
Research in Mathematics Education
Series Editors: Jinfa Cai · James A. Middleton

Anderson Norton
Martha W. Alibali    Editors 

Constructing 
Number
Merging Perspectives from Psychology 
and Mathematics Education



Research in Mathematics Education

Series Editor:

Jinfa Cai
Newark, DE, USA
James A. Middleton
Tempe, AZ, USA



This series is designed to produce thematic volumes, allowing researchers to access 
numerous studies on a theme in a single, peer-reviewed source. Our intent for this 
series is to publish the latest research in the field in a timely fashion. This design is 
particularly geared toward highlighting the work of promising graduate students 
and junior faculty working in conjunction with senior scholars. The audience for 
this monograph series consists of those in the intersection between researchers and 
mathematics education leaders—people who need the highest quality research, 
methodological rigor, and potentially transformative implications ready at hand to 
help them make decisions regarding the improvement of teaching, learning, policy, 
and practice. With this vision, our mission of this book series is:

 1. To support the sharing of critical research findings among members of the math-
ematics education community;

 2. To support graduate students and junior faculty and induct them into the research 
community by pairing them with senior faculty in the production of the highest 
quality peer-reviewed research papers; and

 3. To support the usefulness and widespread adoption of research-based 
innovation.

More information about this series at http://www.springer.com/series/13030

http://www.springer.com/series/13030


Anderson Norton • Martha W. Alibali
Editors

Constructing Number
Merging Perspectives from Psychology and 
Mathematics Education



Editors
Anderson Norton
Department of Mathematics
Virginia Tech
Blacksburg, VA, USA

Martha W. Alibali
Department of Psychology
University of Wisconsin–Madison
Madison, WI, USA

ISSN 2570-4729     ISSN 2570-4737 (electronic)
Research in Mathematics Education
ISBN 978-3-030-00490-3    ISBN 978-3-030-00491-0 (eBook)
https://doi.org/10.1007/978-3-030-00491-0

Library of Congress Control Number: 2018961408

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-00491-0


v

Foreword

As the editors of this series, we both consider ourselves mathematics education 
researchers, but we have had significant training in cognitive psychology. Jinfa Cai 
majored in Cognitive Studies in Mathematics Education and served as a research 
assistant at the University of Pittsburgh’s Learning Research and Development 
Center for 5 years. Jim Middleton is an educational psychologist whose doctoral 
work at the University of Wisconsin was focused at the interface between applied 
cognitive science and mathematics learning. For the past 25 years, our research has 
focused on cognitive studies in mathematics education: On learning mathematics 
and on designing curriculum, pedagogical strategies, and technology that supports 
learning mathematics. In our experiences over the years, we find it interesting (and 
a bit disappointing) that mathematics educators and cognitive psychologists—two 
groups of researchers interested in many of the same issues related to mathematics 
learning and teaching—have collaborated and interacted very little on the grand 
scale. It is true that their research on mathematics learning and teaching is typically 
conducted from different angles—each representing a different perspective on a 
common problem—but our experiences have shown us that these perspectives are 
complementary, not conflicting.

Because we both benefitted greatly from our interdisciplinary training, we have 
long worked to facilitate common dialogue in our respective research circles, at the 
National Science Foundation, and in our roles as leaders in mathematics education 
research, where such dialogue has been deep and genuine, mathematics education 
research has advanced both theoretically and pragmatically in ways that reflect the 
strengths of the two perspectives. Moreover, new theory and new approaches to 
teaching and learning have resulted from working in the interstices of our communi-
ties. This book is a product of such an effort. It critically examines research on the 
learning of number that combines cognitive, developmental psychology and math-
ematics education approaches. This is a sister book to a previous volume in this 
series on spatial visualization in mathematics (edited by Mix and Battista, 2019). 
Both volumes use the device of scholars reporting their own work, followed by criti-
cal commentary written by colleagues with complementary expertise.
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In doing so, the editors of this book are developing mathematical epistemology, 
asking us, “what does it mean to learn, know, and understand mathematics?” The 
argument begins with mathematics itself—what it is as a field of knowledge and 
practice—and flows from neuropsychological foundations, through perception, 
through construction of number to the broadening of understanding that addresses 
the fields of rational and negative numbers. Thus, the book grounds learners’ con-
struction and conceptual development in fundamental understanding of learning 
processes, yet also reflects the important content which has puzzled students and 
researchers alike for centuries.

Finally, as series editors, we wish to thank the editors for this volume on numbers 
(Norton and Alibali) and the sister volume on spatial visualization (Mix and 
Battista), as well as authors for the quality of the chapters and commentaries they 
have provided.

Jinfa Cai
University of Delaware
Newark, DE, USA

James A. Middleton
Arizona State University
Tempe, AZ, USA

Foreword
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Preface

This book synergizes research across two disciplines—mathematics education and 
psychology—to address how children construct number. The opening chapter 
frames the problem in terms of children’s activity, including mental and physical 
actions. Subsequent chapters are organized into sections that address specific 
domains of number: natural numbers, fractions, and integers. Chapters within each 
section address ways that children build upon biologically based foundational abili-
ties (e.g., subitizing, the approximate number system) and prior constructs (e.g., 
counting sequences) to construct number. The chapters address a range of change 
mechanisms (e.g., reflective abstraction, analogy), a range of social contexts (e.g., 
informal interactions, formal educational settings), and a range of tools (e.g., cur-
ricular materials, technological tools). The book relies on co-authored chapters and 
commentaries at the end of each section to create dialogue among scholars from 
different disciplines. The final chapter brings this collective work together around 
the theme of children’s activity and also considers additional themes that arise 
within the chapters.

We hope that this book will foster additional dialogue between psychologists and 
mathematics educators. As the chapters in the book demonstrate, mathematics edu-
cators can benefit from a better understanding of psychological constructs that they 
might leverage to support students’ mathematical development. Conversely, psy-
chologists can benefit from a better understanding of ways that students’ activity 
supports that development.

Blacksburg, VA, USA Anderson Norton 
Madison, WI, USA  Martha W. Alibali 
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Chapter 1
Mathematics in Action

Anderson Norton and Martha W. Alibali

Abstract This opening chapter provides an introduction to the book. It also intro-
duces a theme that integrates many of the contributions from the remaining chap-
ters: we adopt Kant’s perspective for merging rationalist and empiricist philosophies 
on the construction of knowledge. In particular, we focus attention on ways that 
biologically based abilities and experience in the world (coordinations of senso-
rimotor activity) each contribute to the construction of number. Additional themes 
arise within the content chapters and the commentaries on them.

Keywords Embodied cognition · Epistemology · Numerical development · 
Radical constructivism · Sensorimotor activity

What is mathematics, and how do humans come to know it? Once the domain of 
philosophy, the epistemology of mathematics now falls squarely within the purview 
of psychology and mathematics education. In this book, we address the cognitive 
roots of number, integrating theory and findings from both fields, along with strands 
from neuroscience. In focusing on number, we take on a relatively simple problem 
within the epistemology of mathematics. However, we find great complexity in chil-
dren’s construction of number, and tracing the complex roots of number illustrates 
the cognitive construction of mathematics in general.

The book contains three parts: one for whole (natural) numbers, one for frac-
tions, and one for integers. Within each part, we draw upon the authors’ collective 
expertise in mathematics education, cognitive and developmental psychology, and 
neuroscience. Their work elucidates the biological and experiential bases of number 
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and its development. With whole numbers, biological bases include subitizing (dis-
cerning small collections of perceptually distinct items, the subject of Chap. 2). 
Critical experiences include the coordination of various mental actions, like unitiz-
ing (forming units within or from collections of items), which give rise to number 
sequences (the subject of Chap. 3).

With fractions, number becomes more complicated because each fraction is for-
mally represented by a pair of whole numbers. As demonstrated by the chapters in 
the fractions part, some researchers have found evidence of whole number knowl-
edge interfering with fractions knowledge (Chap. 7), while others see fractions 
knowledge as a reorganization of whole number knowledge (Chap. 8), and still 
others identify possible psychological roots for fractions independent of whole 
numbers (Chap. 10). Integers introduce additional complications with the inclusion 
of negative numbers (Chaps. 12–15).

In this opening chapter, we frame the book by considering the historical roots of 
mathematical epistemology. We also consider ways that recent contributions from 
psychology and mathematics education have begun to solve philosophical prob-
lems. In particular, we focus on the role of sensorimotor activity in constructing 
mathematical objects, such as number. We then preview how each chapter contrib-
utes to an action-based epistemology of mathematics in the context of constructing 
number.

1.1  The Nature of Mathematics

Mathematics constitutes a unique form of knowledge. “Mathematics, rightly 
viewed, possesses not only truth, but supreme beauty” (Bertrand Russell, as cited in 
Wigner, 1960). Mathematicians throughout history have praised the divinity of 
mathematics. Galileo went so far as to declare mathematics the language in which 
the universe is written (as cited in Drake, 1957). How else can we explain the unrea-
sonable effectiveness of mathematics in the world, from counting sheep to predict-
ing eclipses?

So basic are numbers that a famous mathematician once said, “God made the integers, man 
did the rest” (Kronecker, 1634). The integers seem to us to be so fundamental that we 
expect to find them wherever we find intelligent life in the universe. I have tried, with little 
success, to get some of my friends to understand my amazement that the abstraction of 
integers for counting is both possible and useful. Is it not remarkable that 6 sheep plus 7 
sheep make 13 sheep; that 6 stones plus 7 stones make 13 stones? Is it not a miracle that the 
universe is so constructed that such a simple abstraction as a number is possible? To me this 
is one of the strongest examples of the unreasonable effectiveness of mathematics. Indeed, 
I find it both strange and unexplainable. (Hamming, 1980, p. 84)

For centuries, the apparent truth and universal applicability of mathematics has 
presented a dilemma for Western philosophers. If mathematics is the language of 
God, or is otherwise written into fabric of the universe, how can we, as humans, ever 
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acquire it? Rationalists (e.g., Descartes, 1628) respond that our intuitions, or other 
innate cognitive abilities, provide a basis for the logical deduction of mathematical 
truths. Empiricists (e.g., Locke, 1690) argue that our sensorimotor experiences 
 provide that basis. Although remnants of these competing philosophies live on 
today in frameworks applied to study the construction of number, when we look 
across research from psychology and mathematics education, we can begin to settle 
much of the philosophical debate.

Kant (1934) was the first to break the impasse between rationalism and empiri-
cism (Palmer, 2008). His Critique of Pure Reason admitted both innate cognitive 
structures and the role of experience in constructing new structures. In Kant’s phi-
losophy, humans assimilate experience into existing structures, beginning with 
innate concepts, such as time, space, causality, and quantity. Assimilation of experi-
ence into these innate structures explains the inevitability of mathematics in the 
world. Why should Galileo, Kronecker, or Hamming be surprised by the ubiquity of 
mathematical structure in the universe they experience when they are the ones doing 
the structuring?

Building on Kant’s philosophy, Piaget was able to psychologically deconstruct 
time (Piaget, 1969), space (Piaget & Inhelder, 1967), causality (Piaget, 1974), and 
number (Piaget & Szeminska, 1952) into more primitive and general intuitions, 
such as internal regulations and groupings. As such, Piaget moved the epistemologi-
cal investigation from the realm of philosophy to that of psychology. Since then, 
psychologists have identified particular psychological constructs that might under-
gird the construction of space and number. Many of these constructs are subjects of 
chapters in this book: subitizing (Chap. 2), the approximate number system (Chap. 
3), and the ratio processing system (Chap. 10).

At the same time, mathematics education researchers have identified particular 
kinds of experiences that support the construction of new mathematical structures. 
They have emphasized the role of social interaction and the use of manipulatives in 
learning new concepts. For example, Simon (Chap. 9) illustrates a student’s guided 
reinvention of fraction multiplication through interaction with a teacher mediated 
by tasks in a virtual manipulative environment. Note that our use of the term “guided 
reinvention” stands in recognition of the fact that mathematicians had invented frac-
tion multiplication millennia before, but that the student’s mathematics was never-
theless salient and foregrounded as a personal invention—not simply a 
conceptualization of mathematics that was already “out there.”

While psychologists have leaned toward a rationalist perspective—relying on 
biologically based systems to explain mathematical development—mathematics 
educators have tended to adopt an empiricist perspective, focusing on experiences 
that lead to learning, especially in the classroom. Taking our cue from Kant’s merged 
philosophy, we hope that mathematics educators will find ways to leverage the bio-
logical bases of number and that psychologists will investigate students’ mathemati-
cal constructions as mathematics. For instance, in Chap. 2, Clements, Sarama, and 
MacDonald seek to accomplish the former by investigating ways that educators can 
take advantage of subitizing to support students’ constructions of natural numbers.
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1.2  Mathematical Actions

Sensorimotor experience plays a central role in several prominent theories in math-
ematics education research, including embodied cognition and radical constructiv-
ism. Likewise, psychologists generally recognize the control of sensorimotor 
activity as a primary purpose of cognition. Some have gone so far as to argue that 
“the brain evolved for the purpose of controlling action” (Koziol, Budding, & 
Chidekel, 2012, p. 505). We view sensorimotor activity as a meeting point for math-
ematics educators and psychologists, and as the psychological basis for mathemati-
cal objects, including number.

When considering neurological evidence of a connection between sensorimotor 
experience and mathematical development, particularly profound examples pertain 
to the hand. In a study of 5-year-old and fourth-grade children, Crollen and Noël 
(2015) found that unrelated hand movements interfered more than foot movements 
with counting and calculation. Several other studies demonstrate strong relation-
ships between finger gnosis (spatial recognition of one’s fingers) and mathematical 
development (e.g., Noël, 2005). Some studies even suggest a causal relationship 
between finger use and mathematical development (e.g., Kaufmann, 2008; Soylu, 
Lester, & Newman, 2018). Moreover, neuroimaging studies increasingly implicate 
a dual role of the intraparietal sulcus in mathematical development and hand-eye 
coordination—especially tool use (Penner-Wilger & Andrson, 2013).

Whether fingers, pencils, or manipulatives, tools are critical to mathematics edu-
cation. From a Piagetian perspective, the actions performed with tools form the 
basis for constructing new mathematical objects because mathematical objects are 
coordinations of actions (Piaget, 1970). Similarly, proponents of embodied cogni-
tion argue that many concepts are embodied in sensorimotor experience, either via 
the body alone or via the body in interaction with external tools (Gallese & Lakoff, 
2005). Research in embodied cognition has begun to make the link between senso-
rimotor action and mathematical concepts explicit.

One source of evidence for the embodied nature of mathematical thinking is the 
gestures that people produce when they reason and speak about mathematical ideas 
(see Alibali & Nathan, 2012). Research suggests that children often express math-
ematical ideas in gestures before they can express them in words (e.g., Church & 
Goldin-Meadow, 1986; Perry, Church, & Goldin-Meadow, 1988). Gestures are 
thought to manifest the simulated actions and perceptual states that are involved in 
reasoning and speaking (Hostetter & Alibali, 2008). From this perspective, the data 
on gesturing and mathematical reasoning imply that perception and action may be 
key sources of mathematical ideas—a view that aligns well with the Piagetian per-
spective on knowledge construction.

If the brain has evolved for controlling action, we should expect to find various 
biological systems, shared across species, that support the coordination of senso-
rimotor activity. Indeed, we do (Dominici et al., 2011; Flash & Hochner, 2005). If 
mathematics is a human construction, we should expect reflections upon—and 
abstractions from—coordinated sensorimotor activity to yield new mathematical 
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concepts. Indeed, they do (Simon, Tzur, Heinz, & Kinzel, 2004; von Glasersfeld, 
1987). Thus, sensorimotor activity might offer a productive meeting point between 
rationalism and empiricism, between biologically based systems and mathematical 
constructions, and between research from psychological and mathematics educa-
tional perspectives. The chapters in this volume begin to work at this meeting point 
by answering the following questions: What role do biologically based abilities play 
in assimilating mathematical experience, and what kinds of sensorimotor activity 
(and coordinations thereof) support mathematical development?

1.3  A Preview of the Construction of Number

As adults, natural numbers seem so intuitive and universal that we struggle to under-
stand children’s constructions of them. We might hold up five fingers to a child and 
say, “See, that’s five,” as if numbers were out there in the world to be taken in; as if 
anyone could see them.1 The unreasonable effectiveness of mathematics buttresses 
such Platonist views of mathematics: that mathematics is “out there.” The chapters 
in this book help explain the miracle of mathematics in terms of what is “in there”—
in the minds of children—beginning with the construction of number. These chap-
ters illustrate ways that the construction of number relies on both biologically based 
systems and sensorimotor experience and also illustrate how the construction of 
number structures the worlds we experience. Here, we introduce the chapters and 
frame them in terms of sensorimotor activity—the basis for mathematical 
construction.

As we have noted, Chap. 2 investigates ways that educators might leverage subi-
tizing to promote the construction of number. Clements, Sarama, and MacDonald 
define subitizing as the “direct perceptual apprehension and identification of the 
numerosity of a small group of items.” They describe this potentially innate ability 
as a sensitivity to number, but subitizing itself does not produce number. Rather, in 
its earliest form, it involves a network of pre-attentive, sensorimotor activity. The 
authors describe a prolonged process through which children progress toward num-
ber, as they begin to apply mental actions to perceptual material. Whereas subitizing 
individuates items in the perceptual field, the mental action of unitizing, applied to 
these individual items, overlooks their perceptual differences so that children can 
count them as identical units: “Some believe that recognition of patterns of move-
ment… is the underlying non-numerical process that is then linked to specific 
numerosities… [number] occurs when the child abstracts the mental actions from 
the sensorimotor contexts and is capable of reflecting on these actions.” As such, we 
find sensorimotor activity at the intersection of biologically based abilities, such as 
subitizing, and the construction of mathematical objects, such as whole numbers.

In Chap. 3, Ulrich and Norton focus on another meeting point in early number 
knowledge: between the approximate number system (ANS) and the onset of 

1 Thanks to Martin Simon for sharing this example.
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 counting. As a pre-linguistic construct for comparing collections of items, ANS 
provides for an early-developing (or potentially innate) sense of quantity, called 
gross quantity, that does not involve counting. However, gross quantity does not 
simply map onto the number names that children learn. The construction of number 
follows a progression of development abstracted from children’s activity, including 
unitizing. Unitizing is critical to constructing numbers as exact measures because it 
provides the unit by which to measure. Ulrich and Norton argue that over-attribution 
of number to children (and animals) often causes psychologists to overlook such 
development. In particular, attributions often conflate number with magnitude or 
gross quantity. Nevertheless, mathematics educators can leverage psychological 
constructs like ANS to support that development.

In Chap. 4, McMullen, Chan, Mazzocco, and Hannula-Sormunen examine 
research on children’s tendencies to project their mathematical knowledge on every-
day experience. As they have argued, “spontaneous focusing on numerosity (SFON) 
and quantitative relations (SFOR) have been implicated as key components of math-
ematical development.” Specifically, these authors report reciprocal relationships 
between measures of children’s SFON and their knowledge of whole numbers, as 
well as between measures of SFOR and rational number knowledge. Path analyses 
indicate that SFON and SFOR predict later mathematical development, and they 
indicate even stronger predictive relationships in the other direction. This latter find-
ing reinforces our claim that numbers do not exist in the world to be noticed or taken 
in but, rather, number is a construction that we can use to organize the worlds we 
experience. In further alignment with the framework, the authors suggest that SFON 
and SFOR can be strengthened by engaging students in embodied (sensorimotor) 
activities.

Mix, Smith, and Crespo conceptualize the learning of place value as a problem 
of relational learning. In Chap. 5, they describe two well-studied classes of psycho-
logical learning mechanisms that could support such relational learning: statistical 
learning and structure mapping. They then use this framework as a lens for analyz-
ing specific instructional techniques and curricular materials that are widely used 
for teaching place value. Structure mapping involves identifying elements and rela-
tions and placing them in alignment, while statistical learning involves attending to 
statistical regularities in the material and using those regularities to focus attention 
for subsequent learning. Both processes are thought to occur automatically, without 
requiring explicit intervention or feedback; however, in both processes, learners’ 
active role in engaging with the to-be-mapped relations is critical. Teachers and cur-
riculum designers can create opportunities for students to apply these learning 
mechanisms by designing examples and activities that ensure sufficient opportuni-
ties to encounter basic structures, by using language and curricular materials that 
make critical elements of to-be-learned material particularly salient, and by using 
instructional practices that involve comparing instances and aligning elements and 
relations. Although statistical learning and structure mapping differ in the nature of 
learners’ activity, both occur automatically when learners actively engage with rel-
evant material.
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In Chap. 7, Obersteiner, Dresner, Bieck, and Moeller focus on the challenges 
students face in making the transition from reasoning about natural numbers to rea-
soning about fractions. One persistent challenge is the tendency to overextend rea-
soning processes for natural numbers to fractions—termed the “natural number 
bias.” When fraction problems are congruent with natural number reasoning, these 
reasoning processes yield efficient and accurate performance; however, when frac-
tion problems are incongruent with natural number reasoning, they yield slower 
responses and errors. From this perspective, the natural number bias arises from the 
application of action patterns appropriate for natural numbers to the components of 
symbolic fractions. For example, in adding fractions, learners sometimes err by 
adding numerators to yield a numerator and adding denominators to yield a denomi-
nator (i.e., a/b + c/d = (a + c)/(b + d))—an overextension of the action pattern for 
natural number addition. Obersteiner and colleagues argue that learners may need 
to inhibit automatically activated natural number knowledge to reason appropriately 
about fractions. They describe instructional practices that prompt students to “stop 
and think” and to explicitly consider ways in which fraction concepts and proce-
dures do and do not align with concepts and procedures for natural numbers.

In response to the natural number bias (or interference) hypothesis, in Chap. 8, 
Tzur presents a reorganization hypothesis. This reorganization hypothesis posits 
that children construct fractions as numbers by reorganizing the mental actions that 
undergird their whole number knowledge (actions like unitizing, mentioned previ-
ously). Tzur explains this reorganization as a process of reflecting on activity-effect 
relationships, and he describes how teachers can support this process. He also pres-
ents findings from an fMRI study that indicate neural correlates for solving whole 
number and fraction comparison tasks. Taken together, the findings highlight the 
importance of activity by demonstrating how coordinated actions might engender 
new mathematical structures.

In Chap. 9, Simon presents a similar process of reorganization, but one based on 
both cognitive and sociocultural perspectives on activity. Simon introduces learning 
through activity as a framework for intentionally supporting students’ constructions 
of mathematics. This framework integrates Piaget’s theory of reflective abstraction 
with Russian activity theory. The chapter describes how teachers can support stu-
dents’ construction of a concept of multiplication that generalizes across whole 
numbers and fractions. Whereas concept formation is framed cognitively, as reorga-
nization of the student’s activity, the support is framed socio-culturally, as the 
teacher guides the student’s activity through a sequence of tasks.

Adding to subitizing (the subject of Chap. 2) and the ANS (discussed in Chap. 
3), Matthews and Ziols (Chap. 10) introduce another biologically based system that 
educators might leverage in supporting students’ construction of number. The ratio 
processing system (RPS) is analogous to the ANS, but applies to relative compari-
sons of continuous quantities, as well as discrete collections. Matthews and Ziols 
focus on the perceptual foundations of children’s developing concepts of fractions. 
As such, they argue that rational numbers are no less “natural” than natural num-
bers. However, just as exact measurements with natural numbers rely on the mental 
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action of unitizing, precisely enumerating ratios from the RPS may require mental 
actions such as partitioning.

Bofferding (Chap. 12) characterizes the development of integer concepts as a 
process of conceptual change. From this perspective, children start with an initial 
mental model of whole numbers, and they apply this model to negative numbers, 
neglecting information that does not fit the model. Given experiences with negative 
numbers, children attempt to integrate new information, and this process yields a 
hybrid or synthetic model that contains both elements of their initial, whole- number- 
based model and elements of a more formal model. This synthetic model is unstable 
and “messy,” so it is subject to continued reorganization and integration. With addi-
tional experience, children continue to reorganize their mental models, eventually 
reaching a formal model that reflects culturally accepted ways of conceiving and 
using negative numbers. In this process, experiences with negative numbers—in 
particular, activities that provoke reorganization—are critical, as such activities pro-
vide “raw materials,” highlight inconsistencies, and trigger efforts to integrate and 
reorganize. Bofferding presents evidence that this process of conceptual change for 
integers takes places over a set of interrelated concepts, including numerical order, 
numerical values, addition and subtraction operations, and the interpretation of the 
minus sign. From this view, activities and experiences with a range of concepts are 
relevant to understanding the construction of the integers.

In Chap. 13, Enzinger argues that teachers need to support students’ understand-
ing of integers as directed numbers, but that it is futile to seek a perfect instructional 
model for doing so. Rather, she argues that educators need to provide students with 
opportunities to construct concepts of relativity (i.e., numbers as distances from an 
arbitrary referent, 0) and translation (i.e., moving from one number to another) from 
which students can build their own models of integers as directed numbers. Such 
constructions and models require reflection on students’ own activity, including 
their embodied movement.

Varma, Blair, and Schwartz (Chap. 14) argue that one critical foundation for 
understanding integers is the additive inverse law, which holds that, for any integer 
x, there is an integer −x such that x +  (−x) = 0. They further propose that basic 
perceptual-motor mechanisms involved in processing visual symmetry can be 
recruited for processing numerical symmetry (i.e., the symmetry of x and −x). In 
their view, by integrating basic knowledge of magnitude and symmetry, the mental 
number line is transformed into a number line that is reflected around 0. They argue 
further that this integration can be accelerated via opportunities to practice applying 
the additive inverse law. Thus, in their view, integer understanding has a perceptual 
foundation in visual symmetry processing, and it can be supported by opportunities 
for appropriate action, specifically, actions that support applying symmetrical rea-
soning to magnitude representations. This perspective makes predictions about per-
formance on a range of behavioral tasks involving integers, and it suggests that 
instruction that focuses on symmetry should be particularly effective at promoting 
integer understanding.

In addition to the chapters described so far, we invited three commentaries, one 
for each part. Collectively, the three commentaries complement the theme of 
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 constructing number from biologically based systems through the coordination of 
sensorimotor activity, while also introducing new themes. Bert de Smedt—associ-
ate professor of educational neuroscience at the University of Leuven (Belgium)—
wrote the commentary for the part on natural numbers (Chap. 6). His commentary 
lends weight from emerging neuroimaging studies to inform our knowledge of how 
students construct number. Sybilla Beckman—professor of mathematics at the 
University of Georgia—wrote the commentary on fractions (Chap. 11). She applies 
her expertise in elementary mathematics teacher education to compare and contrast 
the four fractions chapters while considering ways that teachers might support stu-
dents’ constructions of fractions as measures. Guershon Harel is professor of math-
ematics at the University of California, San Diego. His commentary on integers 
(Chap. 15) elaborates on the role of formal structures in mathematical 
development.

1.4  Closing Remarks in Opening the Book

Like integers and fractions, natural numbers, too, are abstract. Although biologi-
cally based systems, such as subitizing and the ANS, may give children a head start, 
numbers do not exist in the world until we learn to act in the world. Thus, the con-
struction of number relies, at least in part, on our own actions, such as unitizing, and 
their coordination. The chapters in Part I provide some indication for how whole 
numbers arise and how we use them to structure the worlds we experience. The 
chapters in Parts II and III demonstrate additional complexities in constructing frac-
tions and integers, respectively.

We have framed the book within a Kantian perspective on ways that children and 
their teachers might leverage biological foundations to construct mathematical 
objects through particular kinds of sensorimotor and mental experiences. This per-
spective stands in stark contrast with Platonism, which takes mathematical objects, 
like number, for granted. It also introduces possibilities for collaborative research in 
psychology and mathematics education. Some of these possibilities are evident 
within the content chapters. In the concluding chapter, we highlight additional 
themes that arise from those chapters and the three commentaries on them.
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Chapter 2
Subitizing: The Neglected Quantifier

Douglas H. Clements, Julie Sarama, and Beth L. MacDonald

Abstract We define and describe how subitizing activity develops and relates to 
early quantifiers in mathematics. Subitizing is the direct perceptual apprehension 
and identification of the numerosity of a small group of items. Although subitizing 
is too often a neglected quantifier in educational practice, it has been extensively 
studied as a critical cognitive process. We believe that subitizing also helps explain 
early cognitive processes that relate to early number development and thus deserves 
more instructional attention. We also contend that integrating developmental/cogni-
tive psychology and mathematics education research affords opportunities to 
develop learning trajectories for subitizing. A complete learning trajectory includes 
three components: goal, developmental progression, or learning path through which 
children move through levels of thinking, and instruction. Such a learning trajectory 
thus helps establish goals for educational purposes and frames instructional tasks 
and/or teaching practices. Through this chapter, it is our hope that early childhood 
educators and researchers begin to understand how to develop critical educational 
tools for early childhood mathematics instruction. Through this instruction, we 
believe that children will be able to use subitizing to discover critical properties of 
number and build on subitizing to develop capabilities such as unitizing, cardinality, 
and arithmetic capabilities.
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Fig. 2.1 A display shown to children that controls for 
area but represents a 1:2 ratio of unshaded to shaded 
circular regions

Children 6 months of age and younger appear to be sensitive to number. For exam-
ple, they habituate to 1 versus 2 or 3 and 2 versus 3 objects (Antell & Keating, 1983; 
Starkey, Spelke, & Gelman, 1990). That is, they eventually “get used to” repeated 
sets of 3, even as color, size, and arrangements change, and become more attentive 
only when a set with a different number, such as 2, is shown. This indicates that 
infants are sensitive to the quantities in a small set of items before they are taught 
number words, counting, or finger patterns.

Children also are sensitive to displays with larger numbers of items. For exam-
ple, they can habituate to ratios of 1:2 (Mazzocco, Feigenson, & Halberda, 2011, 
see Fig. 2.1 and Matthews, this volume). They also have a sense of the results when 
displays show a combination of large numbers of dots. Still, teachers may say that 
some much older, elementary school children cannot immediately name the num-
ber shown on dice. So, what is this ability to name exact numbers quickly? Is it a 
special way of counting or a separate way of acting on objects? Should we teach it, 
or is it simply innate? Does this ability develop as children learn more sophisti-
cated understandings for number? How does it relate to other activities with num-
ber or quantity? As we shall see, although subitizing is too often a neglected 
quantifier in educational practice, it has been extensively studied as a critical cog-
nitive process.

