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Abstract. Because of the strong variability of the cortical sulci, their
automatic recognition is still a challenging problem. The last algorithm
developed in our laboratory for 125 sulci reaches an average recognition
rate around 86%. It has been applied to thousands of brains for morpho-
metric studies (www.brainvisa.info). A weak point of this approach is the
modeling of the training dataset as a single template of sulcus-wise prob-
ability maps, losing information about the alternative patterns of each
sulcus. To overcome this limit, we propose a different strategy inspired
by Multi-Atlas Segmentation (MAS) and more particularly the patch-
based approaches. As the standard way of extracting patches does not
seem capable of exploiting the sulci geometry and the relations between
them, which we believe to be the discriminative features for recognition,
we propose a new patch generation strategy based on a high level rep-
resentation of the sulci. We show that our new approach is slightly, but
significantly, better than the reference one, while we still have an avenue
of potential refinements that were beyond reach for a single template
strategy.
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1 Introduction

1.1 Overview of Cortical Sulci Recognition Approaches

The surface of the human brain cortex is divided into gyri, separated by fissures
called sulci. The largest sulci are good indicators of the localization of functional
areas and the morphometry of the sulci geometry is used to quantify brain devel-
opment and neurodegenerative processes. Automatic recognition is mandatory
to exploit the large databases yielded by recent neuroimaging projects. However,
automatic sulci recognition remains a challenging problem because of the lack
of understanding of the nature of the interindividual variability of the folding
patterns. During the last twenty years, many different approaches have been
proposed to handle this problem.
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The approaches based on atlas registration yield reasonable identification
rate for major sulci. For instance, in [12], a labeled brain is elastically deformed
to fit a new brain, and in [6], a multiresolution strategy is designed to improve
the results by progressively registering the largest folds to the smallest folds. This
single template strategy however has strong limitations with regard to
the numerous folding configurations incompatible with the atlas geometry, which
occurs even for the largest sulci.

Modeling intersubject variability seems mandatory to increase robustness,
which was tackled using a variety of frameworks ranging from PCA to Bayesian
approaches [1,5,7,9]. A large amount of strategies rely on graph-based rep-
resentations, which provide a flexible way to model the spatial relationships
between the sulci in addition to their shape and localization in a normalized
space [3,10,11,13-15]. Comparing these approaches is difficult in the
absence of benchmark. Furthermore, all of them except the one in Brain-
VISA are restricted to a small set of sulci, a small training database and are not
distributed. Therefore, in this paper, we will only compare our new model to the
results of BrainVISA current package.

1.2 The Current BrainVISA Model: Principles, Advantages and
Inconvenients

The current BrainVISA model relies on a coherent Bayesian framework
based on a probabilistic atlas (a model made of a mixture of Statistical Proba-
bilistic Anatomy Maps (SPAM)). This approach performs simultaneously sulcus
recognition and local alignment with the template of SPAMs [9]. Unfortunately,
this approach performs poorly with unusual folding patterns, which depart from
the main modes of the probabilistic atlas. This is a classical limitation of sin-
gle template strategies. For instance, the reconfiguration of the folding patterns
induced by interruptions of the large sulci can lead to inconsistent sulcus recogni-
tion. Furthermore, we have observed disturbing mistakes that did not occur with
the older graph-based approach also proposed in BrainVISA [10]. For instance a
large sulcus can be locally duplicated because the current Bayesian framework
does not model the relationships between folds, while the previous graph-based
approach could learn alternative configurations thanks to a neural network (NN)
based memory. Unfortunately, this NN strategy could probably not be trained
with a large enough manually labelled database to reach the robustness of the
Bayesian framework.

1.3 MAS Strategy: A Solution to the Limits of the Current Model?

In biomedical image analysis, segmentation is the process of tagging image vox-
els with biologically meaningful labels. The MAS strategy has become one of
the most widely-used and successful solution. The idea of this technique is to
use for segmentation the entire dataset of “atlases” (i.e. training images) rather
than one model-based average kind of representation, so that it better captures
the anatomical variability. A power of this approach is its pragmatism: it can be
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applied for a problem where a real understanding of the nature of the interindi-
vidual variability is lacking, which fits the current status of the neuroscience
world with regard to the cortical folding.

