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Comparison and Analysis of Multibody
Dynamics Formalisms for Solving
Optimal Control Problem
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Abstract Optimal Control methods are increasingly used for the control of multi-
body systems (MBS). This work analyzes the different dynamic formulations
and compare their performances in solving Optimal Control Problem. The focus
is on minimal coordinates and the derivation of the dynamics via the recursive
methods for tree-like MBS (i.e., the so-called Newton-Euler and Order-N recursive
algorithms). The different formulations are introduced and their derivations are
discussed. A benchmark case study (i.e., a 3D series manipulator balancing an
inverted pendulum) is modeled and a series of manipulation tasks (movement of the
end effector in the 3D space) are performed. The OCP is formulated and solved with
the help of the CasADi software while the dynamic formulations are generated by
the Robotran software. Results show that the implicit and semi-explicit formulations
derived via the Newton-Euler recursive algorithm lead to faster computation of the
OCP than the explicit formulations. This is explained by a more compact expression
for the implicit dynamics. However, a lower number of high local minima is
observed with the explicit formulations for the most extreme robot manipulations.

Keywords Multibody system dynamics · Direct optimal control · Newton-Euler
recursive algorithm · Tree-like system · 3D serial robot · Inverted pendulum

3.1 Introduction

Nowadays, Optimal Control (OC) methods are increasingly used for the control of
mechanical systems. Many industrial applications already make use of it, e.g., for
the trajectory planning of industrial robots, while the scientific community continues
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to investigate new possibilities in the fields of active orthoses and autonomous
driving. Optimal Control of multibody systems (MBS) is of particular interest for
many mechanical systems such as vehicles, robots or the human body as it offers
the possibility to compute beforehand a control sequence on a given time interval
such that a certain optimality criterion is achieved. This makes OC methods suitable
for multibody systems whose dynamics involves non-linearities and rotations in
the tridimentional space. Moreover, the computation of control command inputs
via optimization enables the control of underactuated MBS characterized by a
lower number of inputs than degrees of freedom. However, the performances of
the optimized control inputs strongly depend on the mathematical model used to
represent the dynamics of the controlled system.

Optimal Control is also essential for Model Predictive Control (MPC) of non-
linear systems. MPC consists in determining the current control inputs by solving
an Optimal Control Problem (OPC) on a finite future time horizon. In case of
mechanical systems with fast dynamics, fast updates of the control inputs are
required, which means that the OCP online solving must be carried out in real-
time. This leads to many investigations on the OCP solving efficiency including for
multibody control purpose.

Optimal Control of multibody systems has already been approached on many
different angles. There have been a multitude of works to develop general purpose
algorithms for optimal trajectory planning of MBS. Among them, studies have
focused on constrained MBS characterized by loops of bodies and algebraic
equations [12]. For such MBS, different methods of index reduction for the dif-
ferential algebraic equations (DAE) system have been investigated (e.g., coordinate
partitioning [21] and Baumgarte stabilization [3]). Such methods are also of great
importance in the case of non-minimal parameterization of the system motion. In
[11] and [14], different parameterizations of the special orthogonal group SO(3)
have been investigated with special integrators adapted to the parametrization. These
non-minimal parametrizations are of particular interest for many applications (e.g.,
flying vehicles such as drones) as they offer a singular-free representation for the
rotations.

On the other hand, minimal coordinates have also drawn the attention of
researchers as they are appropriate for the representation of many industrial
applications (e.g., serial manipulators). During the two past decades, the optimal
trajectory planning of industrial robots has been a very popular research subject
[2, 6, 18, 19]. These robots generally possess a tree-like structure (i.e., without loop
of bodies) which leads to unconstrained systems in the case of a joint coordinates
approach.

In robotics,the trajectory planning is usually referred as the inverse dynamics
problem for which the objective is to determine the joint torques for a prescribed
motion of the controlled system [2]. The use of optimization methods is often
necessary for the control of underactuated or overactuated systems for which there
is still a latitude in the way to actuate them. Among the studied problems, the case
of non-minimal phase systems represents an additional challenge as the inverse
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Fig. 3.1 In this work, the focus is on the influence of the MBS modeling on the solving OCP
performances

dynamics is, in that case, non-causal which means that the control should start
before the beginning of the trajectory [2].

Generally, the research on OC for MBS has mainly focused on the develop-
ment of new methods for Numerical Optimal Control that are based on a given
formulation of the multibody dynamics [2, 5, 19] and [17]. Nevertheless, in [6],
Diehl gives a good overview on the different dynamic formulations and how they
could influence the Optimal Control solver. He suggests that an implicit formulation
of the dynamics through the Newton-Euler Recursive scheme should lead to a
lower evaluation cost per iteration. However, to our knowledge, there has been no
thorough investigation on the dynamic formulations and its influence on the solving
of optimal control problem for unconstrained multibody systems. Regarding the
numerical formulation of OCP, two methods exist: the multiple shooting and the
direct collocation [4]. For the multiple shooting, the integration and the optimization
are treated separately. The choice of the integrator is left free and can be adapted to
the system dynamics. On the other hand, the direct collocation method consists in
imposing the dynamics equations at intermediate collocation points. The integration
and the optimization are treated at the same level. The advantages of collocation
methods are that they lead to a very sparse NLP and that they show fast local
convergence. In addition, they treat unstable system well and can easily cope with
state and terminal constraints [6]. These reasons led us to consider the collocation
method in the case study of this paper (see Sect. 3.4).

