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Chapter 7
Understanding Fractions: Integrating 
Results from Mathematics Education, 
Cognitive Psychology, and Neuroscience

Andreas Obersteiner, Thomas Dresler, Silke M. Bieck, and Korbinian Moeller

Abstract Many students face difficulties with fractions. Research in mathematics 
education and cognitive psychology aims at understanding where and why students 
struggle with fractions and how to make teaching of fractions more effective. 
Additionally, neuroscience research is beginning to explore how the human brain 
processes fractions. Yet, attempts to integrate research results from these disciplines 
are still scarce. Therefore, the aim of this chapter is to provide an integrated view on 
research from mathematics education, cognitive psychology, and neuroscience to 
better understand students’ difficulties with fraction processing and fraction learn-
ing. We evaluate the difficulties students encounter with fractions on various levels, 
ranging from the brain level to the classroom level. Current research suggests that 
the human cognitive system is in principle prepared for processing natural numbers 
and fractions. Although proficiency with natural numbers is fundamental to learning 
fractions, the transition from natural numbers to fractions requires modifications of 
the initial concept of numbers, and natural number processing can interfere with 
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fraction processing. Thus, when teaching fractions, it seems important to draw on 
students’ fundamental abilities to process fractions, while explicating fraction prop-
erties that are conceptually different from those of natural numbers.

Keywords Rational numbers · Conceptual change · Natural number bias · 
Fraction processing · Numerical cognition

Students’ difficulties with fractions have been studied for decades. Yet, research in 
cognitive psychology and neuroscience has only recently begun to unravel the 
underlying cognitive mechanisms of fraction processing, and this research has 
rarely been integrated with mathematics education. The aim of this chapter is, there-
fore, to make connections between these three disciplines to better understand the 
sources of difficulties students face with fractions.

In this chapter, we focus specifically on positive fractions, that is, positive ratio-

nal numbers represented in the form 
a

b
, where a and b are positive natural numbers. 

However, as fraction learning is an instance of learning about rational numbers 
more generally—which include negative fractions and numbers represented as deci-
mals (e.g., 0.25)—we also consider core issues of the transition from natural num-
ber concepts to rational number concepts.

In the first section of the chapter, we review the importance of fraction learning, 
including arguments from mathematics education and cognitive psychology. The 
second section analyzes typical difficulties students encounter in fraction learning as 
documented by empirical research, as well as potential sources of these difficulties. 
We analyze difficulties on three different levels: (a) difficulties that may be inherent 
in the learning content, (b) difficulties that may arise from the way our cognitive 
system processes fractions, including the neural correlates of fraction processing, 
and (c) difficulties that may be due to common teaching practices. In the third sec-
tion, we review experimental intervention studies aimed at supporting students’ frac-
tion learning to identify effective ways of instruction that may help students overcome 
difficulties with fractions. The fourth section includes recommendations for class-
room practice and directions for further research. In the fifth section, we conclude the 
chapter with a suggestion for merging various research perspectives.

7.1  Importance of Fraction Learning

It is widely accepted that fractions are important to learn. A basic understanding of 
fractions is needed in daily life, for example, to understand information on street 

signs (e.g., 
3

4
 mile), in cooking recipes (e.g., 

1

2
 L), or regarding time (“quarter past 

five”).
From a mathematics education perspective, fractions are important because they 

are an essential building block within the domain of numbers, one of the key 
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domains of (school) mathematics (e.g., National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010). Between primary 
school and the end of high school, students are supposed to learn about real numbers 
in a hierarchical manner. This hierarchy begins with natural numbers, and positive 
fractions are typically the first type of non-natural numbers students encounter1. 
One motivation for introducing rational numbers is that they allow for describing 
phenomena that cannot be described by natural numbers alone. For example, all 
arithmetic operations (addition, subtraction, multiplication, and division) can be 
performed within the set of rational numbers, which is not the case within natural 
numbers (e.g., 3−5 and 1÷2 are not defined within natural numbers). Moreover, 
rational numbers provide solutions to certain types of algebraic equations that do 
not have a solution within natural numbers, such as 2 · x = 1.

Fractions allow for a variety of interpretations in the domain of mathematics as 
well as the real world (Behr, Lesh, Post, & Silver, 1983; Ohlsson, 1988). For exam-

ple, fractions (e.g., 
3

4
) can be interpreted as parts of a whole (divide one whole into 

four parts and take three of these parts), as several parts of several wholes (take three 
out of four objects), as division (3 divided by 4), as operators (a function that pro-
duces three-fourths of any given input value), as measures of quantities (three quar-
ters of a mile), or as solutions of algebraic equations (the number x that solves the 
equation 4 · x = 3). The variety of possible interpretations substantiates the complex-
ity of the concept of fractions, and it suggests that the teaching and learning of frac-
tions deserves careful attention.

From a cognitive psychological perspective, understanding fractions requires a 
higher level of abstraction than understanding natural numbers (DeWolf, Bassok, & 
Holyoak, 2016; Empson, Levi, & Carpenter, 2011). It may therefore facilitate the 
transition from concrete to formal operations (Inhelder & Piaget, 1958; Piaget & 
Inhelder, 1966). In this regard, understanding of fractions seems crucial for mathe-
matical development. There is empirical evidence that fraction understanding is a 
unique predictor of later achievement in higher mathematics such as algebra. This 
holds true even when controlling for several other cognitive measures, including 
general cognitive ability and working memory (Bailey, Hoard, Nugent, & Geary, 
2012; Booth & Newton, 2012; Siegler et al., 2012; Torbeyns, Schneider, Xin, & 
Siegler, 2015).

In sum, fractions are a key target for learning from both a mathematics education 
and a cognitive psychological perspective. Because fractions are a complex con-
cept, it may not be surprising that learning and teaching fractions can pose special 
challenges. To analyze these challenges in more detail, the following section sum-
marizes typical errors students make in fraction problems, as well as potential 
sources of these errors.

1 There are also curricula in which negative integers are introduced earlier than fractions. This dif-
ference in sequencing is not essential for our analyses of difficulties with fraction learning, as we 
focus predominantly on issues related to the transition from integers to fractions rather than the 
transition from positive to negative numbers.
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7.2  Solving Fraction Problems: Errors and Their Potential 
Sources

Numerous studies over several decades have documented typical errors students 
make when solving fraction problems (e.g., Aksu, 1997; Behr, Wachsmuth, & Post, 
1985; Behr, Wachsmuth, Post, & Lesh, 1984; Carpenter, Corbitt, Kepner, Lindquist, 
& Reys, 1981; Carraher, 1996; Hart, 1981; Hasemann, 1981). More recent studies 
suggest that there has not been significant progress, and that errors are invariant 
across many different countries and cultures (Bailey et al., 2015; Lortie-Forgues, 
Tian, & Siegler, 2015; Siegler & Pyke, 2013; Stafylidou & Vosniadou, 2004).

