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Chapter 6
The Complexity of Basic Number 
Processing: A Commentary 
from a Neurocognitive Perspective

Bert De Smedt

Abstract In this commentary, I reflect from a neurocognitive perspective on the 
four chapters on natural number development included in this section. These chap-
ters show that the development of seemingly basic number processing is much more 
complex than is often portrayed in neurocognitive research. The chapters collec-
tively illustrate that children’s development of natural number cannot be reduced to 
one basic neurocognitive factor, but instead requires a multitude of skills with dif-
ferent developmental trajectories. Specifically, these contributions highlight that 
there is much more than the processing of magnitude, or the so-called Approximate 
Number System, and they elaborate on the roles of subitizing, place value under-
standing, and children’s spontaneous attention to number and relations. They also 
point out that number is something that needs to be constructed and that number 
processing is in essence a symbolic activity, which requires the integration of mul-
tiple symbolic representations, a focus that has been increasingly emphasized in 
more recent neurocognitive research. The contributions in this volume provide fresh 
perspectives that will help to further our understanding of children’s natural number 
development and how it should be fostered. They also offer novel avenues for inves-
tigating the origins of atypical mathematical development or dyscalculia.

Keywords Number processing · Neurocognitive factors · Approximate number 
system · Dyscalculia · Symbolic representations

6.1  Introduction

The four contributions in this section on natural number development in children 
highlight that the development of seemingly basic number processing is much more 
complex than is often portrayed in neurocognitive studies in numerical cognition. 
The section illustrates that basic number processing cannot be reduced to just one 
core cognitive system or one brain area, such as the intraparietal sulcus (see also 
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Vanbinst & De Smedt, 2016). This collection of chapters on natural number devel-
opment highlights that there is more than the so-called Approximate Number 
System (ANS) and emphasizes the critical roles of subitizing (Clements, Sarama, & 
MacDonald, Chap. 2), place value understanding (Mix, Smith, & Crespo, Chap. 5), 
and children’s spontaneous attention to number and relations (McMullen, Chan, 
Mazzocco, & Hannula-Sormunen, Chap. 4). These chapters point out that number 
is something that needs to be constructed and that number processing is in essence 
a symbolic activity, which requires the integration of multiple symbolic representa-
tions (Ulrich & Norton, Chap. 3). Interestingly, this focus on symbolic representa-
tions has also been emphasized in more recent neurocognitive research (Merkley & 
Ansari, 2016; Schneider et al., 2017; Vanbinst & De Smedt, 2016).

After a very brief sketch of the neurocognitive approach to number processing, I 
discuss, against the background of the chapters in this section, the relevance of the 
ANS (Ulrich & Norton, Chap. 3) and I illustrate that there is more than the process-
ing of magnitude, by pointing to the roles of subitizing (Clements et al., Chap. 2), 
place value understanding (Mix et al., Chap. 5), and spontaneous focusing on num-
ber and relations (McMullen et  al., Chap. 4). I end this commentary with some 
concluding thoughts and avenues for future research, inspired by the four contribu-
tions in the current section on natural number development.

6.2  A Neurocognitive Perspective on Number Processing

Neurocognitive research on number processing in children is a young but rapidly 
expanding field of inquiry, with nearly all studies published in the last decade 
(Schneider et  al., 2017). A key aim in these neurocognitive studies has been to 
understand why there are large individual differences in the way children acquire 
mathematical skills (Dowker, 2005) and why learning mathematics is so easy for 
some but so difficult for others (Berch, Geary, & Mann-Koepke, 2016). It is assumed 
that by understanding the very basic cognitive processes that underlie these indi-
vidual differences, learners’ profiles can be identified. These profiles then allow one 
to develop educational interventions and diagnostic approaches that are optimally 
tailored to the needs of the individual learner. A particular focus in this research has 
been the study of children with atypical mathematical development, a condition also 
known as dyscalculia or mathematical learning disability, which is a persistent and 
specific disorder in learning mathematics that is not explained merely by uncor-
rected sensory problems, intellectual disabilities, other mental disorders or inade-
quate instruction (American Psychiatric Association, 2013).