Most of the MAS techniques include four main steps: (1) Atlas generation:
the design of atlases from the training images; (2) Registration: alignment
of each atlas onto the new image to be segmented; (3) Label propagation:
from each aligned atlas to the new subject, (4) Label fusion: combining the
propagated labels to achieve the final segmentation. One of the most recent MAS
techniques developed by Coupé et al. [4] performs a patch-based label fusion,
which leads to very efficient implementations.

The problem of sulci recognition differs from standard MAS applications by
several aspects. First, there are many more anatomical structures to be labeled:
each brain contains up to 125 cortical sulci in the nomenclature of BrainVISA.
Second and more importantly, grey level intensities and textures surrounding
the sulci do not provide discriminative information except for a few sulci like
central sulcus, because of a specific local myelin content. Therefore, the key
discriminative information is folding geometry, which requires larger voxel-based
patches than in usual implementations. Hence, for the sake of efficiency, in the
following we will operate at a larger intermediate scale of representation of the
folding patterns, where the entities to be labelled are predefined sets of voxels
corresponding to the most elementary folds (about 500 such entities in a standard
brain) [8].

The new model proposed in this article is inspired by the patch-based
methodology proposed by Coupé et al. [4] but the patches are not defined as
local groups of voxels but as local groups of sulci. Note that this strategy could
be extended to all the domains where an intermediate level of representa-
tion of the data could be useful for the alignment of the atlases to the unknown
subject. Hence, we have to revisit the different stages of the mainstream strategy
to take into account the heterogeneity of the representations of the subjects. In
the following, we design a dedicated patch generation strategy, a geometry-based
measure of similarity to perform the patch-based alignment, and a propagation
strategy for 3D points clouds.

2 Database

In order to compare our results to those of [9] in the same conditions, we use
the exact same database of 62 healthy subjects selected from different heteroge-
neous databases. Most of the subjects are right-handed male persons, between
25 and 35 years old. The elementary folds of each brain were manually labelled
according to the sulcus nomenclature following a long process leading to achieve
a consensus across a set of several experts of the morphology of the cortex. Each
fold representation is a set of voxels corresponding to the medial surface of the
cerebrospinal fluid filling up the fold. Hence, these fold representations are ele-
mentary pieces of a negative mould of the brain. As mentioned above, the sulcus
recognition method described in this paper will be forced to give one unique
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label to the set of voxels representing a fold. The training base is composed of
62 brains labelled with a model containing 62 sulci for the right hemisphere and
63 for the left.

3 Method: A New Model Inspired by MAS Algorithms

As the new model is inspired by the MAS strategy, the same steps are used and
will be described in this section (Fig.1). In the following, the atlas brains and
the new brain are all represented as a set of elementary folds. All the atlas folds
have been manually labelled with the sulcus nomenclature. All the brains have
been affinely aligned with the Talairach standard space.
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Fig. 1. Patch-based segmentation approach for automatic sulci recognition.

3.1 Patch Generation

In this paper, we experiment with a reasonable but relatively naive strategy,
which will be refined in the future using machine learning. The goal is to define
from the atlas dataset a library of local patches embedding enough geometrical
information to minimize ambiguities when searching for a high similarity hit
in the unknown subject morphology. Note that the shape of small sulci is not
informative enough to prevent spurious hits. Hence the idea is to aggregate a few
sulci to create discriminative local shapes. In the following, we define a type of
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patches for each pair of sulci that are neighbors in the brain (Fig. 1). Practically,
a pair of sulci is selected if the instances of the two sulci are neighbors at least
in one brain of the atlas dataset, for the topology provided by the BrainVISA
pipeline yielding the folds. This pipeline endows the list of folds with a graph
structure corresponding to either direct connections or to the fact that two folds
are separated by a piece of gyrus. Finally, for a given sulcus .S, with neighbors
51,52, ..., SN, N patches are generated from each atlas of the dataset, each patch
corresponding to a different type of patch §571,S595,...,55y. Note that if the
neighbor or S is missing in the atlas, the patch is not included in the library.

3.2 Registration

For the registration step, the set of folds of the unknown brain and the patches
of the library are represented by point clouds. The well-known iterative closest
points algorithm [2] is applied to find an optimal alignment of each patch into
the point cloud made up of the unlabelled folds of the unknown brain. To build
the measure used to rank the matches, the nearest points in the new brain of
each patch point are saved as activated points. The measure corresponds to the
sum of quadratic distances of the patch points and their corresponding activated
points, divided by the number of different activated points.