These studies largely converge on a number of major findings. A general obser-
vation is that even students who are well able to carry out fraction arithmetic proce-
dures may make errors when problems require fraction concepts (Hallett, Nunes, & 
Bryant, 2010; Hallett, Nunes, Bryant, & Thorpe, 2012; Siegler & Lortie-Forgues, 
2015). One of the concepts that students often struggle with is that of fraction mag-
nitude (Siegler, Thompson, & Schneider, 2011). Rather than seeing a fraction as 
representing a (rational) number, students tend to interpret a fraction as two separate 
whole numbers. For example, when a representative sample of eighth-graders in the 

United States were asked to choose the closest number to the result of 
12

13

7

8
+  with 

the options 1, 2, 19, and 21, only 24% chose the correct answer 2 (Carpenter et al., 
1981). More than half of them chose 19 or 21, suggesting addition of the numerators 
(12 + 7 = 19) or the denominators (13 + 8 = 21) without considering each fractions’ 
integrated magnitude (each being approximately 1). Lortie-Forgues et  al. (2015) 
documented very similar results in a study conducted over 30 years later. Another 
example of limited understanding of fraction magnitudes is the finding that in frac-
tion addition problems, students’ most frequent error is adding the numerators and 
denominators separately, even though this produces unreasonable outcomes (e.g., 
1

2

1

2

2

4
+ = ) (Behr et  al., 1985; Brown & Quinn, 2006; Siegler & Pyke, 2013). 

Furthermore, students also struggle with understanding that different symbolic frac-
tions can represent the same numerical magnitude. For example, in a study by 
Clarke and Roche (2009), more than a third of a sample of Australian sixth-graders 

did not consider 
2

4
 and 

4

8
 to be fractions of equal numerical magnitude.

Although many students have relative strength with carrying out fraction arithme-
tic procedures compared to their understanding of fraction concepts and procedures, 
this does not mean that students’ performance on fraction arithmetic problems is 
overall high. Instead, Siegler and Pyke (2013) found that when US sixth- and eighth-
graders solved a set of fraction arithmetic problems that included all four basic arith-
metic operations (i.e., addition, subtraction, multiplication, and division), they were 
correct on only 41% (sixth-graders) and 57% (eighth-graders), respectively. They 
also found that accuracies varied substantially between the different arithmetic oper-
ations. While students were most accurate with addition and subtraction, they were 
less accurate with multiplication and division (Braithwaite, Pyke, & Siegler, 2017; 
Siegler & Lortie-Forgues, 2017). In addition to difficulties with carrying out arithme-
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tic procedures, students often struggle with predicting the  outcomes of arithmetic 
problems. For example, they are often reluctant to accept that the result of a multipli-
cation problem involving fractions can be smaller than the initial number (Obersteiner, 
Van Hoof, Verschaffel, & Van Dooren, 2016; Siegler & Lortie-Forgues, 2015; Van 
Hoof, Vandewalle, Verschaffel, & Van Dooren, 2015). In line with this finding, some 
students tend to prefer division over multiplication to solve word problems with frac-
tions for which they expect the result to be smaller than the initial number, even when 
the problem structure suggests multiplication (Swan, 2001).

Another notoriously difficult task for students is reasoning about the structure of 
the rational number domain as a whole. In a study by Vamvakoussi and Vosniadou 
(2010), about one-third of 11th-graders responded (incorrectly) that there was only 
a finite number of numbers between any two rational numbers. An especially com-
mon error is to think that increasing any given fraction’s numerator by 1 generates 

the successor of that fraction (e.g., to think that 
3

5
 is the successor of 

2

5
) 

(Vamvakoussi & Vosniadou, 2004, 2010), although rational numbers, unlike natural 
numbers, do not have successors (see Sect. 7.2.1).

In sum, evidence for students’ errors in fraction problems, which comes from a 
variety of studies collected over decades, suggests that difficulties are systematic, 
persistent over time, and exist in different learning environments. One may wonder 
what makes fractions so difficult to understand. Are fractions just a difficult math-
ematical concept? Is the human brain not well prepared to process fractions? Or are 
there limitations in the way fractions are commonly taught at school? In the follow-
ing sections, we evaluate potential sources of difficulties with fractions on three 
different levels (see Lortie-Forgues et al., 2015, for a similar approach). First, we 
consider the learning content itself. We identify what aspects of fractions differ 
substantially from natural numbers because these aspects might be particularly 
challenging for learners. Second, we explore how psychological accounts conceive 
the mechanism of fraction learning, and—more fundamentally—how well the 
human cognitive architecture is prepared for processing fractions. Third, we review 
common teaching practices in mathematics classrooms, based on the available 
research on textbooks and surveys among teachers.

7.2.1  The Learning Content Itself

Fractions are symbolic representations of rational numbers. Mathematically speak-
ing, rational numbers can be constructed as an extension of the set of integers, with 
rational numbers being defined as equivalence classes of pairs (a,b) of integers a 
and b, with b ≠ 0. Two pairs (a,b) and (c,d) are considered equivalent if and only if 
a · d = b · c. After defining the operations of addition and multiplication, one gets to 
the field of rational numbers Q. These rational numbers are an extension of the set 
of natural numbers N in the sense that Q includes N, if one identifies natural num-
bers with the equivalence classes of those pairs in which the first component is posi-
tive and the second component is 1 (e.g., 2, with the equivalence class [2,1]). 
According to this definition, natural numbers and rational numbers have shared 
properties (because natural numbers are also rational numbers). For example, for 
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rational and natural numbers, there is an order relation, meaning that for any two 
different numbers, it is possible to say which one is larger in numerical magnitude. 
Thus, rational and natural numbers can be represented on number lines.

However, despite shared properties, there are also important differences between 
the set of natural numbers and the set of rational numbers, and these differences 
may be stumbling blocks for learners when they have to make the transition from 
natural numbers to fractions (as representations of rational numbers). There are at 
least four important ways in which rational numbers—specifically in their represen-
tation as fractions—differ from natural numbers (see Obersteiner, Reiss, Van 
Dooren, & Van Hoof, in press; Prediger, 2008; Vamvakoussi & Vosniadou, 2004; 
Van Hoof, Vamvakoussi, Van Dooren, & Verschaffel, 2017). Table 7.1 provides an 
overview of these four differences.

