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Preface

Patch-based techniques play an increasing role in the medical imaging field, with
various applications in image segmentation, image de-noising, image super-resolution,
super-pixel/voxel-based analysis, computer-aided diagnosis, image registration,
abnormality detection, and image synthesis. Dictionaries of local image patches are
increasingly being used in the context of segmentation and computer-aided diagnosis.
Patch-based dictionaries are commonly used in conjunction with pattern recognition
techniques to model complex anatomies in an accurate and easy way. The patch-level
representation of image content is between the global image and localized voxel rep-
resentations. This level of representation is shown to be successful in areas such as
image processing (e.g., enhancement and de-noising) as well as image feature
extraction and classification (e.g., convolution kernels and convolutional neural
networks).

The aim of this workshop is to help advance scientific research within the broad field
of patch-based processing in medical imaging. It focuses on major trends and chal-
lenges in this area, and it presents work aimed at identifying new cutting-edge tech-
niques and their use in medical imaging. We hope that this workshop series will
become a new platform for translating research from bench to bedside and for pre-
senting original, high-quality submissions on innovative research and development in
the analysis of medical image data using patch-based techniques.

Topics of interests include but are not limited to patch-based processing dedicated
to:

• Image segmentation of anatomical structures or lesions (e.g., brain segmentation,
cardiac segmentation, MS lesions detection, tumor segmentation)

• Image enhancement (e.g., de-noising or super-resolution dedicated to fMRI, DWI,
MRI, or CT)

• Computer-aided prognostic and diagnostic (e.g., for lung cancer, prostate cancer,
breast cancer, colon cancer, brain diseases, liver cancer, acute disease, chronic
disease, osteoporosis)

• Mono and multimodal image registration
• Multi-modality fusion (e.g., MRI/PET, PET/CT, projection X-ray/CT,

X-ray/ultrasound) for diagnosis, image analysis, and image-guided interventions
• Mono and multi modal image synthesis (e.g., synthesis of missing a modality in a

database using an external library)
• Image retrieval (e.g., context-based retrieval, lesion similarity)
• Dynamic, functional, physiologic, and anatomic imaging
• Super-pixel/voxel-based analysis in medical images
• Sparse dictionary learning and sparse coding
• Analysis of 2D, 2D+t, 3D, 3D+t, 4D, and 4D+t data.



An academic objective of the workshop is to bring together researchers in medical
imaging to discuss new techniques using patch-based approaches and their use in
clinical decision support and large cohort studies. Another objective is to explore new
paradigms of the design of biomedical image analysis systems that exploit the latest
results in patch-based processing and exemplar-based methods. MICCAI-PatchMI
2018 featured a single-track workshop with keynote speakers, technical paper pre-
sentations, poster sessions, demonstrations of the state-of-the-art techniques, and
concepts that are applied to analyzing medical images.

We received a total of 17 valid submissions. All papers underwent a rigorous
double-blind review process by at least 2 members of the Program Committee com-
posed of well-known experts in the field. The selection of the papers was based on
significance of results, technical merit, relevance, and clarity of presentation. Based on
the reviewing scores and comments, 15 papers were accepted for presentation at the
workshop and chosen to be included in the present proceedings.

August 2018 W. Bai
G. Sanroma

G. Wu
Brent C. Munsell

Y. Zhan
P. Coupé
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Learning Real Noise for Ultra-Low Dose
Lung CT Denoising

Michael Green1, Edith M. Marom2, Eli Konen2, Nahum Kiryati1,
and Arnaldo Mayer2(&)

1 Department of Electrical Engineering, Tel-Aviv University, Tel Aviv, Israel
green1@mail.tau.ac.il, nk@eng.tau.ac.il

2 Diagnostic Imaging, Sheba Medical Center, Affiliated to the Sackler School
of Medicine, Tel-Aviv University, Tel Aviv, Israel

{edith.marom,eli.konen,

arnaldo.mayer}@sheba.health.gov.il

Abstract. Neural image denoising is a promising approach for quality
enhancement of ultra-low dose (ULD) CT scans after image reconstruction. The
availability of high-quality training data is instrumental to its success. Still,
synthetic noise is generally used to simulate the ULD scans required for network
training in conjunction with corresponding normal dose scans. This reductive
approach may be practical to implement but ignores any departure of the real
noise from the assumed model. In this paper, we demonstrate the training of
denoising neural networks with real noise. For this purpose, a special training set
is created from a pair of ULD and normal-dose scans acquired on each subject.
Accurate deformable registration is computed to ensure the required pixel-wise
overlay between corresponding ULD and normal-dose patches. To our knowl-
edge, it is the first time real CT noise is used for the training of denoising neural
networks. The benefits of the proposed approach in comparison to synthetic
noise training are demonstrated both qualitatively and quantitatively for several
state-of-the art denoising neural networks. The obtained results prove the fea-
sibility and applicability of real noise learning as a way to improve neural
denoising of ULD lung CT.

1 Introduction

Neural image denoising and its application to low-dose CT scans has become a
dynamic field of research [1–8]. In [1], the patches sequentially extracted from the
input slice by a 2-D sliding window are processed by a multi-layer perceptron and
directly replaced by the denoised output patch. The denoised image is obtained by
spatial averaging of the overlapping output patches. A fully-connected neural network
is trained in [2] to denoise coronary CT angiography patches. The denoised image is
generated by a locally-consistent non-local-means algorithm [9] applied to the denoised
patches.

In [3], a convolutional neural network (CNN) is proposed for denoising. The CNN
layers are purely convolutional, each one being followed by batch-normalization [10]
and a (rectified linear unit) ReLU non-linearity. To improve denoising performance, the
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W. Bai et al. (Eds.): Patch-MI 2018, LNCS 11075, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-030-00500-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00500-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00500-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00500-9_1&amp;domain=pdf


residual between ground-truth (GT) and input, thus representing a noise image, is
learned by the network instead of the habitual mapping between noisy input and GT
image.

In [4], a denoised instance of the input image is first computed by the classical
BM3D algorithm [11]. Next, similar image patches from the denoised instance, are
stacked together into blocks with noisy image patches extracted at the same position.
The blocks are subsequently denoised by the network proposed in [3] and the output
image is obtained by aggregation of the denoised patches.

In [5], a 3-layers fully CNN (FCNN) is trained on pairs of corresponding clean and
noisy CT patches. The noisy images, from which the training patches are extracted, are
generated by Poisson noise addition to the clean images in the sinogram domain. L2
distance metric is used for network loss computation. Leveraging the FCNN archi-
tecture, training on image patches allows for direct denoising of full size images.

A perceptual loss was proposed in [6] as an improvement to the commonly used L2
loss between denoised and original clean images. The perceptual loss is computed in a
high-dimensional feature space generated by the well-known VGG network [12]. The
proposed CNN is trained to minimize the L2 loss between the VGG features extracted
from the denoised image and the same extracted from the GT clean image. In [7], a
residual encoder-decoder architecture is proposed with skip connections. The encoding
layers (convolutions) extract the image features, while the decoding layers successively
reconstruct the denoised image from the extracted features (deconvolutions). Genera-
tive adversarial networks (GAN) [13] have also been proposed for low dose CT
denoising in combination with a sharpness detection network to avoid oversmoothing
of the output [8].

While previous works have proposed a variety of network architectures, they all
share a basic limitation dictated by convenience: the networks are trained on synthetic
data obtained by artificial addition of parametric noise, usually assumed to be Poisson-
distributed, in the sinogram domain. Consequently, any departure from the assumed
noise model is ignored. In this work, we propose the training of denoising networks
with a dataset built on real ultra-low dose/normal-dose pairs of scans, acquired for each
patient. The proposed approach allows, for the first time to our knowledge, the learning
of real ultra-low dose (ULD) CT noise by denoising neural networks. The remainder of
this paper is organized as follows: The construction of the real noise dataset is
described in Sect. 2 and validated, both qualitatively and quantitatively, in Sect. 3.
A discussion concludes the paper in Sect. 4.

2 Methods

A dataset of 20 cases was created by scanning each subject twice, once at normal dose
and once at ULD. The normal-dose scan was acquired at 120 kVp under adaptive tube
current modulation. The ULD scan was acquired at 120 kVp at a constant tube current
of 10 or 20 mA for subjects with a body mass index (BMI) below or above 29,
respectively. Prior written consent was obtained for each patient as required in the IRB
authorization released by our institution. The cases consisted of adult subjects, over 18
years old for men, and 50 for women to avoid risks of undetected pregnancy.

4 M. Green et al.



The subjects were recruited among patients referred to a standard chest CT, with or
without contrast media. The reduction in radiation dose (R) between normal and ULD
scans is given by (Eq. 1):

R ¼ 100 � 1� DLPULD

DLPnormal

� �
ð1Þ

where DLPULD; and DLPnormal are the dose-length-product of the ULD and normal-
dose scans, respectively. The average R across the dataset was about 94%. The dose
report for a sample subject is shown in Fig. 1 with (green) DLPnormal ¼ 317:4mGy:cm
and (red) DLPULD ¼ 13:58mGy:cm, corresponding to R = 96%. Consequently, the
additional radiation dose incurred by the patient undergoing the two scans is merely of
4%, keeping the overall radiation exposure (total exam DLP) at an acceptable level for
a lung CT scan. The scans are performed at full inspiration under breath-hold. Since the
total scan time may be too long for a single breath-hold, each scan is acquired under a
separate one. However, as lung inflation is not exactly the same in both scans, a
deformable registration step is required to ensure accurate pixel-wise overlay between
the scans, so that pairs of corresponding normal-dose and ULD patches can be
extracted to train the neural networks.

The registration process involves two images: a fixed image (IF) and a moving
image (IM). It recovers a spatial transformation T(x) = x + u(x) such that IM(T(x)) is
spatially aligned to IF(x). To compute T(x), the formulation of the Elastix package [14]
was used with a third order b-spline parametrization. Minimization was performed for
the cost function given by (Eq. 2):

C T ; IF ; IMð Þ ¼ �S T ; IF ; IMð Þþ cP Tð Þ ð2Þ

where, S is a similarity function computed between IF and IM(T(x)) and P is a regu-
larization function that constrains T(x). Mutual information was chosen as function S,
and bending energy as function P [14]. The c parameter balances between similarity
and regularity in the cost function. To compensate for small changes in patient position
and orientation, a 3-D rigid transform (6 degrees of freedom) was first computed
between the ULD and the normal-dose scans, before the deformable step. The
parameter values for both registration steps were chosen as in [15]. The normal-dose

Fig. 1. The dose report for a sample subject scanned twice: once at normal dose (series 2) and
once at ULD (series 3). The respective DLPs are DLPnormal ¼ 317:4mGy:cm (green) and
DLPULD ¼ 13:58mGy:cm (red), corresponding to R = 96%. (Color figure online)

Learning Real Noise for Ultra-Low Dose Lung CT Denoising 5



scan was taken as reference image (IF) for all the registration tasks. A sample case slice
is shown in Fig. 2. The ULD image (a) is shown alongside the normal-dose (b) and co-
registered ULD (T-ULD) (c) images. Highlighted ROIs (red, green, blue) are zoomed-
in in (d): ULD (left column), normal-dose (middle) and T-ULD (right). The ULD ROIs
(left) are clearly misaligned with the normal-dose ones (middle), while the latter are
well aligned with the T-ULD ROIs. Before using the pairs of aligned patches to train
neural networks, we perform a patch selection step in order to remove pairs with
insufficient registration accuracy from the generated training set. We define the selected
patch dataset D as (Eq. 3):

D ¼ f pi; qið Þ; SIM pi; qið Þ[ TSIMg ð3Þ

Where, pi and qi are normal-dose and T-ULD patch pairs, respectively, SIM is a
similarity measure and TSIM is a threshold. We used the structural similarity index
(SSIM) [16] as the similarity measure and set empirically TSIM to be 0.4. The under-
lying idea being that improved alignment accuracy will result in increased content
similarity between the compared patches, leading to higher SSIM values. After
selection, the resulting real-noise database contained about 700,000 patch pairs of size
45 � 45 pixels.

3 Experiments

For the validation of the proposed approach, four state-of-the-art denoising CNN were
implemented: LD-CNN [5], DnCNN [3], RED-CNN [7] and CNN-VGG [6]. Each
architecture was trained in two different version: a first using the real-noise database,
and a second using synthetic noise. The synthetic noise database was created using the
ASTRA toolbox [17] by adding Poisson noise with I0 = 22 � 104 to the computed
sinogram of each normal-dose image in order to simulate R * 90% [2].

Fig. 2. Sample case slice: (a) ULD image; (b) normal-dose image; (c) co-registered ULD (T-
ULD). (d) Zoom-in ROIs (red, green, yellow): ULD (left column), normal-dose (middle) and T-
ULD (right). The ULD ROIs (left) are clearly misaligned with the normal-dose ones (middle),
while the latter are well aligned with the T-ULD ROIs. (Color figure online)

6 M. Green et al.



A 5-folds cross-validation scheme was adopted. In each fold, 4 cases were used for
testing and all the remaining, for training. In total, 40 different networks were created (5
folds � 4 architectures � 2 training sets). The quantitative comparison was performed
between denoised T-ULD and normal-dose scans for SSIM and PSNR scores. Here
again, to avoid affecting the denoising scores by registration inaccuracies, SSIM and
PSNR were only computed at locations where (1) was satisfied. Note that the SSIM
computed in (1) for patch selection is between normal-dose and T-ULD, whereas the
SSIM of the validation is between denoised T-ULD and normal-dose. In Fig. 3,
quantitative comparison of the PSNR (a–d) and SSIM (e–h) for the LD-CNN, DnCNN,
RED-CNN and CNN-VGG networks is shown for each fold, following real (blue) and
synthetic (red) noise training. The networks trained with real-noise, outperformed the
SSIM (e–h) of their synthetic noise counterpart for all the folds and architectures.
For PSNR (a–d), the same situation is observed, except for the third fold, in which
CNN-VGG was the only network with higher PSNR for real-noise training. Also, it is
interesting to note that although LD-CNN has a simple architecture, consisting of only
three convolutional layers, it generated the best PSNR and SSIM scores in most of the
cases. A possible reason may be that wider and shallow networks are better in capturing
pixel-distribution features [18], a property which is critical in the case of real noise
learning. Denoising results for a sample slice are shown in Fig. 4. The highlighted
ROIs (red, green, yellow) in the ULD (a) and normal-dose images (b) are denoised and
zoomed-in (c–f) by DnCNN (c), LD-CNN (d), RED-CNN (e) and CNN-VGG (f) for
real (left columns) and synthetic (right columns) noise training. The results obtained for
real-noise training appear sharper, with more fine details visible in comparison to the
synthetic training results, which exhibit some over-smoothing. This is further verified
by computing the overall image sharpness from the approximate sharpness map, S3(x),
defined in [19] by (Eq. 4):

S3 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1 xð Þ � S2 xð Þ

p
ð4Þ

Where, S1(x) is a spectral-based sharpness map and S2(x) is a spatial based
sharpness map. The overall image sharpness is given by the average of the top 1%
values in S3(x) and is denoted by S3 [19]. The average S3 index computed on the
denoised images for all the networks trained with real-noise (blue) and synthetic-noise
(red) are shown in Fig. 5 for the 5 folds. In all, but one, fold of a single algorithm
(CNN-VGG), the overall sharpness index was better for real-noise training than for
synthetic, confirming the visual impression of Fig. 4.

In a last experiment, the local contrast of a tiny 2.5 mm lung nodule was compared
after denoising with real and synthetic noise training. Figure 6 shows the ROI con-
taining the nodule (a, top) zoomed-in after denoising (red arrow) by the four state-of-
the-art CNNs (b–e). The nodule appears with stronger contrast for real-noise training
(top row images) than for synthetic noise (bottom row images). This is further con-
firmed in Table 1, by the Michelson contrast,MC, [20] which computes the normalized
difference between maximal and minimal intensities measured and averaged along
radial profiles (green lines, (a)-bottom) of the nodule.

Learning Real Noise for Ultra-Low Dose Lung CT Denoising 7



Fig. 4. A sample result slice. The highlighted ROIs (red, green, yellow) in the ULD (a) and
normal-dose images (b) are denoised and zoomed-in (c–f) by DnCNN (c), LD-CNN (d), RED-
CNN (e) and CNN-VGG (f) for real (left columns) and synthetic (right columns) noise training.
The reader is encouraged to zoom in for a better assessment of sharpness. (Color figure online)

Fig. 3. Quantitative comparison of denoising results obtained by networks trained with real
(blue) and synthetic (red) noise. The PSNR (a–d) and SSIM (e–h) scores are given for LD-CNN,
DnCNN, RED-CNN and CNN-VGG, respectively. (Color figure online)

8 M. Green et al.



4 Conclusions

In this paper, the learning of real noise was proposed for neural network denoising of
ULD lung CT. While synthetic noise has been widely used in prior works, it is the first
time, to our knowledge, that real CT noise, extracted from real pairs of co-registered
ULD and normal-dose scans, is used for training denoising neural networks. In par-
ticular, the proposed combination of deformable registration and double scanning
enables the computation of quantitative denoising scores in real denoising tasks
whereas these were only computed for synthetic noise in previous works. The benefits
of the proposed approach were demonstrated on four state-of-the-art neural denoising
architectures. Beside the improvement in PSNR and SSIM, a substantial improvement
in image sharpness was observed for the images denoised using real-noise trained
networks. Local contrast improvement was also demonstrated for a tiny lung nodule
following denoising by the proposed approach. The obtained results suggest that the

Fig. 6. Tiny lung nodule (a, top) in red ROI zoomed-in after denoising (red arrow) by the four
state-of-the-art CNNs (b–e). The nodule appears with stronger contrast for real-noise training (top
row images) than for synthetic noise (bottom row images). The Michelson contrast is computed
along the green sampling lines (a, bottom) on the nodule. (Color figure online)

Fig. 5. The average S3 values [19] of the denoising results obtained by networks trained with
real (blue) and synthetic (red) noise. (Color figure online)

Table 1. The average Michelson contrast [20] around the nodule

Noise LD-CNN DnCNN RED-CNN CNN-VGG

Real 0.241 0.341 0.332 0.257
Synthetic 0.206 0.225 0.194 0.199

Learning Real Noise for Ultra-Low Dose Lung CT Denoising 9



proposed approach is a promising way to improve neural denoising of ULD lung CT
scans.
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Abstract. MRI denoising is a classical preprocessing step which aims at
reducing the noise naturally present in MR images. In this paper, we present a
new method for MRI denoising that combines recent advances in deep learning
with classical approaches for noise reduction. Specifically, the proposed method
follows a two-stage strategy. The first stage is based on an overcomplete patch-
based convolutional neural network that blindly removes the noise without
estimation of local noise level present in the images. The second stage uses this
filtered image as a guide image within a rotationally invariant non-local means
filter. The proposed approach has been compared with related state-of-the-art
methods and showed competitive results in all the studied cases.

1 Introduction

Magnetic resonance image (MRI) denoising is key preprocessing step in many image
processing and analysis tasks. There is a large amount of papers related to this topic [1].
Most of denoising methods can be classified on those that use the intrinsic pattern
redundancy of the images and those exploiting their sparseness properties.

On the first class, the well-known non-local means (NLM) filter [2] is maybe the
most representative method. The bibliography related to extensions of this method is
quite extensive [3–5]. On the other hand, sparseness-based methods try to reduce the
noise by assuming that most of the signal can be sparsely represented using few basis
signals (using fixed basis like in FFT or DCT [6] or data dependent basis using for
example PCA [7]).

Recently, deep learning methods have also proposed to denoise MR images by
training different architectures with pairs of noisy and noise-free input-outputs. Such
methods try to infer the clean image from the noisy input. The main benefit of these
techniques is that after training, the denoising can be applied extremely fast (on GPUs).
One of the first deep learning methods for denoising was proposed by Gondara [8]
using convolutional denoising autoencoders though a bottleneck strategy to denoise 2D
images. Benou et al. [9] proposed a spatio-temporal denoising method using restricted
Boltzman machines. More recently, Jiang et al. [10] proposed a specific Rician noise
filter using a slice-wise convolutional neural network.
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In this paper, we present a novel denoising approach based on the application of a
3D Convolutional Neural Network using an overcomplete patch-based sliding window
scheme. The resulting filtered image is used as a guide image to accurately estimate the
voxel similarities within a rotationally invariant NLM (RI-NLM) strategy as done in
Manjón et al. [7].

2 Materials and Methods

2.1 Image Data

Training Dataset: To train a supervised neural network a ground truth is needed to teach
the network how the desired output looks like. Unfortunately, zero noise images do not
exist and the only two options are to simulate noise free images or to work with a low-
noise image resulted from the averaging of multiple acquired images and to consider it as a
bronze standard. The first option has indeed images with zero noise but at the expense of a
simpler and less realistic anatomy. The second is anatomically more complete but zeros
noise condition is not met. In this paper, we have used both approaches.

MNI Synthetic Dataset: We used 20 simulated T1 brain MRIs from the MNI brain
simulator. To train the network several levels of stationary Gaussian noise (1% to 9%
of maximum intensity) were added to generate the training data.

IXI Dataset: Since to acquisition of several MRIs is a costly process we used as a
surrogate denoised images from the IXI dataset. Specifically, we randomly selected 30
T1 MRIs from this dataset and we denoised them using the PRI-NL-PCA method [7]
which is a state-of the-art-method. Denoised images had virtually almost zero noise and
the anatomy was minimally affected by the application of the filter as can be checked in
the residual image obtained by subtracting the noisy and denoised image. Again, to
train the network several levels of stationary Gaussian noise were added to generate the
training data (1% to 9% of maximum intensity).

Test Dataset: To be able to quantitatively compare the proposed method with pre-
vious methods, we used the well-known Brainweb 3D T1-weighted MRI phantom [11]
as test dataset. This synthetic dataset has a size of 181 � 217 � 181 voxels (voxel
resolution = 1 mm3) and was corrupted with different levels of stationary Gaussian and
Rician noise (1% to 9% of maximum intensity). Rician noise was generated by adding
Gaussian noise to real and imaginary parts and then computing the magnitude image.

2.2 Preprocessing

Classic preprocessing in deep learning consist of center the images by subtracting the
mean and dividing by the standard deviation. Since our proposed method uses 3D
patches as input of the network, this operation could be done to each patch indepen-
dently. However, since we use a sliding windows approach to denoise the images, we
used a different approach to minimize block artifacts that could arise after mean
restoration and standard deviation restoration.
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First, we estimated a low-pass filtered image with a box-car kernel with the same
size of the patch (local mean map). Second, we estimated local standard deviation map
using the same patch size (local standard deviation map). Afterwards, these two images
were used to normalize the input and output volumes by subtracting the local mean
map and dividing by the local standard deviation map (see Fig. 1). We found that this
approach introduces significantly less blocking artifacts than the standard approach.

2.3 Proposed Method

The proposed approach is based on a patch-wise single scale CNN (no max-pooling).
The input and output of the proposed CNN are 3D patches of size 12 � 12 � 12
voxels. Such patches are extracted from the pre-processed images in an over complete
manner with an overlapping of 6 voxels in all three dimensions.

Differently from other approaches were different networks are trained to filter
different levels of noise [10], our pre-processing fixes to approximately one the amount
of noise present at each patch. Thanks to this, our network is able to blindly deal with
arbitrary levels of noise and besides is naturally suited to deal with spatially variant
noise levels which are quite common in modern MRIs.

Overcomplete Patch-Based CNN
The topology of the proposed network is the following. First, one input block of size
12 � 12 � 12 composed of one 3D convolution and a RELU layer with 64 filters of
3 � 3 � 3 voxels. Then, seven repeated blocks composed of a Batch-Normalization, a
3D convolution plus a RELU. Finally, a last block composed of a Batch Normalization
and a 3D convolution to produces a 12 � 12 � 12 output patch (see Fig. 1). To train
the network we used ADAM optimizer, 100 epochs and a batch size of 128 patches.
We used an early stop criterion using the validation data which represented the 10% of
the training data. The whole network has a total of 779,009 trainable parameters.

Fig. 1. 2D example of the proposed patch-based CNN model. Block design: Red (Batch
Normalization), Blue (3D convolution) and Green (RELU). (Color figure online)
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We used a residual learning approach (i.e., the network learns how to produce noise
map) as in [10] instead of using residual connexions in the network (i.e., the residual
network is trained to produce denoised image) as we found this option more effective
(faster training and better results). Basically, instead of learning the noise-free patch,
we learn the noise present in the patch. This is done by the network simply removing
correlated information in the input layer. Differently from [10] where the network
remove the original image from the input, our network starts with a pre-processed patch
that is highly similar to the output patch. Therefore, the effort of the network to remove
the anatomy is lower and the problem to solve easier.

We trained the network using around 300.000 patches randomly selected from the
cases of each library (i.e. we trained a network using only patches from MNI dataset
and one using only IXI dataset). We used the mean squared error as loss function. Once
the network is trained, the test image (i.e., the Brainweb phantom) is filtered using an
overcomplete 3D sliding window approach. This overcomplete approach further
reduces the noise by averaging several overlapping estimations and contributes to
reduce block artefacts.

Rotational Invariant Denoising
As shown in Manjón et al. [7], when a good quality pre-filtered image is available we
can use this image within a rotationally invariant NLM filter to robustly perform a local
similarity estimation defined as follow:
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�1
2
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where µNi and µNj are the mean values of patches Ni and Nj around voxels i and j in the
guide image g, h is related to the standard deviation of the noise present on image y and
Ω represents position of the elements of the search volume. We refer the interested
reader to the original paper [7] to see the full details of the rotational invariant NLM
filter. Rician noise bias was removed as described in Manjón et al. [7].

It is worth noting that applying this rotational invariant NLM using the proposed
CNN guide image not only outperforms the use of the CNN only but also helps to
remove small remaining block artifacts.

3 Experiments and Results

In this section, a set of experiments are presented to show how the hyper parameters of
the proposed network were selected and some comparisons with state-of-the-art
methods. To evaluate the results, we used the Peak Signal to noise Ratio (PSNR)
estimated between the denoised and the noise free Brainweb phantom.
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3.1 Network Topology

We explored several options to design the proposed patch-based CNN, such as the
patch-size, number of layers or the number of filters. For the number of filters, we tested
16, 32 and 64 filters, the results showed that the higher the number of filters the better
the results. We chose 64 filters because 128 significantly increased the model size and
training time but the improvement was modest. Regarding the number of layers, we
found that increasing the number of layers to have a receptive field wider than the patch
size was not improving significantly the results. We tested patch sizes of 6 � 6 � 6,
12 � 12 � 12 and 24 � 24 � 24 voxels and we found that the best results were
obtained for 12 � 12 � 12 voxels (with 7 internal blocks covering a receptive field of
17 � 17 � 17 voxels).

3.2 Impact of Training Data

We trained the designed network using the both described datasets (MNI and IXI) and
compared the results on the Brainweb dataset used as testing dataset. We added
Gaussian noise (range 1 to 9%) to these images to simulate noisy cases. We did not add
Rician noise as the Rician bias correction is performed at postprocessing as described
in [7]. We also evaluated the impact of the level of overlapping over the final results.
Specifically, offsets of 6 and 3 voxels in all 3 dimensions were evaluated. The results
are shown in Table 1.

As can be noted, the best results were obtained when using the IXI dataset. This was
counter intuitive as we thought that the patterns of the synthetic MNI dataset and the
Brainweb phantom being similar, the results would be better when using this dataset.
We think that the patterns of the IXI dataset being richer and more complex allowed the
network to better generalize. As expected, we found also that the higher the overlap the
better the results (at the expense of a higher computational time, 17 vs 120 s).

Table 1. PSNR results on the Brainweb phantom for the proposed method for stationary
Gaussian noise with two different training datasets (the MNI and IXI datasets).

