
Marco Dorigo · Mauro Birattari
Christian Blum · Anders L. Christensen
Andreagiovanni Reina · Vito Trianni (Eds.)

 123

LN
CS

 1
11

72

11th International Conference, ANTS 2018
Rome, Italy, October 29–31, 2018
Proceedings

Swarm Intelligence

Lecture Notes in Computer Science 11172

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marco Dorigo • Mauro Birattari
Christian Blum • Anders L. Christensen
Andreagiovanni Reina • Vito Trianni (Eds.)

Swarm Intelligence
11th International Conference, ANTS 2018
Rome, Italy, October 29–31, 2018
Proceedings

123

Editors
Marco Dorigo
Université Libre de Bruxelles
Brussels
Belgium

Mauro Birattari
Université Libre de Bruxelles
Brussels
Belgium

Christian Blum
Artificial Intelligence Research Institute
Bellaterra
Spain

Anders L. Christensen
University of Southern Denmark
Odense
Denmark

Andreagiovanni Reina
University of Sheffield
Sheffield
UK

Vito Trianni
National Research Council
Rome
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00532-0 ISBN 978-3-030-00533-7 (eBook)
https://doi.org/10.1007/978-3-030-00533-7

Library of Congress Control Number: 2018954072

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3971-0507
http://orcid.org/0000-0003-3309-2194
http://orcid.org/0000-0002-1736-3559
http://orcid.org/0000-0002-9994-2908
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0002-9114-8486

Preface

These proceedings contain the papers presented at ANTS 2018, the 11th International
Conference on Swarm Intelligence, held at the National Research Council (CNR) in
Rome, Italy, during October 29–31, 2018. The ANTS series started in 1998 with the
First International Workshop on Ant Colony Optimization (ANTS 1998). Since then,
ANTS, which is held bi-annually, has gradually become an international forum for
researchers in the wider field of swarm intelligence. In 2004, this development was
acknowledged by the inclusion of the term “Swarm Intelligence” (next to “Ant Colony
Optimization”) in the conference title. Since 2010, the ANTS conference is officially
devoted to the field of swarm intelligence as a whole, without any bias towards specific
research directions. This is reflected in the title of the conference: “International
Conference on Swarm Intelligence.”

This volume contains the best papers selected out of 69 submissions. Of these, 24
were accepted as full-length papers, while 12 were accepted as short papers. This
corresponds to an overall acceptance rate of 52%. Also included in this volume are 7
extended abstracts.

All the contributions were presented as posters. The full-length papers were also
presented orally in a plenary session. Extended versions of the best papers presented at
the conference will be published in a special issue of the Swarm Intelligence journal.

We would like to take this opportunity to thank the large number of people that were
involved in making this conference a success. We would like to express our gratitude to
the authors who contributed their work, to the members of the International Program
Committee, to the additional referees for their qualified and detailed reviews, and to the
staff at the Institute of Cognitive Sciences and Technologies (ISTC) of the CNR for
helping with organizational matters.

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

July 2018 Marco Dorigo
Mauro Birattari
Christian Blum

Anders L. Christensen
Andreagiovanni Reina

Vito Trianni

Organization

Organizing Committee

General Chair

Marco Dorigo Université Libre de Bruxelles, Belgium

Vice-General Chair

Mauro Birattari Université Libre de Bruxelles, Belgium

Local Organizing and Publicity Chair

Vito Trianni Italian National Research Council, Italy

Technical Program Chairs

Christian Blum Spanish National Research Council, Spain
Anders L. Christensen University of Southern Denmark, Denmark,

and Instituto Universitário de Lisboa (ISCTE-IUL),
Portugal

Publication Chair

Andreagiovanni Reina University of Sheffield, UK

Paper Submission Chair

Volker Strobel Université Libre de Bruxelles, Belgium

Program Committee

Michael Allwright Université Libre de Bruxelles, Belgium
Prasanna Balaprakash Argonne National Laboratory, USA
Jacob Beal BBN Technologies, USA
Giovanni Beltrame Polytechnique Montréal, Canada
Tim Blackwell Goldsmiths, University of London, UK
Mohammad Reza Bonyadi The University of Adelaide, Australia
Darko Bozhinoski Université Libre de Bruxelles, Belgium
Alexandre Campo Université Libre de Bruxelles, Belgium
Marco Chiarandini University of Southern Denmark, Denmark
Maurice Clerc Independent Consultant on Optimisation, France
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordon University of Granada, Spain
Nikolaus Correll University of Colorado Boulder, USA
Guido De Croon Delft University of Technology, The Netherlands

Gianni Di Caro Carnegie Mellon University, USA
Luca Maria Gambardella Istituto Dalle Molle di Studi sull’Intelligenza

Artificiale, Switzerland
Melvin Gauci Harvard University, USA
Luca Di Gaspero University of Udine, Italy
Haibin Duan Beihang University, China
Andries Engelbrecht University of Pretoria, South Africa
Eliseo Ferrante University of Birmingham, Dubai, UAE
Gianpiero Francesca Toyota Motor Europe, Belgium
José García-Nieto University of Málaga, Spain
Simon Garnier New Jersey Institute of Technology, USA
Jorge Gomes University of Lisbon, Portugal
Morten Goodwin University of Agder, Norway
Roderich Gross University of Sheffield, UK
Frédéric Guinand University of Le Havre, France
Heiko Hamann University of Lübeck, Germany
Julia Handl University of Manchester, UK
J. Michael Herrmann University of Edinburgh, UK
Yara Khaluf Ghent University, Belgium
Xiaodong Li RMIT University, Australia
Simone Ludwig North Dakota State University, USA
Manuel López-Ibáñez University of Manchester, UK
Vittorio Maniezzo University of Bologna, Italy
Alcherio Martinoli Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Massimo Mastrangeli Delft University of Technology, The Netherlands
Nithin Mathews Netcetera, Switzerland
Michalis Mavrovouniotis University of Cyprus, Cyprus
Yi Mei Victoria University of Wellington, New Zealand
Ronaldo Menezes Florida Institute of Technology, USA
Bernd Meyer Monash University, Australia
Martin Middendorf University of Leipzig, Germany
Alan Millard University of York, UK
Nicolas Monmarché University of Tours, France
Roberto Montemanni Istituto Dalle Molle di Studi sull’Intelligenza

Artificiale, Switzerland
Marco Montes de Oca Northeastern University, USA
Sanaz Mostaghim Otto von Guericke University Magdeburg, Germany
Konstantinos Parsopoulos University of Ioannina, Greece
Paola Pellegrini IFSTTAR, France
Carlo Pinciroli Worcester Polytechnic Institute, USA
Lenka Pitonakova University of Bristol, UK
Günther Raidl Vienna University of Technology, Austria
Katya Rodriguez-Vazquez National Autonomous University of Mexico, Mexico
Mike Rubenstein Northwestern University, USA
Erol Sahin Middle East Technical University, Turkey

VIII Organization

Roberto Santana University of the Basque Country, Spain
Thomas Schmickl University of Graz, Austria
Kevin Seppi Brigham Young University, USA
Christine Solnon LIRIS, CNRS, France
Thomas Stützle Université Libre de Bruxelles, Belgium
Dirk Sudholt University of Sheffield, UK
Yasumasa Tamura Tokyo Institute of Technology, Japan
Danesh Tarapore University of Southampton, UK
Guy Theraulaz Paul Sabatier University, France
Dhananjay Thiruvady Monash University, Australia
Jon Timmis University of York, UK
Elio Tuci Middlesex University, UK
Ali Emre Turgut Katholieke Universiteit Leuven, Belgium
Gabriele Valentini Arizona State University, USA
Michael Vrahatis University of Patras, Greece
Justin Werfel Harvard University, USA
Alan Winfield University of the West of England, UK
Masahito Yamamoto Hokkaido University, Japan

Additional Reviewers

Nicolas Cambier Université de Technologie de Compiègne, France
Yue Gu University of Sheffield, UK
Bahar Haghighat Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Matthew Hall University of Sheffield, UK
Marcos Oliveira Leibniz Institute for the Social Sciences, Germany
Anil Ozdemir University of Sheffield, UK
Diego Pinheiro Florida Institute of Technology, USA
Judhi Prasetyo Middlesex University Dubai, UAE
Leonardo Stella University of Sheffield, UK

Organization IX

Contents

Full Papers

A Study on Force-Based Collaboration in Flying Swarms 3
Chiara Gabellieri, Marco Tognon, Lucia Pallottino,
and Antonio Franchi

Automatic Design of Communication-Based Behaviors for Robot Swarms . . . 16
Ken Hasselmann, Frédéric Robert, and Mauro Birattari

Behavior Trees as a Control Architecture in the Automatic Modular
Design of Robot Swarms . 30

Jonas Kuckling, Antoine Ligot, Darko Bozhinoski, and Mauro Birattari

Guidance of Swarms with Agents Having Bearing Only
and Limited Visibility Sensors . 44

Rotem Manor and Alfred M. Bruckstein

Hybrid Control of Swarms for Resource Selection. 57
Marco Trabattoni, Gabriele Valentini, and Marco Dorigo

Local Communication Protocols for Learning Complex Swarm Behaviors
with Deep Reinforcement Learning . 71

Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann

Morphogenesis as a Collective Decision of Agents Competing
for Limited Resource: A Plants Approach . 84

Payam Zahadat, Daniel Nicolas Hofstadler, and Thomas Schmickl

Negative Updating Combined with Opinion Pooling in the
Best-of-n Problem in Swarm Robotics . 97

Chanelle Lee, Jonathan Lawry, and Alan Winfield

On Mimicking the Effects of the Reality Gap with
Simulation-Only Experiments . 109

Antoine Ligot and Mauro Birattari

Optimization of Swarm Behavior Assisted by an Automatic Local
Proof for a Pattern Formation Task . 123

Mario Coppola and Guido C. H. E. de Croon

Quality-Sensitive Foraging by a Robot Swarm Through Virtual
Pheromone Trails . 135

Anna Font Llenas, Mohamed S. Talamali, Xu Xu, James A. R. Marshall,
and Andreagiovanni Reina

Search in a Maze-Like Environment with Ant Algorithms: Complexity,
Size and Energy Study. 150

Zainab Husain, Dymitr Ruta, Fabrice Saffre, Yousof Al-Hammadi,
and Abdel F. Isakovic

Self-adaptive Quantum Particle Swarm Optimization
for Dynamic Environments. 163

Gary Pamparà and Andries P. Engelbrecht

Simulating Kilobots Within ARGoS: Models and Experimental Validation . . . 176
Carlo Pinciroli, Mohamed S. Talamali, Andreagiovanni Reina,
James A. R. Marshall, and Vito Trianni

Simulating Multi-robot Construction in ARGoS . 188
Michael Allwright, Navneet Bhalla, Carlo Pinciroli, and Marco Dorigo

Stability Analysis of the Multi-objective Multi-guided Particle
Swarm Optimizer . 201

Christopher W. Cleghorn, Christiaan Scheepers,
and Andries P. Engelbrecht

Swarm Attack: A Self-organized Model to Recover from Malicious
Communication Manipulation in a Swarm of Simple Simulated Agents 213

Giuseppe Primiero, Elio Tuci, Jacopo Tagliabue, and Eliseo Ferrante

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 225
Jorge Gomes and Anders Lyhne Christensen

The Best-of-n Problem with Dynamic Site Qualities: Achieving
Adaptability with Stubborn Individuals . 239

Judhi Prasetyo, Giulia De Masi, Pallavi Ranjan, and Eliseo Ferrante

The Impact of Interaction Models on the Coherence of Collective
Decision-Making: A Case Study with Simulated Locusts 252

Yara Khaluf, Ilja Rausch, and Pieter Simoens

The Importance of Component-Wise Stochasticity in Particle
Swarm Optimization . 264

Elre T. Oldewage, Andries P. Engelbrecht,
and Christopher W. Cleghorn

XII Contents

The Importance of Information Flow Regulation in Preferentially
Foraging Robot Swarms. 277

Lenka Pitonakova, Richard Crowder, and Seth Bullock

The Role of Largest Connected Components in Collective Motion 290
Heiko Hamann

Why the Intelligent Water Drops Cannot Be Considered
as a Novel Algorithm . 302

Christian Leonardo Camacho-Villalón, Marco Dorigo,
and Thomas Stützle

Short Papers

A Cooperative Opposite-Inspired Learning Strategy
for Ant-Based Algorithms . 317

Nicolás Rojas-Morales, María-Cristina Riff, Carlos A. Coello Coello,
and Elizabeth Montero

A Solution for the Team Selection Problem Using ACO 325
Lázaro Lugo, Marilyn Bello, Ann Nowe, and Rafael Bello

Boundary Constraint Handling Techniques for Particle Swarm
Optimization in High Dimensional Problem Spaces 333

Elre T. Oldewage, Andries P. Engelbrecht,
and Christopher W. Cleghorn

Does the ACOR Algorithm Benefit from the Use of Crossover? 342
Ashraf M. Abdelbar and Khalid M. Salama

Embodied Evolution of Self-organised Aggregation
by Cultural Propagation . 351

Nicolas Cambier, Vincent Frémont, Vito Trianni, and Eliseo Ferrante

Experimental Evaluation of ACO for Continuous Domains
to Solve Function Optimization Problems. 360

Ryouei Takahashi, Yukihiro Nakamura, and Toshihide Ibaraki

Gaussian-Valued Particle Swarm Optimization . 368
Kyle Robert Harrison, Beatrice M. Ombuki-Berman,
and Andries P. Engelbrecht

Individual Activity Level and Mobility Patterns of Ants Within Nest Site . . . 378
Kazutaka Shoji

Learning Based Leadership in Swarm Navigation . 385
Ovunc Tuzel, Gilberto Marcon dos Santos, Chloë Fleming,
and Julie A. Adams

Contents XIII

Maintaining Diversity in Robot Swarms with Distributed
Embodied Evolution . 395

Iñaki Fernández Pérez, Amine Boumaza, and François Charpillet

On Steering Swarms . 403
Ariel Barel, Rotem Manor, and Alfred M. Bruckstein

Vector Field Benchmark for Collective Search in Unknown
Dynamic Environments . 411

Palina Bartashevich, Welf Knors, and Sanaz Mostaghim

Extended Abstracts

A Honey Bees Mating Optimization Algorithm with Path Relinking
for the Vehicle Routing Problem with Stochastic Demands 423

Yannis Marinakis and Magdalene Marinaki

Blockchain Technology for Robot Swarms: A Shared Knowledge
and Reputation Management System for Collective Estimation 425

Volker Strobel and Marco Dorigo

Declarative Physicomimetics for Tangible Swarm
Application Development . 427

Ayberk Özgür, Wafa Johal, Arzu Guneysu Ozgur,
Francesco Mondada, and Pierre Dillenbourg

Influence of Leaders and Predators on Steering a Large-Scale
Robot Swarm . 429

John D. Lewis, Himanshi Jain, and Sujit P. Baliyarasimhuni

Movement-Based Localisation for PSO-Inspired Search Behaviour
of Robotic Swarms . 431

Sebastian Mai, Christoph Steup, and Sanaz Mostaghim

Of Bees and Botnets . 433
Vijay Sarvepalli

Using Particle Swarms to Build Strategies for Market Timing:
A Comparative Study . 435

Ismail Mohamed and Fernando E. B. Otero

Author Index . 437

XIV Contents

Full Papers

A Study on Force-Based Collaboration
in Flying Swarms

Chiara Gabellieri2 , Marco Tognon1 , Lucia Pallottino2 ,
and Antonio Franchi1(B)

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{marco.tognon,antonio.franchi}@laas.fr

2 Centro di Ricerca “E. Piaggio”, Dipartimento di Ingegneria dell’Informazione,
Università di Pisa, Pisa, Italy
lucia.pallottino@unipi.it

Abstract. This work investigates collaborative aerial transportation by
swarms of agents based only on implicit information, enabled by the
physical interaction among the agents and the environment. Such a coor-
dinating mechanism in collaborative transportation is a basic skill in
groups of social animals. We consider cable-suspended objects trans-
ported by a swarm of flying robots and we formulate several hypoth-
esis on the behavior of the overall system which are validated thor-
ough numerical study. In particular, we show that a nonzero internal
force reduces to one the number of asymptotically stable equilibria and
that the internal force intensity is directly connected to the conver-
gence rate. As such, the internal force represents the cornerstone of a
communication-less cooperative manipulation paradigm in swarms of fly-
ing robots. We also show how a swarm can achieve a stable transportation
despite the imprecise knowledge of the system parameters.

1 Introduction

Cooperative transportation without explicit communication, but based only on
on the indirect exchange of information through the physical interaction with
the environment is a very important feature for social animals. From a scientific
point of view, the problem has been addressed as Stigmery theory [8]; later, it
has been regarded as the main coordinating mechanism in groups of ants for
object transportation [9] (see Fig. 1 on the left) and has been indeed observed
and studied in [3,5,6,13].

Such skills observed in nature have inspired researchers to transfer them to
swarms of simple robotic agents. In fact, avoiding explicit communication would
reduce hardware and software complexity, and overcome possible communica-
tion failure issues. So far, the interest has been mainly focused on terrestrial
systems [3,9,17,22], where the possibility of decentralized transportation based
on physical interactions has been proved. Instead, in this work, we are interested
in the communication-less aerial transportation of objects by swarms. This is
particularly interesting not only from a scientific point of view, thanks to the
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-030-00533-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_1&domain=pdf
http://orcid.org/0000-0002-0051-2941
http://orcid.org/0000-0003-1700-9637
http://orcid.org/0000-0002-9480-8857
http://orcid.org/0000-0002-5670-1282

4 C. Gabellieri et al.

Fig. 1. Left: red ants in cooperative transportation. Right: the tension in spider webs
influences their natural frequency [2].

higher complexity of the problem, but also because a simple, robust and scalable
object aerial manipulation technique could meet the requirements demanded by
many real applications. Aerial transportation can benefit from a larger workspace
and the independence from uneven terrains. However, aerial robots, e.g., multi-
rotors, though agile and low cost, are typically characterized by a limited pay-
load. Hence, a cooperative approach is a very suitable solution. Some examples
of applications can be found in industrial contexts, in agriculture, and in search
and rescue missions to carry necessary equipment or first aid.

Considering the lack of results for aerial systems compared to grounded ones,
our purpose is to start filling this gap. In particular, we investigate the possibil-
ity of a communication-less approach for cooperative aerial manipulation with a
swarm of flying agents. Furthermore, we investigate if and how the load and the
cable physically connecting the robots may play the role of an implicit commu-
nication channel exploiting the forces exchanged. To the best of our knowledge,
this is the first work proposing a bio-inspired algorithm for communication-less
aerial manipulation by flying swarms, going beyond the two-robot-‘only’ sce-
nario, recently considered in [7,20,21].

The algorithm that we propose exploits a leader-follower paradigm where the
leader agent knows where to go and hence steers the object toward the desired
position. On the other hand, the follower agents follow the leader and help to
sustain the weight and manipulate the load, exploiting only the implicit infor-
mation contained in the force received from the load itself. It has been observed
that also groups of army ants Eciton burchelli [5] and Dorylus wilverthi [6] adopt
a distinct caste distribution in transportation groups, in the sense that groups
have a significant tendency to contain only one submajor, i.e., a particular type
of ant. These species of army ants have proved to be very efficient in transporting
objects together. Additionally, in the same works, it has been noticed that it is
usually a single ant, the submajor, that starts the motion of the object, and then
the rest of the group moves accordingly. Such a behavior is actually replicated
in the leader-follower paradigm proposed in this paper.

While animals usually deploy items by directly touching them (direct manip-
ulation), in our framework we have chosen an indirect manipulation technique

A Study on Force-Based Collaboration in Flying Swarms 5

of the load through cables. This choice is motivated by different reasons and
it has been proved to be a very effective solution for cooperative aerial trans-
portation [10–12,19,23]. First of all, a cable attached to the agent center of mass
allows to minimize the coupling between the rotational dynamics of the agent
itself from the rest of the system dynamics. This is particularly useful for aerial
agents that are underactuated – the most common case – since they need to
change their attitude to be able to apply forces in any direction. Furthermore,
compared to other possible decoupling gripping mechanisms, as the ones in [14],
cables are simpler, low cost, and in general lighter. In this paper we demonstrate
through several numerical simulations that a swarm of N flying agents is capable
of collaborative manipulation skills based only on implicit communication. We
show that a twofold major role is played by the internal force applied to the
transported object. Internal forces are forces applied at the contact points on
the object that stretch or compress it without producing any movement, since
they counterbalance each other. The condition of zero internal force corresponds
to the case in which the agents transport the object while keeping the cables
vertical and applying only a force that compensates for the gravity. Firstly, we
have found that nonzero internal forces allow the swarm to univocally set the
attitude of the commonly transported object, and secondly, that larger internal
forces reduce the convergence time of the overall system to such unique equilib-
rium. This creates an interesting analogy with the role of tension in spider webs,
see Fig. 1-right. The breadth of analysis covers also the thorough investigation
of the leader forces depending on the swarm parameters and the analysis of the
benefits of a saturated nonlinear law for the leader force in order to tradeoff
compliance/safety and transportation accuracy.

The paper structure is the following: Sect. 2 illustrates the dynamic model
of the system. Then, we formulate the hypotheses regarding the properties of
the swarm, supported by the numerical results presented in Sect. 3. A thorough
discussion follows in Sect. 4. Final conclusions and future developments are pre-
sented in Sect. 5.

2 Model

The system is composed by a set of N flying agents attached to a cable suspended
load that must be deployed to a particular configuration. In our framework, each
agent interacts with the environment, hence we aim at a soft response similar
to the behavior of human or of animal during everyday interaction tasks. We
model the commonly transported object (the load) as a rigid body. The attitude
of the load is parametrized by Euler angles yaw, pitch and roll, indicated with
ψ, θ, and φ, respectively. Each agent is attached to the load by means of a cable
by means of which it can transfer forces. The cables are attached to the load at
the points Li, with i = 1, . . . , N , placed on the same plane, denoted by I. The
object center of mass (CoM) is indicated with G.

Each cable is modeled as a linear unidirectional spring, with a dissipative
term that damps its longitudinal oscillations. We assume that each flying agent

6 C. Gabellieri et al.

is endowed with a position controller. If the latter is sufficiently precise, we can
model the closed loop system as a simple double integrator. In this way we can
consider each agent as an actuated point mass capable of exchanging a force
with the external world.

By doing so, the proposed method can be applied to different aerial robots.
If we consider multidirectional-thrust platforms capable of controlling position
and orientation independently (popular in the field of aerial physical interac-
tion) [4,15,16,18], the double integrator is an exact model of the position-
controlled closed loop system. In the case of underactuated unidirectional-thrust
vehicles using a standard position controller, the double integrator is instead a
very good approximation. Furthermore, the time-scale separation between the
translational and rotational dynamics has been exploited in other works on aerial
manipulation like [12,14] where the robots are considered as point masses and
modeled as double integrators. Denoting by the vector pRi ∈ R

3 the position
of the i-th agent, by Mi = mAiI3 its inertia matrix (with mAi ∈ R>0) and by
fi =

[
fi,x fi,y fi,z

]� the force that the i-th cable exerts on the object (so that
−fi is the force exerted by the cable on the agent), the dynamics of the i-th
agent is:

Mip̈Ri = −fi + fCi, (1)

where fCi = Bi(ṗd
Ri − ṗRi) + Ki(pd

Ri − pRi) + πi (2)

is the ‘control’ force of each agent. To better understand how to control a multi-
rotor aerial robot in such a way, the reader can refer to [21]. Such control
force models three simple actions. First, the agent implements a spring like
action to move towards a desired position or follow a desired path (the apex d

indicates the ‘desired’ quantities). Secondly, the agent implements a dissipative
derivative term proportional to the velocity error. This action damps the oscil-
lations induced by the spring action. Finally, there is a force bias indicated with
πi =

[
πi,x πi,y πi,z

]�. This bias is essential to make the flying agents sustain
the weight of the load. We shall show that it plays an important role also for
shaping the system equilibria. Through πi it is possible to set reference internal
forces (forces that do not result in a motion of the object).

The static equilibrium equation of the object subject to the gravity vector
g ∈ R

3 is given by [mLg� 01×3]� = W f̄, where W ∈ R
6×3N is the grasp matrix,

that maps the forces at the contact points to a wrench applied at the object
center of mass and f̄ ∈ R

3N×1 collects the equilibrium cable forces. Resolving
the equation for f̄ we obtain:

f̄ = W †[mLg� 01×3]� + t, (3)

where † indicates a right (pseudo)inverse, and t ∈ null(W) is the internal force,
which neither influences the object dynamics nor balances any external wrench.

Generally, in leader follower approaches it may occur that only one agent,
i.e., the leader, is aware of the desired trajectory (pd

Ri, ṗd
Ri). On the other hand,

slave agents tend to stay where they are if no external action intervenes. We

A Study on Force-Based Collaboration in Flying Swarms 7

model such agents by setting Ki = 0Nm−1 and ṗd
Ri = 0ms−1 in (2).

When the leader starts moving, the followers will perceive a modification of
the environment through a change in their cable force. This, in turn, will make
the followers move toward the leader agent trying to bring back the force to
the initial equilibrium value. It is worthy to note that, once each agent stops,
possible load oscillations are damped thanks to the dissipative action modeled
in (2).

3 Numerical Study

For a system of only two aerial agents and a beam/like load, in [21] we formally
proved, using a Lyapunov-based approach, the stability or instability of all the
possible equilibria and the passivity of the overall controlled system. However,
it is not trivial to extend those theoretical results to N > 2 and to a more
generally shaped object. In particular, it is not straightforward to solve the so
called equilibria inverse problem in [21], namely to find all the possible positions
of the agents and forces in the cables for each stable pose of the load. The authors
in [1] showed that such problem is very complex to solve even if just less than
six cables of assigned length are used. Analytical answers to the problem are
therefore difficult to reach. However, a numerical study of whether some of the
properties discovered in [21] for the two-agent system apply also to the swarm
case, where the number of follower agents may be arbitrary large and the object
not only a bar, is equally interesting. Thus, in this section we extrapolate some
conjectures on the expected behavior of the swarm system and validate these
hypotheses through a wide numerical study.

Table 1. The different simulations setups (scenarios).

Goal of the study Scenario Internal forces CoM Points Li Unknown parameters

Internal force role Sa t = 0 [N] G ∈ I On a circle None

Sb t = 0 [N] G /∈ I On a circle None

Sc t �= 0 [N] G /∈ I On a circle None

Parametric uncertainty Sd t = 0 [N] G /∈ I Random mL, N (only bounds)

Table 1 contains the description of the simulated conditions. The load has
mass mL = 5kg and inertial matrix equal to JL = I3 kgm2. The leader agent,
set as the agent 1, is fed with a sufficiently smooth reference trajectory consti-
tuted by a 5th order polynomial in 3D (rest to rest trajectory with zero acceler-
ation at start and end points), which lasts 10 s and covers 2m. M1 = 0.5I3 kg,
Mi = 0.01I3(N−1) kg, B1 = 100I3 Nsm−1 Bi = 1.5I3(N−1)Nsm−1, K1 =
1000I3 Nsm−1, and Ki = 0I3(N−1) Nm−1 for i �= 1. When N> 30, we changed
the apparent mass Mi, and the damping Bi of the followers, i.e., for i = 2, ..., N
reducing both by 90%. This allows the leader agent to drag the system without

8 C. Gabellieri et al.

-1

-0.5

5

0

6

0.5

40

1

2
0

-2
-4-5

-6

(a) t = 0

-1

-0.5

5 6

0

4

0.5

2

1

0 0
-2

-4-5 -6

(b) t �= 0

-1
6 5

-0.5

4
2

0

00
-2

0.5

-4 -5

1

-6

(c) cables randomly attached on the
surface of the object

-0.5

0

0.5

1

1.5

2

5
0 6420-5 -2-4-6

(d) Simulated system during trans-
portation

Fig. 2. Simulated system for the case N = 6 ((a), (b), (c)) and N = 60 (d)). The
object is depicted as a grey surface, and the light spot on it coincide with its center of
mass G. In case G /∈ I, the light spot is instead the projection of G on I. The cables
are the black lines, while the circles represent the robots (the darker one is the leader).

applying too large forces, similarly to what happens in biological systems as
described in Sect. 4.

Scenarios Sa, Sb and Sc refer to the cases in which the parameters of the
system are perfectly known, and so is N . Based on what we demonstrated in [21]
for the two agents system, we decided to investigate the role of the internal force
on the object for the equilibria of the system. We considered the case in which the
points Li lie on a circle centered around the projection of G on I (see Figs. 2(a),
(b), and (d)). We ran different simulations where N is a random number between
2 and 100, and the initial pose of the object has a random value of yaw between
0 rad and π/4 rad.

In the scenarios Sa and Sb the force bias in (2) is set to sustain the weight
of the load without internal forces, namely πi = [0 0 mLg/N]� ∀i = 1, . . . , N ,
where g is the intensity of g. This implies vertical cables. Once the leader agent
stops, the system converges to an equilibrium in which the final attitude of the
transported object is not univocally determined but depends on the trajectory
resulting from the initial condition and the leader desired trajectory. In partic-
ular, the results in the first line of plots of Fig. 3 shows a completely arbitrary

A Study on Force-Based Collaboration in Flying Swarms 9

0 5 10 15

10

20

30

40

0 10 20 30 40 50
-20

-15

-10

-5

0

5

0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

0 10 20 30 40 50
5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350
-15

-10

-5

0

5

0 50 100 150
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

-5

-4

-3

-2

-1

0

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 3. Object attitude during transportation. First row: scenario Sa: fint = 0 N and
G ∈ I. Second row: scenario Sb: fint = 0 N and G below I. Third row: scenario Sc:
fint = 0.8N and G placed below I. The dotted line is the desired value. The first,
second, and third columns refer to the trajectories of the yaw (ψ), pitch (θ), and roll
(φ) angles of the object, respectively.

final orientation of the load for the scenario Sa, and the second line of Fig. 3 an
arbitrary final yaw for the scenario Sb.

In the scenario Sc we set the force bias πi in (2) so that the system reaches
an equilibrium with the cables forces applying non zero horizontal forces. More
in detail, indicating with l̄i the vector that connects the projection of G on I to
the position of point Li at the final attitude, we set [πi,x πi,y]� = fint l̄i/||l̄i||,
where fint is thus the intensity of each agent’s planar force bias. In other words,
the desired horizontal forces in the cables are oriented radially and outward the
object in the final configuration, similarly to what is depicted in Fig. 2(b). Since
the object reaches an equilibrium, and the external wrench on the object at
the equilibrium is only the vertical force due to the gravity, as in (3), such non
vertical components of the cable forces, which do not cause any motion of the
object and do not compensate any external wrench, generate an internal force
t �= 0. In this way, the object reaches always the same attitude: zero pitch,
zero roll, and the same yaw. The third line of Fig. 3 shows the results of such
simulations. Notice that the same results have been obtained even when G ∈ I.

10 C. Gabellieri et al.

(a) Mi = 0.001I3(N−1) kg,

Bi = 0.15I3(N−1)Nsm−1
(b) Mi = 0.01I3(N−1) kg,

Bi = 0.15I3(N−1)Nsm−1

(c) Mi = 0.001I3(N−1) kg,

Bi = 1.5I3(N−1)Nsm−1
(d) Mi = 0.01I3(N−1) kg,

Bi = 1.5I3(N−1)Nsm−1

Fig. 4. Intensities of the vertical force fi,z and of the horizontal force
√

f2
i,x + f2

i,y that

the agents apply to the object during the transportation for four different parameters
of the followers in scenario Sc with N = 70. The dotted line refers to the leader agent,
while the solid lines refer to the followers. In the subcaptions i = 2, . . . , N .

Figure 4 shows the evolution of the forces that the agents apply to the load in
four different cases belonging to scenario Sc.

We also decided to see whether the value of fint influences the speed of
convergence with which the swarm stabilizes the object in scenario Sc. Figure 5
shows the evolution of the load attitude when transported by a group of five
agents for different values of fint.

We present now the results concerning scenario Sd, where neither the exact
real mass of the load, mL, nor the exact total number of agents, N , are known by
the agents. Only some upper and lower bounds are given, indicated with mmax,
mmin, Nmax and Nmin respectively. Therefore, we introduced a particular choice
of πi.

πi =

⎡

⎣
0
0

fi,z + Uz
i

⎤

⎦ where Uz
i =

⎧
⎪⎨

⎪⎩

−KZ if |fi,z| > fmax

KZ if |fi,z| < fmin

0 otherwise
. (4)

A Study on Force-Based Collaboration in Flying Swarms 11

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

fint = 2 N

fint = 4 N

fint = 6 N

fint = 0.5 N

0 20 40 60 80 100
0

5

10

15

20

25

fint = 2 N

fint = 4 N

fint = 6 N

fint = 0.5 N

0 20 40 60 80 100
-12

-10

-8

-6

-4

-2

0

2

fint = 2 N

fint = 4 N

fint = 6 N

fint = 0.5 N

Fig. 5. Evolution of the object attitude (yaw, pitch and roll, respectively) during trans-
portation for different values of the intensity of the internal force in scenario Sc with
N = 5.

0 5 10 15 20 25
-5

0

5

10

15

20

25

0 5 10 15 20 25
-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25
-30

-20

-10

0

10

20

Fig. 6. Attitude of the load (yaw, pitch and roll, respectively) during the transportation
task in scenario Sd with random cables attachment points and uncertain load mass and
agents number.

Namely, we are defining a dead-zone in the sensed vertical force such that if
the robots perceive a vertical force in the cable that is inside a certain range
defined by fmax and fmin, they ignore it; otherwise, they apply an upward or
downward force trying to restore a vertical force inside the predefined range.
KZ is a constant that determines the responsiveness of the robots in trying to
maintain the vertical force inside [−fmax, −fmin]. We choose fmax = mmaxg

Nmin

and fmin = mming
Nmax

. In this way, we guarantee that the overall force exerted
by the agents will be enough to sustain the object weight. In particular, we
are not choosing a precise reference force distribution. The actual final force
in each cable is induced by the choice of the bias (which does not depend on
the exact values of N and mL) and is not the same for all the agents. Such an
implementation allows the robots to successfully cope with a variation of the
parameters of the swarm and of the object. Simulations results for this scenario,
see Fig. 6, show that the system stabilizes after the transportation. However,
due to the uncertain conditions, the final pose of the object cannot be known a
priori. The upper and lower bounds have been set to mmax = 7kg, mmin = 3kg,
Nmax = 50 and Nmin = 7.

We conclude this section proposing and testing an alternative version of (2)
for the leader agent. Thanks to the model (1) and (2), the leader agent does not
blindly follow the desired trajectory but is aware of the outer world. In the choice
of the parameters of (2) one has to face a clear trade-off between compliance

12 C. Gabellieri et al.

0 20 40 60 80 100
0

5

10

0 20 40 60 80 100
0

10

20
||f||

master

(a)

0 20 40 60 80 100
0

5

10

0 20 40 60 80 100
0

10

20

30
||f||

master

(b)

Fig. 7. The three components of pR1 and pd
R1 (dotted lines of the same color) and the

intensity of the cable forces. By modeling fC1 as in (5) it is possible, with the same
parameters, to have the leader follow its desired trajectory under normal conditions
(a), and to limit the forces exerted in case the swarm does not follow it (b).

(i.e., energy consumption and safety) and tracking error (i.e., performance). A
behavior that is too compliant can compromise the reach of the final position,
a behavior that is too stiff can require a large amount of force from the leader
side and thus a lot of energy consumption and an increased risk of ruptures.
Due to space limitations we omit the performed numerical results showing such
intuitive trade-off. A possible solution to better deal with such trade-off is to
introduce a nonlinear saturation model like, e.g., the following one:

fC1 = B1 tan−1(ṗd
R1 − ṗR1) + Ki tan−1(pd

R1 − pR1) + πi. (5)

The relative results are shown in Fig. 7.

4 Discussion

We first simulated symmetric cables attachment points, lying on a circle around
the object center of mass (or its projection on I). Applying a non-zero internal
force that stretches the object the agents are capable of controlling univocally
the final orientation of the object without the need of communication. This
result actually reflects what we had discovered and formally proven for the two-
agent system and a beam-like load in [21]. It is possible to assume that also
biological agents, transporting an object, may be able to pull the edge of the
object towards themselves, applying a force orthogonal to the edge, and thus
generating a resulting internal force altogether. For example, applying a constant
horizontal force bias that equilibrates the object at the initial configuration, the
swarm may be capable of transporting the load and repositioning it with the
same attitude without the need of explicit communication. This suggests that
the local sensing allows a sort of collective memory, as if the swarm of agents
remembered the initial orientation of the object and were capable of recreating it.

A Study on Force-Based Collaboration in Flying Swarms 13

We were also interested in understanding the role played by the internal
forces in the convergence rate. In fact, observing some biological structures, it
seems reasonable to assume that a higher internal force in the object might lead
to a faster convergence of the system to the equilibrium. For example, in [2] the
authors observe the dynamic response of different spider webs. It came out that
an initial tension in the net changes the natural frequency in the sense that the
net is faster in recovering its equilibrium after being perturbed with respect to
the case without initial tension. Similarly, we found that increasing the intensity
of the horizontal bias force in fC , and hence in turn increasing the internal force
in the object, leads to faster a convergence rate, as shown in Fig. 5.

The apparent mass of the leader agent has been set to a larger value than the
one of the followers. Actually, it has been observed in groups of different army
ants (Eciton burchelli, Dorylus wilverthi) that the front ant in prey retrieval
groups is larger than the others, and it is characterized by a larger dry weight.
Additionally, in our simulations, during the dynamic part, the leader agent has to
apply greater forces to the object than the other ones in the group. An example
is shown in Fig. 4. However, this seems to be true also in super efficient prey
retrieval groups of army ants [5], where a single submajor initiates the motion of
the item by itself, and only after the rest of the group helps in the transportation.

The damping parameter of the followers Bi and their masses Mi have been
tuned depending on the number of robots. This has been done to reduce the
force that the leader agent needs to apply in order to let each follower start
moving. This force increases with the increasing of the damping parameters of
the followers that are related to energy dissipation of the overall system. The
master force in case of a small N with a large damping is comparable to the force
that the master applies with a large N and small damping, a behavior which is
reported in Fig. 4(a). To equilibrate as much as possible the force exerted by the
leader for different values of N , one solution is to modify the damping parameter
of the followers based on N . Another way to modify the effect of the follower
inertia on the leader it is to modify their mass. Compare Figs. 4(d) and (b) to
see the effect of the follower inertia on the master applied force, and Figs. 4(d)
and (b) to see the effect of the damping parameter. Finally, comparing Figs. 4(d)
and (a) the benefits of decreasing both the followers mass and damping emerges.
It is not immediately clear which is the possible biological meaning of tuning the
mass of the agents though. However, it is interesting to highlight that Eciton
burchelli ants, very efficient in transportation tasks, tend to maintain a constant
ratio between the total weight of porters and the weight of the carried load [5]. f
Concerning the leader spring parameter, it is not trivial to find the right balance
in order to have a leader agent capable of both following the desired trajectory
not being too much perturbed by small forces (for instance the ones caused by
the followers initial resistance to the motion) and being sensitive to large forces
on the cable indicating that something is not going as expected. However, that
is exactly what an intelligent biological system would do. We were able to mimic
this behavior by using a nonlinear control action on the leader agent, see (5). In
this way, the leader follows the desired trajectory accurately for small deviations,

14 C. Gabellieri et al.

but it changes its behavior consistently if the followers stay still and not follow
as expected (see Fig. 7).

Finally, the results in Fig. 6, which refer to scenario Sd, show the potential
of the algorithm also in conditions were the swarm is not completely aware of
the parameters of the system. Even with a limited and imperfect knowledge the
agents are capable of commonly carrying an object in a stable way.

5 Conclusions

This work is a simulative study on communication-less cooperative object trans-
portation by swarms of aerial agents. The main focus concerns the important
role of the internal force to make asymptotically stable certain equilibria of the
system and to enhance the manipulation capabilities of the swarm. An imperfect
knowledge of the system parameters has been also treated. Several parallelisms
with biological examples are discussed as well. Validation of the proposed algo-
rithm on real platforms and theoretical proofs is left as an important future work.
Of course, in order to realize a practical implementation, additional aspects, such
as a collision avoidance technique, are required, especially for very large number
of agents. Furthermore, the relaxation of some hypothesis, e.g., on the cables
attachment points or on the rigidity of the load, may represent an interesting
enlargement of the application domain.

Acknowledgments. This research was partially supported by the ANR, Project
ANR-17-CE33-0007 MuRoPhen.

References

1. Abbasnejad, G., Carricato, M.: Direct geometrico-static problem of undercon-
strained cable-driven parallel robots with n cables. IEEE Trans. Robot. 31(2),
468–478 (2015)

2. Alam, M.S., Wahab, M.A., Jenkins, C.H.: Mechanics in naturally compliant struc-
tures. Mech. Mater. 39(2), 145–160 (2007)

3. Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.C.: Experimental study
and modeling of group retrieval in ants as an approach to collective transport in
swarm robotic systems. Proc. IEEE 99(9), 1470–1481 (2011)

4. Brescianini, D., D’Andrea, R.: Design, modeling and control of an omni-directional
aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automa-
tion, Stockholm, Sweden, pp. 3261–3266, May 2016

5. Franks, N.R.: Teams in social insects: group retrieval of prey by army ants (eciton
burchelli, hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18(6), 425–429 (1986)

6. Franks, N.R., Sendova-Franks, A.B., Anderson, C.: Division of labour within teams
of new world and old world army ants. Anim. Behav. 62(4), 635–642 (2001)

7. Gassner, M., Cieslewski, T., Scaramuzza, D.: Dynamic collaboration without com-
munication: vision-based cable-suspended load transport with two quadrotors. In:
2017 IEEE International Conference on Robotics and Automation, Singapore, pp.
5196–5202, May 2017

A Study on Force-Based Collaboration in Flying Swarms 15

8. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles
chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux
6(1), 41–80 (1959)

9. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot.
Auton. Syst. 30(1–2), 85–101 (2000)

10. Manubens Ferriol, M., Devaurs, D., Ros, G.L., Cortés, J.: A motion planning app-
roach to 6-D manipulation with aerial towed-cable systems. In: Proceedings of the
2013 International Micro Air Vehicle Conference and Flight Competition, Toulouse,
France, pp. 1–7 (2013)

11. Masone, C., Bülthoff, H.H., Stegagno, P.: Cooperative transportation of a payload
using quadrotors: a reconfigurable cable-driven parallel robot. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1623–1630, Octo-
ber 2016

12. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation
with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

13. Moffett, M.W.: Cooperative food transport by an asiatic ant. Natl. Geogr. Res.
4(3), 386–394 (1988)

14. Nguyen, H.N., Park, S., Lee, D.J.: Aerial tool operation system using quadrotors
as rotating thrust generators. In: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Hamburg, Germany, pp. 1285–1291, October 2015

15. Park, S., Her, J., Kim, J., Lee, D.: Design, modeling and control of omni-directional
aerial robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Daejeon, South Korea, pp. 1570–1575 (2016)

16. Rajappa, S., Ryll, M., Bülthoff, H.H., Franchi, A.: Modeling, control and design
optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In:
2015 IEEE International Conference on Robotics and Automation, Seattle, WA,
pp. 4006–4013, May 2015

17. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.: Col-
lective transport of complex objects by simple robots: theory and experiments. In:
2013 International Conference on Autonomous Agents and Multi-agent Systems,
pp. 47–54 (2013)

18. Ryll, M., et al.: 6D physical interaction with a fully actuated aerial robot. In:
2017 IEEE International Conference on Robotics and Automation, Singapore, pp.
5190–5195, May 2017

19. Sreenath, K., Kumar, V.: Dynamics, control and planning for cooperative manip-
ulation of payloads suspended by cables from multiple quadrotor robots. In:
Robotics: Science and Systems, Berlin, Germany, June 2013

20. Tagliabue, A., Kamel, M., Verling, S., Siegwart, R., Nieto, J.: Collaborative trans-
portation using MAVs via passive force control. In: 2017 IEEE International Con-
ference on Robotics and Automation, Singapore, pp. 5766–5773 (2016)

21. Tognon, M., Gabellieri, C., Pallottino, L., Franchi, A.: Aerial co-manipulation with
cables: the role of internal force for equilibria, stability, and passivity. IEEE Robot.
Autom. Lett. Spec. Issue Aer. Manip. 3(3), 2577–2583 (2018). https://doi.org/10.
1109/LRA.2018.2803811

22. Wang, Z., Schwager, M.: Force-amplifying n-robot transport system (force-ANTS)
for cooperative planar manipulation without communication. Int. J. Robot. Res.
35(13), 1564–1586 (2016)

23. Wu, G., Sreenath, K.: Geometric control of multiple quadrotors transporting a
rigid-body load. In: 53rd IEEE Conference on Decision and Control, Los Angeles,
CA, pp. 6141–6148, December 2014

https://doi.org/10.1109/LRA.2018.2803811
https://doi.org/10.1109/LRA.2018.2803811

Automatic Design
of Communication-Based Behaviors

for Robot Swarms

Ken Hasselmann1 , Frédéric Robert2, and Mauro Birattari1(B)

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{khasselm,mbiro}@ulb.ac.be

2 BEAMS, Université Libre de Bruxelles, Brussels, Belgium
frrobert@ulb.ac.be

Abstract. We introduce Gianduja, an automatic design method that
generates communication-based behaviors for robot swarms. Gianduja

extends Chocolate, a previously published design method. It does so
by providing the robots with the capability to communicate using one
message. The semantics of the message is not a priori fixed. It is the auto-
matic design process that implicitly defines it, on a per-mission basis, by
prescribing the conditions under which the message is sent by a robot
and how the receiving peers react to it. We empirically study Gianduja

on three missions and we compare it with the aforementioned Chocolate

and with EvoCom, a rather standard evolutionary robotics method that
generates communication-based behaviors. We evaluate the behaviors
produced by the three automatic design methods on a swarm of 20 e-puck
robots. The results show that Gianduja uses communication meaning-
fully and effectively in all the three missions considered. The aggregate
results indicate that, on the three missions considered, Gianduja per-
forms significantly better than the two other methods under analysis.

1 Introduction

In swarm robotics, communication plays a central role and can significantly
enhance collective performance [3]. Designing effective communication mech-
anisms is challenging and design choices can have an important impact on
the effectiveness, complexity, and cost of a swarm [2]. Notwithstanding the
advancements achieved in the last decade [4,7,24,29,34,43,51], the design of
robot swarms is still at dawn and no generally applicable methodology has been
proposed so far [8,11,21]. Automatic design methods are a promising way of
approaching the issue [6,15]. In automatic methods, the design problem is cast
into an optimization problem: a space of solutions is searched via an optimiza-
tion algorithm, with the goal of maximizing a performance measure. Most of the

The proposed method was implemented and tested by KH. The experiments were
designed by the three authors. This paper was drafted by KH, refined by MB, and
revised by the three authors. The research was conceived and directed by MB.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 16–29, 2018.
https://doi.org/10.1007/978-3-030-00533-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_2&domain=pdf
http://orcid.org/0000-0002-8196-9889
http://orcid.org/0000-0003-3309-2194

Automatic Design of Communication-Based Behaviors for Robot Swarms 17

research on the automatic design of robot swarms has been inspired by neuro-
evolution [37,47]. In this approach, robots are controlled by a neural network,
whose parameters are obtained via artificial evolution [12,27,31,38,44,45,47,50].
Other methods have been proposed that are based on different control archi-
tectures and/or different optimization algorithms [16,18,22,30]. Among them,
Chocolate [16] produces probabilistic finite state machines by using the irace
optimization algorithm [35] to assemble preexisting low-level behaviors and con-
ditions, and to fine-tune their parameters. The low-level behaviors, which define
the actions that individual robots can perform, are: exploration, stop, phototaxis,
anti-phototaxis, attraction to neighbors, repulsion from neighbors. The condi-
tions, which define events that cause a transition between low-level behaviors,
are: black-floor, white-floor, gray-floor, neighbor-count, inverted-neighbor-count,
fixed-probability.

In this paper, we study the automatic design of collective behaviors that rely
on communication. In particular, we are interested in exploring the case in which
messages exchanged by the robots do not have an a priori defined semantics. We
wish to develop an automatic design process that, on a per-mission basis, defines
(i) the conditions under which a robot broadcasts a message and (ii) the effects
that this message has on the behavior of the receiving peers.

We introduce Gianduja, a new instance of AutoMoDe [18]. Gianduja extends
Chocolate by adding the capability of locally broadcasting a single message and
reacting to it. We test Gianduja on three missions that we shall call aggrega-
tion, stop, and decision. We present results of experiments performed with a
swarm of 20 e-puck robots [36].

Within the evolutionary robotics approach, it has already been shown that an
automatic design process can (implicitly) give a semantics to an a priori mean-
ingless message. Nonetheless, this has been demonstrated only on teams of two
robots [1,49]. The novel elements that we propose in this paper are that: (1) we
study the emergence of a message semantics in swarm robotics and we demon-
strate it with a swarm of 20 robots; (2) we show that a message semantics can
emerge also when robots are controlled by a finite state machine; and (3) we
consider three different missions in which the emerging semantics is different.

2 Related Work

Communication—be it direct or indirect, explicit or implicit—is an integral part
of most robot swarms demonstrated so far. As a result, the literature on com-
munication in swarm robotics is extremely large and covering it goes beyond the
scope of this paper. In particular, we will not cover studies in which communi-
cation has been a priori defined by the designer—e.g., [2,3,9,14,28]. Instead, we
will focus on studies in which communication has been automatically designed.

The vast majority of studies in which communication emerged from an auto-
matic design process belong within evolutionary robotics [37,47,48]. Quinn et al.
[41,42] were the first to study the emergence of communication between agents.
In their studies, robots move in an arbitrary direction while staying close to each

18 K. Hasselmann et al.

other. Robots do not have dedicated communication devices. Nonetheless, they
evolved a simple form of implicit communication: using their proximity sensors,
robots detect motion in their peers and establish a social interaction. In partic-
ular, they coordinate to assume the roles of leader or follower. Nolfi [39] evolved
a behavior for solving a collective navigation problem. Robots are controlled
by neural networks and can communicate using four different signals. Although
the evolutionary process did not explicitly reward the use of communication, it
produced a behavior in which the robots effectively use communication to coordi-
nate. The behavior obtained was tested in simulation on a swarm of four robots.
Floreano et al. [13] studied the evolution of robots that can produce visual sig-
nals to provide information on food location. The authors evolved behaviors for
a swarm of ten robots that were eventually able to reliably find the food source.
Communication increases the performance of the swarm compared to the case in
which robot cannot communicate. The behavior was then tested with real robots.
Ampatzis et al. [1] evolved the behavior of two robots to recognize features of
the environment and react accordingly. The robots are controlled by neural net-
works and can use their on-board speakers and microphones to send/receive
a sound message. Although communication is not strictly needed to solve the
task and was not explicitly rewarded in the evolutionary process, it emerged as
it improves performance. The behavior obtained was tested both in simulation
and in reality with two s-bot robots. Tuci [49] studied the origin of communica-
tion from an evolutionary perspective. The author considered a setting in which
two robots, which might communicate via a sound message, need to categorize
the environment and act accordingly. Also in this case, although communication
was not explicitly rewarded, the evolutionary process produced behaviors that
effectively use the available communication capabilities to perform the mission.
Experiments were conducted in simulation only.

Among all the studies highlighted above, the research we present in this paper
is most closely related to [1,49]. Indeed, as in those studies, we consider the case
in which the semantics of the message exchanged by the robots is not a priori
defined but is the result of the automatic design process.

3 AutoMoDe-Gianduja

By introducing Gianduja, we address one of the limitations of AutoMoDe: the
instances of AutoMoDe defined so far, Vanilla and Chocolate, are unable to
design behaviors that exploit explicit communication. The behaviors automati-
cally generated by Gianduja can rely on sending and receiving a single message
whose semantics is not fixed a priori. Gianduja is a proper extension of Choc-
olate [16] that adds the ability to (i) locally broadcast a message, (ii) change
state when the message is received (or is not received), and (iii) approach (or
retract from) neighboring peers that broadcast the message.

As Chocolate and Vanilla, Gianduja designs control software for the e-
puck platform. Nonetheless, it considers a reference model that is an extension
of the one considered by Chocolate and Vanilla—RM 1.1 [25]. Precisely, the

Automatic Design of Communication-Based Behaviors for Robot Swarms 19

Table 1. Reference model RM2: novelties with respect to RM 1.1 are highlighted.

Input Value Description
proxi∈{1,...,8} [0,1] reading of proximity sensor i

lighti∈{1,...,8} [0,1] reading of light sensor i

gndj∈{1,2,3} {black, gray, white} reading of ground sensor j

n [0,20] number of neighboring robots perceived
V [0, 0.70]m, [0, 2π] rad

)
direction of attraction to them

b [0,20] number of messaging neighbors perceived
Vb [0, 0.70]m, [0, 2π] rad

)
direction of attraction to them

Output Value Description
vk∈{l,r} [−0.12, 0.12]m s−1 target linear wheel velocity
s {on, off } broadcast message

Period of the control cycle: 100ms

extension concerns the ability to (a) locally broadcast the message and (b) sense
the broadcasting peers that are within the perception range. The new reference
model, which we shall call RM 2, is given in Table 1. The variables highlighted are
the elements of novelty with respect to RM 1.1: b, Vb, and s. Before we explain
these variables, it is convenient that we first recall the mechanism that allows
robots to perceive their neighbors—both in RM 1.1 and in RM 2. Using their
range-and-bearing module [23], all robots continuously broadcast a “heartbeat”
signal whose payload encodes their unique ID. At every time step, every robot
receives the heartbeat signal of the peers that are within its perception range,
which is of about 0.70 m. It can therefore infer the number of neighboring peers
and their relative positions: range and bearing. This information is made avail-
able to the control software via the variables r and V . The former is the number
of neighboring peers and the latter is a vector indicating the direction of attrac-
tion to these neighboring peers, which is computed based on the framework on
virtual potential fields [46].

In RM 2, every robot locally broadcasts the message by setting a specific bit
of its heartbeat’s payload. Due to this extension, at every time step, a robot
can infer the number and relative position of the neighboring peers that are
broadcasting the message. The information that is made available to the control
software is stored in the variables b and Vb. The former is the number of neigh-
boring peers that broadcast the message and the latter is a vector indicating
the direction of attraction to these neighboring peers, which also in this case is
computed following the framework on virtual potential fields [46]. Formally,

Vb =

{∑b
m=1(α/r2m,∠bm), if b > 0 broadcasting robots are perceived;

(1,∠0), otherwise.

20 K. Hasselmann et al.

Here, rm and ∠bm are the range and bearing of the m-th neighboring peer that
is broadcasting the message and α a real value parameter. The variable s can be
set by the control software and indicates whether, during the following control
cycle, the robot should broadcast the message or not. It can take two values: on
or off .

Gianduja produces control software in the form of probabilistic finite state
machines, as Chocolate does. It does so by combining and fine-tuning (a)
the original transition conditions of Chocolate (and Vanilla) [16,18]; (b) an
extended version of the low-level behaviors of Chocolate (and Vanilla) [16,18];
(c) four additional modules: two low-level behaviors and two transition condi-
tions. We extend the preexisting low-level behaviors of Chocolate (and Vanilla)
by adding a binary parameter: if the parameter is set, the robot continuously
broadcasts the message while performing the low-level behavior; otherwise, it
does not. We conceived the four additional modules specifically for exploiting
the extended functionalities provided by RM 2. The two additional low-level
behaviors are: attraction to message – the robot moves in the direction indi-
cated by Vb; repulsion from message – the robot moves in the opposite direc-
tion. Also these additional behaviors have the aforementioned binary parameter
that specifies whether the message should be broadcast or not. The two addi-
tional conditions are: message count – a state transition occurs if the number
of neighboring peers broadcasting the message is larger than the value of a
parameter; inverted message count – a state transition occurs if the num-
ber of neighboring peers broadcasting the message is smaller than the value
of a parameter. The additional modules are modeled after the original attrac-
tion, repulsion, neighbor-count, and inverted-neighbor-count of Chocolate (and
Vanilla) [16,18]. The optimization algorithm used to search the space of the
possible probabilistic finite state machines that can be obtained by assembling
the available modules and fine-tuning their parameters is irace [35]—the same
algorithm used in Chocolate. As in Chocolate (and Vanilla), valid probabilis-
tic finite state machines have at most four states and each state has at most
four outgoing transitions. Finally, as in Chocolate (and Vanilla), the design
process is performed in simulation using ARGoS [20,40].

4 Experimental Setting

We test Gianduja on three missions and we compare it with two other methods.

4.1 Missions

In all three missions, the robots operate in a dodecagonal area of 4.91 m2. The
arena is surrounded by walls. Its floor is gray, apart from some specific areas that,
on a per-mission basis, could be white or black, as detailed in the following. The
time available to the robots for performing a mission is T = 120 s. The three
missions considered are aggregation, stop, and decision; they are described

Automatic Design of Communication-Based Behaviors for Robot Swarms 21

in the following. We have selected them because, according to our a priori expec-
tations, communication should play a different role in them. Indeed, we expect
that aggregation can be solved without using communication. On the other
hand, we expect that stop and decision require communication for being solved
effectively. We also expect that the semantics implicitly attached to the message
by the automatic design process will be different in stop and decision. We will
detail this in the following, on a per-mission basis.

AGGREGATION. The arena’s floor is marked by two circular spots, with
diameter of 0.6 m: one is white and the other black. They are positioned on
the left-hand side of the arena, separated by a gap of 0.25 m. At the beginning
of each run, the robots are randomly positioned in the right-hand half of the
arena, so that no robot is already on the spots—see Fig. 1(right). The mission
prescribes that the robots quickly aggregate on the white spot. The black spot is
not supposed to play any role and simply acts as a disturbance to the automatic
design process. The performance of the robots is measured via the following
objective function—the higher, the better:

Ca = 24000 −
T∑

t=1

N∑
i=1

Ii(t); Ii(t) =

{
0, if robot i is on the white spot;
1, otherwise.

Here, i is an index that spans over all the robots of the swarm, N is the total
number of robots, and T = 120 s is duration of the experiment. 24 000 is the
maximum theoretical score that the robots could achieve. It is included in the
definition of the objective function to guarantee that its value is non-negative
and ranges from 0 to its theoretical maximum.

As already mentioned, we think communication is not needed in this mission.

STOP. The arena’s floor is marked by a circular white spot, with diameter of
0.2 m, positioned near the walls, on the top-left quadrant. At the beginning of
each experimental run, all robots are randomly positioned in the right-hand half
of the arena: none of them is on the white spot—see Fig. 1(center). The mission
prescribes that the robots search for the spot and, as one of them finds it, all
stop quickly. The performance measure—the higher, the better—is:

Cs = 48000 −
⎛
⎝t̄N +

t̄∑
t=1

N∑
i=1

Īi(t) +
T∑

t=t̄+1

N∑
i=1

Ii(t)

⎞
⎠ ;

Ii(t) =

{
1, if robot i is moving;
0, otherwise;

Īi(t) = 1 − Ii(t).

Here, i, N , and T are defined as above; t̄ is the time at which a robot steps on
the white spot for the first time. The performance measure ranges from 0 to its
maximum of 48 000. In the definition of Ii (and Īi), a robot is considered to be
moving if its center has traveled more than 5 mm in the last time step.

We expect that communication is needed in this mission and that Gianduja
produces behaviors in which (i) robots broadcast the message if they step on the
white spot; (ii) upon receiving the message, robots stop and possibly relay it.

22 K. Hasselmann et al.

Fig. 1. Arenas for the three missions: aggregation, stop, and decision (from left to
right); simulation (top) and real setup (bottom).

DECISION. The arena’s floor is marked by a circular spot, with diameter of
0.6m, located in the center of the arena. The spot can be either white or black,
with a probability of 0.5. A light source is placed outside the arena, on the right-
hand side. At the beginning of each run, robots are randomly positioned—see
Fig. 1(right). The mission prescribes that the robots quickly relocate into the
right-hand half of the arena, when the spot is black; and into the left-hand half,
when the spot is white. The performance measure—the higher, the better—is:

Cd = 24000 −
T∑

t=1

N∑
i=1

Ii(t);

Ii(t) =

{
0, if robot i is in the correct half of the arena;
1, otherwise.

Here, i, N , and T are defined as above. The performance measure ranges between
0 and its theoretical maximum of 24 000.

Also in this case, we expect that communication is needed. A straightforward
solution would require two distinct messages: one per spot color/half of the arena
in which robots should relocate. As the robots have only one message available,
the solution we foresee is that they go in one direction by default and revert to
the opposite one in case they receive a message sent by a robot that steps on the
spot, should its color indicate that the correct direction is not the default one.

Automatic Design of Communication-Based Behaviors for Robot Swarms 23

4.2 Protocol

We compare Gianduja with Chocolate [16,32] and EvoCom. Chocolate was
originally defined in [16] and is used here unmodified. EvoCom is an evolutionary
method that we introduce for this study. It is an extension of EvoStick—a
design method that, via an evolutionary process, tunes the parameters of a
neural networks to control the e-puck platform, as it is modeled by RM 1.1.
EvoStick was formally defined in [18] to serve as a yardstick in the study of
Vanilla, but had been previously analyzed in [19]. It was subsequently included
in other empirical studies [5,16,17,33]. EvoCom targets the e-puck platform, as it
is modeled by RM 2—see Table 1. With respect to EvoStick, it has the further
capability of locally broadcasting a message and reacting to it. It features (i) one
extra output node for s; and (ii) five extra input nodes: one for b and four for the
projections of Vb on the four unit vectors pointing at 45◦, 135◦, 225◦, and 315◦

with respect to the head of the robot. The neural network is optimized using a
standard evolutionary algorithm, the same adopted in EvoStick—see [18,32] for
the details. Artificial evolution is based on simulations performed with ARGoS
[20,40]—under the same conditions that hold for Gianduja and Chocolate.

We consider a swarm of 20 e-puck robots. For each of the three missions, each
of the three methods under analysis is executed 15 times to obtain 15 instances
of control software. Each design process can rely on a maximum of 200 000
simulated runs. The simulator adopted in the study is ARGoS3, beta 48. We
evaluate each instance of control software obtained by the three design methods:
once in simulation and once on the physical robots. The initial positions of
the robots and the order of the experimental runs are randomized to avoid
any bias. In robot experiments, the value of the objective function is computed
automatically using a tracking system that extracts information from images
taken with an overhead camera every 100 ms.

Statistics. We report per-mission boxplots of the performance registered in sim-
ulation and reality. When appropriate, we report also the outcome of a Wilcoxon
rank-sum test, at 95% confidence [10]. Eventually, we aggregate all the results of
the robot experiments by ranking across each mission the performance obtained
by the instances of control software generated by each method. We present the
outcome of a Friedman test [10] in a plot that displays the average rank of each
method and its 95% interval of confidence. If two intervals do not overlap, the
results we registered for the corresponding methods are significantly different.
In the following, statements like “A performs significantly better that B” imply
that an appropriate statistical test—either a Wilcoxon or a Friedman test—has
been employed and has detected significance with confidence of at least 95%.

5 Results

We present the results on a per-mission basis and then we aggregate them across
the three missions. Numerical results, videos, code, and finite state machines
generated by Gianduja and Chocolate are available in [26].

24 K. Hasselmann et al.

AGGREGATION. Results are reported in Fig. 2(left). Both Gianduja and
Chocolate perform significantly better than EvoCom. Although Gianduja per-
forms significantly better than Chocolate in simulation, the results of the two
methods on the robots are similar.

O
b
je
ct
iv
e
fu
nc

ti
on

EvoCom Gianduja Chocolate

aggregation

50
00

10
00

0
15

00
0

EvoCom Gianduja Chocolate

stop

0
10

00
0

20
00

0
30

00
0

40
00

0

EvoCom Gianduja Chocolate

decision

0
50

00
10

00
0

15
00

0
20

00
0

Fig. 2. aggregation, stop, and decision (from left to right). Thick white boxes
represent the results of robot experiments; thin gray ones, those of simulations.

At visual inspection, EvoCom seems to be unable to use communication effec-
tively. The robots randomly explore the arena—sometimes forming moving clus-
ters. If they enter the white spot, they spin in place. Also in Chocolate and
Gianduja, robots navigate randomly, but they stop upon reaching the white
spot. In Gianduja, when on the white spot, robots typically broadcast the mes-
sage; the receiving peers converge towards them eventually reaching the white
spot. Although elegant, Gianduja’s solution does not significantly improve over
Chocolate’s one. It can be observed that Gianduja suffers the reality gap more
than Chocolate. This could be due to the fact that the ground sensor of the e-
puck robot is quite prone to report false positives in the detection of white/black
floor. As it can be seen in simulation, the behaviors produced by Gianduja rely
on communication to attract peers once the white spot is detected. In the pres-
ence of false positives, this feature could hinder performance. Chocolate, which
does not rely on communication, is apparently less affected by false positives.

STOP. Results are reported in Fig. 2(center). Gianduja performs significantly
better than EvoCom and Chocolate, both in simulation and reality.

At visual inspection, EvoCom seems to be unable to use its communication
capabilities effectively, whereas Gianduja does. In Gianduja, robots move ran-
domly until one reaches the white spot and stop. This robot broadcasts the mes-
sage. The receiving peers relay it and stop. In EvoCom and Chocolate (which
is not endowed with communication capabilities), robot move in random direc-
tions until being stopped by the walls. Although trivial, this behavior often scores

Automatic Design of Communication-Based Behaviors for Robot Swarms 25

Chocolate

Gianduja

EvoCom

15 20 25 30

rank

d
es

ig
n

m
et

h
o
d

Fig. 3. Friedman test on the aggregated results of the three missions. The plot repre-
sents the average rank of the three methods and their 95% confidence interval.

better than one would expect because there is some relatively high chance that,
before robots stop against a wall, at least one of them has reached the white
spot. In this mission, the behaviors generated by Gianduja cross the reality gap
better than those of EvoCom and Chocolate.

DECISION. Results are reported in Fig. 2(right). Gianduja performs signifi-
cantly better than EvoCom both in simulation and reality. Concerning the com-
parison between Gianduja and Chocolate, although the difference is not signif-
icant in simulation, on the robots Gianduja performs significantly better.

Gianduja uses communication effectively. By default, robots go towards one
side of the arena. If one robot steps on the central spot and its color indicates that
the correct side of the arena is not the default one, the robot itself broadcasts
the message. Receiving peers relay the message and all robots head to the cor-
rect direction. In some instances of control software designed by Gianduja, the
selected default side is the right-hand one, and in others is the left-hand. Accord-
ingly, robots start by performing phototaxis or anti-phototaxis and then possibly
switch depending on the color of the central spot. In Chocolate, the behavior
is similar but, as the robots are not endowed with communication capabilities,
only the robots that individually step on the central spot are able to revert their
default choice, should it be needed. EvoCom failed to produce any consistently
meaningful behavior. The score has a very large variability and appears to be
determined by chance. In simulation, the performance observed is even worse
than random behavior, which should produce an expected score of 12 000—half
of the maximum. In robot experiments, the score observed matches the profile
of a random behavior. Gianduja’s behaviors cross the reality gap nicely while
those of Chocolate appear to experience a large performance drop. As the per-
formance of EvoCom is particularly poor, any consideration on how the method
handles the reality gap would be meaningless.

Aggregate Results. The aggregate results are presented in Fig. 3. The plot
confirms that, across the three missions considered, Gianduja performs signifi-
cantly better that both Chocolate and EvoCom.

26 K. Hasselmann et al.

6 Conclusions

We have studied the problem of the automatic design of collective behaviors that
rely on communication. We have focused on the case in which robots are able
to locally broadcast a single message whose semantics is not fixed a priori: the
automatic design method can re-define it on a per-mission basis, as needed.

We have introduced Gianduja, an automatic design method based on the
previously published Chocolate. Gianduja generates control software by assem-
bling preexisting software modules into a probabilistic finite state machine. We
tested Gianduja on three missions, showing that the way in which the message
is used by the robots is different—and meaningful—in each of them. As desired,
the (implicit) semantics of the message is automatically defined on a per-mission
basis by the design process. On all three missions, Gianduja performs signifi-
cantly better that EvoCom, a rather standard evolutionary robotics methods for
robots that are able to broadcast and receive a message. On two of the three mis-
sions, Gianduja performs also significantly better than Chocolate, which is not
endowed with communication capabilities. The only mission on which the per-
formance of Gianduja and Chocolate is comparable is one in which we a priori
expected that communication is not needed. When aggregated, the results of the
robot experiments indicate that, across the three missions considered, Gianduja
performs significantly better that both EvoCom and Chocolate.

On the missions considered, Gianduja has also shown a weakness: It appears
to be more sensitive than Chocolate to noisy readings from the ground sensor.
We observed this issue in aggregation but it might have had an impact also in
the other two missions. The reason why this issue has a relative lower impact in
the other missions is possibly that communication is strictly needed to accom-
plish them. This clearly gives a major advantage to Gianduja over Chocolate
and greatly compensates the increased sensitivity to sensor noise.

Future work will focus on testing Gianduja on further missions. We will
also study the possibility of extending Gianduja so that it can handle multiple
messages and therefore generate more complex collective behaviors. Finally, we
will address also the sensitivity of Gianduja to sensor noise. A possible way
to handle the issue is to improve the noise models used in simulation so as to
produce behaviors that are more robust to false positives in the detection of
white/black ground. We are considering also to adopt ideas from game theory
to prevent that malicious (or simply fallacious, erroneous, unintended) messages
propagate across the swarm and negatively impact its collective behavior.

Acknowledgements. The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681872). Mauro Birattari acknowledges support from
the Belgian Fonds de la Recherche Scientifique – FNRS.

Automatic Design of Communication-Based Behaviors for Robot Swarms 27

References

1. Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolution of signaling in a
multi-robot system: categorization and communication. Adapt. Behav. 16(1), 5–26
(2008)

2. Balch, T.: Communication, diversity and learning: cornerstones of swarm behavior.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 21–30. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 3

3. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems.
Auton. Robot. 1(1), 27–52 (1994)

4. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inho-
mogeneous robot swarms with application to commercial pollination. In: Zexiang,
L. (ed.) IEEE International Conference Robotics and Automation, ICRA, pp. 378–
385. IEEE Press, Piscataway (2011)

5. Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects
of overdesign in the automatic design of control software for robot swarms. In:
Dorigo, M. (ed.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44427-7 13

6. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software
engineering for the development of automatic design methods. In: ACM/IEEE 1st
International Workshop on Robotics Software Engineering. RoSE, pp. 33–35. ACM,
New York (2018)

7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design
for swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1–17.28 (2015)

8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

9. Cao, Y., Fukunaga, A., Kahng, A., Meng, F.: Cooperative mobile robotics:
antecedents and directions. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1,
pp. 226–234. IEEE Press, Piscataway (1997)

10. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York
(1999)

11. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

12. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Handbook of
Robotics, pp. 1423–1451 (2008)

13. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the
emergence of communication in robots. Curr. Biol. 17(6), 514–519 (2007)

14. Fong, T., Nourbakhsh, I.: Socially interactive robots. Robot. Auton. Syst. 42(3–4),
139–141 (2009)

15. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3(29), 1–9 (2016)

16. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

17. Francesca, G., et al.: An experiment in automatic design of robot swarms. In:
Dorigo, M. (ed.) ANTS 2014. LNCS, vol. 8667, pp. 25–37. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09952-1 3

18. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

https://doi.org/10.1007/978-3-540-30552-1_3
https://doi.org/10.1007/978-3-319-44427-7_13
https://doi.org/10.1007/978-3-319-09952-1_3

28 K. Hasselmann et al.

19. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol.
7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33093-3 38

20. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004,
IRIDIA, Université libre de Bruxelles, Belgium (2015)

21. Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J. (ed.) Wiley Encyclo-
pedia of Electrical and Electronics Engineering. Wiley, Hoboken (2016)

22. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

23. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local communi-
cation in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference on
Robotics and Automation, ICRA, pp. 3111–3116. IEEE Press, Piscataway (2009)

24. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2), 209–239 (2008)

25. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for Auto-
MoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Brux-
elles, Belgium (2018)

26. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-
based behaviors for robot swarms: supplementary material. http://iridia.ulb.ac.
be/supp/IridiaSupp2018-003/ (2018)

27. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

28. Jones, C., Mataric, M.J.: Automatic synthesis of communication-based coordi-
nated multi-robot systems. In: International Conference on Intelligent Robots and
Systems, IROS, vol. 1, pp. 381–387. IEEE Press, Piscataway (2004)

29. Kazadi, S., Lee, J.R., Lee, J.: Model independence in swarm robotics. Int. J. Intell.
Comput. Cybern. 2(4), 672–694 (2009)

30. König, L., Mostaghim, S.: Decentralized evolution of robotic behavior using finite
state machines. Int. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

31. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the
reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145
(2013)

32. Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., Birat-
tari, M.: AutoMoDe, NEAT, and EvoStick: implementations for the e-puck robot
in ARGoS3. Technical report TR/IRIDIA/2017-002, IRIDIA, Université libre de
Bruxelles, Belgium (2017)

33. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with simulation
only experiments. In: Dorigo, M. (ed.) ANTS 2018. LNCS, vol. 11172, pp. 109–122.
Springer, Berlin (2018)

34. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory
control theory applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016)

35. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38
http://iridia.ulb.ac.be/supp/IridiaSupp2018-003/
http://iridia.ulb.ac.be/supp/IridiaSupp2018-003/
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337

Automatic Design of Communication-Based Behaviors for Robot Swarms 29

36. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de
Castelo Branco, Castelo Branco (2009)

37. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
38. Nolfi, S., Floreano, D., Miglino, G., Mondada, F.: How to evolve autonomous

robots: different approaches in evolutionary robotics. In: Brooks, R.A., Maes, P.
(eds.) Artificial Life IV: Proceedings of the Workshop on the Synthesis and Simu-
lation of Living Systems. pp. 190–197. MIT Press, Cambridge (1994)

39. Nolfi, S.: Emergence of communication in embodied agents: co-adapting commu-
nicative and non-communicative behaviours. Connect. Sci. 17(3–4), 231–248 (2005)

40. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

41. Quinn, M.: Evolving communication without dedicated communication channels.
In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 357–366.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X 38

42. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: structured cooperation with minimal sensors.
Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 361(1811), 2321–2343 (2003)

43. Reina, A., Valentini, G., Fernàndez-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

44. Silva, F., Duarte, M., Correia, L., Oliveira, S., Christensen, A.: Open issues in
evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

45. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for
decentralised online evolution of robotic controllers. Evol. Comput. 23(3), 421–449
(2015)

46. Spears, W.M., Spears, D., Hamann, J.C., Heil, R.: Distributed, physics-based con-
trol of swarms of vehicles. Auton. Robot. 17, 137–162 (2004)

47. Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin (2008)
48. Trianni, V.: Evolutionary robotics: model or design? Front. Robot. AI 1(13), 1–6

(2014)
49. Tuci, E.: An investigation of the evolutionary origin of reciprocal communication

using simulated autonomous agents. Biol. Cybern. 101(3), 183–199 (2009)
50. Urzelai, J., Floreano, D.: Evolutionary robotics: coping with environmental change.

In: Whitney, L.D., et al. (eds.) Proceedings of Conference on the Genetic and
Evolutionary Computation Conference, GECCO, pp. 941–948. Morgan Kaufmann,
San Francisco (2000)

51. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014)

https://doi.org/10.1007/3-540-44811-X_38

Behavior Trees as a Control Architecture
in the Automatic Modular Design

of Robot Swarms

Jonas Kuckling , Antoine Ligot , Darko Bozhinoski ,
and Mauro Birattari(B)

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
mbiro@ulb.ac.be

Abstract. Previous research has shown that automatically combining
low-level behaviors into a probabilistic finite state machine produces con-
trol software that crosses the reality gap satisfactorily. In this paper, we
explore the possibility of adopting behavior trees as an architecture for
the control software of robot swarms. We introduce Maple: an automatic
design method that combines preexisting modules into behavior trees.
To highlight the potential of this control architecture, we present robot
experiments in which we compare Maple with Chocolate and EvoStick

on two missions: foraging and aggregation. Chocolate and EvoStick

are two previously published automatic design methods. Chocolate is a
modular method that generates probabilistic finite state machines and
EvoStick is a traditional evolutionary robotics method. The results of
the experiments indicate that behavior trees are a viable and promising
architecture to automatically generate control software for robot swarms.

Keywords: Swarm robotics · Automatic design · Behavior trees

1 Introduction

In swarm robotics, a group of simple robots works together to achieve a common
goal that is beyond the capabilities of a single robot [2,4,5,11,19,34]. The collec-
tive behavior of the swarm is the result of the local interactions that each robot
has with its neighboring peers and with the environment. One of the biggest
challenges is to conceive the control software of the individual robots [11]. Often
control software is designed manually in a trial-and-error process [5]. This app-
roach is time-consuming, prone to error and bias and difficult to replicate [4,14].

J. Kuckling and A. Ligot contributed equally to the research and should be con-
sidered co–first authors. Behavior trees were originally brought to the attention of
the authors by DB. The proposed method was conceived by the four authors. It
was implemented and tested by JK and AL. The initial draft of the manuscript was
written by JK and AL and then revised by DB and MB. The research was directed
by MB.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 30–43, 2018.
https://doi.org/10.1007/978-3-030-00533-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_3&domain=pdf
http://orcid.org/0000-0003-2391-2275
http://orcid.org/0000-0001-7388-2866
http://orcid.org/0000-0002-6853-0310
http://orcid.org/0000-0003-3309-2194

Behavior Trees as a Control Architecture in Automatic Modular Design 31

A promising alternative is automatic design. In automatic design, the design
problem is transformed into an optimization problem. The design space of the
possible instances of control software is mapped into a solution space on which an
optimization algorithm searches a solution that maximizes a mission-dependent
performance measure. Due to numerous constraints (of which time and hardware
properties are the most notable ones), automatic design is often performed in
simulation. As simulation is unavoidably only an approximation of reality, the
so-called reality gap has to be faced by control software developed in simulation.
It has been observed that different design methods might be more or less robust
to the reality gap [16]. When assessing an automatic design method, it is there-
fore fundamental to perform tests with real robots to study its ability to cross
the reality gap satisfactorily.

A popular approach to the automatic design of robot control software is
evolutionary robotics [13]. Evolutionary swarm robotics is the application of
evolutionary algorithms to generate control software for swarm robotics [37]. In
this approach, robots are controlled by artificial neural networks that map sensor
readings to commands that are fed to the actuators. Other approaches have been
proposed that generate control software by assembling predefined modules. For
example, Duarte et al. [12] generated a set of neural networks to perform low-level
actions. These neural networks were then combined into a finite state machine.
The benefit of the approach is that it is easier generate multiple neural networks
that perform low-level actions rather than a single one that performs the whole
mission. The limitation is that the designer still needs to decompose the task into
suitable subtasks. Francesca et al. [15,16] defined AutoMoDe, a method in which
a set of preexisting mission-agnostic constituent behaviors and conditions are
assembled into a finite state-machine by an optimization process that maximizes
a mission-specific performance measure. The authors developed two instances of
AutoMoDe: Vanilla [16] and Chocolate [15], which differ in the optimization
algorithm adopted. They compared them with a standard evolutionary method
they called EvoStick [16]. While EvoStick performs better in simulation, Va-
nilla and Chocolate proved to be more robust to the reality gap and obtain
better results in reality.

In this paper, we explore the possibility of automatically assembling preex-
isting modules into a behavior tree. Behavior trees are a control architecture
that was initially developed as an alternative to finite state machines for speci-
fying the behavior of non-player characters in video games [8,23]. Behavior trees
gained popularity in the video game industry mainly because of their inher-
ent modularity [8]. Subsequently, they attracted the attention of the academia,
mostly in the robotics domain [9]. Compared to finite state machines, behavior
trees promote increased readability, maintainabilty and code reuse [10].

Behavior trees are a promising control architecture to be adopted in swarm
robotics. Indeed, they can be seen as generalizations of three classical architec-
ture already studied in the literature: the subsumption architecture [6], sequen-
tial behavior compositions [7], and decision trees [30].

32 J. Kuckling et al.

In this paper, we show that behavior trees can be used as a control architec-
ture in the automatic design of robot swarms. We propose Maple, an automatic
design method that fine-tunes and assembles preexisting modules (constituent
behaviors and conditions) into a behavior tree. We present the results of experi-
ments in which we automatically design control software for two missions: for-
aging and aggregation. In our experiments, Maple outperforms EvoStick
and obtains results that are comparable with those of Chocolate.

The research presented in this article prompts us to reconsider the original
definition of AutoMoDe, which arbitrarily restricts AutoMoDe to the generation
of probabilistic finite state machines [16]. The defining purpose of AutoMoDe–
automatic modular design – is to generate control software for robot swarms
by assembling and fine-tuning preexisting modules. The architecture into which
modules are assembled is a secondary issue which we find it should not limit the
methods defined as automatic modular design. In the following, we will consider
as instances of AutoMoDe all methods that assemble and fine-tune preexisting
modules, irrespective of the architecture into which they are cast and of the
optimization algorithm used to generate the solutions. In this precise sense, we
consider Maple to be an instance of AutoMoDe.

The paper is structured as follows: Sect. 2 provides an overview of the behav-
ior tree architecture. Section 3 introduces Maple. Section 4 describe the experi-
mental setup and Sect. 5 presents the results. Section 6 discussed related research
and Sect. 7 concludes the paper and sketches future developments.

2 Behavior Trees

Behavior trees have been used as an alternative to finite state machines [27]. In
this paper, we follow the definition given by Marzinotto et al. [27]. A behavior
tree is a tree structure that contains one root node, control nodes, and execution
nodes (actions or conditions). Execution is controlled by a tick generated by
the root and propagated through the tree. When ticked by its parent, a node
is activated. After execution, it returns one of three possible values: success,
running , or failure. Condition nodes that are ticked observe the world state
and return success, if their condition is fulfilled; and failure, otherwise. Action
nodes that are ticked returns success, if their action is completed; failure, if
their action cannot be completed; and running , if their action is still in progress.
Control nodes distribute the tick to their children. Their return value depends
on those returned by the children. There are six different types of control nodes:
selector, selector*, sequence, sequence*, parallel and decorator—see Table 1.

Additionally, behavior trees implement the principle of two-way control trans-
fers [31]. Not only can control be passed from a parent node to its child node,
but the child can return execution to its parent, along with information about
the state of execution. In a finite state machine, the control flow is only one-
directional, that is, a state cannot return control to the predecessor.

Perhaps the most important property of behavior trees is their inherent mod-
ularity [10]. Each subtree of a behavior tree is, by definition, a valid behavior

Behavior Trees as a Control Architecture in Automatic Modular Design 33

Table 1. Overview of possible control nodes in a behavior tree.

Name Symbol Description

Selector ? Ticks children sequentially as long as they return failure

Selector* ?∗ Ticks children sequentially as long as they return failure Resumes
ticking at last ticked node, if it returned running

Sequence → Ticks children sequentially as long as they return success

Sequence* →∗ Ticks children sequentially as long as they return success. Resumes
ticking at last ticked node, if it returned running

Parallel ⇒ Ticks all children simultaneously. Returns success (or failure), if a
majority of the children return success (or failure). Otherwise it returns
running

Decorator δ Executes a custom function on its only child. The function can either
manipulate the number of ticks given to the child, or the value returned
to the parent

tree as well. Thanks to the modularity, it is possible to adjust, remove, or add
subtrees without having to account for new or missing interactions [31]. Combin-
ing subtree modules in a behavior tree leads to a hierarchical structure, which
can simplify the analysis, for both humans and computers [10].

The aforementioned properties are appealing in the automatic design of con-
trol software for robot swarms. The enhanced expressiveness and the two-way
control transfers could allow the representation of behaviors that cannot be eas-
ily implemented using finite state machines. The structural modularity could
greatly simplify the implementation of optimization algorithms based on local
manipulations. It could also allow pruning unused parts to increment readabil-
ity. Finally, subtrees could be optimized independently of each other and used
afterwards as building blocks to generate more complex behaviors.

3 AutoMoDe-Maple

Maple is an automatic design method that, by combining and fine-tuning pre-
existing modules, generates control software in the form of behavior trees. In
defining Maple, our goal was to explore the possibility of using behavior trees in
the modular design of control software for robot swarms. We wished to define
a method that we could then compare with Chocolate, the existing state-of-
the-art in modular design, which generates finite state machines. We thought
that, at this stage of our research, the comparison would have been the most
informative if we reduced the differences between Maple and Chocolate as much
as possible, so as to isolate the element we wished to study: the architecture.
Therefore, we conceived Maple so that it shares with Chocolate the modules
to be assembled and the optimization algorithm. The only difference between
Maple and Chocolate is the architecture: behavior trees for the former, finite
state machines for the latter.

34 J. Kuckling et al.

Table 2. Reference model RM1.1 [21]. Sensors and actuators of the extended version
of the e-puck robot. Period of control cycle: 100 ms.

Sensor/actuator Variables Values

Proximity prox i, with i ∈ {0, ..., 7} [0, 1]

Light light i, with i ∈ {0, ..., 7} [0, 1]

Ground ground i, with i ∈ {0, ..., 2} {black , gray ,white}
Range-and-bearing n {0, ..., 19}

Vd ([0, 0.7]m, [0, 2π] radian)

Wheels vl, vr [−0.12, 0.12]m/s

The modules assembled by Maple are those used by both Vanilla [16] and
Chocolate [15]. To use these modules within a behavior tree, we included in
Maple only a subset of the control nodes described in Sect. 2.

3.1 Robotic Platform

Maple generates control software for an extended version of e-puck [18,29]. For-
mally, the subset of sensors and actuators that are used by Maple, along with the
corresponding variables, are defined by the reference model RM 1.1 [21], which
we reproduce in Table 2 for the convenience of the reader.

The e-puck is a two wheeled robot. The control software can adjust the veloc-
ity of the motors of each wheel (vr and vl). The e-puck can detect the presence
of nearby obstacles (prox i), measure ambient light (light i), and tell whether the
floor situated directly beneath itself is white, gray, or black (ground i). Finally,
thanks to its range-and-bearing board [20] the e-puck is aware of the presence
of its peers in a range of up to 0.7 m: it knows their number (n) and a vector
Vd indicating the direction of attraction to the neighboring peers, following the
framework of virtual physics [35].

3.2 Set of Modules

Maple uses the set of preexisting modules originally defined for Vanilla [16].
The set is composed of six low-level behaviors (i.e., activities performed by the
robot) and six conditions (i.e., assessments of particular situations experienced
by the robot). In a behavior tree, a leaf node is either an action or a condition.
Maple selects the action nodes among the set of Vanilla’s low-level behaviors,
and the condition nodes among the set of Vanilla’s conditions. In this section,
we briefly describe Vanilla’s low-level behaviors and conditions. We refer the
reader to the work of Francesca et al. [16] for more details.

Low-Level Behaviors. Exploration is a random walk strategy. The robot goes
straight until an obstacle is perceived by the front proximity sensors. Then, the
robot turns on the spot for a random number of control cycles drawn in {0, ..., τ},

Behavior Trees as a Control Architecture in Automatic Modular Design 35

where τ is an integer parameter ∈ {0, ..., 100}. Stop orders the robot to stay still.
Phototaxis moves the robot towards a light source. If no light source is perceived,
the robot goes straight. Anti-phototaxis moves the robot away from the light
source1. If no light source is perceived, the robot goes straight. Attraction moves
the robot in the direction of the neighboring peers (Vd). The speed of convergence
towards the detected peers is controlled by a real parameter α ∈ [1, 5]. If no peer
is detected, the robot goes straight. Repulsion moves the robot away from the
neighboring peers (−Vd). The real parameter α ∈ [1, 5] controls the speed of
divergence. Obstacle avoidance is embedded in all low-level behaviors, with the
exception of stop. As stated earlier, this is not a design choice we made for Maple
but rather an earlier decision from Vanilla [16] that is kept to allow comparison
with previosly obtained results. The parameters τ and α must be tuned by the
automatic design process.

Conditions. Black-, gray- and white-floor are true with probability β ∈ [0, 1]
if the ground sensor perceives the floor as black, gray, or white, respectively.
Neighbor-count is true with a probability computed as a function z (n) ∈ [0, 1] of
the number of robots detected via the range-and-bearing board. A real parameter
η ∈ [0, 20] and an integer parameter ξ ∈ {0, ..., 10} control the steepness and the
inflection point of the function, respectively. Inverted-neighbor-count is true with
probability 1 − z (n). Fixed-probability is true with probability β ∈ [0, 1]. The
parameters β, η and ξ must be tuned by the automatic design process.

3.3 Control Software Architecture

We use the preexisting low-level behaviors of Vanilla [16] without any modi-
fication. In the traditional implementation of behavior trees, an action node is
able to tell whether the system it controls (i) successfully executed,(ii) is still
executing, or (iii) failed to execute the required activity. The action node then
returns the corresponding state variable (i.e., success, running , or failure).

The low-level behaviors of Vanilla were designed to be used as states of prob-
abilistic finite state machines, and were meant to be executed until an external
condition was enabled. Because of their implementations, when used as action
nodes within Maple, the low-level behaviors can only return running . As a conse-
quence, part of the control-flow nodes of behavior trees do not work as intended.
For example, a sequence node with two Vanilla’s behaviors as children would
always directly return running after the first behavior is executed once, and
would never execute the second one—see Table 1.

To use Vanilla’s behaviors as action nodes, Maple instantiates behavior trees
that have a restricted topology and use only a subset of all available control
nodes. The root node must be of the type sequence* and can only have selector
nodes as children. Within Maple, each subtree defined by a selector node is forced
to have two children: a condition node as the left child, and an action node as
the right child. In order to stay close to Vanilla’s restriction of a maximum of

1 In biology this behavior is known as negative phototaxis [28].

36 J. Kuckling et al.

→∗

?

C1 A1

?

C2 A2

?

C3 A3

Fig. 1. Illustration of a behavior tree that can be generated by Maple. Maple determines
the number of selector subtrees (highlighted by the dashed box) and specifies the
condition and action nodes for each of them. The type of the root node is predefined.

four states in the finite state machine, the behavior tree is allowed to contain
a maximum of four selector subtrees. Figure 1 illustrates an example (with only
three out of four possible subtrees) of the restricted topology of the behavior trees
that Maple can produce. In this example, action node A1 is executed as long as
condition node C1 returns failure. When condition node C1 returns success, the
sequence* node ticks the next selector subtree, and so forth. Similarly to Choco-
late [15], Maple uses Iterated F-race [26] as the optimization algorithm to search
for the best possible instance of behavior tree among all the possible ones.

4 Experimental Setup

In this section, we describe the automatic design methods under analysis, the
missions on which we test them, and the protocol we follow.

4.1 Automatic Design Methods

We compare Maple with Chocolate [15] and EvoStick [15,16]. As Maple, Choc-
olate and EvoStick are based on reference model RM1.1. We briefly describe
these methods and we refer the reader to Francesca et al. [15,16] for the details.

Chocolate selects, fine-tunes, and combines preexisting modules into prob-
abilistic finite state machines. It uses the same twelve modules as Vanilla and
Maple. Chocolate is restricted to create probabilistic finite state machines com-
prising up to four states and up to four outgoing edges per state. Similarly to
Maple, Chocolate uses Iterated F-race [26] as optimization algorithm.

EvoStick is an implementation of the evolutionary robotics approach: the
topology of a neural network is fixed, and an evolutionary algorithm is used to
optimize the weights of the connections. The network considered in EvoStick is
fully connected, feed-forward and does not contain hidden neurons. It comprises
24 input nodes for the readings of the sensors described in the reference model

Behavior Trees as a Control Architecture in Automatic Modular Design 37

Fig. 2. foraging (left) and aggregation (right).

RM 1.1: 8 for the proximity sensors, 8 for the light sensors, 3 for the ground sen-
sors, and 5 for the range-and-bearing board. Out of the 5 input nodes dedicated
to the range-and-bearing board, one is allocated to the number of neighbors,
and the four others to the scalar projections of the vector pointing to the center
of mass of these neighbors on four unit vectors. The neural network comprises 2
output nodes for the velocities of the left and right wheels.

4.2 Missions

The missions considered are foraging and aggregation. They have already
been studied in [16]. We refer the reader to the original article for the details. In
the two missions, the robots operate in a dodecagonal arena delimited by walls
and covering an area of 4.91 m2. We limit the duration of the missions to 120 s.

FORAGING. The arena contains two source areas (black circles) and a nest
(white area). A light is placed behind the nest to help the robots to navigate
(Fig. 2, left). In this idealized version of foraging, a robot is deemed to retrieve
an object when it enters a source and then the nest. The goal of the swarm is to
retrieve as many objects as possible. The objective function is Ff = Ni, where
Ni is the number of objects retrieved.

AGGREGATION. The swarm must select one of the two black areas and aggre-
gate there [16,17] (Fig. 2, right). The objective function is Fa = max(Nl, Nr)/N ,
where Nl and Nr are the number of robots located on the left and right area,
respectively; and N is the total number of robots. The objective function is com-
puted at the end of the run, and is maximized when all robots are either on the
left or the right area.

4.3 Protocol

We considered a robot swarm composed of 20 e-pucks. The three automatic
design methods—Maple, Chocolate and EvoStick—produce control software

38 J. Kuckling et al.

O
b
je
ct
iv
e
fu
nc

ti
on

Maple EvoStickChocolate

0
10

20
30

40

O
b
je
ct
iv
e
fu
nc

ti
on

Maple EvoStickChocolate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3. Results of the experiments. The gray boxes represent the performance assessed
in simulation; the white boxes represent the performance assessed in reality.

for two missions—foraging and aggregation. Since all the design methods
are stochastic, for each mission, each design method is executed 10 times and
produces 10 instances of control software. The design budget allocated to each
method for each mission is 50000 simulation runs: this is the maximum number
of simulation runs allowed during the design process. To study the generalization
capabilities of the design methods, we assess the performance of each instance of
control software once in simulation, and once in reality [3]. All simulations are
performed using ARGoS3, beta 48. [18,33].

In reality, to automatically measure the performance of the swarm, we use
a system composed of an overhead camera and markers on the robots to track
their position in real time [36]. Experimental runs start from 10 different initial
positions/orientations of the robots. We use the tracking system to automatically
guide the robots to the initial position/orientation of each run. During a run,
we interfere with the robots only if they tip over due to a collision. In this case,
we intervene and put them upright to avoid damages.

We present the results in the form of box-and-whiskers boxplots. For each
method and each mission, we report two boxplots: one for simulation and one
for reality. In the following, statements like “method A is significantly better
than B,” always imply we performed a Wilcoxon rank-sum test that detected
significance with confidence of at least 95%.

5 Results

In this section, we report the results for each mission considered. The instances
of control software produced, the details of their performances both in simulation

Behavior Trees as a Control Architecture in Automatic Modular Design 39

and in reality, and videos of their execution on the robots are available as online
supplementary material [25].

FORAGING. Although the performance of control software produced by the
three automatic design methods is similar in simulation, Maple and Choco-
late are significantly better than EvoStick in reality. The performance of all
three methods drops significantly when passing from simulation to reality, but
EvoStick suffers from the reality gap the most. See Fig. 3(left).

Maple and Chocolate generate control software that displays expected and
similar strategies: the robots explore the environment and once a source of food
(i.e., a black area) is found, they navigate towards the nest (i.e., the white area)
guided by the light. The performance drop that affects Maple and Chocolate
when porting the control software from simulation to reality is probably due to
the fact that simulation does not properly reproduce the frictions experienced by
the robots. In reality, due to friction, robots become sometimes unable to move
and therefore do not contribute to the foraging process. Contrarily to Maple
and Chocolate, and with the exception of a few cases, EvoStick was unable to
generate instances of control software that display an effective foraging behavior
in reality. Indeed, in most cases, the robots seem unable to navigate efficiently.

AGGREGATION. In simulation, Maple and Chocolate show similar perfor-
mance, but EvoStick performs significantly better than Maple. Also in reality,
Maple and Chocolate perform similarly, but they are both significantly better
than EvoStick. Indeed, the performance of EvoStick drops considerably from
simulation to reality, whereas the performance drop of Maple and Chocolate is
smaller. See Fig. 3(right).

The instances of control software produced by Maple and Chocolate are
able to find the black areas and stop there. Contrarily, the instances of control
software produced by EvoStick do not efficiently search the space. When a black
area is found, the robots tend to leave it quickly. Neither of the three methods
produced control software that displayed effective collective decision making.

6 Related Work

Most of the early research on behavior trees has concentrated on their use for
game development [1,32]. Subsequently, research has been devoted to the appli-
cation of behavior trees in robotics. For example, Marzinotto et al. [27] man-
ually designed a behavior tree for manipulation on the NAO robot. Hu et al.
[22] described an application of behavior trees to semi-autonomous, simulated
surgery.

Jones et al. [24] proposed an automatic design method for robot swarms
in which the control architecture of robots is a behavior tree. To the best of
our knowledge, that is the first and only application of behavior trees in swarm
robotics. The authors used genetic programming to generate control software for
kilobots in a foraging mission. The action nodes are atomic commands, such as
setting motor state, storing information, or broadcasting a signal. The results

40 J. Kuckling et al.

show that behavior trees can be effectively used to control the robots of a swarm
and that the control software generated is human-readable. Our approach differs
both conceptually and methodically from method proposed by Jones et al. [24].
Methodically, we used Iterated F-Race [26] as an optimization algorithm and a
more restricted architecture for the behavior trees. Conceptually, we focussed on
showing that automatic modular design can cross the reality gap in a satisfactory
way, even when using different architectures. Furthermore, for the leaves of the
behavior tree we used complex low-level behaviors instead of atomic actions.

7 Conclusions

AutoMoDe, automatic modular design, is an approach in which control soft-
ware for robot swarms is automatically generated by assembling and fine-tuning
preexisting modules. In previous articles, the control software architecture on
which AutoMoDe operates was arbitrarily restricted to probabilistic finite state
machine. In this article, we went beyond this restriction and we investigated the
possibility of adopting behavior trees as a control software architecture. Behavior
trees are appealing for a number of reasons. Compared to finite state machines,
behavior trees offer greater expressiveness, implement the principle of two-way
control transfers, and posses inherent modularity which allows the creation of a
hierarchical structure, code reuse, and separation of concerns. Behavior trees are
also easier to manipulate without compromising their integrity. This fact could
be extremely useful when designing optimization algorithms based on iterative
improvement.

We proposed a new instance of AutoMoDe called Maple, which fine-tunes and
assembles preexisting modules into a behavior tree. To highlight its potential,
we performed experiments in simulation and reality for two different missions:
foraging and aggregation. The results show that Maple performs similar
to Chocolate—the state-of-the-art AutoMoDe method, which generates proba-
bilistic finite state machines. They both cross the reality gap in a satisfactory
way. EvoStick, which is an evolutionary robotics method, performs better then
Maple and Chocolate in simulation, but significantly worse in reality.

Future work will focus on fully exploiting the potentials of behavior trees.
This implies defining modules that are natively conceived to operate within a
behavior tree—e.g., modules that properly return their state value (success, run-
ning , or failure) and therefore interact correctly with all possible control nodes.
Moreover, we will define an ad-hoc optimization algorithm, possibly relying also
on iterative improvement, that fully exploits the inherent modularity and hier-
archical structure of behavior trees.

Acknowledgements. The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681872). Mauro Birattari acknowledges support from
the Belgian Fonds de la Recherche Scientifique – FNRS.

Behavior Trees as a Control Architecture in Automatic Modular Design 41

References

1. Becroft, D., Bassett, J., Mej́ıa, A., Rich, C., Sidner, C.L.: AIPaint: a sketch-based
behavior tree authoring tool. In: Bulitko, V., Riedl, M.O. (eds.) Proceedings of
the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE-11. AAAI Press, Stanford (2011)

2. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M.
(eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30552-1 1

3. Birattari, M.: On the estimation of the expected performance of a metaheuristic
on a class of instances. How many instances, how many runs? Technical report
TR/IRIDIA/2004-01, IRIDIA, Université libre de Bruxelles, Belgium (2004)

4. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software
engineering for the development of automatic design methods. In: ACM/IEEE 1st
International Workshop on Robotics Software Engineering, RoSE, pp. 33–35. ACM,
New York (2018). https://doi.org/10.1145/3196558.3196564

5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

6. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986)

7. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynami-
cally dexterous robot behaviors. Int. J. Robot. Res. 18(6), 534–555 (1999)

8. Champandard, A.J.: Understanding behavior trees (2007). http://aigamedev.com/
open/articles/bt-overview/

9. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control sys-
tems and generalize sequential behavior compositions, the subsumption architec-
ture, and decision trees. IEEE Trans. Robot. 33(2), 372–389 (2017)

10. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction
(2018). https://arxiv.org/abs/1709.00084

11. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

12. Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control
for a real swarm robotics system in an intruder detection task. In: Squillero, G.,
Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 213–230. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31153-1 15

13. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (eds.) Handbook of Robotics, pp. 1423–1451. Springer, Heidelberg
(2008)

14. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3(29), 1–9 (2016)

15. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

16. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

17. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol.
7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33093-3 38

https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1145/3196558.3196564
http://aigamedev.com/open/articles/bt-overview/
http://aigamedev.com/open/articles/bt-overview/
https://arxiv.org/abs/1709.00084
https://doi.org/10.1007/978-3-319-31153-1_15
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38

42 J. Kuckling et al.

18. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004,
IRIDIA, Université libre de Bruxelles, Belgium (2015)

19. Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J. (ed.) Wiley Encyclo-
pedia of Electrical and Electronics Engineering. Wiley, Hoboken (2016). https://
doi.org/10.1002/047134608X.W8312

20. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open E-puck range & bearing miniaturized board for local communi-
cation in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference on
Robotics and Automation, ICRA, pp. 3111–3116. IEEE Press, Piscataway (2009)

21. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for Auto-
MoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Brux-
elles, Belgium (2018)

22. Hu, D., Gong, Y., Hannaford, B., Seibel, E.J.: Semi-autonomous simulated brain
tumor ablation with Raven II surgical robot using behavior tree. In: Parker, L.,
et al. (eds.) IEEE International Conference on Robotics and Automation, ICRA,
pp. 3868–3875. IEEE Press, Piscataway (2015)

23. Isla, D.: Handling complexity in the Halo 2 AI. In: GDC Proceeding (2005)
24. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm

robotics. In: 13th International Symposium on Distributed Autonomous Robotic
Systems (DARS) (2016)

25. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic design of robot swarms: Supplementary material
(2018). http://iridia.ulb.ac.be/supp/IridiaSupp2018-004/index.html

26. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

27. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behav-
ior trees framework for robot control. In: Xi, N., et al. (eds.) IEEE International
Conference on Robotics and Automation, ICRA, pp. 5420–5427. IEEE Press, Pis-
cataway (2014)

28. Menzel, R.: Spectral sensitivity and color vision in invertebrates. In: Autrum, H.
(ed.) Comparative Physiology and Evolution of Vision in Invertebrates, pp. 503–
580. Springer, Heidelberg (1979). https://doi.org/10.1007/978-3-642-66999-6 9

29. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de
Castelo Branco, Portugal (2009)

30. Nehaniv, C.L., Dautenhahn, K.: Imitation in Animals and Artifacts. MIT Press,
Cambridge (2002)

31. Ögren, P.: Increasing modularity of UAV control systems using computer game
behavior trees. In: Thienel, J., et al. (eds.) AIAA Guidance, Navigation, and Con-
trol Conference 2012, pp. 358–393. AIAA Meeting Papers (2012)

32. Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the
mario AI competition using grammatical evolution. In: Di Chio, C., et al. (eds.)
EvoApplications 2011. LNCS, vol. 6624, pp. 123–132. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20525-5 13

33. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

https://doi.org/10.1002/047134608X.W8312
https://doi.org/10.1002/047134608X.W8312
http://iridia.ulb.ac.be/supp/IridiaSupp2018-004/index.html
https://doi.org/10.1007/978-3-642-66999-6_9
https://doi.org/10.1007/978-3-642-20525-5_13

Behavior Trees as a Control Architecture in Automatic Modular Design 43

34. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 2

35. Spears, W.M., Spears, D., Hamann, J.C., Heil, R.: Distributed, physics-based con-
trol of swarms of vehicles. Auton. Robot. 17, 137–162 (2004)

36. Stranieri, A., et al.: IRIDIA’s arena tracking system. Technical report
TR/IRIDIA/2013-013, IRIDIA, Université libre de Bruxelles, Belgium (2013)

37. Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin (2008). https://doi.
org/10.1007/978-3-540-77612-3

https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-77612-3

Guidance of Swarms with Agents Having
Bearing Only and Limited Visibility

Sensors

Rotem Manor(B) and Alfred M. Bruckstein

Technion - Israel Institute of Technology, Technion City, Haifa, Israel
manorrotem@gmail.com

Abstract. We suggest a mechanism for leading a team of mobile, obliv-
ious, identical and indistinguishable agents in desired directions. The
agents are assumed to have a compass, i.e. a common North direction,
and bearing only sensing within a limited visibility range, and may
receive a direction-control broadcast with some given probability. We
prove that, under the suggested guidance rule, the swarm of agents gath-
ers to a small disk in the plane and moves in the desired direction with an
expected velocity dependent on the probability of receiving the control
signal.

1 Introduction

Directing a swarm of simple and low-cost agents, toward a given location in the
environment using a global broadcast signal that may be “heard” by only some
of the agents, is an interesting challenge. Earlier works already done on systems
of simple agents, showed that even inferior capabilities agents can perform task
of gathering [1,8,9,11–13]. Here, we intend to control the movement of a system
of inferior capabilities agents.

Prior studies on swarm motion control were either based on using global
potential fields or external forces [10,14–16], or on using “informed” agents
flocking, leader following processes, and either linear or non-linear interaction
dynamics, [5–7,17–19].

We here address the problem of controlling a swarm of oblivious, anonymous
(identical and indistinguishable) agents without explicit inter-agent communica-
tion that are capable of sensing only their neighbours’ bearing within a limited
visibility range. We assume that all agents have a common compass direction
(North), hence the exogenous guidance signal is an azimuth angle that specifies
the desired direction of motion in the plane.

We propose and analyse a semi-synchronised discrete time model, where each
agent of the swarm has a probability γ > 0 to “hear” the control signal at each
time step. As stated before, the control signal specifies a unit vector Ĉ in the
desired direction of motion.

We start by presenting the agents’ local motion law, an extension of the
interaction rules presented in [3]. Under this model, each agent jumps inside an
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 44–56, 2018.
https://doi.org/10.1007/978-3-030-00533-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_4&domain=pdf
http://orcid.org/0000-0002-2504-1509

Broadcast Guidance 45

allowable region, designed for maintaining visibility with its neighbours. Without
the presence of the control, this motion law implements a gathering algorithm
for swarms of agents with the given capabilities. The proposed law is first shown
to gather swarms with an initial connected visibility net to a small region (with a
complete visibility net) even in the presence of the control signal. Then, once the
swarm’s constellation has a complete visibility graph, it moves with a constant
expected velocity in the desired direction, broadcast by a controlling entity. We
conclude this paper by presenting simulation results, and discuss possible future
directions for research.

2 The Motion Law

We consider a system of n identical, anonymous, and oblivious agents in the
R

2-plane specified by their time varying locations {pi(k)}i=1,2,...,n. We assume
that the agents sense only the direction to their neighbours (i.e. bearing only
sensing), hence their information about neighbours is partial. Their steps in time
are determined by the set of unit vectors pointing to their current neighbours
and the control signal, if received. The neighbours of each agent i, at any time
step k are defined as the set of agents located within a given visibility range V
form the position pi(k), and are denoted by the set Ni(k). The neighbourhood
relation between all the agents is conveniently described by a time dependent
visibility-graph.

Our agents move according to the following motion law, first presented in
[3]. At time step k, an agent may be active with a strictly positive probability
δ. Each active agent not “surrounded” by neighbours, jumps to a random point
choosen according to a uniform distribution in an allowable region defined by the
geometry of the vectors pointing to its neighbours and the control. The allowable
region of an agent is defined as the area the agent can move into, without losing
visibility with any of its neighbours. Gordon and Bruckstein proved that in the
absence of control such a motion law gathers the swarm from a constellation with
a connected visiblity net to a constellation having a complete visibility graph
within a finite expected number of time steps [11], and recently in [3] Manor
and Bruckstein proved that a small modification of the motion law can further
be shown to gather the swarm to a disk of a radius equal to σ (assumed to be
σ ≤ V/2), where σ is the agents’ maximal allowed step size. This process too
happens within a finite expected number of time steps.

In order to adjust this gathering law to a guidance law, we assume that
each agent currently “hearing” a control signal acts as if it has yet another
neighbouring agent located in the direction provided by the control signal. This
approach to a controlled scenario considerably facilitates in the analysis of the
dynamics of the controlled swarm.

Let us next formally describe the rule of gathering and guidance. Let ψi(k)
be the angle of the minimal sector anchored at agent i’s position at time step k
that contains all its neighbours, and let ψ̂i(k) be a unit vector in the direction
of the bisector of the angle ψi(k). If an agent i at time step k has ψi(k) ≥ π, it
is considered “surrounded” by neighbours.

46 R. Manor and A. M. Bruckstein

Let us denote a disk of radius r centered at a point c by Dr(c). An agent i is
active at each time step k with a strictly positive probability δ, and receives the
control signal with probability γ. If an active agent i does not currently “hear”
the control signal, and is not surrounded by its neighbours, i.e. ψi(k) < π, it
jumps to a uniformly selected random point inside its current “allowable region”,
ari(k), defined as follows:

⋂

j∈Ni(k)

Dσ
2

(
pi(k) +

σ

2
Uij(k)

)
= Dσ

2

(
pi(k) +

σ

2
U−

i (k)
)
∩Dσ

2

(
pi(k) +

σ

2
U+

i (k)
)

(1)
where recall that σ < V/2 and Uij(k) is a unit vector pointing from pi(k) to pj(k).
In (1), U−

i (k) and U+
i (k) are unit vectors pointing form agent i to its extremal

right and left neighbours, i.e. those defining the sector ψi(k) (see Fig. 1).

Fig. 1. The allowable region of an agent (dashed area) is the intersection of all disks
D σ

2

(
pi(k) + σ

2
Uij(k)

)
where j ∈ Ni(k). Notice that it is given by the intersection of

the two disks associated with the “extremal” neighbours.

If agent i is active and receives the control signal, it adds another virtual
agent, v, to its neighbour set. The virtual agent is assumed to be in the guidance
direction Ĉ relative to i’s position. Then, agent i proceeds to determine its next
position considering the extended neighbour set v ∪Ni(k). We denote the allow-
able region resulting from the extended set of neighbours by arv

i (k). Formally,
the local control law for the motion of agent i is therefore the following:

pi(k + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi(k) if χi(k) = 0 or ψi(k) ≥ π

a point in ari(k)
if χi(k) = 1 and ξi(k) = 0

and ψi(k) < π

a point in arv
i (k)

if χi(k) = 1 and ξi(k) = 1
and ψi(k) < π

(2)

where χi(k) is a binary variable equal to 1 or 0 with probability δ or (1 − δ)
determining whether the agent i is active at time step k, and ξi(k) is a binary

Broadcast Guidance 47

variable equal to 1 or 0 with probability γ or (1 − γ) modelling the probabilistic
“reception” of the guidance signal by agent i at time step k.

Under the above proposed rule of motion, we have the following straightfor-
ward initial result:

Lemma 1. If all agents move inside their allowable regions, none of them will
lose visibility with their neighbours.

Proof. Consider a pair of neighbour agents i and j. Each one of these agents may
jump into its own allowable region, which by (1) is contained in the σ/2-disk
which centered in the direction of its pair, i.e.

ari(k) ⊂ Dσ
2

(
pi(k) +

σ

2
Uij(k)

)
and arj(k) ⊂ Dσ

2

(
pj(k) +

σ

2
Uji(k)

)

Since σ ≤ V/2, we have that both disks Dσ/2

(
pi(k) + σ

2Uij(k)
)

and
Dσ/2

(
pj(k) + σ

2Uji(k)
)

are contained in a disk of radius V/2 centered at the
agents’ average location, (pi(t) + pj(t))/2. Hence, the next possible location for
agents i and j, inside their allowable regions, will again result in a less than V
distance between them.

Since the allowable region of an agent i is the intersection between all the
σ/2-disks associated with its neighbours, i.e.

arv
i (k) =

⋂

j∈Nv
i (k)

Dσ
2

(
pi(k) +

σ

2
Uij(k)

)
⊆

⋂

j∈Ni(k)

Dσ
2

(
pi(k) +

σ

2
Uij(k)

)

Hence, we have that arv
i (k) ⊆ ari(k), and even in a guided scenario, it will

remain, at time (k+1), at a distance less than V from all its current neighbours.

3 Gathering to a Small Region

Before dealing with the movement of the system under the broadcast control, we
shall show that, even in a controlled scenario, a swarm of agents acting according
to the dynamics given by (2) gathers to within a disk of radius equal to σ in
a finite expected number of time steps. To do so, we first recall the essence of
the gathering proof given in [3]. The proof states that a swarm of agents acting
according to motion law (2) gathers to a disk of diameter V , and then to a disk
of radius σ, without any guidance (the case of γ = 0).

The gathering proof was done in two steps. Theorem 2 states that any con-
stellation having a connected visibility graph reaches a complete visibility graph
within a finite expected number of time-steps. Henceforth, all agents remain
confined to a disk of diameter V . Then, Theorem 3 states that a constellation
having a complete visibility graph further shrinks to within a disk of radius σ in
an additional finite expected number of time-steps.

The outline of the proof of Theorem 2 is that at each time-step there is a
strictly positive probability of δ(1 − δ)n−1 for the agent located at the sharpest

48 R. Manor and A. M. Bruckstein

corner of the constellation’s convex-hull to be the only active agent. This agent,
when jumping, has a probability bounded away from zero by a constant to reduce
its distance from p̄(k), the centroid at time step k of the agents’ constellation, by
at least a positive constant quantity s∗. As a consequence of this jump, L(P (k)),
the sum of all agents’ squared distances of from p̄(k), is reduced by at least
s∗2/n.

We always assume initial constellations with a connected visibility graph.
Hence, by Lemma 1 the visibility graphs remain connected, and L(P (k)) is
bounded from above. Therefore, L(P (k)) may reach a value of less than V 2/4
within a finite number of time steps with strictly positive (though very small!)
probability. This happens when a long sequence of decreasing steps occurs. How-
ever, once L(P (k)) reaches V 2/4, the visibility graph of the constellation is nec-
essarily complete, and by Lemma 1, it remains complete, i.e. all the agents will
henceforth be confined to a disc of diameter V .

The proof of Theorem 3 in [3], analyses the dynamics of the system consid-
ering the minimal enclosing circle of the agents positions, its radius and center
being denoted by R(k) and C(k). In the proof we show that, any agent located
at a distance greater than σ/2 from C(k) can not increase its distance from
C(k), and if an agent is located at a distance smaller than or equal to σ/2 from
C(k), it can not jump to a distance greater than σ from C(k). Therefore, if
R(k) > σ, it cannot increase. Furthermore we show that, there are at least two
agents located on the circumference of the minimal enclosing circle, or within
a close proximity to it, and located at corners of the constellation’s convex-hull
with angles bounded below π by a constant as well. These agents have strictly
positive probabilities, δ, to be active, and therefore will jump to locations closer
to C(k) with strictly positive probability. Hence, if R(k) > σ, the radius of the
smallest enclosing circle drops significantly with a strictly positive probability
within a batch of �n/2	 time-steps. Once R(k) reaches σ it cannot exceed it. For
details, please see the technical report [3].

Notice that these proofs are based on agents being in special situations,
occurring at some time steps. These agents have strictly positive probabilities to
be active (δ), and in fact to be the only active agent at a time step (δ(1−δ)n−1).
If we add the broadcast control to the model (γ > 0), we still may use the same
proofs assuming further that these agents, in the special situations, do not “hear”
the broadcast. Therefore, the above mentioned probabilities should be updated
to δ(1−γ) and δ(1− δ)n−1(1−γ) respectively, leaving them strictly positive, by
the assumptions of the model we discuss in this paper, and, as a consequence,
we have that our system still gathers within a finite expected number of time
steps, even in the presence of broadcast control. The gathering dynamics may
be seen in Fig. 2

4 Random Dynamics Analysis

In this section we analyse the dynamics of a constellation of agents with complete
visibility graph. We start with the dynamics of the swarm without the presence
of a control broadcast.

Broadcast Guidance 49

Fig. 2. Gathering under broadcast control according to the motion rule given by (2).
Initial configuration is represented by the empty squares (agents’ initial locations)
which connected by the dotted lines (initial visibility connections between agents), and
the trajectories to the current locations (full squares) are drawn. The agents gather
into a disk of a radius equal to σ (the black circle), within finite number of time step,
and then remain confined to a disk of this size that drifts in the direction given by the
broadcast control (black arrow).

In order to characterize the dynamics of the system, we rely on a Theorem
from [2] on the convergence in probability of random variables that are sums
of uniformly bounded random increments. Given a random variable Xk so that

Xk =
k∑

i=1

Yi, i.e. Yk = Xk − Xk−1.

If Yk satisfies E [Yk|Fk−1] = 0 and
k∑

i=1

V ar{Yi} a.s.→ ∞. where Fk−1 is the

sigma filed generated all prior realization of the process. then Xk̃√
ν

p→ N(0, 1).

where k̃ = min{k :
k∑

k′=1

E{‖Yk′‖2} > ν} is a stopping time defined by ν.

We use the linearity of expectation to prove that once the gathering process
shrank the constellation of agents to within a disk of radius V/2 the expected
centroid will either remain in place when no broadcast is heard or it will drift in
the direction of the control vector with a velocity equal to δγσ/(2n).

The above Theorem will further prove that the distribution of the swarm
centroid location about the expected trajectory converges to a Gaussian with
variance increasing linearly with k.

4.1 No Broadcast Control (γ = 0)

We first prove that the expected centroid of the agents’ constellation does not
move in time (see also [3]).

50 R. Manor and A. M. Bruckstein

Let us analyse the long term behaviour of the random variable vectors p̄(k) =

1/n
n∑

i=1

pi(k) in time. Let Δpi(k) = pi(k + 1) − pi(k) be the step of agent i at

time step k. Then, the vector p̄(k + 1) obeys

p̄(k + 1) =
1
n

n∑

i=1

pi(k + 1) =
1
n

n∑

i=1

(pi(k) + Δpi(k)) = p̄(k) +
1
n

n∑

i=1

Δpi(k)

Therefore, we have to consider the sum of the jumps the agents make at each
time-step.

Let āri(k) be the “mean” location of the current allowable region of agent i.
If agent i is not located at a corner of the system’s convex-hull, i.e. we have that
ψi(k) ≥ π, it cannot jump, hence pi(k + 1) = pi(k). Otherwise, ψi(k) is equal to
ϕi(k) < π, the inner-angle of the convex-hull corner defined by agent i. By (1),
āri(k) is located at the center of ari(k).

āri(k) =
∫∫

v∈ari(k)

vdv = pi(k) +
σ

2
cos(

ϕi(k)
2

)ψ̂i(k) = pi(k) +
σ

4
(
U−

i (k) + U+
i (k)

)

An agent i located at a corner of the convex-hull stays put with probability 1−δ
and jumps with probability δ to a uniformly distributed random point in ari(k),
therefore its expected position at the next time-step is

E(pi(k + 1)) = pi(k)(1 − δ) + āri(k)δ = pi(k) + δ
σ

4
(
U−

i (k) + U+
i (k)

)
(3)

Assuming the indices of the agents on ∂CH(P (k)), the set of agents defin-
ing the convex-hull of the constellation P (k), are ordered by the sequence of
corners in the convex-hull. We have that the extremal left neighbour of agent
i ∈ ∂CH(P (k)) is i+1 ∈ ∂CH(P (k)), and the extremal right neighbour of i+1
is i, i.e.

U+
i (k) = −U−

i+1(k)

Therefore, the expected position of the agent’s centroid at the next time step
coincides with its current position, since

E(p̄(k + 1)) =
∑
i

E(pi(k + 1)) = p̄(k) + 0 (4)

Hence by the linearity, the expected position of the constellation’s centroid is
stationary once the visibility graph is complete.

Next, we rely on the Theorem from [2] described above to prove that the
constellation’s centroid distribution converges in probability to a distribution
with projections on the x and y axes (and in fact on any direction) of normal
distributions. We refer the reader to [3] for a detailed proof.

Broadcast Guidance 51

4.2 Behavior of the Swarm Under Broadcast Control (γ > 0)

We next show that, in the presence of broadcast control, the centroid of a swarm
of agents acting by motion law (2) moves in the desired direction with a constant
expected velocity (i.e. expected displacement per time step). Furthermore, we
prove that the distribution of the system centroid at time step k, when projected
on any arbitrary direction, convergences in probability to a distribution similar
to that of a biased 1D random-walk variable.

Let Ĉ be the desired direction broadcast to the swarm. We next calculate
the centroid of the allowable regions of the agents of the set ∂CH(k) when the
broadcast is received. We denote the centroid of the allowable region arv

i (k) by
ārv

i (k).
Let Ĉ⊥ be a unit vector orthogonal to Ĉ. Let Su/Sd be the set of agents

located at positions with the maximal/minimal projection on Ĉ⊥, and let u/d
be an agent of the set Su/Sd located at a position with the minimal projection
on Ĉ. Furthermore, let the agents from the right and left sides of the segment
[pd(k), pu(k)] be the sets R and L, see Fig. 3.

Fig. 3. The agents of the convex-hull divided into subsets based on the influence they
may have when receiving the control signal. The allowable regions of agents u and d
may be influenced by adding to their neighbour sets a virtual agents in the direction
Ĉ. The allowable regions of the agents in the set L is not affected, and while those of
the agents in the set R vanish.

The allowable region of an agent i hearing the broadcast is the intersection
of all the disks Dσ/2(pi + σ

2U j
i (k)), where j ∈ Nv

i (k) (including the virtual agent
v), which is equal to the intersection between the two disks associated with the
extremal agents (in case ψi(k) < π). Hence, the allowable regions of the agents
of the set L are not affected by the virtual agent v, and the allowable regions of
the agents of the set R vanish because of it. Furthermore, the virtual agent is
the extremal right agent of u, and extremal left agent of d.

52 R. Manor and A. M. Bruckstein

We have already seen in (3) that the centroid of a non-surrounded agent’s
allowable region is located at the current position of the agent plus the sum
of the two unit vectors pointing to its extremal neighbours multiplied by σ/4.
Hence, assuming that an agent i ∈ ∂CH(k) “hears” the signal, we have that the
centroid of its allowable region is as follows:

ārv
i (k) = pi(k) +

σ

4

⎧
⎪⎪⎨

⎪⎪⎩

U−
i (k) + U+

i (k) i ∈ L
0 i ∈ R

U−
i (k) + Ĉ i = d

Ĉ + U+
i (k) i = u

Thereby, its next expected position is

E{pi(k +1)} = (1− δ)pi(k)+ δ(1−γ)
(
pi(k) +

σ

4
(
U−

i (k) + U+
i (k)

))
+ δγārv

i (k)

(5)
Using (5), we can calculate E{p̄(k + 1)}, the next expected centroid of the

agents’ constellation for any time step k, as follows:

1
n

∑

i

E{pi(k + 1)} = p̄(k) +
δσ

4n
γ

⎛

⎝
∑

u≤i<d

U−
i (k) +

∑

u<i≤d

U+
i (k) + 2Ĉ

⎞

⎠

Notice that we assume that the agents located at the convex-hull corners are
marked by successive indices in a counter-clockwise increasing order, and there-
fore u < d. Using the fact that a pair of agents i and i+1 located at consequent
corners of the convex-hull are the extremal right and left neighbours of each
other, we here too have that U+

i (k) = −U−
i+1(k). Hence,

E{p̄(k + 1)} = p̄(k) +
δσ

4n
γ

⎛

⎝
∑

u≤i<d

U−
i (k) −

∑

u≤i<d

U−
i (k) + 2Ĉ

⎞

⎠ = p̄(k) +
δγσ

2n
Ĉ

(6)
This proves that a constellation of agents with a complete visibility graph moves
with an expected velocity of δγσ

2n in the direction of Ĉ. We verified this result in
multiple simulations, the results being displayed in Fig. 4.