One difference concerns the way natural numbers and fractions convey numeri-
cal magnitude. The symbolic representation of natural numbers complies to the 
base-10 place-value structure of our number system, which allows for straightfor-
ward strategies to identify numerical magnitude (see first row of Table 7.1). For 
instance, deciding which of two numbers is larger is simple because it can be done 
digit-by-digit from left to right (i.e., for three-digit numbers, comparing hundreds 
with hundreds, tens with tens, and units with units). Additionally, the number of 
digits is indicative of the magnitude of a number, with numbers consisting of more 
digits being larger in magnitude. Fractions, however, are composed of two integers, 
and only the numerator is positively related to overall fraction magnitude. Reasoning 
about fraction magnitude requires inferences about the ratio between numerators 
and denominators. As such, comparing the magnitudes of two fractions is less 
straightforward than comparing the magnitudes of natural numbers. Moreover, 

Table 7.1 Examples of differences between natural numbers and fractions

Natural numbers Fractions

1. Representation 
of Magnitude

Base-10 place-value structure
More digits—larger number
123 > 45

Quotient of two numbers
Neither number of digits nor natural 
number magnitudes as such determine 
fraction magnitudes
2

3

5

19
>

2. Symbolic 
Representation

Unique for each number
2 as unique representation

Multiple (infinitely many) fractions can 
represent the same number
1

2

2

4

4

8
= = = etc.

3. Density Unique successors and 
predecessors
Finite number of numbers 
between two natural numbers
1, 2, 3, 4, 5, etc.

No unique successors and predecessors
Infinite number of numbers between two 
fractions
3

5
 is not the successor of 2

5
4. Operation Multiplication as repeated 

addition
3 · 4 = 4 + 4 + 4
Multiplication makes bigger, 
division smaller
2 · 4 = 8, 15 ÷ 3 = 5

Multiplication as repeated addition 
insufficient, more abstract definition 
required
Multiplication and division can make 
bigger or smaller
1

2

1

4

1

8

1

2

1

4
2· ,= ÷ =

A. Obersteiner et al.
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comparing fractions may be counterintuitive because the larger fraction can be com-

posed of the larger components (e.g., 
4

5

1

3
> ), the smaller components (e.g., 

1

2

3

7
>

), or one larger component (numerator) and one smaller component (denominator, 

e.g., 
2

3

1

5
> ).

A second difference is that symbolic representations for natural numbers are 
unique in the sense that there is only one way to write any given number using only 
natural number notations (e.g., there is only one way to notate the number “2”). In 
contrast, different fraction symbols can represent the same numerical value (see 
second row of Table 7.1).

A third aspect in which fractions differ from natural numbers is density (see third row 
of Table 7.1). While natural numbers have unique successors and predecessors (except for 
number 1), this is not the case for any rational number. Moreover, while within the natural 
number domain there is only a finite number of numbers between any two natural num-
bers, there are infinitely many other fractions between any two fractions.

Fourth, fractions differ from natural numbers with respect to arithmetic opera-
tions (see fourth row of Table 7.1). There is a difference in the way arithmetic opera-
tions are conceptualized. Whereas within natural numbers, multiplication is 
typically explained as repeated addition (i.e., 3 · 4 means to add the number 4 three 
times), this explanation is not generally meaningful for fractions. In the example of 
2

3

1

2
· , it is hard to understand what adding 

2

3
 times the number 

1

2
 means. 

Furthermore, there is a difference in the effects that arithmetic operations have on 
numbers. While multiplication with natural numbers (other than 1) always yields a 
result that is numerically larger than the original operands, this is not always true for 
fractions. Instead, multiplying a positive number by  a fraction smaller than one 

(e.g., 
1

4
) makes the initial number smaller (e.g., 

1

2

1

4

1

8
· = ). Similarly, within natu-

ral numbers, division (by a number other than 1) always makes a number smaller, 
while within rational numbers, division can also make a number larger (e.g., 

4
2

3
6÷ = ).

Although the conceptual differences between natural numbers and fractions ana-
lyzed in this subsection are potential obstacles for learning, our analysis is not sufficient 
to identify learners’ actual obstacles. The reason is that the analysis of the subject domain 
does not take into account the cognitive mechanisms underlying learning. Since learning 
does not necessarily follow the logic of the subject domain, insights into the cognitive 
mechanisms of learning can complement our search for difficulties with fractions.

7.2.2  The Human Cognitive System

Learning fractions may be influenced by the way our cognitive system processes 
new information, and more specifically by the way it processes numbers in general 
and fractions in particular. The following four subsections describe theoretical 
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frameworks and empirical evidence that help in understanding the cognitive chal-
lenges of learning fractions. The first two subsections elaborate on theories of con-
ceptual learning (conceptual change) and of the cognitive processes that occur 
during problem solving (dual processes) that may account for response biases (the 
natural number bias). The remaining two subsections then “zoom in” on the more 
fundamental ways our cognitive system processes fractions, and on the neural cor-
relates of these processes.

7.2.2.1  Conceptual Change

Natural numbers are special cases of rational numbers (see Sect. 7.2.1), differing 
from other rational numbers in several respects. Therefore, learning fractions 
requires not only the extension but also the reorganization of existing knowledge 
about (natural) numbers. Accordingly, researchers have studied learning of rational 
numbers as an instance of conceptual change (Vamvakoussi, Van Dooren, & 
Verschaffel, 2012; Vamvakoussi & Vosniadou, 2004, 2010). The conceptual change 
approach was initially applied to the domain of science learning but was later trans-
ferred to mathematical learning as well (Merenluoto & Lehtinen, 2002).

In line with the conceptual change approach, there is broad evidence that stu-
dents’ errors in operating with fractions may be due to their reliance on natural 
number concepts in problems that require reasoning about rational number con-
cepts. For example, when comparing the magnitudes of two fractions, children were 
found to rely on their natural number knowledge and treat fraction components as 
two separate natural numbers, rather than reasoning about the overall magnitudes of 
the respective fractions. Only 15% of more than 300 sixth-graders in the study by 
Clarke and Roche (2009) were able to correctly choose the larger fraction from the 

pair 
5

6
 versus 

7

8
 and provide an appropriate explanation for their choice. Almost 

30% of all students in this study claimed that these fractions were the same because 
the difference between the numerator and the denominator was equal in both frac-
tions. These students relied on reasoning about number magnitudes in ways that 
apply to natural numbers (each symbol represents a separate magnitude), although 
the problem required a conceptual change (quotients of two [natural] numbers rep-
resent one [rational] number magnitude). There is evidence that students also strug-
gle with other concepts of fractions that differ from natural number concepts (i.e., 
those described in 2.1 and listed in Table 7.1), as predicted by the conceptual change 
approach (Merenluoto & Lehtinen, 2002; Vamvakoussi & Vosniadou, 2004, 2010; 
Van Hoof et al., 2017, see also the introduction to Sect. 7.2).

In contrast to such a focus on discontinuities in the learning process, other research-
ers have emphasized commonalities between natural and rational numbers and con-
sidered learning of numbers as a continuous learning path, rather than an instance of 
conceptual change. In their integrative theory of numerical development, Siegler and 
colleagues (Siegler et  al., 2011; Siegler & Braithwaite, 2017; Siegler & Lortie-
Forgues, 2014) emphasized that magnitude is the unifying idea between different 
kinds of numbers such as natural and rational numbers. As all real numbers (including 
natural and rational numbers) have magnitudes and can be represented on number 
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lines, understanding these magnitudes may be particularly helpful for learners in 
extending their number knowledge to new number domains. Although there is initial 
evidence that understanding fraction magnitudes facilitates learning of fraction con-
cepts more generally (see Sect. 7.3), the specific relation between understanding of 
fraction magnitudes and other fraction concepts remains to be understood.