Dyscalculia has been categorized as a neurodevelopmental disorder (American 
Psychiatric Association, 2013), suggesting that the origin of these difficulties lies at 
the neurobiological level (De Smedt, Peters, & Ghesquiere, in press). It is important 
to emphasize that only a handful of brain imaging studies have investigated these 
neurobiological factors, i.e., brain function and/or structure (De Smedt et  al., in 
press; Peters & De Smedt, 2018) and the same applies to the study of typical 
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 development (Merkley & Ansari, 2016). Most research has focused on the study of 
neurocognitive variables, as these are on a theoretical level closer to the study of 
neurobiological factors (Hulme & Snowling, 2009). These behavioral studies do not 
involve collecting neurobiological data, but rather they consist of investigating cog-
nitive variables whose roles can be predicted on the basis of (developmental) brain 
imaging data on the processing of number and arithmetic (Arsalidou, Pawliw- 
Levac, Sadeghi, & Pascual-Leone, 2018; Peters & De Smedt, 2018). These cogni-
tive variables can be characterized as domain-specific skills, i.e., skills that are 
exclusively relevant for learning mathematics (e.g., numerical magnitude process-
ing, De Smedt, Noel, Gilmore, & Ansari, 2013), or domain-general skills that are 
also relevant for learning in other academic domains, of which working memory has 
been the most extensively studied (Peng, Namkung, Barnes, & Sun, 2016).

This neurocognitive body of evidence originally focused on non-symbolic 
numerical magnitude processing as a domain-specific core factor of individual dif-
ferences in mathematics (e.g., Piazza, 2010) and of dyscalculia (Wilson & Dehaene, 
2007). Likewise, neuroimaging studies have narrowed their focus to activity in the 
intraparietal sulcus (IPS) during mathematical tasks, highlighting it as a key and 
specific area for processing number (e.g., Nieder & Dehaene, 2009). This narrow 
focus on one core factor has been seriously criticized and challenged by both behav-
ioral and neuroimaging data.

Several studies have failed to observe an association between non-symbolic 
number processing and mathematics achievement (De Smedt et al., 2013) and meta- 
analytic data indicate that this association is small (r = 0.24, Schneider et al., 2017). 
Neuroimaging studies have revealed that many more brain regions other than the 
IPS show specific increases in activity when children engage in processing number 
(Arsalidou et al., 2018; Peters & De Smedt, 2018). The increases in brain activity in 
the IPS during the processing of number have been interpreted to reflect not only 
numerical processing but also other general cognitive functions, such as spatial 
working memory, serial order processing, or visual attention (see Fias, 2016, for a 
discussion). The chapters in this volume collectively align with these criticisms, as 
they indicate that the understanding of natural number represents a much more com-
plex endeavor that cannot be reduced to one factor. Instead, this understanding 
builds on a variety of learning mechanisms that are domain-specific as well as 
domain-general.

6.3  The Approximate Number System: Is It Relevant 
for Understanding Number Development?

One central concept in many neurocognitive studies on children’s number develop-
ment has been the so-called ANS, or the ability to process non-symbolically pre-
sented numerical magnitudes (Dehaene, 1997; Gebuis, Kadosh, & Gevers, 2016; 
Leibovich, Katzin, Harel, & Henik, 2017). This system has been suggested to be 
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innate as well as to be the foundation of understanding symbolic number and math-
ematical development (Feigenson, Dehaene, & Spelke, 2004; Piazza et al., 2010) 
and individual differences therein (Halberda, Mazzocco, & Feigenson, 2008). It has 
been proposed that the etiology of dyscalculia is best explained by a deficit in this 
ANS (Wilson & Dehaene, 2007). The existence of an ANS and its role in mathemat-
ical development continues to be the most debated topic in the field of numerical 
cognition (Ansari, 2016; Gebuis et  al., 2016; Leibovich et  al., 2017). Increasing 
evidence suggests that the ANS might not be numerical (Gebuis et  al., 2016; 
Leibovich et al., 2017) and that it even may not be the ground onto which the under-
standing of number, which is in essence a symbolic activity, is built (Leibovich & 
Ansari, 2016). These neurocognitive studies have been executed without much con-
tact with the relevant work in mathematics education research. The contribution by 
Ulrich and Norton (Chap. 3), focusing on children’s construction of number, nicely 
illustrates how mathematics education research might help to constrain theories of 
the ANS and its role in children’s understanding of natural number.

