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Chapter 2
Subitizing: The Neglected Quantifier

Douglas H. Clements, Julie Sarama, and Beth L. MacDonald

Abstract We define and describe how subitizing activity develops and relates to 
early quantifiers in mathematics. Subitizing is the direct perceptual apprehension 
and identification of the numerosity of a small group of items. Although subitizing 
is too often a neglected quantifier in educational practice, it has been extensively 
studied as a critical cognitive process. We believe that subitizing also helps explain 
early cognitive processes that relate to early number development and thus deserves 
more instructional attention. We also contend that integrating developmental/cogni-
tive psychology and mathematics education research affords opportunities to 
develop learning trajectories for subitizing. A complete learning trajectory includes 
three components: goal, developmental progression, or learning path through which 
children move through levels of thinking, and instruction. Such a learning trajectory 
thus helps establish goals for educational purposes and frames instructional tasks 
and/or teaching practices. Through this chapter, it is our hope that early childhood 
educators and researchers begin to understand how to develop critical educational 
tools for early childhood mathematics instruction. Through this instruction, we 
believe that children will be able to use subitizing to discover critical properties of 
number and build on subitizing to develop capabilities such as unitizing, cardinality, 
and arithmetic capabilities.
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Fig. 2.1 A display shown to children that controls for 
area but represents a 1:2 ratio of unshaded to shaded 
circular regions

Children 6 months of age and younger appear to be sensitive to number. For exam-
ple, they habituate to 1 versus 2 or 3 and 2 versus 3 objects (Antell & Keating, 1983; 
Starkey, Spelke, & Gelman, 1990). That is, they eventually “get used to” repeated 
sets of 3, even as color, size, and arrangements change, and become more attentive 
only when a set with a different number, such as 2, is shown. This indicates that 
infants are sensitive to the quantities in a small set of items before they are taught 
number words, counting, or finger patterns.

Children also are sensitive to displays with larger numbers of items. For exam-
ple, they can habituate to ratios of 1:2 (Mazzocco, Feigenson, & Halberda, 2011, 
see Fig. 2.1 and Matthews, this volume). They also have a sense of the results when 
displays show a combination of large numbers of dots. Still, teachers may say that 
some much older, elementary school children cannot immediately name the num-
ber shown on dice. So, what is this ability to name exact numbers quickly? Is it a 
special way of counting or a separate way of acting on objects? Should we teach it, 
or is it simply innate? Does this ability develop as children learn more sophisti-
cated understandings for number? How does it relate to other activities with num-
ber or quantity? As we shall see, although subitizing is too often a neglected 
quantifier in educational practice, it has been extensively studied as a critical cog-
nitive process.

2.1  The Search for the Earliest Number Competencies

2.1.1  Subitizing: A Long History

Subitizing is “instantly seeing how many.” From a Latin word meaning suddenly, 
subitizing is the direct perceptual apprehension and identification of the numerosity 
of a small group of items. In the first half of the twentieth century, researchers 
believed counting did not imply a true understanding of number but subitizing did 
(e.g., Douglass, 1925). Some saw the role of subitizing as a developmental prereq-
uisite to counting. Freeman (1912) suggested that whereas measurement focused on 
the whole and counting focused on the unit, only subitizing focused on both the 
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whole and the unit—so, subitizing underlies number ideas. Carper (1942) agreed 
subitizing was more accurate than counting and more effective in abstract situa-
tions. Kaufman, Lord, Reese, and  Volkmann (1949) initially named subitizing and 
distinguished this activity as very different from estimation activity. Individuals 
were relatively more accurate and experienced higher degrees of confidence in their 
enumeration when subitizing small sets of items (≤5) compared to when they were 
estimating larger sets of items (>5).

In the second half of the twentieth century, educators developed several models 
of subitizing and counting. Subitizing was initially defined in the field of psychol-
ogy (Kaufman et al., 1949). Essentially, Kaufman et al. found that subitizing activ-
ity was quite different than estimation, as individuals drew from a unique form of 
visual number discrimination characterized by speed, accuracy, and degree of con-
fidence (1949). More specifically, Kaufman et al. found that individuals numerically 
identifying sets of five or fewer objects were relatively faster (≤40 ms/item in a 
perceptual field) in their recall times, had higher levels of confidence, and had 
higher accuracy rates (1949). Klahr (1973a, 1973b) began discussing subitizing as 
a form of visual information processing and a type of quantification operator (e.g., 
counting, subitizing, estimating). Klahr posited that subitizing did not rely on an 
encoding process, but in fact was an encoding process, explaining such different 
recall times when individuals subitized items between one and five.

Based on the same notion that subitizing was a more “basic” skill than counting 
(Klahr & Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974), Klahr (1973a) 
hypothesized that after items were encoded through subitizing activity, individuals 
stored matched patterned stimuli to numerical thinking structures in their long-term 
memory. This explained why children can subitize directly through interactions 
with the environment, without social interactions. Supporting this position, Fitzhugh 
(1978) found that some children could subitize sets of one or two but were not able 
to count them. None of these very young children were able to count any sets that 
they could not subitize. Fitzhugh concluded that subitizing is a necessary precursor 
to counting. This research also began to define subitizing, for the first time, as sup-
ported by pre-attentional mechanisms (Klahr, 1973b; Trick & Pylyshyn, 1994) and 
a form of numerical encoding system (Klahr, 1973a).

However, in 1924, Beckmann found that younger children used counting rather 
than subitizing (cited in Solter, 1976). Others agreed that children develop subitiz-
ing later, as a shortcut to counting (Beckwith & Restle, 1966; Brownell, 1928; 
Silverman & Rose, 1980). Developmental psychologists Gelman and Gallistel 
(1978) expressed this view, claiming that subitizing is simply a form of rapid 
counting.

Although debates continue, recent research has shown that—as the introduc-
tion shows—some sensitivity to very small numbers develops very early (we do 
not call this “subitizing” yet as children are not connecting an exact quantity to a 
number word). Further, that sensitivity exists for larger numbers in a different 
form. The latter has been termed the Approximate Number System and we turn to 
it next.

2 Subitizing: The Neglected Quantifier
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2.1.2  The Approximate Number System (ANS)

Figure 2.1 illustrates a situation revealing an ability to estimate that is shared across 
animals and people. For example, monkeys and birds can be trained to discriminate 
both large and small sets (of visual dots or sounds) that differ in a 1 to 2 (or greater) 
ratio (but not 2:3) (Starr, Libertus, & Brannon, 2013). Baby chicks, first imprinted 
with a set of three, shown 4 objects going behind a screen on the right, then 1 going 
beyond a screen on the left, then 1 moved from the right to the left, go immediately 
to the screen on the right (Vallortigara, 2012).

Neuroscience findings suggest that humans, like other animal species, encode 
approximate number (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). The IPS 
coding for number in humans is compatible with that observed in macaque mon-
keys, suggesting an evolutionary basis for human elementary arithmetic (Piazza 
et al., 2004). Most children without specific disabilities possess these competencies, 
which appear to form one of the innate, foundational abilities for all later numerical 
knowledge—the Approximate Number System (ANS). Six-month-old infants can 
discriminate the 1:2 ratio (as in Fig. 2.1) but by 9 months of age, they can also dis-
tinguish sets in a 2:3 ratio (e.g., 10 compared to 15). ANS correlates with mathemat-
ics competencies in preschoolers (Mazzocco et  al., 2011; Soto-Calvo, Simmons, 
Willis, & Adams, 2015), even with age and verbal ability controlled (Libertus, 
Feigenson, & Halberda, 2011b), although these correlations are larger for children 
low in mathematical knowledge (Bonny & Lourenco, 2013). It may be that higher 
achievers have access to more and more sophisticated strategies that makes ANS 
precision less relevant. Further, lack of ANS proficiency may be one but only one of 
several sources of poor mathematics learning (Chu, vanMarle, & Geary, 2013).