2.1  The Search for the Earliest Number Competencies

2.1.1  Subitizing: A Long History

Subitizing is “instantly seeing how many.” From a Latin word meaning suddenly, 
subitizing is the direct perceptual apprehension and identification of the numerosity 
of a small group of items. In the first half of the twentieth century, researchers 
believed counting did not imply a true understanding of number but subitizing did 
(e.g., Douglass, 1925). Some saw the role of subitizing as a developmental prereq-
uisite to counting. Freeman (1912) suggested that whereas measurement focused on 
the whole and counting focused on the unit, only subitizing focused on both the 
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whole and the unit—so, subitizing underlies number ideas. Carper (1942) agreed 
subitizing was more accurate than counting and more effective in abstract situa-
tions. Kaufman, Lord, Reese, and  Volkmann (1949) initially named subitizing and 
distinguished this activity as very different from estimation activity. Individuals 
were relatively more accurate and experienced higher degrees of confidence in their 
enumeration when subitizing small sets of items (≤5) compared to when they were 
estimating larger sets of items (>5).

In the second half of the twentieth century, educators developed several models 
of subitizing and counting. Subitizing was initially defined in the field of psychol-
ogy (Kaufman et al., 1949). Essentially, Kaufman et al. found that subitizing activ-
ity was quite different than estimation, as individuals drew from a unique form of 
visual number discrimination characterized by speed, accuracy, and degree of con-
fidence (1949). More specifically, Kaufman et al. found that individuals numerically 
identifying sets of five or fewer objects were relatively faster (≤40 ms/item in a 
perceptual field) in their recall times, had higher levels of confidence, and had 
higher accuracy rates (1949). Klahr (1973a, 1973b) began discussing subitizing as 
a form of visual information processing and a type of quantification operator (e.g., 
counting, subitizing, estimating). Klahr posited that subitizing did not rely on an 
encoding process, but in fact was an encoding process, explaining such different 
recall times when individuals subitized items between one and five.

Based on the same notion that subitizing was a more “basic” skill than counting 
(Klahr & Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974), Klahr (1973a) 
hypothesized that after items were encoded through subitizing activity, individuals 
stored matched patterned stimuli to numerical thinking structures in their long-term 
memory. This explained why children can subitize directly through interactions 
with the environment, without social interactions. Supporting this position, Fitzhugh 
(1978) found that some children could subitize sets of one or two but were not able 
to count them. None of these very young children were able to count any sets that 
they could not subitize. Fitzhugh concluded that subitizing is a necessary precursor 
to counting. This research also began to define subitizing, for the first time, as sup-
ported by pre-attentional mechanisms (Klahr, 1973b; Trick & Pylyshyn, 1994) and 
a form of numerical encoding system (Klahr, 1973a).

However, in 1924, Beckmann found that younger children used counting rather 
than subitizing (cited in Solter, 1976). Others agreed that children develop subitiz-
ing later, as a shortcut to counting (Beckwith & Restle, 1966; Brownell, 1928; 
Silverman & Rose, 1980). Developmental psychologists Gelman and Gallistel 
(1978) expressed this view, claiming that subitizing is simply a form of rapid 
counting.

Although debates continue, recent research has shown that—as the introduc-
tion shows—some sensitivity to very small numbers develops very early (we do 
not call this “subitizing” yet as children are not connecting an exact quantity to a 
number word). Further, that sensitivity exists for larger numbers in a different 
form. The latter has been termed the Approximate Number System and we turn to 
it next.

2 Subitizing: The Neglected Quantifier
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2.1.2  The Approximate Number System (ANS)

Figure 2.1 illustrates a situation revealing an ability to estimate that is shared across 
animals and people. For example, monkeys and birds can be trained to discriminate 
both large and small sets (of visual dots or sounds) that differ in a 1 to 2 (or greater) 
ratio (but not 2:3) (Starr, Libertus, & Brannon, 2013). Baby chicks, first imprinted 
with a set of three, shown 4 objects going behind a screen on the right, then 1 going 
beyond a screen on the left, then 1 moved from the right to the left, go immediately 
to the screen on the right (Vallortigara, 2012).

Neuroscience findings suggest that humans, like other animal species, encode 
approximate number (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). The IPS 
coding for number in humans is compatible with that observed in macaque mon-
keys, suggesting an evolutionary basis for human elementary arithmetic (Piazza 
et al., 2004). Most children without specific disabilities possess these competencies, 
which appear to form one of the innate, foundational abilities for all later numerical 
knowledge—the Approximate Number System (ANS). Six-month-old infants can 
discriminate the 1:2 ratio (as in Fig. 2.1) but by 9 months of age, they can also dis-
tinguish sets in a 2:3 ratio (e.g., 10 compared to 15). ANS correlates with mathemat-
ics competencies in preschoolers (Mazzocco et  al., 2011; Soto-Calvo, Simmons, 
Willis, & Adams, 2015), even with age and verbal ability controlled (Libertus, 
Feigenson, & Halberda, 2011b), although these correlations are larger for children 
low in mathematical knowledge (Bonny & Lourenco, 2013). It may be that higher 
achievers have access to more and more sophisticated strategies that makes ANS 
precision less relevant. Further, lack of ANS proficiency may be one but only one of 
several sources of poor mathematics learning (Chu, vanMarle, & Geary, 2013).

2.1.3  Is Subitizing Also an Approximate Estimator?

This raises the question of whether initial sensitivity to number is also based on 
approximate estimators, and only seems accurate early on in children’s develop-
ment because numbers are very small. Subitizing differs from the ANS in that the 
goal is to determine the exact number of items in a set and to connect the number to 
another representation, usually number words. Supporting the distinction, subitiz-
ing does not fit Weber’s law for ANS and thus appears to be a distinct, dedicated 
method of quantification (Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). 
Subitizing also appears distinct from counting. First, there is little or no relationship 
between children’s performance on counting and subitizing tasks (Pepper & 
Hunting, 1998). Second, lesions that affect counting and subitizing appear to be in 
separate parts of the brain (Demeyere, Rotshtein, & Humphreys, 2012).

Still, questions remain about how subitizing operates. For example, some have 
questioned whether subitizing is really about number or a general sense of quantity. 
That is, some studies suggest that infants in “number” experiments may be 
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 responding to overall contour length, area, mass, or density rather than discrete 
number (Feigenson, Carey, & Spelke, 2002; Tan & Bryant, 2000). In one study, 
infants dishabituated to changes in contour length when the number of objects was 
held constant, but they did not dishabituate to changes in number when contour 
length was held constant (Clearfield & Mix, 1999), suggesting they may be more 
sensitive to continuous than discrete quantities. FMRI studies iterate these findings 
as they show 4-year-olds and adults exhibit a greater response in their IPS to visual 
arrays that change in the number of elements than to stimuli that change in shape 
(Cantlon, Brannon, Carter, & Pelphrey, 2006). Deaf people, who knew Japanese 
Sign Language but not American Sign Language, showed no activation in regions 
associated with numerical processing when taught ASL signs (but not their mean-
ings) for numerals. However, when told what the signs represented, they showed 
just such activation—even when they could not accurately code those signs 
(Masataka, Ohnishi, Imabayashi, Hirakata, & Matsuda, 2006).

Models of subitizing There are then various empirical findings and theoretical 
models of subitizing (for reviews more detailed than this summary, see Butterworth, 
2010; Hannula, Lepola, & Lehtinen, 2010; Sarama & Clements, 2009). Figure 2.2 
illustrates several of them.

Some believe that recognition of patterns of movement (even eye movements), or 
scan-paths (Fig. 2.2), is the underlying non-numerical process that is then linked to 
specific numerosities (Chi & Klahr, 1975; Glasersfeld, 1982; Klahr & Wallace, 
1976). Numerical subitizing requires a subsequent reflective abstraction, which 
occurs when the child abstracts the mental actions from the sensory-motor contexts 
and is capable of reflecting on these actions. Piaget (1977/2001) describes reflective 
abstraction as encapsulating two phases. The first phase is a “projection phase in 

Fig. 2.2 Theories of subitizing
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which the actions at one level become the objects of reflection at the next” (313). 
The second phase is a “reflection phase in which a reorganization takes place” 
(p. 313). Such abstractions can stem from temporal or rhythmic activity (Glasersfeld, 
1982), are not grounded in perceptual pulsations (Glasersfeld, 1995), and may help 
to explain early number development (Steffe & Cobb, 1988).

Other models consider subitizing to be a numerical process. In the “accumula-
tor” column of Fig. 2.2, subitizing is a numerical process enabled by the availability 
of the functional equivalent of a number line in the brain that operates on both 
simultaneous and sequential items (cf. Huntley-Fenner, 2001). There is a pacemaker 
that emits equivalent pulses at a constant rate. When a unitized item (e.g., a block 
taken as “one”) is encountered, a pulse is allowed to pass through a gate, entering an 
accumulator—think of a squirt of water entering a tall glass. The gradations on the 
accumulator estimate the number in the collection of units, similar to height indicat-
ing the number of squirts in the glass (Meck & Church, 1983). This model does not 
require that the accumulator has an exact representation of number (see also 
Feigenson, Dehaene, & Spelke, 2004). The “squirts” and the amount in the “glass” 
are approximate. Support for this view comes from research indicating that children 
younger than 3 years tend not to represent any numbers except 1 and 2 precisely 
(Antell & Keating, 1983; Baroody, Lai, & Mix, 2005; Feigenson, Carey, & Hauser, 
2002; Mix, Huttenlocher, & Levine, 2002).

The next theory holds that humans create “object files” that store data on each 
object’s properties (Fig. 2.2). They can use these object files to respond differently 
to various situations. Thus, some situations can be addressed by using the objects’ 
individuation or separateness as objects, and others can be addressed by using the 
analog properties of these objects, such as contour length (Feigenson, Carey, & 
Spelke, 2002). For example, children might use parallel-processed individuation for 
very small collections, but continuous extent when storage for individuation is 
exceeded. Individuation is the visual referencing of items as “that [which] refers to 
something we have picked out in our field of view without reference to what cate-
gory it falls under or what properties it may have” (Pylyshyn, 2001, p. 129). Thus, 
processing is preconceptual prior to any entry into working memory (Pylyshyn, 
2001). (From our perspective, even if such individuation is accepted as an early 
basis for number, it might not in itself constitute knowledge of number, an issue to 
which we will return.)

The mental models view (Fig. 2.2) postulates that children represent numbers 
nonverbally and approximately, then nonverbally but exactly, and eventually via 
verbal, counting-based processes (Huttenlocher, Jordan, & Levine, 1994; Mix et al., 
2002). Children cannot initially differentiate between discrete and continuous quan-
tities, but represent both approximately using one or more perceptual cues such as 
contour length (Mix et al., 2002). Children gradually develop the ability to individu-
ate objects, providing the ability to build notions of discrete number. About the age 
of 2 years, they develop representational, or symbolic, competence, allowing them 
to create mental models of collections, which they can retain, manipulate (move), 
add to or subtract from, and so forth (although the model does not adequately 
describe how cardinality is ultimately cognized and how comparisons are made). 
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Creation of mental models with their added abstraction differentiates this view from 
the “object files” theory. Early nonverbal capabilities then provide a basis for the 
development of verbally based numerical and arithmetic knowledge (young chil-
dren are more successful on nonverbal than verbal versions of number and arithme-
tic tasks, Huttenlocher et  al., 1994; Jordan, Hanich, & Uberti, 2003; Jordan, 
Huttenlocher, & Levine, 1992; Jordan, Huttenlocher, & Levine, 1994; Levine, 
Jordan, & Huttenlocher, 1992). Meaningful learning of number words (in contrast 
to symbolic ability) may cause the transition to exact numerical representations 
(Baroody et al., 2005). This may provide the basis for understanding cardinality and 
other counting principles, as well as arithmetic ideas (Baroody, Lai, & Mix, 2006).

An alternative model postulates an innate abstract module. A module is a distinct 
mental component that is dedicated to a particular process or task and is unavailable 
for general processing. A number perception module would perceive numbers 
directly (Dehaene, 1997). This counting-like process is hypothesized to guide the 
development of whole number counting, hypothesized to be a privileged domain. 
Researchers use findings from both humans and non-human animals to support this 
position (Gallistel & Gelman, 2005).

A New Model for the Foundations of Subitizing A synthesis of these positions pro-
duces a model that we believe is most consistent with the research. What infants 
quantify are collections of rigid objects. Sequences of sounds and events, or materi-
als that are non-rigid and non-cohesive (e.g., water), are not quantified (Huntley- 
Fenner, Carey, & Solimando, 2002). Quantifications of these collections begin as an 
undifferentiated, innate notion of the amount of objects. Object individuation, which 
occurs early in pre-attentive processing (and is a general, not quantitative, process, 
cf. Moore & Ashcraft, 2015), helps lay the groundwork for differentiating discrete 
from continuous quantity. That is, the object file system stores information about the 
objects, some or all of which is used depending on the situation.

Simultaneously, an estimator (accumulator) mechanism stores analog quantita-
tive information (Feigenson, Carey, & Spelke, 2002; Gordon, 2004; Johnson-Pynn, 
Ready, & Beran, 2005). This estimator also includes a set of number filters, each 
tuned to an approximate very small number of objects (e.g., 2) although they over-
lap (Nieder, Freedman, & Miller, 2002). The child encountering small sets opens 
object files for each in parallel. By about a half-year of age, infants may represent 
very small numbers (1 or 2) as individuated objects (close to the “mental models” 
column of Fig. 2.2). However, larger numbers in which continuous extent varies or 
is otherwise not reliable (McCrink & Wynn, 2004) may be processed by the analog 
estimator as a collection of binary impulses (as are event sequences later in develop-
ment, see the “analog” column of Fig. 2.2), but not by exact enumeration (Shuman 
& Spelke, 2005) by a brain region that processes quantity (size and number, undif-
ferentiated, Pinel, Piazza, Le Bihan, & Dehaene, 2004). Without language support, 
these are inaccurate processes for numbers above two (Gordon, 2004).

To compare quantities, correspondences are processed. Initially, these are inex-
act estimates comparing the results of two estimators, depending on the ratio 
between the sets (Johnson-Pynn et al., 2005). Once the child can represent objects 
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mentally, they can also make exact correspondences between these nonverbal repre-
sentations, and eventually develop a quantitative notion of that comparison (e.g., not 
just that ••• is more than ••, but also that it contains one more •, Baroody et al., 
2005).

Fully Functional Subitizing—Explicit Cardinality Even these correspondences, 
however, do not necessarily imply a cardinal representation of the collection (a rep-
resentation of the collection qua a numerosity of a group of items). That is, our 
model distinguishes between noncardinal representations of a collection and explicit 
cardinal representations that is necessary to achieve fully functional subitizing com-
petence. Indeed, a neuroimaging study found that brain regions that represent 
numerical magnitude also represent spatial magnitude, such as the relations between 
sizes of objects, and thus may not be numerical in function (Pinel et al., 2004). Only 
for numerical representations does the individual apply an integration operation 
(Steffe & Cobb, 1988) to create a composite with a numerical index. This integra-
tion operation uses present cognitive schemes to project and reorganize actions so 
they are considered mathematical objects. Some claim that the accumulator yields a 
cardinal output; however, it may be quantitative and still—because it indexes a col-
lection using an abstract, cross-modality system for numerical magnitude (cf. 
Lourenco & Longo, 2011; Shuman & Spelke, 2005)—it may lack an explicit cardi-
nality. For example, this system would not necessarily differentiate between ordinal 
and cardinal interpretations. Comparisons, such as correspondence mapping, might 
still be performed, but only at an implicit level (cf. Sandhofer & Smith, 1999). (It is 
possible to index a numerical label without attributing explicit cardinality. For 
example, lower animal species seem to have some perceptual number abilities, but 
only birds and primates also have shown the ability to connect a perceived quantity 
with a written mark or auditory label, Davis & Perusse, 1988.) In this view, only 
with experience representing and naming collections is an explicit cardinal repre-
sentation created. This is a prolonged process. Children may initially make word- 
word mappings between requests for counting or numbers (e.g., “how many?”) to 
number words until they have learned several (Sandhofer & Smith, 1999). Then 
they label some (small number) cardinal situations with the corresponding number 
word; that is, map the number word to the numerosity property of the collection. 
They begin this phase even before 2 years of age, but for some time, this applies 
mainly to the word “two,” a bit less to “one,” and with considerable less frequency, 
“three” and “four” (Fuson, 1992a; Wagner & Walters, 1982). We will discuss pos-
sible connections between subitizing and composite number understandings near 
the end of this chapter.

MacDonald and colleagues (MacDonald, 2015; MacDonald & Shumway, 2016; 
MacDonald & Wilkins, 2016, 2017) found that this early attention to 2 served pre-
school age children’s ability to begin attending to subgroups of “two” when concep-
tually subitizing larger sets of items (e.g., four, five). Symmetrical orientations and 
orientations with a large space between subgroups of “two” seemed to afford these 
children’s opportunities to attend to both subgroups. Symmetrical orientations freed 
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children’s working memory resources as they only needed to describe one 2 when 
building towards the total set of 4. Individuals’ subitizing activity has been found to 
be affected by the space between the items in an orientation (Gebuis & Reynvoet, 
2011) and was found to support young children’s attention to the subgroups of the 
entire group of items (MacDonald & Wilkins, 2017).

Later Developments Only after many such experiences do children abstract the 
numerosities from the specific situations and begin to understand that the situations 
named by 3 correspond; that is, they begin to establish as what adults would term a 
numerical equivalence class. Counting-based verbal systems are then more heavily 
used and integrated, as described in the following section, eventually leading to 
explicit, verbal, mathematical abstractions. The construction of such schemes prob-
ably depends on guiding frameworks and principles developed from interactions 
with parents, teachers, and other knowledgeable people. Our model is supported by 
research on speakers of Mandrake in the Amazon, who lack number words for num-
bers above 5. They can compare and add large approximate numbers, but fail in 
exact arithmetic (Pica, Lemer, Izard, & Dehaene, 2004).

Nevertheless, it is significant that children discriminate exact collections on 
some quantitative bases from birth. Furthermore, most accounts suggest that these 
limited capabilities, with as yet undetermined contributions of maturation and expe-
rience, form a foundation for later learning. That is, they connect developmentally 
to culturally based cognitive tools such as number words and the number word 
sequence, to develop exact and extended concepts and skills in number.

Even though the shape of the items plays a secondary role in subitizing, particu-
lar orientations have been found to influence adults’ degree of accuracy when subi-
tizing larger sets of items (≤4). For instance, Logan and Zbrodoff (2003) found that 
the space between these groups of “twos” and “threes” afforded individuals more 
effective subitizing of four or more items. These findings suggest that individuals 
rely on patterned orientations of twos and threes (described as point-groupings) 
when subitizing. Thus, there is a special neural component of early numerical cog-
nition present in the early years that may be the foundation for later symbolic 
numerical development. A language-independent ability to judge numerical values 
nonverbally appears to be important evolutionary precursor to later symbolic 
numerical abilities.

In summary, early quantitative abilities exist, but they may not initially constitute 
systems that can be said to have an explicit number concept. Instead, they may be 
pre-mathematical, foundational abilities (cf. Clements, Sarama, & DiBiase, 2004) 
that develop and integrate slowly, in a piecemeal fashion (Baroody, Benson, & Lai, 
2003). For example, object individuation must be stripped of perceptual character-
istics and understood as a perceptual unit item through abstracting and unitizing to 
be mathematical (Steffe & Cobb, 1988), and these items must be considered simul-
taneously as individual units and members of a collection whose numerosity has a 
cardinal representation to be numerical, even at the lowest levels.
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2.1.4  Categories of Subitizing

Regardless of the precise mental processes in the earliest years, subitizing appears 
to be phenomenologically distinct from counting and other means of quantification 
and deserves differentiated educational consideration. Further, subitizing ability is 
not merely a low-level, innate process although it builds on innate sensitivity to 
number. As stated previously, in contrast to what might be expected from a view of 
innate ability, subitizing develops considerably and combines with other mental 
processes.

Types of Subitizing Early attention to numerosities reveals preconcepts, defined by 
Piaget are pre-operational, “action-ridden, imagistic, and concrete” early forms of 
concepts that young children depend on (1977/2001, p. 159–160). Children acting 
on static, concrete images that have yet to be unitized, operationalized, or abstracted 
are relying on preconcepts. Children engaging with preconcepts are not yet able to 
identify members as belonging to a given set (e.g., class identification within groups) 
necessary for unitizing. Preconcepts are the basis for early, perceptual subitizing 
activity. However, once early forms of perceptual subitizing develop, Clements 
(1999) posited that students developed and drew from this activity to develop con-
ceptual activity for subitizing.

Therefore, one major shift is the development from using only one, to using two 
types of subitizing. The first type, perceptual subitizing (Clements, 1999; see also 
theoretical justification in Karmiloff-Smith, 1992), is closest to the original defini-
tion of subitizing: Recognizing a number without consciously using other mental or 
mathematical processes and then naming it. Thus, perceptual subitizing employs a 
pre-attentional, encoding quantitative process but adds an intentional numerical 
process; that is, infant sensitivity to number is not (yet) perceptual subitizing. The 
term “perceptual” applies only to the quantification mechanism as phenomenologi-
cally experienced by the person; the intentional numerical labeling, of course, 
makes the complete cognitive act conceptual. A second type of subitizing (a distinc-
tion for which there is empirical evidence, Trick & Pylyshyn, 1994), conceptual 
subitizing (Clements, 1999), involves applying the perceptual subitizing processes 
repeatedly and quickly uniting those numbers. For example, one might recognize 
“10” on a pair of dice by recognizing the two collections (via perceptual subitizing) 
and composing them as units of units (Steffe & Cobb, 1988). Some research sug-
gests that only the smallest numbers, perhaps up to 3, are actually perceptually 
recognized; thus, sets of 1 to 3 may be perceptually recognized, sets of 3 to about 6 
may be and recomposed without the individual being aware of the subgroups. As we 
define it, conceptual subitizing refers to recognition in which the person uses such 
partitioning strategies and is aware of the parts and the whole. In the remainder of 
this section, we elaborate on each type.

Perceptual subitizing also plays the primitive role of unitizing, or making single 
“things” to count out of the stream of perceptual sensations (Glasersfeld, 1995). 
“Cutting out” pieces of experience, keeping them separate, and eventually 
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 coordinating them with number words are not trivial tasks for young children. For 
example, a toddler, to recognize the existence of a plurality, must focus on the items 
such as apples and repeatedly apply a template for an apple and attend to the repeti-
tion of the template application.

In an exploratory 22-session teaching experiment, MacDonald and Wilkins 
(2016) found that four preschool children (ages ranging from 4 years and 4 months 
to 5 years and 5 months) engaged in several types of perceptual subitizing that could 
explain early shifts in children’s types of abstractions. Cross-case analyses deter-
mined similar activity children engaged in throughout the study. MacDonald and 
Wilkins (2016) developed a framework that explained types of activity that young 
children revisited when subitizing. In this framework, five sets of perceptual subitiz-
ing activity were found to explain how these children’s perceptual subitizing activ-
ity changed. As shown in Table  2.1, these four preschool age children relied on 
perceptual figurative patterns when associating number with patterns when subitiz-
ing (initial perceptual subitizing or IPS). Children were also found to subitize small 
subgroups, composed of two or three (perceptual subgroup subitizing or PSS), but 
were not able to compose these subgroups. These activities, explained as a form of 
low-level processing, were purely associative and seemed to illustrate foundational 
operations of number in which children could project onto new schemes as early 
forms of mathematical objects. Further, when children’s subitizing changed they 
began composing and decomposing subgroups of these total sets (perceptual 

Table 2.1 Five different types of perceptual subitizing activity

Type Description Example

Initial 
Perceptual 
Subitizing (IPS)

  • Children describe the visual 
motion or the shape of the dots

  • Children will describe seeing 
“five” because it looks like a 
flower

Perceptual 
Subgroup 
Subitizing (PSS)

  • Children numerically subitize 
small subgroups of two or three, but 
cannot subitize the entire composite 
group

  • Children will state that they 
saw “two and three,” or “two plus 
three,” but do not use this to 
accurately describe the composite 
group

Perceptual 
Ascending 
Subitizing (PAS)

  • Children describe the perceived 
cluster of items as subgroups and 
then the composite group

  • Children will state that they 
saw “two and three,” and then 
accurately describe the total 
composite group

Perceptual 
Descending 
Subitizing 
(PDS)

  • Children describe the composite 
groups and then describe the 
perceived cluster of items as 
subgroups

  • Children will state that they 
saw “five” because they saw “two 
and three”

Perceptual 
Counting 
Subitizing (PCS)

  • Children initially describe seeing 
one more or one less than the 
composite group, and then counts 
down or up, respectively, to the 
composite group

  • Children will state they saw “4 
… 5” or “6 … 5”

  • Children will state they know 
it to be “5” because they saw “6 
… 5”

Note. These five different types of perceptual subitizing activity categorically represent the 
observed child responses documented by MacDonald and Wilkins (2016)
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ascending subitizing or PAS and perceptual descending subitizing or PDS), which 
was foundational for children’s conceptual subitizing. PAS and PDS activity is simi-
lar to conceptual subitizing activity because the children are decomposing and com-
posing units of units. However, PAS and PDS activity explained these children’s 
reliance on perceptual material, spatial patterns, or finger patterns. Furthermore, 
when engaging in PAS and PDS activity these children acted on orientations in 
static means where subgroups did not have to be determined. For instance, they 
relied primarily upon the clustering of items or spatial arrangement of the items to 
determine operations that they would need to use when composing number. This 
means that children would not be required to partition the orientation into sub-
groups, but that they would operationalize the activity by partitioning and compos-
ing number in a more abstract manner. Thus, for these children to engage in 
conceptual subitizing, they would need to carry their (de)composition of number or 
their partitioning of orientations into the activity. Children also coordinated their 
counting with their perceptual subitizing. MacDonald and Wilkins found that all 
four children would subitize a set of items and then count up or down by one (per-
ceptual counting subitizing or PCS). PCS activity was explained as a type of blend 
between both subitizing and counting activity.

These findings suggest that when children engage in perceptual subitizing, they 
are building initial schemes through a series of associations between orientations 
and early units of number. These schemes are foundational for (de)composition of 
number later, as these children begin developing conceptual processes of number in 
relation to their conceptual subitizing.

This takes us to the second type of subitizing, conceptual subitizing plays an 
advanced organizing role with the individual explicitly using partitioning, decom-
posing, and composing quickly to determine a number of items. Decomposing and 
composing are combining and separating operations that help children develop gen-
eralized part-whole relations, one of the most important accomplishments in arith-
metic (National Research Council, 2001). The distinction between PDS activity and 
conceptual subitizing activity is that when children engage in PDS activity they are 
not able to numerically understand how these units relate to units because they are 
still relying on perceptual material, fingers, or spatial patterns. In PDS activity, 
young children are still dependent on the material shown to them when decompos-
ing and composing number. In conceptual subitizing activity, children step away 
from the material and carry operations of number into the task. This distinction is 
explained further in a subsequent section where number and operations are explained 
as related to conceptual subitizing activity.

MacDonald and Wilkins (2016) also found two types of conceptual subitizing 
that describe how children’s limited or flexible number understandings related to 
their subitizing activity (see Table 2.2). Children who have limited ability to draw 
from more than one set of subgroups when conceptually subitizing (evidenced 
through their description of exactly one set of subgroups) engage in rigid concep-
tual subitizing (RCS) (see Table 2.2). For instance, when children subitize “two, 
two, and one” each time they are shown a wide variety of “five” is evidence of their 
reliance on RCS. This activity indicates children’s ability to see units of units when 
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shown a wide variety of representations for “five.” However, the children engaging 
in RCS are limited because they cannot use flexible operations of number when 
conceptually subitizing. When children are capable of “seeing” two or more ways 
of composing items (e.g., two and two; three and one) when subitizing engages in 
flexible conceptual subitizing (FCS). FCS activity evidences the multiple means in 
which children use operations when conceptual subitizing.

What is Subitized Another categorization involves the different types of things 
people can subitize. Spatial patterns such as those on dice are just one type. Other 
patterned modalities are temporal and kinesthetic, including finger patterns (motoric 
and visual/spatial), rhythmic patterns (e.g., 3 beats), and spatial-auditory patterns. 
Creating and using these patterns through conceptual subitizing helps children 
develop abstract number and arithmetic strategies. For example, children use tem-
poral patterns when counting on. “I knew there were three more so I just said, nine 
… ten, eleven, twelve” (rhythmically gesturing three times, one “beat” with each 
count). They use finger patterns to figure out addition problems. For example, for 
3 + 2, a child might put up a finger pattern they know as three, then put up two more 
(rhythmically—up, up) and then recognize the resulting finger pattern as “five.” 
Children who cannot subitize are handicapped in learning such arithmetic processes 
(Butterworth, 2010; Hannula et al., 2010). Children may be limited to subitize small 
numbers at first, but such actions are useful “stepping stones” to the construction of 
more sophisticated procedures with larger numbers, a point to which we return.