Steffe and colleagues (e.g., Steffe, 2002; Steffe & Olive, 2010) proposed a construc-
tivist account of fraction learning that also emphasizes the coherence between natural 
number knowledge and learning fractions. In their reorganization hypothesis, they con-
sider how children’s natural number knowledge may be modified in productive ways to 
construct fraction knowledge (for details, see also Tzur et al., this volume).

Note that these two theoretical accounts focus on the coherence between natural 
numbers and fractions, while our focus in this chapter is more strongly on the chal-
lenges (rather than the coherence) in students’ transition from natural numbers to 
fractions. We relied on the conceptual change approach in this section because it 
connects these challenges to the conceptual differences between natural numbers 
and rational numbers. A systematic discussion of the various accounts proposed for 
learning fractions is, however, beyond the scope of this chapter.

7.2.2.2  Dual-Process Theories and the Natural Number Bias

Some researchers have focused more strongly on the cognitive processes involved 
in fraction problem solving rather than on an understanding of fraction concepts. 
Dual-process theories assume that problem solving includes two types of processes: 
Processes that are fast, largely automatic, and intuitive (“System 1 processes”) and 
processes that are analytic and time-consuming (“System 2 processes”) (Gillard, 
Van Dooren, Schaeken, & Verschaffel, 2009; Kahneman, 2000). When people solve 
rational number problems, their strongly internalized knowledge of natural numbers 
might trigger intuitive System 1 processes, while analytic System 2 processes are 
particularly important when problems require reasoning about novel and less 
automatized features of rational numbers.

The overreliance on natural number knowledge even in problems that require 
rational number reasoning has been referred to as the “whole number bias” or “natu-
ral number bias” (Alibali & Sidney, 2015; Ni & Zhou, 2005; Van Hoof et al., 2017). 
To investigate the natural number bias, researchers have compared performance on 
problems that are either congruent or incongruent with natural number reasoning. 
Problems are congruent when reasoning about natural numbers (rather than rational 
numbers) yields the correct response, and they are incongruent when this is not the 
case. For example, in fraction comparison, the two to-be-compared fractions of a 
pair can be classified as congruent when comparing denominators and numerators 

separately yields the correct result (e.g., 
4

5

1

3
>  with 4 > 1 and 5 > 3) but incongru-

ent when doing so leads to an incorrect result (e.g., 
1

2

3

7
>  although 1 < 3 and 2 < 7). 

In the case of arithmetic operations with fractions, the intuition that multiplication 
makes numbers bigger may lead to a correct response in problems congruent with 
natural number characteristics (e.g., “Is it possible that 4 · x is larger than 4?”, where 
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considering x a natural number will lead to a correct response) but to an incorrect 
response in incongruent problems (e.g., “Is it possible that 4 · x is smaller than 4?”).

Importantly, numerous studies have documented this bias, not only in primary 
and lower secondary school students, but also in upper secondary students and adu
lts (Byrnes & Wasik, 1991; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 
2013; Siegler & Lortie-Forgues, 2015; Vamvakoussi et al., 2012; Van Hoof et al., 
2015; Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). These findings suggest 
that the natural number bias in fraction problems can persist even after people have 
acquired sound conceptual knowledge of fractions. This implies that solving frac-
tion problems requires—in addition to conceptual understanding of fractions—
some inhibition of intuitive knowledge about natural numbers.

7.2.2.3  Processing of Fraction Magnitudes

Research suggests that our cognitive system is well prepared for processing natural 
numbers (see Feigenson, Dehaene, & Spelke, 2004, for a review). There is, how-
ever, more controversy about how well our cognitive system is prepared for process-
ing fractions. A central question is whether people can mentally process fractions 

holistically by their integrated fraction magnitudes (e.g., 
2

5
 as one numerical value), 

or whether they can only process fractions componentially by their components 

(e.g., 
2

5
 as two separate numbers, 2 and 5). Numerous studies have used fraction 

comparison tasks and evaluated whether participants’ comparison performance 
depended on the numerical distance between fractions or on the distances between 
fraction components. When comparing natural numbers, a typical finding is that 
responses become faster and less error prone, as the numerical distance between 
to-be-compared numbers gets larger (e.g., 1 vs. 9 is easier than 4 vs. 5). This finding 
is often referred to as the numerical distance effect. The distance effect is consid-
ered evidence that people actually rely on number magnitude information when 
comparing two numbers (Moyer & Landauer, 1967).

Initial studies found no such distance effect for fractions and concluded that 
people mentally represent fractions predominantly in a componential way, that is, 
they represent each component separately rather than represent the fraction as an 
integrated entity (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Ganor-Stern, Karasik- 
Rivkin, & Tzelgov, 2011). However, later studies revealed that the way partici-
pants process fractions depended on the type of fraction comparison and on the 
strategies they use to solve these problems (Faulkenberry & Pierce, 2011; Ganor-
Stern, 2012; Meert, Grégoire, & Noël, 2010a, b; Obersteiner et al., 2013; Schneider & 
Siegler, 2010). For instance, Obersteiner et al. (2013) found that when academic 
mathematicians solved fraction comparisons, there was a distance effect of overall 

fraction magnitude only for fraction pairs that did not have common components 

(e.g., 
11

18
 vs. 

19

24
). Additionally, they observed no natural number bias for these 

problems. However, when fraction pairs did have common components (e.g., 
17

23
 

vs. 
20

23
, or 

12

13
 vs. 

12

19
), there was no effect of overall distance and a clear natural 

number bias, which was reflected by lower performance on incongruent rather than 
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congruent problems. Together, this line of research suggests that adults rely more 
strongly on componential comparison strategies in comparison problems with com-
mon components (with less activation of holistic overall fraction magnitudes). Such 
a strategy is more prone to natural number bias. In contrast, adults seem to rely more 
strongly on holistic magnitudes in problems without common components, a strat-
egy that discourages natural number bias. Recent eye-tracking research substanti-
ated the claim that adults use different strategies depending on problem types 
(Huber, Moeller, & Nuerk, 2014; Ischebeck, Weilharter, & Korner, 2016; Obersteiner 
& Tumpek, 2016).

Research also suggests that the way people process fractions depends on how 
familiar they are with specific fractions. Liu (2018) found that when participants 
compared symbolic fractions to values marked on a number line, their performance 

depended on how close fractions were to familiar fractions (e.g., 
1

2
 or 

3

4
) that 

people used as benchmarks. Thus, whether fractions are processed holistically may 
also be a question of practice and familiarity rather than of cognitive ability alone.