2.1.3  Is Subitizing Also an Approximate Estimator?

This raises the question of whether initial sensitivity to number is also based on 
approximate estimators, and only seems accurate early on in children’s develop-
ment because numbers are very small. Subitizing differs from the ANS in that the 
goal is to determine the exact number of items in a set and to connect the number to 
another representation, usually number words. Supporting the distinction, subitiz-
ing does not fit Weber’s law for ANS and thus appears to be a distinct, dedicated 
method of quantification (Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). 
Subitizing also appears distinct from counting. First, there is little or no relationship 
between children’s performance on counting and subitizing tasks (Pepper & 
Hunting, 1998). Second, lesions that affect counting and subitizing appear to be in 
separate parts of the brain (Demeyere, Rotshtein, & Humphreys, 2012).

Still, questions remain about how subitizing operates. For example, some have 
questioned whether subitizing is really about number or a general sense of quantity. 
That is, some studies suggest that infants in “number” experiments may be 
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 responding to overall contour length, area, mass, or density rather than discrete 
number (Feigenson, Carey, & Spelke, 2002; Tan & Bryant, 2000). In one study, 
infants dishabituated to changes in contour length when the number of objects was 
held constant, but they did not dishabituate to changes in number when contour 
length was held constant (Clearfield & Mix, 1999), suggesting they may be more 
sensitive to continuous than discrete quantities. FMRI studies iterate these findings 
as they show 4-year-olds and adults exhibit a greater response in their IPS to visual 
arrays that change in the number of elements than to stimuli that change in shape 
(Cantlon, Brannon, Carter, & Pelphrey, 2006). Deaf people, who knew Japanese 
Sign Language but not American Sign Language, showed no activation in regions 
associated with numerical processing when taught ASL signs (but not their mean-
ings) for numerals. However, when told what the signs represented, they showed 
just such activation—even when they could not accurately code those signs 
(Masataka, Ohnishi, Imabayashi, Hirakata, & Matsuda, 2006).

Models of subitizing There are then various empirical findings and theoretical 
models of subitizing (for reviews more detailed than this summary, see Butterworth, 
2010; Hannula, Lepola, & Lehtinen, 2010; Sarama & Clements, 2009). Figure 2.2 
illustrates several of them.

Some believe that recognition of patterns of movement (even eye movements), or 
scan-paths (Fig. 2.2), is the underlying non-numerical process that is then linked to 
specific numerosities (Chi & Klahr, 1975; Glasersfeld, 1982; Klahr & Wallace, 
1976). Numerical subitizing requires a subsequent reflective abstraction, which 
occurs when the child abstracts the mental actions from the sensory-motor contexts 
and is capable of reflecting on these actions. Piaget (1977/2001) describes reflective 
abstraction as encapsulating two phases. The first phase is a “projection phase in 

Fig. 2.2 Theories of subitizing
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which the actions at one level become the objects of reflection at the next” (313). 
The second phase is a “reflection phase in which a reorganization takes place” 
(p. 313). Such abstractions can stem from temporal or rhythmic activity (Glasersfeld, 
1982), are not grounded in perceptual pulsations (Glasersfeld, 1995), and may help 
to explain early number development (Steffe & Cobb, 1988).

Other models consider subitizing to be a numerical process. In the “accumula-
tor” column of Fig. 2.2, subitizing is a numerical process enabled by the availability 
of the functional equivalent of a number line in the brain that operates on both 
simultaneous and sequential items (cf. Huntley-Fenner, 2001). There is a pacemaker 
that emits equivalent pulses at a constant rate. When a unitized item (e.g., a block 
taken as “one”) is encountered, a pulse is allowed to pass through a gate, entering an 
accumulator—think of a squirt of water entering a tall glass. The gradations on the 
accumulator estimate the number in the collection of units, similar to height indicat-
ing the number of squirts in the glass (Meck & Church, 1983). This model does not 
require that the accumulator has an exact representation of number (see also 
Feigenson, Dehaene, & Spelke, 2004). The “squirts” and the amount in the “glass” 
are approximate. Support for this view comes from research indicating that children 
younger than 3 years tend not to represent any numbers except 1 and 2 precisely 
(Antell & Keating, 1983; Baroody, Lai, & Mix, 2005; Feigenson, Carey, & Hauser, 
2002; Mix, Huttenlocher, & Levine, 2002).

The next theory holds that humans create “object files” that store data on each 
object’s properties (Fig. 2.2). They can use these object files to respond differently 
to various situations. Thus, some situations can be addressed by using the objects’ 
individuation or separateness as objects, and others can be addressed by using the 
analog properties of these objects, such as contour length (Feigenson, Carey, & 
Spelke, 2002). For example, children might use parallel-processed individuation for 
very small collections, but continuous extent when storage for individuation is 
exceeded. Individuation is the visual referencing of items as “that [which] refers to 
something we have picked out in our field of view without reference to what cate-
gory it falls under or what properties it may have” (Pylyshyn, 2001, p. 129). Thus, 
processing is preconceptual prior to any entry into working memory (Pylyshyn, 
2001). (From our perspective, even if such individuation is accepted as an early 
basis for number, it might not in itself constitute knowledge of number, an issue to 
which we will return.)

The mental models view (Fig. 2.2) postulates that children represent numbers 
nonverbally and approximately, then nonverbally but exactly, and eventually via 
verbal, counting-based processes (Huttenlocher, Jordan, & Levine, 1994; Mix et al., 
2002). Children cannot initially differentiate between discrete and continuous quan-
tities, but represent both approximately using one or more perceptual cues such as 
contour length (Mix et al., 2002). Children gradually develop the ability to individu-
ate objects, providing the ability to build notions of discrete number. About the age 
of 2 years, they develop representational, or symbolic, competence, allowing them 
to create mental models of collections, which they can retain, manipulate (move), 
add to or subtract from, and so forth (although the model does not adequately 
describe how cardinality is ultimately cognized and how comparisons are made). 
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Creation of mental models with their added abstraction differentiates this view from 
the “object files” theory. Early nonverbal capabilities then provide a basis for the 
development of verbally based numerical and arithmetic knowledge (young chil-
dren are more successful on nonverbal than verbal versions of number and arithme-
tic tasks, Huttenlocher et  al., 1994; Jordan, Hanich, & Uberti, 2003; Jordan, 
Huttenlocher, & Levine, 1992; Jordan, Huttenlocher, & Levine, 1994; Levine, 
Jordan, & Huttenlocher, 1992). Meaningful learning of number words (in contrast 
to symbolic ability) may cause the transition to exact numerical representations 
(Baroody et al., 2005). This may provide the basis for understanding cardinality and 
other counting principles, as well as arithmetic ideas (Baroody, Lai, & Mix, 2006).

An alternative model postulates an innate abstract module. A module is a distinct 
mental component that is dedicated to a particular process or task and is unavailable 
for general processing. A number perception module would perceive numbers 
directly (Dehaene, 1997). This counting-like process is hypothesized to guide the 
development of whole number counting, hypothesized to be a privileged domain. 
Researchers use findings from both humans and non-human animals to support this 
position (Gallistel & Gelman, 2005).

A New Model for the Foundations of Subitizing A synthesis of these positions pro-
duces a model that we believe is most consistent with the research. What infants 
quantify are collections of rigid objects. Sequences of sounds and events, or materi-
als that are non-rigid and non-cohesive (e.g., water), are not quantified (Huntley- 
Fenner, Carey, & Solimando, 2002). Quantifications of these collections begin as an 
undifferentiated, innate notion of the amount of objects. Object individuation, which 
occurs early in pre-attentive processing (and is a general, not quantitative, process, 
cf. Moore & Ashcraft, 2015), helps lay the groundwork for differentiating discrete 
from continuous quantity. That is, the object file system stores information about the 
objects, some or all of which is used depending on the situation.

Simultaneously, an estimator (accumulator) mechanism stores analog quantita-
tive information (Feigenson, Carey, & Spelke, 2002; Gordon, 2004; Johnson-Pynn, 
Ready, & Beran, 2005). This estimator also includes a set of number filters, each 
tuned to an approximate very small number of objects (e.g., 2) although they over-
lap (Nieder, Freedman, & Miller, 2002). The child encountering small sets opens 
object files for each in parallel. By about a half-year of age, infants may represent 
very small numbers (1 or 2) as individuated objects (close to the “mental models” 
column of Fig. 2.2). However, larger numbers in which continuous extent varies or 
is otherwise not reliable (McCrink & Wynn, 2004) may be processed by the analog 
estimator as a collection of binary impulses (as are event sequences later in develop-
ment, see the “analog” column of Fig. 2.2), but not by exact enumeration (Shuman 
& Spelke, 2005) by a brain region that processes quantity (size and number, undif-
ferentiated, Pinel, Piazza, Le Bihan, & Dehaene, 2004). Without language support, 
these are inaccurate processes for numbers above two (Gordon, 2004).