2.1.5  Possible Connections Between Unit Development 
and Subitizing Activity

Children’s subitizing activity changes over time that requires different types of 
actions that possibly relate to their ability to unitize members of a set. Thus, chil-
dren’s perceptual subitizing activity may relate to unit development (Steffe & Cobb, 

Table 2.2 Two different types of conceptual subitizing activity

Type Description Example

Rigid 
Conceptual 
Subitizer 
(RCS)

  • Children describe seeing the 
composite unit and then one set 
of subgroups that always remain 
the same, regardless of the 
orientation or color of the items

  • Children will always state they 
know a composite group to be four 
because they saw “two and two”

Flexible 
Conceptual 
Subitizing 
(FCS)

  • Children describe seeing the 
composite unit and then two or 
more sets of subgroups in 
different tasks regardless of the 
orientation or color of the items

  • Children will state that they know a 
composite group to be five because 
they saw “two and three,” but 
previously they explained the same 
orientation to be five because they saw 
“two, two, and one”

Note. These two different types of conceptual subitizing activity categorically represent the 
observed child responses documented by MacDonald and Wilkins (2016)
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1988). Steffe and Cobb found that children engaged in counting developed abstract 
singular units (abstract units composed of 1) through their engagement with a vari-
ety of physical material of singular units (e.g., perceptual, figural patterns, motor 
activity, verbal utterances) (see Fig. 2.1). Children develop abstract singular units by 
first engaging with perceptual singular units as their unitization cuts away portions 
of “a specific experiential ‘thing’” (Steffe & Cobb, 1988, p. 343). As children use 
figural (different representation), motor (motor pattern through activity), and verbal 
(utterance of a number word) singular units to represent perceptual material, they 
develop more abstract singular units (1988).

Steffe and Cobb found that first grade students “re-presented perceptual unit 
item[s]” (p. 342) when developing figural unit items. Further, children developed 
motor unit items by unitizing motor actions and associated them with isolated motor 
pattern (1988). Through development of these singular unit items, children re- 
presented singular activities and patterns through “an utterance of a number word 
that signifies a perceptual, figural, or motor unit item” (1988, p. 343). In developing 
and acting on these singular unit items, it should be noted that children may develop 
figural, verbal, and motor unit items concurrently or in one order versus another (i.e., 
figural, verbal units and then motor units, motor units, figural, and then verbal units). 
In re-presenting perceptual singular units with figural units, verbal utterances and 
motor patterns, children develop abstract singular unit items. Using abstract singular 
units, children can develop groups to engage in more sophisticated activity (e.g., 
partition, iterate) with number and develop abstract composite units (abstract units 
composed of more than one unit) that become countable units of units (Fig. 2.3).

One alternative manner that children may use to develop abstract composite units 
is their engagement with spatial patterns to develop templates or rules for experien-
tial composite units. Essentially, Steffe (1994) posits that young children may ini-
tially rely on numerical patterns through their engagement with spatial patterns 
when developing figurative material (figurative composite units) and motor activity 
(motor composite units). Young children’s activity with material with counting (and 
possibly subitizing) are foundational for experiential composite unit development. 
Steffe found that children constructed experiential composite units by attending to 
the numerical rules of a pattern. Through flexible engagement with numerical pat-
terns, children develop experiential units as their development of “the records of a 
pattern do not take a picture of the pattern, but they constitute a program or recipe 
whose enactment constitutes a sensory pattern” (Steffe, 1994, p. 18). Steffe distin-
guishes these patterns as primarily numerical sequences, as subitizing was not con-
sidered in the framework of Steffe’s research (cf. Glasersfeld, 1982). However, we 
posit that when considering multiple means in which patterns could be engaged, 
young children could construct experiential composite units based on subitizing, 
providing an alternative means to access abstract composite unit development.

For example, children rely on visual patterns when perceptually subitizing an 
orientation of “three and two.” When children are then asked, “how many did you 
see?” they might need to “make it first.” Here, children are primarily relying on the 
pattern and the figurative composite unit to engage with the numbers. Alternatively, 
if children represent the “two” and “three” with all fingers on the one hand and 
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Fig. 2.3 MacDonald and Wilkins (under review) adapted conceptual framework from Steffe and 
Cobb (1988) and Steffe (1994)

partition an orientation when determining subgroups, then they may be relying on 
the rules of prior experience with patterns in which to conceptually develop com-
posite units. More specifically, Steffe (1994) describes this transition as one of a 
“uniting operation” where the numerical pattern is used as one object “to instantiate 
the records that compose it” (p. 17). Thus, children’s subitizing development and 
experiential unit development may be related.

2.2  Learning Trajectories: Integrating Developmental 
Psychology and Mathematics Education

Research identifying that subitizing is a distinct and central process has important 
ramifications for education. As we have seen, developmental psychology also helps 
us understand the natural paths of children’s learning—invaluable for developing 
curriculum (the term’s origins are a path for racing) and teaching strategies. Before 
we examine a course of development for subitizing relevant to educational practice, 
we briefly describe the theoretical and empirical foundations for our approach to 
learning and teaching.

We synthesized research and theories in developmental psychology and mathe-
matics education from nativist and constructivist perspectives to form a theoretical 
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framework called hierarchic interactionalism (Sarama & Clements, 2009). The 
term indicates the influence and interaction of global and local (domain specific) 
cognitive levels and the interactions of innate competencies, internal resources, and 
experience (e.g., cultural tools and teaching). Mathematical ideas are represented 
intuitively, then with language, then metacognitively, with the last indicating that 
the child possesses an understanding of the topic and can access and operate inten-
tionally on those understandings. The theory has 12 tenets; several are particularly 
pertinent to this chapter (see Sarama & Clements, 2009, for a full discussion).

2.2.1  Selected Tenets of Hierarchic Interactionalism

Developmental Progression Most content knowledge is acquired along develop-
mental progressions of levels of thinking. These play a special role in children’s 
cognition and learning because they are particularly consistent with children’s intui-
tive knowledge and patterns of thinking and learning at various levels of develop-
ment (at least in a particular culture, but guided in all cultures by innate competencies), 
with each level characterized by specific mental objects (e.g., concepts) and actions 
(processes) (e.g., Clements, Wilson, & Sarama, 2004; Steffe & Cobb, 1988). These 
actions-on-objects are children’s main way of operating on, knowing, and learning 
about, the world, including the world of mathematics.

Cyclic Concretization Development progressions often proceed from sensory- 
concrete and implicit levels at which perceptual concrete supports are necessary and 
reasoning is restricted to limited cases (such as small numbers) to more explicit, 
verbally based (or enhanced) generalizations and abstractions that are tenuous to 
integrated-concrete understandings relying on internalized mental representations 
that serve as mental models for operations and abstractions that are increasingly 
sophisticated and powerful. Again, such progressions can cycle within domains and 
contexts.

Different Developmental Courses Different developmental courses are possible 
within those constraints, depending on individual, environmental, and social conflu-
ences (Clements, Battista, & Sarama, 2001; Confrey & Kazak, 2006). At a group 
level, however, these variations are not so wide as to vitiate the theoretical or practi-
cal usefulness of the tenet of developmental progressions. The following tenet is 
closely related.

Environment and Culture Environment and culture affect the pace and direction of 
the developmental courses. Because environment, culture, and education affect 
developmental progressions, there is no single or “ideal” developmental progres-
sion, and thus learning trajectory, for a topic. Universal developmental factors 
 interact with culture and mathematical content, so the number of paths is not unlim-
ited, but, for example, educational innovations may establish new, potentially more 
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advantageous, sequences, serving the goals of equity (Myers, Wilson, Sztajn, & 
Edgington, 2015). A latter section of this chapter deals explicitly with such 
differences.

Progressive Hierarchizing Within and across developmental progressions, children 
gradually make connections between various mathematically relevant concepts and 
procedures, weaving ever more robust understandings that are hierarchical in that 
they employ generalizations while maintaining differentiations. These generaliza-
tions, and the metacognitive abilities that engender them, eventually connect to 
form logical-mathematical structures. Children provided with high-quality educa-
tional experiences build similar structures across a wide variety of mathematical 
topics. For example, subitizing can have important interrelations with counting and 
arithmetic.

Consistency of Developmental Progressions and Instruction Instruction based on 
learning consistent with natural developmental progressions is more effective, effi-
cient, and generative for the child than learning that does not follow these paths.

Learning Trajectories An implication of the tenets to this point is that a particularly 
fruitful instructional approach is based on hypothetical learning trajectories 
(Clements & Sarama, 2004b). Based on the hypothesized, specific, mental construc-
tions (mental actions-on-objects), and patterns of thinking that constitute children’s 
thinking, curriculum developers design instructional tasks that include external 
objects and actions that mirror the hypothesized mathematical activity of children 
as closely as possible. These tasks are sequenced, with each corresponding to a level 
of the developmental progressions, to complete the hypothesized learning trajec-
tory. Specific learning trajectories are the main bridge that connects the “grand 
theory” of hierarchic interactionalism to particular theories and to educational 
practice.

Instantiation of Hypothetical Learning Trajectories Hypothetical learning trajecto-
ries must be interpreted by teachers and are only realized through the social interac-
tion of teachers and children around instructional tasks (e.g., Wickstrom, 2015). 
Societally determined values, goals, and cultures are substantive components of any 
curriculum (Aguirre et al., 2017; Confrey, 1996; Hiebert, 1999; National Research 
Council, 2002; Tyler, 1949); research cannot ignore or determine these components 
(cf. Lester Jr. & Wiliam, 2002).

2.2.2  Hierarchic Interactionalism’s Learning Trajectories

Learning trajectories, then, have three components: a goal (that is, an aspect of a 
mathematical domain children should learn), a developmental progression, or learn-
ing path through which children move through levels of thinking, and instruction 
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that helps them move along that path. Formally, learning trajectories are descrip-
tions of children’s thinking as they learn to achieve specific goals in a mathematical 
domain, and a related, conjectured route through a set of instructional tasks designed 
to engender those mental processes or actions hypothesized to move children 
through a developmental progression of levels of thinking (Clements & Sarama, 
2004b).

Learning trajectories are useful pedagogical, as well as theoretical, constructs 
(Clements & Sarama, 2004a; Simon, 1995; Smith, Wiser, Anderson, & Krajcik, 
2006). Knowledge of developmental progressions—levels of understanding and 
skill, each more sophisticated than the last—is essential for high-quality teaching 
based on understanding both mathematics and children’s thinking and learning. 
Early childhood teachers’ knowledge of young children’s mathematical develop-
ment is related to their children’s achievement (Fuson, Carroll, & Drueck, 2000; 
Kühne, Lombard, & Moodley, 2013; Peterson, Carpenter, & Fennema, 1989; 
Wright, Stanger, Stafford, & Martland, 2006).

2.3  A Developmental Progression for a Subitizing Learning 
Trajectory

2.3.1  Levels of Thinking

Research helps us describe the developmental progression for subitizing. Explicit 
naming of numbers begins early (because the task is not timed—displays are not 
shown and quickly hidden—we call this recognition of number rather than subitiz-
ing). In laboratory settings, children at about 33 months of age can initially name 
numbers that differentiate 1 from collections of more than 1 (Wynn, 1992). Between 
35 and 37 months, they name 1 and 2, but not larger numbers. A few months later, 
at 38–40 months, they identify 3 as well. After about 42 months, they can identify 
all numbers that they can count, 4 and higher, at about the same time. However, 
research in natural, child-initiated settings shows that the development of these abil-
ities can occur much earlier, with children working on 1 and 2 around their second 
birthdays or earlier (Mix, Sandhofer, & Baroody, 2005). Further, some children may 
begin saying “two” rather than “one.” These studies suggest that language and social 
interactions interact with internal factors in development, as well as showing that 
number knowledge develops in levels, over time (see also Gordon, 2004). However, 
most studies suggest that children begin recognizing and saying “one,” then “one” 
and “two,” then “three” and then “four,” whereupon they learn to count and know 
other numbers (see Gelman & Butterworth, 2005, for an opposing view concerning 
the role of language; Le Corre, Van de Walle, Brannon, & Carey, 2006).

Most Kindergartners appear to have good competence recognizing 2 and 3, with 
most recognizing 4 and some recognizing higher numbers (note that different tasks 
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were used, some of which did not limit time, so wide ranges are expected). A recent 
study of low-income children beginning pre-K, using a short-exposure subitizing 
task, report 2–14% accuracy for 3, 0–5% for 4, and virtually no competence with 5, 
8, or 10 (Sarama & Clements, 2011). Thus, children appear to be most confident 
with very small numbers, but those from less advantaged environments may not 
achieve the same skills levels as their more advantaged peers. Some special popula-
tions find subitizing particularly difficult. Only a minority (31%) of children with 
moderate mental handicaps (chronological ages 6–14 years) and a slight majority 
(59%) of children with mild mental handicaps (ages 6–13) successfully subitize sets 
of three and four (Baroody, 1986; see also Butterworth, 2010). Some children with 
learning disabilities could not subitize even at 10 years of age (Koontz & Berch, 
1996). Early deficits in spatial pattern recognition may be the source of difficulty 
(Ashkenazi, Mark-Zigdon, & Henik, 2013). Subitizing in preschool is a better pre-
dictor of later mathematics success for children with ASD (autism spectrum disor-
der) than for typically developing children (Titeca, Roeyers, Josephy, Ceulemans, & 
Desoete, 2014).

2.3.2  Factors Affecting Difficulty of Subitizing Tasks

Several factors (spatial arrangement, physical size of the dots, and color of dots) 
affect subitizing ability. The spatial arrangement of sets, the size of the items, and 
the color of the items influences how difficult they are to subitize. Children usually 
find rectangular arrangements easiest, followed by linear, circular, and scrambled 
arrangements (Beckwith & Restle, 1966; Wang, Resnick, & Boozer, 1971). This is 
true for students from the primary grades to college in most cases. The only change 
across these ages is rectangular arrangements were much faster for the oldest stu-
dents, who could multiply.

Certain arrangements are easier for specific numbers. Arrangements yielding a 
better “fit” for a given number are easier (Brownell, 1928). Further, when items are 
not arranged in rectangular or canonical arrangements, and the items increase in 
their relative size, children and adults have more difficulties subitizing these items 
accurately (Leibovich, Kadhim, & Ansari, 2017). More specifically, children make 
fewer errors for 10 dots than for eight with the “domino five” arrangement, but 
fewer errors for eight dots for the “domino four” arrangement. Of course, these are 
averages; experience with arrangements undoubtedly influences children’s 
performances.

For young children, however, neither of these arrangements is easier for any 
number of dots. Indeed, children 2–4-years-old show no differences between any 
arrangements of four or fewer items (Potter & Levy, 1968). For larger numbers, the 
linear arrangements are easier than rectangular arrangements. It may be that many 
preschool children do not use decomposing (conceptual subitizing). Whelley (2002) 
also found that preschool children’s subitizing is affected by color of the items 
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shown to them. For instance, when children are shown clustered items of differing 
colors, Whelley found the colors should align with the clustering of the group of 
items for effective subitizing to occur (i.e., three items clustered are all red and two 
items clustered are all black). When children are shown different colored items 
where the colors do NOT align with the clustering of the groups (i.e., three items 
clustered have two red and one black item and four items clustered have two red and 
two black items) then their subitizing accuracy decreased. As preschool children’s 
attentional mechanisms mature, they can learn to conceptually subitize where orien-
tations, color of items, and size of items does not affect their subitizing accuracy in 
drastic means (Whelley, 2002) though older research indicated that children as old 
as first grade experienced subitizing limitations of about four or five scrambled 
arrangements (Dawson, 1953).

The spatial arrangement of sets influences how difficult they are to subitize. 
Children usually find rectangular arrangements easiest, followed by linear, circular, 
and scrambled arrangements (Beckwith & Restle, 1966; Wang et al., 1971). If the 
arrangement does not lend itself to grouping, people of any age have more difficulty 
with larger sets (Brownell, 1928). They also take more time with larger sets 
(Beckwith & Restle, 1966).

2.4  Education’s First Concern: Goals for Subitizing

The ideas and skills of subitizing start developing very early, but they, as every other 
area of mathematics, are not just “simple, basic skills.” Subitizing introduces basic 
ideas of cardinality—“how many,” ideas of “more” and “less,” ideas of parts and 
wholes and their relationships, beginning arithmetic, and, in general, ideas of quan-
tity. Developed well, these are related, forming webs of connected ideas that are the 
building blocks of mathematics through elementary, middle, and high school and 
beyond.

Young children may use perceptual subitizing to make units for counting and to 
build their initial ideas of cardinality (Slusser & Sarnecka, 2011). For example, their 
first cardinal meanings for number words may be labels for small sets of subitized 
objects, even if they determined the labels by counting (Fuson, 1992b; Steffe, 
Thompson, & Richards, 1982).

MacDonald and Wilkins (2017) found that one preschool child, Amy, used con-
ceptual subitizing to develop early forms of units for counting. When given a count-
ing task from Steffe and Cobb’s (1988) counting scheme investigation, Amy drew 
from these same units and represented them with finger patterns, suggesting her 
ability to reorganize the patterns she may have relied on in earlier subitizing activity. 
Throughout sessions, Amy engaged in FCS for five and had constructed units “two 
and three” and “two, two, and one” when conceptually subitizing “five.” At the end 
of the study, Amy was given a missing addend task to solve that required her to use 
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“four” and “three.” Essentially, in the task the teacher-researcher made a row of 
seven counters and covered four items in this row. Next, Amy was asked if there are 
“four” here, how many are there altogether? Amy showed with her fingers that she 
could make “three” (using three middle fingers from one hand) and then add “two” 
(using her pinky and thumb) and “two” more (using two fingers on her other hand) 
to discover there were “seven” altogether (MacDonald & Wilkins, 2017). This evi-
dence seems to suggest relationships between early forms of number operations and 
conceptual subitizing activity.

This may be why subitizing predicts overall mathematics competencies of kin-
dergartners (Yun et al., 2011, July). In another study, kindergartners’ subitizing, but 
not the other early number skills, mediated the association between executive func-
tioning and mathematics achievement in primary school (Fuhs, Hornburg, & 
McNeil, 2016). Executive function may help children quickly and accurately iden-
tify number sets as wholes instead of getting distracted by the individuals in the sets, 
and this focus on wholes may help develop advanced mathematics concepts.

As described earlier, counting and subitizing also interact to build arithmetic 
competencies. For example, consider how children progress from counting all to 
more sophisticated counting on strategies in solving arithmetic problems (Fuson 
et al., 2000; Peterson et al., 1989; Wright et al., 2006). As mentioned in discussing 
the types of subitizing, once their movement through the counting and subitizing 
learning trajectories has given them access to the notion that they can count up from 
a given quantity, they can solve 6 + 3 in a new way. They subitize the first addend 
(rather than counting it out one by one), and then count three more, using a subitized 
rhythmic pattern as an intuitive keeping track strategy: “Siiiix… seven, eight, nine!”

As another example, more advanced ability to quickly group and quantify sets in 
turn supports their development of number sense and arithmetic abilities. A first 
grader explains the process for us. Seeing a 3 by 3 pattern of dots, she says “Nine” 
immediately. Asked how she did it, she replies,

When I was about four years old, I was in nursery school. All I had to do was count. And 
so, I just go like 1, 2, 3, 4, 5, 6, 7, 8, 9, and I just knew it by heart and I kept on doing it when 
I was five too. And then I kept knowing 9, you know. Exactly like this [she pointed to the 
array of nine dots]. (Ginsburg, 1977, p. 16)

As we discuss the details of teaching and learning of subitizing, let us not lose the 
whole—the big picture—of children’s mathematical future. Let’s not lose the won-
derment that children so young can think, profoundly, about mathematics.

These foundations are significant beyond the earliest years. Subitizing in grades 
3 and 4 significantly predicts of fluency in calculation and also general mathematics 
achievement a year later (Reigosa-Crespo et  al., 2013). Starkey and McCandliss 
(2014) also found that kindergarten children’s subitizing activity related to their 
“groupitizing” activity (a type of conceptual subitizing) and flexible operations on 
number when enrolled in third grade. Thus, as children develop more abstract means 
for number as a flexible set of units of units, they are capable of operating fluently 
on number more effectively in upper elementary school.
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2.5  Instructional Tasks and Teaching Strategies

Although children are sensitive to quantity, interaction with others is essential to 
learning subitizing; it does not develop “on its own” (Baroody, Li, & Lai, 2008). 
Children who spontaneously focus on number and subitize number are more 
advanced in their number skills (Edens & Potter, 2013). This section describes the 
third part of a learning trajectory: Instructional activities and pedagogical 
strategies.

2.5.1  Developing Children’s ANS System

For developing a sensitivity to quantity, research does suggest that making judg-
ments of the number in sets of all sizes (including number of movements, tones, 
etc.) will help strengthen children’s ANS systems (Libertus, Feigenson, & Halberda, 
2013; Wang, Odic, Halberda, & Feigenson, 2016). These are usually not labeled 
with number words, but rather with vocabulary such as “more” and “fewer” (for 
dots) or “more” and “less.” For the youngest children, intersensory redundancy—
for example, you see a ball bouncing more times, it takes longer, you hear more 
noises—helps focus attention on number (Jordan, Suanda, & Brannon, 2008). 
Studies show these abilities can be developed, such as through special video games 
in which children make similar comparisons (Park, Bermudez, Roberts, & Brannon, 
2016).

2.5.2  Mathematics Education: Supporting the Developmental 
Progression for Subitizing

For subitizing, or naming the exact number in sets, parents, teachers, and other 
caregivers might begin naming very small collections with numbers after children 
have established names and categories for some physical properties such as shape 
and color (Sandhofer & Smith, 1999). This section provides suggestions for helping 
children progress through the developmental progression for subitizing.

Everyday Number Recognition For everyone, but especially teachers of toddlers 
and 3-year olds, perhaps the easiest but most useful “activity” is simply to estab-
lish a habit of using small number words in everyday interactions frequently. They 
can replace, “Clear the cups off the table so we have room for this,” with “We 
need more area on the table for this, would you please take those three cups off the 
table?” There is no need to be “artificial” in this kind of talk, just the use of small 
number words every time it makes sense. Teachers can give parents the same 
advice.
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Fig. 2.4 Children had only seen a single pattern for 5—on the left. When asked to make a pattern 
of 5, some incorrectly produced arrangements like those on the right

 Providing these types of repeated experiences naming collections help children 
build connections between quantity terms (number, how many) and number words, 
then build word-cardinality connections (• • is “two”) and finally build connections 
among the representations of a given number. Non-examples are important, too, to 
clarify the boundaries of the number (Baroody et al., 2006). For instance, “Wow! 
That’s not two horses. That’s three horses!” For children who are less interested and 
competent in mathematics, it is especially important for caregivers and teachers to 
talk to them about number, for example, extending their interest in manipulating 
objects to include mathematical ideas such as number and shape (Edens & Potter, 
2013). Research shows such experiences are helpful, especially for children who 
begin with lower abilities (Olkun & Özdem, 2015).

Practices to Avoid In contrast to these research-based practices, mis-educative 
experiences (Dewey, 1938/1997) may lead children to perceive collections as fig-
ural arrangements that are not exact. Richardson (2004) reported that for years she 
thought her children understood perceptual patterns, such as those on dice. However, 
when she finally asked them to reproduce the patterns, she was amazed that they did 
not use the same number of counters. For example, some drew an “X” with nine 
dots and called it “five” (see Fig. 2.4). Thus, without appropriate tasks and close 
observations, she had not seen that her children did not even accurately imagine 
patterns, and their patterns were certainly not numerical. Such insights are impor-
tant in understanding and promoting children’s mathematical thinking.

Textbooks and “math books” often present sets that discourage subitizing. Their 
pictures combine many inhibiting factors, including complex embedding, different 
units with poor form lack of symmetry, and irregular arrangements (Carper, 1942; 
Dawson, 1953). For example, they may show five birds, but have different types of 
birds spread out on a tree, with branches, leaves, flowers, a sun shining overhead—
you get the idea. Such complexity hinders conceptual subitizing, increases errors, 
and encourages simple one-by-one counting.

Due to their curriculum, or perhaps a lack of training in subitizing, teachers may 
not pay proper attention to subitizing. For example, one study showed that children 
regressed in subitizing from the beginning to the end of kindergarten (Wright, 
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Stanger, Cowper, & Dyson, 1996). How could that be? The following type of inter-
action might help explain. A child rolls a die and says “five.” Looking on, the teacher 
says, “Count them!” The child counts them by ones. What has happened? The 
teacher thought her job was to teach counting. But the child was using subitizing—
which is more appropriate and better in this situation. However, the teacher is unin-
tentionally telling the child that her way is not good, that one must always count. 
Further, always telling children to count may actually hurt their development of 
counting and number sense. Naming small groups with numbers, before counting, 
helps children understand number words and their cardinal meaning (“how many”) 
without having to shift between ordinal (counting items in order) and cardinal uses 
of number words inherent in counting (Baroody et al., 2005). These can be used to 
help infuse early counting with meaning.

Specific Subitizing Activities Many number activities can promote perceptual, and 
then conceptual subitizing (Sayers, Andrews, & Boistrup, 2016). Perhaps the most 
direct activity simply challenging children to subitize, an activity called “Quickdraw” 
(Wheatley, 1996), “Snapshots” (Clements & Sarama, 1998, 2007), and “Draw what 
you see” (MacDonald & Wilkins, 2016). As an example, children are told that they 
have to quickly take a “snapshot” of how many they see—their minds have to take 
a “fast picture.” They are shown a collection of counters for 2 s only, then asked to 
construct, draw, or say the number. Consistent with research, arrangements may be 
straight lines of objects, then rectangular shapes, and then dice arrangements, all 
with small numbers. Separating these typical dice arrangements with a large space 
promotes children’s attention to subgroups for Perceptual Subgroup Subitizing 
(MacDonald & Wilkins, 2016). As children learn, they use different arrangements 
and larger numbers. See the Box, Variations of the “Snapshots” Activity, for many 
engaging modifications.

Variations of the “Snapshots” Activity
• Have children construct a quick image arrangement with manipulatives 

(and watch for any misconceptions such as shown in Fig. 2.4).
• Play Snapshots on educational technology platforms (e.g., www.learning-

trajectories.org/activity/subitize-planets-perceptual-subitizer-4).
• Play finger-placement game on computer. In Fingu, pieces of fruit are 

shown briefly and the child has to place that many fingers on the screen 
with one or two hands (Barendregt, LindstrÖm, Rietz-Leppänen, 
Holgersson, & Ottosson, 2012).

• Play a matching game. Show several cards, all but one of which have the 
same number. Ask children which does not belong (this also teaches early 
classification).

• Play concentration-type matching games (we call them “memory” games) 
with cards that have different arrangements for each number and a rule that 
you can only “peek” for 2 s.

• Give each child cards with 0–10 dots in different arrangements. Have chil-
dren spread the cards in front of them. Then announce a number. Children 
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Fig. 2.5 Arrangements for conceptual subitizing that may suggest 5 as 5, 3 + 2, 2 + 1 + 2, 
or 1 + 4 (or other interpretations)

find the matching card as fast as possible and hold it up. Have them use 
different sets of cards, with different arrangements, on different days. 
Later, hold up a written numeral as their cue. Adapt other card games for 
use with these card sets.

• Emphasize conceptual subitizing as soon as possible. Use different 
arrangements that suggest different partitions of a number (see Fig. 2.5).

• Place various arrangements of dots on a large sheet of poster board. With 
children gathered around you, point to one of the groups as children say its 
number as fast as possible. Rotate the poster board on different sessions.

• Challenge children to say the number that is one (later, two) more than the 
number on the quick image. They might also respond by showing a numeral 
card or writing the numeral. Or, they can find the arrangement that matches 
the numeral you show.

• Remember that patterns can also be temporal and kinesthetic, including 
rhythmic and spatial-auditory patterns. A motivating subitizing and 
numeral writing activity involves auditory rhythms. Scatter children 
around the room on the floor with individual chalkboards. Walk around the 
room, then stop and make a number of sounds, such as ringing three times. 
Children should write the numeral 3 (or hold up three fingers) on their 
chalkboards and hold it up. These can also develop conceptual subitizing.

Across many types of activities, from class discussions to textbooks, children can 
be shown displays of numbers that encourage conceptual subitizing. Guidelines to 
make groups for this purpose include the following: (a) avoid embedding groups 
in pictorial context; (b) use simple forms such as homogeneous groups of circles 
or squares (rather than pictures of animals or mixtures or any shapes) for the units; 
(c) emphasize regular arrangements (most including symmetry, with linear 
arrangements for preschoolers and rectangular arrangements for older children 
being easiest); and (d) provide good figure-ground contrast.

To develop strong conceptual subitizing, children should experience many real- 
life situations such as finger patterns, arrangements on dice and dominoes, egg car-
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tons (for “double-structures”), and arrays that separate two subgroups. To extend 
conceptual subitizing, teachers might discuss and especially cooperatively build 
arrangements to “make it easy to see how many.” Such thoughtful, interactive, con-
structive experiences are effective ways of building spatial sense and connect it to 
number sense (Nes, 2009). For example, children might draw flowers with a given 
number of petals or draw or build pictures with manipulatives of houses with a cer-
tain number of windows so that they and others can subitize the number.

Such conceptual subitizing provides a direct phenomenological experience with 
additive situations, as children conceptualize two parts and the whole. Having both 
parts and whole in working memory builds a foundation for “knowing addition 
facts.” Indeed, this is arguably better than emphasizing only counting-based solu-
tions. Consider children using the initial “counting all” strategy for 3 + 2: counting 
out 3 objects, then counting out 2 objects, then starting over at “one” and counting 
all 5. The children answer correctly, but it is likely that only the 5 is retained in 
working memory. In comparison, the two addends may not be, and so it is unlikely 
that a connection is made between the addends and the sum. In subitizing, the 
addends and the same are retained in working memory in the same time period.

Subitizing is not only a separate complement to counting-based approaches to 
arithmetic but a valuable process to integrate with counting. That is, children can use 
subitizing in concert with counting to advance to more sophisticated addition and 
subtraction. As one example, children who are encouraged to subitize 3 in the previ-
ous example may move from counting all to early counting on, recognizing the set of 
3, and counting only, “4, 5!”. As another example, a child may be unable to count on 
keeping track, as in solving 4 + 5 by counting “4…5 is 1 more, 6 is 2 more…9 is 5 
more.” However, counting on two using rhythmic subitizing—for 5  +  2, saying 
“five…six, seven!” matching the counting to a “tah-dum” beat of two—gives them a 
way to figure out how counting on work. Later they can learn to count on with larger 
numbers, by developing their conceptual subitizing or by learning different ways of 
“keeping track.” Eventually, children come to recognize number patterns as both a 
whole (as a unit itself) and a composite of parts (individual units).