Let Δp̄(k), be the constellation centroid displacement at time step k, i.e.
Δp̄(k) = p̄(k + 1) − p̄(k). Let Sk and Xk be the projections of the distributions
of p̄(k) − k δγσ

2n Ĉ and Δp̄(k) − δγσ
2n Ĉ on a unit vector with an arbitrary direction

U . Then, by (6), we have that E{X̄k+1|Xk} = 0.
Clearly, the increments Xk are uniformly bounded by nσ. We next prove

that, the sum of their variances tends to infinity with probability 1. Denote the
distribution of the step of an agent i at time step k by Δpi(k) = pi(k+1)−pi(k),
and let V ar(A) be the variance of a random variable A. Then, due to the fact that
any pair of random variables Δpi(k) and Δpj(k) are conditionally independent
for i �= j, we have that

V ar(Xk|P (k)) = V ar(
1
n

Uᵀ ∑

i

Δpi(k) ≥ 1
n2

V ar(UᵀΔps(k)|P (k))

Broadcast Guidance 53

Fig. 4. The displacement of a swarm centroid vs δγσ
2n

. Results of 6 batches of 10000
simulations. Each batch ran with fixed number of agents [2, 3, 5, 10, 15, 30], and each
simulation ran with homogeneous distributed random values of 0 < γ < 1 and 0 < δ <
1. The results are compatible with the theoretic expected velocities δγ/(2n). Note that
the 6 band like patterns are the result of the fixed number of agents in each simulation
batch.

where P (k) = {p1(k), p2(k), ..., p1(k)}, and s is the agent located at the sharpest
corner occupied by an agent from the set {L, u, d}.

The minimal value V ar(UᵀΔps(k)) can assume is for a unit vector U orthog-
onal to ψ̂s(k), i.e. Uᵀψ̂s(k) = 0. Calculating it yields:

V ar(UᵀΔps(k)) ≥ δ2
(σ

2

)2 1 − cos4
(

π−ψs(k)
2

)

π−ψs(k)
2 − 1

2 sin(π − ψs(k))

Recall that u and d are the agents with the maximal and minimal projections
on Ĉ⊥, and L is the set of agents on the convex-hull from the left side of the
line crossing through the positions of agents u and d. Denote the virtual agents
of u and d by vu and vd. Then considering the convex-hull of positions of the set
{L, u, d, vu, vd}, we have that the sum of its inner angles is π(m+2−2), assuming
the cardinality of this set is m + 2. Furthermore, the sum of inner-angles of the
convex hull corners without those associate with vu and vd is π(m + 2 − 2) − π,
and their average value is π(m−1)/m = π(1−1/m). Let n be the number of real
agents in the system, then we have that π(1−1/m) ≤ π(1−1/n) = ϕ∗. Therefore,
ψs(k), the angle of the sharpest corner of that convex-hull, without referring the
corners associated with the virtual agents, is, clearly, upper bounded by ϕ∗.

Hence, we have that

V ar(Xk) ≥ V ar(UᵀΔps(k)) ≥ δ2
(σ

2

)2 1 − cos4
(

π−ϕ∗
2

)

π−ϕ∗
2 − 1

2 sin(π − ϕ∗)
Δ= V ar∗

54 R. Manor and A. M. Bruckstein

and as a consequence
∞∑

k=1

V ar{Xk} → ∞. Then, from Theorem 35.11 in [2], we

have that Sk̃√
ν

p→ N(0, 1). where k̃ = min{t :
t∑

k=1

V ar(Xk) > ν} define as the

stopping time as ν goes to infinity.
Recall that all the variables Xk are uniformly bounded by nσ. Hence, their

variances are bounded by (nσ)2, and we may assume that the mean value
of the increments Xks’ variances converges to a finite constant value η2, i.e.
1
k

∑
k

V ar(Xk) → η2. Then, we have that

Sν√
νη

p→ N(0, 1)

i.e. the distribution of Sn converges in probability to the distribution of a
random-walk with steps of the size η, so that the projection of the random
vector p̄(k) − δγσ

2n on an arbitrary (constant) direction U converges to a normal
distribution with variance kη2.

We ran multiple simulations, and used the results to estimate η. Interestingly,
the average random step size, η, is best fit to the following model:

η ∝ 1
n(1 + γ)

Note that in [3], we have seen that without the control η is inversely dependent
on the numbers of agents. In the guided case the centroid of the swarm behaves
is as if each agent adds its own virtual agent to the constellation. This results
and the analysis can be found in the technical report [4].

5 Discussion

We showed that a flock/swarm of identical, anonymous and oblivious agents
having limited visibility and bearing only sensing with an initial constellation
having connected visibility graph, can be directed by exogenous control to move
in desired directions. This may be achieved via a simple broadcast control mech-
anism. Furthermore, we showed that the random constellation’s centroid moves
in the desired direction with a speed determined by the probability that agents
“hear” the broadcast control. In fact, centroid of the flock performs a motion
that is similar in probability to a biased random walk, biased in the direction
given by the guidance vector. It would be interesting to also consider other gath-
ering processes and augument them by an exogenous control/guidance law of the
type considered herein. Also it would be very useful to use such ideas for the
design of controlled autonomous flexible but cohesive swarms to be deployed in
a variety of surveillance and patrol tasks.

Broadcast Guidance 55

References

1. Bellaiche, L.I., Bruckstein, A.: Continuous time gathering of agents with limited
visibility and bearing-only sensing. Swarm Intell. 11(3–4), 271–293 (2017)

2. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Mathe-
matical Statistics. Wiley, New York (1995)

3. Bruckstein, A., Manor, R.: Discrete time gathering of agents with bearing only and
limited visibility range sensors. CIS Technical report, TASP (2017). http://www.
cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/CIS/CIS-2017-01.pdf

4. Bruckstein, A., Manor, R.: Guidance of swarms with agents having bearing only
and limited visibility sensors, CIS Technical report, TASP (2017, Submitted to
IEEE Intelligent systems). http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2017/CIS/CIS-2017-03.pdf

5. Çelikkanat, H., Şahin, E.: Steering self-organized robot flocks through externally
guided individuals. Neural Comput. Appl. 19(6), 849–865 (2010)

6. Cucker, F., Huepe, C.: Flocking with informed agents. Math. Action 1(1), 1–25
(2008)

7. Ferrante, E., Turgut, A.E., Mathews, N., Birattari, M., Dorigo, M.: Flocking in
stationary and non-stationary environments: a novel communication strategy for
heading alignment. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN 2010. LNCS, vol. 6239, pp. 331–340. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15871-1 34

8. Gauci, M., Chen, J., Dodd, T.J., Groß, R.: Evolving aggregation behaviors in
multi-robot systems with binary sensors. In: Ani Hsieh, M., Chirikjian, G. (eds.)
Distributed Autonomous Robotic Systems. STAR, vol. 104, pp. 355–367. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55146-8 25

9. Gauci, M., Chen, J., Li, W., Dodd, T.J., Gross, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

10. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans.
Syst. Man Cybern. Part B: Cybern. 34(1), 539–557 (2004)

11. Gordon, N., Wagner, I.A., Bruckstein, A.M.: A randomized gathering algorithm for
multiple robots with limited sensing capabilities. In: Proceedings of MARS 2005
workshop at ICINCO Barcelona (2005)

12. Johnson, M., Brown, D.: Evolving and controlling perimeter, rendezvous, and for-
aging behaviors in a computation-free robot swarm. In: Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS), pp. 311–314. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering) (2016)

13. Manor, R., Bruckstein, A.M.: Chase your farthest neighbour. In: Groß, R., Kolling,
A., Berman, S., Frazzoli, E., Martinoli, A., Matsuno, F., Gauci, M. (eds.) Dis-
tributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 103–116. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73008-0 8

14. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Trans. Autom. Control. 51(3), 401–420 (2006)

15. Pimenta, L.C., Michael, N., Mesquita, R.C., Pereira, G.A., Kumar, V.: Control
of swarms based on hydrodynamic models. In: IEEE International Conference on
Robotics and Automation, ICRA 2008, pp. 1948–1953. IEEE (2008)

16. Pimenta, L.C., et al.: Swarm coordination based on smoothed particle hydrody-
namics technique. IEEE Trans. Robot. 29(2), 383–399 (2013)

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/CIS/CIS-2017-01.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/CIS/CIS-2017-01.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/CIS/CIS-2017-03.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/CIS/CIS-2017-03.pdf
https://doi.org/10.1007/978-3-642-15871-1_34
https://doi.org/10.1007/978-3-642-15871-1_34
https://doi.org/10.1007/978-3-642-55146-8_25
https://doi.org/10.1007/978-3-319-73008-0_8

56 R. Manor and A. M. Bruckstein

17. Rahmani, A., Ji, M., Mesbahi, M., Egerstedt, M.: Controllability of multi-agent
systems from a graph-theoretic perspective. SIAM J. Control. Optim. 48(1), 162–
186 (2009)

18. Segall, I., Bruckstein, A.: On stochastic broadcast control of swarms. In: Dorigo,
M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T.
(eds.) ANTS 2016. LNCS, vol. 9882, pp. 257–264. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44427-7 23

19. Yu, C.H., Werfel, J., Nagpal, R.: Collective decision-making in multi-agent sys-
tems by implicit leadership. In: Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems-Volume 3, pp. 1189–1196. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (2010)

https://doi.org/10.1007/978-3-319-44427-7_23
https://doi.org/10.1007/978-3-319-44427-7_23

Hybrid Control of Swarms
for Resource Selection

Marco Trabattoni1(B) , Gabriele Valentini2 , and Marco Dorigo1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{mtrabatt,mdorigo}@ulb.ac.be

2 School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
gvalentini@asu.edu

Abstract. The design and control of swarm robotics systems generally
relies on either a fully self-organizing approach or a completely central-
ized one. Self-organization is leveraged to obtain systems that are scal-
able, flexible and fault-tolerant at the cost of reduced controllability and
performance. Centralized systems, instead, are easier to design and gen-
erally perform better than self-organizing ones but come with the risks
associated with a single point of failure. We investigate a hybrid approach
to the control of robot swarms in which a part of the swarm acts as a
control entity, estimating global information, to influence the remain-
ing robots in the swarm and increase performance. We investigate this
concept by implementing a consensus achievement system tasked with
choosing the best of two resource locations. We show (i) how estimating
and leveraging global information impacts the decision-making process
and (ii) how the proposed hybrid approach improves performance over a
fully self-organizing approach.

1 Introduction

Swarm robotics is a promising approach to the design and control of systems
composed of large numbers of embodied agents [9]. Robot swarms have shown
potential for solving tasks which are deemed too dangerous or too demanding
for humans, such as search and rescue, de-mining, underwater surveillance or
environment patrolling. Inspired by nature [3,5], robot swarms are generally
designed and controlled through the principles of self-organization with the aim
to obtain systems that are flexible, fault-tolerant and scalable [4,9]. Typically,
robot swarms do not have a leader, do not use global information, and are highly
redundant thanks to a large number of constituent robots. Robots in a swarm rely
on local sensing and communication to solve the tasks they are given. Having a
large number of robots acting in an unsupervised manner, however, often results
in a system that is hard to control and/or to predict and whose performance can
vary greatly over a same task.

Centralized control, on the opposite, relies on a control entity with access to
global information and with the authority to correct the behavior of the system
to reach the desired goal. In general, centralized systems are easier to manage and
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 57–70, 2018.
https://doi.org/10.1007/978-3-030-00533-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_5&domain=pdf
http://orcid.org/0000-0001-5550-8467
http://orcid.org/0000-0002-8961-3211
http://orcid.org/0000-0002-3971-0507

58 M. Trabattoni et al.

predict than self-organizing ones and often achieve better performances. Central-
ized approaches to the control of large groups of robots rely on a central entity,
for example to provide the robots with directives regarding the task to execute,
the motions required, or information about the position of objects of interest
in the environment [15,17,40]. While centralized control provides us with more
manageability over the system, as well as a more stable and trusted performance,
the presence of a centralized entity in charge of controlling the functioning of the
whole system reduces parallelism and scalability and introduces a single point
of failure.

In this paper we investigate a different approach to the control of a robot
swarm that we refer to as Swarm Hybrid Control System (SHCS). SHCS com-
bines localized elements of centralized control with self-organizing behaviors per-
formed by the remaining elements of the system with the aim to obtain the best
of both design approaches. In our approach, the control authority is not an entity
external to the swarm; rather, it consists of a group of robots of the swarm which
cooperate in a self-organizing way to provide services akin to those of a central
authority. In this way, we are able to exploit the advantages associated to a cen-
tral authority without introducing a single point of failure into the system. The
control entity is thus a formation of robots, created through a self-organizing
process, that exchanges information locally to obtain an estimate of the global
state of the system and that uses this information to influence the future behav-
ior of the swarm. We investigate this idea by implementing a SHCS for a problem
of consensus achievement.

Consensus achievement is a common problem that robot swarms are required
to solve in many different application scenarios (e.g., to choose which area to
explore in a de-mining scenario or which target requires the most attention
in a search and rescue situation). Also known as the best-of-n problem [38], it
requires the swarm to choose the best option over a set of n available possibilities
which (generally) differ in their quality and cost. The problem of consensus
achievement for a robot swarm has been studied in many different application
scenarios and modeled with a variety of mathematical tools (e.g., ODE [19],
chemical master equations [39]). Additionally, various decision-making strategies
have been proposed to address this problem, most of which take inspiration
from nature [30]. We consider a binary resource-selection scenario, in which
the swarm is foraging between a central location (the nest) and two locations
(sources) containing resources that have the same quality but different costs in
terms of time necessary to collect/extract them. That is, the cost of a resource
location corresponds to the time required by a robot to collect resources from
that specific location. For example, robots might be collecting minerals buried
underground and the cost may represent how deep the robot needs to dig to reach
the minerals. The scenario we have chosen is a binary consensus achievement
problem with indirect modulation of robots opinions resulting from the different
cost associated to each resource location [35], in which robots alternate between
foraging from their preferred source and disseminating their preference in the
nest. Before returning to forage, robots pool the opinions of their neighbors and

Hybrid Control of Swarms for Resource Selection 59

apply a decision rule (either the majority rule or the voter model) to decide
whether or not to change their current preference.1

A well-mixed state of robots’ opinions is generally assumed to be one of
the condition necessary to address distributed decision-making problems [24].
Well-mixed systems are systems in which each robot in the swarm has the same
probability to interact with any other robot in the swarm. The necessity for the
robots to be well-mixed when disseminating is due to their limited interaction
range which limits the information they can perceive about the opinions of other
robots. Poor mixing of robots’ opinions may result in the fragmentation of the
system in parties with contrasting opinions and prevent the achievement of con-
sensus. While robots, when disseminating their opinion, are usually programmed
to move randomly in the environment for an amount of time sufficiently long to
properly mix inside the swarm [39], random motion does not guarantee that the
resulting system will be well-mixed. Moreover, increasing the amount of time
that the robots spend disseminating (and thus mixing) their opinions increases
the overall duration of the decision-making process as well. In our implementa-
tion, the SHCS collects information about the opinions in the swarm through
local interactions, and merges them in order to obtain an estimate of the global
state of the system in the form of a database of robot opinions. By giving the
rest of the swarm access to this information, the SHCS tries to approximate the
information that robots would have access to in a well-mixed system. We show
the potential of this idea by comparing the SHCS with a fully self-organizing
approach over the same task.

The remaining of this paper is organized as follows. In Sect. 2, we discuss
related work. In Sect. 3, we describe the chosen decision-making scenario and
the controllers of the robots for both the self-organizing approach and the SHCS
one. In Sect. 4, we present the results of our experiments performed in simulation.
In Sect. 5, we discuss the effect of the SHCS based on our experimental results.
Finally, in Sect. 6 we draw our conclusions and discuss our future directions of
research.

2 Related Work

2.1 Control of Robot Swarms

Brambilla et al. [4] reviewed the literature of swarm robotics focusing on self-
organizing approaches and proposed a taxonomy summarizing different design
and analysis methodologies adopted in the field. Most of these design methods
are bottom-up approaches in which the controller of each single robot is iter-
atively refined in order to obtain a desired behavior of the swarm as a whole.
Recently, different design methods have been proposed to automatically derive
the robot controllers for a given task. Trianni et al. [34] use a generational evolu-
tionary algorithm to evolve robot controllers for a clustering behavior. Francesca
et al. [11] proposed AutoMoDe, an approach to automatically generate modular

1 In the paper we use the terms ‘robot opinion’ and ‘robot preference’ interchangeably.

60 M. Trabattoni et al.

control software in the form of probabilistic finite state machines, starting from
a set of predefined atomic behaviors and conditional state transitions through
an optimization process. Bottom-up approaches have been used to program a
number of different robot swarm behaviors: pattern formation behaviors, aimed
at distributing the swarm in space according to desired properties [21–23,31,32];
navigation behaviors, aimed at coordinating the movement of the swarm in the
environment [10]; and collective decision-making behaviors, in which the swarm
has to take a decision about how to distribute its components (i.e., the robots)
among different tasks [6] or which option to unanimously choose [30].

Centralized methods for the control of multi robot systems have also been
proposed, in particular for navigation problems, such as deployment of robots
in cooperative surveillance [33], target tracking [14], path planning [1,28], or
formation control [8]. The purpose of central control can vary between different
tasks, but generally it includes calculating the motion plans for the single robots,
allowing the robots to localize themselves by sensing and providing global infor-
mation, or simply providing updated mission goals [41]. Some approaches can be
found in which a distributed swarm behavior also relies on an external control
entity to initiate or correct its functioning, such as in the work of Berman et
al. [2], where a central unit broadcasts updated transition parameters for task
allocation.

One notable exception to the above-mentioned approaches where the control
is either fully self-organizing or centralized, is the recent work by Mathews et
al. [18]. In this work, robots in a swarm are able to physically merge into a
single entity, named a ‘mergeable nervous system robot’ (MNS-robot for short),
comprising one single brain robot which acts as central controller for the robot
aggregate. While both our work and the one of Mathews et al. share the idea of
a centralized form of control internal to the swarm, the MNS aims at obtaining
swarms able to morphologically adapt to the task of interest, while our focus is
on designing a swarm able to monitor and influence its own behavior so as to
increase its performance.

2.2 Consensus Achievement

Consensus achievement is one of the two branches of collective decision-making,
the other being task allocation [4], and refers to the problem of having a robot
swarm select a single option among different alternatives to maximizes the ben-
efits of the swarm [35]. Many scenarios have been proposed by the community,
mostly inspired by biological systems such as ants choosing the shortest path
connecting a pair of locations [7], or honeybees collectively selecting the best
site for relocation of the swarm [25]. Montes de Oca et al. [19] proposed a col-
lective decision-making strategy based on the majority rule and the concept
of latent voters (i.e. after updating their opinions, agents do not take part in
the decision making process for a stochastic amount of time) first described by
Lambiotte et al. [16]. We utilize a similar concept in our scenario: after updating
their opinion, agents enter a latent phase during which first they forage from the
source indicated by their opinion and then disseminate their opinion to other

Hybrid Control of Swarms for Resource Selection 61

robots. Valentini et al. [38] reviewed the best-of-n problem for robot swarms
in all of its variations, proposing two taxonomies to classify the literature, one
based on the relation between cost and quality of each option, and one based on
the design approaches. Despite the variety of methods proposed for consensus
achievement problems in robot swarms [12,13,29], to our knowledge, our work
is the first one that proposes to use an emerging control entity to estimate and
leverage global information to influence the collective decision-making process.

3 Methods

3.1 Experimental Setup

We consider a binary resource selection problem for a robot swarm performing
a foraging task. We define an environment consisting of an arena of size 200 ×
100 cm2 divided into three areas: a nest (80 × 100 cm2) positioned in the center
of the arena, and two resource locations (60 × 100 cm2 each) on each side of the
nest. These locations, called source A and source B, have different costs σA and
σB, with σA < σB in our experiments. The cost of a resource location reflects
the time required to collect resources from that source, representing features
such as how deep a robot would have to dig for minerals, or how far the source
is from the central nest. Two light sources are positioned on one side of the
arena in order to provide the robots with a light gradient and to enable them to
navigate the environment. The robots are initially placed in the nest and have
an initial opinion for a preferred source when the experiment starts. Initially,
robots in the swarm are equally split among the two options. Robots perform
the foraging task by collecting resources from their currently preferred source,
and then returning to the nest. Robots in the nest can change their opinion based
on the opinions of neighboring robots by applying a decision mechanism. The
goal of the swarm is to achieve consensus on the best source (which is always
source A in our experiments).

We implemented this scenario using the ARGoS3 simulator [27] and the
ARGoS3 Kilobot plug-in [26]. Figure 1a shows a view of the environment and of
the swarm of Kilobots implemented inside the simulation, where source A and
source B are represented, respectively, by the blue and red areas. The Kilobot [31]
is a low cost and small size (3.3 cm diameter) autonomous robot. It is able
to communicate with other Kilobots at a distance of up to 10 cm via infrared
communication, to sense ambient light, and to move by means of 2 vibrating
motors and 3 rigid legs. By means of an ARGoS loop function, we provide the
Kilobots with the ability to detect whether or not they are in close proximity of
a wall, in which area of the environment they currently are (i.e., nest, source A,
source B), and, in case they are in one of the two sources, the source quality.

3.2 Self-organizing Behavior

We implement the self-organizing behavior with indirect modulation of the latent
phase in the decision-making process [35]. In this phase the robots alternate

62 M. Trabattoni et al.

between dissemination and exploration. During the exploration phase, robots
forage from their preferred resource location for a time drawn from a normal
distribution with mean g · σi and standard deviation g/10, where σA = 1 and
σB � 1 are the costs, respectively, of source A and source B. In the dissemination
phase, robots broadcast their current opinion inside the nest and listen to the
opinions of neighboring robots for a time drawn from an exponential distribution
with mean q; differently from the exploration time, the dissemination time is not
modulated. At the end of the dissemination phase, the robots apply a decision
rule on a set of opinions containing the last G opinions received from their
neighbors with the aim to decide whether or not to switch their current opinion.
After that, robots enter the exploration phase. We implemented two decision
rules: the voter model, where a robot changes its opinion to the one of a randomly
selected neighbor, and the majority rule, where a robot selects its opinion to be
the one of the majority of its neighbors.

During both the dissemination and the exploration phases, robots move ran-
domly, by alternating periods of straight motion with periods of rotating motion.
Forward motion lasts for an amount of time drawn from a normal distribution
with mean 20 s and standard deviation 5 s while the rotation motion lasts for an
amount of time drawn from a normal distribution with mean 3 s and standard
deviation 0.5 s. Additionally, when robots move closer than 5 cm to the edges of
the arena, they perform wall avoidance by turning on the spot in a random direc-
tion and then moving forward. Between dissemination and exploration, robots
have to move from the nest to the foraging sites and vice-versa. To do so, robots
perform a gradient-following routine, by sensing the light intensity received from
the light sources. Robots following the light gradient move forward while keep-
ing track of the minimum and maximum light intensities sampled in intervals
of 5 s. If a robot detects that it is not following the light gradient in the desired
direction, it turns on the spot (using the same parameters as the random walk
rotation) and then moves forward again, until it finds the correct direction of
motion. Robots always show their current opinion by switching their on-board
LED to the color of their preferred source.

Because of the shorter time required to forage from the source with lower cost,
robots foraging from the best source will return to the nest more frequently and
have more chances to disseminate their opinion in the nest: this results in a
higher chance for their opinion to be observed from other robots as they apply
the decision rule which biases the swarm towards consensus for the best option.
The swarm is thus able to slowly achieve consensus on the best source as robots
repeat the exploration-dissemination-decision rule cycle. In the following, we will
refer to robots performing the behavior described in this section as SO robots.

3.3 SHCS Implementation

In our hybrid implementation, we introduce a second behavior in addition to the
self-organizing one described in the previous section. Robots of the swarm can
be either part of the control entity (SHCS robots) or be SO robots. Moreover,

Hybrid Control of Swarms for Resource Selection 63

Fig. 1. View of the environment and Kilobot swarm implemented with the ARGoS3
simulator (a) and of the SHCS during a simulated experiment (b). The shaded area
shows the communication range of the SHCS considered as a whole. SHCS robots show
their LED in green (seed robot) or white (remaining SHCS robots); robots showing
blue and red LEDs are SO robots, with the color representing their current opinion.
(Color figure online)

robots can switch between these two modalities. At the beginning of the experi-
ment, the swarm allocates its workforce between SHCS robots and SO robots. To
do so, the robots select a seed robot around which they start an aggregation pro-
cess to form the SHCS entity. The seed robot is selected through a self-exclusion
process starting with a connected swarm2 placed in the nest. The connectivity
requirement strongly reduces the probability of selecting multiple robot seeds.
Each robot spends the first 10 s of the experiment turning on the spot and sam-
pling light values. Then, for the next 10 s, robots broadcast the minimum and
maximum light measurement perceived in the swarm, initially set to their own
perceived value and later updated according to the received messages. Addition-
ally, robots also broadcast a randomly generated number between 0 and 255.
Robots who find themselves outside of a 10% range from the mean value of the
light perceived by the swarm (based on information received from neighbors)
exclude themselves from the selection process and become SO robots. The pur-
pose of this initial procedure is to obtain a selection of candidate seed robots that
is positioned at an intermediate distance from the light source. Then, these can-
didate seed robots compare their own randomly generated number with those
received from their neighbors and, if they receive a lower value, they exclude
themselves from the process and become SO robots. After an additional 10 s, all
remaining robots in the process become SHCS robots. The aim of this final part
of the procedure is to maximize the probability to select a single seed robot. The
total procedure to select the seed robot requires abound 30 s.

SHCS robots, initially represented by the sole seed robot selected with the
above procedure, maintain a representation of their position h inside the aggre-
gate in a manner similar to that of Nagpal et al. [20], and share this value
with their neighbors as part of a heartbeat protocol. The seed robot has a posi-

2 A swarm is connected if a path of communicating robots can be found between any
two robots in the swarm.

64 M. Trabattoni et al.

tion h = 0. All other SHCS robots in the aggregate set their position h to
h = h

′
min + 1 where h

′
min is the minimum position received from neighboring

SHCS robots. In our experiments, we limit the size of the SHCS aggregate by
imposing a maximum position h = 3, that is, 3 levels of SHCS robots sur-
rounding the seed robot. SO robots that perceive SHCS robots join the SHCS
aggregate with probability p = 0.1

h+1 if h ∈ {0, 1, 2}, where h is the position
of the SHCS robot broadcasting the message. If the perceived position of the
SHCS robot broadcasting the message is h = 3, SO robots do not join the aggre-
gate. Once joined the SHCS aggregate, robots estimate their distance from neigh-
boring SHCS robots by measuring the intensity of the infrared signal of received
messages. If a SHCS robot with position h is too close (i.e., distance <40 mm)
or too far (i.e., distance >70 mm) from his neighbors at position h

′
= h − 1, the

SHCS robot will try to reposition itself at a favorable distance by moving in a
random direction while it does not move otherwise. SHCS robots may lose con-
nectivity from the aggregate during repositioning or due to collisions with other
robots. If an SHCS robot loses connectivity for more than 10 s, it becomes an
SO robot. This process allows the SHCS aggregate to initially form around the
seed robot in a distributed manner and to maintain a stable dimension robust
to connectivity failures. Figure 1b shows a top-view of the SHCS aggregate and
its communication range during a simulated experiment.

SHCS robots continuously broadcast a heartbeat message with the aim (i) to
maintain a database of the last 30 source preferences received from SO robots
and (ii) to use this database to influence the preference of SO robots. A heartbeat
message is composed of the id of the sending SHCS robot, its position h, a robot
preference taken from its database, and a decision-making outcome. Whenever
an SHCS robot receives a new opinion, either from a heartbeat message or from
an SO robot, it adds the received opinion to its database (in a first-in first-out
manner) and sets this opinion as the robot preference to share in the heartbeat
message. SHCS robots generate a new decision-making outcome each time they
send a new heartbeat; to do so, they use either the majority rule or the voter
model applied to a set of G preferences randomly selected from their database.

SO robots behave as described in Sect. 2.2 except when receiving a heartbeat
message. In this case, if a SO robot is in the dissemination phase, it immediately
changes its opinion to match that contained in the decision-making outcome of
the heartbeat message, terminates the dissemination phase, and returns to the
foraging task. This mechanism improves the efficiency of the swarm as SO robots
spend more time foraging and less time disseminating their opinions.

4 Experiments

We perform a series of simulation experiments to compare the hybrid control
system (SHCS) approach with the fully self-organizing (SO) approach. In our
experiments, we keep the cost of source A constant to σA = 1 and vary the cost
of source B in {1.11, 1.25, 1.43, 1.67, 2}. We use a swarm of 100 robots of which
50 have initial opinion A and 50 have initial opinion B. The mean duration of

Hybrid Control of Swarms for Resource Selection 65

●●
●●

●

0.5

0.6

0.7

0.8

0.9

1.0

1.11 1.25 1.43 1.67 2
 σb : cost of site B

ex
it

pr
ob

ab
ili

ty

● 100 SO robots 70 SO robots SHCS

exit probability − voter model

(a)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

1.11 1.25 1.43 1.67 2
 σb : cost of site B

co
ns

en
su

s
tim

e
/ 1

03 (s
) 100 robots 70 robots SHCS

consensus time − voter model

(b)

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

1.11 1.25 1.43 1.67 2
 σb : cost of site B

ex
it

pr
ob

ab
ili

ty

● 100 SO robots 70 SO robots SHCS

exit probability − majority rule

(c)

0

10

20

30

40

1.11 1.25 1.43 1.67 2
 σb : cost of site B

co
ns

en
su

s
tim

e
/ 1

03 (s
) 100 robots 70 robots SHCS

consensus time − majority rule

(d)

Fig. 2. Simulation results with SHCS, 100 SO robots, and 70 SO robots for varying σB :
exit probability (a) and consensus time (b) for the voter model; exit probability (c) and
consensus time (d) for the majority rule. Results obtained running 1000 simulations
for each tested condition.

the dissemination and exploration phases is set, respectively, to q = 300 s and
g = 600 s. We test two decision rules, the majority rule and the voter model, with
a group size of G = 3 preferences. We perform 1000 simulation runs for each value
of σB for both the SO approach and the SHCS one. We consider two metrics: exit
probability, computed as the proportion of simulations converging to a consensus
for source A, and the mean consensus time, computed over all simulations. Since
the average SHCS size during experiments was approximately 30 robots, we
performed an additional set of experiments implementing the SO approach with
a swarm of 100 − 30 = 70 robots, in order to compare the performance of
the SHCS with the SO approach over a similar number of SO robots actively
pursuing the foraging task.

Figure 2 shows the exit probability and mean consensus time obtained with
the three implementations (SHCS for a swarm of 100 robots, 100 SO robots, 70
SO robots) for the two tested decision rules: voter model and majority rule.

Figure 2a shows the exit probability for the voter model. The SHCS imple-
mentation maintains a value above 0.95 for all of the considered values of σB

while the SO implementations are considerably worse. The accuracy for all

66 M. Trabattoni et al.

the three systems increases as the cost of source B increases. This is because
the decision-making problem becomes simpler as the difference in cost between
source A and source B increases. The SHCS implementation performs similarly
for the majority rule (Fig. 2c), where its exit probability maintains values around
0.9 even at lower values of σB ; the performances of the SO swarms instead are
significantly worse. The 70 SO robot swarm has lower exit probability than the
100 SO robot swarm, and both of them are outperformed by the SHCS approach
for all of the considered cases. Overall, the majority rule when compared to the
voter model obtains a higher exit probability for the easier cases and a lower
exit probability for the more difficult ones, in agreement with what reported in
previous works [39].

Figure 2b shows the consensus time for the voter model. The SHCS shows sig-
nificantly (p < .001, Wilcoxon rank-sum test) lower consensus times than both
SO implementations. The 70 SO robots swarm shows lower consensus times
than the 100 SO robots one, again coherently with previous literature work.
Figure 2d shows the consensus time for the majority rule. The SHCS imple-
mentation results faster than both SO implementations for lower difficulties;
however, the 70 SO robots swarm shows similar (even though statistically differ-
ent, p < .001, Wilcoxon rank-sum test) consensus time at higher difficulties. The
consensus time for all the three implementation slowly decreases as the cost σB

increases, for both decision rules. Overall, the majority rule shows a significantly
(p < .001, Wilcoxon rank-sum test) lower consensus time than the voter model,
resulting in a speed vs accuracy trade-off between the two decision rules [37].

5 Discussion

The results of our experiments show the potential of the SHCS approach which
is able to improve the performance of a fully self-organizing robot swarm in a
collective decision-making problem. The SHCS approach leverages information
regarding the global state of the opinions in the swarm to influence the individual
decisions of SO robots. This results in a higher accuracy of the swarm in terms of
the probability to choose the best resource location compared to the accuracy of
the SO swarm (Figs. 2a and c). Additionally, the SHCS speeds up the decision-
making process by allowing robots to terminate the dissemination phase as soon
as they get in contact with the SHCS aggregate, since the dissemination of their
opinion is performed by the SHCS. The faster convergence to a collective decision
shown in Figs. 2b and d derives from a combination of the shorter dissemination
phase and the more accurate information provided by the SHCS robots. In future
work, we intend to investigate the extent of the contribution of each of the two
mechanisms.

One may conjecture that the difference in performance between the SHCS
approach and the fully SO approach is due to the fact that the SHCS swarm is
actually relying on a smaller swarm size to actively perform the decision-making
task. In our experiments, we measured an average of 30 robots composing the
SHCS aggregate, leaving 70 SO robots to perform the self-organizing behavior.

Hybrid Control of Swarms for Resource Selection 67

However, the results obtained with a swarm of 70 SO robots are significantly
different and of lower quality than those obtained with the SHCS approach.
These results rule out the above conjecture that the difference in number of
SO robots is responsible for the different performances between the SHCS and
the SO approach.

It should be noted that in our experiments we use constant probabilities for
SO robots to join the SHCS and limit the SHCS to three levels, preventing the
SHCS from extending to the entire swarm. However, it would be interesting
to extend this approach to include perceived features in the environment, for
example by changing the probabilities with which SO robots join the SHCS
depending on ambient light values, in order to obtain a more dynamic system.

6 Conclusions and Future Work

In this paper, we proposed a new control strategy for a robot swarm based on a
combination of centralized information and self-organized behaviors. We called
this control strategy Swarm Hybrid Control System (SHCS) and we investi-
gated this idea with a preliminary implementation of the SHCS approach for a
problem of consensus achievement in a binary resource-selection scenario. Our
system is characterized by a control entity, having the form of an aggregate of
SHCS robots and arising through a self-organizing process, with the purpose to
estimate information about the global state of the swarm and to use this infor-
mation to influence the collective decision-making process. We have shown how,
for both the majority rule and the voter model, our system is able to outperform
the fully self-organizing approach by achieving a shorter consensus time while
providing higher accuracy of the collective decision in terms of exit probability.
In the near future, we plan to implement the consensus achievement scenario pre-
sented in this paper on a real swarm of 100 Kilobots by leveraging the potential
of a 2 m2 Kilogrid system [36].

As future work, we are interested in investigating how the proportion of
SHCS robots, the shape of the SHCS or the usage of multiple smaller SHCS each
controlling a portion of the swarm can impact the performance of the system,
as well as how our control approach can be applied to different scenarios, such
as task allocation and pattern formation. We also intend to investigate whether
automatic design techniques can be used to generate the controllers for the robots
of our hybrid swarm.

Acknowledgements. Gabriele Valentini acknowledges support from the NSF grant
No. PHY-1505048. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS,
of which he is a Research Director. The work presented in this paper was partially
supported by the FLAG-ERA project RoboCom++ and by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement number 681872).

68 M. Trabattoni et al.

References

1. Antonelli, G., Chiaverini, S.: Kinematic control of platoons of autonomous vehicles.
IEEE Trans. Robot. 22(6), 1285–1292 (2006)

2. Berman, S., Halasz, A., Hsieh, M., Kumar, V.: Optimized stochastic policies for
task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

5. Brutschy, A., Scheidler, A., Ferrante, E., Dorigo, M., Birattari, M.: “Can ants
inspire robots?” Self-organized decision making in robotic swarms. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4272–4273. IEEE Press (2012)

6. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents
Multi-Agent Syst. 28(1), 101–125 (2014)

7. Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S.,
Dorigo, M.: Artificial pheromone for path selection by a foraging swarm of robots.
Biol. Cybern. 103(5), 339–352 (2010)

8. De La Cruz, C., Carelli, R.: Dynamic modeling and centralized formation control
of mobile robots. In: IECON 2006–32nd Annual Conference on IEEE Industrial
Electronics, pp. 3880–3885. IEEE (2006)

9. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

10. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

12. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol.
7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33093-3 38

13. Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Col-
lective decision-making based on social odometry. Neural Comput. Appl. 19(6),
807–823 (2010)

14. Hausman, K., Müller, J., Hariharan, A., Ayanian, N., Sukhatme, G.S.: Cooperative
multi-robot control for target tracking with onboard sensing. Int. J. Robot. Res.
34(13), 1660–1677 (2015)

15. King, J., Pretty, R.K., Gosine, R.G.: Coordinated execution of tasks in a multiagent
environment. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 33(5), 615–619
(2003)

16. Lambiotte, R., Saramäki, J., Blondel, V.D.: Dynamics of latent voters. Phys. Rev.
E 79, 046107 (2009)

17. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton.
Robot. 33(3), 323–336 (2012)

https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38

Hybrid Control of Swarms for Resource Selection 69

18. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable
nervous systems for robots. Nat. Commun. 8(1), 439 (2017)

19. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mecha-
nism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327
(2011)

20. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from
local information on an ad hoc sensor network. In: Zhao, F., Guibas, L. (eds.) IPSN
2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36978-3 22

21. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-
organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008)

22. Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In:
Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T.
(eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006).
https://doi.org/10.1007/11839088 11

23. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009).
https://doi.org/10.1109/TEVC.2008.2011746

24. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–
1563 (2006)

25. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-N problem. IEEE/ASME Trans. Mechatron. 14(2), 240–
251 (2009)

26. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating
Kilobots within ARGoS: models and experimental validation. In: Dorigo, M. (ed.)
ANTS 2018. LNCS, vol. 11172, pp. 176–187. Springer, Heidelberg (2018)

27. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

28. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: a large nano-
quadcopter swarm. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3299–3304. IEEE (2017)

29. Reina, A., Dorigo, M., Trianni, V.: Towards a cognitive design pattern for collective
decision-making. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp.
194–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1 17

30. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

31. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

32. Şahin, E., et al.: SWARM-BOT: pattern formation in a swarm of self-assembling
mobile robots. In: 2002 IEEE International Conference on Systems, Man and
Cybernetics, vol. 4, pp. 1–6. IEEE Press, Piscataway (2002)

33. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm
distribution and deployment for cooperative surveillance by micro-aerial vehicles.
J. Intell. Robot. Syst. 84(1–4), 469–492 (2016)

34. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7 93

https://doi.org/10.1007/3-540-36978-3_22
https://doi.org/10.1007/3-540-36978-3_22
https://doi.org/10.1007/11839088_11
https://doi.org/10.1109/TEVC.2008.2011746
https://doi.org/10.1007/978-3-319-09952-1_17
https://doi.org/10.1007/978-3-540-39432-7_93

70 M. Trabattoni et al.

35. Valentini, G.: Achieving Consensus in Robot Swarms: Design and Analysis of
Strategies for the Best-of-N Problem. Springer International Publishing, Cham
(2017). https://doi.org/10.1007/978-3-319-53609-5

36. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot
robot. Swarm Intell. 12(3), 245–266 (2018)

37. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7 6

38. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

39. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

40. Weigel, T., Gutmann, J.S., Dietl, M., Kleiner, A., Nebel, B.: CS Freiburg: coor-
dinating robots for successful soccer playing. IEEE Trans. Robot. Autom. 18(5),
685–699 (2002)

41. Winfield, A.F., Holland, O.: The application of wireless local area network tech-
nology to the control of mobile robots. Microprocess. Microsyst. 23(10), 597–607
(2000)

https://doi.org/10.1007/978-3-319-53609-5
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

Local Communication Protocols
for Learning Complex Swarm Behaviors

with Deep Reinforcement Learning

Maximilian Hüttenrauch1(B), Adrian Šošić2, and Gerhard Neumann1

1 School of Computer Science, University of Lincoln, Lincoln, UK
{mhuettenrauch,gneumann}@lincoln.ac.uk

2 Department of Electrical Engineering, Technische Universität Darmstadt,
Darmstadt, Germany

adrian.sosic@spg.tu-darmstadt.de

Abstract. Swarm systems constitute a challenging problem for rein-
forcement learning (RL) as the algorithm needs to learn decentralized
control policies that can cope with limited local sensing and communica-
tion abilities of the agents. While it is often difficult to directly define the
behavior of the agents, simple communication protocols can be defined
more easily using prior knowledge about the given task. In this paper,
we propose a number of simple communication protocols that can be
exploited by deep reinforcement learning to find decentralized control
policies in a multi-robot swarm environment. The protocols are based on
histograms that encode the local neighborhood relations of the agents
and can also transmit task-specific information, such as the shortest dis-
tance and direction to a desired target. In our framework, we use an
adaptation of Trust Region Policy Optimization to learn complex collab-
orative tasks, such as formation building and building a communication
link. We evaluate our findings in a simulated 2D-physics environment,
and compare the implications of different communication protocols.

1 Introduction

Nature provides many examples where the performance of a collective of limited
beings exceeds the capabilities of one individual. Ants transport prey of the size
no single ant could carry, termites build nests of up to nine meters in height,
and bees are able to regulate the temperature of a hive. Common to all these
phenomena is the fact that each individual has only basic and local sensing of
its environment and limited communication capabilities to its neighbors.

Inspired by these biological processes, swarm robotics [1,4,5] tries to emulate
such complex behavior with a collective of rather simple entities. Typically, these
robots have limited movement and communication capabilities and can sense
only a local neighborhood of their environment, such as distances and bearings
to neighbored agents. Moreover, these agents have limited memory systems,
such that the agents can only access a short horizon of their perception. As a
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 71–83, 2018.
https://doi.org/10.1007/978-3-030-00533-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_6&domain=pdf

72 M. Hüttenrauch et al.

consequence, the design of control policies that are capable of solving complex
cooperative tasks becomes a non-trivial problem.

In this paper, we want to learn swarm behavior using deep reinforcement
learning [10,17,21–23] based on the locally sensed information of the agents
such that the desired behavior can be defined by a reward function instead of
hand-tuning controllers of the agents. Swarm systems constitute a challenging
problem for reinforcement learning as the algorithm needs to learn decentralized
control policies that can cope with limited local sensing and communication
abilities of the agents.

Most collective tasks require some form of active cooperation between the
agents. For efficient cooperation, the agents need to implement basic communi-
cation protocols such that they can transmit their local sensory information to
neighbored agents. Using prior knowledge about the given task, simple commu-
nication protocols can be defined much more easily than directly defining the
behavior. In this paper, we propose and evaluate several communication proto-
cols that can be exploited by deep reinforcement learning to find decentralized
control policies in a multi robot swarm environment.

Our communication protocols are based on local histograms that encode the
neighborhood relation of an agent to other agents and can also transmit task-
specific information such as the shortest distance and direction to a desired
target. The histograms can deal with the varying number of neighbors that can
be sensed by a single agent depending on its current neighborhood configura-
tion. These protocols are used to generate high dimensional observations for the
individual agents that is in turn exploited by deep reinforcement learning to effi-
ciently learn complex swarm behavior. In particular, we choose an adaptation of
Trust Region Policy Optimization [21] to learn decentralized policies.

In summary, our method addresses the emerging challenges of decentralized
swarm control in the following way:

1. Homogeneity: explicit sharing of policy parameters between the agents
2. Partial Observability: efficient processing of action-observation histories

through windowing and parameter sharing
3. Communication: usage of histogram-based communication protocols over

simple features

To demonstrate our approach, we formulate two cooperative learning tasks in a
simulated swarm environment. The environment is inspired by the Colias robot
[2], a modular platform with two wheel motor-driven movement and various
sensing systems.

Paper Outline. In Sect. 2, we review the concepts of Trust Region Policy Opti-
mization and describe our problem domain. In Sect. 3, we show in detail how
we tackle the challenges of modeling observations and the policy in the partially
observable swarm context, and how to adapt Trust Region Policy Optimization
to our setup. In Sect. 4, we present the model and parameters of our agents and
introduce two tasks on which we evaluate our proposed observation models and
policies.

Local Communication Protocols 73

2 Background

In this section, we provide a short summary of Trust Region Policy Optimization
and formalize our learning problem domain.

2.1 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) is an algorithm to optimize control
policies in single-agent reinforcement learning problems [21]. These problems are
formulated as Markov decision processes (MDP) which are compactly written
as a tuple 〈S,A, P,R, γ〉. In an MDP, an agent chooses an action a ∈ A via
some policy π(a | s), based on its current state s ∈ S, and progresses to state
s′ ∈ S according to a transition function P (s′ | s, a). After each step, the agent is
assigned a reward r = R(s, a), provided by a reward function R which judges the
quality of its decision. The goal of the agent is to find a policy which maximizes
the expected cumulative reward E[

∑∞
k=t γk−tR(sk, ak)], discounted by factor γ,

achieved over a certain period of time.
In TRPO, the policy is parametrized by a parameter vector θ containing

weights and biases of a neural network. In the following, we denote this parame-
terized policy as πθ. The reinforcement learning objective is expressed as finding
a new policy that maximizes the expected advantage function of the current pol-
icy, i.e., JTRPO = E

[
πθ

πθold
Â(s, a)

]
, where Â is an estimate of the advantage func-

tion of the current policy πold which is defined as Â(s, a) = Qπold(s, a)−V π
old(s).

Herein, state-action value function Qπold(s, a) is typically estimated by a single
trajectory rollout while for the value function V πold(s) rather simple baselines
are used that are fitted to the monte-carlo returns. The objective is to be maxi-
mized subject to a fixed constraint on the Kullback-Leibler (KL) divergence of
the policy before and after the parameter update, which ensures the updates to
the new policy’s parameters θ are bounded, in order to avoid divergence of the
learning process. The overall optimization problem is summarized as

maximize
θ

E

[
πθ

πθold

Â(s, a)
]

subject to E[DKL(πθold ||πθ)] ≤ δ.

The problem is approximately solved using the conjugate gradient optimizer
after linearizing the objective and quadratizing the constraint.

2.2 Problem Domain

Building upon the theory of single-agent reinforcement learning, we can now
formulate the problem domain for our swarm environments. Because of their
limited sensory input, each agent can only obtain a local observation o from the
vicinity of its environment. We formulate the swarm system as a swarm MDP (see
[24] for a similar definition) which can be seen as a special case of a decentralized

74 M. Hüttenrauch et al.

partially observed Markov decision process (Dec-POMDP) [20]. An agent in the
swarm MDP is defined as a tuple A = 〈S,O,A, O〉, where, S is a set of local
states, O is the space of local observations, and A is a set of local actions for
each agent. The observation model O(o|s, i) defines the observation probabilities
for agent i given the global state s. Note that the system is invariant to the
order of the agents, i.e., given the same local state of two agents, the observation
probabilities will be the same. The swarm MDP is then defined as 〈N, E ,A, P,R〉,
where N is the number of agents, E is the global environment state consisting
of all local states SN of the agents and possibly of additional states of the
environment, and P : SN ×SN ×AN → [0,∞) is the transition density function.
Each agent maintains a truncated history hi

t = (ai
t−η, oi

t−η+1, . . . , a
i
t−1, o

i
t) of

the current and past observations oi ∈ O and actions ai ∈ A of length η. All
swarm agents are assumed to be identical and therefore use the same distributed
policy π (now defined as π(a | h)) which yields a sample for the action of each
agent given its current history of actions and observations. The reward function
R of the swarm MDP depends on the global state and, optionally, all actions of
the swarm agents, i.e., R : SN ×AN → R. Instead of considering only one single
agent, we consider multiple agents of the same type, which interact in the same
environment. The global system state is in this case comprised of the local states
of all agents and additional attributes of the environment. The global task of the
agents is encoded in the reward function R(s,a), where we from now on write
a to denote the joint action vector of the whole swarm.

2.3 Related Work

A common approach to program swarm robotic systems is by extracting rules
from the observed behavior of their natural counterparts. Kube et al. [13], for
example, investigate the cooperative prey retrieval of ants to infer rules on how
a swarm of robots can fulfill the task of cooperative box-pushing. Similar work
can be found e.g. in [12,16,19]. However, extracting these rules can be tedious
and the complexity of the tasks that we can solve via explicit programming is
limited. More examples of rule based behavior are found in [5] where a group of
swarming robots transports an object to a goal. Further comparable work can
be found in [6] for aggregation, [18] for flocking, or [9] for foraging.

In deep RL, currently, there are only few approaches tackling the multi-agent
problem. One of these approaches can be found in [15], where the authors use
a variation of the deep deterministic policy gradient algorithm [14] to learn a
centralized Q-function for each policy, which, as a downside, leads to a linear
increase in dimensionality of the joint observation and action spaces therefore
scales poorly. Another algorithm, tackling the credit assignment problem, can
be found in [8]. Here, a baseline of other agents’ behavior is subtracted from
a centralized critic to reason about the quality of a single agent’s behavior.
However, this approach is only possible in scenarios with discrete action spaces
since it requires marginalization over the agents’ action space. Finally, a different
line of work concerning the learning of communication models between agents
can be found in [7].

Local Communication Protocols 75

Fig. 1. This Figure shows an illustration of the histogram-based observation model.
Figure 1a shows an agent in the center of a circle whose neighborhood relations are to
be captured by the histogram representation. The shaded green area is highlighted as
a reference for Figs. 1c and d. Figure 1b hereby shows the one dimensional histogram
of agents over the neighborhood range d into four bins, whereas Fig. 1c shows the
histogram over the bearing angles φ into eight bins. Figure 1d finally shows the two
dimensional joint histogram over range and bearing.

3 Multi-agent Learning with Local Communication
Protocols

In this section, we introduce different communication protocols based on neigh-
borhood histograms that can be used in combination to solve complex swarm
behaviors. Our algorithm relies on deep neural network policies of special archi-
tecture that can exploit the structure of the high-dimensional observation histo-
ries. We present this network model and subsequently discuss small adaptations
we had to make to the TRPO algorithm in order to apply it to this cooperative
multi-agent setting.

3.1 Communication Protocols

Our communication protocols are based on histograms that can either encode
neighborhood relations or distance relations to different points of interest.

Neighborhood Histograms

The individual agents can observe distance and bearing to neighbored agents if
they communicate with this agent. We assume that the agents are constantly
sending a signal, such that neighbored agents can localize the sources. The arising
neighborhood configuration is an important source of information and can be
used as observations of the individual agents. One of the arising difficulties in
this case is to handle changing number of neighbors which would result in a
variable length of the observation vector. Most policy representations, such as
neural networks, expect a fixed input dimension.

One possible solution to this problem is to allocate a fixed number of neighbor
relations for each agent. If an agent experiences fewer neighborhood relations,
standard values could be used such as a very high distance and 0 bearing. How-
ever, such an approach comes with several drawbacks. First of all, the size of

76 M. Hüttenrauch et al.

the resulting representation scales linearly with the number of agents in the sys-
tem and so does the number of parameters to be learned. Second, the execution
of the learned policy will be limited to scenarios with the exact same number
of agents as present during training. Third, a fixed allocation of the neighbor
relation inevitably destroys the homogeneity of the swarm, since the agents are
no longer treated interchangeably. In particular, using a fixed allocation rule
requires that the agents must be able to discriminate between their neighbors,
which might not even be possible in the first place.

To solve these problems, we propose to use histograms over observed neigh-
borhood relations, e.g., distances and bearing angles. Such a representation inher-
ently respects the agent homogeneity and naturally comes with a fixed dimen-
sionality. Hence, it is the canonical choice for the swarm setting. For our experi-
ments, we consider two different types of representations: (1) concatenated one-
dimensional histograms of distance and bearing and (2) multidimensional his-
tograms. Both types are illustrated in Fig. 1. The one-dimensional representation
has the advantage of scalability, as it grows linearly with the number of features.
The downside is that potential dependencies between the features are completely
ignored.

Shortest Path Partitions

In many applications, it is important to transmit the location of a point of
interest to neighbored agents that can currently not observe this point due to
their limited sensing ability.

We assume that an agent can observe bearing and distance to a point of
interest if it is within its communication radius. The agent then transmits the
observed distance to other agents. Agents that can not see the point of interest
might in this case observe a message from another agent containing the distance
to the point of interest. The distance of the sending agent is added to the received
distance to obtain the distance to the point of interest if we would use the sending
agent as a via point. Each agent might now compute several of such distances
and transmits the minimum distance it has computed to indicate the length of
the shortest path it has seen.

The location of neighbored agents including their distance of the shortest
path information is important knowledge for the policy, e.g. for navigating to the
point of interest. Hence, we adapt the histogram representation. Each partition
now contains the minimum received shortest path distance of an agent that is
located in this position.

3.2 Weight Sharing for Policy Networks

The policy maps sequences of past actions and observations to a new action. We
use histories of a fixed length as input to our policy and a feed-forward deep
neural network as architecture. To cope with such high input dimensionality, we
propose a weight sharing approach. Each action-observation pair in an agent’s
history is first processed independently with a network using the same weights.

Local Communication Protocols 77

128

at−η, ot−η+1

16

128

at−η+1, ot−η+2

16

128

at−1, ot

16

. . .

. . .

16 × η

2

action

l0,1

l1,1

l2,1

l0,2

l1,2

l2,2

l0,η

l1,η

l2,η

m0

m1

m2

Fig. 2. This diagram shows a model of our proposed policy with three hidden layers.
The numbers inside the boxes denote the dimensionalities of the hidden layers. The
plus sign denotes concatenation of vectors.

After this initial reduction in dimensionality, the hidden states are concatenated
in a subsequent layer and finally mapped to an output. The homogeneity of
agents is achieved by using the same set of parameters for all policies. A diagram
of the architecture is shown in Fig. 2.

3.3 Adaptations to TRPO

In order to apply TRPO to our multi-agent setup, some small changes to the
original algorithm have to be made, similar to the formulation of [11]. First,
since we assume homogeneous agents, we can have one set of parameters of the
policy shared by all agents. Since the agents cannot rely on the global state, the
advantage function is redefined as A(h, a). In order to estimate this function, each
agent is assigned the same global reward r in each time step and all transitions
are treated as if they were executed by a single agent.

4 Experimental Setup

In this section, we briefly discuss the used model and state representation of
a single agent. Subsequently, we describe our two experimental setups and the
policy architecture used for the experiments.

4.1 Agent Model

The local state of a single agent is modeled by its 2D position and orientation,
i.e., si = [xi, yi, φi] ∈ S = {[x, y, φ] ∈ R

3 : 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤
φ ≤ 2π}. The robot can only control the speed of its wheels. Therefore, we
apply a force to the left and right side of the agent, similarly to the wheels
of the real robot. Our model of a single agent is inspired by the Colias robot
(a detailed description of the robot specifications can be found in [2]), but the

78 M. Hüttenrauch et al.

underlying principles can be straightforwardly applied to other swarm settings
with limited observations. Generally, our observation model is comprised of the
sensor readings of the short and long range IR sensors (later denoted as ’sensor’ in
the evaluations). Furthermore, we augment this observation representation with
the communication protocols developed in the following section. Our simulation
is using a 2D physics engine (Box2D), allowing for correct physical interaction
of the bodies of the agents.

4.2 Tasks

The focus of our experiments is on tasks where agents need to collaborate to
achieve a common goal. For this purpose, we designed the following two scenarios:

Task 1: Building a Graph

In the first task, the goal of the agents is to find and maintain a certain distance
to each other. This kind of behavior is required, for example, in surveillance
tasks, where a group of autonomous agents needs to maximize the coverage of a
target area while maintaining their communication links. We formulate the task
as a graph problem, where the agents (i.e. the nodes) try to maximize the number
of active edges in the graph. Herein, an edge is considered active whenever the
distance between the corresponding agent lies in certain range. The setting is
visualized in Fig. 3a. In our experiment, we provide a positive reward for each
edge in a range between 10 cm and 16 cm, and further give negative feedback
for distances smaller than 7 cm. Accordingly, the reward function is

R(s,a) =
M∑

i=1

M∑

m>i

1[0.1m, 0.16m](di
m) − 5

M∑

i=1

M∑

m>i

1[0m, 0.07m](di
m), (1)

where di
m =

√
(xi − xm)2 + (yi − ym)2 denotes the Euclidean distance between

the centers of agent i and agent m and

1[a,b](x) =

{
1 if x ∈ [a, b],
0 else

is an indicator function. Note that we omit the dependence of di
m on the system

state s to keep the notion simple.

Task 2: Establishing a Communication Link

The second task adds another layer of difficulty. While maintaining a network,
the agents have to locate and connect two randomly placed points in the state
space. A link is only established successfully if there are communicating agents
connecting the two points. Figure 3b shows an example with an active link
spanned by three agents between the two points. The task resembles the problem

Local Communication Protocols 79

of establishing a connection between two nodes in a wireless ad hoc network [3,
25]. In our experiments, the distance of the two points is chosen to be larger than
75 cm, requiring at least three agents to bridge the gap in between. The reward
is determined by the length of the shortest distance between the two points dopt
(i.e. a straight line) and the length of the shortest active link dsp spanned by the
agents,

R(s,a) =

{
dopt
dsp

if link is established

0 otherwise.

In this task, we use the shortest path partitions as communication protocol.
Each agent communicates the shortest path it knows to both points of interests,
resulting in two 2-D partitions that are used as observation input for a single
time step.

4.3 Policy Architecture

We decided for a policy model with three hidden layers. The first two layers
process the observation-action pairs (ak−1, ok) of each timestep in a history
individually and map it into hidden layers of size 128 and 16. The output of
the second layer is then concatenated to form the input of the third hidden layer
which eventually maps to the two actions for the left and right motor.

Fig. 3. Illustration of the two cooperative tasks used in this paper. The green dots
represent the agents, where the green ring segments located next to the agents indicate
the short range IR front sensors. The outer green circles illustrate the maximum range
in which distances/bearings to other agents can be observed, depending on the used
observation model. (a) Edge task: The red rings show the penalty zones where the
agents are punished, the outer green rings indicate the zones where legal edges are
formed. (b) Link task: The red dots correspond to the two points that need to be
connected by the agents. (Color figure online)

80 M. Hüttenrauch et al.

5 Results

We evaluate each task in a standardized environment of size 1m × 1m where
we initialize ten agents randomly in the scene. Of special interest is how the
amount of information provided to the agents affects the overall system per-
formance. Herein, we have to keep in mind the general information-complexity
trade-off, i.e., high-dimensional local observations generally provide more infor-
mation about the global system state but, at the same time, result in a more
complex learning task. Recall that the information content is mostly influenced
by two factors: (1) the length of the history, and (2) the composition of the
observation.

5.1 Edge Task

First, we evaluate how the history length η affects the system performance.
Figure 4a shows an evaluation for η = {2, 4, 8} and a weight sharing policy
using a two-dimensional histogram over distances and bearings. Interestingly,
we observe that longer observation histories do not show an increase in the
performance. Either the increase in information could not counter the effect of
increased learning complexity, or a history length of η = 2 is already sufficient
to solve the task. We use these findings and set the history length to η = 2 for
the remainder of the experiments.

Next, we analyze the impact of the observation model. Figure 4b shows the
results of the learning process for different observation modalities. The first
observation is that, irrespective of the used mode, the agents are able to establish
a certain number of edges. Naturally, a complete information of distances and
bearing yields the best performance. However, the independent histogram rep-
resentation yields comparable results to the two dimensional histogram. Again,
this is due to the aforementioned complexity trade-off where a higher amount of
information makes the learning process more difficult.

5.2 Link Task

We evaluate the link task with raw sensor measurements, count based histograms
over distance and bearing, and the more advanced shortest path histograms over
distance and bearing. Based on the findings of the edge task we keep the history
length at η = 2. Figure 4c shows the results of the learning process where each
observation model was again tested and averaged over 8 trials. Since at least
three agents are necessary to establish a link between the two points, the models
without shortest path information struggle to reliably establish the connection.
Their only chance is to spread as wide as possible and, thus, cover the area
between both points. Again, it is interesting to see that independent histograms
over counts seem to be favorable over the 2D histogram. However, both versions
are surpassed by the 2D histogram over shortest paths which yields information
about the current state of the whole network of agents, currently connected to
each of the points.

Local Communication Protocols 81

Fig. 4. Learning curves for (a), (b) the edge task and (c) the link task. The curves
show the mean values of the average undiscounted return of an episode (i.e. the sum
of rewards of one episode, averaged over the number of episodes for one learning iter-
ation) over the learning process plus/minus one standard deviation, computed from
eight learning trials. Intuitively, the return in the edge task corresponds to the number
of edges formed during an episode of length 500 steps. In the link task, it is a measure
for the quality of the link. Legend: 2DSP: two dimensional histogram over shortest
paths, 2D: two-dimensional histogram over distances and bearings, 1D: two indepen-
dent histograms over distances and bearing, d: distance only histogram, b: bearing only
histogram, sensor: no histogram.

6 Conclusions and Future Work

In this paper, we demonstrated that histograms over simple local features can be
an effective way for processing information in robot swarms. The central aspect
of this new model is its ability to handle arbitrary system sizes without discrim-
inating between agents, which makes it perfectly suitable to the swarm setting
where all agents are identical and the number of agents in the neighborhood
varies with time. We use these protocols and an adaptation of TRPO for the
swarm setup to learn cooperative decentralized control policies for a number of
challenging cooperative task. The evaluation of our approach showed that this
histogram-based model leads the agents to reliably fulfill the tasks.

Interesting future directions include, for example, the learning of an explicit
communication protocol. Furthermore, we expect that assigning credit to agents
taking useful actions should speedup our learning algorithm.

Acknowledgments. The research leading to these results has received funding
from EPSRC under grant agreement EP/R02572X/1 (National Center for Nuclear
Robotics). Calculations for this research were conducted on the Lichtenberg high per-
formance computer of the TU Darmstadt.

References

1. Alonso-Mora, J., Montijano, E., Schwager, M., Rus, D.: Distributed multi-robot
formation control among obstacles: a geometric and optimization approach with
consensus. In: Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 5356–5363 (2016)

82 M. Hüttenrauch et al.

2. Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for
swarm robotic applications. Int. J. Adv. Robot. Syst. 11(7), 113 (2014)

3. Basu, P., Redi, J.: Movement control algorithms for realization of fault-tolerant ad
hoc robot networks. IEEE Netw. 18(4), 36–44 (2004)

4. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(C), 292–321
(2016)

5. Chen, J., Gauci, M., Groß, R.: A strategy for transporting tall objects with a swarm
of miniature mobile robots. In: Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 863–869 (2013)

6. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)

7. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst. 29,
2137–2145 (2016)

8. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. arXiv:1705.08926 (2017)

9. Goldberg, D., Mataric, M.J.: Robust behavior-based control for distributed multi-
robot collection tasks (2000)

10. Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R.E., Levine, S.: Q-prop: sample-
efficient policy gradient with an off-policy critic. In: Proceedings of the 5th Inter-
national Conference on Learning Representations (2017)

11. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using
deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.)
AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71682-4 5

12. Hoff, N.R., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot
swarms using only local communication. In: Proceedings of the IEEE International
Conference on Robotics and Biomimetics, pp. 123–130 (2010)

13. Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton.
Syst. 30(1), 85–101 (2000)

14. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning.
arXiv:1509.02971 (2015)

15. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-
critic for mixed cooperative-competitive environments. arXiv:1706.02275 (2017)

16. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. Int. J. Robot. Res. 23(4–5),
415–436 (2004)

17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

18. Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end
swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp.
424–431. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-
4 40

19. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)

20. Oliehoek, F.A.: Decentralized POMDPs. In: Wiering, M., van Otterlo, M. (eds.)
Reinforcement Learning. Adaptation, Learning, and Optimization, vol. 12, pp. 471–
503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3 15

21. Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy
optimization. In: Proceedings of the 32nd International Conference on Machine
Learning, pp. 1889–1897 (2015)

http://arxiv.org/abs/1705.08926
https://doi.org/10.1007/978-3-319-71682-4_5
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1706.02275
https://doi.org/10.1007/978-3-642-15461-4_40
https://doi.org/10.1007/978-3-642-15461-4_40
https://doi.org/10.1007/978-3-642-27645-3_15

Local Communication Protocols 83

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

23. Teh, Y.W., et al.: Distral: robust multitask reinforcement learning.
arXiv:1707.04175 (2017)

24. Šošić, A., KhudaBukhsh, W.R., Zoubir, A.M., Koeppl, H.: Inverse reinforcement
learning in swarm systems. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp. 1413–1421 (2017)

25. Witkowski, U., et al.: Ad-hoc network communication infrastructure for multi-
robot systems in disaster scenarios. In: Proceedings of the IARP/EURON Work-
shop on Robotics for Risky Interventions and Environmental Surveillance (2008)

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.04175

Morphogenesis as a Collective Decision
of Agents Competing for Limited

Resource: A Plants Approach

Payam Zahadat(B), Daniel Nicolas Hofstadler, and Thomas Schmickl

Artificial Life Lab, University of Graz, Graz, Austria
payam.zahadat@uni-graz.at

Abstract. Competition for limited resource is a common concept in
many artificial and natural collective systems. In plants, the common
resources – water, minerals and the products of photosynthesis – are a
subject of competition for individual branches striving for growth. The
competition is realized via a dynamic vascular system resulting in the
dynamic morphology of the plant that is adapting to its environment. In
this paper, a distributed morphogenesis algorithm inspired by the com-
petition for limited resources in plants is described and is validated in
directing the growth of a physical structure made out of braided mod-
ules. The effects of different parameters of the algorithm on the growth
behavior of the structure are discussed analytically and similar effects
are demonstrated in the physical system.

1 Introduction

Nature is full of patterns and forms. A huge diversity of natural patterns emerges
from self-organization of several components interacting with each other and
with their environment. Many patterns are regular repetitions of semi-identical
units of forms, e.g. regular patterns on the outer skin of animals, or nonlin-
ear non-equilibrium chemical oscillators, i.e., the Belousov-Zhabotinsky reaction
[4,12]. Such patterns can be described by self-organizing “Turing processes”
[23,28]. More complex patterns are usually multi-level hierarchies of forms. A
mechanism of developing such complex structures in nature is morphogenesis—
a generative process starting the system from single units and developing it
into a complex organism as a result of interactions between several compo-
nents of the system and the environment, driven by the laws of physics and
chemistry and directed by encoded information in the genome [12]. The wide
diversity of patterns in both natural and artificial developmental systems and
their inherent adaptivity to environmental conditions are investigated by many
researchers [4,12,33]. Various models of developing systems have been intro-
duced and used for artificial systems. One example are L-systems [22] which are
abstract generative encodings devised to describe development of multicellular
organisms, particularly plants. Variations of the model are used in developing
structures of artificial organisms [16,26]. Other examples of morphogenesis are
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 84–96, 2018.
https://doi.org/10.1007/978-3-030-00533-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_7&domain=pdf

Morphogenesis as a Collective Decision of Agents for Limited Resource 85

models that are inspired by cells, i.e. cell types and division, gene regulatory net-
works, and diffusion [10], or cellular automata with different types of cells [19].

A related area of research dealing with the development of complexity from
local interactions is the field of multi-agent systems. Multi-agent systems span
from swarm intelligence [2] that is widely inspired from social insects, to swarm
robotics [11,14,34] and to distributed approaches in microeconomics and market-
based methods [6,7,20]. A common subject of interest in all systems is the dis-
tribution of resources including distribution of labor [2,17,29,30]. Individual
agents in a swarm consume or contribute to common resources available for
the swarm while pursuing their personal motivations. Having to share resources
imposes dependencies between agents and thus the mechanisms of resource dis-
tribution can steer the behavior of the swarm in various ways. Such mechanisms
are widely investigated in microeconomics and market-based control [6,20]. The
mechanisms of division of labor and task allocation in swarm intelligence and
swarm robotics share similar challenges, e.g. how to distribute the agents as the
limited resource to handle sets of given tasks [3,18,30].

Here we use a morphogenesis algorithm called Vascular Morphogenesis Con-
troller (VMC) [32] which is inspired by distribution of common resources between
branches of a plant by means of vascular dynamics. The algorithm acts based
on competition of individual agents and via local interactions. The negative
feedback mechanisms due to scarcity of resources for the branches and positive
feedback loops reinforcing vessels that transfer resources to the favorable paths
govern the dynamics of the growing system. The result is a dynamic system of
vessels that allows exploration of the environment and leads to stronger path-
ways of common resource between the root and the tips located in more favorable
regions of the environment. The concept has strong similarities with other swarm
systems of self-organized path formation, e.g. the formation of pheromone trails
connecting the nest of ants to patches of foods [8] which has inspired optimization
algorithms [9] and is implemented in many robotic swarms (e.g., [5,24,27]).

This work is in the context of the project flora robotica [13] that explores
the symbiosis between plants and artificial structures for developing adaptive
bio-hybrid architectural artifacts. The VMC is used as an embodied distributed
algorithm reflecting environmental features in directing the growth of the arti-
ficial structures. The growth process is realized here manually by adding new
modules to the structure based on the collective decision of the distributed con-
troller. However the process is reversible meaning removal of modules is also
possible. As a method of additive construction of artificial structures, the old
technique of braiding is used. The braids consisting of reciprocally interwoven
filaments posses attributes of flexibility of topology and are well-suited for incor-
poration of wires and distributed electronics.

In the following, a general formulation of the VMC algorithm is introduced
and the effects of parameters in the morphogenesis behavior of the structures are
described following a formal approach. The parameter effects are then demon-
strated in a set of experiments with physical structures built out of braided
modules hosting sensors and VMC controllers.

86 P. Zahadat et al.

2 The Model: Vascular Morphogenesis Controller

Vascular Morphogenesis Controller (VMC) is inspired by the mechanisms of
growth and branching in plants. Individual branches in a plant act as agents of
a swarm competing with each other for shared resources. Each branch explores
its local environment and according to the modality of the local resources in the
environment (e.g., light) it produces amounts of a hormone, called auxin [21]. The
hormone flows root-wards and adjusts the quality of the vessels along its way. The
vascular system of a plant is responsible for distributing essential resources (e.g.,
water and minerals) from the roots to all the branches. According to the canaliza-
tion hypothesis [1,25], a well-positioned branch (wrt. environmental resources,
i.e., light) produces high amounts of auxin which leads to better quality of vessels
and therefore more share of the common resources and ultimately more growth
for the branch. The larger share of the resource for well-positioned branches
means lower shares being distributed among the others. The growth of a well-
positioned branch can locate it in even better regions of the environment and
gives it more new branches which leads to a positive feedback loop of auxin pro-
duction and growth. The collective decision making process enables the plant to
find the favorable regions of the environment and to benefit the growth in those
regions.

Fig. 1. An example structure guided by VMC. A value, called Successin, is produced
at the leaves based on the sensor values and encoded parameters in the genome and
flows root-wards through the internal nodes. The flow is modified at those nodes based
on sensor values and parameters. The Successin flow adjusts the thickness of vessels
which in turn are responsible for distributing the common resource from the root.

The VMC abstracts the above mentioned dynamics by introducing the
growth process of acyclic directed graphs. Figure 1 shows a schematic repre-
sentation of VMC. The figure shows the flow of a value, we call Successin in
analogy to auxin in a plant, produced at the leaves of the graph and propagat-
ing towards the root. The flow of Successin (S) regulates the thickness of vessels
(weights of the edges of the graph). A common Resource (R) starts at the root

Morphogenesis as a Collective Decision of Agents for Limited Resource 87

and is distributed between the children of each node proportional to their vessel
thickness (V). Growth happens at the leaves by adding new nodes.

Similar to production of auxin in growing tips of plants, Successin is produced
at the leaves (of the VMC graph) based on the local sensory inputs and constant
parameters:

Sleaf := PRODUCTION(params, sensors) (1)

Successin flows towards the root. At an internal node i, the flow of Successin is
influenced by the inputs from the local sensors and constant parameters via a
transfer function in the range of [0, 1]:

Snon-leaf := TRANSFER(params, sensors)
∑

b∈children

Sb. (2)

The weight of each connection (i, j) (thickness of the vessel) is adjusted based
on Successin passing the connection (vessel) and the parameters determining the
competition rate between the siblings:

Vi,j := Vi,j + α(Sβi

j − Vi,j), with βi = COMPETITION(params, sensors),
(3)

where Vi,j is the connection between node i and its child node j. Sj is the
Successin of node j flowing towards i.

The above mentioned functions are implemented in this work as follows. The
production rate of the Successin at the leaves is defined as

PRODUCTION(params, sensors) = f(ωconst +
∑

s∈sensors

ωsIs), (4)

where f(x) = max(0, x), ωconst is the constant production rate of Successin at
a leaf and ωs is the sensor dependent production rate which is the coefficient
determining the dependency of Successin production on the sensor input Is.

The transfer rate of Successin passing a node is defined as

TRANSFER(params, sensor) = g(ρconst +
∑

s∈sensors

ρsIs), (5)

where ρconst is a constant transfer rate, ρs is the sensor-dependent transfer rate
for sensor s, and g(x) = max(0,min(1, x)).

The competition rate is defined as:

COMPETITION(params, sensor) = βconst +
∑

s∈sensors

βsIs, (6)

where βconst is the constant competition rate and βs is the sensor-dependent
competition rate for sensor s.

Each of the parameters above can be set to zero depending on the particular
applications.

Resource Distribution Over the Structure. Common resource starts at the root
and is distributed throughout the structure according to vessel thickness (weight

88 P. Zahadat et al.

of connections). A part of the resource, Ri, reaching node i can be consumed at
that node and the remaining is divided among its children proportional to the
thickness of their vessels. A given child j with vessel thickness Vi,j receives

Rj := (Ri − c)
Vi,j∑

b∈children Vi,b
, (7)

where c is the constant consumption rate of the resource at a node and ‘children’
is the set of children of node i. c can be set to zero in order to use the resource
only at the leaves (for growth). The common resource initiated at the root can be
a constant value or a function of the environment and/or Successin that reaches
the root from anywhere within the graph. In the current implementation, the
Rroot is fixed to a constant value.

Addition of Nodes. When the graph grows at a leaf, a number of new leaves
appear as the children of the old leaf. The decision about the occurrence of
growth on a particular leaf follows a growth strategy based on the share of the
common resource reaching the leaf. Different strategies can be used to make the
growth decision. For example, one strategy is to use a threshold thadd on the
value of resource at the leaves to determine whether or not they should grow.
In this case, the consumption rate of the nodes (c) in relation to the amount of
resource at the root (Rroot) puts a constraint on the overall graph size. Another
example strategy is to consider the resource at the leaves as the probability
of growth. In the current implementation, the leaf with the maximum resource
value is the candidate node to grow next.

Deletion of Nodes. Leaves can be removed from the VMC graph following a
deletion strategy based on the resource reaching the nodes. A threshold thdel

can be used to decide on the deletion of a node’s children. For example, a leaf
i can be removed if Ri < thdel. Another example strategy is to remove all the
children of a node i if they are all leaves and the amount of the resource at the
node i is below the threshold. In the implementation used in this work, there is
no deletion of nodes.

3 A Closer Look on the Effects of Parameters

The parameters described in the previous section and their meanings are sum-
marized in Table 1. Here we use a formal approach to look into the effect of some
of these parameters.

Intrinsic Tendency Towards Shorter Paths. A simplified 1-dimensional VMC
structure is defined in Fig. 2. The root in this setup has two children and all
the other nodes have a single child at most. The number of nodes between the
leaves and the root on the left and the right side are n and m respectively. The
sensor-dependent transfer and competition rates are set to zero (ρs = βs = 0).

In a structure as in Fig. 2, the amount of Successin reaching the root from
the left and right branches converge to SmainL = SL · ρc

n and SmainR = SR · ρc
m

Morphogenesis as a Collective Decision of Agents for Limited Resource 89

Table 1. List of parameters

Parameter Description

α Adaptation rate of vessels

βc Competition rate of sibling vessels, constant rate

βs Competition rate of sibling vessels, sensor-dependent

ρc Transfer rate of Successin at the internal nodes, constant rate

ρs Transfer rate of Successin at the internal nodes, sensor-dependent

ωc Production rate of Successin at the leaves, constant rate

ωs Production rate of Successin at the leaves, sensor-dependent

c Consumption rate of resource in every node

Rroot Constant resource value at the root

Fig. 2. An example 1-dimensional VMC graph

correspondingly. If the resource value at the root is Rroot = R, and with the
competition rate βc, the vessel thicknesses for the branches of the root converge
to VmainL = Sβc

mainL and VmainR = Sβc

mainR with a speed of α as the adaptation
rate. The amount of the resource reaching each leaf converges to

RL =R
(SLρc

n)βc

(SLρc
n)βc + (SRρc

m)βc
− n · c, RR = R

(SRρc
m)βc

(SLρc
n)βc + (SRρc

m)βc
− m · c,

(8)

In the case of SL = SR, the equations are simplified to

RL = R
ρc

nβc

ρc
nβc + ρc

mβc
− n · c, RR = R

ρc
mβc

ρc
nβc + ρc

mβc
− m · c, (9)

and therefore, the leaf with the shorter path to the root gets more of the resource.
The preference for shorter paths is previously demonstrated in a case study of a
maze scenario with a simulated VMC-controlled organism [31].

Regulation of Growth in Particular Branches by Using the Sensor-Dependent
Transfer Rates. In the previous example, the transfer rate, ρ, was assumed to
be identical in all nodes. However, the transfer rate can be also dependent on
sensors (see Eq. 5). For instance, one can imagine a scenario with using light sen-
sors influencing the production rate of Successin at the leaves, and accelerometers
(providing the tilting angle of branches) or stress sensors (associated to physical
joints) for influencing the transfer rate at the internal nodes. As an example, in
the structure of Fig. 2, with SL = SR and m = n (see Eq. 9), a high stress or

90 P. Zahadat et al.

Fig. 3. An example VMC graph with n children for the root and its leftmost child.
(Color figure online)

bending that influences an internal node at the left branch may decrease the ρ
for that node and leads to SmainL < SmainR and consequently RL < RR, which
results in a preference for growth at the right branch.

Combined Effect of the Number of Nodes, Competition Rate and Transfer Rate.
Figure 3 shows an example VMC graph with n children for each non-leaf node.
Let’s assume that all the leaves of the left branch (represented in blue color)
have the same sensor values and thus the same Successin production SL, and
all the other leaves (represented in orange color) also have the same Successin
production, SR. The ratio between the resources reaching a leaf at the left branch
and one of the other leaves, depends on the ratio between their Successin values,
as well as the competition and transfer rates and the value of n, and is computed
as follows:

RL =
Rroot

Vsum
nβ−1(SLρ)β , RR =

Rroot

Vsum
Sβ
R, =⇒ RL

RR
= nβ−1ρβ(

SL

SR
)β (10)

where Vsum = (nSLρ)β + (n − 1)Sβ
R is the sum of all the vessels at the root

node, RL is the resource reaching a leaf of the left branch, and RR is the resource
reaching one of the other leaves.

In an environment with SL = SR, RL
RR

= nβ−1ρβ . This shows a potential
tendency for growing children in branches that already hold larger number of
nodes with large values of β and a potential tendency towards growing at the
shorter branches with small values of ρ. The condition for the preference of the
large branches is n

1−β
β < ρ. Considering that ρ ≤ 1, the above condition never

holds for β ≤ 1.

4 Experiments with Physical Structures

Here we present a set of experiments representing the growth behavior of struc-
tures with various parameterizations. Most of the experiments are designed to
demonstrate the parameter effects discussed in the previous section. The VMC
is embodied in a set of controller nodes mounted on Y-shaped braided modules.
A controller board is attached to the main part of the module, and two sensor
boards, containing 4 light sensors and an accelerometer, are each attached to one
of the branches. Each branch of a module can have a child module connected
to it (see Fig. 4). The controller board maintains the communications with the

Morphogenesis as a Collective Decision of Agents for Limited Resource 91

children via the sensor boards and with its parent module. The detailed imple-
mentation of the modules are described in [15]. Each controller board contains a
main VMC node. If a branch of a module has no child, the controller addition-
ally keeps a leaf node associated to that branch. Otherwise, it adopts the main
node of the child module as a child node of itself locating in a different module.
This way, the VMC graph is formed and distributed over the structure. Growth
of the structure is carried out by manually attaching a new braided module
to the branch that contains the VMC leaf with the maximum resource value.
Other selection strategies could be used here (see addition of nodes in Sect. 2),
e.g. a threshold on the resource value at a leaf can determine whether or not
the leaf should grow. Unless stated otherwise, in all the experiments here, the
parameter settings are as follows: α = 0.9, βc = 2, ρc = 0.5, ρtilt = 0.5, ωlight = 1,

Rroot = 1. All the other parameters are set to zero. The values from all the 4 light
sensors are averaged and scaled to [0, 1] to make the input variable Ilight used
in production of Successin at the leaf nodes. The value of the accelerometers
indicating the tilting of the branches are also scaled to [0, 1] to make the input
variable Itilt influencing the transfer rate at the internal nodes. Due to technical
reasons regarding the communication protocol between the modules, the value
of the Successin at all the leaves are rescaled with a factor of 0.167. In all the
experiments Itilt � 0.99 unless stated otherwise.

Fig. 4. An example braided module (left), and two connected modules (right), with
their underlying VMC graphs (inset images). The circles with thick outline indicate
the root nodes. The small circles are the leaf nodes associated with the branches of the
modules with no child modules connected to them.

Growing a Structure with Different Competition Rates. The effects of the compe-
tition rate β is investigated in this experiment with βc ∈ {1, 2} and with a light
source at the top-left of the structure. Figure 5 shows the growth of the braided
structure with βc = 2. At each step of the growth, a new module is added to
the leaf branch with maximum resource among all the leaves. Figure 6 shows the
growth of the structure with βc = 1. Since βc cannot have any influence on the
behavior of the first single module, we started the experiment with a second one
already connected (step A in Fig. 5). As can be seen in the figures, the structure
with larger competition rate grows strongly towards the brighter region of the

92 P. Zahadat et al.

Fig. 5. The variables over the course of the growth (left) with β = 2, the final structure
(right), and the VMC graphs of each growth step (bottom-right). The A-C labels in
the plots mark the steps right before the start of manual growth. In the photo of the
final structure, the labels indicate the position of the growth at each step. The shaded
parts of the plots indicate the periods when the growth was physically realized.

environment while the other structure tends to grow all the branches with slight
preference for the brighter region (see a video1).

Combined Effect of Transfer Rate and Competition Rate. The combined effect
of transfer rate and competition rate are investigated here. The experiments are
performed in room light (no directional light is used). The final structure from
Fig. 5 is used with ρc ∈ {0.25, 0.5} and βc ∈ {1, 2}. Considering that ρtilt = 0.5
and Itilt � 0.99, then ρ = TRANSFER ∈ {0.74, 0.99}. Table 2 shows the resource
and the light value of each leaf, with the maximum resource value of each setup
in bold and the maximum light values in italic fonts. The experiment shows a
tendency towards shorter paths with smaller transfer rate and the tendency for
further growth at the already grown branches with larger competition rate which
is in line with the discussion in the previous section.

Regulating Growth in Particular Branches by using a Sensor-Dependent Transfer
Rate. In this experiment the effect of sensor-dependent transfer rate is shown.
The final structure of Fig. 5 is used in room light. After the first few minutes
of the experiment with the intact structure, the leftmost branch is bent such
that the Itilt decreases considerably. Figure 7 shows the variable values over the
course of the experiment. It shows that bending a branch leads to small values of

1 https://youtu.be/-niKFhrXocI.

https://youtu.be/-niKFhrXocI

Morphogenesis as a Collective Decision of Agents for Limited Resource 93

Fig. 6. The variables over the course of the growth (left) with β = 1, the final structure
(right), and the VMC graphs of each growth step (bottom-right). The A-D labels in
the plots mark the steps right before the start of manual growth. In the photo of the
final structure, the labels indicate the position of the growth at each step. The shaded
parts of the plots indicate the periods when the growth was physically realized.

Fig. 7. Different variables in the course of the experiment with sensor-dependent trans-
fer rate. The structure is first intact, then a branch is bent and then released again.

Itilt, decreases the transfer rate in the associated internal node and results in a
lower share of resource for that branch which may eventually restrict its growth.

The Effect of Adaptation Rate. In this experiment, the effect of different adapta-
tion rates on the speed of dynamics of the system is investigated. A directional

94 P. Zahadat et al.

Table 2. Combined effect of competition and transfer rates.

ρ βc State var. 1-2 2-2 4-1 4-2

0.99 2.0 Resource 0.112 0.227 0.364 0.287

Light 0.806 0.849 0.787 0.698

0.99 1.0 Resource 0.252 0.268 0.247 0.219

Light 0.809 0.857 0.793 0.702

0.74 1.0 Resource 0.358 0.279 0.189 0.168

Light 0.806 0.854 0.791 0.699

0.74 2.0 Resource 0.231 0.289 0.263 0.205

Light 0.804 0.853 0.791 0.698

Fig. 8. The effects of small and large adaptation rates

light source is located at the topleft of the structure. A cardboard is used to cast
shades on the right branches in different time intervals in order to investigate
the response time of the system to the shade/no-shade conditions. Two different
adaptation rates α ∈ {0.1, 0.9} are tested. Figure 8 demonstrates the variable
values during the course of the experiments. It indicates slower changes in the
resource values, reflecting slower change in the vessels, for the smaller α. Since
the vessels act as a spatial memory for the system, the slow dynamics of the
vessels can be beneficial in filtering out environmental noise.

5 Conclusions and Future Work

Morphogenesis of artificial structures is investigated here by using VMC, a
recently introduced plant-inspired controller. The collective decision of the con-
troller is based on the environmental and structural features and intrinsic prop-
erties of the controller determined by its parameters. The general formulation
of the algorithm is described here and the effects of some parameters are ana-
lytically discussed. The algorithm is validated by implementation in a physical

Morphogenesis as a Collective Decision of Agents for Limited Resource 95

braided structure. The parameter effects demonstrated by the physical struc-
ture follow the results of the formal analysis. In the future, other behaviors of
the controlled system, e.g., the tendency towards asymmetry or dynamics of
the structure (deletion and addition of nodes over time) will be investigated.
Although the VMC has been so far only used in tree-like structures, nothing
prevents the implementation on other acyclic directional graphs with several
incoming connections to the nodes and several roots.

Acknowledgments. This work was supported by EU-H2020 project ‘florarobotica’,
no. 640959.

References

1. Bennett, T., Hines, G., Leyser, O.: Canalization: what the flux? Trends Genet.
30(2), 41–48 (2014)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

3. Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.L.: Adaptive task allo-
cation inspired by a model of division of labor in social insects. In: Biocomputing
and Emergent Computation: Proceedings of BCEC97, pp. 36–45. World Scientific
Press (1997)

4. Camazine, S., et al.: Self-organizing Biological Systems. Princeton University Press,
Princeton (2001)

5. Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm of
robots. Biol. Cybern. 103(5), 339–352 (2010)

6. Clearwater, S.H. (ed.): Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific Publishing Co., Inc., River Edge (1996)

7. Deconinck, G., Craemer, K.D., Claessens, B.: Combining market-based control
with distribution grid constraints when coordinating electric vehicle charging. Engi-
neering 1(4), 453–465 (2015)

8. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do
ants like molecules? Phys. Life Rev. 3(3), 162–187 (2006)

9. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. Trans. Syst. Man Cyber. Part B 26(1), 29–41 (1996)

10. Doursat, R., Sánchez, C., Dordea, R., Fourquet, D., Kowaliw, T.: Embryomorphic
engineering: emergent innovation through evolutionary development. In: Doursat,
R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering. Understanding Com-
plex Systems, pp. 275–311. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33902-8 11

11. Ferrante, E., Turgut, A.E., Duenez-Guzman, E., Dorigo, M., Wenseleers, T.: Evo-
lution of self-organized task specialization in robot swarms. PLOS Comput. Biol.
11(8), 1–21 (2015)

12. Goodwin, B.: How the Leopard Changed its Spots: The Evolution of Complexity.
Princeton University Press, Princeton (2001)

13. Hamann, H., et al.: Flora robotica - an architectural system combining living nat-
ural plants and distributed robots. arXiv preprint arXiv:1709.04291 (2017)

14. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Berlin (2018).
https://doi.org/10.1007/978-3-319-74528-2

https://doi.org/10.1007/978-3-642-33902-8_11
https://doi.org/10.1007/978-3-642-33902-8_11
http://arxiv.org/abs/1709.04291
https://doi.org/10.1007/978-3-319-74528-2

96 P. Zahadat et al.

15. Hofstadler, D.N., et al.: Artificial plants - vascular morphogenesis controller-guided
growth of braided structures. arXiv preprint arXiv:1804.06343 (2018)

16. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using l-systems as a gen-
erative encoding. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pp. 868–875. Morgan Kaufmann, San Francisco, July–
November 2001

17. Huberman, B.A., Hogg, T.: Distributed computation as an economic system. J.
Econ. Perspect. 9(1), 141–152 (1995)

18. Karsai, I., Schmickl, T.: Regulation of task partitioning by a “common stomach”:
a model of nest construction in social wasps. Behav. Ecol. 22, 819–830 (2011)

19. Kowaliw, T., Banzhaf, W.: Mechanisms for complex systems engineering through
artificial development. In: Doursat, R., Sayama, H., Michel, O. (eds.) Mor-
phogenetic Engineering. Understanding Complex Systems. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33902-8 13

20. Kurose, J.F., Simha, R.: A microeconomic approach to optimal resource allocation
in distributed computer systems. IEEE Trans. Comput. 38(5), 705–717 (1989)

21. Leyser, O.: Auxin, self-organisation, and the colonial nature of plants. Curr. Biol.
21(9), R331–R337 (2011)

22. Lindenmayer, A.: Developmental algorithms for multicellular organisms: a survey
of L-systems. J. Theor. Biol. 54(1), 3–22 (1975)

23. Murray, J.D.: On the mechanochemical theory of biological pattern formation with
application to vasculogenesis. Comptes Rendus Biol. 326(2), 239–252 (2003)

24. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics.
Auton. Robot. 11(3), 319–324 (2001)

25. Sachs, T.: The control of the patterned differentiation of vascular tissues. Adv.
Bot. Res. 9, 151–262 (1981)

26. Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R.,
Maes, P. (eds.) Artificial Life IV, pp. 28–39. MIT Press (1994)

27. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of
robots. Swarm Intell. 5(2), 97–119 (2011)

28. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. London.
Ser. B Biol. Sci. B237(641), 37–72 (1952)

29. Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, S.:
Spawn: a distributed computational economy. IEEE Trans. Softw. Eng. 18(2),
103–117 (1992)

30. Zahadat, P., Hahshold, S., Thenius, R., Crailsheim, K., Schmickl, T.: From honey-
bees to robots and back: division of labor based on partitioning social inhibition.
Bioinspiration Biomim. 10(6), 066005 (2015)

31. Zahadat, P., Hofstadler, D.N., Schmickl, T.: Development of morphology based on
resource distribution: finding the shortest path in a maze by vascular morphogen-
esis controller. In: 14th European Conference on Artificial Life (ECAL-2017), vol.
14, pp. 428–429 (2017)

32. Zahadat, P., Hofstadler, D.N., Schmickl, T.: Vascular morphogenesis controller: a
generative model for developing morphology of artificial structures. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 163–
170. ACM, New York (2017)

33. Zahadat, P., Schmickl, T.: Generation of diversity in a reaction-diffusion-based
controller. Artif. Life 20(3), 319–342 (2014)

34. Zahadat, P., Schmickl, T.: Division of labor in a swarm of autonomous underwater
robots by improved partitioning social inhibition. Adapt. Behav. 24(2), 87–101
(2016)

http://arxiv.org/abs/1804.06343
https://doi.org/10.1007/978-3-642-33902-8_13

Negative Updating Combined
with Opinion Pooling in the Best-of-n

Problem in Swarm Robotics

Chanelle Lee1,2,3(B), Jonathan Lawry2, and Alan Winfield1,3

1 Bristol Robotics Laboratory, Bristol, UK
c.l.lee@brl.ac.uk

2 Department of Engineering Mathematics, University of Bristol, Bristol, UK
3 University of the West of England, Bristol, UK

Abstract. There is a need for effective collective decision making in
decentralised multi-agent and robotic systems. This paper introduces a
novel approach to the best-of-n decision problem with large n. It utilises
negative feedback obtained from direct pairwise comparison of options
and evidence preserving opinion pooling. We present agent-based simu-
lation experiments that explore the effects of pool size and the number
of options on the speed of consensus. Robotic simulation experiments
are then used to investigate the potential of the approach as a method
for solving the best-of-n decision problem in swarm robotic applications.
Overall, the results suggest that the proposed approach is highly scalable
with regards to n.

1 Introduction and Background

There is a widely acknowledged and growing need for effective collective decision-
making in decentralised multi-agent and robotic systems [1,13]. Of particular
interest is the class of best-of-n decision problems [9], where a system needs
to achieve consensus on the most desirable option drawn from a number of n
distinct possibilities. For example, the choice could be between different nesting
sites, foraging locations [15] or which action to perform next [12]. Each option, i,
has an associated option quality, ρi, which is used by the members of the system
to guide the collective decision in favour of the best option. There are three
key challenges to this problem. Firstly, the system must reach consensus on a
single option based on only local communications. Secondly it needs to ensure
that convergence is to the best possible option. Finally, the third challenge is
achieving the first two within an application appropriate time frame.

Study of collective decision-making in artificial systems is often heavily influ-
enced by solutions found in nature, such as those of social insects like bees or ants
[9,11]. Scheidler et al. point out in [10] that these solutions tend to be based on
positive feedback, i.e. good options are reinforced more than bad ones. For exam-
ple, in [9] the rate at which an agent recruits others to an option is proportional
to the option quality. The greater the quality of an option, the more frequently
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 97–108, 2018.
https://doi.org/10.1007/978-3-030-00533-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_8&domain=pdf

98 C. Lee et al.

the agent will advocate for it, thus making it more likely that other agents in
the population will be recruited to that option. For many applications, positive
feedback with raw values is very successful; however, its effectiveness may be
limited in cases where there is little difference in the range of option qualities
and as such the best option has insufficient advantage over the others. Valen-
tini et al. notes that there is a lack of research extending into the n > 2 cases,
leading to the suspicion that this becomes a potentially damaging limitation as
n increases and the option quality space becomes more saturated. Furthermore,
in the few such examples in the literature, [2,4,8,10], no case larger than n = 7
is discussed.

With this in mind, this paper presents a novel approach to the best-of-n
problem based on negative information obtained from pairwise comparisons.
Rather than updating agent opinions using the raw values of the option quali-
ties to inform a positive feedback mechanism, agents instead compare pairs of
options and update their opinions based on which is the worst. By means of this
direct comparison, agents determine which option is not the best overall and
thus acquire negative feedback with which to update their opinions. We show
that by combining such negative updating with opinion pooling the system will
converge significantly faster than exhaustive comparative search, wherein each
agent samples all option qualities and compares them all. This is achieved by
using the opinion pooling operators discussed in [6].

This paper is organized as follows: The next section outlines a Bayesian evi-
dential updating method based on negative feedback. We discuss a particular
opinion pooling operator in Sect. 3 and explore the effect of combining eviden-
tial updating with opinion pooling on system level consensus and convergence.
In the fourth section, we present agent-based simulation results on the speed and
reliability of consensus and convergence for the cases of n = 10, 20, 50 and 100
with varying pooling sizes. In section five, we present robot simulation exper-
iments with a fixed population size and spontaneous pooling and explore the
results as the number of options n is increased. Finally, in section six we give
some conclusions and further work.

2 Evidential Updating with Comparisons

We now introduce a mechanism for evidential updating focused on utilising nega-
tive feedback from direct option comparisons. The model uses an opinion-based
approach as introduced in [14]; extended to the general case of n > 2, where
agent opinions will be represented as probability vectors across the set of exclu-
sive and exhaustive hypotheses H = {Hi : i = 1, . . . , n} where Hi denotes the
claim option i is the best. As such, an agent Ar, represents their opinion as a
probability vector xr where PAr

(Hi) = xri for i = 1, . . . , n with
∑n

i=1 xri = 1,
i.e. xri is the probability with which agent Ar believes Hi to be true.

An agent samples two options, i and j, and receives qualities ρi and ρj .
Further suppose, without loss of generality, that ρj > ρi. In this case, the agent
does not have enough information to know whether j is the best option, but

Negative Updating Combined with Opinion Pooling in the Best-of-n Problem 99

does learn that i cannot be the best possible option, i.e. it receives the evidence
Ei = {Hi}c the complement of {Hi} with respect to H. The agent can now
update their prior belief x to obtain the posterior x|Ei using Bayes’ theorem as
follows:

Definition 1 (Evidential Updating). Assume we have a set of exclusive and
exhaustive hypotheses {Hi : i = 1, . . . , n}. Then for x ∈ [0, 1]n, Ei = {Hi}c and
α ∈ [0, 1

2], we have,

x|Ei =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α)xj

αxi + (1 − α)(1 − xi)
, j �= i,

αxj

αxi + (1 − α)(1 − xi)
, j = i.

Here α quantifies the agent’s belief in the reliability of the evidence source.
For α = 0, the evidence source is completely reliable evidence source and only
provide Ei if i was the worse of the two options. Alternatively, for α = 0.5 the
evidence source is completely unreliable and so is as likely to provide Ei if i is
the best or the worst option.

Unfortunately, even in the best conditions a system using evidential updat-
ing on comparisons alone will need all agents to make at least n − 1 pairwise
comparisons before reaching consensus. Now if we are considering perfect condi-
tions with no noise in the sensed quality values, this is significantly worse than
exhaustive comparative search with agents visiting two sites at a time. In the
next section we introduce an approach to opinion pooling which allows evidence
to be efficiently propagated across the swarm and significantly enhances the
effectiveness of negative updating.

3 Combining with Opinion Pooling

In this section, we describe the benefits of combining evidential updating and
opinion pooling as we suggested in [6]. We speculate that the use of opinion pool-
ing to propagate evidence between agents in the system will significantly reduce
the number of comparisons agents need to make before reaching consensus.

For this study, we limit ourselves to evidence preserving propagation and so
use the Product Operator [3,5]. Below we present an extended version for the
case of multiple hypotheses.

Definition 2 (The Multi-Option Product Operator (MProdOP)).
Assume we have a set of exclusive and exhaustive hypotheses {Hi : i = 1, . . . , n}.
The Product Operator for k agents is the function c : [0, 1]k → [0, 1], such that
for agents A1, . . . , Ak with opinions PAr

(Hi) = xri for r = 1, . . . , k,

c(x1, . . . ,xk) =
∏k

r=1 xi∥
∥
∥
∏k

r=1 xi

∥
∥
∥
1

,

where xr = [xr1, . . . , xrn] for all r = 1, . . . , k,
∏

is the Hadamard product and
‖−‖1 is the L1 norm.

100 C. Lee et al.

Given a pool of k agents with prior beliefs xr for r = 1, . . . , k, we sup-
pose that each samples two distinct options and consequently receives evidence
Eir . They then each update their opinion to xr|Eir and aggregate to form the
pooled opinion c(x1|Ei1 , . . . ,xk|Eik). Since MProdOP is evidence preserving this
is equivalent to c(x1, . . . ,xk)|Ei1 . . . |Eik .

If we consider the case where all the agents are initialised with uniform
opinions where xr = [1n , . . . , 1

n] for r = 1, . . . , k. Furthermore, suppose that the
evidence Ei is received by mi of the agents. Now, without loss of generality, we
can also assume that ρ1 > . . . , > ρn, so we have m1 = 0 and

∑n
i=2 mi = k. This

leads to:

c(x1|Ei1 , . . . ,xk|Eik)i =
αmi(1 − α)k−mi

∑n
i=1 αmi(1 − α)k−mi

. (1)

We can also calculate the probability that an agent receives the evidence Ei.
To receive evidence Ei, an agent must sample two options, one of which is i and
the other is some j > i. There are 2(i−1) of these pairings out of a total n(n−1)
distinct pairs. Hence, provided distinct pairs of options are selected at random,
then P (Ei) = 2(i−1)

n(n−1) . Thus, the probability that there are mi occurrences of Ei

amongst the k agents for i = 1, . . . , n is,

k!
∏n

i=1 mi!

n∏

i=1

(
2(i − 1)
n(n − 1)

)mi . (2)

Combining both of these it follows that,

E(c(x1|Ei1 , . . . ,xk|Eik)i)

=
∑

m:m1=0,
∑

i mi=k

k!
∏n

i=1 mi!

n∏

i=1

(
2(i − 1)
n(n − 1)

)mi
αmi(1 − α)k−mi

∑n
i=1 αmi(1 − α)k−mi

,
(3)

giving the expected value of the pooled opinion in option i after a single pooling
of the whole population.

4 Agent-Based Simulations Experiments

For initial simulation experiments, we present a simple event based multi-agent
model exploring the consensus attainment properties of the decision making
algorithm proposed in Sects. 2 and 3. Specifically, we are interested in the perfor-
mance of our proposed algorithm versus an exhaustive comparison of all options.
We hypothesise that there will be an optimal pool size k∗ for each n value, below
which our algorithm will take longer on average, and above which it will be
faster. The simulation has no physical representation of the environment and as
such the options have no associated cost. However, the spatial distribution of
the population is represented and at every time step the agents are shuffled to
emulate random movement, this approach being consistent with the well-stirred
assumption as described in [9].

Negative Updating Combined with Opinion Pooling in the Best-of-n Problem 101

We assume that a population of N agents begin with no prior knowledge of
the option qualities and all opinions are initialised uniformly with probabilities
P (H1), . . . , P (Hn) = 1/n to ensure no initial bias. At every iteration, each agent
makes a weighted random choice of two options, i and j say, based on their
current probability distribution. The agent compares the qualities of this pair,
then uses the updating method as described in Definition 1 to update on the
evidence E = {Hi}c where ρi < ρj . We set α = 0 to indicate that agents
have total trust in the evidence, a not unreasonable assumption as there is
currently no noise. We assign the qualities ρi = (n−1)−(i−1)

n−1 ∈ [0, 1] to the
options i ∈ {1, . . . , n}, assuming that option 1 is the best with maximal quality,
i.e. ρ1 > ρi ∀i ∈ {1, . . . , n}.

k

ti
m

e
st

e
p
s

(a) n = 10
k

ti
m

e
st

e
p
s

(b) n = 20

k

ti
m

e
st

e
p
s

(c) n = 50
k

ti
m

e
st

e
p
s

(d) n = 100

Fig. 1. Box and whisker plots showing the time to consensus plotted against population
size with (a) n = 10, (b) n = 20, (c) n = 50 and (d) n = 100. The dashed lines at
y = n

2
show the number of time steps t̂ needed for the agents to sample every option.

In addition, all agents in the population pool their opinions using the
MProdOp operator from Definition 2 with every agent adopting the resulting
pooled opinion. Thus pooling size k is fixed and equal to the population size
N . For an embodied system, this set-up could be envisaged as a population of

102 C. Lee et al.

robots visiting potential new nest sites, receiving some sensory data indicating
that site’s quality and updating on this comparison before returning to the orig-
inal nest to pool opinions. It is thus reminiscent of many similar experiments in
the best-of-n literature [13]. For each set of parameter values, 1,000 independent
runs are carried out with each lasting for 100 iterations. We judge that consensus
has been attained in a run once all agents in the population have P (H1) = 1, i.e.
xr1 = 1∀r. Each agent is assumed to be able to sample a pair of options every
time step and the number of time steps needed to reach consensus is recorded
for each run. This ensures that the two conditions of effective collective decision
making are met; the population has converged to a consensus on a single option
and that option is the best one possible. If the run fails for either of these con-
ditions, its consensus time is recorded as 100 iterations for ease of comparison.
Results are averaged over all 1,000 runs, giving a consensus time for each set of
parameter values.

Figures 1(a)–(d) show the number of time steps needed for the system to
reach consensus for varying populations size and when the number of site is
n = 10, n = 20, n = 50 and n = 100 respectively. This is compared with the
number of time steps that the system would need if each agent were to sample
the quality of every option two at a time, i.e. t̂ = n

2 time steps. As expected
the number of time steps decreases as the pooling size k increases, this effect
plateaus once the best performance of a single time step is reached. We show
that our hypothesis was correct, that for each different n there would be some
optimum k∗

n where performance is better than or equal to t̂n; with k∗
10 = 5 and

k∗
20 = k∗

50 = k∗
100 = 3. We can see that this would be the case, as if we substitute

our requirement that α = 0 into Eq. 1 gives us:

c(x1|Ei1 , . . . ,xk|Eik)i =

⎧
⎨

⎩

0, mi ≥ 1,
1

|{mi : mi = 0 for i = 2, . . . , n}| + 1
, mi = 0.

(4)

Thus only one agent in the pool needs to have received evidence Ei for all
agents to completely disregard the option, i.e. xri = 0 and this becomes more
likely with larger pooling sizes. This effect can be seen in Fig. 2.

The values for k∗ are surprisingly small with k = 3 performing optimally for
almost all n tested. For example, with n = 100 for k = 3 consensus was achieved
on average within 35 time steps, an improvement of 15 time steps when compared
to the 50 that would be needed for each agent to visit every site. Furthermore,
considering the n = 100 results again, when k = 5 the system achieves consensus
within on average 23 time steps, this is less than half t̂100 with only a 1 : 20 ratio
between pooling agents and the number of options. These results suggest that the
evidence propagation is very effective and that our method is highly scalable to
large n. Unexpectedly, k∗

10 was greater than the optimal pooling sizes for larger
n. This could be due to the accumulative effect of evidence preservation within
the system. Every time an agent pools its opinion, it receives all the evidence that
every other agent in the pool has. For example, if every agents A1, . . . , Ak−1 all
update on evidence Ei and agent Ak updates on some different evidence Ej then

Negative Updating Combined with Opinion Pooling in the Best-of-n Problem 103

timestep

o
p
in

io
n

(a) k = 2
timestep

o
p
in

io
n

(b) k = 5

Fig. 2. Plots showing a single agent’s opinion of different options changing over time
when (a) k = 2 and (b) k = 3.

we would have c(x1|Ei, . . . ,xk−1|Ei,xk|Ej) = c(x1, . . . ,xk)|Ei|Ej . A secondary
explanation for this is that there is a greater chance for diversity with larger n
and so less instances of ‘redundant pooling’, i.e. when all agents have the same
evidence and hence receive no gain from pooling.

5 Robot-Based Simulation Experiments

In this section, we present robot-based simulation experiments where we have
a fixed population size, spontaneous pooling sizes k and varying n in order to
test the feasibility of our approach in a swarm robotics scenario. We use e-puck
robots [7] since they are small, mobile and equipped with a range of sensors
making them well-suited to small scale swarm experiments. Experiments are
conducted in the V-Rep1 simulation environment which models many of the
required physical characteristics of the e-pucks, such as motion, communication
and sensory feedback. Figure 3 shows the experimental arena consisting of n
sites equally spaced around a 1.5 m disc with a central ‘nest’ site. Each site is
coloured a different shade of red or blue indicating site quality. Site i is given
quality ρi = (n−1)−(i−1)

n−1 ∈ [0, 1]. Sites are coloured a proportion of blue equal to
1−ρi to help visually distinguish between sites. Noise has not been added into the
simulation and physical communication limitations have not been considered.

As in Sect. 4, the swarm is initialised with uniform probabilities for all sites
and each robot makes a weighted random choice of two sites to visit. The robots
are given the locations of all sites and use a simple path planning algorithm to
travel between sites and the nest. At each site the robots use their colour camera
to return a value indicating the amount of red visible, i.e. the site quality. They
then compare qualities and update on this negative feedback using Eq. 1, before
returning to the nest site for aggregation. Once a robot has reached the nest
site, it will listen for a message from the transceiver located there to confirm

1 http://www.coppeliarobotics.com/

http://www.coppeliarobotics.com/

104 C. Lee et al.

Fig. 3. Top-down and side close-ups of the e-puck model and the arena set-up for
n = 10.

it has reached the nest. This ensures that all robots who have returned for
aggregation are within communication range of each other. The robot broadcasts
its opinion, while also listening for any neighbouring robots broadcasting their
own opinions. As the system has no centralised controller, pooling between the
robots is spontaneous and so the pooling size k could range from zero to the whole
population, depending on which robots happen to be at the nest site. This differs
from the agent-based simulation experiments where k was fixed, and allows us
to investigate the effect pooling size variance has on the system. To reduce the
communication requirements between robots we employ neighbourhosod-based
pooling, wherein each robot has their own pool of opinions on which only they
update. The robot then uses its updated belief to make a weighted random choice
about the next two sites to visit. This process is repeated until xri = 1 for some
i, at which point they move to their chosen site and stop. Each parameter set
of ten robots and n ∈ [5, 8, 10] was run ten times, with the pooling size of
each aggregation and the number of time steps needed for each agent to reach
convergence being recorded.

For all runs the swarm was successful with respect to the first two key chal-
lenges of the best-of-n decision problem; all robots reached consensus on a single
option and that option was the best possible one. Figure 4 gives the time frame
for reaching consensus, showing for each run the number of time steps the swarm
needed before reaching a final decision. As in Sect. 4, we use the number of time
steps that a robot would need to visit all sites, two at a time, as a benchmark for
performance. Many of the runs across all values of n achieved consensus within
t̂ time steps, with the best performance for n = 10, where the swarm reached
consensus within t̂ time steps for all runs. Moreover, in 60% of the runs, the

Negative Updating Combined with Opinion Pooling in the Best-of-n Problem 105

run

ti
m

e
st

e
p
s

(a) n = 5
run

ti
m

e
st

e
p
s

(b) n = 8
run

ti
m

e
st

e
p
s

(c) n = 10

Fig. 4. Box and whisker plots showing the spread of the number of time steps to
consensus for individual robots in a population of size N = 10 for ten different runs
with number of sites (a) n = 5, (b) n = 8 and (c) n = 10. The dashed lines at n

2
show

the number of time steps t̂ necessary for a robot to sample every option.

run

k

(a) n = 5
run

k

(b) n = 8
run

k
(c) n = 10

Fig. 5. Box and whisker plots showing range of pooling sizes k for robots in a population
of size N = 10 for ten different runs with (a) n = 5, (b) n = 8 and (c) n = 10.

swarm achieved consensus in less than t̂ and, in particular, in Run 2 consensus
is achieved in just three time steps. This is consistent with our findings in Sect. 4
that increasing n can have a positive effect on pooling due to the decreased likeli-
hood of redundant pooling. These results have also been achieved with relatively
low pooling sizes with Fig. 5 showing that no run achieved an average pool size
greater than three. This suggests that alterations in the control architecture
leading to a higher average pooling size, such as increasing the time the swarm
spends sharing opinions with neighbouring robots during aggregation, could lead
to even faster consensus times.

One of the worst results is Run 5 for n = 8 where the swarm took six time
steps to reach consensus, two more than t̂. A closer look at this result shows that
this was caused by a single outlying agent, with the rest of the swarm achieving
consensus within three time steps. Consideration of the average pooling sizes in
this run, as seen in Fig. 5(b), reveals that while there were some very large pools
with six robots, the average was much lower at only two robots. From this we
conjecture that some robots who were part of the larger pools converged very
quickly, and thus essentially removing themselves and the evidence they had
gained from the system too early for the other robots to benefit. This suggests
that while larger k will give faster consensus in general, care has to be taken with
the potential variance of k values so as not to isolate robots from the system. A

106 C. Lee et al.

way of alleviating this effect in future work could be to have a period of opinion
broadcasting after a robot has reached their decision for the benefit of other
robots. This could also have the additional benefit of reducing the range of time
steps needed for the swarm to reach consensus, which in the run above was as
high as six and as low as one.

6 Conclusion

In this paper, we have introduced a novel approach to solving the best-of-n deci-
sion problem that uses evidence updating from negative feedback combined with
opinion pooling. We present an evidential updating method that utilises negative
feedback obtained from direct pairwise comparisons of options. We then intro-
duced the multi-option pooling operator MProdOp, with the expectation that
its evidence preserving property would efficiently propagate evidence through-
out a swarm. In simulation experiments, we explore the effect of pooling size on
the time to consensus and the scalability of our approach to increasing values of
n. Finally, we investigated our approach in a typical swarm robotics scenario in
simulation to test its applicability.

The simulation experiments presented in Sect. 4 suggest that our approach is
highly scalable with regards to n. Indeed, successful and effective consensus was
reached even with n = 50 and n = 100 options. We also found that although
performance improves with larger k, the system can achieve consensus faster
than exhaustive comparison even with very small k. For example, with n = 100
for k = 3 consensus was achieved on average within 35 time steps, a considerable
improvement on the 50 time steps that would be needed for each agent to visit
every site.

Overall, the robot simulation experiments indicate that our approach has
potential as a method for solving the best-of-n decision problem in swarm
robotics applications. We have presented a simplified scenario where the swarm
needed to pick the reddest of n sites with n = 5, 8, and 10. The first two key
challenges facing the best-of-n problem were met in all runs. Additionally, for a
majority of runs the swarm was able to achieve consensus faster than exhaustive
comparative search. This demonstrates a level of robustness to pooling size, with
possible improvements if average pooling sizes could be increased. Furthermore,
as not all agents had to visit all sites to achieve consensus, this approach could
potentially work in a scenario where each agent is unable to visit all sites in the
environment. We also saw improvements with an increase in n suggesting that
our approach will scale well with large n in the swarm robotics environment.

An observed limitation of our proposed method is that it currently only works
in environments for which both n and the location of sites is known. For many
possible applications, such as a search a rescue site checking task, this is of minor
significance as all sites would be known; however, it does restrict the adaptability
of the approach in uncertain or changing environments. Further work would look
to address this by introducing the ability to increase n upon the discovery of
new sites.

Negative Updating Combined with Opinion Pooling in the Best-of-n Problem 107

Parker and Zhang argue in [9] that agents should not be performing such
direct comparisons of options as it can leave the system exposed to potential
stagnation from evaluation errors and hence in future work we will investigate
how our algorithm performs in the presence of noise, e.g. in sensed quality val-
ues. We hypothesise that by introducing distrust, both by setting α > 0 and
using a diluting pooling operator [6], our system could be robust to such noise.
Furthermore, we intend to explore the robustness of the system in a dynamic
environment where the best option may change, much as in [11]. In addition, we
plan to replicate our experiments on a physical robotic platform and investigate
what happens with much larger swarms, for example when N > 500.

Acknowledgements. This research was partially funded by an EPRSC PhD stu-
dentship as part of the Centre for Doctoral Training in Future Autonomous and Robotic
Systems (grant number EP/L015293/1). The authors would like to thank Michael
Crosscombe for many useful discussions and valuable comments. All underlying data
is included in full within the paper.

References

1. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

2. Crosscombe, M., Lawry, J.: Exploiting vagueness for multi-agent consensus. In:
Bai, Q., Ren, F., Fujita, K., Zhang, M., Ito, T. (eds.) Multi-agent and Complex
Systems. SCI, vol. 670, pp. 67–78. Springer, Singapore (2017). https://doi.org/10.
1007/978-981-10-2564-8 5

3. Easwaran, K., Fenton-Glynn, L., Hitchcock, C., Velasco, J.D.: Updating on the
credences of others: disagreement, agreement, and synergy. Philos. Imprint 16(11),
1–39 (2016)

4. Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the
geometrical properties of trail bifurcations to find an efficient route? A swarm
robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)

5. Genest, C., Zidek, J.V.: Combining probability distributions: a critique and an
annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)

6. Lee, C., Lawry, J., Winfield, A.: Combining opinion pooling and evidential updat-
ing for multi-agent consensus. International Joint Conference on Artificial Intelli-
gence, pp. 347–353 (2018)

7. Mondada, F., et al.: The E-puck, a robot designed for education in engineering.
In: Proceedings of the 9th Conference on Autonomous Robot Systems and Com-
petitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

8. Parker, C.A., Zhang, H.: Active versus passive expression of preference in the
control of multiple-robot decision-making. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems 2005, (IROS 2005), pp. 3706–3711. IEEE (2005)

9. Parker, C.A., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–
251 (2009)

10. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for
self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5),
1175–1188 (2016)

https://doi.org/10.1007/978-981-10-2564-8_5
https://doi.org/10.1007/978-981-10-2564-8_5

108 C. Lee et al.

11. Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-
robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

12. Seth, A.K., Bryson, J.J.: Natural action selection, modeling. In: Pashler, H. (ed.)
Encyclopedia of the Mind, pp. 557–559. Sage (2013)

13. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

14. Wessnitzer, J., Melhuish, C.: Collective decision-making and behaviour transi-
tions in distributed ad hoc wireless networks of mobile robots: target-hunting.
In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL
2003. LNCS (LNAI), vol. 2801, pp. 893–902. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39432-7 96

15. Winfield, A.F.: Foraging robots. In: Meyers, R. (ed.) Encyclopedia of Complexity
and Systems Science. Springer, New York (2009). https://doi.org/10.1007/978-0-
387-30440-3

https://doi.org/10.1007/978-3-540-39432-7_96
https://doi.org/10.1007/978-3-540-39432-7_96
https://doi.org/10.1007/978-0-387-30440-3
https://doi.org/10.1007/978-0-387-30440-3

On Mimicking the Effects of the Reality
Gap with Simulation-Only Experiments

Antoine Ligot and Mauro Birattari(B)

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{aligot,mbiro}@ulb.ac.be

Abstract. One issue in the automatic design of control software for
robot swarms is the so-called reality gap—the difference between real-
ity and the simulation models used in the automatic design process.
It is commonly understood that the reality gap manifests itself as a
drop in performance when control software developed in simulation is
used to control physical robots. Yet, often disregarded is the relative
nature of this performance drop: the reality gap does not affect equally
all instances of control software. Indeed, one might observe a rank inver-
sion: control software A might perform better than control software B in
simulation, but perform worse on robots. The possibility of rank inversion
undermines any performance comparison made in simulation. It would
thus seem the only way to assess control software is in robot experi-
ments, which are costly and time consuming. We argue it is unneces-
sary to assume reality is more complex than simulation models for the
effects of the reality gap to occur. Indeed, we show that performance
drop and rank inversion can occur if one automatically designs control
software in simulation using a model and then assesses it in simulation
on another model—what we call a pseudo-reality. Our results suggest
that an appropriately conceived pseudo-reality could be used to test
automatically-generated control software for performance drop and rank
inversion, without performing robot experiments.

1 Introduction

The reality gap is one of the main issues in the automatic design of robot
swarms [17]. A robot swarm is a highly redundant, self-organized, and decen-
tralized system [1,13,39]. Designing the individual rules that lead to the desired
collective behavior is difficult. Methods to guide the designers exist for some
specific collective behaviors and under some hypotheses [2,8,23,38]. However, a
generally applicable methodology is still missing.

Automatic design methods [7,17] eliminate the burden of manually decom-
posing the desired global behavior into the appropriate microscopic behaviors of
the individuals. By maximizing a mission-dependent performance measure, an

All experiments were performed by AL. The paper was drafted by AL and revised
by the two authors. The research was directed by MB.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 109–122, 2018.
https://doi.org/10.1007/978-3-030-00533-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_9&domain=pdf
http://orcid.org/0000-0001-7388-2866
http://orcid.org/0000-0003-3309-2194

110 A. Ligot and M. Birattari

optimization algorithm searches for an appropriate instance of control software
to be installed on each individual robot. Generally, the optimization process
relies on simulation. Methods have been proposed that (could possibly or have
been demonstrated to) operate directly on robot hardware [9,12,22,28,30,41,43].
Although these methods are promising to adapt/fine-tune behaviors to the envi-
ronment, they do not appear to be an alternative to simulation-based design due
to safety concerns and to the limited solution space they can explore [17]. When
the design is performed in simulation, a resulting instance of control software
is likely to be fine-tuned to the specific simulation model [15], which should
not be expected to perfectly reproduce the real world. Due to the differences
between simulation and reality, which are commonly referred to as the reality
gap [10,27], a performance drop typically occurs when an instance of control
software designed in simulation is assessed on physical robots.

An issue that is often overlooked is that the occurrence of performance drops
due to the reality gap is a relative problem: each instance of control software
might be affected to a different extent. The relative nature of performance drops
might result in what we shall call a rank inversion: control software A outper-
forms control software B in simulation, but B outperforms A when assessed on
the physical robots. Rank inversions can be observed when comparing instances
of control software produced by different design methods [19], or by the same one
at different steps along the optimization process [4]. Indeed, Birattari et al. [4]
observed a phenomenon that they called overdesign: past an optimal number of
steps of the optimization process, the performance obtained in reality diverges
from the one obtained in simulation.

In the literature, performance drops due to the reality gap are commonly
explained by saying that reality is more complex than simulations—or equiva-
lently, that simulations are too simplistic [29,35].

In this work, we argue that it is not necessary to assume that reality is
more complex than simulation for the effect of the reality gap to occur. More
precisely, we contend that performance drops that lead to rank inversion can
be observed even if the model under which control software is designed is not a
simplistic version of the context/conditions under which it is eventually assessed.
We support our contention with a set of simulation-only experiments in which
we create an artificial reality gap.

Creating an artificial, simulation-only reality gap is not a novel contribution
we make here for the first time. Koos et al. [29] already created a simulation-
only reality gap between a simple simulator—used to design control software—
and an accurate one—used for assessing it. The choice of creating a reality gap
between a simple and a more complex simulator clearly reflects the common
understanding discussed above, which is precisely what we challenge here. We
maintain that it is not necessary to assume that control software is assessed
under context/conditions that are more complex than those experienced in the
design for the effects of the reality gap to manifest.

The artificial reality gap we create is based on two robot models: MA and MB .
We design control software in simulation on model MA and then we assess it,

Mimicking the Effects of the Reality Gap in Simulation 111

always in simulation, but relying on model MB . We shall call a pseudo-reality any
secondary model that we use for assessing control software—and that therefore
plays the role of reality. Model MA has been proposed by Francesca et al. [19]
who used it to design control software that was eventually assessed on robots.
We introduce here model MB , which we conceived so that, when used as pseudo-
reality to assess control software designed on MA, it produces performance drops
and rank inversions that are qualitatively similar to those observed by Francesca
et al. [19].

A priori, it could be argued that MA and MB are equally complex as they
share the same nature—see Sect. 3. Nonetheless, to completely exclude the possi-
bility that the observed effects are the results of an undesired higher complexity
of MB , we consider both the case in which we use MA for the design and MB

for the assessment, and the case in which we invert the roles of the two models.
As we show in Sect. 4, qualitatively similar drops and inversions appear in both
cases. This substantiates our contention, and indicates that the effects of the
reality gap can manifest even when the design model is not a simplistic version
of the one used in the assessment, possibly due to the fact that control software
overfits the former.

Besides shedding further light on the nature of the reality gap, this study
suggests that creating an artificial, simulation-only version of it could have useful
practical implications. For example, it would dispense researchers from costly
and time consuming robot experiments that, at the moment, are necessary to tell
whether a design method is more prone than another one to performance drops,
whether a rank inversion should be expected, or whether to stop an optimization
process to prevent the overdesign phenomenon to occur.