These studies provide evidence that adults’ cognitive architecture allows them to 
process symbolic fractions in a holistic manner. Further research suggests that the 
ability to process fractions and ratios may be traced back to very fundamental abili-
ties for processing non-symbolic ratios, and that humans are equipped with a per-
ceptually based ratio processing system (Boyer & Levine, 2015; Lewis, Matthews, 
& Hubbard, 2016; Matthews & Chesney, 2015; Matthews, Lewis, & Hubbard, 
2016). As such, this processing system might be predisposed for developing magni-
tude representations of fractions (see Matthews et al., this volume).

7.2.2.4  Neural Correlates of Fraction Processing

In recent years, researchers have begun to evaluate the neurocognitive foundations 
of numerical cognition using neuroimaging (Arsalidou & Taylor, 2011; Dehaene, 
Piazza, Pinel, & Cohen, 2003). An increasing number of studies on adults and chil-
dren revealed that the intraparietal sulcus (IPS; see Fig. 7.1) seems to be the central 
area for representing symbolic and non-symbolic numerical magnitudes (Nieder & 
Dehaene, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Pinel, Dehaene, Rivière, 
& LeBihan, 2001). A major finding that led to this conclusion was that neural acti-
vation within the IPS is inversely related to the numerical distance between two to-
be-compared numbers in number comparison tasks (Cohen Kadosh et  al., 2005; 
Kaufmann et al., 2005), reflecting the neural instantiation of the behavioral distance 
effect (see Sect. 7.2.2.3). Studies also report activation of frontal brain areas during 
number processing, resulting in the notion of a fronto-parietal network underlying 
numerical processing (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Pesenti, 
Thioux, Seron, & Volder, 2000).

Concerning rational numbers and fractions in particular, some researchers ini-
tially suggested that fraction concepts were fundamentally incompatible with the 
neurocognitive architectures underlying numerical cognition (Dehaene, 1998; 
Feigenson et  al., 2004; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). 
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Fig. 7.1 Schematic overview of brain areas involved in fraction processing during (i) magnitude 
comparison of different notations (i.e., symbolic fractions, fraction words, line and dot ratios; 
Jacob & Nieder, 2009a, 2009b; Ischebeck et al., 2009, 2010); (ii) magnitude comparisons between 
fractions, decimals, and integers (DeWolf et al., 2016); and (iii) fraction arithmetic (i.e., addition 
and subtraction; Schmithorst & Brown, 2004). Most of the studies consistently observed activation 
in the bilateral intraparietal sulcus (IPS, full line ellipses). However, there are also studies showing 
additional bilateral prefrontal cortex activation (PFC, dashed ellipses) and left-lateralized activa-
tion for specific tasks (e.g., left inferior and middle temporal gyrus for the comparison of fractions 
and decimals, DeWolf et al. (2016); left ventral occipitotemporal and perisylvian areas were acti-
vated in fraction arithmetic, Schmithorst & Brown, 2004). In general, activation patterns observed 
for fraction processing are very similar to those found for natural number processing. This figure 
was adapted from Lewis et al. (2016).

Therefore, the question remains what the underlying neural mechanisms for frac-
tion processing are. At the moment, there exist only a few studies in adults investi-
gating the neural underpinnings of processing proportions (i.e., dot ratios, line 
ratios), symbolic fractions, or  fraction number words (Ischebeck et  al., 2010; 
Ischebeck, Schocke, & Delazer, 2009; Jacob & Nieder, 2009a, 2009b; Schmithorst 
& Brown, 2004). For instance, during fraction magnitude comparison, Ischebeck 
and colleagues (2009) observed that IPS activation was modulated by the overall 
numerical distance between the to-be-compared fractions, but not by the numerical 
distance between numerators or denominators. Moreover, Ischebeck et al. (2010) 
observed the same results during proportion comparison (involving symbolic frac-
tions and dot patterns as non-symbolic proportions), with stronger right IPS activa-
tion for dot patterns and stronger left IPS activation for symbolic fractions. Jacob 
and Nieder (2009a, 2009b) adapted participants to a certain fraction magnitude 

(e.g., 
1

6
) by showing different fractions reflecting this magnitude (e.g., 

1

6
, 
2

12
, 
5

30
) 

with interspersed deviants differing in magnitude (e.g., 
2

6

3

6

4

6

5

6
, , , ) presented in 
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the same or a different notation (i.e., symbolic fractions and fraction words or dots 
and triangles). The authors observed that the activation in parietal cortex was spe-
cifically tuned to the overall magnitudes of fractions rather than to the magnitudes 
of their components, indicating that fraction magnitude is represented holistically in 
the same brain areas as natural numbers. Moreover, Jacob and Nieder (2009a) pro-
vided evidence for a notation-independent activation patterns. In particular, they 
reported that the same cortical areas were activated to a similar extent regardless of 

whether a fraction magnitude was presented as a symbolic fraction (i.e., 
1

4
) or written 

as a number word (i.e., “one-fourth”).
Overall, these studies indicated that the IPS plays a crucial role in the processing of 

proportion and fraction magnitude, similar to the processing of natural numbers. In con-
trast to behavioral studies on fraction magnitude comparison, which showed that holistic 
versus componential processing of fractions depended on the respective fraction type (i.e., 
with vs. without common components, see Sect. 7.2.2.3), the existing neuroimaging data 
suggest that fraction magnitudes are represented holistically on the neural level.

Furthermore, fraction arithmetic also seems to elicit patterns of neuronal activa-
tion similar to those observed for natural number arithmetic. Schmithorst and Brown 
(2004) studied adult participants solving fraction addition or subtraction problems. 
Their analyses again revealed activation in bilateral inferior parietal areas (includ-
ing the IPS) with additional activation in left-hemispheric perisylvian areas (associ-
ated with verbal processing), and ventral occipitotemporal areas (often associated 
with more perceptual aspects, i.e., ventral visual pathway, see Fig. 7.1).

In spite of the generally large overlap in the neural networks for natural numbers 
and fractions documented in these studies, DeWolf, Chiang, Bassok, Holyoak, and 
Monti (2016) found differences in activation patterns within the IPS for fractions as 
compared to whole numbers and decimals. The authors argue that these differences 
in activation patterns may be due to the differences in the symbolic notations we use 
for natural numbers and decimals (both base-10 representations) on the one hand 
and fractions on the other (two natural numbers). Presumably, our brain needs more 
resources to get access to the magnitudes of fractions than those of natural numbers 
or decimals. This assumption is in line with evidence from behavioral research 
(DeWolf, Grounds, Bassok, & Holyoak, 2014).

Finally, based on theoretical considerations and initial empirical evidence, Lewis 
et al. (2016) recently argued that there exists a neural circuitry specifically dedicated 
to represent non-symbolic proportions comprising a fronto-parietal network. 
According to these authors, this system is also recruited when representing fractions 
as it provides a non-symbolic foundation for understanding fraction concepts. In 
particular, the authors proposed that both formal and informal learning experiences 
help to generate links between perceptually based representations of non-symbolic 
ratios and fraction symbols (i.e., verbal fraction labels and symbolic-digital fraction 
symbols). This non-symbolic-to-symbolic link may be an important basis for the 
understanding of fraction magnitudes.