2.6  Final Words

Across development, numerical knowledge initially develops qualitatively and 
becomes increasingly mathematical. In subitizing, children’s ability to “see small 
collections” grows from pre-attentive but quantitative, to attentive perceptual subi-
tizing, to imagery-based subitizing, and to conceptual  subitizing (Clements, 1999; 
Steffe, 1992). Perceptual patterns are those the child can, and must, immediately see 
or hear, such as domino patterns, finger patterns, or auditory patterns (e.g., three 
beats). A significant advance is a child’s focus on the exact number in these patterns, 
attending to the cardinality. Finally, children develop conceptual patterns, which 
they can operate on, as and when they can mentally decompose a five pattern into 2 
and 3 and then put them back together to make five again. These types of patterns 
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may “look the same” on the surface, but are qualitatively different. All can support 
mathematical growth and thinking, but conceptual patterns are the most powerful.

Subitizing small numbers appears to precede and support the development of 
counting ability (Le Corre et al., 2006). Thus, it appears to form a foundation for all 
learning of numbers. Indeed, a language-independent ability to judge numerical 
values nonverbally appears to be an important evolutionary precursor to adult sym-
bolic numerical abilities. Children can use subitizing to discover critical properties 
of number, such as conservation and compensation. They can build on subitizing to 
develop capabilities such as unitizing as well as arithmetic capabilities. Thus, subi-
tizing is a critical competence in children’s number development.
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Chapter 3
Discerning a Progression in Conceptions 
of Magnitude During Children’s 
Construction of Number

Catherine Ulrich and Anderson Norton

Abstract Psychological studies of early numerical development fill a void in math-
ematics education research. However, conflations between magnitude awareness 
and number, and over-attributions of researcher conceptions to children, have led to 
psychological models that are at odds with findings from mathematics educators on 
later numerical development. In this chapter, we use the approximate number sys-
tem as an example of a psychological construct that would benefit the mathematics 
education community if reframed to account for distinctions between number and 
magnitude. We provide such a reframing that also accounts for the role of children’s 
sensorimotor activity in the construction of number.

Keywords Approximate number system · Counting · Early number · Magnitude · 
Students’ mathematics

In the 1980s, an interdisciplinary group of researchers used qualitative methods to 
investigate how students construct numerical operations (e.g., Steffe, Glasersfeld, 
von Richards, & Cobb, 1983). They worked from a neo-Piagetian, radical construc-
tivist perspective, and their work yielded a hierarchy of numerical stages. In the 
decades since, their research program has been elaborated and extended to include 
students’ constructions of fractions and integers as reorganizations of those early 
numerical schemes (e.g., Steffe & Olive, 2010). More specifically, Steffe and col-
leagues describe how numerical operations arise from students’ coordinations of 
sensorimotor activity and how students reorganize their numerical operations to 
form more advanced conceptions of number.

In the meantime, psychologists have been conducting quantitative studies on 
early number knowledge. This work has led to theoretical constructs such as 
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 subitizing and the approximate number system—constructs that are presumed 
innate and that allow for non-verbal magnitude representations in humans and ani-
mals (e.g., Dehaene, 1992; Gallistel & Gelman, 2000). Thus, Gallistel and Gelman 
(2000), among others, view with suspicion the idea that the verbal number word 
sequence is critical in the development of numerical thinking, as proposed by the 
neo- Piagetian theory underlying numerical stages.

We argue in this chapter that some important distinctions grew up out of Piagetian 
and neo-Piagetian work. We further argue that these distinctions could help reframe 
results from recent psychological studies into how subjects view and operate with 
numbers. One distinction of interest is between the learner’s emerging concepts of 
a quantity’s magnitude and the learner’s ability to measure the magnitude. A second 
distinction of interest is between the learner’s assimilation of a situation and the 
observer’s assimilation of the situation. The following questions relate to those dis-
tinctions, respectively:

• What are magnitude and number?
• Where do numbers reside?

We introduce and reframe the research around the approximate number system 
as one example of the potential utility of our framework. This example also illus-
trates ways that mathematics education researchers may benefit from utilizing the 
results of psychological studies to inform their theories of number development.

3.1  What Are Magnitude and Number?

In reading reports of studies on early number development from the field of psy-
chology, we quickly noticed that the terms magnitude and number are used differ-
ently than they are used in mathematics education. In fact, these terms are often 
ill-defined in both mathematics education and psychological research. For example, 
number can refer to a conception that includes the real numbers or other extensions 
of the natural numbers. In this chapter, we use the term number to refer to the 
numerical operations used to determine the numerosity of a collection of objects. In 
the following subsections, we will expand on what we mean by numerical opera-
tions as well as describe the subtle, but important, distinction we draw between 
magnitude and number. In particular, we lay out Piaget’s use of the terms gross and 
extensive quantity to illustrate a fundamental distinction in the ways people can 
understand a given magnitude; we will additionally draw on Thompson, Carlson, 
Byerley, and Hatfield (2014) to tease out the role of measurement in the develop-
ment of any magnitude awareness; and we will finally draw on Glasersfeld’s (1981) 
construct of a unitizing operation, as well as Steffe and colleagues’ (e.g., Steffe 
et al., 1983; Ulrich, 2015) theory on the development of numerical stages, in order 
to better characterize magnitude and number.
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3.1.1  Gross Quantity Versus Extensive Quantity

The most fundamental idea I have derived … is the idea that mathematical thinking begins, 
not with counting, but with comparisons between quantities, in particular the identification 
of equality and inequality relationship. (Sophian, 2007, p. xiv).

Psychologists and mathematics education researchers alike agree that mathemat-
ical thinking is fundamentally based in actions other than counting. However, the 
question remains of when an awareness of magnitudes and number begins and how 
they develop (or whether they are innate). Piaget (1970) believed that all mathemati-
cal operations can be traced back to abstractions from sensorimotor activity. In par-
ticular, Piaget and Szeminska (1952) and Steffe (1991) hold that even our earliest 
awareness of magnitude has to be built up out of our sensorimotor experiences and, 
therefore, is not innate. For example, consider the development of an awareness of 
length as a magnitude. One way that a sense of length can develop is through an 
awareness of duration of eye motion when traveling across perceptual material (or 
the amount of time an object is in the child’s attentional field when sweeping an eye 
across the room). One can also imagine how other sensorimotor activity, such as 
walking along an object or moving a hand along an object, could similarly lead to a 
sense of length. In these scenarios, our awareness of length is that of a quality of the 
object that is delimited by some kind of visual or action-based cue. We can think of 
Piaget’s gross quantity as exactly this kind of unspecified extension of a quality. 
This characterization aligns with a distinction made separately by McLellan and 
Dewey (1895): “Quantity is a limited quality, and there is no quantity save where 
there is a certain qualitative whole or limitation” (p. 57, emphasis in original).

A gross quantity does not include the type of measurable attribute that psycholo-
gists would normally associate with the term magnitude. Piaget documents how 
particular visual features, such as the extension of one item beyond another, are the 
main features of comparison of length when length is still a gross quantity. This 
leads to orderings inconsistent with adult notions of length. From the perspective of 
this chapter, one of the most important features of a gross quantity is that it includes 
a size awareness in some sense. In fact, “size awareness” is the name of this first 
level of magnitude awareness in the finer-grained framework of magnitude aware-
ness offered by Thompson, Carlson, Byerley, and Hatfield (2014). There is no sense 
of being able to measure that size. For example, a student at this level of angle 
measure awareness may talk about “how far apart” the sides of an angle are. Such a 
student might view the angle in Fig. 3.1a or b as bigger than that of Fig. 3.1c or even 

(a) (b) (c) (d)

Fig. 3.1 Angles for comparison
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Fig. 3.1d by attending to perceptual cues based on the distance between endpoints 
or the extension of one/both sides.

We should also note that any attempts to help children use numbers to describe 
their magnitude awareness are fraught with difficulties when children are still con-
strained to operating with gross quantities. For example, if blocks are linked together 
to make towers, the child’s assessment of whether one of these towers is longer than 
another will be unaffected by the numbers reached by counting the blocks (e.g., 
Piaget, Inhelder, & Szeminksa, 1960; Tzur et al., 2013). This is one indication that 
gross quantity is not numerical from the child’s perspective.

Eventually, the child will understand length in a way that allows for the use of 
measurement units, and subordinates comparisons made on the basis of visual or 
action-based cues to the results of subdividing quantities with these measurement 
units. This is referred to as extensive quantity. To better understand this distinction, 
imagine qualities you can compare the extension of, such as pain or even something 
like brightness of a light, but that you may not have a good way of explicitly mea-
suring. You have an awareness of the magnitude of these qualities and may be able 
to directly compare two of them, but you probably lack a standard way to compare 
them in a consistent manner across different situations. This is the same level of 
magnitude awareness a child may have with respect to a gross quantity.

3.1.2  The Role of Measurement in the Progression 
of Magnitude Constructions

Piaget hypothesized that the major shift in thinking that takes place between under-
standing of gross quantities and the understanding of explicit measurement is the 
ability to imagine subdividing a quantity into measurement units that allows a stan-
dardized comparison between quantities (Piaget & Szeminska, 1952). For example, 
the child may use a finger or smaller rope to segment two ropes to decide which is 
longer. The construction of a unit of measurement implies that the child has delim-
ited a portion of the (potentially mental) activity they use to construct the quantity 
in question to produce a measurement unit that they can use to make definite the 
sense of large or small magnitude associated with perceptual cues. The perceptual 
cues, such as right-hand extension or straightness, are aspects of situations that are 
usually correlated with larger or smaller magnitudes, but that are not sufficient alone 
to make consistent comparisons of magnitude over disparate situations.

In fact, once measurement units come into play, there are still many different 
levels of magnitude awareness that students can construct that would all correspond 
to an extensive quantity because students must still figure out how to interpret dif-
ferent numerical outcomes from measuring when using different measurement 
units, such as inches and feet or degrees and radians. Thompson et al. (2014) outline 
four such levels of magnitude awareness. Measure magnitude includes an ability to 
construct measurement units, but lacks an awareness that the numerical outcome of 
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measurement depends on which measurement unit they are using. So, for example, 
a child might measure one angle in terms of a 1-degree unit angle and another angle 
in terms of a 1-radian unit angle and not realize that these two numerical measures 
are not useful for comparison without adjusting for the differing measurement units. 
The construction of a Steffe magnitude implies that “a person conceives of the size 
of Quantity A relative to a unit B and they are both measured in a common unit” 
(p. 2). So, for example, a child can measure in feet, knowing that a foot can be mea-
sured in terms of inches, so they could just as well measure in inches. The last two 
levels of magnitude awareness involve awareness of invariant relationships between 
the magnitude of the measurement unit and the numerical outcome of measurement 
(a Wildi magnitude) and the invariant relationship between the numerical outcomes 
of measurement using two different units (a relative magnitude).

Note that in this framework, “the idea of magnitude, at all levels, is grounded in 
the idea of a quantity’s size” (Thompson et al., 2014, p. 1). Thus “a quantity…is not 
something in the world. It is a person’s conception of an object and an attribute of 
it, and [at more advanced levels] a means by which to measure that attribute” (p. 1). 
Therefore, an increasingly sophisticated understanding of measuring a magnitude 
corresponds to a more sophisticated awareness of the magnitude itself. In fact, one 
can imagine how a more sophisticated awareness of a magnitude could allow for 
more sophisticated use of measurement, but also how increased experience with 
measurement could lead to a more sophisticated awareness of magnitude. That is, 
measurement is inextricably intertwined with our sense of magnitude.

Piaget and Szeminska (1952) identify two operations that are coordinated to lead 
to measurement schemes. The first is subdivision and the second is change of posi-
tion. Subdivision refers to the child’s construction of a small instantiation of the 
magnitude that can be used as the measurement unit. Change of position refers to 
the translations of that measurement unit in order to subdivide other instantiations 
of the magnitude. Often our measurement instruments, such as a ruler, are already 
subdivided, but the child still must be able to interpret the subdivisions as transla-
tions of the measurement unit in order to understand the count of these subdivisions 
as a quantitative measure of the size of the quality in question, such as length. In the 
next section, we will see how similar operations are important in the theory of 
numerical stages.

3.1.3  Unitizing and the Construction of Number

Like Piaget, Humberto Maturana was trained as a biologist. He has articulated in 
several places (e.g., Maturana, 1988) the idea that we are biological beings with 
specific physical (including neural) attributes that allow us to organize our experi-
ence in particular ways. This leads to commonalities across individuals. From this 
perspective, human beings do not organize the world in similar ways because we are 
able to directly experience the world, but because we are running up against the 
same constraints in the world with similar tools for organization. Ernst von 
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Glasersfeld (1995) codified these ideas of the construction of knowledge in the the-
ory of radical constructivism.

While a radical constructivist would not see any reason to claim that number is 
inherent to the world, much less directly perceivable by humans or other animals, 
we could agree with cognitive psychologists that there is an innate foundation for 
certain later constructions in the way we are physically organized. Glasersfeld has 
hypothesized a particular innate ability—attentional bounding—as leading to the 
foundational operation of unitizing. Unitizing is reflectively abstracting an atten-
tional bounding of experience as unitary in some way.

In a 1981 article in the flagship mathematics education journal, Journal for 
Research in Mathematics Education, Glasersfeld laid out a theoretical hierarchy 
of applications of the unitizing operation that eventually lead to the construction 
of what he and others call arithmetic units. Early applications of the unitizing 
operation construct objects. Glasersfeld (1981) theorizes that the child initially 
experiences the world through an undifferentiated mass of sensory inputs. If we 
imagine just the visual inputs, the child must attentionally bound and unitize con-
stant patterns in the undifferentiated mass of visual inputs in order to construct 
objects. We can imagine, for example, a child unitizing a dark picture against a 
white wall by unitizing attentional pulses starting from the sharp transition in 
color (light wave frequencies of the visual input) at the border of the picture, con-
tinuing while scanning across the picture, and ending at the attentional pulse asso-
ciated with another marked change in color on the other side. In fact, a child might 
experience attentional pulses associated with these kinds of transitions many 
times before applying the unitizing operation to the intermediate visual inputs to 
form an early visual object. The child has, in essence, utilized the visually similar 
aspects of the dark picture (in contrast with the white wall) in order to unitize 
these dark visual inputs.

After discussing the construction of objects, Glasersfeld (1981) discusses the 
application of the unitizing operation when constructing collections of like objects. 
The determination of what constitutes like objects that serve in the construction of 
categories of objects is influenced by socially negotiated constructs such as the col-
ors that are categorized as “red,” and more abstract conceptual categories (dog, 
food, etc.). The quantitative property of these categories, that is, their numerosity, 
can be made specific by counting activity. At first, what we call counting activity 
does not necessarily have a numerical character for the child in that the categories 
and the items belonging to them are experiential so they are available to the child 
only in experience. The activity involves pointing at each element while simultane-
ously uttering a word in the number word sequence, which need be no more numeri-
cal for the child than the alphabet song. The output of the counting activity is 
repeating the last word uttered during the pointing activity.

There are then a series of abstractions that are made related to counting activity 
that lead to the construction of the numerosity of a collection. First, the child may 
reflectively abstract “things that can be counted” as a conceptual category and use 
that to form what are, to the observer, more general collections. Second, the child 
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can modify the counting activity in various ways. For example, the child can substi-
tute focused attention for pointing and mentally represented objects for visible 
objects, allowing counting in a wider variety of situations. Third, the child can rec-
ognize the counting activity as a way to make definite their indefinite gross quantity 
corresponding to the numerosity of a collection. These three types of abstractions 
allow the child to count his/her own counting acts, treat number word sequences as 
sets, and recognize how different number word sequences are related to each other: 
“1, 2,…, 8” is smaller than “1, 2, …, 12” not just because 8 comes before 12, but 
also because there are fewer things represented by 8 (the result of counting the first 
sequence) than by 12 (the result of counting the second sequence). This is the point 
at which we would attribute a numerical counting scheme to the child because there 
is an awareness of both order and numerosity inherent to number words and count-
ing activity. Note that well before this point, children would appear to have con-
structed the numerosity of a collection by correctly answering questions such as, 
“How many apples are in the bowl?”, when in fact they are carrying out a choreo-
graphed counting activity that does not contain an awareness of magnitude.

Although students at this point have constructed the first numerical stage, there 
are still three more stages that students must construct to develop fluency with the 
arithmetic operations and to construct fraction concepts (Steffe, 2010; Ulrich, 2015, 
2016). In the second stage, students develop the ability to construct numerical units 
greater than 1 to allow them, for example, to make sense of the decimal number 
system and its reliance on groups of 10. In the third stage, students apply the unit-
izing operation to their acts of counting to abstract out the “plus one-ness” of the 
act. This creates a new kind of unit of one, an iterable unit, that allows students to 
think about how many times bigger a number is than 1. So instead of thinking of 9 
as the set of nine numbers in the sequence from 1 to 9, the student would think of 9 
as 9 iterations of a single unit, or as 1 nine times. This leads to an early understand-
ing of multiplicative relationships that is completed in the fourth numerical stage, 
when students can form iterable units greater than 1, to think of one number, such 
as 28, as made up of iterations of a second number, such as 7.

Part of the reason we have laid out this construction of number in so much detail 
is to note that number is dependent on many previous constructions that take place 
over a long period of time and include reflections on an individual’s own counting 
activity. Hence, it is a socially occasioned category, albeit different from many 
other linguistic or written signs in its reliance on abstractions of mental activity 
itself. Therefore, we reject the idea that number would be a construct available to 
infants or is somehow an intuitively obvious aspect of the environment though we 
recognize the importance of biological primitives as a starting point. Among 
research in developmental psychology, this view most closely aligns with that 
summarized by Sarnecka, Goldman, and Slusser (2015): “[Natural number con-
cepts] do not appear to be innate—rather, they are constructed… Cardinality seems 
to be the marker of a profound conceptual achievement, involving an implicit 
understanding of the successor function and of equinumerosity, as well as of how 
counting works” (p. 307).
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3.1.4  Tying Together Number and Measurement

Before leaving our discussion of number and magnitude, we will briefly note the 
interdependence of number and the measurement operations that undergird magni-
tude awareness.

There is no necessity for children to measure or to count to introduce units. Segmenting 
sensory experience into units is the results of a unitizing activity prior to measuring or to 
counting that makes these activities possible. For example, …if the ‘height’ of the shorter 
of the two children is abstracted and then projected into the height of the taller child, this 
would be a segmenting activity (Steffe, 1991, p. 63).

In this sense, “children who are gross quantitative comparers are not without 
units” (p. 63). However, these units are not yet numerical (what Steffe and Piaget 
call arithmetic). Therefore, while unitizing is involved in any magnitude awareness, 
a child cannot construct an extensive quantity without the ability to interpret their 
measurement units as arithmetic units that can be counted and/or compared. 
Therefore, an extensive quantity requires the psychological equivalent of a numeri-
cal scheme. Conversely, the development of a numerical counting sequence is actu-
ally the development of an extensive quantity representing the numerosity of a 
collection. Therefore, students may have an awareness of the numerosity of a col-
lection (a gross quantity) before they are numerical, but the ability to measure the 
numerosity of a collection (an extensive quantity) corresponds with the ability to 
think numerically. In the end, a number is not the same as any particular magnitude. 
It is an abstraction of measurement activity that that has led to a set of generalized 
magnitude measures.

3.2  Where Do Numbers Reside?

In characterizing magnitude and number, we hope it is clear that neither magnitude 
nor number exist in the situation. They are constructed and exist in the mind of the 
observer, be it an adult or child. Much of the psychological research on early numer-
ical representation and comparison seems to operate with a very different under-
standing of number and magnitude. In particular, statements such as, “number, like 
color or movement, is a basic property of the environment” (Piazza, Izard, Pinel, Le 
Bihan, & Dehaene, 2004, p. 547) directly counter epistemological assumptions and 
empirically based theory in constructivist research. Similarly, arithmetic operations 
are seen to exist in the situation as opposed to the mind of the observer.

For example, consider Wynn’s (1992) experiment involving infants. When a 
researcher put a new doll behind a screen with a doll that was already observed by 
the infant, Wynn infers from the infant’s reaction that “infants could clearly see the 
nature of the arithmetical operations being performed” (emphasis added, p. 749). 
While one doll is being added to what is behind the screen in a general sense of put-
ting a new object with an existing collection of objects, to claim this is addition 
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would imply that anytime we increase the size of something we are carrying out 
addition. In contrast, we reserve more formal mathematical language, such as the 
terms addition or number, for numerical operations, and we note that different 
observers could view the same situation as involving different mathematics.

Consider a situation in which someone removes some cookies from a row of 
cookies, from three different perspectives: (1) A toddler may not utilize any math-
ematical operations and just attend to who is getting the cookies; (2) another child 
might utilize a number sequence to interpret the row of cookies as a countable col-
lection with an unknown number of cookies, but not attend to the increasing or 
decreasing actions; (3) and an elementary school teacher might use a subtraction 
scheme to model the situation as a subtraction problem. From our perspective, sub-
traction does not exist in the situation, waiting to be “seen” by the observer. Rather, 
the situation is one in which an observer could use a subtraction scheme to make 
sense of the situation. Going back to the Wynn example, there is no reason to think 
that an infant would interpret a general situation of “increase” or even “new object,” 
such as that in Wynn’s study, as a numerical situation, and therefore we would not 
refer to the mental actions of the infant as addition. On the other hand, it is clearly 
an arithmetic situation from the researcher’s point of view.

In our view, researchers of early number construction are particularly susceptible 
to over-attribution of our ways of operating because the concepts seem so basic and 
obvious to us. It is hard to imagine a world in which we are unaware of numbers or 
lack the ability to measure size in general. However, the inanity of attributing a 
mathematical model to the situation instead of the thinker becomes clearer if we 
consider more complicated mathematical models than numbers.

Consider an outfielder catching a fly ball. From a mathematical perspective, we 
could model the situation with a system of linear and quadratic motion equations 
and use that model to determine where the outfielder needs to stand in order to catch 
the ball. Therefore, we could attribute to the outfielder the ability to solve a system 
of linear and quadratic equations if they are consistently able to move to the correct 
location to catch a ball. However, from our own experiences catching a ball, it is 
clear that the outfielder is doing no such thing. Not only does the outfielder have 
access to the numerical measures of things like location and speed that would be 
necessary to do these calculations, but researchers have found that the outfielder 
does not even have a good intuitive awareness of these magnitudes (Rushton & 
Wann, 1999). The most plausible hypothesis seems to be that outfielders carry out a 
running pattern that linearizes the ball’s trajectory so that they are not attending to a 
covariation of time and distance or speed, but only attending to spatial position 
(McBeath, Shaffer, & Kaiser, 1995). So not only would it be a major over- attribution 
to imagine the outfielder using our normal mathematical model of the situation, but 
it could lead us to focus on the wrong variables for research. Similarly, we must be 
careful to avoid attributing our models of situations to situations themselves and to 
the research subjects in these situations. Doing so may blind us to completely dif-
ferent explanations that would fit the observed behaviors equally well or even more 
closely.
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Think now about how a similar issue arises in the attribution of zero as a number 
to bees. In a recent study, Howard, Avarguès-Weber, Garcia, Greentree, and Dyer 
(2018) found that bees could be trained to fly to one of two cards—the one with the 
fewest symbols on it—under which they would find sugar water. When given the 
option of a card with no symbols on it, versus a card with one to six symbols on it, 
the bees chose the card with no symbols at a rate statistically better than chance 
(significantly better than 50%). From this, the researchers inferred that bees under-
stand the concept of zero as a number. There are numerous possible interpretations 
of the bees’ behavior that do not involve attributing the construct of number (let 
alone zero) to the bees. Just because we interpret the cards in terms of number, a 
construct humans took centuries to develop, does not mean that bees have a number 
sequence or a concept for zero.

We see the distinction between the research subject’s perspective and the 
researcher’s perspective as one of the keys to reframing findings on early number in 
psychological research. Over-attribution leads to a lack of respect for children’s 
rational ways of mathematically operating that might differ from our adult mathe-
matics. In mathematics education, this can lead to missing out on the opportunity to 
affirm and build on students’ ways of operating as opposed to dismissing the valid-
ity of whatever does not fit with adults’ ways of operating.

The question remains of what proto-numerical understandings we can attribute 
to non-numerical children. Just like there are gross quantities that underlie our later, 
numerical awareness of magnitude, we can have intuitive and non-numerical under-
standings of actions that underlie arithmetic operations. For example, I may have an 
experience of adding (in the general sense) blocks to a basket of blocks and link that 
to a sense of greater, whether that is a greater height of blocks in the basket, more 
fullness of the basket, a greater amount of blocks, and so forth. Or I may have an 
experience of dividing up (in the general sense) food when I share it with someone 
else, and I may want us both to have the same amount of food. However, I would not 
say I am carrying out addition or division in those situations if I am not framing the 
situation as involving adding or dividing up numerical quantities.

3.3  The Approximate Number System

Psychologists have long noted the apparent ability of humans and non-humans to 
perform above chance when comparing the sizes of two collections. Dehaene (1992) 
proposed a construct, called the approximate number system (ANS), to explain this 
phenomenon. Many researchers have since attempted to measure the acuity of the 
approximate number system and investigate its relationship to, among other things, 
the development of numerical thinking.

ANS serves as the semantic component within a triple-code model for numbers 
(Dehaene, 1992). The model includes a visual component for interpreting Arabic 
number forms, an auditory component for interpreting verbal word names, and an 
“analogical magnitude representation.” ANS refers to this analogical magnitude 
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representation. Although it relates to the auditory and visual components within the 
triple-code model, the ANS construct is supposed to function independent of lan-
guage and modality (auditory or visual).

Exact arithmetic is acquired in a language-specific format, transfers poorly to a different 
language or to novel facts, and recruits networks involved in word-association processes. In 
contrast, approximate arithmetic shows language independence, relies on a sense of numer-
ical magnitudes, and recruits bilateral areas of the parietal lobes involved in visuo-spatial 
processing. (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999, p. 284)

ANS can be modeled in at least two ways: with the mental number line (Dehaene, 
2003) or the accumulator model (Gallistel & Gelman, 2000; Gibbon, 1977; Meck & 
Church, 1983). Here, we critically examine the construct itself and those two mod-
els of it. Existing critiques mostly concern the validity of measures of ANS acuity 
(e.g., Inglis & Gilmore, 2014) and the relationship between ANS and other psycho-
logical constructs, such as subitizing (e.g., Cutini, Scatturin, Moro, & Zorzi, 2014). 
Our own critique recognizes the importance of early magnitude comparisons but 
questions its supposed relation to number. We emphasize the role of sensorimotor 
activity in building number from early (or innate) constructs, like the ANS and 
subitizing.

3.3.1  Critical Analysis of the ANS

Researchers typically assess ANS acuity by displaying two collections of dots and 
asking subjects to determine which collection is larger. Researchers can then mea-
sure acuity in terms of accuracy (percentage of correct responses in identifying the 
larger collection), but theories about ANS suggest at least two additional measures: 
a subject’s Weber fraction and their numerical ratio. The Weber fraction is based on 
the idea that estimates of sizes of collections follow a normal distribution, and a 
subject’s Weber fraction is the standard deviation of the normal curve that best fits 
the subject’s responses (Barth et al., 2006). The numerical ratio is based on the idea 
that comparisons between collections worsen as their sizes become closer (the 
numerical distance effect; Sekuler & Mierkiewicz, 1977), and a subject’s numerical 
ratio is the largest fraction m/n for which a subject can reliably discern a collection 
of m dots from a larger collection with n dots (the closer to 1, the stronger the sub-
ject’s acuity).

Although the ANS explains some phenomena in comparing and estimating sizes 
of collections, various characterizations and measures of ANS do not hang together 
coherently. For example, it appears that the Weber fraction and the numerical ratio 
effect measure different, but related, constructs. In a study of 49 adults and 56 chil-
dren, Inglis and Gilmore (2014) found weak correlations between measures of 
numerical ratio and measures of both Weber fraction and accuracy. They also found 
unacceptably low test-retest reliability in measures of subjects’ Weber fractions and 
numerical ratios. On the other hand, test-retest reliability of accuracy was accept-
able, and accuracy was strongly associated with Weber fraction.
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Questions about the ANS construct persist, even when reliable measures of accu-
racy are used. For example, results from Rousselle, Palmers, and Noël (2004) sug-
gest that preschool children rely on perceptual cues (e.g., the surface area taken up 
by the collections of dots), rather than numerosity, to solve ANS tasks. Furthermore, 
if ANS were the basis for number, we would expect a neat relationship between 
numerical/arithmetic development and ANS acuity, but results are mixed (e.g., De 
Smedt, Noël, Gilmore, & Ansari, 2013; Libertus, Feigenson, & Halberda, 2011; 
Lyons, Ansari, & Beilock, 2012). For example, in a study of children between 4 and 
7 years old, Soltész, Szűcs, and Szűcs (2010) found that “verbal counting knowl-
edge and performance on simple arithmetic tests did not correlate with non- symbolic 
magnitude comparison [ANS task performance] at any age” (p. 12).

Collectively, results suggest that ANS does describe a valid psychological con-
struct but that researchers may need to re-conceptualize models of it. We offer one 
possible re-conceptualization. First, we examine assumptions about how the ANS—
however conceptualized—supports the construction of number.

3.3.2  ANS and Number

Like subitizing (the focus of Chap. 2), the ANS involves an apprehension of magni-
tude that does not rely upon counting. Magnitude is rarely explicitly defined in ANS 
research (though we discuss an exception with regard to the mental number line, 
below). In the context of dot comparison tasks, it appears to refer to numerosity, or 
“the number of objects in a set” (Dehaene, Molko, Cohen, & Wilson, 2004, p. 218). 
We agree that, from the researchers’ perspective, ANS tasks involve number. 
However, we question the assumption that infants (and non-human animals) share 
that experience. Mathematics educators, in general, have learned to be vigilant 
against the fallacy of attributing their own mathematics to their students (e.g., Steffe 
& Tzur, 1994).