Ulrich and Norton (Chap. 3) aptly point to the critical difference between mag-
nitude and number. They indicate that the ANS deals with magnitude but not with 
number. Number entails the measurement of a magnitude; it needs to be constructed 
and it necessitates the understanding of a countable unit (see also Clements et al., 
Chap. 2). This points to the critical role of understanding counting, which requires 
learning number words and symbolic representations and which takes years of 
mathematical experience to develop.

The contribution of Ulrich and Norton (Chap. 3) nicely echoes recent discus-
sions in the neurocognitive field on the extent to which the ANS is numerical 
(Gebuis et al., 2016; Leibovich et al., 2017) and to which it provides a ground for 
learning symbolic number (Leibovich & Ansari, 2016). For example, Gebuis et al. 
(2016) contend that the ANS merely reflects the integration of different sensory 
cues, such as area and/or density, rather than something numerical. These authors 
argue that a sense of magnitude, based on area or density, rather than a sense of 
number, enables the discrimination between two magnitudes, as is also suggested 
by Ulrich and Norton (Chap. 3). Lyons, Bugden, Zheng, De Jesus, and Ansari 
(2018) recently coined the term Approximate Magnitude System (AMS), as an 
alternative to ANS. In line with the reasoning of Ulrich and Norton (Chap. 3), AMS 
might be a better term to denote this cognitive ability.

Another important conundrum in neurocognitive research, touched upon by 
Ulrich and Norton (Chap. 3), is the extent to which the ANS provides a ground for 
learning symbolic number (Leibovich & Ansari, 2016). While the dominant theory 
assumes that the ANS provides the ground for children’s symbolic representations 
of number (Piazza, 2010), this has been seriously challenged by developmental and 
brain imaging data (Ansari, 2016; Leibovich & Ansari, 2016). For example, Lyons 
et al. (2018) showed that in kindergartners, symbolic comparison abilities predicted 
subsequent non-symbolic comparison but not vice versa. This suggests that it is the 
acquisition of exact number that facilitates growth in the ANS, rather than vice 
versa. This aligns with the critical role of unitizing and measurement in the 
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 development of number, as discussed by Ulrich and Norton (Chap. 3; see also 
Clements et al., Chap. 2).

The contribution by Ulrich and Norton (Chap. 3) provides new avenues for fur-
ther study that can benefit from collaborations between researchers in mathematics 
education and cognitive psychology. These studies should clarify how the aware-
ness of magnitude and the development of number are related. Even though infants 
may have a sense of magnitude, it may not be critical to learning number. On the 
other hand, we need to understand how the development of number affects the 
awareness of magnitude (see Lyons et al., 2018).

This view of the ANS as relevant to magnitude rather than number also offers a 
fresh perspective on understanding dyscalculia. De Smedt et al. (2013) observed in 
their review of the literature that impairments on ANS-tasks were only observed in 
older (starting from age 10) children with dyscalculia (when compared to typically 
developing children). It might be that children with dyscalculia have a preserved 
awareness of magnitude, but that they do not benefit as much as typically develop-
ing children from their understanding of number or their ability to measure magni-
tude that allows them to fluently execute the dot comparison task. As suggested by 
Ulrich and Norton (Chap. 3), children could use different strategies to solve a seem-
ingly basic dot comparison task. Children with dyscalculia might rely more on their 
perceptual sense of magnitude to perform this task, while typically developing chil-
dren might rely more on their understanding of (symbolic) number and quantity, 
leading to differences in performance. Future studies are needed to verify this con-
jecture. They will require the consideration of different strategies that children use 
during comparison tasks, and these are not necessarily the same as the ones used by 
adults, as pointed out by Ulrich and Norton (Chap. 3).