Filter Gaussian noise level
1% 3% 5% 7% 9% Mean

Noisy 39.99 30.46 26.02 23.10 20.91 28.10
PB-CNN(MNI) offset = 6 45.46 39.82 37.26 35.38 33.91 38.36
PB-CNN(MNI) offset = 3 45.58 40.02 37.51 35.65 34.22 38.59
PB-CNN(IXI) offset = 6 45.49 40.46 37.89 36.14 34.78 38.95
PB-CNN(IXI) offset = 3 45.82 40.70 38.18 36.44 35.10 39.24
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3.3 Methods Comparison

We compared our proposed method with other recent state of the art denoising
methods. The compared methods are called PRI-NL-PCA [7], BM4D [12],
MCDnCNNg (blind) and MCDnCNNs (several noise specific networks) [10] and the
proposed method trained with IXI data. Both Gaussian and Rician noise with different
levels were evaluated. Tables 2 and 3 summarize the results of the comparison.

As can be noticed, the combination of the proposed PB-CNN with the RI-NLM
further improves the results for both stationary Gaussian and Rician noise. The pro-
posed method outperformed the compared methods for all noise levels and noise types.

3.4 Qualitative Evaluation on Real Images

Although the results on synthetic data are easy to interpret, they might by not realistic
enough. To qualitatively evaluate the results of the proposed method we applied it to
two real images and we evaluators visually the results. In Fig. 2 the results can be
visually checked. As can be noticed, no anatomical information can be observed in the
residuals. Finally, it is worth noting that a network trained on T1 images can be used to
denoise T2 images effectively thanks to its patch-based nature.

Table 2. PSNR results on the Brainweb phantom of the compared methods for stationary
Gaussian noise.

Filter Gaussian noise level
1% 3% 5% 7% 9% Mean

Noisy 39.99 30.46 26.02 23.10 20.91 28.10
PRI-NL-PCA 45.38 39.33 36.63 34.90 33.58 37.96
BM4D 44.02 38.35 35.91 34.31 33.10 37.14
PB-CNN 45.82 40.70 38.18 36.44 35.10 39.24
PRI-PB-CNN 47.13 41.43 38.77 37.03 35.65 40.00

Table 3. PSNR results on the Brainweb phantom of the compared methods for stationary Rician
noise. Results of MCDnCNNg and MCDnCNNg methods [10] were estimated from Fig. 6.

Filter Rician noise level
1% 3% 5% 7% 9% Mean

Noisy 40.00 30.49 26.09 23.20 21.04 28.16
PRI-NL-PCA 45.31 39.34 36.58 34.74 33.28 37.85
BM4D 44.09 38.35 35.84 34.17 32.88 36.99
MCDnCNNg 43.80 38.10 36.00 34.50 33.00 37.08
MCDnCNNs 45.20 39.80 37.20 35.20 33.50 38.18
PB-CNN 45.20 39.82 37.48 35.54 33.74 38.35
PRI-PB-CNN 46.67 40.45 38.17 36.09 34.24 39.12
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4 Discussion

In this paper, we have presented a new method for MRI denoising that combines the
benefits of new deep learning techniques with the strength of the traditional non-local
image processing methods. The proposed method is based on an overcomplete patch-
based CNN which produces a pre-filtered image which is used as a guide image within
a rotational invariant non-local means framework.

The proposed method outperformed compared methods for all noise levels and
noise types (Gaussian and Rician) and is an effective approach for automatically reduce
the amount on noise in MR images in a blind manner thanks to its automatic adaptation
to different levels of noise. Furthermore, although it was not designed to do so the
proposed method is able to deal with spatially variant noise as can be noticed at Fig. 2
thanks to its adaptive patch-based nature.
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Fig. 2. Denoising example of real T1 and T2 images. From left to right: Noisy image, filtered
image with the proposed filter and residual image (removed Rician noise).
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Abstract. Image noise and motion degrade the quality of MR images.
Block-matching methods are a well-demonstrated means of improving
signal-to-noise ratios in such images. Ideally, block-matching methods
would search within the entire image for matching patches to a tar-
get, leveraging an image’s full informational redundancy, but this car-
ries impractical computational costs. A well-known workaround, imple-
mented in the traditional Non-Local Means (NLM) filter, is to search
for matching patches only within a local neighborhood. Here, we detail
a Global Approximate Block-matching (GAB) method that, via a self-
organizing map, rapidly searches an entire image for patches similar
to a target. Four sets of five T1 + five FLAIR images were acquired.
GAB and NLM both denoised the T1s; the results were compared to
subject-wise mean images with very low noise. GAB reliably produced
images that were more similar to these ‘templates’ than NLM. This was
repeated for the same images with motion-like artefacts artificially added.
GAB, again, outperformed NLM. For this task, GAB further improved
with multichannel inputs, even if the FLAIR image contained artefacts.
GAB’s competitive performance appeared to be due to a better balance
between preserving image features and removing noise/artefacts. The
performance of GAB and NLM variants hinted that GAB’s advantage
was not brute-force processing, but its ability to effectively search the
whole image.

Keywords: Block-matching · Self-organizing map · Image noise
MRI artefacts · Non-local means

1 Introduction

Images with motion artefacts and/or high levels of noise are an unfortunate real-
ity for many magnetic resonance projects and clinical facilities. Block-matching
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(BM) techniques are typically designed to remove such noise. These methods
typically accept a single input image, match similar cubes of voxels (patches) to
one another, and compute a weighted average according to the patch similarity.
This approach is known as ‘non-local means’ [2]. BM leverages the small pat-
terns that exist throughout an image, such as the repeated folding of brain tissue.
BM techniques are unable to take full advantage of this redundancy, however,
because exhaustively comparing patches to one another is extremely computa-
tionally expensive. To circumvent this, many patch-based techniques such as the
traditional non-local means method [3,4], herein referred to as ‘NLM’, search
only a selected local area for patches similar to a target, assuming that most of
the pattern redundancy is local.

An alternative, or complementary, way to reduce this computational cost
is through dimensionality reduction. The self-organizing map (SOM) is a flexi-
ble non-linear dimensionality reduction technique [5]. Briefly, SOMs are imple-
mented as collection of nodes which each have local connectivity, a fixed position
in low dimensional space (e.g. forming a 2D grid), and a trainable position in
the high-dimensional space. SOMs train quickly through competitive learning,
in a manner that results in a smooth projection between the two spaces. Intu-
itively, a trained 1D SOM can be thought of as optimally ‘snaking’ through
high-dimensional space, much as principal components analysis (PCA) draws a
straight line through such a space.

We have developed a ‘Global Approximate Block-matching’ algorithm (GAB)
which performs a whole-image search for patches matching each target. To reduce
this operation’s computational burden, GAB collapses each patch into a singular
value (SV) through a dimensionality reduction method such as the SOM, which
allows binary search lookups. Here, we describe GAB and demonstrate its use for
removal of noise and motion artefacts in T1 images, utilizing both single- (T1)
and multi-channel (T1 + FLAIR) input data. Performances of four variants of
GAB are compared to that of NLM.

2 Methods

2.1 Overview

We tested the ability of GAB and NLM to perform two related tasks: (1) reduc-
tion of noise, and (2) removal of motion artefacts. Images used were acquired
from a modern scanner, with simulated motion artefacts added for the second
task. Performance was measured by the quantitative similarity between the pro-
cessed T1 image and a low-noise template that was an average of five scans of
the same subject.

2.2 Global Approximate Block Matching and Comparator Methods

GAB can run in single- or multi-channel mode, and is summarized in Fig. 1. To
conserve memory, input image(s) are linearly scaled and voxel intensities stored
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Fig. 1. In Step 1 (top left), the image was split into overlapping 3×3×3 voxel patches,
or 3 × 3 × 3 × 2 voxel patches in the case of dual-channel processing. For each patch,
a singular value (SV) was calculated using one of four methods. Patches were then
sorted by these SVs. In Step 2, for each target patch, the 1024 atlas patches with the
most similar SVs were selected (the ‘shortlist’). The voxelwise sum of square differences
(SSD) was calculated for these patches versus the target, and the 30 patches with the
lowest SSDs selected to contribute toward final image reconstruction. See the text for
details on final image reconstruction.

Fig. 2. T1 MPRAGE images with simulated (left) and real motion artefacts (right),
acquired with the same sequence and scanner.
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as 8-bit integers. The image within the brain mask is split into overlapping
3 × 3 × 3 voxel patches (3 × 3 × 3× n-channels for multi-channel mode). A SV is
calculated for each patch (see below), by which patches are then sorted. During
denoising, the location of a target patch can be found through a simple SV-
indexed binary search. A 1024 patch shortlist is then identified as those items
from 512 positions before to 511 indices after this index. The voxelwise sum of
square differences (SSD) is calculated between the target patch and shortlist,
excluding the original patch itself, identifying the 30 most similar patches to the
target. These patches are each multiplied by their weight (1/(SSD + 10−6)),
filtered by a Gaussian of σ = 1 voxel, and (all 27 voxels per weighted patch)
are added to a ‘sum’ image. These weights, also multiplied by this Gaussian are
added to a ‘weights’ image. Upon completion of all block matching, the sum
image is divided by the weights image to generate a final reconstruction. This
non-intuitive unweighting is required because each voxel in the ‘sum’ image is
contributed to by up to 27 block-matching operations, each operation in turn
averaging 30 weighted patches from the shortlist.

SVs were calculated solely from voxel intensities. Here, four SV methods were
compared: PCA (ε0), mean intensity, random (SV randomly generated), and
SOM. PCA and SOM training sets were up to 107 patches randomly selected
from the input image. Each SOM was arranged as a 1D array of 4096 equally-
spaced nodes. Training took 10–40 s for a single-channel input. SV calculation
using the SOM was performed by locating a patch’s continuous position in this
array (i.e. between the best matched node and its most similar neighbor) based
on voxelwise SSD.

For a comparator method, we utilized NLM with a Rician noise model [3,4],
as implemented in DIPY. This is single-channel and utilizes 3 × 3 × 3 voxel
patches. Two search radii were tested: 5 voxels (728 patches; the default setting;
NLM-5) and 6 voxels (1330 patches; NLM-6). Other settings were left as default.

2.3 Dataset

Four adults (28–32y) were scanned on a 3T Siemens Prisma. MPRAGE and
FLAIR images (both 1 mm3 resolution) were acquired in an alternating fashion.
Five of each were acquired per subject. Noise and intensity biases can vary
within an image, due in part to voxels’ differing locations within the B0 field
and proximity to the head coil. We wished to reduce the likelihood of images
displaying local intensity biases, or higher noise levels, at consistent anatomical
locations, so as to generate more representative ‘ground truth’ (template) images
(see below). As such, subjects reoriented their head before each T1 acquisition.
The field of view was coarsely adjusted each time only to ensure that the full
head was contained within the image. Subjects remained still during acquisition
and gave written informed consent. Ethical approval was granted through the
Herston Imaging Research Facility. All acquired images were N4 bias corrected
[6] and linearly intensity scaled such that 95% of non-zero voxels were within
the range of 1–100, prior to all processing and analysis.
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Low Noise Template. For each subject, a low noise template T1 was gener-
ated as follows: (1) the aforementioned bias-corrected and intensity normalized
images were upsampled to 0.5 mm3 with trilinear interpolation; (2) an initial
mean image was calculated, and brainmask generated by affine transforming the
FSL MNI 152 T1 brainmask into this space using ANTS [1]; (3) each interpo-
lated image was rigid-registered to the mean (from its original orientation) using
ANTS; (4) another mean was then calculated. Steps 3 and 4 were repeated four
times, the final mean constituting the ‘template’ for that subject. These tem-
plates exhibited a very low level of noise (Fig. 3). Regarding Step 1, upsampling
was performed to compensate for the interpolation effects later during resam-
pling to target image space. A final brainmask was generated for each by affine
transforming the FSL MNI 152 T1 brainmask into this space using ANTS.

Motion Corruption. In this work, motion corruption was simulated as
head rotation around a central point. To do so, we manipulated images in
Fourier space, to represent partial filling of k-space at two head orientations.
Although many factors contribute to image reconstruction, this method pro-
vided sufficiently-realistic artefacts for the purpose of testing artefact removal.
An example of artificial motion corruption is provided in Fig. 2.

We generated a motion-corrupted copy of each acquired bias-corrected image
(I.E. five T1 and five FLAIR images per subject). This center of rotation was
defined in voxel space as the position between the two thalami on the mid (i.e.
third) image acquired for each subject. As subjects were reoriented between
scans, this meant that the anatomical center of rotation differed in each image
whilst still being at an anatomically-plausible location. Motion corrupted images
were constructed by combining Fourier space data from unaltered images with
that from images that had been rotated in image space. T1 and FLAIR images
were rotated by (5◦, 1◦, and 1◦) and (1◦, 2◦, and 2◦), respectively, to give non-
correlated motion. After an FFT, these rotated images were multiplied by two
to ensure a moderate artefact effect. Real and imaginary T1 images were con-
structed by combining coronal-planes 0–80 of the rotated data with 81–175 of
the original image. Real and imaginary FLAIR images, which were acquired a
different plane to our T1 images, were constructed from sagittal planes 0–70 of
the rotated data and 71–191 of the original image. An FFT then reconstructed
these data back into image space.

2.4 Performance Metric

Each BM method performed two sets of tasks: (1) reduction of noise in T1
images and (2) removal of the aforementioned motion artefacts from T1 images.
For noise reduction, NLM accepted a single input image (T1). GAB was run with
both a single-channel input (T1) and with multi-channel (T1+FLAIR) input. For
motion artefact removal, NLM again accepted a single input image (corrupted
T1), whilst GAB was run with single-channel (corrupted T1), multi-channel
(corrupted T1 + FLAIR) and double-corrupted multichannel (corrupted T1 +
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corrupted FLAIR) inputs. In all multi-channel conditions, analyses were run for
the 25 possible combinations of T1 + FLAIR image pairs for each subject. For
these conditions, FLAIR images were rigid-registered to the T1 using ANTS [1].

To calculate error, the high-resolution template for the appropriate subject
was rigid registered to the target (‘noise’ or ‘artefact’ containing) T1 using ANTS
[1] and resampled to 1 mm, providing voxelwise correspondence between images.
BM-processed T1s were linearly scaled to match the histogram of this tem-
plate image. The mean squared error (MSE) of image intensities was calculated
between these processed images and their template within the template’s brain-
mask. Identical templates, registrations, and target images were used for each
method. All registrations were visually checked.

Fig. 3. Representative images of a template (top left); target bias-corrected T1 (top
right); denoised result from single-channel GAB-SOM (bottom left); and denoised
result from NLM performed with default settings (bottom right). Images are cropped
to the brain mask. Note how GAB preserves image features such as sulci, the ventricu-
lar shape (green arrow) and intensities of structures including the optic radiation (blue
arrows). (Color figure online)

3 Results

Tests were run on a single Tesla P100 GPU, 10 cores of a Xeon E5-2690 v4
compute node, and 64 GB of RAM. GAB was run on Mono 4.6.2 and OpenCL
1.2. NLM ran through a Python 2.7.13 wrapper for compiled code. The mean
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Table 1. Mean MSE ± SD across all subjects, for each of the tested methods and con-
ditions. The left two columns reflect denoising; the right three reflect artefact removal.
The best denoising and artefact removal scores are highlighted. Abbreviations: MC,
Motion Corrupted; NLM-5, traditional Non-Local Means (search radius= 5); NLM-6,
traditional Non-Local Means (search radius= 6); PCA, Principal Components Analy-
sis; GAB, Global Approximate Block Matching; SOM, Self-Organizing Map.

Noise reduction Motion artefact removal

Method T1 T1+FLAIR MC T1 MC T1 + FLAIR MC T1 + MC FLAIR

GAB-SOM 4.3 ± 1.7 6.0± 1.2 14.2± 1.1 12.3 ± 1.0 12.9± 1.0

GAB-Mean 5.8± 1.5 11.0± 1.0 14.4± 1.2 15.8± 1.3 16.4± 1.3

GAB-PCA 6.4± 1.4 13.5± 1.3 15.2± 1.4 18.1± 1.7 18.9± 1.7

NLM-5 7.3± 1.7 N/A 16.5± 1.4 N/A N/A

NLM-6 7.7± 1.6 N/A 16.4± 1.4 N/A N/A

GAB-Random 16.4± 6.7 28.8± 6.8 21.1± 3.9 30.8± 8.1 30.0± 7.3

No Correction 12.1± 2.0 12.1± 2.0 26.8± 1.8 26.8± 1.8 26.8± 1.8

run time (of all variants) of GAB was 247 s for single-channel processing; GAB-
SOM was ∼30 s slower than other variants. Multi-channel processing increased
run times by ∼100% for GAB-SOM and ∼30% for other SV methods. NLM ran
in 40 s and 70 s on average for radii of 5 and 6 voxels, respectively.

3.1 Noise Reduction

Twenty single-channel, and 100 multi-channel, tests were conducted and are
summarized in the left two columns of Table 1. When interpreting MSE values,
note that images were intensity normalized to an approximate range of 0–100.
Non-denoised T1 images had a MSE of 12.14 ± 2.00 (Mean ± SD), compared to
their respective templates. The most effective method was single-channel GAB-
SOM (4.24 ± 1.65), which appeared to better balance noise removal with image
feature preservation than NLM (7.29 ± 1.66; Fig. 3). NLM performance was not
bolstered by a greater search radius. Multi-channel GAB provided poorer per-
formance than single-channel GAB.

3.2 Artefact Removal

One motion-corrupted T1 image was unable to be registered with its template,
and was discarded, resulting in 19 T1s contributing to 19 single-channel, and
95 multi-channel, tests. Results are summarized in the right three columns of
Table 1. Corrupted T1 images showed a MSE of 26.83 ± 1.75 (Mean ± SD).
Single channel GAB-SOM (14.20 ± 1.07), GAB-Mean, and GAB-PCA, outper-
formed NLM (16.39±1.38). Qualitatively, NLM often appeared to better reduce
this artefact, but again this came at the expense of modification or deletion of
features apparent in the template image. Including FLAIR data substantially
improved GAB-SOM effectiveness (12.34 ± 1.00), even if the FLAIR image con-
tained artefacts (12.86 ± 0.98).
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3.3 Discussion

We proposed a BM method that initially performs a rapid global search for a
shortlist of approximately similar patches that are to be compared voxelwise to
a target. Ultimately, GAB, performed more accurately and reliably than NLM in
removing image artefacts and noise, whilst preserving image features (Table 1;
Fig. 3). NLM executed faster than GAB, but GAB’s run time of ∼3–8 min is
still well within acceptable bounds for image preprocessing. Although we relied
on artificial motion-like artefacts, these artefacts were a fair approximation of
the genuine artefacts we see in our facility (Fig. 2). It is unlikely that any short-
comings in our simulation biased results as BM methods were not optimized for
motion artefacts, nor particular sequences or scanners.

In single-channel mode, GAB’s advantage appeared to be primarily due to its
better leveraging of image redundancies, rather than brute force computation.
This is indicated by its poor performance when patch shortlists were random,
and the lesser performance of NLM even when performing 30% more voxelwise
comparisons than GAB (NLM-6). GAB performed more poorly when denoising
a good-quality T1 in multichannel mode than when that T1 was the only input.
Results for GAB-Random implied that this may be due to inappropriate scaling
of patch weighting factors (1/SSD), given such a high-dimensional space, and/or
the FLAIR image being interpolated during reslicing to T1 space. When pro-
cessing images with artefacts, however, multichannel information improved the
performance of GAB-SOM, even with mild artefacts in the FLAIR image. Here,
the SOM’s non-linearity presumably enabled a meaningful 54-to-1 dimensional-
ity reduction, given the substantially poorer results of GAB-PCA.

In conclusion, we proposed a global approximate BM method that uses a
SOM for dimensionality reduction. In real images this outperformed traditional
NLM when removing both image noise and simulated motion artefacts.
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Abstract. We propose a statistical method to address an important
issue in cryo electron tomography image analysis: reduction of a high
amount of noise and artifacts due to the presence of a missing wedge
(MW) in the spectral domain. The method takes as an input a 3D tomo-
gram derived from limited-angle tomography, and gives as an output a
3D denoised and artifact compensated tomogram. The artifact compen-
sation is achieved by filling up the MW with meaningful information. The
method can be used to enhance visualization or as a pre-processing step
for image analysis, including segmentation and classification. Results are
presented for both synthetic and experimental data.

Keywords: Cryo electron tomography · Patch-based denoising
Missing wedge restoration · Stochastic models · Monte Carlo simulation

1 Introduction

Cryo electron tomography (cryo-ET) is intended to explore the structure of an
entire cell and constitutes a rapidly growing field in biology. The particularity of
cryo-ET is that it is able to produce near to atomic resolution three-dimensional
views of vitrified samples, which allows observing the structure of molecular com-
plexes (e.g. ribosomes) in their physiological environment. This precious insight
in the mechanism of a cell comes with a cost: i/ due to the low dose of elec-
trons used to preserve specimen integrity during image acquisition, the amount
of noise is very high; ii/ due to technical limitations of the microscope, complete
tilting of the sample (180◦) is impossible, resulting into a blind spot. In other
words, projections are not available for a determined angle range, hence the
term “limited angle tomography”. This blind spot is observable in the Fourier
domain, where the missing projections appear as a missing wedge (MW). This
separates the Fourier spectrum into: the sampled region (SR) and the unsampled
regions (MW). The sharp transition between these two regions is responsible for
a Gibbs-like phenomenon: ray- and side-artifacts emanate from high contrast
objects (see Fig. 1), which can hide important structural features in the image.
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Another type of artifact arises from the incomplete angular sampling: objects
appear elongated in the blind spot’s direction (see Fig. 1). This elongation erases
boundaries and makes it difficult to differentiate neighboring features.

Filling up the MW with relevant data can reduce or completely suppress these
artifacts. Experimentally this can partially be done using dual-axis tomography
[4], where the sample is tilted with respect to the second axis. Consequently the
blind spot is smaller and the MW becomes a missing pyramid, which results into
a smaller missing spectrum. In practice dual-axis tomography is technically more
difficult to achieve and requires intensive post-processing in order to correct tilt
and movement bias in the microscope. Another strategy consists in exploiting
the symmetry of the observed structure to fill up the MW [3], but this can
only be applicable to specific structures (e.g. virus). Another technique consists
in combining several images, each containing a different instance of the same
object, but with distinct blind spots. This technique is routinely used in cryo-
ET and is known as sub-tomogram averaging [3], but it relies on the acquisition
of several views of the same object type. Accordingly, edicated tomographic
reconstruction algorithms have also been proposed, to compensate MW artifacts
by using a regularization term [7,10] and exploiting prior information. A simpler
way of handling MW artifacts is described in [6], where a spectral filter is used
to smooth out the transition between the SR and the MW. This filter is thus
able to reduce ray- and side-artifacts, but the object elongation remains.

In this paper, we propose a stochastic method inspired from [2] for restoring
2D images and adapted to 3D in [9], and re-interpret the method to recover the
MW in cryo-ET from a Monte Carlo (MC) sampling perspective. The method
[9] has been shown to successfully recover missing regions in the Fourier domain,
achieving excellent results for several missing region shapes, including the MW
shape. The method [9] works by alternatively adding noise into the missing region
and applying a patch-based denoising algorithm (BM4D). However, the method
has no clear theoretical framework and appears therefore empirical. The authors
interpret their method as a compressed sensing algorithm, which relies on two
conditions: sparsity of the signal in some transform, and the incoherence between
this transform and the sampling matrix. Actually, BM4D does rely on a trans-
form where the signal is sparse. Nevertheless, it is not clearly established that
this transform is incoherent with the sampling matrix, defined by the support
of the SR. Therefore, there is no theoretical proof of convergence, even though
the authors show numerical convergence. Also, the data in [9] is exclusively syn-
thetic and corrupted with white Gaussian noise, for which BM4D has been well
designed. It remains unclear how the method performs with experimental data
and non Gaussian noise.

Consequently, we reformulate the method [9] as a Metropolis-Hastings proce-
dure in the MCMC framework (Sect. 2), and demonstrate that it performs as well
as the original method but converges faster. Moreover, any patch-based denoiser
can be applied [5,8,9] and the concept is more general than [9]. Finally, we pro-
vide evidence that our method enhances signal in experimental cryo electron
tomography images (Sect. 3).
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2 Statistical and Computational Approach

Formally, we denote Y the n-dimensional noisy image, and X ∈ R
n the unknown

image where n = |Ω| is the number of pixels of the volume Ω. We consider the
following observation model:

Y = M(X + η) (1)

where η ∼ N (0, In×nσ2
e) is a white Gaussian noise, In×n is the n-dimensional

identity matrix, and M(.) is an operator setting to zero the Fourier coefficients
belonging to the MW support.

To recover the unknown image, we propose a dedicated Monte-Carlo sampling
procedure that generates at each iteration k a sample X̂k ∈ R

n (see Fig. 2). This
procedure is based on the Metropolis-Hastings algorithm, determined by two
steps: i/ a proposal step, where a n-dimensional candidate image is generated
from a proposal distribution; ii/ an evaluation step, where the candidate is either
accepted or rejected according to the Gibbs energy E(X̂k), defined as the l2 norm
between the candidate X̂k and the observed image Y :

E(X̂k) =‖ M(Y ) − M(X̂k) ‖2 . (2)

In addition, we compute the norm on the SR support only, given that the
MW of Y contains no information.
Formally, the procedure is defined as follows:

1. PROPOSAL STEP:
– Perturbation: we perturb the current X̂k with a n-dimensional white

Gaussian noise with variance σ2
p: X̂ε

k = X̂k + ε, with ε ∼ N (0, In×nσ2
p).

– Projection: we project X̂ε
k on the subspace of images having the same

observed frequencies as Y : Π(X̂ε
k) = FT−1(IS × FT(Y )) + (1 − IS) ×

FT(X̂ε
k)) where FT denotes the Fourier transform, and IS is a binary

mask having values of 1 for Fourier coefficients belonging to the SR and
values of 0 otherwise.

– Denoising: DN(Π(X̂ε
k)) = X̃k.

2. EVALUATION STEP:
Define X̂k+1 as:

X̂k =

⎧
⎨

⎩

X̃k if α ≤ exp
−ΔE(X̃k, X̂k−1)

β
,

X̂k−1 otherwise,
(3)

where α is a random variable: α ∼ U [0, 1] (uniform distribution), β > 0 is a
scaling parameter and ΔE(X̃k, X̂k−1) = E(X̃k) − E(X̂k−1)

Actually, the originality of our approach lies in the way the candidates are
proposed. The objective is to explore a subset S of plausible images, S being
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shaped by our prior knowledge. The perturbation allows to randomly explore
the image space around X̂k, applying the prior guaranties that the exploration
is limited to S. The prior is twofold: i/ the images should have the same SR as
Y , hence the projection operation; ii/ the images should be piece-wise smooth
and self-similar, hence the patch-based denoising.

In the Bayesian framework, we focus on the conditional expectation estima-
tor, computed as the average of N generated samples X̂k:

X̂ = lim
N→∞

1
N − Nb

N∑

k=Nb

X̂k � 1
Z

M∑

λ=1

e−E(Xλ)Xλ (4)

where Z is a normalization constant and M is the cardinal of the space S of
admissible images. It is recommended to introduce a burn-in phase to get a more
satisfying estimator. Hence, the first Nb samples are discarded in the average X̂.

In the end, the method is governed by three parameters: the number of
iterations N , the noise variance σ2

n and the scaling parameter β. At each iteration
k, the patch-based denoising algorithm removes the perturbation noise ε. The
parameter β affects the acceptance rate of the evaluation step. The higher the
value of β, the higher the acceptance rate. For a high enough β value, all proposed
samples are accepted and we fall back on the original method [9]. This method
cannot retrieve unobserved data, but it merely makes the best statistical guess
of what the missing data could be, based on what has been observed.

This iterative procedure is successful provided that the denoising algorithm
is able to remove the perturbation noise. In practice, the perturbation noise
is Gaussian, as most of state-of-the-art denoising algorithm assume additive
white Gaussian noise. This also means that any performant denoising algorithms
including BM4D can be used in this framework [1,5,8]. Depending on the image
contents and modality, some denoising methods could be more adapted than
others, given their particular properties and assumptions.