To compare quantities, correspondences are processed. Initially, these are inex-
act estimates comparing the results of two estimators, depending on the ratio 
between the sets (Johnson-Pynn et al., 2005). Once the child can represent objects 
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mentally, they can also make exact correspondences between these nonverbal repre-
sentations, and eventually develop a quantitative notion of that comparison (e.g., not 
just that ••• is more than ••, but also that it contains one more •, Baroody et al., 
2005).

Fully Functional Subitizing—Explicit Cardinality Even these correspondences, 
however, do not necessarily imply a cardinal representation of the collection (a rep-
resentation of the collection qua a numerosity of a group of items). That is, our 
model distinguishes between noncardinal representations of a collection and explicit 
cardinal representations that is necessary to achieve fully functional subitizing com-
petence. Indeed, a neuroimaging study found that brain regions that represent 
numerical magnitude also represent spatial magnitude, such as the relations between 
sizes of objects, and thus may not be numerical in function (Pinel et al., 2004). Only 
for numerical representations does the individual apply an integration operation 
(Steffe & Cobb, 1988) to create a composite with a numerical index. This integra-
tion operation uses present cognitive schemes to project and reorganize actions so 
they are considered mathematical objects. Some claim that the accumulator yields a 
cardinal output; however, it may be quantitative and still—because it indexes a col-
lection using an abstract, cross-modality system for numerical magnitude (cf. 
Lourenco & Longo, 2011; Shuman & Spelke, 2005)—it may lack an explicit cardi-
nality. For example, this system would not necessarily differentiate between ordinal 
and cardinal interpretations. Comparisons, such as correspondence mapping, might 
still be performed, but only at an implicit level (cf. Sandhofer & Smith, 1999). (It is 
possible to index a numerical label without attributing explicit cardinality. For 
example, lower animal species seem to have some perceptual number abilities, but 
only birds and primates also have shown the ability to connect a perceived quantity 
with a written mark or auditory label, Davis & Perusse, 1988.) In this view, only 
with experience representing and naming collections is an explicit cardinal repre-
sentation created. This is a prolonged process. Children may initially make word- 
word mappings between requests for counting or numbers (e.g., “how many?”) to 
number words until they have learned several (Sandhofer & Smith, 1999). Then 
they label some (small number) cardinal situations with the corresponding number 
word; that is, map the number word to the numerosity property of the collection. 
They begin this phase even before 2 years of age, but for some time, this applies 
mainly to the word “two,” a bit less to “one,” and with considerable less frequency, 
“three” and “four” (Fuson, 1992a; Wagner & Walters, 1982). We will discuss pos-
sible connections between subitizing and composite number understandings near 
the end of this chapter.

MacDonald and colleagues (MacDonald, 2015; MacDonald & Shumway, 2016; 
MacDonald & Wilkins, 2016, 2017) found that this early attention to 2 served pre-
school age children’s ability to begin attending to subgroups of “two” when concep-
tually subitizing larger sets of items (e.g., four, five). Symmetrical orientations and 
orientations with a large space between subgroups of “two” seemed to afford these 
children’s opportunities to attend to both subgroups. Symmetrical orientations freed 
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children’s working memory resources as they only needed to describe one 2 when 
building towards the total set of 4. Individuals’ subitizing activity has been found to 
be affected by the space between the items in an orientation (Gebuis & Reynvoet, 
2011) and was found to support young children’s attention to the subgroups of the 
entire group of items (MacDonald & Wilkins, 2017).

Later Developments Only after many such experiences do children abstract the 
numerosities from the specific situations and begin to understand that the situations 
named by 3 correspond; that is, they begin to establish as what adults would term a 
numerical equivalence class. Counting-based verbal systems are then more heavily 
used and integrated, as described in the following section, eventually leading to 
explicit, verbal, mathematical abstractions. The construction of such schemes prob-
ably depends on guiding frameworks and principles developed from interactions 
with parents, teachers, and other knowledgeable people. Our model is supported by 
research on speakers of Mandrake in the Amazon, who lack number words for num-
bers above 5. They can compare and add large approximate numbers, but fail in 
exact arithmetic (Pica, Lemer, Izard, & Dehaene, 2004).

Nevertheless, it is significant that children discriminate exact collections on 
some quantitative bases from birth. Furthermore, most accounts suggest that these 
limited capabilities, with as yet undetermined contributions of maturation and expe-
rience, form a foundation for later learning. That is, they connect developmentally 
to culturally based cognitive tools such as number words and the number word 
sequence, to develop exact and extended concepts and skills in number.

Even though the shape of the items plays a secondary role in subitizing, particu-
lar orientations have been found to influence adults’ degree of accuracy when subi-
tizing larger sets of items (≤4). For instance, Logan and Zbrodoff (2003) found that 
the space between these groups of “twos” and “threes” afforded individuals more 
effective subitizing of four or more items. These findings suggest that individuals 
rely on patterned orientations of twos and threes (described as point-groupings) 
when subitizing. Thus, there is a special neural component of early numerical cog-
nition present in the early years that may be the foundation for later symbolic 
numerical development. A language-independent ability to judge numerical values 
nonverbally appears to be important evolutionary precursor to later symbolic 
numerical abilities.

In summary, early quantitative abilities exist, but they may not initially constitute 
systems that can be said to have an explicit number concept. Instead, they may be 
pre-mathematical, foundational abilities (cf. Clements, Sarama, & DiBiase, 2004) 
that develop and integrate slowly, in a piecemeal fashion (Baroody, Benson, & Lai, 
2003). For example, object individuation must be stripped of perceptual character-
istics and understood as a perceptual unit item through abstracting and unitizing to 
be mathematical (Steffe & Cobb, 1988), and these items must be considered simul-
taneously as individual units and members of a collection whose numerosity has a 
cardinal representation to be numerical, even at the lowest levels.

2 Subitizing: The Neglected Quantifier
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2.1.4  Categories of Subitizing

Regardless of the precise mental processes in the earliest years, subitizing appears 
to be phenomenologically distinct from counting and other means of quantification 
and deserves differentiated educational consideration. Further, subitizing ability is 
not merely a low-level, innate process although it builds on innate sensitivity to 
number. As stated previously, in contrast to what might be expected from a view of 
innate ability, subitizing develops considerably and combines with other mental 
processes.

Types of Subitizing Early attention to numerosities reveals preconcepts, defined by 
Piaget are pre-operational, “action-ridden, imagistic, and concrete” early forms of 
concepts that young children depend on (1977/2001, p. 159–160). Children acting 
on static, concrete images that have yet to be unitized, operationalized, or abstracted 
are relying on preconcepts. Children engaging with preconcepts are not yet able to 
identify members as belonging to a given set (e.g., class identification within groups) 
necessary for unitizing. Preconcepts are the basis for early, perceptual subitizing 
activity. However, once early forms of perceptual subitizing develop, Clements 
(1999) posited that students developed and drew from this activity to develop con-
ceptual activity for subitizing.

Therefore, one major shift is the development from using only one, to using two 
types of subitizing. The first type, perceptual subitizing (Clements, 1999; see also 
theoretical justification in Karmiloff-Smith, 1992), is closest to the original defini-
tion of subitizing: Recognizing a number without consciously using other mental or 
mathematical processes and then naming it. Thus, perceptual subitizing employs a 
pre-attentional, encoding quantitative process but adds an intentional numerical 
process; that is, infant sensitivity to number is not (yet) perceptual subitizing. The 
term “perceptual” applies only to the quantification mechanism as phenomenologi-
cally experienced by the person; the intentional numerical labeling, of course, 
makes the complete cognitive act conceptual. A second type of subitizing (a distinc-
tion for which there is empirical evidence, Trick & Pylyshyn, 1994), conceptual 
subitizing (Clements, 1999), involves applying the perceptual subitizing processes 
repeatedly and quickly uniting those numbers. For example, one might recognize 
“10” on a pair of dice by recognizing the two collections (via perceptual subitizing) 
and composing them as units of units (Steffe & Cobb, 1988). Some research sug-
gests that only the smallest numbers, perhaps up to 3, are actually perceptually 
recognized; thus, sets of 1 to 3 may be perceptually recognized, sets of 3 to about 6 
may be and recomposed without the individual being aware of the subgroups. As we 
define it, conceptual subitizing refers to recognition in which the person uses such 
partitioning strategies and is aware of the parts and the whole. In the remainder of 
this section, we elaborate on each type.