6.4  More than Magnitude: The Roles of Subitizing, Place 
Value, and Spontaneous Focusing

Subitizing—the immediate apprehension and identification of the exact number of 
items in small sets up to four items—has been studied for a long time in cognitive 
psychological research, yet it has been relatively neglected in mathematics educa-
tion research (Clements et al., Chap. 2). It needs to be emphasized that it is not so 
easy to measure subitizing reliably, as subitizing is typically a very accurate process 
that occurs within a timeframe of less than 1 s. Clements et al. (Chap. 2) aptly point 
out that the basic process of subitizing has a much more complex and protracted 
developmental course than is assumed in cognitive psychological research. They 
argue that, during this development, a perceptual process that is in essence non- 
numerical has to be linked with an exact (symbolic) concept of number, echoing 
Ulrich and Norton’s (Chap. 3) discussion of the ANS. Fully functional subitizing 
requires the understanding of a countable unit as well as the number words to con-
struct an exact cardinal representation of a collection (Clements et al., Chap. 2), but 
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the critical question remains when in development this happens. This again empha-
sizes that number processing is in essence a symbolic activity, which requires the 
integration of multiple symbolic representations (Merkley & Ansari, 2016), the 
developmental trajectories of which remain to be further understood.

Clements et al. (Chap. 2) also discuss a more complex type of subitizing, concep-
tual subitizing, which has a high educational relevance. Conceptual subitizing refers 
to the child’s ability to organize a set of items via partitioning, decomposing, and 
composing to quickly determine its number. This conceptual subitizing provides 
children experiences with additive situations, and it fosters their understanding of 
part-whole relations, which are a critical scaffold for learning arithmetic operations. 
This discussion of Clements et al. (Chap. 2) provides a nice example of how ele-
mentary numerical activities can act as a stepping-stone for learning more complex 
arithmetic and mathematics. This type of theorizing on the mechanisms of why 
basic number processing correlates with more advanced mathematical achievement 
has been somewhat lacking in neurocognitive studies. These latter studies have typi-
cally focused on what predicts mathematics achievement but not on why it predicts 
this achievement (De Smedt et al., 2013). The combination of perspectives from 
mathematics education with psychological research might be a fruitful avenue to 
further understand these mechanisms. Such research is needed to further elucidate 
when conceptual subitizing develops and how it is related to children’s learning of 
arithmetic and its individual differences.

The large majority of neurocognitive studies on (symbolic) number processing 
have narrowed their focus to single-digit numbers, but to fully “crack the code” of 
Arabic numerals, children need to learn place value and multi-digit number mean-
ings, which are concepts that are difficult to master for many of them (Mix et al., 
Chap. 5). Mix et al. elaborate on this learning of place value and how it can be fos-
tered, through the domain-general lens of relational learning mechanisms, such as 
statistical learning and structure mapping. Their chapter nicely illustrates that the 
development of symbolic number is much more complex than the simple mapping 
between a symbol and the quantity it represents, as has often been assumed in neu-
rocognitive studies. Their chapter offers a key to the solution of the symbol- 
grounding problem in numerical cognition (Leibovich & Ansari, 2016). More 
specifically, Mix et  al. (Chap. 5) highlight that, in addition to domain-specific 
numerical mechanisms, domain-general relational learning mechanisms, which 
play a role in the acquisition of language, particularly the learning of syntax 
(Ullman, 2004), also need to be investigated. These investigations have the potential 
to further explain the strong associations between measures of language and math-
ematics (LeFevre et al., 2010) and to elucidate the comorbidity of dyscalculia with 
language disorders (Evans & Ullman, 2016).

It is important to emphasize that the learning of place value depends on the trans-
parency of the language in which children learn number. Some languages, such as 
Chinese, have a very regular alignment between the structure of their number words 
and their numerals (23 = two times ten and three) whereas other languages, such as 
Dutch, do not (23 = three-and-twenty). It is evident that the learning of place value 
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will be much harder in the latter languages than in the former and that different 
types of instruction might be needed in these different languages. In all, this high-
lights that contextual factors moderate children’s understanding of number (see also 
Clements et al., Chap. 2, and McMullen et al., Chap. 4), an issue that has been cen-
tral in educational research but that has been often ignored in neurocognitive 
studies.

McMullen et al. (Chap. 4) guide our attention to children’s spontaneous focusing 
tendencies on number (SFON) and relations (SFOR) and highlight that these are 
key elements of children’s understanding of number and its individual differences. 
McMullen et al. emphasize that children differ in their attention to mathematical 
elements of everyday situations outside the formal learning context. Children who 
are more attentive to the numerical and mathematical aspects of an everyday situa-
tion will have more (self-initiated) practice with it and, consequently, develop better 
mathematical skills. This again points to the critical role of the environment, includ-
ing both the home and school environment, and the contexts in which children are 
confronted with number as powerful moderators of children’s numerical develop-
ment. It remains, however, as yet unclear what aspects of the environment trigger 
children’s attention to number. On the other hand, it is clear that children’s under-
standing of number and numerical relations and their spontaneous focus on it 
develop in an iterative way (McMullen et al., Chap. 4).