Taken together, these studies suggest that the human brain is able to process 
holistic fraction magnitude. The IPS, which has long been known to be the key area 
for the representation of natural number magnitude, also seems crucial for process-
ing fraction magnitudes. However, strong conclusions seem premature, due to the 
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limited number of available studies. Moreover, all existing studies examined the 
neural correlates of fraction processing in adults, and studies on the neural corre-
lates of how fraction processing develops and shapes the brain are completely lack-
ing. An important external factor that may shape the way students think about 
fractions is the way they encounter fractions in the classroom.

7.2.3  Current Classroom Teaching Practices

Fractions are complex constructs, and there are many ways to interpret and repre-
sent fractions (see Sect. 7.1). There may be considerable variation in the ways stu-
dents encounter fractions in the classroom, and varying classroom experiences may 
affect fraction learning. To date, there is little empirical evidence about how frac-
tions are actually taught in classrooms. Much of the existing research into teaching 
of fractions has focused on teachers’ competence with fractions and on the instruc-
tional materials teachers use. In the following, we first review general characteris-
tics of common classroom teaching of fractions that might contribute to students’ 
difficulties. We then focus on the quality of instructional materials, and finally on 
teachers’ competence with fractions.

7.2.3.1  Characteristics of Classroom Teaching

One characteristic of current classroom teaching of fractions—at least in many 
Western countries—is a strong focus on memorization of procedures rather than on 
understanding of fraction concepts (Lortie-Forgues et  al., 2015; National 
Mathematics Advisory Panel, 2008). Such a focus may have benefits in the short 
run: procedures are probably easier to teach, easier to test, and they may promise 
quicker success (and thus motivation). However, important disadvantages are that 
procedures are remembered less well if they are not connected to conceptual under-
standing, and that they may lead to inert knowledge that cannot be adapted for novel 
contexts (Swan, 2001). Moreover, given the sheer number and the relative complex-
ity of fraction arithmetic procedures, students may confuse fraction procedures or 
parts of them. Finally, the omnipresence of electronic computing devices in our 
modern society raises fundamental questions about the importance of learning arith-
metic procedures.

Another characteristic of current fraction teaching is the dominance of interpret-
ing fractions as discrete and countable parts of a whole (e.g., pieces of a pizza). 
Teachers often also use this approach to introduce fraction procedures. For example, 
when learning about fraction multiplication, the first type of problems is often of the 

form “natural number × fraction” (e.g., 3
1

4
· ), which can be explained by repeated 

addition (take three quarters of a pizza, or 3
1

4

1

4

1

4

1

4
· = + + ). Such a strong empha-

sis on the part-whole relation of fractions as countable objects could be problematic 
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because it could raise the expectation in students that fractions are not very different 
from natural numbers. Such an expectation may lead to overgeneralizations of natu-
ral number properties to fractions, as discussed above (see Sect. 7.2.2), including 
natural number bias and componential processing of fractions.

More generally, in many current classrooms, particularly in Western countries, 
there seems to be strong emphasis on the commonalities between natural numbers 
and fractions (as rational numbers), and only little emphasis on the differences 
between these types of numbers (Van Hoof et al., 2017). This seems problematic 
from the perspective of learning psychology, which would recommend fostering 
both generalization learning (emphasizing similarities between natural and rational 
numbers) and discrimination learning (explicating differences between natural and 
rational numbers) (see Sect. 7.4.1 for a discussion).

7.2.3.2  Instructional Material

Teaching practices may be influenced by the available instructional materials such 
as textbooks. There are a few systematic analyses of instructional materials on frac-
tions (Alajmi, 2012; Braithwaite et al., 2017; Shin & Lee, 2017; Son & Senk, 2010; 
Watanabe, 2007). Their findings suggest that the majority of fraction problems in 
textbooks require procedural rather than conceptual knowledge (Son & Senk, 2010), 
and that textbooks often focus on standard algorithms for solving these problems 
(Alajmi, 2012). Moreover, there are large variations in the frequency with which 
textbooks present different types of fraction problems. For example, fraction divi-
sion problems—the most challenging type of fraction problems for most students 
(see the introduction to Sect. 7.2)—are much less frequent than multiplication prob-
lems (Siegler & Lortie-Forgues, 2017; Son & Senk, 2010). Braithwaite et al. (2017) 
extended this finding by developing a computational model of fraction arithmetic 
that simulated students’ most frequent errors in fraction arithmetic procedures as 
documented in empirical studies. Using problems from common US mathematics 
textbooks as input, the model predicted students’ typical errors fairly well. Thus, the 
type of problems and the frequency with which these types appear in textbooks may 
to some extent explain students’ difficulties with fractions.

7.2.3.3  Teacher Competence

Classroom materials do not entirely determine how the content is taught in the 
classroom. Rather, it is the role of the teacher to use instructional materials in a 
specific way. Teachers thus need to be competent with fractions in order to teach 
fractions appropriately. Unfortunately, research suggests that not all teachers have 
sufficient competence with fractions (Ball, 1990; Depaepe et al., 2015; Ma, 1999; 
Newton, 2008; Siegler & Lortie-Forgues, 2015; Simon & Blume, 1994). For exam-
ple, Depaepe et al. (2015) found that, on average, prospective teachers were correct 
on only 75% of items that assessed conceptual fraction knowledge—even after hav-
ing taken a course on teaching rational numbers. Siegler and Lortie-Forgues (2015) 
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found that when pre-service teachers were asked to predict in which direction frac-

tion arithmetic operations would change an initial number (e.g., whether 
31

56

17

42

31

56
· >  

was true or false), they performed significantly lower (in some cases as low as about 
30% correct) when these predictions were not in line with natural number reasoning 
(i.e., when the result suggested that multiplication makes the original operand 
smaller) than when they were. Thus, these prospective teachers showed response 
biases similar to those documented in students (see Sect. 7.2.2.2). Additionally, Ball 
(1990) and Ma (1999) found that teachers had particular difficulties with generating 
appropriate stories or situations for a given fraction division problem. In conclusion, 
limitations in teachers’ understanding of fractions may aggravate the limitations of 
classroom materials discussed above.

7.3  Improvements: Evidence from Intervention Studies

While there are various intervention studies in the literature, few studies have evalu-
ated the effectiveness of interventions in controlled experimental designs (for an 
overview of intervention studies especially for students with math difficulties, see 
Shin & Bryant, 2015). In the following, we elaborate on selected studies that focused 
on fraction magnitude understanding and used highly controlled experimental 
designs with control or comparison groups.