3.3 Label Propagation

For each patch type, the ten instances leading to the smallest distances are
selected to participate to the propagation of the two parent sulci. The num-
ber of instances selected has been set to ten arbitrary for a first implemen-
tation and should be optimized later on. Note that some sulcus instances are
selected several times, because they win the competition for several patch types.
But their multiple contributions will be associated with slightly different align-
ments. Hence, sulcus instances maximizing regional similarity to the unknown
subject get more weight. For each selected patch after the ICP registration to
the unknown subject, each point gives its label to its nearest neighbor in the
target brain. To consider the patch structure, each connected set of points in
the patch should correspond to a unique connected set in the target brain: the
smallest non-connected sets are excluded. Hence, each point of the target brain
can be labeled several times from several patches and only the most propagated
label is saved.

3.4 Label Fusion

The label fusion process is performed on a fold by fold basis. For each fold of
the unknown subject, the sulcus label the most represented in its points is given
to the fold. Without activated points in the fold, the “unknown” label is kept.
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4 Results and Comparison with the BrainVISA Model

The proposed approach and the Bayesian BrainVISA approach are compared
using a Leave-One-Out strategy on the database described above. Many different
error measures are possible to evaluate the model. The measures used to evaluate
the current BrainVISA model are the Ej,.,; for each sulcus and Eg; for the final
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Fig. 2. Mean error rates per sulcus. The graph on the left and the graph on the
right present the mean error rates for the sulci on the left hemisphere and on the right
hemisphere, respectively. The Brainvisa model is represented in violet and the new
model is represented in pink. The significative differences (pyaiue < 0.05) are marked
with a star.
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labeling. Here is their definitions for a given subject:

FP(l)+ FN(l)

Brocetll) = Fpay 1 N + TP() v
B FP(l)+ FN(l)
Esr = ;’wl FP(l)+ FN(l) + 2T P(l) ’ ®

with L the ensemble of sulcus labels, F'P(l), FN(l) and T P(l) respectively the
size of the set of voxels false positive, false negative and true positive for the
label I and w; = <% with s = FN(l) + TP(l) the true size of the sulcus with

leL

the label [.

The advantages of Egy is that it is sensible to local labeling and it takes
into account the shared errors between labels [9]. With this measure, we deduct
the main recognition rate for the two compared models: the current BrainVISA
model obtains 85.53% (+/— 5.80%) for the left hemisphere and 86.27% (+/—
6.12%) for the right hemisphere while the new model obtains 86.76% (+/—
5.16%) and 88.04% (+/- 5.70%).

In order to compare the two models, we calculate the error rates for each
subject in the database and compare the set of measures with a T-test. The Egy
comparison shows that the new model is significantly better than the Brainvisa
model (pyaiue = 4.14e — 8). Moreover, by comparing the Ej,cq; per sulcus, more
than 20 sulci are found significantly better (Fig. 2).

5 Conclusion

This paper describes a first attempt at casting the cortical sulci recognition
problem in a MAS-based framework. While some choices are still ad hoc and
will require further developments, the comparison with the existing Bayesian
approach is full of promise. The main contribution of our work is the extension
of the MAS framework to a high level representation of the data dedicated to our
pattern recognition problem. This original setting is calling for a more sophis-
ticated inference of the library of patches, which should probably be developed
with an optimization strategy trying to maximize the recognition result while
keeping the library as small as possible. This strategy shall pick the selected
patch types from a larger combinatorial set aggregating more than two sulci.
Another improvement opportunity lies in the patch selection strategy, for exam-
ple by learning the optimal cut-off for each type of patches. The label fusion
could be largely improved by the introduction of weights, in order to balance
the contribution of each patch according to its similarity measure. Finally, as the
new strategy involves a labeling per point, it will allow the method to question
the initial split of the cortex morphology into elementary folds to detect under-
segmentation issues. This is an essential element to overcome the weakness of
the current Bayesian framework, which is stuck to the high level representa-
tion yielded by the preprocessing stage. This possibility can be considered as a
top-down feature embedded in the global recognition system.
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