In this work, we analyze different multibody dynamic formulations and compare
their performances in terms of convergence, accuracy and computation cost in
the OCP framework. The aim is not to develop new numerical methods for the
formulation of the OCP or to propose a new type of solver but to provide some
insights on existing MBS formulations and their suitability in the formulation of
Optimal Control Problems (see Fig. 3.1). Among the different MBS formalisms,
we focus on minimal (i.e., relative) coordinates and the derivation of the dynamics
via the recursive methods for tree-like MBS (i.e., the so-called Newton-Euler and
Order-N recursive algorithms). The derivation is done symbolically through the
use of the Robotran software [7]. The symbolic equation generator of Robotran
has already been proved to be particularly efficient in the derivation of compact
expressions for the dynamics of multibody system [15]. However, its performances
for OCP solving have never been thoroughly analyzed.
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In order to compare the formulations, a benchmark has been developed. It
consists of a 3D serial robot arm with an inverted pendulum attached to the
end effector. An important point is the underactuated nature of the system (due
to the free rotation of the pendulum) which requires the use of optimization
to determine the robot control inputs. In addition, the balancing of an inverted
pendulum is a well-known task that has already been largely investigated. The
system being tridimensional, its non-linear and complex dynamics should highlight
the differences between the considered dynamic formulations.

This chapter is organized as follows: first the theory related to the formulation
of the OCP and the multibody modeling are respectively presented in Sects. 3.2
and 3.3. The different formulations are introduced and their derivations are dis-
cussed. Then, Sect. 3.4 presents a benchmark case study for an unconstrained
multibody system. First the MBS system (i.e., a 3D robot arm with an inverted
pendulum) is described, then the optimal control task is defined. To this extent, the
CasADi software [1] is used to formulate and solve the OCP while the dynamic
formulations are provided by the symbolic MBS software Robotran [7]. Finally,
results are presented for a series of tasks realized with the different representations
of the dynamics. These are compared in terms of solver performances: number
of iterations, CPU time to convergence and quality of the solutions. Finally,
the differences observed for the different formulations are discussed in light of
theoretical considerations.

3.2 Optimal Control of Multibody Systems

There are many ways to formulate and solve an Optimal Control Problem. In this
Section, we introduce the main principle and define the trajectory planning problem
to solve. In Sect. 3.2.1, the continuous problem is presented analytically then the
discrete formulation is introduced in Sect. 3.2.2.

3.2.1 Optimal Control Formulation

In a multibody context, the optimal Control Problem (OCP) is formulated as
an optimization problem whose solution provides the control trajectory u(t) that
minimizes a given cost function (3.1) and steers the state x(t) of the multibody
system and its algebraic variables z(t) from a given initial state (3.2) to a given
terminal state (3.3), within a given time horizon T (see Fig. 3.2). The OCP then
reads:

minimize
x(t),u(t),z(t)

∫ T

0
L (x(t), u(t), z(t)) dt (3.1)
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Fig. 3.2 The continuous optimal control problem consists in finding the optimal state and control
trajectory on the time interval [0, T ]

subject to possible path constraints:

x(0) − xi = 0 (3.2)

x(T ) − xd = 0 (3.3)

c (x(t), u(t), z(t)) ≥ 0 t ∈ [0 T ] (3.4)

The trajectory x(t), z(t) and the control inputs u(t) are subjected to equality
constraints denoted g, which typically represent the system dynamics expressed as
a set of Differential Algebraic Equations (DAE).

g (x(t), u(t), z(t)) :
{

ẋ = f(x, u, z)

a(x, z) = 0
t ∈ [0 T ] (3.5)

In this equation, f and a respectively denote the differential and the algebraic
equations that described the physics of the system in terms of the states x, the
algebraic variables z and the control inputs u. This general framework for the
dynamics is at the core of the CasADi OC program and its permits the modeling
of the dynamics of the multibody system as a system of DAE (see Sect. 3.3). The
optimization problem defined by the set of Eqs. (3.1), (3.2), (3.3), (3.4) and (3.5) has
in general no analytical solution. However it can be solved numerically through its
discretization on the time interval [0, T ].
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Fig. 3.3 Numerical OCP with the dynamic constraints (3.10) that are unsatisfied. The decision
variables are the states at the discrete points and the piecewise constant control inputs

3.2.2 Numerical Optimal Control Methods

There are several approaches to obtain a numerical solution of an OCP. Among
them, the direct methods consist in discretizing the time horizon [0, T ] into N time
intervals [tk, tk+1] such that t0 = 0, tN = T and k ∈ 0, 1, . . . , N − 1. The time
functions x(t), u(t) and z(t) that were the unknowns of the system (3.1), (3.2),
(3.3), (3.4) and (3.5) are replaced by a sequence of N + 1 discrete states xk , zk

and N piecewise constant controls uk which are now the decision variables of the
optimization problem in its discrete form (see Fig. 3.3).