Perceptual subitizing also plays the primitive role of unitizing, or making single 
“things” to count out of the stream of perceptual sensations (Glasersfeld, 1995). 
“Cutting out” pieces of experience, keeping them separate, and eventually 
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 coordinating them with number words are not trivial tasks for young children. For 
example, a toddler, to recognize the existence of a plurality, must focus on the items 
such as apples and repeatedly apply a template for an apple and attend to the repeti-
tion of the template application.

In an exploratory 22-session teaching experiment, MacDonald and Wilkins 
(2016) found that four preschool children (ages ranging from 4 years and 4 months 
to 5 years and 5 months) engaged in several types of perceptual subitizing that could 
explain early shifts in children’s types of abstractions. Cross-case analyses deter-
mined similar activity children engaged in throughout the study. MacDonald and 
Wilkins (2016) developed a framework that explained types of activity that young 
children revisited when subitizing. In this framework, five sets of perceptual subitiz-
ing activity were found to explain how these children’s perceptual subitizing activ-
ity changed. As shown in Table  2.1, these four preschool age children relied on 
perceptual figurative patterns when associating number with patterns when subitiz-
ing (initial perceptual subitizing or IPS). Children were also found to subitize small 
subgroups, composed of two or three (perceptual subgroup subitizing or PSS), but 
were not able to compose these subgroups. These activities, explained as a form of 
low-level processing, were purely associative and seemed to illustrate foundational 
operations of number in which children could project onto new schemes as early 
forms of mathematical objects. Further, when children’s subitizing changed they 
began composing and decomposing subgroups of these total sets (perceptual 

Table 2.1 Five different types of perceptual subitizing activity

Type Description Example

Initial 
Perceptual 
Subitizing (IPS)

  • Children describe the visual 
motion or the shape of the dots

  • Children will describe seeing 
“five” because it looks like a 
flower

Perceptual 
Subgroup 
Subitizing (PSS)

  • Children numerically subitize 
small subgroups of two or three, but 
cannot subitize the entire composite 
group

  • Children will state that they 
saw “two and three,” or “two plus 
three,” but do not use this to 
accurately describe the composite 
group

Perceptual 
Ascending 
Subitizing (PAS)

  • Children describe the perceived 
cluster of items as subgroups and 
then the composite group

  • Children will state that they 
saw “two and three,” and then 
accurately describe the total 
composite group

Perceptual 
Descending 
Subitizing 
(PDS)

  • Children describe the composite 
groups and then describe the 
perceived cluster of items as 
subgroups

  • Children will state that they 
saw “five” because they saw “two 
and three”

Perceptual 
Counting 
Subitizing (PCS)

  • Children initially describe seeing 
one more or one less than the 
composite group, and then counts 
down or up, respectively, to the 
composite group

  • Children will state they saw “4 
… 5” or “6 … 5”

  • Children will state they know 
it to be “5” because they saw “6 
… 5”

Note. These five different types of perceptual subitizing activity categorically represent the 
observed child responses documented by MacDonald and Wilkins (2016)
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ascending subitizing or PAS and perceptual descending subitizing or PDS), which 
was foundational for children’s conceptual subitizing. PAS and PDS activity is simi-
lar to conceptual subitizing activity because the children are decomposing and com-
posing units of units. However, PAS and PDS activity explained these children’s 
reliance on perceptual material, spatial patterns, or finger patterns. Furthermore, 
when engaging in PAS and PDS activity these children acted on orientations in 
static means where subgroups did not have to be determined. For instance, they 
relied primarily upon the clustering of items or spatial arrangement of the items to 
determine operations that they would need to use when composing number. This 
means that children would not be required to partition the orientation into sub-
groups, but that they would operationalize the activity by partitioning and compos-
ing number in a more abstract manner. Thus, for these children to engage in 
conceptual subitizing, they would need to carry their (de)composition of number or 
their partitioning of orientations into the activity. Children also coordinated their 
counting with their perceptual subitizing. MacDonald and Wilkins found that all 
four children would subitize a set of items and then count up or down by one (per-
ceptual counting subitizing or PCS). PCS activity was explained as a type of blend 
between both subitizing and counting activity.

These findings suggest that when children engage in perceptual subitizing, they 
are building initial schemes through a series of associations between orientations 
and early units of number. These schemes are foundational for (de)composition of 
number later, as these children begin developing conceptual processes of number in 
relation to their conceptual subitizing.

This takes us to the second type of subitizing, conceptual subitizing plays an 
advanced organizing role with the individual explicitly using partitioning, decom-
posing, and composing quickly to determine a number of items. Decomposing and 
composing are combining and separating operations that help children develop gen-
eralized part-whole relations, one of the most important accomplishments in arith-
metic (National Research Council, 2001). The distinction between PDS activity and 
conceptual subitizing activity is that when children engage in PDS activity they are 
not able to numerically understand how these units relate to units because they are 
still relying on perceptual material, fingers, or spatial patterns. In PDS activity, 
young children are still dependent on the material shown to them when decompos-
ing and composing number. In conceptual subitizing activity, children step away 
from the material and carry operations of number into the task. This distinction is 
explained further in a subsequent section where number and operations are explained 
as related to conceptual subitizing activity.

MacDonald and Wilkins (2016) also found two types of conceptual subitizing 
that describe how children’s limited or flexible number understandings related to 
their subitizing activity (see Table 2.2). Children who have limited ability to draw 
from more than one set of subgroups when conceptually subitizing (evidenced 
through their description of exactly one set of subgroups) engage in rigid concep-
tual subitizing (RCS) (see Table 2.2). For instance, when children subitize “two, 
two, and one” each time they are shown a wide variety of “five” is evidence of their 
reliance on RCS. This activity indicates children’s ability to see units of units when 
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shown a wide variety of representations for “five.” However, the children engaging 
in RCS are limited because they cannot use flexible operations of number when 
conceptually subitizing. When children are capable of “seeing” two or more ways 
of composing items (e.g., two and two; three and one) when subitizing engages in 
flexible conceptual subitizing (FCS). FCS activity evidences the multiple means in 
which children use operations when conceptual subitizing.

What is Subitized Another categorization involves the different types of things 
people can subitize. Spatial patterns such as those on dice are just one type. Other 
patterned modalities are temporal and kinesthetic, including finger patterns (motoric 
and visual/spatial), rhythmic patterns (e.g., 3 beats), and spatial-auditory patterns. 
Creating and using these patterns through conceptual subitizing helps children 
develop abstract number and arithmetic strategies. For example, children use tem-
poral patterns when counting on. “I knew there were three more so I just said, nine 
… ten, eleven, twelve” (rhythmically gesturing three times, one “beat” with each 
count). They use finger patterns to figure out addition problems. For example, for 
3 + 2, a child might put up a finger pattern they know as three, then put up two more 
(rhythmically—up, up) and then recognize the resulting finger pattern as “five.” 
Children who cannot subitize are handicapped in learning such arithmetic processes 
(Butterworth, 2010; Hannula et al., 2010). Children may be limited to subitize small 
numbers at first, but such actions are useful “stepping stones” to the construction of 
more sophisticated procedures with larger numbers, a point to which we return.