3 Experimental Results

In this section, we present the results when the denoising is performed by using
BM4D and σe = σn in order to compare to [9]. We considered N = 1000 iter-
ations and a burn-in phase of Kb = 100 iterations. Similar results have been
obtained with the patch-based denoiser NL-Bayes [8].
Data Description. Three data sets (A, B and C) have been used to evaluate
the performance of the method. Dataset A has been simulated, and consists of
a density map of the 20S proteasome, first corrupted by adding varying amount
of noise and then by applying artificially the MW (by giving zero-values to
Fourier coefficients using a wedge shaped mask). Dataset B is an experimental
sub-tomogram containing a gold particle. Dataset C is an experimental sub-
tomogram containing 80S ribosomes attached to a membrane.
Evaluation Procedure. The evaluation differs depending on the dataset. For
dataset A we have at our disposal a ground truth. We can thus use similarity
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measures like the PSNR (peak signal to noise ratio) for evaluation. In dataset
B, we see that the gold particle is elongated (ellipse) due to the MW artefacts.
Improving the sphericity of the object is thus a good evaluation criterion. For
dataset C, we measure the similarity between the central ribosome and a ref-
erence (obtained via sub-tomogram averaging). The evaluation criterion is the
Fourier shell correlation (FSC), commonly used in cryo-ET [11]. In order to mea-
sure the quality of the recovered MW only, we also compute the FSC over the
MW support (“constrained” FSC or cFSC).
Results and Discussion. From the results on dataset A (Fig. 3(a)) it can be
seen how well the method works in the absence of noise (σn = 0): a quasi perfect
image recovery has been achieved, despite the complexity of the object. Increas-
ing the amount of noise deteriorates the performance, but as can be observed for
σn = 0.2 the result is still satisfying. For high amounts of noise (σn = 0.4), the
object contrast is still greatly enhanced but the MW artifacts could not be com-
pletely removed. Let us examine the Fourier domain (Fig. 3(b)): in the absence of
noise, the MW has been filled up completely, whereas for an increasing amount
of noise the MW reconstruction is increasingly restrained to the low frequen-
cies. This is because high frequency components of a signal are more affected by
noise, which makes them more difficult to recover. In Fig. 3(c), the evolution of
the PSNR over time shows that the method converges to a stable solution. In
Fig. 3(d) we compare our method to the original one [9]. Both methods produce
visually identical results in the spatial domain, as well as in the spectral domain,
as can be confirmed by the final achieved PSNR values. However, the difference
lies in convergence speed: our method takes about half as long as the original
method [9]. Even though the synthetic dataset A is a simplified case of data
corruption in cryo-EM, it gives a good intuition of the method performance.

The result on dataset B shows that noise is reduced and a significant part
of the MW could be recovered (see Fig. 1). Even though the recovery is not
complete, it is enough to reduce the MW artifacts while preserving and enhancing
image details. The ray and side artifacts induced by the high contrast of the gold
particle are reduced and its sphericity has been improved, bringing the image
closer to the expected object shape. The result on this dataset shows that the
method is able to handle experimental noise in cryo-ET.

The dataset C contains molecules (ribosomes) that have more interest for
biologists (see Fig. 4). This case is more challenging, because the objects have a
more complex shape and less contrast, i.e. the SNR is lower. Nonetheless, the
method could enhance the contrast and according to the FSC criteria, the signal
has indeed been improved. Although visually it is more difficult to conclude
that the MW artifacts have been affected, the Fourier spectrum shows that
Fourier coefficients could be recovered. With no surprise, the amount of recovered
high frequencies is less than for dataset B, because of the lower SNR. It is now
necessary to provide a proof that the recovered coefficients carry a coherent
signal, therefore the cFSC has been measured. The black curve in Fig. 4 depicts
the cFSC between the unprocessed image and the reference: given that the MW
contains no information, the curve represents noise correlation. Consequently,
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Fig. 1. Experimental sub-tomogram (61 × 61 × 61 voxels) containing a gold particle
(dataset B). The top row shows the input in the spectral and spatial domains, the
bottom row shows the output.

Fig. 2. The method flowchart. The 1st icon row represents the data in the spectral
domain, the 2nd in the spatial domain.

everything above the black curve is signal, which is indeed the case for the
processed data (red curve in Fig. 4). To illustrate how the method can improve
visualization, a simple thresholding has been performed on the data (3D views
in Fig. 4). While it is difficult to distinguish objects in the unprocessed data, the
shape of ribosomes become clearly visible and it can be observed how they are
fixated to the membrane.
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Fig. 3. Simulated data of the 20 S proteasome, for varying amounts of noise (dataset
A). All images depict ortho-slices of 3D volumes. The volume size is 64 × 64 × 64
voxels. For (a) and (b), top row: method inputs, bottom row: method outputs. Results
are shown in the spatial domain (a) and in the spectral domain (b). In (c) can be
observed the ground truth and the evolution of the PSNR over iterations. Finally, in
(d) we compare our method to the orginal method described in [9]

Fig. 4. Experimental sub-tomogram (46 × 46 × 46 voxels) containing ribosomes
attached to a membrane (dataset C). (a) Top row: input image in spectral domain,
spatial domain and 3D view of the thresholded data. Bottom row: the same represen-
tations for the output. (b) FSC and cFSC measures of the method input (in black)
and output (in red). All measures are wrt the same reference. (Color figure online)



A Monte Carlo Framework for Denoising and Missing Wedge Reconstruction 35

4 Conclusion

We have proposed a Monte-Carlo simulation method to denoise and compensate
MW artifacts in cryo-ET images. Any patch-based denoiser can be used in this
framework and the procedure converges faster than [9]. Our experiments on both
synthetic and experimental data show that even for high amounts of noise, the
method is able to enhance the signal. However, the method needs a reasonable
constrast of the object of interest to perform well, which is not always the case in
cryo-ET. Nevertheless, with improving electron microscopy techniques like direct
electron detection sensors and phase contrast methods, the method will be able
to produce even more impressive results. The effectiveness of the method being
demonstrated for the challenging case of cryo-ET, the method can be applied to
other imaging modalities, especially on images with high SNR values.
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Abstract. This paper presents an innovative way to reach accurate
semi-dense registration between images based on robust matching of
structural entities. The proposed approach relies on a decomposition of
images into visual primitives called supervoxels generated by aggregating
adjacent voxels sharing similar characteristics. Two new categories of fea-
tures are estimated at the supervoxel extent: mid-level spectral features
relying on a spectral method applied on supervoxel graphs to capture
the non-linear modes of intensity displacements, and mid-level context-
rich features describing the broadened spatial context on the resulting
spectral representations. Accurate supervoxel pairings are established by
nearest neighbor search on these newly designed features. The effective-
ness of the approach is demonstrated against state-of-the-art methods
for semi-dense longitudinal registration of abdominal CT images, relying
on liver label propagation and consistency assessment.

Keywords: Semi-dense image registration · Supervoxel matching
Mid-level representation · Laplacian graph · Spectral decomposition
Context-rich features

1 Introduction

Image registration is a crucial task in medical image analysis for organ motion
compensation, longitudinal tumor follow-up, pre- and post-operative image
matching or cohort analysis [1]. When coupled with a segmentation task through
label transmission, it can usefully reduce the number of expert interventions
required to accurately segment anatomical or pathological structures, especially
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in pre-operative surgery planning. An alternative to avoid performing costly
dense registration on highly-resolved 3D images is to reach semi-dense registra-
tion by finding correspondences between structural entities. In this context, the
use of supervoxel over-segmentation techniques followed by supervoxel matching
have been recently introduced [2–4]. Supervoxel over-segmentation methods such
as Simple Linear Iterative Clustering (SLIC) [5] provide reliable support regions
by grouping adjacent voxels into intensity-homogeneous regions. While preserv-
ing image geometry and object contours, supervoxels are able to drag dense -
millions to billions of voxels - registration problems to semi-dense - thousand of
supervoxels - tractable problems, bringing computational and memory gains.

This paper focuses on semi-dense pairwise supervoxel-based registration,
which consists in establishing pairings between supervoxels decomposing two
3D images. Matching can be performed by aggregating voxel-wise labels within
supervoxel boundaries of the second image, based on the results of a classifi-
cation algorithm trained on the first image [2,3] or by direct nearest-neighbor
search [4,6]. Those algorithms all depend on intensity similarity features which
can be easily corrupted by uniform areas, appearance changes or different noise
levels between images. Thus, the need for other multivariate and invariant rep-
resentations of supervoxels arises naturally. In this paper, we focus on spectral
features which have proven to be robust in dense registration problems [7].

Spectral graph methods are a variety of graph-based techniques, commonly
used in dimension reduction as for Laplacian eigenmaps [8], whose goal is to find
a non-linear and low-dimensional representation of high-dimensional data. Con-
versely, we aim at obtaining a high-dimensional supervoxel representation from
4D data arising when considering supervoxel averaged intensities and centroid
positions. The spectral representation achieved at the supervoxel level relies on
spectral graph decomposition followed by spectrum rearrangement. Since such
features exhibit smooth spatial variations, we additionally introduce context-rich
features extended from voxels [2,3,9] to supervoxels to describe the broadened
spatial context on spectral representations. Accurate supervoxel correspondences
are finally obtained by nearest neighbor search on these mid-level features.

Our approach is evaluated against state-of-the-art methods for semi-dense
longitudinal registration of abdominal CT scans which remains an open issue
due to wide organ size, shape and appearance heterogeneity.

2 Problem Formulation

Automatic semi-dense image registration is considered between two 3D images
If and Is. Let F = {fi}i∈{1,...,|F|} and S = {sj}j∈{1,...,|S|} be respectively the set
of |F| and |S| connected supervoxels partitioning If and Is and obtained using a
3D extension of SLIC [5]. Our goal is to establish supervoxel correspondences by
estimating a function h that maps each supervoxel fi ∈ F of If to a supervoxel
sj ∈ S of Is, such that:

∀i ∈ {1, . . . , |F|},∃j ∈ {1, . . . , |S|} | h(fi) = sj (1)
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We focus on supervoxel matching through straightforward nearest neighbor
search at the supervoxel level. This considerably alleviates the computational and
memory issues raised when a voxel-wise classification scheme [2,3] is followed.
Let ψ(fi) (resp. ψ(sj)) be the set of mid-level features assigned to fi (resp. sj).
The optimization scheme can be easily written as:

h(fi) = sj = arg min
sl∈S

‖ψ(fi) − ψ(sl)‖2 (2)

Since intensity-based similarity features [4,6] are not robust enough to discrimi-
nate supervoxels, alternate invariant representations of supervoxels are required.
Our contributions rely on the combination of new feature categories built at the
supervoxel extent: mid-level spectral and context-rich features.

3 Mid-Level Spectral Features

Spectral dimension reduction methods aim at changing the representation of
high-dimensional data to a low-dimensional description with a few variables only.
This embedding is expected to be as faithful to the data geometry as possible
by preserving inner manifold distances in high-dimensional space, while striving
to constrain the low-dimensional structure in an Euclidean space. We propose
to adapt this concept in the inverse direction to provide a powerful multivariate
representation of supervoxels, starting from low-dimensional 4D data arising
when considering supervoxel averaged intensities and centroid positions only. In
practice, we exploit for each image If and Is an adjacency graph over the set of
all supervoxels in order to obtain a spectral representation of chosen dimension.

3.1 Laplacian Graph Building

In the dense context [7], one usually constructs a graph where each node is a
voxel and each vertex is weighted by the distance from neighboring voxels based
on spatial and intensity similarities. In practice, the dense approach constrains
to use only adjacency between voxels and their closest neighbors because a full
matrix would be intractable from a memory and computational point of view.
Conversely, we use a dense graph over the generated supervoxels. We exploit the
same criteria of spatial and intensity proximity to define the adjacency graph
using supervoxels as nodes and a distance between averaged positions and inten-
sities as edges. We can thus define a dissimilarity matrix W as:

Wi,j = |Xi − Xj |/SX + α|Ii − Ij |/SI (3)

where i, j are indices of two supervoxels, SX = σ({|Xi − Xj |}i,j) and SI =
σ({|Ii − Ij |}i,j) are respectively the standard deviation of differences in centroid
positions and averaged intensities (X and I) of supervoxels. The balance between
both terms is adjusted using α. We then define an affinity matrix A by using
a Radial Basis Function (RBF) kernel over W such that: A = exp(−γ ∗ W ).
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{If , Is} (a) without permutations and sign flips (b) with permutations and sign flips

Fig. 1. First three eigenvectors with eigenvalue in increasing order without (a) and
with (b) permutations and sign flips (supervoxel graphs built on two close CT scans).

The kernel introduces a non-linearity in the representation, which allows to cap-
ture the non-linear modes of intensity displacements within images. Finally, the
Laplacian graph is built by performing a symmetric normalization of A:

L = I − D−1/2AD−1/2 (4)

where I is the square identity matrix of size |F| for If or |S| for Is, and D is
the diagonal matrix where each diagonal coefficient corresponds to the sum of
coefficients along the rows of L. By normalizing the Laplacian, we construct a
Markov chain over the set of supervoxels whose eigenvectors can intuitively be
interpreted as diffusion modes over the supervoxels graph.

We are now interested in computing the smallest eigenvectors of L. This
can be done with any power-method based algorithm [10] for efficiency or by
computing the full spectrum of L and keeping only the smallest eigenvalues. Since
|F| and |S| are usually small, the computational time for the full spectrum is, in
practice, in the order of a few seconds. While we lose resolution by aggregating
voxels together, we consider the adjacency between all supervoxels, and not only
the closest ones as imposed in dense scenarios. This allows to better capture
global as well as local modes of intensity diffusion within images.

3.2 Rearrangement of the Spectra

The graph building procedure is applied to If and Is. Since we compute eigen-
vectors of two different matrices and expect them to be similar, we should keep
in mind that they are defined up to the sign and to a positive multiplicative con-
stant. To have meaningful correspondences of eigenvectors between two Lapla-
cian matrices, we need to ensure that they match adequately. A second problem
is related to numerical issues: eigenvalues corresponding to the same diffusion
modes in the two images are usually not sorted in the same way. Thus, corre-
sponding eigenvectors between two Laplacians are defined up to a permutation.



Robust Supervoxel Matching Combining Mid-Level Spectral 43

Figure 1a presents an example of supervoxel spectral features without match-
ing correction. We can see matching errors due to a permutation and a sign flip.
To alleviate both problems, we spread the eigenvectors to [−1, 1] by histogram
equalization to eliminate the multiplicative problem and ensure that eigenvec-
tors are globally discriminative. One can then either perform linear assignment
with the Hungarian algorithm [11] over the joint sets of eigenvectors and their
opposites or maximize the correlation in absolute value between eigenvectors,
thus finding iteratively the correspondence and the sign for each one. Figure 1b
shows how the Hungarian algorithm can correct these errors.

Graph decomposition and rearrangement lead to a N -dimensional feature
vector Φ(fi) = {Φn(fi)}n∈{1,...,N} for each fi ∈F where Φn(fi) is the i-th element
of the n-th eigenvector built from If . The same representation Φ(sj) is adopted
for each sj ∈S based on eigenvectors generated from Is and belonging to R

N×|S|.

4 Mid-Level Context-Rich Features

The mid-level spectral representation leads to smoothly varying spatial features
(Fig. 1). We thus supplement spectral features by introducing context-rich fea-
tures extended from voxels [2,3,9] to supervoxels. We do not estimate mid-level
context-rich features on source images [9] as usually performed but extract them
on spectral features to describe their broadened spatial context.

Each supervoxel fi of F is described by its barycenter c(fi) and its mid-level
spectral features Φn(fi). Following [4] and similarly to pixel patches, we exploit
a supervoxel patch structure called superpatch. A superpatch Pr(fi) of radius
r centered on fi aggregates supervoxels fl ∈ F such that ‖c(fl) − c(fi)‖2 ≤ r.
Thus, the superpatch Pr(fi) is built by considering all supervoxels located within
a fixed radius r with respect to fi and contains necessarily fi at least. Spectral
features for each superpatch can be estimated by averaging spectral features
within its boundary Φn[Pr(fi)] = 1

|Pr(fi)|
∑

fl∈Pr(fi)
Φn(fl).

The superpatch concept allows a straightforward extension of context-rich
features from voxels [2,3,9] to supervoxels. In particular, for each eigenvector of
index n ∈ {1, ..., N}, we can assign M mid-level context-rich appearance features
ψ(fi, n) = {ψm(fi, n)}m∈{0,...,M} to each supervoxel fi following:

ψm(fi, n) = Φn[Pr(NΔ(fi))] − b × Φn[Pr′(NΔ′(fi))] (5)

where NΔ(fi) defines an extended supervoxel neighbor of fi reached by applying
displacement Δ starting from barycenter c(fi). Thus, NΔ(fi) corresponds to the
supervoxel containing location c(fi) + Δ. Displacements {Δ,Δ′} are randomly
defined in a ball of maximal radius ε. Radii {r, r′} are computed following r = q×
κ
2 where κ is an averaged inter-barycenter distance (estimated among all adjacent
supervoxels) and q designates an integer randomly generated within {1, 2, ..., Q}.
b ∈ {0, 1} is a binary parameter which selects whether the average spectral
feature differences between two superpatches randomly located in the extended
neighborhood of fi (b = 1) or the value obtained from one single superpatch
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Pr(NΔ(fi)) only (b = 0). Averaged spectral features around fi are included in
the feature vector ψ(fi, n) by forcing Δ = b = 0 for all possible radii r.

By randomly generating many different radii r and offsets Δ, we obtain M
features describing the extended spatial context at a mid-level extend for spec-
tral representations corresponding to the n-th eigenvalue. For each eigenvalue,
{Δ,Δ′, r, r′, b} are randomly generated once and remain similar for each super-
voxel and each image. Conversely, these parameters differ from one eigenvalue to
another. The combination of spectral and context-rich features leads to N × M
features ψ(·) = [ψ(·, 1), ψ(·, 2), ..., ψ(·, N)] ∈ R

N×M assigned to each supervoxel.

5 Results

Experiments focus on data collected from 45 images pairs from 18 examina-
tions, stemming from 7 patients with hepato-cellular carcinoma. Each pair brings
together two dynamic contrast-enhanced (DCE-)CT scans acquired for the same
patient and the same phase (before injection, arterial, early venous or late
venous), at different time points varying from 41 to 700 days (226 in average).
Image pairs are processed both forward (FW) and backward (BW) to get mapping
functions hFW(fi) = sj and hBW(sj) = fi for each supervoxel fi ∈ F and sj ∈ S.

Since supervoxel matching allows a straightforward propagation of anatom-
ical labels, we evaluate the proposed methodology on liver label propagation
results using DICE scores comparing liver propagation and ground-truth (GT)
masks. Supervoxel pairings are also assessed using FW/BW inconsistency scores
defined for each supervoxel similarly to inc(fi) = ‖c(fi) − c(hBW(hFW(fi)))‖2 .

The dataset is used to compare the proposed supervoxel matching combin-
ing mid-level spectral and context-rich features (sm-SC) with baseline techniques
including supervoxel matching through mid-level intensity histogram (sm-I),
spectral (sm-S) and intensity-based context-rich features (sm-IC) only, state-
of-the-art SuperPatchMatch [4] (spm-I) and unsupervised learning-based voxel-
to-supervoxel mapping using pixel-wise intensity-based context-rich features [2]
(uvm-C). Supervoxel pairings for sm-{I,S,IC,SC} are established through near-
est neighbor search contrary to uvm-C which employs voxel-wise random forests
(RF) [12]. sm-I and spm-I use 30 bins intensity histograms. Strategies based on
spectral features (sm-{S,SC}) use N = 17 eigenvectors. The total feature num-
ber for sm-{C,SC} and uvm-C is 600 (595 for sm-SC with N = 17 and M = 35).
Affinity matrices for sm-SC are computed with α = 0.1 (Eq. 3) and γ = 0.1.
Superpatch radii are estimated with Q = 4 for sm-SC and r = 3×κ

2 for spm-I
(Sect. 4) whereas averaged intensities for usm-C are considered with box sizes
{3,5,7,9}. spm-I employs 6 iterations including propagation and random search.
The maximal ball radius used to define extended neighbors for {sm-SC,usm-C}
is ε = 125.

Partitions are made of |F|= |S|=2000 supervoxels defined within areas with
intensities in the [−200, 200] Hounsfield unit range. A SLIC [5] compactness of 0.2
with intensities rescaled to [0, 1] reaches a good trade-off between compactness
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and boundary adherence. Methods are applied with two SLIC decompositions:
without and with a-priori liver segmentation awareness to evaluate supervoxel
matches without being disturbed by boundary adherence issues. With a-priori,
decompositions are separately performed for liver and other abdominal struc-
tures depending on relative volumes and merged to obtain one single partition.

Table 1. Quantitative comparisons of the proposed supervoxel matching combining
mid-level spectral and context-rich features (sm-SC) with baseline techniques (sm-I,
sm-S, sm-IC, spm-I [4], uvm-C [2]) through liver label propagation (DICE) and inconsis-
tency (inc) averaged over the database (FW and BW). Best results are in bold.

SLIC Metric sm-I sm-IC sm-S spm-I [4] uvm-C [2] sm-SC (ours)

no a-priori DICE 58.87 77.84± 0.10 83.26 66.85± 1.78 81.83± 0.12 86.28± 0.06

inc 27.56 10.71± 0.05 8.01 50.19± 1.05 15.89± 0.09 7.46± 0.05

a-priori DICE 60.49 78.89± 0.28 80.31 70.52± 1.07 80.71± 0.13 87.02± 0.10

inc 27.14 10.74± 0.05 8.57 51.67± 2.03 16.20± 0.10 7.70± 0.06

If SLIC [5] Is sm-S sm-SC

source GT sm-S sm-SC

Fig. 2. Assessment of sm-{S,SC} with supervoxel decomposition and pairings, GT and
propagated liver mask (without a-priori).

Average DICE and inc scores, displayed in Table 1, demonstrate that sm-SC
achieves the highest segmentation accuracy along with the lowest inconsistency
in both configurations. Without liver segmentation awareness, significant gains in
DICE (inc) arise with 86.28 (7.46) against 83.26 (8.01) and 81.83 (15.89) for sm-S
and uvm-C respectively. More substantial gains arise using a-priori with DICE
improvements of 6.7 (6.3) with respect to sm-S (uvm-C). sm-{S,SC} outperforms
uvm-C whose computational and memory requirements are much higher since
voxel-wise RF are used. Results show that intensity features ({sm-I,spm-I})
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are not robust enough to discriminate supervoxels without context-rich or spec-
tral descriptions. Compared to sm-S, applying context-rich features on spectral
representations (sm-SC) reaches gains around 6.7 (3.0) and 0.9 (0.55) in DICE and
inc with (without) a-priori. Comparing sm-IC and sm-SC reveals that context-
rich features are more efficient on spectral than CT intensity data. The signif-
icant impact of the newly designed mid-level features are highlighted in Fig. 2
illustrating the accuracy of both supervoxel matching and liver propagation.

6 Conclusion

This work addresses automatic semi-dense image registration relying on robust
supervoxel matching. We propose new multivariate supervoxel representations
embedded in nearest neighbor search. Feature extraction is performed at the
supervoxel level and combines mid-level spectral and context-rich information.
Spectral graph decomposition and spectrum rearrangement are involved to cap-
ture global modes of intensity diffusion within supervoxel adjacency graphs.
Context-rich features extended from voxels to supervoxels are employed to
describe the extended spatial context on resulting spectral representations.
Experiments on liver label propagation between CT image pairs show that our
strategy outperforms state-of-the-art methods while bringing computational and
memory gains. Extending this work to multi-scale supervoxel decomposition
would deserve further investigation to drive the matching process in a coarse-
to-fine fashion. This work also gives new insights for registration initialization,
towards more complex dense deformation model estimation. Finally, we plan to
explore spectral supervoxel matching for multi-phases and multi-modal registra-
tion.

Acknowledgments. This work was partly funded by France Life Imaging (grant
ANR-11-INBS-0006 from Investissements d’Avenir program). We acknowledge Visible
Patient, www.visiblepatient.com, for 3D liver segmentation masks.

References

1. Schnabel, J.A., Heinrich, M.P., Papież, B.W., Brady, J.M.: Advances and chal-
lenges in deformable image registration: from image fusion to complex motion
modelling. Med. Image Anal. 33, 145–148 (2016)

2. Kanavati, F., Tong, T., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D., Glocker,
B.: Supervoxel classification forests for estimating pairwise image correspondences.
Pattern Recogn. 63, 561–569 (2017)

3. Conze, P.H., Tilquin, F., Noblet, V., Rousseau, F., Heitz, F., Pessaux, P.: Hierarchi-
cal multi-scale supervoxel matching using random forests for automatic semi-dense
abdominal image registration. In: International Symposium on Biomedical Imaging
(2017)

4. Giraud, R., Ta, V.T., Bugeau, A., Coupé, P., Papadakis, N.: Superpatchmatch: an
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Abstract. We propose a robust approach to estimate depth maps
designed for stereo camera-based wireless capsule endoscopy. Since there
is no external light source except ones attached to the capsule, we employ
the direct attenuation model to estimate a depth map up to a scale fac-
tor. Afterward, we estimate the scale factor by using sparse feature cor-
respondences. Finally, the estimated depth map is used to guide stereo
matching to recover the detailed structure of the captured scene. We
experimentally verify the proposed method with various images captured
by stereo-type endoscopic capsules in the gastrointestinal tract.

1 Introduction

The wireless capsule endoscope (WCE) is a powerful device to acquire images of
the gastrointestinal (GI) tract for screening, diagnostic, and therapeutic endo-
scopic procedures [1]. Especially, the WCE captures the images of the small
intestine where current wired endoscopic devices cannot reach. In this paper, we
introduce a method to recover the 3D structure from stereo images captured by
a stereo-type WCE, shown in Fig. 1.

To perceive depth from endoscopic images, many researchers have brought
various computer vision techniques such as stereo matching [4], shape-from-
shading (SfS) [2,13], shape-from-focus (SfF) [11], and shape-from-motion
(SfM) [3]. Ciuti et al. [2] adopted the SfS technique because the position of
light sources are known and shading is an important cue in the endoscopic
images. Visentini et al. [13] fused the SfS cue and image feature correspondences
to estimate accurate dense disparity maps. Takeshita et al. [11] introduced an
endoscopic device that estimates depth by using the SfF technique, which uti-
lizes multiple images captured with different focus settings at the same camera
position. Fan et al. [3] established sparse feature correspondences between con-
sequent images, and then, they calculated camera poses and the 3D structure
of the scene by using the SfM technique. They generated 3D meshes through
Delaunay triangulation by using triangulated feature points.

Stereo matching is also a well-known technique to estimate a depth map from
images, which can be divided into active and passive [9] approaches. We refer
c© Springer Nature Switzerland AG 2018
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Fig. 1. Stereo-type wireless endoscopic capsule, wireless receiver, and captured images
in the stomach and the small bowel, from the left.

structured light-based stereo matching [10] to the active approach which projects
a visible or IR pattern to the scene to leverage correspondence searching between
the images. However, the active approach is not suitable for wireless endoscopy
mainly because of the limited resources, e.g., battery capacity and the size of
a capsule. Therefore, previous studies [4] focused on minimally invasive surgery
rather than WCE-based GI examination. For the same reason, most commercial
wireless endoscopic capsules typically adopt conventional passive image sensors.

To the best of our knowledge, commercially available WCE products are not
capable of estimating depth information. This is the first attempt to estimate
the geometric structure of the scene inside the GI tract captured by a WCE.
To achieve this goal, we designed a stereo-type WCE as shown in Fig. 1 without
enlarging the diameter of the capsule. This sensor can capture about 0.12 million
images for the entire GI tract as described in Fig. 1 ranging from the stomach to
the large bowel. Having captured stereo images in one hand, we estimate a fully
dense depth map by using the direct attenuation model. Since there is no external
light source except ones attached to the capsule, farther objects look darker than
nearer one in the captured image. Therefore, we consider the attenuation trend of
the light to estimate depth maps assuming that the medium inside the GI tract
is homogeneous. We firstly employ the direct attenuation model to compute
an up-to-scale depth map, and then, solve the scale ambiguity by using sparse
feature correspondences. Afterward, we utilize the rescaled depth map to guide
a popularly used algorithm, i.e., semi-global matching (SGM) [6]. The detailed
description of the proposed method is given in the following section.