The cost function (3.1) is replaced by a numerical approximation p which is a
function of the decision variables vector w = {x0, u0, z0, . . . , xk, uk, zk . . . uN−1,

zN−1, xN }. Finally, the path constraints (3.2) and (3.3) are re-expressed in terms of
the decision variables vector w. This parameterization of the original continuous
OCP is referred as a nonlinear program (NLP).

minimize
w

p(w) (3.6)

subject to path constraints on the decision variables:

x0 − xi = 0 (3.7)

xN − xd = 0 (3.8)

c (w) ≥ 0 (3.9)

In order to respect the system dynamics, the constant control input uk on the time
interval [tk, tk+1] is linked to the two adjacent differential states xk and xk+1 through
the explicit numerical integration F of the continuous dynamics (3.5) on the same
discrete time interval (see Fig. 3.3).
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xk+1 − F(xk, uk, zk) = 0 (3.10)

In addition, the differential and algebraic states are linked at each discrete time
through the set of algebraic equations.

a(xk, zk) = 0 (3.11)

As mentioned in the introduction, a collocation method is used to deal with
the constraints (3.10) and (3.11). This technique consists in defining collocation
points between tk and tk+1 at which the states, represented as polynomial functions,
have to satisfy the continuous dynamics (3.5). The integration scheme implies
the definition of extra variables (i.e., the polynomial coefficients) and additional
constraint equations. This leads to a very large but sparse NLP.

The optimization problem defined by Eqs. (3.6), (3.7), (3.8), (3.9), (3.10) and
(3.11) can be solved with different techniques (e.g., an Interior Point method) which
generally require the derivatives of the cost function and constraint equations with
respect to the decision variables. To this extent, the software CasADi [1] provides
sensitivity analysis tools for ODE and DAE system that allows the automatic
generation of the derivatives necessary to solve the NLP. To do so, CasADi uses
state-of-the-art algorithmic differentiation [10].

3.3 Multibody Systems Modeling

It is well-established that several formalisms can be used to model multibody
systems (MBS). Among them, both the absolute and relative coordinates can be
considered for optimal control, resulting in different structures for the NLP to solve
[2]. In this study, the focus is on minimal coordinates and the different formulations
of the dynamics. First the relative (i.e., minimal) coordinates approach is briefly
described. Then the different forms for the MBS dynamics that can be obtained
through recursive algorithms are presented. Finally, the symbolic generation of these
dynamics equations is discussed.

3.3.1 Relative Coordinates Approach

In the relative coordinates approach, the parametric configuration of a body is
defined relatively to another one called its parent body. The motion degrees of
freedom (dof) are defined via the joints that connect the different bodies of the
system. If the MBS does not contain any loops of bodies, it inherits a tree-like
structure as each body can only have one parent body (see Fig. 3.4). The number
of coordinates is minimal and thus reduced compared to the absolute coordinates
approach, as the joint constraints are implicitly taken into account by the relative
formulation, leading to a pure set of ordinary differential equations.
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Fig. 3.4 The relative coordinates approach consists in defining the motion of each body relatively
to its parent body with the help of a joint coordinate q

In the relative coordinates approach, a MBS is fully characterized by two types
of features:

• bodies, defined by their mass, center of mass and inertia tensor (10 parameters in
total),

• joints, defined by their location on the body and their nature (i.e., prismatic or
revolute, free or constrained).

A tree-like structure might be quite restrictive since many mechanical systems
contain kinematic loops (e.g., a four-bar linkage). The relative coordinates approach
deals with such closed-loop systems by introducing loop constraint equations. The
tree-like structure is restored in two steps. First the loop is cut resulting into two
independent branches of bodies. Afterwards the loop closure is ensured by applying
algebraic constraints, for instance forcing two points of the created branches to
coincide or imposing a given distance between two points. Hence, the derivation
of the differential equations is based on the tree-like structure of the MBS whether
or not the system is constrained. In this work, only unconstrained tree-like MBS
are considered within the frame of OCP formulation. However, as the derivation
of the differential equations is the same for constrained system, the study of the
different formulations of the dynamics will be insightful for both constrained and
unconstrained MBS.

3.3.2 Formulations of the Dynamic Equations

In this section, different formulations of the equations of motion are presented
for the case of unconstrained MBS. Among those formulations, the so-called
Newton-Euler recursive scheme denoted NER is particularly suitable for minimal
coordinates [13]. This method implements two consecutive recursions on the MBS
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(a forward kinematics followed by a backward dynamics). It is well-known for its
facility of computer implementation and its reduced number of operations necessary
to obtain the equations of motion. It expresses the vector of generalized forces Q as
a function of the system kinematics (q, q̇, q̈).