2 Related Work

Several approaches have been proposed to cross the reality gap effectively—
that is, to limit the performance drop of control software. However, none of
these approaches have been studied in details, no extensive comparison has been
made, and the reality gap remains a major issue in the automatic design of robot
control software [17,40]. Approaches to cross the reality gap have mainly been
proposed in the context of evolutionary robotics for single robots. Nonetheless,
they are typically general enough to be relevant to any design method based on
off-line simulation, both for single- and multi-robot systems.

Behind these approaches, we see two main lines of reasoning. On the one
hand, some researchers have aimed at reducing the differences between sim-
ulation and reality as much as possible [6,27,29,33,44]. They were driven by
the assumption that a smooth transition from simulation to reality would
occur if simulation reproduced relevant real-world dynamics accurately. On the
other hand, other researchers have striven to make control software robust
to differences [18,19,25,26,42]. They were driven by the assumption that dif-
ferences between simulation and reality are eventually unavoidable. Each of
these lines of reasoning were developed with a focus either on simulation mod-
els [6,25,27,33,44] or on the design method [18,19,29,42]. In the first case,

112 A. Ligot and M. Birattari

Table 1. Taxonomy of the most significant approaches proposed in the literature to
cross the reality gap. We group the approaches according to the main line of reasoning
followed in their development.

Focus on Reducing differences between
simulation and reality

Enhancing robustness
of control software

Simulation models Miglino et al. [33]
Jakobi et al. [27]
Bongard and Lipson [6]
Zagal and Ruiz-Del-Solar [44]

Jakobi [25,26]

Design methods Koos et al. [29] Floreano et al. [14,16,42]
Francesca et al. [18,19]

researchers focused on making simulation models more realistic or more general
so as to render the design process more robust. In the second case, researchers
focused on conceiving methods that either exploit regions of the search space
that are accurately reproduced by the simulator or that are intrinsically more
robust than traditional methods. See Table 1 for a taxonomy.

Reducing Differences Between Simulation and Reality—Focus on
Simulation Models. Miglino et al. [33] were the first to propose guidelines
for reducing differences between simulation models and reality. They suggested
to (i) use samples from the robot’s sensors and actuators; (ii) add conservative
noise to models; and (iii) continue the design process in reality, should an unac-
ceptable performance drop be observed. Similarly, Jakobi et al. [27] insisted on
the importance of adding appropriate levels of noise to models. Since then, using
real data in simulation and fine-tuning noise models have become common prac-
tice [40]. Bongard and Lipson [6] proposed a method based on the co-evolution
of control software and simulator. While optimizing the control software, the
method improves the simulation models using sensor readings gathered in robot
experiments. Zagal and Ruiz-Del-Solar [44] developed a method in which dif-
ferences between performance observed in simulation and in reality are used to
tune the parameters of the simulation.

Reducing Differences Between Simulation and Reality—Focus on
Design Methods. Koos et al. [29] proposed a multi-objective method that
aims at constraining the design process to instances of control software whose
behavior is accurately simulated. The method relies on a model to estimate the
differences between performance in simulation and reality. The model is updated
based on physical-robot evaluations of instances of control software generated by
the design process. To assess the proposed method, the authors performed exper-
iments with two different robotic platforms. They also performed experiments in
a fully simulated setting in which the role of the physical-robot evaluations was
played by highly-realistic simulations. In other terms, the authors artificially cre-
ated a simulation-only reality gap problem between a simple and a more accurate
simulator.

Mimicking the Effects of the Reality Gap in Simulation 113

Enhancing Robustness of Control software—Focus on Simulation
models. Jakobi [25,26] was the first to explicitly aim at producing control soft-
ware that is robust to differences between simulation and reality. The method
he proposed is based on two devices: (i) model only the robot-robot and robot-
environment interactions that are meaningful to obtain the desired behavior,
and (ii) apply random variations on all aspects of the simulation.

Enhancing Robustness of Control Software—Focus on Design Meth-
ods. Floreano et al. [16,42] applied an on-line adaptation mechanism to the
parameters of a neuro-controller. The behavior developed was observed to trans-
fer smoothly from simulation to reality [14]. Francesca et al. [18,19] observed
that the reality gap resembles the generalization problem of supervised learning.
They conjectured that evolutionary robotics is seriously affected by the reality
gap due to an excessive representational power of neural networks. As a result,
it overfits the conditions experienced during the design process. Guided by their
conjecture, the authors developed design methods with restricted representa-
tional power: Vanilla [19] and Chocolate [18]. Their experiments have shown
that the control software produced by these methods crosses the reality gap
more satisfactorily than a traditional evolutionary robotics method they called
EvoStick [18,19].

3 Materials and Methods

In this section, we describe the robots, the automatic design methods, the sim-
ulation models and the protocol used in the experiments presented hereafter.

Robots (Simulated). We simulate an extended version of the e-puck robot
[20,34] using the ARGoS3 simulator [36] (version 3.0.0-beta45). For the purpose
of this study, we consider a subset of the sensors and actuators the robot is
equipped with. The control software has access to variables that abstract sen-
sors and actuators. These variables are updated every 100 ms. The reference
model RM1.1 [24] of Table 2 formally defines the sensors and actuators and the
corresponding variables.

The accessible sensors comprise eight infrared proximity sensors for detect-
ing obstacles (prox i) and for measuring ambient light (light i), three ground sen-
sors for sampling the grayscale color of the ground situated under the robot
(ground i), and a range-and-bearing board used for local communication between
robots [21]. Upon reception of a message via the range-and-bearing board, an e-
puck can estimate the relative distance and angle of the emitting robot. At each
time step, the relative distance and angle of all perceived neighbors are lumped
into a vector (Vd) representing a virtual attraction force towards the neighbors.
In addition to this direction vector Vd, the control software has also access to
the number of perceived neighbors (n).

The control software also controls actuators: the motors of the wheels. The
e-pucks are driven by a two-wheeled differential steering system. The control
software dictates the displacement of the robot via two velocity variables (vl
and vr).

114 A. Ligot and M. Birattari

Table 2. Reference model RM1.1 [24]. Sensors and actuators of the extended version
of the e-puck robot simulated in the experiments.

Sensor/actuator Variables

Proximity prox i ∈ [0, 1], with i ∈ {0, ..., 7}
Light lighti ∈ [0, 1], with i ∈ {0, ..., 7}
Ground ground i ∈ {white, gray , black}, with i ∈ {0, ..., 2}
Range-and-bearing n ∈ {0, ..., 19} and Vd ∈ ([0, 0.7] m, [0, 2π])

Wheels vl, vr ∈ [−0.12, 0.12] m/s

Design Methods. In this section, we briefly describe the three automatic design
methods considered in the experiments: EvoStick [19], Vanilla [19], and Choc-
olate [18]. We refer the readers to the original papers for their detailed descrip-
tion. The implementations are publicly available [31].

EvoStick is an implementation of the classical evolutionary robotics setup.
An evolutionary algorithm optimizes the parameters of a fully connected, feed-
forward, neural network. The neural network comprises 24 input and 2 output
nodes that are directly connected. The inputs and outputs are defined on the
basis of the reference model RM1.1 (see Table 2). More precisely, the inputs are
allocated as follows: 8 for the readings of the proximity sensors, 8 for the readings
of the light sensors, 3 for the readings of the ground sensors, 1 for the number of
neighbors, and 4 for the scalar projections of the vector Vd on four unit vectors
distributed around the robot. The outputs of the neural network are the speed
of the left and right wheels of the e-puck.

Vanilla produces control software in the form of probabilistic finite state
machines by assembling preexisting modules. A module is either a behavior or
a transition. A behavior is an action that can be performed by the robot, while
a transition is a condition on the environment perceived by the robot. All mod-
ules operate on the variables presented in the reference model RM1.1 of Table 2,
and some of the modules have parameters that adjust their functioning. In a
probabilistic finite state machine, the transitions (i.e., the edges) regulate the
succession of behaviors (i.e., states) that alternatively control the robot by deter-
mining the values of the output variables.

Similarly to Vanilla, Chocolate is a modular automatic design method. The
methods differ by the optimization algorithm they use: Vanilla uses F-race [3,5]
and Chocolate uses Iterated F-race [32]. In order to conceive probabilistic finite
state machines, Vanilla and Chocolate have at their disposal the same set
of preexisting modules: six behaviors and six transitions. In addition to the
topology of the probabilistic finite state machine, Vanilla and Chocolate also
tune the parameters of the modules. The design space explored by the two
methods is restricted to all possible probabilistic finite state machines composed
of up to four states (i.e., behaviors) and up to four edges (i.e., transitions)
departing from each state. Chocolate has been shown to outperform Vanil-
la [18].

Mimicking the Effects of the Reality Gap in Simulation 115

Models. We use the two e-puck models, namely MA and MB , described in
Table 3. Model MA is the same model used during the design process of the
experiments ran by Francesca et al. [19]. We generated model MB by modifying
actuator and sensor noise of model MA. We did so via trial-and-error so that,
when model MB is used as a pseudo-reality to assess the performance of control
software automatically generated on the basis of model MA, we obtain a rank
inversion that qualitatively resembles the one observed by Francesca et al. [19].

Table 3. The two e-puck models. The values for the proximity, light and ground sensors
are the range of the uniform white noise added to the readings of the sensors. The value
for the range-and-bearing sensor is the probability of failing to receive a message sent by
a robot within communication range. The value for the wheels actuator is the standard
deviation of Gaussian white noise added to the speed of the left and right wheels.

Sensor/actuator MA MB

Proximity [−0.05, 0.05] [−0.05, 0.05]

Light [−0.05, 0.05] [−0.90, 0.90]

Ground [−0.05, 0.05] [−0.05, 0.05]

Range-and-bearing 0.85 0.90

Wheels 0.05 0.15

Protocol. We consider two missions: aggregation and foraging. For each
mission, we define an objective function to be maximized. The same objective
function is used for both designing control software and assessing its perfor-
mance. We run experiments in which the control software is designed by the
three design methods described above: EvoStick, Vanilla, and Chocolate. We
consider a homogeneous swarm composed of N = 20 robots operating in a
dodecagonal arena for a time period of 250 s. The arena is delimited by walls
and its surface area is 4.91 m2.

For each mission, we consider two stages: SAB and SBA. In stage SAB , each
automatic design method produces control software via simulations based on
model MA; the control software is then assessed with simulations based on model
MB . To study the generalization capability of the control software produced, the
performance evaluated on model MB is compared to the one evaluated on model
MA. In stage SBA, the roles of the two models are inverted: control software is
produced on MB and then assessed on MA. Also in this case, the performance
on MA is compared to the one on MB to study the generalization capability of
the control software. In other terms, in stage SAB the pseudo-reality is model
MB ; whereas in stage SBA, it is model MA.

Each design method is run with a design budget of 200 000 simulations. For
each mission and each stage Sxy—where by x and y we indicate A and B,
or viceversa—each design method is run 20 times on model Mx and produces
therefore a total of 20 instances of control software. For the assessment, each of

116 A. Ligot and M. Birattari

Fig. 1. Simulated environments: aggregation (left) and foraging (right).

these instances is evaluated 20 times on model Mx, and 20 times on model My

to study their generalization capability.
We present the results by means of notched box-and-whiskers boxplots. The

notches indicate the 95% confidence interval around the median. If the notches of
two boxes do not overlap, the difference between their medians is significant [11].
Moreover, we aggregate the results of the two stages to estimate the performance
drop experienced by each design method. For each method, we report a 95% con-
fidence interval on the difference between the performance observed on models
Mx and My.1 We also highlight a lower bound D on the difference between
the performance drop of EvoStick and Vanilla—confidence 95%. We focus on
EvoStick and Vanilla as Francesca et al. [19] assessed their performances for
the same mission in robot experiments.

4 Experiments

In this section, we provide details on the two missions considered and we report
the results of our experiments. Figure 1 shows the simulated environments in
which the swarm operates. The missions have already been studied in [19]. We
report in the following only the information that is strictly needed to understand
the results. We refer the reader to the original paper for the details.

4.1 Aggregation

In this experiment, the swarm must aggregate on one of two black areas, named
a or b. These black areas have a radius of 0.35 m. The performance of the swarm
is measured via the following objective function:

Fa = max(Na, Nb)/N,

1 Confidence intervals are computed based on the statistic of the paired Wilcoxon
signed rank test. The normal approximation is adopted as the sample size is larger
than 50. The implementation used is the one of R’s stats package [37].

Mimicking the Effects of the Reality Gap in Simulation 117

O
b
je

ct
iv

e
fu

n
ct

io
n

EvoStick ChocolateVanilla

Stage SAB
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

O
b
je

ct
iv

e
fu

n
ct

io
n

EvoStick ChocolateVanilla

Stage SBA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

O
b
je

ct
iv

e
fu

nc
ti

on
(d

iff
er

en
ce

)

EvoStick ChocolateVanilla

D

Performance drop

Fig. 2. aggregation. Left and center : narrow boxes represent the performance
assessed on the model used during the design step; wide boxes represent the per-
formance assessed in pseudo-reality. Gray boxes represent performance assessed on
model MA; white boxes represent performance assessed on model MB . Right : the seg-
ments represent a 95% confidence interval on the performance drop experienced by each
method—aggregated across the two stages. D is a bound on the difference between the
performance drop of EvoStick and Vanilla.

where N = 20 is the total number of robots composing the swarm; and Na and
Nb are the number of robots that at the end of the experimental run are located
on a and b, respectively. The objective function is maximized when, at the end
of a run, all robots are either on a or on b.

The results of this experiment show a rank inversion—see Fig. 2 (left and
center). In each stage Sxy, EvoStick performs significantly better than both
Vanilla and Chocolate when the performance of the control software they
produced is assessed on model Mx. On the other hand, EvoStick performs sig-
nificantly worse than both Vanilla and Chocolate when the performance is
assessed on model My.

Indeed, the performance of the control software designed by EvoStick drops
noticeably when assessed in pseudo-reality: the drop is at least 0.55 (confidence
95%). In the case of Vanilla and Chocolate, the drop is significantly smaller:
at most 0.00 and 0.02 respectively (confidence 95%). See Fig. 2 (right).

In both stages, the rank inversion between EvoStick and Vanilla is sim-
ilar to the one observed by Francesca et al. [19] on the same mission. This
corroborates further the conjecture of Francesca et al. [19] according to which
EvoStick is affected by the reality gap more seriously than Vanilla and Choc-
olate because of its higher representational power. At least in this experiment,
the artificial reality gap we created with the models MA and MB was able to
qualitatively predict performance drop and rank inversion for EvoStick and
Vanilla.

118 A. Ligot and M. Birattari
O

b
je

ct
iv

e
fu

n
ct

io
n

EvoStick ChocolateVanilla

Stage SAB

0
20

40
60

80
10

0

O
b
je

ct
iv

e
fu

n
ct

io
n

EvoStick ChocolateVanilla

Stage SBA

0
20

40
60

80
10

0

0
10

20
30

40
50

O
b
je

ct
iv

e
fu

nc
ti

on
(d

iff
er

en
ce

)

EvoStick ChocolateVanilla

D

Performance drop

Fig. 3. foraging. See caption of Fig. 2 for the explanation of width and color of boxes.

4.2 Foraging

In this experiment, the swarm must perform an idealized form of foraging. We
consider that an individual robot has retrieved an object when it enters the
nest after having visited a foraging source. Two sources are available, and are
represented by black circular areas of radius 0.15 m. The nest is represented by
a white area situated at a distance of 0.45 m from the two black areas. A light
source is placed behind the nest to help the robots locate it.

The performance of the swarm is measured by the number of objects retrieved
during the whole experimental run. It is computed via the following objective
function:

Ff = No,

where No is the total number of objects retrieved.
Also in this experiment, we observe a rank inversion—see Fig. 3 (left and

center). EvoStick performs significantly better than Vanilla and Chocolate
when the performance of the control software produced is assessed on model
Mx, but significantly worse when the performance is assessed on model My.

When assessed in pseudo-reality, the performance of the control software
designed by EvoStick drops by at least 48 objects (confidence 95%), whereas in
the case of Vanilla and Chocolate, the drop is at most of 1 object (confidence
95%). See Fig. 3 (right).

Also on this mission, the rank inversion between EvoStick and Vanilla is
similar to the one observed by Francesca et al. [19], which corroborates fur-
ther their conjecture. Also here, the artificial reality gap yields good qualitative
predictions.

Mimicking the Effects of the Reality Gap in Simulation 119

5 Conclusions

With this paper, we shed further light on the reality gap. Specifically, we inves-
tigated how and under what conditions the effects of the reality gap manifest.
We contend that, for the effects of the reality gap to manifest, it is unnecessary
to assume that the control software is assessed under context/conditions that
are more complex than those experienced in the design.

To substantiate our contention, we conceived a set of simulation-only exper-
iments in which we created an artificial reality gap based on two robot models
MA and MB . We used MA for the design and MB for the assessment; we then
inverted the role of the two models. In both cases, we observed performance drop
and rank inversion: a design method (EvoStick) performed significantly better
than the others (Vanilla and Chocolate) when the control software they pro-
duced was assessed on the same model used in the design, but significantly worse
on the other one. Having observed performance drop and rank inversion both
when (i) designing on MA and assessing on MB, and when (ii) designing on MB

and assessing on MA, we can exclude that the effects of the reality gap emerge
only due to the fact that the design is performed on a simplistic model that fails
to reproduce the complexity of the environment in which the final assessment is
performed.

Furthermore, our results indicate that simulation-only experiments could be
used to tell whether and to what extent automatic design methods are prone to
performance drop and rank inversion. This might have useful practical implica-
tions. Indeed, we foresee that an artificial, simulation-only reality gap could be
used to validate automatically-generated control software and to predict its real-
world performance. We have in mind here a development process that mimics
the classical machine learning procedure based on training, validation, and test
set. We imagine a development process in which control software is generated
using a model, validated on another model to predict its ability to cross the
reality gap, and eventually tested in the real world.

Future work will be dedicated to study whether an artificial reality gap can
reliably predict real-world performance. Moreover, future work should be ded-
icated to defining reliable and meaningful ways to generate a pair of models
that can properly serve as an artificial reality gap. In this work, we considered
two models that differ in the noise level. Other differences between the models
could be considered, which could be more appropriate. Finally, future research
should be dedicated to quantifying the difference between two models. A quan-
tity measuring the difference between two models could be used to characterize
the severity of the artificial reality gap associated with them.

Acknowledgements. The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681872). Mauro Birattari acknowledges support from
the Belgian Fonds de la Recherche Scientifique – FNRS.

120 A. Ligot and M. Birattari

References

1. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M.
(eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30552-1 1

2. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inho-
mogeneous robot swarms with application to commercial pollination. In: Zexiang,
L. (ed.) IEEE International Conference Robotics and Automation, ICRA, pp. 378–
385. IEEE Press, Piscataway NJ (2011)

3. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Berlin Heidelberg, Germany (2009). https://doi.org/10.1007/978-3-642-00483-4

4. Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects of
overdesign in the automatic design of control software for robot swarms. In: Dorigo,
M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T.
(eds.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44427-7 13

5. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for con-
figuring metaheuristics. In: Langdon, W., et al. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO, pp. 11–18. Morgan Kauf-
mann, San Francisco (2002)

6. Bongard, J., Lipson, H.: Once more unto the breach: co-evolving a robot and
its simulator. In: Pollack, J., et al. (eds.) Artificial Life IX: Proceedings of the
Conference on the Simulation and Synthesis of Living Systems, pp. 57–62 (2004)

7. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software
engineering for the development of automatic design methods. In: ACM/IEEE 1st
International Workshop on Robotics Software Engineering, RoSE, pp. 33–35. ACM,
New York (2018)

8. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design
for swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1–17.28 (2015)

9. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

10. Brooks, R.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.)
Towards a Practice of Autonomous Systems. In: Proceedings of the First European
Conference on Artificial Life, pp. 3–10. MIT Press, Cambridge (1992)

11. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods For Data
Analysis. Wadsworth, Belmont (1983)

12. Di Mario, E., Martinoli, A.: Distributed particle swarm optimization for limited-
time adaptation with real robots. Robotica 32(02), 193–208 (2014)

13. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

14. Floreano, D., Urzelai, J.: Evolution of plastic control networks. Auton. Robot.
11(3), 311–317 (2001)

15. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-30301-5 62

16. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated
agents. In: Maes, P., et al. (eds.) From animals to animats 4: Proceedings of the
International Conference on Simulation of Adaptive Behavior, ETH Zurich (1996)

https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-319-44427-7_13
https://doi.org/10.1007/978-3-319-44427-7_13
https://doi.org/10.1007/978-3-540-30301-5_62

Mimicking the Effects of the Reality Gap in Simulation 121

17. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3(29), 1–9 (2016)

18. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

19. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

20. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004,
IRIDIA, Université libre de Bruxelles, Belgium (2015)

21. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open E-puck range and bearing miniaturized board for local commu-
nication in swarm robotics. In: Kosuge, K. (ed.) IEEE Int. Conf. Robot. Autom.
ICRA, pp. 3111–3116. IEEE Press, Piscataway NJ (2009)

22. Haasdijk, E., Bredeche, N., Eiben, A.: Combining environment-driven adapta-
tion and task-driven optimisation in evolutionary robotics. PloS One 9(6), e98466
(2014)

23. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

24. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for Auto-
MoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Brux-
elles, Belgium (2018)

25. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325–368 (1997)

26. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University
of Sussex, Falmer, UK (1998)

27. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

28. König, L., Mostaghim, S.: Decentralized evolution of robotic behavior using finite
state machines. Int. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

29. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the
reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145
(2013)

30. Lee, J.B., Arkin, R.C.: Adaptive multi-robot behavior via learning momentum. In:
George Lee, C.S. (ed.) IEEE/RSJ International Conference on Intelligent Robots
- IROS, pp. 2029–2036. IEEE Press, Piscataway (2003)

31. Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., Birat-
tari, M.: AutoMoDe, NEAT, and EvoStick: implementations for the E-puck robot
in ARGoS3. Technical report TR/IRIDIA/2017-002, IRIDIA, Université libre de
Bruxelles, Belgium (2017)

32. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

33. Miglino, O., Lund, H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1995)

34. Mondada, F., et al.: The E-puck, a robot designed for education in engineering.
In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de
Castelo Branco (2009)

https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337

122 A. Ligot and M. Birattari

35. Nolfi, S., Floreano, D., Miglino, G., Mondada, F.: How to evolve autonomous
robots: different approaches in evolutionary robotics. In: Brooks, R.A., Maes, P.
(eds.) Artificial Life IV: Proceedings of the Workshop on the Synthesis and Simu-
lation of Living Systems, pp. 190–197. MIT Press, Cambridge (1994)

36. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

37. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008). http://
www.R-project.org

38. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

39. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 2

40. Silva, F., Duarte, M., Correia, L., Oliveira, S., Christensen, A.: Open issues in
evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

41. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for
decentralised online evolution of robotic controllers. Evol. Comput. 23(3), 421–449
(2015)

42. Urzelai, J., Floreano, D.: Evolutionary robotics: coping with environmental change.
In: Whitney, L.D., et al. (eds.) Proceedings of Conference on the Genetic and
Evolutionary Computation Conference, GECCO, pp. 941–948. Morgan Kaufmann,
San Francisco (2000)

43. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary
algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)

44. Zagal, J.C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary
robotics. J. Intell. Robot. Syst. 50(1), 19–39 (2007)

http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1007/978-3-540-30552-1_2

Optimization of Swarm Behavior Assisted
by an Automatic Local Proof for a

Pattern Formation Task

Mario Coppola(B) and Guido C. H. E. de Croon

Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands

{m.coppola,g.c.h.e.decroon}@tudelft.nl

Abstract. In this work, we optimize the behavior of swarm agents in a
pattern formation task. We start with a local behavior, expressed as a
local state-action map, that has been formally proven to lead the swarm
to always eventually form the desired pattern. We seek to optimize this
for performance while keeping the formal proof. First, the state-action
map is pruned to remove unnecessary state-action pairs, reducing the
solution space. Then, the probabilities of executing the remaining actions
are tuned with a genetic algorithm. The final controllers allow the swarm
to form the patterns up to orders of magnitude faster than with the
original behavior. The optimization is found to suffer from scalability
issues. These may be tackled in future work by automatically minimizing
the size of the local state-action map with a further direct focus on
performance.

1 Introduction

Collaboration between autonomous agents, while already a difficult task in itself,
becomes increasingly challenging when dealing with swarm of robots with lim-
ited on-board sensing and computing capacity. In recent work, detailed in [1], we
introduced a method to extract local behaviors with which very limited agents
could arrange into a desired shape. The agents were: homogeneous (identical
and without hierarchy), anonymous (did not have identities), reactive (memo-
ryless), could not communicate, did not have global position information, did
not (explicitly) know the goal of the swarm, and operated asynchronously in
an unbounded space. The only knowledge available to the agents in the deci-
sion making was: (1) a common heading direction (i.e., North), (2) the relative
location of their neighbors within a maximum range (e.g., similar to the robotic
system in [2]). Despite such limited agents, it was possible to define the local
agent behavior such that a desired pattern would always emerge, with a formal
proof that this would be reached from any initial configuration.

Simulations in [1] further showed that the swarms indeed always eventually
reached the desired formation by assuming random (but feasible) actions on the
part of the agents. However, as the agents moved randomly and asynchronously,
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 123–134, 2018.
https://doi.org/10.1007/978-3-030-00533-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_10&domain=pdf
http://orcid.org/0000-0003-4694-2960
http://orcid.org/0000-0001-8265-1496

124 M. Coppola and G. C. H. E. de Croon

even simple patterns with a few agents were found to take hundreds of actions
before completion, and this number appeared to grow exponentially with the size
of the swarm and, in turn, with the complexity of the pattern. This becomes an
issue if the algorithm is to be used on real robots with limited battery life. In this
work, we thus explore how the behavior of the agents can be optimized so that
they do not just “eventually” form the pattern, but do so efficiently. In doing so,
we also explore a novel use of evolutionary algorithms in the context of swarm
intelligence, as we perform an optimization procedure while maintaining the
conditions for the formal proof that the goal will always eventually be achieved.

This paper is organized as follows. In Sect. 2 we review relevant literature and
introduce the context of this research. Then, Sect. 3 summarizes the framework
used to enable the swarm to form a desired pattern. The optimization method-
ology is detailed in Sect. 4, followed by an assessment in Sect. 5. In Sect. 6, we
summarize the findings and discuss future work.

2 Related Work and Research Context

Evolutionary algorithms can search through vast solution spaces and discover
solutions to complex problems, and are thus a popular approach to dealing with
the intricacies of swarm robotics and extracting valid local behaviors [6,14]. They
have been used for numerous architectures, including: neural networks [3,11],
state machines [7], behavior trees [12], and grammar rules [5]. When applied to
swarms, the following issues typically arise:

1. As the number of agents grows, the complexity of the solution and the size
of the potential solution space grow [10,16].

2. The evolutionary algorithm is likely to drift into undesired local optima. This
may happen due to deceptive fitness functions or bootstrap issues [9,17].

3. As the size of the swarm grows, the iteration time needed to find a solution
grows. This can be due to, for instance:
(a) The computational requirements needed to evaluate the fitness of a con-

troller are higher because of the need to simulate a larger swarm.
(b) Depending on the task, it might take longer for the desired behavior to

emerge, requiring a longer simulation time upon each evaluation trial.
(c) Each controller may have to be simulated multiple times in order to accu-

rately assess its expected average fitness [18].

In state of the art, the problems above have mostly been tackled in two
ways. First, there are methods that try to deal with the broad solution space. For
example, Gomes et al. [8] used novelty search to encourage a broader exploration
of the solution space. The second way is to use global knowledge and insights to
aid the evolutionary process. For example, Duarte et al. [3] partitioned complex
swarm behavior into simpler sub-behaviors. Hüttenrauch et al. [10], with a focus
on deep reinforcement learning, used global information to guide the learning
process towards a solution. Alternatively, Trianni et al. [18] and Ericksen et al.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 125

[4] explored whether evolved behaviors for smaller swarms could generalize to
larger swarms.

Evolutionary approaches are thus typically used to establish the behavior
needed to achieve the global goal, but it is not known whether the final behavior
generalizes to all initial conditions. In this work we present the first steps to an
alternate approach towards achieving an optimum swarm behavior: optimizing a
behavior that is formally proven to always eventually lead to the emergent global
goal. In this approach, the proof that the goal will always eventually be achieved
remains preserved throughout. The focus of the optimization procedure is not on
figuring out how to solve the problem, but on how to do it more efficiently while
ensuring that the resulting behavior still guarantees that any initial condition
will always eventually lead to the goal. Using the framework from [1], and limited
agents as introduced therein, we attempt to optimize the local behavior of the
agents in finite pattern formation tasks of increasing complexity. We begin from a
local state-action map given to the agents. This state-action map can be verified
to always eventually lead to the goal, but is not optimized for performance, as any
agent in a given state can select its action randomly from several options, with
equal probability. We then tune this state-action map with the goal of simplifying
the behavior and minimizing the number of actions needed, on average, to achieve
the final pattern when starting from an arbitrary initial configuration. More
specifically, we do the following:

1. Restrict the possible actions that an agent can take when in a given state,
subject to the constraint that it must still be provable that the global goal will
emerge. This minimizes the size of the local state-action map of the agents,
and in turn the size of the possible solution space.

2. We take the minimized state-action map and we apply an evolutionary algo-
rithm to optimize the probability of executing each action.

The desired final outcome is a probabilistic local state-action map that enables
the agents to arrange into the desired pattern most efficiently when starting from
a random initial configuration.

3 Framework and Approach to Pattern Formation

This section summarizes the pattern formation methodology, which can be found
in more detail in [1]. For the sake of brevity, in this work we will assume that the
swarm operates in a grid world and in discrete time. However, as demonstrated in
[1], the behavior can also be used in continuous time and space with asynchronous
agents.

Consider N robots that exist in an unbounded discrete grid world and operate
in discrete time. In the case studied in this paper, each robot Ri can sense the
location of its neighbors in the 8 grid points that surround it, as depicted in
Fig. 1a. This is the local state si of the agent (which is all the information that
it has). The local state space S consists of all combinations of neighbors that it
could sense, such that |S| = 28. At time step k = 0, we assume the swarm begins

126 M. Coppola and G. C. H. E. de Croon

(a) Example local state (b) Possible actions

Fig. 1. Depictions of local state and the actions that an agent can take

in a connected topology forming an arbitrary pattern P0. At each time step, one
random robot in the swarm takes an action, whereby it can move to any of the
8 grid points surrounding it, as depicted in Fig. 1b. This is the action space of
the agents, denoted A. Moreover, if a robot takes an action, then it will not take
an action at the next time step (unless no other robot can take an action).

The goal of the swarm is to rearrange from its initial arbitrary pattern P0

into a desired pattern Pdes. This is achieved using the following principle. The
local states that the agents are in when Pdes is formed are extracted, this forms
a set of local desired states Sdes ∈ S, as depicted by the examples in Fig. 2. If
robot Ri finds itself in any state si ∈ Sdes then it is instructed to not move,
because, from its perspective, the goal has been achieved. In [1], it is shown
that, given a Pdes and the corresponding Sdes, it can be automatically verified
whether the local desired states will uniquely form Pdes, or whether they can
also can give rise to spurious global patterns. In the following, we assume that
set of local desired states has passed this verification. Therefore, until Pdes is
formed, at least one agent will be in a state s �∈ Sdes and will seek to amend the
situation. The swarm will then keep reshuffling until Pdes forms.

When an agent Ri is in a state si �∈ Sdes, it can execute an action.
From the state space and action space, we can extract a state-action map
Q = (S\Sdes) × A. However, not all actions should be allowed. The actions
that: (a) cause collisions and (b) cause local separation of the swarm are elimi-
nated from Q, because they are not safe. From this, we extract a safe state-action
map Qsafe, where Qsafe ⊆ Q. From this process, there will also emerge some
local states that cannot take any safe actions. An agent in such a state will not
be able to move or else it will either collide with other agents or possibly cause
separation of the swarm. We refer to such states as blocked states. The set of
blocked states is denoted Sblocked. By contrast, there are states where an agent
will be capable of moving away from its neighborhood without issues. We call
these states simplicial. The set of simplicial states is denoted Ssimplicial. Figure 3
shows examples of blocked states and simplicial states.

Now consider a graph GS = (V,E). Let the nodes of GS be all states that
the agents can be in, such that V = S. The edges of GS are all local transitions
between states. These are all the state transitions that an agent can locally
experience as a result of the changing environment when it, or any other agent
in the swarm, moves. More specifically, GS is the union of three subgraphs:

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 127

Fig. 2. Set of desired states Sdes for the exemplary patterns treated in this paper,
featuring patterns of increasing complexity and size (from left to right)

(a) (b) (c) (d)

Fig. 3. Examples of: (a) a state s ∈ Sblocked, due to it being surrounded; (b) a state
s ∈ Sblocked, because any motion will cause the swarm to locally disconnect; (c) a
state s ∈ Sactive ∩ Ssimplicial, because it can travel around all its neighbors; (d) a state
s ∈ Sactive but s �∈ Ssimplicial, because it can move but it cannot travel around all its
neighbors or else it might disconnect the swarm

G1
S indicates all state transitions that an agent could go through by an action

of its own, based on Qsafe. G2
S indicates all state transitions that an agent

could go through by an action of its neighbors (which could also move out
of view). G3

S indicates all state transitions that an agent could go through if
another agent, previously out of view, were to move into view and become a
new neighbor. Furthermore, let G2r

S be a subgraph of G2
S . G2r

S only indicates the
state transitions in G2

S where a neighbor moves about the central agent, but not
out of view. By analyzing certain properties of these graphs, it can be verified
that the pattern Pdes will eventually form starting from any initial pattern P0.
Specifically, the following conditions need to be met:

1. G1
S ∪ G2

S shows that each state in S features a path to each state in Sdes.
2. For all states s ∈ Sblocked ∩ S¬des, none of the cliques1 of each state can be

formed uniquely by agents that are in a state s ∈ Sdes ∩ Ssimplicial.
1 A clique is a connected set of an agent’s neighbors. Without the central agent, the

agents in each clique would remain connected with each other, but the different
cliques would not be connected.

128 M. Coppola and G. C. H. E. de Croon

3. G2r
S shows that all static states with two neighbors can directly transition to

an active state.
4. G1

S shows that any agent in state s ∈ Sactive ∩ Ssimplicial could move around
all its local neighbors (as exemplified in Fig. 3c).

5. G3
S shows that any agent in any state s ∈ Sdes ∪ Sblocked will always, by the

arrival of a new neighbor in an open position, transition into an active agent
(with the exception of any agent that is, or becomes, surrounded).

The motivations behind these conditions can be found in [1]. They are not
repeated here due to page restrictions. However, they essentially ensure that all
agents will keep moving around with sufficient freedom for the swarm to reshuffle
without deadlocks or endless loops until the pattern is achieved. These conditions
are local in nature; they focus on the local perception in an agent’s limited
sensing range and the actions that the agent could take as a result. The advantage
of this is that checking whether the conditions are met is independent of the size
of the swarm, avoiding the combinatorial explosion that would otherwise ensue.
This makes it possible to verify them within a heuristic optimization process.
This proof, combined with the fact that it can deal with very limited agents
(anonymous, homogeneous, memoryless, with limited range sensing, and without
needing any communication, global knowledge, or seed agents) moving in space,
sets the work in [1] apart from other works such as [13,15,19].

4 Optimization Methodology

Following the framework in Sect. 3, we can know whether a given pattern Pdes

will eventually form if the agents act based on its corresponding Qsafe. However,
this may take a significant amount of actions, due to the fact that any active
agent could move at any time step and select a random action from its options
in Qsafe. The objective of this article is to minimize the number of actions that
the agents will take, on average, to form Pdes when starting from an arbitrary
pattern P0. In Sects. 4.1 and 4.2 we take two preliminary steps to automatically,
at the local level, prune Qsafe from unnecessary actions. This will lead us to
a new set Qreduced ⊆ Qsafe which is minimally sufficient to achieve the global
goal. This reduces randomness in the system and restricts the solution space.
Then, in Sect. 4.3, we use an evolutionary algorithm to tune the probability of
taking each action in Qreduced, leading to a final controller. Throughout all steps,
measures will be taken to ensure that the conditions of the proof (as detailed at
the end of Sect. 3) remain respected. We apply this procedure to the patterns
from Fig. 2.

4.1 Step 1: A-Priori Local Reduction of Active States

S can be sub-divided in two sets: Sactive, in which agents take an action based
on Qsafe, and Sdes ∪ Sblocked, in which the agents do not take actions. For
simplicity, the latter is grouped under the umbrella set Sstatic = Sdes ∪ Sblocked.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 129

In this step, we aim to move states from Sactive to Sstatic. This will reduce the
number of agents in the swarm that are likely to move, decreasing the size of
Qsafe.

As explained in Sect. 3, an important axiom needed to guarantee that Pdes

will form is that, for a swarm of N agents, N instances of the local states in
Sstatic, with repetition, must uniquely rearrange into Pdes. If this is not the case,
another pattern could emerge where all agents are in a state Sstatic and do not
move. Here, because we are already at the optimization stage, we consider the
case where the original Sstatic already guarantees that Pdes is unique. From this
starting point, we present a method to augment Sstatic based only on a local
analysis, while keeping Pdes as the unique static pattern.

Consider a state s ∈ Sactive. For s, we locally check whether it could be fully
surrounded by agents with a state within Sstatic. If this is not possible, because
s is such that at least one of its neighbors would be in an active state, then
we add s to Sstatic. This is because we know that, if this state s were static,
there would always be one active agent somewhere next to it anyway, so Pdes

still remains the only unique pattern that can be formed by static states. Then,
when this active neighbor moves, the local state of the agent will also change
and it will also no longer be static. We run this process iteratively for all states
until no more states from Sactive can be moved to Sstatic. As an exception, due
to the importance of active simplicial states remaining active to guarantee that
there is motion in the swarm, these are not included in the process.

Using this approach, it is possible to significantly increase the size of Sstatic,
and in turn reduce the size of Qsafe. Additionally, one can also add to Sstatic all
states that expect more neighbors than are present in the swarm. For instance,
for a swarm of 4 robots, all states with 4 or more neighbors may be discarded,
because they cannot happen in the first place and we need not consider them.
Table 1 shows the results of Step 1 for the patterns in Fig. 2.

4.2 Step 2: Local Elimination of Unnecessary Actions

In this step, individual state-action pairs that are not necessary towards achiev-
ing the final pattern, in accordance with the proof, are discarded. The objective is
to minimize |Qsafe| while keeping the conditions listed at the end of Sect. 3. The
minimization was performed with a Genetic Algorithm (GA) in order to avoid

Table 1. Results of Step 1 on the size of Sstatic (which increases) and Qsafe (which
decreases)

4 agents triangle Hexagon 9 agents triangle

Before |Sstatic| 28 30 33

|Qsafe| 543 550 531

After |Sstatic| 188 128 87

|Qsafe| 172 381 439

130 M. Coppola and G. C. H. E. de Croon

(a) 4 agents triangle (b) Hexagon (c) 9 agents triangle

Fig. 4. Results of the evolutionary reductions of Qsafe from Step 2

local minima. The fitness function to be minimized was f = |Qsafe|, subject to
the following constraints:

1. Sstatic must not change. This is because, following Step 1, we know that all
remaining states must be active, else a spurious pattern might form.

2. The conditions at the end of Sect. 3 must be respected.

The population of the GA was formed by 100 binary genomes. Each gene in a
genome represented a state-action pair in Qsafe, with a 1 indicating that the
state-action pair is kept and a 0 indicating that it is eliminated. All genomes
in the initial population were such that the constraints were respected. Then,
the new generation consisted of: elite members (30%), new offspring (40%), and
mutated members (30%). Offspring genomes were the result of an AND operation
between two parent genomes. This automatically meant that any offspring would
be at least as fit as its parents, because the AND operator natively either reduced
or kept the quantity of activated bits. Offspring were only kept if they complied
with the constraints, else the parents were forced to look for new mates to per-
form the AND operation with. This also made for a convenient stopping criterion,
which is when all children are equally as fit as the parents or when all parents
are unable to find any mate that will result in a valid offspring. On each gener-
ation round, mutation was applied to a random portion of the population, for
which the NOT operator was randomly applied to 10% of each selected member’s
genome (thus changing 1s to 0s and viceversa). Similarly as to the offspring, a
mutation was kept only if it returned a genome for which the constraints were
met, else it was discarded and a new mutation was attempted. This way there
was a guarantee that the population always consisted of valid genomes.

We executed 5 evolutionary runs for each pattern from Fig. 2, with similar
results. The results of the runs are shown in Fig. 4. Thanks to the local nature
of the proof, the evolution time was not dependent on the number of agents in
the swarm.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 131

(a) 4 Agents Triangle (b) Hexagon

Fig. 5. Optimization results of Step 3 from the best evolutionary runs

4.3 Step 3: Behavior Optimization

Steps 1 and 2 lead to reduced state-action maps Qreduced that are minimally
sufficient to guarantee that the patterns will be achieved. In Step 3, we tune the
probability of executing each action in Qreduced. This is done with a more clas-
sical evolutionary robotics approach to swarm robotics: the swarm is simulated
and evaluated based on its statistical performance, and this information is used
in the fitness function of a GA.

The fitness function to be minimized is the expected number of actions needed
to achieve the goal. This was evaluated by the mean over 10 trials. The GA used a
population of 100 scalar genomes. Each gene in a genome held a value 0 < p ≤ 1,
indicating the probability of taking the corresponding action from Qreduced. By
means of the inequality, it is not possible to bring the probability of a state-action
pair down to 0 and deactivate it (keeping the proof intact). Each new generation
was produced by elite members (30%), offspring (40%), and mutated members
(30%), as in Step 2. Offspring resulted from mixing two parents’ genomes via a
uniform crossover strategy, where each gene of an offspring’s genome is randomly
selected from the genes of either parent with equal probability. Mutation was
applied to random genomes, for which 10% of their genes were replaced by ran-
dom values from a uniform distribution. The members of the initial population
were produced randomly from uniform distributions.

Using this scheme, we optimized the behavior for the 4 agents triangle and
the hexagon, running 5 evolutionary runs each. The best evolutionary runs are
shown in Fig. 5. For the triangle, 3 out of 5 runs converged. For the hexagon,
2 out of 5 runs converged, one considerably lower than the other. We associate
the convergence issues to bootstrap and noise issues during evaluation, which
grow with the size of the swarm. In light of this, we were unable to establish an
optimal solution for the triangle with 9 agents. This is due to two problems: (1)
the controllers in early generations took a very long time to evaluate, which made
executing the GA troublesome, (2) the fitness metric was subject to considerable
variance, leading to inaccurate controller evaluations. These problems and their
implications are discussed further in Sect. 5.

132 M. Coppola and G. C. H. E. de Croon

(a) 4 Agents Triangle (b) Hexagon (c) 9 Agents Triangle

Fig. 6. Normalized histograms of the performance of the system through all steps of
the optimization

(a) 4 Agents Triangle

(b) Hexagon

Fig. 7. Exemplary simulations showing pattern formation of the triangle with 4 agents
and the hexagon after optimization

5 Results and Discussion

We tested the performance of the original baseline controller against the per-
formance of the controllers after Step 1, Step 2, and Step 3. Each controller
was tested 100 times. The normalized distributions for the number of actions to
completion are shown in Fig. 6. Exemplary simulations of swarms as they create
a pattern using the evolved behaviors from Step 3 are shown in Fig. 7. In all
tests, the desired pattern was eventually achieved. Reducing the size of Qsafe

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 133

in Steps 1 and 2 simplified the state-action map and did not have an impact on
whether the goal could be achieved. This result serves as empirical evidence for
the proofs in [1], which were apt guards to ensure that the swarm could form the
pattern. Then, when the minimized state-action map Qreduced was optimized, we
were able to significantly improve the performance of the system for the triangle
with 4 agents and the hexagon, achieving a fast average performance while also
respecting the proof.

There remain issues to be investigated. The first issue is that Step 1 and 2
only modified Qsafe with the goal to minimize its size and simplify the agent’s
behavior. As seen in Fig. 6, this in itself does not necessarily aid performance. In
future work, there should be efforts to understand how to reduce Qsafe while also
improving performance. The second issue is scalability, as encountered in Step
3. Most notably, this prevented us from completing Step 3 for the triangle with
9 agents. It is possible that these problems can be mitigated by improving Steps
1 and 2 to minimize |Qsafe| while also assessing performance. Another option
could be to stop simulations before completion and use a fitness measure that
favors global patterns closer to Pdes over other less similar patterns. However,
it might also be possible that the scalability issue is intrinsic to the system. As
the size of the swarm grows, then the relative information that each agent has of
the whole swarm decreases, and it become increasingly difficult for an agent to
predict whether an action is the best for the good of the whole swarm. It would
be interesting to explore this limitation in future work.

6 Conclusions and Future Work

The approach presented in this paper is a first step towards optimizing swarm
behavior of severely limited agents by aid of an automatic proof, where a local
proof allows for the fast verification of certain properties, and can thus be
included within the optimization process. The focus was not on how to achieve
the goal, but on how to achieve it more efficiently. This led to efficient controllers
where the number of actions needed to achieve the patterns were significantly
lower than the original controllers, making them more suitable for use in the real
world. In the meanwhile, the controllers remained such that eventual success by
the swarm is guaranteed.

The approach encountered problems with scalability in the final step. This
could be tackled by using the automatic minimization steps, prior to the final
optimization, to reduce the solution space in a way that is more favorable for
performance. However, there remains the issue that, as the size of the swarm
grows, each agent becomes less empowered to take an optimal action, given that
it has relatively less information on the state of the swarm. For this reason, it
would also be valuable to explore how scalability improves when the agents have
more information of their surroundings (e.g., they can sense further away), or
some limitations are lifted (e.g. memory).

134 M. Coppola and G. C. H. E. de Croon

References

1. Coppola, M., Guo, J., Gill, E.K., de Croon, G.C.H.E.: Provable emergent pattern
formation by a swarm of anonymous, homogeneous, non-communicating, reactive
robots with limited relative sensing and no global knowledge or positioning. ArXiv
Preprint arXiv:1804.06827 (2018). (Submitted to Swarm Intelligence, Springer)

2. Coppola, M., McGuire, K.N., Scheper, K.Y.W., de Croon, G.C.H.E.: On-board
communication-based relative localization for collision avoidance in micro air vehi-
cle teams. Auton. Robots (2018)

3. Duarte, M., et al.: Evolution of collective behaviors for a real swarm of aquatic
surface robots. PloS One 11(3), e0151834 (2016)

4. Ericksen, J., Moses, M., Forrest, S.: Automatically evolving a general controller for
robot swarms. In: 2017 IEEE Symposium Series on Computational Intelligence,
SSCI, pp. 1–8 (2017)

5. Ferrante, E., Duéñez Guzmán, E., Turgut, A.E., Wenseleers, T.: GESwarm: gram-
matical evolution for the automatic synthesis of collective behaviors in swarm
robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2013, pp. 17–24. ACM, New York (2013)

6. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3, 29 (2016)

7. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2), 125–152 (2015)

8. Gomes, J., Urbano, P., Christensen, A.L.: Introducing novelty search in evolution-
ary swarm robotics. In: Dorigo, M., et al. (eds.) ANTS 2012. LNCS, vol. 7461, pp.
85–96. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32650-9 8

9. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. Swarm Intell. 7(2), 115–144 (2013)

10. Hüttenrauch, M., Šošić, A., Neumann, G.: Guided deep reinforcement learning for
swarm systems. ArXiv Preprint arXiv:1709.06011 (2017)

11. Izzo, D., Simões, L.F., de Croon, G.C.H.E.: An evolutionary robotics approach for
the distributed control of satellite formations. Evol. Intell. 7(2), 107–118 (2014)

12. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm
robotics. In: Groß, R., et al. (eds.) Distributed Autonomous Robotic Systems.
SPAR, vol. 6, pp. 487–501. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-73008-0 34

13. Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)
14. Nolfi, S.: Power and the limits of reactive agents. Neurocomputing 42(1–4), 119–

145 (2002)
15. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a

thousand-robot swarm. Science 345(6198), 795–799 (2014)
16. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm

distribution and deployment for cooperative surveillance by micro-aerial vehicles.
J. Intell. Robot. Syst. 84(1), 469–492 (2016)

17. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

18. Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot.
Robot. Auton. Syst. 54(2), 97–103 (2006)

19. Yamins, D., Nagpal, R.: Automated global-to-local programming in 1-D spatial
multi-agent systems. In: Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2008, vol. 2, pp. 615–
622. International Foundation for Autonomous Agents and Multiagent Systems,
Richland (2008)

http://arxiv.org/abs/1804.06827
https://doi.org/10.1007/978-3-642-32650-9_8
http://arxiv.org/abs/1709.06011
https://doi.org/10.1007/978-3-319-73008-0_34
https://doi.org/10.1007/978-3-319-73008-0_34

Quality-Sensitive Foraging by a Robot
Swarm Through Virtual

Pheromone Trails

Anna Font Llenas1,2, Mohamed S. Talamali1 , Xu Xu2,3 ,
James A. R. Marshall1 , and Andreagiovanni Reina1(B)

1 Department of Computer Science, University of Sheffield, Sheffield, UK
{mstalamali1,james.marshall,a.reina}@sheffield.ac.uk

2 Department of Engineering and Mathematics, Sheffield Hallam University,
Sheffield, UK

3 MERI, Sheffield Hallam University, Sheffield, UK

Abstract. Large swarms of simple autonomous robots can be employed
to find objects clustered at random locations, and transport them to a
central depot. This solution offers system parallelisation through con-
current environment exploration and object collection by several robots,
but it also introduces the challenge of robot coordination. Inspired by
ants’ foraging behaviour, we successfully tackle robot swarm coordina-
tion through indirect stigmergic communication in the form of virtual
pheromone trails. We design and implement a robot swarm composed of
up to 100 Kilobots using the recent technology Augmented Reality for
Kilobots (ARK). Using pheromone trails, our memoryless robots redis-
cover object sources that have been located previously. The emerging col-
lective dynamics show a throughput inversely proportional to the source
distance. We assume environments with multiple sources, each providing
objects of different qualities, and we investigate how the robot swarm bal-
ances the quality-distance trade-off by using quality-sensitive pheromone
trails. To our knowledge this work represents the largest robotic exper-
iment in stigmergic foraging, and is the first complete demonstration of
ARK, showcasing the set of unique functionalities it provides.

1 Introduction

The task of collecting objects clustered at random locations and transporting
them to a central depot can benefit from a decentralised solution. In contrast
to a single large vehicle dedicated to load/unload all the objects, an interesting
solution consists in having a large number of simple autonomous vehicles, or
robots, each carrying a single object and coordinating with each other. Advan-
tages of this solution are parallel exploration of the environment and possibil-
ity to distribute the resources among various source locations. Controlling the
robot behaviour via a decentralised algorithm adds the advantage of scalabil-
ity, by which the system throughput can be calibrated with increase/removal of
robots without need for a system redesign. We study a decentralised solution
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 135–149, 2018.
https://doi.org/10.1007/978-3-030-00533-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_11&domain=pdf
http://orcid.org/0000-0002-2071-4030
http://orcid.org/0000-0002-9721-9054
http://orcid.org/0000-0002-1506-167X
http://orcid.org/0000-0003-4745-992X

136 A. Font Llenas et al.

that employs a swarm of simple robots that coordinate via stigmergic communi-
cation to collect items clustered in the environment in various source areas and
to transport them to a central depot. Exploiting nearer sources would increase
the system throughput, however objects may also have different qualities. We
study how our system can balance the trade-off between quality and distance.

The task of finding and collecting objects is known in the multi-robot lit-
erature as foraging due to the resemblance to the activity that some animals
perform when hunting food. In foraging terms, the source areas are food sources
and the depot area is the animal’s nest. We exploit this analogy with biology
to also design our solution. Inspired by foraging behaviour of ant colonies, we
design a robot swarm that relies on a stigmergic communication medium similar
to the pheromone trails used by ants [12,26,56,60]. Initially, scout ants randomly
search the environment, when one finds food she returns to the nest carrying a
food item and leaving a pheromone trail on her path. Through this process, ants
create pheromone trails between their nest and food sources located by scout
ants. The pheromone trails are used by other members of the colony to avoid
further random exploration and to exploit the sources that have been already
found. Similarly, we design a solution where robots start to randomly search
the environment and, later, they converge to exploiting the object sources by
relying on stigmergic communication. It has been observed that ants modu-
late pheromone deposition as a function of the food source quality [22,26,60]
(or of the nest-site quality during nest hunting [28]). In a similar fashion, our
robots deposit pheromone proportionally to the estimated objects’ quality. In
this study, we focus on the strategies to coordinate the robot motion leaving in
abstract terms the object load/unload issues.

Previous work investigated the use of pheromone as a form of indirect com-
munication between robots (see a review in Sect. 2). Our study includes analysis
of the quality-distance trade-off which is an aspect that has not been previously
explored in multi-robot foraging studies (see the problem description in Sect. 3).
We implement a foraging swarm composed of simple robots (Sect. 3.1), the Kilo-
bots [50], that operate in a virtual environment where they can deposit/sense
virtual pheromone (Sects. 3.2 and 3.3). In Sect. 4, we evaluate the system perfor-
mance through simulations and we employ the Augmented Reality for Kilobots
(ARK) [47] system to showcase the functioning with a set of demos with swarms
up to 100 Kilobots. We finally discuss the relevance of the work for engineering
and biology in Sect. 5.

2 Related Work

Several studies employed a form of stigmergy similar to the ants’ pheromone
trails to coordinate the robots’ movement. A pivotal point of these studies con-
cerns the way in which pheromone is implemented, that is how the environment
stores/updates the pheromone and how the robots deposit/sense pheromone in
the environment. We identify and discuss three main categories which we name:
beacon robots, smart-environment based, and on-board pheromone.

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 137

The first robotic systems that used pheromone communication to coordi-
nate the group motion allocated a set of robots as static beacon robots
[5,10,19,25,36,39,59]. The role of the beacons was to store and communicate
pheromone levels to robots that moved in their surroundings. The advantage
of this solution is that it can be implemented by simple robots in unknown
unstructured environments. The drawback is that part of the robots are not
actively contributing to the main task (e.g. foraging and collecting items) but
need to stop and act as beacons. This strategy may limit the functioning in vast
environments. Mobile robot beacons overcome the sacrifice of robots and allow
robots to be concurrently beacons and active foragers [11,53]. However, the cor-
rect functioning relies on the tuning of the swarm size and communication range
as a function of the environment size.

Several studies, similarly to ours, implemented pheromone communication
through a smart environment which was capable to store virtual pheromone
information and to provide this information in real-time to the robots [1,17,18,
21,54,58]. Within this category, several studies implemented virtual pheromone
through the use of RFID tags which were deployed in the environment and stored
pheromone information [3,23,24,29,32,33]. Our study relies on a different form
of smart environment: Kilobots perceive and deposit virtual pheromone via ARK
which has similarities with implementations of [1,17,18,54]. Similarly to ARK,
robots were real-time tracked with an overhead camera, although, differently
from ARK, their robots used the light sensors to read the virtual pheromone that
was projected as light on the floor. In [58], pheromone foraging was implemented
on a Kilobot swarm using a different augmented reality system, the Kilogrid.

Researchers designed various solutions to equip robots with on-board sen-
sors and actuators customised to mark the environment and thus shifted the
pheromone mechanism from the smart-environment to the robots. In an early
work [55], the robot used a marker pen to draw lines on the floor to improve its
performance in the area coverage task. This technology had the drawback of not
allowing evaporation or diffusion of pheromone. Differently, in [45], the robots
could emit and read gas which was used to guide other robots towards a source
area. A limitation of this work was the high volatility of the gas. In [34], the
E-Puck robots were equipped with phosphorescent glowing paint to temporarily
mark the environment. Robots had to operate in a dark environment and follow
light to move between two areas. Finally, in [15,16], robots used alcohol to mark
the environment and improve the collective performance in the foraging task.

Most work discussed in this Section, as ours does, aims to implement a robotic
system for the foraging task where robots are asked to move between two (or
more) locations (mimicking the activity of objects collection). In our study, we
include the aspect of objects’ quality that has not been taken in consideration
earlier and we analyse how the system can balance the quality-distance trade-off.
Previous work included robot swarms up to a maximum of 50 robots [58], in this
study we scale to 100 robots.

138 A. Font Llenas et al.

3 Problem Description

A robot swarm is asked to collect objects from n source areas deployed in a 2D
environment and transport them to a central depot area. In this study, we ignore
the details relative to object picking, deposition, and storage; instead, we focus
on the coordinated activity of the robots to move between sources and depot
areas. Each source area Ai (i ∈ {1, 2, . . . , n}) is an infinite source of one type of
object characterised by a quality vi ∈ [0, 10]. The objective is to maximise the
throughput of objects weighted by their quality.

3.1 Robots

The swarm is completely decentralised and composed of S simple autonomous
robots that have minimal knowledge about the environment and limited sensory
and memory capabilities. We assume that the robots do not know and can-
not keep memory of the number, location, and quality of the source areas. The
robots do not communicate with each other or cannot perceive other robots and
obstacles in the environment. The robots coordinate and collaborate with each
other only through stigmergic communication, i.e. by leaving temporary traces
in the environment that can be read by other robots. The robots are equipped
with the following sensors and actuators: (i) differential drive motors to move
in the 2D environment, (ii) area sensor to detect source and depot areas when
the robot is within the area, (iii) object quality sensor to estimate the quality
of the collected object, (iv) depot direction sensor to know the relative orienta-
tion towards the depot area, (v) pheromone gland to leave in the environment
temporary traces (i.e. pheromone), and (vi) pheromone antennae to perceive the
presence of pheromone in the robot’s immediate surroundings.

3.2 The Kilobots and ARK

We implemented the robot swarm using Kilobots [50] which are inexpensive
simple robots designed to perform large-scale swarm robotic studies. The Kilobot
modulates the frequency of its two vibration motors to move on a flat surface.
The motors have been automatically calibrated via ARK [47] to move at an
average speed of ∼1 cm/s and rotate in place at ∼40 ◦

/s. The robots have a limited
set of sensors and actuators therefore we relied on the ARK system to enhance
the Kilobot’s capabilities. The ARK system allows the user to equip the Kilobot
with a customised set of virtual sensors and virtual actuators to sense and modify
simulated virtual environments shared by all robots in realtime. While the ARK
system has global information on the environment and the process, its function is
limited to enhance the Kilobots’ abilities, and enrich the experiments for they can
be used within; ARK lets the Kilobots operate autonomously in a decentralised
fashion without any central control.

Via ARK, we equipped the Kilobots with the required virtual sensors and
actuators. The Kilobot periodically receives a message with the relative direction
to the depot (coded in 4 bits). When the Kilobot is within an area (either source

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 139

or depot), ARK informs the robot of the type of area (2 bits) and, if within
source, of the object’s quality (4 bits). The Kilobots, through their LED, signal
to ARK when they want to deposit a drop of pheromone in their current position.
Finally, ARK signals the Kilobot if it has pheromone within detection range
(4 bits). The detection range of the virtual pheromone antennae is depicted in
Fig. 1(a); the robot can perceive a binary value (presence/absence of pheromone)
in four areas 45◦ wide in front of itself at a maximum distance of ∼3.5 cm.

(a) virtual antennae (b) time t (c) time t+ dt

Fig. 1. (a) The robot can perceive the presence of pheromone in its immediate sur-
rounding through virtual pheromone antennae implemented via ARK [47]. Kilobots
sense a binary value (presence/absence of pheromone) in each area. In the depicted
example, the cyan shapes show traces of virtual pheromone and the robot’s reading is
[1, 0, 1, 0]. (b)–(c) Example of pheromone dynamics as from Eq.(1); at time t, the cell
c(i, j) has a pheromone value of 100, and at time t+dt (with dt = 0.5 s) the pheromone
evaporated at rate ε = 0.08 and diffused at rate γ = 0.01 to the four neighbouring cells.

The virtual environment is updated in realtime by the ARK system that
increases pheromone level when a robot deposits a pheromone drop φ = 100 and
computes evaporation and diffusion of pheromone over time. The pheromone is
stored in a matrix that discretises the 2D environment in 6.7 mm cells (i.e. 150
cells per metre). At each time-step (of length dt = 0.5 s), ARK updates each
matrix cell c(i, j) (with generic indices (i, j)) as follows:

c(i, j) = c(i, j)[1 − (ε + 4γ)dt] + γ[c(i, j ± 1) + c(i ± 1, j)]dt, (1)

where parameter ε = 0.08 is the evaporation rate and γ = 0.01 the diffusion rate,
and c(i, j) ≥ 0. Figure 1(b)–(c) show an example of the pheromone dynamics
where at time t a drop φ = 100 is deposited at cell c(i, j). Equation (1) is a
simplification of the exponential decay observed in ant’s pheromone [8,17].

3.3 Robot Behaviour

The proposed solution has been designed taking inspiration from the foraging
behaviour of ants that use pheromone trails to mark the environment. This form

140 A. Font Llenas et al.

of stigmergic communication allows the colony to limit unnecessary independent
exploration and to coordinate among peers to collectively exploit the found food
resources. The individual behaviour of the Kilobot is implemented as the finite
state machine (FSM) of Fig. 2.

RW GDs

FP

p

p
TB

d

!p

s !p
s: within source area

d: within depot area
p: phero detected

Transitions:
RW: random walk
GD: go to depot
FP: follow pheromone

States:

TB: turn back

Fig. 2. FSM of the individual Kilobot behaviour. The arrows represent transitions
between states which are represented as circles.

At the beginning, the robots do not have information about the source loca-
tion(s) therefore they start searching the environment. Given the Kilobot’s lim-
ited capabilities, an easy and efficient method to search an unknown environment
is through an isotropic random walk [9] which we implemented with alternate
straight motion for 7.5 s and uniformly random rotation in [−π, π]. Once a
source area Ai has been found, the robot (virtually) collects one object and car-
ries it towards the depot area. On its way towards the depot, the robot deposits
drops of pheromone with probability Pi proportional to the object quality vi,
i.e. Pi = vi/vmax. The Kilobot updates its decision to deposit pheromone every
∼2 s (which it signals to ARK via its LED), therefore a medium-quality object
will lead the robot to lay down intermittent pheromone trails. Once the Kilobot
returned to the depot, it unloads the object, turns 180◦, and resumes explo-
ration because it cannot store in its memory the source area location. However,
through pheromone trails the Kilobot exploits a form of collective memory which
is stored in the environment in the form of temporary stigmergic information. In
fact, once a Kilobot perceives pheromone in any of the four antennae areas (of
Fig. 1(a)), it follows the trail by moving in the direction of the triggered anten-
nae area. If more than one antennae area detect pheromone (as in the example
depicted in Fig. 1(a)), the robot selects the area in the most opposite direction
from the depot. This selection relies on the assumption that robots only deposit
pheromone in their straight path from a source area to the depot and that they
have access to the depot vector.

As in every study, we make the experiment code available online; download
it at https://github.com/DiODeProject/PheromoneKilobot.

4 Experiments and Results

We measured the system performance through accurate physics-based simula-
tion of the Kilobot swarm. We ran our simulations via ARGoS [41] which is a
simulator tailored to swarm robotics needs that allows high speed and accurate

https://github.com/DiODeProject/PheromoneKilobot

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 141

simulation of the physics dynamics. ARGoS allows the simulation of the Kilobot
robots and the ARK system through its dedicated plugin [40]. Using ARGoS is
particularly advantageous because it allows the experimenter to use the same
identical code in simulation and on the robots.

4.1 Simulation Scenarios

We investigated the performance of a Kilobot swarm of size S ∈ {50, 100, 200} in
a 2.5 m × 2.5 m environment with a central circular depot area and n ∈ {1, 2, 4}
circular source areas with a radius of 10 cm. The source areas’ positions and
object’s qualities were varied to study the quality-distance trade-off. We varied
the distance from the depot of the source areas di ∈ [0.5, 1.5] m and object’s qual-
ities vi ∈ [0, 10], with i ∈ n. The robots were initially deployed with (uniformly)
random position and orientation within a square 70 cm× 70 cm region centred
on the depot area. The experiments length was 20 simulated minutes. We report
the mean number of objects retrieved from each source and the mean number of
robots on each path (computed as the number of robots at a maximum distance
of 20 cm from the straight line between depot and source).

4.2 Results for Varying Distance and Quality

We investigated the effects of distance and quality through a scenario with n = 2
source areas with diametrically opposed positions. To investigate the effects of
distance, we positioned the source A1 at distance d1 = 1 m from the depot and
we varied the distance d2 ∈ [0.5, 1.5] m of source A2. Both sources have objects
with maximum quality v1 = v2 = 10. On the contrary, to investigate the effects
of quality, we set the source A1 with objects of quality v1 = 5, and we varied the
object’s quality v2 ∈ [0, 10] of source A2. Both sources were placed at distance
d1 = d2 = 1 m from the depot. Figure 3(a), (c) show the number of items col-
lected from each source after 20 min by swarms composed of S = {50, 100, 200}
simulated Kilobots for distance and quality experiments, respectively. The closer,
or better-quality, source area always has a larger number of collected object. As
expected, source A1 has approximately constant throughput while the through-
put of source A2 decreases with distance d2 in Fig. 3(a), and increases with
quality v2 in Fig. 3(c). Figure 3(b) shows the allocation of robots among the two
paths. Large swarms (e.g. S = 200) have a redundancy of robots and by moving
away the source area, more robots are allocated to it. On the other hand, smaller
swarms (e.g. S = 50) reduce the robots on that path as it gets further than 1 m in
length. Similarly, Fig. 3(d) shows similar dynamics for the quality experiments.
Swarms of S = 50 robots reallocate robots to the highest quality, whereas larger
swarms of S = 200 robots saturate the source paths for qualities v2 > 3. Still
the collection is directly proportional to the object’s quality (Fig. 3(c)) because
(especially at the beginning of the experiment) the pheromone trails are more
continuous and easier to follow for areas with better quality objects.

142 A. Font Llenas et al.

Fig. 3. Results from simulation experiments with S = {50, 100, 200} Kilobots and two
source areas with (a)–(b) equal quality, varying distance, and (c)–(d) equal distance,
varying quality. In (a), (c) we report the number of collected objects after 20min; in
both cases, the closest, or better quality, source area has a larger number of collected
items. In (b), (d) we report the number of robots on each source path after 20min.
Small swarms allocate resources differently than larger swarms. Lines are mean of 100
simulations and the lighter colour fill is the 95% confidence interval. (Color figure
online)

4.3 Effects of the Swarm Size S

Figure 4 shows the number of collected items for varying swarm size S ∈ [10, 250]
in scenarios with n = 2 or n = 4 sources with equal objects’ qualities vi = 10 and
equal distances di = [1] m, with i ∈ n. On one hand, increasing the swarm size S
results in an increasing absolute throughput of objects (blue lines on left y-axis).
On the other hand, adding more robots increases the swarm density and causes
more collisions. This physical interference among robots reduces the individual
robot efficiency (green lines on right y-axis). In fact, Kilobots do not have any
collision sensor and, in dense environments, they may lose time pushing each
other without moving. A similar trade-off between benefits and costs of adding
individuals has been already observed in collective behaviour studies [6,14,31].

4.4 Quality-Distance Trade-Off

As shown in Sect. 4.2, our system favours nearer over further source areas, and
better over worse object qualities. Here, we explore how the system compro-
mises between far, better-quality sources versus nearer, lower-quality sources.

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 143

Fig. 4. Effect of the swarm size S on the number of collected objects. Absolute through-
put increases with S but physical interference caused by collisions reduces individual
efficiency for increasing S. Lines are mean of 100 simulations and the lighter colour fill
is the 95% confidence interval for vi = 10, di = 1 m, n ∈ {2, 4}, i ∈ n. (Color figure
online)

We investigate two-sources scenarios with A1 fixed and varying A2. Figure 5(a)–
(b) have d1 = 1m, v1 = 10, v2 = 5, and varying d2 ∈ [0.5, 1.5]m. We can
appreciate that the swarm collects more objects from the lower quality area
A2 than from the better quality A1 only when the difference in distance is
d1 − d2 > 0.2 m. Figure 5(b) shows the number of robots on each path; small
swarms (i.e. S = 50) always allocate more resources (robots) to the better quality
option, instead larger swarms (i.e. S = 200) have such a redundancy of resources
that robots can fill both paths without need to selectively chose the best. In a
similar analysis we fixed the best quality A1 at d1 = 1.5 m, v1 = 10 and varied
the quality v2 ∈ [1, 10] of the closest area A2 in d2 = 0.75 m. Figure 5(c) shows
that large swarms are minimally influenced by quality variation, whereas smaller
swarms select the further and best quality when the closest area has objects of
poor quality v2 < 4.

Fig. 5. Trade-off between closer, lower-quality areas and further, better-quality areas.
(a)–(b) Scenario with v1 = 10, d1 = 1 m, v2 = 5 and d2 ∈ [0.5, 1.5] m. (c) Scenario with
v1 = 10, d1 = 1.5 m, d2 = 0.75 m and v2 ∈ [1, 10]. When robots are overabundant the
trade-off is ignored, whereas smaller swarms prioritise higher quality resources. Lines
are mean of 100 simulations and the lighter colour fill is the 95% confidence interval.
(Color figure online)

144 A. Font Llenas et al.

4.5 Kilobot Swarm Demonstrations

The real Kilobot demonstrations are run in scenarios almost identical to the one
described in Sect. 4.1 except for the environment size which is 2 m× 2 m, and
the experiment length which is 30 min or longer. We run four demos D1, D2,
D3, and D4. Demos D1 and D2 investigate how 50 Kilobots respond to different
qualities and distances, respectively. Demos D3 and D4 show how the system
scales with increasing number of sources (i.e. n = 4) and robots (S = 100).
Figure 6(a) show an image of D3 where in the closeup the ARK screen visualise
the camera stream and the virtual environment information. Figure 6(b) shows
a screenshot of D4. The video complete videos are available at http://diode.
group.shef.ac.uk/FontLlenas2018.html.

(a) Demo with 50 Kilobots (b) Demo with 100 Kilobots

Fig. 6. (a) Image from demo D3 with n = 4 source areas. In the closeup, the computer
screen shows the ARK’s virtual environment, on the background the Kilobots move
between virtual sources following virtual pheromone trails (the virtual environment
has been superimposed to the image). (b) Screenshot from demo D4. Full videos are
available at http://diode.group.shef.ac.uk/FontLlenas2018.html.

Demo D1 shows 50 Kilobots foraging from two sources placed at the same
distance d1 = d2 = 0.6 m with different qualities v1 = 10 and v2 = 5. In
contrast, demo D2 shows 50 Kilobots foraging from two sources with equal
quality v1 = v2 = 10 but placed at different distances d1 = 0.6 m and d2 = 1 m.
In both cases, the swarm response is similar to the one observed in simulation.
A noticeable difference consists in lower number of retrieved object and robots
on paths in comparison with the results of Fig. 3. This difference is due to the
large actuation noise of the Kilobots that was not included in the noise-free
simulations. Additionally, the ARGoS Kilobot plugin [40] used for this study
was not yet finely tuned on the real speed/friction of the robot and resulted in
largely faster robots. Instead, real Kilobots spent considerable time to resolve
collisions between robots moving in opposite directions. Larger commuting time
should be balanced by more stable pheromone trails which could be achieved by

http://diode.group.shef.ac.uk/FontLlenas2018.html
http://diode.group.shef.ac.uk/FontLlenas2018.html
http://diode.group.shef.ac.uk/FontLlenas2018.html

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 145

letting the robot autonomously increase the amount of pheromone deposited in
a decentralised fashion.

Demos D3 and D4 showcase the system with n = 4 sources and up to 100
Kilobots. The four sources have a set of qualities and distances that allows the
viewer to appreciate the quality-distance trade-off investigated in this study. The
considered qualities are v1 = 10, v2 = 8, v3 = 5, v4 = 3 for both demos, while
distance are d1 = d3 = 0.6 m, d2 = 0.8 m, d4 = 0.5 m for D3, and d1 = d2 =
d3 = d4 = 1 m for D4.

5 Discussion and Conclusion

Foraging is a general task that consists of the two main activities of searching
the environment to locate objects and of transporting the objects to a central
depot area. This task is widely studied in robotics because it entails activities
relevant for several robot applications [61]. Employing multi-robot systems to
solve the foraging problem has the clear advantage of offering system parallelisa-
tion through concurrent object collection by several robots. At the same time, it
introduces the challenge of robot coordination. We successfully tackle the robot
swarm coordination through stigmergic communication, although we acknowl-
edge that this is not the only solution as several previous studies explored various
alternatives, e.g. [2,13,20,42,44,48,51,61]. In this study, we assume that robots
cannot directly communicate or sense each other; they are totally unaware of
the other swarm members, still they cooperate with each other through indirect
communication. Pheromone trails allowed memoryless robots to create a form of
collective memory; robots stored information in the environment that they used
to repeatedly find previously discovered sources. The simplicity of the individual
robot behaviour allowed a direct transfer of the noise-free simulation code to the
Kilobot experiments and minimised the impact of the reality gap [27].

We successfully implemented the system on swarms of 50 and 100 Kilobots
supported by the ARK [47] system which allowed robots to operate in a virtual
environment. This work exploits the full potential of the ARK infrastructure
and showcases ARK’s unique functionalities. Even though the robot experi-
ments included virtual components, the physical implementation of the system
has been useful to display the solution robustness and validate the simulation
results. While we acknowledge that hybrid experiments (in between reality and
simulation) do not correspond to real-world applications, we still believe they
represent useful test-beds to validate and demonstrate theories within research
labs.

This study included the source quality as a factor influencing the foraging
behaviour, this may relate to the priority to fetch each type of object. Further
work should better investigate how to control the balance between quality and
distance. This investigation could relate to optimal foraging theory [30,46] which
considers the net energy intake as the energy gain discounted by the foraging
cost. This type of ‘economical’ analysis of the foraging behaviour allows determi-
nation of the best theoretical foraging strategy as a function of various compo-
nents, such as food-distance, prey-payload, and food-quality. Optimal foraging

146 A. Font Llenas et al.

theory has been applied to predict a large variety of foraging behaviour includ-
ing the central place foraging [37,38,52] investigated here. We acknowledge that
previous work has employed optimal foraging theories to engineer multi-robot
systems [4,43,57] and we believe that this research line should be continued.

Our results are in-line with previous investigations and show that system
performance is dependent to the strength of the positive feedback, the swarm
size, and discoverability of sources. Robots are in control of only the first factor
and it might be useful to identify if the robot could prioritise quality or dis-
tance by modulating the positive feedback strength (i.e. pheromone drop size
and deposition frequency as a function of source’s quality and discoverability).
Additionally, in our study, the robots do not perceive differences in pheromone
concentrations, in contrast, ants have a nonlinear response to pheromone that
can result in a collective decisions in favor of one food source over another [35].
We hypothesise that the swarm could achieve a similar selective allocation of all
resources to the best available source by exploiting a negative feedback in the
form of repellent pheromone [7,49].

Acknowledgments. This work was funded by the ERC under the EU-H2020 research
and innovation programme (grant agreement 647704). The authors thank Michael Port,
Alex Cope, and Carlo Pinciroli for their crucial help and support in tackling the hard-
ware and software challenges of this project.

References

1. Arvin, F., Yue, S., Xiong, C.: Colias-φ: an autonomous micro robot for artificial
pheromone communication. Int. J. Mech. Eng. Robot. Res. 4(4), 349–353 (2015)

2. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomo-
geneous robot swarms with application to commercial pollination. In: Proceedings
of the IEEE/RSJ International Conference on Robotics and Automation, ICRA
2011, pp. 378–385. IEEE Press (2011)

3. Bosien, A., Turau, V., Zambonelli, F.: Approaches to fast sequential inventory and
path following in RFID-enriched environments. Int. J. Radio Freq. Identif. Technol.
Appl. 4(1), 28 (2012)

4. Campo, A., Dorigo, M.: Efficient multi-foraging in swarm robotics. In: Almeida
e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007.
LNCS, vol. 4648, pp. 696–705. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74913-4 70

5. Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm of
robots. Biol. Cybern. 103(5), 339–352 (2010)

6. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory
and spatial sorting in animal groups. J. Theoret. Biol. 218(1), 1–11 (2002)

7. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do
ants “behave” like molecules? Phys. Life Rev. 3(3), 162–187 (2006)

8. Detrain, C., Deneubourg, J.L.: Collective decision-making and foraging patterns
in ants and honeybees. Adv. Insect Physiol. 35(08), 123–173 (2008)

9. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with Kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp.
185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

https://doi.org/10.1007/978-3-540-74913-4_70
https://doi.org/10.1007/978-3-540-74913-4_70
https://doi.org/10.1007/978-3-319-44427-7_16

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 147

10. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized coop-
eration between robotic swarms. Swarm Intell. 5(2), 73–96 (2011)

11. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gambardella, L.M.: Com-
munication assisted navigation in robotic swarms: self-organization and coopera-
tion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2011, pp. 4981–4988. IEEE Press (2011)

12. Dussutour, A., Nicolis, S.C., Shephard, G., Beekman, M., Sumpter, D.J.T.: The
role of multiple pheromones in food recruitment by ants. J. Exp. Biol. 212(15),
2337–2348 (2009)

13. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evo-
lution of self-organized task specialization in robot swarms. PLoS Comput. Biol.
11(8), 1–21 (2015)

14. Flanagan, T.P., Letendre, K., Burnside, W.R., Fricke, G.M., Moses, M.E.: Quan-
tifying the effect of colony size and food distribution on harvester ant foraging.
PLoS One 7(7), e39427 (2012)

15. Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by
concentration of pheromone trail for multiple robots. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 283–290. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87527-7 28

16. Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone com-
munication in swarm robotics: group foraging behavior mediated by chemical sub-
stance. Swarm Intell. 8(3), 227–246 (2014)

17. Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the
geometrical properties of trail bifurcations to find an efficient route? A swarm
robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)

18. Garnier, S., Tâche, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone
land: an experimental setup for the study of ant-like robots. In: Proceedings of
the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp. 37–44. IEEE Press
(2007)

19. Goss, S., Deneubourg, J.L., Bourgine, P., Varela, E.: Harvesting by a group of
robots. In: 1st European Conference on Artificial Life, pp. 195–204. MIT Press,
Cambridge (1992)

20. Hamann, H., Wörn, H.: An analytical and spatial model of foraging in a swarm of
robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol.
4433, pp. 43–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71541-2 4

21. Hecker, J.P., Letendre, K., Stolleis, K., Washington, D., Moses, M.E.: Formica ex
Machina: ant swarm foraging from physical to virtual and back again. In: Dorigo,
M., et al. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 252–259. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32650-9 25

22. Heredia, A., Detrain, C.: Influence of seed size and seed nature on recruitment in
the polymorphic harvester ant Messor barbarus. Behav. Process. 70(3), 289–300
(2005)

23. Herianto, Kurabayashi, D.: Realization of an artificial pheromone system in random
data carriers using RFID tags for autonomous navigation. In: Proceedings of the
IEEE/RSJ International Conference on Robotics and Automation, ICRA 2009, pp.
2288–2293. IEEE Press (2009)

24. Herianto, Sakakibara, T., Kurabayashi, D.: Artificial pheromone system using
RFID for navigation of autonomous robots. J. Bion. Eng. 4(4), 245–253 (2007)

https://doi.org/10.1007/978-3-540-87527-7_28
https://doi.org/10.1007/978-3-540-87527-7_28
https://doi.org/10.1007/978-3-540-71541-2_4
https://doi.org/10.1007/978-3-540-71541-2_4
https://doi.org/10.1007/978-3-642-32650-9_25

148 A. Font Llenas et al.

25. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for
robot swarm foraging. In: Martinoli, A. (ed.) Distributed Autonomous Robotic
Systems. STAR, vol. 83, pp. 417–430. Springer, Heidelberg (2013)

26. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, Cambridge
(1990)

27. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

28. Jeanson, R., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Modulation of individual
behavior and collective decision-making during aggregation site selection by the ant
Messor barbarus. Behav. Ecol. Sociobiol. 55(4), 388–394 (2004)

29. Khaliq, A.A., Di Rocco, M., Saffiotti, A.: Stigmergic algorithms for multiple min-
imalistic robots on an RFID floor. Swarm Intell. 8(3), 199–225 (2014)

30. Macarthur, R.H., Pianka, E.R.: On optimal use of a patchy environment. Am. Nat.
100(916), 603–609 (1966)

31. Mailleux, A.C., Deneubourg, J.L., Detrain, C.: Regulation of ants’ foraging to
resource productivity. Proc. Roy. Soc. Lond. B: Biol. Sci. 270(1524), 1609–1616
(2003)

32. Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through
RFID technology. In: Proceedings of the 2005 IEEE Swarm Intelligence Sympo-
sium, SIS 2005, pp. 281–288. IEEE Press (2005)

33. Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with RFID
tags. ACM Trans. Auton. Adapt. Syst. 2(2), 4 (2007)

34. Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual
emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15461-4 8

35. Nicolis, S.C., Deneubourg, J.L.: Emerging patterns and food recruitment in ants:
an analytical study. J. Theoret. Biol. 198(4), 575–592 (1999)

36. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)

37. Olsson, O., Brown, J.S., Helf, K.L.: A guide to central place effects in foraging.
Theoret. Popul. Biol. 74(1), 22–33 (2008)

38. Orians, G.H., Pearson, N.E.: On the theory of central place foraging. Anal. Ecol.
Syst. 154–177 (1979)

39. Payton, D.W., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics.
Auton. Robots 11(3), 319–324 (2001)

40. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating
Kilobots within ARGoS: models and experimental validation. In: Dorigo, M., et al.
(eds.) ANTS 2018. Lecture Notes in Computer Science, vol. 11172, pp. 176–187.
Springer, Heidelberg (2018)

41. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

42. Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., Birattari, M.: Task partitioning
in a robot swarm: object retrieval as a sequence of subtasks with direct object
transfer. Artif. Life 20(3), 291–317 (2014)

43. Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity
in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)

44. Pitonakova, L., Crowder, R., Bullock, S.: The Information-Cost-Reward framework
for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2018)

https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/978-3-642-15461-4_8
https://doi.org/10.1007/978-3-642-15461-4_8

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone 149

45. Purnamadjaja, A.H., Russell, R.A.: Guiding robots’ behaviors using pheromone
communication. Auton. Robots 23(2), 113–130 (2007)

46. Pyke, G.H.: Optimal foraging theory: a critical review. Annu. Rev. Ecol. Evol.
Syst. 15, 523–75 (1984)

47. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented
reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017)

48. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2–3), 75–102 (2015)

49. Robinson, E.J., Ratnieks, F.L., Holcombe, M.: An agent-based model to investigate
the roles of attractive and repellent pheromones in ant decision making during
foraging. J. Theoret. Biol. 255(2), 250–258 (2008)

50. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014)

51. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for
self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5),
1175–1188 (2016)

52. Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behav. Ecol.
Sociobiol. 34(1), 51–62 (1994)

53. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of
robots. Swarm Intell. 5(2), 97–119 (2011)

54. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots
with virtual pheromone. In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 3074–3079. IEEE
Press (2004)

55. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: a feasibility
study. Auton. Robots 16(3), 313–332 (2004)

56. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116
(1999)

57. Ulam, P., Balch, T.: Using optimal foraging models to evaluate learned robotic
foraging behavior. Adapt. Behav. 12(3–4), 213–222 (2004)

58. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot
robot. Swarm Intell. 1–22 (2018)

59. Werger, B.B., Matarić, M.J.: Robotic “food” chains: externalization of state and
program for minimal-agent foraging. In: From Animals to Animats 4. Proceedings
of the 4th International Conference on Simulation of Adaptive Behavior, SAB 1996,
pp. 625–634. MIT Press, Cambridge (1996)

60. Wilson, E.O.: Chemical communication among workers of the fire ant Solenopsis
saevissima (Fr. Smith): the organization of mass-foraging. Anim. Behav. 10(1–2),
134–147 (1962)

61. Winfield, A.F.T.: Foraging robots. In: Encyclopedia of Complexity and System
Science, pp. 3682–3700. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
0-387-30440-3

https://doi.org/10.1007/978-0-387-30440-3
https://doi.org/10.1007/978-0-387-30440-3

Search in a Maze-Like Environment
with Ant Algorithms: Complexity, Size

and Energy Study

Zainab Husain1(B), Dymitr Ruta2, Fabrice Saffre2, Yousof Al-Hammadi1,
and Abdel F. Isakovic3

1 ECE Department, Khalifa University - KUST, Abu Dhabi, UAE
2 EBTIC, Khalifa University - KUST, Abu Dhabi, UAE

3 Physics Department, Khalifa University - KUST, Abu Dhabi, UAE
{zainab.husain,dymitr.ruta,fabrice.saffre,yousof.alhammad}@ku.ac.ae,

iregx137@gmail.com

Abstract. We demonstrate the applicability of inverted Ant Algorithms
(iAA) for target search in a complex unknown indoor environment with
obstructed topology, simulated by a maze. The colony of autonomous
ants lay repellent pheromones according to the novel local interaction
policy designed to speed up exploration of the unknown maze instead
of reinforcing presence in already visited areas. The role of a target-
collocated beacon emitting a rescue signal within the maze is evaluated
in terms of its utility to guide the search. Different models of iAA were
developed, with beacon initialization (iAA-B), and with increased sens-
ing ranges (iAA-R with a 2-step far-sightedness) to quantify the most
effective one. Initial results with mazes of various sizes and complex-
ity demonstrate our models are capable of localizing the target faster
and more efficiently than other open searches reported in the literature,
including those that utilized both AA and local path planning. The pre-
sented models can be implemented with self-organizing wireless sensor
networks carried by autonomous drones or vehicles and can offer life-
saving services of localizing victims of natural disasters or during major
infrastructure failures.

1 Introduction

With Mobile Ad Hoc Networks becoming the core of the IT infrastructure [14,
26], static communication topologies become extended, or even replaced by the
mobile nodes of ad hoc networks where they can be deployed as per the exact
requirement, thereby reducing cost and energy expenditure in providing services
[3,12]. Such setups become particularly attractive in situations and tasks where
human lives might be at peril like for civilian defense, disaster relief and/or
rescue operations [2].

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-00533-7 12) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 150–162, 2018.
https://doi.org/10.1007/978-3-030-00533-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-00533-7_12
https://doi.org/10.1007/978-3-030-00533-7_12

iAA for Path Planning in Unknown Environments 151

From an optimization point of view, the problem of searching for a victim in
a randomized environment is modeled as a maze solving problem where search
time can be optimized by optimizing the path taken to reach the target where
the maze walls can represent the randomly occurring obstacles. Maze solving,
in a known environment, using global path planning has been a widely attacked
research problem over the years, with several main issues having been addressed
[4,19,22], but maze solving in an unknown environment is a more complex issue
where local path planning is intuitively a better strategy [13].

Fig. 1. (a) A Search and Rescue (SAR) operation modeled as a maze solving problem.
The SAR can be implemented as an adaption of AA based decision making performed
at each step in the maze. (b) illustrates a natural Ant Colony phenomenon

Following swarm inspired work in [1] and [7], we develop a self adaptive
evolutionary path planning strategy for applications in critical, unknown envi-
ronments like Search and Rescue (SAR) operations. This paper will be answering
the following questions in developing a local path planning strategy:

1. The use of AA in reducing the number of steps needed to solve a maze
2. The influence of a beacon signal to guide the search
3. How does the path planning strategy scale with the size and complexity of

the search space.

The coming sections discuss the already existing research in the field, the
research methodology and simulation setup followed by a discussion of the results
and a conclusion.

2 Overview of Current Approaches

In our research problem, a good path planning algorithm is one that would
allow exploration, while still maintaining a level of coherence in terms of overall
direction of motion.

Path planning strategies are of broadly two types: Global Path Planning,
and Local Path Planning. Global path planning requires complete information

152 Z. Husain et al.

of the area of interest and is performed before the time of injection into the maze.
Several of these global planning techniques, like wall-follower [15], Dijkstra [23],
flood-fill algorithm [22], among others have been proven to solve a maze with
optimal results. On the other hand, local path planning, performed in real time,
as the agents continue moving through the unknown environment and mapping
it on-the-go [18], is a more complex problem that has been opened several discus-
sions to dynamic optimization. Several researchers have attacked this problem
with different techniques like the Point Bug Algorithm [6], Rapidly Exploring
Random Trees [11], Artificial Potential Field Method [5], real time learning with
Neural Networks [19], but research in the field continues to make the solution
robust to obstacles, and quicker in both computation and convergence.

There has been a growing interest in deploying swarms of robots to solve real-
world problems, by exploiting their collective decision making [9,20,21]. SAR in
a maze closely resembles a colony of ants exploring an unknown territory in
search of food. Like a natural ant colony search, SAR too is constrained by time
and energy to ensure discovery of food or target before complete exhaustion.

Table 1. Comparison of research in the field of deterministic and bio-inspired path
planning strategies

Ref. Year Uses local path
planning?

Uses any
AA?

Algorithms used

[9] 2014 � � Repellent Pheromone for coverage

[20] 2005 � � Combination of multiple pheromones

[1] 2010 � � Fuzzy Logic with Counter ACO

[7] 2014 � � Improved ACO Heuristic Function

[4] 2013 X � Simple ACO Hybrid ACO with Random
Search RL based search

[10] 2015 X � Simple ACO

[16] 2016 X � Improved ACO

Table 1 summarizes prominent research in the past decade with a focus on
the use of AA or just pheromone based models. Ants, in a colony, work together
by exchanging information via pheromones deposited in the shared space to
speed up their search for food. This concept of using pheromones to optimize
coverage in the Area of Interest (AoI) has been used by [9], with a detailed
study on the influence of ant density and evaporation rate on the search time.
[20] and [18] uses a combination of attractive and repulsive pheromones to also
optimize coverage in the AoI for the purpose of surveillance operations. However,
in our SAR, guided by a beacon, the objective is to quicken target location,
without necessarily maximizing the AoI coverage. We believe, using an AA based
decision making, with a heuristic pheromone model, could outperform the other
pheromone guided models introduced.

iAA for Path Planning in Unknown Environments 153

In this research we shall target optimizing number of steps taken to locate the
target, regardless of coverage, while keeping in mind the limitations of working
in arbitrary indoor conditions.

3 This Work

We assume that the victim passively or actively guides the Search and Rescue
(SAR) operation by the strength of the beacon signal automatically broadcasted,
from his location, in all directions, as depicted in Fig. 1(a). Using this signal as
the only guidance, the SAR agents autonomously carry out the search and locate
the victim in a 2D randomized obstacle course modeled using a maze. The search
starts with the injection of all agents from the start point at the top left of the
maze in Fig. 1(a), and terminates on the co-location of at least one agent with
the target.

The following subsections go through the simulation setup, indoor signal
propagation and decision-making models employed in this research.

3.1 Simulation Environment Setup

To simulate a search in an indoor environment interspersed obstacles to model
the randomness encountered after a natural disaster in urban areas, a maze
was used to model the environment because of its complexity and heterogeneity
in signal propagation media. Parameters of the maze, like its dimensions, and
space to wall ratio can be modified to test the performance of the system under
different conditions. Figure 2 shows the sample mazes that were generated for
testing purposes. These mazes differ in both size and complexity, but have the
same space to wall ratio of 5:1. For comparing efficiency as a function of size, the
medium sized maze was used in simulations in its original 39× 39, and re-scaled
78× 78 (scaled by 2) and 156× 156 (scaled by 4) versions.

Fig. 2. Sample mazes used for simulations

To simplify the computation and implementation of the system, the mazes
were discretized as explained in [25]. The grid unit size is the same as the agent
size, thereby making the step size also equal to a grid unit.

154 Z. Husain et al.

To model indoor propagation, the ITU model, proposed by the Interna-
tional Telecommunication Union, described in [17], was modified through the
addition of the (w × c) term to account for attenuation caused by the internal
walls/obstacles to the following form

PL[dB] = 20log10(f) + 28log10(d) − 28 + (w × c) (1)

where w = 4.4349 is the wall attenuation factor (for brick wall) [24], c is the wall
count encountered, f = 2400 MHz is the frequency channel of communication
for standard Wi-Fi, and d is the distance, in meters, from the beacon source
[17]. Figure 3 shows the signal propagation with a corner located beacon.

Fig. 3. Color-coded illustration of the beacon signal power received across the maze.
The signal attenuates with distance and across the obstacles (walls) shown in black
color. (Color figure online)

3.2 Ant Decision Making Models

One of the main contributions of this project is to improve the decision-making
model, which would help the agents find the optimal path in the unknown
environment in the shortest time possible. To study the impact of AA on the
autonomous ants’ led search in the maze, a simple AA based algorithm along
with a standard random search were implemented for comparison. The AA based
algorithm applies the AA probability density function (PDF) at each step to
determine the next best step. As pictorially depicted in Fig. 4, the movement
introduced in the ants is a 4-directional movement with an added option to stay
in the current location, which means they have a choice of either moving to
one of the 4 immediate neighboring cells, or continue hovering over the same
position at each step. This choice between the 5 (4 nearest neighbors + 1 cur-
rent position) possible cells is where the AA probability function is introduced.
The general probability equation for Classic AA was modified to fit this decision
making process. The modified equation is as follows

Pi(t + 1) =
(c + ni(t))α

∑5
i=1(c + ni(t))α

iAA for Path Planning in Unknown Environments 155

Fig. 4. All AA based decision making models prioritize their 4 possible directions of
movement based on pheromone concentration associated with the 3 directions. AA
prioritizes moving to a cell with a higher pheromone level, while all iAA based models
prefer moving to a cell with lower pheromone concentration. AA, iAA and iAA-B
check pheromone levels in only the immediate neighboring cells, while iAA-R checks
for average pheromone in neighboring regions

where Pi(t+1) is the probability of moving in direction i, ni(t) is the amount of
pheromone in block i. Also, c is the degree of attraction to an unexplored path,
and α is the bias to using a pheromone concentrated path. Here, one would
consider adopting the values α = 2 and c = 20 as per empirical evidence [8].

With simple AA, the ant is influenced to make a move towards a more
pheromone concentrated cell, and therefore, ants were noticed to be cluster-
ing together. To counter this effect, and to quicken exploration, an inverted
AA (iAA) model was also developed, where the pheromone was designed to be
repulsive, encouraging ants to venture into unexplored territory. With promising
initial results, 2 new versions of iAA, namely inverted-AA with beacon initial-
ization (iAA-B) and inverted-AA with an increased sensing range (iAA-R) were
also developed.

AA, iAA and iAA-B are all designed with ants having a sensing range of 1
cell. Therefore, decisions are made based on pheromone levels in the immediate 4
neighboring cells only. The general working of the AA algorithms is illustrated as
a pseudocode in Algorithm 1. In iAA-R, on the other hand, ants have an increased
sensing range, allowing them to base their decision on 3× 2 neighboring regions
and their corresponding average pheromone levels. This increased sensing range
incorporates a slight far-sightedness in the ants’ decision helping it move to a
region with lower pheromone density which would improve its area coverage in
2 steps time.

All 4 decision making models were simulated on MATLAB on the 3 sample
mazes. The search initiates with the agents being injected, all at once, from the
top left of the maze and terminates when at least one of the agents collocates
with the target located at the end of the maze (bottom right), as was illustrated

156 Z. Husain et al.

initialization;
possible moves = [stay, right, left, forward, backward];
while target not found do

for each ant do
Generate list of all possible next states;
Acquire pheromone information of all next states;
Roulette Wheel ← generate probabilities of moving to each next state;
Spin Roulette Wheel to pick next state;
Update current position and pheromone levels;

end

end

Algorithm 1: Basic AA Algorithm used for all decision making models,
where each model differs in probability generation

in Fig. 1(a). All simulations are performed on a 2.6 GHz Intel Core i7 processor
running a 2016a 64-bit version of MATLAB.

4 Results and Discussion

All AA based decision-making models have an inherent element of randomness
thanks to the AA probability equation. Therefore, all 4 models were simulated
30 times each to average out the effect of the randomness. The performances of
the 4 models are compared, along with a purely random movement solution, in
terms of number of iterations needed to locate the target, which is the equivalent
of solving the maze. We believe the number of steps is a better measure of
performance and it can be compared with other works on different platforms.

Fig. 5. Comparing the performance of the 4 AA based models and a random movement
solution in solving the 3 mazes, of different sizes and complexities, with 100 ants each.

Figure 5 compares the performance of the 5 models when simulated with
100 ants each on the 3 mazes, with 30 repetitions each. The pure AA based

iAA for Path Planning in Unknown Environments 157

model did not introduce much of an improvement, compared to a purely random
solution. This lack of improvement can be attributed to the clustering effect of
pheromone in pure AA that is likely limiting the exploration of the maze. iAA is
the best performing algorithm among the 5, with a closely following performance
of iAA-R.

Fig. 6. Inverted AA with beacon initialization for pheromone intensities can lead agents
into the traps, marked as green-dashed U-shaped walls in the figure, as they tend
to blindly follow a positive pheromone gradient and are unable to go around these
obstacles. (Color figure online)

Contrary to intuitive preconception, iAA-B did not positively add to the per-
formance of the iAA algorithm with its beacon initialization that was supposed
to better guide the ants to the target. This is due to a trapping effect noticed in
the simulation, as illustrated in Fig. 6, where ants get trapped in nooks of the
maze while being pulled towards the target.

We suggest a useful primitive measure of the complexity of the maze to be a
number of 90-degrees turns an ant may make while performing a search, as can
be surmised from Fig. 2. In this context, a study of the number of iterations, with
a simulation of the best contender iAA, as a function of the maze complexity
is shown in Fig. 7(a). Two approaches were used: (a) the fixed number of ants,
and (b) the variable number of ants. For the latter case, we scaled the number
of ants with the size of the maze, which leads to qualitatively different behavior,
and points towards a practical recipe of how to organize the iAA based search
on mazes of increasing size. A well scaled group of ants with a rough measure
of the search space would be energy-conserving in the search, without much
deterioration in performance, as observed especially in the simulations with the
small and medium sized mazes. A similar set of simulations and comparisons
were carried out for iAA-B and iAA-R algorithms as well, which can be accessed
in the supplementary material.

The study of the number of iterations as a function of the maze size is shown
in Fig. 7(b) for three different ant colony populations. As one might expect, the
increase in the size of the colony requires fewer iterations to reach the target,

158 Z. Husain et al.

Fig. 7. (a) Number of iterations needed to solve the maze as a function of the maze
complexity, with complexity defined as the number of 90◦ turns an ant can make in
the maze. The simulations were carried out on the mazes of complexities 14, 25 and
98, respectively. (b) Number of iterations needed to solve the maze as a function of the
size of the maze of the fixed complexity, that of 25. The size of this maze was re-scaled
from 39 × 39 m2, to 78 × 78 m2, and 156 × 156m2. Insets show respective maze layouts.

but, we note that the 28% improvement (a decrease in the number of iterations)
comes at the cost of increase the colony size by the factor of 16. This result is now
an input into our ongoing effort to optimize the energy of the search operation.

5 Energy Expenditure Analysis

Energy expenditure is an important aspect to consider in the simulation of
the search to factor in real life battery limitations on mobile robotic agents.
The agents’ battery powers both its mechanical and communication functions,
which means a faster depletion and makes the issue crucial in the success of the
operation. The direction of motion plays an important influence in the energy
expended in flight control.

Consequently, a set of experiments were set up to simulate AA and iAA
algorithms with variable group sizes ranging between 100 and 600, with 100 unit
increments. the results are shown in Fig. 8.

Continuing in the same direction of motion is always cheaper than intro-
ducing a displacement in direction. As our agents are limited to a 4-directional
motion (in addition to an option to hover), the only direction changes possible
are a 90◦, to either side, or a 180◦ turn, meaning a backward motion. Con-
sidering the different amounts of energy needed to slow down (control speed),
and change direction in each motion possible, a movement cost of 0.5, 1, 1.5,
and 2 were assigned to hovering, forward, 90◦ turning and backward movements
respectively.

iAA for Path Planning in Unknown Environments 159

Fig. 8. A 3D depiction of variation in performance and energy expenditure with vari-
able group sizes in 5 different mazes with complexities 14, 25, 36, 74 and 98

6 Search for Appropriate AA Parameters on the Maze

For the AA Eq. 1, empirically, colonies of Argentine ants are observed to adhere
to the model with values of α = 2 and c = 20. However, with initial trials,
AA and iAA didn’t respond well with high values of c. This could be due to a
forced randomness that overpowers the influence of pheromones in our particular
simulation set up. Therefore, to simplify initial simulations, we started by using
α = 1 and c = 1. However, we find it necessary to address the selection of these 2
parameters for an optimized working of the system. As the probability equation
is a function of both α and c (in addition to pheromone intensity), we optimized
either parameter by keeping the other constant for a set of trials.

The influence of α in AA is erratic and non-conclusive, which is in correlation
with our observations earlier in Sect. 4, where a stronger pheromone attraction
(larger α) resulted in lesser exploration and thus poor performance. On the other
hand, the influence of α on the performance of iAA is much more encouraging.
The performance continues to improve (as the number of steps decrease) with
a growing α with the lowest recorded at α = 3. A 7th degree polynomial was
fitted to the generated values to estimate the trend of the graph for α > 3 which
showed a saturation, without much change in the number of steps with further
increase in α. Therefore, the study was concluded with the selection of α = 3 as
the best choice for an iAA simulation, and an observation of poor influence of α
on AA.

The influence of c is quite erratic on the performance in iAA, as shown in
Fig. 9(b), owing to the heuristic nature of the algorithm. Over averaged results,
the performance graph shows a local minima at around c = 1.3 and c = 2.7.

160 Z. Husain et al.

Fig. 9. AA and iAA performances, in terms of number of steps, as a function α. Results
are an average of 20 repeated simulations.

However, due to the highly erratic trend, it’s difficult to pinpoint a single optimal
value of c, to finalize the empirical study. For now, the results shown are for c
= 1.

The test for the influence of variable c on AA performance was not successful
as the search agents stalled around obstacles, with no further progress for all
values of 1< c < 1.5. Since simulations with only 3 mazes have been attempted
so far, there’s ongoing work to ascertain the nature of the dependence more
precisely.

7 Conclusions and Future Work

Real time search on the maze in an unknown bounded environment with a
local path planning is studied with several versions of AA, such as inverted AA
(iAA), iAA-R, and iAA-B. It is shown that a traditional AA is much closer to
random search in performance and measurably weaker than the iAA. In addition
to elucidating which version of AA is most applicable, the report analyzes the
influence of the following parameters: (a) the complexity of the maze, (b) the
number of ants, and (c) the size of the maze (with the number of ants and
the maze size both changing by approximately an order of magnitude). Energy
expenditure for such search is studied as a function of the ants group size and
the number of steps, demonstrating steep changes in the energy as the function
of the group size. Additionally, empirical studies were conducted demonstrating
that traditional values for AA parameters may need to be modified for the maze
search in this particular task.

Acknowledgement. We gratefully acknowledge the support from UAE ICT Fund
through the grant “Biologically Inspired Self-organizing Network Services” and Prof.
Sami Muhaidat (KUST) for advices with the models of indoor signal propagation.

iAA for Path Planning in Unknown Environments 161

References

1. Ahuja, M.: Fuzzy counter ant algorithm for maze problem. Master’s thesis. Uni-
versity of Cincinnati (2010)

2. Aljehani, M., Inoue, M.: Communication and autonomous control of multi-UAV
system in disaster response tasks. In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J.,
Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2017. SIST, vol. 74, pp. 123–132.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59394-4 12

3. Andryeyev, O., Mitschele-Thiel, A.: Increasing the cellular network capacity using
self-organized aerial base stations. In: Proceedings of the 3rd Workshop on Micro
Aerial Vehicle Networks, Systems, and Applications, pp. 37–42. ACM (2017)

4. Aurangzeb, M., Lewis, F.L., Huber, M.: Efficient, swarm-based path finding in
unknown graphs using Reinforcement Learning. In: 2013 10th IEEE International
Conference on Control and Automation, ICCA, pp. 870–877. IEEE (2013)

5. Bounini, F., Gingras, D., Pollart, H., Gruyer, D.: Modified Artificial Potential Field
method for online path planning applications. In: 2017 IEEE Intelligent Vehicles
Symposium, IV, pp. 180–185. IEEE (2017)

6. Buniyamin, N., Ngah, W., Sariff, N., Mohamad, Z.: A simple local path planning
algorithm for autonomous mobile robots. Int. J. Syst. Appl. Eng. Dev. 5(2), 151–
159 (2011)

7. Cao, J.: Robot global path planning based on an Improved Ant Colony Algorithm.
J. Comput. Commun. 4(02), 11 (2016)

8. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
Hoboken (2006)

9. Fossum, F., Montanier, J.M., Haddow, P.C.: Repellent pheromones for effective
swarm robot search in unknown environments. In: 2014 IEEE Symposium on
Swarm Intelligence, SIS, pp. 1–8. IEEE (2014)

10. Krentz, T., Greenhagen, C., Roggow, A., Desmond, D., Khorbotly, S.: A modified
Ant Colony Optimization algorithm for implementation on multi-core robots. In:
2015 Swarm/Human Blended Intelligence Workshop, SHBI, pp. 1–6. IEEE (2015)

11. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning. TR
98–11. Computer Science Deparment, Iowa State University, October 1998

12. Li, Y., Cai, L.: UAV-assisted dynamic coverage in a heterogeneous cellular system.
IEEE Netw. 31(4), 56–61 (2017)

13. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot
path planning: a survey. Robot. Auton. Syst. 86, 13–28 (2016)

14. Mainetti, L., Patrono, L., Vilei, A.: Evolution of wireless sensor networks towards
the Internet of Things: a survey. In: 2011 19th International Conference on Soft-
ware, Telecommunications and Computer Networks, SoftCOM, pp. 1–6. IEEE
(2011)

15. Mishra, S., Bande, P.: Maze solving algorithms for micro mouse. In: IEEE Interna-
tional Conference on Signal Image Technology and Internet Based Systems, SITIS
2008, pp. 86–93. IEEE (2008)

16. Wang, Z.W.: Robot path planning for mobile robot based on Improved Ant Colony
Algorithm. Appl. Mech. Mater. 385–386

17. Rappaport, T.S., et al.: Wireless Communications: Principles and Practice, vol. 2.
Prentice Hall PTR, Upper Saddle River (1996)

18. Ravankar, A., Ravankar, A.A., Kobayashi, Y., Emaru, T.: On a bio-inspired
hybrid pheromone signalling for efficient map exploration of multiple mobile service
robots. Artif. Life Robot. 21(2), 221–231 (2016)

https://doi.org/10.1007/978-3-319-59394-4_12

162 Z. Husain et al.

19. Rivera, G.: Path planning for general mazes. Master’s thesis. Missouri University
of Science and Technology (2012)

20. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.A.: Performance of
digital pheromones for swarming vehicle control. In: Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 903–910. ACM (2005)

21. Shiltagh, N.A., Jalal, L.D.: Optimal path planning for intelligent mobile robot
navigation using modified Particle Swarm Optimization. Int. J. Eng. Adv. Technol.
2(4), 260–267 (2013)

22. Tjiharjadi, S., Setiawan, E.: Design and implementation of a path finding robot
using Flood Fill algorithm. Int. J. Mech. Eng. Robot. Res. 5(3), 180–185 (2016)

23. Wang, H., Yu, Y., Yuan, Q.: Application of Dijkstra algorithm in robot path-
planning. In: 2011 Second International Conference on Mechanic Automation and
Control Engineering, MACE, pp. 1067–1069. IEEE (2011)

24. Wilson, R.: Propagation Losses Through Common Building Materials 2.4 GHz vs
5 GHz. Magis Networks Inc., San Diego (2002)

25. Yi, G., Feng-ting, Q., Fu-jia, S., Wei-ming, H., Peng-ju, Z.: Research on path plan-
ning for mobile robot based on ACO. In: 2017 29th Chinese Control and Decision
Conference, CCDC, pp. 6738–6743. IEEE (2017)

26. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things
for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

Self-adaptive Quantum Particle Swarm
Optimization for Dynamic Environments

Gary Pamparà1(B) and Andries P. Engelbrecht2

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
gpampara@gmail.com

2 Institute for Big Data and Data Science, University of Pretoria,
Pretoria, South Africa
engel@cs.up.ac.za

Abstract. The quantum-inspired particle swarm optimization (QPSO)
algorithm has been developed to find and track an optimum for dynamic
optimization problems. Though QPSO has been shown to be effective,
despite its simplicity, it does introduce an additional control parameter:
the radius of the quantum cloud. The performance of QPSO is sensi-
tive to the value assigned to this problem dependent parameter, which
basically limits the area of the search space wherein new, better optima
can be detected. This paper proposes a strategy to dynamically adapt
the quantum radius, with changes in the environment. A comparison of
the adaptive radius QPSO with the static radius QPSO showed that the
adaptive approach achieves desirable results, without prior tuning of the
quantum radius.

1 Introduction

Optimization algorithms have very different performance characteristics based
on the underlying problem search space. Static environments have been widely
studied and several algorithms have been shown to be applicable to a wide
variety of static optimization problems. Notable examples include genetic
algorithms [14], differential evolution [22] and particle swarm optimization
(PSO) [16]. In the case where the underlying problem search space changes
over time, the behavior characteristics of these algorithms are not always still
applicable. A dynamic optimization problem describes such a problem search
space, where the optimal value of the search space not only changes over time,
but can drastically change in value and/or location. When applying an algorithm
designed for a static environment to a dynamic environment, the inefficiencies
of the algorithms become apparent with the algorithms unable to adapt to the
changing search space. Common reasons for the inefficiency include a loss of
diversity, outdated memory of previous best positions, and the inability of the
algorithm to detect that the search space has actually changed [21].

Quantum particle swarm optimization (QPSO) [3] was proposed as an inher-
ently dynamic variant of the PSO, capable of handling underlying environment

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 163–175, 2018.
https://doi.org/10.1007/978-3-030-00533-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_13&domain=pdf
http://orcid.org/0000-0002-4137-7301
http://orcid.org/0000-0002-0242-3539

164 G. Pamparà and A. P. Engelbrecht

changes by categorizing a set of particles within the algorithm as “quantum”
particles. These quantum particles follow a different position update strategy
from normal particles: Quantum particles move probabilistically within a pre-
defined quantum cloud around the global best particle position. The size of the
quantum cloud determines the area within which a quantum particle is allowed
to move. Unfortunately, the solution tracking ability of the QPSO is sensitive
to the size of the radius. If the radius is too small, the area the quantum parti-
cles can explore for changes in the optimum, will be restricted; preventing the
detection of an optima change outside of the cloud radius. Conversely, if the
cloud radius is too large, a larger portion of the search space will be covered by
the cloud, resulting in unnecessary exploration for small change severities, and
resulting more in a random search.

This paper proposes a strategy to adapt the cloud radius value, starting with
a large radius and reducing it to a small value. As soon as the environment
changes, the radius is increased to a large value. This strategy helps to increase
the exploration by the quantum particles whenever a change in the environment
occurs, while moving towards exploitation the longer the environment remains
unchanged.

The remainder of the paper is organized as follows: Sect. 2 discusses the nec-
essary background information for the algorithm alteration proposed in Sect. 3.
Following in Sect. 4, is a discussion on the experimental approach with results
provided in Sect. 5. Lastly, concluding remarks are presented in Sect. 6.

2 Background

This section provides background information for the remainder of the paper.
Section 2.1 discusses dynamic environments, with the moving peaks benchmark
(MPB) discussed in Sects. 2.2, 2.3 and 2.4 respectively discuss the PSO and
QPSO algorithms, with previous radius management strategies discussed in
Sect. 2.5.

2.1 Dynamic Environments

A problem space wherein optima move over time is regarded as a dynamic envi-
ronment. The changes experienced by such environments can vary from subtle
movements to extreme changes where optima seemingly move at random. Much
work has been done to attempt to classify these problem space changes, based
on the frequency and severity of the change observed, the type of movement
the change undertook, and the trajectory that a change followed. Eberhart and
Shi [10] and Hu and Eberhart [15] describe changes observed for an optimum
as (a) Type I, where the measurable value of an optimum remains the same,
but its position in the search space changes, (b) Type II, where the value of the
optimum changes but the position in the search space remains constant, or (c)
Type III, where both the position and the optimum value change. Angeline [1]
categorizes the movement of an optimum as either linear, circular, or random.

Self-adaptive QPSO for Dynamic Environments 165

Duhain and Engelbrecht [9] combine the previous classifications with spatial
and temporal severity to create 27 unique environments. These environments
are broadly classified into:

1. Quasi-static environments which have both low spatial and temporal
changes.

2. Progressive environments which have small spatial, but frequent changes.
The changes result in a search space where optima move gradually over time.

3. Abrupt environments which have infrequent and large spatial changes. The
problem space almost seems to remain constant for a period of time before
the next, large change is observed.

4. Chaotic environments experience large spatial adjustments that occur at a
frequent interval.

2.2 Moving Peaks Benchmark Function

The MPB [15] has been developed as a generator for dynamic environments,
based on a set of input parameters. The generator can create problems spaces
that adhere to a variety of classification goals, and is quite popular within liter-
ature [5,6,17,19]. The generated problem search spaces are characterized by the
number of peaks, within a given domain, with each peak maintaining a width,
height, and location within the search space. The dynamic nature of the problem
is achieved by varying the parameters of the MPB generator over time, resulting
in a changed environment. The movement of the peaks is also determined by the
state of the previous environment, where trajectory information of the peaks
themselves is maintained.

2.3 Particle Swarm Optimization

The PSO algorithm, introduced by Kennedy and Eberhart [16], describes an
optimization process which is modeled on the flocking behavior of birds. PSO is
a population-based, stochastic algorithm which maintains a collection of entities,
known as “particles”. Each particle exhibits a simple behavior which determines
its movement: (1) move towards the best position in the immediate neighborhood
of particles, and (2) move towards a particle’s own best, previously observed,
position.

Particles move in an iterative manner throughout the problem search space,
determining the magnitude of the movement through the application of a “veloc-
ity” vector (representing a step size and direction) and to the currently main-
tained position vector. The velocity vector implements the previously mentioned
particle behavior, and is calculated as:

vij(t + 1) = ωvij(t) + c1r1j(yij(t) − xij(t)) + c2r2j(ŷij(t) − xij(t)) (1)

where vij(t) is the velocity of particle i in dimension j, with the current par-
ticle position given by xij(t), at time step t; ω denotes the inertia coefficient,

166 G. Pamparà and A. P. Engelbrecht

determining the extent to which a particle will continue to search in the same
direction, with c1 and c2 respectively specifying the influence of the social and
cognitive components to the resultant velocity vector. The stochastic vectors, r1
and r2, are multiplied with the cognitive and social velocity components.

The movement of particle i through the search space, to the next position,
is then determined by

xi(t + 1) = xi(t) + vi(t + 1) (2)

The classical PSO algorithm displays several disadvantages when applied to
dynamic environments, particularly related to the personal best position. There
is no way to know, ahead of time, whether an environment change would (poten-
tially) make the particle’s best position obsolete or invalid [2]. Additionally, as
the swarm converges on a solution, the dispersion of particles within the swarm
(diversity) [25] decreases. This loss of diversity results in small step sizes, pre-
venting particle movement to other areas of the search space.

2.4 Quantum Particle Swarm Optimization

The QPSO [3] was introduced to address the problems of the PSO within
dynamic environments. The QPSO employs a percentage of particles that use a
position update that is different to Eq. (2). These particles, referred to as quan-
tum particles, move in a manner similar to electrons orbiting the nucleus of an
atom. The movement of the quantum particles is done by sampling a proba-
bility distribution, centered at the global best position of the current swarm of
particles. The movement is then

xij(t + 1) ∼ d(ŷij(t), rcloud) (3)

where d is a probability distribution and rcloud is a constant determining the
size of the quantum “cloud” around the global best position. Any particle that
is not updated using Eq. (3), is termed a neutral particle and follows the update
equations of the classical PSO algorithm.

Although this approach does allow for a percentage of particles to behave in
a manner that addresses concerns around diversity loss, an additional param-
eter, rcloud, is introduced. Because rcloud restricts the search area of quantum
particles around the global best position, the parameter requires problem depen-
dent tuning. After an environment change, a larger radius is desirable, as more
exploration can occur within the quantum cloud, whereas a smaller radius would
aid with solution refinement when the environment is unchanging.

2.5 Previously Suggested Radius Management Strategies

In order to prevent the problem dependent tuning of rcloud, several strategies
have been proposed. Blackwell et al. [4] propose the use of different distribu-
tions to influence the movement of quantum particles within the quantum cloud.

Self-adaptive QPSO for Dynamic Environments 167

Although this approach does not hint at adjusting the radius of the quantum
cloud, the quantum particles may move to positions beyond the defined radius,
based on the distribution being sampled. For example, sampling a standard
Gaussian distribution would restrict 95% of the observed values to be within
two standard deviations from the mean, and would on occasion allow for larger
values.

Harrison et al. [12] examine the effect of different distributions on the perfor-
mance of the QPSO, concluding that the choice of distribution depends on the
type of dynamic environment and that smaller values for rcloud lead to better
performances for QPSO. These conclusions also stated that the uniform distribu-
tion is, generally, a poor choice. Another study by Harrison et al. [13] attempt to
remove the parameter rcloud and the probability distribution completely through
the use of a parent centric crossover (PCX) [7] operator. The resulting algorithm
completely removes the atom metaphor, replacing it with a crossover operator
instead. As a result, the algorithm can not truly be classified as a QPSO vari-
ant. The algorithm does, however, address the problem of diversity loss because
the PCX operator was originally designed to introduce diversity into the swarm
of particles, but introduces two additional parameters: the deviations of two
Gaussian distributions.

3 Self-adaptive Quantum Particle Swarm Optimization

In order to allow the QPSO to manage a dynamically sized quantum cloud,
adjusting automatically based on the current swarm and the current environ-
ment, some of the problems associated with the PSO in dynamic environments
(outdated memory, diversity loss, etc.) need to be addressed. The resulting algo-
rithm is largely unchanged from the standard QPSO definition, with a few con-
figuration changes applied:

– When a change in the environment occurs, the memory of particles (personal
best positions) may have become invalid or obsolete. These invalid values need
to be corrected, otherwise the particle may be attracted to an undesirable
area of the search space. One such mechanism, is to reset the personal best
position of the particle to the current position, and to re-evaluate the particle.
Quantum particles do not depend on a personal best position and are re-
initialized within the problem domain.

– The personal best position of a particle is updated, if and only if the current
position is within the boundaries of the search space. This constraint on the
update process prevents solutions that may be seemingly more optimal, but
are located outside the defined problem search space to become personal best
positions. Allowing infeasible personal best positions will result in particles
being attracted to infeasible solutions, and/or fruitless search in infeasible
space [11].

– The quantum cloud radius, rcloud, is calculated by taking the maximum
between the diversity of neutral and quantum particles. The diversity calcu-
lation for neutral particles only considers the particle personal best position,

168 G. Pamparà and A. P. Engelbrecht

as these positions will be within the problem search space. Quantum parti-
cles are only considered if the current position of the particle is within the
problem bounds. Diversity is calculated as:

D(S(t)) =
1
ns

Σns
i=1

√
Σnx

j=1(xij(t) − x̄j(t))2 (4)

where ns is the number of the neutral, or quantum particles considered in the
diversity calculation; x̄j(t) is the average j-th dimension of the entire swarm,
calculated as

x̄j(t) =
Σns

i=1xij(t)
ns

(5)

The resulting diversity value is then used as the cloud radius value. The cloud
radius value is fed into a random distribution as the deviation, from which
quantum particle positions are sampled. Scaling the calculated diversity by
a constant to determine the cloud radius was not considered as it would
introduce an additional constant, which would require problem dependent
tuning.

– The neighborhood topology should facilitate information exchange, but at a
slower rate than a fully connected topology. Slower information propagation
through the swarm using topologies like the local best or Von Neumann,
allows for larger parts of the search space to be covered, whilst still allowing
for convergence. Fully connected topologies result in faster convergence which
results in smaller diversity and cloud radius values.

– Particle neighborhoods should consist of both types of particles. Because
quantum particles move within the quantum cloud at each iteration, it is
advantageous to share information about the changed search space with the
neutral particles in the local particle neighborhood.

4 Experimental Approach

The main objective of this paper is to demonstrate that the performance of
the QPSO on a set of dynamic optimization problems is either better than, or
unchanged, when the algorithm dynamically adapts the value of rcloud compared
to keeping the value at a predefined static value. This section describes the dif-
ferent considerations in order to prepare the experiments to evaluate the QPSO
and the self-adaptive QPSO, with experiment design in Sect. 4.1, performance
measures in Sect. 4.2, and Sect. 4.3 discussing the statistical process.

4.1 Experimental Design

Due to the complex nature of algorithms that operate in dynamic environments,
it is beneficial to elaborate on the software approach used. All experiments used
the software library CIlib [20] which allows for type-safe, repeatable experimenta-
tion, with perfectly reproducible results. The initial seed, from which 30 distinct
seeds are then generated for the different independent algorithm runs, is listed

Self-adaptive QPSO for Dynamic Environments 169

Table 1. Environment parameters

Parameter Static Progressive Abrupt Chaotic

Peak height [30, 70] [30, 70] [30, 70] [30, 70]

Peak width [1, 12] [1, 12] [1, 12] [1, 12]

Height change severity 1 1 10 10

Width change severity 0.05 0.05 0.05 0.05

Change severity 1 1 10 10

Random movement % (λ) 0 0 0 0

Change freq. (iterations) 200 1 200 5

Table 2. QPSO algorithm parameters

Parameter Value

Particles 40

Proportion quantum particles 50%

ω 0.729844

c1, c2 1.496180

Topology l-best (size 3)

Iteration strategy Synchronous

PRNG Seed 123456789L

Static radius values rcloud ∈ [5, 10, 50]

Quantum cloud distribution Gaussian

in Table 2. Importantly, different pseudo-random number generators are used
for algorithms and dynamic environment updates. PSO parameter choices are
based on the convergence properties described by Van den Bergh [24], with the l -
best topology providing slower information propagation throughout the neutral
particles. Sampling a Gaussian distribution centered at the global best position
allows for quantum particle movement with a central tendency at the global
best position, whilst still allowing unconstrained movement that may exceed the
boundaries of the quantum cloud.

To compare the performance of the static QPSO with the self-adaptive
QPSO, benchmark environments were defined that match the classifications
of Duhain [8] and Duhain and Engelbrecht [9], using the MPB as the search
space problem. Each problem space contained 10 peaks and used the param-
eters defined in Table 1. Each environment was also classified as a Type III
environment [15]. Each algorithm configuration was executed 30 times for 1000
iterations. The domain of the problem search space was defined to be [0, 100],
with 5 dimensions. The static QPSO variants are identified by the size of the
associated radius: QPSO-5, QPSO-10, and QPSO-50 for cloud radius of 5, 10

170 G. Pamparà and A. P. Engelbrecht

and 50 respectively. Other parameters, common to the QPSO algorithms, are
listed in Table 2.

4.2 Dynamic Environment Performance Measures

Performance measures are required to quantify the performance of an algorithm
within a dynamic environment. Performance measures of static environments do
not behave in a manner that allows for a valid performance quantification for
dynamic environments. Duhain [8] recommend that better choices for perfor-
mance measurement within a dynamic environment include the accuracy of the
solutions over time, the stability (solution quality after an environment change),
and algorithm exploitative capacity, which is the quality of the best solution
between environment changes. Because the MPB defines a maximum peak value,
the error produced by an algorithm, by comparing a solution to the search space
optimum, is calculable. A set of “good” [8] measures are:

– The collective mean error (CME) [18] records the mean error of the best
solution over the entire experiment. The measure is defined as:

CME =
1
nt

Σnt
t=1errt,m (6)

where nt is the number of iterations within an experiment, and errt,m is the
difference between the optimum in environment m and the best solution, at
time-step t. The CME is a good overall measure [18] that quantifies the overall
performance of an algorithm within a dynamic environment.