2 Proposed Method

2.1 Capsule Specification

Our wireless endoscopic capsule consists of two cameras, four led lights, a wireless
transmitter, and the battery. Two cameras are displaced about 4 mm, the viewing
angle is 170◦, and the resolution of captured images is 320× 320. The capsule
captures three pairs of images per second. In total, it captures more than 115,000
images for eight hours in the GI tract. Four led lights are attached around the
cameras as shown in Fig. 1. The lights are synchronized with the cameras to
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minimize the battery usage. Captured images are transmitted to the receiver
because the capsule does not have an internal storage. The length of the capsule
is 24 mm and the diameter is 11 mm.

Fig. 2. Sample input images and the depth maps computed by Eq. (5). Here, bright
pixels indicates they are farther than dark ones.

2.2 Depth Estimation with the Direct Attenuation Model

Since the captured image has poor visibility, the image for each pixel p can be
modeled as [5]

I(p) = J(p)t(p) + A(1 − t(p)), (1)

where J is the scene radiance, I is the observed intensity, t is the transmis-
sion map, and A is the atmospheric light. Since there is no source of natural
illumination such as sunlight, A can be dropped from Eq. (1). Then, t can be
defined as

t(p) = I(p)/J(p). (2)

The transmission map also can be defined by Bouguer’s exponential law of atten-
uation [8],

t(p) = exp (−β(p)d(p)), (3)

where an attenuation coefficient β(p) is typically represented by sum of absorp-
tion and scattering coefficients, β(p) = βabsortion(p) + βscatter(p). By combining
Eqs. (2) and (3), the depth of a pixel p can be estimated as

d(p) =
ln(J(p)) − ln(I(p))

β(p)
≈ ln(Ī) − ln(I(p))

β
. (4)

To simplify Eq.(4), we approximate two terms J(p) and β(p) by considering
characteristics of the GI tract. First, assuming that the GI tract is filled with a
homogeneous matter such as water, the attenuation coefficient β(p) is approxi-
mated as a constant value for all pixels, β ≈ β(p). Second, we also approximate
the scene radiance as the mean of all pixel values as J(p) ≈ Ī based on the
assumption that most pixels have a similar color in a local GI region. Based on
the second assumption, we easily obtain the depth map up to a scale factor β,

dβ(p) = β d(p) = ln(Ī) − ln(I(p)). (5)
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Here, the depth map dβ(p) indicates a depth map up to scale factor β. In the
following section, we estimate β. Beforehand, we apply a noise removal filter to
smooth dβ(p) by using a well-known bilateral filter [12].

2.3 Resolving the Scale Ambiguity of dβ

To resolve the scale ambiguity of dβ(p), we compute β from by using sparse
feature correspondences. First, we detect and match corner points. Then, we
compute the depth of p, ds(p),

ds(p) =
fB

|pL
x − pR

x | , (6)

where pL
x and pR

x are the positions of matched points from the left and right
images along the x-axis, f is the focal length of the left camera, B is the baseline
between two cameras. Since each corner point has corresponding dβ(p), β can
be computed by

β = dβ(p)/ds(p). (7)

Assuming that β is constant for all pixels, we find an optimal β, β∗, that maxi-
mizes the number of inlier points whose error is smaller than a threshold value, τc.

β∗ = arg max
β∈B

∑
p∈S T (p, β, τc),

T (p, β, τc) =
{

1 if |ds(p) − dβ(p)/β| ≤ τc

0 otherwise. ,
(8)

where B is the set of β values computed from all feature correspondences and
S is the set of correspondences’ positions in the image coordinate. The function
T gives 1, if the discrepancy between ds(p) and rescaled dβ(p) is small, and 0,
otherwise. Therefore, the estimated β∗ minimizes the gap between ds and dβ/β.
We thus rescale dβ(p) and compute its corresponding disparity map as

d̄β(p) =
dβ(p)

β∗ , D̄β(p) =
fB

d̄β(p)
. (9)

We utilize the rescaled disparity map D̄β(p) to leverage stereo matching.

2.4 Robust Stereo Matching Using a Guidance Depth Map

We slightly modify the SGM algorithm [6] to compute the disparity map D(p)
which minimizes the following energy function,

E(d) =
∑

p
(φ(p,D(p)) + ψ(p,D(p)))

+
∑

q∈Np

P1T [|D(p) − D(q)| = 1] +
∑

q∈Np

P2T [|D(p) − D(q)| > 1]. (10)
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In the first term, the function φ(·, ·) is the pixel-wise matching cost, computed by
using Census-based hamming distance and absolute difference of intensities (AD-
CENSUS). The function ψ(·, ·) is also the pixel-wise matching cost computed by
using D̄β(p),

ψ(p,D(p)) =
{ |D̄β(p) − D(p)| if |D̄β(p) − D(p)| ≤ τerr

c otherwise . (11)

The second term gives the penalty P1 for the pixels having small disparity dif-
ferences with the neighboring pixels q∈ Np, i.e., T [|D(p) − D(q)| = 1] gives 1
when the difference of disparity values is 1. Similarly, the third term gives the
large penalty P2 such that P2 > P1 for the pixels having disparity differences
greater than 1 with the neighboring pixels. We minimize Eq. 10 by using the SGM
method [6]. As a post-processing step, we apply the weighted median filter [7].
Finally, we obtain the depth map from the disparity map by d(p) = fB/D(p).

Fig. 3. Comparison of disparity maps and reconstructed 3D structures.
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Fig. 4. Comparison reconstructed 3D structures.

3 Experimental Results

Computing depth maps from endoscopic images is difficult, mainly because of
difficulties caused by the characteristics of the GI tract and the limited resources
of the capsule. The difficulties are summarized as (1) inaccurate matching due
to lens distortion, (2) low resolution image, (3) image noise caused by the lack
of illumination.

Note that the proposed method without the direct attenuation model and
its cost function terms in Eqs. (10) and (11) is identical to the popularly used
stereo matching algorithm, SGM [6]. Therefore, we qualitatively compare results
of the proposed method with the conventional SGM to demonstrate the advan-
tages of the proposed method under the aforementioned difficulties. To achieve
fair comparison and to explicitly demonstrate the advantages of the proposed
method, we used the same similarity measure and parameters for the SGM and
the proposed method.
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In the first experiment, we used the images of a stomach and a small bowel
captured by our stereo-type WCE. In the second experiment, we used the large
bowel Phantom model1 not only to capture endoscopic images but also to com-
pare the actual size of an object with the estimated size.

Qualitative Evaluation: Most importantly, the proposed method acquires
fully dense depth maps whereas the conventional approach fails at non-
overlapping regions because pixels of the left image in non-overlapping regions
do not have corresponding pixels of the right image. Moreover, since we used a
large field of view cameras, the proportion of non-overlapping regions is about
30∼50% depending on the distance of the captured scene from the camera.
Computed disparity values in non-overlapping regions are noisy as shown in
Fig. 3(b) where noisy disparity values are exceptionally brighter than others in
the disparity map although they should show similar disparity as seen in the
scene structure of Fig. 3(a). The noisy disparity values become more conspicu-
ous when they are represented in the 3D space as shown in Fig. 3(d), and those
noisy disparity values seem to float the space so that they obstruct to see the
underlying 3D structure. Differently, the proposed method accurately recovers
the 3D structure of the scene as shown in Fig. 3(e) because the proposed cost
function with the direct attenuation model well suppresses uncertainties caused
by radial distortion and low light noise. In addition, the depth map based on
the direct attenuation model effectively enforces the proposed cost function to
reconstruct the depth in non-overlapping regions as shown in Fig. 3(c).

As discussed in the introduction, the main advantage of the WCE is that it
can capture not only stomach images but also images of small bowel where typical
wired endoscopic devices cannot reach. Similar to the results demonstrated in
Fig. 3, the proposed method reconstruct 3D structures of the local stomach and
small bowel regions more robustly than the SGM as shown in Figs. 4(c) and (d),
and effectively estimates dense depth maps in non-overlapping regions as shown
in Figs. 4(a) and (b).

Application for Diagnosis: We also show an application of the proposed
method for diagnosis. Using estimated depth information, we estimate the size of
an object of interest by clicking two points from the image as shown in Figs. 5(a)
and (c). In this experiment, we used the large bowel Phantom model and two
different types of polyps whose size is known. As shown in Figs. 5, the estimated
size is quite similar to the actual size in which the error was at most 0.5 mm.
This procedure has long relied on the experienced doctor or endoscopist.

Parameter Settings and Running Time: We used 7 × 9 window to com-
pute census-based matching cost computation, and set P1 and P2 to 11 and 19,
respectively. The average running time of the proposed method was about 10ms,
implemented on a modern GPU, GTX Titan Xp.

1 https://www.buyamag.com/digestive system models.php.

https://www.buyamag.com/digestive_system_models.php
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Fig. 5. Size estimation results with a large bowel Phantom model

4 Conclusion

We have proposed a stereo matching algorithm designed for a stereo-type wire-
less capsule endoscopy. We obtained an up-to-scale depth map by using the
direct attenuation model because of the light source around the capsule in the
completely dark environment. Thereafter, we employed the up-to-scale depth
map to guide conventional stereo matching algorithms after resolving the scale
ambiguity. Through the experiments, we observed that the proposed method can
estimate depth maps accurately and robustly in the GI tract.
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Abstract. In this project, our goal is to classify different types of liver
tissue on 3D multi-parameter magnetic resonance images in patients with
hepatocellular carcinoma. In these cases, 3D fully annotated segmen-
tation masks from experts are expensive to acquire, thus the dataset
available for training a predictive model is usually small. To achieve the
goal, we designed a novel deep convolutional neural network that incor-
porates auto-context elements directly into a U-net-like architecture. We
used a patch-based strategy with a weighted sampling procedure in order
to train on a sufficient number of samples. Furthermore, we designed a
multi-resolution and multi-phase training framework to reduce the learn-
ing space and to increase the regularization of the model. Our method
was tested on images from 20 patients and yielded promising results, out-
performing standard neural network approaches as well as a benchmark
method for liver tissue classification.

Keywords: Tissue classification · Convolutional neural network
Auto-context · Multi-phase training · Hepatocellular carcinoma
Magnetic resonance imaging

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancer types and
the leading cause in cancer-related death [4]. Multi-parameter dynamic con-
trast enhanced (DCE) magnetic resonance (MR) images are commonly used as
a diagnostic tool for suspected HCC cases and are important for defining treat-
ment targets and predicting outcomes for a number of therapeutic strategies
including transarterial chemoembolization (TACE) [3]. In this work, we are inter-
ested in classifying liver tissue into clinically relevant types on 3D MR images:
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parenchyma and anomalies that consist of viable tumor tissue and necrosis tis-
sue. Recent developments in the design of deep convolutional neural networks
(CNN) provide ways to construct powerful models that can extract both low and
high level features from images that are usually difficult to formulate with tradi-
tional methods and draw accurate inferences [5]. However, such models typically
need a large amount of expert curated labels. This is particularly expensive in
our case as the training requires 3D fully annotated segmentation masks from
radiologists.

To overcome these challenges, we designed a novel CNN model that incor-
porates contextual information to perform classification in a local patch region.
The input patches were sampled at a fixed size but with different resolutions,
in order to capture information from different scales efficiently. We developed
an auto-context-based multi-level architecture that, when coupled with a multi-
phase training procedure, can effectively learn and predict at different levels.
The learning space needed for the each level of the model was thus reduced,
since it only needed to learn the incremental difference based on the learner in
the previous level.

Several other works have explored the similar idea of combining CNN and
auto-context [6,9]. Here we want to point out the difference. In a popular study
[6], auto-context is applied outside the classifier to refine classification perfor-
mance. Our algorithm, in contrast, applies auto-context within the multi-level
classifier, efficiently integrating contextual information from multi-resolution
patch samples to address the small dataset problem.

The main contributions of this work are threefold: (1) It is the first deep neu-
ral network approach to segment tissue types on multi-parameter MR images in
HCC patients without the need of manually designing image features [7]. While
deep CNNs have been developed for liver tumor segmentation from CT images
[1,2], such approaches have not been applied to MR images. (2) It incorporates a
novel auto-context based CNN model design combined with a multi-phase train-
ing strategy that encourages the model to utilize contextual information from
the previous phase. This hierarchical combination of several predictive units is
shown to out-perform the use of a single U-net model given the available data
pool without overfitting. (3) It creatively addresses the data deficiency prob-
lem by sampling the image at different resolutions under a patch based learning
scheme. These multi-resolution patches effectively integrate image information
from different scales yet maintain a relatively low input dimensionality. Overall,
we see the methodology employed in this work as being generalizable to a num-
ber of other detection and segmentation tasks in biomedical images where full
image annotation is difficult to acquire.

2 Proposed Method

2.1 Data Preprocessing

We adopted a patch-based learning scheme in our study to address the data
deficiency problem, as the model would only need to learn the probability distri-



Liver Tissue Classification using Multi-phase CNN 61

Fig. 1. Overall structure. Subfigure (a) illustrates the overall architecture of the model.
x(k)’s are the patches sampled from the image at resolution k’s, y(k)’s are the corre-
sponding output of each unit k. m(k)’s are different sizes of Gaussian-shape masks
applied to y(k)’s to emphasize prediction performance at the center of patches. Dashed
lines between x(k)’s and the units means connections are optional. Subfigure (b) illus-
trates the sampling patterns at different resolutions: the same window dimension, but
different voxel-to-voxel distance

bution of each voxel at a local patch region. In addition, we designed a weighted
sampling procedure to address the class imbalance problem. On average, anoma-
lies account for only 10% of the total liver tissue. We thus re-balanced the class
by forcing a sampling frequency of 50% parenchyma and 50% anomalies.

We also implemented a novel multi-resolution sampling procedure to incorpo-
rate image information at different scales in each patch. This is useful for detect-
ing and delineating anomalies at different sizes (Fig. 1a). This multi-resolution
sampling method has two advantages over simply expanding the patch size with
a fixed resolution. First, the fixed patch size is more convenient to work with
in CNNs. Second, the number of voxels in the input array is greatly reduced to
improve computation efficiency.

To further handle the small dataset problem, we used data augmentation.
Each time a patch was sampled, a 3D random rotation was applied.

2.2 Multi-level Hierarchical Architecture

The architecture we proposed is illustrated in Fig. 1b. The whole model consists
of three basic units. In general, each unit k can be any CNN that outputs a
probability map, but in this study we adopted the U-net architecture due to its
elegant design and powerful performance [5]. The entire model took in image
patches sampled at different resolutions and output predictions at those reso-
lutions. The connection from output yk from each unit to its higher level unit
draws inspiration from the research in auto-context [8].

We used a weighted cross entropy as our loss function to update the weights in
the neural network (Eq. 1), and a weighted dice similarity coefficient to monitor
the training process and to select the best model (Eq. 2).

loss = −
∑

x

∑

i

m(x)ω(i)p(x, i) log(q(x, i)) (1)
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Ωh,i(x) = 1argmax
j

h(x,j)=i

metrici =
2
∑

x m(x)Ωp,i(x)Ωq,i(x)∑
x m(x)Ωp,i(x) +

∑
x m(x)Ωq,i(x)

metric =
∑

i

αi · metrici

(2)

In Eqs. (1) and (2), x is the location inside the patch, i is the class, p is the true
probability distribution, taking only values of 0 or 1, q is the predicted proba-
bility distribution, m is a Gaussian shape mask to emphasize the performance
at the center of the patch, ω and α are the weights in the loss function and the
metric that are set to accentuate performance on certain classes, and Ωh,i is the
segmentation mask for class i based on a probability map h.

2.3 Multi-phase Training Procedure

During the training process, the model was trained in three coarse-to-fine phases.
For example, in the first phase of training, weights in unit 3 were updated, while
weights in unit 2 and 1 were frozen; then in the second phase of training, weights
in unit 2 were updated, while those in unit 3 and 1 were frozen. This multi-phase
training procedure was employed to reduce the risk of overfitting for the whole
model and it was based on our intuition that the output of each unit should
function as a coarse estimation at its resolution. This regularization is helpful in
our case for two reasons: (1) Our image data pool is limited even with random
sampling and rotation-based data augmentation. (2) The ground truth is not
necessarily reliable as manual segmentation in noisy 3D images is prone to errors.
Similar methodology has been reported in several recent works [10].

2.4 Data Postprocessing

During the prediction step, the predicted probability map for the whole image
was assembled together by summing all predicted patches with overlap while
each patch is weighted by a Gaussian mask as specified in Eq. 1, since the model
was trained to emphasize the performance at the center of the patch. Simple
post processing was used to get rid of small anomalies in the predicted masks by
setting the label of those anomalies whose volume were under a certain threshold
to parenchyma.

3 Experiments and Results

3.1 Experiment Setup

The image data we used included 20 sets of multi-parameter 3D MR images,
each of which consisted of one T2 weighted MR image and three T1 weighted
dynamic enhanced contrast images at three different time points during the
surgical intervention: pre-contrast phase (before the contrast injection), arterial
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(a) ground truth (b) method 1 (c) method 2 (d) benchmark

(e) first phase (f) second phase (g) third phase

Fig. 2. Segmentation demonstration. Red color is the parenchyma, green color is the
viable tumor tissue, blue color is the necrosis. Subfigure 2a shows an expert delineation
of some viable tumor tissue and necrosis. Subfigures 2b to d show the prediction results
from three other methods, namely single-resolution input single-phase training, multi-
resolution input single-phase training, and the benchmark method, manually designed
features with random forest in auto-context, as described in Sect. 3.1. Subfigures 2e to
g show the three-phase coarse-to-fine prediction progression in the proposed method.
Visualization is provided using the software itk-SNAP. (Color figure online)

phase (20 s after the injection), and venous phase (70 s after the injection). All
four images were mutually registered. Though a full automation that included
liver segmentation was possible under our framework, liver masks were provided
in order to achieve a fair comparison with the benchmark method, and to focus
on the problem of the delineation inside the liver. Each patient’s image intensity
was normalized to roughly between 0 and 1.

Images used in this study are from HCC patients with TACE procedures as
part of a larger clinical study on treatment outcome analysis. In these cases, the
number of anomalies often ranges from 1 to 3, with diameter over 20 mm. During
the TACE procedure, the largest tumors are the most important targets. There-
fore the resolutions were selected as 2 mm, 1 mm and 1 mm, with a patch size
of 16-by-16-by-16 voxels, in order to focus on performance on medium and large
size tumors. The 20-patient dataset generated effectively 1700 non-overlapping
patches, though with random sampling and random rotation augmentation, no
patches would be exactly the same.

The first two units of the model were designed to differentiate anomalies
from normal liver tissue, while the last one was designed to identify viable tumor



64 F. Zhang et al.

tissue inside each detected anomaly. This was done by tuning the class weight
ω in the loss function (Eq. 1). In phase 1, the ω’s for parenchyma, viable tumor
tissue, and necrosis are (1.0, 2.0, 0.3), phase 2 (1.0, 1.5, 0.3), and phase 3 (0.0,
1.0, 2.0). For each unit in the model, we implemented a U-net CNN with ten
layers of 3 × 3 × 3 convolution, ten layers of dropout, and two levels of max-
pooling/upsampling. Five fold cross validation method was used to evaluate the
performance of different models. Hyperparameters, such as learning rate and
class weights in the loss functions, remained the same across all five folds.

3.2 A Combination of Measurements

In our evaluation of the method, we also included a two-step measurement
instead of solely the traditional dice similarity coefficient (DSC). First, we cal-
culated how well the anomalies were detected using F score (Eq. 3).

Fβ =
(1 + β2) · true positive

(1 + β2) · true positive + β2 · false positive + false negative
(3)

We set β = 2 to reflect the emphasis on recall rate in a clinical setting. An
anomaly is detected if part of its voxels are covered by some predicted masks.
Second, we measured how good the delineation was by aggregating all regions of
interest (anomalies and viable tumor tissue) together and calculating the DSC.
We provide a toy example to further explain the difference between the detection
metric and the delineation metric in Fig. 3.

Fig. 3. Examples of difference between detection and delineation. Blue regions stand
for anomalies. Orange regions stand for predictions. Subfigure (a): good delineation
(high DSC), poor detection (low F score). Subfigure (b): medium delineation, good
detection. Subfigure (c): poor delineation, good detection. (Color figure online)

3.3 Results

Figure 2 demonstrates an example of the proposed algorithm output. Table 1
summarizes the results in our study. The different rows in the method column
describe whether the model utilized multi-resolution input, or only the resolution
at the lowest level; whether it trained the model with a multi-phase strategy, or
without. The single-resolution input single-phase training method is equivalent
to the traditional U-net method. The benchmark method uses manually designed
image features with random forest and iteratively trained auto-context classifiers
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Table 1. Evaluation of different methods using a set of measurements.

method Delineation: DSC detection:
F score

Anomaly
mass

Viable tumor
tissue

Multi-resolution input
Multi-phase training

0.77 0.63 0.80

Multi-resolution input
single-phase training

0.66 0.43 0.83

Single-resolution input
single-phase training

0.68 0.48 0.81

Benchmark method 0.72 0.62 0.79

Fig. 4. Models’ ability to delineate anomalies vs. their sizes. Small anomalies: < 25mm
diameter, medium: 25 − 40 mm, large: > 40mm.

as described in [7]. Figure 4 describes how well the different models delineate
anomalies at different sizes.

We make several observations from the results we present here.

1. The proposed method achieved the best overall anomaly and viable tumor
tissue delineation performance, compared to both other CNN-based methods
and the benchmark method.

2. The proposed method was tuned towards and did achieve the best perfor-
mance in delineating medium and large size anomalies which the TACE pro-
cedure was targeting.

3. The proposed method was highly efficient in implementation. The whole
model was trained within 90 min without the need of manually designing
complex image features, while it took 18 hours for the benchmark method to
finish running on a better machine.

4 Conclusion

In this work we presented a deep neural network approach to detect and delin-
eate different types of liver tissue on multi-parameter MR images in patients
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with HCC. The patch-based algorithm was able to achieve a performance level
that was better than the benchmark method without the need of manually
designing different shape and texture features, with an implementation that
was much more efficient. The multi-resolution input, the auto-context design
and the multi-phase training procedure were helpful in improving overall perfor-
mance compared to the traditional U-net architecture. In the future, this method
can be applied to a full delineation of the liver tissue with any number of hier-
archical tissue types, including the liver itself. In addition, this methodology
can be applied to a number of other detection and delineation problems in the
biomedical imaging field.
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Abstract. In the last years, convolutional neural networks (CNN) have
been largely used to address a wide range of image analysis problems.
In medical imaging, their importance increased exponentially despite
of known difficulties in building large annotated training datasets in
medicine. When it comes to 3D image exams analysis, 3D convolutional
networks commonly represent the state-of-art, but can easily became
computationally prohibitive due to the massive amount of data and pro-
cessing involved. This scenario creates opportunities for methods that
deliver competitive results while promoting efficiency in data usage and
processing time. In this context, this paper proposes a comprehensive 1D
patch-based data representation model to be used in an efficient cascaded
approach for lung nodules false positive reduction. The proposed pipeline
combines three convolutional networks: a 3D network that uses regular
multi-scale volumetric patches, a 2D network that uses a trigonometric
bi-dimensional representation of these patches, and a 1D network that
uses a very compact 1D patch representation for filtering obvious cases.
We run our experiments using the publicly available LUNA challenge
dataset and demonstrate that the proposed cascaded approach achieves
very competitive results while using up to 55 times less data in aver-
age and running around 3.5 times faster in average when compared to
regular 3D CNNs.

Keywords: Convolutional neural networks · Deep learning
Dimension reduction · Medical imaging · Lung nodules

1 Introduction

Convolutional neural networks (CNNs) are widely used for image analysis in
many different fields for a variety of purposes. In medical imaging they support
image segmentation and classification, exams retrieval, and aid in diagnosis in
general, aiming at assisting specialists to analyze more exams in less time with
higher precision. Extensive reviews of deep learning usage in medical imaging
can be found in the literature [4,7].
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Considering 2D image analysis, CNNs leveraged performance in classification
and segmentation to very high standards, and close to real-time testing perfor-
mances. When it comes to 3D high-definition exams, however, many usual archi-
tectures struggle with the associated computational cost and data usage. This
scenario creates opportunities for innovative CNN-based methods that reduce
the computational cost of 3D image analysis but still deliver competitive accu-
racy performance when compared to full 3D models.

In this context, this paper presents an innovative cascaded multi-scale app-
roach that combines three different networks using different data representa-
tions: a regular 3D CNN that uses three different scales of volumetric patches
around a point candidate; a 2D CNN proposed by [5] that uses a comprehensive
bi-dimensional patch representation that achieves better performance in com-
parison to regular orthonormal planes; and a 1D CNN herein proposed that
subsamples the bi-dimensional patches into a 1D very compact signature, that
is used to filter more obvious candidates. In this approach all candidates are
evaluated by the 1D network, tricky candidates are passed to the 2D network
that further evaluate them, and hard cases are evaluated by the 3D network.
This way we create a pipeline that delivers a fast and low data usage alternative
targeting at real-time micro-services for patch-based nodule analysis.

We tested our approach using the lung nodule false positive (FP) reduction
track in the publicly available data of LUNA (LUng Nodule Analysis) challenge
and achieved over benchmark results using less data and running faster in com-
parison to regular 3D CNNs. Our results show the potential of our method, and
results from an extensive list of methods using the same data and experiment
design can be found in [6].

The remainder of this paper is organized as follows: in Sect. 2 we briefly
describe our cascaded approach and the data representation used in each CNN.
Then, we describe our experiments in Sect. 3 and present our results and discus-
sions in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Methodology

Traditionally, tools for aid in lung nodules detection use image processing tech-
niques to generate a large number of candidates to be further analyzed [6].
Formally, a given q-th nodule candidate might be represented by its position
in 3D, rq = (iq, jq, kq) and its label �q ∈ [0, 1], where �q = 0 indicates a false
nodule and �q = 1 indicates a true nodule. Classification methods filter the list
of candidates and narrow it down to strong candidates that should be visually
inspected by a specialist. An usual bottleneck in the process happens when the
number of candidates remaining to be checked (false positives) is too high. In
this context, LUNA challenge proposed a track to reduce this bottleneck and
foster the development of methods for lung nodule false positive reduction.
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2.1 3D CNN Data Representation

An usual pipeline for FP reduction consists in going through a list of nodule
candidates, sampling patches using their neighbouring volume, and classifying
the patches. The most intuitive way of representing a volumetric patch of interest
in medical imaging is to sample a cube of size ∼ δ3 centered at a point of interest.
This sampling is spatially coherent and contains all the raw data information
within a defined neighborhood but is usually very inefficient both in terms of
memory usage and the computational cost when using 3D CNNs.

2.2 2D CNN Data Representation

To overcome computational performance issues, many approaches (as reported
in [6]) propose to sample the 3D neighbourhood of a given voxel by means of
2D cross sections of size ∼ δ2 corresponding to its axial, coronal and sagittal
views. Such representation provides an overview of the voxel neighbourhood
and requires lower computational cost and memory usage compared to the 3D
sampling. However, this sampling approach leaves much of the 3D information
behind and usually delivers poor results in comparison to 3D models. Some
alternatives like [2], propose using several planes randomly oriented to get more
information, at the cost of increasing data usage and computational burden.

In [5], a data representation method was proposed to sample volumetric
patches by means of comprehensive curved bi-dimensional patches, proven to
allow better performance in 2D CNNs classification. In this paper, we extend
this representation and deliver a very compact 1D signature to represent 3D
patches.

The basal data representation method proposed by [5] uses a parametric
function shown in Eq. 1 to visit the N sampling points u = (x, y, z) in the
neighbourhood of a candidate r = (i, j, k). In Eq. 1, t ∈ [0, N − 1], and the
sampling rate is determined by N and the frequency ω. Figure 1-I-B illustrates
the sampling points for N = 150 and ω = 50, generating 3 blades.