�(q̈, q̇, q) = Q (3.12)

This very efficient formulation, also called inverse dynamics has only a O(N)

complexity thanks to its recursive formulation, N being the size of the MBS (i.e.,
the number of joints). It is extensively used by roboticians to determine the actuation
torques Q necessary to track a given trajectory (q(t), q̇(t), q̈(t)) for a fully actuated
robot.

3.3.2.1 Implicit Formulation

More generally, Eq. (3.12) can be used to represent the dynamics of any MBS
systems, in a residual form. In that case, the joint torques/forces Q can be
configuration-dependent (i.e., an elastic joint or a feedback control law) and are
generally expressed as a function of the generalized coordinates q and generalized
velocities q̇. It results in an implicit formulation of the equations of motion in terms
of the generalized acceleration q̈:

�(q̈, q̇, q) − Q(q̇, q) = 0 (3.13)

According to Sect. 3.2.1, some control inputs u(t) are considered for the OCP
formulation. To this extent, the joint forces Q can be partitioned into two subsets.

• Qa for the active or actuated joints (input of the system)
• Qp for the passive joints that can contain dry friction, damping force, etc.

Q(q̇, q) = Qa + Qp(q̇, q) (3.14)

The system (3.13) can be re-expressed as a DAE system of the form (3.5) with
the generalized coordinates and velocities representing the differential states and the
accelerations considered as the algebraic states.

x =
[

q̇
q

]
z = q̈ u = Qa

⎧⎪⎪⎨
⎪⎪⎩

f(x, u, z) =
[

z
q̇

]

a(x, z) = �(q, q̇, z) − Q(q, q̇, u) = 0

(3.15)
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3.3.2.2 Semi-explicit Formulation

The original Newton-Euler recursive scheme leading to the formulation (3.12) can
be modified in order to obtain a semi-explicit form of the dynamics equations for
tree-like multibody systems. This new form still preserves the full recursivity even
for the computation of the mass matrix [9].

M(q)q̈ + c(q, q̇) = Q(q̇, q) (3.16)

M is the symmetric generalized mass matrix of the system and c is the non-linear
dynamic vector which contains the gyroscopic, centripetal and gravity terms as
well as the contribution of the resultant external forces. The difference compared
to Eq. (3.12) is that the algorithm first computes M and c individually before the
evaluation of the left-hand side.

This semi-explicit formulation is often preferred for time integration purposes.
However, the factorization of the mass matrix in the recursive scheme requires
additional computational efforts of O(N2) complexity [9]. The semi-explicit sys-
tem (3.16) can be re-expressed as a DAE system in a similar way as for the implicit
formulation.

x =
[

q̇
q

]
z = q̈ u = Qa

⎧⎪⎪⎨
⎪⎪⎩

f(x, u, z) =
[

z
q̇

]

a(x, z) = M(q) z + c(q, q̇) − Q(q̇, q, u) = 0

(3.17)

3.3.2.3 Explicit Formulation

The system of Eq. (3.16) can be solved in terms of the accelerations q̈ via a Cholesky
decomposition of the mass matrix leading to the explicit expression γ for the
acceleration q̈ in terms of the position q and velocity q̇. This resolution step yields
an additional O(N3) complexity compared to the semi-explicit form.

q̈ = M−1 [Q − c] (q̇, q)
�= γ(q̇, q, Q) (3.18)

Another way to derive the explicit form of the equations of motion in a fully
recursive way can be obtained through the Order-N algorithm [16]. This method is
based on three recursive steps (instead of two for the NER scheme) on the multibody
system. In short, first a forward recursion covers the MBS from the inertial body
to the leaves to compute the bodies kinematics (position, orientation, linear and
angular velocities). A second backward recursion computes the bodies dynamics on
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the basis of the classical Newton-Euler equations within which a subtle embedded
block factorization of the mass matrix is performed. This process prepares the third
final kinetic recursion that straightforwardly computes the generalized acceleration
q̈ as a function ν of the joint positions and velocities. This three-steps algorithm
has a O(N) complexity. Several implementations of it have been proposed in the
literature, the one used in this paper is the Schwertassek-Rulka method [16].

q̈ = ν(q̇, q, Q) (3.19)

As the system is expressed in a purely explicit form, the accelerations q̈ do not
necessarily need to be considered as an algebraic state. As a result, the dynamics
can be assimilated to either set of ODE or DAE. The explicit dynamics is generally
denoted ξ and can either represent the NER explicit dynamics γ or the Order-N
dynamics ν. The dynamics is represented by a set of differential algebraic equations
(DAE) as

x =
[

q̇
q

]
z = q̈ u = Qa

⎧⎪⎪⎨
⎪⎪⎩

f(x, u, z) =
[

z
q̇

]

a(x, z) = z − ξ(q̇, q, u) = 0

(3.20)

or by a set of ordinary differential equations (ODE) as

x =
[

q̇
q

]
u = Qa

f(x, u) =
[
ξ(q̇, q, u)

q̇

]
(3.21)

