL9ePWttiU.

(iii) the number of physics engines in which the environment is partitioned P ∈
{1, 4, 16}. Every parameter set 〈N,T, P 〉 was tested 30 times.

The results are reported in Fig. 6. The use of multiple threads and physics
engines is beneficial when large swarms are simulated—particularly with 1000
robots. Conversely, with small swarms of 10 robots, multi-threading and multiple
physics engines decrease performance. With 1000 robots, 1 physics engine and 0
working threads, the runtime mean was 27 s (45% of real time); when 16 physics
engines and 16 working threads were used, the simulation was completed in 20 s
(33% of real time).

3.3 Accuracy: Box Pushing

Remarkable collective transport experiments have been demonstrated with the
Kilobots [1,21]. Our plugin also supports simulations that involve robots that
push objects. In our experiments, we found that one robot pushing an 18 g box
is not sufficient to move the box. Rather, it is necessary to use at least 5 robots
to exert sufficient force to move the box. Figure 7 shows a real-world box pushing
experiment and its simulated counterpart.

https://youtu.be/fwL9ePWttiU


186 C. Pinciroli et al.

4 Conclusions

An essential feature of any simulator are usability and realism, and scalability.
Kilobots, despite their simple hardware design, present specificities that make
their simulation non-trivial. As a matter of fact, most of the simulators available
for the Kilobots are rather minimalistic, and prove useful only for proof-of-
concept studies without guarantees of respecting real-world behaviour. Our effort
in developing a Kilobot model for ARGoS fills the need of a usable and reliable
simulation, as demonstrated by the validation experiments we performed. We
believe this will be a precious tool for swarm robotics research. To this end, the
simulator is released open source for the benefit of the community (available at
https://github.com/ilpincy/argos3-kilobot).

Besides the Kilobot simulation, this paper also introduces methodologies for
tuning the simulation that can be replicated whenever a close matching between
simulation and reality is desired. In particular, inter-individual variation between
Kilobots (due to differences in hardware and calibration) needs to be considered
as it represent an important problem when moving from simulation to reality.
Tuning the simulation as discussed in Sect. 2.2 brings the full complexity of real-
world Kilobots into the simulations, allowing for the design of controllers that
are robust to inter-individual variability and that bridge the “reality gap”.

Further support to swarm robotics research with Kilobots can be obtained
by automatisation of practices that are now performed manually. The ARK
offers tools to this aim, and the integration of ARK within ARGoS is useful to
streamline experimentation. A stronger integration of simulated and real robots
can be performed through ARK, letting simulated and real Kilobots run in
parallel, therefore opening the way for online learning [13], self-modelling [2] or
embodied evolution [4].

Acknowledgments. This work was partially supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under Grant 647704 to James Marshall. Vito Trianni acknowledges support
from the project DICE (FP7 Marie Curie Career Integration Grant, ID: 631297). The
authors thank Alex Cope for assistance in the preparation of Fig. 3.

References

1. Becker, A., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uniform
manipulation: controlling large populations of simple robots with a common input
signal. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 520–527. IEEE (2013)

2. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Robot. AI 5, 12 (2018)

https://github.com/ilpincy/argos3-kilobot


Simulating Kilobots Within ARGoS 187

5. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with kilobots. In: Dorigo, M. (ed.) ANTS 2016. LNCS, vol. 9882, pp. 185–196.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

6. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., et al. (ed.) Swarm Intelligence (ANTS 2018), LNCS, vol. 11172, pp. X-XY.
Springer, Heidelberg (2018). In press

7. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3, 224–9 (2016)

8. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

9. Halme, A.: Kilobot app–a kilobot simulator and swarm pattern designer. https://
github.com/ajhalme/kbsim (2012). Accessed 20 Apr 2018

10. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325 (1997)

11. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

12. Jansson, F., et al.: Kilombo: a Kilobot simulator to enable effective research in
swarm robotics. arXiv.org:1511.04285 (2015)

13. Li, W., Gauci, M., Gross, R.: Turing learning: a metric-free approach to inferring
behavior and its application to swarms. Swarm Intell. 10(3), 211–243 (2016)

14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

15. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1995)

16. Mondada, F., et al.: SWARM-BOT: a new distributed robotic concept. Auton.
Robots 17(2), 193–221 (2004)

17. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

18. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented
Reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017)

19. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1321–1326 (2013)

20. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014)

21. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.:
Collective transport of complex objects by simple robots: theory and experiments.
In: Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2013), pp. 47–54. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2013)

22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

23. Trianni, V., Dorigo, M.: Self-organisation and communication in groups of simu-
lated and physical robots. Biol. Cybern. 95(3), 213–231 (2006)

24. Valentini, G., et al.: Kilogrid: a novel experimental environment for the Kilobot
robot. Swarm Intell. 4(4), 1–22 (2018)

https://doi.org/10.1007/978-3-319-44427-7_16
https://github.com/ajhalme/kbsim
https://github.com/ajhalme/kbsim
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337
http://arxiv.org/abs/org:1511.04285

	Simulating Kilobots Within ARGoS: Models and Experimental Validation
	1 Introduction
	2 Kilobot: Reference Behaviour and Simulation Models
	2.1 Body Model
	2.2 Noise and Inter-individual Variations
	2.3 Robot-Robot Communication
	2.4 Light Sensor
	2.5 ARK Simulation

	3 Experimental Validation
	3.1 Random Diffusion Experiment
	3.2 Speed and Scalability
	3.3 Accuracy: Box Pushing

	4 Conclusions
	References