2.1.5  Possible Connections Between Unit Development 
and Subitizing Activity

Children’s subitizing activity changes over time that requires different types of 
actions that possibly relate to their ability to unitize members of a set. Thus, chil-
dren’s perceptual subitizing activity may relate to unit development (Steffe & Cobb, 

Table 2.2 Two different types of conceptual subitizing activity

Type Description Example

Rigid 
Conceptual 
Subitizer 
(RCS)

  • Children describe seeing the 
composite unit and then one set 
of subgroups that always remain 
the same, regardless of the 
orientation or color of the items

  • Children will always state they 
know a composite group to be four 
because they saw “two and two”

Flexible 
Conceptual 
Subitizing 
(FCS)

  • Children describe seeing the 
composite unit and then two or 
more sets of subgroups in 
different tasks regardless of the 
orientation or color of the items

  • Children will state that they know a 
composite group to be five because 
they saw “two and three,” but 
previously they explained the same 
orientation to be five because they saw 
“two, two, and one”

Note. These two different types of conceptual subitizing activity categorically represent the 
observed child responses documented by MacDonald and Wilkins (2016)
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1988). Steffe and Cobb found that children engaged in counting developed abstract 
singular units (abstract units composed of 1) through their engagement with a vari-
ety of physical material of singular units (e.g., perceptual, figural patterns, motor 
activity, verbal utterances) (see Fig. 2.1). Children develop abstract singular units by 
first engaging with perceptual singular units as their unitization cuts away portions 
of “a specific experiential ‘thing’” (Steffe & Cobb, 1988, p. 343). As children use 
figural (different representation), motor (motor pattern through activity), and verbal 
(utterance of a number word) singular units to represent perceptual material, they 
develop more abstract singular units (1988).

Steffe and Cobb found that first grade students “re-presented perceptual unit 
item[s]” (p. 342) when developing figural unit items. Further, children developed 
motor unit items by unitizing motor actions and associated them with isolated motor 
pattern (1988). Through development of these singular unit items, children re- 
presented singular activities and patterns through “an utterance of a number word 
that signifies a perceptual, figural, or motor unit item” (1988, p. 343). In developing 
and acting on these singular unit items, it should be noted that children may develop 
figural, verbal, and motor unit items concurrently or in one order versus another (i.e., 
figural, verbal units and then motor units, motor units, figural, and then verbal units). 
In re-presenting perceptual singular units with figural units, verbal utterances and 
motor patterns, children develop abstract singular unit items. Using abstract singular 
units, children can develop groups to engage in more sophisticated activity (e.g., 
partition, iterate) with number and develop abstract composite units (abstract units 
composed of more than one unit) that become countable units of units (Fig. 2.3).

One alternative manner that children may use to develop abstract composite units 
is their engagement with spatial patterns to develop templates or rules for experien-
tial composite units. Essentially, Steffe (1994) posits that young children may ini-
tially rely on numerical patterns through their engagement with spatial patterns 
when developing figurative material (figurative composite units) and motor activity 
(motor composite units). Young children’s activity with material with counting (and 
possibly subitizing) are foundational for experiential composite unit development. 
Steffe found that children constructed experiential composite units by attending to 
the numerical rules of a pattern. Through flexible engagement with numerical pat-
terns, children develop experiential units as their development of “the records of a 
pattern do not take a picture of the pattern, but they constitute a program or recipe 
whose enactment constitutes a sensory pattern” (Steffe, 1994, p. 18). Steffe distin-
guishes these patterns as primarily numerical sequences, as subitizing was not con-
sidered in the framework of Steffe’s research (cf. Glasersfeld, 1982). However, we 
posit that when considering multiple means in which patterns could be engaged, 
young children could construct experiential composite units based on subitizing, 
providing an alternative means to access abstract composite unit development.

For example, children rely on visual patterns when perceptually subitizing an 
orientation of “three and two.” When children are then asked, “how many did you 
see?” they might need to “make it first.” Here, children are primarily relying on the 
pattern and the figurative composite unit to engage with the numbers. Alternatively, 
if children represent the “two” and “three” with all fingers on the one hand and 
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Fig. 2.3 MacDonald and Wilkins (under review) adapted conceptual framework from Steffe and 
Cobb (1988) and Steffe (1994)

partition an orientation when determining subgroups, then they may be relying on 
the rules of prior experience with patterns in which to conceptually develop com-
posite units. More specifically, Steffe (1994) describes this transition as one of a 
“uniting operation” where the numerical pattern is used as one object “to instantiate 
the records that compose it” (p. 17). Thus, children’s subitizing development and 
experiential unit development may be related.

2.2  Learning Trajectories: Integrating Developmental 
Psychology and Mathematics Education

Research identifying that subitizing is a distinct and central process has important 
ramifications for education. As we have seen, developmental psychology also helps 
us understand the natural paths of children’s learning—invaluable for developing 
curriculum (the term’s origins are a path for racing) and teaching strategies. Before 
we examine a course of development for subitizing relevant to educational practice, 
we briefly describe the theoretical and empirical foundations for our approach to 
learning and teaching.

We synthesized research and theories in developmental psychology and mathe-
matics education from nativist and constructivist perspectives to form a theoretical 
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framework called hierarchic interactionalism (Sarama & Clements, 2009). The 
term indicates the influence and interaction of global and local (domain specific) 
cognitive levels and the interactions of innate competencies, internal resources, and 
experience (e.g., cultural tools and teaching). Mathematical ideas are represented 
intuitively, then with language, then metacognitively, with the last indicating that 
the child possesses an understanding of the topic and can access and operate inten-
tionally on those understandings. The theory has 12 tenets; several are particularly 
pertinent to this chapter (see Sarama & Clements, 2009, for a full discussion).

2.2.1  Selected Tenets of Hierarchic Interactionalism

Developmental Progression Most content knowledge is acquired along develop-
mental progressions of levels of thinking. These play a special role in children’s 
cognition and learning because they are particularly consistent with children’s intui-
tive knowledge and patterns of thinking and learning at various levels of develop-
ment (at least in a particular culture, but guided in all cultures by innate competencies), 
with each level characterized by specific mental objects (e.g., concepts) and actions 
(processes) (e.g., Clements, Wilson, & Sarama, 2004; Steffe & Cobb, 1988). These 
actions-on-objects are children’s main way of operating on, knowing, and learning 
about, the world, including the world of mathematics.

Cyclic Concretization Development progressions often proceed from sensory- 
concrete and implicit levels at which perceptual concrete supports are necessary and 
reasoning is restricted to limited cases (such as small numbers) to more explicit, 
verbally based (or enhanced) generalizations and abstractions that are tenuous to 
integrated-concrete understandings relying on internalized mental representations 
that serve as mental models for operations and abstractions that are increasingly 
sophisticated and powerful. Again, such progressions can cycle within domains and 
contexts.

Different Developmental Courses Different developmental courses are possible 
within those constraints, depending on individual, environmental, and social conflu-
ences (Clements, Battista, & Sarama, 2001; Confrey & Kazak, 2006). At a group 
level, however, these variations are not so wide as to vitiate the theoretical or practi-
cal usefulness of the tenet of developmental progressions. The following tenet is 
closely related.

Environment and Culture Environment and culture affect the pace and direction of 
the developmental courses. Because environment, culture, and education affect 
developmental progressions, there is no single or “ideal” developmental progres-
sion, and thus learning trajectory, for a topic. Universal developmental factors 
 interact with culture and mathematical content, so the number of paths is not unlim-
ited, but, for example, educational innovations may establish new, potentially more 
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advantageous, sequences, serving the goals of equity (Myers, Wilson, Sztajn, & 
Edgington, 2015). A latter section of this chapter deals explicitly with such 
differences.

Progressive Hierarchizing Within and across developmental progressions, children 
gradually make connections between various mathematically relevant concepts and 
procedures, weaving ever more robust understandings that are hierarchical in that 
they employ generalizations while maintaining differentiations. These generaliza-
tions, and the metacognitive abilities that engender them, eventually connect to 
form logical-mathematical structures. Children provided with high-quality educa-
tional experiences build similar structures across a wide variety of mathematical 
topics. For example, subitizing can have important interrelations with counting and 
arithmetic.

Consistency of Developmental Progressions and Instruction Instruction based on 
learning consistent with natural developmental progressions is more effective, effi-
cient, and generative for the child than learning that does not follow these paths.