⎡
⎣

z
x
y

⎤
⎦ =

⎡
⎣

2t/(N − 1) − 1
sin (arccos (z)) cos (zωπ)
sin (arccos (z)) sin (zωπ)

⎤
⎦ (1)

For each sampling point u = (x, y, z), a line segment that goes from r− 1
2δu to

r+ 1
2δu is computed. The parameter δ defines the length of the line segments and

ultimately the size of the neighborhood of u to be sampled. Finally, intensities
are probed from the 3D volume along the line segments as shown in Fig. 1-I-B/C.
The sampling points and the corresponding line segments form b = N/ω blades
in the xy-axis projection. Figure 1-C shows one of the three blades obtained for
the configuration N = 150 and ω = 50.

Line segments belonging to the same blade are stacked side-by-side to gen-
erate b 2D patches of size ω × δ. In our cascaded method experiments, we used
N = 150 and ω = 50, resulting in b = 3 blades. Examples of cross section views
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Fig. 1. Data representation using our method considering 3-blades and the usual axial,
coronal and sagittal cross-sections at three different scales.

and corresponding trigonometric patches are shown in Fig. 1-II/III-left. Consid-
ering a roughly spherical high-intensity nodule, Fig. 1-III-left depicts a bright
circular area in the usual cross-section views, and a bright central area in the
transformed 2D trigonometric patch. A given false nodule candidate shown in
Fig. 1-II-left, appears as an irregular object in both the trigonometric patch and
its corresponding cross-section views.

2.3 1D CNN Data Representation

To extend the trigonometric 2D data representation we derived a simple yet
highly compressed 1D signature from the 2D trigonometric patches: we use a
regular grid over the bi-dimensional image and visit it column-wise, concatenat-
ing the samples in a single vector. This is equivalent to sample rays crossing the
nodule candidate center, ordered by an uniform tri-dimensional trigonometric
curve. More specifically, each 1D signature corresponds to the intensity along
evenly spaced line segments defined by a given trigonometric patch, as high-
lighted by the red lines in Fig. 1-I-C/D.

One can notice that 1D signatures of true nodules and false nodules are very
different (and therefore highly discriminant), as illustrated by the signatures
examples shown in Fig. 1-II/III-right. The true nodule signature resembles as
rough square wave, while false nodules present more complex patterns.

2.4 CNN Architecture

Through all our experiments we used the Xception architecture proposed by [1]
for binary classification. We also created an equivalent 3D model by replacing
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the 2D convolutional layers by 3D convolutional layers, and an equivalent 1D
model by replacing the 2D convolutional layers by 1D convolutional layers. We
used these three architectures to compare the performance between our cascaded
approach, the usual 3D CNN, the cross-section 2D CNN, the trigonometric 2D
CNN, and the 1D signature CNN in the context of the LUNA false positive
reduction track.

2.5 Our Cascaded Approach

To fully benefit from such compact data representation, we propose a cascaded
schema, where we evaluate samples by demand and deliver a highly accurate
yet efficient classification pipeline, shown in Fig. 2. In this approach, we begin
evaluating all nodule candidates using their 1D signatures using the very efficient
1D network. Then, we check the outcome and remove all nodules with likelihood
of being a nodule less than a threshold E (in our experiments we tested E equal
to 1%, 5% and 10%), considered to be correctly classified as non-nodules. We
generate the bi-dimensional trigonometric patches from the remaining nodule
candidates and feed them to a 2D CNN, and then check the outcome and filter
nodules with likelihood less than the pre-defined threshold. Finally, we submit
the remaining nodules to the 3D network and compile the final outcome.

This schema allow us to evaluate candidates with high probability of being
a nodule using very accurate 3D networks, while filtering many of the obvious
non-nodule candidates using much more efficient networks. Figure 2 illustrate
the process, and show the gains in data usage and processing time in each step.
We show further benefits of such approach in the results section.

Fig. 2. Our cascaded approach: nodule candidates are fed to a 1D network, obvious
non-nodules are filtered, remaining nodules are further evaluated by a 2D network.
Again, obvious non-nodule candidates are filtered, and the remaining ones are evaluated
by the very accurate 3D network. Such schema delivers highly accurate and efficient
results.

3 Experiments Design

3.1 Data

The data used in our experiments was made publicly available by the LUNA
2016 challenge [6]. The LIDC/IDRI database is composed by 888 CT scans with
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nodule annotations provided by different specialists for nodules with diameter
greater than 3 mm.

As pre-processing, we extracted 3D patches from the CT exams in
three different scales: 10 mm × 10 mm × 10 mm, 25 mm × 25 mm × 25 mm and
40 mm × 40 mm × 40 mm, each of them sampled as 50 × 50× 50 patches. Each
scale was represented as a different channel, meaning that final 3D patches have
50× 50 × 50 × 3 = 375 k voxels. We also created 2D data representations from
these 3D patches using the trigonometric sampling approach used in this paper,
and regular cross-sections for comparison matters, generating 150 × 50 × 3 =
22.5 k pixels images, where 3 is the number of cross-sections/blades used, and
150 are the three scales concatenated. For 1D signatures, we sub-sampled the
trigonometric patches and generated a single 450 positions array, composed by
50 samples per patch, per scale, all concatenated with a 5 pixels spacing regular
grid.

3.2 Training and Testing Procedures

The CNN models were trained using the 10-fold cross-validation schema pro-
posed in LUNA challenge. For each fold we used nine subsets for training, and
the remaining one for testing the trained model. In our experiments, we used 1
subset of the training data for validation and Adam for weights optimization.
We trained our models in two sequences of 20 epochs, and augmented the nodule
class samples using the random rotations. We also sub-sampled at random the
non-nodule class to balance the training dataset, comprising a total of 75000
samples per epoch evenly balanced. During the test we provided 3 different
samples for each nodule candidate by rotating at random the sample for each
model, averaging the outcome. This way we avoid penalizing candidates with a
controversial orientation.

The LUNA challenge evaluation tool was used for the final score. In this tool,
each cross-validation fold was submitted to the corresponding trained model and
compiled into a single 10-folds table that was evaluated using the script provided
by the challenge. The script implements the free receiver operation characteris-
tic (FROC) analysis and uses a bootstrap with 95% confidence interval to set
different thresholds on the raw prediction probabilities, to deliver the percentage
of average number of false positives per scan. Details are provided in [6].

4 Results and Discussion

Our experiments aimed at evaluating the benefits of using the proposed 1D
signatures in a cascaded approach and to compare with other usual models. We
evaluated the models accuracy in terms of false positive reduction rate and also
analyzed the performance in terms of data usage and execution time. Note that
the analysis of other CNN architectures and an extensive analysis of Xception
architecture parameters could potentially improve results, but this is beyond the
scope of this paper.
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Fig. 3. FROC curves representing the performance of our method compared to 3D
patches, trigonometric patches, cross-sections patches, the proposed one-dimensional
signatures and the available state-of-art in the literature.

Our results show that the cascaded schema herein proposed delivers superior
performance when compared to 3D CNNs, CNNs using 2D trigonometric patches
proposed by [5], CNNs using regular 2D cross-section patches and CNNs using
only the 1D signatures also presented in this paper. It also performed better
than the current benchmark ([3]) for lung nodules false positive reduction, which
demonstrates the potential of such approach. These results are compiled in Fig. 3.

In terms of processing time, our approach evaluated candidates 3.5 faster
than a regular 3D CNN, while using up to 50 times less data. We also noticed
that increasing the threshold E saves a great amount of data usage, but repre-
sents a drop in accuracy, as expected and shown by the red curves in Fig. 3.

Table 1. Accuracy at 2 false positives per exam, data usage, and execution time per
testing sample (including sampling time) in different configurations using a K40 GPU.

Method Acc@2FP Data usage Proc. time per sample

Dou et al. [3] 0.878 – –

3D CNN 0.862 375 k 102.87 ms

2D-trigonometric CNN [5] 0.814 22.5 k 16.78 ms

2D-cross-sections CNN 0.749 22.5 k 16.85 ms

1D-proposed CNN 0.709 0.45 k 30.21 ms

Our cascaded approach 1% 0.907 17.86 k 29.99 ms

Our cascaded approach 5% 0.876 8.93 k 30.08 ms

Our cascaded approach 10% 0.863 6.9 k 30.19 ms
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An interesting counter intuitive phenomenon was observed when we noticed
that 1D CNNs processing time is higher than the ones observed in 2D CNNs. We
believe this is related to two aspects: first, sampling 1D signatures is slower: we
sample the trigonometric patch, than we extract the signatures; second, the 2D
Xception architecture is optimized to run 1D convolutions, so processing time
results were expected to be highly competitive. Even if we decided to prioritize
data usage targeting micro-services, and evaluated the 1D signatures first in the
cascaded schema, one could easily alter its order and run the 2D analysis first
to prioritize processing time saving (Table 1).

5 Conclusions

This paper presents a very compact patch-based data representation model to
be used within a cascaded approach for lung nodules false positive reduction. We
extend the trigonometric patch data representation method presented in [5], and
propose a method for generating one-dimensional signatures that derive highly
accurate results while saving data usage and processing time.

We run several experiments to demonstrate the suitability of our approach
for efficient CNN-based volumetric patch classification. We managed to deliver
over benchmark results (0.907 acc@2FP in our best configuration against 0.878
with most commonly documented benchmark method) using up to 55 times
less data in average and running around 3.5 times faster in average when
compared to a single 3D CNN. These results seem to support our initial hypoth-
esis that compact data representation can be used for filtering obvious cases and
improve overall performance and efficiency if used on-demand with state-of-art
approaches.

Further work would probably involve exploring different functions for mod-
elling the data representation and improving the CNN architecture itself to
increase performance using compact data representations.
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Abstract. Multiple Myeloma (MM) is a bone marrow malignancy
affecting the generation pathway of plasma cells and B-lymphocytes. It
results in their uncontrolled proliferation and malignant transformation
and ultimately can lead to osteolytic lesions first visible in MRI. The ear-
liest possible reliable detection of these lesions is critical, since they are
a prime marker of disease advance and a trigger for treatment. However,
their detection is difficult. Here, we present and evaluate a methodology
to predict future lesion emergence based on T1 weighted Magnetic Res-
onance Imaging (MRI) patch data. We train a predictor to identify early
signatures of emerging lesions before they reach thresholds for reporting.
The algorithm proposed uses longitudinal training data, and visualises
high- risk locations in the bone structure.

1 Introduction

Multiple Myeloma (MM) accounts for 10% of all bone marrow malignancies with
an incidence rate of 6/100000 per year in western countries [5]. It is the second
most common blood affecting malignancy, which disturbes the generation path-
way of plasma cells and B-lymphocytes. Consequently, these cells proliferate
uncontrolled and are transformed in a malignant way [10]. In addition, the pro-
duction of large amounts of non-functional monoclonal antibodies is enforced,
which affects the function of kidneys, increases the deficiency in immune response
and in an advanced stage, influences the generation of bone forming and resorb-
ing cells. MM starts at a precursor state of Monoclonal Gammopathy of Under-
tmined Significance (MGUS) and further envolves to an asymptomatic form of
the disease smoldering Multiple Myeloma (sMM) with a predictable progression
to the symptomatic form of MM [4].

c© Springer Nature Switzerland AG 2018
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Longitudinal bone infiltration patterns of MM progression. The increased amount
of plasma cells in MM leads to the alteration of bone remodelling mechanisms,
by promoting bone resorption and inhibiting bone formation [10]. This results
first in the formation of focal or diffuse bone marrow infiltration. The gold stan-
dard for observing these initial infiltration patterns is MRI (T1, T2) [1,4,8].
Subsequently, the progression of the disease leads to the building of osseous
destructions, which are observable using low-dose Computer Tomography (CT)
[6]. Figure 1 illustrates the infiltration pattern of a focal lesion evolving at the
distal part of the femur over three examination time points of a single patient.

Fig. 1. Visualisation of an infiltration pattern of a focal lesion (yellow) using T1
weighted MRI scans over multiple examination time points of one patient.

Challenges. Challenges of tracking lesions over time are, identifying early sig-
natures of their emergence, accurate alignment of subject whole body images,
imaging artefacts, and subtle non rigid deformations, as well as capturing the
heterogeneity of diffuse infiltration patterns and their imaging signatures. Differ-
ent treatment strategies and patient specific treatment response, and progression
speed cause further variability. According to the results reported in the recent
study of Mateos et al. [7], it is particularly important to assess high-risk sMM
patients for developing MM and corresponding infiltration patterns, since a ben-
efit for the patient from early therapy is observable.

Contribution. Here, we propose and evaluate a predictor for future bone infil-
tration patterns. The algorithm uses longitudinal data to learn a local predictor
of lesion emergence and change. We assess longitudinal relationships between
subsequent stages of bone lesions and corresponding infiltration patterns of MM
patients to provide a predictive signature for bone lesions. The contribution of
the paper is three fold: (1) the longitudinal alignment of multiple bodyparts
in whole body MRIs, (2) a classifier incorporating data from different disease
stages in MM and (3) a local lesion risk score (LRS) to identify bone regions
with a higher probability to evolve to diffuse or osteolytic lesions. We first give
an overview of methodology and the data in Sect. 2. The evaluation results are
presented in Sect. 3 and the conclusion of this work and possibilities for future
work are summarized in Sect. 4.
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2 Methodology

We first describe longitudinal alignment, and then introduce the methodology
to estimate a local Lesion Risk Score (LRS) for future lesion emergence. Figure 2
illustrates the computation pipeline of the lesion risk score. It consists of four
components: data acquisition, data preprocessing, train and test data design
and LRS computation. Details regarding the train and test data design are
summarized in Sect. 3.

Fig. 2. Lesion Risk Score computation pipeline

Longitudinal Alignment. To perform subject specific longitudinal analysis of
subsequent lesion states, we first register a patient’s data Iti = {It1 , ...ItM }. A
patient’s image at a timepoint ti is aligned to all subsequent timepoints x =
ti+1, ..., tM , depending on the number of available data. Bias field correction is
used to process imaging data before alignment using FAST1 [3] integrated in the
FMRIB Software Library (FSL)2. The aligned image Iti(x) is obtained following
a two step registration procedure (cf. Eq. 1).

Iti(x) = Iti ◦ φNR((A ∗ Iti), Ix) (1)

Although longitudinal data is registered, patients’ shape vary over time, since
the median inverval between MRIs is 13 months. Also the acquired images do
not visualise exactly the same body part snippets. Thus, we decided (based on
experimental results), to use an affine approach first. This affine alignment A is
performed using a block matching method for global registration. The resulting
transformed image (A ∗ It1) is used as moving image in the second alignment
step. Subsequently, a non-rigid deformation φNR to the target at time point x
is estimated. For affine registration the function reg aladin and for non rigid
alignment the function reg f3d are used, which are integrated in the NiftyReg
toolbox3 [9]. For assessing the quality of registration, moving and target image
1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST [accessed 11th of June 2018].
2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed 11th of June 2018].
3 http://cmictig.cs.ucl.ac.uk/research/software/software-nifty/niftyreg [accessed 11th

of June 2018].

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://cmictig.cs.ucl.ac.uk/research/software/software-nifty/niftyreg
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were inspected manually using overlay visualisations and evaluated regarding
correspondence of lesions’ position between the different time points.

Patch Creation and Data Augmentation. After alignment, MR images
It1(x) of a patient correspond to timepoints x and corresponding annotations
Sx of the lesion in a future image of the patient. After the longitudinal align-
ment of acquisitions of one patient, datasets are created by using the intensity
image of a subject at time point t and to this time point aligned annotations
of lesions of subsequent time points t + i, where i is 1, ..., n (n... number of
available subsequent time points). Given those data pairs, patches are created in
the lesion regions, by first computing the barycentre of the lesion’s annotation
in the subsequent state and randomly moving a clipping window around it to
avoid the predictor to learn uniform lesion positions. Additionally, we repeated
this procedure for rotated intensity images and corresponding annotations. The
rotations were performed in 20 degree steps.

Local Lesion Risk Score. The proposed local Lesion Risk Score (LRS) uses
early signatures of emerging bone lesions to predict future lesions and mark
corresponding high risk locations. We use the computed pairs of image patches
and corresponding lesion annotations of a subsequent state to train a random
forest classifier that predicts future lesion labels from the present image patch
data. During application, a score is obtained for each voxel position V by the
probability predicted by the trained random forest for a new input patch.

LRSV = PRF (Iti(x)) (2)

We used the Python framework sklearn with an integrated Random
Forest predictor4 with 10 decision trees and the following parametrisa-
tion: n estimators = 10, criterion = ‘gini’, max depth = 2, min samples split = 2,
min samples leaf = 1, min weight fraction leaf = 0.0, max features = ‘auto’,
max leaf nodes = None, min impurity decrease = 0.0, min impurity split =
None, bootstrap = True, oob score = False, n jobs = 1, random state = None, ver-
bose = 0, warm start = False, class weight = None.

3 Results

In this section an overview of the evaluation dataset is given and the quantitative
as well qualitative LRS evaluation results are presented and discussed.

Dataset. In this study 220 longitudinal whole body (wb) MRIs from 63 patients
with smoldering multiple myeloma (following the 2003 guidelines [2]) were
acquired between 2004 and 2011. At least one wbMRI was performed per patient.
The annotation of focal lesions is performed manually by medical experts start-
ing at a lesion size bigger than 5 mm [1], since according to the IMWG consen-
sus statement, from this size on, patients are considered to have symptomatic
4 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html [accessed 10th of June 2018].

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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myeloma with therapy requirement. Table 1 summarizes the study participant’s
demographics. The protocol of this study was approved by the institutional ethics
committee and all subjects gave their informed consent prior to inclusion. The
scanning was performed on a 1.5 Tesla Magnetom Avanto (Siemens Healthineers,
Erlangen, Germany) scanner. For the T1 weighted acquisition a turbo spine echo
sequence (repetition time (TR): 627 milliseconds (ms), echo time (TE): 11 ms,
section thickness (ST): 5 mm, acquisition time (TA): 2:45 min) was performed of
the head, thorax, abdomen, pelvis and legs using a coronal orientation and for
the spine in sagital orientation. No contrast medium was given. The duration of
a scan was approximately 40 min long.

Table 1. Participants’ demographics

Patients 63 (24 female)

Therapy Radiation or resection

Median age at initial MRI (yrs) 55

Age range (yrs) 29–76

Median interval between MRIs 13 months

Median observation time 46 months

Train and Test Data Design. In this study we used acquisitions from two
body regions: In region 1 thorax, abdomen and pelvis are visualised and in
region 2 the lower part of the pelvis, femurs and knees. These areas are con-
sidered since most lesions occur in those. In this work we observe two types of
lesions and evaluate the performance of the methodology proposed separately
for every type, with corresponding train and test sets: lesions which are emerg-
ing, i.e. which are not reported in the first scan, but in the subsequent scan,
and changing lesions, which are annotated at both observed examination time
points. For every patient we extracted image patches at lesion regions longitu-
dinally over subsequent states of three different sizes (10 × 4 × 10, 20 × 4 × 20
and 30 × 4 × 30 voxels with a voxelspacing of 1.302 mm × 6 mm × 1.302 mm).
To obtain a higher number of patches for the predictor training, data augmenta-
tion is performed resulting in 18 different patches per lesion. To summarize, for
emerging lesions we obtain 720 patches for region 1 and 504 patches for region 2
and for growing lesions we created 1026 patches for region 1 and 810 patches for
region 2. Crossvalidation is used to generate test and training datasets, where a
testset consists of 18 patches of a single lesion including the volumes of different
orientation, which results in 40 folds for emerging lesions in region 1 and 28 in
region 2 and 57 folds for growing lesion in region 1 and 45 in region 2.

Evaluation Setup. For the quantitative evaluation and for obtaining compara-
bility between the different tested setups, the Area Under the Curve (AUC) is
computed, based on the probability estimates of the local lesion risk predictor
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for the test patch using scikit learn5. We used thresholding to obtain a pre-
dicted label for visualisation and comparison. We have to point out that an
exact matching of predicted label and subsequent annotation is not achievable,
given a pre-stage and not required since we aim to predict risk of lesion growth
or emergence and not to estimate exact segmentations of future lesions.

Table 2. Summary results LRS performance

Lesion Type Patch Size Mean AUC Region 1 Mean AUC Region 2

Emerging 10× 4× 10 0.7425 0.769

20× 4× 20 0.7003 0.7144

30× 4× 30 0.6739 0.6874

Changing 10× 4× 10 0.7607 0.7221

20× 4× 20 0.7104 0.7491

30× 4× 30 0.6976 0.7096

Fig. 3. Prediction of lesion growth from examination time point to time point in body
region 1. The predicted label is visualised in the second column, below the underly-
ing Local Lesion Risk Score probability map is shown and the manual annotation is
visualised in the third column.

3.1 Evaluation Body Region 1

In Table 2 in column three the mean AUC for emerging and growing lesion types
for body region 1 are summarized. For every lesion type three different patch
sizes are evaluated. Figure 3 illustrates a prediction result for a growing lesion
of a region 1 acquisition. The test image (left) is a transformed image from

5 http://scikit-learn.org/stable/auto examples/model selection/plot roc.html
[accessed 10th of June 2018].

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
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examination time point 003 to 004 using the longitudinal alignment approach
introduced in Sect. 2. The extracted patch of this image in the region of the
lesion visible in the image I003 is visualised in the first row in the center, with
the predicted label in the second column and the annotation of the future lesion
position extracted from image I004 in the third column. In the second row the
predicted probability map of the local lesion risk score is visualised, where yellow
shows regions of high probability and blue of low probability.

3.2 Evaluation Body Region 2

In Table 2 in column four the mean AUC for emerging and growing lesion types
for body region 2 are summarized. For every lesion type three different patch
sizes are evaluated. Figure 4 illustrates a prediction result for an emerging lesion
of a region 2 acquisition. The test image (left) is a transformed image from
examination time point 002 to 003. The extracted patch of this image in the
region of the lesion visible in the target image I002 (right) is visualised, with
the predicted label in the second column and the annotation of the future lesion
position extracted from image I003 in the third column. In the second row the
predicted probability map of the local lesion risk score is visualised, where yellow
shows regions of high probability and blue of low probability.

Fig. 4. Prediction of an emerging lesion from examination time point 002 to time point
003 in body region 2. The predicted label is visualised in column 2, below the under-
lying Local Lesion Risk Score probability map is shown and the manual annotation is
visualised in column 3.

3.3 Discussion

For both lesion types a decrease of the mean AUC is observable with increasing
patch size, where emerging lesions show a steeper decrease as growing lesions
in both bodyparts. Also growing lesions in the femur, knees or pelvis are better
predicted than those in the thoracic or abdominal body region.
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4 Conclusion

In this work we present a local Lesion Risk Predictor for accessing and visu-
alising regions of high risk for bone lesions to emerge or to grow. We trained
a random forest predictor using lesion image patches and annotations of sub-
sequent lesions states of the longitudinal MR T1 weighted dataset observed.
The main challenge here was to achieve an accurate longitudinal alignment of
subsequent examination time points of a patient. To our knowledge this is the
first attempt to predict bone infiltration patterns in MM using T1 weighted MR
images. Current approaches focus on lesion detection (e.g. [11] for CT images)
using deep learning techniques. We decided to investigate a lesion predictor based
on a random forest classifier first, since its setup, parametrisation and evaluation
is simpler compared to deep learning approaches. However, we incorporated the
possibility to extend the proposed patch based approach to evaluate deep archi-
tectures for lesion prediction in the future. To this point prediction using the
introduced local lesion risk score is limited to image patches. For future work we
aim to adapt the proposed score to be able to predict probability maps for entire
volumes. Additionally, we will incorporate different modalities, and data from
additional bodyparts in the framework proposed to longitudinally model infil-
tration and also osseous destruction patterns caused by the progress of multiple
myeloma.
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Abstract. Lung Nodule Detection from CT scans is a crucial task for
the early detection of lung cancer with high difficulty performing an
automatic detection. In this paper, we propose a fast automatic voting
based framework using Convolutional Neural Network to detect juxta-
pleural nodules, which are pulmonary (lung) nodules attached to the
chest wall and hard to detect even by human experts. The detection
result for each region in the CT scan is voted by the detection results
of the extracted candidates from the region, which we formulate as a
generative model. We perform two sets of experiments: one is to validate
our framework, and the other is to compare different convolution neural
network settings under our framework. The result shows our framework
is competent to detect juxta-pleural lung nodules especially when only a
weak classifier trained on noisy data is available. Meanwhile, we overcome
the problem of determining the proper input size for nodules with high
variance in diameters.

Keywords: Lung cancer · Juxta-pleural nodule detection
Deep learning · Weakly labeled

1 Introduction

Lung cancer is the leading cause of cancer-related deaths in the United States
[1]. Automated lung cancer detection is of great importance. In general, based on
their locations, lung nodules can be classified into two types. One is juxta-pleural,
which is typically attached to the lung wall; and the other one is the isolated type
within the lung area. Compared with isolated nodules, juxta-pleural nodules are
more difficult to detect because their intensities and texture are similar to those
of the chest wall and they usually have relatively small radius. As a result, the
traditional methods such as region growing [2] and active contour model [3],
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usually fail in the classification of juxta-pleual nodules. Some examples of juxta-
pleural nodules are shown in Fig. 1, where the red part is the labeled nodule by
the radiologist.

Recently, Convolutional Neural Network (ConvNet) has achieved a great suc-
cess in computer vision, especially in image classification with a fast updating
accuracy score on the ImageNet Challenge since 2012 [4,5]. In contrast to the
traditional feature-engineering, where machines use human hand-crafted features
to learn, ConvNet is designed to have the machine learn features from data itself
without human involvement. This makes the machine learning task more efficient
as less pre-processing is needed. The success of ConvNet has cast some light on
the area of bio-medical. Only in the area of bio-medical image scan analysis, Con-
vNet has already been applied to solve the problems such as organ segmentation
[6,7], and lung nodule diagnosis [8]. Recently, Suzuki et al. [9] applied ConvNet
for lung nodule detection and compared several different ConvNet designs.

Fig. 1. Examples of juxta-pleural nodule from our dataset. The red color indicating
the location and shape of nodules (Color figure online)

Traditionally, nodule detection pipeline requires a series of preprocessing,
such as lung segmentation, vessel elimination, suspect candidates extraction and
classification. On the other side, for a ConvNet based solution, it is tricky to find
a proper input patch size to contain the whole nodules as it has high variance in
diameter. Small nodules might be easily overlooked if the patch size is too small.

In this paper, we design a fast automatic voting based framework using Con-
volutional Neural Network to detect juxta-pleural nodules from raw CT scan.
For each CT slice, we first divide the CT image into regions, where each region
could be viewed as a bag of candidates. Then instead of throwing the whole
region into ConvNet, we extract several candidates from each region and apply
a voting algorithm to decide whether a nodule exists in that region or not. In
addition, we compare our ConvNet with two ConvNet structures which have the
highest AUC from [9] in terms of the performance on our juxta-pleural dataset.
We perform two sets of experiments: one is to validate our framework and the
other is to compare different ConvNet designs under our framework. Our exper-
imental results show that the framework is efficient and our ConvNet structure
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outperforms the ones from [9] especially when only weakly labeled data with
noise is available for training. Our voting algorithm could improve the original
model by a large margin.

There are three major strengths of our propose framework. First, our model
does not need any pre-processings on the raw data. Secondly, with the design of
patch-based voting framework, we eliminate the problem of window size selec-
tion as well as enhance model performance. At last, our voting framework could
significantly improve original ConvNet model’s performance and could be gen-
eralized to different kinds of ConvNets.

2 Methodology

We designed a bag-of-voting-candidates (BOVC) model to perform nodule
detection. For a CT scan R, we assume it contains H regions, denoted as
R = R1, R2, ..., RH , where each region has size M × N and independent and
identically distributed (i.i.d). We view each region Ri as a bag of K voting can-
didates Ri = Ci,1, Ci,2, ..., Ci,K , where Ci,j =< xi,j , yi,j > is the jth candidate
of region i containing a data patch xi,j with its corresponding label yi,j . We
further assume that each candidate is independently generated by a hidden vari-
able φi, indicating the class distribution of region i. The total probability of this
generative model could be written as:

P (R;φ) =
H∏

i=1

P (Ri|φi)P (φi) =
H∏

i=1

K∏

j=1

P (Ci,j |φi)P (φi) (1)

The major workflow of our framework is shown in Fig. 2. There are two steps,
the first step is to generate candidate given a certain region, the second step is
to generate detection result with our ConvNet based patch voting algorithm. We
will introduce both steps accordingly in the rest of this section.