In a study by Gabriel et al. (2012), Belgian fourth- and fifth-graders played games 
that involved cards with different representations of fractions as well as wooden disks 
that children used to represent and manipulate fractions. Using these representations, 
children worked on comparisons of fraction magnitudes and on matching symbolic frac-
tions with non-symbolic fraction representations. There were two 30-min intervention 
sessions per week, over a period of ten weeks. Results showed significantly greater 
improvements in conceptual understanding of fractions in children in the experimental 
group compared to children in a control group who received regular classroom instruc-
tion but no intervention. Instead, children in the control group showed significantly 
higher gains in procedural fraction arithmetic skills, substantiating that typical class-
room teaching focuses more strongly on procedures than on concepts (see Sect. 7.2.3.1).

Fuchs et al. (2013) designed an intervention that also included training of general 
cognitive abilities.2 Participants were US-American fourth-graders who performed 
below the 35th percentile on an arithmetic test and who were therefore considered 
to be at risk of low mathematical achievement. The study contrasted two different 
instructional approaches. The more conventional approach focused on part-whole 
aspects of fractions and on procedural aspects of fraction arithmetic, whereas the 
other, more innovative approach emphasized the measurement aspect of fractions 
and focused on fraction magnitudes. Each session lasted 30 min, with three sessions 
per week over a period of twelve weeks. The results showed that children who were 

2 See Lamon (2007) and Fazio, Kennedy, and Siegler (2016) for intervention studies with similar 
approaches.
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taught with a focus on the measurement aspect of fractions showed greater gains in 
conceptual and procedural understanding of fractions than children who received 
conventional teaching. In another study, Fuchs et al. (2016) replicated these positive 
effects with a similar version of the measurement-based intervention program in 
another sample of at-risk fourth-graders.

Finally, Hamdan and Gunderson (2017) compared an intervention based on the 
use of number lines with an intervention that focused on the area model of fractions. 
The area model represents fractions as parts of two-dimensional shapes such as 
circles. Participants were children in grades two and three in the USA. The interven-
tion occurred on one day within a 30-min time period. From pretest to posttest, rela-
tive to a control group, both interventions led to improvements on problems that 
required using the respective representation (number line or area) that children used 
during the intervention phase. However, children who used number lines were bet-
ter able to transfer their knowledge to novel problems than were learners who used 
area models during the intervention phase. This suggests that the use of number 
lines may be particularly beneficial for fraction learning.

These examples illustrate how studies implemented interventions on enhancing 
understanding of fraction magnitudes (rather than on other aspects such as fraction 
arithmetic procedures). Overall, such a focus seems to be effective as it allows trans-
fer to other fraction concepts. Evidence from broader intervention studies not 
reported here (e.g., Butler, Miller, Crehan, Babbitt, & Pierce, 2003; Cramer, Post, & 
delMas, 2002; Moss & Case, 1999) largely supports this conclusion. On the other 
hand, most controlled intervention studies contrasted only one or two different 
teaching approaches against control conditions, making it difficult to identify which 
of the large variety of teaching approaches is the most effective one.

7.4  Recommendations and Future Directions

In this section, we first draw conclusions that are relevant for the teaching and learn-
ing of fractions in the classroom, and then discuss directions for future research.

7.4.1  Recommendations for Classroom Practice

Rather than providing a comprehensive overview of recommendations about frac-
tion teaching in general (for plenty of valuable recommendations, see, for example, 
Carraher, 1996; Moss & Case, 1999; National Mathematics Advisory Panel, 2008; 
Steffe & Olive, 2010), we restrict our discussion to six recommendations that follow 
from the different perspectives discussed in the previous sections.

Our first recommendation is that fraction teaching may benefit from drawing 
more strongly on fundamental cognitive abilities for processing fractions and ratios. 
There are plenty of psychological studies that suggest that our cognitive system is 
readily able to process magnitudes of symbolic fractions. The available neurosci-
ence studies corroborate this conclusion and suggest that processing fractions acti-
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vates a similar neural network as processing natural numbers—although caution is 
required due to the lack of evidence in young learners. Importantly, though, behav-
ioral studies including young children suggest that the ability to process fraction 
magnitudes may be rooted in fundamental abilities to process non-symbolic ratios 
(see Sect. 7.2.2.3). Thus, instruction may draw on these fundamental abilities even 
before introducing symbolic fractions, for example by using appropriate visual rep-
resentations such as bar representations. In particular, continuous rather than dis-
crete bar representations may have the advantage that they encourage students to 
focus on holistic magnitudes of fractions rather than on countable segments (Boyer, 
Levine, & Huttenlocher, 2008; Huttenlocher, Duffy, & Levine, 2002). Connecting 
these representations with symbolic fractions later on may then help prevent the 
common overreliance on natural number concepts when working with fractions 
(i.e., the natural number bias). This conclusion remains tentative because there is 
limited empirical evidence for the effectiveness of specific visual representations of 
fractions (Rau & Matthews, 2017).

Our second recommendation is that instruction on fractions may benefit from a 
stronger focus on fraction magnitudes and the use of number lines. This is related to 
the previous recommendation (in that fraction magnitudes should be linked to stu-
dents’ early abilities) but it is more general. Research shows that students have dif-
ficulties with understanding how fraction symbols represent numerical magnitudes. 
Therefore, as supported by results from controlled intervention studies (see Sect. 
7.3), students may benefit from a stronger focus on fraction magnitudes (e.g., the 
measurement aspect of fractions) rather than on the part-whole aspect of fractions. 
In particular, notwithstanding the limited empirical evidence for visual representa-
tions of fractions, number lines have proven to be effective for representing magni-
tudes of symbolic fractions. A unique advantage of the number line representation 
is that all real numbers can be represented on the same line, so that this representa-
tion may foster students’ ability to integrate their concept of numbers across number 
domains (Booth & Newton, 2012; Common Core State Standards Initiative, 2010; 
Gersten, Schumacher, & Jordan, 2017; Hamdan & Gunderson, 2017; National 
Mathematics Advisory Panel, 2008; Siegler et al., 2011).

Our third recommendation is that students may benefit from meta-level prompts 
to “stop and think” in order to inhibit potentially misleading intuitive or “System 1” 
thinking. Although reasoning about fractions necessarily requires knowledge of 
natural numbers, intuitive knowledge of natural numbers can interfere with process-
ing fractions, resulting in the natural number bias (see Sect. 7.2.2.2). Research sug-
gests that this bias is very persistent, and that it influences performance on fraction 
problems even in individuals who have acquired sound conceptual understanding of 
fractions. Thus, students may make errors because they do not engage in analytical 
thinking regardless of their level of conceptual knowledge. Therefore, it seems 
advisable to encourage students to think about the reasonableness of their responses, 
especially for fraction arithmetic. Two concrete instructional approaches to 
address that goal are prompting students to self-explain their reasoning and refuta-
tion texts that require students to argue why a given solution is wrong  (Tippett, 
2010; Van Hoof et al., 2017).
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Our fourth recommendation is that teachers should offer their students sufficient 
opportunities to acquire concepts of fractions and fraction operations. The concep-
tual change approach (see Sect. 7.2.2.1) suggests that changes in learners’ initial 
concepts may be challenging, and a content analysis (see Sect. 7.2.1) can identify 
those concepts that learners need to change in order to fully understand fractions. 
Importantly, several concepts can be relevant at the same time for understanding any 
one problem situation. To illustrate this, consider the common erroneous expecta-
tion that multiplication always makes a number bigger (see Prediger, 2008, for more 
details on that example). This expectation may be due to three misconceptions. 
First, students may have internalized as a “rule” the regularity that multiplication 
makes bigger because they have never experienced a situation in which this was not 
true. In that case, students may benefit from applying the multiplication algorithm 
to fraction multiplication problems in which they then discover that multiplication 
can actually make a number smaller. Second, students may be unable to conceptual-
ize what multiplying two fractions means because repeated addition does not offer 
a meaningful interpretation (see Sect. 7.2.1). The third scenario is related: Students 
may be unable to conceptualize what multiplying two fraction means because their 
concept of fractions is limited to the part-whole aspect. It is in fact difficult to under-