3.3.3 Symbolic Generation

In practice, the MBS equations of motion can be computed either numerically
or symbolically. In specific cases, the recursive nature of the relative coordinates
can be deeply exploited by a symbolic program dedicated to multibody systems.
This is the purpose of the Robotran software [7] that offers symbolic tools for an
extensive simplification of the equations of motion. The latter are written under
the form of a function (C, Matlab, Python) with adequate input/output arguments.
These functions, internally optimized thanks to the symbolic approach, can be used
externally as a black-box by another program or computer environment.
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Table 3.1 Formulations for the dynamics equations of unconstrained multibody systems

Algorithm Section Dynamics Complexity

IMPL Original NER 3.3.2.1 � − Q = 0 N

SEMI Modified NER 3.3.2.2 Mq̈ + c − Q = 0 N2

EXP1 Modified NER + Cholesky 3.3.2.3 q̈ − γ = 0 N2 + N3

EXP2 Order-N 3.3.2.3 q̈ − ν = 0 N

In this paper, the function generated by Robotran will be used by the CasADi
software [1] to express the system dynamics for the OCP formulation.

The different formulations of the dynamics yield different levels of complexity
as summarized in Table 3.1.

3.4 Case Study: Unconstrained MBS

Given their different complexities, the formulations of the dynamics should lead to
distinct performances for the OCP solving. To this extent, the Optimal Control of a
simple unconstrained multibody system has been extensively tested.

3.4.1 System Presentation

The system of interest is a 3D robot arm with an inverted pendulum attached to the
end effector as represented in Fig. 3.5. The 3D arm has a morphology that resembles
the human arm. It is composed of 3 bodies and 4 actuated rotational joints (with
relative coordinates q1, q2, q3 and q4). The first element is connected to the base with
two rotational joints enabling to point in any direction of space. Then the second
and third elements are connected in series via a single rotational joint. The relative
motion of the pendulum with respects to the end effector is characterized by two
Cardan-type angles (q5 and q6) which are considered as free joints (i.e., frictionless
and non-actuated). The MBS is thus composed of 4 bodies and 6 joints. The system
is underactuated as only the 4 joints of the arm are actuated. The mass, inertia and
length of the different bodies are given in Table 3.2.

3.4.2 OCP Formulation

There are many possible ways to formulate the Optimal Control Problem for this
application. In this study, the focus is on the trajectory optimization of the 3D arm.
The task is to move the system from an initial pose and position its end effector at
a given location in the 3D space after an imposed time T . At this final time, the
system must be at equilibrium with the pendulum in a perfect upright position.
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Fig. 3.5 Geometrical representation of the studied MBS system

Table 3.2 Geometric and inertia parameters for the 3D serial robot and the pendulum

Length [m] c.o.m. position [m] Mass [kg] Inertia [kg m2]
Upperarm l1 = 0.3 d1 = 0.1 2.5 [0.06,0.1,0.1]

Forearm l2 = 0.3 d2 = 0.1 2 [0.03,0.05,0.05]

Hand l3 = 0.1 d3 = 0.1 0.5 [0.004,0.006,0.006]

Pendulum d4 = 0.2 1 [0.1,0.1,0.05]

c.o.m. stands for the center of mass

The objective function is designed to minimize the actuation via the use of the
square of the actuation torques and its time derivative:

L(x, u, z) = k1

4∑
i=0

Q2
i + k2

4∑
i=0

Q̇i
2

(3.22)

The first term aims at minimizing the torques in the four actuated joints while the
second term minimizes the derivative of the controls which smooths the optimal
trajectory and limits the mechanical power transmitted into the joints. In practice,
the control torques are piece-wise constant on each discrete time interval, which
implies the computation of the derivative via finite differences.

To achieve the equilibrium at the final time T , constraints are applied on the
differential states x = [q̇ q], the inputs u = Qa and the algebraic states z when
appropriate.

• The absolute position of the end effector can be expressed as a function of the
angular joint positions, see(q). Thus, the end effector can be constrained to a
desired absolute Cartesian position pd = [xd yd zd ]:

pd − see(q(T )) = 0 (3.23)

• The absolute velocity of the end effector being a linear function of the joint
angular velocities, equating the angular velocities at the final time T to zero
should then be sufficient.

q̇(T ) = 0 (3.24)
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• The equilibrium of the whole system is achieved by canceling the joint accelera-
tions at the final time, q̈(T ) = 0. To this extent, the joint accelerations are either
available as algebraic variables in the case of a DAE system or expressed with
the function ξ in the case of a pure ODE system (see Sect. 3.3.2.3 on explicit
formulations).

z(T ) = 0 or ξ(q̇, q, Qa) = 0 (3.25)

At time t = 0, the robot is in a stable equilibrium. The initial condition of the
system is given by the joint angles, qi .

q(0) = qi = [0 ; α ; − 2α ; α ; 0 ; 0] q̇(0) = 0 q̈(0) = 0 (3.26)

In addition, path inequality constraints (3.27) are applied to the joint angles to
keep a physical sense for the arm and the pendulum motions.