– The average best error before change (ABEBC) is a measure that records
the difference between the optimum value and the quality of the best particle,
or error (provided that the target value is known). Knowledge of when an
environment change occurs is a prerequisite for using the ABEBC measure,
and the measure provides insight about the exploitative capability [9] of an
algorithm on a given problem. Formally, the measure is defined by:

ABEBC =
1
nc

Σnc
c=0(errc,r−1) (7)

where r is the number of iterations between two environmental changes and
errc,r−1 is the difference between the best fitness and the optimal fitness at
iteration t after the last change c; nc is the total number of environment
changes.

– The average best error after change (ABEAC) [23] is a measure that
determines the stability [5] of an algorithm within a dynamic environment.
The measure is similar to the ABEBC, except that the error in fitness
compared to the global optimum, determined directly after an environment
change. As such, the measure favors algorithms that tend to prefer areas of
the search space that do not change all that much. The measure is defined by

ABEAC =
1
nc

Σnc
c=0errc,0 (8)

where errc,0 is the error at the iteration directly after an environment change.

Self-adaptive QPSO for Dynamic Environments 171

4.3 Statistical Process

The performance of the static QPSO and the self-adaptive QPSO was eval-
uated using the measures defined in Sect. 4.2. For each combination of error
measurement, a Mann-Whitney-U rank sum test with Holm correction was used
to determine if a significant difference (α = 0.05) existed between the algorithm
performances. A value of 1 is allocated to an algorithm if the results are superior
to the other, and the inferior algorithm is assigned a score of −1. These scores
then determine the win/loss ratio of the algorithms.

5 Results

This section contains the analysis of the obtained results for the four algo-
rithms (QPSO-5, QPSO-10, QPSO-50, and self-adaptive QPSO). An analysis
of the CME, ABEBC and ABEAC measures follow in Sects. 5.1, 5.2 and 5.3
respectively. Section 5.4 analyzes the diversity and radius size of the self-adaptive
QPSO.

5.1 Analysis of Collective Mean Error

Table 3 provides algorithm rankings with respect to the CME. For the CME
measurement, the rankings indicate that the self-adaptive QPSO performed the
best across the different environment types. QPSO-50 was the second best per-
forming algorithm, followed by QPSO-10 and QPSO-5. As shown in Fig. 1(a),
a similar trend to the ranking data can be observed when comparing algo-
rithm performances. For the abrupt and progressive environments all algorithms
achieved similar performances, but the win/loss ratio favors the self-adaptive
QPSO within these environments.

After an environment change, the self-adaptive QPSO has an increase in
diversity, as illustrated in Fig. 1(d). The increase in diversity results in a larger
area for quantum particles to explore, and as the swarm starts to converge on
an optimum, the radius value decreases. With a decreasing radius, quantum
particles begin exploitation of the search space around the optimum. The error
values in Fig. 1(a) also show that the QPSO is sensitive to the frequency of
environment change: the lower error values were achieved for the quasi-static
environments where the frequency of change is low. Compared to the static
QPSO, it should be noted that the self-adaptive QPSO did not perform worse.

5.2 Analysis of Average Best Error Before Change

Figure 1(b) illustrates that all four algorithms manages to achieve values of less
than 20 for the ABEBC within the quasi-static environments. For the other envi-
ronments, the same trend of the CME measurement is evident, with none of the
algorithms particularly providing a clearly better solution, and a similar spread
of error values. Because the ABEBC demonstrates the exploratory capacity of an

172 G. Pamparà and A. P. Engelbrecht

algorithm, it is clear that none of the algorithms were able to effectively locate a
new solution before the environment changed. The self-adaptive QPSO achieved
a comparable performance, compared to the static QPSO.

5.3 Analysis of Average Best Error After Change

After an environment change, the QPSO-10 and self-adaptive QPSO managed to
achieve median values that are lower than that of the other QPSO algorithms for
the quasi-static environments. Unfortunately, for the other environment types,
no one algorithm displayed a clear improvement, and all algorithms (including
the self-adaptive QPSO) achieved equally poor results. These performances are
illustrated in Fig. 1(c).

5.4 Analysis of the Dynamic Radius Size and Diversity

For the self-adaptive QPSO, the average radius size is illustrated in Fig. 1(d)
for each environment type over 1000 iterations. From the graph it is clear that
the diversity (which is the cloud radius value), did change over the course of
algorithm execution. For environments with high temporal severity (chaotic and
progressive environments), the cloud radius size fluctuated at a large value which
is roughly half of the problem domain. Due to the frequency of the environment

Static Prog Abrupt Chaotic

20

40

60

C
M
E

(a) CME per environment – plot order:
QPSO-5, QPSO-10, QPSO-15,

Self-adaptive QPSO

Static Prog Abrupt Chaotic
0

20

40

60

A
B
E
B
C

(b) ABEBC per environment – plot order:
QPSO-5, QPSO-10, QPSO-15,

Self-adaptive QPSO

Static Prog Abrupt Chaotic

20

40

60

A
B
E
A
C

(c) ABEAC per environment – plot order:
QPSO-5, QPSO-10, QPSO-15,

Self-adaptive QPSO

0 200 400 600 800 1,000
0

50

100

150

D
iv
er
si
ty

=
R
ad

iu
s
si
ze

Abrupt Chaotic
Prog Static

(d) Average diversity/radius size over
algorithm iterations

Fig. 1. Measurements over environment types

Self-adaptive QPSO for Dynamic Environments 173

Table 3. Algorithm performance ranking

Problem Measure QPSO-5 QPSO-10 QPSO-50 Self-adaptive QPSO

Quasi-static CME (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

ABEBC (win/loss) (0/−3) (1/−2) (3/0) (2/−1)

ABEAC (win/loss) (0/−3) (3/0) (1/−2) (2/−1)

Win+loss −9 −1 3 5

Rank 1 2 3 4

Progressive CME (win/loss) (0/−2) (2/−1) (0/−1) (2/0)

ABEBC (win/loss) (0/−2) (2/−1) (0/−1) (2/0)

ABEAC (win/loss) (0/−2) (2/−1) (0/−1) (2/0)

Win+loss −6 3 −3 6

Rank 1 3 2 4

Abrupt CME (win/loss) (0/−3) (1/−2) (2/0) (2/0)

ABEBC (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

ABEAC (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

Win+loss −9 −3 4 8

Rank 1 2 3 4

Chaotic CME (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

ABEBC (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

ABEAC (win/loss) (0/−3) (1/−2) (2/−1) (3/0)

Win+loss −9 −3 3 9

Rank 1 2 3 4

Win/loss total −33 1 7 28

changes, there is not enough time between the environment changes for particles
to share enough information in order to attract the swarm to a specific region
within the search space. Therefore, the re-initialization process maintains a large
diversity.

The quasi-static environment plot shows that the radius reduced to a small
value and increased as the environment changed (every 200 iterations), albeit a
small change. The size of the cloud radius for the abruptly changing environ-
ment reduced similarly to the quasi-static environment, but at 400 iterations,
increased to a value under half of the problem domain size and remained there
for the remainder of the algorithm execution. It is not clear why this behavior is
observed. As expected, the size of the cloud radius remained large for the pro-
gressive and chaotic environments where the frequency of environment change
is high.

6 Conclusion

This paper investigated if the QPSO could be able to dynamically adapt and
maintain the value of the quantum cloud radius, without requiring that the value
be defined ahead of time, and without tuning the value for a given optimization
problem. A new strategy was suggested, whereby the cloud radius value is based
on the diversity of the particle swarm. By allowing the cloud radius value to

174 G. Pamparà and A. P. Engelbrecht

dynamically adapt during the execution of the algorithm, it was shown that
the self-adaptive strategy ranked well against three static quantum cloud radius
QPSO algorithms. Even though the results indicated that the self-adaptive strat-
egy did not provide significantly improved results when compared to the static
radius QPSO algorithms, the results did indicate that the self-adaptive cloud
radius does, generally, perform well and should be preferred. In future work,
the influence of different distributions on the performance of the self-adaptive
QPSO, and refinements to the adaptive cloud radius strategy, will be explored.

References

1. Angeline, P.J.: Tracking extrema in dynamic environments. In: Angeline, P.J.,
Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213,
pp. 335–345. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014823

2. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Yang, S.,
Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain
Environments, vol. 51, pp. 29–49. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-49774-5 2

3. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments.
In: Raidl, G. (ed.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24653-4 50

4. Blackwell, T., Branke, J., Li, X.: Particle swarms for dynamic optimization prob-
lems. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence, pp. 193–217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6 6

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), vol. 3, p. 1882 (1999). https://doi.org/10.1109/CEC.
1999.785502

6. Branke, J.: The moving peaks benchmark (1999). http://www.aifb.uni-karlsruhe.
de/∼jbr/MovPeaks/movpeaks

7. Deb, K., Joshi, D., Anand, A.: Real-coded evolutionary algorithms with parent-
centric recombination. In: Proceedings of the 2002 Congress on Evolutionary Com-
putation, CEC 2002, vol. 1, pp. 61–66, May 2002. https://doi.org/10.1109/CEC.
2002.1006210

8. Duhain, J.G.: Particle swarm optimisation in dynamically changing environments-
an empirical study. Master’s thesis, University of Pretoria (2011)

9. Duhain, J.G., Engelbrecht, A.P.: Towards a more complete classification system
for dynamically changing environments. In: 2012 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8. IEEE (2012)

10. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE
Cat. No.01TH8546), vol. 1, pp. 94–100 (2001). https://doi.org/10.1109/CEC.2001.
934376

11. Engelbrecht, A.: Roaming behavior of unconstrained particles. In: Proceedings -
1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013,
pp. 104–111 (09 2013)

https://doi.org/10.1007/BFb0014823
https://doi.org/10.1007/978-3-540-49774-5_2
https://doi.org/10.1007/978-3-540-49774-5_2
https://doi.org/10.1007/978-3-540-24653-4_50
https://doi.org/10.1007/978-3-540-74089-6_6
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1109/CEC.1999.785502
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/movpeaks
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/movpeaks
https://doi.org/10.1109/CEC.2002.1006210
https://doi.org/10.1109/CEC.2002.1006210
https://doi.org/10.1109/CEC.2001.934376
https://doi.org/10.1109/CEC.2001.934376

Self-adaptive QPSO for Dynamic Environments 175

12. Harrison, K., Ombuki-Berman, B.M., Engelbrecht, A.P.: The effect of probability
distributions on the performance of quantum particle swarm optimization for solv-
ing dynamic optimization problems. In: 2015 IEEE Symposium Series on Compu-
tational Intelligence, pp. 242–250, Decembrer 2015. https://doi.org/10.1109/SSCI.
2015.44

13. Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: A radius-free quantum
particle swarm optimization technique for dynamic optimization problems. In: 2016
IEEE Congress on Evolutionary Computation (CEC), pp. 578–585, July 2016.
https://doi.org/10.1109/CEC.2016.7743845

14. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

15. Hu, X., Eberhart, R.: Tracking dynamic systems with PSO: where’s the cheese. In:
Proceedings of the workshop on particle swarm optimization, pp. 80–83 (2001)

16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, vol. IV, pp. 1942–1948.
IEEE (1995)

17. Li, C., et al.: Benchmark generator for CEC 2009 competition on dynamic opti-
mization. University of Leicester, UK, Technocal report (2008)

18. Morrison, R.W.: Performance measurement in dynamic environments. In: GECCO
workshop on evolutionary algorithms for dynamic optimization problems, pp. 5–8.
Citeseer (2003)

19. Moser, I., Chiong, R.: Dynamic function optimization: the moving peaks bench-
mark. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Opti-
mization, vol. 433, pp. 35–59. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-30665-5 3

20. Pampará, G., Nepomuceno, F., Leonard, B.: Cilib v2.0.1, October 2014. https://
doi.org/10.5281/zenodo.12371

21. van der Stockt, S., Engelbrecht, A.P.: Analysis of hyper-heuristic performance in
different dynamic environments. In: 2014 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 1–8. IEEE
(2014)

22. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

23. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC
1999, vol. 3, pp. 1843–1850. IEEE (1999)

24. Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, Preto-
ria, South Africa, South Africa (2002). aAI0804353

25. Van Den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

https://doi.org/10.1109/SSCI.2015.44
https://doi.org/10.1109/SSCI.2015.44
https://doi.org/10.1109/CEC.2016.7743845
https://doi.org/10.1007/978-3-642-30665-5_3
https://doi.org/10.1007/978-3-642-30665-5_3
https://doi.org/10.5281/zenodo.12371
https://doi.org/10.5281/zenodo.12371
https://doi.org/10.1023/A:1008202821328

Simulating Kilobots Within ARGoS:
Models and Experimental Validation

Carlo Pinciroli1(B) , Mohamed S. Talamali2 , Andreagiovanni Reina2 ,
James A. R. Marshall2 , and Vito Trianni3

1 Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
cpinciroli@wpi.edu

2 Department of Computer Science, University of Sheffield, Sheffield, UK
{mstalamali1,a.reina,james.marshall}@sheffield.ac.uk

3 ISTC, National Research Council, Rome, Italy
vito.trianni@istc.cnr.it

Abstract. The Kilobot is a popular platform for swarm robotics
research due to its low cost and ease of manufacturing. Despite this, the
effort to bootstrap the design of new behaviours and the time necessary to
develop and debug new behaviours is considerable. To make this process
less burdensome, high-performing and flexible simulation tools are impor-
tant. In this paper, we present a plugin for the ARGoS simulator designed
to simplify and accelerate experimentation with Kilobots. First, the plu-
gin supports cross-compiling against the real robot platform, removing
the need to translate algorithms across different languages. Second, it is
highly configurable to match the real robot behaviour. Third, it is fast
and allows running simulations with several hundreds of Kilobots in a
fraction of real time. We present the design choices that drove our work
and report on experiments with physical robots performed to validate
simulated behaviours.

1 Introduction

Simulators are key tools for swarm robotics research. Many studies were per-
formed mainly (when not exclusively) in simulation [3,7]. Swarm simulations
tend to be “minimalistic”, in that they include only few relevant features of the
robots. Often, robots are modeled as abstract particle-like agents. For instance,
a simulator often used for swarm robotics research is MASON [14], specifically
developed for multi-agent systems research and not tailored to represent any spe-
cific robotic platform. This kind of simulations are useful to prove the validity of
decentralised coordination algorithms, but fall short when physical interactions
need to be taken into account, e.g., to simulate pulling and pushing forces among
robots [23]. Simulations in this case need to move beyond simple kinematics and
include the full dynamics of modern rigid-body simulation engines [16,17,19].

When a reference robotic hardware is available, simulations need to account
for all its components, including sensors, actuators and communication devices.
These can make simulations very costly in terms of computational requirements,
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 176–187, 2018.
https://doi.org/10.1007/978-3-030-00533-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_14&domain=pdf
http://orcid.org/0000-0002-2155-0445
http://orcid.org/0000-0002-2071-4030
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0002-1506-167X
http://orcid.org/0000-0002-9114-8486

Simulating Kilobots Within ARGoS 177

placing a tradeoff between the accuracy of the simulation and its speed [16].
However, even with accurate simulations, the “reality gap” cannot be completely
filled [11]. This is especially apparent when using automatic design techniques
that might exploit the idiosyncrasies of the simulated experimental setup [7,8].
To support swarm robotics experimentation and minimise errors when moving
to real-world experiments, simulations not only need to implement techniques
that reduce the reality gap (e.g., sensor sampling [15] and introduction and
configurability of noise [10]), but should also provide cross-compiling solutions
to directly reuse the control software developed for simulation also with the real
robot hardware. In this way, any issue related to translating the algorithm from
the one to the other platform can be removed.

Among the simulators developed for swarm robotics research, ARGoS [17]
offers a number of desirable features. ARGoS has a modular design conceived
to allow the user to select which aspects of the simulation should be assigned
more computational resources (thus increasing accuracy) and which aspects can
be simulated coarsely (thus improving scalability). For example, ARGoS sup-
ports the use of different types of physics engine—from simple kinematics to
fully 3D dynamics. In addition, ARGoS is designed for parallel computation, an
important feature to fully exploit the computational power of modern multi-core
machines. Several robotic platforms, both custom and off-the-shelf, are currently
available in ARGoS either as part of the core package or as extensions.

One robotic platform currently having momentum in swarm robotics is the
Kilobot [20,22]. The Kilobot design is driven by the need for low cost (to allow
for production of a thousand robots), small size (to fit the spaces of a typical
research lab), robustness (to reduce faults), and ease of use [20]. Meeting these
design goals meant sacrificing important features for swarm robotics research,
such as accurate environmental sensing and remote access to the robot state. To
compensate for missing features, devices such as the Kilogrid [24] and the ARK
virtualisation environment [18] have been proposed, greatly expanding the realm
of experimental activities attainable with Kilobots.

Despite the success of the Kilobot as an experimental platform, a fast and
accurate simulation environment is still important to enable fast design cycles
and educational activities based on the Kilobot. In the recent past, several simu-
lators have appeared that include the Kilobot platform. Among these, it is worth
mentioning V-REP [19], KBSim [9], and Kilombo [12]. V-REP is a generic,
modular framework originally designed for complex 3D simulations of robotic
arms and mobile robots. V-REP simulations tend to be very accurate, at the
cost of long run-times when hundreds of robots are involved in the simulation.
KBSim and Kilombo are designed to provide fast simulations for large numbers
of robots. Kilombo, in particular, can perform simulations involving thousands
of Kilobots hundreds of times faster than real time. Both KBSim and Kilombo,
however, achieve scalability by drastically simplifying the motion and communi-
cation models of the robots, and proper validation of these models is currently
unavailable. Another important aspect is that all these platform impose limita-
tions when one is to transfer code developed in simulation onto real platforms.

178 C. Pinciroli et al.

V-REP and KBSim do not target the Kilobot API, and thus require a complete
rewrite of the code. This is likely to introduce bugs and it makes convincing
model validation hard to achieve. Kilombo, on the other hand, achieves direct
interoperability with physical Kilobots by modifying the original Kilobot API
and imposing limitations on how the code can be written. Specifically, users are
not allowed to use global variables and must resort to conditional compilation
techniques to transfer the code successfully. Modifying the Kilobot API also
means that future improvements and bug fixes must be ported to the Kilombo
version, if compatibility is to be preserved.

In this paper, we present a plugin for the ARGoS simulator [17] that offers
accurate models, scalability sufficient to run one-thousand-robot experiments
in real-time, and full compatibility with the original Kilobot API. We present
the Kilobot and the reference behaviour in Sect. 2, along with experiments con-
ducted to determine the real-world behaviour and extract features to be imple-
mented in simulation. In Sect. 3, we validate the simulations against the real-
world behaviour in representative experimental conditions. We demonstrate that
ARGoS closely predicts the Kilobot behaviour, and offers sufficient efficiency to
run large-scale simulations in a fraction of real-time. Section 4 concludes the
paper.

2 Kilobot: Reference Behaviour and Simulation Models

The Kilobot is a small autonomous robot with a circular shape (diameter: 3.3 cm)
standing on three rigid legs, which moves thanks to two vibrational motors
and a slip-stick locomotion principle [20]. The robot is provided with infrared
transceivers for communication and range detection of neighbours, as well as
with an ambient light sensor and a coloured LED for displaying the robot state.
In the following, we detail the simulation design for the various components.

2.1 Body Model

The Kilobot is simulated as a small cylinder with the same radius as the real
robot, resting on three thin cylinders representing the legs. When the simulation
is performed with ARGoS’s 2D physics engine, the robot body is the circular
projection of the main board on the plane. The Kilobot locomotion is provided by
the two vibrational motors, which implement a classical differential-drive model.
The forward and rotational speeds are determined by the difference between the
velocity v� and vr, resulting respectively from the left and right motor activation.

Although the motors can be finely controlled, the normal practice with Kilo-
bots is to use only 3 motion modes: straight motion, clockwise and counterclock-
wise rotation. We calibrated the parameters of the ARGoS model so as to result
in a forward speed of 1 cm/s and a rotation speed of 45 ◦

/s, corresponding to the
nominal speed of real Kilobots [20].

Simulating Kilobots Within ARGoS 179

2.2 Noise and Inter-individual Variations

Real Kilobots have strong inter-individual variations, which are due to the simple
design and the slip-stick locomotion system. This system is strongly dependent
on small variations in the position of the motors and the bending of the legs.
To obtain acceptable locomotion, calibration of individual robots is necessary
to find good values for the motor parameters that provide straight motion and
rotations at the desired speed. Most researchers rely on manual calibration,
but this process is cumbersome and dependent on the surface on which the
Kilobot maneuver. The ARK platform [18] enables the parallel calibration of
tens of robots. While ARK shortens calibration time, it cannot guarantee error-
free precision due to the intrinsically high noise of Kilobot motion. As a result,
through either manual or automatic calibration, Kilobots hardly move straight
or rotate at the nominal speed, and present strong inter-individual variations.

To capture this, the Kilobot model has a noise component for the motion of
a single robot. Given the nominal left (�) and right (r) speeds vi (with i ∈ {�, r})
of the differential drive model, the actual speed v̂i of each wheel is computed
as v̂i = fi(vi + bi), where fi is a per-step actuation noise and bi is a per-robot
bias added to the nominal speed vi. Both fi and bi are Gaussian-distributed
random parameters, with mean and standard deviation defined in the experiment
configuration file. For each robot, the bias bi, with i ∈ {�, r}, are drawn from
the specified Gaussian distributions at the beginning of the experiment. Instead,
the actuation noise fi is drawn at each time-step.

The ARGoS default values are set from measurements performed on a sample
of 120 real Kilobots. The nominal (noise-free) speed is set to a forward speed
of vi � 1 cm/s and a rotation speed of ∼45 ◦

/s (i.e. v� � 2 cm/s, vr = 0 for right
rotation and viceversa for left rotation). To determine the distribution of the
noise observed in reality, we conducted experiments on 120 different Kilobots
(in batches of 6) that have been previously calibrated (60 manually and 60
automatically—we could not notice any remarkable difference). Robots were
asked to move straight for 1 min. Through ARK, we recorded the trajectory
of each robot, we derived the robot displacement every 10 s, and through a
differential drive model we computed the left and right speeds v̂i (with i ∈ {�, r}).
Through v̂i, we could compute the bias bt

i = v̂i − vi (ignoring white noise,
i.e. fi = 1) for each 10 s motion trajectory (thus t ∈ {1, ..., 6} for our 60 s
experiments). Finally, we computed the average bias bi =

∑
bt
i/6 for each robot

and we report the distributions of biases (for both left/right velocities i ∈ {�, r})
of the 120 tested Kilobots in Fig. 1(a). From this distribution, we computed the
mean μb = 0.015mm/s and the standard deviation σb = 1.86mm/s which we use
as default values in ARGoS. Figure 1(b) shows a comparison between the mean
square displacement (MSD) of the 120 Kilobots and the simulated robots. Noise-
free simulations show the robots moving (as expected) at the nominal speed of
∼1 cm/s, whereas the default noise values show that the simulated robots have
motion dynamics remarkably similar to reality.

180 C. Pinciroli et al.

(a) (b)

Fig. 1. (a) Distribution of the bias in straight motion estimated from measurements
over 120 different Kilobots which have been previously calibrated (60 manually, 60
automatically). The bars considers 12 bins in the range [−6, 6] mm. The solid red line
shows the approximated Gaussian distribution Nb(μb, σb) (with mean μb and standard
deviation σb) used in the default configuration of ARGoS. (b) Comparison between
simulation (600 robots) and reality (120 robots) in term of MSD when robots are
asked to go straight for 1 min. The default noise values of ARGoS give an accurate
match between reality and simulation.

2.3 Robot-Robot Communication

Communication among the Kilobots is implemented exploiting the infrared
transceiver positioned under the robot body, which sends a modulated infrared
signal that bounces on the ground and can be perceived by neighbours within
a distance of about 15 cm. The communication protocol implemented in the
most recent firmware (see https://www.kilobotics.com) is Carrier Sense Multiple
Access with Collision Detection (CSMA-CD) with exponential backoff, meaning
that upon detection of the occupied channel, message sending is delayed within
an exponentially increasing range of time slots. To avoid interferences, the max-
imum transmission frequency is set to 2 Hz. Nevertheless, Kilobots may find
the channel busy when transmitting, and collisions can still occur. To evaluate
the impact of concurrent communication, we performed an experiment with 25
Kilobots packed in a 5×5 square formation—their bodies touching each other—
and attempting to transmit messages at maximum rate. Messages contained
just the ID of the sender, so that robots getting a message could update the
number of messages received from each other robot. At the same time, robots
stored also the number of messages successfully transmitted. We performed 10
independent runs, and found that the transmission probability—i.e., the ratio
between successfully transmitted messages between the packed robots and soli-
tary robots—was close to maximum (0.992 ± 0.002) and independent from the
position of the Kilobot in the 5×5 formation. On the reception side, we observed
that the probability of receiving a messages depended strongly on the position
of the receiving robot (see Fig. 2). Generally speaking, robots in the periphery
where affected less by interferences than robots in the center (see the left panel
in Fig. 2 showing the reception probability of each robot with respect to all other

https://www.kilobotics.com

Simulating Kilobots Within ARGoS 181

Fig. 2. Communication interference measured on 25 Kilobots packed in a 5×5 grid and
concurrently sending messages to each other. Left: average message reception proba-
bility for each robot in the grid from any other robot. For each panel, the position of
the receiving robot on the grid is indicated by a ×. Right: average message reception
probability with respect to distance, in body lengths, for every Kilobot in the grid.

robots). Additionally, the decrease of the probability of reception is more pro-
nounced for center robots, indicating a stronger effect from interferences (see the
right panel in Fig. 2). Indeed, collisions are more probable in the center, where
robots may receive at the same time messages sent by robots at the periphery
that do not sense each other.

According to these results, we have implemented the Kilobot communication
limiting the maximum transmission frequency to 2 Hz, including a configurable
small error on the transmission side, and modelling message collision on the
receiver side with a tuneable probability when two robots happen to be concur-
rently transmitting.

2.4 Light Sensor

Real Kilobots are provided with a photodiode sensor to detect the ambient
light. In the commercial version1, this sensor is placed looking upward on the
robot body. Simulating the light sensors is highly dependent on the type and
position of the ambient light. ARGoS natively offers light sensor models and can
simulate light sources with a tuneable intensity. The sensor readings decrease
quadratically with the distance from the lights. In the Kilobot plugin, we rescaled
the readings in the range typical of the real robot.

2.5 ARK Simulation

The Augmented Reality for Kilobots system (ARK) [18] overcomes the limita-
tions of Kilobots by providing a flexible set of virtual environments, with which

1 Kilobots are open-hardware and in Europe are produced and sold by K-Team Cor-
poration (see https://www.k-team.com).

https://www.k-team.com

182 C. Pinciroli et al.

BCS

Cameras

OHCExtra IR
light

Fig. 3. Graphical representation of the ARK architecture. See more details in [18].

Kilobots can interact through a variety of user-configurable sensors and actua-
tors. ARK comprises a base station interfaced with an array of cameras, and an
array of overhead controllers (OHCs) for transmitting IR messages to Kilobots
(see the system architecture in Fig. 3). Communication with the Kilobots dur-
ing an experiment is obtained via broadcast of addressed messages, with each
broadcast packet containing three ARK messages (3-bytes long) for different
Kilobots. Kilobot addresses (10 bits) are uniquely assigned by ARK during a pre-
experimental phase. For sensor readings, the other 14 bits of data can be assigned
to multiple virtual sensors as desired by the user. Location-specific information
from the virtual environment can be determined for a Kilobot by its physical
position at the time the message is to be sent, which is determined through
robust tracking of each ID-assigned Kilobot over the duration of an experiment.
Kilobots communicate virtual actuator commands via signalling through RGB
LEDs, which are received via the base station’s camera array and translated
into operations on the virtual environment. Each augmented reality experiment
can be composed of more than one virtual environments. Each environment has
user-defined structure and spatio-temporal dynamics, as exemplified in [6]. As
well as enabling richer experimental paradigms, ARK’s features also lend it to
automatic motor calibration and other house-keeping features [18].

ARK is integrated with ARGoS through the ARK Loop Function (ALF), the
simulated counterpart of the ARK’s base control station. The ALF is executed
every ARGoS time-step and is in charge of simulating the virtual environments
and of sending IR ARK messages to the simulated Kilobots. To facilitate the
transfer from simulation to reality, the ALF uses the same method names and
structure of its real counterpart. Similarly to the ARK’s base control station,
the ALF has real-time access to the state of the simulated Kilobots, i.e., their
position, orientation, and LED colour. This information can be used by the user
to code the functioning of the virtual actuators and sensors. The virtual actua-
tors update the virtual environments, and virtual sensor readings are computed
using the Kilobot’s state, then transmitted to the robot. The ALF automatically
codes the 3-byte ARK messages within standard 9-byte Kilobot messages in the
same way ARK does. Therefore the Kilobot control software needs to decode
the ARK messages in ARGoS in the same way it does in reality. This imple-
mentation choice is particularly helpful because it allows for the use of identical
code in simulation and reality. ALF gives the user the possibility to limit the
communication to a maximum frequency of 60 ARK messages per second (to

Simulating Kilobots Within ARGoS 183

Fig. 4. Two screenshots of the same experiment in simulation (left) and reality (right).
We (re)implemented the Demo C from [18] in which 50 Kilobots sense and modify two
virtual environments. The full video is available at https://youtu.be/kioZR99hnU4.

match the real ARK’s frequency) or to simulate an unlimited ARK message
frequency.

To showcase the ALF functioning, we reproduced a simulated version of one
experiment based on ARK, the Demo C of [18]. Figure 4 shows two screenshots
of the experiment in simulation (left) and reality (right) featuring 50 Kilobots
that operate in two virtual environments (flower field and nest).

3 Experimental Validation

We run a set of experiments to assess the reliability of ARGoS in simulating Kilo-
bot swarms and to compare the ARGoS performance with the existing Kilobot
simulator Kilombo [12]. In Sect. 3.1, we tested how reliably ARGoS and Kilo-
mbo simulate physical interactions between Kilobots through a random diffusion
experiment. In Sect. 3.2, we compared the simulation speed of the two simula-
tors. Finally, in Sect. 3.3, we show that ARGoS successfully simulates physical
interactions between the robots and physical objects (e.g. a box) and that force
factors are taken into consideration in the simulation.

3.1 Random Diffusion Experiment

Kilobots are equipped with minimal sensing capabilities which do not allow
robots to implement robust mechanisms of collision avoidance, therefore colli-
sions between robots and objects in the environment are frequent. In this exper-
iment, we assess how realistically the collisions between Kilobots are simulated
in ARGoS and Kilombo. To perform this study, we designed an experiment
that maximises the number of collisions in a repeatable setup. The 50 Kilobots
have an initial compact distribution as illustrated in Fig. 5 (left). The robots are
placed in concentric circles heading toward the centre of the group (more pre-
cisely, the robot are placed on the vertices of four concentric regular polygons,

https://youtu.be/kioZR99hnU4

184 C. Pinciroli et al.

Fig. 5. (left) Initial distribution in four concentric circles with all 50 Kilobots facing
towards the centre. (right) Comparison between real 50 Kilobots (19 runs) and 50
simulated Kilobots (100 runs) in ARGoS and Kilombo. We show the average mean
square displacement (MSD) in a highly dense environment. ARGoS shows a good
agreement with reality, whereas Kilombo does not. Video footage is available at https://
youtu.be/6HYti0ABuxc.

starting from the innermost regular pentagon with radius 35 mm, each polygon
has the same centre, twice the number of vertices, and double radius of its inter-
nal polygon). In this experiment, the 50 Kilobots perform an isotropic random
walk [5] through which they repetitively move forward for ∼10s and turn in a
random direction (left or right) for a random time drawn from a uniform distri-
bution U(0, 4)s. We performed 19 runs of this experiment with real robots and
100 runs with simulated Kilobots in both ARGoS and Kilombo. For every run,
we recorded the trajectory of each Kilobot for a period of 3 min to compute the
mean square displacement (MSD) of each robot. We combined the 50 MSD in
each experiment and we show in Fig. 5 (right) how the average MSD changes
over time. Figure 5 (right) clearly shows that ARGoS correctly simulates physical
interactions between robots while Kilombo does not.

3.2 Speed and Scalability

To test the scalability of the Kilobot plugin, we performed experiments based
on the disperse.c example provided on the Kilobot website. This behaviour
allows a group of Kilobots to evenly disperse in the environment. We deemed
disperse.c a good benchmark because it involves both motion and communi-
cation, and the robots are initially deployed in a tight cluster that stress-tests
the collision management of ARGoS’s 2D physics engine.

Scalability is measured through the wall clock time, which is the real time
elapsed between the beginning and the end of the simulation of 60 virtual sec-
onds. We performed these experiments on a node of a computing cluster with 48
Intel Xeon Platinum 8168 CPUs at 2.70 GHz. The experiments were performed
without graphical visualisation.

We considered several parameters: (i) the number of robots N ∈ {10, 100,
1000}; (ii) the number of “worker” threads used by ARGoS T ∈ {0, 4, 16}; and

https://youtu.be/6HYti0ABuxc
https://youtu.be/6HYti0ABuxc

Simulating Kilobots Within ARGoS 185

Fig. 6. Scalability experiments. We report the median, max and min wall clock time
in a log sec scale for experiments simulating 60 virtual seconds.

(a) t=0 (b) t=10 (c) t=20 (d) t=30 (e) t=0 (f) t=10 (g) t=20 (h) t=30

(i) t=0 (j) t=10 (k) t=20 (l) t=30 (m) t=0 (n) t=10 (o) t=20 (p) t=30

Fig. 7. Box-pushing experiments. Top: real robots. Bottom: ARGoS simulation. Time
in seconds. Video footage at https://youtu.be/fwL9ePWttiU.

(iii) the number of physics engines in which the environment is partitioned P ∈
{1, 4, 16}. Every parameter set 〈N,T, P 〉 was tested 30 times.

The results are reported in Fig. 6. The use of multiple threads and physics
engines is beneficial when large swarms are simulated—particularly with 1000
robots. Conversely, with small swarms of 10 robots, multi-threading and multiple
physics engines decrease performance. With 1000 robots, 1 physics engine and 0
working threads, the runtime mean was 27 s (45% of real time); when 16 physics
engines and 16 working threads were used, the simulation was completed in 20 s
(33% of real time).

3.3 Accuracy: Box Pushing

Remarkable collective transport experiments have been demonstrated with the
Kilobots [1,21]. Our plugin also supports simulations that involve robots that
push objects. In our experiments, we found that one robot pushing an 18 g box
is not sufficient to move the box. Rather, it is necessary to use at least 5 robots
to exert sufficient force to move the box. Figure 7 shows a real-world box pushing
experiment and its simulated counterpart.

https://youtu.be/fwL9ePWttiU

186 C. Pinciroli et al.

4 Conclusions

An essential feature of any simulator are usability and realism, and scalability.
Kilobots, despite their simple hardware design, present specificities that make
their simulation non-trivial. As a matter of fact, most of the simulators available
for the Kilobots are rather minimalistic, and prove useful only for proof-of-
concept studies without guarantees of respecting real-world behaviour. Our effort
in developing a Kilobot model for ARGoS fills the need of a usable and reliable
simulation, as demonstrated by the validation experiments we performed. We
believe this will be a precious tool for swarm robotics research. To this end, the
simulator is released open source for the benefit of the community (available at
https://github.com/ilpincy/argos3-kilobot).

Besides the Kilobot simulation, this paper also introduces methodologies for
tuning the simulation that can be replicated whenever a close matching between
simulation and reality is desired. In particular, inter-individual variation between
Kilobots (due to differences in hardware and calibration) needs to be considered
as it represent an important problem when moving from simulation to reality.
Tuning the simulation as discussed in Sect. 2.2 brings the full complexity of real-
world Kilobots into the simulations, allowing for the design of controllers that
are robust to inter-individual variability and that bridge the “reality gap”.

Further support to swarm robotics research with Kilobots can be obtained
by automatisation of practices that are now performed manually. The ARK
offers tools to this aim, and the integration of ARK within ARGoS is useful to
streamline experimentation. A stronger integration of simulated and real robots
can be performed through ARK, letting simulated and real Kilobots run in
parallel, therefore opening the way for online learning [13], self-modelling [2] or
embodied evolution [4].

Acknowledgments. This work was partially supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under Grant 647704 to James Marshall. Vito Trianni acknowledges support
from the project DICE (FP7 Marie Curie Career Integration Grant, ID: 631297). The
authors thank Alex Cope for assistance in the preparation of Fig. 3.

References

1. Becker, A., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uniform
manipulation: controlling large populations of simple robots with a common input
signal. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 520–527. IEEE (2013)

2. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Robot. AI 5, 12 (2018)

https://github.com/ilpincy/argos3-kilobot

Simulating Kilobots Within ARGoS 187

5. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with kilobots. In: Dorigo, M. (ed.) ANTS 2016. LNCS, vol. 9882, pp. 185–196.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

6. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., et al. (ed.) Swarm Intelligence (ANTS 2018), LNCS, vol. 11172, pp. X-XY.
Springer, Heidelberg (2018). In press

7. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3, 224–9 (2016)

8. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

9. Halme, A.: Kilobot app–a kilobot simulator and swarm pattern designer. https://
github.com/ajhalme/kbsim (2012). Accessed 20 Apr 2018

10. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325 (1997)

11. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

12. Jansson, F., et al.: Kilombo: a Kilobot simulator to enable effective research in
swarm robotics. arXiv.org:1511.04285 (2015)

13. Li, W., Gauci, M., Gross, R.: Turing learning: a metric-free approach to inferring
behavior and its application to swarms. Swarm Intell. 10(3), 211–243 (2016)

14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

15. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1995)

16. Mondada, F., et al.: SWARM-BOT: a new distributed robotic concept. Auton.
Robots 17(2), 193–221 (2004)

17. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

18. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented
Reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017)

19. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1321–1326 (2013)

20. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014)

21. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.:
Collective transport of complex objects by simple robots: theory and experiments.
In: Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2013), pp. 47–54. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2013)

22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

23. Trianni, V., Dorigo, M.: Self-organisation and communication in groups of simu-
lated and physical robots. Biol. Cybern. 95(3), 213–231 (2006)

24. Valentini, G., et al.: Kilogrid: a novel experimental environment for the Kilobot
robot. Swarm Intell. 4(4), 1–22 (2018)

https://doi.org/10.1007/978-3-319-44427-7_16
https://github.com/ajhalme/kbsim
https://github.com/ajhalme/kbsim
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337
http://arxiv.org/abs/org:1511.04285

Simulating Multi-robot Construction
in ARGoS

Michael Allwright1(B) , Navneet Bhalla2 , Carlo Pinciroli3 ,
and Marco Dorigo1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{mallwrig,mdorigo}@ulb.ac.be

2 Department of Computer Science, University College London, London, UK
n.bhalla@cs.ucl.ac.uk

3 Department of Computer Science/Robotics Engineering,
Worcester Polytechnic Institute, Worcester, MA, USA

cpinciroli@wpi.edu

Abstract. Running hardware-based experiments in multi-robot con-
struction is an expensive and time-consuming endeavor. Furthermore, it
is difficult to disseminate the results from hardware-based experiments
in a way that other researchers can build upon. In this paper, we present
a number of plug-ins for a multi-robot simulator that we have developed
to enable a high-fidelity simulation of the multi-robot construction sys-
tems typically found in laboratory settings. We validate these plug-ins
qualitatively by repeating a hardware-based experiment in simulation
where a single robot assembles a staircase from blocks [1]. We then show
how we can use the plug-ins to scale up the complexity of the construc-
tion scenario and demonstrate multi-robot construction in simulation.
To enable other researchers to replicate our experiments and to promote
collaboration, we have made our plug-ins open source.

1 Introduction

In our research, we study how the coordination mechanisms used by social insects
can be applied to a swarm of robots whose task is to collectively assemble struc-
tures. This research direction is motivated by the robustness, parallelism, and
adaptivity to the environment that social insects exhibit as they construct their
nests [4,5]. Construction by social insects is decentralized and is coordinated
through stigmergic communication [7], where the probability of an insect per-
forming a construction action is a function of the previously performed con-
struction actions as perceived by that insect [19]. These construction actions
may have been performed by the same insect or by other insects.

Using a single robot, we previously studied how stigmergic communication
could be used to guide the construction of a staircase [1]. The robot in this
study located unused blocks in the environment before attaching them to the
staircase according to the arrangement of the blocks already in the structure.
The development of this hardware and the running of the experiments, however,
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 188–200, 2018.
https://doi.org/10.1007/978-3-030-00533-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_15&domain=pdf
http://orcid.org/0000-0002-0932-3215
http://orcid.org/0000-0003-0254-7344
http://orcid.org/0000-0002-2155-0445
http://orcid.org/0000-0002-3971-0507

Simulating Multi-robot Construction in ARGoS 189

were both expensive and time-consuming endeavors. Furthermore, since other
researchers do not have access to our hardware, it is difficult for them to replicate
our experiments and to build upon our results. These challenges make it difficult
to answer a number of open research questions regarding, for example, whether
it is possible to encode arbitrary structures as sets of assembly rules for swarms
of robots and how these encodings can be compared in terms of their robustness
and their ability to be executed in parallel by multiple robots.

To address these challenges and to answer these open research questions, we
present in this paper a number of plug-ins for ARGoS (Autonomous Robots Go
Swarming), an open-source, multi-robot simulator [14]. We show in this paper
how we can use these plug-ins to qualitatively reproduce our hardware-based
results in simulation and how we can use the plug-ins to scale up to and to
study multi-robot construction in simulation. To enable other researchers in the
swarm robotics community to build upon our results, we have made these plug-
ins open source. In this paper, the presented validation of the plug-ins is strictly
qualitative and further quantitative evaluation is required to identify and to
mitigate any reality gap found between our hardware and our simulation.

This paper is organized as follows. In the next section, we discuss current
practices regarding the use of simulation in the multi-robot construction liter-
ature. In Sect. 3, we introduce ARGoS and summarize the plug-ins which we
have developed to enable the simulation of multi-robot construction systems.
Section 4 presents a case study in which we demonstrate how the plug-ins can be
used to simulate multi-robot construction. In the final section, we conclude this
paper by discussing the open research questions that we would like to answer in
our future work.

2 Background

While previous work in multi-robot construction has used simulation to mitigate
some of the challenges of hardware, simulations are often limited to lattice-based
two- or three-dimensional worlds where the interaction dynamics is unrealistic
as are the perceptual capabilities of the robots [17,18,21,22].

In the work by Jones and Matarić, a high-fidelity simulator was used, but
the simulation was tweaked so that the robots simply requested the simula-
tion engine to add construction material directly to the structure, sidestepping
several challenges present in a multi-robot construction system such as manipu-
lating the construction materials and avoiding collisions with other robots during
construction [8]. In two other cases, results from simulation were presented but
not discussed. Werfel et al., for example, included two videos from simulation
in their supplementary material but did not discuss these results in either the
main article or in the supplementary report [23]. Lindsey et al. also presented
results from simulation without detailing their nature [10].

While the aforementioned works significantly contributed to the state of the
art in multi-robot construction, the means to replicate the experiments is prob-
lematic since other researchers are unable to build upon the presented results.

190 M. Allwright et al.

This lack of a means to replicate experiments and to build upon previous results
is a significant barrier to pushing the state of the art in multi-robot construc-
tion further forward. One way to remove this barrier is by using an open-source,
high-fidelity simulator that can run multi-robot construction experiments. This
simulator would need to support the range of sensors, actuators, and mechanisms
that are commonly used by multi-robot construction systems in laboratory set-
tings. For example, the simulator would need to support camera systems that can
detect tags or light-emitting diodes (LEDs), rangefinders, prismatic and revo-
lute actuators, and magnetism. Furthermore, the simulator would ideally provide
good performance when running experiments with large numbers of robots.

3 Contributions to the ARGoS Simulator

ARGoS (Autonomous Robots Go Swarming) is a multi-robot simulator built
around the principle of tunable accuracy. In contrast to general-purpose sim-
ulators such as USARSim [6], Gazebo [9], and Webots [11] whose performance
quickly degrades with increasing numbers of robots, benchmarks for ARGoS have
demonstrated the simulation of 10,000 robots running faster than real time [14].
ARGoS is also widely used in the swarm robotics community by more than 21
robotics laboratories in 13 different countries1.

At the time of writing, however, the latest release of ARGoS (3.0.0-beta49)
only comes with plug-ins for two-dimensional dynamics and a limited number
of generic sensors and actuators. The implementation of new robots in ARGoS
also requires a significant amount of coding and the compilation of new classes
that represent a robot’s sensors, actuators, physics model, and visualization.
However, ARGoS has been purposefully designed to be modular. Most aspects
of a simulation can be overridden and developers can add functionality to the
simulator in the form of new sensors, actuators, visualizations, physics engines.

We have enhanced three of the plug-ins from the ARGoS core package and
have implemented two completely new plug-ins that enable the simulation of
three-dimensional dynamics and the rapid prototyping of new robots. The plug-
ins are designed to support a high-fidelity simulation of the dynamics, sensors,
actuators, and other mechanisms commonly used by the multi-robot construc-
tion systems found in robotics laboratories. By making these plug-ins open source
and by including them in the ARGoS core package (from 3.0.0-beta50), we hope
to increase the pace of the research in multi-robot construction by enabling
researchers to implement their own multi-robot construction systems in simula-
tion and by enabling other researchers to replicate the presented results.

In the remainder of this section, we summarize our contributions to ARGoS
in the context of multi-robot construction. The plug-ins that we have devel-
oped, however, are highly flexible and their potential applications go significantly
beyond multi-robot construction. For a more in-depth discussion of the plug-ins
including examples on how to use them, we refer the reader to the supplementary
technical report for this paper [2].
1 Users of ARGoS – http://www.argos-sim.info/users.php.

http://www.argos-sim.info/users.php

Simulating Multi-robot Construction in ARGoS 191

3.1 Enhancements to the Entities Plug-in

In the ARGoS simulator, entities represent the components of a robot in the
simulation. This representation allows plug-ins such as visualizations, physics
engines, and controllers to read and to write the state of these components. We
have added four new entities to the entities plug-in. The simulation of magnetism
is enabled by introducing the magnet entity. Magnetism can be used in multi-
robot construction systems for both manipulating the building materials [15,16]
and for the self-alignment of the building materials inside a structure [13,24]. A
magnet entity is capable of representing a permanent magnet, an electromagnet,
or a semi-permanent electromagnet. We have also implemented a radio entity
which represents a simple omnidirectional radio that can broadcast messages
to other radios within a given range. This radio entity is suitable for simulat-
ing communication between robots and for simulating communication between
robots and a building material [22,25]. In contrast to the range-and-bearing
entity in ARGoS, the radio entity is not based on infrared light and its messages
are not obstructed by other entities in the simulation. A tag and a directional
light-emitting diode (LED) entity were also implemented and can be attached
to any object in the simulation. The directional LED entity is based on the stan-
dard LED entity in ARGoS and includes two additional attributes, namely an
orientation and an observable angle. These entities can be detected by camera
sensors and can be used by robots to locate building materials.

3.2 Enhancements to the Media Plug-in

Media are used by the simulator to manage entities during a simulation. At a
minimum, the implementation of a medium consists of a data structure which
is typically queried by a sensor and modified by an actuator. We have defined
three new mediums, namely the radio, tag, and directional LED medium. These
mediums are required to support the sensors and actuators for a robot, so that
it can interact with the radio, tag, and directional LED entities in a simulation.

3.3 Enhancements to the Generic Robot Plug-in

The generic robot plug-in defines generic sensors and actuators that can be used
by any robot. We have enhanced this plug-in by implementing a generic camera
framework that allows any number of cameras to be attached to a robot. For
performance reasons, we have chosen to simulate computer vision algorithms
rather than rendering the simulated environment from the perspective of each
robot. For example, instead of rendering the tags in a simulation onto a virtual
buffer and passing these pixels to a tag detection algorithm, we use a simulated
tag detection algorithm that simply queries the tag medium and directly calcu-
lates the pixel coordinates of a tag’s corners. We have provided three simulated
computer vision algorithms for detecting tags, directional LEDs, and the stan-
dard LEDs in ARGoS. The output from the simulated tag detection algorithm
is consistent with the output from the AprilTag algorithm and enables a robot

192 M. Allwright et al.

to estimate the pose of a detected tag [12]. In addition to the generic camera
framework, we have also added a generic radio sensor and actuator. In conjunc-
tion with the radio entity, this sensor and actuator allow robots to send messages
and to receive messages from nearby robots or building material.

3.4 The Three-Dimensional Dynamics Plug-in

To simulate the interaction dynamics that occur during multi-robot construction,
we have created a new physics engine plug-in for ARGoS, which is a wrapper
around Bullet Physics2. This plug-in replaces the deprecated three-dimensional
dynamics plug-in from previous versions of ARGoS, which was based on ODE.

The three-dimensional dynamics plug-in provides a number of helper classes
for quickly creating new robots. The plug-in also provides a configurable floor,
and tunable gravity and magnetism. Magnetic forces and torques are applied to
bodies in the simulation where a corresponding magnet entity has been defined.
The forces and torques are calculated using a variant of Thomaszewski’s algo-
rithm [20], where each magnet is approximated by a single dipole.

3.5 The Prototyping Plug-in

The prototyping plug-in enables the implementation of new robots and build-
ing materials in ARGoS without the need to manually code and compile new
classes. The plug-in defines a new robot that is entirely described by ARGoS’s
experiment configuration file.

The plug-in provides new entities for describing links and joints. Links are
defined by their mass and geometry, which currently can be either a box, a
cylinder, or a sphere. Joints specify how two links are connected to each other.
There are four joint types currently supported: fixed, spherical, prismatic, and
revolute. For prismatic and revolute joints, it is possible to limit the range of a
joint’s motion and to assign a sensor and an actuator to the joint. The default
sensor can measure either joint position or joint velocity and the default actuator
can be configured to use either position control or velocity control. The plug-in
also provides a physics model for the three-dimensional dynamics plug-in and a
visualization model for the Qt-OpenGL plug-in.

Sensors, actuators, and other robot components such as tags, directional
LEDs, standard LEDs, radios, and cameras are also defined in the experiment
configuration file and can be attached to any link in the robot.

4 Case Study: Multi-robot Construction

In this section, we demonstrate how our plug-ins for the ARGoS simulator enable
us to qualitatively reproduce our hardware-based experiment, in which a single
robot constructed a staircase [1]. In addition to reproducing our hardware-based

2 Bullet Physics – http://bulletphysics.org/.

http://bulletphysics.org/

Simulating Multi-robot Construction in ARGoS 193

experiment, we show in simulation a more complicated construction scenario
involving four robots that collectively assemble a stepped pyramid.

We have used the prototyping plug-in to model the robot and the building
material in simulation. The models and sample controllers for the robot and the
building material are available on the supplementary material website for this
paper [3].

4.1 Summary of the Hardware and the Control Software

The hardware of our autonomous construction system consists of a building
material known as stigmergic blocks and an autonomous robot, which assembles
the blocks into structures [1]. The blocks are cubes that contain on each face: (i)
a tag, (ii) a near-field communication (NFC) interface, and (iii) four multi-color
light-emitting diodes (LEDs). The tags are used by the robot to estimate the
pose of a block. Spherical magnets are assembled into the corners of the blocks
to provide self-alignment and so that the blocks can be picked up by a robot.

The robot consists of two tracks (treads) that form a differential drive, allow-
ing the robot to move around its environment. Using its camera, the robot can
locate blocks by detecting their tags and can identify the colors of the LEDs on
a block. Semi-permanent electromagnets are attached to an end effector, which
enable the robot to pick up a block and to attach it to a structure.

The control software for the robot is implemented using a finite state machine
(FSM). In this FSM, a robot starts by locating an unused block (a single block
whose LEDs are not illuminated). The robot then searches for, approaches, and
inspects structures in its environment (where a structure is defined by one or
more blocks whose LEDs are illuminated). If the arrangement and LED colors of
the blocks in a structure match a predefined rule, the robot uses its NFC interface
to configure the LED colors on the unused block and attaches the unused block
to the structure with respect to the matched rule. Since the attachment of this
block modifies the arrangement and LED colors of the blocks in the structure, a
feedback loop emerges where other predefined rules can now be matched and can
continue to coordinate the assembly of a structure. At the time of writing, the
robot can only modify the color of the block that is attached to its end effector.
However, we are currently enhancing the block’s software to allow block-to-block
communication that will enable a recently placed block to update the LED colors
of adjacent blocks in a structure.

4.2 Modeling the Hardware in Simulation

For the simulation work presented in this paper, both the stigmergic block and
the autonomous robot are implemented using the prototyping plug-in. The main
body of a block is modeled as a box-shaped link with side lengths of 55 mm.
Eight additional sphere-shaped links are defined inside the block to simulate the
freely-rotating spherical magnets. Since the magnetism provided by the three-
dimensional dynamics plug-in uses a single-dipole approximation, we have tuned

194 M. Allwright et al.

Fig. 1. Visualization of a stigmergic block and an autonomous robot in the ARGoS
simulator: these visualizations are generated automatically by the Qt-OpenGL visual-
ization model from the prototyping plug-in

the strength of the magnets based on empirical testing to match the characteris-
tics of the hardware. A tag, radio, and four directional LEDs are added to each
face of the block to complete its model in simulation.

The model of the robot consists of 15 links and 15 joints. Four of the links
and four of the joints are used to simulate the tracks (treads) of the robot.
An additional joint represents the end effector of a robot which is lowered and
raised in order to pick up and to assemble unused blocks into a structure. The
remaining links are used to simulate the geometry of the robot and the joints
between them are fixed. The robot is configured with a camera, rangefinders,
radios, semi-permanent electromagnets, and joint sensors and actuators to match
the capabilities of the hardware.

These descriptions of the stigmergic block and the autonomous robot are
provided to the prototyping plug-in via the experiment configuration file. The
prototyping plug-in parses these descriptions and creates models of these objects
using the three-dimensional dynamics plug-in and the Qt-OpenGL visualization
plug-in (see Fig. 1).

4.3 Reproducing the Hardware Results

In our previous work, we demonstrated the construction of a staircase using a
single robot [1]. The staircase consisted of three columns of blocks descending
in height with the blocks in each column illuminated with a distinct LED color.
The highest column contained three blocks with the LEDs set to green, the mid-
dle column contained two blocks with the LEDs set to red, and the last column
contained a single block with its LEDs set to violet. To replicate this demon-
stration in simulation, we create an instance of the finite state machine used by

Simulating Multi-robot Construction in ARGoS 195

Fig. 2. Snapshots comparing hardware and simulation results

the hardware inside an ARGoS controller. The controller acts as a wrapper that
synchronizes the state machine’s data with the sensors and actuators provided
by the prototyping and generic robot plug-ins. Snapshots of this demonstration
on the hardware and in simulation are shown side-by-side in Fig. 2. We consider

196 M. Allwright et al.

Fig. 3. Snapshots of four robots building a stepped pyramid in simulation

the ability to reproduce the hardware results in simulation as a qualitative val-
idation of the presented plug-ins and of the models of the stigmergic block and
the autonomous robot. However, further quantitative testing will be required to
identify the extent of any reality gap and to mitigate it. A video of this demon-
stration is available on the supplementary material website for this paper [3].

Simulating Multi-robot Construction in ARGoS 197

4.4 Scaling up to Multi-robot Construction

Following the qualitative validation of our plug-ins and models, we are now able
to scale up to a more complex construction scenario where four robots are used to
assemble a stepped pyramid in simulation. This demonstration was only possible
in simulation due to reliability issues with the robot’s drive system.

The stepped pyramid is, in essence, four of the staircases from the previous
demonstration which share a common central column. We leverage this sym-
metry and make only two minor modifications to the control software used by
a robot, namely (i) we introduce a random delay state so that the robots do
not all approach the structure at the same time and (ii) we introduce a basic
collision avoidance mechanism that detects if another robot is attempting to
attach a block to the central column of the stepped pyramid. Snapshots of this
demonstration running in simulation are shown in Fig. 3. A video of the complete
demonstration is available on the supplementary material website [3].

We ran this experiment in ARGoS and gathered data on the construction
throughput for five runs. The plot in Fig. 4 shows the construction progress
during each of these runs in gray and the average of the five runs in black. From
the data, we observe that the construction throughput is initially low due to the
central construction site being saturated as all robots attempt to assemble the
central column. Following the construction of the central column, however, the
construction throughput increases as the robots start building the wings of the
pyramid in parallel. The rate of construction then decreases again towards the
end of the construction task since the robots no longer have any work to do.

Fig. 4. Construction progress for the stepped pyramid from five runs (shown in gray)
and the average progress across all runs (shown in black)

198 M. Allwright et al.

5 Conclusions

In this paper, we have discussed and demonstrated the use of five plug-ins
that enable the simulation of our autonomous construction system in ARGoS, a
modular, multi-robot simulator. These plug-ins have allowed us to qualitatively
reproduce our hardware-based results in simulation and to investigate a more
complicated construction scenario.

The plug-ins presented in this paper have been made open source and have
been integrated into the ARGoS core package (from 3.0.0-beta50). These plug-ins
aim to enable a high-fidelity simulation of the multi-robot construction systems
that are commonly found in laboratory settings. We hope that our contribution
increases the pace of multi-robot construction research by enabling researchers
to disseminate their results and the means to reproduce them more effectively.

In future work, we will use these plug-ins as part of a workflow that aims
to answer a number of open research questions regarding the representation of
arbitrary structures as assembly rule sets for swarms of robots. We will also
investigate and compare different representations of a given structure in terms
of its robustness and its ability to be built in parallel by multiple robots.

Acknowledgments. Michael Allwright was supported by the Australian Government
through the Endeavour Scholarships and Fellowships Program. Navneet Bhalla was
partially supported by a postdoctoral fellowship from the Natural Sciences and Engi-
neering Research Council of Canada. Marco Dorigo acknowledges support from the
Belgian F.R.S.-FNRS, of which he is a Research Director. The work presented in this
paper was partially supported by the FLAG-ERA project RoboCom++ and by the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement number 681872). We would like to thank
Haitham El-faham and Weixu Zhu for their help with implementing and testing the
magnetism code in the three-dimensional dynamics plug-in.

References

1. Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for
autonomous construction. In: Proceedings of the Eighteenth International Confer-
ence on Advanced Robotics, pp. 296–302. IEEE (2017). https://doi.org/10.1109/
icar.2017.8023623

2. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: ARGoS plug-ins for exper-
iments in autonomous construction. Technical report TR/IRIDIA/2018-007,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2018)

3. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Simulating multi-robot con-
struction in ARGoS (supplementary material website) (2018). http://iridia.ulb.ac.
be/supp/IridiaSupp2017-004/index.html

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press, Princeton
(2001)

https://doi.org/10.1109/icar.2017.8023623
https://doi.org/10.1109/icar.2017.8023623
http://iridia.ulb.ac.be/supp/IridiaSupp2017-004/index.html
http://iridia.ulb.ac.be/supp/IridiaSupp2017-004/index.html

Simulating Multi-robot Construction in ARGoS 199

6. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: 2007 IEEE International Conference on
Robotics and Automation, pp. 1400–1405. IEEE (2007). https://doi.org/10.1109/
robot.2007.363180

7. Grassé, P.P.: Reconstruction of the nest and coordination between individuals in
terms. Bellicositermes Natalensis and Cubitermes sp. the theory of stigmergy: test
interpretation of termite constructions. Insectes Soc. 6(1), 41–80 (1959). https://
doi.org/10.1007/bf02223791

8. Jones, C., Matarić, M.J.: Automatic synthesis of communication-based coordinated
multi-robot systems. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 381–387. IEEE (2004). https://doi.org/10.1109/iros.2004.
1389382

9. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2149–2154. IEEE (2004). https://doi.org/10.1109/iros.
2004.1389727

10. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton.
Robots 33(3), 323–336 (2012). https://doi.org/10.1007/s10514-012-9305-0

11. Michel, O.: Cyberbotics Ltd., WebotsTM: professional mobile robot simulation. Int.
J. Adv. Robot. Syst. 1(1), 39–42 (2004). https://doi.org/10.5772/5618

12. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE
International Conference on Robotics and Automation, pp. 3400–3407. IEEE
(2011). https://doi.org/10.1109/icra.2011.5979561

13. Petersen, K., Nagpal, R., Werfel, J.: TERMES: an autonomous robotic system for
three-dimensional collective construction. In: Proceedings of Robotics: Science and
Systems, pp. 257–264. RSS Foundation (2011). https://doi.org/10.15607/rss.2011.
vii.035

14. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

15. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous
construction with compliant building material. In: Menegatti, E., Michael, N.,
Berns, K., Yamaguchi, H. (eds.) Intelligent Autonomous Systems. AISC, vol. 302,
pp. 1371–1388. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-08338-
4 99

16. Sugawara, K., Doi, Y.: Collective construction by cooperation of simple robots and
intelligent blocks. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016.
LNCS (LNAI), vol. 9834, pp. 452–461. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43506-0 40

17. Sugawara, K., Doi, Y.: Collective construction of dynamic equilibrium structure
through interaction of simple robots with semi-active blocks. In: Chong, N.-Y.,
Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 112, pp.
165–176. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8 12

18. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Science
269(5224), 686–688 (1995). https://doi.org/10.1126/science.269.5224.686

19. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116
(1999). https://doi.org/10.1162/106454699568700

20. Thomaszewski, B., Gumann, A., Pabst, S., Straßer, W.: Magnets in motion.
ACM Trans. Graph. 27(5), 162:1–162:9 (2008). https://doi.org/10.1145/1409060.
1409115

https://doi.org/10.1109/robot.2007.363180
https://doi.org/10.1109/robot.2007.363180
https://doi.org/10.1007/bf02223791
https://doi.org/10.1007/bf02223791
https://doi.org/10.1109/iros.2004.1389382
https://doi.org/10.1109/iros.2004.1389382
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1007/s10514-012-9305-0
https://doi.org/10.5772/5618
https://doi.org/10.1109/icra.2011.5979561
https://doi.org/10.15607/rss.2011.vii.035
https://doi.org/10.15607/rss.2011.vii.035
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/978-3-319-08338-4_99
https://doi.org/10.1007/978-3-319-08338-4_99
https://doi.org/10.1007/978-3-319-43506-0_40
https://doi.org/10.1007/978-3-319-43506-0_40
https://doi.org/10.1007/978-4-431-55879-8_12
https://doi.org/10.1126/science.269.5224.686
https://doi.org/10.1162/106454699568700
https://doi.org/10.1145/1409060.1409115
https://doi.org/10.1145/1409060.1409115

200 M. Allwright et al.

21. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell.
Syst. 21(2), 20–28 (2006). https://doi.org/10.1109/mis.2006.25

22. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and
modular blocks. Int. J. Robot. Res. 27(3–4), 463–479 (2008). https://doi.org/10.
1177/0278364907084984

23. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014). https://doi.
org/10.1126/science.1245842

24. Wismer, S., Hitz, G., Bonani, M., Gribovskiy, A., Magnenat, S.: Autonomous con-
struction of a roofed structure: synthesizing planning and stigmergy on a mobile
robot. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5436–5437. IEEE (2012). https://doi.org/10.1109/iros.2012.6386278

25. Worcester, J., Ani Hsieh, M., Lakaemper, R.: Distributed assembly with online
workload balancing and visual error detection and correction. Int. J. Robot. Res.
33(4), 534–546 (2014). https://doi.org/10.1177/0278364913509125

https://doi.org/10.1109/mis.2006.25
https://doi.org/10.1177/0278364907084984
https://doi.org/10.1177/0278364907084984
https://doi.org/10.1126/science.1245842
https://doi.org/10.1126/science.1245842
https://doi.org/10.1109/iros.2012.6386278
https://doi.org/10.1177/0278364913509125

Stability Analysis of the Multi-objective
Multi-guided Particle Swarm Optimizer

Christopher W. Cleghorn(B) , Christiaan Scheepers ,
and Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{ccleghorn,engel}@cs.up.ac.za, cscheepers@acm.org

Abstract. At present particle swarm optimizers (PSO) designed for
multi-objective optimization have undergone no form of theoretical sta-
bility analysis. This paper derives the sufficient and necessary conditions
for order-1 and order-2 stability of the recently proposed multi-guided
PSO (MGPSO), which was designed specifically for multi-objective opti-
mization. The paper utilizes a recently published theorem for perform-
ing stability analysis on PSO variants, which requires minimal modeling
assumptions. It is vital for PSO practitioners to know the actual crite-
ria for particle stability of the given PSO variant being used, as it been
shown that particle stability has a considerable impact on PSO’s perfor-
mance. This paper empirically validates its theoretical findings by com-
paring the derived stability criteria against those of an assumption free
MGPSO algorithm. It was found that the derived criteria for order-1 and
order-2 stability are an accurate predictor of the unsimplified MGPSO’s
particle behavior.

1 Introduction

Recently, a particle swarm optimizer (PSO) variant, the multi-guided PSO
(MGPSO) was proposed for multi-objective optimization [14,15]. It was found
that MGPSO was highly competitive to the current state of the art PSO
based multi-objective optimization algorithms, such as speed-constrained multi-
objective particle swarm optimization (SMPSO) [10], optimized multi-objective
particle swarm optimization (OMOPSO) [13], and the vector evaluated particle
swarm optimizer (VEPSO) [11,12]. Furthermore, the MGPSO was also shown
to be highly competitive with the current state of the art evolutionary multi-
ple objective optimizers, such as the non-dominated sorting genetic algorithm II
(NSGA-II) [8], strength Pareto evolutionary algorithm 2 (SPEA2) [18], pareto
envelope-based selection algorithm II (PESA-II) [7], and the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D) [17].

With the introduction of any new optimization algorithm comes an array
of unknown algorithm characteristics to be understood. The characteristic that
this paper focuses on is particle stability. It has been empirically shown that
order-1 and order-2 particle stability has a considerable impact on performance

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 201–212, 2018.
https://doi.org/10.1007/978-3-030-00533-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_16&domain=pdf
http://orcid.org/0000-0002-7860-0650
http://orcid.org/0000-0002-3285-7901
http://orcid.org/0000-0002-0242-3539

202 C. W. Cleghorn et al.

[4]. Furthermore, it was shown that parameter configurations that resulted in
particle instability almost always caused PSO to perform worse than random
search [4]. The clear relationship between PSO particle stability and the algo-
rithm’s performance, implies that knowing the criteria for particle stability is
needed for effective use of a PSO variant.

Given that MGPSO has a similar structure to that of the original PSO [9]
with the presence of inertia as proposed by Shi [16], existing PSO theory can
be readily applied to the stability analysis of MGPSO. Specifically, Cleghorn
and Engelbrecht [6] recently proposed a general theorem for deriving stability
criteria for a class of PSO variants under minimal modeling assumptions. To the
authors’ knowledge this is the first paper to perform stability analysis of a multi-
objective PSO. The theoretically derived region for particle stability of MGPSO
is also empirically validated utilizing the assumption for free methodology for
stability region validation, as presented in [1,3], and used in [2,5].

A description of MGPSO is provided in Sect. 2. The theoretical derivation of
the order-1 and order-2 stable regions of MGPSO are presented in Sect. 3. The
experimental setup and results empirically validating the derived stable regions
are presented in Sects. 4 and 5 respectively. A summary of the findings of this
paper are presented in Sect. 6.

2 Multi-guided Particle Swarm Optimizer

The MGPSO algorithm was proposed by Scheepers and Engelbrecht [14,15] and
is inspired by the vector evaluated particle swarm optimizer (VEPSO) as pro-
posed by Parsopoulos and Vrahatis [11,12]. MGPSO is a multi-swarm multi-
objective PSO variant, where each objective is optimized by a sub-swarm. Similar
to VEPSO, the Pareto-optimal solutions are stored in an archive. Scheepers and
Engelbrecht proposed that a third attractor be added to the velocity update
equation, in addition to the usual social and cognitive attractors. The aim of
the new attractor is to pull particles towards the Pareto-optimal front (POF).
The third attractor is selected from the archive of non-dominated solutions. The
archive attractor is selected from the tournament pool as the one with the largest
crowding distance [8] to promote convergence to a diverse pareto-front.

The velocity and position update equations of MGPSO are defined as follows:

vi(t + 1) = wvi(t) + c1r1 ⊗ (yi(t) − xi(t)) + λic2r2 ⊗ (ŷi(t) − xi(t))
+ (1 − λi)c3r3 ⊗ (âi(t) − xi(t)) (1)

xi(t + 1) = x(t) + vi(t + 1), (2)

where r1, r2, r3 ∼ U(0, 1)d, and d is the dimension of the objective functions
PSO. The operator ⊗ is used to indicate component-wise multiplication of two
vectors. The positions yi and ŷi are respectively the “best” positions that parti-
cle i and particle i’s neighborhood of particles have visited. In this paper, “best”
is defined as the location where a particle has obtained the lowest objective
function evaluation. The coefficients c1, c2, c3, and w are the cognitive, social,

Stability Analysis of the Multi-objective Multi-guided PSO 203

archive, and inertia weights respectively. λi is the exploitation trade-off coeffi-
cient for particle i, is initialized as a random constant sampled uniformly from
(0, 1) (λi does not vary over iterations). The MGPSO algorithm is summarized
in Algorithm 1.

Algorithm 1. Multi-guided Particle Swarm Optimization
1: for each objective m = 1, ..., nm do
2: Initialize Sm, of nsm particles uniformly in a hypercube of dimension nx

3: Let fm be the objective function;
4: Let Sm.yi be the personal best position of particle Sm.xi;
5: Let Sm.ŷi be the neighborhood best position of particle Sm.xi ;
6: Initialize Sm.vi(0) to 0; Sm.yi = Sm.xi(0); Sm.ŷi = Sm.xi(0); Sm.λi ∼ U(0, 1);
7: end for
8: Let t = 0;
9: repeat

10: for each objective m = 1, ..., nm do
11: for each particle i = 1, ..., Sm.ns do
12: if fm(Sm.xi) < fm(Sm.yi) then
13: Sm.yi = Sm.xi(t);
14: end if
15: for particles ı̂ with particle i in their neighborhood do
16: if fm(Sm.yi) < fm(Sm.ŷı̂) then
17: Sm.ŷı̂ = Sm.yi;
18: end if
19: end for
20: Update the archive with the solution Sm.xi;
21: end for
22: end for
23: for each objective m = 1, ..., nm do
24: for each particle i = 1, ..., Sm.ns do
25: Select a solution, Sm.âi(t), from the archive using tournament selection;
26: Sm.vi(t + 1) = wSm.vi(t) + c1r1(Sm.yi(t) − Sm.xi(t))

+Sm.λic2r2(Sm.ŷi(t) − Sm.xi(t))
+(1 − Sm.λi)c3r3(Sm.âi(t) − Sm.xi(t)));

27: Sm.xi(t + 1) = Sm.xi(t) + Sm.vi(t + 1);
28: end for
29: end for
30: t = t + 1;
31: until stopping condition is true

3 Theoretical Derivation

This section presents a theoretical derivation of the order-1 and order-2 stable
regions for the MGPSO algorithm.

To derive order-1 and order-2 stable regions for MGPSO, the following gen-
eral theorem of Cleghorn and Engelbrecht [6] is used:

204 C. W. Cleghorn et al.

Theorem 1. The following properties hold for all PSO variants of the form:

xk(t + 1) = xk(t)α + xk(t − 1)β + γt (3)

where k indicates the vector component, α and β are well defined random vari-
ables, and (γt) is a sequence of well defined random variables. In the context of
this work, a random variable is said to be well defined if it has an expectation
and a variance.

1. Assuming it converges, particle positions are order-1 stable for every initial
condition if and only if ρ(A) < 11, where

A =
[
E[α] E[β]

1 0

]
and it =

[
E[γt]

0

]
(4)

2. The particle positions are order-2 stable if ρ(B) < 1 and (jt) converges, where

B =

⎡
⎢⎢⎢⎢⎣

E[α] E[β] 0 0 0
1 0 0 0 0
0 0 E[α2] E[β2] 2E[αβ]
0 0 1 0 0
0 0 E[α] 0 E[β]

⎤
⎥⎥⎥⎥⎦ and jt =

⎡
⎢⎢⎢⎢⎣

E[γt]
0

E[γ2
t]

0
0

⎤
⎥⎥⎥⎥⎦ (5)

under the assumption that the limits of (E[γtα]) and (E[γtβ]) exist.
3. Assuming that x(t) is order-1 stable, then the following is a necessary condi-

tion for order-2 stability:

1 − E [α] − E [β] �= 0 (6)

1 − E
[
α2

] − E
[
β2

] −
(

2E [αβ] E [α]
1 − E [β]

)
> 0 (7)

4. The convergence of E[γt] is a necessary condition for order-1 stability, and
the convergence of both E[γt] and E[γ2

t] is a necessary condition for order-2
stability.

The MGPSO’s update Eq. (1), can be written in the form of Eq. (3) by setting:

α = (1 + w) − c1r1 − λc2r2 − (1 − λ)c3r3, β = −w

γt = c1r1y(t) + λc2r2ŷ(t) + (1 − λ)c3r3â(t)

In order to utilize Theorem 1, the following modeling assumption is used:

Definition 1. Non-stagnant distribution assumption [6]:
It is assumed that ŷi (t), yi (t), and âi (t) are random variables sampled from a
time dependent distribution, such that ŷi (t), yi (t), and âi (t) have well defined
expectations and variances for each t and that lim

t→∞ E[ŷi(t)], lim
t→∞ E[yi(t)],

lim
t→∞ E[âi(t)], lim

t→∞ V [ŷi(t)], lim
t→∞ V [yi(t)] and lim

t→∞ V [âi(t)] exist.

1 ρ(M) denotes the spectral radius of the matrix M.

Stability Analysis of the Multi-objective Multi-guided PSO 205

It is clear from part 4 of Theorem 1 that the non-stagnant distribution
assumption is a necessary condition for order-1 and order-2 stability. In order to
obtain the criteria for order-1 stability, part 1 of Theorem1 is used. Specifically,
the following expectations are required:

E[α] = (1 + w) − c1
2

− λc2
2

− (1 − λ)c3
2

, E[β] = −w,

E[γt] =
1
2

(c1E[y(t)] + λc2E[ŷ(t)] + (1 − λ)c3E[â(t)]) .

Given the non-stagnant distribution assumption, it follows by the sum of
convergent sequences that E[γt] converges, and therefore it converges. The cri-
teria for order-1 stability is determined by coefficients that satisfy ρ(A) < 1.
After some algebraic manipulation, the following criteria for order-1 stability is
obtained:

|w| < 1 and 0 < c1 + λc2 + (1 − λ)c3 < 4(w + 1), (8)

or in the case of c = c1 = c2 = c3,

|w| < 1 and 0 < 2c < 4(w + 1). (9)

Part 3 of Theorem1 is used to derive the criteria necessary for order-2 stabil-
ity. The calculation of additional expected values is needed. In order to calculate
E[α2], α2 is first calculated as:

α2 = ((1 + w) − cr1 − λcr2 − (1 − λ)cr3)2

= (1 + w)2 − c1r1(1 + w) − λc2r2(1 + w) − (1 + w)(1 − λ)c3r3
− c1r1(1 + w) + c21r

2
1 + λc1c2r1r2 + (1 − λ)c1c3r1r3

− λc2r2(1 + w) + λc1c2r1r2 + λ2c22r
2
2 + λ(1 − λ)c2c3r2r3

− (1 + w)(1 − λ)c3r3 + (1 − λ)c1c3r1r3 + λ(1 − λ)c2c3r2r3 + (1 − λ)2c23r
2
3

(10)
Applying the expectation operator results in

E[α2] = (1 + w)2 − c1
2

(1 + w) − λ
c2
2

(1 + w) − (1 + w)(1 − λ)
c3
2

− c1
2

(1 + w) +
c21
3

+ λ
c1c2
4

+ (1 − λ)
c1c3
4

− λ
c2
2

(1 + w) + λ
c1c2
4

+ λ2 c22
3

+ λ(1 − λ)
c2c3
4

− (1 + w)(1 − λ)
c3
2

+ (1 − λ)
c1c3
4

+ λ(1 − λ)
c2c3
4

+ (1 − λ)2
c23
3

(11)

Let c = c1 = c2 = c3, then after some algebraic manipulation, Eq. (11) becomes

E[α2] = (1 + w)2 − c(1 + w) − λc(1 + w) − (1 + w)(1 − λ)c

+ c2
(

1
3

+
λ

2
+

1 − λ

2
+

λ2

3
+

λ(1 − λ)
2

+
(1 − λ)2

3

)

= (1 + w)((1 + w) − 2c) +
c2

6
(
λ2 − λ + 7

)

206 C. W. Cleghorn et al.

The following expectations are also needed:

E[αβ] = −wE[α] = −w((1 + w) − c) and E[β2] = w2 (12)

In order to derive the criteria necessary for order-2 stability, first consider
the condition of Eq. (6) in part 3 of Theorem1:

1 + E[α] + E[β] �= 0 =⇒ c1 + λc2 + (1 − λ)c3 �= 0 (13)

or if c = c1 = c2 = c3, simply c �= 0.
Now consider the condition of Eq. (7) in part 3 of Theorem1:

1 − E[α2] − E[β2] −
(

2E[αβ]E[α]
1 − E[β]

)
> 0

=⇒ 2c − 2wc +
(

2wc2

(1 + w)

)
− c2

6
(
λ2 − λ + 7

)
> 0 (14)

Solving Eq. (14) as a quadric form equal to 0 leads to

c <
12(1 − w2)

(λ2 − λ + 7)(w + 1) − 12w
(15)

Merging the conditions for order-2 stability in Eqs. (15) and (13) with the con-
ditions for order-1 stability of Eq. (9) leads to the following criteria for order-1
and order-2 stability:

0 < c <
12(1 − w2)

(λ2 − λ + 7)(w + 1) − 12w
, |w| < 1 (16)

This merger is possible because the region defined by Eq. (15) is a subset of the
region defined by Eq. (9). The conditions derived for order-2 stability are only
the necessary conditions. To verify that they are sufficient, part 2 of Theorem1
is used: Given the complexity of symbolically solving ρ(B) < 1, an empirical
approach is utilized in line with that used by Cleghorn and Engelbrecht [6].
The experimental procedure followed is: 109 random configurations of the form
{w, c, λ} were generated such that Eqs. (13) and (15) were satisfied. It was then
tested if the condition, ρ(B) < 1, was satisfied or not. In all of the cases it was
found, that if Eqs. (13) and (15) were satisfied, then the condition ρ(B) < 1 held.
This finding is strong evidence that the criteria of Eq. (16) are both sufficient
and necessary for order-1 and order-2 stability.

The manner in which λ affects the stability region is illustrated in Fig. 1.
The closer λ gets to 0.5, the more the apex of the stability region extends. As
λ approaches either 0 or 1 from 0.5 the stability region reduces in size in a
symmetric manner. Given that λ may be initialized to any value in the range
(0, 1), selecting coefficients such that Eq. (16) is satisfied for λ = 0 (or λ = 1)
will ensure that every particle will be both order-1 and order-2 regardless of the
particle specific λ.

While the modeling assumption utilized in the section is minimal, it is still
required to confirm whether or not the newly derived stability criteria are truly
representative of the unsimplified MGPSO’s behaviour. This is done in the next
section.

Stability Analysis of the Multi-objective Multi-guided PSO 207

Fig. 1. MGPSO convergent regions for λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1

4 Empirical Setup

This section utilizes the method for empirically validating the stability region of
PSO variants as proposed by Cleghorn and Engelbrecht [1,3].

A swarm size of 64 particles per objective, and 5000 iterations are used in the
experiment. Two objective functions where considered. Particle velocities were
initialized to 0 and positions were initialized within (−100, 100). The experiment
was performed in 50 dimensions. As a result the maximum possible distance
between particles in the initial search space is 1414.214. This maximum distance
is referred to as Δmax from this point forward. Reported results were capped at
Δmax to prevent highly unstable parameter configurations from hindering the
presentation of the results.

The measure of stability used in this paper is:

Δm (t + 1) =
1

Sm.ns

Sm.ns∑
i=1

‖xi (t + 1) − xi (t) ‖2. (17)

where Sm.ns is the swarm size for each sub-swarm m. The sum of all ΔSm.ns
(t)’s

is reported as Δ(t). The objective function used for each objective is

CF (x) ∈ U (−1000, 1000) , (18)

which was shown to be an effective objective function for stability analysis in
[1].

The experiment was conducted over the following parameter region:

w ∈ [−1.1, 1.1] , c1 + c2 + c3 ∈ (0, 8] , and λ ∈ [0, 1] , (19)

208 C. W. Cleghorn et al.

where c1 = c2 = c3, with a sample point every 0.1 along w, c1 + c2 + c3, and
λ. A total of 1840 sample points from the region defined in Eq. (19) were used
for each fixed λ. The results reported in Sect. 5 are derived from 50 independent
runs for each sample point.

5 Experimental Results and Discussion

This section presents the results of the experiments described in Sect. 4.
A snapshot of all parameter configurations’ resulting stability measure values

are presented in Figs. 2(a) to 3(e) for the last iteration of MGPSO with λ set
to, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The reported stability
measures are the mean derived from the 50 independent runs.

The number of parameter configurations that empirically agree or disagree
with the stable/unstable behavior predicted by the theoretically derived stabil-
ity region of Eq. (16) is presented in Table 1. Eight Δm based measurements
are presented in Table 1: the number of parameter configurations that are the-
oretically stable (TS) and unstable (TUS), the number of parameter configu-
rations that where empirically stable (ES) and unstable (EUS), the number of
parameter configurations that were found to be empirically stable despite the
theory predicting unstable behavior (ES despite TUS), the number of parame-
ter configurations that were found to be empirically unstable despite the theory
predicting stable behavior (EUS despite TS), and lastly the percentage error
and agreement between the theoretical derivation and the empirical findings. A
parameter configuration is classified to be stable if the value of the recorded
convergence measure of Eq. (17) is less than Δmax(d), and unstable if greater
than or equal to Δmax(d), in accordance with the approach of Cleghorn and
Engelbrecht [3].

Table 1. Empirical findings versus theoretical prediction

λ T TUS ES EUS ES despite TUS EUS despite TS Error Agreement

0 764 1076 759 1081 8 13 1.14% 98.86%

0.1 781 1059 784 1056 12 9 1.14% 98.86%

0.2 796 1044 798 1042 11 9 1.09% 98.91%

0.3 809 1031 809 1031 12 12 1.3% 98.7%

0.4 816 1024 819 1021 11 8 1.03% 98.97%

0.5 817 1023 823 1017 14 8 1.2% 98.8%

0.6 816 1024 816 1024 10 10 1.09% 98.91%

0.7 809 1031 810 1030 9 8 0.92% 99.08%

0.8 796 1044 798 1042 12 10 1.2% 98.8%

0.9 781 1059 781 1059 10 10 1.09% 98.91%

1 764 1076 760 1080 9 13 1.2% 98.8%

Stability Analysis of the Multi-objective Multi-guided PSO 209

Fig. 2. MGPSO convergence results for λ = 0, 0.1, . . . , 0.5

As shown in Figs. 2(a) to 3(e) the shape and size of the regions empirically
classified as stable is in-line with the theoretical prediction of Eq. (16). However,
the effect of varying λ is harder to see, which is not surprising given how similar

210 C. W. Cleghorn et al.

Fig. 3. MGPSO convergence results for λ = 0.6, 0.7, . . . , 1.0

the regions that the theoretical derivations predicts are, as illustrated in Fig. 1.
The accuracy of the theoretical derivation can be more clearly seen in Table 1. For
all the tested λ values, the theoretical prediction had an above 98.7% accuracy.

Stability Analysis of the Multi-objective Multi-guided PSO 211

The accuracy reported was also stable across differing λ values with the largest
difference in accuracy reported being only 0.38%.

It is evident from the presented results that the theoretically derived region
for particle stability, as defined in Eq. (16) accurately reflect the parameter con-
figurations needed for order-1 and order-2 stability of MGPSO.

6 Conclusion

This paper provided the first theoretical stability analysis of a multi-objective
particle swarm optimization (PSO) variant. Specifically, this paper theoretically
derived the order-1 and order-2 stable regions for multi-guided PSO (MGPSO)
using the minimal required modeling assumptions. The provided order-1 and
order-2 stable regions can be utilized by PSO practitioners to make an informed
choice when selecting control parameters values for the MGPSO algorithm. Fur-
thermore, the derived criteria for stability were validated, using the empirical
method verified by Cleghorn and Engelbrecht [1], under which no simplifying
modelling assumptions were placed on the MGPSO algorithm. Given the empiri-
cal validation, the theoretical derivation is an accurate representation of MGPSO
stability criteria.

References

1. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm convergence: standardized anal-
ysis and topological influence. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS,
vol. 8667, pp. 134–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09952-1 12

2. Cleghorn, C.W., Engelbrecht, A.P.: Fully informed particle swarm optimizer: con-
vergence analysis. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, pp. 164–170. IEEE Press, Piscataway, NJ (2015)

3. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm variants: standardized conver-
gence analysis. Swarm Intell. 9(2–3), 177–203 (2015)

4. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm optimizer: the impact of unsta-
ble particles on performance. In: Proceedings of the IEEE Symposium Series on
Swarm Intelligence, pp. 1–7. IEEE Press, Piscataway, NJ (2016)

5. Cleghorn, C.W., Engelbrecht, A.P.: Unified particle swarm optimizer: convergence
analysis. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
448–454. IEEE Press, Piscataway, NJ (2016)

6. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension
using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2018)

7. Corne, D.W., Jerram, N., Knowles, J.D., Oates, M.L.: PESA-II: region-based selec-
tion in evolutionary multiobjective optimization. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 283–290. ACM Press, New York,
NY (2001)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

https://doi.org/10.1007/978-3-319-09952-1_12
https://doi.org/10.1007/978-3-319-09952-1_12
https://doi.org/10.1007/3-540-45356-3_83

212 C. W. Cleghorn et al.

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948. IEEE
Press, Piscataway, NJ (1995)

10. Nebro, A.J., Durillo, J.J., Garćıa-Nieto, J., Coello Coello, C.A., Luna, F., Alba,
E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In:
Proceedings of the IEEE Symposium on MultiCriteria Decision-Making, pp. 66–73.
IEEE Press, Piscataway, NJ (2009)

11. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multi-
objective problems. In: Proceedings of the ACM Symposium on Applied Comput-
ing, pp. 603–607 (2002). https://doi.org/10.1145/508791.508907

12. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization prob-
lems through particle swarm optimization. Nat. Comput. 1(2), 235–306 (2002)

13. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective opti-
mization using crowding, mutation and ∈-dominance. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 35

14. Scheepers, C.: Multi-guided particle swarm optimization: a multi-objective particle
swarm optimizer. Ph.D. thesis, Department of Computer Science, University of
Pretoria, Pretoria, South Africa (2018)

15. Scheepers, C., Engelbrecht, A.P.: Multi-guide particle swarm optimization a multi-
swarm multi-objective particle swarm optimizer. Swarm Intell. 1–22 (2018, under
review)

16. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE Press, Piscat-
away, NJ (1998)

17. Zhang, Q., Li, H.: IEEE transactions on evolutionary computation. Nat. Comput.
11(2), 712–731 (2007)

18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. Technical report, Swiss Federal Instituteof Technology (ETH)
Zurich (2001)

https://doi.org/10.1145/508791.508907
https://doi.org/10.1007/978-3-540-31880-4_35

Swarm Attack: A Self-organized Model
to Recover from Malicious

Communication Manipulation in a Swarm
of Simple Simulated Agents

Giuseppe Primiero1(B) , Elio Tuci1 , Jacopo Tagliabue2 ,
and Eliseo Ferrante3,4(B)

1 The Department of Computer Science, Middlesex University London, London, UK
{G.Primiero,E.Tuci}@mdx.ac.uk
2 Tooso Inc., San Francisco, USA
tagliabue.jacopo@gmail.com

3 Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
eliseo.ferrante@bio.kuleuven.be

4 School of Computer Science, University of Birmingham,
Dubai, United Arab Emirates

e.ferrante@bham.ac.uk

Abstract. Non-centralised behaviour such as those that characterise
swarm robotics systems are vulnerable to intentional disruptions from
internal or external adversarial sources. Threats in the context of swarm
robotics can be executed through goal, behaviour, environment or com-
munication manipulation. Experimental studies in this area are still
sparse. We study an attack scenario performed by actively modifying
the data between authorised participants. We formulate a robust prob-
abilistic adaptive defence mechanism which does not aim at identifying
malicious agents, but to provide the swarm with the means to minimise
the consequences of the attack. The mechanism relies on a dynamic mod-
ification of the probability of agents to change their current information
in view of new contradictory or corroborating incoming data. We inves-
tigate several experimental conditions in simulation. The results show
that the presence of adversaries in the swarm hinders reaching consensus
to the majority opinion when using a baseline method, but that there
are several conditions in which our adaptive defence mechanism is highly
efficient.

1 Introduction

Swarm robotics is a scientific and engineering field that deals with the design
of collective behaviours for a swarm of inexpensive, relatively incapable robots
to solve tasks in large and unstructured environments that require scalability,
flexibility, and robustness [3]. The robustness of a robot swarm makes it resilient
to external random and non-systematic perturbations. However, its flexibility
makes it particularly vulnerable to intentional and systematic disruptions from
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 213–224, 2018.
https://doi.org/10.1007/978-3-030-00533-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_17&domain=pdf
http://orcid.org/0000-0003-3264-7100
http://orcid.org/0000-0001-7345-671X
http://orcid.org/0000-0001-8634-6122
http://orcid.org/0000-0002-2213-8356

214 G. Primiero et al.

an adversarial source. Some of the literature – especially in the military field
– has argued that swarm disruption through insertion of adversarial agents is
even more cost-effective than traditional weaponised means [17]. This has obvi-
ous consequences also for non-military scenarios, with swarm-like technologies
increasingly spread in the Internet of Things infrastructures with associated
security problems, see e.g. [4].

In the general context of security, many attack scenarios are possible: Denial
of Service (DoS), placement of physical barriers, illegitimate impersonation of
identity, system penetration, authorisation violation, planting, eavesdropping,
modification of data in transit, and so on [14]. Threats to swarm architectures
have been recently investigated, see e.g. [7,16]. In [15] four different types of
manipulation are illustrated for the specific context of swarm robotics: individ-
ual’s goal manipulation, individual behaviour manipulation, environment manip-
ulation, and communication manipulation. The possible attack vectors used to
carry out such forms of manipulation are: replay, where the attack is performed
by playing back past messages to the same recipients [2,6,19,22]; physical Cap-
ture and Tampering, where a unit of the swarm is taken over by the attacker
and data extracted or added [1]; software or firmware attacks, where code is
modified or vulnerabilities exploited [13]; internal or external communications
attacks, aiming at eavesdropping, data blocking or data modification; reconnais-
sance, to prepare for one of the above types of attacks.

Within this extensive taxonomy for swarm attacks, only few scenarios have
been so far experimentally studied. The study in [16] considers the cooperative
navigation approach presented in [5] and two types of attacks: DoS and commu-
nication manipulation of data related to distance to target and freshness of the
data transmitted. In their analysis, 10 attackers are statically positioned in the
environment to perform communication jamming in 1% of the cases and for a lim-
ited time period. The results on the DoS attack show only that the success of the
attack is inversely proportional to the number of the non-malicious entities, and
that the average time to find the intended target is proportional to the number
of attackers who act collaboratively when not attacking. No method is proposed
for the swarm to counter the attack. Recently, a simulated model of a trust and
reputation protocol has been presented to mitigate black hole style attacks on
VANETs, see [10]. These are data modification attacks by members of the swarm
who block data transmission or perform false data distribution. This study does
not meet the swarm robotics assumptions, as the defined counter attack strat-
egy identifies the best optimal configuration, including network properties (e.g.
size and topology), population distribution (e.g. proportion of the attackers) and
contextual conditions (e.g. the current content coverage). An interesting recent
study has proposed an approach based on the blockchain to achieve collective
decision-making in a swarm of robots by considering Byzantine attacks, that is,
attacks of any types [18].

In this paper, we focus specifically on a communication manipulation using
modification of data in transit attack scenario, i.e. a threat performed by actively
modifying the data sent between authorised participants. We do not aim at the
identification of the malicious agents. Instead, we propose a robust probabilistic

Self-organized Swarm Attack and Defense 215

adaptive defence mechanism to provide the swarm with the means to minimise
the consequences of the attack. In the proposed scenario, a given piece of infor-
mation needs to be propagated from few individuals to the rest of the swarm,
while members of another subset of the swarm communicate the wrong piece of
information. This scenario can be modelled as the most basic form of the best-of-
n problem in the context of collective decision-making [20], where agents do not
have a way to evaluate the quality of the two pieces of information (symmetric
quality), and the environment is also symmetric with respect to cost of accessing
the two options (symmetric costs). In such basic symmetry breaking scenario,
the predicted outcome is usually consensus to the piece of information held by
the majority [9,21]. However, in this paper we will show that the simplest addi-
tion of adversarial agents will hinder reaching consensus to the majority opinion,
and in the case in which the vanilla voter model [21] is used the system will not
achieve consensus at all. A recent general review of collective decision making
[8] pointed out the interesting fact that, although the swarm always owns more
knowledge than the sum of its parts, the emergence of this knowledge depends
from the specific mechanism used by each individual to integrate the information
of its neighbours. To achieve consensus on the piece of information held by the
majority, we propose a new version of the voter model where each member of
the swarm has a probability p to change its individual knowledge state based
on new incoming messages from the neighbours. In particular, we describe and
test a non-adaptive probabilistic defence mechanism where p ≤ 1 is shared by
all the agents of the swarm and remains fixed for the entire agent’s life; and
an adaptive probabilistic defence mechanism where p is initially set to 1 for all
agents, but then, during the course of the simulation, each agent adjusts this
individual probability according to information updating rules based on com-
munication among the agents. In the context of the block-chain decision-making
work mentioned above [18], our work differs in that the best collective decision
is not determined by constraints in the environment, rather it results from the
knowledge held by the majority. The results of our simulations indicate that
the adaptive probabilistic defence mechanism can be largely effective in multiple
contexts differing for the proportion of malicious agents carrying out the attack.

The rest of the paper is organized as follows: in Sect. 2, we describe the
simulation model. In Sect. 3, we provide experimental results where we compare
the non-adaptive probabilistic defence mechanism against its adaptive version:
here, we analyse the performance in terms of number of attackers, and by varying
the parameters of the defence mechanism (the static probability in the non-
adaptive version and the update rates for the adaptive version). In Sect. 4, we
conclude and we highlight our plan of improvement and future work.

2 The Model

In this section, we describe the type of attack of interest and the probabilistic
defence mechanisms deployed to limit its effects. Our model focuses on the com-
munication protocol, while the actual target of the swarm is irrelevant to both
the attack performed and the defence mechanism deployed.

216 G. Primiero et al.

Our simulated world is a toroidal grid of dimensions 30×30 in which a swarm
of 100 agents moves randomly. At every timestep, each agent occupies a cell. The
agents differ in terms of the information they hold at the beginning of the simu-
lation. The receivers are agents committed to a piece of information labelled 0.
The discoverers are agents committed to a piece of information labelled 1. The
attackers are agents committed to information labelled −1. While the receivers
can change the content of their information to either 1 or −1 based on the
communication that regulates the agents’ interaction, discoverers and attackers
never change the content of their information during the simulation. The objec-
tive of the discoverers is to disseminate the correct piece of information to the
receivers. The attackers create a hostile environment since they disseminate a
wrong piece of information (i.e. −1) to the receivers, thus preventing the swarm
from converging to the desired consensus in which all receivers hold the correct
piece of information (i.e. 1).

In our simulation model, all agents move in the same way by randomly select-
ing one of the eight possible directions from its cell and a random step length
between a minimum step of 0 cells to a maximum step of 3 cells. Communi-
cation happens by proximity: at every timestep, every receiver checks for the
presence on its cell of any other agents currently holding information 1 or −1.
With multiple informed agents on the same cell, a receiver selects one randomly
among those that are already committed to either 1 or −1. This can be either
a discoverer, an attacker, or another receiver already committed to a piece of
information different from 0.

This scenario models a communication manipulation attack, since the attack-
ers disseminate information labelled −1 knowing that the correct piece of infor-
mation is 1. Note that for the receivers both 1 and −1 are equally likely to
represent the correct piece of information. A receiver committed to either 1 or
−1 never gets back to an uncommitted state (i.e. holding information labelled 0).
The objective of our study is to test the effectiveness of a probabilistic defence
mechanism that allows the swarm to mitigate the disruptive effects of the com-
munication manipulation attack (i.e. receivers committed to −1). We investi-
gate two versions of this defence mechanism: an adaptive and a non-adaptive
one. In both mechanisms, when a receiver is uncommitted, it has 100% prob-
ability to accept the first information which becomes available, either 1 or −1.
In the non-adaptive version, at every next stage of the communication proto-
col (i.e. every timestep in which a receiver shares the same position with at
least one agent committed to either 1 or −1), receivers have a fixed probabil-
ity p to change their opinion when receiving new information. We investigate
experimental conditions in which p is set to 1, 0.5, and 0.001. In the adaptive
version of the defence mechanism, p is set to 1 for every receiver at the begin-
ning of the simulation (i.e. timestep 0). Receivers individually change p during
their lifetime according to the following: for every confirmation of information
received (i.e. receiver holding 1 and receiving 1, or receiver holding −1 and
receiving −1), p decreases as p = p ∗ k,with k = [0.4, 0.6, 0.8], and for every
information received which contradicts the currently held one (i.e. receiver hold-
ing −1 and receiving 1, or receiver holding 1 and receiving −1), p increases as
p = p

z ,with z = [0.4, 0.6, 0.8, 1.0].

Self-organized Swarm Attack and Defense 217

0.001 0.5 1.0

5

0 0 0

0.001 0.5 1.0

6

0 0 0

0.001 0.5 1.0

7

0 0 0

0.001 0.5 1.0

8

0 0 0

0.001 0.5 1.0

9

0 0 0

0.001 0.5 1.0

10

0 0 0

0
20
40
60
80

100
nb

. a
ge

nt
s

de
ce

iv
ed

Fig. 1. Graphs showing the number of deceived agents for all experimental conditions
with receivers using the non-adaptive defence mechanism. The first row of labels on the
x-axis refers to the values of p; the second refers to the number of attackers. Each box
is made of 20 points (i.e. 20 runs), with each point referring to the number of deceived
agents after 50.000 timesteps. The number of runs (out of 20) that reached at least
once the desired consensus is indicated above each box.

3 Results

For the non-adaptive defence mechanism, we collected data on a set of 18 exper-
imental conditions corresponding to all the possible combinations given by three
values for the parameter p = [0.001, 0.5, 1.0], and by the use of six swarms with
different initial number of attackers (i.e. 5, 6, 7, 8, 9, 10). For the adaptive defence
mechanism, we collected data on a set of 72 experimental conditions correspond-
ing to all the possible combinations given by three values for the parameter
k = [0.8, 0.6, 0.4], four values for the parameters z = [1.0, 0.8, 0.6, 0.4], and by the
use of six swarms with different initial number of attackers (i.e. 5, 6, 7, 8, 9, 10).
In all experimental conditions, the swarm’s size is fixed at 100 agents, and the
number of discoverers is fixed at 10. Each simulation run lasts 50.000 timesteps.
20 differently seeded simulation runs are repeated for each experimental con-
dition. At every timestep, the position of each agent is updated according to
the navigation mechanism, and the information held by each receiver is updated
according to the communication protocol, both explained in Sect. 2. All exper-
iments reported below have been executed on a machine with 64 bit Ubuntu
16.04 system, 40 GB RAM, 4 2.8 GHz cores and using NetLogo 6.0.1

3.1 Non-adaptive Probabilistic Defence Mechanism

In this section, we describe the results of the simulations with the non-adaptive
probabilistic defence mechanism. We recall that, with this mechanism, uncom-
mitted receivers always accept the first information passed by either a discoverer
or an attacker; they have a fixed probability p = [0.001, 0.5, 1] to change their
current information if the randomly selected sender among possibly many in
the same cell happens to send contradictory data (note that special case p = 1

1 The NetLogo code for this model and a C translation used to verify results are both
available at https://github.com/gprimiero/swarmattack.

https://github.com/gprimiero/swarmattack

218 G. Primiero et al.

corresponds to the vanilla Voter model, as explained in Sect. 1). We show results
which indicate how this defence mechanism is largely non effective in mitigat-
ing the distribution of false information by attackers. Results are reported in
Fig. 1 where the graph shows the number of deceived agents at the end of each
simulation run. Deceived agents are receivers committed to −1.

First of all we note that, as expected, a larger deception diffusion is correlated
to a higher number of attackers. The minimum median value is slightly above 20
agents deceived with 5 attackers and p = 0.001; the absolute minimum of deceived
agents is just above 10 with 6 attackers and p = 0.001. The absolute maximum
value of deception is above 60 with 8 attackers; the highest median value is above
40 with 9 attackers and p = 0.001. On top of being non effective in mitigating the
attack, the non-adaptive mechanism, for all three values of p, generates simula-
tion dynamics by which the swarms fail to converge on any of the two consensus
points (i.e. either all receivers committed to 1, or all receivers committed to −1,
see the numbers on top of each box in Fig. 1). This result has been confirmed by
longer simulations, in which each run is executed for 2 millions timesteps (data
not shown). We also note that the interquartile range is always at most within 20
points percentage and it tends to decrease with the increase of the value of p. These
results suggest that, independently of the number of attackers, facilitating infor-
mation update (in terms of increasing the probability of changing opinions) sta-
bilizes the infection range. In general, the non-adaptive defence mechanism does
not allow to stop the deception perpetrated by the attackers.

3.2 Adaptive Probabilistic Defence Mechanism

Contrary to the non-adaptive defence mechanisms, the adaptive defence mecha-
nism appears to be largely effective in various experimental conditions, particu-
larly when the number of attackers is less than 8. The graphs in Fig. 2 show the
number of agents deceived for each value of k, and for each different number of
initial attackers. For all values of k, the level of deception tends to decrease with
the decrement of the number of initial attackers. However, for k = 0.8 more than
60% of the simulation runs (i.e. 49/80, see numbers on top of each box in Fig. 2)
managed to converge at least once on the desired consensus point even with 9
initial attackers. Since the experimental conditions with k = 0.8 returned the
highest number of runs that reached the desired consensus compared to those
with k = 0.4 and k = 0.6, in the following we show the results of further analysis
for the adaptive defence mechanisms with k = 0.8 only.

With k = 0.8 the mechanism is most successful with deception entirely
contained when z is set to any value below 1.0 with up to 7 attackers, with
z = [0.4, 0.6] with 8 attackers, and also with z = 0.4 with 9 attackers (see
Fig. 3a). Generally speaking, the results suggest that for k = 0.8, lower values
of z help to constraint the deception for a larger set of swarms that differ in the
initial number of attackers. In other words, making p to increase quicker is a
better strategy to prevent deception diffusion in a larger set of swarm differing
for the initial number of attackers. For z = 0.8 with 8 attackers, and z = 0.6 and
z = 0.8 with 9 attackers, the efficacy of our defence mechanism starts reducing

Self-organized Swarm Attack and Defense 219

5 6 7 8 9 10

k=0.4

57 50 44 38 25 20

5 6 7 8 9 10

k=0.6

61 57 49 42 36 28

5 6 7 8 9 10

k=0.8

63 60 60 49 43 30

0
20
40
60
80

100
nb

. a
ge

nt
s

de
ce

iv
ed

Fig. 2. Graphs showing the number of deceived agents for all experimental conditions
with k = [0.4, 0.6, 0.8]. The first row of labels on the x-axis refers the number of
attackers. Each box is made of 80 points (i.e. 4 values of z times 20 runs for each value),
with each point referring to the number of deceived agents after 50.000 timesteps. The
number of runs (out of 80) that reached at least once the desired consensus is indicated
above each box.

and the swarm converges to the desired consensus point in fewer cases. In partic-
ular, for z = 0.8 with 8 attackers, and z = 0.6 with 9 attackers the swarms tend
to converge with almost equal frequency to both consensus points. Distinctive
dynamics are generated by the conditions with z = 1. As soon as the increasing
factor used returns just p, deception does no longer disappear, albeit with values
sensibly lower than the swarms with a corresponding number of attackers and
any non-adaptive defence mechanism (see Fig. 1). Note also that the number
of runs that reached the desired consensus at least once is 0 or very close to
0 in all the conditions with k = 0.8 and z = 1.0 (see Fig. 3a, numbers above
boxes). This suggests that the adaptive defence mechanism can converge to any
consensus point, and also effectively operate only when the adaptiveness allow p
to decrease in response to evidence matching currently held information, as well
as to increase in response to contradictory information.

In Fig. 3b we illustrate for each experimental condition the number of value-
change events; that is, the number of times a receiver changes its opinion from
0 to −1 or 1, from 1 to −1, or from −1 to 1. In each run, the number of value-
change events is computed from the run start to the timestep at which the first
desired consensus is achieved (i.e. all receivers holding 1). This measure is signif-
icant because it represents the actual number of interactions in the model and
it can be used as a proxy to evaluate the time required by the swarm to reach
consensus. Given that our message-passing model is purely symbolic, it does not
account for any form of noise. By referring to the value-change events, we can
directly account for the number of effectively occurring message passing opera-
tions: in a real environment, it is more probable that a given interaction will not
occur at all, rather than the operation being nullified by a non-readable, partial
or scrambled message. In the limit case, one can consider the latter situation as a
non-occurred event, so our measure is a sensible way to express model dynamics
even in comparison with non-symbolic implementations. Note that number of
value-change events increases with the number of attackers. The absolute min-
imum value is above 200 with 5 attackers and z = 0.8, the absolute maximum

220 G. Primiero et al.

0.4 0.6 0.8 1.0

5

20 20 19 4

0.4 0.6 0.8 1.0

6

20 19 20 1

0.4 0.6 0.8 1.0

7

20 20 20 0

0.4 0.6 0.8 1.0

8

19 17 13 0

0.4 0.6 0.8 1.0

9

16 12 15 0

0.4 0.6 0.8 1.0

10

9 10 11 0

0
20
40
60
80

100

nb
. a

ge
nt

s
de

ce
iv

ed

(a)

0.4 0.6 0.8 1.0

5
0.4 0.6 0.8 1.0

6
0.4 0.6 0.8 1.0

7
0.4 0.6 0.8 1.0

8
0.4 0.6 0.8 1.0

9
0.4 0.6 0.8 1.0

10
k=0.8

200

600

1000

1400

1800

2200

2600

nb
. v

al
ue

−c
ha

ng
e

ev
en

ts

(b)

Fig. 3. Graphs showing (a) the number of deceived agents; (b) the number of value-
change events before the first desired consensus is reached, for all experimental condi-
tions with k = 0.8. The first row of labels on the x-axis refers to the values of z; the
second refers to the number of attackers. Each box is made of 20 points (i.e. 20 runs),
with each point referring to the number of deceived agents after 50.000 timesteps. In
(a), the number of runs (out of 20) that reached at least once the desired consensus is
indicated above each box.

value is around 1600 with 9 attackers and z = 0.4. This results from the obvious
fact that approximating a 1:1 proportion between attackers and discoverers there
is a higher dynamics of changes to take into account. Moreover, when p tends
to return more quickly to 1 in response to the perception of contradictory infor-
mation (i.e. for lower values of z), the number of value-change events tends to
increase (see Fig. 3b).

Figure 4 presents the historical evolution of the simulation dynamics for the
experimental condition in which the number of attackers is 7 and the number
of discoverers is 10 (see Fig. 4a and c), and for the experimental condition in
which the number of attackers and the number of discoverers is 10 (see Fig. 4b
and d). In Fig. 4a and in Fig. 4b, white boxes show how the number of deceived
agents changes when the receivers exploit the adaptive defence mechanism with
z = k = 0.8. The grey boxes show how the number of deceived agents changes
when the receivers have a non-adaptive defence mechanism with p = 0.0012.

2 We chose to illustrate the dynamics of the non-adaptive defence mechanism for
p = 0.001 instead of those generated by p = 0.5 and p = 1.0 because as shown in
Fig. 4c and d, the values of p in the adaptive probabilistic defence mechanism tend
to converge to 0.

Self-organized Swarm Attack and Defense 221

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

timesteps

nb
. a

ge
nt

s
de

ce
iv

ed

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

timesteps

nb
. a

ge
nt

s
de

ce
iv

ed

(a) (b)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

timesteps

pr
ob

ab
ilit

y
(p

)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

timesteps

pr
ob

ab
ilit

y
(p

)

(c) (d)

Fig. 4. Graphs showing the number of deceived agents and the probability p of every
agent for the condition with 7 attackers (see a and c), and with 10 attackers (see b
and d), every 50 timesteps, for 20 runs. In all graphs, white boxes refers to conditions
in which the adaptive defence mechanisms operates with k = 0.8 and z = 0.8. In (a)
and (b), the grey boxes refer to the condition in which the probability p = 0.001 and
receiver exploit the non-adaptive defence mechanism (i.e. k = 1 and z = 1).

Looking at Fig. 4a, we can notice that there is an initial increase in the number
of deceived agents, followed by a quick decrease from step 200 which progresses
towards convergence to fully contained deception (see also Fig. 3 for z = 0.8 and
7 attackers). The initial increase is to be attributed to the fact that uncommit-
ted receivers commit to any information different from 0, and by the fact that
the probability p to change their mind remains for quite few timesteps relatively
high for all agents since the adaptive defence mechanism operates with a low
decreasing and increasing rate (z = k = 0.8). However, the adaptive defence
mechanism exploits the initial unbalance between number of attackers and num-
ber of discoverers to contain and subsequently to reduce the level of deception
into the population, until the desired consensus point is reached (see also Fig. 3a
for z = 0.8 and 7 attackers). With initial probability value p = 0.001 (see Fig. 4a
grey boxes), there is an extremely low probability for the receivers to change
their information after a first encounter with either a discoverer or an attacker:
hence the first information received has a higher effect on the final distribution of
deceived agents, which justifies lack of convergence on any consensus point and
also the higher variability of level of deception between the runs. In Fig. 4b, the

222 G. Primiero et al.

same dynamics is analysed for a scenario with 10 attackers, where one should not
expect a high success of the protocol due to the high number of deceiving agents.
It clearly appears how the 1:1 proportion between discoverers and attackers at
the beginning pushes the deception rate up and it cannot be recovered, with the
swarm equally likely to converge on either of the two consensus points (see also
Fig. 3a for z = 0.8 and 10 attackers). With initial probability value p = 0.001
(see Fig. 4b grey boxes), the dynamics remain substantially similar to the con-
dition with 7 attackers, with the swarm unable to converge on any consensus
point.

Figure 4c and d present the historical evolution of p (i.e. the probability
to change information) for receivers in the same configurations as above: each
white box represents therefore the probability of a total of 83 × 20 receivers in
Fig. 4c (i.e. 100 agents minus 7 attackers and 10 discoverers, times 20 runs), and
80 × 20 agents in Fig. 4d (i.e. 100 agents minus 10 attackers and 10 discoverers,
times 20 runs) every 50 timesteps from timestep 0 to timestep 500. For both
configurations, it is shown how the p progressively decreases: in Fig. 4c this is
due to the progressively high probability of agents to meet other agents with
the same opinion and the overall convergence of the swarm towards information
labelled 1; in Fig. 4d, a similar progression is happening: this time, due to the
balance between attackers and discoverers, swarm’s convergence is eventually
reached but it can be in any of the two consensus points, as already mentioned
above.

As mentioned in the introduction, the non-adaptive mechanism closely resem-
bles the voter model and we have illustrated how the introduction of adversarial
agents makes consensus unreachable. The results for the adaptive mechanism
introduced in this section show how making opinion change more and more
unlikely until unnecessary prevents the diffusion of the attack under appropriate
conditions.

4 Conclusions

In this paper we have presented a non-adaptive and an adaptive defence mecha-
nism to mitigate malicious manipulation of communications in swarms of simu-
lated agents. The results indicate that, contrary to its non-adaptive counterpart,
the adaptive defence mechanism managed to contain and, in several experimental
conditions to suppress, the dissemination of wrong information. Its effectiveness
progressively vanishes with the number of malicious agents approaching that of
legitimate agents (i.e., the discoverers, see Sect. 2). Nevertheless, by exploring
the parameter space, we found values in the adaptive defence mechanisms that
proved to be extremely effective in suppressing the deception even in swarms
where the number of attackers is very close to the number of discoverers. In all
runs in which the swarm managed to reach the desired consensus, the adaptive
mechanism exploits even the slighter asymmetries between the number of attack-
ers and the number of discoverers to generate virtuous dynamics that eventually
lead to the suppression of the deception in the population.

Self-organized Swarm Attack and Defense 223

Given the promising results obtained in this initial set of experiments, various
lines for future research work are worth pursuing. It is interesting to explore the
effectiveness of the adaptive mechanism in different operating conditions, as
generated by varying the proportion of discoverers with respect to the swarm
size, or the time when the attack starts with respect to the level of diffusion
of the correct information. This last parameter is called network coverage and
it is investigated for the networked case in [10]. Another possible variation on
the present scenario to test the efficacy of the mechanism is given by a different
attack vector. A viable possibility is to implement a version of a Gray Hole attack,
with the malicious agents performing the data manipulation only for a particular
period of time, similarly to what investigated in [16]. It is also our plan to test the
adaptive probabilistic defence mechanism with physical robots communicating
with different protocols to see how the inherent noise of physical systems and
type of communication devices influence its effectiveness. Finally, we plan to
situate more formally these models also in the framework of collective decision-
making, considering both the case with and without uncommitted agents, see
respectively [21] and [11,12].

Acknowledgments. The authors wish to thank Prof. Franco Raimondi for support
in setting up the computing cluster required by the experiments in this paper.

References

1. Akdemir, K.D., Karakoyunlu, D., Padir, T., Sunar, B.: An emerging threat: eve
meets a robot. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp.
271–289. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25283-
9 18

2. Aura, T.: Strategies against replay attacks. In: 10th Computer Security Founda-
tions Workshop (CSFW 1997), Rockport, Massachusetts, USA, 10-12 June 1997,
pp. 59–69 (1997). https://doi.org/10.1109/CSFW.1997.596787

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Chamoso, P., De la Prieta, F., De Paz, F., Corchado, J.M.: Swarm agent-based
architecture suitable for internet of things and smartcities. In: Omatu, S., et al.
(eds.) Distributed Computing and Artificial Intelligence, 12th International Con-
ference. AISC, vol. 373, pp. 21–29. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19638-1 3

5. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1),
1–33 (2014)

6. Gong, L.: A variation on the themes of message freshness and replay or, the diffi-
culty in devising formal methods to analyze cryptographic protocols. In: Proceed-
ings of the 6th IEEE Computer Security Foundations Workshop - CSFW 1993,
Franconia, New Hampshire, USA, 15-17 June 1993, pp. 131–136 (1993). https://
doi.org/10.1109/CSFW.1993.246633

7. Higgins, F., Tomlinson, A., Martin, K.: Survey on security challenges for swarm
robotics. In: Fifth International Conference on Autonomic and Autonomous Sys-
tems (ICAS), pp. 307–312 (2009)

https://doi.org/10.1007/978-3-642-25283-9_18
https://doi.org/10.1007/978-3-642-25283-9_18
https://doi.org/10.1109/CSFW.1997.596787
https://doi.org/10.1007/978-3-319-19638-1_3
https://doi.org/10.1007/978-3-319-19638-1_3
https://doi.org/10.1109/CSFW.1993.246633
https://doi.org/10.1109/CSFW.1993.246633

224 G. Primiero et al.

8. Laan, A., Madirolas, G., de Polavieja, G.: Rescuing collective wisdom when the
average group opinion is wrong. Front. Robot. AI 4, 1–21 (2017)

9. Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo,
M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-
organized collective decision-making. Swarm Intell. 5, 305–327 (2011)

10. Primiero, G., Martorana, A., Tagliabue, J.: Simulation of a trust and reputation
based mitigation protocol for a black hole style attack on VANETs. In: 2018 IEEE
European Symposium on Security and Privacy Workshops, EuroS&P Workshops
2018, London, United Kingdom, 23-27 April 2018, pp. 127–135 (2018). https://
doi.org/10.1109/EuroSPW.2018.00025

11. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site
selection process in honeybees. Phys. Rev. E 95(5), 052411 (2017). https://doi.
org/10.1103/PhysRevE.95.052411

12. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015).
https://doi.org/10.1371/journal.pone.0140950

13. Roosta, T., Shieh, S., Sastry, S.: Taxonomy of security attacks in sensor networks
and countermeasures. In: IEEE International Conference on System Integration
and Reliability Improvements, pp. 13–15 (2006)

14. Saljooghinejad, H., Bhukya, W.N.: Layered security architecture for masquerade
attack detection. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 255–262. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31540-4 19

15. Sargeant, I., Tomlinson, A.: Review of potential attacks on robotic swarms. In:
Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 16, pp. 628–646.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56991-8 46

16. Sargeant, I., Tomlinson, A.: Maliciously manipulating a robotic swarm. In: Pro-
ceedings of the International Conference Embedded Systems, Cyber-Physical Sys-
tems and Applications (ESCS), pp. 122–128 (2016)

17. Scharre, P.: Robotics on the battlefield part II: the coming swarm. Technical report,
Centre for a New American Security (2014)

18. Strobel, V., Castello, F., Dorigo, M.: Managing byzantine robots via blockchain
technology in a swarm robotics collective decision making scenario. Technical
report TR/IRIDIA/2017-013, IRIDIA, Université Libre de Bruxelles, Brussels, Bel-
gium (2017)

19. Syverson, P.F.: A taxonomy of replay attacks. In: Proceedings of the Seventh IEEE
Computer Security Foundations Workshop - CSFW 1994, Franconia, New Hamp-
shire, USA, 14-16 June 1994, pp. 187–191 (1994). https://doi.org/10.1109/CSFW.
1994.315935

20. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in
robot swarms: formalization, state of the art, and novel perspectives.
Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009.
https://www.frontiersin.org/article/10.3389/frobt.2017.00009

21. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

22. van Tilborg, H., Jajodia, S. (eds.): Encyclopedia of Cryptography and Security.
Springer, Heidelberg (2011)

https://doi.org/10.1109/EuroSPW.2018.00025
https://doi.org/10.1109/EuroSPW.2018.00025
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1007/978-3-642-31540-4_19
https://doi.org/10.1007/978-3-642-31540-4_19
https://doi.org/10.1007/978-3-319-56991-8_46
https://doi.org/10.1109/CSFW.1994.315935
https://doi.org/10.1109/CSFW.1994.315935
https://doi.org/10.3389/frobt.2017.00009
https://www.frontiersin.org/article/10.3389/frobt.2017.00009

Task-Agnostic Evolution of Diverse
Repertoires of Swarm Behaviours

Jorge Gomes1,2,6(B) and Anders Lyhne Christensen2,3,4,5

1 BioISI, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
jmgomes@fc.ul.pt

2 BioMachines Lab, Lisbon, Portugal
3 Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal

4 Instituto de Telecomunicações, Lisbon, Portugal
5 Maersk McKinney Moller Institute,

University of Southern Denmark, Odense, Denmark
6 Sonodot Ltd., London, UK

Abstract. Quality diversity algorithms are evolutionary algorithms
that aim to evolve diverse repertoires of high-quality solutions. Qual-
ity diversity has recently been used with considerable success to evolve
repertoires of single-robot controllers in a wide range of applications. In
this paper, we propose a methodology for the evolution of repertoires
of general swarm behaviours. We use a quality diversity algorithm that
relies on a behaviour characterisation and a quality metric that are task-
agnostic, meaning that the repertoire evolution is not driven towards
solving any specific task. We use a total of eight swarm robotics tasks to
evaluate the behaviours contained in the evolved repertoires a-posteriori,
and compare their performance with direct task-specific evolution. We
show that the repertoires contain a wide diversity of swarm behaviours,
and for most of the tasks, the behaviours in the repertoire have a per-
formance close to the performance achieved by task-specific evolution.

1 Introduction

Swarm robotics systems (SRS) represent an approach to collective robotics, in
which large groups of relatively simple and autonomous robots display collec-
tively intelligent behaviours [5]. Control in a SRS is decentralised, meaning that
each individual robot operates based on its local observations of the environment
and coordination with neighbouring robots. During task execution, the swarm-
level behaviour emerges from the interactions between neighbouring robots, and
from the interactions between robots and the environment. SRS can display a
number of desirable properties, such as robustness, flexibility, and scalability,
and thus have a considerable potential in several real-world domains, such as
search and rescue, exploration, surveillance, and clean up [1,3,12].

A key challenge in designing SRS is the synthesis of behavioural con-
trol [19]. Manual design of control for each robot requires the decomposition
of the swarm-level behaviour into individual behavioural rules that lead to the
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 225–238, 2018.
https://doi.org/10.1007/978-3-030-00533-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_18&domain=pdf

226 J. Gomes and A. L. Christensen

desired self-organized behaviour. As an alternative, a number of automatic and
semi-automatic design methods have been proposed. In AutoMoDe [18,19], for
instance, robot control is produced by selecting, instantiating, and combining
pre-existing parametric modules, through an optimisation process. Gauci et
al. [20,21], on the other hand, have shown how to produce minimalistic con-
trollers by optimising a small number of selected control parameters. The major-
ity of works in automatic design have, however, relied on the evolution of neural
network controllers, an approach known as evolutionary swarm robotics [38,39].

Evolutionary algorithms can exploit the intricate dynamics of self-organised
behaviours [28], and have thus been used to produce control for a wide variety
of swarm robotics tasks [3,38]. While, traditionally, evolutionary algorithms are
driven towards solutions for a specific task, based on a task-specific fitness func-
tion, more recent works have shown that novelty-driven evolutionary algorithms
are a valuable tool for evolutionary robotics [9,11,35], including swarm robotics
applications [4,22,27]. Algorithms such as novelty search [31] and quality diver-
sity [7,37] work by rewarding behavioural novelty instead of scoring solutions
solely based on task performance. The novelty of a solution corresponds to its
behavioural difference with respect to the solutions that have been evolved so far.
The behavioural difference is calculated based on a behaviour characterisation
that captures how the robots interact with one another and the environment.

Quality diversity algorithms, including Novelty Search with Local Competi-
tion (NSLC) [32], MAP-Elites [34,40], and derived techniques [7], try to find the
highest-quality solutions for different regions of the behaviour space, meaning
they can be used to build repertoires of diverse and high-quality solutions. Qual-
ity diversity has been used to evolve repertoires of robot behaviours in a number
of domains, including: virtual walking creatures [32]; morphological designs for
walking soft robots [34]; locomotion behaviours for legged robots [6–8,15,36,40]
and four-wheeled steering robots [14,15]; robotic arm behaviours [7,30,34]; and
controllers for maze-navigation tasks [37,40,41]. Studies have shown diverse
repertoires to be valuable for online behaviour adaptation [6], hierarchical con-
trol [15], among other uses [17].

In this paper, we propose an approach for the evolution of repertoires of
general swarm behaviours using a quality diversity evolutionary algorithm. The
behaviour characterisation and the quality metric used in the repertoire evolution
are completely task-agnostic, meaning that the repertoire evolution process is
not driven towards solving any specific task or set of tasks. The evolutionary pro-
cess is driven towards the generation of arbitrary but distinct swarm behaviours,
thus departing from the vast majority of previous works where automatic design
methods are used as means to solve a specific task or achieve a specific swarm
behaviour. Automatically generating a diverse set of basic and general swarm
behaviours, as we propose in this paper, can facilitate the synthesis of controllers
for complex tasks. Complex swarm robotics behaviours are often achieved by
combining several simpler swarm behaviours, such as aggregation and naviga-
tion [1,3,13,19]. Having a large repertoire of such basic behaviours allows the
achievement of more capable controllers by selecting and combining behaviours
from that repertoire [17,23,26].