Learning Trajectories An implication of the tenets to this point is that a particularly 
fruitful instructional approach is based on hypothetical learning trajectories 
(Clements & Sarama, 2004b). Based on the hypothesized, specific, mental construc-
tions (mental actions-on-objects), and patterns of thinking that constitute children’s 
thinking, curriculum developers design instructional tasks that include external 
objects and actions that mirror the hypothesized mathematical activity of children 
as closely as possible. These tasks are sequenced, with each corresponding to a level 
of the developmental progressions, to complete the hypothesized learning trajec-
tory. Specific learning trajectories are the main bridge that connects the “grand 
theory” of hierarchic interactionalism to particular theories and to educational 
practice.

Instantiation of Hypothetical Learning Trajectories Hypothetical learning trajecto-
ries must be interpreted by teachers and are only realized through the social interac-
tion of teachers and children around instructional tasks (e.g., Wickstrom, 2015). 
Societally determined values, goals, and cultures are substantive components of any 
curriculum (Aguirre et al., 2017; Confrey, 1996; Hiebert, 1999; National Research 
Council, 2002; Tyler, 1949); research cannot ignore or determine these components 
(cf. Lester Jr. & Wiliam, 2002).

2.2.2  Hierarchic Interactionalism’s Learning Trajectories

Learning trajectories, then, have three components: a goal (that is, an aspect of a 
mathematical domain children should learn), a developmental progression, or learn-
ing path through which children move through levels of thinking, and instruction 
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that helps them move along that path. Formally, learning trajectories are descrip-
tions of children’s thinking as they learn to achieve specific goals in a mathematical 
domain, and a related, conjectured route through a set of instructional tasks designed 
to engender those mental processes or actions hypothesized to move children 
through a developmental progression of levels of thinking (Clements & Sarama, 
2004b).

Learning trajectories are useful pedagogical, as well as theoretical, constructs 
(Clements & Sarama, 2004a; Simon, 1995; Smith, Wiser, Anderson, & Krajcik, 
2006). Knowledge of developmental progressions—levels of understanding and 
skill, each more sophisticated than the last—is essential for high-quality teaching 
based on understanding both mathematics and children’s thinking and learning. 
Early childhood teachers’ knowledge of young children’s mathematical develop-
ment is related to their children’s achievement (Fuson, Carroll, & Drueck, 2000; 
Kühne, Lombard, & Moodley, 2013; Peterson, Carpenter, & Fennema, 1989; 
Wright, Stanger, Stafford, & Martland, 2006).

2.3  A Developmental Progression for a Subitizing Learning 
Trajectory

2.3.1  Levels of Thinking

Research helps us describe the developmental progression for subitizing. Explicit 
naming of numbers begins early (because the task is not timed—displays are not 
shown and quickly hidden—we call this recognition of number rather than subitiz-
ing). In laboratory settings, children at about 33 months of age can initially name 
numbers that differentiate 1 from collections of more than 1 (Wynn, 1992). Between 
35 and 37 months, they name 1 and 2, but not larger numbers. A few months later, 
at 38–40 months, they identify 3 as well. After about 42 months, they can identify 
all numbers that they can count, 4 and higher, at about the same time. However, 
research in natural, child-initiated settings shows that the development of these abil-
ities can occur much earlier, with children working on 1 and 2 around their second 
birthdays or earlier (Mix, Sandhofer, & Baroody, 2005). Further, some children may 
begin saying “two” rather than “one.” These studies suggest that language and social 
interactions interact with internal factors in development, as well as showing that 
number knowledge develops in levels, over time (see also Gordon, 2004). However, 
most studies suggest that children begin recognizing and saying “one,” then “one” 
and “two,” then “three” and then “four,” whereupon they learn to count and know 
other numbers (see Gelman & Butterworth, 2005, for an opposing view concerning 
the role of language; Le Corre, Van de Walle, Brannon, & Carey, 2006).

Most Kindergartners appear to have good competence recognizing 2 and 3, with 
most recognizing 4 and some recognizing higher numbers (note that different tasks 
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were used, some of which did not limit time, so wide ranges are expected). A recent 
study of low-income children beginning pre-K, using a short-exposure subitizing 
task, report 2–14% accuracy for 3, 0–5% for 4, and virtually no competence with 5, 
8, or 10 (Sarama & Clements, 2011). Thus, children appear to be most confident 
with very small numbers, but those from less advantaged environments may not 
achieve the same skills levels as their more advantaged peers. Some special popula-
tions find subitizing particularly difficult. Only a minority (31%) of children with 
moderate mental handicaps (chronological ages 6–14 years) and a slight majority 
(59%) of children with mild mental handicaps (ages 6–13) successfully subitize sets 
of three and four (Baroody, 1986; see also Butterworth, 2010). Some children with 
learning disabilities could not subitize even at 10 years of age (Koontz & Berch, 
1996). Early deficits in spatial pattern recognition may be the source of difficulty 
(Ashkenazi, Mark-Zigdon, & Henik, 2013). Subitizing in preschool is a better pre-
dictor of later mathematics success for children with ASD (autism spectrum disor-
der) than for typically developing children (Titeca, Roeyers, Josephy, Ceulemans, & 
Desoete, 2014).

2.3.2  Factors Affecting Difficulty of Subitizing Tasks

Several factors (spatial arrangement, physical size of the dots, and color of dots) 
affect subitizing ability. The spatial arrangement of sets, the size of the items, and 
the color of the items influences how difficult they are to subitize. Children usually 
find rectangular arrangements easiest, followed by linear, circular, and scrambled 
arrangements (Beckwith & Restle, 1966; Wang, Resnick, & Boozer, 1971). This is 
true for students from the primary grades to college in most cases. The only change 
across these ages is rectangular arrangements were much faster for the oldest stu-
dents, who could multiply.

Certain arrangements are easier for specific numbers. Arrangements yielding a 
better “fit” for a given number are easier (Brownell, 1928). Further, when items are 
not arranged in rectangular or canonical arrangements, and the items increase in 
their relative size, children and adults have more difficulties subitizing these items 
accurately (Leibovich, Kadhim, & Ansari, 2017). More specifically, children make 
fewer errors for 10 dots than for eight with the “domino five” arrangement, but 
fewer errors for eight dots for the “domino four” arrangement. Of course, these are 
averages; experience with arrangements undoubtedly influences children’s 
performances.

For young children, however, neither of these arrangements is easier for any 
number of dots. Indeed, children 2–4-years-old show no differences between any 
arrangements of four or fewer items (Potter & Levy, 1968). For larger numbers, the 
linear arrangements are easier than rectangular arrangements. It may be that many 
preschool children do not use decomposing (conceptual subitizing). Whelley (2002) 
also found that preschool children’s subitizing is affected by color of the items 
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shown to them. For instance, when children are shown clustered items of differing 
colors, Whelley found the colors should align with the clustering of the group of 
items for effective subitizing to occur (i.e., three items clustered are all red and two 
items clustered are all black). When children are shown different colored items 
where the colors do NOT align with the clustering of the groups (i.e., three items 
clustered have two red and one black item and four items clustered have two red and 
two black items) then their subitizing accuracy decreased. As preschool children’s 
attentional mechanisms mature, they can learn to conceptually subitize where orien-
tations, color of items, and size of items does not affect their subitizing accuracy in 
drastic means (Whelley, 2002) though older research indicated that children as old 
as first grade experienced subitizing limitations of about four or five scrambled 
arrangements (Dawson, 1953).

The spatial arrangement of sets influences how difficult they are to subitize. 
Children usually find rectangular arrangements easiest, followed by linear, circular, 
and scrambled arrangements (Beckwith & Restle, 1966; Wang et al., 1971). If the 
arrangement does not lend itself to grouping, people of any age have more difficulty 
with larger sets (Brownell, 1928). They also take more time with larger sets 
(Beckwith & Restle, 1966).

2.4  Education’s First Concern: Goals for Subitizing

The ideas and skills of subitizing start developing very early, but they, as every other 
area of mathematics, are not just “simple, basic skills.” Subitizing introduces basic 
ideas of cardinality—“how many,” ideas of “more” and “less,” ideas of parts and 
wholes and their relationships, beginning arithmetic, and, in general, ideas of quan-
tity. Developed well, these are related, forming webs of connected ideas that are the 
building blocks of mathematics through elementary, middle, and high school and 
beyond.