− ∞ ≤ q1 ≤ ∞
−π/2 ≤ q2 ≤ π/2

−5π/12 ≤ q3 ≤ 0

−π/2 ≤ q4 ≤ π/2 (3.27)

−π/4 ≤ q5 ≤ π/4

−π/4 ≤ q6 ≤ π/4

The equilibrium condition (3.25), the terminal constraint (3.23) and the path
constraints ensure all together that the pendulum is in an upright position at the
final time.

3.4.3 Numerical Results

In order to assess the performances of the different formulations, we have compared
the solutions obtained for the above 3D arm benchmark. For the comparison, a total
of six formulations for the system dynamics have been considered. From Sect. 3.3,
four different formulations for the equations of motion have been derived:

• IMPL: Implicit formulation from the Newton-Euler Recursive scheme (NER),
• SEMI: Semi-explicit formulation from the NER scheme,
• EXP1: Explicit formulation from the NER scheme,
• EXP2: Explicit formulation from the Order-N formalism.

While the first two formulations imply a DAE system for its numerical represen-
tation, the two explicit formulations can either be numerically treated as a system
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of DAE or as a system of pure ODE. The difference lies in the number of decision
variables and constraint equations for the numerical NLP but also in the treatment
of the terminal constraints.

• EXPi-O: system of ODE with the position and velocity in the differential states,
• EXPi-A: system of DAE with the joint accelerations as algebraic variables.

The OCP described in Sect. 3.4.2 is formulated with the help of the software
environment CasADi [1]. Based on the functions generated by Robotran, symbolic
expressions of the dynamics are written and symbolically derived with respect to
the states and input variables. Then, the numerical OCP is formulated using a direct
collocation scheme [4] allowing the treatment of either a DAE or a pure ODE
representation of the dynamics. The resulting NLP is then solved using the Interior
Point solver IPOPT [20].

3.4.3.1 Simulation Settings

The performances of each formulation are evaluated through the trajectory opti-
mization of the 3D arm robot. The task is described in Sect. 3.4.2. The time interval
length T is 2 s and is divided into 100 time intervals for the numerical solving via a
direct collocation method.

To compare the formulations, the optimization was performed for a series of end-
effector terminal locations. This set of points is defined in cylindrical coordinates
(ϕ,r ,z) around a vertical axis passing through the robot arm origin. The angular
position ϕ varies in the range [−π/2, π/2] rad. On the other hand, the two other
coordinates have relatively small variation ranges because the end effector has to
remain in the robot working space: the radius is fixed to 0.63 m and the height varies
in the range [−0.1, 0.1] m (see Fig. 3.6).

Among the defined lateral surface, many points can be tested (see Fig. 3.6).
The number of trajectory optimizations was chosen on the basis of a convergence
analysis. The optimizations have been performed on a grid of different sizes and
it has been shown that the mean number of iterations does not vary significantly
between two refinements after a certain size (see Fig. 3.7). The chosen grid is
composed of 21 angular orientations and 11 vertical positions for a total of 231
points in the 3D space (see Fig. 3.6).

In addition, two different sets of results are generated by tuning the k1 and k2
coefficients. The first cost function is defined by (k1 = 1e0, k2 = 0) and corresponds
to a more aggressive actuation while the second cost function is defined by (k1 = 1e0,
k2 = 1e5) and should result in a smoother actuation. In both cases, the initial
condition (i.e., the α angle) is such that the end effector is positioned at 0.65 m
from the origin with zero lateral rotation of the arm (i.e., ϕ = 0 rad).
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Fig. 3.6 Grid of the 3D point to reach. The multibody system is represented in its initial condition
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Fig. 3.7 Convergence analysis for the different formulations. After a given number of tasks, the
number of iterations does not vary significantly

3.4.3.2 Simulation Results

Figure 3.8 shows the optimal trajectory obtained to reach the point pd =
{0, 0.63,−0.1} (see red point in Fig. 3.6) for the two different definitions of the cost
function. The second definition leads to a smoother but more important actuation.
The torques variations are reduced and there are less oscillations at the end of the
trajectory. This smoother actuation is reflected in the joint velocities with lower
values than for the non-smoothed actuation. Finally, for the two cost definitions,
the same final angular positions and the same final actuation are obtained as the
equilibrium to reach after 2 s is identical.
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Fig. 3.8 Solution for the two different sets of cost function coefficients. A non-zero coefficient k2
on the control derivative leads to a smoother but more important actuation

More than the solution itself, the interest of the study is to compare the different
formulation performances to solve the OCP described in Sect. 3.4.2. To do so, the
number of iterations before convergence, the cost function value at the optimum and
the mean evaluation times of the dynamics are evaluated for the two sets of results.