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 227

In a recent study, Engebr̊aten et al. [17] evolved repertoires of swarm
behaviours using the MAP-Elites algorithm [34]. The behaviour of each con-
trollers is, however, characterised according to its performance in two pre-defined
tasks. This means that the repertoire contains diverse solutions for those specific
tasks, not a diverse set of general swarm behaviours as we propose in this paper.
In another recent study, Brown et al. [4] use novelty search [31] to discover the
behavioural possibilities for a swarm of robots with extremely limited capabil-
ities. The robots used in our study are considerably more capable, and we are
concerned with evolving repertoires of useful and high-quality behaviours, rather
than exclusively unveiling the behavioural capabilities of the swarm.

2 Methodology

In our approach, each candidate solution in the evolutionary process corresponds
to a robot controller that is copied to all robots in a swarm. A robot controller is
a neural network that continually receives the current sensory inputs of a robot
and outputs the robot’s actuator values. During evolution, each controller is eval-
uated in simulation by executing the controller on a swarm for a fixed amount
of time, in a number of different simulations. In these simulations, the behaviour
of the swarm as a whole is characterised using a task-agnostic behaviour char-
acterisation [10]. This behaviour characterisation, together with a task-agnostic
quality metric, is used to drive the quality diversity evolutionary process. This
means that the evolutionary process is driven towards novel high-quality swarm
behaviours, without regard to any specific task.

We follow the quality diversity framework proposed by Cully et al. [7], that
treats the selection of novel and promising solutions (selection) and the construc-
tion of the repertoire (container) as two independent steps. Our evolutionary
process is based on Novelty Search with Local Competition (NSLC) [32], which
has shown promising results as a quality diversity technique [7,8,32,37]. The
procedure used for the generation of a repertoire is summarised in Algorithm 1.

2.1 Novelty Search with Local Competition

NSLC [32] is an extension of novelty search [31], in which both the quality and the
behavioural novelty of the individuals is rewarded. The evolutionary process is
a Pareto-based multi-objective evolutionary algorithm, where the two objectives
are respectively, the behavioural novelty score and the local competition score.
The novelty score is calculated in the same way as in novelty search [25,31], with
the novelty score corresponding to mean behaviour distance to the k-nearest
neighbours (Algorithm 1, step 14), encompassing both the individuals from the
current population and individuals from an archive (step 13). The archive is
composed of individuals randomly selected during evolution [25] (steps 16–18),
and represents a sample of what has been evolved so far. The local competition
score, on the other hand, corresponds to the number of individuals in the same
k-nearest neighbours that are outperformed by the individual currently under
evaluation, with respect to a provided quality metric (step 15).

228 J. Gomes and A. L. Christensen

2.2 Container

The use of a novelty archive composed of randomly selected individuals
(steps 16–18) encourages uniform behaviour exploration [7,25]. This archive con-
struction process, however, does not ensure that the highest quality solutions for
each behaviour region will be present in the archive. To circumvent this limi-
tation, we use a separate container to collect the highest-performing solutions
during the evolutionary process, as proposed by Cully et al. [7]. The container
is composed of the highest-quality individuals for each behaviour region.

In our implementation, the container does not interfere with the evolution-
ary process, as suggested by Cully et al. [7]. The archive composed of randomly
selected individuals is used to calculate the novelty and local competition scores,
while the container merely gathers the most promising individuals. If an individ-
ual is significantly different from the others already in the container, it is added
to the container (steps 21–22). Otherwise, the individual is compared to the two
nearest neighbours in the container. If it has a higher quality than the nearest
neighbour, and it is significantly different from the second nearest neighbour, it
replaces the nearest neighbour in the container (steps 23–24). This approach is
similar to the container implementation proposed in [7], with the difference that
we use simple quality domination instead of the proposed ε-domination based
on both quality and novelty scores.1

1 Preliminary experiments revealed that quality domination yielded repertoires com-
posed of higher-quality solutions, and with a similar behaviour space coverage.

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 229

2.3 Behaviour Characterisation

A number of task-agnostic behaviour characterisations for multirobot systems
and swarm robotic systems have been proposed in previous works [4,22,24].
In this study, we adopt Systematically Derived Behaviour Characterisations
(SDBC) [24]. With the SDBC approach, the characterisation is automatically
derived from the environment’s elements, measuring spatial distances between
the different elements of the environment, and the state of the robots over time.

The evaluation of each controller (Algorithm 1, step 9) has the objective of
characterising the respective general swarm behaviour, that is, how the swarm
performs in an arbitrary environment. To this end, each controller is evaluated in
a large number of independent trials (50 in our experiments), where the swarm
size is varied, as well as the initial positions of the robots and points-of-interest in
the environment. In each trial, the robots in the swarm operate for a fixed amount
of time (100 s in our experiments) using copies of the controller under evaluation,
and the behaviour of the swarm is characterised. The behaviour characterisations
obtained in all trials are then combined to obtain a single characterisation that
is representative of the swarm’s typical behaviour. We resort to the geometric
median for this combination (step 10), a robust estimator of location [2].

In our experiments, considering that the environment contains walls, robots,
and one point of interest (POI) (see Sect. 3.1), the following behaviour features
were derived: mean distance from a robot to (i) all other robots; (ii) the clos-
est robot; (iii) the walls; (iv) and the POI; (v) robot’s mean linear speed; and
(vi) robot’s mean turn speed. Each of these features is measured taking into
account all robots of the swarm, during the entire simulation. The behaviour
characterisation is then composed of the mean value of each feature, as well as
the standard deviation of the feature [24], which indicates how much the fea-
ture varied during the simulation trial. Each behaviour characterisation is thus
a real-valued vector of length 12. All features were scaled to approximately [−1,
1], using scaling factors obtained beforehand through the generation of a large
number of random environment instances.

2.4 Quality Metric

The quality metric is used as a local objective in the quality diversity evolu-
tionary process. That is, given two candidate solutions with a similar behaviour
characterisation, solution quality dictates which one is preferred. In our app-
roach, the quality metric is not tied to any specific task. Instead, the quality
metric should consider transversal behavioural traits, such as: the number of col-
lisions while performing a behaviour, the energy efficiency of the given behaviour,
its transferability to physical robots [8], scalability, robustness, and so on. For
this study, we chose the number of collisions as the quality metric, considering
both robot-robot collisions and robot-obstacle collisions. A quality metric based
on the number of collisions is straightforward to implement, and represents a
behavioural trait that is generally desirable in any swarm behaviour, due to

230 J. Gomes and A. L. Christensen

practical concerns and safety. The quality of each controller is obtained by aver-
aging the quality score obtained in each of the simulation trials (Algorithm 1,
step 11). Considering a swarm of size S, a simulation trial of length T , and c as
the total number of collisions, the quality score in a given trial is given by:

Q = 1 − c/(T × S) (1)

3 Experimental Setup

3.1 Domain

We defined a simulation-based setup that allowed us to evolve the repertoire
of behaviours and to implement a broad range of evaluation tasks, see Fig. 1.
Each robot of the swarm is modelled as a circular object, and is equipped with
the following sensors and actuators (see Table 1 for parameters): (i) Obstacle
sensors: Six ray-based sensors that return the distance to the nearest intersec-
tion with a wall (if any); (ii) Agent sensors: Eight cone-based sensors evenly
distributed around the robot, each returning the distance to the closest robot in
the respective circular sector (if any); (iii) POI sensors: Four cone-based sensors
evenly distributed around the robot, each returning the distance to the POI in
the respective circular sector (if any); and (iv) Differential drive: The movement
of the robot is controlled by two actuators that dictate the left wheel and right
wheel speed, respectively. Each wheel can move both backwards and forwards.

Fig. 1. The experiments are conducted in a 2D environment modelled in the MASON
simulator [33]. The environment has a fixed size of 200 × 200 cm and is bounded by
impassable walls. The environment can also contain a single Point-of-Interest (POI),
a non-collidable entity that can be sensed by the robots. The swarm size varies from 5
to 10 robots. The figure depicts an example of an environment, with seven robots and
the POI. The sensor ranges are depicted for one of the robots.

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 231

Table 1. Experimental parameters. The source code used for the experiments is avail-
able at https://github.com/jorgemcgomes/mase/releases/tag/ants18.

3.2 Evaluation Tasks

We defined a number of different tasks based on canonical swarm robotics
tasks [1,3,12] to assess the versatility of the evolved repertoires. In all simu-
lation runs of all tasks, the initial positions and orientations of the robots (and
POI if present) are random. The number of robots varies randomly from 5 to 10.
The tasks and respective fitness functions are described below. Note that these
fitness functions have absolutely no influence on the evolution of the repertoires,
as they are only used to assess the repertoires a-posteriori.

Aggregation: The swarm has the objective of aggregating anywhere in the
arena. The fitness function is inversely proportional to the average distance to
the centre of mass over the entire simulation. T = 150 s (maximum simulation
time).

Clustering: Similar to aggregation, but the fitness function uses the number of
clusters instead. Clusters are defined by the single-linkage criterion, with a
maximum distance of 15 cm between each two robots. T = 150 s.

Coverage: The swarm has the objective of covering the arena as evenly as
possible. The arena is discretised into a grid of 10 × 10, and every time a
cell is visited by a robot, the value of the cell goes to 1, and then decays
constantly at a rate of 0.005/s. The fitness is the average value of all cells
over the entire simulation. T = 200 s.

Border coverage: Similar to coverage, but only the cells immediately next
to a wall are used for the fitness calculation. This means that the swarm is
rewarded for good coverage of the space near the walls. T = 200 s.

Dispersion: The robots should stay as far as possible from the closest neigh-
bouring robot. The fitness is proportional to the average distance to the
nearest neighbour, averaged over the entire simulation. T = 100 s.

Phototaxis: The swarm should get as close as possible to the POI present in
the arena. The fitness is inversely proportional to the mean distance of the
robots to the POI, averaged over the simulation. T = 100 s.

https://github.com/jorgemcgomes/mase/releases/tag/ants18

232 J. Gomes and A. L. Christensen

Dynamic phototaxis: Similar to Phototaxis, but the POI moves randomly
inside the arena, with a speed of 75% the maximum speed of the robots, and
changing direction every time it hits a wall. T = 150 s.

Flocking: The fitness function rewards robots for having an orientation similar
to the other robots within a radius of 25 cm (half the robot sensing range),
and for moving as fast as possible. The swarm is therefore encouraged to
aggregate and keep moving in flocks, the bigger the flocks the better. T =
200 s.

In all tasks, the swarm is penalised for robot-robot collisions and robot-wall
collisions. This is achieved by multiplying the task-specific fitness function (FT)
by a collision coefficient (FC):

F = FT × FC , FC = max
(

0, 1 − c

S × T × Cmax

)
, (2)

where c is the total number of collisions, S is the number of robots, T the
maximum simulation time for that task, and Cmax is a factor that controls the
maximum number of collisions allowed, set to 0.1 in our experiments.

3.3 Evolutionary Setup

Repertoire Evolution. As described in Sect. 2.1, the repertoire evolution is driven
by NSLC, and the repertoire is built using a container during the evolutionary
process, see Sect. 2.2. The environment used for the repertoire evolution is simi-
lar to the environment of the evaluation tasks: the number of robots is randomly
varied from 5 to 10; there is always one POI somewhere in the arena; and each of
the 50 simulations lasts 100 s. Note that the tasks and fitness functions described
in Sect. 3.2 are not used in any way during the repertoire evolution. The param-
eters of the evolutionary process are listed in Table 1.

Direct Evolution. For establishing a comparison, we evolve controllers specifi-
cally for each of the tasks. The performance obtained by the task-specific con-
trollers is used as an upper bound for the performance achievable in each task.
These task-specific controllers are evolved using the NEAT neuroevolution algo-
rithm, with parameters similar to the repertoire evolution, but the individuals
are scored exclusively by the fitness function of the respective task. For each
task, we conduct 30 evolutionary runs, each for 500 generations.

Randomly Generated Repertoire. The quality of the controllers from the evolved
repertoires is additionally compared with controllers from randomly generated
repertoires. The performance achieved in each task by these repertoires estab-
lishes a lower bound of performance that helps gauging the difficulty of each
task and the effectiveness of the evolutionary process. This lower bound does
not necessarily correspond to the lowest performance obtainable, but rather to
the performance that can be trivially obtained with random exploration of the

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 233

controller parameter space. The random repertoires are generated by creating
1000 three-layer feed-forward neural networks, each with a number of hidden
neurons varying from 0 to 20, and with all connections assigned random weights.

4 Results

4.1 Comparison with Direct Evolution

We repeated the repertoire evolution 10 times, thus obtaining 10 evolved reper-
toires. The mean size of the repertoires was 981± 34 controllers, and the mean
quality score was 0.99± 0.03, meaning that collisions were rare in the vast major-
ity of behaviours. The best-of-generation controllers evolved with direct evolu-
tion, and the controllers in all repertoires, were re-evaluated in the tasks using
100 simulation runs per controller, see Fig. 2. In all tasks, the evolved repertoires
significantly outperform the randomly generated repertoires, which confirms that
the evolutionary process is discovering diverse high-quality solutions, and that
none of the tasks are trivial. Comparing with the performance achieved by direct
task-oriented evolution, we observe three different scenarios:

Aggregation, Phototaxis: the performance achieved by the evolved reper-
toires is not significantly different from direct evolution (Mann-Whitney U
test, p < 0.05). That is, driving evolution towards the solution of these tasks
was not more effective than the unrestricted exploration of the behaviour
space. This result might be explained by the potential deceptiveness of the
tasks. As shown in previous works [27], novelty-driven evolution can yield
promising results in the evolution of swarm behaviours.

Coverage, Border coverage, Dispersion: there is a significant performance
difference, but the achieved fitness values are close to one another in absolute
terms. This means that the repertoires contained solutions for solving these
tasks, and the practical differences in terms of solution quality are minor.

Clustering, Dynamic phototaxis, Flocking: the difference to direct evolu-
tion is more significant with respect to the highest fitness scores achieved,
and corresponds to observable performance differences.

The fact that the controllers in the repertoires could not outperform task-
oriented evolution was expected: we are comparing general swarm behaviours
with swarm behaviours evolved specifically for that task. Nonetheless, it is note-
worthy that in most tasks, the repertoires contained controllers that achieved rel-
atively high performance, and could even match the performance obtained with
task-oriented evolution in two tasks. These results also show that the employed
quality diversity algorithm was effective in behaviour exploration, as the reper-
toires contained controllers that performed well in fairly different tasks.

4.2 Repertoire Diversity

To gain insight into the diversity of the repertoires, we measured the fitness
achieved in each task by every controller of each repertoire. We then averaged

234 J. Gomes and A. L. Christensen

Fig. 2. Fitness achieved in the evaluation tasks with each approach. The fitness values
shown for the repertoires correspond to the fitness of the highest-performing controller
found in each repertoire for each task.

the fitness scores achieved by the controllers from each behaviour region, in each
task. Figure 3 show that most of the regions contain controllers that perform
relatively well in some task. This suggests that a significant part of the repertoires
is composed of potentially useful controllers. The controllers that work best for

Fig. 3. Mean fitness of the controllers in the evolved repertoires, in each of the evalu-
ation tasks. The behaviour space was reduced from 12 to 2 dimensions using Robust
PCA [29] (the two first PCs account for 77% of the variance), and then discretised for
calculating the mean fitness of the controllers in each behaviour region.

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 235

a given task tend to be focused around a certain region, which varies in size. For
instance, only a small subset of controllers perform well in the Flocking task,
while a large number of controllers perform well in the Coverage task.

We can also observe that the highest-performing controllers for significantly
different tasks belong to significantly different regions. For instance, note that
the high-performing regions for Aggregation and Dispersion are disjoint, the
high-performing region for Clustering is a subset of the high-performing region
of Aggregation, and the high-performing regions for similar tasks overlap: Cov-
erage and Border coverage, Phototaxis and Dynamic phototaxis. These obser-
vations suggest that the behaviour characterisation is adequately capturing the
controllers’ behaviour, and that the behaviour space is at least moderately con-
tinuous. That is, controllers close in the behaviour space perform similarly.

5 Conclusions

In this study, we evolved repertoires of general swarm behaviours using a quality
diversity algorithm that relied on task-agnostic behaviour characterisations and a
task-agnostic quality metric. The evolved repertoires were compared with direct
task-oriented evolution in a total of eight swarm robotics tasks. The controllers
in the repertoires could closely approximate or match the performance of direct
task-oriented evolution in five out of the eight tasks, which is noteworthy given
that the repertoire evolution process was conducted without reference to any
of the tasks. A single repertoire contained controllers that could solve several
different tasks. We showed that the evolved repertoires contained a high diversity
of potentially useful controllers. Most of the behaviour regions in the repertoire
were found to have controllers that could be useful for solving at least one task.

Diverse repertoires of swarm behaviours have a number of potential applica-
tions, which we will explore in future work, alongside validation in real robotic
systems. More complex swarm robotics behaviours are commonly built upon
elementary swarm behaviours [1,3,12]. Our results suggest that the evolved
repertoires contained many of those elementary behaviours, and therefore they
could be a good starting point for synthesising hierarchical control [13,16].
EvoRBC [15,26], for instance, is a recently proposed approach for evolving hier-
archical control based on repertoires of behaviours. Diverse repertoires can also
be used for online adaptation [6] during task execution in response to external
factors such as faults and changes in the environment. Additionally, repertoires
can also be used to rapidly find solutions for new, unforeseen tasks.

Overall, our study showed that evolving repertoires of general swarm
behaviours is possible, and it can yield a wide diversity of high-quality
behaviours. Such repertoires can be an important step towards the synthesis
of more complex swarm behaviours in a completely automated manner.

Acknowledgments. Work supported by Fundação para a Ciência e a Tec-
nologia (FCT), Portugal, with grants UID/MULTI/04046/2013 (BioISI), and
UID/EEA/50008/2013 (Instituto de Telecomunicações). This work used the EGI infras-
tructure with the support of NCG-INGRID-PT (Portugal).

236 J. Gomes and A. L. Christensen

References

1. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016)

2. Beck, A., Sabach, S.: Weiszfeld’s method: old and new results. J. Optim. Theory
Appl. 164(1), 1–40 (2015)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Brown, D.S., Turner, R., Hennigh, O., Loscalzo, S.: Discovery and exploration of
novel swarm behaviors given limited robot capabilities. In: Groß, R., et al. (eds.)
Distributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 447–460. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73008-0 31

5. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 2

6. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

7. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular
framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2017)

8. Cully, A., Mouret, J.B.: Evolving a behavioral repertoire for a walking robot. Evol.
Comput. 24(1), 59–88 (2016)

9. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics:
what, why, and where to. Front. Robot. AI 2, 4 (2015)

10. Doncieux, S., Mouret, J.B.: Behavioral diversity measures for evolutionary robotics.
In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE Press
(2010)

11. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014)

12. Duarte, M., et al.: Evolution of collective behaviors for a real swarm of aquatic
surface robots. PLoS ONE 11(3), e0151834 (2016)

13. Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control
for a real swarm robotics system in an intruder detection task. In: Squillero, G.,
Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 213–230. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31153-1 15

14. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: EvoRBC: evolution-
ary repertoire-based control for robots with arbitrary locomotion complexity. In:
Genetic and Evolutionary Computation Conference (GECCO), pp. 93–100. ACM
Press (2016)

15. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: Evolution of repertoire-
based control for robots with complex locomotor systems. IEEE Trans. Evol. Com-
put. 22(2), 314–328 (2018)

16. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hierarchical controllers
for multirobot systems. In: International Conference on the Synthesis & Simulation
of Living Systems, pp. 657–664. MIT Press (2014)

17. Engebr̊aten, S.A., Moen, J., Yakimenko, O., Glette, K.: Evolving a repertoire of
controllers for a multi-function swarm. In: Sim, K., Kaufmann, P. (eds.) EvoAp-
plications 2018. LNCS, vol. 10784, pp. 734–749. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77538-8 49

18. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)

https://doi.org/10.1007/978-3-319-73008-0_31
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1007/978-3-319-31153-1_15
https://doi.org/10.1007/978-3-319-77538-8_49
https://doi.org/10.1007/978-3-319-77538-8_49

Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours 237

19. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

20. Gauci, M., Chen, J., Li, W., Dodd, T.J., Gross, R.: Clustering objects with robots
that do not compute. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-agent Systems, pp. 421–428. International Foun-
dation for Autonomous Agents and Multiagent Systems (2014)

21. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

22. Gomes, J., Christensen, A.L.: Generic behaviour similarity measures for evolu-
tionary swarm robotics. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 199–206. ACM Press (2013)

23. Gomes, J., Christensen, A.L.: Comparing approaches for evolving high-level robot
control based on behaviour repertoires. In: IEEE Congress on Evolutionary Com-
putation (2018). (in Press)

24. Gomes, J., Mariano, P., Christensen, A.L.: Systematic derivation of behaviour char-
acterisations in evolutionary robotics. In: International Conference on the Synthesis
and Simulation of Living Systems (ALife), pp. 212–219. MIT Press (2014)

25. Gomes, J., Mariano, P., Christensen, A.L.: Devising effective novelty search algo-
rithms: a comprehensive empirical study. In: Genetic and Evolutionary Computa-
tion Conference (GECCO), pp. 943–950. ACM Press (2015)

26. Gomes, J., Oliveira, S.M., Christensen, A.L.: An approach to evolve and exploit
repertoires of general robot behaviours. Swarm Evol. Comput. (2018). https://doi.
org/10.1016/j.swevo.2018.06.009. (in Press)

27. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)

28. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-74528-2

29. Hubert, M., Rousseeuw, P.J., Vanden Branden, K.: ROBPCA: a new approach to
robust principal component analysis. Technometrics 47(1), 64–79 (2005)

30. Kim, S., Doncieux, S.: Learning highly diverse robot throwing movements through
quality diversity search. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion (GECCO), pp. 1177–1178. ACM Press (2017)

31. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

32. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Genetic and Evolutionary Computation Confer-
ence (GECCO), pp. 211–218. ACM Press (2011)

33. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

34. Mouret, J., Clune, J.: Illuminating search spaces by mapping elites. CoRR
abs/1504.04909 (2015). http://arxiv.org/abs/1504.04909

35. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

36. Nordmoen, J., Ellefsen, K.O., Glette, K.: Combining MAP-elites and incremental
evolution to generate gaits for a mammalian quadruped robot. In: Sim, K., Kauf-
mann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 719–733. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77538-8 48

37. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 1–40 (2016)

https://doi.org/10.1016/j.swevo.2018.06.009
https://doi.org/10.1016/j.swevo.2018.06.009
https://doi.org/10.1007/978-3-319-74528-2
http://arxiv.org/abs/1504.04909
https://doi.org/10.1007/978-3-319-77538-8_48

238 J. Gomes and A. L. Christensen

38. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours
in Groups of Autonomous Robots, Studies in Computational Intelligence, vol. 108.
Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77612-3

39. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics.
In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. Natural Computing Series, pp.
163–191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-
6 5

40. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Using centroidal Voronoi tes-
sellations to scale up the multi-dimensional archive of phenotypic elites algorithm.
IEEE Trans. Evol. Comput. (2017). https://doi.org/10.1109/TEVC.2017.2735550.
(in Press)

41. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Comparing multimodal opti-
mization and illumination. In: Genetic and Evolutionary Computation Conference
(GECCO) Companion, pp. 97–98. ACM Press (2017)

https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-74089-6_5
https://doi.org/10.1007/978-3-540-74089-6_5
https://doi.org/10.1109/TEVC.2017.2735550

The Best-of-n Problem with Dynamic
Site Qualities: Achieving Adaptability

with Stubborn Individuals

Judhi Prasetyo1(B), Giulia De Masi2, Pallavi Ranjan1,
and Eliseo Ferrante3,4(B)

1 Middlesex University Dubai, Dubai, United Arab Emirates
{j.prasetyo,p.ranjan}@mdx.ac.ae

2 College of Natural and Health Science, Zayed University,
Dubai, United Arab Emirates
giuliademasi@gmail.com

3 Laboratory of Socio-Ecology and Social Evolution, KU Leuven,
Leuven, Belgium

eliseo.ferrante@kuleuven.be
4 School of Computer Science, University of Birmingham,

Dubai, United Arab Emirates
e.ferrante@bham.ac.uk

Abstract. Collective decision-making is one of main building blocks of
swarm robotics collective behaviors. It is the ability of individuals to
make a collective decision without any centralized leadership, but only
via local interaction and communication. The best-of-n problem is a sub-
class of collective decision-making, whereby the swarm has to select the
best option among a set of n possible alternatives. Recently, the best-
of-n problems has gathered momentum: a number of decision-making
mechanisms have been studied focusing both on cases where there is an
explicit measurable difference between the two qualities, as well as on
cases when there are only delay costs in the environment driving the
consensus to one of the n alternatives. To the best of our knowledge,
all the formal studies on the best-of-n problem have considered a site
quality distribution that is stationary and does not change over time.

In this paper, we perform a study of the best-of-n problems in a
dynamic environment setting. We consider the situation where site quali-
ties can be directly measured by agents, and we introduce abrupt changes
to these qualities, whereby the two qualities are swapped at a given time.

Using computer simulations, we show that a vanilla application of one
of the most studied decision-making mechanism, the voter model, does
not guarantee adaptation of the swarm consensus towards the best option
after the swap occurs. Therefore, we introduce the notion of stubborn
agents, which are not allowed to change their opinion. We show that
the presence of the stubborn agents is enough to achieve adaptability to
dynamic environments. We study the performance of the system with
respect to a number of key parameters: the swarm size, the difference
between the two qualities and the proportion of stubborn individuals.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 239–251, 2018.
https://doi.org/10.1007/978-3-030-00533-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_19&domain=pdf

240 J. Prasetyo et al.

1 Introduction

Collective decision-making is a central cornerstone in most natural and artificial
collective systems. In the context of artificial systems, collective decision-making
is one of the most important building blocks for swarm robotics systems [3]. Many
swarm robotics problems such as deciding a common direction for coordinated
motion [8], or a common area in the environment to aggregate to [6], can be
seen as instances of collective decision-making [28]. When a swarm needs to
make a collective decision by choosing among a set of discrete alternatives, the
resulting problem is called the best-of-n problem in a robot swarm, and has been
thoroughly reviewed in [28].

In this paper, we consider a version of the best-of-n problem whereby a swarm
of robots with minimal capabilities has to achieve consensus to one among n
options, and in particular to the one with the best quality, while interacting
only locally in an environment that is symmetric with respect to the distribu-
tion of the n options (that is, all options can be evaluated on average in the
same amount of time). The robots do not communicate the perceived option
quality. On the contrary, they can only advertise one option at the time, the one
corresponding to their current opinion, and they use a decision mechanism to
change their current opinion after observing their neighbors in local proximity.
Many decision mechanisms have been utilized in the past, the most common ones
being the voter model [2,30] and the majority rule [14]. Consensus is built over
time using a mechanism called positive feedback modulation [11], whereby fluc-
tuations in robot’s opinions distributions will eventually produce a bias towards
one of the two options, which will make that option more likely to be observed
and henceforth reinforcing this bias, until consensus is reached. To date, the
literature on the best-of-n for a mobile robot swarm has mainly focused to the
static environment case, whereby both environment and option quality do not
change over time, with only few exceptions [28].

In this paper, we consider the best-of-n problem in dynamic environments.
More precisely, we consider the case where the environment is static and sym-
metric with respect to option distribution, but the quality is asymmetric and
furthermore abruptly changes over time. The goal of the swarm is collectively
select the option corresponding to the best quality, and at the same time to adapt
this decision and shift its consensus state to another option if this becomes the
best one. We consider the voter model as the main decision mechanism, and the
positive feedback modulation mechanism first proposed in [30], which consists in
robots advertising each option to their neighbors for a time that is proportional,
on average, to the quality of each option, an idea that is inspired by the waggle
dance behavior exhibited by honeybees [25].

We perform experiments using multi-agent computer simulations where the
spatial dimension is taken into account, and each robot is abstracted by an agent.
We show that the vanilla application of the voter model does not allow the swarm
to adapt to a dynamic change of the options quality. To solve this problem, we
introduce the notion of stubborn agents, that is, agents that do not apply any
decision mechanism and therefore never change their opinion. Stubborn agents
can be seen as scouts, constantly exploring their favorite opinion, irrespective

The Best-of-n in Dynamic Environments 241

of the opinion of others and of the consensus state of the swarm. We perform
simulated experiments where we analyze the above idea by studying the effect
of the key parameters: swarm size, proportion of stubborn individuals, and ratio
of the option quality. We also perform preliminary experiment with another
decision mechanism, the majority rule, showing that in this case the dynamics
are completely different.

The rest of the paper is organized as follows. In Sect. 2, we analyze the litera-
ture in collective decision making and we relate our work considering also the few
cases where the environment can be considered dynamic. In Sect. 3, we define the
dynamic best-of-n problem, the collective decision-making mechanism, and the
idea of having the stubborn individuals. In Sect. 4, we present our experimental
setup by explaining the specific task and the parameters that have been studied.
In Sect. 5 we present the results, while in Sect. 6 we conclude and we discuss the
other possible directions in which this work can be extended.

2 Related Work

The direct biological inspiration of the best-of-n problem and in particular of the
scenario chosen here comes from the collective behaviors of social insects such as
ants [9] and more specifically bees [13,25]. The literature on the best-of-n related
to swarm robotics will be reviewed using two categories introduced in [28]. We
conclude this section by analyzing the few works in the best-of-n that can be
considered conducted in a dynamic environment.

In the first category, we find work whereby robots cannot measure directly
the quality of the different options. Instead, there are asymmetries in the envi-
ronment that bias the collective decision towards one of the n options. For exam-
ple, in [5,10], a classical aggregation task inspired by cockroaches is presented.
Here, the asymmetry in the environment is represented by the different size of
a number of shelters, that are perceived by the robots in the exact same way.
Thanks to this environmental effect, robots are able to select the right shelter to
aggregate in. Another example of environmental asymmetry is shown in [14,27],
whereby the environment is represented by a classical double bridge [7] and
robots have to find the shortest path between two bridges connecting the nest
to the food source. Differently from our work, here the asymmetries between the
two paths induces agents selecting the shortest path to appear more frequently
in the nest, therefore biasing the process towards that path. In this work, the
majority rule was used as decision mechanism. In a subsequent work [23] per-
formed on the same scenario, another mechanism called the k-unanimity rule
(the agent switches opinion only after observing the same option k times in a
row) was used.

In the second category, we find works in which the quality can be directly
measured, as per our case, but are conducted in a static environment. The base-
line studies on direct modulation of positive feedback through quality was per-
formed in [29–31], whereby the authors thoroughly analyzed the voter model and
the majority rule through real robot experiments, simulations, ordinary differ-
ential equations, and chemical reaction network models, and studied the speed

242 J. Prasetyo et al.

versus accuracy trade-off. The authors in [19–21] developed a decision-making
strategy that, differently from our work, includes also an uncommitted opinion
(neither of the n alternative), a recruitment mechanism, and an inhibition mech-
anism, as in honeybees [26]. In a recent follow-up study [18], they have shown
how this model can be general to encompass not only decision-making in social
insects but also in the human brain [13]. Finally, in [15], the authors considered
the best-of-n problem in an aggregation task. Here, agents use a direct recruit-
ment mechanism and are able to commit by using a quorum-based mechanism
that makes the swarm aware of the consensus level reached.

In the context of dynamic environment, relatively little effort has been put,
however the idea of having the swarm not converging to a full consensus is not
new in this paper. For example, biological studies have found that having only
a large majority committing to an option rather than the unanimity allow fish
schools to swiftly adapt to perturbations [4]. Back to artificial systems, in [16],
the authors considered a task-sequencing problem that can be seen as a best-
of-2 with two options: task complete and task incomplete. These have dynamic
qualities because the task completion level, corresponding to the size of the
cleared area, changes over time. The authors of [1] studied a dynamic version of
aggregation. Here, each shelter emits a different sound that varies over time, and
the swarm has to aggregate in the shelter with the loudest sound. The method
is based on a fuzzy version of the original BEECLUST algorithm [12,24]. In the
original BEECLUST, after a waiting period, each agent chooses a new direction
of motion at random, while in [1] a fuzzy controller that maps the loudness and
the bearing of the sound determines the new direction of motion. Differently
from all this work that focused on specific application scenarios, in this paper
we perform a systematic study of a minimal model of the dynamic best-of-n
problem, in order to understand better the effect of the most important key
parameters.

3 The Model

In this section, we define the dynamic best-of-n problem (Sect. 3.1) and the
collective decision-making model introduced (Sect. 3.2).

3.1 The Dynamic Best-of-n Problem

The best-of-n problem requires a swarm of agents to make a collective decision
among n possible alternatives towards the choice that has the best quality. A
typical example is the choice of best location for honeybees’ swarm foraging.
Each of the n options has an intrinsic quality ρi with i ∈ 1, . . . , n. Qualities
ρi are defined in [1.05, 1.5, 3]. A best-of-n problem reaches the optimal solution
when the collective decision of the swarm is for the option with maximum quality.
That means that a large majority M ≤ N(1 − δ) of agents agrees on the same
option, where δ is a small number chosen by the experimenter. In the case where
δ = 0 there is perfect consensus.

The Best-of-n in Dynamic Environments 243

In this paper, as for the majority of the studies [29], we restrict n to 2
options, labeled a and b, having intrinsic quality ρa and ρb. Without loss of
generality, one option quality ρa is set to 1 while ρb > 1. No cost is included in
the current model, which means that the time needed to explore and assess the
quality of both options is symmetric [28]. Each agent can measure the quality of
different options, but cannot communicate it but rather can only advertise the
option itself using local communication (see Sect. 3.2). In dynamic environments
as introduced here, qualities can change over time: ρa = ρa(t) and ρb = ρb(t).
In this study, we only consider qualities that are piece-wise constant: at a given
time TC , the two qualities are swapped. Namely ρa(t) and ρb(t) remains constant
for t < TC , they are swapped at TC (ρa(TC) = ρb(TC −1), ρb(TC) = ρa(TC −1)),
and again remain constant afterwards.

3.2 The Decision Mechanism and the Stubborn Agents

We consider two kinds of agents: normal and stubborn. Each agent has an initial
opinion, which consists in one of the two options a or b. Normal agents are able
to change their opinion by applying a decision mechanism that relies on the
observation of other agents in local proximity. Stubborn agents instead never
change their opinion and keep the one they have at the very beginning, either a
or b.

Initially agents are positioned inside the nest. Then, they move toward
the region corresponding to their opinion. They spend there an exponentially-
distributed amount of time (sampled independently per agent) that does not
depend on the option, during which they measure the quality of that site. Then
they go back to the nest, each at a different time, and they start disseminat-
ing their opinion. Agents within the nest needs to be well-mixed in order to
avoid agents with same opinion clustering near each other. A random walk is
implemented in order to meet this well-mixed assumption as much as possible.

The agents controller is represented by the finite state machine in Fig. 1a.
Accordingly, agents can have one of the following 4 possible states: dissemination
state of opinion a (Da), dissemination state of opinion b (Db), exploration state
of opinion a (Ea), exploration state of opinion b (Eb). In the figure, solid lines
represent deterministic transitions, while dotted lines stochastic transitions. The
symbol V R indicates that the voter model is used at the end of the dissemination
state (in the case where the majority rule is used, this will be mentioned). In
the dissemination state, the agent disseminates his opinion continuously to other
agents he meets that are also in the dissemination state. The time spent by the
agent disseminating its opinion is randomly sampled from an exponential distri-
bution characterized by a parameter proportional to the quality of the region.
As a consequence it is more probable to meet neighbors with the best opinion
than meeting those with the worst one. This mechanism is called modulation of
positive feedback and it is the driving mechanism to make the group converge
on the option with the best quality. At the end of dissemination, each agent
can change its opinion based on the opinions of other agents and using either
the voter model or the majority rule. Both the voter model and the majority

244 J. Prasetyo et al.

Fig. 1. Panel a: Probabilistic finite state machine. Da, Db, Ea and Eb represent the
dissemination and exploration state. Solid lines represent deterministic transitions,
while dotted lines stochastic transitions. The symbol V R indicates that the voter model
is used at the end of the dissemination state. Panel b: Screenshot of the simulation
arena. This image is taken from NetLogo software.

rule depend on the opinion of neighbors, that is the agents within a specified
spatial radius (in our experiments set to 10 units). In the voter model, the agent
switches its opinion to the one of a random neighbors. In the majority model,
the agent changes its opinion to the one held by the majority of its neighbors.

4 Experimental Setup

The experiments have been conducted first on NetLogo simulator for fast pro-
totyping. Then, the systematic simulations have been run using the simulator
developed in [29].

Agents move on a 2-dimensional arena of size 200 (width) × 100 (height)
units (see Fig. 1 for a screenshot within NetLogo). In the binary model, the
arena comprises a central region called the nest, where initially all agents are
and where they meet to perform the decision-making process. The two external
areas are the sites and represent the two options: option a on the left and option
b on the right.

In order to test the robustness of the model, the most important parameters
have been studied. For the voter model, as evident from Table 1, the total num-
ber of agents has three different values: 40, 100, 500. Without loss of generality,
the interplay between ρa and ρb can be studied simply by keeping one of them
fixed (ρa before the environment changes, and ρb after it changes) to a value of
1 and by changing the other one. The values of the second quality studied are:
1.05, 1.5, 3, indicating small, medium, and large difference in quality, respec-
tively. The proportion of stubborn individuals have been studied in the range
{5%, 10%, 20%}, equally distributed between the two opinions.

For the majority model only one set of parameters has been run (see Table 1).
As initial conditions of each run, 50% of agents have opinion a and 50% of agents
have opinion b.

The Best-of-n in Dynamic Environments 245

Table 1. Model parameters used in experiments

Voter Majority

N {40, 100, 500} 100

ρa (ρb after change) 1 1

ρb (ρa after change) {1.05, 1.5,3} 3

S {0.05, 0.1, 0.2} 0.1

The dissemination time is exponentially distributed with parameter τD = gρ
with g = 100. The time of exploration is also exponentially distributed, with
parameter set to τE = 10, therefore independent of the site.

In the dynamic environment considered in this paper, a new time parameter
TC is introduced: the time when the value of ρa and ρb are abruptly changed
by swapping their values. In this study TC = 2500, a value empirically chosen
as a compromise to allow both consensus to the best option prior to change
and reasonably short runs. For each configuration of parameters, an ensemble of
simulation has been realized, consisting of R = 50 runs.

5 Results

The different configuration sets are compared in terms of temporal evolution
of opinions. In particular only the proportion of agents with opinion a (pa) is
monitored, as the percentage of agents with opinion b (pb) is simply given by
pb = 1 − pa. The plots report all the trajectories of this quantity over time (in
simulated seconds, sampled every Δt = 0.1 steps) for all runs. In the paper
are reported only the most relevant plots to discuss the results. All the plots
of the full study, together with example videos, are available as Supplementary
Material [17]. Table 1 reports in bold the parameters whose plots are included
in the main text.

5.1 The Vanilla Voter Model

Figure 2 shows the results of runs of voter model without stubborn (also called
vanilla voter model) for two different values of quality ratio: 1.05 (low) and 3
(high). It is interesting to note that for a low value of quality ratio the conver-
gence is never reached, while for high value of quality ratio the convergence is
reached but there is no adaptation to the environmental change. We will see
next how stubborn individuals will play a driving role to get convergence and
adaptation in the dynamic best-of-n problem.

5.2 Effect of Quality Ratio and of Proportion of Stubborn
Individuals

Figure 3 reports the results of runs for four different cases of systems of 100
agents: across rows, we vary the ratio ρa/ρb from very low (1.05) to very high

246 J. Prasetyo et al.

Fig. 2. Opinion evolution for a voter model with no stubborn, for two different values
of quality ratio: 1.05 (a) and 3 (b). For low quality ratio there is no convergence. For
high quality ratio the convergence to one option is reached but there is no adaptation
to the change of opinion quality

(3). Across columns, we vary the stubborn percentage from 5% to 20%. It is evi-
dent the large role played by quality ratio value: whatever the values of stubborn
presence, in the case of low quality ratio there is no convergence of opinions, nei-
ther adaptation. On the other hand, for large quality ratio value (3) there is good
convergence and adaptation, irrespective of the proportion of stubborn individ-
uals (which only affects the final value of the consensus state in a decreasingly
proportional way). Interestingly, while the presence of stubborn individuals has
been shown to be fundamental to have convergence and adaptation, its percent-
age does not seem to significantly contribute in terms of time nor in terms of
variance of number of agents following the opinion.

5.3 Effect of Swarm Size Versus Proportion of Stubborn Individuals

Keeping constant the percentage of stubborn individuals, a big role of the swarm
size is disclosed by Fig. 4 (the quality ratio varies across rows, while the swarm
size across columns). Increasing the population size decreases the variance of
fraction of agents following a certain opinion (here a), while the convergence or
non-convergence are determined by the value of the quality ratio. In the case
of low quality ratio, for small swarm size there is no convergence; increasing
the size of the swarm show a certain tendency to convergence. Interestingly, in
the case of high quality ratio, increasing the swarm size reduces the variance of
adaptation time.

Since the number of stubborn individuals increases with the swarm size, a
doubt arises if convergence is observed only for an absolute number of stub-
born agents larger than a critical mass. This is denied by the evidence of other
configurations. For instance, in the swarm with N = 100 agents and stubborn
percentage 20% the number of stubborn individuals is 20, which is comparable
to the number of stubborns of the swarm with N = 500 agents and stubborn
percentage 5%, that is 24 stubborns. The first case does not converge while the
second case does converge: therefore it can be concluded that there is an intrinsic
role of the size of the swarm itself, not related to any critical mass of stubborns.

The Best-of-n in Dynamic Environments 247

Fig. 3. Different cases of systems of N = 100 agents. (a) S = 5% and ρa/ρb = 1.05, (b)
S = 20% and ρa/ρb = 1.05, (c) S = 5% and ρa/ρb = 3, and (d) S = 20% and ρa/ρb = 3.
It shows that quality ratio has a higher effect than the percentage of stubborn.

The only thing that could be further argued is that, rather than being an effect
of the swarm size, it may be an effect of increased density instead. This will be
confirmed or denied in future work.

5.4 The Majority Rule with Stubborn Individuals

Also a majority decision model has been implemented to compare with voter
model results. Results show that the majority model never works, but does a
sort of spontaneous symmetry breaking (more often biased to the option that is
best at the beginning of the experiment, b) and is not sensitive to the presence
of stubborn individuals. We will speculate more about this in the conclusions.

6 Conclusion, Discussion, and Future Work

In this work, we have introduced the dynamic best-of-n problem, and we have
proposed a solution to this problem when the environment is asymmetric with
respect to the option qualities that can be assessed by the robots and symmetric
with respect to the time needed to assess each option [28]. The proposed solution
consists in a combination of direct modulation of positive feedback coupled with
the voter model and with the introduction of stubborn agents, that is, agents
that do not change their opinion and stay committed to their initial option.

Through simulation experiments, we have shown that the voter model alone
(i.e. without the stubborn agents) cannot make the swarm adapt to abrupt

248 J. Prasetyo et al.

Fig. 4. The effect of the swarm size 40 and 500 for the two quality differences 1.05
and 3: (a) N = 40 and ρa/ρb = 1.05, (b) N = 500 and ρa/ρb = 1.05, (c) N = 40 and
ρa/ρb = 3, and (d) N = 500 and ρa/ρb = 3. In the case of low quality ratio, for small
swarm size there is no convergence; increasing the size of the swarm show a certain
tendency to convergence. In the other case (high quality ratio), increasing the swarm
size reduces the variance of adaptation time.

changes in the option qualities. After introducing stubborn agents, we have stud-
ied the effect of key parameters: the ratio of the two qualities, the proportion of
stubborn agents, and the swarm size. Firstly, we reported that, as expected and
reported in previous studies [14], the difference in site quality place a crucial role,
whereby the ability to adapt to the environmental changes is strongly linked to
the system accuracy, and higher level of accuracy and adaptability are observed
with increasing ratio between the qualities. Secondly, contrarily to initial expec-
tations, we found that increasing the ratio of stubborn individuals does not have
an effect on neither the accuracy nor the adaptability. Finally, and surprisingly,
we found that increasing swarm size has a beneficial effect on both consensus
and adaptability: when the quality ratio is high (easier problems), the swarm
is able to react faster with smaller variations on the reaction times; when the
quality ratio is low (harder problems), a small swarm is not able to achieve con-
sensus at all, while a larger swarm shows sign of approaching consensus and at
the same time of adaptability to the change in the environment. This trend fur-
ther confirms our speculation that, at least in this system, consensus-reaching
and adaptability are strongly interlinked, as in previous study it was already
found that accuracy increases with increasing swarm sizes as this will eventu-
ally approach a continuum model that, when studied using ordinary differential
equations (ODEs), predicts that the swarm always achieves consensus to the best

The Best-of-n in Dynamic Environments 249

Fig. 5. Majority model for a system of N = 100 agents, ρa/ρb = 3, without stubborn
(a) and with 10% of stubborns (b). Whether there are stubborn individuals or not the
majority model never converge and a symmetry breaking is observed.

quality [30]. We concluded the experimental analysis with a preliminary study
of the majority rule model, by showing that this model is ineffective in reaching
consensus to the right option and at adapting to environmental changes. The
latter is due to the effect of spatiality, as stubborn individuals committed to the
same options are very unlikely to appear next to each other (Fig. 5).

This present study has revealed new insights but at the same time has raised
new questions that we plan to investigate in future studies. Firstly, we would
like to study this system using theoretical models such as ODEs and chemical
reaction network modeling, as in [29], because this allows to study more broadly
the effect of parameters and to have a deeper understanding of the dynamics. To
do so, stubborn agents may be replaced with a spontaneous transition rate of all
agents to a random opinion, as this can be more easily modeled. However, the
equivalence of the two models needs to be tested. Secondly, we plan to system-
atically study the majority-rule to determine whether there is a variant that can
make this mechanism adaptive as well. This study will start by systematically
varying the proportion of stubborn agents, because we suspect that there could
be a higher value which will cancel out the effects of spatiality and make also
this model effective, thus we expect to see a sort of phase transition with respect
to this parameter. Finally, provided enough resources, we plan to perform the
experiments on real robots, likely kilobots [22], in order to have a proof of concept
in the real world and potentially discover new factors influencing adaptability.

Acknowledgments. We would like to thank Gabriele Valentini for the code of his
multi-agent simulator. Besides partial support of computational facilities of the KU
Leuven, this work has been made possibly purely by the efforts in terms of personal
investment of both time and computing resources of all the authors involved.

References

1. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based
aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav.
22(3), 189–206 (2014)

250 J. Prasetyo et al.

2. Baronchelli, A., Dı́az-Guilera, A.: Consensus in networks of mobile communicating
agents. Phys. Rev. E 85, 016113 (2012). https://doi.org/10.1103/PhysRevE.85.
016113

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Calovi, D.S., Lopez, U., Schuhmacher, P., Chaté, H., Sire, C., Theraulaz, G.: Col-
lective response to perturbations in a data-driven fish school model. J. Roy. Soc.
Interface 12(104), 20141362 (2015). https://doi.org/10.1098/rsif.2014.1362

5. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., Dorigo, M.: Self-organized dis-
crimination of resources. PLoS ONE 6(5), e19888 (2010)

6. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots. Int. J. Rob. Res. 30(5), 615–626 (2011)

7. Deneubourg, J.L., Goss, S.: Collective patterns and decision-making. Ethol. Ecol.
Evol. 1(4), 295–311 (1989)

8. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

9. Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Informa-
tion flow, opinion polling and collective intelligence in house-hunting social insects.
Philos. Trans. R. Soc. B: Biol. Sci. 357(1427), 1567–1583 (2002)

10. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized
aggregation triggers collective decision making in a group of cockroach-like robots.
Adapt. Behav. 17(2), 109–133 (2009)

11. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intel-
ligence. Swarm Intell. 1(1), 3–31 (2007)

12. Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of hon-
eybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav.
17(3), 237–259 (2009)

13. Marshall, J.A.R., Bogacz, R., Dornhaus, A., P̃lanqué, R., Kovacs, T., Franks, N.R.:
On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface
6(40), 1065–1074 (2009)

14. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mechanism
for self-organized collective decision-making. Swarm Intell. 5, 305–327 (2011)

15. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–
251 (2009)

16. Parker, C.A.C., Zhang, H.: Collective unary decision-making by decentralized
multiple-robot systems applied to the task-sequencing problem. Swarm Intell. 4,
199–220 (2010)

17. Prasetyo, J., Masi, G.D., Ranjan, P., Ferrante, E.: The best-of-n problem with
dynamic site qualities: achieving adaptability with stubborn individuals (2018).
http://bio.kuleuven.be/ento/ferrante/FerranteSupp2018-001/index.html, Supple-
mentary Material. Accessed 30 Apr 2018

18. Reina, A., Bose, T., Trianni, V., Marshall, J.A.R.: Psychophysical laws and
the superorganism. Sci. Rep. 8(4387) (2018). https://doi.org/10.1038/s41598-018-
22616-y

19. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-n nest-site
selection process in honeybees. Phys. Rev. E 95(5), 052411 (2017). https://doi.
org/10.1103/PhysRevE.95.052411

https://doi.org/10.1103/PhysRevE.85.016113
https://doi.org/10.1103/PhysRevE.85.016113
https://doi.org/10.1098/rsif.2014.1362
http://bio.kuleuven.be/ento/ferrante/FerranteSupp2018-001/index.html
https://doi.org/10.1038/s41598-018-22616-y
https://doi.org/10.1038/s41598-018-22616-y
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1103/PhysRevE.95.052411

The Best-of-n in Dynamic Environments 251

20. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2–3), 75–102 (2015)

21. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)

22. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Rob. Auton. Syst.
62(7), 966–975 (2014)

23. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for
self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5),
1175–1188 (2016)

24. Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-
robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

25. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
26. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall,

J.A.R.: Stop signals provide cross inhibition in collective decision-making by hon-
eybee swarms. Science 335(6064), 108–11 (2012)

27. Valentini, G., Birattari, M., Dorigo, M.: Majority rule with differential latency:
an absorbing Markov chain to model consensus. In: Gilbert, T., Kirkilionis, M.,
Nicolis, G. (eds.) Proceedings of the European Conference on Complex Systems
2012. Springer Proceedings in Complexity, pp. 6651–658. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-00395-5 79

28. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Rob. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

29. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

30. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
the weighted voter model. In: Lomuscio, A., Scerri, P., Bazzan, A., Huhns, M.
(eds.) Proceedings of the 13th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2014, pp. 45–52. IFAAMAS (2014)

31. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-
organizing robot swarm: on the speed versus accuracy trade-off. In: Bordini, R.,
Elkind, E., Weiss, G., Yolum, P. (eds.) Proceedings of the 14th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1305–
1314. IFAAMAS (2015)

https://doi.org/10.1007/978-3-319-00395-5_79
https://doi.org/10.3389/frobt.2017.00009

The Impact of Interaction Models on the
Coherence of Collective Decision-Making:
A Case Study with Simulated Locusts

Yara Khaluf(B), Ilja Rausch, and Pieter Simoens

IDLab, INTEC, Ghent University-IMEC, Gent, Belgium
{yara.khaluf,ilja.rausch,pieter.simoens}@ugent.be

Abstract. A key aspect of collective systems resides in their ability
to exhibit coherent behaviors, which demonstrate the system as a single
unit. Such coherence is assumed to be robust under local interactions and
high density of individuals. In this paper, we go beyond the local inter-
actions and we investigate the coherence degree of a collective decision
under different interaction models: (i) how this degree may get violated
by massive loss of interaction links or high levels of individual noise, and
(ii) how efficient each interaction model is in restoring a high degree of
coherence. Our findings reveal that some of the interaction models facil-
itate a significant recovery of the coherence degree because their specific
inter-connecting mechanisms lead to a better inference of the swarm
opinion. Our results are validated using physics-based simulations of a
locust robotic swarm.

1 Introduction

The move towards large-scale distributed systems promotes the field of collec-
tive decision-making as a fundamental area of research to address novel dis-
tributed control mechanisms. Collective decision-making encompasses (i) the
decision mechanisms used at the individual level, and (ii) the emergent behavior
at the system level. In this paper, we focus on binary decision-making processes,
also known as symmetry-breaking [3], in which two choices of the same quality
are available and the system needs to select one in a self-organized manner. For
systems comprising only one individual, the solution is rather trivial (i.e., ran-
dom). In contrast, in collective systems a mutual agreement (i.e., a consensus)
needs to be achieved [11]. In order to enable such an agreement, the presence of
noise is usually substantial. In particular, symmetry-breaking was mostly used to
demonstrate the role of noise (i.e., random choices of the individuals) in pushing
the system out of an equilibrium state [13]. Hence, it plays a key role in shift-
ing the system towards one of the two options. This shift is then amplified [22]
using interactions of a particular kind, referred to as positive feedback loops.
While positive feedback is dominating, more individuals become in favor of the
selected option and the coherence degree—represented by the fraction of indi-
viduals sharing the same opinion—increases until a consensus is achieved and
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 252–263, 2018.
https://doi.org/10.1007/978-3-030-00533-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_20&domain=pdf

The Impact of Interaction Models on Collective Decision-Making 253

100% of individuals agree on the selected option [8,16]. At this point, negative
feedback helps the system to preserve its selected option by damping the noise
at the individual level and demotivating the individuals to change their opinion.
The specific balance between positive feedback, negative feedback, and noise
defines if the system reaches a decided or undecided global state. For example, a
high level of noise may exceed the influence of the feedback loops and hence keep
the system in an undecided state. Similarly, applying a strong enough positive
feedback around a particular option may push the system to decide in favor of
that particular option even in cases of low system densities—i.e., low number of
feedback loops [17].

In this paper, we show that the interaction model is a key parameter to tune
the balance between feedback loops and noise such that the collective system
becomes decided even under significant noise levels. The interaction model is
exploited by the individuals to exchange their decisions (opinions). Individuals
interact locally using proximity models [10,20]. Local interactions allow collective
systems to exhibit scalability, since the decisions at the individual level are made
based on the personal preferences and on the influence of neighbors located in
the immediate proximity. The latter is independent of the system size when the
density is constant, hence, the functionality of the system is preserved at any
scale (size). However, the implicit assumption of sufficient local interactions, [24],
is only valid under moderate noise level e.g., moderate individual deficiency. Very
limited research focuses on the impact of the interaction model on the robustness
of collective systems against high level of noise [5].

In this study, we use coherence degree as a quality measure of collective
behavior. Coherence degree is defined as the fraction of individuals adopting a
common opinion/committing to a common option. In statistical physics, in a
phase transition this measure is referred to as the order parameter. We use this
measure to compare the efficiency of different interaction models in preserving
the coherence of a collective behavior in a robot swarm under high levels of noise.
The noise level is increased using one of the following two mechanisms: (i) reduc-
ing the impact of feedback loops through massive break-down of interaction links
between the individuals by introducing robot breakdowns, and (ii) increasing the
tendency to switch opinion randomly at the individual level. We go beyond the
proximity (local) interaction model, and investigate scale-free [1], small-world
[23], and regular models. As a case study, we use the locust marching behavior,
in which individuals need to decide on their motion direction, and they have only
two options of going right or left. Consequently, a consensus is achieved when all
individuals select the same direction of motion. This corresponds to the highest
degree of coherence in the collective behavior (100% of the individuals agree).

The paper is organized as follows, in Sect. 2, we specify the decision-making
model used by the individuals to select their direction and velocity of motion in a
locust marching scenario. The different interaction models, which we investigate
in this paper are explained in Sect. 3. In Sect. 4, we present both the robot and
environment configurations used in our physics-based simulations. Subsequently,

254 Y. Khaluf et al.

the results obtained from these simulations are demonstrated and discussed in
Sect. 5, and the paper is concluded in Sect. 6.

2 Decision-Making Model

Our collective model, as mentioned above, is inspired by one of the prominent
natural examples of self-organized behavior: the collective motion (referred to
as the marching bands) of desert locust swarms (Schistocerca gregaria). It has
been previously shown by Buhl et al. that the collective behavior of marching
locusts is similar to the behavior of the particles described by the Czirók model
[6]. The latter originates from the Vicsek model and describes self-propelled
interacting particles moving in 1D [9,21]. We adopt the Czirók model to define
the individual decision-making processes, except that in our implementation
locusts are simulated by a swarm of N homogeneous robots. Similar to Buhl et
al., we consider a ring-shaped arena, where robots need to decide to go either
left (i.e., the left-goers) or right (i.e., the right-goers), while avoiding collisions
with other robots or the arena walls. The initial position and orientation of the
robots are sampled from a uniform distribution. Following the discrete Czirók
model [4,26], position xi(t) and velocity ui(t) ∈ IR of robot i are updated at
every time step Δt = 1 according to

xi(t + 1) = νui(t) (1)

ui(t + 1) = δs [G(〈ui(t)〉) + ζi(t)] , (2)

with ν being a speed parameter and ζi(t) ∈ [−1.0, 1.0] uniformly distributed
noise. The propulsion and friction forces are given by the piece-wise continuous
function

G(〈ui(t)〉) =

⎧
⎪⎨

⎪⎩

1
2 (〈ui(t)〉 + 1), 〈ui(t)〉 > 0
1
2 (〈ui(t)〉 − 1), 〈ui(t)〉 < 0
0, otherwise,

(3)

where 〈ui(t)〉 is the average over the set of velocities of i’s neighbors. Finally,
in Eq. (2) we extended the discrete Czirok model by the factor δs, which is −1
with probability ps, and 1 otherwise. Note that the originial Czirok model does
not include δs, which we added to introduce the probability ps to spontaneously
switch the heading direction, i.e. the sign of ui(t). This is the main extension of
the Czirok model that allows to account for an additional noise on the individual
decision-making process [12], while ζi(t) represents the sensor noise, i.e. the
uncertainty in the perception of the neighborhood opinion. From the sign of
ui(t) we can deduce the state of robot i: if ui(t) > 0 (ui(t) < 0) then we denote
i as a left-goer robot (right-goer robot), respectively. Therefore, the collective
state or collective behavior of the system is given by:

φ(t) =
1
N

N∑

i

ui(t)
|ui(t)| (4)

The Impact of Interaction Models on Collective Decision-Making 255

The absolute value of this measure represents the degree of coherence in the col-
lective behavior (system’s decision). When this degree is |φ(t)| = 1, i.e., 100% of
the individuals agree on one opinion, the system reaches consensus. Fluctuations
that occur due to different sources of noise—i.e. sensor noise ζ and spontaneous
opinion switching ps—affect directly the degree of coherence achieved at the
system level.

3 Interaction Models

Four different types of interaction (network) models are considered in this paper:
(i) proximity network (PN), (ii) regular network (RN), (iii) small-world (SW),
and (iv) scale-free (SF). These models differ fundamentally in how individuals
connect.

First, PN models describe topologies in which each robot interacts with those
robots that are within its proximity communication radius. Therefore, the choice
of the communication radius has a significant influence on the communication
degree of the robot. Two extreme values of the communication radius are rc = 0
and rc > dA, where dA denotes the diameter of the arena. In former case,
there are no interactions, i.e. the degree of every robot is zero and the collective
behavior is the average over the opinions that are purely governed by noise.
When rc > dA, every robot interacts with every other robot in the arena which
results in a complete network. For a swarm with an even number of individuals
(majority is always available in the individual’s neighborhood) this will always
lead to consensus. However, complete networks have no locality because every
robot knows the state of the entire system at every time step. In contrast, we
obtain PN models with local interactions over a limited communication radius
rc and an approximated average of communication degree 〈k〉.

Second, RN models are topologies in which all robots have equal degree and
in which neighbors are selected at random, irrespective of their physical distance.
Consequently, robots might be connected to robots at larger physical distances.

Third, SW models originate by randomly rewiring RN networks such that
the network distance (hop count) between two randomly chosen nodes grows
proportionally to the logarithm of the total number of nodes [15,23]. Following
the Watts-Strogatz model [23], we generate SW models by starting from a RN
model and replace random links with new links—between any two nodes irre-
spective of their physical distance—that are sampled from a uniform distribution
with probability psw. Differently from RN models, the latter process introduces
a number of hubs, i.e. nodes with above-average degree.

Fourth, SF models are a special type of SW models, observed in a large
number of natural and biological systems [15,25]. They are characterized with
a power-law distributed degree and a very short average distance, making these
networks ultra-small [7]. On the one hand, this implies the presence of a few
extraordinary hubs with degrees that are far higher than the network average.
On the other hand, most nodes have a relatively low degree such that the removal
of a random node is not likely to affect the system connectivity. Therefore, SF

256 Y. Khaluf et al.

networks are known to be robust against random node failure. Following the
Barabasi-Albert model [2], we generate scale-free networks by starting from a
small complete network of 10 nodes (robots). Subsequently, each of the remaining
N −10 nodes (N denotes the size of the swarm) is iteratively added with a fixed
degree. Each of the newly added nodes is connected to a node i with a probability
proportional to i’s degree ki, a process also known as preferential-attachment [2].
The latter step increases ki and at the end of the network growth process the
resulting average network degree amounts to 〈k〉 being the same as in the other
interaction models.

4 Simulations

In this section we describe the physics-based simulations that we conducted using
ARGoS [19] to analyze the global collective behavior of a homogeneous swarm of
N = 500 simulated Footbots1. ARGoS allows us to perform our simulations with
taking the robot’s physics into consideration, and hence facilitates the generation
of more realistic results. In the following, we present the configurations adapted
at both individual and environment levels.

4.1 Robot Configuration

In our simulations, robots move randomly with a linear speed of ν = 5m/ts, and
try to avoid collisions by halting either the left or the right wheel, depending
on its orientation relative to the position of the nearby robot or wall. However,
in cases when collision avoidance requires to turn more than 90◦, the robot is
programmed to maintain the sign of ui(t). Therefore, collision avoidances do not
constitute an additional source of spontaneous direction switching. Nevertheless,
the density of robots used in our experiments—i.e., the number of robots over the
area of the arena allows to account for a minimized level of spacial interferences
[14]. Additionally, the rate of collision avoidances is greatly reduced when the
swarm is in consensus because then robots move in the same direction and the
possibility of a potential collision becomes negligible. While moving, each robot
communicates and exchanges opinions with its neighbors. The opinion of robot
i is given by the value of ui(t) (Eq. (2)), for which the sensor noise is set as
ζ ∈ [−1, 1], and the spontaneous switching probability ps. The two types of
implemented communications are proximity (short-range) communications and
targeted long-range communications. To enable long-range communications over
the whole arena area, we assume that the inner walls of the ring-shaped arena
are lower than the level of the range-and-bearing sensors and actuators but high
enough to be perceived by the robot as physical obstacles. This allows to include
all communication models described in the previous section.

1 The large swarm size is chosen for statistical reliability and a sound comparison of
the features of the interaction models, which often occur in the limit of large N .
http://www.swarmanoid.org/swarmanoid hardware.php.

http://www.swarmanoid.org/swarmanoid_hardware.php

The Impact of Interaction Models on Collective Decision-Making 257

4.2 Environment Configuration

An important system property is the density of the swarm inside the arena
[6,9]. Therefore, apart from the size of the swarm, the shape and the area of the
environment have a significant influence on the system dynamics. In our exper-
iments, swarm robots are confined within a ring-shaped arena with a diameter
of 4 m (24 m) for the inner (outer) walls, respectively. The form of the arena
encourages the robots to move either clockwise or counter-clockwise, i.e. right or
left. Because the arena has a finite radial width, we program the robots to avoid
unnecessary radial movement by always maintaining an angle of (90 ± 5)◦ to a
light beacon located in the center of the arena (i.e. unless collision avoidance is
required).

To simulate the event of a break-down, we deactivate the majority of robots
at t = td randomly. When a robot i is deactivated, it stops moving, i.e. ui(td) = 0,
and all its communication links are broken. The latter implies that the break-
down leads to a substantial decrease of interactions, often followed by a loss of
consensus or a significant drop in the degree of coherence. However, as we will
demonstrate in the next section, certain interaction models allow the swarm to
recover the degree of coherence to a higher level even if more than two thirds
of the swarm individuals are deactivated. Table 1 summarizes the parameters
settings over the different interaction models implemented in this paper. Note
that the interaction models are all generated such that the average robot degree is
the same over all models for a fair comparison. This is set to 〈k〉 ≈ 6. Finally, the
rewiring probability psw for the generation of the SW models is set to psw = 0.5
to guarantee the occurrence of nodes with above-average degree. In this regard,
SW models represent a transition model between RN and SF models.

Table 1. Overview of implemented interaction models and the parameters used to
generate them.

Interaction model Parameter Value

Proximity Communication range rc 1.3 m

Regular Degree kr 6

Small-world Rewiring probability psw 0.5

Scale-free Degree ksf 3

Figure 1 depicts a top view of the ring-shaped arena, over which the locust
swarm is performing collective marching. The screen-shots are taken after a
severe loss of robots (i.e., break-down of 65% of the interaction links) for the
three interaction models PN, SW, and SF.

5 Results and Discussion

We launch different sets of physics-based simulations to analyze the influence of
the interaction model on the degree of coherence achieved in a locust swarm that

258 Y. Khaluf et al.

Fig. 1. Top view on the locust swarm. Green (red) robots are left-goers (right-goers),
respectively, and black robots are deactivated. (a) PN, (b) SW, and (c) SF, all after
break-down. For a clearer picture of the dynamics, see the recordings [18]. (Color figure
online)

is exposed to a high level of noise. We first simulate a strong sudden occurrence
of noise through a major break-down in the interaction links. The intensity
of the break-down—represented by the number of deactivated robots—has the
main influence on the achieved degree of coherence. Secondly, we use a new
set of experiments to simulate the high level of noise through increasing the
probability of the individual spontaneous switch, together with the incidence of
robot break-down events.

We start with a robot locust swarm that suffers a major break-down after
reaching a high degree of coherence (i.e. over 75% of the robots agree on the
same direction). The individuals in this set of experiments are characterized
with relatively low level of individual noise (i.e., spontaneous switch probability
ps = 0.02). The individual noise is set low in order to focus on the robustness
of the different interaction models against random break-down. The coherence
degree is measured using the absolute value |φ(t)|—i.e., the fraction of robots
agreeing on the same opinion. We analyze the corresponding time average ¯|φ| as
a function of the percentage of deactivated robots to reveal the efficiency of each
interaction model in preserving a high coherence degree.

In each experiment, and for all interaction models, we first let the swarm
achieve a high coherence degree (over 75% of the robots). Subsequently, we
deactivate a certain percentage of the robots. As mentioned above, for a fair
comparison of the different interaction models, all simulations are configured
such that the average robot degree before the break-down is the same, here set
to 〈k〉 ≈ 6. We analyze the time evolution of the coherence degree |φ(t)| to study
the efficiency of the applied interaction model in preserving a high |φ(t)|. The left
part of Fig. 2 demonstrates the results, in which every data point represents the
coherence degree |φ(t)| averaged over the post break-down time—i.e., between
the break-down event and the end of simulation at T = 5000ts. The time evo-
lution of |φ(t)| is illustrated in the inset, for the PN model and the deactivation

The Impact of Interaction Models on Collective Decision-Making 259

of 65% of robots. The resulting value of ¯|φ| shown in the inset corresponds to
one data point in the major plot, other data points were obtained accordingly.
As shown, |φ(t)| drops for all interaction models with increasing percentages
of deactivated robots. Nevertheless, there are significant differences among the
interaction models. We can notice that all models except of the PN model were
able to preserve a high coherence degree (¯|φ| > 0.75) up to 50% of deactivation2.
Furthermore, the SF interaction model shows a pronounced tendency of achiev-
ing higher ¯|φ| than the other models starting from 65% of deactivation. At this
point, the performance of the SW and RN models demonstrate a clear drop.
However, under the RN model ¯|φ| drops faster than it does under the SW, as
can be seen between the deactivation of 65% and 75%. This can be explained by
the fact that, for the same average degree, the SW model has a higher clustering
coefficient than the RN model: it has a number of robots with higher connectivity
degree. Beyond 75% deactivation, SW and RN models start to behave similarly
and in agreement with the PN model. SF preserves its superior performance
up to 85% of deactivation, due to the high robustness of its hubs.

We continue our experiments with the same low level of individual noise
(ps = 0.02) and we fix the deactivating percentage to 65%, at which the coher-
ence degree drops for all models below ¯|φ| < 0.5. For this setting, we investigate
the efficiency of each interaction model in recovering the coherence degree to a
higher level. We analyze this efficiency for different robot average communica-
tion degree. For this purpose, we define ¯|φ| as a function of the robot’s average
communication degree 〈k〉, aiming to determine the minimum rewiring threshold
needed for the influence of the feedback loops to overcome the noise influence and
hence increasing the degree of coherence in the collective behavior. In this set
of simulations, the system starts with the PN model, followed by a break-down
of 65% of interaction links at td = 10000ts. Next, we use targeted rewiring at
t = 12500ts, to generate the different interaction models with the same average
robot degree. The right side of Fig. 2 demonstrates the results of these exper-
iments. The inset shows an example for the time evolution of φ(t) for the PN
model before the break-down event (the black dashed line), and PN (blue) or SF
(orange) interactions for t > 12500ts. The latter period of time is used to com-
pute ¯|φ| which corresponds to one point in the major plot. This plot shows that
SF, SW, and RN models are able to restore a high coherence degree ¯|φ| > 80%
with an average robot degree of 〈k〉 = 4, while the PN model requires 〈k〉 ≈ 7.5
to restore a similar degree of coherence.

As mentioned above, after examining the robustness of the interaction mod-
els against mere break-down events, we continue investigating their robustness
against increasing the level of individual noise (i.e., the spontaneous switch ps).
For this purpose, we run a new set of experiments, in which we increase the level
of individual noise, first, to ps = 0.05. Results are illustrated on the left side of
Fig. 3. In this figure, we can notice that despite low coherence degree ¯|φ| < 0.5,
the SF model outperforms other models significantly starting from the deactiva-

2 The results for the deactivation of <50% of the robots are shown in the supplemen-
tary materials [18].

260 Y. Khaluf et al.

Fig. 2. Comparison of the average collective state ¯|φ| as a function of the percentage of
deactivated robots (left) and the average communication degree (right). Left inset: time
evolution of |φ(t)| after the break-down. Right inset: Time evolution of φ(t) starting
with PN model, break-down, targeted rewiring of interactions to a SF model (orange)
or no rewiring (blue, continued). Data points were averaged over 30 runs. (Color figure
online)

tion percentage of 55%. Below this (critical) percentage of deactivations, all SF,
SW and RN models were able to generate similar degree of coherence, which is
significantly better compared to the PN model. A behavior similar to the one
shown in Fig. 2 is observed, that is the SW model generating higher ¯|φ| than the
RN model for specific deactivation percentages before converging to a similar
behavior that approaches the PN model. To better investigate the specific role
of the individual noise, we start with a swarm of 175—i.e., 35% (65% deacti-
vation) of the total N = 500—and with an average robot degree of 4—i.e., the
average degree at which all models (except for the PN model) are able to achieve
¯|φ| > 80% with a swarm of 175 in the previous experiments, see the right side
of Fig. 2—and we analyze ¯|φ| for different values of ps. Results are illustrated
on the right side of Fig. 3. In this figure, we can notice the significantly higher
robustness of all interaction models in comparison to the PN model in terms of
the obtained ¯|φ|. The behavior of SF, SW, and RN models seems similar up to a
certain noise level (here ps = 0.08), up which the SF model starts to clearly out-
perform other models (i.e., demonstrating higher coherence degree). This can be
also deduced from the inset on the right side of Fig. 3, which corresponds to one
data point and shows the phase transition of the coherent behavior generated
by the SF model. Moreover, both SW and RN models demonstrate a behavior
that is initially similar to the SF model and later approaches the PN model.

In general, the data points at which the behavior of SW and RN models
aligns with the behavior of the PN model (see Figs. 2 and 3) indicate that it is not
merely the presence of long-range interactions that contributes to the increased

The Impact of Interaction Models on Collective Decision-Making 261

Fig. 3. Comparison of the average collective state ¯|φ| as a function of the percentage
of deactivated robots (left) and the spontaneous switching probability ps (right). Left
inset: time evolution of |φ(t)| after the break-down. Right inset: Time evolution of φ(t)
at ps = 0.08, after the break-down, with alternative targeted rewiring of interactions
to a SF topology (orange) or no rewiring (blue, continued) and an average degree of
〈k〉 ≈ 4. Data points were averaged over 30 runs. (Color figure online)

degree of coherence. Nor is it the value of the network distance, as RN and SW
models behave similarly in our experiments. Instead, our conjecture is that it is
the fraction of well-connected individuals that significantly influences coherence
and robustness of the collective system affected by severe noise levels. On the one
hand, these well-connected individuals have access to a sufficiently large sample
of the swarm to reliably estimate its collective state. On the other hand, they
can reach and influence the opinion of a significant number of individuals. Both
features allow the system to preserve sufficient feedback loops that counteract
the effects of noise.

Finally, the ratio of positive feedback to noise also defines the level of adap-
tivity of a collective system. When this ratio is critical, phase transitions occur
[6,21] and the swarm is able to explore different options (in our case two options),
making the swarm more adaptive to environmental changes. These phase transi-
tions were observed in our systems as well, an example is shown in the right inset
of Fig. 2 before the break-down (i.e., for t < 10000 ts). However, in the same inset
one can see that after rewiring the interactions to a SF model (orange data points
at t > 12500 ts), the presence of positive feedback outweighs the effects of noise.
Thus, the increased coherence degree stabilized and the adaptivity decreased
significantly such that no phase transitions occur until the end of the experi-
ment. However, adaptivity can be restored by increasing the level of noise, as
we can see by considering the right inset of Fig. 3 for comparison, demonstrating
that the balance between positive feedback and noise is crucial to the collective
system performance.

262 Y. Khaluf et al.

6 Conclusion

In this paper, we have investigated the impact of the interaction model used in
collective system on the coherence degree of its decisions under high levels of
noise. Beyond local interactions, we have investigated the coherence degree of a
collective behavior under: SF, SW, and RN interaction models. The interaction
models were analyzed using the case study of locust marching, which repre-
sents a symmetry-breaking decision-making problem. Our results have revealed
a clear evidence of the significant role the interaction model plays in defining
the coherence degree under different noise sources. SF has shown an outstanding
performance over other models when the level of noise in the system exceeds a
particular threshold. The influence of noise was increased either though introduc-
ing a break-down of a particular percentage of the interaction links or through
increasing the probability to spontaneously switch of the opinion at the individ-
ual level (i.e., the individual noise). SW and RN models act similar to SF up to a
specific level of noise, after which both demonstrate a drop in performance, how-
ever, a smaller drop of the SW model. Starting from a particular noise level, SW
and RN show similar behavior that approaches the behavior of the PN model.
Our findings can help as a preliminary step on the way to engineering artificial
swarms with a robust coherence degree against high levels of noise from different
sources.

In future work, we plan to compare the different interaction models in terms
of the mean time required to achieve high coherence levels or even consensus.
Furthermore, we plan to investigate the exact relation between the drop in the
coherence degree and the connectivity measures of the collective system, such
as the clustering coefficient and the fraction of hubs. Finally, it is worthwhile to
examine the combination of PN and SF models that could additionally improve
coherence degree of collective behavior as well as collective response to localized
external stimuli.

References

1. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(21), 4947–4957
(2005)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

3. Anderson, P.W., et al.: More is different. Science 177(4047), 393–396 (1972)
4. Ariel, G., Ayali, A.: Locust collective motion and its modeling. PLOS Comput.

Biol. 11(12), 1–25 (2015). https://doi.org/10.1371/journal.pcbi.1004522
5. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topo-

logical rather than metric distance: evidence from a field study. Proc. Natl. Acad.
Sci. 105(4), 1232–1237 (2008)

6. Buhl, J., et al.: From disorder to order in marching locusts. Science 312(5778),
1402–1406 (2006)

7. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90,
058701 (2003)

https://doi.org/10.1371/journal.pcbi.1004522

The Impact of Interaction Models on Collective Decision-Making 263

8. Corning, P.A.: Synergy and self-organization in the evolution of complex systems.
Syst. Res. Behav. Sci. 12(2), 89–121 (1995)

9. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles:
Kinetic phase transition in one dimension. Phys. Rev. Lett. 82, 209–212 (1999).
https://doi.org/10.1103/PhysRevLett.82.209

10. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

11. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-74528-2

12. Huepe, C., Zschaler, G., Do, A.L., Gross, T.: Adaptive-network models of swarm
dynamics. New J. Phys. 13(7), 073022 (2011)

13. Hurtado, P.I., Garrido, P.L.: Spontaneous symmetry breaking at the fluctuating
level. Phys. Rev. Lett. 107(18), 180601 (2011)

14. Khaluf, Y., Birattari, M., Rammig, F.: Analysis of long-term swarm performance
based on short-term experiments. Soft Comput. 20(1), 37–48 (2016)

15. Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C.: Scale invariance in natural and
artificial collective systems: a review. J. R. Soc. Interface 14(136), 20170662 (2017)

16. Khaluf, Y., Hamann, H.: On the definition of self-organizing systems: relevance of
positive/negative feedback and fluctuations. In: ANTS 2016. LNCS, vol. 9882, p.
298. Springer, Heidelberg (2016). [extended abstract]

17. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density
on scalability in collective systems: noise-induced versus majority-based bistability.
Swarm Intell. 11(2), 155–179 (2017)

18. Khaluf, Y., Rausch, I., Simoens, P.: Supplementary materials for “impact
of interaction models on the coherence of collective behavior: a case study
with robot locusts” (2018). https://drive.google.com/file/d/1ye5 uqY9Y94x6Rsb
OEV0kvPUis3NpFSF/view?usp=sharing. Accessed 16 Apr 2018

19. Pinciroli, C., et al.: Argos: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

20. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-
organizing robot swarm: on the speed versus accuracy trade-off. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 1305–1314. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

21. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229
(1995). https://doi.org/10.1103/PhysRevLett.75.1226

22. de Vries, H., Biesmeijer, J.C.: Self-organization in collective honeybee foraging:
emergence of symmetry breaking, cross inhibition and equal harvest-rate distribu-
tion. Behav. Ecol. Sociobiol. 51(6), 557–569 (2002)

23. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

24. Winfield, A.F., Nembrini, J.: Safety in numbers: fault-tolerance in robot swarms.
Int. J. Model. Identif. Control 1(1), 30–37 (2006)

25. Wolf, Y.I., Karev, G., Koonin, E.V.: Scale-free networks in biology: new insights
into the fundamentals of evolution? Bioessays 24(2), 105–109 (2002)

26. Yates, C.A.: Inherent noise can facilitate coherence in collective swarm motion. Pro-
ceedings of the National Academy of Sciences 106(14), 5464–5469 (2009). https://
doi.org/10.1073/pnas.0811195106

https://doi.org/10.1103/PhysRevLett.82.209
https://doi.org/10.1007/978-3-319-74528-2
https://drive.google.com/file/d/1ye5_uqY9Y94x6RsbOEV0kvPUis3NpFSF/view?usp=sharing
https://drive.google.com/file/d/1ye5_uqY9Y94x6RsbOEV0kvPUis3NpFSF/view?usp=sharing
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1073/pnas.0811195106
https://doi.org/10.1073/pnas.0811195106

The Importance of Component-Wise
Stochasticity in Particle Swarm

Optimization

Elre T. Oldewage1,2(B) , Andries P. Engelbrecht1,3 ,
and Christopher W. Cleghorn1

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
vze.ezv@gmail.com, {engel,ccleghorn}@cs.up.ac.za

2 Council for Scientific and Industrial Research, Pretoria, South Africa
3 Institute for Big Data and Data Science, Pretoria, South Africa

Abstract. This paper illustrates the importance of independent,
component-wise stochastic scaling values, from both a theoretical and
empirical perspective. It is shown that a swarm employing scalar stochas-
ticity is unable to express every point in the search space if the problem
dimensionality is sufficiently large in comparison to the swarm size. The
theoretical result is emphasized by an empirical experiment, comparing
the performance of a scalar swarm on benchmarks with reachable and
unreachable optima. It is shown that a swarm using scalar stochasticity
performs significantly worse when the optimum is not in the span of its
initial positions. Lastly, it is demonstrated that a scalar swarm performs
significantly worse than a swarm with component-wise stochasticity on a
large range of benchmark functions, even when the problem dimension-
ality allows the scalar swarm to reach the optima.

1 Introduction

The particle swarm optimization (PSO) algorithm employs stochasticity as an
important mechanism to avoid premature convergence to local optima. The
stochasticity should (usually) be applied in every dimension (i.e. component-
wise) to ensure independence between position updates in each dimension. How-
ever, it is a common mistake for scalar stochastic values to be used instead,
which restricts the swarm’s movement and degrades performance [7,13,18,19].

This paper investigates the effect of using scalar stochasticity, both theo-
retically and empirically. The paper begins by introducing the PSO algorithm
and briefly discussing the importance of component-wise stochasticity in Sect. 2.
Section 3 provides theoretical results to formalize the restriction on the swarm’s
movement caused by scalar stochasticity. It is shown that there is a problem of
“reachability”, i.e. a swarm with scalar stochasticity will not be able to reach
the optimum if the problem dimensionality is higher than the size of the swarm.

Section 4 examines the empirical effects of reachability on the performance of
a swarm employing scalar stochasticity. The section compares a scalar swarm’s
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 264–276, 2018.
https://doi.org/10.1007/978-3-030-00533-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_21&domain=pdf
http://orcid.org/0000-0002-0568-8700
http://orcid.org/0000-0002-0242-3539
http://orcid.org/0000-0002-7860-0650

The Importance of Component-Wise Stochasticity in PSO 265

performance on a number of constructed benchmark functions with optima
defined to be reachable or unreachable by a scalar swarm. Section 5 goes on to
compare the performance of a swarm with scalar stochasticity to a swarm with
component-wise stochasticity for a wide range of benchmark functions that are
not biased towards or against the scalar swarm. Section 6 concludes the paper.

2 Background

This section briefly discusses the PSO algorithm and introduces relevant concepts
regarding the importance of component-wise stochasticity.

PSO is a stochastic, population-based optimization algorithm [4] that does
not require gradient information and may thus be applied to black box opti-
mization problems. A swarm consists of a number of particles. The position of
a particle in the search space represents a potential solution to the optimiza-
tion problem. The particle moves through the search space for a number of
iterations, using local information (the best position encountered by the par-
ticle thus far, called the personal best position) and global information (the
best position encountered by all the particles within the given particle’s logical
neighbourhood, called the global or local best position, depending on how the
neighbourhood is defined). This paper considers the global best topology, but
the findings presented are applicable to arbitrary topologies. Each particle i’s
position is updated at iteration t according to:

xt+1
i = xt

i + vt+1
i (1)

where xt+1
i denotes the position of particle i at iteration t + 1 and vt+1

i denotes
its velocity at iteration t+1. The particle’s initial position, x0

i , is usually drawn
from a uniform random distribution over the search space boundaries (in every
dimension). PSO with inertia weight, as introduced in [17], updates particle i’s
velocity at iteration t in every dimension j as below:

vt+1
ij = wvt

ij + c1r1j(yt
ij − xt

ij) + c2r2j(ŷij − xt
ij) (2)

where vt+1
ij denotes particle i’s velocity in dimension j, w denotes the inertia

weight, and c1 and c2 denote the cognitive and social acceleration constants
respectively. r1j , r2j ∼ U(0, 1) are random numbers sampled between 0 and 1
at every iteration. yt

ij denotes the personal best position of particle i in the jth
dimension and ŷij denotes jth dimension of the best position found by all the
particles in the neighbourhood of particle i. Particle neighbourhoods are usually
defined by logical indexing of the swarm. When neighbourhoods are strict subsets
of the entire swarm, the algorithm is referred to as a local best PSO. If every
particle’s neighbourhood consists of the entire swarm, the algorithm is referred
to as a global best PSO and ŷi = ŷ is called the global best position. Except
where otherwise specified, this paper considers a global best PSO.

The stochastic scaling components, r1 and r2 can also be expressed as diag-
onal matrices, R1 and R2, as illustrated below:

vt+1
i = wvt

i + c1R1(yt
i − xt

ij) + c2R2(ŷ − xt
i) (3)

266 E. T. Oldewage et al.

where R1 and R2 are diagonal matrices, with r1 and r2 forming their diagonals.
This paper emphasizes that if r1 and r2 are random scalars, then the swarm’s

movement becomes entirely linear. Every position investigated by the swarm will
necessarily be a linear combination of the swarm’s initial positions, velocities and
personal best positions. If the swarm size is too small relative to the problem
dimensionality, then the swarm can only reach a subspace within the larger
search space (as is proved in Sect. 3). Since the swarm is typically initialised
randomly, there is a possibility that the optimum can not be expressed as a
linear combination of the swarm’s initial positions, i.e. the swarm will never be
able to find the optimum.

The effect of using scalar r1 and r2 values has been discussed in literature
[14,20]. Paquet and Engelbrecht introduced a Linear PSO [14], in order to solve
constrained linear optimization problems. If the swarm is initialised so that all
positions are within the problem constraints, then using scalar r1 and r2 values
ensures that the swarm can never leave the feasible space, which forms a subspace
of the search space. In [20], purposeful dimensional coupling via shared r1 and r2
components was suggested to reduce the unwanted roaming exhibited by PSO
in high dimensional problem spaces.

Throughout the remainder of the paper, a swarm that uses scalar values for
r1 and r2 will be called a “scalar swarm”. A swarm that uses vectors for r1 and r2
which are multiplied with the cognitive and social components in every dimension
(or, alternatively, are diagonal matrices) will be called a “vector swarm”.

3 Theoretical Results

This section provides a theoretical discussion regarding the consequences of using
a scalar PSO. A number of definitions and key concepts are introduced first [15].

Definition 1. A set of vectors I = {z1, z2, . . . , zM} ⊂ R
n is linearly dependent

if there exists a finite number of distinct vectors, z1, z2, . . . zK ∈ I, and scalars,
a1, a2, . . . , aK ∈ R, not all zero, such that

a1z1 + a2z2 + . . . + aKzK = 0 (4)

Since at least one scalar is non-zero, say a1 �= 0, the vector z1 can be expressed
as a linear combination of the other vectors:

z1 = −a2

a1
z2 − . . . − aK

a1
zK (5)

Thus, the set I is linearly dependent if and only if at least one element in I can
be written as a linear combination of the other elements in I.
Definition 2. A set of vectors I = {z1, . . . , zM} ⊂ R

n is linearly independent
if

a1z1 + a2z2 + . . . + aMzM = 0 (6)

The Importance of Component-Wise Stochasticity in PSO 267

can only be satisfied by a1 = a2 = . . . = aM = 0. Thus no element in I can be
written as a linear combination of other elements from I.
Definition 3. Let I be a non-empty set of vectors from R

n (i.e. ∅ �= I ⊂ R
n).

Then the span of I is the smallest subspace W ⊆ R
n that contains I. Thus

span(I) = W . The subspace W consists of all linear combinations of elements
of I, given below (where |.| denotes set cardinality):

span(I) =
{ |I|∑

k=1

akzk

∣∣∣∣ zk ∈ I, ak ∈ R, k ∈ N

}
(7)

Definition 4. A non-empty set of vectors, I = {z1, . . . , zM}, is a spanning set
for a subspace W ⊆ R

n if and only if any element in W can be expressed as a
linear combination of elements in I. In other words, for any non-zero z ∈ W ,
there exist scalars a1, a2, . . . , aM with at least one ai �= 0 such that

z = a1z1 + a2z2 + . . . + aMzM (8)

Definition 5. A basis for a subspace S of R
n is a set of vectors B in S where

B is a spanning set for S, and B is linearly independent.

Armed with these definitions, it is proven below that if r1 and r2 are scalars,
then the positions of any particle at any iteration of the search space must
be a linear combination of their initial positions, personal best positions, and
velocities. The theorem below is for a local best PSO, since global best PSO can
be considered as a special case of local best PSO where the neighbourhood is
the entire swarm. For the sake of generality, the theorem makes no assumptions
regarding the initial particle velocities or personal best positions.

Theorem 1. For a particle swarm governed by the movement update equations
in Eqs. (1) and (2), at any iteration t ≥ 0, the position xt

i of any particle i is in
the span of I where I = {x0

1,y
0
1,v

0
1, . . . ,x

0
m,y0

m,v0
m}.

Proof. Suppose that particle velocities, positions and personal best positions are
initialised randomly within the search space. Let the set of all these initial points
be given by I = {x0

1,y
0
1,v

0
1, . . . ,x

0
ns

,y0
ns

,v0
ns

}. Assume that all the elements in I
are unique and non-zero. These assumptions are made without loss of generality:
the probability of obtaining a zero vector from a uniform initialisation is zero,
since the probability of a continuous random variable being a particular constant
is zero. Similarly, the probability of sampling two equal vectors is zero because
the set of such points have zero measure.

The position of any particle at t = 0 is in I by the definition of I. Thus, the
hypothesis holds for the case t = 0.

At iteration t = 1, the position of any particle i is given by

x1
i = x0

i + v1
i (9)

268 E. T. Oldewage et al.

Since x0
i ∈ I, it is only necessary to prove that v1

i ∈ span(I) for x1
i to be in the

span of I. According to the velocity update equation,

v1
i = wv0

i + c1r1(y0
i − x0

i) + c2r2(ŷ0
i − x0

i) (10)

= wv0
i + c1r1y0

i + c2r2ŷ0
i − (r1c1 + r2c2)x0

i (11)

By definition, v0
i ,y

0
i ,x

0
i ∈ I. Additionally, the neighbourhood best position is

chosen from among the personal best positions of the other particles in the
neighbourhood, so that ŷ0

i ∈ I. Thus, if particle i is not the neighbourhood
best, then v1

i is a linear combination of four distinct elements from I. If particle
i is the neighbourhood best, then y0

i = ŷ0
i and v1

i is a linear combination of
three distinct elements from I. In either case, v1

i ∈ span(I) by Definition 3. The
fact that v1

i ∈ span(I) will be referred to as (*). Therefore, since x1
i is the sum

of two elements in span(I), x1
i is in the span of I. Since this is true for any

particle i, all the particles’ positions at iteration i must be in the span of I -
this fact will be referred to as (**).

Suppose for all iterations s ≤ t, that the positions of all the particles are in
the span of I. It will now be proved that the positions of all the particles must
still be in the span of I at iteration t + 1. The position of any particle i is given
by the position update equation:

xt+1
i = xt

i + vt+1
i (12)

where xt
i ∈ span(I) by virtue of the inductive assumption. It thus remains to

prove that vt+1
i is in the span of I:

vt+1
i = wvt

i + c1r1(yt
i − xt

i) + c2r2(ŷt
i − xt

i) (13)

= wvt
i + c1r1yt

i + c2r2ŷt
i − (r1c1 + r2c2)xt

i (14)

where xt
i ∈ span(I) by the inductive assumption. It remains to prove that vt

i ,
yt
i and ŷt

i are in the span of I. According to the position update equation,

xt
i = xt−1

i + vt
i (15)

=⇒ vt
i = xt

i − xt−1
i (16)

In other words, vt
i is a linear combination of xt

i and xt−1
i , both of which are

elements in the span of I by the inductive assumption. Thus, vt
i is also in the

span of I. The personal best position of any particle i can only be equal to one
of the particle’s previous positions. But, by the inductive assumption, all the
particle’s previous positions were in the span of I. Thus, yt

i must be in the span
of I. Similarly, the neighbourhood best position must be equal to a previous
position of some particle in i’s neighbourhood, all of which are in the span of
I by the inductive assumption. Therefore, the velocity and also the position of
particle i at iteration t + 1 must be in span(I). ��
Theorem 1 implies that, when r1 and r2 are random scalar values, the positions
of the particles are limited to be in the span of their initial velocities, positions

The Importance of Component-Wise Stochasticity in PSO 269

and personal best positions. If either of the assumptions on I does not hold
(e.g. some vectors are multiples of another or some are zero), then the positions
of the particles are limited further to being linear combinations of all non-zero,
linearly independent initial velocities, positions and personal best positions. The
question arises whether any point in the search space can be expressed in terms
of such linear combinations. This question is answered by the theorem below:

Theorem 2. Suppose I contains m linearly independent vectors and S =
[L,U]n. If m < n then span(I) ∩ S � S. Thus I can only be a spanning set
of S if it contains at least n linearly independent elements.

Theorem 2 follows from the fundamental theorem of invertible matrices (as given
in [15]), the exact proof as given in [10] is not reproduced here. If I constitutes a
spanning set for the search space (i.e. the span of I is larger than the search space
or equal to), then any point in the search space can theoretically be reached by
the particles. However, if I is not a spanning set of the search space (i.e. the
span of I is a strict subspace within the search space), then the particles can
not reach every position in the search space. If the global optimum happens to
be outside the span of I, then the particles will never be able to find it. Since
initial positions and personal best positions are typically generated randomly,
this is a realistic scenario in high dimensional spaces.

If the swarm’s velocities are initialised to zero and the initial personal best
positions are set equal to the initial positions, then the portion of the search
space that can be reached by the particles is even smaller. Additionally, the
swarm may lose degrees of freedom throughout the search. Since the algorithm
is executed on a computer with limited precision, some of the vectors in I may
be cancelled out further in the search. Though unlikely, the span of the swarm
may in fact decrease as the search progresses. Thus, if the size of the swarm
is much smaller than the dimensionality of the search space, then the swarm
will be unable to reach a large part of the search space. Unfortunately, simply
increasing the number of particles in the swarm is not an adequate solution,
because it greatly increases the computational cost. Additionally, the swarm size
parameter influences the swarm’s searching behaviour in other ways, so changing
the swarm size drastically may have unintended consequences [5,9].

4 Illustration of Reachability

This section aims to illustrate the importance of reachability, i.e. that the scalar
swarm’s performance is severely penalized if the optimum is not in the span
of the swarm’s initial positions. Section 4.1 describes the experiment’s empirical
method and Sect. 4.2 summarizes the results.

4.1 Empirical Method - Reachability

The optimum can be placed inside or outside the swarm’s initial span by shifting:
f(x)Sh = f((x − γ)), where x denotes the position vector to be evaluated,
f denotes the objective function and γ denotes the shift vector. If the scalar

270 E. T. Oldewage et al.

swarm performs well when the shift places the optimum within its reach, but
poorly when the optimum is outside the swarm’s span, then the importance of
reachability will be empirically justified.

Unfortunately, the performance of a swarm on a function with a reachable
optimum can not be compared directly with its performance on an unreach-
able version of that same function. The swarm would essentially be optimizing
different functions, since applying a particular shift may change the problem’s
difficulty. Thus, in order to compare the influence of reachability on the scalar
swarm’s performance, a total of 30 different shifts were generated for each bench-
mark problem: 15 placed the optimum within the scalar swarm’s span and 15
moved the optimum to an unreachable region. The swarm was run 30 times
on all 30 versions of each benchmark function. The suite of benchmark func-
tions consisted of Ackley, Absolute Value, Elliptic, Griewank, Quartic, Rastrigin,
Rosenbrock, Schwefel 1.20, Schwefel 2.21, Spherical and Weierstrass (as defined
in [6]). A total of 30 × 11 functions were thus under consideration.

The process for generating the shifts is described below. First, the Modified
Gram-Schmidt method [12] was applied to the particles’ initial positions to pro-
duce a basis B containing m-many vectors (where m is the swarm size, as before).
For the shift to be reachable, a direction vector d was generated by a random
linear combination of the vectors in B. The direction vector was normalized and
used to define a line passing through the search space center. A random point
on that line, γ was then chosen as the shift. To produce an unreachable shift,
a new random vector s was chosen (distributed uniformly over the search space
in each dimension, like the particle positions). The vector s was then orthogo-
nalized relative to B, producing d̃, a direction vector orthogonal to the swarm’s
span. As before, γ was chosen to be a random point on the line passing through
the center of the search space with direction d̃.

The experiments used PSO with inertia weight as introduced in [17] with the
global best topology. The selected inertia weight, w = 0.7298 and the acceler-
ation coefficients c1 = c2 = 1.49618 are known good values suggested by Clerc
[3] that guarantee convergence of the swarm (in terms of expectation and vari-
ance of particle positions [2]). As suggested by [1], all personal and global best
positions were restricted to be within the search space. Each swarm consisted
of 10 particles (m = 10), so that m is low enough to test problems of dimen-
sionality 5 times larger than m without venturing into large scale optimization).
The particles’ initial positions were initialised uniform randomly throughout the
search space. Each particle’s initial personal best position was set equal to its
initial position, and its velocity was initialised to zero. Thus, the scalar swarm
was limited to the span of its initial positions. The experiments were repeated
for dimensions n = {15, 20, 25, 50}. Every simulation ran 2000 iterations to allow
sufficient time for the swarm to converge.

4.2 Results - Reachability

Table 1 compares the scalar swarm’s performance on the 165 (11 functions ×
15) problems with reachable optima against the 165 problems with unreachable

The Importance of Component-Wise Stochasticity in PSO 271

optima. As mentioned in Sect. 4.1, 30 runs were performed on each problem
for statistical significance. Every row of the table corresponds to the results
for a given problem dimensionality. Friedman tests with a p-value of 0.05 were
used to detect statistically significant differences between the scalar and vector
PSO’s performance (in terms of the best scores attained over all runs on a
given function). If the Friedman test indicated a significant difference, pairwise
comparisons were done by Mann-Whitney U tests with a p-value of 0.05. If no
statistically significant different was found, the result was recorded as a draw.

Table 1. Scalar Swarm’s performance on reachable and unreachable problems

Dimensionality Reachable wins Draws Unreachable wins

n = 15 104 26 35

n = 20 117 21 27

n = 25 120 22 23

n = 50 93 28 44

As expected from the theoretical discussion, Table 1 shows that the scalar
swarm performed significantly better on the problems with reachable optima. It
may still be possible for the swarm to perform better on the benchmark func-
tions with theoretically unattainable optima if the swarm’s initial subspace is
“sufficiently” close to the shifted optimum. Additionally, a given problem with
an unreachable problem may still be easier than a problem with a reachable opti-
mum, as discussed in Sect. 4.1, resulting in a few wins for the swarm optimizing
the unreachable problems. However, the general trend is that the scalar swarm
preform better on a given benchmark function when the optimum is within the
span of its initial positions, as would be expected from the theory.

5 Extensive Performance Comparison

As seen in the previous section, it may be that the swarm’s reachable sub-
space may lie in a region sufficiently close to the optimum for it to be a mere
technicality that the optimum is unreachable. Since the benchmark suites from
the previous section were designed either in favour or against the scalar PSOs,
this section compares the performance of the vector and scalar swarms on a
large suite of unbiased benchmark functions. The optima for these functions are
either shifted by a predefined constant (as specified in the corresponding techni-
cal papers) or by a random vector, distributed uniformly over the search space.
Section 5.1 details the empirical method and Sect. 5.2 discusses the results.

5.1 Empirical Method - Performance Comparison

The benchmark suite consisted of 28 base functions which are listed in the “Func-
tion Name” column of Table 2. A given function f was shifted and rotated to
produce fShRot according to

272 E. T. Oldewage et al.

Table 2. Benchmark functions

Function name Src γ β Rot Function name Src γ β Rot

Absolute Value f1 Rand 0.0 No Rastrigin f12 Rand 0.0 No

Ackley f2 Rand 0.0 No Rastrigin Rot f12 2.0 −330 No

Ackley Sh f2 10.0 −140 No Rastrigin Sh f12 0.0 0.0 Yes

Ackley Rot f2 0.0 0.0 Yes Rastrigin ShRot f12 1.0 −330 Yes

Ackley ShRot f2 −32.0 −140 No Rosenbrock f13 Rand 0.0 No

Alpine F7 Rand 0.0 No Rosenbrock Sh f13 10.0 390 No

Brown F25 Rand 0.0 No Rosenbrock Rot f13 0.0 0.0 Yes

Dixon-Price F48 Rand 0.0 No Salomon f14 Rand 0.0 No

Egg Holder f4 Rand 0.0 No Schaffer 6 f15 Rand 0.0 No

Elliptic f5 Rand 0.0 No Schaffer 6 ShRot f15 20.0 −300 Yes

Elliptic Sh f5 10.0 −450 No Schwefel G5 0.0 0.0 No

Elliptic Rot f5 0.0 0.0 Yes Schwefel 1.2 f16 Rand 0.0 No

Elliptic ShRot f5 10.0 −450 Yes Schwefel 1.2 Sh f16 10.0 −450 No

Griewank f6 Rand 0.0 No Schwefel 1.2 Rot f16 0.0 0.0 Yes

Griewank Sh f6 10.0 −180 No Schwefel 2.21 f19 Rand 0.0 No

Griewank Rot f6 0.0 0.0 Yes Schwefel 2.22 f20 Rand 0.0 No

Griewank ShRot f6 −60.0 −180 Yes Shubert f21 Rand 0.0 No

HyperEllipsoid f7 Rand 0.0 No Spherical f22 Rand 0.0 No

Michalewicz f8 Rand 0.0 No Spherical Sh f22 10.0 −450 No

Norwegian f9 Rand 0.0 No Step f23 Rand 0.0 No

Powell Singular 2 F92 Rand 0.0 No Vincent f24 Rand 0.0 No

Quadric f10 Rand 0.0 No Weierstrauss f25 Rand 0.0 No

Quartic f11 Rand 0.0 No Weierstrauss Sh f25 1.0 −130 No

f(x)ShRot = f(Q(x − γ)) + β (17)

where β is a constant scalar, γ is either constant or uniform random over the
search space in each dimension, and Q is a randomly generated orthogonal
matrix. The constants are specified in Table 2.

The “Rot” column in Table 2 indicates whether the function was rotated
or not. The transformations provided a total of 46 benchmark functions. The
benchmark suite contains uni- and multi-modal functions that are both separa-
ble and non-separable. The definitions of the functions and the corresponding
bounds were used as in [6], [8] and [16]. The “Src” column of Table 2 lists the
identifier of each function according to its source. Function i from [6] is denoted
by fi; function i from [8] is denoted by Fi and function i from [16] is denoted by
Gi. The vector and scalar swarms were run on each of the benchmark problems
30 times for statistical significance. Each simulation ran for 2000 iterations.

All of the functions were minimized in 5, 10, 15, 20, and 25 dimensions. As
before, the swarm size was set to 10. If the hypothesis proved in the previous
section holds, then it is expected for the scalar swarm’s performance to dete-

The Importance of Component-Wise Stochasticity in PSO 273

Table 3. Comparison of vector and scalar swarms across dimensionality

Dimensionality Scalar wins Draws Vector wins

n = 5 0 2 44

n = 10 1 0 45

n = 15 1 0 45

n = 20 1 2 43

n = 25 1 1 44

riorate as the problem dimensionality exceeds the number of particles in the
swarm.

5.2 Results - Performance Comparison

Table 3 summarizes the results of the wide performance comparison. The scalar
swarm consistently performed better than the vector swarm on the Quadric func-
tion (f10) for n > 5. However, the vector swarm outperforms the scalar swarm
on nearly all of the benchmark functions, even when the problem dimensionality
is low enough for the scalar swarm to reach the optimum. Although the reacha-
bility of the optimum also plays a role (as shown previously), the scalar swarm’s
linear movement prevents the swarm from finding good solutions even inside the
swarm’s initial subspace.

The strong restriction imposed on the scalar swarm becomes apparent in
Figs. 1, 2, 3 and 4, which plot typical profiles of the swarm diversity (as defined in
[11]), averaged over all runs for n = 5 and n = 25. As the problem dimensionality
increases, the vector PSO’s swarm diversity also increases. In contrast, the scalar
PSO’s diversity profile remains unchanged even as the dimensionality increases.

As shown before [20], restricting the swarm’s movement may be beneficial in
high dimensional spaces for the very reason that the initial velocity explosion

Fig. 1. Diversity, Ackley Shr (n = 5) Fig. 2. Diversity, Ackley Shr (n = 25)

274 E. T. Oldewage et al.

Fig. 3. Diversity, Griewank (n = 5) Fig. 4. Diversity, Griewank (n = 25)

is mitigated, causing the unchanged diversity profile observed here. However, in
low dimensional spaces, the vector swarm outperforms the scalar swarm.

6 Conclusion

This paper demonstrated the importance of employing component-wise stochas-
ticity both theoretically and empirically. Section 3 showed that a swarm’s move-
ment is severely restricted by using scalar values for r1 and r2. In particular, it is
emphasized that a scalar swarm is limited to the span of its initial particle posi-
tions, personal best positions and velocities. Thus, the swarm may not be able to
reach the optimum. Section 4 shows that reachability is not merely a theoretical
problem, but can also be illustrated empirically. The section constructs bench-
mark functions with optima explicitly defined to be reachable or unreachable by
a scalar swarm. The scalar swarm is shown to perform significantly better on
benchmark problems with reachable optima, as expected from the theory.

Since the benchmarks in Sect. 4 were biased in favour of, or against the
scalar swarms, the artificial benchmarks would not provide a fair comparison
between scalar and vector swarms. Towards this end, Sect. 5 demonstrated the
performance difference between scalar and vector swarms on an extensive range
of benchmarks. It was shown that the vector swarm performs significantly better
on almost all of the benchmark functions than the scalar swarm, even when the
dimensionality is low enough for the scalar swarm to reach the optimum.

Acknowledgments. This work is based on the research supported by the National
Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions,
findings and conclusions or recommendations expressed in this article is that of the
author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever in
this regard.

The Importance of Component-Wise Stochasticity in PSO 275

References

1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization.
In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE
Computer Society (2007). https://doi.org/10.1109/SIS.2007.368035

2. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension
using the non-stagnate distribution assumption. Swarm Intell. 12, 1–22 (2017).
https://doi.org/10.1007/s11721-017-0141-x

3. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73
(2002). https://doi.org/10.1109/4235.985692

4. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43, October 1995. https://doi.org/10.1109/MHS.1995.494215

5. Engelbrecht, A.P.: Fitness function evaluations: a fair stopping condition? In: Pro-
ceedings of the IEEE Symposium on Swarm Intelligence, pp. 1–8, December 2014.
https://doi.org/10.1109/SIS.2014.7011793

6. Engelbrecht, A.: Particle swarm optimization: global best or local best? In: Pro-
ceedings of the BRICS Congress on Computational Intelligence and 11th Brazil-
ian Congress on Computational Intelligence (BRICS-CCI CBIC), pp. 124–135,
September 2013. https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

7. Han, F., Liu, Q.: A diversity-guided hybrid particle swarm optimization based on
gradient search. Neurocomputing 137, 234–240 (2014). https://doi.org/10.1016/j.
neucom.2013.03.074. Advanced Intelligent Computing Theories and Methodologies

8. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global opti-
mization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

9. Malan, K., Engelbrecht, A.P.: Algorithm comparisons and the significance of pop-
ulation size. In: Proceedings of the IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence), pp. 914–920 (2008)

10. Oldewage, E.: The perils of particle swarm optimisation in high dimensional prob-
lem spaces. Master’s thesis, University of Pretoria, Pretoria, South Africa (2018)

11. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle
swarms using swarm diversity. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation, pp. 1128–1134, June 2008. https://doi.org/10.1109/CEC.
2008.4630938

12. Paige, C.C., Rozlozńık, M., Strakos, Z.: Modified Gram-Schmidt (MGS), least
squares, and backward stability of MGS-GMRES. Soc. Ind. Appl. Math. J. Matrix
Anal. Appl. 28(1), 264–284 (2006). https://doi.org/10.1137/050630416

13. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 2010 24th IEEE International Conference on Advanced Information Networking
and Applications, pp. 400–407, April 2010. https://doi.org/10.1109/AINA.2010.31

14. Paquet, U., Engelbrecht, A.P.: Particle swarms for linearly constrained optimisa-
tion. Fundam. Inform. 76(1–2), 147–170 (2007). http://dl.acm.org/citation.cfm?
id=1232695.1232705

15. Poole, D.: Linear Algebra: A Modern Introduction, 3rd edn. Cengage Learning,
Canada (2011)

16. Ramezani, F., Lotfi, S.: The modified differential evolution algorithm (MDEA). In:
Pan, J.S., Chen, S.M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS, vol. 7198, pp.
109–118. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28493-
9 13

https://doi.org/10.1109/SIS.2007.368035
https://doi.org/10.1007/s11721-017-0141-x
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/SIS.2014.7011793
https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31
https://doi.org/10.1016/j.neucom.2013.03.074
https://doi.org/10.1016/j.neucom.2013.03.074
https://doi.org/10.1109/CEC.2008.4630938
https://doi.org/10.1109/CEC.2008.4630938
https://doi.org/10.1137/050630416
https://doi.org/10.1109/AINA.2010.31
http://dl.acm.org/citation.cfm?id=1232695.1232705
http://dl.acm.org/citation.cfm?id=1232695.1232705
https://doi.org/10.1007/978-3-642-28493-9_13
https://doi.org/10.1007/978-3-642-28493-9_13

276 E. T. Oldewage et al.

17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the IEEE International Conference on Evolutionary Computation, pp. 69–73, May
1998. https://doi.org/10.1109/ICEC.1998.699146

18. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle
swarm optimization for reactive power and voltage control considering voltage
security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). https://
doi.org/10.1109/59.898095

19. Zahara, E., Kao, Y.T., Su, J.R.: Enhancing particle swarm optimization with gradi-
ent information. In: 2009 Fifth International Conference on Natural Computation,
vol. 3, pp. 251–254, August 2009. https://doi.org/10.1109/ICNC.2009.711

20. van Zyl, E., Engelbrecht, A.: Group-based stochastic scaling for PSO velocities.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp.
1862–1868, July 2016

https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/59.898095
https://doi.org/10.1109/59.898095
https://doi.org/10.1109/ICNC.2009.711

The Importance of Information Flow
Regulation in Preferentially Foraging

Robot Swarms

Lenka Pitonakova1(B), Richard Crowder2, and Seth Bullock1

1 Department of Computer Science, Faculty of Engineering, University of Bristol,
Bristol, UK

contact@lenkaspace.net, seth.bullock@bristol.ac.uk
2 Department of Electronics and Computer Science, Faculty of Physical and Applied

Sciences, University of Southampton, Southampton, UK
rmc@ecs.soton.ac.uk

Abstract. Instead of committing to the first source of reward that it
discovers, an agent engaged in “preferential foraging” continues to choose
between different reward sources in order to maximise its foraging effi-
ciency. In this paper, the effect of preferential source selection on the per-
formance of robot swarms with different recruitment strategies is studied.
The swarms are tasked with foraging from multiple sources in dynamic
environments where worksite locations change periodically and thus need
to be re-discovered. Analysis indicates that preferential foraging leads to
a more even exploitation of resources and a more efficient exploration
of the environment provided that information flow among robots, that
results from recruitment, is regulated. On the other hand, preferential
selection acts as a strong positive feedback mechanism for favouring the
most popular reward source when robots exchange information rapidly
in a small designated area, preventing the swarm from foraging efficiently
and from responding to changes.

1 Introduction

Instead of committing to the first source of reward that it discovers, an agent
engaged in “preferential foraging” continues to choose between different reward
sources in order to maximise its foraging efficiency [13]. This foraging behaviour
appears in nature at the level of individual creatures, for example in fish [13] and
birds [5], as well as at the collective level, for instance in honey bee [2] and ant
[28] colonies. While numerous studies have shown that preferential foraging is
advantageous for animals, the conditions under which these advantages transfer
to biologically-inspired robot swarms are currently unclear.

During robot swarm foraging, individuals are required to search an unknown
environment for worksites that contain reward. The robots may perform work
directly at the worksite locations during general foraging (e.g., [16,24]) or trans-
port resource collected at worksites to a designated deposition area in central-
place foraging (e.g., [4,14]). Robots may communicate information about work-
sites, such as their locations, to other members of the swarm in order to facilitate
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 277–289, 2018.
https://doi.org/10.1007/978-3-030-00533-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_22&domain=pdf

278 L. Pitonakova et al.

faster exploitation of the environment (e.g., [3,23]). In this paper, the effect of
robots preferring worksites with higher utilities, i.e., higher reward returns, is
explored in general and central-place foraging tasks, where worksite locations are
not known in advance and change over time. The foraging tasks presented here
are a paradigm for a number of real-world robot swarm tasks, such as package
delivery, environment sampling and resource collection.

Two robot swarms with different communication strategies are studied. In
Broadcaster swarms, individuals advertise worksite information to nearby robots
while they are near worksites. In Bee swarms, robots exchange information in
a designated area, that they return to periodically. Our previous work [20,22]
suggests that Broadcaster swarms outperform Bee swarms in many foraging
environments due to their ability to respond to environmental changes faster, but
that Bee swarms are more suitable during central-place foraging in environments
with a low worksite density, since their recruitment strategy allows the robots
to share information with each other relatively quickly. Here we show that the
rapid spread of information through Bee swarms damages their performance
when individuals preferentially choose worksites with higher utility, since most of
the swarm may tend to concentrate on a single worksite, increasing the negative
effects of congestion. On the other hand, Broadcasters form small sub-groups
that can use preferential foraging to choose non-congested worksites, because the
information spread in these swarms is regulated by the limited communication
range of robots.

2 Methods

2.1 Simulated Environment

A continuous-space experimental arena, identical to that in [22] and containing a
central circular base surrounded by circular worksites, was created in the ARGoS
simulator [18]. An experimental environment was characterised by the number of
worksites, NW , and worksite distance from the base, D ∈ {5, 9, 13, 17} m. There
were two types of environment (Fig. 1a and b):

– HeapNW : NW ∈ {1, 2, 4} high-volume worksites evenly distributed around
the base at a distance D from the base edge.

– Scatter25: NW = 25 worksites randomly distributed between distance D
and D − 5 m from the base edge.

The total amount of resource in each environment was set to 100 units and
the amount of resource units per worksite, VW = 100/NW . Each worksite had
a 0.1 m radius and there was a colour gradient with 1 m radius around it, that
the robots could use to “sense” and navigate towards the worksite (Fig. 1c). The
base had a radius of 3 m and featured a light source above its centre that the
robots could use to navigate towards the base.

At the beginning of each experiment, a number, NR ∈ {10, 25, 50} of robots
were placed at random positions and with random orientations in the base.

Two types of foraging tasks were investigated, as in [22]:

Information Flow Regulation in Preferentially Foraging Swarms 279

Fig. 1. The (a) Heap2 and (b) Scatter25 environments with worksite distance D =
13m. (c) The base and nearby worksites. Figure reproduced from [22]

– Consumption: Worksites represented “jobs” that could be completed at the
worksite locations. A robot that was at a worksite gradually depleted its
volume, increasing the swarm’s total reward at the rate of 1/400 units per
second. Similar tasks were explored in, e.g., [16,24].

– Collection: Worksites represented resource deposits. A robot could collect
one unit of resource at a time, after which the resource had to be deposited
in the base. Similar tasks were explored in, e.g., [4,14].

Additionally, each task had two variants, slow and fast, that represented dif-
ferent degrees of challenge. In each variant, worksite locations changed every TC

seconds and were chosen randomly according to the environment type. For exam-
ple, in the Heap2 environment with D = 5 m, the two worksites were relocated
every TC seconds, remaining 5 m from the edge of the base. Worksite volumes
were replenished after each change. The value of TC , as well as the total sim-
ulation time, T , were set as in [22], so that the environment changed 10 times
in the slow variant and 20 times in the fast variant and so that a swarm could
deplete around 50% of total worksite volume in each slow change interval. For
example, TC = 45 min and T = 7.5 h for 50-robot swarms.

2.2 Robots

The simulated MarXbots [1] were differentially steered circular robots with a
radius of 8.5 cm. The robots could communicate with each other using a range
and bearing module with a signal range of 5 m. We have previously described the
robot model in [20]. There were two types of robot swarm, that we parametrised
for the best performance in a series of environments [22]:

– Broadcaster (Fig. 2a): Robots left the base immediately at the beginning of
an experiment to start scouting for worksites. Upon discovering a worksite, a
scout started working on it, meaning that it either started depleting its volume
(in the Consumption task) or started travelling between the worksite and the
base to gradually deposit resource (in the Collection task). The robot kept

280 L. Pitonakova et al.

track of worksite location by using odometry. A robot that was located on
the gradient surrounding a worksite also broadcasted the worksite location to
other robots that were within the communication range. A scout that received
the message was recruited to the worksite and started working from it.

– Bee (Fig. 2b): Robots left the base with probability p(S) = 10−3 to start
scouting for worksites. In the Consumption task, a robot that discovered a
worksite first returned to the recruitment area of the base (Fig. 1c) in order
to recruit any “observing” robots for TR = 120 s and then resumed working.
In the Collection task, a robot recruited after each time that it deposited
resource in the base. A scout that could not find any worksites for TS = 18 min
returned to the base in order to start observing recruitment signals.

The Broadcaster control strategy was inspired by the behaviour of animals
such as sheep [17] and fish [15], where individuals observe each other during
foraging and are attracted to locations that others forage from. A similar strategy
has also been implemented in robot swarms, e.g. in [3,8,30]. The Bee control
strategy was inspired by the foraging behaviour of honey bees [27] and has also
been implemented in robot swarms, e.g. in [9,14,23].

Differential steering sensors and motors of the robots were subject to minor
noise, which could result in accumulation of errors in the relative vector to a
robot’s worksite. Therefore, upon arriving to a supposed worksite location that
was empty, a robot performed neighbourhood search around the location that
lasted for 5 min.

Experiments were performed with Committed and Preferential swarms.
Robots in the Committed swarms remained foraging from the same worksite
that they discovered or were recruited to until the worksite was depleted. Robots
in Preferential swarms exchanged both worksite locations and worksite utilities
and always preferred to forage from a worksite with a higher utility. In the
Consumption task, worksite utility, UW , was equal to its current volume, VW :

Fig. 2. BDRML [21] representations of the (a) Broadcaster and (b) Bee robot con-
trollers.

Information Flow Regulation in Preferentially Foraging Swarms 281

UW = VW (1)

In the Collection task, the distance, DW , between a worksite and the base
was also considered, so that worksites that were further away from the base had
a lower utility:

UW = VW /DW (2)

A preferentially foraging robot switched to a worksite with a higher utility if
it found such a worksite during its journey to its current worksite location. Addi-
tionally, in Preferential Broadcaster swarms, a scout could receive recruitment
signals from multiple directions and always chose a worksite with the highest
advertised UW . Furthermore, if the distance between worksites was smaller than
the communication range of robots, the robots exchanged information about UW

each second while they were working. If worksite A was being depleted faster
than worksite B (because more robots were working at A), its UW decreased
faster, meaning that robots from A were eventually recruited to B. In Prefer-
ential Bee swarms, robots exchanged information about UW while they were
recruiting in the base. If there were multiple worksites advertised at the same
time, all observing robots and recruiters adopted the worksite with the highest
advertised utility.

2.3 Terminology and Data Visualisation

Swarm performance analysis is conducted within the Information-Cost-Reward
framework [22]. The framework allows us to identify various costs that the robots
incur each second during foraging instead of obtaining reward. The uncertainty
cost, CU , is incurred by robots that do not know about worksites. The displace-
ment cost, CD is incurred by robots that know where worksites are located, but
are currently not at their worksites, unable to receive reward from them. For
example, Bee swarm robots usually incur high amounts of CD, because they
are recruited in the base, i.e., far away from worksites. The displacement cost
coefficient, d, represents a ratio between the amount of CD and the decrease in
CU paid at a given time. When d = 1, all robots that know about worksites are
displaced from them and no reward is obtained. Intermediate values of 0 < d < 1
indicate that some robots are displaced and some are receiving reward. Finally,
the misinformation cost, CM , is incurred by robots that are away from their
worksites and do not know that the worksites have already been depleted by
other robots. There is a high potential for a robot to incur CM during Collec-
tion, since it periodically returns to the base to deposit resource.

In the following two sections, swarm performance and ICR metrics are pre-
sented in the form of box plots. Each data point represents a median result of 50
independent simulation runs. The surrounding boxes represent the inter-quartile
range of the result set, and whiskers represent data in the range of 1.5 times the
inter-quartile. Outliers outside this range are shown as plus signs.

282 L. Pitonakova et al.

3 The Performance of Committed Swarms

In each foraging task, the performance of the Committed swarms depended on
the number of worksites, NW , and the distance of worksites from the base,
D (Fig. 3). The performance was generally better in environments with a high
worksite density, i.e., when NW was high, or when D was low. However, note
that in the slow Consumption task (Fig. 3a), the Bee swarms experienced a high
amount of congestion around worksites in Scatter25 environments when D ≤
9 m, causing their performance to be lower than that in Heap4 environments.
The nature of their recruitment strategy in this particular task and environment
caused many Bee robots to concentrate on a small number worksites, which was
disadvantageous when many worksites needed to be found and exploited.

The Broadcasters outperformed the Bee swarms in the Consumption task,
because they did not return to the base in order to recruit, which allowed them
to spend more time working. However, in the Collection task, the displacement
and misinformation costs associated with central-place recruitment were amelio-
rated by the fact that all robots had to return to the base periodically in order
to deposit resource. This allowed the Bee swarms to surpass or match the per-
formance of Broadcasters in many low-density environments, such as Heap1 and

Fig. 3. The amount of reward collected by 50-robot Committed swarms in various
tasks and environments.

Information Flow Regulation in Preferentially Foraging Swarms 283

Heap2, especially in the slow Collection task. Similar trends in absolute and rel-
ative swarm performance were discovered for a number of explored swarm sizes
(NR ∈ {10, 25, 50}). However, the largest swarms showed the largest differences
in relative performance to each other.

4 The Performance of Preferential Swarms

The impact of preferential foraging on swarm performance depended on the envi-
ronment and task type, as well as on the control strategy of robots. In general,
swarm performance was affected more strongly when worksites were closer to the
base, i.e., when robots could find worksite information faster. Similarly, larger
swarms were affected in a larger number of environments, since the robots could
receive information from a larger number of recruiters. Broadcasters were able
to improve their performance in the Consumption task, while Bee swarms were
negatively affected in both tasks (Fig. 4).

There were two different ways in which Preferential Broadcasters improved
their performance in the Consumption task. In Scatter25 environments with a
short D, where it was possible for multiple worksites to be located within the
communication range of robots, a recruited robot was able to find worksites with
larger volumes, i.e. a larger utility, on its way to the location that it was originally
recruited to. This allowed the Preferential Broadcaster swarms to spread their
foraging effort across multiple worksites better and prevent congestion, which
in many environments decreased their displacement cost coefficient compared to
the Committed swarms (Fig. 5a and c). This was especially advantageous when
the environment changed quickly, i.e., when it was more important to exploit as
many worksites as possible in a relatively short amount of time. For example,
50-robot Preferential broadcaster swarms obtained around 12% more reward in
the Scatter25 environment when D = 5 m (Fig. 4b). Secondly, in Heap environ-
ments with a small D, recruits often could not reach an advertised worksite due
to congestion around it. Robots in congested areas often made a lot of turns
while avoiding each other, causing their odometry-based vector to the worksite
to become increasingly incorrect due to the cumulative effect of sensory-motor
noise. Preferential Broadcasters communicated about the worksite utility and
location periodically, meaning that some recruits were sent to incorrect loca-
tions. This cleared congestion and allowed the recruits to explore a new area
after they could not find the advertised worksite.