A related assumption about the ANS is that it maps onto an exact knowledge of 
number, as represented by number names and Arabic symbols (Dehaene, 1992). 
This assumption does not account for the role of children’s activity in constructing 
number (Simon, Placa, & Avitzur, 2016). Nor does it explain why the Intraparietal 
Sulcus (IPS) is prominently implicated in neural correlates of both ANS (Ansari, 
2008) and manual tool use (see Norton, Ulrich, Bell, & Cate, 2018, for a summary 
of research connecting the hands with mathematical development). Furthermore, 
the assumption runs counter to evidence that comparing symbolic and non- symbolic 
magnitudes is a non-trivial process, even for adults: “Data suggest instead that a 
numeral does not provide direct access to an approximate sense of the quantity it 
represents” (Lyons et al., 2012, p. 639).

Dehaene (1992) has described the ANS as a language-independent system for 
developing an understanding of number. As mathematics educators, we agree that 
children develop a sense of number that does not necessarily rely on language or 
symbols. Rather, language and symbols serve to support mathematical development 
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by referencing existing concepts (Gravemeijer, Lehrer, van Oers, & Verschaffel, 
2013). In fact, the mathematics education community at large warns against an edu-
cational focus on rote, or procedural knowledge, wherein students might memorize 
multiplication tables or manipulate algebraic symbols with no reference to underly-
ing concepts (e.g., Hiebert & Lefevre, 1986). However, the concepts that number 
words and Arabic symbols refer to are not innate; they require years of mathemati-
cal experience to develop. As reported by Laski and Siegler (2007), experience sup-
ports even the development of numerical estimation skills that ANS tasks assess.

In addition to eschewing language and symbols, models of the ANS tend to dis-
miss the role of sensorimotor activity in constructing number: “This mechanism 
departs significantly from Piaget’s (1952, 1954) sensorimotor scheme in allowing 
for internal learning to take place purely by mental experiment, without any overt 
action of the organism on the external world” (Dehaene & Changeux, 1993, p. 404). 
However, research in mathematics education consistently demonstrates the critical 
role of sensorimotor activity in children’s development of number, and in mathe-
matics in general (e.g., Baroody, Lai, & Mix, 2006; Sarama & Clements, 2009). As 
illustrated in the opening sections of this chapter, counting is much more than a 
language game, requiring, for example, that children create unit items and establish 
a one-to-one correspondence between actions of pointing to those items and reciting 
number words. Such findings are the basis for educators’ use of manipulatives, such 
as two-color counters and base-10 blocks, in elementary school classrooms 
(Clements, 2000).

Research in mathematics education is buttressed by studies in cognitive psychol-
ogy and neuroscience demonstrating close connections between sensorimotor activ-
ity and mathematical development. In particular, several studies indicate that finger 
gnosis—a sense of location of one’s fingers—is an early predictor of mathematical 
achievement (Noël, 2005; Rusconi, Walsh, & Butterworth, 2005; Soylu, Lester, & 
Newman, 2018), and the relationship between fingers and number knowledge per-
sists into adulthood, well beyond finger counting (Sato, Cattaneo, Rizzolatti, & 
Gallese, 2007). Penner-Wilger and Anderson (2013) point to such findings in posit-
ing that areas of the brain evolved for manual dexterity have been repurposed to 
support numerical development, suggesting a strong evolutionary link between 
manual and numerical digits. Researchers of embodied cognition have taken advan-
tage of these connections to design sensorimotor interventions in support of chil-
dren’s numerical development, even coining the term “manumerical cognition” 
(Wood & Fischer, 2008). One particularly relevant intervention study engaged chil-
dren in full-body motion in response to numerical comparison and estimation tasks 
(Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011). The researchers found that this 
sensorimotor-trained group made substantial gains on paper-and-pencil assessments 
of ANS acuity and mathematical achievement, significantly beyond that of a control 
group, which received training on a computer.

These studies suggest that sensorimotor activity supports the development of 
ANS acuity and mediates its role in supporting the construction of number. Although 
research on the ANS provides evidence for pre-linguistic knowledge of magnitude, 
the preponderance of evidence from mathematics education, cognitive psychology, 
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and educational neuroscience suggests that sensorimotor activity is critical for 
numerical development. Before reframing ANS within our own model of numerical 
development, which accounts for sensorimotor activity, we consider two existing 
models of ANS itself: the accumulator model and the mental number line.

3.3.3  The Accumulator Model

Gallistel and Gelman (2000) describe the ANS as a non-verbal counting process. 
They use the metaphor of a fluid beaker with discrete rulings to describe this pro-
cess. The beaker accumulates a unit of volume (a cup) for each instance of a per-
ceived object, so that each counted item is coded as another step on the beaker. The 
total volume of the beaker is presumed exact, but memory introduces a “sloshing” 
effect. The signals that encode and later retrieve the magnitude representation lead 
to recalled representations that are distributed around the true numerical description 
of the magnitude.

The non-verbal representations of number are mental magnitudes (real numbers) with sca-
lar variability. Scalar variability means that the signals encoding these magnitudes are 
‘noisy’; they vary from trial to trial, with the width of the signal distribution increasing in 
proportion to its mean. (Gallistel & Gelman, 2000, p. 59)

The accumulator model fits the original intent of the ANS—“[to describe] how a 
continuum of sensation, such as loudness or duration, is represented in the mind” 
(Dehaene, 2003, p. 145). However, because the continuum of sensation includes 
experiences with no given unit (such as loudness), we should not expect the accu-
mulator to produce exact integer values in the first place. Inglis and Gilmore (2013) 
present results suggesting that it does not.

In a study of 12 adults who performed 400 trials of dot comparisons, Inglis and 
Gilmore (2013) tested the implicit assumption that the non-verbal counts in the 
accumulator model do not depend on duration of exposure to the stimuli. Contrary 
to this assumption, the researchers found that accuracy in dot comparison tasks 
improved as exposure increased. “We propose that when an individual observes a 
numerical stimuli, rather than taking a single sample from this [normal] distribu-
tion, they actually take many (the number determined by a function of display time) 
and use the mean as the resultant ANS representation” (Inglis & Gilmore, 2013, 
p. 67). A normal curve based on multiple samples fit the data better than the single- 
sample model and would not require any of the samples to be exact.

As particularly striking examples of the ANS phenomenon, Dehaene (1997) 
summarized results from a sequence of studies on rats (e.g, Mechner, 1958). These 
rats were conditioned to press a lever a specific number of times before pressing a 
second lever to receive food. The rats’ performances roughly fit a normal curve 
centered on the accurate response, as the accumulator model would predict. 
Moreover, while increased hunger affected the rate of lever presses, it did not affect 
the number of lever presses. In a related study in which rats chose between two 
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levers in response to an external stimulus—sound or light pulses—rats tended to 
choose the correct corresponding lever, analogous to the way humans solve dot 
comparison tasks (Church, 1984). The rats even seemed to collectively accumulate 
units for sounds and light: When two pairs of simultaneous light and sound pulses 
were presented, the rats preferred the lever corresponding to 4. This latter finding 
came as a shock to the researchers who took it as evidence for rat addition, but just 
as plausibly, it could be taken as evidence that the rats were neither adding nor 
counting.

Any concept of count or number relies on identifying a unit and treating per-
ceived items as if they were identical instantiations of that unit. The rats were con-
ditioned to attend to certain stimuli—pulses of light and pulses of sound—but what 
constituted the unit in the paired light/sound pulses? It is clear that the rats were not 
counting the two pairs of stimuli as units, as the researchers had expected. Instead, 
it would appear they were responding to an experience of intensity from the collec-
tive stimuli (light and sound), separate from but similar to their experience of hun-
ger. As Dehaene (1997) noted, the rats pressed levers more quickly with increased 
hunger, but we would not take this as evidence of proportional reasoning—only as 
an association. Likewise, the rats seemed to associate the intensity of their experi-
ence of stimuli with an intensive response in lever presses—an association that 
achieved less than 30% accuracy, even for small numbers like 4 (Mechner, 1958).

As we have noted, over-attribution is a common concern in mathematics educa-
tion research. Our own mathematical knowledge is vital to understanding the math-
ematics of our students, but we cannot assume that students structure experience the 
same way that we do or that students’ mathematics is a subset of our own 
(Hackenberg, 2005; Steffe & Tzur, 1994; Ulrich, Tillema, Hackenberg, & Norton, 
2014). We turn next to the mental number line, for which assumptions highlight the 
potential fallacy of ignoring this caveat.

3.3.4  The Mental Number Line

In describing the mental number line, Gallistel and Gelman (2000) define mental 
magnitudes as real numbers. Conflations between number and magnitude, along 
with assumptions about innate numerical ability, lead to claims that obscure stu-
dents’ active role in constructing number. For example, if we take mental magni-
tudes as real numbers on the mental number line, we get claims like the following:

Irrational numbers can only be defined rigorously as the limits of infinite series of rational 
numbers, a definition so elusive and abstract that it took more than two thousand years to 
achieve—an arduously reached pinnacle of mathematical thought. We suggest that the scal-
ing of this pinnacle was a Platonic rediscovery of what the non-verbal brain was doing all 
along—using arithmetically processed magnitudes to represent both countable and 
uncountable quantities. These noisy mental magnitudes are arithmetically processed—
added, subtracted, multiplied, divided and ordered. (Gallistel & Gelman, 2000, p. 60)
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When Euclid, Plato, and other ancient Greeks looked at the continuum, they did 
not see an uncountable collection of limits of sequences of rational numbers. The 
continuum was given, as primary, and its quantification was secondary, through 
geometric construction (Brouwer, 1998). Plato developed simple rules for geomet-
ric construction using a compass and a straight edge: swinging circles centered at 
one point and passing through another, drawing points through pairs of lines, and 
marking points of intersection. Euclid explicitly built on Platonic rules for construc-
tion, including them as the first three postulates (axioms) in Euclidean geometry. He 
defined a line as “a breadthless length” (as cited in Joyce, 1996).

The line was a gapless continuum on which numbers could be constructed, 
beginning from a unit of 1. Constructible numbers include positive integers, positive 
rational numbers, and even some irrational numbers like the square root of 2. Note 
that, because numbers were lengths of segments, negative numbers did not exist. 
Although pi can be constructed as the length of a circumference, it is not construct-
ible (from a unit of 1) as a segment length and is therefore not a constructible num-
ber. Ancient Greek mathematicians (and later Western mathematicians) spent 
centuries attempting to construct numbers like pi and the cubed root of 2, not know-
ing (until Galois) that their efforts were futile.

If children have an innate mental number line, there is no reason to believe that 
it comes complete as an uncountable collection of Dedekind cuts or “limits of infi-
nite series of rational numbers.” Rather, it might appear as a breadthless length and 
a medium for constructing number, as it did for the ancient Greeks. In his own cri-
tique, Núñez (2011) argued against the existence of an innate number line by noting 
that the ancient Babylonians had developed a particularly sophisticated number sys-
tem (a base-60 system that included fractions) with no appeal to a number line. “In 
the absence of a clear number line depiction or narrative, simply because we see 
numbers, magnitudes, and lines on clay tablets we cannot anachronistically infer 
that Old Babylonians operated with a number line mapping or with a mental number 
line representation” (p. 655). Likewise, we cannot impose our mathematical struc-
tures on the conceptions of children whose mathematical development will depend 
on their own experience.

3.4  Reframing the ANS

The accumulator model assumes that numbers exist as innate psychological con-
structs, shared by humans and other animals. The mental number line model equates 
the continuum with real numbers. Critiques of these models and the ANS construct 
itself (e.g., Inglis & Gilmore, 2014) suggest that researchers have attributed their 
own mathematical structures to their subjects while conflating magnitude and num-
ber. In our own framing, we argue that the ANS points to an important pre-linguistic 
psychological construct undergirding magnitude but that numerical development 
depends upon many layers of abstraction of sensorimotor experience.
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Fig. 3.2 Continuum of quantity/magnitude awareness

We reframe ANS and number as representing different levels of magnitude 
awareness (see Fig. 3.2) of the numerosity of a collection. We refer to the associated 
gross quantity as gross numerosity and the associated extensive quantity as number. 
ANS describes representations of gross numerosity. As such, both ANS and number 
are related to measures of the size of a collection, but ANS develops very early (or 
is innate; e.g., Xu & Spelke, 2000) and may rely primarily on perception. In con-
trast, the construction of number requires numerous abstractions from sensorimotor 
activity in coordination with perceptual cues from the environment.

In his framework for explaining general mathematical development, David Tall 
(2004) described three interrelated worlds of mathematics: one based on perception, 
another based on action, and a third based on formal properties (such as definitions 
and symbol systems). Within the triple-code model for number, ANS might rely on 
cues from the perceptual world, onto which number words/symbols from the formal 
world might later map. The world of action is missing from this model. In contrast, 
our framing casts ANS as a possible starting point for sensorimotor activity, which 
can move learners along the continuum of magnitude/quantity awareness.

This reframing of ANS as gross numerosity explains why differing methods for 
measuring ANS might lead to conflicting results. For example, when numerals are 
used in ANS studies (e.g., Lyons et al., 2012), number is presumably already con-
structed by the subject. Such tasks would therefore measure a different construct 
than tasks that only rely on comparisons of collections of dots, which would only 
require the construction of gross numerosity.

Additionally, acknowledging the laborious process of unitizing, as well as other 
abstractions from sensorimotor activity that lead to the construction of countable 
units by children, supports the suggestions by some psychological researchers that 
infants in ANS studies are not attending to numerosity at all, but rather to a continu-
ous quantity, such as area or density (Rousselle et al., 2004). Even gross numerosity 
would require the construction of countable units in sets, however gross continuous 
quantities, such as area and density, do not require the same unitizing operations. If 
we adopt the view that children’s mathematics might differ from our mathematics, 
we can accept constructs like gross quantity that explain infant’s behavior without 
attributing real numbers to infants.
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Mathematics educators rarely focus on pre-numerical ways of operating, and so 
psychological research on the ANS and other pre-numerical constructs complement 
the work of mathematics educators nicely if reframed in terms of how children 
develop gross quantities and other pre-numerical ways of operating. For example, 
studies on acuity of the ANS could be reframed to answer the question of how the 
ability to compare gross quantities can improve without a measurement system. 
Studies that investigate the relationship between the ANS and formal uses of num-
ber (e.g., De Smedt et al., 2013; Libertus et al., 2011) could be reframed to answer 
the question of how our awareness of magnitude and our ability to measure magni-
tude are interrelated: Does acuity in comparisons of gross quantities (ANS) predict 
a quicker development of a measurement system (number)? Does experience with a 
measurement system improve acuity with the underlying gross quantity?

3.5  Concluding Remarks

In this chapter, we have highlighted two key issues: (1) how our sense of a quantity 
is intertwined with, but distinct from, our sense of number and (2) the over- 
attribution of our own mathematical models of situations to the research subjects 
with whom we work. We have argued that ANS research often conflates an emer-
gent sense of a quantity—be it of area, numerosity of a collection, or some other 
emergent quantity—with our advanced sense of that quantity as something measur-
able with number. We have also acknowledged that our own work, as mathematics 
educators, has neglected the study of the underlying non-numerical operations that 
contribute to the development of numerical operations.

A closer attention to these two key issues, which could be reframed as disam-
biguating measurement from quantity and disambiguating our own mathematical 
thought from the way the research subject experiences a situation, could help our 
two fields in communicating about research on numerical and pre-numerical opera-
tions in other situations. These issues are quite difficult and only become magnified 
when moving to understanding rational numbers and integers. Consider the devel-
opment of counting laid out in this chapter and how intertwined it is with a child’s 
goal of making definite the indefinite numerosity of a collection. What types of 
measurement goals would provoke the development of rational numbers or the real 
numbers?
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Chapter 4
Spontaneous Mathematical Focusing 
Tendencies in Mathematical Development 
and Education

Jake McMullen, Jenny Yun-Chen Chan, Michèle M. M. Mazzocco, 
and Minna M. Hannula-Sormunen

Abstract A growing body of evidence reveals the need for research on, and consid-
eration for, children’s and students’ own—self-guided—spontaneous use of math-
ematical reasoning and knowledge in action. Spontaneous focusing on numerosity 
(SFON) and quantitative relations (SFOR) have been implicated as key components 
of mathematical development. In this chapter, we review existing research on SFON 
and SFOR tendencies in the broader context of the development of mathematical 
skills and knowledge and examine how the state-of-the-art evidence on SFON and 
SFOR is relevant for the field of mathematics education. We discuss individual dif-
ferences in SFON and SFOR, associations between spontaneous focus on mathe-
matical features and mathematics achievement, the contributions of situational 
contexts that implicitly prompt attention to number, and ways to increase children’s 
focus on number regardless of their baseline level tendencies. We conclude that 
children’s and students’ tendencies to focus on number and quantitative relations–
spontaneous or otherwise–are key components of mathematical development and 
education.
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4.1  Spontaneous Mathematical Focusing Tendencies 
in Mathematical Development and Education

The everyday world is rich with mathematical features, and attending to these fea-
tures is useful, often necessary, and can even be highly engaging. Indeed, mathe-
matics educators emphasize the value of teaching mathematical modelling skills 
that allow students to apply their mathematical knowledge in everyday and work- 
life situations (Mullis, Martin, Goh, & Cotter, 2016), something that is highly rele-
vant for most middle- and high-quality jobs (Advisory Committee on Mathematics 
Education, 2011). However, in order to make use of mathematical features in every-
day situations, an individual—needs to recognize—often without external guid-
ance—that mathematical aspects of a situation are present and relevant to begin 
with (Lehtinen & Hannula, 2006; Lobato, Rhodehamel, & Hohensee, 2012). 
Individuals with a higher tendency to recognize and use mathematical features of 
everyday situations may acquire more self-initiated practice. This is developmen-
tally relevant because many opportunities to learn or practice mathematical behav-
ior occur outside of formal mathematical learning contexts.

The tendency to recognize and focus on mathematical features when not explic-
itly guided to do so is not always automatic, even among individuals who possess 
the relevant underlying mathematical knowledge (Batchelor, Inglis, & Gilmore, 
2015; Chan & Mazzocco, 2017; Hannula & Lehtinen, 2005; McMullen, Hannula- 
Sormunen, Laakkonen, & Lehtinen, 2016). Across a range of studies, researchers 
have shown that individuals differ in their tendency to focus on mathematical 
aspects of situations that are not explicitly mathematical, like copying a drawing of 
flowers or imitating someone else feeding a puppet. Not all individuals notice, or 
use, numerical information when, for instance, reproducing how many petals are on 
the flowers. Those individuals who are more likely to do so have been shown to have 
an advantage in learning formal mathematical skills and knowledge (e.g., Hannula 
& Lehtinen, 2005; Hannula-Sormunen, Lehtinen, & Räsänen, 2015). Mathematics 
educators in preschool and primary school, as well as their students, may benefit 
from considering these individual differences in spontaneous mathematical focus-
ing tendencies. In this chapter, we argue that tendencies to spontaneously focus on 
mathematical features explain at least some of the individual differences observed 
in the development of mathematical thinking (e.g., Gray & Reeve, 2016; Hannula- 
Sormunen et al., 2015; McMullen, Hannula-Sormunen, & Lehtinen, 2017; Nanu, 
McMullen, Munck, Hannula-Sormunen, and Pipari Study Group, 2018; Van Hoof 
et  al., 2016), and that promoting these tendencies across different contexts may 
improve specific aspects of mathematical learning and performance (Hannula, 
Mattinen, & Lehtinen, 2005; McMullen, Hannula-Sormunen, Kainulainen, Kiili, & 
Lehtinen, 2017).
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4.2  What Are Spontaneous Mathematical Focusing 
Tendencies?

Thus far, most research examining spontaneous mathematical behavior in preschool 
and school-age children has focused primarily on how young children spontane-
ously focus on numerosity. The tendency of spontaneous focusing on numerosity 
(SFON) is defined as follows:

a process of spontaneously (i.e., in a self-initiated way not prompted by others) focusing 
attention on the aspect of the exact number of a set of items or incidents and using of this 
information in one’s action. SFON tendency indicates the amount of a child’s spontaneous 
practice in using exact enumeration in her or his natural surroundings. (Hannula, Lepola, & 
Lehtinen, 2010, p. 395).

On a broad level, from early childhood through adulthood, substantial individual 
differences in SFON tendency have been differentiated from individual differences 
in related mathematical knowledge and skills (Gray & Reeve, 2016; Hannula- 
Sormunen, Nanu, et  al., 2015, Hannula-Sormunen, Nanu, Laakkonen, Munck, 
Kiuru, Lehtonen, and Pipari Study Group, 2017; Hannula & Lehtinen, 2005; 
Hannula et al., 2010; Hannula, Räsänen, & Lehtinen, 2007; McMullen, Hannula- 
Sormunen, & Lehtinen, 2015; Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel, 
2016; Sella, Berteletti, Lucangeli, & Zorzi, 2016), despite their positive correlation 
with those skills (Hannula et al., 2010, 2007; Hannula & Lehtinen, 2005; Hannula- 
Sormunen et al., 2015; McMullen et al., 2015; Nanu et al., 2018). Although focus-
ing on exact number is often relevant in a situation, there are also situations in which 
focusing on quantitative relations is more relevant than exact number (Singer- 
Freeman & Goswami, 2001; Sophian, 2000; Spinillo & Bryant, 1991). For example, 
a child might spontaneously notice there are two apples and four bananas in a bowl 
of fruit—a SFON behavior. However, that same child might then go on to notice 
that there are twice as many bananas as apples, or that one-third of the pieces of fruit 
are apples, exhibiting what could be described as spontaneous focusing on quantita-
tive relations (SFOR). There are limitations to what natural numbers can represent 
in the real world, and those limitations underlie the need for rational numbers 
(Vamvakoussi, 2015). Focusing solely on numerosity may not be sufficient or 
appropriate in many such situations (Boyer, Levine, & Huttenlocher, 2008). For 
example, to equally divide two bananas among 3 persons, it is not possible to 
express the outcome with natural numbers. Thus, recent studies have examined the 
role of SFOR in mathematical development (e.g., McMullen et al., 2016; Van Hoof 
et al., 2016). Whereas SFON tendency reflects paying attention to a single quantity 
or numerosity and using it in action, SFOR tendency reflects recognizing and using 
mathematical relations between two or more quantities.1

1 It should be noted that, at the moment, we do not distinguish between different aspects of quanti-
tative relations, though most existing research examines either multiplicative relations with late 
primary school students or part-whole relations in preschoolers. SFOR tasks usually include dis-
crete quantities and underlying exact numbers are a foil and/or a prerequisite for focusing on the 
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Importantly, the spontaneity indicated by SFON and SFOR tendencies does not 
refer to the spontaneous acquisition of skills or knowledge nor an innate nature to 
their origins (Hannula, 2005; Lehtinen & Hannula, 2006). Instead, the spontaneous 
nature of these tendencies refers to the unguided, self-initiated nature of the recog-
nition and use of numerical features within a specific moment or situation (i.e., 
without external prompting). This means that some background skills and knowl-
edge are requisites of SFON and SFOR tasks, and that these tendencies should 
respond to formal and explicit teaching of focusing on mathematical aspects across 
contexts (Hannula, 2005; McMullen, 2014).

In the following sections, we review the theory and methods around spontaneous 
mathematical focusing tendencies and their relation to requisite cognitive skills 
such as mathematical knowledge or attention, and to contextual factors such as 
social expectations or demands. In order to fully understand children’s everyday 
mathematical behavior, it is crucial that all three factors are taken into account. We 
argue that there are complex concurrent and developmental relations among these 
three constructs, which we illustrate using a schematic representation (Fig. 4.1). 
Based on the literature, we argue that spontaneous mathematical focusing tenden-
cies can be distinguished from other cognitive (Fig. 4.1b) or contextual (Fig. 4.1d) 
factors, and we depict the relation between these constructs with overlapping yet 
distinct circles. We summarize existing evidence for the iterative, developmental 
relations between spontaneous mathematical focusing tendencies and both the cog-
nitive requisite skills (Fig.  4.1a), and contextual factors (Fig.  4.1e) that exist 
throughout mathematical development. Finally, we argue that in order to understand 
the full extent of mathematical behavior of preschool and school-age children, the 
intersection of all three circles (Fig. 4.1c) should be given serious consideration by 
researchers and educators.

4.3  Delineating SFON and SFOR from Requisite Skills

Any expression of SFON or SFOR tendency requires the use of the mathematical 
and domain general cognitive skills to solve a task (Fig. 4.1b). For instance, indi-
viduals need to fully attend to the situation or task at hand. Other factors, such as a 
disposition towards math (finding it useful, interesting, or important) may also 
affect when and how individuals spontaneously attend to mathematical features. 
Studies using the original SFON tasks have already shown that it is possible to reli-
ably and uniquely measure the strength of children’s SFON tendency (Hannula & 
Lehtinen, 2005; Hannula-Sormunen et  al., 2015; Nanu et  al., 2018), and several 
other measures have more recently been developed and thus contribute to the reper-
toire of SFON assessments (see Rathé, Torbeyns, Hannula-Sormunen, De Smedt, & 
Verschaffel, 2016 for an extensive review). Likewise, SFOR tendency can be 
reliably measured in a number of tasks in both early childhood and late primary 
school (McMullen et al., 2016; Van Hoof et al., 2016).

relational aspects of the task.
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Fig. 4.1 Interrelations between spontaneous mathematical focusing tendencies, related skills, and 
general cognitive, meta-cognitive, and affective factors, which are present in any situation where a 
person uses or recognizes exact number or quantitative relations. This diagram is a schematic 
proposal, and the degree of overlap across these constructs is unknown and therefore should not be 
considered “to scale” with the figure

In an attempt to ensure that spontaneous mathematical focusing tendency mea-
sures truly capture this tendency independently from other factors, tasks must meet 
the following design principles: the task should be (1) mathematically unspecified, 
(2) open for multiple (mathematical and non-mathematical) possible interpreta-
tions, (3) fully engaging for all, and (4) within the range of competences (Hannula, 
2005; Hannula & Lehtinen, 2005). The first two principles ensure that the context 
does not provide hints or constraints to numerical responses, so that the partici-
pants’ focus on numerosity is spontaneous. There should be no hints that numerical 
responses are intended, and tasks and materials should not be associated with typi-
cal counting or numerical exercises. In this way, the probability of producing 
numerically accurate response without spontaneously focusing on numerosity is 
low. The last two principles diminish the likelihood that other potential factors (e.g., 
general attention or mathematical knowledge) explain the individual variation in 
SFON tendency. Specifically, the task needs to capture and maintain the child’s 
attention. The numerical sets included in the tasks should be small enough for par-
ticipants to reliably enumerate. Other cognitive and motor demands, such as verbal 
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production, working memory, response inhibition, and motoric imitation, must be 
age-appropriate (Hannula, 2005). Satisfying these four conditions strengthens the 
validity of the SFON tasks and the interpretation that individual differences in 
SFON scores accurately reflect individual differences children’s SFON tendency. It 
is important to note that additional numerical behaviors, such as counting or com-
menting on the set size, are indicators of SFON, even if the set produced by the child 
does not match numerically to the examiner’s set.

A number of studies have shown that variation in students’ performances on SFON 
and SFOR tasks is not entirely explained by the mathematical or other cognitive skills 
needed to solve the tasks (Hannula & Lehtinen, 2005; Hannula-Sormunen et al., 2015; 
McMullen et  al., 2016; McMullen, Hannula-Sormunen, & Lehtinen, 2014). For 
example, many 6-year-old participants in early studies did not spontaneously focus on 
numerosity during SFON tasks, but almost all children were able to use the exact 
numbers in their actions when explicitly guided to do so (Hannula & Lehtinen, 2005). 
In a more recent study, there was clear discriminant validity separating SFON ten-
dency and verbal counting skills although there was some overlap between 6-year-
olds’ performance on six tasks measuring these two constructs (Hannula-Sormunen 
et al., 2015). Nanu et al. (2018) showed that response patterns in the SFON tasks were 
significantly different from typical response patterns measuring enumeration skills. 
The findings from these studies support the claim that SFON tasks capture individual 
differences in SFON tendency rather than enumeration accuracy.

SFOR tendency has also been examined in relation to the requisite skills needed 
to solve tasks using exact quantitative relations (McMullen et al., 2014; McMullen 
et al., 2016). In a sample of US students in kindergarten to third grade (McMullen 
et al., 2014), substantial individual differences in SFOR tendency, both within and 
across grade levels, were not entirely explained by the requisite mathematical skills 
needed to complete the tasks. In a more recent study, third to fifth graders in Finland 
completed three paper-and-pencil measures of SFOR tendency, and then completed 
one item from each task in guided format (McMullen et al., 2016). Since all partici-
pants completed the guided versions of these tasks, it was possible to statistically 
account for the students’ guided performance. A “pure” SFOR tendency variable 
was calculated using residualized scores for SFOR responses adjusted for perfor-
mance on the guided versions of the tasks. This statistical procedure effectively 
removes the overlap between SFOR and requisite skills (Fig. 4.1b). Even after tak-
ing into account students’ guided performance, substantial individual differences in 
SFOR tendency remained, within and across grade levels.

Although previous studies have directly juxtaposed SFON and SFOR tendencies 
with the task-relevant requisite mathematical skills and knowledge, fewer studies 
have explicitly focused on how other cognitive, meta-cognitive, and affective 
aspects of mathematical development are related to SFON and SFOR tendencies 
(e.g., Hannula et al., 2010; Van Hoof et al., 2016). Instead, these aspects of mathe-
matics development are more often used as control measures in SFON and SFOR 
studies to examine whether they explain associations between SFON and SFOR 
tendencies and mathematical skills. Across several such studies, the relation between 
SFON and mathematical skills remained significant, even after controlling for age 
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and cognitive skills including full scale IQ (Nanu et  al., 2018), verbal IQ (Poltz 
et al., 2013), or non-verbal IQ (Hannula et al., 2010; Hannula & Lehtinen, 2005; 
Hannula-Sormunen et al., 2015; Poltz et al., 2013); rapid serial naming (Hannula 
et al., 2010), working memory (Batchelor et al., 2015; Nanu et al., 2018; Poltz et al., 
2013), inhibition (Poltz et al., 2013), executive function skills and vocabulary (Gray 
& Reeve, 2016), verbal comprehension (Hannula et al., 2010; Hannula & Lehtinen, 
2005), verbal production skills (Batchelor et al., 2015), and spatial location detec-
tion (Hannula et al., 2010).