stand what multiplying 
1

4
 of a pizza with 

2

3
 of a pizza should mean. In the latter 

two scenarios, students need to acquire appropriate concepts of fractions and frac-
tion operations (see also Simon et al., this volume, for an elaboration on fraction 

multiplication). For example, the multiplication problem 
1

2

1

4
·  may be explained as 

“ 
1

2
 of 

1

4
,” where 

1

2
 is an operator that operates on 

1

4
. Alternatively, 

1

2

1

4
·  may be 

explained using the area model, in which both fractions are interpreted as measures 
of length, while the resulting fraction represents the area (see Fig. 7.2).

This example illustrates that learning fractions necessarily includes learning of 
new concepts, which is an unavoidable obstacle—whether big or small—for learn-
ers. Mathematics educators have used the term “epistemological obstacles” to refer 
to those obstacles that are inherent in the content structure (Broussou, 1983; 
Prediger, 2006, 2008; Schneider, 2014). Notably, epistemological obstacles are 
 considered an opportunity for learning in themselves. Thus, these obstacles can and 
should not be avoided during the learning process.

Our fifth recommendation is that students may benefit from explicating which 
aspects of fractions are in line with natural number concepts and which are not. The 
above content analysis showed that there are important differences between natural 
numbers and fractions (see Sect. 7.2.1), and students need to understand these differ-
ences. At the same time, in order to build on students’ existing knowledge of natural 
numbers, and to illustrate continuities in the number concept, teachers should high-
light similarities between natural numbers and fractions. Current classroom practices 
seem to put more emphasis on the similarities rather than the differences between 
natural numbers and fractions. As a consequence, students may get too little support 
in distinguishing between aspects of rational numbers that are conceptually aligned 
with natural numbers and those that are conceptually different.

7 Understanding Fractions: Integrating Results from Mathematics Education…



154

Fig. 7.2 Area model for 
fraction multiplication

Empirical evidence shows that learning of fraction division concepts can be more 
or less successful depending on whether the activated previous knowledge of natu-
ral numbers is helpful (conceptual similarity) or not (superficial similarity). In this 
context, Sidney and Alibali (2015, 2017) found that when learning about fraction 
division, students benefited more from practicing division of natural numbers (simi-
lar concept but different numbers) rather than fraction problems without division 
(similar numbers but different concept) immediately before engaging with fraction 
division. This suggested sequencing of fraction problems (fraction division directly 
preceded by natural number division) differs from common mathematics textbooks, 
where fraction division typically follows fraction multiplication. It is eventually up 
to the teacher to present fraction division in a way that students can make appropri-
ate links to natural number division.

The important role of teachers leads to our sixth and final recommendation: 
More effort is needed to provide teachers with the knowledge they need to teach 
fractions effectively. Empirical studies have documented teachers’ limitations pre-
dominantly with respect to fraction concepts (see Sect. 7.2.3). Thus, it seems imper-
ative for teacher education to enhance teachers’ content knowledge. A particular 
focus should be on fraction concepts that are counterintuitive and therefore prone to 
biased reasoning.

7.4.2  Future Directions

There are currently only a  few studies on how fractions are commonly taught in 
classrooms. This shortage concerns at least three aspects, namely teachers’ behav-
ior, classroom materials, and—more specifically—visual representations of frac-
tions used in teaching. Concerning teachers’ behavior, classroom observation 
studies are needed to find out which teaching approaches teachers actually use in 
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classrooms. With respect to classroom materials, further analyses of textbooks 
should focus more systematically on the fraction concepts and the types and nature 
of fraction problems and the visualizations that occur in textbooks. Concerning 
these visualizations, controlled intervention studies may investigate the specific 
effects of individual representations, as well as how multiple representations should 
be combined so that they are effective for students (Rau, 2017).

Although proficiency with natural numbers is a prerequisite for learning about ratio-
nal numbers, overgeneralizations of natural number principles can actually cause dif-
ficulties with learning fractions. Further research is needed to better understand the 
specific relations between previously acquired knowledge of natural numbers and frac-
tion learning. Studies to date have addressed the development of natural and rational 
number knowledge in longitudinal designs (e.g., Braithwaite & Siegler, 2017; Mou 
et al., 2016; Resnick et al., 2016; Rinne, Ye, & Jordan, 2017). However, these studies 
have focused on very specific aspects of numerical development (e.g., number magni-
tudes), and they have not included many external variables that may contribute to this 
development. To better understand the relative contributions of various factors, studies 
should consider taking into account both cognitive variables (e.g., general cognitive 
abilities, working memory) and also non-cognitive variables (e.g., mathematics self-
concept, mathematics anxiety) as well as school-related factors (e.g., classroom teach-
ing, textbooks), and socio-economic factors (e.g., learning opportunities at home).

7.5  Conclusion

In this chapter, we aimed to make connections between research on fractions from 
mathematics education and cognitive psychology, and also to include neuroscience 
evidence. We note that studies from different perspectives address issues on very 
different levels of explanation, such as the level of classrooms, of student behavior, 
or of brain activations. Integrating studies with such different perspectives is a chal-
lenge for many reasons (De Smedt et al., 2010; Nathan & Alibali, 2010; Schumacher, 
2007). For example, learning processes at different levels occur on completely dif-
ferent time scales, ranging from milliseconds (neural activation) to days or weeks 
(learning across classroom sessions). More fundamentally, authors from different 
fields do not always speak the same language or address the same questions. For 
example, mathematics educators often ask what students should learn and how they 
could learn best, whereas psychologists are more used to ask what students are able 
to learn, or when in their development they learn certain things.

On a meta-level, research should strive for a shared theoretical framework that 
provides guidance for researchers from different perspectives as to how an integra-
tion may be made most fruitful. Our attempts to make connections between various 
perspectives in this chapter may spark further discussions across disciplines. In 
spite of apparent challenges, such cross-disciplinary discussions are necessary to 
improve teaching and learning of fractions in the best possible way.
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