On the other hand, in the Collection task, where robots deposited resource
in the base and where congestion around worksites was thus cleared periodically,
recruitment to incorrect worksite locations decreased the performance of Pref-
erential Broadcasters in Heap environments with a small D (Fig. 4c and d). In
these cases, it was more advantageous for robots to wait until the path to their
worksite became less congested, rather than to travel away and search for new
worksites. Secondly, in Scatter25 environments, robots could not share informa-
tion about worksite utilities with each other as frequently as in the Consumption
task, since they spent most of the time travelling between the base and worksites,
rather than recruiting near worksites.

284 L. Pitonakova et al.

Fig. 4. The amount of reward collected by 50-robot Preferential swarms in various
tasks and environments. The up and down arrows above the data points for each envi-
ronment indicate statistically significant (ANOVA, p = 0.01) increase and decrease in
performance of the Broadcaster (orange) and Bee (green) Preferential swarms, when
compared to the corresponding Committed swarms from Fig. 3 in the same environ-
ment. When no arrow is shown for a given environment and swarm type, the Pref-
erential and the Committed swarms of that type performed similarly. (Color figure
online)

Fig. 5. The displacement cost coefficient, d, of the Committed and Preferential swarms
in various tasks and environments with D = 5 m.

Information Flow Regulation in Preferentially Foraging Swarms 285

Fig. 6. The misinformation cost, CM , paid per minute by the Committed and Prefer-
ential swarms in various tasks and environments with D = 5 m.

Preferential Bee swarms exploited the environment less efficiently than the
Committed Bee swarms. Since Bee swarm robots utilised central-place recruit-
ment, the preference for a single worksite with the highest utility often spread
to the majority of robots. This increased the amount of congestion around that
worksite, preventing the robots from exploiting it, as well as from exploring the
rest of the arena. In the Consumption task, the swarm’s displacement cost coeffi-
cient, d, increased as a result of congestion in environments with multiple work-
sites (Fig. 5b and d), while the d of Broadcasters remained similar or decreased
(Fig. 5a and c). Additionally, in the slow Collection task, where recruitment to
a single worksite in Bee swarms was much stronger as the robots exchanged
information every time they returned to the base, the amount of misinformation
cost that the robots incurred increased (Fig. 6b).

As a result of these effects, Preferential foraging decreased the performance
of Bee swarms in both tasks, and its impact was significantly stronger than in the
Broadcaster swarms (Fig. 4). Consequently, the differences between the perfor-
mance of Preferential Broadcaster and Bee swarms were stronger than between
the Committed swarms. Most notably, Preferential Bee swarms performed sig-
nificantly worse than Broadcasters in environments with a high worksite density
due to the increased amount of costs that they incurred.

5 Discussion

While preferential foraging may be beneficial to a foraging swarm, the results
presented here indicate that the spread of preference for a selected source needs
to be regulated via a negative feedback mechanism, especially when the envi-
ronment is dynamic and changes over time.

For instance, bee-inspired swarms in [29] were successfully able to distribute
their foraging effort between worksites based on worksite utility. Better worksites
were advertised in the base for a longer amount of time, while the regulation of
information flow was achieved by allowing agents to choose randomly between
advertised worksites, preventing all robots from adopting the same choice. In [20],

286 L. Pitonakova et al.

we explored preferentially foraging bee-inspired swarms in dynamic environments
where worksite locations remained the same, but where worksite utilities changed
over time. The task of the swarms was to collect resource from the worksites into
the base and to switch to a worksite with a higher utility when the environment
changed. In line with the results presented here, it was shown that bee swarms
employing preferential foraging performed worse than other swarms due to their
strong commitment to a small portion of worksites. However, presence of negative
feedback in the form of utility-dependent worksite abandonment significantly
improved the swarm performance.

Studies with other control strategies also showed that maximising informa-
tion spread within the swarm is not appropriate when a swarm needs to react to
a randomly changing environment. In [24], foraging swarms with localised com-
munication outperformed those with a global communication strategy, where
all robots were informed about worksite location and urgencies (analogous to
our worksite utilities). Localised communication prevented robots from costly
travel to distant worksite locations and from interfering with each other near
worksites. In ant-inspired foraging swarms, where robots dropped beacons into
the environment in order to form virtual trails to worksites, a disrupted trail
could be re-established provided that robots sometimes stopped following social
information stored in the beacons and started exploring the environment instead
[11]. The importance of maintaining a balance between exploration, exploitation
and information sharing has also been demonstrated for other collective tasks,
such as area clearing [25] and labour division [12].

It is important to note that other aspects of information exchange, for
instance, the granularity of data, also impact foraging performance. In [10], ant-
inspired swarms formed virtual pheromone trails using beacons between a base
and food sources. It was shown that more efficient foraging routes were formed
when the beacons stored simple “hop count” integers rather than fine-grained
floating point numbers.

Finally, it is interesting that studies of honey bee foraging, contrary to the
results presented here, showed that direct exchange of information about nectar
profitability among worker bees improves the ability of bee colonies to forage
efficiently [2]. Workers sample the nectar that other bees bring into the nest,
which helps the colony as a whole to react to rapid changes in nectar qual-
ity of different flower patches. However, it is important to point out that bees
exhibit preferential nectar source selection in addition to a large repertoire of
other self-regulatory and communication behaviours. For example, bees also reg-
ularly scout the environment in order to discover new flower patches [26] and
they periodically check the profitability of old abandoned patches [6]. The colony
also monitors and maintains a healthy nectar intake in order to prevent energy
wastage resulting from congestion in the nest [7]. Similarly, ants prefer to fol-
low stronger pheromone trails, but pheromone evaporation [28], and in some
ant species, time-dependent decrease of interest of free workers in foraging [19],
represent negative feedback mechanisms that regulate the colony’s responses.

Information Flow Regulation in Preferentially Foraging Swarms 287

6 Conclusion

In order for preferential source selection to improve swarm performance, the
flow of information about worksite utility should be sufficient, but also regulated
through a negative feedback mechanism. Sufficient information flow can occur,
for example, in environments with an adequate worksite density, or in swarms
where robots can meet each other frequently and thus evaluate different sources
of information at the same time. Regulation of information flow can be achieved,
e.g., by using the Broadcaster recruitment strategy, where recruitment is limited
by the communication range of robots. On the other hand, if many robots are
allowed to communicate their preferences at the same time, and when robots
adopt the best option with a 100% probability, as was the case in our Bee
swarms, the environment is exploited and explored inefficiently, preventing the
swarm from responding to changes.

These results point to the importance of studying the context in which a par-
ticular behaviour is used in a swarm, especially when nature-inspired behaviours
are taken out of their biological context and are applied in an engineered robot
control algorithm. A new behaviour, such as preferential foraging, adds a new
feedback mechanism that interacts with other feedback mechanisms in unique
ways. In the experiments presented here, preferential foraging acted as a strong
positive feedback mechanism for the most popular worksite choice when robots
exchanged information in a small designated area. On the other hand, the same
behaviour facilitated a more even exploitation of resources and a more efficient
exploration when recruitment was regulated through negative feedback mecha-
nisms.

Acknowledgments. This work was supported by EPSRC grants EP/G03690X/1,
EP/N509747/1 and EP/R0047571.

References

1. Bonani, M., et al.: The MarXbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In: Proceedings of 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2010), pp. 4187–4193.
IEEE, Piscataway (2010)

2. De Marco, R., Farina, W.M.: Trophallaxis in forager honeybees Apis mellifera:
Resource uncertainty enhances begging contacts? J. Comp. Physiol. A 189, 125–
134 (2003). https://doi.org/10.1007/s00359-002-0382-y

3. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1),
1–33 (2014)

4. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized coop-
eration between robotic swarms. Swarm Intell. 5(2), 73–96 (2011)

5. Gill, F.B., Wolf, L.L.: Nonrandom foraging by sunbirds in a patchy environment.
Ecology 58(6), 1284–1296 (1997)

6. Granovskiy, B., Latty, T., Duncan, M., Sumpter, D.J.T., Beekman, M.: How danc-
ing honey bees keep track of changes: The role of inspector bees. Behav. Ecol.
23(3), 588–596 (2012). https://doi.org/10.1093/beheco/ars002

https://doi.org/10.1007/s00359-002-0382-y
https://doi.org/10.1093/beheco/ars002

288 L. Pitonakova et al.

7. Gregson, A.M., Hart, A.G., Holcombe, M., Ratnieks, F.L.: Partial nectar loads
as a cause of multiple nectar transfer in the honey bee (Apis mellifera): a simu-
lation model. J. Theor. Biol. 222(1), 1–8 (2003). https://doi.org/10.1016/S0022-
5193(02)00487-3

8. Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Col-
lective decision-making based on social odometry. Neural Comput. Appl. 19(6),
807–823 (2010)

9. Hecker, J.P., Moses, M.E.: Beyond pheromones: evolving error-tolerant, flexible,
and scalable ant-inspired robot swarms. Swarm Intell. 9, 43–70 (2015)

10. Hoff, N., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot
swarms using only local communication. In: Proceedings of the 2010 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO 2010), pp. 123–130.
IEEE, Piscataway (2010)

11. Hrolenok, B., Luke, S., Sullivan, K., Vo, C.: Collaborative foraging using beacons.
In: van der Hoek, W., Kaminka, G.A., Lesperance, Y., Luck, M., Sen, S. (eds.) Pro-
ceedings of 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pp. 1197–1204. IFAAMAS, Richland (2010)

12. Jones, C., Mataric, M.J.: Adaptive division of labor in large-scale minimalist multi-
robot systems. In: Proceedings 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974. IEEE, Piscataway
(2003)

13. Krause, J., Godin, J.G.J.: Influence of prey foraging posture on flight behavior
and predation risk: predators take advantage of unwary prey. Behav. Ecol. 7(3),
264–271 (1996)

14. Krieger, M.J.B., Billeter, J.B.: The call of duty: self-organised task allocation in a
population of up to twelve mobile robots. Rob. Auton. Syst. 30(1–2), 65–84 (2000)

15. Lachlan, R., Crooks, L., Laland, K.: Who follows whom? Shoaling preferences and
social learning of foraging information in guppies. Anim. Behav. 56(1), 181–190
(1998). https://doi.org/10.1006/anbe.1998.0760

16. Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task
allocation in multi-robot systems. Int. J. Rob. Res. 25, 225–242 (2006)

17. Michelena, P., Jeanson, R., Deneubourg, J.L., Sibbald, A.M.: Personality and col-
lective decision-making in foraging herbivores. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 277(1684), 1093–1099 (2010). https://doi.org/10.1098/rspb.2009.1926

18. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

19. Pinter-Wollman, N., et al.: Harvester ants use interactions to regulate forager acti-
vation and availability. Anim. Behav. 86(1), 197–207 (2013)

20. Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity
in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)

21. Pitonakova, L., Crowder, R., Bullock, S.: Behaviour-data relations modelling lan-
guage for multi-robot control algorithms. In: Proceedings of 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2017), pp. 727–732.
IEEE, Piscataway (2017)

22. Pitonakova, L., Crowder, R., Bullock, S.: The Information-Cost-Reward frame-
work for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2018).
https://doi.org/10.1007/s11721-017-0148-3

23. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2), 75–102 (2015)

https://doi.org/10.1016/S0022-5193(02)00487-3
https://doi.org/10.1016/S0022-5193(02)00487-3
https://doi.org/10.1006/anbe.1998.0760
https://doi.org/10.1098/rspb.2009.1926
https://doi.org/10.1007/s11721-017-0148-3

Information Flow Regulation in Preferentially Foraging Swarms 289

24. Sarker, M.O.F., Dahl, T.S.: Bio-Inspired communication for self-regulated multi-
robot systems. In: Yasuda, T. (ed.) Multi-Robot Systems, Trends and Develop-
ment, pp. 367–392. InTech (2011)

25. Schmickl, T., Crailsheim, K.: Throphallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm. Auton. Robots 25(1), 171–188 (2008)

26. Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behav. Ecol.
Sociobiol. 34(1), 51–62 (1994). https://doi.org/10.1007/BF00175458

27. Seeley, T.D., Camazine, S., Sneyd, J.: Collective decision-making in honey bees:
how colonles choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277–290
(1991)

28. Sumpter, D.J.T., Beekman, M.: From nonlinearity to optimality: pheromone trail
foraging by ants. Anim. Behav. 66(2), 273–280 (2003). https://doi.org/10.1006/
anbe.2003.2224

29. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
the weighted voter model. In: Proceedings of 13th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 45–52. ACM,
New York (2014)

30. Wawerla, J., Vaughan, R.T.: A fast and frugal method for team-task allocation in
a multi-robot transportation system. In: Proceedings of 2010 IEEE International
Conference on Robotics and Automation (ICRA 2010), pp. 1432–1437. IEEE, Pis-
cataway (2010)

https://doi.org/10.1007/BF00175458
https://doi.org/10.1006/anbe.2003.2224
https://doi.org/10.1006/anbe.2003.2224

The Role of Largest Connected
Components in Collective Motion

Heiko Hamann(B)

Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
hamann@iti.uni-luebeck.de

Abstract. Systems showing collective motion are partially described by
a distribution of positions and a distribution of velocities. While models
of collective motion often focus on system features governed mostly by
velocity distributions, the model presented in this paper also incorpo-
rates features influenced by positional distributions. A significant fea-
ture, the size of the largest connected component of the graph induced
by the particle positions and their perception range, is identified using
a 1-d self-propelled particle model (SPP). Based on largest connected
components, properties of the system dynamics are found that are time-
invariant. A simplified macroscopic model can be defined based on this
time-invariance, which may allow for simple, concise, and precise predic-
tions of systems showing collective motion.

1 Introduction

Collective behaviors of animals and other agents can be described by general
principles based on a few typical classes despite their variety and richness of
details [25]. At large there are two methods of modeling. Microscopic models
abstract individual behaviors but represent properties of each member of the
animal group, such as position, direction, and internal states. Examples are
swarm models from physics, such as the Vicsek model and similar ones [3,15,24],
and models focusing on the agents’ energy reserve, their random walks, and more
complex behaviors (e.g., taxis behaviors), such as so-called Brownian agents [12,
21,22]. Macroscopic models abstract away individual agents and reduce the state
space to only a few variables, such as densities or sizes of groups that are in
a certain state (cf. population models). Examples are from biology [13,17,19,
26], physics and mathematics [1,3,4], and swarm robotics [5,16,18,20]. In this
context, systems showing collective motion are represented to a large extent by
only two distributions: a spatial and a directional distribution. Basically these
two distributions are equivalent in their significance for effective collective motion
because both physical proximity and coordination in velocities are necessary [25].
However, the directional distribution may have an assumed higher significance
in the literature, especially in one-dimensional systems [2,25,26].

Examples for microscopic models are models of self-propelled particles (SPP)
that define each particle’s motion influenced by neighboring particles [2,26].
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 290–301, 2018.
https://doi.org/10.1007/978-3-030-00533-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_23&domain=pdf
http://orcid.org/0000-0002-2458-8289

Largest Connected Components in Collective Motion 291

Examples for macroscopic models are Fokker–Planck models that describe global
features of collective behaviors, such as velocity distributions and spatial distri-
butions [9,11,26]. The model of Yates et al. [26], in particular, models the veloc-
ity distribution of particles based on a Fokker–Planck equation with estimated
diffusion and drift coefficients based on experimental data and simulation data,
whereas “the drift coefficient represents the mean rate of change of the average
velocity” [26]. It turns out that such drift coefficients are time-variant and seem
to depend on another state variable of the system following an exponential func-
tion (1 − exp(−t)) [6,10,23]. We identify a relevant graph-theoretic feature of
the graph that is induced by the robots’ positions and their perceivable neigh-
borhoods. This main feature is the size of the largest connected component of
this graph, which is the largest subgraph in which all pairs of nodes are con-
nected by paths. Time-invariant features are always of interest in mathematical
modeling and so are they here, too. These time-invariant features may be used
to formulate concise and precise models of collective motion.

2 Microscopic and Macroscopic Models

We introduce two models: a microscopic model of self-propelled particles (SPP)
and a macroscopic model of swarm populations.

2.1 Microscopic Model: SPP

We define a time-discrete microscopic model as a 1-d SPP model of N par-
ticles moving on a circle of circumference U = 1 without units (i.e., periodic
boundary conditions). The number of particles N can also be interpreted as
particle density ρ = N/U = N . Our model is similar to the model defined by
Czirók and Vicsek [3,10] but different in a few aspects. First, the allowed veloc-
ities are discrete. Second, particles explicitly decide to switch their direction of
motion based on majority decisions. Third, noise is implemented as spontaneous
switching of direction. A particle i has coordinate xi and discrete, dimensionless
velocity ui ∈ {−1, 1}. The dynamics are defined by

xi(t + 1) = xi(t) + v0ui(t), (1)

ui(t + 1) =

⎧
⎪⎨

⎪⎩

G(Li(t), Ri(t)), with probability Pd

−ui(t), with probability Pn

ui(t), else
, (2)

where Li is the number of neighboring particles located on the interval [xi −
Δr, xi +Δr] with velocities uj = +1, that is, neighbors moving counterclockwise
or ‘left’. Similarly, Ri are neighboring particles with velocities uj = −1, that
is, neighbors moving clockwise or ‘right’. The perception range of a particle
is Δr = 0.002 and a particle’s nominal velocity is v0 = 0.001 (see Table 1 for used
parameters). Pd = 0.1 is the particle’s probability of reconsidering its direction
of movement (i.e., on average an agent reconsiders its direction of motion every

292 H. Hamann

ten time steps). Pn = 0.015 is the particle’s probability of inverting its direction
of movement spontaneously, hence, it implements noise. With G we implement
a local majority decision

G(L,R) =

⎧
⎪⎨

⎪⎩

+1, L > R

−1, R > L

ur, R = L

, (3)

with ur ∈ {−1,+1} is a random tie breaker choosing −1 or +1 with equal
probabilities.

Table 1. Parameter settings used in simulations.

Parameter Value

Swarm size N {38, 42, 70}
Particle nominal velocity v0 0.001

Perception range Δr 0.002

Prob. reconsidering Pd 0.1

Prob. spontaneous switch Pn 0.015

Simulated time intervals t {2000, 4000}
Circumference U 1

The initial condition is a random uniform distribution for both, the par-
ticles’ coordinates xi ∈ [0, U) and their velocities ui ∈ {−1,+1}. Note that
despite the particles’ discrete velocities ui the system is different from cellular
automata because the particles’ (initial) positions xi are continuous. As an effect,
a particle’s neighbors are distributed continuously over its whole neighborhood
interval [xi − Δr, xi + Δr] but propagate through it in discrete steps.

Our primary interest is the particle distribution among the two states ui =
±1, that is, we observe the fraction st ∈ [0, 1] of particles in state ui = +1
(without loss of generality) over time t. With the settings used in this paper,
s fluctuates over the whole interval s ∈ [0, 1] for all time but with a bimodal
distribution that is established after a transient (see Fig. 1a). We interpret the
system states that correspond to the two peaks of this bimodal distribution as
the aligned states although the particles are not completely aligned (s < 1 and
s > 0). The observed bimodal distribution is expected for effective collective
motion and was reported before (e.g., see [10,26]).

2.2 Largest Component

In the following we apply a graph-theoretic interpretation of the particles’ coor-
dinates in the SPP model. The particles are interpreted as nodes of an undi-
rected graph. There is an edge (i, j) between particle i and j if d(xi, xj) < Δr,

Largest Connected Components in Collective Motion 293

Fig. 1. Distributions of swarm fraction moving left st and swarm fraction in largest
connected component ct obtained numerically from the SPP model, N = 42, 5 × 105

sample simulation runs.

whereas d(xi, xj) gives the distance between the particles. Hence, each agent is
connected by an edge to each of its neighbors, who also determine the particle’s
local majority decision based on G(L,R). The largest connected component (or
short: largest component) of a graph is the largest set of nodes M for which
it is true that any pair of nodes out of M is connected by a path, which is a
sequence of nodes that have an edge from one node to the next in the sequence.
For any state of the SPP model at any time the largest component Mt can be
calculated. In the following we are interested in the swarm fraction that is in
the largest component ct = |Mt|/N (|M | is the number of nodes in M). We can
measure the size of the largest component as the swarm fraction ct ∈ [0, 1] that
is part of the largest component at time step t (see Fig. 1b). The size of the
largest component increases over time because aligned motion typically triggers
an aggregation behavior as a side-effect [8]. Later in the simulation runs, the size
of the largest component saturates at values of c ≈ 0.8. An interesting obser-
vation is that the swarm is aligned early at t ≈ 500, while the distribution of
largest components stays time-variant until t > 1000. Hence, aligning particles
is a quick process while forming a big largest component is a slow process for the
tested parameter set. The used simulation software and some experiment data
is available online1.

2.3 Macroscopic Model

A reasonable approach is to macroscopically model trajectories st as a stochastic
process

st+1 = st + Δs(st) + ξt, (4)

for a drift term Δs(st) and a diffusion term ξt with mean 〈ξ〉 = 0. This is sim-
ilar to approaches based on Langevin equations and the corresponding Fokker–
Planck equations [5,18,26]. In the following we focus on the drift term Δs(s)
only. Within the SPP model we can measure the mean 〈Δs(s)〉 based on averages

1 https://doi.org/10.5281/zenodo.1293372.

https://doi.org/10.5281/zenodo.1293372

294 H. Hamann

over many realizations of the stochastic process due to

〈st+1 − st〉 = 〈Δs(st) + ξt〉 = 〈Δs(st)〉. (5)

The main purpose of this macroscopic model here is only to indicate the meaning
of the drift coefficient Δs(st). To keep such a macroscopic model simple, we prefer
time-invariant parameters and features. In particular, the drift coefficient Δs(st)
should preferably be time-invariant. The drift term is the main driver of the
system on the global level and determines whether a collective decision-making
system is effective. Finding and using time-invariant coefficients could help to
formulate a concise and precise model of collective motion.

3 Results

3.1 Time-Invariant Drift Coefficients

Measurements of 〈Δs(st)〉 reveal that it is time-variant during a transient (see
Fig. 2a). The time-variance of the drift coefficient 〈Δs(st)〉 is known and was
reported before [23]. In [6,7] empirical evidence is given that 〈st〉 follows an
exponential function (symmetry is exploited here and values s < 0.5 are mapped
by s′ = 1 − s). This is also what is measured for the size of the largest compo-
nent 〈ct〉 in the SPP model as shown in Fig. 2c (cf. Fig. 1b).

We find that measurements of the drift coefficient Δs(s) are time-invariant
if we measure them with respect to the size of the current largest component,
that is, by defining a two-dimensional function Δs(s, c) that takes the size of
the largest component as an argument, too. Measurements are shown in Fig. 3.
These are measurements at nine different times every 200 time steps and different
sizes of the observed largest component. The noise of these measurements is
because the 5 × 105 samples are now distributed over all different bins for the
largest component sizes and certain component sizes are infrequently observed
at certain times. Besides a few outliers the measurements indicate time-invariant
behavior of Δs(s, c), especially in comparison to Fig. 2a. Also see Fig. 2b showing
the drift coefficient for Δs(s, c = 0.5), which indicates features hardly observed
when measuring only Δs(s). Δs(s, c = 0.5) has five zeros with three stable fixed
points: s∗

1 ≈ 0.17, s∗
2 = 0.5, and s∗

3 ≈ 0.83.
This approach of using a two-dimensional function Δs(s, c) has two main

advantages. First, a model of collective motion, for example similar to the
Fokker–Planck model of Yates et al. [26], based on time-invariant functions could
also give valid predictions for the transient if it is combined with a model for the
increase of the largest component ct over time, which can be simple (cf. Fig. 2c).
Second, measurements of Δs(s, c) also reveal otherwise hidden system properties
that we discuss in the following.

For certain N and c, Δs(s, c) has not only three but five zeros (see Fig. 2b)
generating a stable fixed point at s = 0.5. Hence, the system may travel through
state space, that drives the system away from a collective decision towards inde-
cisiveness. This may happen not only early in the transient, as seen in Fig. 2a,

Largest Connected Components in Collective Motion 295

Fig. 2. Drift coefficients and growth of synchronized group and largest component
measured in the SPP model.

but possibly also even later in the transient whenever the largest component has
a relatively small size of about c ≈ 0.5.

Measured time-invariant Δs(s, c) based on the sizes of largest components c ∈
{0.29, 0.48, 0.83} for N = 38 are shown in Fig. 4a. For a big largest component
of c = 0.83 the system is sensitive to fluctuations around s = 0.5 because they
are reinforced with positive feedback (i.e., on average a small majority grows).
In contrast the system diminishes fluctuations for c = 0.29. This is probably
because fluctuations affect almost only the connected component in which they
occur, hence, effects in components due to fluctuations are almost independent
from each other. With a largest component of c < 0.5, even the largest com-
ponent is only a minority and consequently has no global effect. This is also
seen in Figs. 4b and c, which give values of Δs(s, c) for most measurable largest
component sizes c as a map for bigger densities (N = 42 and N = 70). Note
that the tested swarm sizes of N ∈ {38, 42, 70} are chosen arbitrarily and repre-
sent different swarm densities (cf. [14]). Higher densities turn out to show more
complexity in their system dynamics but also reduce the observed occurrence

296 H. Hamann

Fig. 3. Time-invariant 〈Δs(s, c)〉 for N = 70 and t ∈ {200, 400, 600, 800, 1000,
1200, 1400, 1600, 1800}, measured in the SPP model.

of small largest connected components (e.g., c < 0.4 for N = 70). Figures 4b
and c clearly indicate the underlying complex system dynamics of the collective
motion process in contrast to mere time-averaged or steady-state measurements
of Δs(s). The stable fixed point at s = 0.5 for c < 0.5 is seen as well as the small
interval around c ≈ 0.5 for which we have three stable fixed points (more clearly
for N = 70 in panel c). For c > 0.5 the two remaining stable fixed points get
closer to s = 0 and s = 1 respectively with increasing largest component size.

The unexpected complexity of the underlying system dynamics is prominent
in Fig. 4c (N = 70). It reminds one of so-called bifurcation scenarios from non-
linear dynamics. For 0.36 � c � 0.41 the system has four stable fixed points,
which then collapse for c ≈ 0.41. For 0.44 � c � 0.54 the system has three stable
fixed points, which then collapse into a situation with four stable fixed points
again for 0.55 � c � 0.59. Starting from c ≈ 0.6 the system has increasingly
more positive feedback and only two stable fixed points.

Largest Connected Components in Collective Motion 297

Fig. 4. Drift coefficient 〈Δs(s, c)〉 depending on the largest component for N ∈
{38, 42, 70}.

3.2 On the Effectivity of Collective Motion

We are interested in the necessary conditions for effective synchronization in
collective motion, which we define by the existence of two stable fixed points at
s = 0.5 ± x for x > 0.

Based on the measurements of Δs(s, c) we determine bifurcation diagrams
depending on the largest component and density (similar to what is shown in
Figs. 4b and c). In Fig. 5a we give the bifurcation diagram for a given density ρ =
N = 42. Two stable fixed points are found for c ≥ 0.54.

We can investigate the influence of particle density ρ, if we specify which
largest component size we associate with each considered density (otherwise we
would need to investigate a 3-d system). For this purpose we measure the largest
component size in the SPP model in the steady state for a given density (data not
shown). Following these measurements, we then define a simple ad-hoc model
of the observed effective largest component size by c∗(ρ) = 1/ρ(−20.7/(1 +
exp(−0.1ρ+0.9))+1.05ρ+6.2). We find a critical density of ρcrit = 28 (Fig. 5b)
for the selected parameters. For too sparse densities (ρ < ρcrit) no big enough
largest component forms that could trigger global alignment. Once the critical

298 H. Hamann

Fig. 5. Bifurcation diagrams obtained using the largest-component-based drift coeffi-
cients Δs(s, c) measured in the SPP model.

density ρcrit is reached, appropriate largest components form and the collective
motion is effective.

Hence, we observe bifurcations in two dimensions (largest component and
density) and consequently two conditions have to be met for a collective decision
to emerge. A minimum density is needed and at least the majority of the swarm
has to be positioned within the largest component. These two conditions are
distinguished by their priorities. With too low density, no stable largest cluster of
size c > 0.5 forms. However, once this critical density is reached, a stable largest
cluster of size c > 0.5 forms. Moreover, the clearness of the decision (s close
to zero or one respectively) increases with increasing largest component c (see
also Figs. 4b and c) and with increasing density ρ. In addition, the bifurcation
diagram for the borderline situation c = 0.5 (Fig. 5c) shows that even above
the critical density ρcrit = 28 but with a relatively small largest component the
fixed point at s = 0.5 stays stable (this is observed on an interval of about c ∈
[0.43, 0.56]) and interestingly two new unstable fixed points emerge which shows
the particularity of the c = 0.5-situations. Hence, we summarize that a critical

Largest Connected Components in Collective Motion 299

density is necessary to observe a collective decision but during the transient,
situations may emerge that stabilize the indecisive state s = 0.5 temporarily.

4 Conclusion

Based on a simple 1-d SPP model, we have investigated collective motion. Our
focus was on measurements of the drift coefficient Δs(s), which is time-variant
but turns out to be time-invariant once we measure it relative to the size of
the largest connected component. This feature of time-invariance may be used
to formulate concise and precise models of collective motion. As discussed, a
simple temporal model of the increase in size of the largest component can be
formulated (exponential function) and can then be used to create a macroscopic
model. This macroscopic model then exclusively uses time-invariant coefficients
and allows to model the transient behavior of collective motion systems.

Note that the spatial distribution of particles seems to have more impact on
the dynamics of collective decisions as modeled in this paper than the current
state of majority stake s. Previously reported Fokker–Planck models [11,18,26]
based on time-averaged drift coefficients may give good predictions for steady
states but are of limited use for investigations of the temporal evolution of col-
lective decisions and may also be of limited use to understand the underlying
dynamics.

The drift coefficient of the velocity distribution based on sizes of the largest
components is constant over time. Consequently the system dynamics of collec-
tive motion is completely described by positive feedback depending on largest
components, the dynamics of largest components, and additional noise features
(diffusion coefficient).

Future work includes investigating the generalization from 1-d space to 2-d,
which could bring a qualitative change in the observed dynamics. Models and
findings as reported here can help in swarm engineering to provoke advantageous
system states, such as big largest connected components, and to increase perfor-
mance of an engineered collective system. A key challenge for modeling is trying
to answer the question of how the system behaviors that were measured here
(e.g., drift coefficient depending on fraction of swarm within largest connected
component, Fig. 4) could be predicted by an appropriate model.

References

1. Chazelle, B.: An algorithmic approach to collective behavior. J. Stat. Phys. 158(3),
514–548 (2015)

2. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles:
kinetic phase transition in one dimension. Phys. Rev. Lett. 82(1), 209–212 (1999)

3. Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles.
Physica A 281, 17–29 (2000)

4. Degond, P., Yang, T.: Diffusion in a continuum model of self-propelled particles
with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)

300 H. Hamann

5. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems: Sup-
porting Global-to-Local Programming. Springer, Berlin (2010). https://doi.org/
10.1007/978-3-642-13377-0

6. Hamann, H.: Towards swarm calculus: universal properties of swarm performance
and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp.
168–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32650-
9 15

7. Hamann, H.: Towards swarm calculus: urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013).
https://doi.org/10.1007/s11721-013-0080-0

8. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74528-2

9. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A model of symmetry break-
ing in collective decision-making. In: Doncieux, S., Girard, B., Guillot, A., Hallam,
J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226, pp.
639–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15193-
4 60

10. Hamann, H., Valentini, G.: Swarm in a fly bottle: feedback-based analysis of self-
organizing temporary lock-ins. In: Dorigo, M., Birattari, M., Garnier, S., Hamann,
H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667,
pp. 170–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-
1 15

11. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008). https://doi.org/
10.1007/s11721-008-0015-3

12. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active walker model for the
formation of human and animal trail systems. Physical Review E 56(3), 2527–2539
(1997)

13. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. Math. Biol.
58, 183–217 (2009). https://doi.org/10.1007/s00285-008-0201-3

14. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density
on scalability in collective systems: noise-induced versus majority-based bistability.
Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

15. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled
particles. Phys. Rev. E 63(1), 17101 (2000)

16. Milutinovic, D., Lima, P.: Cells and Robots: Modeling and Control of Large-Size
Agent Populations. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
71982-3

17. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Adv. Biophys. 22, 1–94 (1986)

18. Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial models for swarm-robotic
systems. Int. J. Robot. Res. 30(5), 574–589 (2011)

19. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-n nest-site
selection process in honeybees. Phys. Rev. E: 95, 052411 (2017). https://doi.org/
10.1103/PhysRevE.95.052411

20. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pat-
tern for decentralised decision making. PLOS ONE 10(10), 1–18 (2015). https://
doi.org/10.1371/journal.pone.0140950

21. Schimansky-Geier, L., Mieth, M., Rosé, H., Malchow, H.: Structure formation by
active Brownian particles. Phys. Lett. A 207, 140–146 (1995)

https://doi.org/10.1007/978-3-642-13377-0
https://doi.org/10.1007/978-3-642-13377-0
https://doi.org/10.1007/978-3-642-32650-9_15
https://doi.org/10.1007/978-3-642-32650-9_15
https://doi.org/10.1007/s11721-013-0080-0
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/978-3-642-15193-4_60
https://doi.org/10.1007/978-3-642-15193-4_60
https://doi.org/10.1007/978-3-319-09952-1_15
https://doi.org/10.1007/978-3-319-09952-1_15
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1007/s11721-017-0137-6
https://doi.org/10.1007/978-3-540-71982-3
https://doi.org/10.1007/978-3-540-71982-3
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1371/journal.pone.0140950

Largest Connected Components in Collective Motion 301

22. Schweitzer, F.: Brownian Agents and Active Particles: On the Emergence of Com-
plex Behavior in the Natural and Social Sciences. Springer, Berlin (2003)

23. Valentini, G., Hamann, H.: Time-variant feedback processes in collective decision-
making systems: influence and effect of dynamic neighborhood sizes. Swarm Intel-
ligence 9(2–3), 153–176 (2015). https://doi.org/10.1007/s11721-015-0108-8

24. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 6(75), 1226–1229
(1995)

25. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
26. Yates, C.A., et al.: Inherent noise can facilitate coherence in collective swarm

motion. Proc. Natl. Acad. Sci. USA 106(14), 5464–5469 (2009). https://doi.org/
10.1073/pnas.0811195106. http://www.pnas.org/content/106/14/5464.abstract

https://doi.org/10.1007/s11721-015-0108-8
https://doi.org/10.1073/pnas.0811195106
https://doi.org/10.1073/pnas.0811195106
http://www.pnas.org/content/106/14/5464.abstract

Why the Intelligent Water Drops Cannot
Be Considered as a Novel Algorithm

Christian Leonardo Camacho-Villalón(B) , Marco Dorigo ,
and Thomas Stützle

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{ccamacho,mdorigo,stuetzle}@ulb.ac.be

Abstract. In this paper we show that intelligent water drops (IWD),
a swarm intelligence based approach to discrete optimization proposed
by Shah-Hosseini in 2007, is a particular instantiation of the ant colony
optimization (ACO) metaheuristic. To do so, in the paper, we identify
the components of IWD and place them into the ACO metaheuristic
framework. We show therefore that there was no need for a new natural
metaphor. We also discuss that the proposed metaphor does not bring
any novel insight into the algorithmic optimization process used by IWD.

Keywords: Intelligent water drops · Ant colony optimization
Novel algorithm

1 Introduction

Recently, many so-called novel approaches to stochastic optimization based on
a natural metaphor have been proposed in the literature. Unfortunately, as also
discussed in [29], such natural metaphors are often unnecessary or even mislead-
ing. For example, stochastic optimization algorithms based on diverse metaphors
such as spiders [8], whales [22], grey wolves [23], birds [2], and so on, have been
proposed and published in the literature. However, the real value of using a
metaphor is often unclear. In some rare cases such as for harmony search [32]
and black holes [24], it has been formally shown that the novel algorithm is
just a re-formulation, using different terms, of an already well-known algorithm.
In general, however, it remains challenging to understand whether the novel
algorithms are indeed new or not.

We believe that the usage of such new metaphors should be limited to the
cases in which they are indeed useful to express a new concept. This means that
(i) it should not be possible to express the same algorithmic ideas using the ter-
minology of already existing algorithms, and (ii) the inspiring metaphor should
bring some new concepts that are related to the optimization process proposed.
Unfortunately, this is often not the case. In our research we intend to examine
a number of such novel nature-inspired algorithms to understand if they meet
the two above-mentioned requirements and therefore deserve to be considered

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 302–314, 2018.
https://doi.org/10.1007/978-3-030-00533-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_24&domain=pdf
http://orcid.org/0000-0002-0182-3469
http://orcid.org/0000-0002-3971-0507
http://orcid.org/0000-0002-5820-0473

Why the IWD Cannot Be Considered as a Novel Algorithm 303

novel. In this particular paper, we study the intelligent water drops (IWD) algo-
rithm and its relation to the well-known ant colony optimization metaheuristic
[16]. To do so, we first briefly present the ACO metaheuristic (Sect. 2) and the
IWD algorithm (Sect. 3), highlighting their constituent components. Then, in
Sect. 4, we perform a component-by-component comparison between ACO and
IWD and show that IWD is indeed a particular case of ACO and that there-
fore it was not necessary to introduce a new terminology. We also discuss the
fact that the inspiring metaphor does not bring any concepts that are related to
the optimization process proposed. Therefore, the proposed IWD algorithm does
not meet the two conditions set out in points (i) and (ii) above. Accordingly, we
conclude that there is no need for an IWD algorithm and that adding it as a
new tool to the optimization tool set is unnecessary and misleading.

2 Ant Colony Optimization

Ant colony optimization (ACO) is a metaheuristic that was first proposed in the
early ’90s [10,13,14]. The original source of inspiration was the foraging behavior
of Argentine ants as described in a seminal paper by Deneubourg et al. [9]. In
[9], it was shown that ants can find a shortest path between their nest and a food
source by depositing pheromones on the ground and by choosing their way using
a stochastic rule biased by pheromone intensity. In an analogous way, Dorigo
et al. [10,13,14] showed that artificial agents, also called artificial ants, that

– move on a graph representation of a discrete optimization problem, where a
path on the graph corresponds to a problem solution,

– deposit virtual pheromones on the graph edges, and
– use pheromones to bias the construction of random paths on the graph,

can find high quality solutions by letting their stochastic solution construction
routine be biased by the value of virtual pheromones.

After the publication of the seminal algorithm in [13–15], many variants
and improvements have been proposed [1,3–7,12,15,17,18,20,28,30]. Most of
this work has been summarized in a book [16] where ACO is described as a
constructive population-based metaheuristic comprising three main algorithmic
components: (i) stochastic solution construction; (ii) daemon actions ; and (iii)
a pheromone update procedure.

One iteration of the ACO metaheuristic can be described as follows. First,
every ant constructs a solution using a stochastic solution construction mecha-
nism that iteratively selects solution components to add to the partial solution
under construction. Once all ants have completed their solutions, an optional
procedure called daemon action can be applied.1 Finally, a pheromone update
procedure modifies the pheromone trails.2 Several iterations are executed until
1 Daemon actions, for example, perform a local search procedure to improve an ant’s

solution or deposit an additional amount of pheromone on some solution components.
2 In some ACO implementations, the pheromone update procedure can be interleaved

with the solution construction (e.g., [12,17]), an example being the local pheromone
update procedure that is implemented in ACS [12].

304 C. L. Camacho-Villalón et al.

Algorithm 1. ACO metaheuristic
1: Set initial parameters
2: while termination condition not met do
3: repeat

4: Apply stochastic solution construction

% solution components are iteratively added to a partial solution using a

stochastic selection rule biased by artificial pheromones
5: Apply local pheromone update procedure % optional
6: until construction process is completed

7: Apply daemon actions % optional
8: Apply pheromone update procedure
9: end while

10: Return best solution

a termination condition is verified. An algorithmic outline of the ACO meta-
heuristic is shown in Algorithm 1.

Artificial pheromones, indicated by τ , are numerical values given to each of
the solution components in the search space. They are iteratively modified by
ants in order to bias the selection of solution components. Pheromone values
can increase due to ants depositing pheromones (positive feedback) or decrease
through evaporation (negative feedback). ACO algorithms also use heuristic
information, indicated by η, to bias the solution construction process.

In Table 1 we summarize all the most important ACO algorithms. They differ
in the way in which stochastic solution construction and pheromone update are
implemented.

3 The Intelligent Water Drops Algorithm

The intelligent water drops (IWD) algorithm, published first by Shah-Hosseini in
2007 [25], was proposed as a novel nature-inspired algorithm for combinatorial
optimization problems. This algorithm is explained using a metaphor in which
water streams are seen as groups of individual particles (water drops) moving in
discrete steps.

In the words of the author:

In the water drops of a river, the gravitational force of the earth provides
the tendency for flowing toward the destination . . . It is assumed that each
water drop flowing in a river can carry an amount of soil. The amount
of soil of the water drop increases while the soil of the riverbed decreases.
In fact, some amount of soil of the river bed is removed by the water drop
and is added to the soil of the water drop.
[26, pp. 195]
A water drop has also a velocity and this velocity plays an important role
in the removing of soil from the bed of the rivers . . .The faster water drops
are assumed to gather more soil than others.
[26, pp. 196]

Why the IWD Cannot Be Considered as a Novel Algorithm 305

In computational terms, the intelligent water drops:

– move on a graph representation of a discrete optimization problem, where a
path on the graph corresponds to a problem solution,

– modify the amount of soil on the graph edges as a function of their velocity,
– use soil amount to bias the construction of random paths on the graph.

Shah-Hosseini [25–27] has described IWD as a constructive population-based
algorithm composed of three algorithmic components: (i) stochastic solution con-
struction; (ii) local soil update procedure; and (iii) global soil update procedure.

One iteration of the IWD algorithm consists of the following steps. First,
each water drop constructs a solution using a stochastic solution construction
mechanism biased by the amount of soil associated to the solution components,
so that components with lower soil values have a higher probability to be chosen.
After a solution component is selected, a local soil update procedure performs two
actions: (i) it decreases the soil in the solution component, which is, according
to the metaphor, removed by the water drop, and (ii) it increases the soil in the
water drop, which indicates that it has been loaded into the water drop. For this
procedure to take place, each water drop keeps a record of its own velocity and
soil gathered during the iteration. After each water drop has built a complete
solution, a global soil update procedure updates the soil values using the iteration-
best water drop (i.e., the water drop that built the best solution in the current
iteration). Several iterations are performed before a termination criterion is met
and the algorithm stops. Algorithm 2 depicts this process.

Algorithm 2. Intelligent water drops algorithm
1: Set initial parameters
2: while termination condition not met do
3: repeat

4: Apply stochastic solution construction

% solution components are iteratively added to a partial solution using a

stochastic selection rule biased on amount of soil
5: Apply local soil update procedure
6: until construction process is completed
7: Apply global soil update procedure
8: end while
9: Return best solution

It is clear that in the IWD algorithm the soil variable plays the same role as
pheromone in ACO: it represents the numerical information given to the solution
components in order to bias their selection during the stochastic construction
process. Differently from artificial ants in ACO, water drops have associated a
velocity variable. The velocity is an independent property of each water drop,
that is, for different solutions constructed different velocities are obtained. When
one iteration starts, all water drops have the same initial velocity; however, the

306 C. L. Camacho-Villalón et al.

velocity of a water drop is updated as a function of the soil found in the edges it
traverses while building a solution. The value of soil loaded in the water drops
is non-linearly proportional to the heuristic undesirability,3 that is, the inverse
of the time needed for the water drops to move from one solution component to
another.

4 Discussion

Algorithms 1 and 2 show the general structure of the ACO metaheuristic and of
the IWD algorithm. Both are composed of the following three main algorithmic
components:

– a stochastic solution construction mechanism to iteratively construct solu-
tions biased by a quantity (pheromone/soil) associated to solution compo-
nents,

– a local update procedure to improve the search interleaving the construction
mechanism with a local update of pheromone/soil,

– a global update procedure to give a positive feedback via modifications of the
pheromone/soil associated to specific solutions.

In this section, we present a detailed analysis of the two approaches com-
paring their algorithmic components in order to clarify if IWD is in fact a new
algorithm and deserves to be called a novel approach or should rather be con-
sidered a variant of ACO. To this purpose, in Table 1 we schematically present
the algorithmic components proposed in some of the best-known ACO variants:
Ant System (AS) [13–15], Ant System with Q-learning (Ant-Q) [17], MAX-MIN
Ant System (MMAS) [31], Ant Colony System (ACS) [12], Approximate Non-
deterministic Tree-Search procedure (ANTS) [20]; and in IWD.

One difference between IWD and ACO is that in ACO pheromone values are
always positive, while in IWD the value of soil progressively becomes negative.
Unlike ACO pheromones, in IWD the soil is gradually removed by the water
drops, which implies that additional mechanisms have to be introduced to man-
age negative and positive soil values as well as to avoid a possible division by
zero.

Another difference is that IWD constructs solutions biased solely by the
values of soil ; that is, no problem-specific information is used to bias solution
construction, as opposed to what is done in ACO with heuristic information.4

3 The author calls heuristic undesirability the inverse of the heuristic information
used in ACO. For example, in the travelling salesman problem the ACO heuristic
information is commonly defined as ηij = 1/dij , where dij refers to the distance
between city i and city j. In IWD, the heuristic undesirability is, for the same
problem, defined as HUDij = dij .

4 The usage of heuristic information is a way to integrate problem-specific information
in the stochastic solution construction procedure so as to stochastically favor solution
components of lower cost.

Why the IWD Cannot Be Considered as a Novel Algorithm 307

As it is shown in the following, IWD’s local soil update and global soil update
are special cases of the components used to update pheromones in ACO. How-
ever, the function of these components in IWD is different from their typical
function in ACO. The local soil update procedure is the most different due to the
introduction of the water drop velocity and the soil removed from the riverbed,
this latter computed using the linear motion equations and the heuristic unde-
sirability.

4.1 Stochastic Solution Construction

Ants construct solutions adding new solution components with a probability
computed using a transition rule (see second column of Table 1), that is, a func-
tion of the pheromone values and of the heuristic information. The transition
rule not only states which information will be used by ants to choose the next
solution component, but also how the relative importance of such information
will be weighted.

The stochastic solution construction mechanism used in IWD is a particu-
lar case of the random proportional rule of AS proposed in [15], in which the
parameters τ and η are weighted using α = −1 and β = 0.

Equations 1 and 2 show the transition rules in AS and IWD respectively:

pant
j =

[τj]α · [ηj]β∑

h∈Nf

[τh]α · [ηh]β
(1)

piwd
j =

1
ε+g(soilj)∑

h∈Nf

(1
ε+g(soilh)

)
(2)

where Nf is the set of feasible solution components and j is one solution com-
ponent in the search space. The parameter ε is a small positive constant added
to avoid a possible division by zero in Eq. 2.

From the equations, it can be seen that IWD uses a transition rule that
includes only the information given by the soil (i.e., heuristic information is not
used) and that 1/soil is used so as to favor solution components with a low soil
level (as opposed to ACO variants which favor solution components with a high
pheromone level).

Additionally, because the value of soil can become negative, IWD applies a
function g to the value of soil to keep it positive in Eq. 2:

g(soilj) =

⎧
⎨

⎩

soilj if min
h∈Nf

soilj ≥ 0

soilj − min
h∈Nf

soilj otherwise
(3)

308 C. L. Camacho-Villalón et al.

T
a
b
le

1
.
M

a
in

a
lg

o
ri

th
m

ic
co

m
p
o
n
en

ts
u
se

d
in

A
S
,
A

N
T

-Q
,
M

M
A

S
,
A

N
T

S
,
A

C
S

a
n
d

IW
D

.
W

e
d
o

n
o
t

sh
ow

h
er

e
th

e
d
a
em

o
n
a
ct
io
n
s

co
m

p
o
n
en

t
co

m
m

o
n
ly

in
te

g
ra

te
d

in
A

C
O

im
p
le

m
en

ta
ti

o
n
s.

D
a
em

o
n
a
ct
io
n
s

a
re

o
p
ti

o
n
a
l
p
ro

b
le

m
-s

p
ec

ifi
c

o
p
er

a
ti

o
n
s;

fo
r

ex
a
m

p
le

,
th

e
a
p
p
li
ca

ti
o
n

o
f
a

lo
ca

l
se

a
rc

h
p
ro

ce
d
u
re

.
In

th
e

ta
b
le

,
sk

is
th

e
so

lu
ti

o
n

b
u
il
t

b
y

a
n
t

k
,
sb

e
st

is
th

e
so

lu
ti

o
n

b
u
il
t

b
y

th
e

a
n
t

th
a
t

b
u
il
t

th
e

b
es

t
so

lu
ti

o
n
,
a
n
d

iw
d
b
e
st

is
th

e
so

lu
ti

o
n

b
u
il
t

b
y

th
e

w
a
te

r
d
ro

p
th

a
t

b
u
il
t

th
e

b
es

t
so

lu
ti

o
n
.

A
lg

o
r
it

h
m

S
to

c
h
.
s
o
lu

ti
o
n

c
o
n
s
tr

.:
T
r
a
n
s
it

io
n

r
u
le

L
o
c
a
l
u
p
d
a
te

p
r
o
c
e
d
u
r
e

G
lo

b
a
l
u
p
d
a
te

p
r
o
c
e
d
u
r
e

A
S

ra
n
d
o
m

p
ro

p
o
rt

io
n
a
l
ru

le
[τ

j
]α

· [η
j
]β

h
∈

N
f

[τ
h
]α

·[η
h
]β

,

w
h
e
re

N
f

is
th

e
se

t
o
f
fe

a
si
b
le

c
o
m

p
o
n
e
n
t

a
n
t

d
e
n
si
ty

[τ
j

+
Q

1
],

a
n
t

q
u
a
n
ti
ty

[τ
j

+
(Q

2
·η

j
)]
,

w
h
e
re

Q
1

a
n
d

Q
2

a
re

c
o
n
st

a
n
ts

a
n
t

c
y
c
le

(1
−

ρ
)

·τ
j

+
a
n
ts

k
=

1
Δ

τ
k j

,

w
h
e
re

Δ
τ

k j
is

d
e
fi
n
e
d

a
s:

F
(k

)
if

j
∈

s
k

0
o
th

e
rw

is
e

A
N
T
-Q

p
se

u
d
o
-r

a
n
d
o
m

ru
le

⎧ ⎪ ⎨ ⎪ ⎩

a
rg

m
a
x

h
∈

N
f

τ
α h

·η
β h

if
q

≤
q
0

S
o
th

e
rw

is
e

w
h
e
re

S
is

ra
n
d
o
m

v
a
lu

e
fr
o
m

a
p
ro

b
a
b
il
it
y

d
is
tr

ib
u
ti
o
n

g
iv

e
n

b
y

τ
α h

a
n
d

η
β h
,
a
n
d

q
is

ra
n
d
o
m

v
a
lu

e
fr
o
m

a
u
n
if
o
rm

p
ro

b
a
b
il
it
y

d
is
tr

ib
u
ti
o
n

A
Q

-v
a
lu

e
s

le
a
rn

in
g

ru
le

1
−

α
·τ

j
+

α
·

Δ
τ

j
+

γ
·

m
a
x

h
∈

N
f

τ
h

,

w
h
e
re

Δ
τ

j
is

d
e
fi
n
e
d

a
s:

W
c
o

s
t

w
h
e
re

W
is

a
c
o
n
st

a
n
t
a
n
d

c
o

s
t

is
th

e
so

lu
ti
o
n

c
o
st

d
e
la

y
e
d

re
in

fo
rc

e
m

e
n
t

1
−

α
·τ

j
+

α
·

Δ
τ
b
e
st

j
+

γ
·

m
a
x

h
∈

N
f

τ
h

,

w
h
e
re

Δ
τ
b
e
st

j
is

d
e
fi
n
e
d

a
s:

F
(s

b
e
st

)
if

j
∈

s
b
e
st

0
o
th

e
rw

is
e

M
M

A
S

ra
n
d
o
m

p
ro

p
o
rt

io
n
a
l
ru

le
[s
a
m

e
a
s

A
S
]

–

p
h
e
ro

m
o
n
e
s

u
p
d
a
te

ru
le

m
a
x

τ
m

i
n

,
m

in
{τ

m
a

x
,
(1

−
ρ
)

·τ
j

+
Δ

τ
b
e
st

j
}

,

w
h
e
re

Δ
τ
b
e
st

j
is

d
e
fi
n
e
d

a
s:

F
(s

b
e
st

)
if

j
∈

s
b
e
st

0
o
th

e
rw

is
e

A
N
T
S

a
d
d
it
iv

e
ra

n
d
o
m

p
ro

p
o
rt

io
n
a
l
ru

le
α

·τ
j
+

[1
−

α
]·η

j

h
∈

N
f

α
·τ

h
+

[1
−

α
]·η

h

–

tr
a
il

u
p
d
a
te

τ
j

+
Δ

τ
k j

,
w
h
e
re

Δ
τ

k j
is

d
e
fi
n
e
d

a
s:

τ
0

·
1

−
z

c
u

r
r

−
L
B

z
−

L
B

,

w
h
e
re

z
is

th
e

a
v
e
ra

g
e

c
o
st

o
f
th

e
so

lu
ti
o
n
s,

z
c
u

r
r

is
th

e
c
u
rr

e
n
t

c
o
st

o
f
th

e
so

lu
ti
o
n

a
n
d

L
B

is
a

lo
w
e
r

b
o
u
n
d

fo
r

th
e

p
ro

b
le

m

A
C
S

p
se

u
d
o
-r

a
n
d
o
m

p
ro

p
o
rt

io
n
a
l
ru

le
⎧ ⎪ ⎨ ⎪ ⎩

a
rg

m
a
x

h
∈

N
f

{ τ
α h

·η
β h

}
if

q
≤

q
0

[s
a
m

e
a
s

A
S
]

o
th

e
rw

is
e

w
h
e
re

q
is

d
e
fi
n
e
d

a
s

in
A
n
t-

Q

lo
c
a
l
p
h
e
ro

m
o
n
e

u
p
d
a
te

(1
−

ϕ
)

·τ
j

+
ϕ

·τ
0

,

w
h
e
re

τ
0

is
th

e
p
h
e
ro

m
o
n
e

lo
w
e
r

b
o
u
n
d

o
ff
li
n
e

p
h
e
ro

m
o
n
e
s

u
p
d
a
te

(1
−

ρ
)

·τ
j

+
ρ

·Δ
τ
b
e
st

j
if

j
∈

s
b
e
st

τ
j

o
th

e
rw

is
e

,

w
h
e
re

Δ
τ
b
e
st

j
=

F
(s

b
e
st

)

IW
D

ra
n
d
o
m

se
le

c
ti
o
n

1
+

g
(s

o
i
l j

)

h
∈

N
f

1
+

g
(s

o
i
l h

)

lo
c
a
l
so

il
u
p
d
a
te

(1
−

ϕ
)

·s
o

i
l j

−
ϕ

·Δ
s

o
i
l j

,

w
h
e
re

Δ
s

o
i
l j

is
d
e
fi
n
e
d

in
E
q
u
a
ti
o
n
s

6
,7

a
n
d

8

g
lo

b
a
l
so

il
u
p
d
a
te

(1
+

ρ
)

·s
o

i
l j

−
ρ

·Δ
s

o
i
lb

e
st

j
if

j
∈

i
w

d
b
e
st

s
o

i
l j

o
th

e
rw

is
e

,

w
h
e
re

Δ
s

o
i
lb

e
st

j
=

F
(i

w
d
b
e
st

)

Why the IWD Cannot Be Considered as a Novel Algorithm 309

4.2 Local Update Procedure

The local pheromone update procedure allows the artificial ants to give a negative
or a positive feedback to other ants while constructing solutions5 so as to avoid
stagnation6. ACO variants implementing the idea of local negative feedback are,
for example, Ant-Q [17] and ACS [12]. In the Ant-Q algorithm, pheromones are
called AQ-values and the goal of the artificial ants is to learn these values (see
AQ-values learning rule in Table 1) so that they can probabilistically favor better
solution components.

IWD implements a variant of the AQ-values learning rule of Ant-Q, where
parameter γ is set to γ = 0, and Δsoilj is defined differently from Δτj (see
Eqs. 6, 7 and 8). In fact, Δsoilj is the only real difference between IWD and
what had already been proposed in the context of the ACO metaheuristic. The
implementation of this component in Ant-Q and IWD is shown in Eqs. 4 and 5,
respectively:

τj = (1 − α) · τj + α · [
Δτj + γ · max

h∈Nf
τh

]
(4)

soilj = (1 − ϕ) · soilj − ϕ · Δsoilj (5)

Equation 4 interpolates between the current pheromone value τj and the
maximum pheromone over the possible next components; it simulates the change
in the amount of pheromone due to evaporation and ant deposit. In Ant-Q,
Equation 4 is used for both local and global reinforcement, the former applied
after a solution component is selected during the solution construction, and
the latter applied after the construction process finishes and all solutions are
completed. However, in most Ant-Q implementations Δτj is defined as zero for
the local pheromone update and as 1/costbest for the global pheromone update
[11,17,19].

Parameters α and γ are the learning step and the discount factor, respec-
tively. The values chosen for these two parameters can favor the exploration or
the exploitation behavior of the algorithm. The application of Eq. 4 can either
enhance or reduce the exploration capabilities of Ant-Q by slightly reducing or
increasing (depending on the values of γ and max τh) the pheromones. In a later
ACO variant, ACS, a similar idea was proposed where γ · max τh was replaced
by a small constant τ0.

On the other hand, Eq. 5 intends to model the erosion of soil by water drops.
In the metaphor of the IWD algorithm, water drops remove part of the soil every
time a solution component is added. In practice, the local soil update procedure
slightly increases the probability of one solution component to be selected by
other water drops (in IWD lower soil values are preferred), thus implementing a

5 Note that the idea of giving a positive feedback during the construction process was
explored in some of the first ACO variants: ant quantity and ant density [10,13]
However, these variants were abandoned many years ago because of their inferior
performance compared with other ACO variants.

6 Stagnation happens when the pheromones trails converge and all ants construct the
same solutions over and over again.

310 C. L. Camacho-Villalón et al.

form of positive feedback. The amount of soil removed by a water drop, Δsoilj ,
is computed using the linear motion equations of physics. As said in Sect. 3,
different water drops have different velocities. The initial water drops velocity is
a user selected parameter and its value should be selected empirically by running
experiments on the considered problem. In fact, its value can greatly vary from
problem to problem; for example, in [27], where the traveling salesman problem
is considered, the water drops initial velocity is set 200, while in [26], where the
problem considered is the multidimensional knapsack problem, the water drops
initial velocity is set to 4. Once a solution component j has been added, the
velocity of a water drop veliwd is updated according to

veliwd = veliwd +
av

bv + cv × [soilj]2
(6)

where av, bv, cv and soilj are also user selected parameters. The time required by
the water drop to move from the current solution component to the next one is
computed dividing the heuristic undesirability (HUDj) by the water drop’s new
velocity. HUDj represents the distance in the linear motion equation V = d/t,
which, hence, becomes

timeiwd =
HUDj

veliwd
(7)

Finally, the amount of soil to be removed and to be loaded into the water drop is
a function of the time taken by the water drop to move between the two solution
components:

Δsoilj =
as

bs + cs × [timeiwd]2
(8)

Δsoilj tends to be larger for solution components with lower soil values
or for those with small heuristic undesirability. In Eqs. 6 and 8, parameters bv

and bs are used to avoid a possible division by zero. Typical values for the
user selected parameters in the above equations are av = 1, bv = 0.01, cv = 1,
as = 1, bs = 0.01, cs = 1, and for the initial value of soil 10 000 [27].

The velocity can be seen as an indicator of the quality of the partial solution
constructed so far, that is, faster water drops have traversed edges with lower
soil. However, putting the desirability of a solution component in terms of the
velocity (quality of a partial solution) and of the heuristic information, as is
defined for Δsoilj , is rather similar to the abandoned idea of ant quantity (see
AS local update procedure in Table 1). Moreover, the local soil update component
cannot be explained in terms of the inspiring metaphor. For example, if soil is
removed, it is unclear why then the new amount of soil is computed by an
equation such as Eq. 5 that uses a decay factor ϕ (and not simply by subtracting
Δsoilj from the current soil value). Additionally, the metaphor of water drops
acting as individual particles removing the soil in the riverbeds is unrealistic, as
water in a river should rather be seen as a moving fluid.

4.3 Global Update Procedure

The global pheromone update procedure in ACO is performed at the end of an
iteration once all solutions have been completed. The main goal of this procedure

Why the IWD Cannot Be Considered as a Novel Algorithm 311

is to give a positive feedback to the solution components included in a set of
solutions that is used to deposit pheromones; common choices in ACO algorithms
are using the iteration-best or global-best solution, but other options have been
examined. Solution components that receive a higher amount of pheromone will
have a higher probability of being selected by other ants in the next iterations.

The global soil update is a special case of the offline pheromone update in
ACS, in which the parameter ρ has a range defined in the interval [−1, 0], dif-
ferently from its typical range defined in (0, 1]. Eqs. 9 and 10 show the definition
of this component in ACO and IWD7 respectively:

τj =

{
(1 − ρ) · τj + ρ · Δτ best

j if j ∈ sbest

τj otherwise
(9)

soilj =

{
(1 + ρ) · soilj − ρ · Δsoilbest

j if j ∈ iwdbest

soilj otherwise
(10)

where the parameter Δτ best
j is commonly defined as the inverse of the total

cost of the solution (1/costbest), while Δsoilbest
j is proportional to the soil gath-

ered by the best water drop divided by the number of solution components
(soilbest/N best).

The global soil update procedure, as defined in [27], has two different outcomes
depending on the value of soilj in the solution component. Let us consider the
first summand in the first case in Eq. 10, (1 + ρ) · soilj . It is easy to see that if
soilj > 0, the resulting value of the first summand will be positive and therefore
it will contribute with a negative feedback to the solution component. In the
opposite case, when soilj < 0, the product (1 + ρ) · soilj will be negative and
therefore the first summand will contribute with a positive feedback to the solu-
tion component. In other words, the first summand can either increase the value
of soil if soilj > 0, or decrease it if soilj < 0. Regarding the second summand in
the first case of Eq. 10, −ρ · Δsoilbest

j , the value of Δsoilbest
j is defined as always

positive (see Eq. 8) and as we have it multiplied by −ρ, the result of this second
summand will always be negative.

5 Conclusions

As the IWD algorithm, there are many other algorithms published as novel
nature-inspired approaches in the metaheuristics literature. In fact, the already
large number of these so-called novel approaches has made the selection of opti-
mization algorithms troublesome, specially for those who use them for specific
application problems and do not necessarily have a deep knowledge in the field

7 There are two versions of this component in IWD. In [25], the first article proposing
IWD, ρ was defined in the range [0, 1] (just as in Eq. 9). However, in a later publi-
cation [27], the range of ρ was changed to [−1, 0], leading to a somewhat different
behavior of the update as explained here.

312 C. L. Camacho-Villalón et al.

of metaheuristics. The very few existing, rigorous analyses of novel algorithms
have shown in some selected cases that either (i) they simply re-use ideas pro-
posed in the past [24,32], or that (ii) the scientific rationale behind the source
of inspiration is incongruous and questionable [21,29].

In this paper, we contribute to such rigorous analyses by examining in more
detail the Intelligent Water Drops (IWD) algorithm. In particular, we have shown
that the algorithmic components proposed in IWD are not new and that they
mainly have been proposed in the context of ant colony optimization (ACO) often
already one or two decades earlier. More concretely, we found that the stochastic
construction mechanism of IWD is a special case of the random proportional rule
proposed in AS, the very first ACO algorithm. The local soil update component
is a slight variant of the AQ-values learning rule that was proposed in the Ant-Q
algorithm, a predecessor of ACS. The only, small, difference of IWD with earlier
ACO algorithms is the definition of the Δsoilj term in the local soil update;
unfortunately, the rationale behind the definition of Δsoilj and the definition of
the local soil update component cannot be explained in terms of the source of
inspiration of IWD. Finally, the global update procedure is a special case of the
offline pheromone update proposed in ACS.

If we reconsider the two main criteria we have defined in the introduction,
namely the fact that (i) it should not be possible to express the same algorithmic
ideas using the terminology of already existing algorithms, and (ii) the inspiring
metaphor should bring some new concepts that are related to the optimization
process proposed, we can summarize the analysis of our article by saying that
the IWD algorithm fails on both criteria.

Acknowledgments. Marco Dorigo and Thomas Stützle acknowledge support from
the Belgian F.R.S.-FNRS, of which they are Research Directors.

References

1. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective opti-
mization problems. In: 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007), vol. 1, pp. 450–457. IEEE Computer Society Press, Los
Alamitos, CA (2007)

2. Askarzadeh, A.: Bird mating optimizer: an optimization algorithm inspired by bird
mating strategies. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1213–1228 (2014)

3. Birattari, M., Balaprakash, P., Dorigo, M.: The ACO/F-RACE algorithm for com-
binatorial optimization under uncertainty. In: Doerner, K.F., Gendreau, M., Greis-
torfer, P., Gutjahr, W.J., Hartl, R.F., Reimann, M. (eds.) Metaheuristics - Progress
in Complex Systems Optimization, Operations Research/Computer Science Inter-
faces Series, vol. 39, pp. 189–203. Springer, New York (2006). https://doi.org/10.
1007/978-0-387-71921-4

4. Blum, C.: Beam-ACO–hybridizing ant colony optimization with beam search: an
application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

5. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Trans. Syst. Man, Cybern. - Part B 34(2), 1161–1172 (2004)

https://doi.org/10.1007/978-0-387-71921-4
https://doi.org/10.1007/978-0-387-71921-4

Why the IWD Cannot Be Considered as a Novel Algorithm 313

6. Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for
the vehicle routing problem. Ann. Oper. Res. 89, 319–328 (1999)

7. Cordón, O., de Viana, I.F., Herrera, F., Moreno, L.: A new ACO model integrat-
ing evolutionary computation concepts: the best-worst ant system. In: Dorigo, M.,
et al. (eds.) Abstract Proceedings of ANTS 2000 - From Ant Colonies to Artifi-
cial Ants: Second International Workshop on Ant Algorithms, pp. 22–29. IRIDIA,
Université Libre de Bruxelles, Belgium, 7–9 September 2000

8. Cuevas, E., Miguel, C., Zald́ıvar, D., Pérez-Cisneros, M.: A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16),
6374–6384 (2013)

9. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing
exploratory pattern of the Argentine Ant. J. Insect Behav. 3(2), 159–168 (1990).
https://doi.org/10.1007/BF01417909

10. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Dipar-
timento di Elettronica, Politecnico di Milano, Italy (1992). (in Italian)

11. Dorigo, M., Gambardella, L.M.: A study of some properties of Ant-Q. In: Voigt,
H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS,
vol. 1141, pp. 656–665. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61723-X 1029

12. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-
roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66
(1997)

13. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: An autocatalytic opti-
mizing process. Technical report, 91–016 Revised, Dipartimento di Elettronica,
Politecnico di Milano, Italy (1991)

14. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy.
Technical report, 91–016, Dipartimento di Elettronica, Politecnico di Milano, Italy
(1991)

15. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. - Part B 26(1), 29–41 (1996)

16. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA
(2004)

17. Gambardella, L.M., Dorigo, M.: Ant-Q: a reinforcement learning approach to the
traveling salesman problem. In: Proceedings of the Twelfth International Confer-
ence on Machine Learning, ML 1995, pp. 252–260. Morgan Kaufmann Publishers,
Palo Alto (1995)

18. Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni,
S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002.
LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46004-7 8

19. Machado, L., Schirru, R.: The Ant-Q algorithm applied to the nuclear reload prob-
lem. Ann. Nucl. Energy 29(12), 1455–1470 (2002)

20. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

21. Melvin, G., Dodd, T.J., Groß, R.: Why ‘GSA: a gravitational search algorithm’ is
not genuinely based on the law of gravity. Natural Comput. 11(4), 719–720 (2012)

22. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95,
51–67 (2016)

23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

https://doi.org/10.1007/BF01417909
https://doi.org/10.1007/3-540-61723-X_1029
https://doi.org/10.1007/3-540-61723-X_1029
https://doi.org/10.1007/3-540-46004-7_8
https://doi.org/10.1007/3-540-46004-7_8

314 C. L. Camacho-Villalón et al.

24. Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M.: How novel is the “novel”
black hole optimization approach? Inf. Sci. 267, 191–200 (2014)

25. Shah-Hosseini, H.: Problem solving by intelligent water drops. In: Proceedings of
the 2007 Congress on Evolutionary Computation, CEC 2007, pp. 3226–3231. IEEE
Press, Piscataway (2007)

26. Shah-Hosseini, H.: Intelligent water drops algorithm: a new optimization method
for solving the multiple knapsack problem. Int. J. Intell. Comput. Cybern. 1(2),
193–212 (2008)

27. Shah-Hosseini, H.: The intelligent water drops algorithm: a nature-inspired swarm-
based optimization algorithm. Int. J. Bio-Inspired Comput. 1(1–2), 71–79 (2009)

28. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185(3), 1155–1173 (2008). https://doi.org/10.1016/j.ejor.2006.06.046

29. Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015). https://doi.org/10.1111/itor.12001

30. Stützle, T., Hoos, H.H.: The MAX −MIN and local search for the traveling
salesman problem. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) Proceedings of the
1997 IEEE International Conference on Evolutionary Computation, ICEC 1997,
pp. 309–314. IEEE Press, Piscataway (1997)

31. Stützle, T., Hoos, H.H.: MAX −−MIN Ant system. Future Gener. Comput.
Syst. 16(8), 889–914 (2000)

32. Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research
community can be misled by a “novel” methodology. Int. J. Appl. Metaheuristic
Comput. 12(2), 50–60 (2010)

https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1111/itor.12001

Short Papers

A Cooperative Opposite-Inspired
Learning Strategy for Ant-Based

Algorithms

Nicolás Rojas-Morales1(B), Maŕıa-Cristina Riff1, Carlos A. Coello Coello2,
and Elizabeth Montero1

1 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
nicolasrojas@acm.org

2 CINVESTAV-IPN (Evolutionary Computation Group), Mexico City, Mexico

Abstract. In recent years, there has been an increasing interest in
Opposite Learning strategies. In this work, we propose COISA, a Coop-
erative Opposite-Inspired Strategy for Ants. Inspired on the concept of
anti-pheromone, in this approach, sub-colonies of ants perform differ-
ent search processes to construct an initial pheromone matrix. We aim
to produce a repel effect to (temporarily) avoid components that were
related to an undesirable characteristic. To assess the effectiveness of
COISA, we selected Ant Knapsack, a well-known ant-based algorithm
that efficiently solves the Multidimensional Knapsack Problem. Results
in benchmark instances show that the performance of Ant Knapsack
is improved considering the opposite information, so that it can reach
better solutions than before.

1 Introduction

We propose here an Opposite-Inspired Learning strategy where the search pro-
cess of an ant-based algorithm is divided into two steps: a First Step used to
identify a uD-characteristic from complete instantiations and a Second Step used
to solve the problem of interest. Three sub-colonies of ants cooperate obtain-
ing information during the First Step. Such information will be considered in
the Second Step to change its decisions during the construction process. Each
sub-colony performs a search process defined by a Method. Here, we propose a
collaboration between these Methods that were previously proposed in [10,11].
Sections 2 and 3 present details of our proposed strategy.

Opposite Learning (OL) is a search strategy that has been applied for map-
ping candidate solutions with the objective of increasing the coverage of the
solution space [5]. Opposition-Inspired Learning (OIL) [12] was proposed con-
sidering that, in some cases, the idea of mapping solutions is not intuitive because
of some algorithm-specific properties. Some previous OIL ant-based approaches
have been proposed [2,4,6,7]. In our case, the term opposite is related to the pos-
sible decisions made by ant-based algorithms, that could lead the search process
towards poor quality candidate solutions.
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 317–324, 2018.
https://doi.org/10.1007/978-3-030-00533-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_25&domain=pdf

318 N. Rojas-Morales et al.

To evaluate our strategy, we selected the well-known Ant Knapsack (AK)
algorithm [1] originally proposed for solving the Multidimensional Knaspsack
Problem (MKP). The implementation in AK is described in Sect. 4. It is impor-
tant to mention, however, that our objective is not to propose the best algorithm
for the MKP. The idea is to evaluate the use of a learning strategy to focus the
search process of a specific ant-based algorithm.

2 An OIL Strategy for Ant-Based Algorithms

Let’s assume a combinatorial problem P and an ant-based algorithm A. We
are interested in improving the search process of A, in terms of the quality of
the solutions that A can build. For this, we are interested in providing useful
information to A in order to improve its intermediate decisions. Let’s assume
that each ant k of A incrementally constructs a complete instantiation of a
solution IkC , making stochastic intermediate decisions to include components
into a partial instantiation IkP .

In most cases, components are included in IkC because a certain preference
related to their heuristic knowledge (η) and pheromone information (τ) was
considered in the intermediate decisions of A. As η is particularly defined in A
and the information in the pheromone matrix is limited by the vertices which
were already visited during the current execution, in some cases, the information
provided to perform intermediate decisions might be poor. Considering that P

is complex to solve, this information can affect some intermediate decisions and
lead the construction process to solutions with less quality than expected.

Let’s assume that IkC has some characteristic w that can be measurable and
related to: a structural property of IkC , a quality feature of IkC , a feature related to
the (in)feasibility in IkC , and a problem-specific property feature not detectable
by A, among others. During the construction process of IkC , intermediate deci-
sions are biased giving priority to some components that look more promis-
ing than others. We name this characteristic as undesirable (uD) because these
intermediate decisions prefer components that are locally interesting, but finally
produced that F (IkC) < F (I∗

C).1 It is important to remark that this charac-
teristic is not inherent to the problem P, but it cannot be perceptible by the
current pheromone information and by the heuristic knowledge, as it is specifi-
cally defined in A. We propose to learn about this uD−characteristic w in IkC to
decrease the attraction to components that A considers promising. The objec-
tive is to allow A to consider other intermediate decisions during its construction
process and, finally, obtain better quality solutions.

Let S(A,i) be a set of complete instantiations obtained by A during its ith

iteration and w a uD-characteristic. As w is measurable, solutions in S(A,i) can be
compared considering the presence of a uD-characteristic. We define Sw

(A,i) as the
set of complete instantiations that have more presence of w. As the pheromone
produces a modification of the way in which the problem is represented and
1 Considering that P is a maximization problem with an objective function F and I∗

C

is an optimal solution.

A Cooperative Opposite-Inspired Learning Strategy 319

perceived by artificial ants [3], we decided to use the pheromone to learn about
the uD-characteristics. Our hypothesis is the following: if we consume a certain
amount of resources in identifying and learning about some uD-characteristic w
in S(A,i), the search process could be further focused making decisions using this
knowledge so that we can obtain complete instantiations of a better quality. For
this, we propose to divide the search process of A into two steps.

2.1 Division of the Process

First, we propose to divide the search process of A into two steps: a First Step
(FS) to learn about w in S(A,i) and a Second Step (SS) performed by A using the
knowledge obtained in the FS. Inspired in the concept of anti-pheromone [13],
the idea is to produce a repellent effect to some pairs of components of solutions
in Sw

(A,i), allowing A to consider other components that, originally, would not
be included. From now on, the pheromone used during the FS will be called
anti-pheromone. As A was designed, normal pheromone is used during the SS.

Let A◦ be an ant-based algorithm that will perform the FS and let’s use anti-
pheromone to decrease the attraction of paths that are related with complete
instantiations in Sw

(A,i). The definition of the representation for P and the state
transition rule of A◦ is the same as in A. The FS is performed by A◦ consuming
an amount B∗maxRes of resources2, where B ∈ [0, 1] is a parameter that defines
the budget of resources designed for the learning step. At the end of the FS, an
initial pheromone matrix will be obtained and used by A. Finally, A performs
its search process considering the remaining (1 − B) ∗ maxRes resources.

2.2 Methods

In order to explore and compare different possibilities to identify a uD-cha-
racteristic, we propose three different Methods. Each method will consider a
different definition for the heuristic knowledge and anti-pheromone management
for A◦. The methods are named Soft Opposite-Learning (SOL), Worst Opposite-
Learning (WOL) and Half Opposite-Learning (HOL).

SOL: This method is focused on identifying a uD-characteristic related to the
quality of complete instantiations but trying to perform a similar search process
as in A. For this, η of A◦ will be the same as in A. On the other hand, anti-
pheromone will be decreased in edges that are related to the lowest quality
solution of each iteration. The information obtained during a FS performed by
the SOL method will reduce the level of attraction produced by the heuristic
knowledge in the corresponding intermediate decisions of A.

WOL: This method is focused on evaluating the effect of taking totally opposed
decisions to the objective of the problem P. For this, the heuristic knowledge

2 These resources can be execution time, a fixed number of evaluations, and conflict
checks, among others. In general, the amount of resources can be defined considering
how A was originally evaluated.

320 N. Rojas-Morales et al.

should be inverted in each intermediate decision (Eq. 1), where Jk(i) is a list of
candidate components, ηA

ij is the heuristic knowledge of A, and the maximum
and minimum heuristic knowledge of values of the current decision are also con-
sidered. Here, the construction process is biased towards actual poor quality
solutions by the translated heuristic information and the anti-pheromone. Fur-
thermore, components of the lowest quality solution obtained will be marked
with anti-pheromone at each iteration.

ηA◦
ij = max

u∈Jk(i)
(ηA

iu) + min
u∈Jk(i)

(ηA
iu) − ηA

ij (1)

HOL: This method is focused on detecting a problem-specific uD-characteristic
w. In order to detect this problem-specific feature, the heuristic knowledge ηA◦

should be redefined in A◦. The construction process should be guided considering
new information from ηA◦

, allowing the search process to consider information
in the presence of w in the complete instantiations obtained. Anti-pheromone
will be used to reinforce the objective of ηA◦

.

3 Cooperation Between Sub-colonies

In our proposed approach, three sub-colonies of ants cooperate in the construc-
tion of a pheromone matrix. Each sub-colony focuses in obtaining information
about a uD-characteristic and is guided by one Method. During the FS, all ants
consider the same anti-pheromone matrix M to construct solutions. At the end of
each iteration, anti-pheromone will be updated by antSOL, antHOL and antWOL

considering the following rule:

antiτnew
ij = antiτold

ij − ΔSOL
ij − ΔHOL

ij − ΔWOL
ij (2)

where ΔSOL
ij , ΔHOL

ij and ΔWOL
ij are the decreased amounts of antipheromone. As

the collaboration of these three sub-colonies can be time consuming, we decided
to execute the FS in parallel and the SS is executed sequentially. COISA was
implemented in POSIX Threads. Two types of threads will be considered: con-
structor or manager threads. Considering a total of N threads and m ants, one
manager thread will be focused on the pheromone management and (N − 1)
constructor threads are focused in constructing and evaluating solutions. The
manager thread waits until all constructor threads finish, using a barrier, to con-
struct their tasks to update the pheromone matrix M . For the synchronization
of all the threads, a barrier, a conditional variable and a mutex are used.

4 Case Study: Multidimensional Knapsack Problem

Multidimensional Knapsack Problem (MKP) is an NP-hard combinatorial opti-
mization problem. It considers a set of objects and a knapsack with T dimensions,
each one with a maximium capacity defined (bt). Each object has a defined profit

A Cooperative Opposite-Inspired Learning Strategy 321

pi and weight wit in each problem dimension t. The idea is to select a subset of
objects maximizing the total profit, satisfying each capacity constraint.

Here, we introduce COISA into Ant Knapsack [1] (AK), a well-known ACO
algorithm designed for solving the MKP. AK is a MAX − MIN Ant Sys-
tem [14] that constructs feasible complete instantiations. Pheromone represents
the desirability of including pairs of objects simultaneously. The heuristic knowl-
edge is defined as: ηIk

P
(oj) = pj

∑T
t=1

wjt
CCt

, where CCt is the Current Capacity in

dimension t (defined as CCt = bt−
∑

ov∈Ik
P

wvt). Pheromone is deposited in each
pair of objects of the best quality solution found of each iteration (Lb i). Here,
an amount of Δτ = 1

1+|F (Lb f)−F (Lb i)| is deposited, considering that Lb f is the
best solution found during the execution.

4.1 Details of the Implementation

This section presents some details that should be considered before the imple-
mentation of COISA in AK. First, the amount of anti-pheromone Δantiτ is
defined similarly as in AK. In this case, the worst solution found in the cur-
rent iteration (Lw i) and the worst solution found during the execution (Lw f)
are considered. Moreover, as in AK, one ant per sub-colony will be allowed to
deposit anti-pheromone during the FS. In order to obtain information without
any perturbation, the evaporation is not considered during the FS.

SOL and WOL methods are implemented as was already explained in
Sect. 2.2. For the HOL method, it is necessary to define a heuristic knowledge
for guide its search process. In this case, we considered the same η used in [11]:
ηIk

P
(oj) = pj∑T

t=1 RCt
, where RCt is the remaining capacity in the dimension t

defined as RCt = bt − wjt. In this case, the uD−characteristic points to identify
the core of objects for which it is hard to decide if they will be part of an opti-
mal solution or not [8]. Moreover, anti-pheromone will mark the lower quality
solution of each iteration.

5 Experiments and Results

We considered two sets of 30 instances from the OR Library proposed by Chu
and Beasley: 10×100 (10 dimensions and 100 objects) and 5×100 (5 dimensions
and 100 objects). In order to compare the collaboration between the three sub-
colonies, we present results by each method independently: SOL-AK, HOL-AK
and WOL-AK. For all the executions we considered a number of ten threads. The
hardware platform used was a Power Edge R630 server with 2 Intel(R) Xeon(R)
CPUE5-2680v3 @ 2.50 GHz, 128 GB of RAM using Ubuntu x64 16.10 distribu-
tion. We considered the same parameter values proposed in [1]: α = 1, β = 5,
ρ = 0.01, NTotal = 30, τmax = 6 and τmin = 0.01. To determine the parame-
ter values for our approaches we used Evolutionary Calibrator (EVOCA) [9], a
parameter tuner algorithm, considering randomly selected instances from both
sets. The objective was to obtain the number of ants for each sub-colony and the

322 N. Rojas-Morales et al.

Table 1. Results for set 10 × 100 from OR library

AK COISA-AK SOL-AK HOL-AK WOL-AK
BK

AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST
1 23064 23016.0 42.2 23064 23014.3 46.4 23064 22998.6 47.5 23057 23008.0 41.0 23064 23006.7 42.7 23064
2 22801 22714.0 67.2 22801 22702.2 83.8 22801 22713.8 66.5 22801 22694.6 58.3 22801 22693.6 69.4 22801
3 22131 22034.0 66.9 22131 22046.6 56.0 22131 22024.4 69.7 22131 22008.2 69.9 22131 22035.5 65.3 22131
4 22772 22634.0 60.6 22717 22613.3 63.9 22763 22623.4 64.0 22772 22598.2 73.7 22772 22601.7 53.8 22709
5 22751 22547.0 66.3 22654 22559.2 47.6 22654 22543.2 70.8 22697 22533.0 66.9 22697 22542.7 51.4 22697
6 22777 22602.0 63.3 22716 22593.4 46.8 22716 22610.3 51.4 22716 22594.7 46.0 22664 22591.9 40.5 22675
7 21875 21777.0 44.9 21875 21790.8 36.7 21875 21773.4 45.5 21875 21780.1 48.6 21875 21774.3 54.2 21875
8 22635 22453.0 89.2 22551 22498.8 54.1 22635 22512.0 40.6 22551 22511.7 57.8 22635 22500.1 57.5 22635
9 22511 22351.0 69.4 22511 22379.6 47.0 22511 22369.7 40.3 22438 22362.4 51.6 22511 22352.2 62.5 22511
10 22702 22591.0 88.5 22702 22616.0 102.9 22702 22600.1 99.8 22702 22576.5 91.0 22702 22572.9 88.8 22702
1 41395 41329.0 48.5 41395 41324.1 47.4 41395 41329.1 49.8 41395 41312.4 51.8 41393 41309.0 48.7 41395
2 42344 42214.0 49.5 42344 42233.5 47.0 42344 42232.2 60.4 42344 42210.2 45.5 42344 42221.4 54.9 42344
3 42401 42300.0 58.1 42401 42309.0 38.4 42401 42311.5 41.7 42401 42316.1 47.2 42401 42313.6 43.5 42401
4 45624 45461.0 73.6 45624 45484.2 69.4 45624 45450.2 70.9 45585 45462.3 71.6 45585 45474.4 64.2 45598
5 41884 41739.0 57.3 41884 41770.0 53.0 41884 41769.9 52.0 41884 41758.8 53.0 41884 41750.4 50.2 41884
6 42995 42909.0 76.3 42995 42910.6 76.5 42995 42898.8 72.7 42995 42891.3 78.1 42995 42923.4 69.8 42995
7 43574 43464.0 71.7 43553 43466.9 50.0 43553 43470.0 43.0 43553 43479.0 47.6 43553 43463.7 46.5 43552
8 42970 42903.0 47.7 42970 42904.7 39.4 42970 42901.5 48.1 42970 42924.6 35.3 42970 42915.2 40.1 42970
9 42212 42146.0 48.0 42212 42167.3 39.8 42212 42165.7 39.7 42212 42160.6 38.4 42212 42162.5 42.2 42212
10 41207 41067.0 89.7 41207 41098.7 36.9 41207 41085.9 39.0 41134 41093.5 38.3 41207 41077.7 44.8 41207
1 57375 57318.0 59.5 57375 57295.9 66.1 57375 57307.8 68.1 57375 57311.7 74.1 57375 57321.9 61.3 57375
2 58978 58889.0 40.2 58978 58914.2 32.4 58978 58899.4 54.6 58978 58886.4 43.3 58934 58898.1 24.1 58978
3 58391 58333.0 29.5 58391 58337.7 26.3 58391 58321.2 47.8 58391 58326.8 32.5 58391 58335.4 27.2 58391
4 61966 61885.0 42.4 61966 61891.2 36.4 61966 61876.0 47.9 61966 61873.9 40.6 61966 61882.7 36.6 61966
5 60803 60798.0 5.0 60803 60800.6 3.0 60803 60799.9 3.2 60803 60800.5 3.1 60803 60800.0 5.2 60803
6 61437 61293.0 52.7 61437 61295.3 55.6 61437 61294.1 52.6 61437 61288.3 48.6 61437 61297.5 52.5 61437
7 56377 56324.0 35.7 56377 56319.0 35.4 56377 56311.0 47.0 56377 56313.9 49.1 56377 56328.3 33.8 56377
8 59391 59339.0 53.3 59391 59340.7 42.6 59391 59331.5 51.4 59391 59331.2 53.0 59391 59341.3 37.5 59391
9 60205 60146.0 62.6 60205 60167.7 50.7 60205 60123.1 73.5 60205 60096.8 70.9 60205 60155.8 56.9 60205
10 60633 60605.0 36.1 60633 60613.9 32.2 60633 60589.4 47.6 60633 60571.7 48.4 60633 60613.5 30.7 60633

budget B. The obtained parameter values after 3500 evaluations of EVOCA are:
(1) for COISA are NSOL = 16, NHOL = 11, NWOL = 8 and B = 0.211, (2) for
SOL are NSOL = 20 and B = 0.241, (3) for HOL are NHOL = 2 and B = 0.422,
(4) for WOL are NHOL = 16 and B = 0.408. Table 1 shows the results obtained
for the 10× 100 set and Table 2 shows the results for the 5× 100 set. We consid-
ered 50 independent runs per instance, each with 60000 evaluations (maxRes).
Light grey cells show the best average quality (AVG) of the 50 seeds and dark
grey cells show the Best quality solution obtained. Also, the standard deviation
(SDV) is shown for each instance and algorithm. First, results show that AK
could find most of the best known solutions for the instances from both sets
(51 of the 60 instances). Moreover, COISA-AK outperformed AK obtaining the
best known solution in 53 of the 60 instances. This shows that the collaboration
between sub-colonies is better than each method on their own. Regarding the
average quality, results show that AK obtained better results in the 5 × 100 set
and COISA-AK was better for the 10×100 set. Finally, considering the indepen-
dent and the cooperative approaches, all the best known solutions can be found
using opposite information. The non-parametric Wilcoxon test was applied to
assess that these algorithms are statistically different (pvalue = 0.01). About
the Speedup obtained by COISA-AK, the average was 1.8, with a maximum of
4.9 and a minimum of 1.4. As the FS only consumes 20% of the evaluations,
these metrics show the positive effect of using a parallel architecture.

A Cooperative Opposite-Inspired Learning Strategy 323

Table 2. Results for set 5 × 100 from OR library

AK COISA-AK SOL-AK HOL-AK WOL-AK
BK

AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST AVG SDV BEST
1 24381 24342.0 29.3 24381 24340.6 29.0 24381 24329.4 38.2 24381 24335.1 35.3 24381 24330.4 31.4 24381
2 24274 24247.0 38.5 24274 24241.2 35.1 24274 24234.9 42.8 24274 24246.0 33.5 24274 24229.2 38.8 24274
3 23551 23529.0 8.0 23551 23527.2 9.2 23551 23526.3 13.6 23551 23525.6 14.1 23551 23527.1 11.9 23551
4 23534 23462.0 32.6 23534 23460.1 32.7 23527 23453.3 44.4 23534 23458.4 34.8 23527 23457.8 30.2 23511
5 23991 23946.0 31.8 23991 23942.5 26.8 23991 23934.2 33.8 23991 23940.1 35.0 23991 23950.5 29.0 23991
6 24613 24587.0 31.3 24613 24585.3 25.8 24613 24583.0 28.9 24613 24573.3 34.2 24613 24579.2 28.8 24613
7 25591 25512.0 43.8 25591 25521.8 41.3 25591 25524.2 47.8 25591 25506.2 39.7 25591 25509.5 45.9 25591
8 23410 23371.0 30.3 23410 23375.1 33.5 23410 23378.2 29.6 23410 23378.8 29.4 23410 23381.5 31.9 23410
9 24216 24172.0 32.9 24216 24177.0 31.1 24216 24171.7 32.7 24216 24163.1 38.0 24216 24164.5 39.3 24216
10 24411 24356.0 44.3 24411 24346.1 45.8 24411 24340.5 44.5 24411 24342.9 47.2 24411 24346.7 44.8 24411
1 42757 42704.0 14.3 42757 42706.5 25.4 42757 42709.8 21.0 42757 42700.6 11.4 42757 42701.6 14.8 42757
2 42545 42456.0 15.8 42510 42458.4 14.6 42471 42459.5 12.9 42494 42455.0 21.3 42545 42458.8 25.4 42545
3 41968 41934.0 22.3 41967 41939.8 15.9 41968 41935.2 23.0 41967 41930.9 26.3 41967 41930.8 27.7 41967
4 45090 45056.0 24.0 45071 45056.1 24.1 45071 45058.3 23.1 45071 45041.0 29.4 45071 45049.4 31.7 45071
5 42218 42194.0 33.2 42218 42201.9 31.4 42218 42196.0 31.2 42218 42189.6 41.8 42218 42202.2 28.1 42218
6 42927 42911.0 33.3 42927 42913.5 32.6 42927 42903.5 40.8 42927 42913.0 34.0 42927 42908.0 39.5 42927
7 42009 41977.0 45.2 42009 41985.2 40.9 42009 41978.9 42.9 42009 41984.6 40.6 42009 41978.0 49.0 42009
8 45020 44971.0 32.5 45010 44988.8 22.1 45020 44984.4 29.2 45020 44969.9 35.5 45010 44979.7 31.9 45010
9 43441 43356.0 38.5 43441 43349.1 42.9 43441 43353.6 49.7 43441 43345.1 40.9 43441 43347.1 40.7 43441
10 44554 44506.0 25.2 44554 44512.8 23.5 44554 44513.9 25.5 44554 44510.4 28.2 44554 44515.8 25.2 44554
1 59822 59821.0 3.2 59822 59822.0 0.0 59822 59815.1 20.2 59822 59822.0 0.0 59822 59822.0 0.0 59822
2 62081 62010.0 47.1 62081 62010.7 44.1 62081 62003.6 44.8 62081 61994.7 31.0 62081 62011.0 49.0 62081
3 59802 59759.0 21.7 59802 59757.9 16.1 59802 59745.8 24.7 59802 59750.2 20.2 59802 59760.1 22.2 59802
4 60479 60428.0 21.8 60479 60444.8 27.3 60479 60417.2 30.0 60479 60438.6 24.2 60479 60435.8 23.6 60479
5 61091 61072.0 20.0 61091 61075.5 18.7 61091 61066.8 35.9 61091 61078.4 21.2 61091 61077.6 18.2 61091
6 58959 58945.0 14.5 58959 58940.6 12.3 58959 58929.4 35.5 58959 58943.9 19.4 58959 58943.3 14.1 58959
7 61538 61514.0 24.0 61538 61511.7 26.6 61538 61508.9 27.2 61538 61498.9 36.9 61538 61513.6 25.9 61538
8 61520 61492.0 25.6 61520 61494.0 22.7 61520 61473.7 34.7 61520 61475.4 32.7 61520 61496.5 23.0 61520
9 59453 59436.0 40.5 59453 59434.8 43.1 59453 59413.9 59.1 59453 59427.4 53.4 59453 59435.2 39.7 59453
10 59965 59958.0 8.4 59965 59956.0 11.2 59965 59944.9 26.9 59965 59946.0 25.8 59960 59959.1 5.2 59965

6 Conclusions

In this work, we proposed a Cooperative Opposite-Inspired Strategy for ants-
based algorithms. The objective of this approach is to obtain information about
some uD-characteristic that could bias the search process to poor quality solu-
tions. We proposed to divide the search process into two steps: a First Step for
learning about an uD-characteristic and, a Second Step performed by a target
ant-based algorithm. During the First Step, three sub-colonies of ants coop-
erate to define an initial pheromone matrix. Each sub-colony is guided by one
Method : SOL, HOL and WOL. To evaluate our strategy, we used the well-known
Ant Knapsack algorithm for solving the MKP. Our preliminary results show that
the inclusion of COISA in Ant Knapsack improves its robustness and helps to
obtain better quality solutions. Additionally, we were able to show that the
cooperation between the three methods adopted is better than using only one
of them in isolation. As part of our future work, we are interested in evaluating
COISA in other ant-based algorithms for solving other combinatorial optimiza-
tion problems. Also, we are interested in comparing COISA with other existing
pre-processing schemes for ant-based algorithms.

324 N. Rojas-Morales et al.

Acknowledgements. Second author is partially supported by the Centro Cient́ıfico
Tecnológico de Valparáıso (CCTVal) Project No. FB0821. The first author is supported
by CONICYT-PCHA/National Doctorate/2015-21150696. Third author acknowledges
support from CONACyT project no. 221551.

References

1. Alaya, I., Solnon, C., Ghedira, K.: Ant algorithm for the multi-dimensional knap-
sack problem. In: International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA 2004). Citeseer (2004)

2. Cordon, O., de Viana, I., Herrera, F., Moreno, L.: A new ACO model integrating
evolutionary computation concepts: the best-worst ant system (2000)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate
(2004)

4. Malisia, A.R.: Investigating the application of opposition-based ideas to ant algo-
rithms. Master’s thesis, University of Waterloo (2007)

5. Malisia, A.R.: Improving the exploration ability of ant-based algorithms. In:
Tizhoosh, H.R., Ventresca, M. (eds.) Oppositional Concepts in Computational
Intelligence. SCI, vol. 155, pp. 121–142. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-70829-2 7

6. Malisia, A., Tizhoosh, H.: Applying opposition-based ideas to the ant colony sys-
tem. In: 2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp. 182–189 (2007)

7. Montgomery, J., Randall, M.: Anti-pheromone as a tool for better exploration of
search space. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS,
vol. 2463, pp. 100–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45724-0 9

8. Puchinger, J., Raidl, G.R., Pferschy, U.: The core concept for the multidimen-
sional knapsack problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006.
LNCS, vol. 3906, pp. 195–208. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730095 17

9. Riff, M.C., Montero, E.: A new algorithm for reducing metaheuristic design effort.
In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013,
Cancun, Mexico, 20–23 June 2013, pp. 3283–3290. IEEE (2013). http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=6552460

10. Rojas-Morales, N., Riff, M.C., Montero, E.: Ants can learn from the opposite. In:
Friedrich, T., Neumann, F., Sutton, A.M. (eds.) Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016,
pp. 389–396. ACM (2016). https://doi.org/10.1145/2908812

11. Rojas-Morales, N., Riff, M.C., Montero, E.: Learning from the opposite: strategies
for Ants that solve Multidimensional Knapsack problem. In: IEEE Congress on
Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, 24–29 July 2016,
pp. 193–200. IEEE (2016)

12. Rojas-Morales, N., Riff, M.C., Montero, E.: A survey and classification of
opposition-based metaheuristics. Comput. Ind. Eng. 110, 424–435 (2017)

13. Schoonderwoerd, R., Bruten, J.L., Holland, O.E., Rothkrantz, L.J.M.: Ant-based
load balancing in telecommunications networks. Adapt. Behav. 5(2), 169–207
(1996)

14. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst.
16(8), 889–914 (2000)

https://doi.org/10.1007/978-3-540-70829-2_7
https://doi.org/10.1007/978-3-540-70829-2_7
https://doi.org/10.1007/3-540-45724-0_9
https://doi.org/10.1007/3-540-45724-0_9
https://doi.org/10.1007/11730095_17
https://doi.org/10.1007/11730095_17
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6552460
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6552460
https://doi.org/10.1145/2908812

A Solution for the Team Selection
Problem Using ACO

Lázaro Lugo1, Marilyn Bello1,2(B), Ann Nowe3, and Rafael Bello1

1 Department of Computer Science, Universidad Central “Marta Abreu” de Las
Villas, Santa Clara, Cuba

{ljplugo,mbgarcia}@uclv.cu, rbellop@uclv.edu.cu
2 Faculty of Business Economics, Hasselt University, Hasselt, Belgium

marilyn.bellogarcia@uhasselt.be
3 Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium

ann.nowe@vub.ac.be

Abstract. The team selection problem is usually solved by ranking can-
didates based on the preferences of decision-makers and allowing the
decision-makers to take turns selecting candidates. While this solution
method is simple and might seem fair it usually results in an unfair allo-
cation of candidates to the different teams, i.e. the quality of the teams
might be quite different according to the rankings articulated by the
decision-makers. In this paper, we propose a new method based on Ant
Colony Optimization (ACO), where the selection process is performed
in a new context, with more than two decision-makers selecting from
a common set of candidates. Furthermore, a plugin implementing this
method for the KNIME platform was developed.

1 Introduction

Personnel selection is the process by which one or more people are chosen for
a job, depending on how suitable their characteristics are. It is one of the main
processes of any company or organization, and it is expected to take on the right
employee for the right job at the right time [13].

Today, many tools and techniques are used in this specific decision-making
problem [5]. One of the first works where the problem was presented from the per-
spective of intelligent systems was reported in [11]. Extensions based on Multi-
Criteria Decision-Making (MCDM) have also been proposed [14] in which the
decision-maker seeks to optimize a combination of criteria associated with the
candidates [15]. According to this goal, they can be used to rank alternatives (to
build a ranking).

To obtain a ranking of candidates is especially interesting when the man-
agement of human resources is directed to organize, manage and lead a team
instead of selecting an employee for a simple vacant; this contributes to the suc-
cess of the project and creates a competitive advantage for the organization. A
variety of approaches are proposed for the selection of the members of a team,

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 325–332, 2018.
https://doi.org/10.1007/978-3-030-00533-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_26&domain=pdf

326 L. Lugo et al.

most of them aimed at forming teams in the field of business, industry and sport
[1,6,10,19,21].

In this research, this problem is tried in a framework different to the classic,
due to the process of selection is realized in a competitive environment, that is,
when two or more decision-makers should to form their teams by choosing the
personnel from the same set of candidates; and at the same time, it is necessary to
form teams as similar as possible to the preferences established by each decision-
maker on the candidates.

An example that illustrates this problem is the draft process used in the
United States, Canada, Australia and Mexico to assign certain players to sports
teams. In a draft, the teams take turns selecting a group of eligible players. When
a team chooses a player, the team receives exclusive rights to sign a contract
with him/her, and no other team in the league can choose that player. A draft
avoids expensive bidding wars for young talents and ensures that no team can
monopolize all the best young players and make the leagues uncompetitive [7].

Recently, the Artificial Intelligence Laboratory from UCLV has been working
on this topic [2,3], proposing the development of a method for the formation of
teams in a competitive environment, where two decision-makers try to shape
their team from a list of candidates.

In this work we propose a generalization of this method for cases with more
than two decision-makers. Furthermore, we developed a plugin for the KNIME
platform [4], where a method based on Ant Colony Optimization (ACO) is imple-
mented for the formation of teams in a competitive environment.

2 Formulation of Personnel Selection Problem in a
Competitive Environment

Given N candidates C = {C1, C2, C3, . . . , CN} and Q decision-makers D =
{D1,D2,D3, . . . , DQ}, the objective is to form N teams. For that, each decision-
makers order the N candidates according to their preference, obtaining a set of
rankings for each decision-maker R = {R1, R2, R3, . . . , RQ}. From these, each
decision-maker forms his team selecting the candidate that first appears in his
preference ranking, as long as, this candidate has not already been selected by
another decision-maker. This process is repeated while there are still candidates
available to be selected. As a result of this process, we obtain a set of Q teams
R∗ = {R1∗, R2∗, R3∗, . . . , RQ∗}, that is, one team per decision-maker. See exam-
ple 1 below.

Example 1. Suppose that N = 10, Q = 5, C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and
R = {{7, 4, 3, 2, 6, 9, 0, 5, 8, 1}, {6, 3, 5, 8, 1, 2, 4, 7, 0, 9}, {7, 2, 3, 9, 8, 5, 4, 0, 1, 6},
{6, 3, 1, 0, 7, 8, 9, 4, 5, 2}, {3, 8, 7, 9, 2, 0, 4, 1, 6, 5}} and the order in which the
decision-makers will select is the following: {D3,D2,D1,D4,D5}. Using these
values, the resulting teams will be the set R∗ = {R1∗ = {4, 9}, R2∗ =
{6, 5}, R3∗ = {7, 2}, R4∗ = {3, 1}, R5∗ = {8, 0}}.

A Solution for the Team Selection Problem Using ACO 327

The problem is to build the set of Q teams R∗ which minimize the differences
between Ri and Ri∗, for all i, that is, min

∑Q
i=1 d(Ri, Ri∗). This is a discrete

optimization problem.

3 A Method for Solving the Team Selection Problem
in a Competitive Environment Using Ant Colony
Optimization

ACO is inspired by the behavior governing ants looking to find the shortest paths
between food sources and their anthill; it has been extensively used to solve
combinatorial optimization problems. Several models of the ACO metaheuristic
have been proposed in the literature [8,9,16,18,20].

In the context of this work, a hybrid between the Max-Min Ants System
(MMAS) [18] and the Multi-type Ants [16,20] is used. The steps of the ASMMTS
algorithm (Ant System Max Min Teams Selection) for the Team Selection are
described below:

1. A complete graph with N nodes is constructed, where each node represents
a candidate for selection.

2. Q types of ants are generated, one for each decision-maker.
3. Ants are grouped into groups (h1k, h2k, . . . , hQk), which always include one

ant of each type, so that all decision-makers are represented. There are m
groups (h11, h21, . . . , hQ1), (h12, h22, . . . , hQ2), . . . , (h1m, h2m, . . . , hQm), each
working to build a solution to the problem together.

4. In each iteration, the ants are randomly distributed with the constraint that
no other ant from the same group can be on the same node. This is to enforce
that decision-makers cannot select the same candidate.

5. The initial values of pheromones associated with the link between the nodes
i and j for each type of ant take the value τijp = τmax initial. In this way,
there is a high initial exploration of the search space.

6. The heuristic value used to evaluate the quality of each possible successor
node is denoted as ηijp; and it is calculated by the Eq. (1).

ηijp = 1/O(j) (1)

Where O(j) is the position in which node j is located in the preference
ranking p of the set R.

7. The neighborhood in node i, denoted by Vipk of the kth ant of type p (hipk)
is the set of all the nodes that have not yet been selected by it or any other
ant in its group.

8. The probabilistic rule that decides the new node to choose is defined by the
Eq. (2), being α, β and θ constant parameters of this rule.

ppk
ij =

(
([τp

ij]
α ∗ [ηp

ij]
β)/[

∑Q
n=1,n �=p (τn

ij)]
θ

(
∑

j∈V pk
i

[τp
ij]α ∗ [ηp

ij]β)/[
∑

n=1,n �=m (τn
ij)]θ

)

(2)

328 L. Lugo et al.

9. Each ant ends when there are no nodes to select. At the end of each cycle
each group of ants (h1k, h2k, . . . , hQk) will generate a solution that together
form the set R∗ = {R1∗, R2∗, R3∗, . . . , Rp∗, . . . , RQ∗}, where the node-path
of ant hpk represents the team selected by decision-maker Dp (Rp∗).

10. The solutions found for each group of ants are evaluated at the end of each
cycle using Eqs. (3), (4) and (5). In Eq. (3), the first term measures how
similar the teams are to the resulting ranking and the second term measures
how similar is the level of satisfaction of the decision-makers.

min→Evalk = A + B (3)

A = (
Q∑

p=1

eval(s(hpk), Rp)/Q) (4)

B = |eval(s(hpk), Rp) −
Q∑

n=1,n �=p

eval(s(hnk), Rn)| (5)

Where s(hpk) is the solution found by ant hpk, and the value of
eval(s(hpk), Rp) is obtained according to Eq. (6).

eval(Rp∗, Rp) =
∑

∀c∈Rp∗
π(c) (6)

Where π(c) is the value of the candidate c∈Rp∗ according to its position in
the Rp ranking; the function π assigns the value 1 to the first place in the
ranking, 2 to the second place and so on until the last place in the ranking
is assigned the value N .
Example 2. Given a set of 6 candidates C = {1, 2, 3, 4, 5, 6} and 2 decision-
makers; the rankings R1 = {2, 0, 1, 3, 5, 4} and R2 = {3, 2, 1, 5, 0, 4}; and
the resulting subsets R1* = {0, 2, 4} and R2* = {3, 5, 1}. Applying Eq. (4)
we have eval(R1∗, R1) = 2 + 1 + 6 = 9 and eval(R2∗, R2) = 1 + 4 + 3 = 8.

11. Whenever a cycle is finished, that is, when all the ants have traversed all
the nodes, the evaporation of pheromones happens, and new pheromones are
deposited. The pheromone values are decremented using Eq. (7), where ρ is
the evaporation constant, which is a value between 0 and 1.

τij(t + 1) = ρ ∗ τij(t) (7)

As the model proposed in this section is based on the Max-Min Ants Sys-
tem, the pheromones are deposited on the arcs ij that appear in the solu-
tions found by the best group of ants during the current iteration and those
appearing in the best global solution (the group of ants that has obtained
the best solution since the beginning of execution). The pheromone deposit
is calculated using Eq. (8).

τijp(t + 1) = τijp(t) + (1/eval(s(hpk), Rp)) (8)

A Solution for the Team Selection Problem Using ACO 329

12. At the end of the search process the solutions s(h1k), s(h2k), . . . , s(hQk) asso-
ciated with the group (h1k, h2k, . . . , hQk) that have the lowest (and thus best)
value of Evalk will be the set R∗ = R1∗, R2∗, R3∗, . . . , RQ∗ resulting for the
Q decision-makers.

13. The pheromone levels are bounded each time a cycle ends, using a maximum
and a minimum level, so that no trace is less than a minimum level τmin or
greater than a maximum level τmax. If any trail of pheromone is smaller
than the minimum level, it is re-initialized to τmin. In the same way, all
pheromone values that exceed the maximum level are re-initialized to τmax.
The max and min values are calculated using Eqs. (9) and (10) respectively
[17].

τmax = (1/(1 − ρ)) ∗ 1/Evalbetter global group (9)

τmin = τmax/(10 ∗ N) (10)

Where ρ is the value of the evaporation constant and Evalbetter global group

represents the quality of the best overall solution found by the colony
throughout the search process, and is calculated using Eq. (3). In Eq. (10) N
represents the number of candidates.

4 Experimental Study

The purpose of this study is to illustrate the effectiveness of the ASMMTS
algorithm using some examples. To do this, we make a simulation of the process
of selecting candidates in order to form the teams, using R sets of preference
rankings with N elements for each decision-maker that are randomly generated.
In the study, values between 10 and 20 were considered for N with 5 decision-
makers. Different values were evaluated as input parameters of the algorithm,
the results shown in the following table were obtained with the values: α = β =
θ = 1, ρ = 0.75, NmaxC = 10 and m = N (i.e. the number of ants is the same
as the number of candidates).

In the experimental study, a new measure is used to compute the degree of
hardness of the set of rankings used to build the team; that is, while greater
is the correlation between the rankings greater is the complexity of applying
the methods for building the teams selection. The Eq. (11) defines a measure
of hardness, where the correlation Kendall is used [22], denoted by t, and U =
1
2 ∗ Q(Q − 1).

H(R) =
U∑

i=1

t(Ri, Rj) (11)

Table 1 shows the results achieved using the proposed algorithm. This table
contains three rows that correspond to different examples generated for that
number of candidates; the second column shows the result reached by each of
the decision-makers if the selection of the candidates is made according to the
order established in the rankings; and the third column lists the results obtained
after applying the ASMMTS algorithm. Both columns have the value of Eq. (3),

330 L. Lugo et al.

Table 1. 10 candidates, 5 decisions-makers.

Rankings Order in the rankings ASMMTS

R1= {7, 4, 3, 2, 6, 9, 0, 5, 8, 1} R1*= {4, 9} R1* = {4, 6}
R2= {6, 3, 5, 8, 1, 2, 4, 7, 0, 9} R2*= {5, 0} R2* = {5, 2}
R3= {7, 2, 3, 9, 8, 5, 4, 0, 1, 6} R3*= {7, 2} R3* = {8, 7}
R4= {6, 3, 1, 0, 7, 8, 9, 4, 5, 2} R4*= {6, 1} R4* = {1, 3}
R5= {3, 8, 7, 9, 2, 0, 4, 1, 6, 5} R5*= {3, 8} R5* = {0, 9}
H(R) = −1.21 Eval(R*, R)= 20.0 Eval(R∗,R) = 12.4

R1= {5, 9, 1, 4, 2, 6, 0, 3, 7, 8} R1*= {9, 2} R1* = {9, 6}
R2= {7, 8, 9, 1, 5, 6, 3, 0, 2, 4} R2*= {7, 8} R2* = {1, 7}
R3= {5, 7, 1, 8, 0, 6, 2, 3, 9, 4} R3*= {5, 1} R3* = {5, 2}
R4= {4, 0, 9, 8, 6, 7, 3, 5, 2, 1} R4*= {4, 0} R4* = {4, 8}
R5= {3, 8, 7, 0, 5, 1, 2, 4, 9, 6} R5*= {3, 6} R5* = {3, 0}
H(R) = −0.13 Eval(R*, R)= 19.6 Eval(R∗,R) = 9.2

R1= {0, 8, 7, 6, 1, 3, 9, 4, 2, 5} R1*= {0, 1} R1* = {0, 6}
R2= {4, 2, 7, 1, 8, 9, 6, 5, 3, 0} R2*= {2, 7} R2* = {1, 7}
R3= {5, 4, 8, 1, 2, 7, 0, 6, 3, 9} R3*= {5, 3} R3* = {2, 4}
R4= {4, 6, 1, 5, 2, 9, 7, 0, 8, 3} R4*= {4, 6} R4* = {9, 5}
R5= {8, 5, 7, 0, 9, 2, 1, 3, 6, 4} R5*= {8, 9} R5* = {3, 8}
H(R) = −0.49 Eval(R*, R)= 24.0 Eval(R∗,R) = 12.6

lower values means that better teams was formed according to previously ranking
made by the decision-makers.

Analyzing the results reported in the experimental study, we can conclude
that it is possible to obtain higher quality results when using the ASMMTS
method instead of selecting strictly following the order established in the rank-
ings; it allows to form teams closer to the preferences of each decision-maker,
achieving a comparable satisfaction levels for all decision-makers. An important
conclusion is that the greater the number of candidates, the more effective the
behavior of the proposed method.

5 Plugin ASMMTS for KNIME

KNIME (Konstanz Information Miner) is an open source platform with more
than 1000 modules, hundreds of ready-to-run examples, a wide range of inte-
grated tools and a wide variety of advanced algorithms available [4,12]. It can
be easily extended because it is based on the Eclipse Enriched Client Platform
[12]. In order to add new plugins based on the Eclipse platform, the tool proposes
a class structure based on a Node class, which presents all the functionalities that
will allow the implementation of the NodeModel class, optionally a NodeDialog

A Solution for the Team Selection Problem Using ACO 331

and one or more instances of the NodeView class. In addition, each node contains
the number of data entry and exit ports, where the information will transit.

The ASMMTS node has an entry, which corresponds to the rankings of pref-
erences of each of the decision-makers, obtained from the File Reader node, this
node is responsible for transforming the read data into an ordered list represent-
ing the preferences of the decision-makers.

Before proceeding to the execution of the ASMMTS node, the configuration
dialog of the node is accessed and the necessary data are introduced in order to
execute the algorithm. After executing the node, the view of the resulting data
can be analyzed using the ViewData option, which shows the team formed by
each decision-maker after having executed the algorithm.

6 Conclusions

In this paper, we propose a new method to solve the team selection problem
based on the Multi-type Ant Colony Optimization. In this case, the decision-
makers select from a common set of candidates, each decision-maker defines a
ranking expressing his preference on the candidates and they want to form the
team that is closest to his ranking. But as the preferences of decision-makers
may be similar, the rankings established by them may be similar.

A common approach for developing the selection of candidates is to allow the
decision-makers to alternatively select one candidate according to their ranking.
While this seems a fair approach, it does not necessarily in a fair set of teams
as shown in the experimental study.

The conducted experimental study shows that the proposed method allows
to form teams that are equally close to the preferences of both employers, yet
are fair, and that efficiency is more noticeable for larger numbers of candidates.

A plugin related to the team selection is developed for the KNIME platform.

References

1. Ahmed, F., Deb, K., Jindal, A.: Multi-objective optimization and decision making
approaches to cricket team selection. Appl. Soft Comput. 13(1), 402–414 (2013)

2. Bello, M., Bello, R., Nowé, A., Garćıa-Lorenzo, M.M.: A method for the team selec-
tion problem between two decision-makers using the ant colony optimization. In:
Collan, M., Kacprzyk, J. (eds.) Soft Computing Applications for Group Decision-
making and Consensus Modeling. SFSC, vol. 357, pp. 391–410. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-60207-3 23

3. Bello, M., Lugo, L., Garćıa, M.M., Bello, R.: Un método para la generación de
rankings en la selección de equipos de trabajo en ambiente competitivo basado
en algoritmos genéticos. Revista Cubana de Ciencias Informáticas 10(2), 196–210
(2016)

4. Berthold, M.R., et al.: KNIME - the Konstanz information miner: version 2.0 and
beyond. ACM SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

5. Canós, L., Casasús, T., Liern, V., Pérez, J.C.: Soft computing methods for per-
sonnel selection based on the valuation of competences. Int. J. Intell. Syst. 29(12),
1079–1099 (2014)

https://doi.org/10.1007/978-3-319-60207-3_23

332 L. Lugo et al.

6. Dadelo, S., Turskis, Z., Zavadskas, E.K., Dadeliene, R.: Multi-criteria assessment
and ranking system of sport team formation based on objective-measured values
of criteria set. Expert Syst. Appl. 41(14), 6106–6113 (2014)

7. Diario, A.: NFL draft 2016: todas las elecciones de 1a y 2a ronda (2016)
8. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-

roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66
(1997)

9. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man. Cybern. Part B (Cybern.) 26(1), 29–
41 (1996)

10. Hayano, M., Hamada, D., Sugawara, T.: Role and member selection in team forma-
tion using resource estimation for large-scale multi-agent systems. Neurocomputing
146, 164–172 (2014)

11. Hooper, R.S., Galvin, T.P., Kilmer, R.A., Liebowitz, J.: Use of an expert system
in a personnel selection process1. Expert Syst. Appl. 14(4), 425–432 (1998)

12. Iglesias, A.I., Ilisástigui, L.B., Cordovéz, T.C., Rodŕıguez, D.M.: Nuevos plugins
para la herramienta knime para el uso de sus flujos de trabajo desde otras aplica-
ciones. Ciencias de la Información 46(1), 47–52 (2015)

13. Kulik, C.T., Roberson, L., Perry, E.L.: The multiple-category problem: category
activation and inhibition in the hiring process. Acad. Manag. Rev. 32(2), 529–548
(2007)

14. Lai, Y.J.: IMOST: interactive multiple objective system technique. J. Oper. Res.
Soc. 46(8), 958–976 (1995)

15. Mohamed, F., Ahmed, A.: Personnel training selection problem based on SDV-
MOORA. Life Sci. J. 10(1) (2013)

16. Nowé, A., Verbeeck, K., Vrancx, P.: Multi-type ant colony: the edge disjoint paths
problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F.,
Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 202–213. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28646-2 18

17. Puris, A., Bello, R., Herrera, F.: Analysis of the efficacy of a two-stage methodology
for ant colony optimization: case of study with TSP and QAP. Expert Syst. Appl.
37(7), 5443–5453 (2010)

18. Stützle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput. Syst. 16(8),
889–914 (2000)

19. Tavana, M., Azizi, F., Azizi, F., Behzadian, M.: A fuzzy inference system with
application to player selection and team formation in multi-player sports. Sport
Manag. Rev. 16(1), 97–110 (2013)

20. Vrancx, P., Nowé, A., Steenhaut, K.: Multi-type ACO for light path protec-
tion. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS
(LNAI), vol. 3898, pp. 207–215. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691839 13

21. Wang, J., Zhang, J.: A win-win team formation problem based on the negotiation.
Eng. Appl. Artif. Intell. 44, 137–152 (2015)

22. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings.
ACM Trans. Inform. Syst. (TOIS) 28(4), 20 (2010)

https://doi.org/10.1007/978-3-540-28646-2_18
https://doi.org/10.1007/11691839_13
https://doi.org/10.1007/11691839_13

Boundary Constraint Handling
Techniques for Particle Swarm

Optimization in High Dimensional
Problem Spaces

Elre T. Oldewage1,2(B), Andries P. Engelbrecht1,3,
and Christopher W. Cleghorn1

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
vze.ezv@gmail.com, {engel,ccleghorn}@cs.up.ac.za

2 Council for Scientific and Industrial Research, Pretoria, South Africa
3 Institute for Big Data and Data Science, Pretoria, South Africa

Abstract. This paper investigates the use of boundary constraint han-
dling mechanisms to prevent unwanted particle roaming behaviour in
high dimensional spaces. The paper tests a range of strategies on a
benchmark for large scale optimization. The empirical analysis shows
that the hyperbolic strategy, which scales down a particle’s velocity as it
approaches the boundary, performs statistically significantly better than
the other methods considered in terms of the best objective function
value achieved. The hyperbolic strategy directly addresses the velocity
explosion, thereby preventing unwanted roaming.

1 Introduction

Particle swarm optimization (PSO) is a stochastic, population-based optimiza-
tion algorithm [9]. A swarm consists of a number of particles. Each particle’s
position in the search space represents a possible solution to an optimization
problem. The particles move through the search space, guided by local and
global information. This paper considers PSO with inertia weight [20].

Previous studies in literature have emphasized the importance of bound-
ary handling techniques for PSO, especially in high dimensional spaces [12,15].
As problem dimensionality increases, the particles become increasingly likely to
leave the search space and exhibit unwanted roaming behaviour [12]. Applica-
tion of boundary constraint handling techniques may mitigate particles’ roaming
behaviour and allow the search to continue even in high dimensional spaces.

A number of constraint handling strategies are examined that may be
employed to mitigate particle roaming behaviour. Classical boundary constraint
handling methods have been suggested [8,17], but the methods utilize infor-
mation about the optima locations and/or gradient information. For black-box
optimization problems, such information is typically not available. The bound-
ary constraint handling techniques considered in this paper do not make use of
additional information about the optimization function.
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 333–341, 2018.
https://doi.org/10.1007/978-3-030-00533-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_27&domain=pdf

334 E. T. Oldewage et al.

Boundary constraint handling techniques bias the particles towards certain
parts of the search space [10,11]. Thus, the best choice in technique usually
depends on the location of the optima. However, additional information about
the optima locations may not be known. This paper considers minimization prob-
lems that have been shifted by a random vector, distributed uniformly through-
out the search space. There is thus no clear pattern regarding the optima loca-
tions, i.e. they are not near the boundaries or near the center of the search space
in all dimensions. The paper discusses the performance of a selection of boundary
handling techniques so that practitioners are guided in choosing a strategy when
the locations of the optima are unknown or differ widely among dimensions.

The paper proceeds as follows: Sect. 2 discusses the boundary constraint han-
dling techniques being considered. Section 3 describes the experimental method.
Section 4 presents the empirical results and Sect. 5 concludes the paper.

2 Background

This section discusses a number of the most common boundary constraint han-
dling techniques. Section 2.1 discusses position repair methods. Section 2.2 intro-
duces velocity repair strategies that can be combined with the position repair
strategies. Section 2.3 discusses techniques that do not fall into either category.

2.1 Position Repair Strategies

This section lists position repair strategies, which modify a particle’s position so
that it no longer violates the boundary.

Infinity: The first strategy, suggested by [3] only modifies the PSO algorithm
by constraining the personal and global best positions to be within the search
space. Thus, the particles may leave the search space, but their local and global
attractors will always be within bounds, thereby encouraging the particles to
return to the search space. There have been suggestions in literature to make
this approach standard practice [3]. This method is also known as the “invisible
wall” [18]. The infinity method has the advantage of not modifying the velocity
or position vectors directly, thereby preventing the algorithm from becoming
biased as a side effect of the boundary handling technique.

Random: The random method [4,11,16] re-initializes any invalid position com-
ponent uniformly within the search space. A possible side effect of this method
is to inject diversity into the swarm by randomly selecting position components
that particles would have been unlikely to encounter otherwise. Another variant,
random-half [19], re-initializes any invalid position components within the half
of the search space nearest the violated boundary.

Absorb: The absorb strategy repairs a particle’s position by moving it back
onto the boundary in every violated dimension. This approach biases particles
towards solutions that are on the boundary of the search space. The absorb
strategy is also known as truncate [1], nearest [10], or boundary [16].

Boundary Handling for PSO in High Dimensional Problem Spaces 335

Exponential: The exponential method as originally proposed [1] repairs a par-
ticle’s position in every dimension by moving the particle to a point between its
previous position and the violated boundary. The new position is sampled from a
truncated exponential distribution, oriented so that there is a higher probability
of sampling a position near the boundary. An alternative method [16] samples
from a truncated exponential distribution spread across the entire search space
in the violated dimension (oriented so that positions near the violated boundary
are more likely). The original method is referred to as exponential-confined and
the latter as exponential-spread. The exponential method introduces less arti-
ficial diversity than the random and random-half methods, and also preserves
search information about good solutions near the boundaries by sampling from
a biased distribution.

2.2 Velocity Repair Methods

A particle’s velocity vector contains information about favourable search direc-
tions in relation to its local and global attractors. If the particle is relocated,
then the relative direction of its attractors change. Modifying a particle’s position
without also adjusting its velocity may cause the particle to move in directions
that are unfavourable due to its outdated momentum component. Additionally,
if the particle left the search space due to high velocity in a given dimension,
then the particle is likely to leave the search space again after being moved inside
the search space (because it still has a large, outward momentum component).
A variety of velocity repair methods are discussed below:

Zero: Set the velocity to zero in violated dimensions.