Fig. 2. Workflow of our framework, the first step is candidate extraction and the second
step is our ConvNet based voting algorithm.
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2.1 Candidate Extraction

We formulate our candidate generating algorithm as follow: For each region,
take region i as an example, we extract k1 candidates with size T × T (T <
min(M,N)) from region i, where k1 is set to make sure there are the least
overlap to cover the whole region. Then we design to randomly extract k2 more
candidates to get more random votes. At last, we have K candidates in total.
Then we perform translation on each candidate, which can further enrich dataset
as well as provide more possible views of the candidate, as a result, several image
patches (which will also be candidates) can be generated from a single original
candidate.

2.2 Parameter Estimation with ConvNet

We design our parameter estimation algorithm with ConvNets. The two-step
algorithm is described as follow:

Step1: We update the ConvNet parameter θ with regard to the following equa-
tion:

θ = arg max
θ

P (R|φ; θ) = arg max
θ

P (R|θ) = arg max
θ

∏

xi,j∈R

P (xi,j , yi|θ) (2)

Step 2: Given θ, φi is estimated by:

φij =
Nij

Ni
, (3)

where Nij is the count of candidates in region i predicted with label j by ConvNet
and Ni is the total number of candidates in region i.

For our task, there are only two classes (nodule or non-nodule contained),
denoted as positive and negative. Our vote algorithm generates the final decision
for region i based on φi with the following rule:

Result(Regioni) =
{

Positive Ratio > Threshold
Negative Ratio < Threshold

(4)

The threshold in the equation is a predefined empirical value, which is the
15 percentile of the validation dataset and the ratio of region i is calculated as:

Ratioi =
φi,Possitive

φi,Possitive + φi,Negative
(5)
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ConvNet Design. The design of the ConvNet contains input layer, convolution
layer, subsampling layer and fully connected layer. We design a ConvNet of input
size 64×64 with two convolutional layers, each followed by a max-pooling layer.
For the convolutional layer, we choose Leaky Rectified Linear Unit (LeakyReLU)
[10] as the activation function:

LeakyReLU(x, α) = max(x, 0) + α × min(x, 0),

where α is a small user pre-defined non-zero gradient negative slope that is set
to negative values.

In Table 1, we detailed our ConvNet design with two ConvNet designs with
the highest AUC in [9] as a comparison, which is denoted as sh-CNN and rd-
CNN. The last column shows how many different kernels are used for a convo-
lution layer or how many neurons are used in a fully connected layer. We are
not specifying the input layer in the table since all ConvNets take input size of
64 × 64.

Table 1. Table of Different ConvNet Designs, here we compare three different designs,
our proposed network, the one with the best performance from [9] and a very shallow
model as comparisons.

Layer Type Kernel No. Layer Type Kernel No.

(1) Our Model (3) rd-CNN
1 Convolution 7× 7 32 1 Convolution 11× 11 32
2 Max-pooling 2× 2 - 2 Max-pooling 2× 2 -
3 Convolution 5× 5 64 3 Convolution 5× 5 32
4 Max-pooling 2× 2 - 4 Max-pooling 2× 2 -
5 Fully connected - 128 5 Convolution 3× 3 32
6 Fully connected - 2 6 Max-pooling 2× 2 -

(2) sh-CNN 7 Convolution 3× 3 64
1 Convolution 11× 11 32 8 Max-pooling 2× 2 -
2 Max-pooling 2× 2 - 9 Fully connected - 128
3 Fully connected - 128 10 Fully connected - 2
4 Fully connected - 2

A softmax fully-connected layer is used as the last layer to generate the prob-
ability distribution over two classes (Nodule and Non-Nodule). For the training
of our ConvNet, cross-entropy Loss is used to minimize the difference between
detected class and real class from groundtruth with L2 Norm regularization
added. Note that in order to reuse training data, we design weight sharing among
the separate ConvNet paths to make better use of the training data.

3 Experiments

The goal of the experiments is two-fold. One is to validate our framework, and
the other is to compare different ConvNet designs under our framework.



90 J. Tan et al.

3.1 Dataset

The original RAW CT data is acquired from the largest public database founded
by the Lung Image Database Consortium and Image Database Resource Initia-
tive (LIDC-IDRI). Each CT slice has a size of 512 × 512. Our radiologist labels
the position of the nodule for each given CT slice.

We select 90 patients from our dataset with at least one juxta-pleural nodules
included and has more than 12 slices containing nodules on average. By randomly
sampling patches around nodule areas and non-nodule areas respectively, we
obtain the positive samples and negative samples. And the rotation is applied
as a translation method to each sample. In each patient’s CT scan, the ratio of
the nodule to non-nodule areas is now not balanced. However, to train a binary
classifier, we have to use a balanced dataset, which means that there should be
equal numbers of positive and negative samples. With regard to this point, we
perform the last step to balance our training dataset.

3.2 Experiment Design

In our experiments, we choose the region size to be 128 × 128 and use rotation
as the translation method. We extract k = 9 candidates from each region, which
are patches located at 4 corners, 4 middle part on each edge, and 1 in the
center. Apparently, there are some overlaps among the candidates. However, our
candidate extraction method is more efficient than using a sliding window to
cover the whole region. Each candidate will then be rotated 3 times.

We use Theano to implement ConvNet designs. For training, we apply Adam
[11] optimizer with a batch size of 40. The learning rate is set to 10−4, momentum
to 0.9, and weight decay to 0.0005. The network is initialized with a Gaussian
Distribution.

We designed two experiments to validate our framework. In the first experi-
ment, we compare three models with and without voting algorithm to validate
our framework on a test dataset containing 20 patients with a balanced number
of positive and negative regions. The model without voting will consider each
patch as a distinct input. And the voting result is achieved by our proposed
model. We use AUC and F1 score as evaluation metrics for experiment 1. How-
ever, in practice, nodule detection is performed on highly unbalanced data. As
a result, we designed second experiment to test our framework performance on
10 patients’ CT slices containing nodules without balancing the dataset and use
AUC for evaluation.

3.3 Experiment Result

The result of experiment 1 is shown in Fig. 3(a). It shows that vote algorithm has
improved AUC for all ConvNet. And our model has a better performance than
both rd-CNN and sh-CNN in both scenarios when the voting algorithm is used
and not used respectively. Different from [9], sh-CNN has the worst performance
on our dataset in both scenarios. Some typical highly confusing patches are
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shown in figure Fig. 4. We can see that most False Positive ones are caused by
including the chest wall or some other tissues into the sampled patches, which
increase the noise of data samples. On the other hand, the small size (radius) of
a nodule is a major reason for True Negative ones.

Fig. 3. Experiment result, (a) Performance comparison results in experiment 1 and (b)
Performance comparison results in experiment 2.

In experiment 2, as the real detection has unbalanced data for two classes
(positive : neagtive > 1 : 20), the performance is lower than that of experiment
1. The results are shown in Fig. 3(b). We can see that our model works the best,
which is slightly better than rd-CNN, while sh-CNN has the lowest AUC.

In conclusion, our experiments showed that our automatic detection frame-
work, which is based on ConvNet, can detect juxta-pleural lung nodule from CT
scan of a patient efficiently. Especially when the effect of a detection classifier is
limited by noisy training data, our vote algorithm could be used to enhance its
performance.

(a) False Positive Samples (b) True Negative Samples

Fig. 4. Typical highly confusing samples in experiment 1
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4 Conclusion and Future Work

In this paper, we propose a framework to detect juxta-pleural nodule from CT
scans based on ConvNet using vote algorithm. We compared different ConvNet
structures in our framework and examined the effectiveness of our framework
on LIDC-IDRI juxta-pleural lung nodule datasets. Experiments show that our
framework is competent at detecting juxta-pleural nodules. On the other side,
our experiments show that the incorrectly classified data samples are those con-
taining the chestwall or some noisy, so some preprocessing methods could be
used to filter out those “bad” samples. A possible extension could be training
different ConvNet with image patch randomly split into different groups. For our
future work, besides the above mentioned continuing research, we will also try
other ConvNet structures to enhance the accuracy of the classifier and design
an efficient framework to locate the nodules from CT scans.
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Abstract. In this paper, we present a new tool for white matter lesion seg-
mentation called lesionBrain. Our method is based on a 3-stage strategy
including multimodal patch-based segmentation, patch-based regularization of
probability map and patch-based error correction using an ensemble of shallow
neural networks. Its robustness and accuracy have been evaluated on the
MSSEG challenge 2016 datasets. During our validation, the performance
obtained by lesionBrain was competitive compared to recent deep learning
methods. Moreover, lesionBrain proposes automatic lesion categorization
according to location. Finally, complementary information on gray matter
atrophy is included in the generated report. LesionBrain follows a software as a
service model in full open access.

Keywords: White matter lesion segmentation � Patch-based segmentation
Service as a software

1 Introduction

The presence of white matter lesions (WML) is associated with different brain diseases
such as multiple sclerosis (MS), small vessel disease or head injury among others, but it
also occurs in normal aging. Magnetic resonance imaging (MRI), especially FLAIR
images, has been found to be very sensitive in the detection of these WML. Therefore,
MRI is the reference standard to identify WML and it plays a crucial role in the
diagnosis and the monitoring of many neurological pathologies. Despite the importance
of quantifying WML, this task remains mainly based on manual counting of lesions or
semi quantitative scores such as Fazekas score. Manual delineation for volumetric
analyses is extremely time-consuming and prone to errors due to inter- and intra-rater
variability. As a result, the automation of WML segmentation has received a great deal
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of attention during the last decade and a wide range of methods have been proposed
[1]. These methods are usually classified into two categories, unsupervised and
supervised. Unsupervised methods do not require a training dataset with manual seg-
mentation of the lesions. These methods estimate lesions mainly using MRI intensities
and some anatomical knowledge. They can be based on Bayesian models, Graph-cut
[2] or thresholding approaches [3] among others. Supervised methods require a training
dataset including manual segmentations of experts to learn from examples. Many
different techniques have been proposed such as Random Forest [4], Patch-based
methods [5, 6] and more recently deep learning methods [7–9]. Although automatic
methods are becoming more and more accurate, manual segmentation remains used
especially in clinical research or clinical trials in which very accurate quantification is
needed to use lesion load as judgement criteria. Several factors can explain the diffi-
culty to apply automatic methods in clinical context.

First, validating the accuracy of WML segmentation methods is challenging
because of the difficulty to define a ground truth. Indeed, the high intra and inter-rater
variability makes difficult to define a gold standard. Moreover, the lack of freely
available annotated datasets leads to highly heterogeneous validation in the literature
making methods comparison arduous. Therefore, it is difficult to appreciate the
respective performances of automatic methods and their potential under clinical con-
ditions. Recently, important efforts have been done to limit these aspects by sharing
freely available datasets based on the consensus of several experts [10]. As a result,
evaluation and comparison of methods become easier and more reliable. In this paper,
we propose a new tool called lesionBrain which is an extension of the rotationally-
invariant nonlocal means (RI-NLM) segmentation method [5]. To evaluate its per-
formance compared to state-of-the-art methods, the validation is carried out on the
MSSEG MICCAI Challenge 2016 dataset which is freely available providing a high
quality ground truth based on the consensus of seven experts.

Second, few methods are freely available making their use in clinic research dif-
ficult. When available, these methods are usually distributed as packages that need to
be downloaded, installed and configured. Installation steps can be complicated and thus
may require experimented persons not always available in a research laboratory and
especially in clinical context. In addition, users have to be trained to use the software
and computational resources have to be allocated to run it. These requirements can
make the use of these packages complex, especially the most recent and sophisticated
ones requiring advanced hardware configuration (e.g., advanced GPU). To address this
issue, lesionBrain is proposed as an online open access solution following the model of
Software as a Service (SaaS). Our method works remotely through a web-interface and
does not require any installation, resources or human interaction.

In addition, automatic methods generally provide the volume of WML as the sole
output. However, complementary information can be relevant from a clinical point of
view. Indeed, the location of lesions is useful to establish a diagnosis of multiple
sclerosis after a first clinical episode according to the McDonald diagnosis criteria for
MS [11]. To provide this information, lesionBrain proposes a lesion classification
based on their proximity to lateral ventricles, cerebral cortex or cerebellum and brain
stem. As a result, the lesion load in volume and also the number of lesions are provided
for periventricular, juxtacortical, infratentorial and deep white matter areas.
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Finally, most of the existing tools provide information focused on WML. However,
complementary information from other structures might be needed to better study brain
pathologies globally. For instance, gray matter (GM) atrophy can provide relevant
information to investigate the neurodegenerative impact of MS or Alzheimer’s Disease
(AD). Therefore, lesionBrain not only provides volumetric measurement on WML but
also a quantification of WM, GM and Cerebrospinal fluid (CSF). When age and gender
of the subject are available, the volumes of these brain tissues are compared to refer-
ence values derived from lifespan models to detect abnormalities [12].

2 Materials and Methods

2.1 Datasets

LesionBrain Dataset: Our training dataset is composed of 43 patients who underwent
3T 3D-T1w MPRAGE and 3D-Fluid-Attenuated Inversion Recovery (FLAIR) MRI.
The preprocessing steps described in the next subsection have been applied to all the
images to align them into the MNI space and to normalize their intensities. Afterwards,
a first expert performed manual segmentations in the MNI space for all the patients
with ITKsnap [13] using T1w and FLAIR images. Then, a second expert validated
and/or corrected all the manual segmentations. At the end, all the images were flipped
as done in [14] to double the size of our training library (i.e., 86 training images).

MSSEG MICCAI Challenge 2016 Dataset: To evaluate our tools, we used the
dataset of the MSSEG MICCAI Challenge 2016 [10]. For this dataset, 15 patients
underwent 3D-T1w MPRAGE, 3D-FLAIR, Gadolinium- enhanced T1w, Proton
Density (PD), and T2w MRI. Only T1w and FLAIR MRI were used during our
experiments. These 15 subjects consist in 3 groups of five subjects scanned with Philips
Ingenia 3T, Siemens Aera 1.5T and Siemens Verio 3T. All the images have been
manually delineated by seven experts. Finally, the experts’ consensus is used as gold
standard.

2.2 Pipeline Description

Preprocessing: First, the images are preprocessed to normalize their intensity and to
register them into the MNI space. A denoising step based on the adaptive nonlocal
means filter is first applied to T1w and FLAIR images [15]. Both denoised MRI are
then coarsely corrected for inhomogeneity [16]. Afterwards, the T1w is registered into
the MNI space using an affine transform [17]. FLAIR is then registered to T1w in the
MNI space. A fine inhomogeneity correction is performed on both images [18]. Finally,
brain tissue maps (i.e., WM, GM and CSF) are obtained using [19]. These tissue maps
are used to perform intensity normalization based on a piece-wise linear scaling of
intensity where the median intensity of each tissue is set to a fixed value [20].
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Structure Segmentation: The T1w is used to segment several anatomical structures.
First, the intracranial cavity (ICC) is extracted using [21] and brainstem and cerebellum
using [22]. Finally, lateral ventricles are segmented using [23].

Candidate Map: To reduce computational time, the segmentation is performed only
on areas which potentially contain lesions as defined below. As done in [4, 6], the mean
l and the standard deviation r of the GM FLAIR intensities are used to estimate a
threshold (th ¼ lþ ar, with a ¼ 0:5). All voxels above this threshold and within the
ICC mask are considered as lesion candidates. However, FLAIR intensity within lesion
may sometimes be below this threshold. Therefore, an atlas of lesions (average of all
the manual lesion maps of the lesionBrain dataset in the MNI space) is also used to
look for lesions at the most probable location. Voxels at locations with probability
higher than 20% to contain a lesion are added to the map of candidates obtained by
thresholding.

Lesions Segmentation: Lesions are segmented using an extension of the RI-NLM
method proposed in [5]. On the one hand, such voxel-wise method may produce false
positive detections especially in cortical areas while implicit regularization of
multipoint/patch-wise frameworks demonstrated better performance than voxel-wise
approaches [20]. On the other hand, using patch-wise methods for lesion segmentation
does not enable to efficiently capture heterogeneity of shape, size and location of
lesions [5]. Therefore, in lesionBrain, we propose to apply first the RI-NLM method on
T1w and FLAIR images to obtain the probability map of lesions. Second, we achieve a
regularization of the probability map using a patch-wise NLM denoising filter [24]. The
weights of the NLM filter are estimated on the FLAIR and then used to average the
probabilities. The RI-NLM takes advantage of inter-subject similarity while patch-wise
NLM regularization (NLMr) takes advantage of intra-subject similarity. Finally, a
systematic error correction step is performed to obtain the final segmentation. Auto-
matic correction of systematic errors was first proposed in [25] with SegAdapter. In
lesionBrain, we used the Patch-based Ensemble Corrector (PEC) proposed in [26].
Contrary to SegAdapter which is based on a voxel-wise Adaboost classifier, PEC
involves patch-wise ensemble of multilayer perceptron classifiers. Recently, second-
pass strategy such as cascade of Convolutional Neural Networks (CNN) [9] demon-
strated high performance to limit false positive detection.

Lesions Classification: Once the lesions are segmented, a last step is performed to
classify them into the following categories: periventricular, juxtacortical, deep white
and infratentorial. Such classification might be clinically relevant since some diagnose
criteria of MS are based on it [11]. Therefore, all the lesions located within 3 voxels
(i.e., 3 mm in the MNI space) from the lateral ventricles, the GM map, and the union of
brainstem and cerebellum are classified respectively as periventricular, juxtacortical
and infratentorial. The remaining lesions located in WM map are classified as deep
white.

Report Generation: At the end, a pdf report is automatically generated providing the
lesion load, the number of lesions for each class and screenshots of the processed
images. Moreover, in case the gender and the age of the patient are provided, the
estimated volumes of WM, GM and CSF are compared to expected normal values
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based on lifespan models [12]. The proposed lesionBrain tool has been integrated into
the volBrain1 platform in full open access [20].

2.3 Validation Framework

First, the method parameters were validated using training lesionBrain dataset through
a K-fold cross validation. For RI-NLM segmentation and NLMr of the probability map,
the patch size was set to 3 � 3 � 3 voxels as proposed in the original papers [5, 24].
The search area was set to 9 � 9 � 9 voxels for RI-NLM and NLMr although
11 � 11 � 11voxels is suggested in [5, 24]. This enables to reduce computational time
with marginal accuracy loss. The number of used training images was set to the
maximum (i.e., 86 when testing on the MSSEG Challenge 2016 dataset). For PEC we
used the default parameters [26]. Therefore, the number of networks was set to 10 and
the two patch scales to 3 � 3 � 3 voxels and 7 � 7 � 7 voxels. During the validation,
we first evaluate the improvement in terms of mean DICE coefficient provided by each
component of the proposed segmentation pipeline – RI-NLM, RI-NLM + NLMr and
RI-NLM + NLMr + PEC (i.e., lesionBrain). Then, lesionBrain is compared with six
state-of-the-art methods. To this end, we used the mean DICE coefficient published by
authors who have evaluated their method on the 15 MS patients of the training MSSEG
Challenge 2016 dataset as we did here. First, lesionBrain is compared with two
unsupervised methods based on graph-cut [2] and thresholding as implemented in LST-
LPA [3]. In addition, the proposed method is compared with four supervised methods
including Random Forest [4] and recent advanced DL methods such as U-Net [7],
Nabla-Net [8] and Dense-Net [7]. Finally, the inter-expert variability estimated in [4]
between the seven experts is provided for reference purposes.

3 Results

First, Table 1 presents the mean DICE coefficient obtained with RI-NLM, RI-
NLM + NLMr and lesionBrain of the MSSEG Challenge 2016 dataset. These results
show that each component of the pipeline improved the segmentation accuracy. The
mean DICE increased from 66.59% to 69.27% with the NLMr of the probability map
and from 69.27% to 72.49% with PEC. Both improvements were found to be signif-
icant when tested with a paired t-test. This demonstrates the advantage of combining
methods based on inter-subject similarity, intra-subject self-similarity and correction of
systematic errors. Table 1 also shows the comparison of lesionBrain with six state-of-
the-art methods. First, lesionBrain obtained the best mean DICE coefficient with 72.49
followed by the Dense-Net proposed in [24] which obtained 70.30. It has to be noted
that lesionBrain only requires 2 contrasts while Dense-Net uses 5 contrasts. Increasing
the number of sequences has a negative impact on the acquisition time, the patient’s
comfort and the related costs. In addition, the Dense-Net has been trained using cross-
validation which can introduce overfitting and thus overestimates the performance of

1 http://volbrain.upv.es
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Table 1. Methods comparison on the 15 MS patients of the MSSEG challenge 2016 dataset in
term of mean DICE coefficient.

Methods Mean DICE in % Training Modalities

Inter-expert
variability [4]

63.02

lesionBrain 72.49 External T1w and FLAIR
Dense-Net [7] 70.30 Cross-

validation
T1, T1Gd, T2, PD and
FLAIR

RI-NLM [5]
+ NLMr

69.27 External T1w and FLAIR

Nabla-Net [8] 67.00 External FLAIR
RI-NLM [5] 66.59 External T1w and FLAIR
Random Forest [4] 63.80 Cross-

validation
T1w and FLAIR

LST-LPA [3] 61.00 Unsupervised FLAIR
Graph-cut [2] 57.09 Unsupervised T1, T2 and FLAIR
U-Net [7] 56.42 Cross-

validation
T1, T1Gd, T2, PD and
FLAIR

Best DICE=89.35% Median DICE=74.14% Worst DICE=46.47%

Fig. 1. Examples of WML segmentation produced by lesionBrain for best, median and worst
DICE obtained on the MSSEG Challenge 2016 dataset. True positives are in green, False
Negatives in red and False Positives in blue. (Color figure online)
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the method. The Nabla-Net proposed in [8] requires only one contrast and has been
trained on external dataset. This method obtained a DICE of 67% which is similar to
the accuracy obtained by RI-NLM with 2 contrasts, but less than the accuracy obtained
with RI-NLM + NLMr or lesionBrain.

Compared to Random Forest [4] which obtained 63.80% of accuracy, RI-NLM, RI-
NLM + NLMr and lesionBrain obtained higher accuracy while they require the same
contrasts. All these methods obtained accuracy higher than inter-expert variability
estimated at 63.02% contrary to the 3 remaining ones. The two unsupervised methods
based on graph-cut [3] and LST-LPA [3] obtained a mean DICE of 57.09% and 61%
respectively. Finally, the U-Net method proposed in [7] obtained the worst accuracy
with 56.42%. These results indicate that supervised methods are ranked among the
best, better than inter-expert variability, while unsupervised methods failed to reach
inter-expert variability. However, the use of CNN does not necessarily ensure a good
accuracy since the worst method is based on a U-Net using 5 contrasts. Finally, Fig. 1
shows examples of WML segmentation obtained by lesionBrain for three patients of
the MSSEG Challenge 2016 dataset (for best, median and worst DICE).

4 Conclusion

In this paper, we present a new tool for WML segmentation using T1w and
FLAIR MRI. Our method combined several complementary patch-based approaches to
accurately segment WML. We evaluated its accuracy on the MSSEG challenge 2016
datasets with a strong ground truth based on the consensus of seven experts. During our
validation, the performance obtained by lesionBrain were competitive compared to
Dense-Net [7], Nabla-Net [8] and U-Net [7]. Moreover, lesionBrain obtained a higher
accuracy than the inter-expert variability. Finally, our tool is already integrated into a
web-platform in open access.
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Abstract. Intensity-based multi-atlas strategies have shown leading
performance in segmenting healthy subjects, but when lesions are
present, the abnormal lesion intensities affect the fusion result. Here, we
propose a reformulated statistical fusion approach for multi-atlas seg-
mentation that is applicable to both healthy and injured brains. This
method avoids the interference of lesion intensities on the segmentation
by incorporating two a priori masks to the Non-Local STAPLE statis-
tical framework. First, we extend the theory to include a lesion mask,
which improves the voxel correspondence between the target and the
atlases. Second, we extend the theory to include a known label mask,
that forces the label decision in case it is beforehand known and enables
seamless integration of manual edits. We evaluate our method with simu-
lated and MS patient images and compare our results with those of other
state-of-the-art multi-atlas strategies: Majority vote, Non-local STAPLE,
Non-local Spatial STAPLE and Joint Label Fusion. Quantitative and
qualitative results demonstrate the improvement in the lesion areas.

Keywords: Brain parcellation · Segmentation · Multiple sclerosis

1 Introduction

Brain parcellation has become an essential tool for understanding neurologi-
cal structural-functional associations at a millimeter scale. The resulting vox-
elwise tissue classifications are integral to identifying structural regions for
connectomics, functional activations, quantitative/metabolical changes, diffu-
sion connectivity, etcetera. These techniques require reproducible segmentations;
however, manual delineation is time-consuming, exhibits poor reproducibility,
and is subject to inter- and intra- operator variability. For these reasons, auto-
matic brain parcellation has been widely studied [1–3]. Several automatic strate-
gies have been proposed in the literature to segment brain structures, such
as deformable, learning-based, region-based, etc. [4–6]; however, most of these
c© Springer Nature Switzerland AG 2018
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methods are structure-specific and do not allow segmentation of the whole brain.
In contrast, atlas-based strategies provide a whole parcellation when the atlases
used have all the structures labelled.

In multi-atlas segmentation, a collection of atlases is registered to the target
image and their labels are propagated and fused in the target image space,
obtaining the final segmentation. Label fusion strategies based on intensities [7–
10] have been demonstrated to be robust and provide good performance when
dealing with healthy subjects. However, as most other state-of-the-art methods,
they are designed to segment healthy subjects and their performance tends to be
affected when segmenting brains hindered by tumors and lesions, for instance,
as a result of multiple sclerosis (MS) [12].

Herein, we propose a novel statistical fusion algorithm that reformulates the
non-local STAPLE (NLS) [8] statistical framework to handle (anatomical) MRI
visible lesions. As in NLS, our method models the registered atlases as collections
of volumetric patches with intensity and label information. To complement the
non-local criteria, we introduce lesion mask information to resolve the imperfect
correspondences between the healthy atlases and the lesioned target derived
from inaccurate registrations. Additionally, a second mask is integrated into the
estimation process, which forces the voxel label assignation in case it is known
beforehand. For instance, this modification is useful when segmenting brains
with tumors for which sub-regions are known. Together, these innovations enable
inclusion of masks of abnormal anatomy and manually provided edits within
modern statistical fusion approaches. We derive the theoretical basis governing
our method and demonstrate segmentation improvement with respect to other
multi-atlas strategies on the state of the art on both simulated and MS images.