First, the optimal values of the cost function are compared for the six considered
representations of the dynamics. Figure 3.9 shows a box-plot1 of the cost value for
the two sets of results (i.e., different coefficients in the cost function). The OCP
formulation with the smoothed actuation leads to more constant results with only

1On the box plot, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol.
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Fig. 3.9 Optimal values of the cost function represented in the form of a box plot for the two sets
of solutions. (a) First cost function without smoothing: k1 = 1e0, k2 = 0. (b) Second cost function
with smoothing: k1 = 1e0, k2 = 1e5

one formulation presenting an outlier which corresponds to a higher local minima
(see Fig. 3.9b). On the other hand, in the case of the non-smoothed control, the
solution leads to a higher number of outliers especially in the case of the implicit
and the semi-explicit formulations (see Fig. 3.9a). Note that the higher group of
outliers corresponds to the tasks where the point to reach is either at the far left or
the far right and the lower group corresponds to the central point (i.e., no lateral
movement needed for the arm). The higher outliers clearly correspond to higher
local minima as lower minima are reached by the explicit formulations for the same
tasks. Regarding the problem with no lateral movement, it is not clear whether it
is a local minimum as all the formulations seem to struggle to solve this problem.
In general, the actuation smoothing seems to reduce the problem of higher local
minima.

Another important aspect of the performances is the computation efforts needed
to reach the optimal solution. Figure 3.10 shows the number of iterations to
convergence and the CPU time for the two sets of results. Figure 3.11 shows the
CPU time per iteration. For the first set (see Fig. 3.10a), the number of iterations is
characterized by a high number of outliers corresponding to the high local minima
(see Fig. 3.9a). On this same set, the DAE explicit formulations result in a larger
average number of iterations than the four other formulations. For the second set
of tasks, the implicit and semi-explicit formulation generally perform better than
the explicit ones (see Fig. 3.10b). This difference could be due to the high local
minima that are encountered by the first two formulations while solving the first set
of tasks. Regarding the CPU time, the implicit and the semi-explicit formulations
lead to better results than the explicit ones for both sets of tasks. This tendency is
also observed for the CPU time per iteration (see Fig. 3.11).

Regarding the numerical formulations, the ODE representation gives better
results in terms of iterations for the first set of tasks (see Fig. 3.10a) but this
difference is not so clear for the second set of tasks (see Fig. 3.10b). The two explicit
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Fig. 3.10 Number of iterations and total CPU time to convergence represented in the form of a
box plot for the two sets of solutions. (a) First cost function without smoothing: k1 = 1e0, k2 = 0.
(b) Second cost function with smoothing: k1 = 1e0, k2 = 1e5

Fig. 3.11 Mean CPU time per iteration for the two sets of solutions. (a) First cost function without
smoothing: k1 = 1e0, k2 = 0. (b) Second cost function with smoothing: k1 = 1e0, k2 = 1e5

forms exhibit similar performances in terms of CPU time when formulated as ODE
and DAE systems (see Fig. 3.10). However, the Order-N implementation yields a
lower CPU time per iteration when formulated as a DAE system (see Fig. 3.11). Its
poor performances in terms of total CPU time are explained by its high number of
iterations to reach convergence.

3.4.3.3 Discussion

In this section, we aim at giving some insights about the obtained results. From the
simulations, it is clear that the implicit and the semi-explicit formulations perform
better than the explicit ones. From a numerical point of view, the DAE form leads
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Table 3.3 Size of the NLP associated to the OCP for the second cost definition (smoothed
actuation)

Number of IMP SEMI EXP1-O EXP1-A EXP2-O EXP2-A

Variables 8812 8812 6412 8812 6412 8812

Constraint equations 8427 8427 6027 8427 6027 8427

nzta in constraint Jacobian 72,435 72,435 62,519 69,635 62,519 69,635

nzt in Lagrangian Hessian 39,021 39,021 35,286 35,021 35,286 35,021
anzt stands for non-zero terms

Table 3.4 Dynamic formulations and their generation for the studied MBS

Algorithm Dynamic terms # Flops # Eqs

IMPL Original NER �(q̈, q̇, q) 460 114

SEMI Modified NER M(q) and c(q̇, q) 830 264

EXP1 Modified NER + Cholesky γ (q̇, q, Q) 991 328

EXP2 Order-N ν(q̇, q, Q) 1784 395

to a larger problem as both the number of equations and variables is higher (see
Table 3.3). This difference results from the treatment of joint accelerations as
algebraic variables which is mandatory for the implicit and semi-explicit dynamics.
Nevertheless, compared to a pure ODE representation, the differential equation
ẋ = f(x, u, z) is trivial in the DAE case. In addition, the DAE formulation
allows the definition of the terminal equilibrium constraint directly in terms of the
algebraic variables, which can be advantageous as the expression of the equilibrium
constraints is linear in that case.

The explanation for the performance differences lies in the derivation of the
dynamics itself. The different formulations are all written in the form of a function
generated symbolically with Robotran. Because they inherit different complexity,
the number of equations and floating point operations associated with each formu-
lation differ as shown in Table 3.4. The O(N) computation of the � term does in fact
lead to a lower number of operations, about half of the M and c terms of the semi-
explicit dynamics for the system at hand. Regarding the explicit formulations, the
NER modified algorithm with Cholesky decomposition leads to a number of flops
comparable with the semi-explicit form. This is because the considered MBS is not
too large and the Cholesky decomposition is not critical for the number of joints
(i.e., 6 for the benchmark). However, the Order-N method yields a high number
of operations, that is more than 4 times the number of operations for the implicit
form. It may seem strange as the number of operations for the Order-N method is
supposed to increase linearly with the size of the system. The problem is that this
linear behavior becomes only interesting for a greater number of joints in the MBS
(i.e., around 15 according to [8]).