Adjust: The adjust strategy [10,11] performs a backward calculation to obtain
the repaired velocity after applying a position repair strategy, vt+1

i = xt+1
i −xt

i,
where vt+1

i denotes the velocity and xt+1
i denotes the position of the i-th particle

at iteration t + 1. This strategy records a particle’s movement to a feasible
location. For certain position repair strategies, this may help to prevent the
particle from leaving the search space again or from moving in unfavourable
directions due to an outdated momentum component.

Reflect: The reflect strategy reflects the particle’s velocity in the violated dimen-
sion. Reflection ensures that particles do not have large, outward momentum
components after their positions have been repaired, with the aim of reducing
their propensity to leave in the following iteration.

Random Damping: Random damping.[13] is a hybrid between reflection and
absorption. If a particle exceeds the boundary in a given dimension, its velocity
is partially reflected and partially absorbed. This forces the particle back into
valid space and decreases its velocity. The fraction of the velocity to be reflected
or absorbed is uniform random.

Damping: Damping is a deterministic version of the random damping method
in [13]. The parameter λ is used to determine how much of the velocity is reflected

336 E. T. Oldewage et al.

or absorbed. λ may be a constant value or, as in [14], may depend on the particle’s
distance from the boundary. In this paper, λ = 0.5.

2.3 Other Strategies

This section lists strategies that prescribe how a particle’s position and velocity
should be repaired or interpreted when a boundary is violated.

PBest: The pBest method, as proposed in [14], re-positions a particle to its
personal best position and sets its velocity to 0 if it leaves the search space
(in any dimension). Since particles frequently leave the search space in high
dimensions, this may lead to most of the swarm being relocated frequently.
Relocating a particle encourages highly exploitative behaviour: in the following
iteration, the velocity’s cognitive component will be zero and the momentum
component is zero, since the velocity was zeroed. Thus, the particle’s movement
depends only on its social component, causing the particles to move towards
the global best position. In this paper, another version of the pBest strategy is
suggested in which only violated dimensions are reset. This method is referred
to as pBest-dim. Resetting only violated dimensions will reduce the chances of
premature convergence since fewer dimensions will rely on social-only velocity
updates.

Hyperbolic: The hyperbolic strategy [6] prevents a particle from ever reaching
the boundary by scaling its velocity. The closer a particle is to the boundary,
the smaller its scaled velocity is. Scaling is performed as follows:

vt
i,j =

⎧
⎨

⎩

vt
i,j

1+|vt
i,j/(Uj−xt

i,j)| if vt
ij >

Uj+Lj

2

vt
i,j

1+|vt
i,j/(x

t
i,j−Lj)| if vt

ij ≤ Uj+Lj

2

(1)

where Uj and Lj denote the upper and lower boundaries in the j-th dimension.

Resampling Stochastic Scalars: The RES or resampling method [1] resam-
ples the stochastic scalars r1,j and r2,j in every dimension until the resulting
velocity does not cause the particle to leave the search space. This strategy will
have a non-deterministic run time. Particles close to the boundary may have to
draw many random numbers to obtain satisfactory values for r1,j and r2,j .

Periodic PSO: The periodic strategy [22] does not modify particle positions
or velocities. Instead, the search space is extended with infinitely many copies
that the particles can traverse without further consideration to the boundaries.
A particle’s position is mapped back to the original search space for evaluation,
where each dimension is mapped by Mj as described below:

xt
i,j

Mj�→ Lj + (xt
i,j%(Uj − Lj)) (2)

where % is the modulo operator. A particle’s score or fitness is given by
f(M(xt

i)), where f denotes the objective function. Although the strategy works
well on some search spaces, adjoining copies of the search space may introduce
sharp discontinuities, which make the search space more difficult to traverse.

Boundary Handling for PSO in High Dimensional Problem Spaces 337

3 Experimental Method

This section describes the empirical method. The experiments used PSO with
inertia weight [20] with the global best topology. The selected inertia weight,
w = 0.7298 and the acceleration coefficients c1 = c2 = 1.49618 are known good
values suggested by Clerc [7] that guarantee convergence of the swarm (in terms
of expectation and variance of particle positions [5]). Each swarm consisted of 50
particles. The different boundary-handling techniques were tested on problems
from the CEC 2010 Benchmark Suite for Large Scale Optimization [21] with
dimensionality of 1000 (n = 1000). The suite consists of minimization problems
that includes separable, non-separable, and partially separable problems. The
degree of separability is controlled by a parameter m which was set to 10 for
these experiments. The original definition of the benchmark suite uses a vec-
tor of random numbers distributed normally throughout the search space (in
each dimension). However, this will bias the location of the optima to be near
the center of the search space. In order to prevent such bias, the shift vectors
used in this paper are distributed uniformly throughout the search space. Every
boundary-handling technique was run on each of the 20 benchmark problems 30
times for statistical significance. Every simulation was allowed 5000 iterations.

4 Results

Every boundary handling technique was assigned a rank score that depends on
the best score achieved over all simulations as proposed in [2]. These scores
were normalized so that the best rank score is 1 and the worst is 0 (as shown
in Fig. 1). A score is related to the number of statistically significant “wins”
when a strategy is compared in a pairwise manner to all the other strategies
across all benchmark functions (in terms of solution accuracy). Comparisons are
performed using a Mann-Whitney U test with p = 0.05. Additionally, an average
normalized fitness was calculated for each technique according to:

1
|F|

∑

f∈F

f(y)

f̃(y)
(3)

where F denotes the set of benchmark functions, |.| denotes set cardinality, f(y)
denotes the best fitness attained by the strategy on function f , averaged across
all runs and f̃(y) denotes the worst average fitness attained by any strategy on
function f . Thus, if a strategy always performed the worst on all functions, it
would receive an average normalized fitness of 1.

Figure 1, which plots the rank score and average normalized fitness, shows
that the hyperbolic strategy exhibits the best performance in terms of both mea-
sures. Hyperbolic also performed statistically significantly better than the other
four best strategies on 16 out of the 20 benchmark functions. It is known from
literature [12,15] that a large factor in PSO’s poor performance in high dimen-
sional problem spaces is the initial velocity explosion and the consequent roaming

338 E. T. Oldewage et al.

Fig. 1. Average normalized fitness and rank scores

Fig. 2. Velocity magnitude (top 5) Fig. 3. Velocity variance (top 5)

behaviour. The hyperbolic strategy completely mitigates the effects of the veloc-
ity explosion, since the velocity is scaled down to ensure that the particles remain
in valid space. Although this prevents particles from attaining optima that are
on the boundaries, the strategy does not affect the particles’ search direction or
artificially introduce or inhibit swarm diversity. The reduction in the velocity
explosion is apparent in Figs. 2 and 3 which plot the average velocity magnitude
and the average variance in velocity for the five best-performing strategies.

For 15 out of the 19 strategies, the average normalized fitness was between
0.21 and 0.32. Therefore, although the difference in performance among the
strategies were statistically significant, the actual difference in fitness between
most of the strategies was not very large. This is likely due to the problem-
dependent nature of boundary handling strategies, which is known in literature.

Due to space limitations, only a few of the strategies’ behaviour are discussed
in detail. Although it may be expected that the pBest strategy will converge
prematurely, Fig. 4 shows that the pBest strategy failed to converge. Instead,
the swarm’s diversity oscillates with every iteration, as the particles attempt to
explore, leave the search space immediately and are reset. Since no searching
could take place, the personal bests were almost never updated and thus the
global best was almost never updated. In contrast, the pBest-dim strategy per-

Boundary Handling for PSO in High Dimensional Problem Spaces 339

Fig. 4. Swarm diversity of PBest
strategies on F10 (first 100 iterations)

Fig. 5. Average number of violated
dimensions on F11 (first 500 iterations)

formed quite well and achieved the 3-rd best score. pBest-dim also performed
better than randomly re-initializing, since resetting the position to a known good
location encourages the search to exploit within a known good region.

The two strategies that performed the worst were infinity + zero and infin-
ity + unmodified. All of the particles left the search space and remained out of
bounds for the remainder of the search. The average number of violated bound-
aries was fewer for infinity + zero than for infinity + unmodified (see Fig. 5).
Thus, zeroing the velocity component when a particle is out of bounds does
improve the particle’s ability to return to the search space to some extent.

In all cases where comparison was possible, zeroing the velocity performed
better than adjusting or reflection. Damping and random damping performed
better than zero. However, damping and random-damping are not applicable for
many of the position repair strategies. All three of the best-performing veloc-
ity repair strategies reduce the velocity in some manner, thereby reducing the
velocity explosion and the consequent roaming behaviour.

5 Conclusion

This paper tested PSO with a variety of boundary constraint handling tech-
niques on high dimensional problems with optima that were distributed uni-
formly throughout the search space. The best-performing strategy was hyper-
bolic, which rescales a particle’s velocity so that the particle can never reach the
boundary, thereby preventing the velocity explosion and subsequent unwanted
roaming. The five best performing strategies were hyperbolic, exp spread + zero,
pBest + zero, absorb + damping and random + zero. Although the difference in
performance of these strategies are statistically significant, their performance is
highly problem-dependent and their average normalized fitness values were sim-
ilar. In general, velocity repair strategies such as zero and damping performed
better than the other velocity repair strategies. The worst strategies were infin-
ity+zero and infinity+unmodified, which were also the least restrictive.

340 E. T. Oldewage et al.

Acknowledgments. This work is based on the research supported by the National
Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions,
findings and conclusions or recommendations expressed in this article is that of the
author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever in
this regard.

References

1. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based
exclusively on pareto dominance concepts. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 32

2. Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in
the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3),
378–390 (2017). https://doi.org/10.1109/TEVC.2016.2605668

3. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization.
In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE
Computer Society (2007). https://doi.org/10.1109/SIS.2007.368035

4. Chu, W., Gao, X., Sorooshian, S.: Handling boundary constraints for particle
swarm optimization in high-dimensional search space. Inf. Sci. 181(20), 4569–4581
(2011). https://doi.org/10.1016/j.ins.2010.11.030

5. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension
using the non-stagnate distribution assumption. Swarm Intell. 12, 1–22 (2017).
https://doi.org/10.1007/s11721-017-0141-x

6. Clerc, M.: Confinements and biases in particle swarm optimization, March 2006.
http://clerc.maurice.free.fr/pso/. Accessed 12 Mar 2006

7. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73
(2002). https://doi.org/10.1109/4235.985692

8. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice-
Hall, Upper Saddle River (1995)

9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (Oct 1995). https://doi.org/10.1109/MHS.1995.494215

10. Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling
techniques in particle swarm optimization. IEEE Trans. Evol. Comput. 17(2), 259–
271 (2013). https://doi.org/10.1109/TEVC.2012.2189404

11. Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded
search spaces. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp.
198–205. IEEE Computer Society, April 2007. https://doi.org/10.1109/SIS.2007.
368046

12. Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In:
Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 889–898. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87700-4 88

13. Huang, T., Mohan, A.S.: A hybrid boundary condition for robust particle swarm
optimization. IEEE Antennas Wirel. Propag. Lett. 4, 112–117 (2005). https://doi.
org/10.1109/LAWP.2005.846166

https://doi.org/10.1007/978-3-540-31880-4_32
https://doi.org/10.1109/TEVC.2016.2605668
https://doi.org/10.1109/SIS.2007.368035
https://doi.org/10.1016/j.ins.2010.11.030
https://doi.org/10.1007/s11721-017-0141-x
http://clerc.maurice.free.fr/pso/
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/TEVC.2012.2189404
https://doi.org/10.1109/SIS.2007.368046
https://doi.org/10.1109/SIS.2007.368046
https://doi.org/10.1007/978-3-540-87700-4_88
https://doi.org/10.1007/978-3-540-87700-4_88
https://doi.org/10.1109/LAWP.2005.846166
https://doi.org/10.1109/LAWP.2005.846166

Boundary Handling for PSO in High Dimensional Problem Spaces 341

14. Mostaghim, S., Mostaghim, S., Halter, W., Wille, A.: Linear multi-objective par-
ticle swarm optimization. In: Ajith, A., Crina, G., Vitorino, R. (eds.) Stigmergic
Optimization, vol. 31, pp. 209–238. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-3-540-34690-6 9

15. Oldewage, E.: The perils of particle swarm optimisation in high dimensional prob-
lem spaces. Master’s thesis, University of Pretoria, Pretoria, South Africa (2018)

16. Padhye, N., Deb, K., Mittal, P.: Boundary handling approaches in particle swarm
optimization. In: Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K. (eds.)
Proceedings of Seventh International Conference on Bio-Inspired Computing: The-
ories and Applications, vol. 1, pp. 287–298. Springer, India (2013). https://doi.org/
10.1007/978-81-322-1038-2 25

17. Reklaitis, G., Ravindran, A., Ragsdell, K.: Engineering Optimization Methods and
Applications. Wiley, Hoboken (1983)

18. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics.
IEEE Trans. Antennas Propag. 52(2), 397–407 (2004). https://doi.org/10.1109/
TAP.2004.823969

19. Shi, Y., Cheng, S., Qin, Q.: Experimental study on boundary constraints han-
dling in particle swarm optimization: From population diversity perspective. Int.
J. Swarm Intell. Res. 2(3), 43–69 (2011). https://doi.org/10.4018/jsir.2011070104

20. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the IEEE International Conference on Evolutionary Computation, pp. 69–73, May
1998. https://doi.org/10.1109/ICEC.1998.699146

21. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the
CEC’2010 special session and competition on large-scale global optimization. Tech-
nical report, Nature Inspired Computation and Applications Laboratory (2009)

22. Zhang, W., Xie, X., Bi, D.: Handling boundary constraints for numerical opti-
mization by particle swarm flying in periodic search space. CoRR abs/cs/0505069
(2005). http://arxiv.org/abs/cs/0505069

https://doi.org/10.1007/978-3-540-34690-6_9
https://doi.org/10.1007/978-3-540-34690-6_9
https://doi.org/10.1007/978-81-322-1038-2_25
https://doi.org/10.1007/978-81-322-1038-2_25
https://doi.org/10.1109/TAP.2004.823969
https://doi.org/10.1109/TAP.2004.823969
https://doi.org/10.4018/jsir.2011070104
https://doi.org/10.1109/ICEC.1998.699146
http://arxiv.org/abs/cs/0505069

Does the ACOR Algorithm Benefit
from the Use of Crossover?

Ashraf M. Abdelbar1(B) and Khalid M. Salama2

1 Department of Mathematics and Computer Science, Brandon University,
Brandon, Canada

abdelbara@brandonu.ca
2 School of Computing, University of Kent, Canterbury, UK

kms39@kent.ac.uk

Abstract. The ACOR algorithm is based on the Ant Colony Optimiza-
tion (ACO) metaphor, and a crossover operator does not naturally within
this metaphor. In spite of this, we investigate in this paper whether the
performance of ACOR would benefit from the deployment, with a fixed
probability, of a crossover operator. Our extensive experimental evalua-
tion uses two applications: (1) training feedforward neural networks for
classification using 65 benchmark datasets from the UCI repository; and
(2) optimizing several popular synthetic benchmark continuous-domain
functions with the number of dimensions varying from 10 up to 10,000.
Our experimental results confirm that the use of crossover does improve
performance on both applications to a statistically significant extent.

1 Overview

ACOR [8,19] is an established ant colony optimization (ACO) [4] algorithm for
continuous-domain optimization. Even though a crossover operator does not
naturally fit within the ACO metaphor, this paper investigates whether the
performance of ACOR would benefit from the periodic deployment of such an
operator.

We propose a variation of ACOR, called ACOR-R, that includes a crossover
operator (specifically uniform crossover in the present work), that is used for
solution construction with a fixed probability Pr. Although crossover does not
fit naturally within the ACO metaphor, it is nonetheless interesting to explore
whether the use of crossover would improve the performance of ACOR. In pre-
vious work [3], we investigated the use of crossover (recombination) within the
iMOACOR algorithm [6] for multi-objective optimization, which is based on the
ACOR algorithm, and found performance to significantly improve.

Our experimental evaluation is based on two applications: (1) the problem
of training feedforward neural networks for classification, using 65 benchmark
datasets from the University of California Irvine (UCI) repository; (2) optimiz-
ing several popular synthetic benchmark continuous-domain functions with the
number of dimensions varying from 10 up to 10,000.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 342–350, 2018.
https://doi.org/10.1007/978-3-030-00533-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_28&domain=pdf
http://orcid.org/0000-0002-7921-1892
http://orcid.org/0000-0001-7535-5154

Does the ACOR Algorithm Benefit from the Use of Crossover? 343

2 Review of the ACOR Algorithm

ACO has been applied to a wide variety of domains [2,10,11,13–17] with the
majority of research focusing on discrete (combinatorial) optimization problems
[5]. However, ACO methods for continuous problem domains have also been
investigated [18–20]. In this paper, we focus on the ACOR algorithm [8,19], which
has been applied to a number of continuous optimization problems, including
neural network training [1,12,18].

Suppose the ACOR algorithm is to be applied to an optimization problem
over n real-valued variables V1, V2, . . . , Vn. The central data structure, analogous
to pheromone information in natural ants, that is maintained by ACOR is an
archive A of R previously-generated candidate solutions. Each element sa in
the archive, for a = 1, 2, . . . , R, is an n-dimensional real-valued vector, sa =
(sa,1, sa,2, . . . , sa,n). The archive is sorted by solution quality, so that Q(s1) ≥
Q(s2) ≥ . . . ≥ Q(sR). Each solution sa in the archive has an associated weight
ωa that is related to Q(sa), so that ω1 ≥ ω2 ≥ . . . ≥ ωR.

In each iteration of the ACOR algorithm, there are two phases: solution con-
struction and pheromone update. In the solution construction phase, each ant
probabilistically constructs a solution based on the solution archive A (repre-
senting pheromone information). The solution archive A is initialized with R
randomly-generated solutions, where the size R is a user-supplied parameter of
the ACOR algorithm. Then, in the pheromone update phase, the m constructed
solutions (where m is the number of ants) are added to A, resulting in the size
of A temporarily being R + m. The archive A is then sorted by solution quality,
and the m worst solutions are discarded, so that the size of A returns to being R.

In the solution construction phase, each ant i generates a candidate solution
si and is influenced by one of the R solutions in the archive A. The ant first
probabilistically selects one of the R solutions in the archive according to:

Pr(select sa) =
ωa

∑R
r=1 ωr

(1)

The weights ωa that are used in Eq. (1) are constructed in each iteration as:

ωa = g(a; 1, qR) (2)

where g is the Gaussian function:

g(y;μ, σ) =
1

σ
√

2π
e− (y−μ)2

2σ2 (3)

Thus, Eq. (2) assigns the weight ωa to be the value of the Gaussian function
with argument a, mean 1.0, and standard deviation (qR), where q is another
user-supplied parameter.

Let sa be the solution of A that is selected by ant i according to Eq. (1) in a
given iteration. Ant i then generates each solution element si,a by sampling the
Gaussian probability density function (PDF):

si,j ∼ N(sa,j , σa,j) (4)

344 A. M. Abdelbar and K. M. Salama

where N(μ, σ) represents the Gaussian PDF with mean μ and standard deviation
σ. The standard deviation σa,j is computed according to:

σa,j = ξ
R∑

r=1

| sa,j − sr,j |
R − 1

(5)

where ξ is a user-supplied parameter of the algorithm. Once each ant constructs
its solution, the archive A is updated as described above, and the process repeats.

If the top solution in the archive remains unchanged for Istag iterations, then
the archive is re-initialized with random solutions. The algorithm terminates
when the total number of iterations reaches Imax.

3 ACOR with Crossover

Crossover (recombination) is a standard component of Evolutionary Algorithms.
Hybrid approaches that combine discrete ACO models with crossover have been
explored [7]. In previous work [3], we have proposed a recombination-based vari-
ation of the iMOACOR algorithm [6] for multi-objective optimization (which is
built on the ACOR algorithm).

There are multiple ways that recombination can potentially be incorporated
within ACOR. We propose a baseline approach called ACOR-R which differs from
ACOR in the following. When an ant i starts to generate a candidate solution si,
its first step is to decide with a probability Pr to apply crossover to two archived
solutions, or with the inverse probability, to apply the standard ACOR solution
generation mechanism (Eqs. 1–5).

If it decides to apply crossover, then a crossover operator is used to construct
a candidate solution instead of ACOR’s usual solution construction mechanism.
The present work uses uniform crossover, although other crossover operators
can potentially be applied. Two parents are selected from the ACOR solution
archive. One parent, sa, is selected by applying Eq. (1) in the usual ACOR way
(i.e. rank-proportionate selection). The second parent, sb, is selected from the
archive probabilistically with uniform distribution. A single offspring, si, is then
generated by uniform crossover: for j = 1, . . . , N , each solution element sij is set
equal to saj with 50% probability, or to sbj with 50% probability. The generated
offspring si then becomes one of the m constructed solutions that compete with
each other and with the existing R solutions for a place in the archive.

It is worthwhile to emphasize that ACOR-R carries out the same number of
fitness function evaluations per iteration as ACOR. In each iteration, m solu-
tions are constructed and evaluated; each solution may be constructed either
by crossover with a randomly-selected population element or by ACOR’s usual
solution construction mechanism (Eqs. 1–5). The former is slightly less compu-
tationally expensive than the latter, because it does not require the application
of Eq. (5) to compute the standard deviation for each solution dimension. Thus,
ACOR-R does not carry any additional computational burden relative to ACOR.

Does the ACOR Algorithm Benefit from the Use of Crossover? 345

4 Experimental Methodology and Results

Our experimental comparison is in the context of ACOR applied to two problem
domains: training feedforward neural networks for classification, and optimizing
several popular synthetic continuous-domain benchmark functions. We adopt
the ACOR parameter settings of [8]. Specifically, we use:

m = 5, R = 90, q = 0.05, Istag = 650, Imax = 5000, ξ = 0.68 (6)

ACOR has previously been applied to the training of three-layer feedforward
neural networks [1,18]. In this application of ACOR, a candidate solution consists
of a value of the neural network’s weight vector, and the fitness function consists
of initializing a neural network with the weight vector under evaluation, applying
the training set, pattern by pattern, and computing the training set classification
accuracy. The test set is used only once. After the ACOR algorithm terminates,
a network is initialized with the top solution in the archive, and the test set
classification accuracy is computed.

Ideally, the number of neurons in the hidden layer should be tuned for each
dataset individually. However, for convenience and standardization, we set the
number of hidden neurons to be the sum of the number of input neurons and
output neurons. We use the standard sigmoid activation function.

Table 1. Synthetic benchmark functions used in experimental evaluation.

Name Mathematical representation Search range Init. range

Sphere f(x) =
∑D

i=1 x2
i (−100, 100)D (50, 100)D

Rosenbrock f(x) =
∑D−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
(−100, 100)D (15, 30)D

Rastrigin f(x) =
∑D

i=1

[
x2

i − 10 cos (2πxi) + 10
]

(−10, 10)D (2.56, 5.12)D

Griewank f(x) = 1
4000

∑D
i=1 x2

i − ∏D
i=1 cos

(
xi√

i

)
+ 1 (−600, 600)D (300, 600)D

Ellipsoid f(x) =
∑D

i=1

(
106

) i−1
D−1 x2

i (−100, 100)D (−100, 100)D

Ackley f(x) = −20 exp

(

−0.2
√

1
D

∑D
i=1 x + i2

)

− exp
(

1
D

∑D
i=1 cos (2πxi)

)
+ 20 + e (−32, 32)D (−32, 32)D

Before being presented to the network, the dataset undergoes some prepro-
cessing. Any duplicate instances are removed from the dataset before the parti-
tioning into cross-validation folds (see below). Continuous attributes are scaled
to the range [0, 1] and any missing values are set to the mean value for that
attribute. Any missing values for a categorical attribute are set to the mode for
that attribute. Then, each categorical attribute, with c category labels, is con-
verted to c numeric attributes, where one of the numeric attributes has a value
of 1, and each of the other (c − 1) attributes has a value of 0. If the dataset
has m possible classes, then the network will have m output neurons. We use 65
datasets from the University of California Irvine (UCI) Repository.

346 A. M. Abdelbar and K. M. Salama

Table 2. Neural network test set classification accuracy (%) results.

Dataset ACOR ACOR-R Dataset ACOR ACOR-R

1. abalone 13.65 19.63 34. letter-r 9.30 21.60

2. adult 83.01 85.17 35. libras 23.40 56.19

3. annealing 71.73 72.19 36. liver-disorders 67.65 69.24

4. audiology 28.82 60.37 37. lung-cancer 47.09 41.02

5. automobile 59.14 65.38 38. lymphography 83.05 86.88

6. balance 91.11 91.84 39. mammographic 51.42 50.93

7. bcancer 73.20 73.05 40. monks 76.69 75.97

8. bcancer-wisc-diag 88.37 86.98 41. mushrooms 99.58 99.93

9. bcancer-wisc-orig 90.41 91.22 42. musk 72.26 80.86

10. breast-wisc-prog 71.98 72.25 43. nursery 93.11 93.54

11. biology 83.01 86.06 44. ozone 93.63 93.66

12. breast-tissue 62.17 61.77 45. page-blocks 92.42 91.25

13. car 92.99 92.87 46. parkinsons 84.03 84.26

14. chess 94.05 96.46 47. pima 74.11 74.41

15. cmc 53.81 55.47 48. pop 54.99 56.41

16. credit-a 86.29 86.58 49. s-heart 82.26 81.71

17. credit-g 77.54 77.94 50. seeds 93.39 93.12

18. cylinder 68.80 72.30 51. segmentation 83.10 88.45

19. dermatology 88.31 96.09 52. sensorless 14.88 22.16

20. ecoli 81.66 85.93 53. sonar 77.47 81.18

21. EEG 51.28 51.75 54. soybean 42.62 74.99

22. gesture 40.90 45.79 55. spam 89.75 92.11

23. glass 54.61 57.00 56. thyroid 95.29 95.43

24. GTC 88.83 89.70 57. transfusion 71.48 72.34

25. haberman 70.33 70.37 58. ttt 92.52 95.02

26. hay 76.78 78.84 59. vehicle 62.56 67.07

27. heart-c 62.39 62.50 60. vertebral-column-2c 74.35 74.93

28. heart-h 64.92 62.11 61. vertebral-column-3c 57.92 57.60

29. hepatitis 85.79 85.46 62. voting 95.14 95.32

30. horse 79.50 78.48 63. wave 76.55 84.44

31. ionosphere 90.98 92.94 64. wine 96.74 97.48

32. iris 94.41 94.38 65. zoo 86.90 90.59

33. lenses 76.29 78.40

Our experiments were carried out using the well-known stratified 4-fold cross-
validation procedure. This means that a dataset is divided into four mutually
exclusive partitions (folds), with approximately the same number of instances
and class distribution in each fold. Each algorithm is run four times, with a
different fold acting as test set each time. The entire process is then repeated
10 times, with different random seeds. Average test set classification accuracy is
then computed over the 40 runs.

In addition to neural network training, our experimental evaluation also uses
six popular synthetic benchmark continuous-domain functions. Table 1 lists these

Does the ACOR Algorithm Benefit from the Use of Crossover? 347

T
a
b
le

3
.
R

es
u
lt

s
fo

r
th

e
sy

n
th

et
ic

co
n
ti

n
u
o
u
s-

d
o
m

a
in

b
en

ch
m

a
rk

fu
n
ct

io
n
s.

D
S
p
h
e
re

R
o
se
n
b
ro

ck
R
a
st
ri
g
in

G
ri
e
w
a
n
k

E
ll
ip
so

id
A
ck

le
y

A
C
O

R
A
C
O

R
-R

A
C
O

R
A
C
O

R
-R

A
C
O

R
A
C
O

R
-R

A
C
O

R
A
C
O

R
-R

A
C
O

R
A
C
O

R
-R

A
C
O

R
A
C
O

R
-R

1
0

4
.3
E
3

3
.1

E
-9

7
1
.2
E
7

3
.8

E
1

4
.0

E
1

5
.0
E
1

4
.0
E
1

2
.9

E
-2

1
.8
E
7

3
.0

E
-9

5
2
.0
E
0

1
.2

E
-4

2
0

9
.4
E
3

3
.6

E
-4

4
3
.4
E
7

7
.1

E
1

1
.0

E
2

1
.4
E
2

8
.6
E
1

1
.2

E
-2

9
.5
E
7

2
.7

E
-4

0
2
.1
E
0

1
.2

E
0

3
0

1
.5
E
4

1
.5

E
-2

2
6
.0
E
7

1
.1

E
2

1
.8

E
2

2
.4
E
2

1
.3
E
2

7
.6

E
-2

1
.7
E
8

1
.6

E
-1

9
2
.4

E
0

2
.9
E
0

4
0

2
.0
E
4

1
.4

E
-1

2
8
.2
E
7

2
.0

E
2

2
.6

E
2

3
.7
E
2

1
.8
E
2

5
.8

E
-1

3
.2
E
8

2
.6

E
-9

3
.4

E
0

6
.0
E
0

5
0

2
.5
E
4

4
.0

E
-6

1
.1
E
8

3
.4

E
2

3
.4

E
2

4
.8
E
2

2
.3
E
2

4
.3

E
-1

4
.6
E
8

5
.4

E
2

4
.1

E
0

8
.8
E
0

6
0

3
.1
E
4

5
.7

E
-2

1
.3
E
8

8
.8

E
2

4
.3

E
2

6
.0
E
2

2
.8
E
2

3
.7

E
-1

5
.0
E
8

8
.7

E
4

5
.1

E
0

1
.0
E
1

7
0

3
.6
E
4

1
.0

E
2

1
.6
E
8

1
.5

E
4

5
.1

E
2

7
.2
E
2

3
.3
E
2

4
.2

E
0

7
.5
E
8

3
.4

E
4

6
.7

E
0

1
.2
E
1

8
0

4
.2
E
4

3
.8

E
2

1
.8
E
8

2
.6

E
5

6
.0

E
2

8
.6
E
2

3
.8
E
2

5
.2

E
0

9
.7
E
8

6
.1

E
5

7
.2

E
0

1
.4
E
1

9
0

4
.8
E
4

8
.4

E
2

2
.1
E
8

9
.2

E
5

7
.0

E
2

9
.8
E
2

4
.4
E
2

1
.8

E
1

1
.1
E
9

1
.4

E
6

9
.2

E
0

1
.5
E
1

1
0
0

5
.6
E
4

1
.9

E
3

2
.4
E
8

2
.9

E
6

8
.0

E
2

1
.1
E
3

5
.0
E
2

2
.6

E
1

1
.2
E
9

1
.4

E
6

1
.1

E
1

1
.5
E
1

2
0
0

1
.8
E
5

7
.9

E
4

6
.1
E
8

2
.4

E
8

2
.1

E
3

2
.6
E
3

1
.6
E
3

7
.1

E
2

3
.3
E
9

1
.2

E
8

1
.9
E
1

1
.9

E
1

3
0
0

4
.2
E
5

2
.6

E
5

1
.5
E
9

1
.0

E
9

4
.0

E
3

4
.4
E
3

3
.7
E
3

2
.4

E
3

5
.9
E
9

5
.3

E
8

2
.1
E
1

1
.9

E
1

4
0
0

5
.8
E
5

5
.3

E
5

2
.3
E
9

2
.2

E
9

5
.9

E
3

6
.3
E
3

5
.2
E
3

4
.8

E
3

2
.3
E
9

1
.6

E
9

2
.1
E
1

2
.0

E
1

5
0
0

1
.1
E
6

8
.4

E
5

5
.1
E
9

3
.6

E
9

8
.9
E
3

8
.3

E
3

1
.0
E
4

7
.5

E
3

1
.3
E
1
0

3
.4

E
9

2
.1
E
1

2
.0

E
1

6
0
0

1
.4
E
6

1
.2

E
6

6
.6
E
9

5
.1

E
9

1
.2
E
4

1
.0

E
4

1
.2
E
4

1
.1

E
4

7
.8
E
9

5
.9

E
9

2
.1
E
1

2
.0

E
1

7
0
0

1
.8
E
6

1
.6

E
6

1
.0
E
1
0

6
.9

E
9

1
.5
E
4

1
.2

E
4

1
.6
E
4

1
.4

E
4

1
.2
E
1
0

8
.7

E
9

2
.1
E
1

2
.0

E
1

8
0
0

2
.2
E
6

2
.0

E
6

1
.3
E
1
0

8
.9

E
9

1
.8
E
4

1
.5

E
4

2
.0
E
4

1
.8

E
4

1
.7
E
1
0

1
.2

E
1
0

2
.1
E
1

2
.0

E
1

9
0
0

2
.7
E
6

2
.4

E
6

1
.8
E
1
0

1
.1

E
1
0

2
.1
E
4

1
.7

E
4

2
.4
E
4

2
.2

E
4

2
.3
E
1
0

1
.7

E
1
0

2
.1
E
1

2
.1

E
1

1
,0
0
0

3
.4
E
6

2
.8

E
6

2
.4
E
1
0

1
.3

E
1
0

2
.4
E
4

1
.9

E
4

3
.1
E
4

2
.5

E
4

4
.7
E
1
0

2
.2

E
1
0

2
.1
E
1

2
.1

E
1

2
,0
0
0

8
.3
E
6

7
.5

E
6

5
.5
E
1
0

3
.6

E
1
0

4
.8
E
4

4
.1

E
4

7
.5
E
4

6
.7

E
4

1
.5
E
1
1

9
.8

E
1
0

2
.1
E
1

2
.1

E
1

3
,0
0
0

1
.4
E
7

1
.3

E
7

8
.4
E
1
0

6
.1

E
1
0

7
.2
E
4

6
.4

E
4

1
.2
E
5

1
.1

E
5

3
.2
E
1
1

2
.1

E
1
1

2
.1
E
1

2
.1

E
1

4
,0
0
0

1
.9
E
7

1
.8

E
7

1
.1
E
1
1

8
.7

E
1
0

9
.7
E
4

8
.8

E
4

1
.7
E
5

1
.6

E
5

5
.1
E
1
1

3
.4

E
1
1

2
.1
E
1

2
.1

E
1

5
,0
0
0

2
.5
E
7

2
.3

E
7

1
.4
E
1
1

1
.1

E
1
1

1
.2
E
5

1
.1

E
5

2
.2
E
5

2
.1

E
5

7
.4
E
1
1

4
.8

E
1
1

2
.1
E
1

2
.1

E
1

6
,0
0
0

3
.0
E
7

2
.8

E
7

1
.7
E
1
1

1
.4

E
1
1

1
.5
E
5

1
.4

E
5

2
.7
E
5

2
.5

E
5

1
.1
E
1
2

6
.4

E
1
1

2
.1
E
1

2
.1

E
1

7
,0
0
0

3
.6
E
7

3
.4

E
7

2
.0
E
1
1

1
.7

E
1
1

1
.7
E
5

1
.6

E
5

3
.2
E
5

3
.0

E
5

1
.4
E
1
2

8
.1

E
1
1

2
.1
E
1

2
.1

E
1

8
,0
0
0

4
.2
E
7

3
.9

E
7

2
.3
E
1
1

2
.0

E
1
1

2
.0
E
5

1
.8

E
5

3
.7
E
5

3
.5

E
5

1
.7
E
1
2

9
.8

E
1
1

2
.1
E
1

2
.1

E
1

9
,0
0
0

4
.7
E
7

4
.4

E
7

2
.6
E
1
1

2
.2

E
1
1

2
.2
E
5

2
.1

E
5

4
.2
E
5

4
.0

E
5

2
.0
E
1
2

1
.2

E
1
2

2
.1
E
1

2
.1

E
1

1
0
,0
0
0

5
.3
E
7

5
.0

E
7

2
.8
E
1
1

2
.5

E
1
1

2
.4
E
5

2
.3

E
5

4
.7
E
5

4
.5

E
5

2
.2
E
1
2

1
.3

E
1
2

2
.1
E
1

2
.1

E
1

348 A. M. Abdelbar and K. M. Salama

Table 4. Results of Wilcoxon signed-rank tests comparing ACOR-R to ACOR.

Domain Comparison N W z p Sig.?

NN ACOR-R vs. ACOR 65 336.0 −4.8130 1.5E-06 Yes

Bench ACOR-R vs. ACOR 168 702.0 −10.1298 8.9E-16 Yes

functions, along with their initialization and search ranges. These ranges follow
[9]. In our experiments, we use 28 different settings for the number of dimensions
D, varying from 10 to 10000. Specifically, we use the following settings:

D ∈ {10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10000} (7)

Each algorithm under evaluation is applied to each of the six functions for each
of the 28 dimensionalities. In each case, the algorithm is run 100 times (with
different seeds), and the average over the 100 runs is computed.

Initial experimentation indicated 0.4 to be a good “default” value for the Pr

parameter. The results for neural network classification are reported in Table 2
for ACOR and ACOR-R (with Pr = 0.4). Each row shows the average test set
classification accuracy for each of the two algorithms, with the better perfor-
mance for each dataset shown in boldface. Table 3 shows the analogous results
for the benchmark functions.

The tables indicate that ACOR-R performed better on 50 out of 65 datasets
(i.e. 77% of the datasets) for neural network training. For the synthetic bench-
mark functions, ACOR-R performed better on 147 out of 168 cases overall (i.e.
88%), and on 100% of the cases where D is greater than 400. Table 4 reports
the results of applying a (non-parameteric) Wilcoxon signed-rank test to the
results for each of the two applications, and indicates that there is a statistically
significant difference, with p < 0.001 for both application domains.

5 Concluding Remarks

This paper is concerned with determining whether there is the potential for the
performance of ACOR to be improved by the inclusion of a crossover operator.
We proposed and evaluated a simple variation of ACOR, called ACOR-R, that
applies uniform crossover, with a fixed user-supplied probability Pr, in place of
ACOR’s usual solution construction mechanism. Our results indicate that there
is indeed the potential to significantly improve the performance of ACOR with
the inclusion of a crossover operator. Our previous work [3], which considered a
crossover-based variation of iMOACOR[6], reached a similar conclusion.

In future work, we would like to consider self-adaptive approaches which
would eliminate the need for a user-supplied parameter Pr, by allowing the
frequency of applying crossover to be dynamically adapted during the course
of the algorithm’s execution, perhaps based on the relative quality of solutions
obtained by crossover.

Does the ACOR Algorithm Benefit from the Use of Crossover? 349

Acknowledgments. Partial support of a grant from the Brandon University Research
Council (BURC) is gratefully acknowledged.

References

1. Abdelbar, A.M., Salama, K.M.: A gradient-guided ACO algorithm for neural net-
work learning. In: Proceedings IEEE Swarm Intelligence Symposium (SIS-2015),
pp. 1133–1140 (2015)

2. Abdelbar, A.M., Salama, K.M.: An extension of the ACOR algorithm with time-
decaying search width, with application to neural network training. In: Proceedings
IEEE Congress on Evolutionary Computation (CEC-2016), pp. 2360–2366 (2016)

3. Abdelbar, A.M., Salama, K.M.: Solution recombination in an indicator-based
many-objective ant colony optimizer for continuous search spaces. In: Proceedings
IEEE Swarm Intelligence Symposium (SIS-2017), pp. 1–8 (2017)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.

In: Gendreau, M., Potvin, Y. (eds.) Handbook of Metaheuristics, pp. 227–263.
Springer, New York, NY, USA (2010). https://doi.org/10.1007/978-1-4419-1665-
5 8

6. Falcón-Cardona, J.G., Coello Coello, C.A.: A new indicator-based many-objective
ant colony optimizer for continuous search spaces. Swarm Intell. 11, 71–100 (2017)

7. Kalinli, A., Sarikoc, F.: A parallel ant colony optimization algorithm based on
crossover operation. In: Siarry, P., Michalewicz, Z. (eds.) Advances in Metaheuris-
tics for Hard Optimization, pp. 87–110. Springer, Berlin Heidelberg (2008). https://
doi.org/10.1007/978-3-540-72960-0 5

8. Liao, T., Socha, K., Montes de Oca, M., Stützle, T., Dorigo, M.: Ant colony opti-
mization for mixed-variable optimization problems. IEEE Trans. Evol. Comput.
18(4), 503–518 (2014)

9. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol.
Comput. 8(3), 240–255 (2004)

10. Salama, K.M., Abdelbar, A.M.: Extensions to the Ant-Miner classification rule
discovery algorithm. In: Dorigo, M. (ed.) ANTS 2010. LNCS, vol. 6234, pp. 167–
178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4 15

11. Salama, K.M., Abdelbar, A.M.: Exploring different rule quality evaluation func-
tions in ACO-based classification algorithms. In: IEEE Swarm Intelligence Sym-
posium, pp. 1–8 (2011)

12. Salama, K.M., Abdelbar, A.M.: Learning neural network structures with ant colony
algorithms. Swarm Intell. 9(4), 229–265 (2015)

13. Salama, K.M., Abdelbar, A.M.: Instance-based classification with ant colony opti-
mization. Intell. Data Anal. 21(4), 913–944 (2017)

14. Salama, K.M., Abdelbar, A.M.: Learning cluster-based classification systems with
ant colony optimization algorithms. Swarm Intell. 11(2–3), 211–242 (2017)

15. Salama, K.M., Abdelbar, A.M., Anwar, I.: Data reduction for classification with
ant colony algorithms. Intell. Data Anal. 20(5), 1021–1059 (2016)

16. Salama, K.M., Abdelbar, A.M., Freitas, A.: Multiple pheromone types and other
extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intell.
5(3–4), 149–182 (2011)

https://doi.org/10.1007/978-1-4419-1665-5_8
https://doi.org/10.1007/978-1-4419-1665-5_8
https://doi.org/10.1007/978-3-540-72960-0_5
https://doi.org/10.1007/978-3-540-72960-0_5
https://doi.org/10.1007/978-3-642-15461-4_15

350 A. M. Abdelbar and K. M. Salama

17. Salama, K.M., Abdelbar, A.M., Otero, F., Freitas, A.: Utilizing multiple
pheromones in an ant-based algorithm for continuous-attribute classification rule
discovery. Appl. Soft Comput. 13(1), 667–675 (2013)

18. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous opti-
mization: application to feed-forward neural network training. Neural Comput.
Appl. 16, 235–247 (2007)

19. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185, 1155–1173 (2008)

20. Tsutsui, S.: Ant colony optimisation for continuous domains with aggrega-
tion pheromones metaphor. In: Proceedings International Conference on Recent
Advances in Soft Computing (RASC-2004), pp. 207–212 (2004)

Embodied Evolution of Self-organised
Aggregation by Cultural Propagation

Nicolas Cambier1(B), Vincent Frémont1, Vito Trianni2,
and Eliseo Ferrante3,4(B)

1 Sorbonne Universités, Université de Technologie de Compiègne,
UMR CNRS 7253 Heudiasyc, Compiègne, France
{nicolas.cambier,vincent.fremont}@hds.utc.fr
2 Institute of Cognitive Sciences and Technologies,

National Research Council, Rome, Italy
vito.trianni@istc.cnr.it

3 Laboratory of Socio-ecology and Social Evolution, KU Leuven,
Leuven, Belgium

eliseo.ferrante@kuleuven.be
4 School of Computer Science, University of Birmingham,

Dubai, United Arab Emirates
e.ferrante@bham.ac.uk

Abstract. Probabilistic aggregation is a self-organised behaviour stud-
ied in swarm robotics. It aims at gathering a population of robots in the
same place, in order to favour the execution of other more complex collec-
tive behaviours or tasks. However, probabilistic aggregation is extremely
sensitive to experimental conditions, and thus requires specific parame-
ter tuning for different conditions such as population size or density. To
tackle this challenge, in this paper, we present a novel embodied evolu-
tion approach for swarm robotics based on social dynamics. This idea
hinges on the cultural evolution metaphor, which postulates that good
ideas spread widely in a population. Thus, we propose that good param-
eter settings can spread following a social dynamics process. Testing this
idea on probabilistic aggregation and using the minimal naming game
to emulate social dynamics, we observe a significant improvement in the
scalability of the aggregation process.

1 Introduction

Aggregation processes are extremely common in Nature [10], and consist in ani-
mals aggregating in common areas in the environment. They have been studied
in a variety of biological systems [14,20] and also implemented on distributed
robotic systems [17–19], according to the swarm robotics ethos of getting inspi-
ration from natural phenomena to solve engineering problems [25], while relying
only on local interactions [7]. Furthermore, aggregation is a prerequisite for other
cooperative behaviours [16].

There are many approaches to designing self-organised aggregation, from
evolutionary solutions [31] to minimal deterministic models [19]. Probabilistic
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 351–359, 2018.
https://doi.org/10.1007/978-3-030-00533-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_29&domain=pdf

352 N. Cambier et al.

approaches are most commonly used [3] because of their simple implementation
and direct natural inspiration [5,18,20]. Nevertheless, the aggregation quality
obtained using probabilistic approaches is extremely sensitive to experimental
conditions such as population size [3] or agent’s capabilities (e.g., speed, commu-
nication range) [13], and therefore requires supervised tuning of internal model
parameters in order to be effective in a specific setting [3,27]. Obviously, this
necessity to tune collective behaviours to specific environmental conditions hin-
ders both scalability and flexibility, both desired features of swarm robotics [7].

Evolutionary swarm robotics is the approach typically used for synthesising
collective behaviours for specific experimental settings via off-line parameter tun-
ing [21,31,32]. An approach of on-line parameter tuning is instead represented by
embodied evolution [8], whereby parameters controlling the robot behaviour are
continuously adapted as a result of the interaction among robots and between
robots and environment. Here, the evolutionary process is not driven by an
explicit fitness measure that evaluates the quality of the collective behaviour,
but emerges implicitly from the dynamics of interaction among the agents [4].
This approach with implicit fitness characterises algorithms like Environment-
driven Distributed Evolutionary Adaptation (EDEA) [9] and subsequent exten-
sions such as MONEE [22]. These algorithms are inspired by natural evolution,
and require (i) a high mobility of the agents to spread their genomes, and (ii) a
survival criteria to decide whether individuals live (and reproduce) or die, usu-
ally implemented by means of a foraging metaphor. Both these criteria are hard
to meet in self-organised aggregation, as agents aggregated on different clusters
hardly communicate between each other, and a new survival criteria would thus
need to be devised. Hence, different evolutionary dynamics must be devised.

In this paper, we propose a novel embodied evolutionary process inspired
by the cultural evolution metaphor [29] that postulates that good ideas spread
widely in a population as a result of social dynamics [12]. In our model, social
dynamics are coupled with self-organised aggregation dynamics: parameters ben-
eficial for aggregation spread widely in the robot swarm.

As a model of cultural evolution, we use the Naming Game (NG), which was
developed to study the evolution of human language through statistical physics
[2] and artificial life experiments [28]. The NG has actually already been studied
within robotic swarms [11,30], whereby the swarm dynamics (e.g., random walk
and aggregation) and the NG had a mutual effect on each other. However, to the
best of our knowledge, there has been no attempt to use the NG as an embodied
evolution approach. In this paper, we move towards this direction by studying
the dynamics of self-organised aggregation when coupled with the naming game
framed as a cultural evolutionary process. The model is introduced in Sect. 2,
while, in Sect. 3, we present and discuss experimental observations. Section 4
concludes the paper with an outlook of future research.

2 Model

The baseline aggregation controller we used is described in Sect. 2.1, while in
Sect. 2.2, we describe the NG protocol and how it can be coupled with aggrega-
tion in our cultural evolution framework.

Embodied Evolution of Self-organised Aggregation by Cultural Propagation 353

2.1 Self-organised Aggregation Controller

One of the first models of probabilistic aggregation in swarm robotics takes
inspiration from cockroaches collective behaviour model [14,18,20]. Here, agents
move within an arena following a random walk [15]. They decide to stop accord-
ing to some probability dependent on the number n of perceived neighbours, as
observed in cockroaches [20]. To prevent the creation of a large number of small
clusters, exploration is introduced by allowing agents to leave their cluster with
a probability inversely proportional to n.

As in previous models [13], we implemented a PFSA (see Fig. 1b) with two
states: WALK (random walk as in [23]) and STAY. To gain a higher control over
the aggregation process, we replaced the transitions probabilities in [13] (Fig. 1a)
with probability functions with parametrisable steepness, allowing to strengthen
or weaken the agents’ alignment and dispersion at will (see Fig. 1c). For both
PJoin and PLeave , we used exponential decay functions which, for our baseline,
were tuned to fit the values in Fig. 1a:

PJoin = 0.03 + 0.48 ∗ (1 − e−an) (1)

In this equation, a is a parameter that handles the strength of the alignment.
Indeed PJoin becomes steeper as a increases.

PLeave , on the other hand, is a straightforward exponential decay function:

PLeave = e−bn (2)

Here, b handles the strength of the dispersion as PLeave becomes steeper when b
increases, and thus dispersion weakens. Figure 1c shows the fitted values of these
functions to the baseline values from Fig. 1a.

We can understand the effect of parameters a and b as strengthening (increase
a or b) or weakening (decrease a or b) the cohesion of a cluster. A trade-off
between these two forces must be found: If cohesion is too weak (low a and b),
no durable cluster will form; if cohesion is too strong (high a and b), the robots
aggregate in several sparse and static clusters that never break. Following the
above observations, we formulate the following premise:

Premise 1. Robots with (near) optimal parameters a and b have more neigh-
bours, on average, than robots with suboptimal parameters.

Based on this premise we build an implicit fitness for embodied evolution.

2.2 Cultural Evolution

Self-organised aggregation and the minimal naming game (MNG)[1,2] have been
coupled as in [11]. Each agent possesses an individual lexicon (i.e., a list of words)
and can be both a speaker (only when in the STAY state) and hearer (at all
times). A speaker communicates a word from its lexicon to its neighbours, or
generates a new one when the lexicon is empty. The neighbours in the speaker’s

354 N. Cambier et al.

Fig. 1. (a) Averaged probability to join and leave a cluster as computed by [13] from
observation of gregarious arthropods [20]. (b) PFSA of our aggregation controller. (c)
Plotting of Pjoin and PLeave according to (resp.) Eqs. 1 and 2 and parametrised with
the values for a and b that best fit the values from Table 1a [13] (circles).

communication range (i.e. the hearers) receive this word. If the word is already
known to the hearer, the game is a success and the hearer deletes all words from
its lexicon except for the one it just received. Otherwise, the game is a fail and
the hearer adds the word to its lexicon. In our implementation, the amount of a
hearer’s successful games in a time-step is used as n for the computation of the
transition probabilities in the PFSA.

Moreover, the MNG presents one interesting feature: words promoted by
agents with more neighbours have a higher chance to eventually become the
chosen name for the predetermined topic, at least in static networks [1]. There-
fore, we formulate a second premise:

Premise 2. Words promoted by robots with more neighbours spread more on
average.

From Premises 1 and 2, we conclude that words promoted by robots with
(near) optimal parameters a and b should propagate more on average. Therefore,
by using an encoding of the values of a and b as the words used in the MNG, we
close a positive feedback loop whereby better parameters propagate more and,
as they are shared by new robots, propagate even more.

In our experiments, we used the concatenation of the encoded values of a
and b as the “meme” of our cultural evolution process. We assumed a minimal
message size of one byte, and each parameter was therefore expressed with four
bits. With these four bits we coded the [1.25, 5] interval with steps of 0.25.

The above described MNG can converge only to a word generated by speakers
at the beginning of an experiments. To allow for novelty, we added noise to the
messages following the noisy channel model [26]. Noise has two effects in our
implementations. Firstly, it acts as mutation operator and allows to explore the

Embodied Evolution of Self-organised Aggregation by Cultural Propagation 355

solution landscape [33]. Secondly, it impacts the quantity of (un)successful games
as it can mutate a word known to the hearer to an unknown one, thus slowing
down convergence time of the MNG and making it more compatible with the
time-scale of self-organised aggregation. However, a high mutation rate m may
completely prevent the MNG from converging.

3 Experimental Results

In the experiments, we used MarXbots [6] simulated within the ARGoS simula-
tor [24]. They moved at a speed of 10 cm/s and with a communication range of
70 cm within a circular arena of constant radius r = 10m. We studied three differ-
ent population sizes N = {25, 50, 100} and evaluated the aggregation behaviour
using the cluster metric in [19], which is the ratio between the size of the biggest
cluster and the swarm size N .

To highlight the dynamics produced by embodied evolution, we contrasted it
with selected non-evolving instances, namely the baseline controller obtained by
fitting the parameters a and b to the probability table from [13], and the opti-
mal controller obtained with the parameter settings that maximise the cluster
metric separately for each swarm size through brute-force search. Therefore we
performed:

– 20 runs of embodied evolution with mutation rate m = 0.001
– 20 runs of the baseline controller featuring fixed parameters (a, b) =

(1.70188, 3.88785), set to fit [13]
– 10 runs of the optimal controller with fixed parameters:

• N = 25 : (a, b) = (2.25, 3.5)
• N = 50 : (a, b) = (1.25, 2.0)
• N = 100 : (a, b) = (1.25, 1.25)

In addition to the cluster metric, we recorded the variation over time of the
number of clusters formed and the number of free agents. The average figures
are shown in Fig. 2. It is possible to notice that the evolutionary model fails
to produce stable aggregates when N = 25. This is because the MNG is par-
ticularly slow at low densities, because interactions among agents happen with
very low probability [11,30]. As a consequence, the number of successful games
is small—also due to mutations disturbing the language dynamics—and clusters
quickly disband. However, as N increases, we can see that embodied evolution
presents dynamics that are very close to the baseline aggregation behaviour [13],
i.e. a short phase of building aggregates followed by stagnation. For N = 100,
embodied evolution attains values for the cluster metric that are larger than the
baseline controller. Additionally, evolution has different dynamics from those of
the baseline: Almost all agents with the baseline behaviour stay in clusters after
the build-up phase, whilst the evolutionary model continues to explore for a
longer time and never entirely stops. This is partly the consequence of the MNG
and its mutation-induced failures (see Sect. 2.2), but also demonstrates a bet-
ter handling of the cohesion trade-off (see Sect. 2.1), which explains our model’s

356 N. Cambier et al.

higher scalability, especially for large N . The optimal controllers, instead, slowly
and constantly build up a large aggregate, maintaining at the same time a large
fraction of exploring robots. This slow process represents the only means to
increase the size of the largest cluster at the expenses of small clusters, when
parameters are fixed and the system is homogeneous. However, a very specific
parameterisation is necessary to observe this behaviour, especially for large N .

Fig. 2. Averaged time evolution over i runs of the three variations: embodied evolution
(i = 20), baseline controller with parameters fixed to match the probability table
from [13], i = 20) and optimal (i = 10).

We speculate that the efficiency of the MNG (and, thus, of embodied evo-
lution) depends on the amount of interactions and, thus, can not work in low
density settings. To test this, we confront three experimental conditions in which
density of robots is maintained constant: N = 25 with r = 5m, N = 50 with
r = 7m, and N = 100 with r = 10m. We contrast embodied evolution with
the baseline controller and with the optimal controller obtained with brute force
search for N = 25 and r = 5m. The latter is tested also in the other conditions,
to assess whether fixed parameterisation optimal on a given setting also perform
well in other settings. The results are presented in Fig. 3. We can see that, with
sufficient robot density, the evolutionary model initially performs as well as the
baseline behaviour [13] and not too distant from the optimal behaviour. However,
embodied evolution scales up better than either of the fixed-parameters alterna-
tives. We conclude that embodied evolution represents a promising solution for
scalable behaviour rather than optimal probabilistic aggregation, provided that
the density of robots remains sufficiently high.

Embodied Evolution of Self-organised Aggregation by Cultural Propagation 357

Fig. 3. Averaged time evolution over 20 runs of the three variations with constant
density: embodied evolution, baseline behaviour and optimal controller for N = 25
and r = 5 m (i.e. (a, b) = (1.5, 2.75)).

4 Conclusions

In this paper, we presented a novel embodied evolution approach for swarm
robotics based on social dynamics. The main underlying idea is coupling opinion
spreading in the population with the self-organising aggregation process. Inspired
by the cultural evolution metaphor, which postulates that good ideas spread
widely in a population, we propose that good parameters of a self-organising
behaviour can spread following a social dynamics process, leading to a swarm
capable of adapting its behaviour to the current environmental conditions. This
is possible to the extent that these coupled dynamics and the opinion spreading
are self-sustaining. To test this idea we considered probabilistic aggregation as
the self-organising swarm behaviour and the minimal naming game as a model
of social dynamics. Experimental results show that the proposed embodied evo-
lution process autonomously selects performing parameters at different scales
provided that an adequate robot density is present.

Our future work will be to (i) evaluate our model’s flexibility and adaptivity
by varying the size N of the population as well as the environment’s features
within runs, (ii) study the criticality of the mutation rate for our algorithm’s
performances and (iii) assessing its efficiency as a natural communication noise
in an embodied setting.

Acknowledgments. This work was funded in the framework of the Labex MS2T.
It was supported by the French Government, through the program “Investments for
the future” managed by the National Agency for Research (Reference ANR-11-IDEX-
0004-02). Vito Trianni acknowledges support from the project DICE (FP7 Marie Curie
Career Integration Grant, ID: 631297).

358 N. Cambier et al.

References

1. Baronchelli, A.: Role of feedback and broadcasting in the naming game. Phys. Rev.
E 83(4), 046103 (2011)

2. Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., Steels, L.: Sharp transition
towards shared vocabularies in multi-agent systems. J. Stat. Mech.: Theory Exp.
2006(06), P06014 (2006)

3. Bayindir, L., Sahin, E.: Modeling self-organized aggregation in swarm robotic sys-
tems. In: IEEE Swarm Intelligence Symposium, SIS 2009, pp. 88–95. IEEE (2009)

4. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elemen-
tary robotic units able to self-assemble and self-reproduce. Connect. Sci. 16(4),
227–248 (2004)

5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of
robot swarms using the honeybee-inspired control algorithm beeclust. Math. Com-
put. Model. Dyn. Syst. 18(1), 87–100 (2012)

6. Bonani, M., et al.: The marXbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In: 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)

7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

8. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Rob. AI 5, 12 (2018)

9. Bredeche, N., Montanier, J.-M.: Environment-driven embodied evolution in a pop-
ulation of autonomous agents. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15871-1 30

10. Camazine, S.: Self-organization in Biological Systems. Princeton University Press,
Princeton (2003)

11. Cambier, N., Frémont, V., Ferrante, E.: Group-size regulation in self-organised
aggregation through the naming game. In: International Symposium on Swarm
Behavior and Bio-Inspired Robotics (SWARM 2017), Kyoto, Japan, October 2017.
https://hal.archives-ouvertes.fr/hal-01679600

12. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics.
Rev. Mod. Phys. 81(2), 591–646 (2009)

13. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots. Int. J. Rob. Res. 30(5), 615–626 (2011)

14. Deneubourg, J.L., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence
of cooperation. Biol. Bull. 202(3), 262–267 (2002)

15. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp.
185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

16. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Rob.
17(2), 223–245 (2004)

17. Garnier, S., et al.: The embodiment of cockroach aggregation behavior in a group
of micro-robots. Artif. Life 14(4), 387–408 (2008)

18. Garnier, S., et al.: Aggregation behaviour as a source of collective decision in a
group of cockroach-like-robots. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J.,
Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 169–
178. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090 18

https://doi.org/10.1007/978-3-642-15871-1_30
https://hal.archives-ouvertes.fr/hal-01679600
https://doi.org/10.1007/978-3-319-44427-7_16
https://doi.org/10.1007/11553090_18

Embodied Evolution of Self-organised Aggregation by Cultural Propagation 359

19. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Rob. Res. 33(8), 1145–1161 (2014)

20. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1),
169–180 (2005)

21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-organizing Machines. MIT Press, Cambridge (2000)

22. Noskov, N., Haasdijk, E., Weel, B., Eiben, A.E.: MONEE: using parental invest-
ment to combine open-ended and task-driven evolution. In: Esparcia-Alcázar, A.I.
(ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 569–578. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37192-9 57

23. Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In:
Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T.
(eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006).
https://doi.org/10.1007/11839088 11

24. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

25. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 2

26. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423, 623–656 (1948)

27. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems.
In: Proceedings of 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–
332. IEEE (2005)

28. Steels, L.: A self-organizing spatial vocabulary. Artif. Life 2(3), 319–332 (1995)
29. Steels, L.: Modeling the cultural evolution of language. Phys. Life Rev. 8(4), 339–

356 (2011)
30. Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in

a multi-robot network: from abstract models to empirical validation. IEEE Rob.
Autom. Lett. 1(1), 348–353 (2016)

31. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7 93

32. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics.
In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. NCS, pp. 163–191. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6 5

33. Winfield, A.F., Erbas, M.D.: On embodied memetic evolution and the emergence
of behavioural traditions in robots. Memet. Comput. 3(4), 261–270 (2011)

https://doi.org/10.1007/978-3-642-37192-9_57
https://doi.org/10.1007/11839088_11
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1007/978-3-540-39432-7_93
https://doi.org/10.1007/978-3-540-74089-6_5

Experimental Evaluation of ACO for
Continuous Domains to Solve Function

Optimization Problems

Ryouei Takahashi(B), Yukihiro Nakamura, and Toshihide Ibaraki

The Kyoto College of Graduate Studies for Informatics, Sakyo-ku, Kyoto, Japan
{r takahashi,y nakamura,t ibaraki}@kcg.ac.jp

Abstract. A new Ant Colony Optimization ACOB to solve function
optimization problems (FOP) is evaluated experimentally by using ten
standard multimodal test functions such as Michaelwicz’s function. In
ACOB, ants search for solutions in binary search space and can improve
the accuracy of solutions by the stepwise localization of search space.
Experiments show that ACOB can keep the balance between accuracy
and efficiency to search for optimum solutions, and that it can reduce the
population size of ACOR, which is a preceding ACO based on real search
space. It is also shown that Covariance Matrix Adaptation-Evolution
Strategy (CMA-ES) is superior in computational time but lacks the accu-
racy of solutions, and that Genetic Algorithm (GA) is superior in the
ratio of getting the optimum solutions but weak in the performance.

1 Introduction

The purpose of our study is to reveal evolutionary process of optimization
methods experimentally to invent a new optimization method. In this study,
we evaluate the capability of ACO [1,2] for continuous domains such as for
solving the function optimization problem (FOP) [3,4] with n real variables xi
(i = 1, 2, . . . , n). ACO is developed as a general-purpose optimization method
for solving combinatorial optimization problems (COP) [5,6] based on indirect
communication with pheromone called stigmergy. And a variant ACO called
ACOR [7–9] is developed to solve FOP over continuous domains. In our earlier
paper [10], we proposed a new ACO called ACOB for solving FOP, by utilizing
the ideas of Ant System (AS), Elitist Ant System (EAS) and improved-EAS
(i-EAS), which are originally designed to solve the travelling salesman prob-
lem (TSP). ACOB searches solutions by approximating continuous values of
each real variable xi with discrete values. It improves the accuracy of solutions
through stepwise localization of the search space. Among existing algorithms
for solving FOP, we consider Matrix Adaptation Evolution Strategy CMA-ES
[11], and Genetic Algorithms GA [12] with Blend Crossover BLX-α [13], Sim-
plex Crossover SPX, Changing Crossover Operators CXO (SPX→BLX) [14] and
Two-point Crossover 2X [12]. In the paper [10], ACOB is computationally com-
pared with GAs such as BLX-α, SPX and CXO (SPX→BLX), but not with
other optimization methods.
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 360–367, 2018.
https://doi.org/10.1007/978-3-030-00533-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_30&domain=pdf

Experimental Evaluation of ACO to Solve FOP 361

Hence, in this paper, ACOB is compared with four optimization methods,
CMA-ES, ACOR, and GAs with BLX-α and 2X to complete the comparisons.
Thirteen test cases using ten well known multimodal test functions are used for
the evaluation. It is found that ACOB can keep good balance between accuracy
and efficiency for searching optimum solutions.

2 Function Optimization Problem (FOP)

2.1 Definition of FOP

We suppose that the function is denoted by y = f(x1, . . . , xn), where each xi

(i = 1, 2, . . . , n) is an independent variable in real data space R. The function
optimization problem (FOP) is to find the optimal real value yopt = fopt, which is
the minimum value fmin or the maximum value fmax, together with its optimal
solution xo = (x1o, . . . , xno) in a certain closed domain Di = [−ai, ai] for each xi,
where ai is an initial positive constant given corresponding to the test function
f . However, in this paper, we study only minimization problems, and therefore
optimal solutions are usually referred to as minimum solutions.

2.2 Structures of Solutions

(1) Real coded solutions. To represent solutions with real coded algorithm,
each variable xi is represented as a real number of double precision. Optimization
methods CMA-ES, ACOR and BLX-α which is one of the real coded GA belong
to this category.

(2) Binary coded solutions. When we solve the function value y =
f(x1, . . . , xn) minimization problem with ACOB or 2X, candidates for solutions
(x1, . . . , xn)s to the problem are designed by gene arrays of binary data taking
each of their values of 0 or 1, and they represent a sequence of values of variables
xi. Each xi can only represent 2l discrete real data on a certain closed continuous
domain Di = [−ai, ai] (i = ai) (i = 1, 2, . . . , n), where l is length of its genes.
In the structures of solutions of Binary Coded Solutions of ACOB [10], ant k
probabilistically determines whether xij takes the value of zero or one, referring
the pheromone τijν , where xij is the gene on the j-th locus (j = 1, 2, . . . , l) on
the i-th variable xi and ν is the above determination which takes its value of
zero or one. 2X has the same structures of solutions as ACOB , but the solution
is generated stochastically by two-point crossover operation on a pair of parent
genes called chromosome.

3 Optimization Methods

We briefly explain five optimization methods tested in this paper.

362 R. Takahashi et al.

3.1 Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)

CMA-ES is one of (μ, λ)-ES which searches for solutions with sequences of muta-
tion operations [15]. CMA-ES generates λ individuals on the first stage in the
(g + 1)-th generation. They are randomly created on the assumption that mini-
mum solutions may exist probabilistically according to multivariate normal dis-
tribution N(m(g), σ(g)2 × Σ′(g)). Here, m(g) is the gravity vector on the g-th
generation. Covariance matrix Σ(g) is recalculated as Σ′(g) by considering the
amount of changes of the above gravity vector m(g) through the time elapses.
σ(g) is a parameter called “step size”, and it harmonizes the convergence speed
to the minimum solution.

3.2 Ant Colony Optimization for Continuous Domains (ACOR)

ACO is developed as a general purpose optimization method to solve combinato-
rial optimization problems (COP), which is indirect pheromone communication
to search minimum ones among discrete NM candidate solutions probabilisti-
cally, where N and M are given integers [5,6]. ACOR is an extension of the
idea of pheromone communication between ants in ACO, in order to search
for solutions in real data space. ACOR starts to generate k individuals X[i]
(i = 1, 2, . . . , k) randomly in the domain on the initial generation. Then, it
determines the individual X[k0] stochastically, which is the center of the search
of the solutions on the next generation, according to the amount of pheromone

w(X[i]) = 1
qk

√
2π

e
− (i−1)2

2(qk)2 deposited on individual X[i], where w(X[i]) is propor-
tional to the inverse of the function value f(X[i]), where q is a constant. On
each generation, m individuals are updated.

3.3 Blend Crossover with Stepwise Localization (BLX-α)

Genetic Algorithm (GA) is developed as optimization methods to solve com-
binatorial optimization problems based on Darwin’s natural selection principle.
Among those algorithms based on GA, BLX-α solves FOP by extending the
search area from discrete space to real space by considering the continuity of func-
tions. We assume that two individuals denoted by X1 = (x11, . . . , x1i, . . . , x1n)
and X2 = (x21, . . . , x2i, . . . , x2n) are selected with roulette wheel selection [12].
BLX-α randomly searches for solutions X = (x1, . . . , xi, . . . , xn) in the inter-
vals (S1, . . . , Si, . . . , Sn) which include the above parental chromosomes X1 and
X2 with extension ratio of α of 0.5. Our BLX-α implemented in our previ-
ous paper [10] has mechanism of stepwise localization of the search space. Let
g be the number of layers of the localization. The best individual X(g) =
(x1(g), x2(g), . . . , xn(g)) found in the g-th layer is used as the center of the
search on the next (g+1)-th layer. One layer is composed of several generations.
One generation produces individuals of the population size. On the g-th layer, we
reduce the search space Di(g) so narrow as [xi(g) − Ri(g), xi(g) + Ri(g)], where
Ri(g) satisfies the exponential order of equation Ri(g) = (1/2)g×log(g)Ri(0). By

Experimental Evaluation of ACO to Solve FOP 363

searching solutions in the above narrowed domain, we can improve the accuracy
of solutions.

3.4 ACOB with Stepwise Localization of Binary Search Space

ACOB implemented in our previous paper [10] is an adaptation of elitist ant
system (EAS) which was originally considered to solve TSP. In ACOB , the value
of each independent variable xi, which approximately realizes the solution X =
(x1, . . . , xi, . . . , xn) in real data space, is expressed as a genetic string of binary
data (0 or 1) of length l. ACOB has functions of stepwise localization of search
space similar to that of BLX-α described in above 3.3. We assume that we
can reduce the search space Di(g) = [xi(g) − Ri(g), xi(g) + Ri(g)] on the g-th
layer. Although the domain Di(g) is reduced, the number of observed points
can still be expressed as a single-digit binary number (2l), so the accuracy of
the solution is improved as di(g) = Ri(0) × (1/2)(g×log(g))+l−1, where di(g) is
the interval of observable data and candidate solutions are expressed by xi =
xi(g) − Ri(g) + k × di(g)(k = 0, 1, . . . , 2l − 1). As di(g) → 0 when g → ∞, so for
any positive number γ, we can get solutions approximated to the order of (1/2)γ

using the properties of continuous functions and the continuity of real numbers.

3.5 Two Points Crossover with Stepwise Localiztion (2X)

The method 2X is the same as that De Jong uses to solve FOP in GA. Similar
to ACOB described in Sect. 3.4, the solutions are represented by gene arrays
of binary data. 2X generates offspring by using well known two-point crossover
operations [12] on a pair of selected parents. Our 2X has also functions of stepwise
localization of the search space just like ACOB .

4 Test Functions Investigated in This Study

Test functions f(x1, x2, . . . , xn) and their domains investigated in this study are
defined as follows shown in the papers [3]. Minimum values found through our
experiments are also illustrated.

(1) Schwefel’s test function: −
10∑

i=1

xi × sin(
√|xi|),

−500 ≤ xi ≤ 500, −4189.828872724338

(2) Griewank’s test function: 1
4000

10∑

i=1

x 2
i −

10∏

i=1

cos(xi√
i
) + 1,

−600 ≤ xi ≤ 600, 0.0
(3) Ackley’s test function:

−20 × exp(−0.2 ×
√

1
10 ×

10∑

i=1

x2
i) − exp(1

10 ×
10∑

i=1

cos(2πxi)) + 20 + e,

−32 ≤ xi ≤ 32, 0.44409 × 10−15

364 R. Takahashi et al.

(4) Shubert’s test function:[
5∑

i=1

i × cos(i + (i + 1)x1)
]

×
[

5∑

i=1

i × cos(i + (i + 1)x2)
]

,

−10 ≤ xi ≤ 10,−186.73090883102398
(5) Six-hump camel back function:
(4 − 2.1x2

1 + 1
3x4

1)x
2
1 + x1x2 + 4(x2

2 − 1)x2
2,

−3 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 2,−1.03162845348987741723

(6) Easom’s function: −(−1)n(
n∏

i=1

cos(xi)) × exp
[

−
n∑

i=1

(xi − π)2
]

,

−100 ≤ xi ≤ 100, −1.0 (n = 2);−2π ≤ xi ≤ 2π,−1.0 (n = 10)

(7) Michaelwicz’s function: −
n∑

i=1

sin(xi) ×
[
sin(ix 2

i

π)
]2m

,m = 10,

0 ≤ xi ≤ π,−1.80130341009855365897(n = 2)
and −9.66015171564134966786(n = 10)
(8) Perm function type (D, BETA):
n∑

j=1

{
n∑

i=1

(ij + β)[(xi

i)j − 1]}2, β = 0.5,

−n ≤ xi ≤ n, 0.0(n = 2) and 0.00258877904512366374(n = 5)
(9) Perm functions type (0, D, BETA):
10∑

j=1

{
10∑

i=1

(i + β)[(xi)j − (1i)
j]}2, β = 10,

−1 ≤ xi ≤ 1, 0.1374139896037 × 10−7

(10) Xin-She Yang’s functions: (
10∑

i=1

|xi|) exp[−
10∑

i=1

sin(x 2
i)],

−2π ≤ xi ≤ 2π, 0.56606799135206409 × 10−3

5 Experiments

Five optimization methods such as CMA-ES, ACOR, BLX-α, 2X, ACOB are
evaluated. All of the optimization methods are coded in C language. C compiler
is Vidual C++ 2017. Test runs are executed on the machine DELL VOSTRO,
Intel Core i7-7500 CPU, 2.7 GHz, 8.0 GB RAM, two cores, and four threads.

5.1 Measures to Evaluate Methods

Five methods are compared with each other from the following five viewpoints
to measure accuracy and performance.
Accuracy measures. For each method k, the following ratios are defined.

(a) The ratio of attaining minimum values: Ratio(#OPT). #r(=15 in this
experiments) is the number of independent runs from different initial uniform
random numbers called seed ids for each test case. #test f(=13) is the number
of test cases using ten test functions defined in Sect. 4. #OPT(fi) is the number

Experimental Evaluation of ACO to Solve FOP 365

of trials that attain the minimum values fmin in #r independent runs for each
test function fi.

Ratio(#OPT) = (
#test f∑

i=1

#OPT (fi))/(#test f × #r) (1)

(b) The ratio of times method k is judged to be good as METHOD

BEST (f) through T-test, averaged over all f: Ratio(METHALMOST BEST).
METHA BEST (fi) in the formula takes its value of one if this method is selected
as one of almost best minimization models METHALMOST BEST (fi), otherwise
it takes its value of zero. METHODBEST (f) is the best minimum method
among five tested methods for each function f, if it attains the most minimum
function value BEST (f), where ties are broken firstly by preferring smaller
average function value AV G(f) searched for #r independent runs, secondly
smaller sample standard deviation STD(f), and lastly smaller average number
of individuals required for searching for the minimum solutions AV G#IND(f).

Ratio(METHALMOST BEST) =
#test f∑

i=1

METHA BEST (fi) / #test f (2)

Performance measures
(c) The expected value of the number AV G#IND of generations aver-
aged overall f : E.AV G#IND

E.AV G#IND =
#test f∑

i=1

AV G#IND(fi) / #test f (3)

(d) The expected value of computational time: E.COMP . In the formula,
AV GCOMP (f) is the average computational time required for searching for the
minimum solutions for each function f .

E.COMP =
#test f∑

i=1

AV GCOMP (fi) / #test f (4)

(e) Population size (Pop size). The number of individuals in a population is
called population size in GA (BLX-α, 2X) While alternating generations, each
generation generates the population size individuals with sequences of genetic
operations. Hence the population size is a metric to measure the required memory
space to generate individuals for each generation. It is λ in (μ, λ)-ES, and it is m
defined in Sect. 3.2 in ACOR, and it is the pheromone update cycle m in ACOB .

5.2 Experimental Results

Our experimental results from the above five viewpoints are illustrated in Table 1.
The table shows that as ratio of the number of minimum trials (Ratio(#OPT))

366 R. Takahashi et al.

improves, computational time (E.COMP) takes longer. Results show that
among five optimization methods ACOB , which has the function of stepwise
localization of search space, can keep the balance between the accuracy of solu-
tions and that of efficiency to search solutions. Minimum solutions found through
our tests are shown to have higher or equivalent accuracy compared with other
websites such as http://www.sfu.ca/∼ssurjano/optimization.html.

Table 1. Evaluation of optimization methods

Optimization

method

Accuracy Performance

Ratio(#OPT) Ratio

(METHALMOST BEST)

E.

AVG#IND

E.COMP

(second)

Pop size

Real coded CMA-ES 0(=0/195) 0.23(=3/13) 153,030 2.8 100

ACOR 0.38(=74/ 195) 0.62(=8/13) 85,120 40.5 100

BLX-α 0.44(=86/195) 0.85(=11/13) 2,197,684 484.8 300

Binary coded 2X 0.21(=40/195) 0.62(=8/13) 94,569 18.2 300

ACOB 0.27(=53/195) 0.54(=7/13) 1,115 43.8 10

6 Conclusions and Future Work

In solving FOP, the accuracy of computed solutions and performance of
ACOB are compared with other methods such as CMA-ES, ACOR, BLX-
α, and 2X by using thirteen test cases of ten well known test functions.
We observe the following results. (1) The best method METHODBEST (f)
varies corresponding to tested functions f . In the experiment, ACOR and
ACOB have the high Ratio(METODBEST) of 0.46 (=6/13) and 0.3 (=4/13)
respectively. (2)BLX-α has the highest Ratio(#OPT) of 0.44(=86/195) and
Ratio(METHALMOST BEST) of 0.85(=11/13), showing its high accuracy, but
poor from the viewpoint of performance. (3) ACOR has the second highest
Ratio(#OPT) and Ratio(METHALMOST BEST). It has less AV G#IND and
less computational time than s.t.-BLX-α. (4) Even though ACOB is the third
measure of Ratio(#OPT), it has the least AV G#IND, and the least popula-
tion size. (5) CMA-ES has the least computational time E.COMP (=2.8 sec.)
but behaves poorly in the accuracy measure. However, the error between the
function value found through CMA-ES and that found through other optimiza-
tion methods is very small (i.e. below 10−9

∼10−11). (6) It is also verified that
stepwise localization of search space can keep the balance between accuracy and
efficiency by experiments with ACOB , BLX-α and 2X. (7) It is also observed
that no method has both high accuracy and high performance. Our future work
is to verify it by extending search space.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
JP15K00347, Grant-in-Aid for Scientific Research (C). We would like to thank them
for supporting our work.

http://www.sfu.ca/~ssurjano/optimization.html

Experimental Evaluation of ACO to Solve FOP 367

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

2. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput.
Sci. 344, 243–278 (2005)

3. Yang, X.-S.: Test problems in optimization. In: Yang, X.-S. (ed.) Engineering Opti-
mization: An Introduction with Metaheuristic Applications. Wiley (2010)

4. Borhani, R.: Machine Learning Refined: Foundations, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge (2016)

5. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton
University Press, Princeton (2003)

6. Sait, S.M., Youssef, H.: Iterative Computer Algorithms with Applications in Engi-
neering, (translated into Japanese by Y. Shiraishi), Maruzen Co., Ltd (2002)

7. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185, 1155–1173 (2008)

8. Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-28646-2 3

9. Ojha, V.K., Abraham, A., Snásel, V.: ACO for continuous function optimization:
a performance analysis. In: Proceeding of 14th International Conference on Intel-
ligent Systems Design and Applications (ISDA), pp. 145–150. IEEE (2014)

10. Takahashi, R., Nakamura, Y.: Ant colony optimization with stepwise localization of
the discrete search space to solve function optimization problems. In: Proceedings
of 16th IEEE International Conference on Machine Learning and Applications
(ICMLA17), pp. 701–706 (2017)

11. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A.,
Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. STUDFUZZ, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-32494-1 4

12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Publishing Company Inc., Boston (1989)

13. Eshelman, L.J., Schaffer, J.D.: Real coded genetic algorithms and interval-
schemata. Found. Genet. Algorithms 2, 187–202 (1993)

14. Takahashi, R.: Empirical evaluation of changing crossover operators to solve func-
tion optimization problems. In: Proceedings of the 2016 IEEE Symposium Series
on Computational Intelligence (IEEE SSCI 2016), pp. 1–10 (2016). https://doi.
org/10.1109/SSCI.2016.7850141

15. Schwefel, H.P., Wegener, I., Weinert, K.: Advances in Computational Intelligence.
Springer, Heiderberg (2003). https://doi.org/10.1007/978-3-662-05609-7

https://doi.org/10.1007/978-3-540-28646-2_3
https://doi.org/10.1007/978-3-540-28646-2_3
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1109/SSCI.2016.7850141
https://doi.org/10.1109/SSCI.2016.7850141
https://doi.org/10.1007/978-3-662-05609-7

Gaussian-Valued Particle Swarm
Optimization

Kyle Robert Harrison1(B), Beatrice M. Ombuki-Berman2,
and Andries P. Engelbrecht1

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
kharrison@outlook.com, engel@cs.up.ac.za

2 Department of Computer Science, Brock University, St. Catharines, Canada
bombuki@brocku.ca

Abstract. This paper examines the position update equation of the
particle swarm optimization (PSO) algorithm, leading to the proposal
of a simplified position update based upon a Gaussian distribution.
The proposed algorithm, Gaussian-valued particle swarm optimization
(GVPSO), generates probabilistic positions by retaining key elements of
the canonical update procedure while also removing the need to specify
values for the traditional PSO control parameters. Experimental results
across a set of 60 benchmark problems indicate that GVPSO outperforms
both the standard PSO and the bare bones particle swarm optimization
(BBPSO) algorithm, which also employs a Gaussian distribution to gen-
erate particle positions.

1 Introduction

The particle swarm optimization (PSO) algorithm [22] is a stochastic optimiza-
tion technique based upon the social dynamics of a flock of birds. The PSO
algorithm generates new positions stochastically based upon the position of two
key attractors in the search space, namely the personal and neighbourhood best
positions. The step sizes, and therefore the degree of exploration and exploita-
tion, are then controlled via the values of three control parameters [1,4,20,28].
The values of the control parameters directly influence the particle movement
patterns [1,3]. However, the best control parameter values are problem depen-
dent and effective tuning is needed to improve PSO performance [2,4,37].

While parameter tuning is clearly warranted in the PSO algorithm, it is typ-
ically a time-consuming process whereby a large number of candidate parameter
configurations must be analysed. Fortunately, there have been a number of stud-
ies that have suggested general-purpose PSO parameters based on empirical evi-
dence [3–5,8,18,19,28,37,41]. While these studies have made use of the implicit
assumption that a priori tuning of control parameters is sufficient to optimize
performance, recent evidence suggests that the best PSO parameters to employ
change over time [18]. Similar results have also been found for heterogeneous
PSOs [26,29,30,38] and for dynamic PSOs [24].
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 368–377, 2018.
https://doi.org/10.1007/978-3-030-00533-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_31&domain=pdf

Gaussian-Valued Particle Swarm Optimization 369

An alternative approach is to use PSO variants that do not rely on a pri-
ori control parameter values. A prominent example of this approach lies in
the development of self-adaptive PSO (SAPSO) techniques, which continuously
adapt the values of their control parameters throughout the search process
[25,27,31,32,34–36,39,40]. However, many of the SAPSO algorithms have been
shown to exhibit either premature convergence or rapid divergence, thereby lead-
ing to poor performance [14,15,17,42]. An additional example is the bare bones
PSO (BBPSO) [21], which updates particle positions probabilistically using a
Gaussian distribution. However, the manner in which particle positions are cre-
ated via BBPSO is strikingly dissimilar to how the conventional PSO determines
updated particle positions.

In this paper, a new PSO variant is proposed by formulating a new proba-
bilistic approach to generating particle positions. The new approach is inspired
by the BBPSO algorithm, but differs significantly in the manner by which par-
ticle positions are generated. Notably, the proposed algorithm generates particle
positions using a model that more closely resembles the canonical PSO, which
as this paper will demonstrate, provides a clear performance advantage over
BBPSO and other PSO configurations.

The remainder of this paper is structured as follows. Section 2 provides the
necessary background information about PSO and BBPSO. The proposed algo-
rithm is described in Sect. 3, while Sect. 4 details the empirical analysis and
results. Finally, concluding remarks and avenues of future work are provided in
Sect. 5.

2 Background

This section provides the necessary background information about the PSO
and BBPSO algorithms. The PSO algorithm is described in Sect. 2.1 while the
BBPSO algorithm is outlined in Sect. 2.2.

2.1 Particle Swarm Optimization

The PSO algorithm [22] consists of a collection of agents, referred to as particles,
which each represent a candidate solution to an optimization problem. Each
particle retains three pieces of information, namely its current position, velocity,
and its (personal) best position found within the search space. Particle positions
are updated each iteration via the calculation and subsequent addition of a
velocity to the particle’s current position. A particle’s velocity is based on its
attraction towards two (promising) locations in the search space, namely the best
position found by the particle itself and the best position found by any particle
within the particle’s immediate neighbourhood [23]. The neighbourhood of a
particle is defined as the other particles within the swarm from which it may
take influence, which is most commonly the entire swarm or, alternatively, the
immediate neighbours when arranged in a ring [23].

370 K. R. Harrison et al.

To facilitate movement in the PSO algorithm, the velocity is calculated for
particle i according to the inertia weight model [34] as

vij(t + 1) = ωvij(t) + c1r1ij(t)(yij(t) − xij(t)) + c2r2ij(t)(ŷij(t) − xij(t)),
(1)

where vij(t) and xij(t) are the velocity and position in dimension j at time
t, respectively. The inertia weight is given by ω while c1 and c2 represent the
cognitive and social acceleration coefficients, respectively. The stochastic compo-
nent of the algorithm is provided by the random values r1ij(t), r2ij(t) ∼ U(0, 1),
which are independently sampled each iteration for all components of each par-
ticle’s velocity. Finally, yij(t) and ŷij(t) denote the personal and neighbourhood
best positions in dimension j, respectively. Particle positions are then updated
according to

xij(t + 1) = xij(t) + vij(t + 1). (2)

2.2 Barebones Particle Swarm Optimization

When examining particle movement patterns, Kennedy noted that particle posi-
tions formed a bell curve centered around the midpoint between the global and
personal best positions [21]. Based on this result, the BBPSO algorithm [21]
eliminates the velocity component of PSO and rather updates particle positions
probabilistically according to

xij(t + 1) =

{
yij(t) if U(0, 1) < e

N
(

c1yij(t)+c2ŷij(t)
c1+c2

, |yij(t) − ŷij(t)|
)

otherwise
, (3)

where N (μ, σ) denotes a normal distribution with mean μ and standard devia-
tion σ and e is a parameter representing the per-dimension chance of selecting
the personal best position. In the original formulation of BBPSO, the control
parameters were set as c1 = c2 = 1 [21]. Later theoretical results supported the
observation of Kennedy by showing that, using the stagnation and deterministic
assumptions, each particle will converge to the point c1y i+c2ŷ i

c1+c2
[2,37].

3 Gaussian Valued Particle Swarm Optimization

To provide the motivation for the proposed algorithm, consider the PSO velocity
equation given in Eq. (1) when ω = 0. With no inertia, the velocity calculation
simplifies to

vij(t + 1) = c1r1ij(t)(yij(t) − xij(t)) + c2r2ij(t)(ŷij(t) − xij(t)). (4)

Note that because r1ij(t), r2ij(t) ∼ U(0, 1), Eq. (4) can be reformulated as

vij(t + 1) = v1ij(t) + v2ij(t) (5)

Gaussian-Valued Particle Swarm Optimization 371

where v1ij(t) ∼ U(0, c1(yij(t)−xij(t))) and v2ij(t) ∼ U(0, c2(ŷij(t)−xij(t)))1. It
can be easily observed that the position update becomes a sum of two uniform
distributions, thereby leading to a trapezoidal distribution. The shape of the
resulting trapezoidal distribution is then governed by the distance between the
current particle’s position and the position of the personal and neighbourhood
best, respectively. Even with the reintroduction of the inertia component, the
same general observation can be made; the particle position update depends
heavily upon not only the personal and neighbourhood best positions, but rather
the distance between the current particle and these two attractors.

The position update mechanism for GVPSO is formulated by employing a
Gaussian distribution centered at a random point taken from the aforementioned
trapezoidal distribution. The Gaussian distribution is used to modulate the par-
ticle step sizes based upon the distance between the current position and the
personal and neighbourhood best positions. Specifically, an ancillary position,
Δij(t), is calculated for each particle in every dimension using Eqs. (1) and (2)
with ω = 0 and c1 = c2 = 1. This effectively retains the core movement pattern
of PSO without the reliance on control parameter values. The particle’s new
position is then determined using a Gaussian distribution centered between the
current position and Δij(t) with a standard deviation based on the magnitude
of the distance between the current position and Δij(t) according to

xij(t + 1) =

{
yij(t) if U(0, 1) < e

N
(

xij(t)+Δij(t)
2 , |Δij(t) − xij(t)|

)
otherwise

, (6)

where e is the exploitation parameter, as seen in Eq. (3). Note that GVPSO,
in the same manner as BBPSO, eliminates the need for the conventional PSO
parameters ω, c1, and c2. However, the GVPSO algorithm differs from BBPSO by
creating particle positions that more closely mimic the canonical position update
of PSO through the use of distance information and thus the two attractors
remain to have a strong influence. Furthermore, the step sizes in the GVPSO
are implicitly controlled by the distances between the current particle and the
two attractors, thereby leading to diminishing step sizes as the positions and
attractors inevitably converge. Thus, the GVPSO is expected to exhibit both
initial exploration and exploitation in the later phase of the search process.

4 Experimental Results and Discussion

This section presents the experimental design regarding the empirical exami-
nation of GVPSO. Section 4.1 describes the parameterization, benchmark suite,
and statistical analysis. Section 4.2 presents a sensitivity analysis on the exploita-
tion parameter while Sect. 4.3 presents a comparison of GVPSO to other PSO
variants.
1 Without loss of generality, this assumes that c1(yij(t) − xij(t)) > 0 and c2(ŷij(t) −
xij(t)) > 0, otherwise the bounds must be flipped, i.e., 0 becomes the upper bound.

372 K. R. Harrison et al.

4.1 Experimental Setup

To first examine the effect of the exploitation probability parameter e, 10 values
of e were examined for GVPSO and BBPSO, namely values between 0.0 and
0.9 in increments of 0.1. Linearly decreasing variants (GVPSO-LD and BBPSO-
LD), whereby the value of e was linearly decreased from 0.9 to 0.0, were also
examined. The performance of GVPSO was then compared against the following
PSO strategies:

– BBPSO
– Three static PSO parameter configurations: PSO-1 (ω = 0.7298, c1 = c2 =

1.49618) [7], PSO-2 (ω = 0.729, c1 = 2.0412, c2 = 0.9477) [4], and PSO-7
(ω = 0.785, c1 = c2 = 1.331) [41], which were found to be the best performing
of 14 commonly recommended PSO parametrizations [16]

– PSO with time-varying acceleration coefficients (PSO-TVAC) [32]
– PSO with improved random constants (PSO-iRC) [16]

All examined variants consisted of 30 particles arranged in a star neighbour-
hood and used a synchronous update strategy. To prevent invalid attractors, a
particle’s personal best position was only updated if a new position had a bet-
ter objective function value and was within the feasible bounds of the search
space. For the BBPSO algorithm, the original parametrization of c1 = c2 = 1
was used. Where applicable, particle velocities were initialized to zero [9]. For
PSO-TVAC, the social acceleration coefficient was linearly increased from 0.5 to
2.5 while the values of the cognitive and inertia control parameters were linearly
decreased from 2.5 to 0.5 and 0.9 to 0.4, respectively. For PSO-iRC, parameter
configurations were re-sampled every 5 iterations (i.e., according to PSO-iRC-
p5 [16]). The value of the objective function (i.e., the fitness), averaged over 50
independent runs each consisting of 5000 iterations, was taken as the measure
of performance for each algorithm.

Benchmark Problems. A suite of 60 minimization problems, originally used
by [10], were used in this study. The suite has been demonstrated to include a
range of different landscape characteristics [13]. All functions were optimized in
30 dimensions. Further information about the benchmark suite can be found in
[10] and [14].

Statistical Analysis. Statistical analysis of results was done by way of Fried-
man’s test for multiple comparisons among all methods [11,12], as recommended
by Derrac et al. [6]. Furthermore, Shaffer’s post-hoc procedure [33] was per-
formed as a means to identify the pairwise comparisons that produced signif-
icant differences. Finally, the statistical results are visualized via critical dif-
ference plots, whereby algorithms to the left of the plot (i.e., those with lower
average ranks) demonstrated superior performance. The critical difference (CD)
denotes the difference in average rank that was found to be statistically sig-
nificant. Therefore, algorithms that are grouped by a line (i.e., those with a

Gaussian-Valued Particle Swarm Optimization 373

difference in rank less than CD) were found to have statistically insignificant
differences in performance.

4.2 Examining the Exploitation Probability

Figures 1 and 2 show the critical difference plots for the examined values of e for
both the GVPSO and BBPSO algorithms over the entire set of problems. While
the exact values that lead to the best performance were different among the two
algorithms, the general trends were the same. In general, mid-range values of
e (i.e., 0.4–0.7) tended to perform the best, showing that both exploration and
exploitation were beneficial to the GVPSO algorithm. Based upon these results,
GVPSO and BBPSO with values of e set to 0.5, 0.6, and 0.7 were compared
against other PSO techniques in the next section.

5 6 7 8
CD

gvpso.0.5
gvpso.0.7
gvpso.0.6
gvpso.ld

gvpso.0.8
gvpso.0.4

gvpso.0.3
gvpso.0.9
gvpso.0.2
gvpso.0.1
gvpso.0.0

Fig. 1. Comparison of GVPSO exploit probabilities over all 60 benchmark problems.

5 6 7 8
CD

bbpso.0.6
bbpso.0.7
bbpso.0.5
bbpso.0.4
bbpso.0.8
bbpso.ld

bbpso.0.3
bbpso.0.2
bbpso.0.9
bbpso.0.1
bbpso.0.0

Fig. 2. Comparison of BBPSO exploit probabilities over all 60 benchmark problems.

4.3 Comparison with Other Particle Swarm Optimization
Techniques

This section presents the results from comparing GVPSO (with e =
{0.5, 0.6, 0.7}) against the other PSO variants. Figure 3 shows the results across
all benchmark problems. It was first observed that the best average ranks across
all benchmark problems were attained by the three configurations of GVPSO,
clearly indicating the merit of this approach. Despite the better average rank
attained by GVPSO, the critical difference plot indicates there was no significant

374 K. R. Harrison et al.

difference in performance between the different GVPSO and BBPSO configura-
tions as well as PSO-2. However, it was also observed from Fig. 3 that PSO-2
attained a notably worse average rank than each of the GVPSO and BBPSO con-
figurations. The remaining PSO variants, namely PSO-1, PSO-7, PSO-TVAC,
and PSO-iRC-p5 all performed significantly worse than GVPSO.

4 5 6 7 8
CD

gvpso.0.7
gvpso.0.6
gvpso.0.5
bbpso.0.6
bbpso.0.7
bbpso.0.5

PSO.2
PSO.1
PSO.iRC.p5
PSO.7
PSO.TVAC

Fig. 3. Comparison of GVPSO with other PSO variants over all 60 benchmark prob-
lems.

5 Conclusions and Future Work

This paper proposed a new particle swarm optimization (PSO) variant, enti-
tled Gaussian-valued PSO (GVPSO), which generates particle positions proba-
bilistically according a Gaussian distribution. The GVPSO algorithm is loosely
inspired by the bare bones PSO (BBPSO) but differs significantly from the
BBPSO algorithm by generating particles according to a distribution that more
closely resembles the conventional PSO position update. An analysis of the single
parameter of GVPSO was first performed, followed by a comparison of GVPSO
to BBPSO and five additional PSO configurations. Results indicate that GVPSO
generally outperforms the other strategies.

An immediate avenue of future work lies in the self-adaptation of the single
GVPSO parameter, resulting in a parameter-free algorithm. Further work will
also examine the proposed algorithm in different dimensionalities and compare
its performance against additional PSO variants, including improved implemen-
tations of BBPSO.

Acknowledgments. This work is based on the research supported by the National
Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions,
findings and conclusions or recommendations expressed in this article is that of the
author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever
in this regard. This work is also supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Gaussian-Valued Particle Swarm Optimization 375

References

1. van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, Univer-
sity of Pretoria (2001)

2. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Inf. Sci. 176(8), 937–971 (2006). https://doi.org/10.1016/j.
ins.2005.02.003

3. Bonyadi, M., Michalewicz, Z.: Impacts of coefficients on movement patterns in
the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 1
(2016). https://doi.org/10.1109/TEVC.2016.2605668

4. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Proceedings of the Workshop on
Particle Swarm Optimization, vol. 1, pp. 1–6. Purdue School of Engineering and
Technology (2001)

5. Clerc, M.: Stagnation analysis in particle swarm optimisation or what happens
when nothing happens. Technical report 1, HAL (2006)

6. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). https://
doi.org/10.1016/j.swevo.2011.02.002

7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Sci-
ence, vol. 12, pp. 39–43. IEEE (2008). https://doi.org/10.1109/MHS.1995.494215

8. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle
swarm optimization. In: Proceedings of the 2000 IEEE Congress on Evolutionary
Computation, pp. 84–88. IEEE (2000). https://doi.org/10.1109/CEC.2000.870279

9. Engelbrecht, A.: Particle swarm optimization: velocity initialization. In: Proceed-
ings of the 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE
(2012). https://doi.org/10.1109/CEC.2012.6256112

10. Engelbrecht, A.: Particle swarm optimization: global best or local best? In: Pro-
ceedings of the 2013 BRICS Congress on Computational Intelligence and 11th
Brazilian Congress on Computational Intelligence, pp. 124–135. IEEE (2013).
https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

11. Friedman, M.: A comparison of alternative tests of significance for the problem of
m rankings. Ann. Math. Stat. 11(1), 86–92 (1940). https://doi.org/10.1214/aoms/
1177731944

12. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. Am. Stat. Assoc. 32(32), 675–701 (1937). https://doi.
org/10.1080/01621459.1937.10503522

13. Garden, R.W., Engelbrecht, A.P.: Analysis and classification of optimisation bench-
mark functions and benchmark suites. In: Proceedings of the 2014 IEEE Congress
on Evolutionary Computation, pp. 1641–1649. IEEE (2014). https://doi.org/10.
1109/CEC.2014.6900240

14. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control
strategies for particle swarm optimization. Swarm Intell. 10(4), 267–305 (2016).
https://doi.org/10.1007/s11721-016-0128-z

15. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: The sad state of self-
adaptive particle swarm optimizers. In: Proceedings of the 2016 IEEE Congress on
Evolutionary Computation, pp. 431–439. IEEE (2016). https://doi.org/10.1109/
CEC.2016.7743826

https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1109/TEVC.2016.2605668
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1109/CEC.2012.6256112
https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1109/CEC.2014.6900240
https://doi.org/10.1109/CEC.2014.6900240
https://doi.org/10.1007/s11721-016-0128-z
https://doi.org/10.1109/CEC.2016.7743826
https://doi.org/10.1109/CEC.2016.7743826

376 K. R. Harrison et al.

16. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: An adaptive particle
swarm optimization algorithm based on optimal parameter regions. In: Proceedings
of the 2017 IEEE Symposium Series on Computational Intelligence, pp. 1606–1613.
IEEE (2017). https://doi.org/10.1109/SSCI.2017.8285342

17. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Self-adaptive particle
swarm optimization: a review and analysis of convergence. Swarm Intell. 12, 187–
226 (2017). https://doi.org/10.1007/s11721-017-0150-9

18. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Optimal parameter
regions and the time-dependence of control parameter values for the particle swarm
optimization algorithm. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.
swevo.2018.01.006

19. Jiang, M., Luo, Y., Yang, S.: Particle swarm optimization - stochastic trajectory
analysis and parameter selection. In: Swarm Intelligence, Focus on Ant and Particle
Swarm Optimization, pp. 179–198. I-Tech Education and Publishing, December
2007. https://doi.org/10.5772/5104

20. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selec-
tion of the standard particle swarm optimization algorithm. Inf. Process. Lett.
102(1), 8–16 (2007). https://doi.org/10.1016/j.ipl.2006.10.005

21. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, pp. 80–87. IEEE (2003). https://doi.org/10.1109/SIS.
2003.1202251

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995).
https://doi.org/10.1109/ICNN.1995.488968

23. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp.
1671–1676. IEEE (2002). https://doi.org/10.1109/CEC.2002.1004493

24. Leonard, B.J., Engelbrecht, A.P.: On the optimality of particle swarm parameters
in dynamic environments. In: Proceedings of the 2013 IEEE Congress on Evolu-
tionary Computation, pp. 1564–1569. IEEE (2013). https://doi.org/10.1109/CEC.
2013.6557748

25. Leu, M.S., Yeh, M.F.: Grey particle swarm optimization. Appl. Soft Comput.
12(9), 2985–2996 (2012). https://doi.org/10.1016/j.asoc.2012.04.030

26. Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global
optimization problems. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(3), 627–
646 (2012). https://doi.org/10.1109/TSMCB.2011.2171946

27. Li, X., Fu, H., Zhang, C.: A self-adaptive particle swarm optimization algorithm.
In: Proceedings of the 2008 International Conference on Computer Science and
Software Engineering, vol. 5, pp. 186–189. IEEE (2008). https://doi.org/10.1109/
CSSE.2008.142

28. Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput.
23(2), 187–216 (2015). https://doi.org/10.1162/EVCO a 00129

29. Montes de Oca, M.A., Peña, J., Stützle, T., Pinciroli, C., Dorigo, M.: Heteroge-
neous particle swarm optimizers. In: Proceedings of the 2009 IEEE Congress on
Evolutionary Computation, pp. 698–705. IEEE (2009). https://doi.org/10.1109/
CEC.2009.4983013

30. Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous PSO for real-
parameter optimization. In: Proceedings of the 2013 IEEE Congress on Evolution-
ary Computation, pp. 361–368. IEEE (2013). https://doi.org/10.1109/CEC.2013.
6557592

https://doi.org/10.1109/SSCI.2017.8285342
https://doi.org/10.1007/s11721-017-0150-9
https://doi.org/10.1016/j.swevo.2018.01.006
https://doi.org/10.1016/j.swevo.2018.01.006
https://doi.org/10.5772/5104
https://doi.org/10.1016/j.ipl.2006.10.005
https://doi.org/10.1109/SIS.2003.1202251
https://doi.org/10.1109/SIS.2003.1202251
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/CEC.2002.1004493
https://doi.org/10.1109/CEC.2013.6557748
https://doi.org/10.1109/CEC.2013.6557748
https://doi.org/10.1016/j.asoc.2012.04.030
https://doi.org/10.1109/TSMCB.2011.2171946
https://doi.org/10.1109/CSSE.2008.142
https://doi.org/10.1109/CSSE.2008.142
https://doi.org/10.1162/EVCO_a_00129
https://doi.org/10.1109/CEC.2009.4983013
https://doi.org/10.1109/CEC.2009.4983013
https://doi.org/10.1109/CEC.2013.6557592
https://doi.org/10.1109/CEC.2013.6557592

Gaussian-Valued Particle Swarm Optimization 377

31. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimiza-
tion algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670
(2011). https://doi.org/10.1016/j.asoc.2011.01.037

32. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol.
Comput. 8(3), 240–255 (2004). https://doi.org/10.1109/TEVC.2004.826071

33. Shaffer, J.P.: Modified sequentially rejective multiple test procedures. J. Am. Stat.
Assoc. 81(395), 826–831 (1986). https://doi.org/10.1080/01621459.1986.10478341

34. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73.
IEEE (1998). https://doi.org/10.1109/ICEC.1998.699146

35. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceed-
ings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1945–1950.
IEEE (1999). https://doi.org/10.1109/CEC.1999.785511

36. Tanweer, M., Suresh, S., Sundararajan, N.: Self regulating particle swarm opti-
mization algorithm. Inf. Sci. 294, 182–202 (2015). https://doi.org/10.1016/j.ins.
2014.09.053

37. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003). https://doi.org/10.
1016/S0020-0190(02)00447-7

38. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning
based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011). https://
doi.org/10.1016/j.ins.2010.07.013

39. Xu, G.: An adaptive parameter tuning of particle swarm optimization algorithm.
Appl. Math. Comput. 219(9), 4560–4569 (2013). https://doi.org/10.1016/j.amc.
2012.10.067

40. Yang, X., Yuan, J., Yuan, J., Mao, H.: A modified particle swarm optimizer with
dynamic adaptation. Appl. Math. Comput. 189(2), 1205–1213 (2007). https://doi.
org/10.1016/j.amc.2006.12.045

41. Zhang, W., Ma, D., Wei, J.J., Liang, H.F.: A parameter selection strategy for
particle swarm optimization based on particle positions. Expert Syst. Appl. 41(7),
3576–3584 (2014). https://doi.org/10.1016/j.eswa.2013.10.061

42. van Zyl, E., Engelbrecht, A.: Comparison of self-adaptive particle swarm optimiz-
ers. In: Proceedings of the 2014 IEEE Symposium on Swarm Intelligence, pp. 1–9.
IEEE (2014). https://doi.org/10.1109/SIS.2014.7011775

https://doi.org/10.1016/j.asoc.2011.01.037
https://doi.org/10.1109/TEVC.2004.826071
https://doi.org/10.1080/01621459.1986.10478341
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1016/j.ins.2014.09.053
https://doi.org/10.1016/j.ins.2014.09.053
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1016/j.ins.2010.07.013
https://doi.org/10.1016/j.ins.2010.07.013
https://doi.org/10.1016/j.amc.2012.10.067
https://doi.org/10.1016/j.amc.2012.10.067
https://doi.org/10.1016/j.amc.2006.12.045
https://doi.org/10.1016/j.amc.2006.12.045
https://doi.org/10.1016/j.eswa.2013.10.061
https://doi.org/10.1109/SIS.2014.7011775

Individual Activity Level and Mobility
Patterns of Ants Within Nest Site

Kazutaka Shoji(B)

Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo, Japan
kazutakashoji.ants@gmail.com

Abstract. Augmented reality (AR) tracking method allowed us not
only to obtain entire interaction data but also entire behavioral big data,
of ants, at the same time. Individual behavioral data may provide us a
way to analyze individual personality behavioral responses to environ-
mental condition, and an automatic way to detect their task allocation in
a colony. In this study, individual behavioral differences were assessed by
comparing individual behavior under normal and harsh environments, to
evaluate individual responses. Individuals were classified based on their
behavior; mobility patterns were analyzed to understand their relation-
ship with respective network structure. These results show that indi-
vidual behaviors are regulated as responses to environmental conditions
and reactions differ depending on colony size. Individual classification
and mobility patterns show that this method can be used to distinguish
individuals solely by their behavioral and mobility patterns, which may
have important roles in network structure pattern.

1 Introduction

Individual behavioral differences such as speed, spatial distribution, and per-
sonality [4] may have an important role in emergence of network structure in
ants [7,9,11]. Environmental factors almost certainly play an important role in
defining individual and group-level behavioral patterns [6]. In this study, influ-
ence of environmental factors on behavior and individual mobility patterns of
ants among various colony sizes were investigated. To reveal how environmental
conditions affect individual behavior within nest sites, colonies were exposed to
harsh environments such as strong light, which can induce migratory behavior in
ants [2–4,6]. Previous studies [6] only observed arenas because of the difficulty
of keeping their ID numbers for ordinary tracking system in each individual,
continuously. Therefore, it is unknown whether individual ants at their nest
sites respond the same way as on the arena. In a previous study [8], individual
ants were classified, based on observed task allocation from manually recorded
video, which suggested that classification and special distribution are correlated.
Observation of numerous ants and lengthy video are time consuming. To reduce
costs and to obtain classification information automatically, behavioral parame-
ters such as speed, heading angle, and distance obtained from AR tracking are
useful.
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 378–384, 2018.
https://doi.org/10.1007/978-3-030-00533-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_32&domain=pdf

Individual Activity Level and Mobility Patterns of Ants Within Nest Site 379

The AR tracking system provides XY positional data [1] and it can be uti-
lized for detection of individual interaction and network analysis [10]. Network
analysis only focused on structure and ignored individual (node) differences in
colonies [8,11]. To provide individual differences data on nodes and to facilitate
network analysis, behavioral analysis was conducted. There are two approaches
to behavioral analysis in this study; (1) analyzing individual speed, heading
angle and total walking distance; (2) by using individual data from (1), classify-
ing individuals and analyzing their mobility patterns, which may have influence
on network structure. In this study, (1) and (2) behavioral analyses were con-
ducted to show their functionality and usefulness as follows: (a) Individual speed,
heading angle, and total working distance were compared between normal and
harsh environment within the nest sites to reveal whether they work hard only
on the trail [6] or also within nest sites; (b) individuals were classified based on
obtained XY positional data, from AR tracking process, within nest sites and
their mobility patterns were analyzed.

2 Methods and Materials

2.1 Ants and AR Tracking

Entire colonies of Myrmecina nipponica were collected from broadleaf forest
near Chitose City in Hokkaido, northern Japan (N42 470’ E141 340’, altitude
approximately 100 m) in September 2016 and maintained in artificial laboratory
nests, 4.8 cm× 2.8 cm in area and 3 mm high with a 6 mm wide entrance, using
standard protocols [2, 10]. Nest walls were made of styrene plastic. Top of the
nest was covered with slide glass and a redcolored plastic sheet. Nine colonies of
varying size were selected for observation.

The AR tags contain XY position, ID, heading direction rotation, pitch, and
yaw. AR barcode tags were made from those presented with BEEtag [1]. BEEtag
is a source code which can be operated on MATLAB. Barcodes of 0.8 mm were
printed on paper. These tags were glued (Henkel, LOCTITE pin pointer jelly
type) on thorax of ants in colonies. A high-resolution mirrorless camera (Pana-
sonic, DMC-GH4H) was used to take digital photographs of ants every second.
Six LED light sources (Style+, PAR38-12*3W) were used to illuminate experi-
mental chamber. Before taking photographs, ants were allowed to acclimate to
the arena for 60 min. In total, 14,400 images were recorded in 4 h.

2.2 Individual Behavior Under Harsh Environment

Individual behavior within nest sites under normal (red colored roof of nest site)
and harsh environment (clear roof of nest site), which can induce migratory
behavior [2,3,6], was monitored with AR tracking. Medians of mean speed, rela-
tive heading angle, and total distance were compared between normal and harsh
environmental condition. Wilcoxon signed rank test with Bonferroni adjustment
was used throughout the analysis. Differences of mean speed between normal

380 K. Shoji

and harsh condition were compared in each individual activity-level such as,
high, middle, and low-activity level; classification of individual activity-levels is
described in the following section with ANCOVA (Analysis of covariance).

2.3 Individual Classification Based on Their Behavior and Mobility
Patterns

To detect individual differences such as task allocation, automatically, ants were
classified based on individual activity-level. Individual speed, total travel dis-
tance, and relative heading angle were used to distinguish individuals based
on movement. From this data, individuals in a colony were categorized by using
Byesian information criterion (BIC) for parameterized Gaussian mixture models
fitted by expectation-maximization (EM) algorithm initialized by model-based
hierarchical clustering [10]. Number of classes was determined based on a previ-
ous study [8], which assumed three classes such as nurse, cleaner, and forager,
beforehand. Based on mixed distribution model, they were classified as high,
middle, and low-activity ants, based on mean speed. To identify whether mobil-
ity patterns in the previous study [8] can be detected by behavioral data base
individual classification, individual mobility patterns were visualized using Ker-
nel density estimation method [12] within nest sites. The ant’s silhouette was
obtained by overlapping tracked image on respective heat maps.

3 Results

3.1 Individual Behavior Under Harsh Environment

AR tracking precision was around 60–80%. Individual speed, heading angle, and
distance were compared between normal rearing condition and harsh condition.
Each value was compared using median at colony level. Wilcoxon signed rank test
was used for statistical analysis throughout the comparison; there were signifi-
cant differences in speed (Fig. 1a, Wilcoxon signed rank test; median difference
= −34.68, V = 4, P< 0.05) and distance (Fig. 1b, Wilcoxon signed rank test;
median difference = −34.68, V = 4, P< 0.05). However, there were no significant
differences in relative heading angle between red light and strong light condi-
tions (Fig. 1c, Wilcoxon signed rank test; median difference = 0.375, V = 18, P
= 0.375). The increases in speed and distance indicate that individuals became
more active in response to harsh environment.

The relationship between colony size and individual mean speed per frame
within nest sites in a colony were analyzed between the environmental condi-
tions. In ANCOVA, there were no significant differences in mean speed between
environments in high activity-level (Fig. 2. ANCOVA, Sum Sq = 9908, Df = 1, F
value = 1.44, P = 0.23); there were interactions between colony size and environ-
ment in middle activity-level (Fig. 2. ANCOVA, P = 0.01); and there were signif-
icant differences in mean speed between environment in low activity-individual

Individual Activity Level and Mobility Patterns of Ants Within Nest Site 381

(Fig. 2. ANCOVA, Sum Sq = 12132, Df = 1, F value = 0.2, P = 0.0001). There-
fore, activity-level in high-activity individuals did not differ between environ-
ments. Middle-activity level individuals responded differently to the environ-
mental condition with colony size. Therefore, middle-activity level individual
became more active in small colonies under harsh environment.

Ligthing condition

(p
ix
el
/s
)

(p
ix
el
) (d
eg

re
e)

Fig. 1. (a) Median of mean speed under red light condition. Wilcoxon signed rank
test: median difference = −34.68458, V = 4, P< 0.05. The circle is outliners. X-axis is
lighting condition (R, red filter; S, strong light). Y-axis is median of mean speed of each
colony. (b) Median of total distance under red light condition. Wilcoxon signed rank
test: median difference = −34.68458, V = 4, P < 0.05. X-axis is lighting condition (R,
red filter; S, strong light). Y-axis is median of the mean total distance of each colony.
(c) Median of relative heading angle under red light condition. Wilcoxon signed rank
test: median difference = 0.375, V = 18, P = 0.375. X-axis is lighting condition (R,
red filter; S, strong light). Y-axis is median of the mean relative heading angle of each
colony. (Color figure online)

3.2 Individual Classification and Mobility Patterns

Kernel density in individual spatial distribution was estimated (evaluation points
= 4000) using the results calculated in individual classification results. Individual
trajectories in each class and estimated densities were visualized as heat map as
shown in Fig. 3. Mobility patterns seem to contain layers, such as center (around
the brood), middle, and outside, based on heat maps. It corresponds to their
activity. Low-activity individuals were distributed in the center layer, middle
activity individuals were in the middle layer, and high activity individuals were
in the outside layer.

4 Discussion

4.1 Individual Behavior Under Harsh Versus Normal Environments

Not only social environmental factors such as interaction or task allocation; but
also abiotic environmental factor such as temperature, light, and humidity are

382 K. Shoji

Fig. 2. Colony size versus mean speed under normal condition (R) and harsh condition
(S). Colony size is obtained from R condition (normal condition, number of detected
tag IDs). The X-axis is colony size. Y-axis is mean speed. H (black circle) is high, M
(green cross) is middle and L (red triangle) is low activity-level. The line indicates
regression line calculated by least squares method. (a) Normal condition (R) and (b)
harsh condition (S) (Color figure online)

some of the most important factors influencing the entire colony function [5,6].
In this study, individual behaviors between normal and harsh condition were
compared. Individual activity under harsh environment was higher than that
of baseline in middle and low-activity level (Fig. 2). The relationship between
colony size and activity shows the same tendency in the nest site as in a previ-
ous study, which observed individual on trail [6] in middle activity-level individ-
uals. In middle activity-level, individuals responded differently with colony size
under harsh environment. Middle activity-level individuals became more active
in smaller colonies than in larger colonies under harsh environment. Under harsh
environment, ants tried to find another nest site. High activity-level ants go out
of their nest site and try to find a new one. All the ants in a colony move to
the new nest site by themselves without carrying behavior. Therefore, middle
activity-level individuals, in smaller colonies under harsh environment, are ready
to engage in searching behavior to gather information or share information about
new nest sites, where migration behavior follows the pheromone trail.

4.2 Individual Classification and Spatial Distribution

To reduce the costs and obtain information on classes, behavioral parameters are
useful. Only by using three behavioral parameters such as speed, heading angle
and distance, results similar to that of special distribution in Mersch et al. [8]
can be reproduced. In the analysis, automatic detection of individual classes
may provide a way to categorize individuals while avoiding any arbitrariness
during classification or observation of videos. Spatial distribution in each class
was visualized using Kernel density estimation. Individuals that mostly stayed
around the brood, showed the smallest speed and total working distance among
the three classes. Ants distributed around the center individuals showed mid-
dle speed and distance. The outlier individuals showed the highest speed and

Individual Activity Level and Mobility Patterns of Ants Within Nest Site 383

Fig. 3. (a) Class L (center layer) individual trajectory. Colony ID is 20160918-9-1.
Individual ID is 61. Circles are obtained positions. Top of the picture is entrance
side. Individual classes are indicated as L, low-mean speed; M, middle-mean speed;
H, high-mean speed. (b) Class M (middle layer) individual trajectory. Individual ID
is 105. (c) Class H (outside layer) individual trajectory. Individual ID is 7. (d) the
mobility patterns of center layer (class L). Colony ID is 20160918-9-1. Top of the fig
is entrance side. The black line indicates the wall of the nest site. Red color (dark
area) indicates low-density and the region around purple color (bright area) is the
high-density area. The silhouettes of ants were overlapped. Center layer individuals
were distributed around their brood. (e) the mobility patterns of middle layer (class
M). Middle layer individuals were distributed around the center layer individuals. (f)
Mobility patterns of outside layer (class H). Outside layer individuals were distributed
around or overlapped with center or middle layer individuals, working around the nest
site and frequently went out of the nest sites so the entrance can seem clearly. (Color
figure online)

distance among the classes. Therefore, individuals around the broods can be
presumed to be nurses or cleaners, ants around the center individuals can be

384 K. Shoji

presumed as cleaner, nurse, scout, or forager and outliner can be presumed as
scout, forager, or cleaner. Middle activity-level individuals became more active
in small colonies under the harsh environment; therefore, the individuals can
be presumed as buffering the number of tasks within a colony by becoming
active and engaging in searching behavior as scouts to gather information about
new nest sites. Therefore, network structure and information spreading process
among individuals can be interesting points of view to reveal how mobility pat-
terns and individual activity-level contribute to the performance of collective
behavior in ants.

Acknowledgments. This study was supported by JSPS KAKENHI Grant Number
JP18J20064.

References

1. Crall, J.D., Gravish, N., Mountcastle, A.M., Combes, S.A.: BEEtag: a low-cost,
image-based tracking system for the study of animal behavior and locomotion.
PloS One 10(9), e0136487 (2015)

2. Cronin, A.L.: Consensus decision making in the ant Myrmecina nipponica: house-
hunters combine pheromone trails with quorum responses. Anim. Behav. 84(5),
1243–1251 (2012)

3. Cronin, A.L.: Conditional use of social and private information guides house-
hunting ants. PLoS One 8(5), e64668 (2013)

4. Cronin, A.L.: Individual and group personalities characterise consensus decision-
making in an ant. Ethology 121(7), 703–713 (2015)

5. Cronin, A.L.: Group size advantages to decision making are environmentally con-
tingent in house-hunting Myrmecina ants. Anim. Behav. 118, 171–179 (2016)

6. Cronin, A.L., Stumpe, M.C.: Ants work harder during consensus decision-making
in small groups. J. Roy. Soc. Interf. 11(98) (2014)

7. Jeanson, R.: Long-term dynamics in proximity networks in ants. Anim. Behav.
83(4), 915–923 (2012)

8. Mersch, D.P., Crespi, A., Keller, L.: Tracking individuals shows spatial fidelity is
a key regulator of ant social organization. Science 340(6136), 1090–1093 (2013)

9. Moreau, M., Arrufat, P., Latil, G., Jeanson, R.: Use of radio-tagging to map spatial
organization and social interactions in insects. J. Exp. Biol. 214(1), 17–21 (2011)

10. Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: mclust 5: clustering, classifica-
tion and density estimation using Gaussian finite mixture models. R J. 8(1), 289
(2016)

11. Shoji, K.: Interaction networks in ants. Master’s thesis. Tokyo Metropolitan Uni-
versity (2018)

12. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S-PLUS. Springer,
New York (2013)

Learning Based Leadership in Swarm
Navigation

Ovunc Tuzel, Gilberto Marcon dos Santos, Chloë Fleming(B),
and Julie A. Adams(B)

Collaborative Robotics and Intelligent Systems Institute, Oregon State University,
Corvallis, OR, USA

{flemichl,julie.a.adams}@oregonstate.edu

Abstract. Collective migration in biological species is often guided by
distributed leaders that modulate their peers’ motion behaviors. Dis-
tributed leadership is important for artificial swarms, but designing the
leaders’ controllers is difficult. A swarm control strategy that leverages
trained leaders to influence the collective’s trajectory in spatial naviga-
tion tasks was formulated. The neuro-evolutionary learning based control
method was used to train a few leaders to influence motion behaviors.
The leadership control strategy is applied to a rally task with varying
swarm sizes and leadership percentages. Increasing the leadership repre-
sentation improved task performance. Leaders moved quickly when the
swarm had a higher percentage of leaders and slowly when the percentage
was small.

1 Introduction

Biologically-inspired swarm robotic systems exhibit emergent behavior based on
local interactions. However, coordinating swarms is challenging. Swarms’ dis-
tributed, localized communication networks hinder access to global information
[7], including navigation goals.

Collective behaviors in fish, birds, and bees suggests that motion coordination
can be achieved by a decentralized system without global control or communica-
tion mechanisms [13]. Navigation tasks are often facilitated by distributed leaders
responding to environmental stimuli [5,17–20,26,29]. The leaders are typically
anonymous in large homogeneous collectives [11] and only directly influence indi-
viduals within their localized interaction neighborhoods; however, their actions
propagate, creating a collective response [8,34].

Leaders play an important role in biological swarm coordination, but it is
unclear how they tune their behaviors to maximize their influence over the
swarm’s behavior. A neuro-evolutionary learning method to train leaders is
developed and evaluated in order to explore leadership mechanisms for artifi-
cial swarms. A key contribution is a learning based leadership strategy, where a
simulated swarm can be influenced with leadership percentages as low as 4%.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 385–394, 2018.
https://doi.org/10.1007/978-3-030-00533-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_33&domain=pdf
http://orcid.org/0000-0002-7774-728X

386 O. Tuzel et al.

2 Related Work

Collective navigation is critical for large groups and is often guided by individu-
als assuming leadership roles. Leadership in biological swarms can be a transient
role assumed by any individual [17,21,29]. Fish trained to forage based on envi-
ronmental features were inserted into a shoal of naive fish and led the shoal to
the food source, even though the majority were uninformed [26]. Leadership that
emerges based on internal and environmental conditions allows any swarm mem-
ber to assume a leadership role, which makes them anonymous and the swarm
robust to leader loss. The leader percentage in biological swarms is often small:
5% for swarming honeybees [30], and 9% for fish [26].

The mechanisms biological leaders use to guide a swarm are not well-
characterized, but they can assume frontal positions [10,24]. Honeybees mov-
ing to a new hive have a few fast-flying members [5]. Frontal fish, often faster
swimming food deprived individuals, have greater influence on the shoal’s direc-
tion [19]. However, leaders that move too aggressively tend to leave the swarm
members behind, suggesting that leaders must remain aware of their followers
[16].

Learning based methods for deriving controllers are often applied to robotic
swarms. Attributing global performance to individual agents’ behaviors is diffi-
cult for large scale systems [33], particularly when the global state is unobserv-
able by the individuals [4]. Several related efforts mitigate this multi-agent credit
assignment problem using team learning [22] to train the swarm using identical
controllers and reward signals for all agents [1–3,14,25].

Neuro-evolutionary team learning methods are common when generating
swarm agents’ controllers using a fitness function representative of collective
behavior. The design paradigm emphasizes simple agent control policies based
on locally observable information [7], where directly mapping sensor inputs to
control actions is often suitable [2,6,23,31,32]. Several efforts [2,31,32] demon-
strated that swarm aggregation tasks can be accomplished with neural network
(NN) controllers using this mapping approach. Similar methods successfully gen-
erated controllers for more complex tasks (i.e., predator avoidance [28] and col-
laborative foraging [12]). However, influencing the swarm via distributed leaders
is a complex task that has not been investigated with learning based methods.