2 Theory

Consider a target gray-level image (with lesions) represented as a vector I ∈
IRN×1. Let T ∈ LN×1 be the latent representation of the true target seg-
mentation, where L = {0, . . . , L − 1} is the set of possible labels which can
be assigned to a concrete voxel. Let M ∈ {0, 1}N×1 be a binary lesion mask
indicating whether a given voxel i of the target image contains or is part of
a lesion and K ∈ {0, 1}N×1 a second mask specifying if for a given voxel i
of the target image, the true label is known, hence Mi = p (Ii ∈ lesion) and
Ki = p

(
Ti = Tk ∈ LN×1

)
. Note that both masks are optional and can be

neglected if all voxels in the mask are set to 0. Consider a set R of registered
healthy atlases with associated gray level images, A ∈ IRN×R, and propagated
label decisions, D ∈ LN×R. Let θ ∈ [0, 1]R×N×L×L be the performance level
parameters of the raters (registered atlases), defined voxel-wise. Each element of
θ, θjis′s, represents the probability that rater j observes label s′ given that the
true label is s at a given voxel i and the corresponding voxel i∗ on the associated
atlas−i.e., θjis′s = p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s), where i∗ is the voxel
on atlas j that corresponds to the target voxel i.
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2.1 Non-local Correspondence Model

Non-local STAPLE (NLS) [8] incorporates the concept of patch-based non-local
correspondence based on the image intensities of both the target image I and
the registered atlases A to the STAPLE framework. Although this concept has
proven useful for matching healthy tissues to account for registration accuracy,
we cannot rely on intensity similarities between the target lesion areas and the
healthy atlases to rectify registration errors. Therefore, we assume that voxel
correspondence inside the lesions cannot be further improved based on intensity
and, hence, enforce the non-local weighting (αji′i) between voxel i in the target
image at voxel i′ on the jth atlas as follows:

αji′i =

(
1

Zα
exp

(
−‖℘Mi ◦ (℘ (Ai′j) − ℘ (Ii))‖2

2

2 · σi
2 · ‖℘Mi‖

)
exp

(
− ε2i′i

2 · σd
2

))
· (1 − Mi)

+ δ
(
i′ = i

) · Mi

(1)

where ℘(·) is the set of intensities in the patch neighborhood of a given intensity
location. In this definition, ℘Mi

= ℘(1 − Mi) is the masking term that excludes
lesion voxels from the patch calculation and enforces the same patch neighbor-
hood size/shape in both the atlas and the target, ‖℘Mi

◦ (℘(Ai′j − ℘(Ii))‖22 is
the L2-norm between the atlas patch centered at i′ and the target patch centered
at i, ε2i′i is the Euclidean distance in physical space between i and i′, σi and σd

are the standard deviations of the intensity and distance weights, and Zα is a
partition function that enforces the constraint that

∑
i′∈N (i) αji′i = 1, where

N (i) is the set of voxels in the search neighborhood of a given target voxel.
δ(i′ = i) is the Dirac delta function, and ‖℘Mi

‖ is the number of voxels in the
patch neighborhood.

2.2 The Algorithm

If the exact voxel correspondences between the target and the atlases (non-
local model) were known, the lesion mask, and the target and atlas intensity
relationships could be ignored and the spatial STAPLE [11] definition of θ could
be used.

θjis′s ≡ p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s)
= p (Di∗j = s′|Ti = s,Mi,Ki, θjis′s)

(2)

However, this correspondence is not known and we have to learn
it with the model defined in Sect. 2.1. Note that using this model
we can approximate the relationship by taking the expected value of
p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s) across the raters. Using an assumption
of conditional independence between the labels, lesion mask and intensity, we
approximate the density function as:

p (Di∗j = s′, Aj |Ti = s, Ii,Mi,Ki, θjis′s) ≈ E [p (Dj , Aj |Ti = s, Ii,Mi,Ki, θjis)]
= E [p (Dj |Ti = s,Mi,Ki, θjis) · p (Aj |Ii,Mi)]

=
∑

i′∈N (i)

p (Di∗j = s′|Ti = s,Mi,Ki, θjis′s) · p (Ai′j |Ii,Mi) =
∑

i′∈N (i)

θjis′s · αji′i

(3)
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E-step. Let W ∈ IRL×N, where W
(t)
si represents the probability that the true

label associated with voxel i is s at iteration t of the algorithm given the provided
information and the performance level parameters.

W
(t)
si ≡ p

(
Ti = s|D,A, I,M,K, θ(t)

)
(4)

Using Bayes’ rule to separate the prior label probability (p (Ti = s)) and
assuming independence among the raters, we can rewrite this equation as follows:

W
(t)
si ≡ (1−Ki)·

(
p(Ti=s)·∏j p

(
Di∗j=s′,Aj |Ti=s,Ii,Mi,Ki,θ

(t)
jis′s

))
+Ki·δ(s′=s)

(1−Ki)·
(∑

n p(Ti=n)·∏j p
(

Di∗j=s′,Aj |Ti=n,Ii,Mi,Ki,θ
(t)
jis′s

))
+Ki·δ(s′=s)

(5)

where δ (s′ = s) is the Dirac delta function (probability that the known label
for voxel i of the truth segmentation is s). Using the non-local correspondence
model and the approximated density function, we obtain:

W
(t)
si ≡ (1−Ki)·

(
p(Ti=s)·∏j

∑
i′∈N(i) θ

(t)
jis′s·αji′i

)
+Ki·δ(s′=s)

(1−Ki)·
(∑

n p(Ti=n)·∏j

∑
i′∈N(i) θ

(t)
jis′s·αji′i

)
+Ki·δ(s′=s)

(6)

M-step. In this step, the calculated W
(t)
si is used to update θ

(t+1)
ji by maximizing

the expectation of the complete data log likelihood. As the complete data log
likelihood is not observable, it is replaced by its conditional expectation given
the observable data D, A, I, M , K using the current estimate θ.

θ
(t+1)
ji = arg max

θji

∑
i′∈Bi

E
[
ln

(
p

(
Dj , Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji|D, A, I, M, K, θ(t)

))]

= arg max
θji

∑
i′∈Bi

∑
s

p
(
Ti′ = s|D, A, I, M, K, θ(t)

)
· ln (p (Dj , Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji))

= arg max
θji

∑
i′∈Bi

∑
s

W
(t)

si′ · ln
(
p

(
Di∗j = s′, Aj |Ti′ , Ii′ , Mi′ , Ki′ , θji

))

= arg max
θji

∑
i′∈Bi

∑
s

W
(t)

si′ · ln

⎛
⎝ ∑

i′′∈N (i′):Di′′j=s′

θjis′s · αji′′i′

⎞
⎠
(7)

As each row of θ must sum one to be a valid probability mass function,
we can maximize the performance level parameters for each element by using a
Lagrange multiplier (λ) to formulate the constrained optimization problem.

0 =
δ

δθjin′n

⎡

⎣
∑

i′∈Bi

∑

s

W
(t)
si′ · ln

⎛

⎝
∑

i′′∈N (i′):Di′′j=s′

θjis′s · αji′′i′

⎞

⎠ + λ
∑

s′
θ
(t+1)
jis′s

⎤

⎦

(8)
By solving this equation, we obtain

θ
(t+1)
jis′s =

∑
i′∈Bi

(∑
i′′∈N (i′):Di′′j=s′ αji′′i′

)
· W

(t)
si′

∑
i′∈Bi

W
(t)
si′

(9)
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2.3 Initialization and Priors

The voxel-wise prior p (Ti = s) was initialized using the weak log-odds majority
vote, as in NLSS. The performance parameters, θjis′s, were initialized assuming
each atlas has high performance as: 1, if s = s′; 0.95, if s = s′; 0, if s �= s′; and
0.05
L−1 , otherwise. The search neighborhood N (·) was set to 7 × 7 × 7, patch ℘(·)
dimensions to 5 × 5 × 5 and σi and σd were set to 0.25 and 1.5, respectively.
Algorithm convergence was detected when the average change in the diagonal
elements of θ was below 10−4.

3 Experiments and Results

The atlases used in our experiments were taken from the MICCAI 2012 Grand
Challenge and Workshop on Multi-Atlas Labeling database [13]. This database
consists of 35 T1-w MR images, obtained from the OASIS1 project and labeled
by Neuromorphometrics, Inc.2, and includes labels for the whole brain. PCA
atlas selection was performed and only the 15 most similar atlases were used for
segmentation. All images were histogram normalized and N4 bias field corrected
before registration. All pair-wise registrations were performed using an initial
affine registration (niftyreg3) followed by a non-rigid (ANTs4) procedure. In all
the registrations performed, the lesions were masked-out to avoid their intensities
to interfere in the similarity metric calculation.

As benchmarks, we compare the proposed algorithm to majority vote (MV)
[14], non-local STAPLE (NLS) [8], non-local Spatial STAPLE (NLSS) [9] and
Joint Label Fusion (JLF) [10]. For a fair comparison, all the parameters that
NLS and NLSS share with our algorithm were set to the same values. Also, JLF
was executed with the same patch and neighborhood size.

3.1 Simulated Lesions

Evaluating the performance of segmentation algorithms on real lesioned images
is not an easy task since there is a lack of public databases with ground truth for
both lesions and structures. For this reason, in the first experiment, we simulated
two sets of artificially lesioned images: (1) 10 with uniform intensity lesions, to
test the proposed theory and, (2) 15 with lesion shapes, intensities and locations
obtained from an in-house MS patient database, to simulate realistic cases. All
the lesions were generated on random subjects from the MICCAI 2012 database.
The lesion load of the generated images ranged from [33.49−119.74] mm3 in the
first cohort and from [3.16−26.96] mm3 in the second one.

1 http://www.oasis-brains.org/.
2 http://neuromorphometrics.com/.
3 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
4 https://sourceforge.net/projects/advants/.

http://www.oasis-brains.org/
http://neuromorphometrics.com/
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
https://sourceforge.net/projects/advants/
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We evaluated the segmentation results quantitatively using a global Dice
Similarity Coefficient (DSC) across all the structures as the main measure. As
the lesion intensities not only necessarily affect the lesion area segmentation
itself, but also the surrounding tissues, two measures were calculated: (1) DSC
inside the lesion mask, and (2) DSC inside a mask that included three voxels of
the contour. Note that N (·) was set to 7 × 7 × 7.

Figure 1(A) shows that, inside the lesion mask, our method performed sig-
nificantly better than all the intensity-based strategies (JLF, NLS and NLSS)
in both cohorts. However, the performance was similar to that of MV. This
is due to the fact that we cannot trust the intensities inside the lesions, and
we can only rely on an accurate registration (same as MV does). On the other
hand, when the performance was analyzed around the lesion areas, our proposal
was the one that provided the best results (similar to MV in the first cohort
and to JLF in the second one). This behavior is depicted in Fig. 1(B), where
JLF (b and h) misclassifies several structures inside the lesion areas, whereas
in NLSS (c and i) the segmentation is being also affected in the surrounding
structures.

For the evaluation of the manual edits (K mask integration), we segmented
the first dataset again, this time feeding the algorithm with the same lesion
mask for both M and K. The results showed, as expected, a DSC of 1 inside
the lesion areas (M/K mask), whereas the mean DSC around the lesions was
0.7901 ± 0.0463, very similar to that of the first execution (0.7919 ± 0.0457),
conserving a similar effect on the tissues surrounding the lesions.

3.2 MSSeg 2016 Challenge

For the second experiment, we qualitatively compared the fusion results obtained
by the analyzed algorithms on a MS patient database (MSSeg 2016 challenge5).

Figure 2 shows the segmentations obtained with all the analyzed multi-atlas
strategies. As we can observe from Fig. 2(a), MS lesions are hypo-intense in T1-
w modality, which makes its intensity profile similar of that of the gray matter
(GM) and even sometimes similar to the cerebro-spinal fluid (CSF) which may
affect the results of intensity-based algorithms. The lesions shown in Fig. 2(b),
should be classified as white matter, however, the intensity-based algorithms of
the state of the art, Fig. 2(f−h), tend to misclassify those regions as GM or CSF,
whereas our method, Fig. 2(c), shows better classification results in those areas.
When our method is fed with a K mask, Fig. 2(d), the lesion surrounding voxels
remain practically the same as when the K mask is not used, Fig. 2(c), whereas
the segmentation result inside the lesions agrees entirely with the labels imposed
by this mask, as seen in Sect. 3.1.

5 https://portal.fli-iam.irisa.fr/msseg-challenge/overview.

https://portal.fli-iam.irisa.fr/msseg-challenge/overview
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Fig. 1. (A) Global DSC and (B) qualitative segmentation results of analyzed multi-
atlas strategies on both simulated databases: (a−d) uniform intensity lesions, and (e−j)
MS simulated lesions.
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Fig. 2. Segmentation results of the analyzed multi-atlas strategies for the image
01038PAGU of the MICCAI2016 Challenge database.

4 Discussion

Accurate structural volume measurements are important in MS, since the atro-
phy of some structures such as the deep GM is relevant to the disease progression.
However, we have shown that multi-atlas strategies based on intensities, which
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achieve good segmentation results on healthy subjects, are affected by lesions,
and therefore corrupting real measures.

Herein, we have presented the theory to modify the non-local STAPLE frame-
work to deal with MRI visible lesions. The experiments performed show that
our proposal outperforms the state-of-the-art multi-atlas strategies in the lesion
areas for both simulated and MS patient images.

Over-performance of MV compared to the state-of-the-art intensity-based
strategies was observed on the experiments performed on the uniform intensity
lesions database around the lesion areas. This behavior could be due to the
fact that the other strategies are patch-based. These strategies consider mean
patch differences to calculate the correspondences, hence the bright voxels of the
lesions could bias the mean intensity, finding wrong atlas correspondences. Even
though, this is an extreme case to test the proposed theory, it shows, combined
with the over-performance of MV inside the lesion areas, the effect of the lesion
intensities on the segmentation.

In this work, we have only focused on the segmentation performance of the
lesion areas, since those are the ones concerning the proposed reformulation.
Nonetheless, as these areas are better segmented with our strategy, the aver-
age whole brain segmentation performance slightly increases compared to the
non-local STAPLE variants. This small improvement is due to lesions are small
compared to the whole brain volume. For this reason, we believe that extending
our theory to other methods of the literature, such as JLF, would be beneficial
in terms of segmentation accuracy of the lesion areas but also of the whole brain.
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Abstract. Because of the strong variability of the cortical sulci, their
automatic recognition is still a challenging problem. The last algorithm
developed in our laboratory for 125 sulci reaches an average recognition
rate around 86%. It has been applied to thousands of brains for morpho-
metric studies (www.brainvisa.info). A weak point of this approach is the
modeling of the training dataset as a single template of sulcus-wise prob-
ability maps, losing information about the alternative patterns of each
sulcus. To overcome this limit, we propose a different strategy inspired
by Multi-Atlas Segmentation (MAS) and more particularly the patch-
based approaches. As the standard way of extracting patches does not
seem capable of exploiting the sulci geometry and the relations between
them, which we believe to be the discriminative features for recognition,
we propose a new patch generation strategy based on a high level rep-
resentation of the sulci. We show that our new approach is slightly, but
significantly, better than the reference one, while we still have an avenue
of potential refinements that were beyond reach for a single template
strategy.

Keywords: MRI · Cortical sulci labeling · Patch-based segmentation

1 Introduction

1.1 Overview of Cortical Sulci Recognition Approaches

The surface of the human brain cortex is divided into gyri, separated by fissures
called sulci. The largest sulci are good indicators of the localization of functional
areas and the morphometry of the sulci geometry is used to quantify brain devel-
opment and neurodegenerative processes. Automatic recognition is mandatory
to exploit the large databases yielded by recent neuroimaging projects. However,
automatic sulci recognition remains a challenging problem because of the lack
of understanding of the nature of the interindividual variability of the folding
patterns. During the last twenty years, many different approaches have been
proposed to handle this problem.
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The approaches based on atlas registration yield reasonable identification
rate for major sulci. For instance, in [12], a labeled brain is elastically deformed
to fit a new brain, and in [6], a multiresolution strategy is designed to improve
the results by progressively registering the largest folds to the smallest folds. This
single template strategy however has strong limitations with regard to
the numerous folding configurations incompatible with the atlas geometry, which
occurs even for the largest sulci.

Modeling intersubject variability seems mandatory to increase robustness,
which was tackled using a variety of frameworks ranging from PCA to Bayesian
approaches [1,5,7,9]. A large amount of strategies rely on graph-based rep-
resentations, which provide a flexible way to model the spatial relationships
between the sulci in addition to their shape and localization in a normalized
space [3,10,11,13–15]. Comparing these approaches is difficult in the
absence of benchmark. Furthermore, all of them except the one in Brain-
VISA are restricted to a small set of sulci, a small training database and are not
distributed. Therefore, in this paper, we will only compare our new model to the
results of BrainVISA current package.

1.2 The Current BrainVISA Model: Principles, Advantages and
Inconvenients

The current BrainVISA model relies on a coherent Bayesian framework
based on a probabilistic atlas (a model made of a mixture of Statistical Proba-
bilistic Anatomy Maps (SPAM)). This approach performs simultaneously sulcus
recognition and local alignment with the template of SPAMs [9]. Unfortunately,
this approach performs poorly with unusual folding patterns, which depart from
the main modes of the probabilistic atlas. This is a classical limitation of sin-
gle template strategies. For instance, the reconfiguration of the folding patterns
induced by interruptions of the large sulci can lead to inconsistent sulcus recogni-
tion. Furthermore, we have observed disturbing mistakes that did not occur with
the older graph-based approach also proposed in BrainVISA [10]. For instance a
large sulcus can be locally duplicated because the current Bayesian framework
does not model the relationships between folds, while the previous graph-based
approach could learn alternative configurations thanks to a neural network (NN)
based memory. Unfortunately, this NN strategy could probably not be trained
with a large enough manually labelled database to reach the robustness of the
Bayesian framework.

1.3 MAS Strategy: A Solution to the Limits of the Current Model?

In biomedical image analysis, segmentation is the process of tagging image vox-
els with biologically meaningful labels. The MAS strategy has become one of
the most widely-used and successful solution. The idea of this technique is to
use for segmentation the entire dataset of “atlases” (i.e. training images) rather
than one model-based average kind of representation, so that it better captures
the anatomical variability. A power of this approach is its pragmatism: it can be
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applied for a problem where a real understanding of the nature of the interindi-
vidual variability is lacking, which fits the current status of the neuroscience
world with regard to the cortical folding.

Most of the MAS techniques include four main steps: (1) Atlas generation:
the design of atlases from the training images; (2) Registration: alignment
of each atlas onto the new image to be segmented; (3) Label propagation:
from each aligned atlas to the new subject, (4) Label fusion: combining the
propagated labels to achieve the final segmentation. One of the most recent MAS
techniques developed by Coupé et al. [4] performs a patch-based label fusion,
which leads to very efficient implementations.

The problem of sulci recognition differs from standard MAS applications by
several aspects. First, there are many more anatomical structures to be labeled:
each brain contains up to 125 cortical sulci in the nomenclature of BrainVISA.
Second and more importantly, grey level intensities and textures surrounding
the sulci do not provide discriminative information except for a few sulci like
central sulcus, because of a specific local myelin content. Therefore, the key
discriminative information is folding geometry, which requires larger voxel-based
patches than in usual implementations. Hence, for the sake of efficiency, in the
following we will operate at a larger intermediate scale of representation of the
folding patterns, where the entities to be labelled are predefined sets of voxels
corresponding to the most elementary folds (about 500 such entities in a standard
brain) [8].

The new model proposed in this article is inspired by the patch-based
methodology proposed by Coupé et al. [4] but the patches are not defined as
local groups of voxels but as local groups of sulci. Note that this strategy could
be extended to all the domains where an intermediate level of representa-
tion of the data could be useful for the alignment of the atlases to the unknown
subject. Hence, we have to revisit the different stages of the mainstream strategy
to take into account the heterogeneity of the representations of the subjects. In
the following, we design a dedicated patch generation strategy, a geometry-based
measure of similarity to perform the patch-based alignment, and a propagation
strategy for 3D points clouds.

2 Database

In order to compare our results to those of [9] in the same conditions, we use
the exact same database of 62 healthy subjects selected from different heteroge-
neous databases. Most of the subjects are right-handed male persons, between
25 and 35 years old. The elementary folds of each brain were manually labelled
according to the sulcus nomenclature following a long process leading to achieve
a consensus across a set of several experts of the morphology of the cortex. Each
fold representation is a set of voxels corresponding to the medial surface of the
cerebrospinal fluid filling up the fold. Hence, these fold representations are ele-
mentary pieces of a negative mould of the brain. As mentioned above, the sulcus
recognition method described in this paper will be forced to give one unique
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label to the set of voxels representing a fold. The training base is composed of
62 brains labelled with a model containing 62 sulci for the right hemisphere and
63 for the left.

3 Method: A New Model Inspired by MAS Algorithms

As the new model is inspired by the MAS strategy, the same steps are used and
will be described in this section (Fig. 1). In the following, the atlas brains and
the new brain are all represented as a set of elementary folds. All the atlas folds
have been manually labelled with the sulcus nomenclature. All the brains have
been affinely aligned with the Talairach standard space.

Fig. 1. Patch-based segmentation approach for automatic sulci recognition.

3.1 Patch Generation

In this paper, we experiment with a reasonable but relatively naive strategy,
which will be refined in the future using machine learning. The goal is to define
from the atlas dataset a library of local patches embedding enough geometrical
information to minimize ambiguities when searching for a high similarity hit
in the unknown subject morphology. Note that the shape of small sulci is not
informative enough to prevent spurious hits. Hence the idea is to aggregate a few
sulci to create discriminative local shapes. In the following, we define a type of
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patches for each pair of sulci that are neighbors in the brain (Fig. 1). Practically,
a pair of sulci is selected if the instances of the two sulci are neighbors at least
in one brain of the atlas dataset, for the topology provided by the BrainVISA
pipeline yielding the folds. This pipeline endows the list of folds with a graph
structure corresponding to either direct connections or to the fact that two folds
are separated by a piece of gyrus. Finally, for a given sulcus S, with neighbors
S1, S2, ..., SN , N patches are generated from each atlas of the dataset, each patch
corresponding to a different type of patch SS1, SS2, ..., SSN . Note that if the
neighbor or S is missing in the atlas, the patch is not included in the library.

3.2 Registration

For the registration step, the set of folds of the unknown brain and the patches
of the library are represented by point clouds. The well-known iterative closest
points algorithm [2] is applied to find an optimal alignment of each patch into
the point cloud made up of the unlabelled folds of the unknown brain. To build
the measure used to rank the matches, the nearest points in the new brain of
each patch point are saved as activated points. The measure corresponds to the
sum of quadratic distances of the patch points and their corresponding activated
points, divided by the number of different activated points.

3.3 Label Propagation

For each patch type, the ten instances leading to the smallest distances are
selected to participate to the propagation of the two parent sulci. The num-
ber of instances selected has been set to ten arbitrary for a first implemen-
tation and should be optimized later on. Note that some sulcus instances are
selected several times, because they win the competition for several patch types.
But their multiple contributions will be associated with slightly different align-
ments. Hence, sulcus instances maximizing regional similarity to the unknown
subject get more weight. For each selected patch after the ICP registration to
the unknown subject, each point gives its label to its nearest neighbor in the
target brain. To consider the patch structure, each connected set of points in
the patch should correspond to a unique connected set in the target brain: the
smallest non-connected sets are excluded. Hence, each point of the target brain
can be labeled several times from several patches and only the most propagated
label is saved.

3.4 Label Fusion

The label fusion process is performed on a fold by fold basis. For each fold of
the unknown subject, the sulcus label the most represented in its points is given
to the fold. Without activated points in the fold, the “unknown” label is kept.
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4 Results and Comparison with the BrainVISA Model

The proposed approach and the Bayesian BrainVISA approach are compared
using a Leave-One-Out strategy on the database described above. Many different
error measures are possible to evaluate the model. The measures used to evaluate
the current BrainVISA model are the Elocal for each sulcus and ESI for the final

Fig. 2. Mean error rates per sulcus. The graph on the left and the graph on the
right present the mean error rates for the sulci on the left hemisphere and on the right
hemisphere, respectively. The Brainvisa model is represented in violet and the new
model is represented in pink. The significative differences (pvalue < 0.05) are marked
with a star.
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labeling. Here is their definitions for a given subject:

Elocal(l) =
FP (l) + FN(l)

FP (l) + FN(l) + TP (l)
, (1)

ESI =
∑

l∈L

wl
FP (l) + FN(l)

FP (l) + FN(l) + 2TP (l)
, (2)

with L the ensemble of sulcus labels, FP (l), FN(l) and TP (l) respectively the
size of the set of voxels false positive, false negative and true positive for the
label l and wl = sl∑

l∈L

sl
with sl = FN(l) + TP (l) the true size of the sulcus with

the label l.
The advantages of ESI is that it is sensible to local labeling and it takes

into account the shared errors between labels [9]. With this measure, we deduct
the main recognition rate for the two compared models: the current BrainVISA
model obtains 85.53% (+/– 5.80%) for the left hemisphere and 86.27% (+/–
6.12%) for the right hemisphere while the new model obtains 86.76% (+/–
5.16%) and 88.04% (+/– 5.70%).

In order to compare the two models, we calculate the error rates for each
subject in the database and compare the set of measures with a T-test. The ESI

comparison shows that the new model is significantly better than the Brainvisa
model (pvalue = 4.14e− 8). Moreover, by comparing the Elocal per sulcus, more
than 20 sulci are found significantly better (Fig. 2).

5 Conclusion

This paper describes a first attempt at casting the cortical sulci recognition
problem in a MAS-based framework. While some choices are still ad hoc and
will require further developments, the comparison with the existing Bayesian
approach is full of promise. The main contribution of our work is the extension
of the MAS framework to a high level representation of the data dedicated to our
pattern recognition problem. This original setting is calling for a more sophis-
ticated inference of the library of patches, which should probably be developed
with an optimization strategy trying to maximize the recognition result while
keeping the library as small as possible. This strategy shall pick the selected
patch types from a larger combinatorial set aggregating more than two sulci.
Another improvement opportunity lies in the patch selection strategy, for exam-
ple by learning the optimal cut-off for each type of patches. The label fusion
could be largely improved by the introduction of weights, in order to balance
the contribution of each patch according to its similarity measure. Finally, as the
new strategy involves a labeling per point, it will allow the method to question
the initial split of the cortex morphology into elementary folds to detect under-
segmentation issues. This is an essential element to overcome the weakness of
the current Bayesian framework, which is stuck to the high level representa-
tion yielded by the preprocessing stage. This possibility can be considered as a
top-down feature embedded in the global recognition system.



A Patch-Based Segmentation Approach for Sulci Recognition 121

References

1. Behnke, K.J., et al.: Automatic classification of sulcal regions of the human brain
cortex using pattern recognition. In: Medical Imaging 2003: Image Processing, vol.
5032, pp. 1499–1511. International Society for Optics and Photonics (2003)

2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion
IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International
Society for Optics and Photonics (1992)

3. Blida, A.: Ontology driven graph matching approach for automatic labeling brain
cortical sulci. In: IT4OD, p. 162 (2014)
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Abstract. Deep learning methods are actively used for brain lesion seg-
mentation. One of the most popular models is DeepMedic, which was
developed for segmentation of relatively large lesions like glioma and
ischemic stroke. In our work, we consider segmentation of brain tumors
appropriate to stereotactic radiosurgery which limits typical lesion sizes.
These differences in target volumes lead to a large number of false neg-
atives (especially for small lesions) as well as to an increased number of
false positives for DeepMedic. We propose a new patch-sampling proce-
dure to increase network performance for small lesions. We used a 6-year
dataset from a stereotactic radiosurgery center. To evaluate our app-
roach, we conducted experiments with the three most frequent brain
tumors: metastasis, meningioma, schwannoma. In addition to cross-
validation, we estimated quality on a hold-out test set which was col-
lected several years later than the train one. The experimental results
show solid improvements in both cases.

Keywords: Stereotactic radiosurgery · Segmentation · CNN · MRI

1 Introduction

During the last several years deep learning algorithms have gained a lot of atten-
tion from the academia since they showed previously unimaginable performance
in various image analysis tasks. By now, deep learning methods are actively
used in medical imaging as well [7]. In particular, deep convolutional networks
dominate over traditional algorithms such as random forests in all recent MRI
segmentation competitions (e.g., ischemic stroke [9] or glioma [10] segmentation).
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However, we suppose that a gap exists between these results and MRI anal-
ysis in everyday clinical settings. The majority of open datasets for brain lesion
segmentation are devoted to research-oriented questions such as “is it possible
to extract some biomarkers associated with the clinical outcome from lesion seg-
mentation masks?” [2]. Meanwhile, radiologists usually do not delineate lesions
like glioma in their routine practice as it is a very time-consuming procedure and
clinical protocols do not require it. We suppose that current deep learning-based
algorithmic results lack verification in real-world clinical scenarios. Also, such
verification can pose new specific requirements and therefore stimulate further
algorithmic development.