6.5  Concluding Thoughts

The chapters in this volume collectively indicate that children’s development of 
natural number cannot be reduced to one basic neurocognitive ability but instead 
requires a multitude of skills that have different developmental trajectories. These 
chapters also suggest that these skills develop in a bidirectional way although their 
precise interactions and their developmental timing need further investigation.

It is also important to point out that the use of the term “neurocognitive” some-
times mistakenly suggests a direction of associations, such that neurocognitive vari-
ables are more easily perceived as predictive or causal in learning, in this case, 
natural number. However, it also might be that learning natural number itself 
changes related neurocognitive processes. It is the research design and not the type 
of data (i.e., either neurocognitive or brain imaging data) that determines predictive 
value or causality. This should be kept in mind when evaluating the existing neuro-
cognitive data. Intervention studies that manipulate a given factor are needed to 
further determine which factors are causal and which are not. Carefully controlled 
longitudinal studies (i.e., cross-lagged designs) can also test the directions of asso-
ciations between these skills (see McMullen et al., Chap. 4, for an example).

The idea that the so-called basic processing of number consists of a multitude of 
skills also opens opportunities for understanding the origins of dyscalculia, which 
has been characterized in neurocognitive studies as a disorder that originates from a 
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deficit in processing number (De Smedt et al., in press). Against the background of 
the chapters in this volume, it seems unlikely that such a deficit in number  processing 
can be reduced to one single deficit in one numerical ability. This echoes recent 
models of other neurodevelopmental disorders, such as dyslexia or ADHD, which 
have posited that multiple deficits rather than one single deficit account for their 
emergence (Peterson & Pennington, 2015). The numerical abilities highlighted in 
this section might all constitute risk factors for developing deficits in learning to 
calculate and consequently, future studies on atypical development should consider 
the relative contribution of each of these risk factors. As has been illustrated through-
out the chapters in this volume, these numerical skills are also related to domain- 
general learning mechanisms, such as statistical learning (Mix et  al., Chap. 5), 
perceptual abilities (Clements et al., Chap. 2), or sensorimotor abilities (Ulrich & 
Norton, Chap. 3), which also require additional consideration when studying the 
origins of atypical mathematical development.

The current collection of chapters also reveals that children’s learning of natural 
number will require specific instruction. Clements et al. (Chap. 2) and Mix et al. 
(Chap. 5) nicely illustrate that cognitive models of different types of numerical 
skills can help to inform the design of educational programs. Outlining the develop-
mental trajectories of a given numerical ability, such as subitizing, provides a ground 
for designing activities that can be optimally tailored to support students at various 
points in these different trajectories (Clements et al., Chap. 2). Similarly, general 
psychological learning mechanisms, such as statistical learning or structure map-
ping (Mix et  al., Chap. 5) can provide insight into ways to improve educational 
programs. It needs to be acknowledged that there will be individual differences in 
both these domain-specific and domain-general components that are critical to 
understanding number (Vanbinst & De Smedt, 2016). A cognitive analysis of these 
components will allow educators to verify which abilities require more scaffolding 
(weaknesses) and which abilities can be used as compensatory factors (strengths) 
(see Mix et al., Chap. 5). For example, children who are less likely to spontaneously 
attend to number and relations might require more guided instruction compared 
with others (McMullen et al., Chap. 4).

To conclude, the contributions in the current volume clearly show that children’s 
understanding of number cannot be reduced to one neurocognitive factor, such as 
the ANS, but instead represents a complex development of different types of abili-
ties that become gradually connected over development. It is clear that this develop-
ment involves domain-specific as well as domain-general learning mechanisms. 
The contributions in this volume provide fresh perspectives that will help to further 
our understanding of children’s natural number development in both the mathemat-
ics education and neurocognitive research communities. It is clear that both disci-
plines can learn from each other and that these chapters are a starting point for 
further inquiry on the cognitive mechanisms of children’s understanding of number 
as well as on the design and evaluation of educational interventions that aim to sup-
port this understanding.
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