Fewer studies have focused on the relation between SFOR tendency and other 
cognitive factors related to mathematical development, but the evidence to emerge 
thus far implicates that SFOR tendency does overlap, to some extent, with students’ 
mathematical skills and knowledge, along with other related cognitive skills. SFOR 
tendency does appear to be a unique component of mathematical cognition, and it 
remains a significant predictor of rational number knowledge and development 
when controlling for non-verbal intelligence (McMullen et al., 2016; McMullen, 
Hannula-Sormunen, & Lehtinen, 2017; Van Hoof et al., 2016). This relation between 
SFOR tendency and rational number knowledge and development is not explained 
by grade level, arithmetic fluency, whole number estimation, guided focusing on 
quantitative relations, mathematical achievement, spatial reasoning, or interest in 
mathematics (McMullen, Hannula-Sormunen, Lehtinen, & Siegler, submitted; 
McMullen et al., 2016; Van Hoof et al., 2016).

To summarize, as represented in Fig. 4.1, SFON and SFOR tendencies overlap 
with mathematical or other cognitive skills required in a given situation, but neither 
SFON nor SFOR is entirely explained by these requisite skills. In short, there is 
substantial evidence supporting that both SFON and SFOR tendencies are unique 
aspects of mathematical cognition.

4.4  The Relation Between SFON/SFOR and Mathematical 
Development

We now review studies showing how SFON and SFOR are related to mathematical 
development (Fig. 4.1a). We propose that SFON and SFOR tendencies are indica-
tors preschool and school-age children’s spontaneous mathematical activities in and 
out of the classroom (Hannula et  al., 2005). We hypothesize that preschool and 
school-age children who have higher SFON and SFOR tendencies more readily 
recognize the mathematics embedded in everyday life, compared to children with 
low SFON and SFOR tendencies, and that through this increased awareness they 
gain more opportunities to practice their mathematical skills. This increased self- 
initiated practice helps students deepen their mathematical knowledge, and the 
deeper mathematical knowledge subsequently supports further development of 
spontaneous mathematical focusing tendencies. Thus, SFON and SFOR have a bi-
directional and iterative developmental relation with related mathematical skills and 
knowledge.
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Several studies demonstrate the relation between SFON or SFOR tendencies and 
the development of mathematical skills. Of the two, SFON tendency has a stronger 
evidence base, because across studies SFON has been linked to a broader range of 
mathematical abilities (Batchelor et al., 2015; Edens & Potter, 2013; Gray & Reeve, 
2016; Hannula et al., 2010; Hannula & Lehtinen, 2005; Hannula-Sormunen et al., 
2015; Kucian et al., 2012; McMullen et al., 2015; Nanu et al., 2018; Poltz et al., 
2013). Still, there is a growing evidence base for the relation between SFOR ten-
dency and mathematical development (McMullen et  al., submitted; McMullen 
et al., 2014; McMullen et al., 2016; McMullen, Hannula-Sormunen, & Lehtinen, 
2017; Van Hoof et al., 2016). There are differences and similarities in SFON and 
SFOR associations with domain-specific correlates of mathematical development 
(McMullen et al., submitted; Hannula et al., 2010). Relative to SFOR, SFON has 
been more consistently and more strongly associated with whole number enumera-
tion and arithmetic skills (e.g., Hannula et al., 2010), whereas SFOR tendency has 
been more closely associated with rational number knowledge (e.g., Van Hoof et al., 
2016). These results suggest that SFON and SFOR tendencies may each play a spe-
cific role in mathematical development.

The effects of prior knowledge on mathematical development are well acknowl-
edged throughout topics, from early counting development to rational numbers and 
algebra (Siegler et  al., 2012; Siegler, Thompson, & Schneider, 2011; Sophian, 
1988). In order to pay attention to the mathematical aspects in and out of the class-
room, students need to have at least some knowledge about where and when to 
apply their formal knowledge (Lehtinen & Hannula, 2006; Lobato et al., 2012). In 
early childhood, SFON tendency has been found to be supported by earlier enu-
meration and subitizing skills (Hannula & Lehtinen, 2005; Hannula-Sormunen 
et al., 2015). In fact, SFON tendency and enumeration skills were found to be in a 
reciprocal relation, with each predicting the other over time (Hannula & Lehtinen, 
2005). SFOR tendency and rational number knowledge were found to follow a simi-
lar pattern of reciprocity, in which early SFOR tendency predicted later rational 
number knowledge, and vice versa (McMullen, Hannula-Sormunen, & Lehtinen, 
2017). These iterative processes (Fig. 4.2) suggest that there is a strong link between 
formal and typically examined mathematical skills and knowledge and children’s 
and students’ spontaneous mathematical behavior.

The above described results all are important indicators of a potential link 
between SFON and SFOR tendencies and mathematical knowledge. Nonetheless, a 
causal link has only been tested in a few limited quasi-experimental studies of 
SFON tendency (Hannula et al., 2005; Hannula-Sormunen, Alanen, McMullen, & 
Lehtinen, 2016. One of the first such studies showed that 3-year-olds who partici-
pated in a training program that aimed to increase their SFON tendency had long- 
term gains in their enumeration skills (Hannula et  al., 2005). In that study, an 
increase in SFON tendency led to improvements in later counting skills in these 
children. More recently, we found that 5-year-olds’ arithmetic skills and SFON ten-
dency developed as a result of playing the iPad game Fingu integrated with 
 SFON- based everyday activities (Hannula-Sormunen, Alanen, et  al., 2017). The 
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Fig. 4.2 Reciprocal relations between SFON tendency and counting skills (top; modified from 
Hannula & Lehtinen, 2005) and SFOR tendency and rational number knowledge (bottom; modi-
fied from McMullen, Hannula-Sormunen, & Lehtinen, 2017). For all paths, p < 0.05

results show a clear developmental advantage for the training group over the control 
group in arithmetic skills.

Collectively, these studies suggest a causal link between SFON tendency and 
early numerical skills, with SFON tendency having a positive impact on the devel-
opment of early counting and enumeration skills. SFOR tendency has been identi-
fied as a unique predictor of mathematical development in late primary and early 
secondary school years. Overcoming minimal transfer effects of easily isolated 
drill-and-practice kinds of mathematical activities is an important goal for future 
investigations in mathematics education (e.g., Lehtinen, Hannula-Sormunen, 
McMullen, & Gruber, 2017). Promoting and supporting students’ and children’s 
self-initiated practice of newly learnt mathematical skills may help them start using 
these skills in their own activities, in addition to adult-guided mathematical exer-
cises. In this way, the SFON and SFOR concepts, assessments, and training activi-
ties are of great educational relevance.
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4.5  Attentional Considerations in SFON (and SFOR) 
Research

An essential feature of SFON and SFOR is the unprompted nature of the tendencies. 
It is important, both theoretically and educationally, to determine what other form 
“prompts” may take. In other words, to what extent do spontaneous mathematical 
focusing tendencies and contextual factors overlap (Fig. 4.1d)? Identifying explicit 
prompts to focus on number is fairly straightforward. Such prompts would involve 
number or exact quantity in instructions, such as “put the same number of cookies 
on this plate as I have,” or “how many cookies are there?” or “bring just enough 
socks for Mr. Caterpillar” (Shusterman et al., 2017). These types of prompts are 
intentionally avoided in SFON and SFOR measures. But what if implicit prompts 
from nonverbal features in instructional materials promote SFON tendencies? For 
example, what if numerical (or other mathematical) features are more perceptually 
salient under some conditions, such as crowded versus uncrowded arrangements of 
item sets or arrays of colorful vs. monochromatic sets (e.g., Chan & Mazzocco, 
2017)? The answers to such questions have implications for measuring SFON and 
SFOR tendencies and for intentionally promoting attention to mathematical fea-
tures through instruction or the design and use of materials.

Prompts to attend to number or quantitative relations may exist throughout daily 
routines, but to different degrees depending on the nature of the task at hand. For 
instance, block play or meal preparation may elicit more attention to and discussion 
of numbers and mathematics (e.g., to determine the number of plates, forks, nap-
kins, and cups needed for all persons who will be seated at the table) than dramatic 
play or free form painting at an easel (Chan, Mazzocco, & Praus-Singh, under 
review; Ferrara, Hirsh-Pasek, Newcombe, Golinkoff, & Lam, 2011; Susperreguy & 
Davis-Kean, 2016). Likewise, the arrangement of items in SFOR measures may 
make multiplicative relations more salient than additive relations, even when both 
would be mathematically correct (Degrande, Verschaffel, & Van Dooren, 2017). 
Multiple studies suggest that there are individual differences in the use of additive 
versus proportional reasoning that shift with age, suggesting that the use of one type 
of relation over the other may develop in concert with other mathematical skills 
(Van Dooren, Bock, & Verschaffel, 2010).

Although these considerations might be interpreted as challenging the notion of 
context-independent SFON or SFOR, an alternative perspective is that the relative 
degree to which these tendencies manifest across children simply interacts with 
such external influences (Fig. 4.1e). This bi-directional relation would lead to inter-
actions, for example, between SFON tendency and perceptual salience like those 
demonstrated in earlier studies, and shown in Fig. 4.3. Hannula et al. (2005) found 
that an intervention based on caregivers’ number-focused activities with preschool-
ers led to greater gains in the preschoolers’ SFON tendencies, relative to a control 
group in which no such number-focused interactions were promoted. Importantly, 
the effect of this intervention was apparent for only those preschoolers in the experi-
mental group who had at least some measurable SFON tendency at baseline. 
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Fig. 4.3 Interactions between the salience of competing features and high versus low attention to 
number tendencies for children (a) and adults (b), based on data reported by Chan and Mazzocco 
(2017). Error bars represent standard deviations. Each salience condition included eight trials on 
which number was a possible matching feature. Alternative possible matching features were object 
color or shape (high salience) or object pattern or location (low salience)

Although Chan & Mazzocco (2017) did not measure baseline SFON tendencies in 
their study of picture matching, they found that by manipulating the relative salience 
of number (as a visual feature of the match options), they could also manipulate the 
frequency of number-based matches in children and adults during the task. Still, 
some children and adults never matched on number during the task, and in 
these potentially “low SFON” matchers, there were different effects of perceptual 
salience across individuals. This general lack of SFON may have inoculated chil-
dren (and adults) from the main effect of feature salience, as illustrated by the sig-
nificant interactions shown in Fig.  4.3. This suggests that eliciting mathematical 
behavior may have promise for promoting children’s SFON behavior.

In another study of eliciting SFON behavior, the use of SFON “baits” was the 
focus of an intervention, in which 2.5–3-year-old children’s SFON and small num-
ber recognition skills were supported (Hannula-Sormunen, Nanu, Södervik, & 
Mattinen, in preparation). The program aimed to promote noticing numerical fea-
tures by embedding SFON baits around the daycare environment. These SFON 
baits were similar toys and everyday life materials arranged in a manner that made 
the numerical features very salient (e.g., Fig. 4.4). This often involved using several 
identical objects arranged in close proximity (e.g., two identical toy cars side-by- 
side), which increased the likelihood of counting behavior as the items were more 
likely to be perceived as a set to be counted. If the child did not focus on the numer-
osity of the items in the SFON bait, the early educators were asked to explicitly 
guide the child’s attention by asking how many items there are, or, by taking away 
or adding items. Deliberate manipulation of numerosity has proven to be an effi-
cient way of attracting children’s attention towards numerosity of items in a set 
(Hannula et  al., 2005). In contrast with previous SFON interventions that were 
effective only in children with some initial SFON tendency (Hannula et al., 2005), 
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Fig. 4.4 Examples of SFON-bait used at daycare in the SFON intervention study. (a) Two identi-
cal trucks arranged side by side on the yard. (b) “SFON slippers” with two similar slippers each 
with three decorating flowers. (c) multiple sets of two items (e.g., frying pans, chairs, dolls) 
arranged at a kitchen play area

the intervention with SFON baits led to significant improvement in SFON tendency 
and cardinality recognition and production skills particularly among even those 
with the weakest SFON tendency and cardinality recognition skills at the start of the 
intervention, in comparison to a control group where the participants received spe-
cial training in listening comprehension skills (Hannula-Sormunen et  al., in 
preparation).

The notion of contextual influences on SFON, through implicit manipulation of 
the environment or more explicit verbal prompting, generates testable hypotheses 
we believe are worthy of empirical pursuit and which we and others have begun to 
test. Numerous studies have provided evidence for individual stability in SFON and 
SFOR tendencies across tasks and time (Hannula & Lehtinen, 2005; McMullen, 
Hannula-Sormunen, & Lehtinen, 2017). Specific investigation into the effects of 
varying contexts on the expression of spontaneous focusing tendencies within and 
across tasks would clarify the nature of SFON and SFOR tendencies and provide 
valuable information about the nature of interventions that can enhance spontane-
ous or implicitly prompted mathematical focusing tendencies, including additional 
mathematical features such as spatial characteristics (Chan et  al., under review; 
Degrande et al., 2017).

4.6  Implications for Classroom Practices

Ultimately, SFON and SFOR tendencies are not the end that is sought. Rather, they 
are a means for understanding individual differences in mathematical behavior in 
everyday situations, and are argued to be a key component of early mathematics 
education. Most studies examining mathematical development, teaching, and learn-
ing focus on the bottom two circles in Fig. 4.1, namely explicit skills and knowledge 
and contextual factors contributing to individual differences in these skills and 
knowledge. However, in order to fully understand the nature of children’s and stu-
dents’ mathematical behavior and development, we must look at the intersection of 
all three circles (Fig.  4.1c), by also taking into consideration children’s and 
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students’ own spontaneous mathematical activities. Supporting the mathematical 
behavior situated in this three-way intersection may lead to improvements in spon-
taneous mathematical focusing tendencies and mathematical skills and concepts.

There is consistent evidence that targeted interventions aimed at enhancing 
SFON and SFOR tendencies can be successful with both young children and older 
students (Hannula et al., 2005; McMullen, Hannula-Sormunen, Kainulainen, et al., 
2017). In children as young as the age of 3 years old (Hannula et al., 2005), and in 
interventions as short as 20 min (Braham, Libertus, & McCrink 2018), evidence 
suggests that it is possible to increase SFON tendency among children. Just a few 
hours spent with a combination of student- and teacher-led activities over the course 
of a few weeks led to increases in SFOR tendency in sixth grade students (McMullen, 
Hannula-Sormunen, Kainulainen, et  al., 2017). These results suggest that SFON 
and SFOR tendencies are malleable, despite the relative consistency in students’ 
and children’s performance on SFON and SFOR tasks over time when no interven-
tion has occurred (e.g., Hannula & Lehtinen, 2005).

A key component of applying relevant mathematical concepts in formal and 
informal settings is recognizing exactly when mathematical aspects are present and 
useful in reasoning (Lobato, 2012; Lobato et al., 2012). In order to model the world 
mathematically, a child must first recognize that this can be done (McMullen & 
Resnick, 2018). In previous training studies aimed at supporting SFON and SFOR 
tendencies, the main goal was to make number and quantitative relations more 
explicit targets of focus in students’ eyes (e.g., Mattinen, 2006). These programs 
explicitly highlighted and modelled when and how number and quantitative rela-
tions can be used in reasoning in and out of the classroom.

A working assumption regarding the development of SFON and SFOR tenden-
cies is that they are a dimension of the advantages of social norms and practices 
offered by a rich mathematical home environment on performance in the mathemat-
ics classroom (e.g., Skwarchuk, Sowinski, & LeFevre, 2014). Equipping early 
childhood professionals with knowledge and skills to recognize and support SFON 
tendency (e.g., Mattinen, 2006) and facilitating peer interaction in small group 
activities (McMullen, Hannula-Sormunen, Kainulainen, et  al., 2017) were effect 
means to increase SFON and SFOR tendencies. An in-depth analysis of behaviors 
among groups of students suggested that interaction between individuals can create 
mutual targets of focusing and mathematizing everyday objects or situations into 
abstract mathematical entities (Hilppö & Rajala, 2017). In general, in the case of 
both SFON and SFOR tendency, social interaction proved valuable for supporting 
SFON and SFOR tendencies.

Along with social interaction, multiple interventions aimed at improving SFON 
and SFOR tendencies also relied on embodied activities to reinforce the mathemati-
cal nature of everyday situations. These activities may include having the individu-
als enact the mathematical features or move within the space in which the 
mathematical aspects are embedded and are proven valuable for a variety of formal 
skills (Link, Moeller, Huber, Fischer, & Nuerk, 2013; Mix & Cheng, 2012). With a 
SFON intervention among preschool children, the mobile game “Fingu” (Holgersson 
et al., 2016) involved children recognizing numerosities as quickly as possible and 
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assigning a cardinal value to them using both spoken words and finger touches. 
These activities were then extended outside of the digital learning environment, as 
the children were asked to use their virtual avatar in their everyday surroundings to 
find sets of objects and assign cardinal values to these objects (Hannula-Sormunen 
et al., 2016). The SFOR intervention also had students assign mathematical rela-
tions to everyday locations and distances (McMullen, Hannula-Sormunen, 
Kainulainen, et al., 2017). Students were sent on a mathematical treasure hunt, in 
which they needed to follow relational directions in order to find checkpoints. For 
example, starting at their classroom door, students were sent down the corridor to 
the library door, at which point they were asked to find the half-way point between 
their classroom door and the library door (or, e.g., three times this distance). These 
embodied activities, supported by digital tools that allow for highlighting the math-
ematical aspects of everyday spaces and objects, may have proved crucial for sup-
porting SFON and SFOR tendencies among a wide range of individuals.

This is not to say that mathematical instruction should always and intensively 
involve promoting SFON and SFOR tendencies. As can be seen in Fig. 4.1, mathe-
matical knowledge and skills are necessary conditions for focusing on aspects of 
number and relations in everyday situations (Hannula & Lehtinen, 2005; McMullen, 
Hannula-Sormunen, & Lehtinen, 2017), and contextual factors, including social 
interactions, also play a role (Chan & Mazzocco, 2017). Even so, it is expected that 
training SFON and SFOR tendencies could have fairly long-term effects and wide- 
ranging impact on related aspects of mathematical development (e.g., McMullen, 
Hannula-Sormunen, & Lehtinen, 2017). A potential boon for more long-lasting 
impact is possible through working with teachers in examining their beliefs and 
attitudes about the nature of mathematics and its role in everyday reasoning. 
Providing teachers with the tools to integrate activities and routines that promote 
SFON and SFOR tendencies into their everyday instruction may go a long way to 
offering students authentic experiences with mathematical reasoning (Verschaffel, 
Greer, & De Corte, 2000) that are not too burdensome in terms of their cognitive 
load (Kirschner, Sweller, & Clark, 2006), nor too loaded with extraneous details 
that do not support the mathematical meaning making process.

4.7  Conclusions and Future Directions

Research on spontaneous focusing on number and numerical relations, SFON and 
SFOR, opens our eyes to the broader possibilities of examining students’ own spon-
taneous, self-initiated mathematical activities, the role of contextually-bound 
implicit prompts to attend to mathematical features, and the impact of these activi-
ties on students’ success with mathematics. The state-of-the-science on spontane-
ous mathematical focusing tendencies indicates that there is much theoretical and 
educational value in examining and promoting young children’s SFON and SFOR 
tendencies. Although more research is needed to determine the specific pathways 
between SFON or SFOR and mathematical development and the causal pathways 
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implicated as potential underlying sources of variations in the mathematical think-
ing and learning, there is strong empirical evidence that these attentional processes 
are, at a minimum, highly relevant to early mathematics education. As reviewed in 
this chapter, the overlap, distinctions, and relations between (a) spontaneous math-
ematical focusing tendencies, (b) requisite skills (i.e., mathematical, motivational, 
and cognitive factors), and (c) contextual factors appears crucial for understanding 
exactly how children recognize and use mathematical features of everyday situa-
tions. These situations are ripe with opportunities to acquire lots of practice with 
mathematical skills. In addition to SFON and SFOR tendencies, other spontaneous 
mathematical focusing tendencies may interact with the requisite skills and contex-
tual factors to influence mathematical development (e.g., spatial reasoning, Chan 
et al., under review). Nevertheless, in view of the potential power of bootstrapping 
informal activities and reasoning onto formal mathematical thinking (Resnick, 
1987), educational practices and routines that promote mathematical focusing ten-
dencies, including SFON, SFOR, and contextually-based prompts,  may be an 
essential, foundational step in many mathematical activities. We believe such prac-
tices are also a fruitful target of inquiry into effective ways to support mathematical 
development for children who do not seem to “get” math. Their success may be the 
eventual outcome of a cascading set of developments that begins with children sim-
ply starting to notice the numbers and quantitative relations that surround them in 
their everyday lives. For all of these reasons, we conclude that promoting children’s 
focusing on number and quantitative relations is a key component of early mathe-
matics education.
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Chapter 5
Leveraging Relational Learning 
Mechanisms to Improve Place Value 
Instruction

Kelly S. Mix, Linda B. Smith, and Sandra Crespo

Abstract In this chapter, we focus on the difficulties children face when learning 
place value and how current psychological theories of relational learning may be 
leveraged by teachers. We discuss two major psychological mechanisms known to 
support relational learning—statistical learning and structure mapping—and review 
the evidence showing how these mechanisms are implicated in place value learning. 
We further identify a set of four specific instructional elements teachers could use to 
engage and support these learning mechanisms. We also review three major curri-
cula for teaching place value, including Developmentally Appropriate Mathematics, 
Number Talks, and the Montessori Method, in light of this conceptual framework. 
Our review highlights both strengths of these current curricula and ways they might 
be modified to more fully leverage relational learning mechanisms and increase 
student learning.

Keywords Place value · Relational learning · Statistical learning · Structure 
mapping · Number Talks · Montessori · Developmentally Appropriate Mathematics

Mathematics uses a complex system of written and spoken symbols to represent 
quantities and operations on quantities. It is inherently relational, involving many 
interconnected layers of mapping from symbol-to-referent, quantity-to-quantity, and 
symbol-to-symbol. Teachers and mathematics educators have acknowledged the need 
for children to form associations among various components of this symbol system 
and have designed activities and materials consistent with this aim. There is growing 
convergence around the basic idea that to comprehend mathematics, children must 
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recognize shared relational structures across these layers and to successfully map 
among its various components. However, extensive psychological research also tells 
us that some instructional conditions support learning about relational structures more 
than others. An important question is whether these new insights are reflected in exist-
ing instructional approaches. In this chapter, we examine three promising approaches 
to elementary mathematics instruction to see what additional leverage might be 
gained by incorporating these learning mechanisms more fully and explicitly.

We focus our review on children’s learning of place value and multi-digit number 
meanings, for natural numbers in particular (vs. integers or rational numbers), as 
this is the first opportunity children have to “crack the code” of multi-digit represen-
tations. Place value presents an interesting relational learning problem, as children 
must interpret and align multiple components of the written and spoken symbol 
system with each other and with their referents. Given this complexity, it is not sur-
prising that place value is notoriously difficult for children to master (Anderson, 
2013; Moeller, Klein, Fischer, Nuerk, & Willmes, 2011). Indeed, many children 
struggle with weak place value concepts throughout elementary and middle school 
(e.g., Booth & Siegler, 2008; Chan, Au, & Tang, 2014; Fuson, 1990; Geary, Hoard, 
& Hamson, 1999; Gervasoni, Hadden, & Turkenburg, 2007; Hanich, Jordan, 
Kaplan, & Dick, 2001; Hieber & Wearne, 1996; Kamii, 1986; Moeller, Pixner, 
Zuber, Kaufmann, & Nuerk, 2011; Ross & Sunflower, 1995). Thus, place value 
presents an interesting test case as it is both a complex relational learning problem 
and one with far-reaching educational implications.

We review three instructional approaches: (1) Developmental Appropriate 
Mathematics (Van de Walle, Karp, & Bay-Williams, 2010); (2) Number Talks 
(Parrish, 2014); and (3) The Montessori Method (Montessori, 1934). These 
approaches are in widespread use and represent state-of-the-art elementary mathe-
matics instruction. Many of their core elements already align with relational learn-
ing theory. Our goal is to point out where these alignments already exist and where 
others might be added to boost their positive effects. But first, we begin with a sur-
vey of psychological research on acquisition of relational structures to establish a 
firm theoretical framework. Note that the examples we present include but are not 
limited to mathematics, as relational learning principles have been identified across 
a broad range of topics, such as word learning and categorization.

5.1  Relational Learning

Extensive research in cognitive development (Aslin, Saffran, & Newport, 1998; Colunga 
& Smith, 2003; Namy & Gentner, 2002; Son, Smith, & Goldstone, 2008; Yu & Smith, 
2007), and adult learning (Gentner, 2010; Goldstone & Byrge, 2014), has identified 
mechanisms through which learners access relational structures. By viewing place value 
as a syntactic notational system within a complex set of symbol- to- meaning mappings, 
we can build on these advances, thereby leveraging the general- purpose instructional 
techniques that are effective in other domains. In the following section, we review two 
of the major relational learning mechanisms—statistical learning and structure 

K. S. Mix et al.



89

mapping. Later, we will identify specific instructional elements based on these mecha-
nisms, and in those sections, we will present detailed evidence related to each element.

5.1.1  Statistical Learning

Statistical learning involves tabulating co-occurrences and using the resulting prob-
abilities to focus attention in subsequent learning. This process is thought to be 
implicit and automatic. For example, to explain how infants pick out the referents for 
new words in a complex environmental scene, Yu and Smith (2007) demonstrated 
that infants gradually shift their attention based on the frequency with which words 
and objects co-occur in different situations. Statistical learners may also—with suf-
ficient learning—discover systems of co-occurrences, or second-order correlations 
(i.e., “over-hypotheses”), that yield general rule-like performances (Colunga & 
Smith, 2005; Xu & Tenenbaum, 2007). In many domains, this knowledge of higher 
order relations is also implicit. That is, it is not readily explainable by those who pos-
sess the knowledge, but discoverable in the latent structure of large systems of map-
pings. To illustrate, consider English grammar. Few speakers of English can describe 
the rules for the sound of “s” when adding the plural to nouns (i.e., use the z-sound 
for words ending in voiced consonants such as “pigs” but the s-sound for words end-
ing in unvoiced consonants such as “pits.”), yet 5-year-olds show this knowledge in 
their production of novel plurals (Berko, 1958; Ettlinger & Zapf, 2011).

By many accounts, this implicit knowledge emerges given massive experience in a 
domain—the kind of experience accrued from everyday encounters with a highly struc-
tured world of symbols and things (Hockema, 2006; McClelland & Rogers, 2003; 
Recchia & Jones, 2009; Treiman & Kessler, 2006). Recent research suggests such 
encounters with multi-digit numbers and number names may be sufficient to improve 
children’s understanding of place value structure (Yuan & Smith, under review); how-
ever, it is not known how much exposure to multi-digit numbers children would need to 
learn the entire place value system via statistical learning or whether it is even possible. 
Although the mechanism of statistical learning may be potent enough to yield a struc-
tural understanding of place value, the typical number of everyday encounters children 
have with large numbers is likely insufficient. Thus, place value learning probably 
occurs through a combination of processes that includes but is not limited to statistical 
learning. Still, place value instruction should feature dense co-occurrences that high-
light statistical regularities so as to take advantage of this automatic learning process.

5.1.2  Structure Mapping

Structure mapping is the process theorized to underlie learning about relations by 
way of making comparisons (see Gentner, 2010). Comparison itself involves the 
simultaneous experience of multiple examples with the same structure. For exam-
ple, children might abstract the meaning of “bird” by comparing a duck and a robin. 
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Similarly, they could abstract base-10 relations by aligning the count+unit struc-
tures in the numeral 23 with the same structures in the spoken number name 
“twenty-three.” The idea is that by mapping the analogous components from one 
example to the other, learners isolate what is common about their shared structure 
and thereby discover the structure at the same time. Like statistical learning, this 
process is assumed to occur implicitly and automatically.

To illustrate how structure mapping works, consider again the case of comparing 
a duck to a robin. Children might start by noticing that the duck and the robin are 
moving, animate creatures. This is one point of alignment. Noticing this feature 
initiates a broader search for other points of alignment. Children might discover that 
these creatures also have wings and stand on two feet, and that they are covered with 
feathers. If children are told that the duck is a bird and the robin is a bird, the outline 
of a category could emerge—a category named “bird” that includes animals with 
feathers, wings, and two feet. Critically, when children encounter new things called 
birds, or other animals that are not birds, partial knowledge of birds from prior expe-
rience will highlight (in memory, in attention) features that have been relevant in the 
past. In this way, children gradually access deeper and more abstract relational 
structures. Co-occurrences, shared surface features, shared labels—anything that 
stimulates aligning the appropriate compositional units in comparison—can direct 
learners’ attention toward the elements to be compared and initiate the alignment 
process (Gentner, 2010).

Theories of both statistical learning and structure mapping assume that the dis-
covery of latent syntactic structures proceeds automatically and without supervi-
sion. This automatic learning is probably what allows preschoolers to learn 
something about the syntax of multi-digit numbers from mere exposure (Mix, 
Prather, Smith, & Stockton, 2014; Yuan & Smith, under review). However, from 
both perspectives what children learn depends on the structure in the learning mate-
rials. Thus, what children learn about place value on their own through casual 
encounters could be wrong or, even if it is correct in part, it could be too weak to 
support reasoning in more complicated tasks (e.g., multi-digit calculation). 
Moreover, place value poses special problems to learning, particularly when viewed 
as a structure-mapping problem. Without carefully chosen instructional materials 
and explicit scaffolding for comparisons, young learners are unlikely to decipher its 
underlying structure.