In our work, we focus on adaptation of DeepMedic [6], a state-of-the-art
deep learning convolutional network for brain lesion segmentation, for stereo-
tactic radiosurgery. Delineation of pathological tissues is an obligatory part of
radiosurgery planning and radiation oncologists have to detect and segment all
tumors in MRI scans. So, radiosurgery is an interesting application area for deep
learning methods [11]; recently two DeepMedic-based papers on brain metasta-
sis segmentation were published [3,8]. We observe that the standard approach
leads to a high number of false positives and propose a problem-oriented training
procedure. To evaluate our approach, we use data on three most disseminated
brain tumors (metastases, meningiomas, and acoustic schwannomas) [1] from a
Gamma Knife radiosurgery center. We not only report quality metrics for cross-
validation, but also provide evaluation on a test set which was collected several
years later than the training one to prove robustness of the developed models.
To our knowledge, it is the first time, when modern deep learning algorithms
were tested over such a long period of time in the field of MRI segmentation.

2 Related Work

During the recent years, various deep learning architectures were developed.
Unet, one of the most successful recent fully convolutional networks, was
designed for 2D image segmentation. The core idea of the method is to add
several additional connections between decoding and encoding paths to combine
feature maps with various level of local and contextual information. For medical
imaging, a straightforward 3D-convolutional generalization was proposed in [4].
However, a large size of typical brain MR images place some restrictions on net-
work receptive field. In such conditions, a more simple network called DeepMedic
demonstrates solid performance in series of competitions, including glioma [9]
and acute ischemic stroke segmentation [10]. The network is 11 layers deep and
consists of two input paths: the first process a small patch of the image in the
original resolution, the second one works with larger area in a coarser resolution
and provides information on patch localization. The training is based on the fol-
lowing patch generation algorithm: the central voxel of each patch should belong
to the target mask with predefined probability.

DeepMedic was recently used in two works on brain metastases segmentation.
In [8] authors modified the original architecture by adding another input branch
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in original resolution and reported significant improvements over the original
model. Their experiments with a metastases dataset resulted in Dice score equal
to 0.67. The original DeepMedic architecture was used in [3] where authors
compared various combinations of T1c, T2 and Flair modalities. For T1c (in our
paper we use only this modality) they reported Dice Score 0.77, sensitivity 0.92
and 10.5 false positives per image. In both papers, the original patch generation
strategy was used. A non-uniform patch generation process was proposed in [5].
In fact, authors applied a predefined elastic deformation to each patch, whereas
patch sampling (i.e. selection of the center voxel) was uniform.

3 Data

We focused on everyday practice of a radiosurgical center, that conducts opera-
tions with Leksell Gamma Knife. A typical Gamma Knife treatment consists of
gathering patient data, frame fixation, performing an MRI scans, lesion delin-
eation in MRI scans, treatment planning and, finally, the delivery of a dose of
irradiation to a small intracranial volume through the intact skull. Delineation
itself usually takes up to one hour.

We found that three of the most popular diagnoses cover 77% of all patient
visits. This data is consistent with Leksell Gamma Knife society report [1],
according to which in 2016 metastases, meningioma and schwannoma accounted
for 70% cases treated in Gamma Knife centers. We focused only on these diag-
noses since processing each new diagnosis makes our analysis more and more
difficult, while clinical effect diminishes with the number of patients affected.

We use MRI T1c in all our experiments, image resolution is (0.94, 0.94, 1)
mm. We gathered two datasets from Gamma-Knife facility: historic and modern.
Historic dataset consisted of patients examined between 2005 and 2011. Modern
was gathered in 2017, we used it to ensure that developed methods could be
used over a long period of time. Therefore, there was a 6 years gap between
the last examination in the historic dataset and the first examination in modern
dataset. Details are provided in Table 1. Ground truth was provided by medical
physicists who routinely perform tumor delineation procedure.

Table 1. Total number of patients in historic and modern datasets

Metastasis Meningioma Acoustic schwannoma

Historic 404 341 252

Modern 58 10 16

Metastases. Brain metastases occur when cancer cells spread from the primary
tumor to the brain. Brain metastases often cause the leading clinical symptoma-
tology in cancer, therefore their local control is very important. Survival ability
of the diseased in case of applying only the supporting therapy amounts to only
40–50 days. The majority of these cases is characterized with multiple lesions,
making correct tumor identification and contouring a tedious process.
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Meningioma. Most meningiomas are slowly growing, benign neoplasms, deriv-
ing from arachnoid cap cells. Meningiomas are usually located on convex, cranial
base, cerebral falx and tentorium. A typical meningioma is round-shaped on the
side of the brain and extended on the side of the meninges. As the tumor grows,
it may interfere with the normal functions of the brain. The delineation of these
tumors is complicated by “dural tales” (extended part of the meninges).

Schwannoma. Vestibular schwannomas, or acoustic neuromas, are benign
tumors that arise from the myelin-forming Schwann cells of the vestibulocochlear
nerve. As the tumor grows, it presses hearing and vestibular fibres of the auditory
nerve and the facial nerve, causing hearing loss, tinnitus (ringing in the ear) and
loss of balance. If the tumor becomes larger it can affect trigeminal nerve and
nearby brain structures (such as the brainstem and the cerebellum, the fourth
ventricle), becoming life-threatening. A typical vestibular schwannoma looks like
“comma”, that arises commonly within the internal auditory meatus, and may
extend into the cerebellopontine angle.

4 Method

For segmentation, we used standard DeepMedic architecture described in [6],
which is also briefly described in Sect. 2.

4.1 Baseline Training Procedure

Training procedure, proposed along with DeepMedic architecture [6], consists
of sampling 3D-patches from the images. Central voxels in the first half of the
batch are tumorous (foreground) and are healthy (background) in the second
half. Therefore, central voxels of the first half are distributed uniformly across
all tumorous voxels. This sampling procedure is used to fight class imbalance,
since foreground voxels are much rarer than background voxels.

4.2 Tumor Sampling (TS)

After training our baseline model we discovered that sensitivity was relatively
low both in test and train sets. We concluded that the model was not trained well
enough. Having observed false negative cases in the training set, we found that
many of them were small metastases in a brain which had both big (Fig. 1) and
small (Fig. 2) metastases. Original sampling procedure would strongly favour
sampling from big metastasis in this case, significantly decreasing number of
small metastases observed during training. To fix that we change foreground
sampling procedure. Instead of uniformly choosing foreground voxels we first
randomly choose a metastasis and only then pick a random voxel inside. This
means that now all metastases are equally represented in training set, including
the smallest ones.
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Fig. 1. TP prediction of easy-to-detect
tumor

Fig. 2. FN prediction of the small
tumor

4.3 High Intensity Sampling (HIS)

Observing false positive cases we found out that there are many of false pre-
dictions in the structures with high intensity level (Fig. 3) and in some parts of
skull. To prevent our model from making such prediction and also to improve
predictions near high intensity structures (Fig. 4), we change sampling procedure
almost the same way. Voxels with more than 90-th percentile intensity were cho-
sen as High Intensity class. Then, instead of uniformly choosing a background
voxel, we firstly made a decision between High Intensity class (with probabil-
ity 0.3) and standard sampling procedure from the background. This approach
allows algorithm to learn from hard-to-recognize structures more often.

Fig. 3. FP prediction of high intensity
structures

Fig. 4. FN predictions of near high
intensity structures

5 Experiments

Measuring Performance. The tumor delineation process could be considered
a tumor detection followed by its segmentation. Detection is a process of spotting
the tumors; segmentation is the process of contouring these tumors close to the
way the physician did. Detection quality can be measured by using sensitivity
and number of false positives computed for tumors. Here we define that tumor
was found if there was an intersection between predicted tumor and true tumor.
Segmentation quality can be measured by Dice similarity coefficient computed
for all patient’s voxels. It’s a popular metric widely used in segmentation tasks.

Training Procedure Parameters. During our preliminary experiments we
discovered that sampling foreground voxel with probability 0.5 lead to the large
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number of false positive examples, so we decreased this probability to 0.25.
During training we are using patch size of 15 as an output of our model, since
this increases sensitivity and dice score in our case. We train our models for 120
epochs since training loss plateaus at this point for any learning rate. Each epoch
consists of 200 stochastic gradient descent iterations. We start our training with
learning rate of 0.1, and halve it whenever training loss plateaus.

Data Preprocessing. We didn’t use standard preprocessing techniques like
brain extraction since it can take dozens of minutes. In clinical settings it could
annihilate all acceleration of delineation process obtained by deep learning.

Reproducibility. We conducted our experiments using Python and PyTorch.
Our deep learning algorithms are written in a highly modular way and fully
reproducible thanks to usage of Docker containers. We haven’t released it at the
moment to preserve anonymity during double-blind reviewing.

5.1 Results for Cross-Validation

First we evaluate our algorithms on each dataset with 5-fold cross validation.
Results are presented in Table 2. We do not apply Tumor Sampling for schwan-
noma segmentation since most of the corresponding patients have only one
tumor.

Table 2. Results of a 5-fold cross-validation on the historic dataset, TS - Tumor
Sampling, HIS - High Intensity Sampling.

5.2 Testing on Modern Data

After that we retrain our algorithm on each historic dataset (2006–2011) and test
them on modern dataset, which was gathered six years later (2017). Results are
presented in Table 3, see also Fig. 5 for examples of predicted masks. For menin-
giona segmentation HIS showed significant increase in dice score. We checked
results more precisely: methods differed in how they predicted tumor attached
to the skull, with HIS being much more accurate.

These results demonstrates that our algorithm is quite robust to the typical
changes of this center, since if we had been able to provide our algorithm six years
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Table 3. Experiments on different tumors, TS - Tumor Sampling, HIS - High Intensity
Sampling. We used the historic dataset (2006–2011) for training and the modern one
(2017) as a hold-out test set to calculate quality metrics

ago, it would still provide reasonable quality up until this moment. Also, since we
could use different algorithms for detection and segmentation, we could always
have the best of different models, combining best dice score and sensitivity/FP.

(a) Metastasis segmentation example (b) Metastasis segmentation example

(c) Meningioma segmentation example (d) Schwannoma segmentation example

Fig. 5. Examples of predicted masks for Tumor Sampling method. Each subfigure
contains a T1c image (left), expert annotation (center) and prediction (right)

6 Conclusion

We developed a new patch sampling strategy to meet needs of delineating brain
lesions for radiosurgery and evaluated the proposed approach by segmenting
three of the most common tumors. Also, we emulate long-term usage of our deep
learning-based system in clinical settings and demonstrated robust performance
of the method.

Acknowledgements. The results of sections 1, 2, 4 and 5 are based on the scientific
research conducted at IITP RAS and supported by the Russian Science Foundation
under grant 17-11-01390.
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Abstract. This paper tackles the task of estimating the topology of
filamentary networks such as retinal vessels. Building on top of a global
model that performs a dense semantical classification of the pixels of the
image, we design a Convolutional Neural Network (CNN) that predicts
the local connectivity between the central pixel of an input patch and its
border points. By iterating this local connectivity we sweep the whole
image and infer the global topology of the filamentary network, inspired
by a human delineating a complex network with the tip of their finger.
We perform a qualitative and quantitative evaluation on retinal veins and
arteries topology extraction on DRIVE dataset, where we show superior
performance to very strong baselines.

1 Introduction

Deep learning has gone a long way since its jump to fame in the field of computer
vision thanks to the outstanding results in the Imagenet [23] image classification
competition back in 2012 [11]. We have witnessed the appearance of deeper [24]
and deeper [10] architectures and the generalization to object detection [6,7,
21]. Convolutional Neural Networks (CNNs) have played a central role in this
development.

A significant step forward was done with the introduction of CNNs for dense
prediction, in which the output of the system was not a classification of an
image or bounding box into certain categories, but each pixel would receive
an output decision. Many tasks have been tackled from this perspective since
then: semantic instance segmentation [9,14], edge detection [29], medical image
segmentation [15], etc.

Other tasks, however, have a richer output structure beyond a per-pixel clas-
sification, and a higher abstraction of the result is expected. Notable exam-
ples that have already been tackled by CNNs are the estimation of the human
pose [19], or the room layout [13] from an image. The common denominator of
these tasks is that one expects an abstracted model of the result rather than a
set of pixel classifications.
c© Springer Nature Switzerland AG 2018
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This work falls into this category by bringing the power of CNNs to the esti-
mation of the topology of filamentary networks such as retinal vessels. The
structured output is of critical importance and priceless value in these applica-
tions: rather than knowing exactly which pixels in a retinal image are vessels
or not, detecting whether two points are connected and how is arguably more
informative.

Fig. 1. Patch-based iterative approach for network topology extraction. (a): Input
retinal image. (b): detections at the local patch for the points at the border (in green)
connected to the central point (in blue). (c): final result once the iterative approach
ends. (Color figure online)

If one thinks how humans would extract the topology of an entangled graph
network from an image, it might quickly come to mind the image of them trac-
ing the filaments with the finger and sweeping the connected paths continuously.
Inspired by this, we propose an iterative deep learning approach that sequen-
tially connects dots within the filaments until it sweeps all the visible network.
Our approach naturally allows incorporating human corrections: one can simply
restart the tracing from the corrected point.

Tracing of curvilinear structures has been of broad interest in a range of
applications, varying from blood vessel segmentation, roadmap segmentation,
and reconstruction of human vasculature. Hessian-based methods rely on deriva-
tives, to guide the development of a snake [28], or to detect vessel boundaries [1].
Model-based methods rely on strong assumptions about the geometric shapes
of the filamentary structures [12,26]. Learning-based methods emerged for the
task, using SVMs on line operators [22], fully-connected CRFs [20], gradient-
boosting [2], classification trees [8], or nearest neighbours [25]. Closer to our
approach, the most recent methods rely on Fully Convolutional Neural Net-
works (FCNs), to segment retinal blood vessels [5,15], or recover vascular bound-
aries [18]. Different than all the aforementioned method that result in binary
structure maps, our method employs deep learning to trace the entire structure
of the curvilinear structures, recovering their entire connectivity map.

More specifically, we train a CNN on small patches that localizes input
and output points of the filaments within the patch (Fig. 1(b)). By iteratively
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connecting these dots we obtain the global topology (graph) of the network
(Fig. 1(c)). We tackle the extraction of the topology of retinal vessels (veins and
arteries) from fundus images. We experiment on DRIVE dataset to show that
our algorithm improves over some very strong baselines and provides accurate
representations of the topology of vessels. To the best of our knowledge, we
are the first to apply deep learning for tracing curvilinear structures. Code is
available in https://github.com/carlesventura/iterative-deep-retinal.

2 Our Approach

This section presents our approach, which combines a global scale for curvilin-
ear structure segmentation and a local scale to estimate its connectivity. The
current best approaches for curvilinear structure segmentation applies state-of-
the-art deep learning techniques to obtain a segmentation map where each pixel
is classified as belonging to the structure (foreground) or not (background). The
most relevant example of such approach is the VGG-based architecture used in
DRIU [15] for vessel segmentation. Despite their good performance in segmen-
tation evaluation measures, one of the main drawbacks of these approaches is
that they do not take any structure information into account. In particular, this
method is blind to connectivity information among the points that lie in their
predicted mask, since all points are assigned only a binary label.

Section 2.1 proposes a method that learns the connectivity of the elements
at a local scale. Once the local model is learned, it is iteratively applied to the
image, connecting previous predictions with next ones, and gradually extracting
the topology of the network, as explained in Sect. 2.2. The evaluation metrics
are presented in Sect. 2.3.

2.1 Patch-Level Learning for Connectivity

As introduced above, the goal is to train a model to estimate the local connectiv-
ity in patches. The concept of connectivity is not a property from single points
but from pairs of pixels. Current architectures, however, are designed to esti-
mate per-pixel properties rather than pairwise information. To solve this issue,
the local network is designed to estimate which points in a patch are connected
to a given input point.

More precisely, we take the architecture of stacked hourglass networks [19]
to learn the patch-based model for connectivity. This architecture is based on a
repeated bottom-up, top-down processing used in conjunction with intermediate
supervision. Each bottom-up, top-down processing block is referred to as an
hourglass module, which is related to fully convolutional networks that process
spatial information at multiple scales but with a more symmetric distribution.

The network is trained using a set of k×k-pixel patches from the training
set with the pixel at the center of the patch belonging to the foreground (e.g. a
vessel). The output is a heatmap that predicts the probability of each location
being connected to the central point of the patch.

https://github.com/carlesventura/iterative-deep-retinal
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Furthermore, the model is also trained to differentiate between the two types
of vessel (arteries or veins), so the model is forced to learn not only the con-
nectivity but also an artery-vein classification problem. To illustrate this idea,
Fig. 2 shows some examples of connectivity for retinal images where we differ-
entiate three types of models. Figures 2(a) and (b) compare two patches where
all vessels that intersect the border patch have been marked (Fig. 2(a)), versus
the ones that are connected to the vessel at the center of the patch (Fig. 2(b)).
Figures 2(c) and (d) illustrate the difference between detecting the connectivity
over any type of vessel (Fig. 2(c)), or forcing the connectivity to be over the same
type of vessel (Fig. 2(d)).

(a) (b) (d)(c)

Fig. 2. Examples of training patches for connectivity. The green points represent the
locations from the patch border connected with the vessel indicated by the blue point
in the center. (Color figure online)

We finally connect the border locations to the center locations by computing
the shortest path through the semantic segmentation computed from the global
model introduced before. Note that the patch is local enough that a shortest
path on the global model is reliable.

2.2 Iterative Delineation

Once the patch-level model for connectivity has been learned, the model is
applied iteratively through the image in order to extract the topology of the
network. We start from the point with highest foreground probability, given by
the global model. We then center a patch on this point and find the set of loca-
tions at the border of the patch that are connected to the center using the local
patch model.

We discard the locations with a confidence value below a certain threshold
and add the remaining ones to a bag of points to be explored BE . For each
predicted point, we store its location, its confidence value and its precedent
predicted point (i.e. the point that was on the center of the patch when the
point was predicted). The predicted point p from BE with the highest confidence
value is removed from BE and inserted to a list of visited points BV . Then, p
is connected to its precedent predicted point using the Dijkstra [3] algorithm
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over the segmentation probability map over the patch to find the minimum path
between them.

We then iterate the process with a patch centered on pc and the new predicted
points over the confidence threshold are appended to BE where they will compete
against the previous points in BE to be the next point to be explored. This
process is iteratively applied until BE is empty. Note that the list of visited
points BV is used to discard any point already explored and, therefore, to avoid
revisiting the same points. In a patch centered on pc, if a predicted point pp
belongs to a local neighbourhood of a point pv ∈ BV and pv is the precedent
point of pc, then the predicted point pp is discarded. Otherwise, if pv is not the
precedent point of pc but pp belongs to a local neighbourhood of pv, then the
predicted point pp is considered to be connected with pc, but pp will not be
considered for expansion.

Since in retinal images all vessels are connected through the optical disk,
any vessel point from the image is reachable from any starting point used in
the iterative approach. However, the algorithm has been generalized to tackle a
problem with unconnected areas, e.g. a cropped retinal image where the entire
retina is not visible and, therefore, there could be vessels not reachable from a
single starting point. To prevent that some part of the network topology may
have not been extracted, we select a new starting point for a new exploration
once the previous BE is empty. We impose two constraints on the eligibility for
a new starting point: (i) they have to be at a minimum distance of the areas
already explored and (ii) their confidence value on the segmentation probability
map has to be over a minimum confidence threshold.

2.3 Topology Evaluation

The output of our algorithm is a graph defining the topology of the input net-
work, so we need metrics to evaluate their correctness. We propose two different
measures for this: a classical precision-recall measure that evaluates which loca-
tions of the network are detected, and a metric to evaluate connectivity, by
quantifying how many pairs of points are correctly or incorrectly connected.

To compute the classical precision-recall curve between two graphs, we build
an image with a pixel-wide line sweeping all edges of the given graphs. We then
apply the original precision-recall for boundaries [16] on these pair of images.
Precision P refers to the ratio between the number of pixels correctly detected as
boundary (true positives) and the number of pixels detected as boundary (true
positives + false positives). Recall R refers to the ratio between the number of
pixels correctly detected as boundary (true positives) and the number of pixels
annotated as boundary in the ground truth (true positive + false negative). We
take the F measure between P and R as a trade-off metric.

The second measure is the connectivity C, inspired by the definition in [17] as
the ratio of segments which were estimated without discontinuities. We define a
segment in the graph as the curvilinear structure that connects two consecutive
junctions in the ground-truth annotations, as well as connecting an endpoint
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and its closest connected junction (junctions refer to both crossovers and bifur-
cations). Two junctions are considered consecutive if there is no other junction
within the line that connects them. Given the ground truth path between two
consecutive junctions pgt, the nearest point from the predicted network to each
junction is retrieved. Then, the shortest path through the predicted network con-
necting the retrieved pair of points is computed, which is referred to as ppred. If
the ratio between the length of pgt and the length of ppred is greater than 0.8 we
consider that the ground truth path pgt has been estimated without discontinu-
ities. In Fig. 3, the two images on the left show examples where the ground truth
segment have been estimated without discontinuities, whereas the two exam-
ples on the right are considered as not connected segments on the connectivity
measure.

Fig. 3. Examples of good (on the left) and bad (on the right) connectivity. Green pixels
represent ground truth connections, blue pixels represent predicted vessels with our
iterative approach and red pixels represent the path found through predicted network.
(Color figure online)

We propose to also have an F measure that combines precision P with con-
nectivity C. The reason is that a high connectivity C value does not implies a
good graph that defines the topology of the network. Whereas the connectivity
measures the ratio of estimated segments without discontinuities, the precision
measures how good the predicted locations along the segments are. For the rest
of the paper, FR stands for the F measure computed with recall and precision
for boundaries values, whereas FC stands for the F measure computed between
connectivity and precision.

3 Experiments

The experiments have been carried out on the DRIVE [27] dataset, which
includes 40 eye fundus images and contains manual segmentation of the blood
vessels by expert annotators. As a global model for segmentation, we use
DRIU [15], which is the state of the art for retinal vessel segmentation.

Patch-level evaluation: To train the patch-level model for connectivity we ran-
domly select 50 patches with size 64 × 64 pixels from each image of the training
set, all of them centered on one of vertices of the graph annotations provided
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by [4], which includes arteries and veins annotations. The ground-truth loca-
tions for the connectivity at the patch level are found by intersecting the vessels
with a square of side s pixels (slightly smaller than the patch size) centered on
the patch. The ground-truth output heatmap is then generated by adding some
Gaussian peaks centered in a subset of the found locations, depending on the
configuration:

– For the non-connectivity model, all the locations are considered (Fig. 2(a)).
– For the connectivity model, only the intersection points connected to the

center along a path completely included in the patch are considered (Figs. 2(b)
and (c)).

– For the connectivity-av model, only the intersection points connected to the
center and belonging to the same type of vessel (artery or vein) as the vessel
centered on the patch are considered (Fig. 2(d)).

The non-connectivity patch-level model reaches the best result (F = 82.1,
P = 85.3, R = 79.1). The connectivity model, which has to tell apart those points
connected with the patch center, achieves an only slightly worse performance
(F = 80.4, P = 82.5, R = 78.4), despite the task being more complicated. The
model that has also to distinguish between arteries and veins results in a more
significant drop in the performance (F = 74.8, P = 75.9, R = 73.7), but it still
keeps a very good result.

Figure 4 shows some visual results for the three type of configurations con-
sidered. In the first row, the model is able to differentiate the vessels connected
to the patch center from those ones not connected (3rd and 4th column). In
the second row, the model differentiates the vessels from the same type as the
centered vessel (an artery) from those of different vessel type (see 4th and 5th
column). The last row shows a failure case where the model correctly predicts
the connectivity but it is not able to differentiate the arteries from the veins.

Iterative delineation: Once the patch-level model for connectivity has been
trained, it is iteratively applied to extract the topology of the blood vessels net-
works from the eye fundus images. As a strong baseline we compare to extracting
the morphological skeleton of detections binarized at different thresholds from
the architecture proposed in DRIU [15], a VGG base network on which a set
of specialized layers are trained to solve the retinal vessel segmentation task.
Our proposed iterative approach uses this VGG-based architecture as the global
model to select the starting point and to connect the points detected by the
patch-level model with the central point of the patch (see Sect. 2.2). Table 1
compares to DRIU for different thresholds: 224 (the optimal for vessel segmen-
tation obtained in [15]), 200 (the optimal value for precision-recall boundary
evaluation FR) and 170 (the optimal value for precision-connectivity evaluation
FC). Our proposed iterative approach outperforms DRIU for connectivity in
6.6 points, which results on a improvement of 1.8 in the precision-connectivity
evaluation measure FC . Furthermore, both techniques are also compared with
an upper bound and a lower bound: the former is the skeleton extracted from
the ground truth vessel segmentation, and the latter results from evaluating the
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Fig. 4. Visual results of the patch-level models for eye fundus images. From left
to right: eye fundus image, artery-vein annotation, output confidence for non-
connectivity model, output confidence for connectivity model and output confidence
for connectivity-av (artery-vein) model.

ground truth skeleton obtained from a different image. Our results are only 7.7
points below the upper bound in connectivity. The experiments have also been
performed with other patch size values (k = 32 and k = 128) and the results do
not change significantly, which shows the robustness of the patch size to the scale
of the image. PSPNet [30], which is the state-of-the-art semantic segmentation
method to date, has also been considered as a baseline. However, the results
obtained by PSPNet in the DRIVE dataset are significanlty lower compared to
DRIU [15] (see Table 1).

Figure 5 illustrates how the vessel network topology extraction evolves along
the iterations of our proposed approach for one of the test images.

Fig. 5. Evolution of the vessel network in the iterative delineation.

Arteries and veins separation: For eye fundus images, we also pursue the objec-
tive of differentiating arteries and veins. The approach is similar to the iterative
delineation proposed before, but now using the patch-level model for connectiv-
ity that also takes into account that the vessels connected have to be of the same
type. We have referred before to this model as the connectivity-av model.
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Table 1. Boundary Precision-Recall and Connectivity evaluation for vessels (left),
arteries (top-right) and veins (bottom-right) in the DRIVE dataset

P R C FR FC

DRIU-224 [15] 97.3 84.7 67.7 90.4 79.8
DRIU-200 [15] 93.8 90.6 74.0 92.0 82.7
DRIU-170 [15] 89.9 93.1 78.3 91.3 83.7
PSPNet [30] 92.8 69.9 49.7 79.5 64.7
Iterative (ours) 86.1 94.1 84.9 89.8 85.5

GT skel (upperbound) 95.6 99.3 92.6 97.4 94.1
Random (lowerbound) 44.2 45.9 21.8 44.9 29.2

P R C FR FC

VGG-220 72.9 80.7 52.4 76.1 61.0
VGG-190 64.5 88.2 65.4 74.1 64.9

Iterative (ours) 81.4 75.3 63.0 78.0 71.0
VGG-230 70.8 79.1 42.2 74.2 52.9
VGG-180 57.4 91.3 66.1 70.2 61.5

Iterative (ours) 72.0 79.6 61.2 75.4 66.2

Fig. 6. Qualitative results on arteries and veins separation for two test images ((a)
and (d)) comparing ground truth ((b) and (e)) with our method ((c) and (f)): veins in
blue, arteries in red. (Color figure online)

As baseline, we have considered the same CNN architecture as in DRIU,
i.e. a VGG-based architecture, but using the annotations for arteries and veins
given by [4]. These annotations are only given at the graph level, so we build the
ground-truth image by drawing one-pixel wide lines delineating the arteries and
veins networks; which is different from the vessel segmentation pixel-accurate
masks from DRIVE on which DRIU is usually trained. We train one global
model for arteries and one for veins, and then we apply the delineation algorithm
using the connectivity-av patch-level model. Table 1 shows the results obtained
for arteries (top-right) and veins (bottom-right). In both cases, our iterative



142 C. Ventura et al.

approach reaches the best trade off between FR and FC . Figure 6 shows some
qualitative results comparing the ground truth annotations with our method.

4 Conclusions

In this paper we have presented an approach that iteratively applies a patch-
based CNN model for connectivity to extract the topology of filamentary net-
works. We have demonstrated the effectiveness of our technique on retinal vessels
from fundus images. The patch-based model is capable of learning that the cen-
tral point is the input location and of finding the locations at the patch border
connected to the center. Furthermore, we can also differentiate arteries and veins
and extract their respective networks. A new F measure (FC) that combines pre-
cision and connectivity has been proposed to evaluate the topology results. The
experiments carried out on retinal images have obtained the best performance
on FC compared to strong baselines.
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