Young children may use perceptual subitizing to make units for counting and to 
build their initial ideas of cardinality (Slusser & Sarnecka, 2011). For example, their 
first cardinal meanings for number words may be labels for small sets of subitized 
objects, even if they determined the labels by counting (Fuson, 1992b; Steffe, 
Thompson, & Richards, 1982).

MacDonald and Wilkins (2017) found that one preschool child, Amy, used con-
ceptual subitizing to develop early forms of units for counting. When given a count-
ing task from Steffe and Cobb’s (1988) counting scheme investigation, Amy drew 
from these same units and represented them with finger patterns, suggesting her 
ability to reorganize the patterns she may have relied on in earlier subitizing activity. 
Throughout sessions, Amy engaged in FCS for five and had constructed units “two 
and three” and “two, two, and one” when conceptually subitizing “five.” At the end 
of the study, Amy was given a missing addend task to solve that required her to use 
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“four” and “three.” Essentially, in the task the teacher-researcher made a row of 
seven counters and covered four items in this row. Next, Amy was asked if there are 
“four” here, how many are there altogether? Amy showed with her fingers that she 
could make “three” (using three middle fingers from one hand) and then add “two” 
(using her pinky and thumb) and “two” more (using two fingers on her other hand) 
to discover there were “seven” altogether (MacDonald & Wilkins, 2017). This evi-
dence seems to suggest relationships between early forms of number operations and 
conceptual subitizing activity.

This may be why subitizing predicts overall mathematics competencies of kin-
dergartners (Yun et al., 2011, July). In another study, kindergartners’ subitizing, but 
not the other early number skills, mediated the association between executive func-
tioning and mathematics achievement in primary school (Fuhs, Hornburg, & 
McNeil, 2016). Executive function may help children quickly and accurately iden-
tify number sets as wholes instead of getting distracted by the individuals in the sets, 
and this focus on wholes may help develop advanced mathematics concepts.

As described earlier, counting and subitizing also interact to build arithmetic 
competencies. For example, consider how children progress from counting all to 
more sophisticated counting on strategies in solving arithmetic problems (Fuson 
et al., 2000; Peterson et al., 1989; Wright et al., 2006). As mentioned in discussing 
the types of subitizing, once their movement through the counting and subitizing 
learning trajectories has given them access to the notion that they can count up from 
a given quantity, they can solve 6 + 3 in a new way. They subitize the first addend 
(rather than counting it out one by one), and then count three more, using a subitized 
rhythmic pattern as an intuitive keeping track strategy: “Siiiix… seven, eight, nine!”

As another example, more advanced ability to quickly group and quantify sets in 
turn supports their development of number sense and arithmetic abilities. A first 
grader explains the process for us. Seeing a 3 by 3 pattern of dots, she says “Nine” 
immediately. Asked how she did it, she replies,

When I was about four years old, I was in nursery school. All I had to do was count. And 
so, I just go like 1, 2, 3, 4, 5, 6, 7, 8, 9, and I just knew it by heart and I kept on doing it when 
I was five too. And then I kept knowing 9, you know. Exactly like this [she pointed to the 
array of nine dots]. (Ginsburg, 1977, p. 16)

As we discuss the details of teaching and learning of subitizing, let us not lose the 
whole—the big picture—of children’s mathematical future. Let’s not lose the won-
derment that children so young can think, profoundly, about mathematics.

These foundations are significant beyond the earliest years. Subitizing in grades 
3 and 4 significantly predicts of fluency in calculation and also general mathematics 
achievement a year later (Reigosa-Crespo et  al., 2013). Starkey and McCandliss 
(2014) also found that kindergarten children’s subitizing activity related to their 
“groupitizing” activity (a type of conceptual subitizing) and flexible operations on 
number when enrolled in third grade. Thus, as children develop more abstract means 
for number as a flexible set of units of units, they are capable of operating fluently 
on number more effectively in upper elementary school.
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2.5  Instructional Tasks and Teaching Strategies

Although children are sensitive to quantity, interaction with others is essential to 
learning subitizing; it does not develop “on its own” (Baroody, Li, & Lai, 2008). 
Children who spontaneously focus on number and subitize number are more 
advanced in their number skills (Edens & Potter, 2013). This section describes the 
third part of a learning trajectory: Instructional activities and pedagogical 
strategies.

2.5.1  Developing Children’s ANS System

For developing a sensitivity to quantity, research does suggest that making judg-
ments of the number in sets of all sizes (including number of movements, tones, 
etc.) will help strengthen children’s ANS systems (Libertus, Feigenson, & Halberda, 
2013; Wang, Odic, Halberda, & Feigenson, 2016). These are usually not labeled 
with number words, but rather with vocabulary such as “more” and “fewer” (for 
dots) or “more” and “less.” For the youngest children, intersensory redundancy—
for example, you see a ball bouncing more times, it takes longer, you hear more 
noises—helps focus attention on number (Jordan, Suanda, & Brannon, 2008). 
Studies show these abilities can be developed, such as through special video games 
in which children make similar comparisons (Park, Bermudez, Roberts, & Brannon, 
2016).

2.5.2  Mathematics Education: Supporting the Developmental 
Progression for Subitizing

For subitizing, or naming the exact number in sets, parents, teachers, and other 
caregivers might begin naming very small collections with numbers after children 
have established names and categories for some physical properties such as shape 
and color (Sandhofer & Smith, 1999). This section provides suggestions for helping 
children progress through the developmental progression for subitizing.

Everyday Number Recognition For everyone, but especially teachers of toddlers 
and 3-year olds, perhaps the easiest but most useful “activity” is simply to estab-
lish a habit of using small number words in everyday interactions frequently. They 
can replace, “Clear the cups off the table so we have room for this,” with “We 
need more area on the table for this, would you please take those three cups off the 
table?” There is no need to be “artificial” in this kind of talk, just the use of small 
number words every time it makes sense. Teachers can give parents the same 
advice.

D. H. Clements et al.



35

Fig. 2.4 Children had only seen a single pattern for 5—on the left. When asked to make a pattern 
of 5, some incorrectly produced arrangements like those on the right

 Providing these types of repeated experiences naming collections help children 
build connections between quantity terms (number, how many) and number words, 
then build word-cardinality connections (• • is “two”) and finally build connections 
among the representations of a given number. Non-examples are important, too, to 
clarify the boundaries of the number (Baroody et al., 2006). For instance, “Wow! 
That’s not two horses. That’s three horses!” For children who are less interested and 
competent in mathematics, it is especially important for caregivers and teachers to 
talk to them about number, for example, extending their interest in manipulating 
objects to include mathematical ideas such as number and shape (Edens & Potter, 
2013). Research shows such experiences are helpful, especially for children who 
begin with lower abilities (Olkun & Özdem, 2015).

Practices to Avoid In contrast to these research-based practices, mis-educative 
experiences (Dewey, 1938/1997) may lead children to perceive collections as fig-
ural arrangements that are not exact. Richardson (2004) reported that for years she 
thought her children understood perceptual patterns, such as those on dice. However, 
when she finally asked them to reproduce the patterns, she was amazed that they did 
not use the same number of counters. For example, some drew an “X” with nine 
dots and called it “five” (see Fig. 2.4). Thus, without appropriate tasks and close 
observations, she had not seen that her children did not even accurately imagine 
patterns, and their patterns were certainly not numerical. Such insights are impor-
tant in understanding and promoting children’s mathematical thinking.

Textbooks and “math books” often present sets that discourage subitizing. Their 
pictures combine many inhibiting factors, including complex embedding, different 
units with poor form lack of symmetry, and irregular arrangements (Carper, 1942; 
Dawson, 1953). For example, they may show five birds, but have different types of 
birds spread out on a tree, with branches, leaves, flowers, a sun shining overhead—
you get the idea. Such complexity hinders conceptual subitizing, increases errors, 
and encourages simple one-by-one counting.