5.2  Barriers to Understanding Place Value

Statistical learning and structure mapping operate best when structures are regular. 
Of course, English grammar is not regular, and neither is the syntax for place value. 
One problem is that the elements of place value have an ambiguous correlational 
structure—an attribute that has contributed to mapping failures in other domains 
(Uttal, O’Doherty, Newland, Hand, & DeLoache, 2009). Numbers are used in many 
ways to mean many things (e.g., whole number cardinality, ordinality in counting, 
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ordinality in dates and addresses, arbitrary tags in phone numbers, account num-
bers), so the correlation between symbol and meaning for any numeral is not perfect. 
In a multi-digit numeral, the correlations are even weaker because the same digits 
have different meanings based on their spatial positions (e.g., 14 vs. 41). In this way, 
place value notation is at odds with previous learning about numbers because the 
direct one-to-one mappings that allowed children to interpret the number words 
from 1 to 9 are pitted against the new relational mappings for which the numerals 
seem to mean something else. Of course, this is not true in reality because even 
numerals in the ones place represent counts and units (i.e., counts of the unit “one”), 
but from the perspective of a new learner, the “1” in 14 and 41 may seem like hom-
onyms (i.e., identical symbols that mean different things). This example highlights 
the potential value of a statistical learning or structure-mapping framework: namely, 
that abstract relational structures are not obvious in single examples.

Another problem with place value is that, as in most symbol-referent mappings, 
the overall similarity among elements is low—a second reason mappings fail in 
other domains (Bassok & Medin, 1997; Gentner & Markman, 1994; Gick & 
Holyoak, 1983). The written numeral “42” has no perceptual similarity linking it to 
a pile of 42 rocks. Without counting the rocks, there is literally nothing connecting 
the two, and even then, there are layers of symbolic meaning to coordinate, includ-
ing the counting sequence up to 42 and the spoken number name “forty-two.” In 
some cases, the available surface similarity may initially be misleading. For exam-
ple, the spoken number word, “fourteen,” sounds like it should map onto the written 
symbol, “40,” considering only the temporal sequence of phonemes. It is an open 
question whether the multi-digit numbers children haphazardly encounter outside 
of school, and perhaps in school as well, present enough systematic regularities to 
permit discovery of the relational structure that underlies place value notation.

Despite these challenges, children clearly attempt to find such regularities, and 
with some success (Byrge, Smith, & Mix, 2014; Mix et al., 2014; Yuan & Smith, 
under review). A striking example comes from number transcoding studies, in which 
children are asked to write multi-digit numerals from dictation (e.g., “Write the 
number ‘three hundred twenty-six’.”). Four- to 8-year-olds perform poorly at these 
tasks, particularly for three- and four-digit numerals (Barrouillet, Camos, Perruchet, 
& Seron, 2004; Moura et al., 2013; Zuber, Pixner, Moeller, & Nuerk, 2009). A fre-
quent error, called “additive composition,” resembles expanded notation (e.g., 
300+20+6) and seems telling. When asked to write “three hundred twenty-six,” for 
example, an additive composition response would look like “300206.” This error 
has been interpreted to mean that young children do not know the syntactic rules for 
place value, they lack the working memory to keep track of base-10 syntax, they 
misunderstand the meaning of zero, or the queried numbers are relatively unfamiliar 
(Barrouillet et al., 2004; Geary et al., 1999; Moura et al., 2013; Zuber et al., 2009). 
However, these errors, which are evident in preschool children before instruction, 
may well reflect something else; that is, an attempt to find order in a symbol system 
that is not completely regular (Byrge et al., 2014).

5 Leveraging Relational Learning Mechanisms to Improve Place Value Instruction



92

Indeed, the additive composition error is much like the well-known over- 
regularization errors children make when they encounter grammatical exceptions 
(e.g., “goed” instead of “went,” Berko, 1958). Such errors indicate that young chil-
dren are attuned to the underlying structures, albeit perhaps subconsciously, and are 
attempting to align them. Regularization errors might even be construed as signa-
tures of relational learning. The main idea of this chapter is that by fully supporting 
the learning mechanisms children naturally engage to make sense of place value 
(i.e., statistical learning and structure mapping), educators can help them discover 
the deep relational structure of multi-digit numbers more quickly, and avoid reli-
ance on shallow heuristics that can interfere with subsequent learning.

5.3  Instructional Elements Based on Relational Learning

To our knowledge, there are currently no mathematics curricula that explicitly build 
on the learning mechanisms of statistical learning and structure mapping. However, 
research has revealed enough about how these mechanisms work for us to describe 
how these curricula might look. Below, we identify four instructional elements that 
could improve place value instruction by harnessing these learning mechanisms, 
and explain the empirical and theoretical basis for each one.

5.3.1  Co-Occurrence

The more learners experience co-occurring elements, the more likely they are to 
notice and remember them (see Smith, Colunga, & Yoshida, 2010, for a review). At 
the most basic level, this type of learning is evident when animals learn simple asso-
ciations, such as Pavlov’s dog learning to associate food with the sound of a bell. 
However, complex variants of associative learning characterize many forms of 
human learning. When learners are given extensive exposure to highly regular, com-
plex systems, their cognitive systems—through the basic operations of memory and 
attention—instantiate the statistical probabilities of various pairings, and these 
probabilities serve to isolate conceptual units and direct attention to future input.

For example, a vexing problem in child development has been explaining how 
infants isolate and identify words in continuous natural speech, for which word 
boundaries are often unmarked by pauses or prosodic cues. A landmark study by 
Aslin et al. (1998) showed that 8-month-olds could detect novel word boundaries in 
a continuous speech stream of nonsense words, using only the transitional probabil-
ities for various syllables. No prosodic or rate cues were given. The only cue avail-
able to infants was the regularity of certain syllables following others (e.g., in the 
speech stream “bidakupadotigolabubidaku…” the syllable “pa” was more likely to 
follow “ku” than “bi”). Remarkably, infants required only a single, 3-min session to 
detect these transitional probabilities and learn specific words (e.g., “kupa”). Bear 
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in mind that at a rate of 4.5 syllables per second, infants were exposed to hundreds 
of pairwise syllable sequences, and the target nonsense words themselves appeared 
at least 45 times each. This study demonstrates that dense (albeit brief) exposure to 
a statistically regular input stream is sufficient for learners to abstract its structure.

Another word learning challenge is determining to which, of all the objects in a 
given scene, a new word refers. How, in a room full of toys, are there sufficient co- 
occurrences between balls and the word, “ball,” to make the correct mapping? 
Abundant research indicates that these situations are more constrained than they 
may at first seem, and that in fact, there is enough statistical regularity across situa-
tions for infants to use patterns of co-occurrence to induce word meanings (Smith & 
Yu, 2008). For example, a recent study used head-mounted cameras to determine 
what objects were most frequent in a typical toddler’s visual field (Clerkin, Hart, 
Rehg, Yu, & Smith, 2017). The results indicated that certain objects, such as table, 
bowl, and cup, were much more likely to be seen by toddlers, thus limiting the num-
ber of possible referents and increasing the density of co-occurrences between word 
and referent for these objects.

Research using connectionist models also demonstrates that the co-occurrences 
among elements are sufficient to induce new ways of categorizing the environment 
(Colunga & Smith, 2005; Kruschke, 1992; McClelland & Rogers, 2003; Siskind, 
1996). Connectionist networks are simple computational models made of intercon-
nected processing units that function like individual neurons. Each unit can be more 
or less activated. As the network accepts input, the activation levels of the process-
ing units adjust and over time, the network responds, or generates output, that 
reflects this learning. By exposing such units to various patterns of input, but not 
building any particular structure into the network a priori, scientists can test the 
conditions that support various kinds of learning. Colunga and Smith (2005) fed a 
connectionist network perceptual information about various noun categories for 
which shape and material (i.e., solid vs. non-solid) were correlated. At test, the net-
work was asked to categorize new examples that matched on shape and were either 
solid or non-solid materials. After 100 training epochs, the network learned to 
ignore shape when an item consisted of non-solid material. This generalization 
arose purely from tabulating the statistical probability that shape was predictive of 
word meaning for solid, but not non-solid materials.

Findings such as these suggest that dense co-occurrences of structural elements 
in the domain of mathematics (and more specifically, experiences related to place 
value notation) will lead to recognition and abstraction of its underlying patterns, 
even when those regularities are imperfect and not obvious in the surface forms. 
Indeed, recent research has demonstrated this to be true (Yuan & Smith, under 
review). Thus, there is good reason to think that place value learning requires 
extended sequences of mappings in the same session. Instructionally potent activi-
ties likely incorporate multiple mappings within each task—number names to writ-
ten numbers, written and spoken numbers to sets of things, one number to the next 
in the count sequence—so that they are dense with co-occurrences.
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5.3.2  Alignable Elements

Recall that there are two common barriers to relational learning; one is weak inter-
nal consistency within a relational system and the other is low surface similarity 
among elements. To overcome these obstacles, it would be beneficial to use instruc-
tional content that provides greater internal consistency within elements and greater 
surface similarity among elements. Teachers cannot reinvent the conventional sym-
bol systems used to represent place value, but they can select language and materi-
als that make the mappings within this system more predictable and relevant to 
finding the underlying base-10 structure.

Consistent with this idea, we know that Asian languages convey base-10 struc-
ture more transparently than many European languages, including English, and this 
difference may support place value learning. Fuson (1990) referred to these lan-
guages as “named value” numbering systems because the base-10 units and their 
counts are explicitly labeled. For example, the Chinese word for 23 is translated, 
two-ten, three. Asian children fare better on place value tasks than their US peers, 
and their transparent language may be one reason (Geary, Bow-Thomas, Liu, & 
Siegler, 1996; Ho & Fuson, 1998; Laski & Yu, 2014; Miura et al., 1994) (although 
cross-cultural differences in place value instruction is another, see Laski & Yu, 
2014). We also know that using transparent language improves student performance 
in other mathematical content areas, such as fractions, even when children are from 
the same cultural group (Paik & Mix, 2003). Thus, using alignable language may be 
one way teachers can scaffold relational mappings.

Another way to incorporate alignable materials is through the use of concrete 
manipulatives that make base-10 structure more explicit and regular. Such manipu-
latives have a long tradition in mathematics education, having been developed to 
help children ground their understanding of abstract mathematical concepts in con-
crete experiences (see Mix, 2010, for a review). This grounding is thought possible 
because these concrete objects are structurally isomorphic to the written symbols 
(Post, 1988). In the realm of place value, many classrooms already use  commercially 
produced base-10 blocks for this purpose (see Fig. 5.1). As we will see, materials 
such as this featured prominently in Montessori’s mathematics curriculum as well 
(Montessori, 1934).

Research further suggests that it is easier to abstract relations from simple exam-
ples than it is from rich, complex examples (Son et al., 2008). For example, when 
toddlers were taught a novel word for one of two toy vehicles, the words were 
learned and generalized more readily if the toys were solid colored, geometric 
shapes rather than richly detailed versions (see Fig. 5.2) (Son et al., 2008). Whereas 
adults can use prior learning to direct their attention optimally in complex learning 
situations (Nosofsky, 1984), children are less capable of screening out distracting 
information (Gentner, 1988; Keil & Batterman, 1984). Thus, access to clear, 
straightforward examples may be particularly important for children, and particu-
larly important when structures are complex and non-obvious.
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Fig. 5.1 Base-10 blocks (Source: Kelly S. Mix)

Fig. 5.2 Stimuli used in Son et  al.’s (2008) word learning study (Reprinted by permission of 
Elsevier)

These findings suggest that children learning place value would benefit from 
exposure to instructional elements (i.e., words and materials) that are structurally 
transparent, simple, and regular. As noted above, the idea of structural isomorphism 
has a long tradition in mathematics education and these aims have motivated the use 
of concrete models to represent base-10 relations. There is evidence that such materi-
als are effective (e.g., Fuson, 1990), though when stringent controls are used, the 
evidence favoring base-10 blocks is limited to certain mathematical outcomes 
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(Mix, Smith, Stockton, Cheng & Barterian, 2017). Perhaps the full benefit of these 
materials is not realized unless other elements are included, such as dense co-occur-
rences and those additional elements described below. In short, isomorphism alone 
may not be enough.

5.3.3  Multiple Examples

It would be possible to focus instruction on a single example of a concept and teach-
ers often do so. They might, for example, present a wolf as an example of a carni-
vore in science class, or use a short story to illustrate a literary genre. However, 
research indicates that comparison is the engine that drives discovery of structural 
similarity (Gentner, 2010), so there is great instructional value in presenting multi-
ple examples or analogies to stimulate these comparisons. Multiple examples may 
be particularly crucial for learning relational concepts, such as place value.

Promoting comparisons also engages partial knowledge, which is crucial to 
acquiring new mental structures. Indeed, a fundamental question in developmental 
psychology is how new concepts or behaviors emerge. How does one discover what 
a dog is, if one does not already recognize what a dog is? How can you understand 
algebra, without already knowing algebra? To solve this chicken-egg problem, psy-
chologists have invoked the notion of bootstrapping, or the idea that partial knowl-
edge allows learners to focus attention in ways that promote acquisition of additional 
knowledge (Carey, 2004; Gentner, 2010).

To illustrate, consider how bootstrapping has been demonstrated in research on 
language acquisition (e.g., Piantadosi, Tenenbaum, & Goodman, 2012; Werker & 
Yeung, 2005; Yurovsky, Fricker, Yu, & Smith, 2014). Yurovsky et al. (2014), for 
example, manipulated the completeness of information available to adults learning 
novel words. They showed that (1) learners encoded partial information about the 
novel words prior to acquiring the full meaning of these words and (2) having par-
tial knowledge of a subset of words served to speed up learning of the rest. Thus, 
learners neither acquire complex systems in their totality nor acquire elements of 
complex systems in isolation from each other, but rather, they use partial knowledge 
of system elements to direct attention and make reasonable inferences (i.e., boot-
strap) to acquire the rest.

The hypothesis that comparing multiple examples drives learning has been sup-
ported repeatedly in word learning experiments. Children learn new words faster 
when they are given two referents and a label versus a single referent paired with a 
label (Childers, 2011; Gentner, Anggoro, & Klibanoff, 2011; Liu, Golinkoff, & Sak, 
2001; Namy & Gentner, 2002; Pruden, Hirsh-Pasek, Maguire, & Meyer, 2004; Son, 
Smith, & Goldstone, 2011). For example, Gentner et al. (2011) demonstrated that 
simply presenting 4- to 6-year-olds with two examples of a relation, such as a knife 
cutting a watermelon and an ax cutting a tree, was sufficient for children to induce 
the common relation “for cutting” between tool and object.
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In place value learning, activities that promote comparison are likely to be highly 
effective. For example, rather than simply showing children a physical set and call-
ing it “twenty-eight,” children may need to see and compare multiple physical sets 
(e.g., sets constructed of different materials, materials grouped in different ways) to 
extract the common properties to which the verbal labels refer.

5.3.4  Scaffolding Alignment

Simply presenting multiple examples to students is a good start, but may not be 
enough, particularly for a complex representational system like place value. 
Children may need additional scaffolding to align elements of this system and rec-
ognize similarities. Although presenting children with two examples of a new cate-
gory is sometimes sufficient to induce comparison and abstraction (Gentner et al., 
2011), that is not always the case (Christie & Gentner, 2010). How can teachers 
more actively scaffold the alignment process?

5.3.4.1  Temporal Contiguity

It helps learners make comparisons if all elements are presented in close temporal 
contiguity, if not simultaneously. When elements are separated too far in time, com-
parison is hindered. For example, if children represent place value problems with one 
material on Monday and another material on Tuesday, they likely fail to benefit from 
having multiple examples because the examples are too far apart in time to be aligned. 
In contrast, if children constructed a representation with one material and then imme-
diately constructed the same representation with a different material, the comparison 
across representations would be more straightforward and easy to perceive.

5.3.4.2  Surface Similarity

The features and physical presentation of instructional materials can be manipulated 
to induce comparison. Recall that when learners recognize any point of alignment, it 
is sufficient to initiate the structure-mapping process by which new points of align-
ment and deep structures are discovered (e.g., Gentner, 2010). Thus, even unrelated 
“surface” similarities can stimulate comparison. These similarities may be inherent 
to the objects themselves (e.g., color-coding) or conveyed via spatial organization 
(e.g., arranging two lines of objects across from each other in small-to- large order) 
(Kosslyn, 2006; Matlen, Gentner, & Franconeri, 2014; Novick & Bassok, 2005).

Distinctiveness, or alignable differences, can also support structure mapping 
(Markman & Gentner, 1996). In one study, children were most likely to match 
objects across two arrays that were the same relative size (small, medium, large) 
when the objects themselves were not only highly similar across arrays, but also 
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highly distinctive within arrays (i.e., different from each other) (Paik & Mix, 2006). 
Base-10 materials could be structured using such cues. For example, when present-
ing different concrete models, such as stick bundles and base-10 blocks, teachers 
could color code the place values so that in both models, the ones are red, tens are 
blue, hundreds are yellow.

5.3.4.3  Gesture

A third way to scaffold alignment is to indicate which specific elements of one 
example align with specific elements of the other using gestures (Alibali et  al., 
2013; Alibali & Nathan, 2007; Richland, 2015; Vendetti, Matlen, Richland, & 
Bunge, 2015). For example, Richland and McDonough (2010) demonstrated that 
when teachers use gesture to scaffold comparisons in mathematics lessons, student 
learning is enhanced. Consistent with this, Alibali and colleagues have reported a 
link between teachers’ use of gestures to scaffold comparisons in mathematics and 
student learning outcomes in several case studies (Alibali et al., 2013; Alibali & 
Nathan, 2007). Indeed, in countries with the strongest mathematics performance, 
teachers regularly reinforce relational alignment through gestures, whereas US 
teachers do so more rarely (Hiebert et al., 2005; Richland, Zur, & Holyoak, 2007). 
This instructional difference might explain why US children fare better in class-
rooms with more teacher-directed instruction and fewer manipulatives (Morgan, 
Farkas, & Maczuga, 2015) because when US teachers use concrete models in math-
ematics instruction, they may allow too much unguided exploration and fail to pro-
vide sufficient scaffolding for aligned comparisons.

5.3.4.4  Shared Labels

When two objects or events have the same verbal name, or label, it is a strong signal 
to learners of an underlying commonality (Gentner & Christie, 2010; Gentner, 
Özyürek, Gürcanli, & Goldin-Meadow, 2013; Loewenstein & Gentner, 2005). The 
shared label may point out the relation directly. For example, when preschool chil-
dren were asked to find an object on a three-tiered display after seeing one hidden 
at an analogous location in a separate display, performance was significantly better 
when spatial labels such as “on,” “in,” or “under” were used (Loewenstein & 
Gentner, 2005). However, the word need not describe the relation to be helpful. 
Simply naming a noun category signals similarity, even if the words are novel 
(Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987; Smith, Jones, Landau, Gershkoff- 
Stowe, & Samuelson, 2002; Waxman & Gelman, 1986).

One way to use shared labels is to name one instance and then, when another 
instance is encountered later, give it the same name. However, this kind of shared 
labeling may lack potency if the instances are spaced too far apart in time. If a child 
sees a bear at the zoo on Sunday, for example, and then sees one in a book three 
months later, the shared label may not be recognized as such. This problem is even 

K. S. Mix et al.



99

more acute for abstract concepts, for which there are few shared surface features. 
However, when shared labels are used in the presence of multiple examples, it maxi-
mizes comparison and alignment by clearly signaling there is a commonality and 
providing at least two examples to compare. In place value learning, triangulating 
co-occurrences in this way may be quite important. For example, rather than simply 
showing children a physical set and calling it “twenty-eight” (or even “two tens and 
eight ones”), children will likely learn faster if they experience multiple mappings 
in the same instance (e.g., two sets of 28 that both receive the same label).

5.3.4.5  Progressive Alignment

When a relation is not easily observed, it may be helpful to lead learners through a 
carefully constructed sequence of comparisons (i.e., progressive alignment; 
Kotovsky & Gentner, 1996; Goldstone & Son, 2005; Thompson & Opfer, 2010). 
The sequence need not be long. In fact, studies have shown results with only one 
intermediary comparison (Kotovsky & Gentner, 1996). The key is to introduce 
overlapping instances that connect instances at one extreme to another. For exam-
ple, children who recognize the relation of symmetry should be able to match com-
pletely different sets of objects that are symmetrical (see Fig. 5.3). However, when 
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Dimension
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Fig. 5.3 Stimuli used in Kotovsky and Genter’s (1996) progressive alignment study (Reprinted by 
permission of Wiley)
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the object sets are so disparate that all they have in common is symmetry, there may 
not be enough similarity to engage structural alignment. To bridge this gap, it helps 
to have a highly similar pairing (i.e., one that elicits alignment), followed by the 
dissimilar pairing (i.e., one that isolates the relation).

One well-studied version of progressive alignment has used chains of compari-
sons that move from concrete to abstract examples (i.e., concreteness fading; see 
Fig. 5.4). Goldstone and Son (2005) showed that adults learned abstract scientific 
concepts such as patterns in the way animals distribute themselves while foraging, 
if the first example is highly concrete and subsequent examples gradually remove 
detail until only the relation itself is represented. Similar effects have been demon-
strated in mathematics learning, as well (McNeil & Fyfe, 2012; Fyfe, McNeil & 
Borjas, 2014). Specifically, adults and children learned new mathematics concepts 
best when examples transitioned gradually from concrete to abstract, compared to 
either a concrete- or abstract-only approach.

5.3.4.6  Summary

As we have seen, the choice of materials used to instantiate relations (i.e., objects, 
words, and symbols) and the specific way these materials are presented can deter-
mine whether learners will engage statistical learning and structure mapping—the 
engines of relational learning. Extensive research on concept acquisition and word 
learning has established that learners benefit from dense co-occurrences, multiple 
examples that have alignable elements, and explicit scaffolding for comparisons, 
including temporal contiguity, surface similarity, shared labels, gestures, and pro-
gressive alignment. Although few studies have applied these ideas to place value 
learning in particular, it is reasonable to expect the same patterns to hold. In the sec-
tions that follow, we review three mathematics curricula in light of these learning 
mechanisms and instructional elements. As we will see, there are many ways these 
curricula provide strong support for relational learning, but may not go far enough. 
Small but important modifications could optimize relational learning and lead to 
significant student gains.

5.4  A Brief Review of Three Mathematics Curricula 
in the Context of Relational Learning Mechanisms

We selected three highly influential approaches to elementary level mathematics 
instruction, that include (1) Developmentally Appropriate Mathematics (Van de 
Walle et al., 2010), (2) Number Talks (Parrish, 2014), and (3) the Montessori Method 
(Montessori, 1917). As noted previously, we restrict our focus to instruction on 
place value and multi-digit notation, as this topic is a persistent stumbling block for 
elementary students (Booth & Siegler, 2008; Gervasoni et al., 2007), as well as a 

K. S. Mix et al.



101

Info

Paint

Clear

Number of ants

Closest Rate Not Closest Rate

Graph Updating

Pen Size

Time

D
is

ta
nc

e 
of

 fo
od

pa
tc

h 
to

 c
lo

se
st

 a
nt

Reset

Erase

Adjust

Place

Quiz

Move

A screen-dump of an initial configuration for the “ants and food” simulation. At each time 
step, a patch of food is randomly selected, and the ant closest to the patch moves to-ward 
the patch with one speed (specified by the slider “closest rate”) and the other ants move to-
ward the patch with another speed (“not closest rate”).

An example of the idealized version of the ants and food simulation.

Fig. 5.4 Stimuli used in Goldstone and Son’s (2005) concreteness fading study (Reprinted by 
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complex relational learning challenge. Our aim is not to evaluate each curriculum in 
its entirety, but rather to survey its conceptual framework and closely analyze a few 
specific activities. Our hope is that a narrow focus will generate specific recommen-
dations that might be useful by way of example. The materials we reviewed were 
designed for second- and third-grade students, and all aim to teach the meaning of 
multi-digit numbers. For each curriculum, we consider separately the four instruc-
tional elements identified above; that is (1) Co-Occurrence, (2) Alignable Elements, 
(3) Multiple Examples, and (4) Scaffolding Alignment.

5.4.1  Developmentally Appropriate Mathematics  
(Van de Walle et al., 2010)

5.4.1.1  Overview

The first curriculum, Developmentally Appropriate Mathematics suggests activities 
based on the notion that children of various ages can learn mathematics deeply 
when tasks are designed so as to provide the most opportunity for drawing mathe-
matical connections. Its theoretical framework is essentially Piagetian constructiv-
ism, which holds that children construct and adapt schemas in response to various 
experiences. The overarching instructional goal of Developmentally Appropriate 
Mathematics is to help children construct new ideas through the Piagetian mecha-
nisms of assimilation and accommodation, and connect these ideas through guided 
exploration in student-centered activities.

The literature on relational learning is not cited, but the authors draw a pertinent 
distinction between what they call “instrumental understanding” and “relational 
understanding.” Instrumental understanding is considered rote application of iso-
lated procedures, and relational understanding is considered a set of connected 
ideas that help students know “what to do and why.” These connected ideas are 
thought to arise through relational activities, such as “explaining, providing evi-
dence or justification, finding or creating examples, generalizing, analyzing, making 
predictions, applying concepts, representing ideas in different ways, and articulating 
connections or relationships between the given topic and other ideas.” (p. 6).

These ideas are broadly consistent with current psychological theories of rela-
tional learning but there is a crucial difference. Relational understanding in 
Developmentally Appropriate Mathematics means achieving a complete and coher-
ent structure for a set of concepts, as well as a meta-awareness of this structure that 
permits explicit strategy choices and justifications. Relational learning in psychol-
ogy means seeing how two things are related (e.g., similar). In mathematics, seeing 
similarity could be something as simple as seeing that the teacher’s handwritten 
number 24 is the same as another student’s handwritten number 24, or something as 
complex as seeing how commutativity in solving equations is the same as weights 
arranged a certain way on a balance beam. To use a non-mathematics example, 
relational learning is also how we understand metaphoric comparisons, such as 
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“time is like a river” (Bowdle & Gentner, 2005). Although relational understanding 
is probably built via relational learning mechanisms, they are not the same thing. 
This distinction is critical to the present review because, even though the impor-
tance of forming connections is certainly acknowledged in Developmentally 
Appropriate Mathematics, the psychological processes by which children make 
these connections are not centered in this curriculum.

5.4.1.2  Learning Activities

The specific activities we reviewed are presented in Chap. 10, “Developing Whole- 
Number Place-Value Concepts” (Van de Walle et al., 2010). The overall gist of the 
chapter is that elementary children are developmentally working to acquire number 
sense, or a relational sense of number concepts and skills. The introduction to the 
chapter offers a mechanism based on Howden (1989), which holds that children will 
gradually discover these relations through “exploring numbers, visualizing them in 
a variety of contexts, and relating them in ways that are not limited by traditional 
algorithms” (p. 11). The introduction further notes that “being able to recognize and 
generate equivalent representations of the same number is the component of number 
sense that will serve students well …” and that this awareness of equivalent repre-
sentations linked to place value understanding will lead to greater flexibility. As 
noted above, whereas these claims are consistent with relational learning theory, 
they seem more focused on the results of relational learning than relational learning 
processes themselves.

In the Building It in Parts activity (10.1, p. 153), children are asked to decompose 
various quantities, such as 40, into two sets using ten-frames. Children are instructed 
to record their solutions both by displaying the ten-frames used on a small mat, and 
writing an addition equation (e.g., 25  +  15  =  40; 20  +  20  =  40) (see Fig.  5.5). 
Teachers are told that writing the equations serves to focus children’s attention on 
the relevant aspects of this activity, and “make apparent the clear connection 
between part-whole concepts and addition.”

Fig. 5.5 Tens frames used in the Building in Parts activity (adapted from Van de Walle et al., 2014)
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Several relations are involved in this activity. The main relation involves noticing 
that different addends can reach the same total (e.g., 60 + 23 = 83 and 50 + 33 = 83), 
and further, that one addend offsets the other (i.e., “If I align the 60 and 50 on the 
left, and the 23 and 33 on the right, I can see that when the leftmost addend increases, 
the rightmost number must decrease by the same quantity.”). However, to see these 
more complex relations, children must also understand the mapping from written 
addition problems to ten-frames representations.

In support of relational learning, the Building It in Parts activity incorporates 
several of the instructional elements we identified earlier. First, it includes co- 
occurrences because children are asked to find as many different combinations as 
possible. Given enough time, children could generate dozens of combinations for a 
given quantity. That said, the activity description does not suggest a length of time 
or target number of combinations, so it is up to teachers’ discretion when enough 
combinations have been generated. If teachers do not understand the benefit of 
dense co-occurrences, they may stop children too soon.

The Building It in Parts activity also generates multiple examples with alignable 
elements, and there is some scaffolding for noticing these elements. Specifically, the 
sum operates as a shared label that indicates the various equations refer to the same 
total and are, thus, somehow related. However, the shared label alone may not be 
sufficient. It may be important for the various combinations to remain visible using 
both the materials (e.g., tens frames) and for the equations to be spatially aligned so 
children can see how the addends in various equations map onto the materials and 
one another. Children may also benefit from gestures that highlight these compo-
nents moving back and forth from one equation to another. None of this scaffolding 
is mentioned in the chapter or the activity description, so teachers would need to 
know how and why to provide it.

There was less evidence of the other instructional elements we identified. 
Because there is only one referent to map to each written addition problem, this 
activity does not incorporate multiple examples and triangulation. A second referent 
would be needed to engage that process. It should be noted, too, that although the 
elements are alignable, these relations may be difficult to perceive because of the 
low surface similarity between ten-frames and written numerals. Some children 
may need extra scaffolding to remember how the two are related. For example, it 
may help to count the dots in the ten-frames to show that they represent the cardinal 
number in the place value notation (e.g., “Let’s see. Two tens—one, two–and we 
write that ‘2’ here, to show it means tens and not ones.”).

In another activity (Too Many to Count, 10.4, p. 160), teachers are directed to pres-
ent a container filled with at least 1000 objects, such as straws or packing peanuts, and 
then ask students to estimate how many objects there are. Students next bundle the 
objects into tens and hundreds so as to facilitate an accurate count. The main aim is 
for students to “see how the 10 groups of 100 are the same as the 1000 individual 
items,” a connection that the author rightly points out is often obscured when pre-
grouped materials such as base-10 blocks are used. This is an important activity 
because facility with base-10 decomposition is highly predictive of later mathematics 
achievement and appears to be the main stumbling block in children’s developing 
understanding of place value (Chan et al., 2014; Laski, Ermakova, & Vasilyeva, 2014). 
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It is possible that some children will discover these underlying relations through the 
activity of estimating one large set size and decomposing the same set into units; 
however, there are reasons to think most children will need greater support.