While the explicit expressions clearly differ as they are derived differently, the
implicit and the semi-explicit equations are exactly the same but expressed in
different forms (see Sects. 3.3.2.1 and 3.3.2.2). As these equations are identical, their
derivative should also be the same. As a matter of fact, the implicit and semi-explicit
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formulations lead to the exact same number of non-zero terms in the expression
of the Jacobian and the Hessian for the NLP, which is already a good indicator
(see Table 3.3). The fact that the equations are identical should lead to the same
iteration path while solving the numerical OCP. This is observed in the case of the
smoothed actuation (see Fig. 3.10b) with an almost exact same number of iterations
in the 231 tasks. For the case of non-smoothed actuation (see Fig. 3.10a), a similar
but non-identical number of iterations is observed for the two formulations. These
differences are attributed to the high numerical sensitivity of this Optimal Control
Problem. This could cause the NLP solver to use different strategies for the two
dynamic formulations. Finally, the implicit and semi-explicit formulations are more
frequently trapped in higher local minima than the explicit ones. Some additional
investigations would be necessary to explain this observation.

We are aware that treating the explicit dynamics with a collocation scheme may
not be the best choice and that a multiple shooting could be more appropriated [6].
As a matter of fact, multiple shooting for the explicit formulations have also been
investigated in this work but was abandoned as it led to lower performances in terms
of robustness (i.e., lower success rate for the extreme point and slower convergence).
The reason could be the high dynamics of the system and the strong terminal
equilibrium constraint. In order to verify this assumption, a simpler multibody
system could be studied with a smoother formulation of the OCP (i.e., with no
terminal constraint).

3.5 Conclusion

This paper analyzes different formulations of the multibody dynamics and compare
their performances in terms of convergence, accuracy and computation cost in the
context of Optimal Control. The aim is to provide some insights on existing MBS
formulations and their relevance applicability in the formulation and solution of
Optimal Control Problems. Among the different modeling techniques, we focus
on the derivation of the equations, using a relative coordinates approach, with the
Newton-Euler Recursive scheme and the Order-N algorithm.

First, a framework for the formulation of Optimal Control Problem has been
introduced. It was based on a semi-explicit DAE representation of the dynamics
well suited for the treatment of multibody systems. Other formulations could have
been considered (e.g., full implicit) but would have required specific integrators (i.e.,
DAE integrators). Regarding the discretization of the OCP, the direct collocation
scheme is selected here. This decision is taken following the considerations found
in [6], but also because multiple shooting methods are less robust. Then, the different
formulations for the multibody dynamics are introduced and their derivations
are discussed. From the Newton-Euler recursive scheme, three formulations are
derived: the implicit, the semi-explicit and an explicit one. Then, a second explicit
formulation is derived from the Order-N algorithm.
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Finally, a case study is presented in a benchmark approach for the unconstrained
MBS Optimal Control. The system consists in a 3D robot arm with an inverted
pendulum attached to the end effector. An OCP is formulated with the goal to reach
a point in the 3D space for the end effector after a preset time of 2 s. At the end,
the system has to be at equilibrium with zero acceleration and the actuation is
minimized on the overall time interval. This task is realized for a grid of target
points in the 3D space and for two different definitions of the cost function resulting
in two sets of tasks.

Results showed that the implicit and semi-explicit formulations are generally per-
forming better in terms of CPU time and number of iterations. This can be explained
by a more compact formulation of the dynamics which leads to a lower CPU cost
per iteration. However, these two formulations appear to be more sensitive to higher
local minima when the dynamics is stronger (i.e., in the case of non-smoothed actu-
ation). This could be a drawback in applications such as offline trajectory planning
where the quality of the solution is more important than its computation cost. On
the other hand, the explicit formulations show larger CPU time to convergence but
ensure a higher quality of the solution, as a lesser number of high local minima
are observed. It seems that the Order-N explicit form works better with a DAE
representation, while a pure ODE seems more appropriate for the NER explicit
form. For the first set of solutions, with non-smoothed actuation, the differences in
the number of iterations for the implicit and semi-explicit formulations are attributed
to the strong numerical sensitivity of the problem. More investigation should be
carried out on that subject. Nevertheless, this study shows the importance of the
dynamic formulations on the OCP solving performances for unconstrained MBS.

There are many perspectives to extend this work. First, it would be appropriate
to carry out additional simulations with different OCP formulations and different
multibody systems in order to verify the observed tendencies. It has been shown
that the way the dynamics is derived has a huge impact on the solver for the OCP as
it strongly influences the CPU time per iteration. A recent release of Robotran offers
symbolic tools for obtaining a fully analytical sensitivity of MBS equations based
on the recursive differentiation of the multibody formulation. It will be interesting to
see whether this could lead to better performances than when using the algorithmic
differentiation provided by an optimization software like CasADi.
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