Due to their curriculum, or perhaps a lack of training in subitizing, teachers may 
not pay proper attention to subitizing. For example, one study showed that children 
regressed in subitizing from the beginning to the end of kindergarten (Wright, 

2 Subitizing: The Neglected Quantifier



36

Stanger, Cowper, & Dyson, 1996). How could that be? The following type of inter-
action might help explain. A child rolls a die and says “five.” Looking on, the teacher 
says, “Count them!” The child counts them by ones. What has happened? The 
teacher thought her job was to teach counting. But the child was using subitizing—
which is more appropriate and better in this situation. However, the teacher is unin-
tentionally telling the child that her way is not good, that one must always count. 
Further, always telling children to count may actually hurt their development of 
counting and number sense. Naming small groups with numbers, before counting, 
helps children understand number words and their cardinal meaning (“how many”) 
without having to shift between ordinal (counting items in order) and cardinal uses 
of number words inherent in counting (Baroody et al., 2005). These can be used to 
help infuse early counting with meaning.

Specific Subitizing Activities Many number activities can promote perceptual, and 
then conceptual subitizing (Sayers, Andrews, & Boistrup, 2016). Perhaps the most 
direct activity simply challenging children to subitize, an activity called “Quickdraw” 
(Wheatley, 1996), “Snapshots” (Clements & Sarama, 1998, 2007), and “Draw what 
you see” (MacDonald & Wilkins, 2016). As an example, children are told that they 
have to quickly take a “snapshot” of how many they see—their minds have to take 
a “fast picture.” They are shown a collection of counters for 2 s only, then asked to 
construct, draw, or say the number. Consistent with research, arrangements may be 
straight lines of objects, then rectangular shapes, and then dice arrangements, all 
with small numbers. Separating these typical dice arrangements with a large space 
promotes children’s attention to subgroups for Perceptual Subgroup Subitizing 
(MacDonald & Wilkins, 2016). As children learn, they use different arrangements 
and larger numbers. See the Box, Variations of the “Snapshots” Activity, for many 
engaging modifications.

Variations of the “Snapshots” Activity
• Have children construct a quick image arrangement with manipulatives 

(and watch for any misconceptions such as shown in Fig. 2.4).
• Play Snapshots on educational technology platforms (e.g., www.learning-

trajectories.org/activity/subitize-planets-perceptual-subitizer-4).
• Play finger-placement game on computer. In Fingu, pieces of fruit are 

shown briefly and the child has to place that many fingers on the screen 
with one or two hands (Barendregt, LindstrÖm, Rietz-Leppänen, 
Holgersson, & Ottosson, 2012).

• Play a matching game. Show several cards, all but one of which have the 
same number. Ask children which does not belong (this also teaches early 
classification).

• Play concentration-type matching games (we call them “memory” games) 
with cards that have different arrangements for each number and a rule that 
you can only “peek” for 2 s.

• Give each child cards with 0–10 dots in different arrangements. Have chil-
dren spread the cards in front of them. Then announce a number. Children 
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Fig. 2.5 Arrangements for conceptual subitizing that may suggest 5 as 5, 3 + 2, 2 + 1 + 2, 
or 1 + 4 (or other interpretations)

find the matching card as fast as possible and hold it up. Have them use 
different sets of cards, with different arrangements, on different days. 
Later, hold up a written numeral as their cue. Adapt other card games for 
use with these card sets.

• Emphasize conceptual subitizing as soon as possible. Use different 
arrangements that suggest different partitions of a number (see Fig. 2.5).

• Place various arrangements of dots on a large sheet of poster board. With 
children gathered around you, point to one of the groups as children say its 
number as fast as possible. Rotate the poster board on different sessions.

• Challenge children to say the number that is one (later, two) more than the 
number on the quick image. They might also respond by showing a numeral 
card or writing the numeral. Or, they can find the arrangement that matches 
the numeral you show.

• Remember that patterns can also be temporal and kinesthetic, including 
rhythmic and spatial-auditory patterns. A motivating subitizing and 
numeral writing activity involves auditory rhythms. Scatter children 
around the room on the floor with individual chalkboards. Walk around the 
room, then stop and make a number of sounds, such as ringing three times. 
Children should write the numeral 3 (or hold up three fingers) on their 
chalkboards and hold it up. These can also develop conceptual subitizing.

Across many types of activities, from class discussions to textbooks, children can 
be shown displays of numbers that encourage conceptual subitizing. Guidelines to 
make groups for this purpose include the following: (a) avoid embedding groups 
in pictorial context; (b) use simple forms such as homogeneous groups of circles 
or squares (rather than pictures of animals or mixtures or any shapes) for the units; 
(c) emphasize regular arrangements (most including symmetry, with linear 
arrangements for preschoolers and rectangular arrangements for older children 
being easiest); and (d) provide good figure-ground contrast.

To develop strong conceptual subitizing, children should experience many real- 
life situations such as finger patterns, arrangements on dice and dominoes, egg car-
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tons (for “double-structures”), and arrays that separate two subgroups. To extend 
conceptual subitizing, teachers might discuss and especially cooperatively build 
arrangements to “make it easy to see how many.” Such thoughtful, interactive, con-
structive experiences are effective ways of building spatial sense and connect it to 
number sense (Nes, 2009). For example, children might draw flowers with a given 
number of petals or draw or build pictures with manipulatives of houses with a cer-
tain number of windows so that they and others can subitize the number.

Such conceptual subitizing provides a direct phenomenological experience with 
additive situations, as children conceptualize two parts and the whole. Having both 
parts and whole in working memory builds a foundation for “knowing addition 
facts.” Indeed, this is arguably better than emphasizing only counting-based solu-
tions. Consider children using the initial “counting all” strategy for 3 + 2: counting 
out 3 objects, then counting out 2 objects, then starting over at “one” and counting 
all 5. The children answer correctly, but it is likely that only the 5 is retained in 
working memory. In comparison, the two addends may not be, and so it is unlikely 
that a connection is made between the addends and the sum. In subitizing, the 
addends and the same are retained in working memory in the same time period.

Subitizing is not only a separate complement to counting-based approaches to 
arithmetic but a valuable process to integrate with counting. That is, children can use 
subitizing in concert with counting to advance to more sophisticated addition and 
subtraction. As one example, children who are encouraged to subitize 3 in the previ-
ous example may move from counting all to early counting on, recognizing the set of 
3, and counting only, “4, 5!”. As another example, a child may be unable to count on 
keeping track, as in solving 4 + 5 by counting “4…5 is 1 more, 6 is 2 more…9 is 5 
more.” However, counting on two using rhythmic subitizing—for 5  +  2, saying 
“five…six, seven!” matching the counting to a “tah-dum” beat of two—gives them a 
way to figure out how counting on work. Later they can learn to count on with larger 
numbers, by developing their conceptual subitizing or by learning different ways of 
“keeping track.” Eventually, children come to recognize number patterns as both a 
whole (as a unit itself) and a composite of parts (individual units).

2.6  Final Words

Across development, numerical knowledge initially develops qualitatively and 
becomes increasingly mathematical. In subitizing, children’s ability to “see small 
collections” grows from pre-attentive but quantitative, to attentive perceptual subi-
tizing, to imagery-based subitizing, and to conceptual  subitizing (Clements, 1999; 
Steffe, 1992). Perceptual patterns are those the child can, and must, immediately see 
or hear, such as domino patterns, finger patterns, or auditory patterns (e.g., three 
beats). A significant advance is a child’s focus on the exact number in these patterns, 
attending to the cardinality. Finally, children develop conceptual patterns, which 
they can operate on, as and when they can mentally decompose a five pattern into 2 
and 3 and then put them back together to make five again. These types of patterns 
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may “look the same” on the surface, but are qualitatively different. All can support 
mathematical growth and thinking, but conceptual patterns are the most powerful.

Subitizing small numbers appears to precede and support the development of 
counting ability (Le Corre et al., 2006). Thus, it appears to form a foundation for all 
learning of numbers. Indeed, a language-independent ability to judge numerical 
values nonverbally appears to be an important evolutionary precursor to adult sym-
bolic numerical abilities. Children can use subitizing to discover critical properties 
of number, such as conservation and compensation. They can build on subitizing to 
develop capabilities such as unitizing as well as arithmetic capabilities. Thus, subi-
tizing is a critical competence in children’s number development.
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