3 Approach

A swarm of n nonholonomic homogeneous agents, R = {r1, r2, · · · , rn}, navigates
a continuous 2D environment to perform a rally task, in which leaders, L ⊂ R,
know the goal location and are to lead the swarm to the goal. All agents in
S = R−L are oblivious to the goal. Each agent controls its velocity v ε [0, vmax],
where vmax is a constant upper limit, and desired heading angle ψ ε [−π, π].

All agents in S interact based on Reynolds’s rules [27]: repulsion (rrep), ori-
entation (rori), and attraction (ratt) that delineate 2D zones around each agent,
where rrep < rori < ratt. These agents: (1) Veer away from all neighbors within

Learning Based Leadership in Swarm Navigation 387

rrep, (2) Align with neighbors at distances between rrep and rori, and (3) Move
towards neighbors between rori and ratt.

Leaders exert influence by moving among the swarm, using a policy deter-
mined by a NN to apply repulsion-orientation-attraction forces on the other
agents. All leaders use the same NN, with identical weights and train using
team learning.

3.1 Neuro-Evolutionary Learning Method

A set of m two-layer NNs A = {a1, a2, · · · , am} is initialized with random weights
generated by a Gaussian distribution centered at zero, with a standard deviation
of 1 (μ = 0, σ = 1). The NNs’ hidden and output layers consist of units with arc
tangent activation functions to provide symmetry, and bounded the output to
[−π, π], consistent with the leader robots’ desired heading angle, ψ.

The NN’s four sensory inputs represent the polar coordinates of two points,
relative to the leader’s reference frame. The first pair of inputs are the polar
coordinates, distance (d) and heading (θ), between the robot and the goal posi-
tion, 〈dg, θg〉. The second pair of inputs are the polar coordinates from the robot
to the centroid of the swarm within the leader’s perceptual range, 〈ds, θs〉. All
possible inputs to the NN are defined by the input vector NNx = 〈dg, θg, ds, θs〉.
The NN’s outputs are the leader’s desired velocity and heading NNo = 〈v, ψ〉.

Each epoch simulates a rally task for all m NNs in the population A. An
episode loads a NN ai into the leaders L, positions the leaders and non-leaders
S randomly within a starting location, and simulates a fixed number of steps
τ . The NN’s performance is evaluated using the cost function E (Eq. 1) upon
episode completion. All m NNs are evaluated and the top-performing λ networks,
called parents, are retained. A new set of m−λ NNs are generated by randomly
sampling (with replacement) from the λ parents. These m −λ NNs are mutated
by applying zero-mean Gaussian noise with a fixed standard deviation NNmut

(μ = 0, σ = NNmut) to every NN weight. The mutated NNs are incorporated
into the evolutionary population; thus, returning the population size back to m.

At each simulation step t, the temporal factor, t
τ in [0, 1], represents time

progress over the episode’s total steps τ . The temporal weight wt is a function
of the temporal factor, wt = 1 − cos(π · t

τ), over its valid input range, t
τ ∈ [0, 1].

The area under the curve, wt(t
τ), is 1.

The Euclidean distance between each non-leader agent i and the goal at
step t, di

t, is evaluated and weighted by the temporal weight. The weighted
accumulated distance is summed over every step, providing an average weighted
distance di

avg = 1
τ · ∑τ

t=0 di
t · wt representing the cost associated with agent i

for the entire episode. The temporal weighting increases the influence of agents’
deviations from the goal late in the episode. The weighting rewards NNs that
consistently converge towards the goal, rather than those that initially drive the
swarm towards the goal, but later disperse or lose control of the swarm.

388 O. Tuzel et al.

The average accumulated weighted distance di
avg is averaged across all agents

in S at the end of each episode, defining the NN fitness function:

E =
1

|S| ·
∑

i∈S

di
avg. (1)

4 Experimental Design and Results

The primary research question is whether a small percentage of leaders using
the neuro-evolutionary learning algorithm can influence a robot swarm to sig-
nificantly outperform a baseline model that does not incorporate learning.

4.1 Experimental Design

The independent variables are the leadership model, swarm size and the lead-
ership percentage. The leadership model is either the learning based model
described in Sect. 3, or a baseline model. Baseline leaders do not learn and always
align their heading towards the goal. Swarms of 50 and 100 agents were evaluated
with leadership percentages ranging from 4% to 24%, as shown in Table 1. These
percentages reflect observations on leadership in biological swarms [11,26,30].

The swarm begins each rally trial gathered at a starting point dinit distance
units (u) from, and at a random angle to the goal. dinit = 400 distance units (u)
to minimize locating the goal by chance, while also completing the trial within a
reasonable number of time steps. A zero-mean Gaussian noise with variance σinit

was added to the starting positions of each agent, in order to avoid collisions.
Swarm agents are initialized with uniform random orientations, and the swarm’s
starting speed is set to vinit, which is 50% of the swarm’s maximum speed, vmax.
This stochasticity encourages the learning of generalized behaviors. The rrep,
rori, and ratt radii govern the non-leader agents’ motion, and were selected to
be 20 u, 30 u, and 50 u, respectively, based on biological swarms [15]. The total
number of NNs, m, and the number of parents, λ, were set to be 15 and 5,
respectively. The training session lasted 400 epochs, ensuring convergence of all
training errors.

The percentage of non-leader agents within a radius of the goal location,
rgoal, is calculated at trial completion, and averaged over all trials to calculate
the percent reached (PR). The test error (E) represents the accumulated distance
to the goal, and is calculated using Eq. 1.

Leaders were trained using all independent variable configurations. After 400
training epochs, each NN was evaluated over 100 trials without any mutations,
and the NN with the minimum root-mean-squared error deemed the champion.
The process was repeated 10 times, resulting in 10 champions. The champion
NNs’ performance metrics are reported in all results.

Learning Based Leadership in Swarm Navigation 389

Table 1. Experimental parameters and independent variables.

Parameters Values Parameters Values

Swarm size 50, 100 rrep 20 u

Leader percentage 4%, 8%, 12%, 16%, 20%, 24% rori 30 u

τ 20000 steps ratr 50 u

vinit 1 u/step rgoal 150 u

σinit 50 vmax 2 u/step

λ 5 m 15

4.2 Results

The performance, percent reached (PR), improved with increasing leadership
percentage, as shown in Table 2 and Fig. 1. The learning based agents successfully
guided the swarm, with both 50 and 100 agents, even with the 4% leadership.
However, the baseline leaders generally failed to lead any swarm members to the
goal with the 4% and 8% leadership. The baseline model matched or exceeded
the learning model when leaders composed 20% and 24% of the swarm, but
pairwise T-tests (degrees of freedom [dof] = 999 in all tests) found no significant
differences between the models. The learning based method significantly outper-
formed the baseline for all other cases (p < 0.01). The PR was generally better
with a swarm size of 50 and pairwise T-tests comparing PR by swarm size found
significant differences only at the 4% and 8% leadership percentages (p< 0.01).

Table 2. The percent reached (PR) descriptive statistics (mean - (μ), standard error
- SE) by swarm size, leadership percentage, and leadership model.

Leader % 50 agents 100 agents

Baseline Learning Baseline Learning

μ SE μ SE μ SE μ SE

4% 0.04 0.06 32.01 2.75 0.01 0.02 20.31 2.38

8% 0.02 0.04 54.24 3.01 0.01 0.02 40.33 2.94

12% 21.21 8.01 69.73 2.81 5.05 4.29 69.52 2.79

16% 64.67 9.36 84.77 2.21 43.43 9.71 86.34 2.08

20% 89.92 5.89 87.48 2.02 75.76 8.40 90.00 1.82

24% 97.98 2.76 93.71 1.49 93.94 4.68 85.42 2.14

The test error (E) results, presented in Table 3, were grouped into bins (size
= 10), as shown in Fig. 2. The E for a majority of trials (>80%) was less than
400, and trials with E ≥ 400 were deemed unsuccessful, and are grouped into
the final bin. E is impacted by the time required to reach the goal, but there is

390 O. Tuzel et al.

Fig. 1. Percent reached by leadership model, leadership percentage and swarm size.

no effect on the PR if the agents reach the goal by trial completion. Thus, slow
moving swarms have higher Es. The PR metric suggests that agents occasionally
reach the goal area, even with 4% and 8% leadership, but with higher minimum
errors than swarms with higher leadership percentages. The leaders move slower
when their percentage is low, and faster when their percentage is higher.

Table 3. The test error (E) descriptive statistics by leadership model, swarm size and
leadership percentage (L%). Median is reported due to a large number of outliers.

L% 50 agents 100 agents

Baseline Learning Baseline Learning

Med Min Max Med Min Max Med Min Max Med Min Max

4% 308 261 1033 193 67 20992 313 262 993 376 76 19742

8% 302 255 923 140 38 7361 307 274 766 197 43 20247

12% 282 40 320 81 22 6268 304 42 324 83 32 6236

16% 38 36 313 31 20 6540 271 37 321 30 21 6528

20% 36 35 307 29 19 7721 37 36 317 23 20 2681

24% 35 34 317 21 18 9092 35 34 308 25 19 8893

Median and minimum Es of the learning model were lower than the baseline
with leadership percentages higher than 16%, despite the PR not being statis-
tically significant, suggesting that learning agents move faster than the baseline
agents. Trials where the fast moving learning leaders fail to guide the swarm
explain the high maximum E, as the swarms travel farther away from the goal.
The median and minimum Es decreased with increasing leadership percentage.
The largest reduction in the median occurred when the percentage increased
from 4% to 12%. The change in the median and minimum Es was minimal past
the 16% leadership percentage.

Learning Based Leadership in Swarm Navigation 391

Fig. 2. Learning model test errors by leadership percentage and swarm size. Errors are
packed into bins of size 10, and errors greater than 400 are grouped together into the
top bin (400). The circles represent the median error.

5 Discussion

The learning model resulted in leaders that successfully influenced the swarm to
achieve the rally task with very small leadership percentages, which validates the
proposed learning based controller and answers the primary research question.
Generally, the learning model leaders outperformed the baseline model and were
able to perform significantly better at the lowest leadership percentages. While
swarms led by small sets of leaders took longer and were less likely to reach the
goal, they were able to achieve the task at leadership percentages representative
of biological species, which can be as low as 5% [30] and 9% [26].

Lower leadership percentages (i.e., 4%) require the leaders to learn more
nuanced behaviors in order to be effective, which explains the slow convergence
of the training errors relative to higher percentages. The leaders’ movements are
fast, aggressive and goal driven when their influence over the swarm is high,
and resemble the baseline model. Thus, the baseline method is only viable if the
leader influence is guaranteed to be high throughout the duration of the task.

The biological literature demonstrates that leaders must balance goal-
oriented actions with socially-oriented ones in order to be effective [16]. Leaders
following the learning model act based on both the goal and their followers,
while the baseline leaders are indifferent to their followers. The significant per-
formance differences between the two models emphasize the importance of spa-
tial awareness, and confirms that the learning based model successfully combines
goal-oriented and socially-oriented actions.

Biological swarms rely only on local interactions, and typically use an implicit
leadership mechanism [9]. The learning based strategy draws inspiration from
biological swarms in that it is based on implicit communication and local decision
making. Further, no agent knows whether another agent is a leader or not.

The leadership percentage strongly affects the characteristics of the learned
behaviors. The learned behaviors are more aggressive, and the leaders travel

392 O. Tuzel et al.

straight towards the goal when their overall influence is higher. However, the
leaders follow more complex movement patterns when the leadership percentage
is low. Leaders must be aware of their followers when the leaders’ influence is
low, and use these complex movement patterns in order to ensure they are being
followed, otherwise the leaders lose track of the swarm. The proposed neuro-
controller solves this problem by integrating both the follower positions and the
goal position into the decision making process, which enables reliable swarm
control with only a small percentage of informed leaders.

6 Conclusion

A learning based leadership strategy was developed that allowed small percent-
ages of leaders to drastically improve its task performance over a baseline model.
The leadership model incorporates implicit leadership and communication, which
allows any agent to assume a leadership role at any given time. While a higher
leadership percentage improved task performance, the increase was minimal with
percentages >16%. The task was successful with leadership percentages as low
as 4%, but the consistency of success increased with higher percentages.

Acknowledgments. This work was partially supported by NSF Grant #1723924 and
DARPA award W31P4Q18C0034.

References

1. Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolution of signaling in a
multi-robot system: categorization and communication. Adapt. Behav. 16(1), 5–26
(2008)

2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collec-
tive behaviors. Artif. Life 9(3), 255–267 (2003)

3. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., Nolfi, S.:
Self-organized coordinated motion in groups of physically connected robots. IEEE
Trans. Syst. Man Cybern. Part B (Cybern.) 37(1), 224–239 (2007)

4. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345–359
(2013)

5. Beekman, M., Fathke, R.L., Seeley, T.D.: How does an informed minority of scouts
guide a honeybee swarm as it flies to its new home? Anim. Behav. 71(1), 161–171
(2006)

6. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive
behavior. Adapt. Behav. 1(1), 91–122 (1992)

7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

8. Cavagna, A., et al.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci.
107(26), 11865–11870 (2010)

9. Colby, M.K., Chung, J.J., Tumer, K.: Implicit adaptive multi-robot coordination
in dynamic environments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5168–5173 (2015)

Learning Based Leadership in Swarm Navigation 393

10. Couzin, I.D., Krause, J.: Collective memory and spatial sorting in animal groups.
Theoret. Biol. 218, 1–11 (2002)

11. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

12. Pérez, I.F., Boumaza, A., Charpillet, F.: Learning collaborative foraging in a swarm
of robots using embodied evolution. In: The European Conference on Artificial Life,
pp. 162–161 (2017)

13. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intel-
ligence. Swarm Intell. 1(1), 3–31 (2007)

14. Gross, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-
Inspir. Comput. 1(1–2), 1–13 (2009)

15. Haque, M., Ren, C., Baker, E., Kirkpatrick, D., Adams, J.A.: Analysis of swarm
communication models. In: International Workshop on Combinations of Intelligent
Methods and Applications, p. 29 (2016)

16. Ioannou, C.C., Singh, M., Couzin, I.D.: Potential leaders trade off goal-oriented
and socially oriented behavior in mobile animal groups. Am. Nat. 186(2), 284–293
(2015)

17. Kilgour, R., Scott, T.: Leadership in a herd of dairy cows. Proc. N. Z. Soc. Anim.
Prod. 19, 36–43 (1959)

18. King, A.J., Johnson, D.D., Van Vugt, M.: The origins and evolution of leadership.
Curr. Biol. 19(19), R911–R916 (2009)

19. Krause, J., Hoare, D., Krause, S., Hemelrijk, C., Rubenstein, D.: Leadership in fish
shoals. Fish Fish. 1(1), 82–89 (2000)

20. Leca, J.B., Gunst, N., Thierry, B., Petit, O.: Distributed leadership in semifree-
ranging white-faced capuchin monkeys. Anim. Behav. 66(6), 1045–1052 (2003)

21. Meese, G., Ewbank, R.: Exploratory behaviour and leadership in the domesticated
pig. Br. Vet. J. 129(3), 251–259 (1973)

22. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton.
Agents Multi-Agent Syst. 11(3), 387–434 (2005)

23. Pini, G., Tuci, E.: On the design of neuro-controllers for individual and social
learning behaviour in autonomous robots: an evolutionary approach. Connect. Sci.
20(2–3), 211–230 (2008)

24. Portugal, S.J., et al.: Upwash exploitation and downwash avoidance by flap phasing
in ibis formation flight. Nature 505(7483), 399–402 (2014)

25. Pugh, J., Martinoli, A.: Parallel learning in heterogeneous multi-robot swarms. In:
IEEE Congress on Evolutionary Computation, pp. 3839–3846 (2007)

26. Reebs, S.G.: Can a minority of informed leaders determine the foraging movements
of a fish shoal? Anim. Behav. 59(2), 403–409 (2000)

27. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Com-
put. Graph. 21(4), 25–34 (1987)

28. Ripon, K.S.N., Jakobsen, E., Tannum, C., Montanier, J.M.: Assessing the effect
of self-assembly ports in evolutionary swarm robotics. In: IEEE Symposium Series
on Computational Intelligence, pp. 1–8 (2016)

29. Sato, S.: Leadership during actual grazing in a small herd of cattle. Appl. Anim.
Ethol. 8(1–2), 53–65 (1982)

30. Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee
Colonies. Harvard University Press, Cambridge (2009)

31. Soysal, O., Bahçeci, E., Şahİn, E.: Aggregation in swarm robotic systems: evolution
and probabilistic control. Turk. J. Electr. Eng. Comput. Sci. 15(2), 199–225 (2007)

394 O. Tuzel et al.

32. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 865–874. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7 93

33. Wolpert, D.H., Tumer, K.: An introduction to collective intelligence. arXiv preprint
arXiv:cs/9908014 (1999)

34. Xu, X.K., Kattas, G.D., Small, M.: Reciprocal relationships in collective flights of
homing pigeons. Phys. Rev. E 85(2), 026120 (2012)

https://doi.org/10.1007/978-3-540-39432-7_93
http://arxiv.org/abs/cs/9908014

Maintaining Diversity in Robot Swarms
with Distributed Embodied Evolution

Iñaki Fernández Pérez1,2(B), Amine Boumaza2, and François Charpillet3

1 University of Toulouse, IRIT, UMR 5505, Toulouse, France
inaki.fernandez-perez@irit.fr

2 Université de Lorraine, LORIA, Nancy, France
3 Inria Nancy Grand-Est, Villers-lès-Nancy, France

Abstract. In this paper, we investigate how behavioral diversity can
be maintained in evolving robot swarms by using distributed Embodied
Evolution. In these approaches, each robot in the swarm runs a sep-
arate evolutionary algorithm, and populations on each robot are built
through local communication when robots meet; therefore, genome sur-
vival results not only from fitness-based selection but also from spatial
spread. To better understand how diversity is maintained in distributed
EE, we propose a postanalysis diversity measure, that we take from two
perspectives, global diversity (over the swarm), and local diversity (on
each robot), on two swarm robotic tasks (navigation and item collection),
with different intensities of selection pressure, and compare the results of
distributed EE to a centralized case. We conclude that distributed evolu-
tion intrinsically maintains a larger behavioral diversity when compared
to centralized evolution, which allows for the search algorithm to reach
higher performances, especially in the more challenging collection task.

1 Introduction

Diversity in an evolving population, as a measure of how different its individ-
uals are, is crucial for effective evolutionary adaptation. In artificial evolution
and evolutionary robotics, diversity has been investigated either to analyze the
dynamics of the evolutionary process, or to explicitly promote the search for
diverse or novel individuals [12,17]. An adequate level of diversity through evo-
lution allows to better search, balancing between exploration, to find promising
areas, and exploitation, to refine good solutions. This is even more necessary
when the search space is deceptive, i.e. it is rugged, with valleys and many
local optima, which corresponds to difficult optimization problems. A very active
research topic in Evolutionary Computation concerns the explicit promotion of
diversity, where diversity measures are used as an auxiliary objective to be max-
imized: searching for diverse solutions to the problem [5,12]. Diversity measures
can also be used to monitor and analyze the evolutionary process, better under-
stand its dynamics, and trigger specific events depending on the diversity in
the population (e.g. restarting an evolutionary process to enhance exploration,
or stop evolution when the diversity gets too low). Typically, work on diversity
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 395–402, 2018.
https://doi.org/10.1007/978-3-030-00533-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_34&domain=pdf

396 I. Fernández Pérez et al.

in evolutionary robotics is restricted to evolving single-robot behaviors with a
centralized evolutionary algorithm. The work by Gomes [10] is an exception,
where the authors evolve behaviors for multirobot and swarm robotic systems
using a novelty-based centralized algorithm. On the other hand, in distributed
Embodied Evolution (dEE), [1,18] robots in a swarm locally communicate with
each other to build their respective local populations. This entails different evo-
lutionary dynamics to the global process, compared to centralized algorithms,
due to local interactions between robots. Here, we analyze the influence on the
diversity of the evolved behaviors of the distributed nature of dEE algorithms
and the intensity of local selection pressure. Our experiments aim at answer-
ing the following questions: (a) does distributed Embodied Evolution for robot
swarms intrinsically maintains more diversity than centralized evolution?, and
(b) does local selection pressure influence diversity in distributed EE as it does in
centralized algorithms? We first describe related work on dEE, and approaches
to measure diversity in single and multirobot systems. Then, we describe the
distributed EE algorithm used in our experiments, and our proposed generic
diversity metric, that we compute at two levels, i.e. global (over the swarm) and
local (on each local population). Finally, we detail our experiments, discuss the
results, conclude and provide further research questions.

2 Related Work

A particularity of dEE is that selection is decentralized, with each robot of
the swarm selecting over its local population, which is progressively built over
the evaluation of controllers: robots exchange their active controllers and their
respective fitness value when meeting. As such, local populations on different
robots are different, and selection pressure applied over such subpopulations has
different dynamics as compared to more classical centralized EAs. In [2], the
authors investigate the influence of the environment on the behaviors evolved
by mEDEA, a dEE algorithm that does not use a fitness measure to perform
selection: selection is performed at random inside the local population of each
robot. As such, the algorithm does not apply any task-driven selection pressure:
it is rather the environmental selection pressure to reproduce and spread their
genes that pushes evolution toward behaviors adapted to the environment that
maximize the opportunities to meet other robots and mate. In [6], the authors
evaluate the impact on the performance of the swarm of the intensity of selec-
tion pressure of the local selection operator in a dEE algorithm. The authors
evolve neurocontrollers in a swarm of robots using different intensities of selec-
tion pressure, and conclude that the higher the selection pressure, the higher
the performance, as opposed to classical centralized evolutionary algorithms, in
which a lower intensity of selection pressure is usually preferred to maintain
diversity in the population. This could indicate that distributed EE algorithms
maintain such a diversity, necessary for the search to escape local minima.

Measuring diversity has been a topic of interest in the literature, and typically
aims at two non-exclusive goals: understanding the dynamics of an evolutionary

Maintaining Diversity with Distributed Embodied Evolution 397

algorithm (diversity analysis, e.g. [13]), and reinjecting diversity measures into
the EA, e.g. for diversity promotion (e.g. Novelty Search [12]), to evolve a diverse
set of individuals (e.g. Quality-Diversity algorithms [16]), to restart the algo-
rithm [8], or to maintain a population able to adapt to unforeseen changes [14].
Generally, when investigating diversity in Evolutionary Robotics it is measured
based on behaviors, instead of genotypic or phenotypic diversity. A behavioral
descriptor must be defined (task-specific or task-agnostic, i.e. generic, based on
sensorimotor values) to capture adequate features of the behavior resulting from
a controller. These are then used by distance functions to compute diversity met-
rics. In [4], the authors propose four different behavioral diversity measures as a
auxiliary objectives to evolve single-robot behaviors, which help circumvent the
deceptiveness of the chosen task. In [9], the authors propose two diversity mea-
sures specifically designed for swarms of robots by capturing features of the joint
behavior of a swarm, instead of features of single-robot behaviors. In their paper,
the authors use these measures as novelty objective, linearized with fitness val-
ues into a single objective, for a centralized novelty-based EA to evolve diverse
behaviors for robot swarms. In this paper, we measure behavioral diversity as a
postanalysis measure to provide insights on the internal dynamics of distributed
evolution. Specifically, we propose a generic behavioral diversity metric for dis-
tributed Embodied Evolution, taken at two levels (global, over the swarm, and
local diversity, on the local population of each robot). While the algorithm on
each robot can only rely on local information, since the diversity measures are
not used by the robots, but used to analyze how diverse the behaviors are, this
does not contradict the decentralized nature of the approach. Since we focus on
characterizing diversity between individual robot behaviors, either among local
populations or in the swarm, and not joint swarm behaviors, we chose to use
mono-robot behavioral diversity measures, closer to [4], instead of basing our
study on the diversity measures for swarm robotics in [9].

3 Methods and Experiments

The algorithm used in our experiments corresponds mEDEA with task-driven
selection pressure [2,6]. Each robot in the swarm runs an independent instance of
the algorithm. At every moment, a robot carries an active genome corresponding
to its current neurocontroller, which is randomly initialized at the beginning of
each experiment. A robot executes its controller for some time Te, while estimat-
ing its fitness and continuously broadcasting the active genome and its current
fitness estimate to other nearby robots (and vice versa). Once Te timesteps
are elapsed, the robot stops and selects a parent genome using a given selec-
tion operator. The selected genome is mutated and replaces the active genome
(no crossover is used), the local population l is emptied, and a new generation
begins. We designed a parameterized tournament selection operator, that, given
a parameter θsp ∈ [0, 1] and a local population, selects the genome with the best
fitness in a random θsp fraction of the population. The parameter θsp influences
selection pressure by determining the actual tournament size, and the higher

398 I. Fernández Pérez et al.

the tournament size, the stronger the selection pressure. If θsp = 0, the fitness
is disregarded and selection is random, while if θsp = 1, the best genome in the
population is selected (maximal selection pressure). Each experiment consists in
running this algorithm for a given task, with a given θsp, and either with selection
operating on local populations (distributed), or on the global one (centralized),
i.e. the set of all active genomes in the swarm. At each generation, in addition
to measuring the swarm’s average fitness, we measure behavioral diversity using
our proposed metric of dispersion among a set of behaviors b:

Div(b) =
2

|b| · (|b| − 1)

|b−1|∑

i=0

|b|∑

j=i+1

d(bi, bj), (1)

where b is a set of behavioral descriptors bi, and d(·, ·) is a distance function
between two behavioral descriptors. We aim at defining a diversity measure as
generic as possible while still capturing differences in functional features of the
corresponding neurocontrollers. In our approach, a behavioral descriptor for a
given robot controller is defined as the list of motor outputs corresponding to an
input dataset I, sampled at the beginning of each run, I = [in1, in2, . . . , inN].
Each ink is a random vector of the size of the inputs of the controllers, uniformly
sampled in the corresponding value range. To compute the behavioral descriptor
of a controller ci, the entries in the input dataset are fed to the controller, and
the corresponding outputs (oki = ci(ink) are recorded, serving as the behavioral
descriptor for ci, i.e. bi = [o1i , o

2
i , . . . , o

N
i]. The distance between two behaviors,

bi and bj , is computed as the average Euclidian distance between all their paired
elements from bi and bj . In other words, the distance measures how different
are the motor outputs computed by two neurocontrollers when confronted with
the same set of inputs, and the global diversity, Div(·), is then computed as
the average functional distance between each pair of behaviors in b. We use
our proposed diversity metric to evaluate at each generation how diverse are
the behaviors at the global level of the swarm (Div(bg

swarm), where bg
swarm is

the set of behavioral descriptors of the active robot controllers in the swarm at
generation g), and at the local level of the local populations (for each robot r,
Div(bg

r), where bg
r is the set of behavioral descriptors of the local population of

r at generation g; we report the average over the swarm).
We measure the fitness and behavioral diversity over time when a swarm of

robots uses this algorithm to adapt to two classical benchmark tasks for swarm
robotics: navigation and item collection. For each task, we perform 10 variants,
with 5 levels of selection pressure, θsp ∈ {0, 0.25, 0.5, 0.75, 1}, with either robots
locally exchanging genomes (distributed), or selecting on the global population
(centralized). The experiments with selection on the global population do not
comply with the distributed nature of swarm systems, and are used as con-
trol experiments to test if dEE intrinsically maintain more diversity than when
selection is performed on the global population. In each experiment, a swarm of
robotic agents is deployed in a simulated environment (Fig. 1), containing food
items in the collection task. Our experiments are run using the RoboRobo simu-
lator [3], which is a fast simulator for collective robotics. For the navigation task,

Maintaining Diversity with Distributed Embodied Evolution 399

Fig. 1. Simulated environment: enclosed
square arena containing a swarm of robots
and items (black and blue circles). (Color
figure online)

Table 1. Te and σ are the eval-
uation time and std. dev. of the
Gaussian mutation.

Robots 80

Items 80

Envir. size 1000 × 1000px

Sensor range 30px

runs 30

Generations 200

Te 800 steps

σ 0.1

each robot has 8 proximity sensors evenly spaced around the robot, which detect
walls and other robots, with 8 additional item proximity sensors in the collection
task. Each robot is controlled by a fully-connected perceptron with a bias neuron
and no hidden layers, and maps sensory inputs to motor outputs (left and right
wheel speed). The genome corresponds to a real-valued vector containing the
weights of the controller (18 for navigation, and 34 for collection), adapted by
either the distributed algorithm, or the centralized version (Table 1).
The fitness for navigation rewards moving fast, straight and avoiding obstacles
[15], while in item collection it is the number of items collected by a robot. To
evaluate the impact of distributed evolution on swarm performance and diversity,
at every generation of each experiment, we measure the swarm fitness (average
fitness over all the robots), and the global and local diversity. We compare the
results (swarm fitness and diversity) of distributed evolution to centralized evo-
lution, and the impact of the intensity of selection pressure in both cases.

Fig. 2. Swarm fitness over generations for navigation (left) and item collection (right).
Blue curves represent centralized evolution (C), while orange curves represent dis-
tributed evolution (D). θsp is the intensity of selection pressure. (Color figure online)

400 I. Fernández Pérez et al.

4 Results and Conclusion

To compare diversity (either global or local) between centralized and distributed
evolution, we use 2D histograms represented as heatmaps, where the x-axis and
the y-axis correspond to the diversity in the distributed variant and in the cen-
tralized variant, respectively. Each datapoint is then the pair of diversity values
corresponding to the same generation g in a distributed and a centralized run
(randomly paired), i.e. (DivgD,DivgC) for each pair of runs. The density of each
bin in the histogram corresponds to the number of generations across all the
runs when the pair of diversity values from the distributed variant and the cen-
tralized falls into that bin. If a plot is denser under the diagonal, it means that,
overall, distributed evolution maintains more diversity, and vice versa. When
comparisons are made between swarm fitness values, difference is reported iff
Mann-Whitney tests yield p < 0.05. Figure 2 (resp. Figure 3) show the fitness
of the swarm over generations for the navigation and the collection task (resp.
the global and local behavioral diversity heatmaps). In both tasks, robots adapt
solve the task, reaching high fitness in all the experiments except for the cen-
tralized experiment with θsp = 0.0, which corresponds to random search in the
entire population. The distributed variants with θsp �= 0.0 reach slightly higher
values with lower variance than the centralized variants, especially in the more
challenging collection task. Regarding item collection, the intensity of selection
pressure seems to have little impact on the fitness in the distributed case, while
in the centralized case, the highest performance is obtained when θsp = 0.25 or
θsp = 0.5. On the other hand, when θsp = 0.75, and especially when θsp = 1,
the swarm fitness is lower. This could be due to a possible loss of diversity when
selection pressure is strong in the centralized case. Search could stagnate in local
minima, being unable to escape, and thus yielding lower fitness, especially since
item collection is arguably more difficult to evolve than navigation: the search
space is bigger, and information from sensors of different nature needs to be inte-
grated. In the case of distributed evolution with θsp = 0.0, which corresponds to
mEDEA algorithm, there is also an improvement, although slower, even in the
absence of task-driven selection pressure. This is due to environmental selection
pressure pushing toward behaviors that maximize mating chances by navigat-
ing the environment, and collecting items by chance in the item collection task.
Figure 3 show that, when there is selection pressure (θsp �= 0.0), distributed evo-
lution maintains more diversity, both local and global (denser areas under the
diagonal). In the case of θsp = 0.0, centralized evolution yields higher diversity
than distributed evolution: the centralized case corresponds to random search,
and, even if a diversity of behaviors is maintained, those behaviors do not provide
any fitness, as shown before.
In this paper, our main hypothesis is that such algorithms intrinsically main-
tain diversity, since the genomes on the local repositories of the robots are built
through local exchanges between robots when meeting, and are therefore differ-
ent. To test such a hypothesis, we perform a set of experiments where a swarm of
robots adapts to given tasks using a distributed EE algorithm. We test 5 intensi-
ties of selection pressure, in the distributed algorithm and in a control experiment

Maintaining Diversity with Distributed Embodied Evolution 401

Fig. 3. Heatmap for comparing global and local diversity between centralized and
distributed experiments in navigation (top 2 rows) and collection (bottom 2 rows).

with selection on the global population. We measure both the performance on
the tasks and a proposed diversity measure designed for distributed evolution in
robot swarms, both from local and global perspectives, and we conclude that,
when there is selection pressure in our experiments, this approach systematically
maintains more diversity, compared to centralized evolution, allowing to reach
slightly higher performances, especially in the item collection task. This work
opens questions on how to exploit such diversity measures: they could help regu-
lating evolutionary operators, including the mating operator that defines genome
migration between robots in distributed evolution [1]: mating could be restricted
to robots with similar behaviors, a form of reproductive isolation, which might
favor the evolution of specialized niches. On the other hand, diversity measures
could be used as novelty objectives. Searching for novelty in distributed evo-
lution has recently received attention [7,11], and we believe that our proposed
diversity measures could be used to guide search in robot swarms.

References

1. Bredèche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Robot. AI 5, 12 (2018)

2. Bredèche, N., Montanier, J.-M.: Environment-driven embodied evolution in a pop-
ulation of autonomous agents. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15871-1 30

3. Bredèche, N., Montanier, J.M., Weel, B., Haasdijk, E.: Roborobo! a fast robot
simulator for swarm and collective robotics. CoRR abs/1304.2888 (2013)

https://doi.org/10.1007/978-3-642-15871-1_30

402 I. Fernández Pérez et al.

4. Doncieux, S., Mouret, J.B.: Behavioral diversity measures for evolutionary robotics.
In: Congress on Evolutionary Computation (CEC), pp. 1303–1310. Espagne (2010)

5. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014)

6. Fernández Pérez, I., Boumaza, A., Charpillet, F.: Comparison of selection methods
in on-line distributed evolutionary robotics. In: Proceedings of the International
Conference on the Synthesis and Simulation of Living Systems (Alife 2014), pp.
282–289. MIT Press, New York, July 2014

7. Galassi, M., Capodieci, N., Cabri, G., Leonardi, L.: Evolutionary strategies for
novelty-based online neuroevolution in swarm robotics. In: Systems, Man, and
Cybernetics (SMC), pp. 002026–002032. IEEE (2016)

8. Ghannadian, F., Alford, C., Shonkwiler, R.: Application of random restart to
genetic algorithms. Inf. Sci. 95(1–2), 81–102 (1996)

9. Gomes, J., Christensen, A.L.: Generic behaviour similarity measures for evolution-
ary swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 199–206. ACM (2013)

10. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)

11. Hart, E., Steyven, A.S., Paechter, B.: Evolution of a functionally diverse swarm
via a novel decentralised quality-diversity algorithm (2018)

12. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

13. Morrison, R.W., De Jong, K.A.: Measurement of population diversity. In: Collet,
P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS,
vol. 2310, pp. 31–41. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46033-0 3

14. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

15. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
16. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-

tionary computation. Front. Robot. AI 3, 40 (2016)
17. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Guervós, J.J.M.,

Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45712-7 45

18. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: distributing an evo-
lutionary algorithm in a population of robots. Robot. Auton. Syst. 39, 1–18 (2002)

https://doi.org/10.1007/3-540-46033-0_3
https://doi.org/10.1007/3-540-46033-0_3
https://doi.org/10.1007/3-540-45712-7_45
https://doi.org/10.1007/3-540-45712-7_45

On Steering Swarms

Ariel Barel(B) , Rotem Manor , and Alfred M. Bruckstein

Technion - Israel Institute of Technology, Technion City, Haifa, Israel
arielbarel@gmail.com

Abstract. The main contribution of this paper is a novel method allow-
ing an external observer/controller to steer and guide swarms of identical
and indistinguishable agents, in spite of the agents’ lack of information
on absolute location and orientation. Importantly, this is done via simple
global broadcast signals, based on the observed average swarm location,
with no need to send control signals to any specific agent in the swarm.

1 Introduction

This paper deals with steering multi-agent systems, based on decentralized gath-
ering laws, using an external broadcast control signal. Agents move according to
local information provided by their sensors. The agents are assumed to be iden-
tical and indistinguishable, memoryless (oblivious), with no explicit communi-
cation between them. The agents do not share a common frame of reference i.e.
agents are not equipped with either GPS systems or compasses. By assumption,
agents sense the distance and/or bearing to their neighbours, within a finite or
infinite range of visibility. An external observer/controller continuously moni-
tors the swarm’s location and broadcasts the same control signal, based on the
centroid of the agents’ constellation. We present a simple yet practical method
to steer the swarm and guide it to a given destination.

Note that unlike the simple agents that are anonymous, unaware of their
position, lack memory, and do not use explicit communication to maintain the
swarm cohesion, the external controller does need the ability to continuously
monitor the trajectory of the swarm location. Due to these capabilities, the
controller is able to influence the movement of the swarm, with a very simple
global control signal broadcast simultaneously to all agents.

The inspiration to this control method came from the following observation:
some of the gathering algorithms, while they ensure the convergence of agents to
a bounded area, do not imply that the centroid of the agents’ location remains
stationary in the plane [1,4,6,9,12–14,16,17]. In fact, some gathering algorithms
exhibits random walk like behaviour of the centroid of the agents’ constellation
after gathering as discussed in [3]. The method to steer the swarm to a target
point, presented herein, exploits the movements of the system’s center of gravity
due to the agents’ compliance with the distributed convergence algorithm.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 403–410, 2018.
https://doi.org/10.1007/978-3-030-00533-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_35&domain=pdf
http://orcid.org/0000-0003-3275-4264
http://orcid.org/0000-0002-2504-1509

404 A. Barel et al.

2 How to Control a Single Agent

We first describe the basic idea in conjunction with a single agent performing
a random walk in the plane, and then extend the discussion to multi-agent
systems carrying out various cohesion ensuring gathering algorithms. Assume a
drunkard agent is moving in the plane in the following random way: at discrete
times k = 1, 2, 3, ... he selects a new destination for time k + 1. The destination
location p̃(k + 1) is randomly and homogeneously distributed in a unit disc
centered at its current position p(k), so that p̃(k +1) = p(k)+ Δ̃(k), where Δ̃(k)
is a random vector uniformly distributed in a unit disc. After selecting p̃(k + 1)
the agent starts going there from p(k) in a straight path. By monitoring his
motion, one can steer him in any direction with the following control rule: if the
projection of his current movement on the required direction is positive - allow
the drunkard to finish his step. Otherwise, stop him after a fraction of the unit
interval μ < 1, by broadcasting (shouting) a startling “stop!” signal.

This process will cause the drunkard to perform a biased walk, making, in
expectation, bigger steps in the desired direction. To bring the drunkard toward
a region near a precise target point in the plane, one may define the desired
direction to always point from the current location of the drunkard to the goal.
Assume first, for simplicity, that the desired direction is fixed. Let p(k) be the
current position of the agent and let d ∈ R

2 be a unit vector in the direction in
which we require the agent to move. Denote by Δ̃(k) the planned travel vector
of the agent for the current time period [k, k +1), from p(k), its position at time
k, to a homogeneously distributed random point in a unit disc centered at p(k),
and by Δ(k) its actual travel vector. The relation between Δ̃(k) and Δ(k) is as
follows: at time k the agent starts traveling from its existing position p(k) to its
planned position p̃(k+1) = p(k)+Δ̃(k) in a piecewise constant velocity equal to
Δ̃(k)/1. If Δ̃(k)T d ≤ 0, the external controller stops the agent at a fraction μ of
the time-step, i.e. Δ(k) = μΔ̃(k), otherwise the controller does not interrupt its
motion during the current time period, hence Δ(k) = Δ̃(k). Therefore we have

p(k + 1) = p(k) + c(k)Δ̃(k)

c(k) =
{

μ Δ̃(k)T d < 0
1 o.w.

(1)

where Δ̃(k) is a vector from p(k) to the homogeneously distributed random
point in a unit disc centered at p(k). By symmetry of the random distribution
function, for any direction x, we have that the expectation of a planned step
is E{Δ̃x(k)} = 0. The required direction of movement d is, without loss of
generality, towards the positive x axis, i.e. to the right. Clearly, by the symmetry
of the distribution function, we have that the probabilities that the drunkard
moves right and left are same and equal 0.5. Hence, the expected actual travel
of the agent, given external controller’s (possible) interruptions, is (omitting the
time index (k) for simplicity):

On Steering Swarms 405

E{Δx} = 0.5E{Δx | Δ̃x ≥ 0}+0.5E{Δx | Δ̃x < 0} = 0.5(1−μ)E(Δ̃x | Δ̃x ≥ 0)
(2)

In order to guide an agent to a target point, the controller can set the required
direction at each time-step, from the current position of the agent to the target
point. Let us find the expected position of the agent at time (k + 1) given p(k),
i.e. E{‖p(k + 1)‖2 | p(k)}. By the law of cosines in a triangle [5] we obtain that

E{‖p(k + 1)‖2 | p(k)} = p(k)2 − A(
1 − μ

2
)‖p(k)‖ + B(1 + μ2) (3)

where A = E
{

Δ̃(k)T p(k)
‖p(k)‖ sgn

{
Δ̃(k)T p(k)

‖p(k)‖
}}

is positive and depends only on the

direction vector d(k) = p(k)
‖p(k)‖ , and for a rotationally symmetric Δ̃(k) it is inde-

pendent of d(k) (and on p(k) of course), and B = E{‖Δ̃(k)‖2} is positive and
obviously independent on p(k). From this result it follows that

E{‖p(k + 1)‖2} = E{‖p(k)‖2} −
(

A

(
1 − μ

2

)
E{‖p(k)‖} − B(1 + μ2)

)
(4)

We have that if the right expression in big parentheses in (4) is bigger than
δ, E{‖p(k)‖2} decreases by δ, and while this inequality persists, it will decrease
until E{‖p(k)‖} ≤

(
B(1+μ2)+δ

A(1−µ
2)

)
. Returning to (4) we have that after k(δ) steps,

given by

k(δ) =
D2(0) −

(
B(1+μ2)+δ

A(1−µ
2)

)2

δ
(5)

the process will necessarily stop and the agent will be “near” the target. Simu-
lated results of k vs. δ for some different initial values of D(0) and the graph of
Eq. (5) plotted in Fig. 1 shows that the theoretical k(δ) is indeed a rather loose
upper bound on the number of steps needed to reach the target’s neigbourhood.

3 Controlling Multi-agent Systems - the Idea

Let us adopt this steering method to a multi-agent system. Suppose there is a
multi-agent system which converges to a bounded area. The lack of a global ori-
entation of the agents prevents the viewer from simply broadcasting the desired
direction of movement as suggested by Azuma et al. [2] and others, since the
agents are unable to obey global-direction-based commands. Research methods
that draw inspiration from animal behaviour in herds in nature e.g. [7] are based
on the fact that part of the group moves in a certain direction and indirectly
influences the group’s behaviour, but in this article we assume that even leaders
do not know how to orient themselves and find the desired direction of move-
ment. Additionally, recall that our agents are anonymous and indistinguishable,

406 A. Barel et al.

Fig. 1. Plot of k vs. δ for some D(0) values from 10 to 100 units. (a) Simulation results,
and (b) The theoretical bound. Here μ = 0.1 and number of simulation runs is 10, 000.

hence an external observer wishing to lead the system in a required direction
can not steer individual agents separately by transmitting control commands
to each one of them. We show here that an external observer can lead a multi-
agent system in a required direction (while the agents also converge to a bounded
region), by only sensing the motion of the system’s centroid. This information
represents for the external controller the location of the group, and it is feasi-
ble to measure or estimate in real life multi-agent scenarios, especially for large
numbers of agents, such as swarms of drones. Let pcm(t) = 1

n

∑n
j=1 pi(t) be the

system’s centroid. The velocity of the centroid is the average velocities of the
agents ṗcm(t) = 1

n

∑n
j=1 ṗi(t) and we have that while all agent velocities are

constant the centroid velocity is constant as well. We assume that during each
time interval k = 1, 2, 3, ... each agent’s velocity is constant, therefore we have
that ˆ̇pcm(t), the direction of the centroid movement is piecewise constant (i.e.
does not change during time intervals hence moves in straight lines). Similar to
our discussion in Sect. 2, here, the external controller tracks the motion of the
centroid of the system. If the projection of its movement is on the required direc-
tion (Δ̃cm(k)T d ≥ 0) - it allows all the agents to finish their planned travels.
Otherwise, it stops them all after a fraction μ of the time-step, i.e. when they
complete a fraction μ their planned travel. We discuss in detail different types
of such systems, and bound the expected “velocity” of the swarm’s centroid due
to this control mechanism.

On Steering Swarms 407

3.1 Steering a System of Agents with Infinite Visibility and Full
Sensing

We begin with a simple linear multi-agent gathering process in discrete time
for the infinite visibility and full sensing case. Each agent i moves according
to the decentralized dynamic law: pi(k + 1) = pi(k) − σ

∑n
j=1(pi(k) − pj(k)),

where 0 < σ < 2
n is a constant gain factor, i.e. at each time-step, each agent

jumps proportionally to the sum of relative position vectors to all the other
agents (recall system S2, in [3]). As proved by Gazi, Passino et al. [8], since the
dynamics of such system is governed by an antisymmetric pairwise interaction
function, the average position of the agents is invariant. To steer this system in
some desired direction, we would like to bias the motion of the system centroid
by measuring its trend, hence we assume some additive “noise” that breaks
symmetry and causes the center of the system to move. We hence assume that
each agent, in addition to obeying the distributed control law above, also moves
to a randomly selected point at each time step:

pi(k + 1) = pi(k) − σ
n∑

j=1

(pi(k) − pj(k)) + Δ̃i(k) (6)

where Δ̃i(k) is a randomly selected point in a unit disc. Here too, at time k
the agents start traveling from their existing positions pi(k) towards their next
planned positions p̃i(k+1) in piecewise constant velocities equal to their distance
from it [−σ

∑n
j=1(pi(k) − pj(k)) + Δ̃i(k)]/1, so that if an external controller

does not intervene, all the agents arrive at their destinations simultaneously
at time k + 1. Hence we may denote the planned motion of the centroid to be
Δ̃cm(k) = ¯̃p(k+1)−p̄(k) = 1

n

∑n
i=1 Δ̃i(k), and the control mechanism for system

(6) is:

pi(k + 1) = pi(k) + c(k)[−σ

n∑
j=1

(pi(k) − pj(k)) + Δ̃i(k)]

c(k) =
{

μ Δ̃cm(k)T d < 0
1 o.w.

(7)

Here c(k) represents the optional “stop” signal received simultaneously at
fraction μ of the time-step by all agents, Δ̃cm(k) = 1

n

∑n
i=1 Δ̃i(k) is the planned

travel of the centroid of the agents, and d is the required direction of movement
of the system. Since the projection on x of the second moment of a disc of radius
r is 1

4πr4, we have in this system [5] that E{Δxcm} ≥ 0.5(1−μ) 1
8n i.e. the bound

on the expected step of the centroid is inversly proportional to the number of
agents. To guide a system to a goal point, the observer controller should set
the desired direction at every time interval so d(k) is a unit vector from the

408 A. Barel et al.

centroid of the system to the goal point. Figure 2 presents a typical simulation
result of this system with full visibility and complete sensing, with some evenly
distributed noise jump to a unit disc of each agent, as presented in Eq. (7).

3.2 Steering a System of Agents with Limited Visibility
and Bearing Only Sensing

Here we assume that the agents are able to sense the direction to their neighbours
(i.e. bearing only sensing), and their motions being determined by the set of unit
vectors pointing from their current location to their neighbours. The neighbours
are defined for each agent i at time-step k as the set of agents located within
a given visibility range V form its position pi(k). Manor et al. [15] modified
Gordon’s et al. motion laws [10,11], and proved that the new law gathers the
agents of the system to a disc with a radius equal to the agents’ maximal step
size σ within a finite expected number of time steps, and that the distribution
of the agents’ average position converges in probability to the distribution of
a random-walk. As in Sect. 3.1, we assume here piecewise continuous dynamics
(where agents continuously move towards their new locations), so that the formal
steering algorithm for this system is:

pi(k + 1) =
{

pi(k) ψi(k) ≥ π or χi(k) = 0
pi(k) + c(k)Δ̃i(k) o.w.

χi(k) =
{

1 w.p. δ
0 w.p. 1 − δ

c(k) =
{

μ Δ̃cm(k)T d < 0
1 o.w.

Δ̃i(k) = vector from pi(k) to a random point in ari(k)

(8)

where Δ̃cm(k) =
∑n

i=1 Δ̃i(k) is the planned jump of the centroid of the sys-
tem, and d is a unit vector in the required moving direction of the system. It
was proved in [15] that the original model, given no external control, satisfies
E{Δcm(k)} = 0, and that

E{Δxcm} ≥ 0.25(1 − μ)
1
n2

V ar∗ (9)

V ar∗ = δ2(
σ

2
)2

1 − cos4(π−ψ∗
2)

π−ψ∗
2 − 1

2 sin(π − ψ∗)

Figure 2 presents simulations result of this system (8). The system gathers and
moves to a goal, and the trace of the travel of the system’s centroid is plotted.

On Steering Swarms 409

(a)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

(b)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

(c)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

(d)

Fig. 2. Random walk vs. Steering a multi-agent system to a goal point: (a) General
legend of the simulation settings. (b) Typical 100, 000 random unit steps of a drunk-
ard agent with no bias (agents’ position was plotted every 1, 000 steps for enhanced
readability). (c) Typical simulation run of the system in Sect. 3.1 with n = 10 and
μ = 0.01. The system centroid first entered the goal area in less than 1, 600 time steps.
(d) Typical simulation run of the system in Sect. 3.2 with n = 10 and μ = 0.01. The
system centroid first entered the goal area in less than 9, 000 time steps.

4 Conclusions

A method has been introduced here that allows an external observer to con-
trol a multi-agent system and guide it to a desired destination even when the
agents are very primitive. According to our paradigm all the agents are identical
(anonymous), therefore the external observer can not send a separate command
to each agent, but can broadcast the same command to all the agents. The viewer
controls the swarm by means of an identical command sent simultaneously to all
agents. The method was tested for different cases: the control of a single moving
agent performing random-walk, steering of a system with infinite visibility and
relative distance and bearing measurement, and control of a system with partial
information (limited visibility and bearing only measurement).

410 A. Barel et al.

Acknowledgments. This research was partly supported by Technion Autonomous
Systems Program (TASP).

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15(5), 818–828 (1999)

2. Azuma, S.I., Yoshimura, R., Sugie, T.: Broadcast control of multi-agent systems.
Automatica 49(8), 2307–2316 (2013)

3. Barel, A., Manor, R., Bruckstein, A.M.: Come together: multi-agent geometric
consensus (gathering, rendezvous, clustering, aggregation). Technical report, CIS
Technical Report, TASP (2016)

4. Barel, A., Manor, R., Bruckstein, A.M.: Probabilistic gathering of agents with
simple sensors. Technical report, CIS Technical Report, TASP (2017)

5. Barel, A., Manor, R., Bruckstein, A.M.: On steering swarms. Technical report, CIS
Technical Report, TASP (2018)

6. Bellaiche, L.I., Bruckstein, A.M.: Continuous time gathering of agents with limited
visibility and bearing-only sensing. Technical report, CIS Technical Report, TASP
(2015)

7. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513 (2005)

8. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans.
Syst. Man Cybern. Part B: Cybern. 34(1), 539–557 (2004)

9. Gordon, N., Elor, Y., Bruckstein, A.M.: Gathering multiple robotic agents with
crude distance sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Clerc,
M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 72–83.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7 7

10. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gam-
bardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp.
142–153. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28646-
2 13

11. Gordon, N., Wagner, I.A., Bruckstein, A.M.: A randomized gathering algorithm for
multiple robots with limited sensing capabilities. In: Proceedings of MARS 2005
Workshop at ICINCO Barcelona (2005)

12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. Autom. Control. 48(6), 988–1001
(2003)

13. Ji, M., Egerstedt, M.B.: Distributed coordination control of multi-agent systems
while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

14. Manor, R., Bruckstein, A.M.: Chase your farthest neighbour: a simple gather-
ing algorithm for anonymous, oblivious and non-communicating agents. Technical
report, CIS Technical Report, TASP (2016)

15. Manor, R., Bruckstein, A.M.: Discrete time gathering of agents with bearing only
and limited visibility range sensors. Technical report, CIS Technical Report, TASP
(2017)

16. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Trans. Autom. Control. 51(3), 401–420 (2006)

17. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

https://doi.org/10.1007/978-3-540-87527-7_7
https://doi.org/10.1007/978-3-540-28646-2_13
https://doi.org/10.1007/978-3-540-28646-2_13

Vector Field Benchmark for Collective
Search in Unknown Dynamic

Environments

Palina Bartashevich(B) , Welf Knors, and Sanaz Mostaghim

Faculty of Computer Science, University of Magdeburg, Magdeburg, Germany
{palina.bartashevich,sanaz.mostaghim}@ovgu.de,welf.knors@st.ovgu.de

Abstract. This paper presents a Vector Field Benchmark (VFB) gen-
erator to study and evaluate the performance of collective search algo-
rithms under the influence of unknown external dynamic environments.
The VFB generator is inspired by nature (simulating wind or flow) and
constructs artificially dynamic environments based on time-dependent
vector fields with moving singularities (vortices). Some experiments using
the Particle Swarm Optimization (PSO) algorithm, along with two spe-
cially developed updating mechanisms for the global knowledge about
the external environment, are conducted to investigate the performance
of the proposed benchmarks.

1 Introduction

Swarm Intelligence algorithms such as Particle Swarm Optimization (PSO) [13]
and Ant Colony Optimization [6] are shown to be very effective in solving opti-
mization problems. Due to their distributed nature, they can be easily used in
swarm robotic search scenarios [8]. In the past years, PSO has been success-
fully used in this context [1,5,11,16]. However, there are only a few existing
methods that have addressed the influence of the external environments on the
collective search algorithms [2,3,9,12,17]. The main goal of this paper is to pro-
vide new benchmark problems, simulating the influence of the dynamic external
environment (such as wind, flow, etc.), which will serve as a baseline testbed
for the development of new collective search mechanisms, that are robust to
the unknown perturbations and can be further employed in real-world applica-
tions. In [2], the authors have introduced vector fields to simulate the external
dynamics in a PSO-based collective search scenario designed for a swarm of aerial
micro-robots. This approach only considered static vector fields, which are rather
rare in nature, as the external dynamics change over time (i.e. unsteady flows).
In this paper, we consider time-dependent vector fields and propose a unified
method, called Vector Field Benchmark (VFB), to construct such dynamic envi-
ronments using singular points [4]. In order to test the proposed VFB system,
experiments are made using VFM-PSO [2] under the composition of changing
vector fields and moving singular points. The results show that the VFB sys-
tem can give different properties by simply setting the environmental types. The
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 411–419, 2018.
https://doi.org/10.1007/978-3-030-00533-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00533-7_36&domain=pdf
http://orcid.org/0000-0002-5908-8196

412 P. Bartashevich et al.

paper is organized as follows. We define VFB generator in Sect. 2. In Sect. 3, we
describe the generalized “VFB-Map Exploration Framework”in the context of
which we test the proposed benchmark. Section 4 contains several experiments
to test the performance of VFB. The paper is concluded in Sect. 5.

2 Vector Fields Benchmark (VFB)

The time-varying dynamics of the environment are modeled by the unsteady
vector fields with or without vortices, which are described below. In general,
most vortex definitions are characterized by means of differential properties of
the observed vector fields. For simplicity, our VFB functions are limited to a
two-dimensional space (as horizontal wind).

Definition 1. A Vector Field V F on a planar domain D ⊂ R
2 is a func-

tion assigning to each point (x, y) ∈ D a 2-dimensional vector V F (x, y) =
(u(x, y), v(x, y)).

Definition 2. A point (x0, y0) ∈ D is singular for V F if V F (x0, y0) = (0, 0).

The values at any point p ∈ D of local vector field SP defined by corresponding
singular point can be calculated as follows [14]:

SP (p) = e−d||p−p0||2JV (p − p0), (1)

where JV is the Jacobian matrix of the desired Singular Point, p0 = (x0, y0) is
the center of the Singular Point and d is a decay constant limiting the intensity
of the Singular Point influence with increasing distance to its center p0.

Definition 3. The spatial Jacobian JV is an n × n matrix that contains a
first-order description of how the flow V F behaves locally around a given loca-
tion. Following Hartman-Grobman theorem [10], singular points can be partly
classified by looking to the eigenvalues of the Jacobian matrix at that point (see
Fig. 1, where k denotes the spread of SP).

However, in measured data, the vector field V F is not given as a differentiable
function. Following that, we discretize a domain D ⊂ R

2 of the vector field and
assume that we have the values of V F at the points (xi, yj) of a regular grid of
size M × N cells. We will denote the unit cell ci,j of the grid by sample point
(xi, yj) as follows ci,j = (ui,j , vi,j) = V F (xi, yj).

Definition 4. An Unsteady Vector Field varies over time and is given as a
time-dependent map V F (x, t) = V F (x, y, t) : D×T → D. It can be also written
as an (2 + 1)-dimensional steady field [7]: V F (x, y, t) = (u(x, y, t), v(x, y, t), t).

Vector Field Benchmark for Collective Search in Unknown Dynamics 413

Fig. 1. Five types of singular points shown on grids with 9 × 9 cells with k = 5 and
corresponding values of JV matrix below.

VFB Generator. When there are 2 or more Singular Points in a Vector Field,
the velocities are calculated by simply adding the vector fields SP of each Sin-
gular Point. The overall VFB is defined as a sum of the underlying VF and the
Singular Points influences:

V FB := V F (p, t) +
∑

SP (p;JV (k), center : p0, decay : d,MoveType), (2)

where singular points p0 are characterized by their type and strength k per-
formed with Jacobian JV (k), and movement types MoveType. The dynamics
of SPs are organized mainly by the moving center point p0 of the defined SP
according to some law of movement (denoted by MoveType). Additionally, SPs
movements are also affected by the underlying VF (if any), which means that the
velocity vectors of the underlying V F at the SPs current centers positions, i.e.
V F (p0), will be added to the MoveType movement. The dynamics of underly-
ing VFs, as well as of SPs, can also be complicated through multiplication on
the Rotation Matrix Rot(α, t), thereby making their vectors rotating by some
angle α at each time step t.

3 VFB-Map Exploration Framework

In order to test the proposed VFB functions, we take the same concept of Infor-
mation Map (IM) approach for steady vector fields which was proposed in [2].
We adapt the concept for time-dependent flows with new ways of saving informa-
tion in IM, which are supposed to catch the main features of unknown unsteady
external dynamics. To estimate the external dynamics, the explorer population
is used with simple movements based on the value of the VFB at their own posi-
tions. The explorers are coming from one and the same initial positions every
Δt time steps and save the information about VFBs magnitude and direction at
their positions in the IM, which is a global and central archive accessible by all
individuals. The optimizers follow the rules of PSO and retrieve the information
about VFB from the IM to organize a better collective search process by full
compensation of negative factors at already explored regions. The type of the
optimizers decision, based on the IM, is not limited to full compensation (see for
example, [3]), however, in this paper we consider only this type of action. As the

414 P. Bartashevich et al.

VFB (i.e. V F (x, t)) changes over time, its values at the same positions might
be different at different time steps t. So it is the question of how to store the
measured values in IM, in order to take the relation between the past and the
present into account. We present two update mechanisms of the IM for storing
collected data:
(1) Recent (Rec) saves only the most recent measured values of the cells and
left them unchangeable in the IM until their next visit. When a cell is visited a
second time, all information from the first visit is replaced.
(2) Evaporating Mean (EM) computes the mean of measured values, if the
cell ci,j is visited several times, and applies an evaporation operator ρt to it,
which linearly decreases the saved value for the ci,j by subtracting from its
initially saved value the evaporation rate ρ0t constantly at each time step t.
The evaporation continues until the value in ci,j reaches the minimum limit of
ρmin, after which it is stopped, in order to preserve the information in already
information-starved environment. The value of evaporation rate itself is constant
ρ0t = ρ0 unless the cell is visited only once, otherwise its value is decreased by
dividing on the number of cell visits Nvis for each cell ci,j individually, as a
means of ‘confidence’ in the saved value. In other words, the more times the cell
is visited the less it is evaporated, i.e. ρ0t (ci,j) is a function, which takes a value
(
∑

Nvis(ci,j))−1ρ0t−1(ci,j) if Nvis(ci,j) > 1 and ρ0t−1(ci,j) otherwise.
Both of the above approaches consider the cells separately, therefore we refer

to them as discrete methods denoted by Rec-D and EM-D. We also consider their
continuous variants (denoted by Rec-C and EM-C) by using interpolation and
extrapolation for the rest of the cells inside and outside the convex hull, defined
by the cells with already saved information in IM. The Nearest interpolation [15]
is used, as the fastest interpolation method among the others known in the
literature (what is sufficient for time-dependent changes).

4 Experimental Study

The goal of the experiments is to demonstrate the usage of the introduced VFBs
and to estimate the performance of the proposed updating mechanisms.

Parameter Settings. Similar to [2], we use a VFM-PSO algorithm with 20
optimizers initialized randomly over the search space S : [−15, 15] × [−15, 15].
The velocity limit vmax is set to 2, inertia weight w is selected to be 0.6 along with
acceleration coefficients C1, C2 = 1. The number of explorers is set to 10 with
frequency of update each Δt = 10 iterations. The total number of iterations
is 150. The algorithm has been run on Sphere, Ackley and Rosenbrock over
proposed further VFBs. We compare the proposed update mechanisms for the
IM both for discrete (Rec-D and EM-D) and continuous (Rec-C and EM-C)
variants. In the experiments, “None” indicates the approach without IM (i.e.,
without explorers). According to the preliminary experiments, the evaporation
rate ρ0 is set to 0.3 and ρmin is 0.5. Each experiment is repeated 30 times
with different random initializations for both optimizers and explorers. Table 1

Vector Field Benchmark for Collective Search in Unknown Dynamics 415

provides the function description of considered VFBs without SPs, i.e. VFB1-
VFB3. Table 2 describes the VFBs containing moving SPs, i.e. VFB4-VFB7.
For each VFB4-VFB7 one considers 9 singular points of at most two types with
given coordinates (x0, y0). Each scenario can have an underlying vector field,
indicated as V F in the last row of Table 2 and equations for which can be taken
from Table 1. For all used in VFB4-VFB7 SPs, spread k is set to 15 and decay d is
0.4. MoveType is defined by sinus law in horizontal direction. The only exception
is VFB7, where SPs move according to the velocities of the underlying VF, i.e.
Waves.

Table 1. Function descriptions for VFBs without singularities: VFB1-VFB3.

VBF1 CrossRot V F (x1, x2) = Rot(5, t) ∗ (x2, x1)

VBF2 Waves V F (x1, x2) = (10, cos(x1 − 0.5 ∗ t) ∗ 3)

VBF3 UniformRot V F (x1, x2) = Rot(5, t) ∗ (3, 3)

Sheared V F (x1, x2) = (x1 + x2, x2)

Table 2. Parameters descriptions for VFBs with singularities: VFB4-VFB7.

VBF4 VBF5 VBF6 VBF7 Coordinates (x0, y0)

Type Source Source Center Center (−10, −8) (−10, 10) (0, −1) (0, −6) (10, 12)

Saddle Saddle (−10, 1) (0, −10) (0, 8) (10, 3)

VF Cross Sheared None Waves

Results. Figure 2 shows a comparison of median fitness values obtained using
None, Rec-D, EM-D, Rec-C and EM-C (from left to right) within considered
VFB (i.e. VFB1-VFB7 indicated by columns) on the corresponding objective
function (indicated by rows). Since the main objective of the experiments is to
demonstrate the usage of the introduced VFBs and to estimate the performance
of the proposed exploration techniques, we have made multiple pairwise statisti-
cal comparison tests to identify which of the approaches are specifically different.
Pairwise Mood’s median tests were performed for VFBs, which have indicated
statistical differences in at least one of the medians, i.e. VFB2-VFB5 and VFB7.
For visual representation of the statistical differences between approaches the
reader is referred to Fig. 2. The boxes, which do not share any letter in common
within one and the same VFB over certain objective function, indicate statistical
differences between compared types of updating mechanisms. From this we can
see that the obtained results reveal our hypothesis as on the most of the con-
sidered VFBs, regardless of the objective function, discrete mechanisms (Rec-D,
EM-D) are not statistically different from each other and None. While almost
in all of the cases, continuous updating mechanisms (Rec-C, EM-C) are statisti-
cally different from None and their discrete analogies (i.e. Rec-D, EM-D). Rec-C
seems to be the most successful among the presented approaches, as its median

416 P. Bartashevich et al.

Fig. 2. Boxplots of the median fitness values obtained by None, Rec-D, EM-D, Rec-
C and EM-C (from left to right) within VFB1 to VFB7. The central mark on each
boxplot indicates the median. Boxplots which share at least one common letter within
one and the same VFB indicate not statistical difference in median fitness values with
significance level α = 0.05 according to Pairwise Mood’s Test.

Vector Field Benchmark for Collective Search in Unknown Dynamics 417

Fig. 3. Distances between the center of the swarm and the global best over the itera-
tions obtained on Ackley function over VFB2 (full covering VF without SPs), VFB7
(consists only of SPs) and VFB8 (composition of VFB2 and VFB7).

fitness values are significantly lower than those using EM-C on VFB2, VFB3,
VFB4 and VFB7. Although, EM approach was supposed to be a compromise
between taking changes into account and compensating for the cases with partial
covering by the VF at a time (as on VFB7), EM-C is statistically worse than
Rec-C on all considered VFBs, including VFB7.

In the following we also report the convergence behavior of the proposed algo-
rithms. Figure 3 illustrates Euclidean distances between the center of the swarm
and the obtained global best over the iterations for VFB2, VFB7 and VFB8,
which is a composition of VFB2 and VFB7. It can be observed that None, Rec-
D and EM-D variants have similar behavior and do not change over iterations
on VFB2 and VFB8, while EM-C and Rec-C reproduce an oscillation behavior,
indicating that they have found the equilibrium point and it does not change with
time anymore. The results differ for VFB7, as in this case the SPs only partially
influence the movements of the optimizers, so we expect that the continuous
update mechanisms do not help as they disturb the movements themselves at
the positions where there is no VF influence. This can be observed on the perfor-
mance of EM-C and Rec-C in VFB7, while the other update approaches help to
converge until a change in the environment occurs. The changes in the environ-
ment can be depicted by the oscillating behaviors in the convergence plots. The
results reported in Fig. 3 are obtained on the Ackley search landscape. However,
our experiments show that the observed movement patterns (i.e. oscillations)
are the same for all the other considered objective functions on the same VFBs.
The only difference is in the value of the drift (i.e. vertical shift on the plots
in Fig. 3), as it is defined by the found global best solution. In comparison to
standard PSO problems (i.e. without VFBs), where distance between the swarm
center and the global best is constantly decreasing as the particles converge to
the best, acting under VFBs the swarm can not really converge. Therefore, in
order to improve its performance, we observe oscillations in certain limited area
around the best so-far obtained solution.

418 P. Bartashevich et al.

5 Conclusions and Future Work

This paper presents new benchmark functions for simulating and modeling the
external dynamics for swarm robotics applications. We propose to use time-
dependent vector fields with moving singularities and analyze their influence
on the existing PSO-based methods in the context of “VFB-Map Exploration
Framework”. The results illustrate the strong influence of the environment on
the collective search. One feature, imposed by moving singularities, concerns the
oscillating behavior in the convergence plots. We have tested two various schemes
based on continuous and discrete updating mechanisms for storing the global
information about the unknown environment. The results show the advantage
of the continuous variant over discrete in unsteady environments without sin-
gularities, while this degrades for environments which contain ones. Our experi-
ments illustrate that the VFB can be used as a good base for developing search
algorithms and is not limited to the proposed exploration framework and PSO.
In future, we aim to work on other swarm based collective search mechanisms
on the presented VFB.

References

1. Atyabi, A., Phon-Amnuaisuk, S., Ho, C.K.: Navigating a robotic swarm in an
uncharted 2D landscape. Appl. Soft Comput. 10(1), 149–169 (2010)

2. Bartashevich, P., Grimaldi, L., Mostaghim, S.: PSO-based search mechanism in
dynamic environments: swarms in vector fields. In: 2017 IEEE Congress on Evo-
lutionary Computation, pp. 1263–1270 (2017)

3. Bartashevich, P., Koerte, D., Mostaghim, S.: Energy-saving decision making for
aerial swarms: PSO-based navigation in vector fields. In: 2017 IEEE Symposium
Series on Computational Intelligence, pp. 1–8 (2017)

4. Demazure, M.: Singular points of vector fields. In: Demazure, M. (ed.) Bifurcations
and Catastrophes, pp. 219–247. Springer, Berlin (2000). https://doi.org/10.1007/
978-3-642-57134-3 9

5. Doctor, S., Venayagamoorthy, G.K., Gudise, V.G.: Optimal PSO for collective
robotic search applications. In: Proceedings of the 2004 Congress on Evolutionary
Computation, Vol. 2, pp. 1390–1395 (2004)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Cambridge
(2004)

7. Günther, T., Theisel, H.: The state of the art in vortex extraction. Computer
Graphics Forum, To appear (2018)

8. Hamann, H.: Scenarios of swarm robotics. In: Hamann, H. (ed.) Swarm Robotics:
A Formal Approach, pp. 65–93. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74528-2 4

9. Meng, Q.-H., Yang, W.-X., Wang, Y., Zeng, M.: Collective odor source estima-
tion and search in time-variant airflow environments using mobile robots. Sensors
11(11), 10415–10443 (2011). https://doi.org/10.3390/s111110415

10. Helman, J., Hesselink, L.: Representation and display of vector field topology in
fluid flow data sets. Computer 22(8), 27–36 (1989)

11. Hereford, J.M., Siebold, M., Nichols, S.: Using the particle swarm optimization
algorithm for robotic search applications. In: 2007 IEEE Swarm Intelligence Sym-
posium, pp. 53–59 (2007)

https://doi.org/10.1007/978-3-642-57134-3_9
https://doi.org/10.1007/978-3-642-57134-3_9
https://doi.org/10.1007/978-3-319-74528-2_4
https://doi.org/10.1007/978-3-319-74528-2_4
https://doi.org/10.3390/s111110415

Vector Field Benchmark for Collective Search in Unknown Dynamics 419

12. Jatmiko, W., Sekiyama, K., Fukuda, T.: A mobile robots PSO-based for odor source
localization in dynamic advection-diffusion environment. In: 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (2006)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

14. Marin, R.D.C.: Vector field design notes (2008)
15. Rukundo, O., Hanqiang, C.: Nearest neighbor value interpolation. In: International

Journal of Advanced Computer Science and Applications (2012)
16. Sheetal, Venayagamoorthy, G.K.: Unmanned vehicle navigation using swarm intel-

ligence. In: Proceedings of International Conference on Intelligent Sensing and
Information Processing (2004)

17. Wang, X., Yi, P., Hong, Y.: Dynamic optimization for multi-agent systems with
external disturbances. Control. Theory Technol. 12(2), 132–138 (2014)

Extended Abstracts

A Honey Bees Mating Optimization Algorithm
with Path Relinking

for the Vehicle Routing Problem
with Stochastic Demands

Yannis Marinakis(B) and Magdalene Marinaki

School of Production Engineering and Management,
Technical University of Crete, Chania, Greece

marinakis@ergasya.tuc.gr, magda@dssl.tuc.gr

One of the most known nature inspired algorithms based on the marriage
behaviour of the bees is the Honey Bees Mating Optimization (HBMO) algo-
rithm which simulates the mating process of the queen of the hive [1]. In this
paper, as there are not any competitive nature inspired methods based on
HBMO algorithm for the solution of the Vehicle Routing Problem with Stochas-
tic Demands (VRPSD), at least to our knowledge, we would like to propose
such an algorithm and to test its efficiency compared to other nature inspired
and classic metaheuristic algorithms. The proposed algorithm adopts the basic
characteristics of the initially proposed HBMO algorithm and, simultaneously,
uses a number of characteristics of the HBMO based algorithms that were used
for the solution of other Vehicle Routing Problem variants. A novelty of the
proposed algorithm is the replacement of the crossover operator with a Path
Relinking (PR) procedure in the mating phase in order to produce more effi-
cient broods. Finally, a Variable Neighborhood Search (VNS) algorithm is used
for the local search phase of the algorithm. The algorithm is compared with a
number of algorithms from the literature and with two versions of the HBMO
algorithm, the one presented by Abbass in [1] (HBMO1) and the other presented
by Marinakis et al. in [2] (HBMO2). The two versions of the HBMO have been
modified accordingly by the authors in order to be suitable for their application
in the VRPSD. The VRPSD is a NP-hard problem, where a vehicle with finite
capacity leaves from the depot with full load and has to serve a set of customers
whose demands are known only when the vehicle arrives to them. As in the
most VRP variants, the vehicle begins from the depot and visits each customer
exactly once and returns to the depot. This is called an a priori tour [3], which is
a template for the visiting sequence of all customers. In most of the algorithms
used for the solution of the problem, a preventive restocking strategy [3] is used
where although the expected demand of the customer is less than the load of the
vehicle, it is chosen the return of the vehicle to the depot for replenishment. This
happens in order to avoid the risk of the vehicle to go to the next customer with-
out having enough load to satisfy him (route failure). For analytical formulation
of the VRPSD please see [3]. The results of the algorithm with and without the
preventive restocking strategy and comparisons with other algorithms from the
literature are presented in the following Table.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 423–424, 2018.
https://doi.org/10.1007/978-3-030-00533-7

424 Y. Marinakis and M. Marinaki

Computational results with the preventive restocking strategy

Instance BKS1 PSO HBMO1 HBMO2 HBMOPR

A-n32-k5 820.5 821.65 0.14 842.02 2.62 841.36 2.54 841.05 2.50

A-n33-k5 684.2 687.04 0.42 688.74 0.66 687.77 0.52 687.32 0.46

A-n33-k6 762.4 769.62 0.95 768.32 0.78 767.32 0.65 766.76 0.57

A-n37-k6 999.72 999.72 0.00 1009.37 0.96 1008.27 0.86 1007.1 0.74

A-n38-k5 752.2 756.56 0.58 758.49 0.84 757.93 0.76 757.51 0.71

A-n39-k5 853.08 853.08 0.00 869.02 1.87 868.50 1.81 868.15 1.77

A-n44-k6 978.83 978.83 0.00 998.82 2.04 997.00 1.86 996.8 1.84

A-n45-k6 996.86 997.41 0.06 998.87 0.20 998.86 0.20 998.73 0.19

A-n53-k7 1096.6 1096.6 0.00 1098.27 0.15 1098.07 0.13 1096.8 0.02

A-n55-k9 1124.3 1124.3 0.00 1126.90 0.23 1124.89 0.05 1124.5 0.02

E-n33-k4 847.38 847.38 0.00 849.72 0.28 849.71 0.27 849.5 0.25

E-n51-k5 544.86 544.86 0.00 547.54 0.49 547.50 0.48 546.63 0.32

P-n55-k15 1002.6 1008.6 0.60 996.56 −0.60 995.99 −0.66 995.98 −0.66

P-n60-k10 772.86 772.86 0.00 776.22 0.44 774.86 0.26 774.81 0.25

P-n60-k15 1021.58 1021.58 0.00 1044.84 2.28 1043.79 2.17 1043.2 2.12

Computational results without the preventive restocking strategy

Instance BKS2 PSO HBMO1 HBMO2 HBMOPR

A-n32-k5 853.6 853.6 0.00 855.2 0.19 854.1 0.06 853.6 0.00

A-n33-k5 704.2 704.5 0.04 705.8 0.23 704.6 0.06 704.2 0.00

A-n33-k6 793.9 794.4 0.06 796.8 0.37 794.5 0.08 793.9 0.00

A-n37-k6 1030.73 1031.21 0.05 1032.14 0.14 1031.92 0.12 1030.87 0.01

A-n38-k5 775.14 778.24 0.40 777.35 0.29 776.88 0.22 776.15 0.13

A-n39-k5 869.18 869.18 0.00 871.25 0.24 869.18 0.00 869.18 0.00

A-n44-k6 1025.48 1026.42 0.09 1027.55 0.20 1026.31 0.08 1025.69 0.02

A-n45-k6 1026.73 1027.58 0.08 1027.71 0.10 1027.31 0.06 1026.85 0.01

A-n53-k7 1124.27 1126.95 0.24 1128.42 0.37 1125.52 0.11 1124.71 0.04

A-n55-k9 1179.11 1182.41 0.28 1184.37 0.45 1180.25 0.10 1179.11 0.00

E-n33-k4 850.27 850.27 0.00 850.27 0.00 850.27 0.00 850.27 0.00

E-n51-k5 552.26 554.11 0.33 556.28 0.73 554.12 0.34 553.17 0.16

P-n55-k15 1068.05 1068.05 0.00 1073.28 0.49 1068.05 0.00 1068.05 0.00

P-n60-k10 804.24 807.04 0.35 811.31 0.88 807.15 0.36 805.41 0.15

P-n60-k15 1085.49 1089.12 0.33 1095.42 0.91 1091.18 0.52 1088.51 0.28

References

1. Abbass, H.A.: A monogenous MBO approach to satisfiability. In: Proceeding of the
International Conference on Computational Intelligence for Modelling, Control and
Automation, CIMCA 2001, Las Vegas, NV, USA (2001)

2. Marinaki, M., Marinakis, Y., Zopounidis, C.: Honey bees mating optimization algo-
rithm for financial classification problems. Appl. Soft Comput. 10, 806–812 (2010)

3. Marinakis, Y., Marinaki, M.: Combinatorial neighborhood topology bumble bees
mating optimization for the vehicle routing problem with stochastic demands. Soft
Comput. 19, 353–373 (2015)

Blockchain Technology for Robot Swarms:
A Shared Knowledge

and Reputation Management System
for Collective Estimation

Volker Strobel(B) and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{vstrobel,mdorigo}@ulb.ac.be

In swarm robotics research, it is often assumed that robots do not have access
to shared knowledge. By sharing knowledge, however, it may become easier to
determine whether the robots agree on an outcome or to aggregate the infor-
mation of the individual robots. We argue that having a medium of shared
knowledge can possibly facilitate the implementation of several swarm robotics
algorithms and can pave the way for novel swarm robotics applications (e.g.,
computationally lightweight machine learning algorithms). Sharing knowledge,
however, introduces several challenges, such as detecting whether someone has
tampered with the shared data or how to reach consensus in case of conflicting
information.

We propose a blockchain as shared knowledge medium, computing platform,
and reputation management system for robot swarms. A blockchain is a tamper-
proof decentralized system used as database and computing platform. Using the
Ethereum framework [1], arbitrary applications can be executed in a decen-
tralized and secure way via blockchain technology. These applications—called
blockchain-based smart contracts—are containers that encapsulate variables and
functions executed via blockchain technology. The participants (robots in this
work) of a blockchain network locally keep a copy of the blockchain. They cre-
ate transactions and distribute them among their peers, whenever they are in
communication range. The data of the transactions is then used as input to the
functions of smart contracts.

The idea of using blockchain technology in combination with robot swarms
was first proposed in [2]. In previous work [4], we provided the first proof-of-
concept by adding a security layer on top of an existing collective-decision mak-
ing approach via blockchain technology. In the scope of the present work, we
developed a new algorithm exploiting the blockchain’s possibilities: the robots
use a blockchain-based smart contract to collectively estimate the relative fre-
quency of black tiles (a value between 0.0 and 1.0) in an environment where the
floor is covered with black and white tiles.

We conducted three experiments using the robot swarm simulator ARGoS [3],
showing (i) the feasibility of the approach, (ii) the trade-off between blockchain
size and accuracy, and (iii) the suitability of the blockchain as a reputation
management system. In each time-step, a robot determines if it is above a black
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 425–426, 2018.
https://doi.org/10.1007/978-3-030-00533-7

http://orcid.org/0000-0003-2974-9827
http://orcid.org/0000-0002-3971-0507

426 V. Strobel and M. Dorigo

or a white tile and, every 30 sec, it creates a blockchain transaction with its
quality estimate. The smart contract aggregates the estimates of the individual
robots to obtain a collective estimate and tells the robots to stop exploring as
soon as the uncertainty in the estimate is below a threshold. Therefore, consensus
in the swarm is achieved in a fully decentralized way without the need of an
external observer. To be able to identify robots with malfunctioning sensors, the
reputation of the individual robots is stored and managed via a blockchain-based
smart contract. Robots with properly functioning sensors are likely to increase
their reputation, while a malfunctioning robot’s reputation is likely to decrease.

In case of conflicting blockchain versions, Ethereum achieves consensus by
agreeing on the longest blockchain, i.e., the one that required the highest Proof-
of-Work (PoW). PoW requires the participants to solve a computational puz-
zle. This ensures that writing information into the blockchain is computation-
ally expensive. The complexity of the puzzle depends on the computational
power of the blockchain participants, i.e., it can adapt to the limited power of
robots. Other consensus protocols, such as Proof-of-Stake or using permissioned
blockchains might be suitable alternatives to PoW.

Blockchain technology introduces additional computational and memory
requirements for the robot swarm. These requirements depend on the number
of participants in the network (the blockchain size scales linearly with the num-
ber of robots) and the amount of information that is sent to the blockchain.
Therefore, it is important to determine which information is security-relevant
and should be stored on the blockchain, and which information can be locally
processed by the robots.

In future work, we will transfer the blockchain system to physical e-puck
robots to study the energy impact of blockchain technology and the possibilities
of consensus protocols tailored to robot swarms.

Acknowledgments. Volker Strobel and Marco Dorigo acknowledge support from the
Belgian F.R.S.-FNRS and from the FLAG-ERA project RoboCom++.

References

1. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Ethereum project white paper. (2014). https://github.com/ethereum/wiki/
wiki/White-Paper

2. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems.
pre-print (2016). arXiv:1608.00695v3

3. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intell. 6(4), 271–295 (2012)

4. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via block-
chain technology in a swarm robotics collective decision making scenario. In: Das-
tani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of 17th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018).
IFAAMAS (2018, in press)

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1608.00695v3

Declarative Physicomimetics for Tangible Swarm
Application Development

Ayberk Özgür1(B), Wafa Johal1,2, Arzu Guneysu Ozgur1, Francesco Mondada2,
and Pierre Dillenbourg1

1 CHILI, EPFL, Lausanne, Switzerland
{ayberk.ozgur,wafa.johal,arzu.guneysu,pierre.dillenbourg}@epfl.ch

2 LSRO, EPFL, Lausanne, Switzerland
francesco.mondada@epfl.ch

Emerging interest in exploring proximal Human-Swarm Interaction has started
approaching the Human-Computer Interaction (HCI) vision of tangible, bidirec-
tional interaction with intelligent swarms made up of “radical atoms” [2]. The
recent years have witnessed significant progress towards these once-hypothetical
materials in the form of Tangible Swarm Robots, for which the focus shifted
towards developing applications for the user to interact with, rather than con-
trollers for the robots to solve tasks. Still, how and with which tools HCI designers
could build such applications in a swift and reusable manner is an open issue.

We propose here such an application development framework which com-
bines two existing approaches: First, we program swarms with virtual forces that
describe and create robot motion (i.e. physicomimetics [4]) instead of coding indi-
vidual or collective actions over time. Second, we use the Qt Modeling Language
(QML) [1], a declarative programming language originally designed to develop
graphical user interfaces by declaring objects and binding their properties and
events to create the program’s structure and flow. Our core idea is to define
the swarm of robots and their behaviors (forces, tangible input detectors etc.) in
terms of these modular and reusable constructs. Below, we provide the program
for a rudimentary “bubble shooter” game that illustrates this (details such as
calibration values and game logic omitted), see Fig. 1 for its operation.

14th move 15th move 20th move

Fig. 1. Bubble shooter game with Cellulo platform [3] where the goal is e.g. to build
the largest group of the same color. Launched robots collide elastically with existing
robots (all 3 figures) and the walls (middle and right) before stopping.

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 427–428, 2018.
https://doi.org/10.1007/978-3-030-00533-7

428 A. Özgür et al.

Swarm{ // Runs physics simulation and other periodic updates of Robots
Repeater{

count: 20
Robot{ // Imaginary robot (a point mass) that the physical robot follows

color: "white" // Property that updates LEDs of robot when changed
GraspDetector{ id: graspDetector

onGrasped: { // Event that fires when the robot is touched by user
var rand = Math.random();
if(rand < 0.3333) parent.color = "red";
else if(rand < 0.6667) parent.color = "green";
else parent.color = "blue";

}
}
FixedToPhysicalRobot { // Follows physical robot instead when enabled

enabled: graspDetector.isGrasped
}
LaunchDetector{

onLaunched: { // Fires when grasp is released by user
parent.vel = launchVel; // launchVel is mean vel. of last N frames
dampingTimer.timedDisable ();

}
}
ViscousDamping{ // Force against and proportional to velocity , F = -cV

coeff: 4.0 // Coefficient c in F = -cV
Timer{ id: dampingTimer // Standard QML object

interval: 5000 //In milliseconds
onTriggered: parent.coeff = 4.0 // Fires when timer elapses
function timedDisable (){

parent.coeff = 0.0;
restart (); // Starts timer , restarts if already running

}
}

}
}

} // For forces below , physical robot width is assumed to be 75 mm
AlignmentAttraction{ // Aligns Robot pairs towards axes with force that

dist: 150 //is orthogonal to pair , when closer than dist mm
anglePeriod: Math.PI/3 // Aligns to 0, 60, 120, 180, 240 and 300 degrees

}
Attraction{ dist: 150 } // Pulls Robot pairs closer when closer than dist mm
Repulsion{ dist: 100 } // Pushes Robot pairs away when closer than dist mm
BouncyContainer{ // Applies inwards force when container is exited

rect: { x: 100, y: 100, w: 800, h: 800 } // Whole arena is 1000 x1000 mm
}

}

The resulting programs are concise and contain no robotic implementation
details, hiding what is uninteresting from the HCI perspective and exposing what
is essential. However, our approach is centralized and cannot be readily applied
to many existing platforms who do not guarantee global awareness. Moreover,
developers must design and/or tune the desired forces, which may not be trivial.

Acknowledgments. Supported by the Swiss National Science Foundation through
the National Centre of Competence in Research (NCCR) Robotics.

References

1. QML Applications. https://doc.qt.io/qt-5/qmlapplications.html. Accessed 28 June
2018

2. Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.B.: Radical atoms: beyond tangible
bits, toward transformable materials. Interactions 19(1), 38–51 (2012)

3. Özgür, A., Lemaignan, S., Johal, W., Beltran, M., Briod, M., Pereyre, L., Mondada,
F., Dillenbourg, P.: Cellulo: versatile handheld robots for education. In: ACM/IEEE
International Conference on Human-Robot Interaction (2017)

4. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of
physicomimetics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp.
84–97. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 8

https://doc.qt.io/qt-5/qmlapplications.html
https://doi.org/10.1007/978-3-540-30552-1_8

Influence of Leaders and Predators
on Steering a Large-Scale Robot Swarm

John D. Lewis1(B), Himanshi Jain2, and Sujit P. Baliyarasimhuni1

1 IIIT Delhi, New Delhi, India
{john16095,sujit}@iiitd.ac.in

2 Delhi Technological University, New Delhi, India
himshijain.hj@gmail.com

A common task involving robotic swarm is to navigate from the current location
to a goal location. In order to perform the task, each agent must have some
higher level control. There are several ways of imparting this higher knowledge
to the agents. One way to control large-scale robotic swarm is by introducing few
influential agents (leaders or predators), which can influence the swarm to steer
them towards the goal. The leader-based swarms have cohesiveness property by
which they can steer a group, however, they do not have the responsibility or role
in ensuring transition of the complete swarm to the goal leading to loss of agents.
Contrary to the leader-based swarm control, the predator-based swarm control
enables the transfer of all the agents to the goal without losing any agents. In
this paper, we study, the influence of leaders and predators on three different
type of swarm models, namely, shepherding model [3], Couzins model [1], and
physicomimetics model [2]. We select these three models because of different
underlying principles for swarm behavior. We evaluate the performance of these
models under the time to steer and the minimum number of influential agents
required for herding metrics.

Predator Model: The predator model utilizes the “fear” to influence the
agents. We use the sheep/sheep-dog model [3]. Multiple predators are incor-
porated into the algorithm by dividing the swarm and assigning each predator
a section of the swarm. If the agents move out of the flock, then it changes its
role to collecting, brings back the stray agents and reverts its role to herding.

In Couzins highly parallel model, the predator(s) influence the swarm only to
correct the swarm’s heading angle towards the goal, the motion of the predator
is controlled such that the resultant movement of the swarm is towards the goal.
In Physicomimetics model, the herd repels to the presence of the predator, we
allow the swarm to recover and influence again.

Leader Models: Affinity towards the leader propels the remaining agents to
follow the leader. We have used leader-based approach [4] and extended it to
physicomimetic and shepherding models.

Monte-Carlo simulation results in terms of time taken by the predators/leaders
in steering the swarm to the goal are shown in Fig. 1. If the agents do not reach the
goal by 1000 s, then the simulation is deemed failure. The results show that the

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 429–430, 2018.
https://doi.org/10.1007/978-3-030-00533-7

430 J. D. Lewis et al.

5 10 15 20

Radius of Influence

0

500

1000

1500

2000

T
im

e
in

 se
c

Number of Shepherds = 1
Number of Shepherds = 2
Number of Shepherds = 3
Number of Shepherds = 4
Number of Shepherds = 5

(a) Predator model [3]

5 10 15 20

Radius of Influence

0

200

400

600

800

1000

1200

T
im

e
in

 se
c

(b) Predator model [1]

10 20 30 40

Radius of Influence

0

200

400

600

800

1000

1200

T
im

e
in

 se
c

(c) Predator model [2]

10 20 30 40

Radius of Influence

0

200

400

600

800

1000

1200

1400

T
im

e
in

 se
c

(d) Leader model [3]

20 40 60 80

Radius of Influence

0

200

400

600

800

1000

T
im

e
in

 se
c

Number of Leaders = 5
Number of Leaders = 10
Number of Leaders = 15
Number of Leaders = 20
Number of Leaders = 25

(e) Leader model [1]

5 10 15 20

Radius of Influence

0

500

1000

1500

T
im

e
in

 se
c

(f) Leader model [2]

Fig. 1. Average time taken for different number of influential agents with varying radii
of influence. Swarm size is 200. The agents are normally distributed N (0; 30) around
the origin (0; 0). The goal area is of 20m radius at (125; 125). The parameters of the
sheep model and predators are given in [3]. The parameters for the physicomimetic
model are R = 5 and C = 50. For the Couzin’s model, the parameters are rr = 1,
ro = 20, ra = 60, θ = 40◦, and α = 270◦. For (f), the speed of the leader is 0.25 times
that of the agents.

predator-based steering given in [3] outperforms the predator-based swarm mod-
els of [1, 2]. In the leaders-based models, Couzin’s model in highly parallel motion
outperforms models from [2, 3]. However, from Fig. 1(a) and (e), we can see that
predator model given in [1] performs better than the leader-based couzin’s model.
Further analysis on effect of noise and partial information must be investigated
for better understanding of the swarm model performances.

Acknowledgments. This work is partially funded by EPSRC GCRF grant
EP/P02839X/1.

References

1. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-
making in animal groups on the move. Nature 433(7025), 513–516 (2005)

2. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of
physicomimetics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp.
84–97. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1 8

3. Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J.,
King, A.J.: Solving the shepherding problem: heuristics for herding autonomous,
interacting agents. J. R. Soc. Interface 11(100), 20140719 (2014)

4. Tiwari, R., Jain, P., Butail, S., Baliyarasimhuni, S.P., Goodrich, M.A.: Effect of
leader placement on robotic swarm control. In: Proceedings of the Conference on
Autonomous Agents and MultiAgent Systems, pp. 1387–1394 (2017)

https://doi.org/10.1007/978-3-540-30552-1_8

Movement-Based Localisation
for PSO-Inspired Search Behaviour

of Robotic Swarms

Sebastian Mai(B), Christoph Steup, and Sanaz Mostaghim

Faculty of Computer Science, Otto von Guericke University, Magdeburg, Germany
{sebastian.mai,steup,sanaz.mostaghim}@ovgu.de

Particle Swarm Optimization (PSO) is a popular algorithm in swarm robotic
search applications. However, a typical PSO method such as Standard PSO
[2] usually assumes that the location of all particles are known. Obtaining an
estimate for the location of other robots’ is necessary to perform the search.

In this paper, we developed an algorithm called Movement-Based Localisa-
tion for Robotic Search (MoBaLoRS) that combines a variation of the GDL
[1] localisation algorithm with the swarm movement. We have used the SPSO
2011 [2] as the main PSO for search. Nevertheless, other PSO algorithms can
be adapted to generate the movement commands. Our experiments show that
the movement-based localisation works well with the movements generated by
PSO. At the same time, the PSO algorithm continues to work with the position
estimates. In each time step our algorithm executes the following computations.
First, velocity vectors and particle distances are measured. From those measure-
ments location estimates for the particles are computed. Then PSO is used to
compute the particle velocities for the next time step. Similar to GDL [1], our
localisation uses measured distances and velocity vectors to compute a position
estimate. We assume the particle A to be immovable while particle B moves with
the combined speed of both particles v = vB,t − vA,t. This is mathematically
equivalent to GDL [1] but results in equations that are less complicated and
easier to work with.

A

Bt−1

Bt

NN
α φ

γ

dt−1

d t

v

Fig. 1. Geometrical
Configuration.

Given two particles A and B, their relative movement
in one time step can be modelled as shown in Fig. 1. The
angle α from the triangle formed by particle A, old position
of Bt−1 and new position Bt, is computed with cos(α) =
d2
t+|v|2−d2

t−1
2·|v|·dt−1

. The angle φ is known from the direction of
the combined movement v. Finally, the position can be
computed as {x̃, x̃′} = (dt sin(φ ± α), dt cos(φ ± α)).
Because of symmetry there are two solutions x̃ and x̃′,
from which the solution that is more likely as position is
selected by one of the following two methods: In the first
method, we compute (x̂ = xt−1 + v), where x̂ is the old
position updated with the velocity vector. Then x̂ is com-
pared to the two solutions {x̃, x̃′}. Of the two solutions the one closer to x̂ is
chosen as the estimate for the current time step. We call this method Closest
Solution Selection (CSS).
c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 431–432, 2018.
https://doi.org/10.1007/978-3-030-00533-7

http://orcid.org/0000-0002-9917-5227

432 S. Mai et al.

The second method uses an error metric for the solution based on a three
way round trip. Therefore, we call this method Round Trip Selection (RTS). For
points A, B, C we select one solution for each of the vectors AB, BC and CA
that minimises the round trip error e. e is defined as ||AB+BC+CA|| = 0+e.
The estimates for vectors in the round trip that are not selected are deleted.
Deletion starts at the round trip where e can be minimised to the lowest value
and continues with the other round trips, until only one solution remains for
each location estimate. The RTS method allows the algorithm to converge much
quicker and has a lower localisation error than the CSS method. The CSS
method requires less communication between the robots and uses less compu-
tation. The next movement of each robot is planned with a modified version
of SPSO 2011 [2] with a fully connected network of particles. The PSO algo-
rithm uses the estimated location of the global best particle Li and the pre-
vious best position of the particle Pi. The position Li is expressed relative to
the particle computing its movement. Li is different for each particle. Addi-
tionally, Li(t) uses the particle with the best fitness in the current time step.

Gi(t) = 1/3 (c1U1 ⊗ Pi(t) + c2U2 ⊗ Li(t)) (1)

Vi(t + 1) = ωVi(t) + Hi(Gi, c3 ‖ Gi ‖ +c4) (2)

Xi(t + 1) = Vi(t + 1) (3)

The modified equations of
PSO are shown in Eqs.
1–3. Xi(t) (the location of
the particle in SPSO) is
always (0, 0). The parame-
ters c3 and c4 are added to
control the uniform hyper-

sphere sampling. Next, the positions of the particles are updated according to
the previously computed velocity. As the particles move and relative coordi-
nates are used, the previous best needs to be updated after the movement:
Pi(t + 1) = Pi(t) − Vi(t + 1).

Our experiments show that our algorithm does not achieve a localisation
error as low as GDL, but solves the behaviour of GDL to yield no solution
in specific cases [1]. We found out that PSO and localisation both continue to
work when used together. Moverover, higher localisation error leads to more
explorative PSO behaviour. Localisation error in the experiment with PSO was
lower than with random walk. We are confident that the MoBaLoRS algorithm is
able to provide the localisation that is needed by swarm intelligence algorithms
and hope this approach enables the use of swarm intelligence algorithms in more
robotic applications than before.

References

1. Akcan, H., Kriakov, V., Brnnimann, H., Delis, A.: GPS-Free node localization in
mobile wireless sensor networks. In: Proceedings of the 5th ACM International
Workshop on Data Engineering for Wireless and Mobile Access, pp. 35–42. ACM
(2006)

2. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation
2011 at cec-2013: a baseline for future pso improvements. In: 2013 IEEE Congress
on Evolutionary Computation, pp. 2337–2344, June 2013. https://doi.org/10.1109/
CEC.2013.6557848

https://doi.org/10.1109/CEC.2013.6557848
https://doi.org/10.1109/CEC.2013.6557848

Of Bees and Botnets

Vijay Sarvepalli(B)

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
vssarvepalli@sei.cmu.edu

Botnets’ ability to grow to large sizes, combined with our inability to exhaus-
tively incapacitate them, has forced us to look for more effective methods to
model their growth and seek ways to curtail it. Swarm behavior is a stochas-
tic modeling technique based on the collective behavior of swarms. Botnets are
like swarms of bees in several ways. For both, a successful hive grows while
withstanding losses. In addition, a swarm of honeybees uses distributed decision
making [2] similar to a botnet.

The Mirai botnet has been responsible for recent large-scale attacks with
its elusive backend of unmanaged Internet of Things and its decentralized self-
propagation of infection. This paper explores the swarming behavior of bee
colonies as a model for botnets’ growth. While there are several differences
between this ecological behavior and botnets, the collective behavior of loosely
coupled individuals exhibits some commonality that is explored here using a sim-
plified meta-huersitic model. This model can be extended with swarm optimiza-
tion techniques that can help us prepare to address the more complex botnets
of the future.

My modeling uses a beehive with the broad roles of scout bees (infected
bot scanners), active foragers (infected bots), and inactive bees (inac-
tive/unreachable bots) to understand a botnet such as Mirai. This meta-heuristic
uses an approximation of observed ratios of these roles that make a successful
beehive [2]. This is implemented to create a Simulated Bee Colony (SBC) using
a simple logic and a computer program written in Python. This logic is repre-
sented in Eq. 1, which follows the susceptible–infectious–recovered disease spread
model [1].

∑
(τ) = N(1 +

Pscout ∗ Psuccess

n
)nτ − μ ∗ N (1)

∑
(τ) is the total size of the botnet at any given time τ , where N is the

current size of the botnet, Psuccess is the probability of success for infection,
Pscout is the percentage of devices that are active scanners, n is the number
of scan operations per time period τ , and μ represents the decrease in size of
the botnet due to a simulated death or other reduction in hive size. The current
model is simple in order to evaluate this meta-heuristic. After validating the
stability of the simulation with 10 such simulations, one simulation representing
a mid-range of botnet growth was compared to scanning data obtained from a
few ISPs. The results show that scanning and growth activity can be reasonably
modeled with this logic, excluding factors such as varying loss μ over time (see
Fig. 1). The size of a botnet depends on scanning (exploration) and compromise

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 433–434, 2018.
https://doi.org/10.1007/978-3-030-00533-7

434 V. Sarvepalli

Fig. 1. Simulated bee colony vs. measured scanning activities

(exploitation) activities, which are represented by the two probabilities Pscout
and Psuccess in this model.

The following recommendations for the computer security community were
developed from these observations:

– ISPs should analyze their dark space for repeated scanners that appear for
three or more days and target remediating those identified as “scouts.”

– ISPs should monitor outgoing scanning activity and pursue modifying DHCP
lease times to reduce sustained scanning activity from these devices.

– Device vendors should identify the types of devices that are becoming effective
“scouts” and pursue patching and fixing their vulnerabilities.

Bio-inspired models can be effective ways to analyze and understand botnets’
survival techniques that mimic characteristics of a biological system. A stochastic
model such as the one proposed illuminates a botnet’s strengths and weaknesses.
It will allow computer security communities to begin addressing the threat of
botnets that perform attacks at large scale.

Acknowledgments. I thank Soumya Moitra (Carnegie Mellon University), Angelos
Stavrou and Constantinos Kolias (George Mason University), and Martin Mckeay (Aka-
mai Technologies) for their input, support, and feedback. This work has been funded
by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center DM18-0329.

References

1. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Dis-
eases: Model Building, Analysis and Interpretation, vol. 5. John Wiley & Sons, New
York (2000)

2. Janson, S., Middendorf, M., Beekman, M.: Searching for a new homescouting behav-
ior of honeybee swarms. Behav. Ecol. 18(2), 384–392 (2006)

Using Particle Swarms to Build Strategies for
Market Timing: A Comparative Study

Ismail Mohamed(B) and Fernando E. B. Otero

School of Computing, University of Kent, Chatham Maritime, UK
{IM572,F.E.B.Otero}@kent.ac.uk

Market timing is the issue of identifying when to buy or sell a given asset in
a financial market. A typical market timing strategy would utilize a number of
signal generating components that process market related data and return a sig-
nal indicating the action to take. These components can either be technical or
fundamental in nature. Each component would have a number of parameters and
a weight that controlled its contribution to the overall signal. The overall signal
is an aggregate of all the signals from the constituent components multiplied by
their respective weights. In two recent and comprehensive studies, Hu et al. [1]
and Soler-Dominguez et al. [2] investigate the use of computational intelligence
techniques in finance. PSO was either used as the primary metaheuristic that
optimized either the composition of components used or the parameters of a
preset selection of components, or in a secondary rule that optimized another
metaheuristic that performed the aforementioned task. No approach was encoun-
tered that attempted to both tune the selection of signal generating components
as well as the parameter values to use for each component.

In order to adapt PSO to tackle market timing while considering both the
selection of signal generating components to use as well as the parameter values
to use per selected components, we introduced a number of modifications. We
pushed down the implementation of the addition, subtraction and multiplication
operators down to the level of the signal generating components in order to
maintain parameter integrity during velocity and particle state updates. This
allows us to be agnostic to the number and types of parameters used by the
components, giving us greater freedom in utilizing whatever components we
deem fit. In order to promote solution convergence, we also implemented both
velocity scaling and Clerc’s Constriction, as well as a decreasing inertia schedule.
These basic modifications allowed us to apply the basic PSO algorithm to the
issue of market timing, while tackling both the contribution of each component
as well as the tuning of each component’s parameters. Furthermore, as basic
PSO does not display the best balance between exploration and exploitation, we
also introduced our own model in an attempt to remedy that. This model differs
from basic PSO in two ways: first, both the cognitive and social components
of the particle velocity update mechanism are now done probabilistically based
on the fitness of the particle’s previous best and neighborhood best solutions
respectively; second, we periodically prune the components that make up the
candidate solutions based on their contribution to overall fitness, allowing us
to shrink the candidate solutions and incur less of a computational cost while

c© Springer Nature Switzerland AG 2018
M. Dorigo et al. (Eds.): ANTS 2018, LNCS 11172, pp. 435–436, 2018.
https://doi.org/10.1007/978-3-030-00533-7

436 I. Mohamed and F. E. B. Otero

not significantly sacrificing solution quality. These two modifications allow our
variant to seek the least sufficing subset of components that maximizes fitness.
We named this variant the Fitness Influenced Stochastic State Update with
Pruning PSO (PSO-FInSSUP).

Having defined a method of applying PSO to market timing as defined above,
we then assessed the performance of five PSO variants: l-best with velocity
clamping, l-best Clerc’s Constriction, g-best with velocity clamping, FInSSUP
with pruning disabled and FInSSUP with pruning enabled. Both FInSSUP vari-
ants assumed a ring neighborhood and used velocity clamping. All variants also
used a decreasing inertia schedule. The variants utilized the daily trading data
from four stocks (MSFT, GOOG, TSLA and BP), and split the data into training
(2015–2016) and testing (2017). All variants also started with six technical sig-
nal generating components: Moving Average Converge Diverge, Aroon, Relative
Strength Indicator, Stochastic Oscillator, Chaikin Oscillator and On Balance
Volume. The fitness of the returned solutions was evaluated using the Sharpe
Ratio.

In the results obtained, we noted that models using ring-based networks fared
better on average than star-based ones, with g-best ranking second to last. No
statistical significance was observed, implying that the results from the vari-
ous PSO models are competitive, suggesting the viability of the PSO-FInSSUP
variants. We also noted that the standard deviation of all the PSO variants are
relatively large when compared to their means, with means considerably lower
than the maximum values of fitness achieved in some cases. At this point it is not
clear whether this is attributable to the shape of the solution landscapes and fur-
ther studies would be required to identify the reason behind the relatively large
range of solutions returned. When considering the Sharpe Ratio values attained,
we observed that the averages rarely reached a value of one or more. This seems
to suggest that the solutions discovered by PSO so far would be considered sub
par according to industry standards.

In conclusion, we were able to formalize the issue of market timing into a
form that considers both the selection of signal generating components and the
values of their parameters. We were able to modify PSO to tackle the issue of
market timing using this formulation. One of the PSO models tested is a novel
approach that attempts to find the least sufficing set of components while still
maximizing Sharpe Ratio and was dubbed PSO-FInSSUP. Our results suggest
that work still remains to improve the performance of this PSO approach before
the metaheuristic can be considered suitable for live trading.

References

1. Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E.W.T., Liu, M.: Application of evolution-
ary computation for rule discovery in stock algorithmic trading: a literature review.
Appl. Soft Comput. J. 36, 534–551 (2015)

2. Soler-Dominguez, A., Juan, A.A., Kizys, R.: A survey on financial applications of
metaheuristics. ACM Comput. Surv. 50(1), 1–23 (2017)

Author Index

Abdelbar, Ashraf M. 342
Adams, Julie A. 385
Al-Hammadi, Yousof 150
Allwright, Michael 188

Baliyarasimhuni, Sujit P. 429
Barel, Ariel 403
Bartashevich, Palina 411
Bello, Marilyn 325
Bello, Rafael 325
Bhalla, Navneet 188
Birattari, Mauro 16, 30, 109
Boumaza, Amine 395
Bozhinoski, Darko 30
Bruckstein, Alfred M. 44, 403
Bullock, Seth 277

Camacho-Villalón, Christian Leonardo 302
Cambier, Nicolas 351
Charpillet, François 395
Christensen, Anders Lyhne 225
Cleghorn, Christopher W. 201, 264, 333
Coello Coello, Carlos A. 317
Coppola, Mario 123
Crowder, Richard 277

de Croon, Guido C. H. E. 123
De Masi, Giulia 239
Dillenbourg, Pierre 427
Dorigo, Marco 57, 188, 302, 425

Engelbrecht, Andries P. 163, 201, 264, 333,
368

Fernández Pérez, Iñaki 395
Ferrante, Eliseo 213, 239, 351
Fleming, Chloë 385
Font Llenas, Anna 135
Franchi, Antonio 3
Frémont, Vincent 351

Gabellieri, Chiara 3
Gomes, Jorge 225

Hamann, Heiko 290
Harrison, Kyle Robert 368
Hasselmann, Ken 16
Hofstadler, Daniel Nicolas 84
Husain, Zainab 150
Hüttenrauch, Maximilian 71

Ibaraki, Toshihide 360
Isakovic, Abdel F. 150

Johal, Wafa 427
Jain, Himanshi 429

Khaluf, Yara 252
Knors, Welf 411
Kuckling, Jonas 30

Lawry, Jonathan 97
Lee, Chanelle 97
Lewis, John D. 429
Ligot, Antoine 30, 109
Lugo, Lázaro 325

Mai, Sebastian 431
Manor, Rotem 44, 403
Marcon dos Santos, Gilberto 385
Marinaki, Magdalene 423
Marinakis, Yannis 423
Marshall, James A. R. 135, 176
Mohamed, Ismail 435
Mondada, Francesco 427
Montero, Elizabeth 317
Mostaghim, Sanaz 411, 431

Nakamura, Yukihiro 360
Neumann, Gerhard 71
Nowe, Ann 325

Oldewage, Elre T. 264, 333
Ombuki-Berman, Beatrice M. 368
Otero, Fernando E. B. 435
Ozgur, Arzu Guneysu 427
Özgür, Ayberk 427

Pallottino, Lucia 3
Pamparà, Gary 163
Pinciroli, Carlo 176, 188
Pitonakova, Lenka 277
Prasetyo, Judhi 239
Primiero, Giuseppe 213

Ranjan, Pallavi 239
Rausch, Ilja 252
Reina, Andreagiovanni 135, 176
Riff, María-Cristina 317
Robert, Frédéric 16
Rojas-Morales, Nicolás 317
Ruta, Dymitr 150

Saffre, Fabrice 150
Salama, Khalid M. 342
Sarvepalli, Vijay 433
Scheepers, Christiaan 201
Schmickl, Thomas 84
Shoji, Kazutaka 378
Simoens, Pieter 252

Šošić, Adrian 71
Steup, Christoph 431
Strobel, Volker 425
Stützle, Thomas 302

Tagliabue, Jacopo 213
Takahashi, Ryouei 360
Talamali, Mohamed S. 135, 176
Tognon, Marco 3
Trabattoni, Marco 57
Trianni, Vito 176, 351
Tuci, Elio 213
Tuzel, Ovunc 385

Valentini, Gabriele 57

Winfield, Alan 97

Xu, Xu 135

Zahadat, Payam 84

438 Author Index

	Preface
	Organization
	Contents
	Full Papers
	A Study on Force-Based Collaboration in Flying Swarms
	1 Introduction
	2 Model
	3 Numerical Study
	4 Discussion
	5 Conclusions
	References

	Automatic Design of Communication-Based Behaviors for Robot Swarms
	1 Introduction
	2 Related Work
	3 AutoMoDe-Gianduja
	4 Experimental Setting
	4.1 Missions
	4.2 Protocol

	5 Results
	6 Conclusions
	References

	Behavior Trees as a Control Architecture in the Automatic Modular Design of Robot Swarms
	1 Introduction
	2 Behavior Trees
	3 AutoMoDe-Maple
	3.1 Robotic Platform
	3.2 Set of Modules
	3.3 Control Software Architecture

	4 Experimental Setup
	4.1 Automatic Design Methods
	4.2 Missions
	4.3 Protocol

	5 Results
	6 Related Work
	7 Conclusions
	References

	Guidance of Swarms with Agents Having Bearing Only and Limited Visibility Sensors
	1 Introduction
	2 The Motion Law
	3 Gathering to a Small Region
	4 Random Dynamics Analysis
	4.1 No Broadcast Control (=0)
	4.2 Behavior of the Swarm Under Broadcast Control (> 0)

	5 Discussion
	References

	Hybrid Control of Swarms for Resource Selection
	1 Introduction
	2 Related Work
	2.1 Control of Robot Swarms
	2.2 Consensus Achievement

	3 Methods
	3.1 Experimental Setup
	3.2 Self-organizing Behavior
	3.3 SHCS Implementation

	4 Experiments
	5 Discussion
	6 Conclusions and Future Work
	References

	Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Trust Region Policy Optimization
	2.2 Problem Domain
	2.3 Related Work

	3 Multi-agent Learning with Local Communication Protocols
	3.1 Communication Protocols
	3.2 Weight Sharing for Policy Networks
	3.3 Adaptations to TRPO

	4 Experimental Setup
	4.1 Agent Model
	4.2 Tasks
	4.3 Policy Architecture

	5 Results
	5.1 Edge Task
	5.2 Link Task

	6 Conclusions and Future Work
	References

	Morphogenesis as a Collective Decision of Agents Competing for Limited Resource: A Plants Approach
	1 Introduction
	2 The Model: Vascular Morphogenesis Controller
	3 A Closer Look on the Effects of Parameters
	4 Experiments with Physical Structures
	5 Conclusions and Future Work
	References

	Negative Updating Combined with Opinion Pooling in the Best-of-n Problem in Swarm Robotics
	1 Introduction and Background
	2 Evidential Updating with Comparisons
	3 Combining with Opinion Pooling
	4 Agent-Based Simulations Experiments
	5 Robot-Based Simulation Experiments
	6 Conclusion
	References

	On Mimicking the Effects of the Reality Gap with Simulation-Only Experiments
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Experiments
	4.1 Aggregation
	4.2 Foraging

	5 Conclusions
	References

	Optimization of Swarm Behavior Assisted by an Automatic Local Proof for a Pattern Formation Task
	1 Introduction
	2 Related Work and Research Context
	3 Framework and Approach to Pattern Formation
	4 Optimization Methodology
	4.1 Step 1: A-Priori Local Reduction of Active States
	4.2 Step 2: Local Elimination of Unnecessary Actions
	4.3 Step 3: Behavior Optimization

	5 Results and Discussion
	6 Conclusions and Future Work
	References

	Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone Trails
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Robots
	3.2 The Kilobots and ARK
	3.3 Robot Behaviour

	4 Experiments and Results
	4.1 Simulation Scenarios
	4.2 Results for Varying Distance and Quality
	4.3 Effects of the Swarm Size S
	4.4 Quality-Distance Trade-Off
	4.5 Kilobot Swarm Demonstrations

	5 Discussion and Conclusion
	References

	Search in a Maze-Like Environment with Ant Algorithms: Complexity, Size and Energy Study
	1 Introduction
	2 Overview of Current Approaches
	3 This Work
	3.1 Simulation Environment Setup
	3.2 Ant Decision Making Models

	4 Results and Discussion
	5 Energy Expenditure Analysis
	6 Search for Appropriate AA Parameters on the Maze
	7 Conclusions and Future Work
	References

	Self-adaptive Quantum Particle Swarm Optimization for Dynamic Environments
	1 Introduction
	2 Background
	2.1 Dynamic Environments
	2.2 Moving Peaks Benchmark Function
	2.3 Particle Swarm Optimization
	2.4 Quantum Particle Swarm Optimization
	2.5 Previously Suggested Radius Management Strategies

	3 Self-adaptive Quantum Particle Swarm Optimization
	4 Experimental Approach
	4.1 Experimental Design
	4.2 Dynamic Environment Performance Measures
	4.3 Statistical Process

	5 Results
	5.1 Analysis of Collective Mean Error
	5.2 Analysis of Average Best Error Before Change
	5.3 Analysis of Average Best Error After Change
	5.4 Analysis of the Dynamic Radius Size and Diversity

	6 Conclusion
	References

	Simulating Kilobots Within ARGoS: Models and Experimental Validation
	1 Introduction
	2 Kilobot: Reference Behaviour and Simulation Models
	2.1 Body Model
	2.2 Noise and Inter-individual Variations
	2.3 Robot-Robot Communication
	2.4 Light Sensor
	2.5 ARK Simulation

	3 Experimental Validation
	3.1 Random Diffusion Experiment
	3.2 Speed and Scalability
	3.3 Accuracy: Box Pushing

	4 Conclusions
	References

	Simulating Multi-robot Construction in ARGoS
	1 Introduction
	2 Background
	3 Contributions to the ARGoS Simulator
	3.1 Enhancements to the Entities Plug-in
	3.2 Enhancements to the Media Plug-in
	3.3 Enhancements to the Generic Robot Plug-in
	3.4 The Three-Dimensional Dynamics Plug-in
	3.5 The Prototyping Plug-in

	4 Case Study: Multi-robot Construction
	4.1 Summary of the Hardware and the Control Software
	4.2 Modeling the Hardware in Simulation
	4.3 Reproducing the Hardware Results
	4.4 Scaling up to Multi-robot Construction

	5 Conclusions
	References

	Stability Analysis of the Multi-objective Multi-guided Particle Swarm Optimizer
	1 Introduction
	2 Multi-guided Particle Swarm Optimizer
	3 Theoretical Derivation
	4 Empirical Setup
	5 Experimental Results and Discussion
	6 Conclusion
	References

	Swarm Attack: A Self-organized Model to Recover from Malicious Communication Manipulation in a Swarm of Simple Simulated Agents
	1 Introduction
	2 The Model
	3 Results
	3.1 Non-adaptive Probabilistic Defence Mechanism
	3.2 Adaptive Probabilistic Defence Mechanism

	4 Conclusions
	References

	Task-Agnostic Evolution of Diverse Repertoires of Swarm Behaviours
	1 Introduction
	2 Methodology
	2.1 Novelty Search with Local Competition
	2.2 Container
	2.3 Behaviour Characterisation
	2.4 Quality Metric

	3 Experimental Setup
	3.1 Domain
	3.2 Evaluation Tasks
	3.3 Evolutionary Setup

	4 Results
	4.1 Comparison with Direct Evolution
	4.2 Repertoire Diversity

	5 Conclusions
	References

	The Best-of-n Problem with Dynamic Site Qualities: Achieving Adaptability with Stubborn Individuals
	1 Introduction
	2 Related Work
	3 The Model
	3.1 The Dynamic Best-of-n Problem
	3.2 The Decision Mechanism and the Stubborn Agents

	4 Experimental Setup
	5 Results
	5.1 The Vanilla Voter Model
	5.2 Effect of Quality Ratio and of Proportion of Stubborn Individuals
	5.3 Effect of Swarm Size Versus Proportion of Stubborn Individuals
	5.4 The Majority Rule with Stubborn Individuals

	6 Conclusion, Discussion, and Future Work
	References

	The Impact of Interaction Models on the Coherence of Collective Decision-Making: A Case Study with Simulated Locusts
	1 Introduction
	2 Decision-Making Model
	3 Interaction Models
	4 Simulations
	4.1 Robot Configuration
	4.2 Environment Configuration

	5 Results and Discussion
	6 Conclusion
	References

	The Importance of Component-Wise Stochasticity in Particle Swarm Optimization
	1 Introduction
	2 Background
	3 Theoretical Results
	4 Illustration of Reachability
	4.1 Empirical Method - Reachability
	4.2 Results - Reachability

	5 Extensive Performance Comparison
	5.1 Empirical Method - Performance Comparison
	5.2 Results - Performance Comparison

	6 Conclusion
	References

	The Importance of Information Flow Regulation in Preferentially Foraging Robot Swarms
	1 Introduction
	2 Methods
	2.1 Simulated Environment
	2.2 Robots
	2.3 Terminology and Data Visualisation

	3 The Performance of Committed Swarms
	4 The Performance of Preferential Swarms
	5 Discussion
	6 Conclusion
	References

	The Role of Largest Connected Components in Collective Motion
	1 Introduction
	2 Microscopic and Macroscopic Models
	2.1 Microscopic Model: SPP
	2.2 Largest Component
	2.3 Macroscopic Model

	3 Results
	3.1 Time-Invariant Drift Coefficients
	3.2 On the Effectivity of Collective Motion

	4 Conclusion
	References

	Why the Intelligent Water Drops Cannot Be Considered as a Novel Algorithm
	1 Introduction
	2 Ant Colony Optimization
	3 The Intelligent Water Drops Algorithm
	4 Discussion
	4.1 Stochastic Solution Construction
	4.2 Local Update Procedure
	4.3 Global Update Procedure

	5 Conclusions
	References

	Short Papers
	A Cooperative Opposite-Inspired Learning Strategy for Ant-Based Algorithms
	1 Introduction
	2 An OIL Strategy for Ant-Based Algorithms
	2.1 Division of the Process
	2.2 Methods

	3 Cooperation Between Sub-colonies
	4 Case Study: Multidimensional Knapsack Problem
	4.1 Details of the Implementation

	5 Experiments and Results
	6 Conclusions
	References

	A Solution for the Team Selection Problem Using ACO
	1 Introduction
	2 Formulation of Personnel Selection Problem in a Competitive Environment
	3 A Method for Solving the Team Selection Problem in a Competitive Environment Using Ant Colony Optimization
	4 Experimental Study
	5 Plugin ASMMTS for KNIME
	6 Conclusions
	References

	Boundary Constraint Handling Techniques for Particle Swarm Optimization in High Dimensional Problem Spaces
	1 Introduction
	2 Background
	2.1 Position Repair Strategies
	2.2 Velocity Repair Methods
	2.3 Other Strategies

	3 Experimental Method
	4 Results
	5 Conclusion
	References

	Does the ACOR Algorithm Benefit from the Use of Crossover?
	1 Overview
	2 Review of the ACOR Algorithm
	3 ACOR with Crossover
	4 Experimental Methodology and Results
	5 Concluding Remarks
	References

	Embodied Evolution of Self-organised Aggregation by Cultural Propagation
	1 Introduction
	2 Model
	2.1 Self-organised Aggregation Controller
	2.2 Cultural Evolution

	3 Experimental Results
	4 Conclusions
	References

	Experimental Evaluation of ACO for Continuous Domains to Solve Function Optimization Problems
	1 Introduction
	2 Function Optimization Problem (FOP)
	2.1 Definition of FOP
	2.2 Structures of Solutions

	3 Optimization Methods
	3.1 Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
	3.2 Ant Colony Optimization for Continuous Domains (ACOR)
	3.3 Blend Crossover with Stepwise Localization (BLX-)
	3.4 ACOB with Stepwise Localization of Binary Search Space
	3.5 Two Points Crossover with Stepwise Localiztion (2X)

	4 Test Functions Investigated in This Study
	5 Experiments
	5.1 Measures to Evaluate Methods
	5.2 Experimental Results

	6 Conclusions and Future Work
	References

	Gaussian-Valued Particle Swarm Optimization
	1 Introduction
	2 Background
	2.1 Particle Swarm Optimization
	2.2 Barebones Particle Swarm Optimization

	3 Gaussian Valued Particle Swarm Optimization
	4 Experimental Results and Discussion
	4.1 Experimental Setup
	4.2 Examining the Exploitation Probability
	4.3 Comparison with Other Particle Swarm Optimization Techniques

	5 Conclusions and Future Work
	References

	Individual Activity Level and Mobility Patterns of Ants Within Nest Site
	1 Introduction
	2 Methods and Materials
	2.1 Ants and AR Tracking
	2.2 Individual Behavior Under Harsh Environment
	2.3 Individual Classification Based on Their Behavior and Mobility Patterns

	3 Results
	3.1 Individual Behavior Under Harsh Environment
	3.2 Individual Classification and Mobility Patterns

	4 Discussion
	4.1 Individual Behavior Under Harsh Versus Normal Environments
	4.2 Individual Classification and Spatial Distribution

	References

	Learning Based Leadership in Swarm Navigation
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Neuro-Evolutionary Learning Method

	4 Experimental Design and Results
	4.1 Experimental Design
	4.2 Results

	5 Discussion
	6 Conclusion
	References

	Maintaining Diversity in Robot Swarms with Distributed Embodied Evolution
	1 Introduction
	2 Related Work
	3 Methods and Experiments
	4 Results and Conclusion
	References

	On Steering Swarms
	1 Introduction
	2 How to Control a Single Agent
	3 Controlling Multi-agent Systems - the Idea
	3.1 Steering a System of Agents with Infinite Visibility and Full Sensing
	3.2 Steering a System of Agents with Limited Visibility and Bearing Only Sensing

	4 Conclusions
	References

	Vector Field Benchmark for Collective Search in Unknown Dynamic Environments
	1 Introduction
	2 Vector Fields Benchmark (VFB)
	3 VFB-Map Exploration Framework
	4 Experimental Study
	5 Conclusions and Future Work
	References

	A Honey Bees Mating Optimization Algorithm with Path Relinking for the Vehicle Routing Problem with Stochastic Demands
	References

	Blockchain Technology for Robot Swarms: A Shared Knowledge and Reputation Management System for Collective Estimation
	References

	Declarative Physicomimetics for Tangible Swarm Application Development
	References

	Influence of Leaders and Predators on Steering a Large-Scale Robot Swarm
	References

	Movement-Based Localisation for PSO-Inspired Search Behaviour of Robotic Swarms
	References

	Of Bees and Botnets
	References

	Using Particle Swarms to Build Strategies for Market Timing: A Comparative Study
	References

	Author Index