First, the activity provides multiple representations of the same quantity, but 
there is no way to make an explicit comparison between the starting set and the end-
ing, decomposed set, because they are never present at the same time. What children 
would be doing is either comparing their memory of the starting set to the decom-
posed set, using logical inference (e.g., Piagetian conservation) to know the sets 
must be equivalent, or both. A simple way to allow children to make a direct com-
parison would be to have children photograph the starting set and print the photo on 
a large sheet of paper that could then be used in point-by-point comparisons.

Second, there is not much scaffolding for comparison. The initial written numeral 
is not the same as the final count because it is an estimate, so children do not have a 
shared label to connect the initial and decomposed end state. Nor do they see both 
states in spatial contiguity, unless a photograph is provided. Even with the photo-
graph, it may help to provide a shared label by writing the final count on both the 
picture of the initial state and the end state.

Third, the activity as described does not provide dense co-occurrences. It pro-
vides two mappable examples of a single quantity that are separated by the time it 
would take to bundle all the objects. For children to benefit from the activity, they 
likely need to repeat it several more times with the same quantities going in both 
directions (i.e., from composed to decomposed and then recomposed). Obviously, 
this back and forth would be difficult and time-consuming for quantities in the 
1000s, so perhaps it is preferable to illustrate the bridge counting by ones to other 
places only up to 100s, and then bridge 100s to 1000s by providing objects that are 
pre-grouped, but only into 10s or 100s. This modification leverages the notion of 
progressive alignment we described above, wherein children are scaffolded toward 
more abstract correspondences in stages that move from more concrete to less con-
crete examples. One could consider counting the objects by ones to be more con-
crete, partial bundling to be less concrete, and pre-grouped 1000s materials to be the 
most abstract (short of the written notation).

The idea of partial grouping is also suggested, but as a separate activity (Can You 
Make the Link? 10.6, p. 161). Here, children group and regroup the same quantity 
(≤ 150) by ones, tens, and hundreds. As in the Too Many to Count activity, the vari-
ous states are not simultaneously available, but shared labels (i.e., written totals) 
signal to learners that there is something to compare. What may be important to 
convey to teachers is that children likely need these partial groupings to achieve 
adequate temporal contiguity and dense enough co-occurrences to recognize the 
same principles for set sizes in the 1000s.

5.4.1.3  Summary

The Developmentally Appropriate Mathematics activities are geared toward helping 
children discover the underlying relational structure of place value by juxtaposing 
various representations (see Fig. 5.6). The curriculum explicitly identifies alignable 
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Fig. 5.6 Graphic depiction of base-10 relations presented in Developmentally Appropriate 
Mathematics (adapted from Van de Walle et al., 2014)

elements and the activities are clearly intended to promote comparison. However, the 
parameters of these comparisons (How many? How dense? Scaffolded how?) are not 
specified, leaving it to the teacher to determine. We know from research on relational 
learning in both children and adults that simply providing a single pair of examples 
without additional scaffolding is not usually sufficient to induce deep relational learn-
ing (Bransford & Schwartz, 1999; Gick & Holyoak, 1983; Goldstone & Wilensky, 
2008). The presented activities promote relational learning by providing varied exam-
ples and setting up situations ripe for structural alignment and statistical learning, but 
without sufficient scaffolding, children may not reap all the potential benefits.

5.4.2  Number Talks: Whole Number Computation  
(Parrish, 2014)

5.4.2.1  Overview

Number Talks are short instructional routines designed to elicit strategies for repre-
senting numbers and number operations. The activities are a starting point for 
teacher-led discussions that highlight the mathematical principles underlying 
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various strategies (Boaler, 2015; Humphreys & Parker, 2015; Parrish, 2011). 
Number Talks are a relatively new instructional method in the United States but it is 
commonly used in other parts of the world, particularly those countries whose stu-
dents have high achievement in international comparative studies such as TIMSS 
(Stevenson & Stigler, 1994; Stigler & Hiebert, 2009; TIMSS, 2007).

The activities we will review are drawn from a resource book for teachers. This 
book does not provide a strong theoretical framework, but does identify several key 
components of number talks, including (1) fostering a supportive classroom environ-
ment that permits free exchange of ideas; (2) a structured discussion format that fea-
tures the search for multiple solutions to the same problem; (3) the teacher as facilitator 
rather than expert; (4) mental computation and problem visualization to limit applica-
tion of rote procedures; and (5) carefully chosen problems that highlight or at least 
permit critical structures to be discovered. The fifth component—structuring the prob-
lem set—may offer the clearest connection to relational learning. However, the idea 
that children will be comparing and contrasting solutions permeates the curriculum 
and appears to be the engine that drives learning in this approach. The question is 
whether the recommended activities do all that they can to drive this engine.

5.4.2.2  Learning Activities

The lesson we selected, “Breaking Each Number into Its Place Value” (p.  133), 
aimed at conveying the strategy of breaking addends into their expanded forms, and 
then calculating the sum of each place before recombining the totals (see Fig. 5.7). 
Each of the 27 second-grade problem sets contain four problems and build in com-
plexity from simple problems that elicit the strategy through discovery (e.g., 10 + 
10, 10 + 11, 12 + 13, 14 + 15) to problems that offer practice applying the strategy 
(e.g., 15 + 27, 23 + 18, 17 + 25, 16 + 27), to problems that extend to larger numbers 
and more complicated combinations (e.g., 38 + 58, 67 + 17, 44 + 38, 25 + 66).

Video clips of a few lessons are provided online. Although a second-grade ver-
sion of the above lesson is not offered, there was a video for a more general lesson 
with third-grade students, in which children discuss solutions to the problem “38 + 
37.” The video first shows the teacher writing the problem on a whiteboard. Next, 
children are asked to solve it mentally (i.e., without paper and pencil) and indicate 
when they have reached a solution by giving a thumbs-up. Then children describe 
their procedures, one by one, while the teacher writes the equations on the white-
board. The first three solutions are  shown in Fig.  5.8. The third child offered a 
“Breaking Each Number into Its Place Value” solution, written here in the lower 
right corner of the whiteboard.

Of interest here is whether this lesson includes instructional elements that can 
promote relational learning. Unlike the Developmentally Appropriate Mathematics 
activities, number talks center on the symbols themselves and do not include map-
pings to concrete models (other than ten frames). Instead, the objects in this particu-
lar lesson are the symbolic quantities, so the relevant mappings are among the 
equations representing these quantities. The point of the lesson is to show that the 
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Once students begin to understand plane value, this is one
of the first strategies they utilize. Each addend is broken into
expanded form and like place value amounts are combined.
When combining quantities, children typically work left to
right because it maintains the magnitude of the numbers.

(A-7) Addition Strategy: Breaking Each Number
into its Place Value

24 + 38

(24 + 38) + (30 + 8)

Each addend is broken into its
place value.

20 + 30 = 50

4 + 8 = 12

50 + 12 = 62

Tens are combined.

Ones are combined.
Totals are added from the
previous sums.

Fig. 5.7 Example of a 
Number Talks strategy for 
place value understanding 
(Reprinted by permission 
of Math Solutions)

Fig. 5.8 Equations used to 
record students’ problem- 
solving approaches in a 
Number Talks video lesson 
(adapted from Parrish, 
2014 by permission of 
Math Solutions)

same quantities may be manipulated in various ways that all reach the same answer. 
Thus, for children to benefit from the activity, they have to recognize how the equa-
tions map onto one another.

At one level, the mapping in this video lesson is straightforward. The problem 
itself is the same and all the presented solutions arrive at the correct answer of 75. 
These points of alignment should signal to children that the problems are similar 
and might initiate a comparison process. It is less clear whether children can inde-
pendently make the more intricate mappings among various methods for decompo-
sition. For example, in the second solution, a child suggests splitting the ones place 
away from the rest of the second addend (7), adding this number to the first addend 
(38 + 7 = 45), and then picking up the remainder of the second addend (45 + 30 = 75). 
Are there any indications to children that the “30” in this approach is similar to the 
“30”s in the third solution? Unfortunately, the teacher did not explicitly compare the 
equations, so such commonalities were likely difficult for children to discern.
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One strength of the lesson was that the equation sets for each strategy were spa-
tially aligned, with the expanded versions neatly presented underneath the original 
version. This spatial alignment likely cued children as to which parts of the expanded 
equations mapped to their analogues in the original equation. However, there were 
few other scaffolds provided for these mappings. In the third solution, for example, 
the teacher underlined the tens places in the original equation while writing the 
expanded version beneath it. This use of surface features to guide attention probably 
helped somewhat, but these markings lost their meaning as soon as the ones places 
were added and also underlined. A better choice might have been to use arrows, 
connecting lines, or color-coding so that children could see the separate place rela-
tions after the whole equation was written out.

The Number Talks book focuses on six possible strategies for multi-digit addi-
tion, all of which children discover through interactions with various problem sets. 
In this scenario, co-occurrences are the number of practice problems for which the 
same patterns (i.e., solution strategies) are discovered and applied. This means 
that to have dense co-occurrences, children would need to solve many problems in 
each of the six ways. It is not clear from the lessons as presented how teachers can 
ensure all children are getting repeated exposure to each of the six structures (i.e., 
solutions). For example, one child could offer the “Compensation” strategy on 
every addition problem and essentially zone out of the discussion when other strate-
gies are offered by classmates. Also, recall that some lessons are designed to elicit 
multiple strategies for the same problem rather than multiple problems with the 
same strategy. As we noted, alignable differences can be highly informative, so 
there is potential value in comparing different solutions to the same problem (pro-
vided these differences are explicitly aligned). However, if every problem is solved 
multiple ways, there may not be dense enough co-occurrences for any particular 
strategy to be abstracted as a pattern. Thus, the balance of multiple strategies within 
problem and same strategy across problems would need to be carefully managed by 
teachers for students to benefit optimally. Indeed, the right balance may depend on 
individual differences in learners, such as prior knowledge, working memory capac-
ity, and so forth, so the task left to teachers is quite complicated.

5.4.2.3  Summary

The Number Talks problem sets are carefully constructed to afford certain solutions. 
In psychological terms, we might think of these solutions as patterns or structures 
that children can recognize across problems. If the problems are chosen well, as 
they appear to be in the lesson we sampled, the materials themselves will elicit these 
structures and generate the alignable elements needed for relational learning. We 
might also think about a particular problem as having a structure that is exposed by 
deconstructing and solving it in various ways.

However, whereas Number Talks activities provide opportunities for children to 
learn both of these relations, as relations go, these are fairly intricate and the activi-
ties as described leave most of the psychological meat in teachers’ on-the-fly 
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decision- making process. In terms of statistical learning, one could argue there are 
dense co-occurrences as long as (1) students provide multiple strategies for each 
problem and (2) teachers present multiple problems that elicit the same strategy in 
close temporal contiguity (i.e., in the same lesson). It is an open question how many 
exposures students need to abstract these structures, though we know from exten-
sive research in mathematics education that children readily acquire procedures and 
apply them in a rote way, suggesting that most children passively watching a lesson 
will achieve at least that much.

The question of structure mapping is thornier. The lessons do not build in explicit 
comparisons across solutions, so children will only align and map them if they are 
able to do so independently. The teacher in the video modeled a few techniques for 
scaffolding comparison, but these did not provide enough lasting cues (i.e., struc-
tural marks that could be inspected over time) and were added only to indicate map-
pings from one step to another within the same solution to the same problem. 
Scaffolding for mappings across solutions or across problems was not evident, but 
could be added.

5.4.3  The Montessori Method

5.4.3.1  Overview

Montessori’s place value activities were developed in the early twentieth century as 
part of a comprehensive elementary curriculum that encompassed mathematics, 
reading, language arts, science, and social science (Hainstock, 1978/1997; Lillard, 
1980/1997). Montessori was a physician who took an interest in the education of 
children with intellectual and developmental disabilities and eventually opened a 
school for low income, urban children in Rome. Through close observation and 
short teaching experiments, Montessori eventually built a full-blown theory of chil-
dren’s learning that included carefully designed and implemented developmentally 
appropriate pedagogical activities (Hainstock, 1978/1997; Lillard, 1980/1997; 
Lillard, 2005). Her mathematics activities and materials have been adopted widely 
and are commonly used in both traditional Montessori schools and in mainstream 
public schools to varying degrees of adherence to her prescriptions for implementa-
tion. Relatively few studies have examined the effectiveness of the Montessori 
approach due, in part, to difficulty choosing appropriate non-Montessori compari-
son groups; however, there is an emerging literature reporting strong positive effects 
of the Montessori Method on mathematics in particular (e.g., Lillard & Else-Quest, 
2006; Mix et al., 2017).

In terms of relational learning, there are several notable components of 
Montessori’s overall approach. First, concrete models for symbol grounding feature 
prominently. These materials were carefully constructed to embody as fully as pos-
sible the abstract relations they are meant to represent. The idea was for the objects 
themselves to be designed well enough that meaning was obtainable simply by 
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interacting with them (P. Lillard, 1980/1997) (though as we will see, the curriculum 
did not stop there). Second, Montessori emphasized child-centered learning, mean-
ing that children learned through their independent activities with prepared materi-
als and not following a teacher-led discussion or lesson. That is not to say that 
children could interact with materials wildly. Each activity had a strictly prescribed 
sequence of movements that was demonstrated for children (A.  Lillard, 2005). 
Rather than showing or explaining concepts, the teacher’s main role was to prepare 
the materials, demonstrate the procedure for interacting with the materials, and redi-
rect children if they veered off-script. As we will see, however, there was a great 
deal of scaffolding for relational learning built into these scripts.

5.4.3.2  Learning Activities

Montessori’s approach to teaching place value centered on two constructs: (1) 
counting units up to 9 and (2) making a transition to counting larger units at the 
boundaries (10, 100, 1000, etc.). To facilitate these counting operations, Montessori 
designed physical and symbolic materials that embodied differences in magnitude 
across units (see Fig. 5.9). Golden beads represented physical sets of ones, tens, 
hundreds, and thousands, with each unit being comprised of ten smaller units (e.g., 
a 100 square consists of 10 tens chains). Layered cards represented these relations 
symbolically, with each unit of magnitude being one zero longer (e.g., the card for 
100 was one place longer than the card for 10, such that the smaller magnitude 
could be laid atop the larger to make a multi-digit numeral).

Montessori's representational system was intentionally devised to promote struc-
ture mapping and statistical learning. Although the modern theoretical vocabulary 
for these processes was not available in 1917, the gist is the same. Montessori wrote, 
“The two materials—the decimal system beads and cards—lend themselves to clear, 
easy combinations offering opportunities for a very large number of exercises and 
therefore, ample practice.” She went on to describe numerous mapping activities, 
such as laying out tens combinations in order from 10 to 90, with the corresponding 
layered cards underneath. The aim was for children to use 1-to-9 counting within 
each unit type so as to (1) encounter the need to shift units after 9 time and again, 
and (2) recognize this counting structure as a pattern that repeats across all place 
value units.

The Montessori activities build on each other sequentially and are presented in a 
prescribed sequence. So, following practice at counting within units up to the unit 
boundary, children are introduced to representing multi-digit numbers. The initial 
introduction is via counting layered cards alone, without mapping to the beads, but 
eventually, children construct representations using both (see Fig. 5.10). These rep-
resentations are constructed in stages, with the layered cards used to label each 
group of beads (1s, 10s, 100s, etc.) in expanded form and then combined to show 
the final, conventional multi-digit numeral. Montessori explicitly recommended 
composing and decomposing the represented numerals, back and forth, so children 
could see how the two are related. Interestingly, Montessori did not recommend a 
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Fig. 5.9 Montessori’s Golden Beads and Layered Cards (Reprinted by permission of Montessori- 
Pierson Publishing Company)

gradual progression from smaller to larger units. Rather, she presented all units 
simultaneously and perhaps even starting with 4-digit numerals. Her reasoning was 
that the repeating patterns within the system were only discernible when it is pre-
sented in its entirety and children were guided to discover these larger shared struc-
tures first, while filling in the details of specific places and their symbols later.
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Fig. 5.10 Montessori’s representation of expanded notation (Reprinted by permission of 
Montessori-Pierson Publishing Company)

Action on materials and specific sequences of movement play a strong role in the 
Montessori Method. The use of perception-action is exemplified in the Snake Game 
(see Fig. 5.11). As noted above, the main structure children were encouraged to 
recognize was how counting beyond 9 of any unit necessitated a shift to a new unit. 
In the Snake Game, children use counting and movement to repeatedly experience 
these shifts. It begins with children creating a snake from beads of various lengths, 
from 1 to 9 single beads. These shorter bead chains are color coded by numerosity 
and would be familiar to children from their previous experiences counting and 
grounding cardinality up to 10. As the exercise progresses, children count the indi-
vidual beads one by one, stopping when they get to 10, and replacing the 
 multi- colored beads with a tens chain of golden beads. Importantly, the two chains 
(multi-colored and golden) remain visible throughout the exercise and are aligned 
side by side. Special, black beads are used to represent leftover ones that must be 
carried from one count to the next (see Fig. 5.11). The goal is for children to see how 
a randomly constructed line of chunks can be regrouped into tens and rapidly 
counted to determine its cardinal number.
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A B

Fig. 5.11 Montessori’s “Snake Game” (Reprinted by permission of Montessori-Pierson 
Publishing Company)

The Montessori Method incorporates many elements of structure mapping and 
statistical learning. First, all of the materials and activities involve direct compari-
sons between multiple representations. These representations included symbol- 
symbol mappings, as well as symbol-referent mappings, and a variety of 
triangulations such as multi-digit numeral-expanded numeral-concrete materials. 
The comparisons are carefully scaffolded using a variety of techniques that are con-
sistent with relational learning theory, including spatial alignment of exemplars, 
color-coding, proportion and size coding, and close temporal contiguity of alternat-
ing states (e.g., expanded and composed). Montessori’s exercises also broke larger 
systems of mapping into local, one-to-one mappings, so that children’s attention 
was directed to specific points of alignment within and across larger mappable sys-
tems. Finally, the express aim is to provide dense co-occurrences. For example, the 
structure Montessori identified as crucial—counting to 9 and one step beyond—was 
built in multiple times to each exercise. Also, whereas Montessori did not prescribe 
a certain number of exposures per activity, she did provide guidelines to teachers 
based on children’s engagement with a material. In short, Montessori teachers are 
instructed to present the same materials and exercises as long as children display 
intense concentration and interest in the materials (Hainstock, 1978/1997; Lillard, 
1980/1997). This rule of thumb ensures children receive exposure to enough map-
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pings to extract the critical relations without reaching a point of tedium. Thus, in 
many important ways, the Montessori Method encompasses the active ingredients 
of modern relational learning theory.

One might question why the Montessori Method appears more potent than 
Developmentally Appropriate Mathematics, given that the latter curriculum uses 
quite a few of Montessori’s materials and activities, and also adopts the same gen-
eral theoretical framework based on forming associations across representations. 
The key difference we observed is that the Montessori Method is presented to teach-
ers as a coherent, step-by-step process with a highly prescribed sequence of activi-
ties that are each presented in a highly prescribed way. Other curricula, including 
but not limited to Developmentally Appropriate Mathematics, use potentially ben-
eficial activities but leave much of the implementation unspecified. In terms of rela-
tional learning, the devil is in these implementation details. One or two 
explanations—even brilliant explanations—are not enough. Relational learning 
requires repeated exposure to well-structured examples that permit regularities to be 
discovered. The Montessori Method differs in this critical way, by explaining spe-
cifically how to use these materials so as to harness children’s relational learning, 
rather than relying on the materials to spontaneously transmit these relations by 
their physical properties alone.

5.4.3.3  Summary

Despite being developed 100 years ago, long before contemporary relational learn-
ing theories were articulated, all four of the instructional elements we identified are 
quite evident in the Montessori Method. The materials, both concrete and symbolic, 
are designed to facilitate alignment. The activities themselves center on repeated 
exposure to critical structures and direct, scaffolded comparisons among elements. 
The express aim of the activities is to help children isolate place value structure via 
rich and dense co-occurrences. It seems that although many of Montessori’s materi-
als have been adopted in mainstream education, her prescriptions for presenting the 
materials have not. This may be a serious oversight because these implementation 
guidelines are where the active ingredients of relational learning likely lie.

5.5  Conclusion

In this chapter, we asked whether current psychological theories that explain how 
people learn relations can improve our educational approaches to teaching place 
value to elementary children. We began by reviewing these theories, focusing on 
statistical learning and structure-mapping theory. The underlying driver of relational 
learning in these theories is comparison. We identified four instructional elements 
that facilitate learning from comparisons, including dense co-occurrences, multiple 
examples, alignable elements, and various forms of scaffolding (e.g., gestures, 
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color-coding, spatial arrangement). Finally, we applied this conceptual framework to 
three current instructional approaches to see whether relational learning is 
supported.

The three curricula we reviewed varied in this regard. They all appeal to the 
notion of “forming associations” and seeing similarities across instances, at least 
implicitly, and in this way, all are aimed at engaging relational learning. Furthermore, 
all three included elements such as shared labels, multiple examples, and spatial 
alignment that should promote learning by comparison. However, simply present-
ing two examples with a shared label may not be enough instructional support for 
children to grasp a set of complex relations like those that make up the place value 
system. Only the Montessori Method broke the comparison process down and pro-
vided consistent scaffolding for point-by-point alignments. Also, whereas all three 
curricula included multiple co-occurrences, only the Montessori Method was repeti-
tive enough to be considered “dense.” It is possible that the other curricula could be 
enacted in a way that provided dense exposures to the same structures; however, 
unless the means of achieving these co-occurrences are communicated clearly to 
teachers, as well as providing mechanistic explanations for what counts as dense 
co-occurrences and why the frequency and timing of these exposures are important, 
too much is left to chance.

The psychology literature offers insight into the mechanisms of relational learn-
ing that may be applied in many educational contexts, including mathematics 
instruction. In this chapter, we focused on the example of place value learning, but 
the same principles and instructional elements could be useful across a range of 
mathematics topics and age levels. It is hoped that this chapter provides a frame-
work that can support ongoing efforts to improve children’s learning, within the 
domain of mathematics and beyond.
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Chapter 6
The Complexity of Basic Number 
Processing: A Commentary 
from a Neurocognitive Perspective

Bert De Smedt

Abstract In this commentary, I reflect from a neurocognitive perspective on the 
four chapters on natural number development included in this section. These chap-
ters show that the development of seemingly basic number processing is much more 
complex than is often portrayed in neurocognitive research. The chapters collec-
tively illustrate that children’s development of natural number cannot be reduced to 
one basic neurocognitive factor, but instead requires a multitude of skills with dif-
ferent developmental trajectories. Specifically, these contributions highlight that 
there is much more than the processing of magnitude, or the so-called Approximate 
Number System, and they elaborate on the roles of subitizing, place value under-
standing, and children’s spontaneous attention to number and relations. They also 
point out that number is something that needs to be constructed and that number 
processing is in essence a symbolic activity, which requires the integration of mul-
tiple symbolic representations, a focus that has been increasingly emphasized in 
more recent neurocognitive research. The contributions in this volume provide fresh 
perspectives that will help to further our understanding of children’s natural number 
development and how it should be fostered. They also offer novel avenues for inves-
tigating the origins of atypical mathematical development or dyscalculia.

Keywords Number processing · Neurocognitive factors · Approximate number 
system · Dyscalculia · Symbolic representations

6.1  Introduction

The four contributions in this section on natural number development in children 
highlight that the development of seemingly basic number processing is much more 
complex than is often portrayed in neurocognitive studies in numerical cognition. 
The section illustrates that basic number processing cannot be reduced to just one 
core cognitive system or one brain area, such as the intraparietal sulcus (see also 
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Vanbinst & De Smedt, 2016). This collection of chapters on natural number devel-
opment highlights that there is more than the so-called Approximate Number 
System (ANS) and emphasizes the critical roles of subitizing (Clements, Sarama, & 
MacDonald, Chap. 2), place value understanding (Mix, Smith, & Crespo, Chap. 5), 
and children’s spontaneous attention to number and relations (McMullen, Chan, 
Mazzocco, & Hannula-Sormunen, Chap. 4). These chapters point out that number 
is something that needs to be constructed and that number processing is in essence 
a symbolic activity, which requires the integration of multiple symbolic representa-
tions (Ulrich & Norton, Chap. 3). Interestingly, this focus on symbolic representa-
tions has also been emphasized in more recent neurocognitive research (Merkley & 
Ansari, 2016; Schneider et al., 2017; Vanbinst & De Smedt, 2016).

After a very brief sketch of the neurocognitive approach to number processing, I 
discuss, against the background of the chapters in this section, the relevance of the 
ANS (Ulrich & Norton, Chap. 3) and I illustrate that there is more than the process-
ing of magnitude, by pointing to the roles of subitizing (Clements et al., Chap. 2), 
place value understanding (Mix et al., Chap. 5), and spontaneous focusing on num-
ber and relations (McMullen et  al., Chap. 4). I end this commentary with some 
concluding thoughts and avenues for future research, inspired by the four contribu-
tions in the current section on natural number development.

6.2  A Neurocognitive Perspective on Number Processing

Neurocognitive research on number processing in children is a young but rapidly 
expanding field of inquiry, with nearly all studies published in the last decade 
(Schneider et  al., 2017). A key aim in these neurocognitive studies has been to 
understand why there are large individual differences in the way children acquire 
mathematical skills (Dowker, 2005) and why learning mathematics is so easy for 
some but so difficult for others (Berch, Geary, & Mann-Koepke, 2016). It is assumed 
that by understanding the very basic cognitive processes that underlie these indi-
vidual differences, learners’ profiles can be identified. These profiles then allow one 
to develop educational interventions and diagnostic approaches that are optimally 
tailored to the needs of the individual learner. A particular focus in this research has 
been the study of children with atypical mathematical development, a condition also 
known as dyscalculia or mathematical learning disability, which is a persistent and 
specific disorder in learning mathematics that is not explained merely by uncor-
rected sensory problems, intellectual disabilities, other mental disorders or inade-
quate instruction (American Psychiatric Association, 2013).

Dyscalculia has been categorized as a neurodevelopmental disorder (American 
Psychiatric Association, 2013), suggesting that the origin of these difficulties lies at 
the neurobiological level (De Smedt, Peters, & Ghesquiere, in press). It is important 
to emphasize that only a handful of brain imaging studies have investigated these 
neurobiological factors, i.e., brain function and/or structure (De Smedt et  al., in 
press; Peters & De Smedt, 2018) and the same applies to the study of typical 
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 development (Merkley & Ansari, 2016). Most research has focused on the study of 
neurocognitive variables, as these are on a theoretical level closer to the study of 
neurobiological factors (Hulme & Snowling, 2009). These behavioral studies do not 
involve collecting neurobiological data, but rather they consist of investigating cog-
nitive variables whose roles can be predicted on the basis of (developmental) brain 
imaging data on the processing of number and arithmetic (Arsalidou, Pawliw- 
Levac, Sadeghi, & Pascual-Leone, 2018; Peters & De Smedt, 2018). These cogni-
tive variables can be characterized as domain-specific skills, i.e., skills that are 
exclusively relevant for learning mathematics (e.g., numerical magnitude process-
ing, De Smedt, Noel, Gilmore, & Ansari, 2013), or domain-general skills that are 
also relevant for learning in other academic domains, of which working memory has 
been the most extensively studied (Peng, Namkung, Barnes, & Sun, 2016).

This neurocognitive body of evidence originally focused on non-symbolic 
numerical magnitude processing as a domain-specific core factor of individual dif-
ferences in mathematics (e.g., Piazza, 2010) and of dyscalculia (Wilson & Dehaene, 
2007). Likewise, neuroimaging studies have narrowed their focus to activity in the 
intraparietal sulcus (IPS) during mathematical tasks, highlighting it as a key and 
specific area for processing number (e.g., Nieder & Dehaene, 2009). This narrow 
focus on one core factor has been seriously criticized and challenged by both behav-
ioral and neuroimaging data.

Several studies have failed to observe an association between non-symbolic 
number processing and mathematics achievement (De Smedt et al., 2013) and meta- 
analytic data indicate that this association is small (r = 0.24, Schneider et al., 2017). 
Neuroimaging studies have revealed that many more brain regions other than the 
IPS show specific increases in activity when children engage in processing number 
(Arsalidou et al., 2018; Peters & De Smedt, 2018). The increases in brain activity in 
the IPS during the processing of number have been interpreted to reflect not only 
numerical processing but also other general cognitive functions, such as spatial 
working memory, serial order processing, or visual attention (see Fias, 2016, for a 
discussion). The chapters in this volume collectively align with these criticisms, as 
they indicate that the understanding of natural number represents a much more com-
plex endeavor that cannot be reduced to one factor. Instead, this understanding 
builds on a variety of learning mechanisms that are domain-specific as well as 
domain-general.

6.3  The Approximate Number System: Is It Relevant 
for Understanding Number Development?

One central concept in many neurocognitive studies on children’s number develop-
ment has been the so-called ANS, or the ability to process non-symbolically pre-
sented numerical magnitudes (Dehaene, 1997; Gebuis, Kadosh, & Gevers, 2016; 
Leibovich, Katzin, Harel, & Henik, 2017). This system has been suggested to be 
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innate as well as to be the foundation of understanding symbolic number and math-
ematical development (Feigenson, Dehaene, & Spelke, 2004; Piazza et al., 2010) 
and individual differences therein (Halberda, Mazzocco, & Feigenson, 2008). It has 
been proposed that the etiology of dyscalculia is best explained by a deficit in this 
ANS (Wilson & Dehaene, 2007). The existence of an ANS and its role in mathemat-
ical development continues to be the most debated topic in the field of numerical 
cognition (Ansari, 2016; Gebuis et  al., 2016; Leibovich et  al., 2017). Increasing 
evidence suggests that the ANS might not be numerical (Gebuis et  al., 2016; 
Leibovich et al., 2017) and that it even may not be the ground onto which the under-
standing of number, which is in essence a symbolic activity, is built (Leibovich & 
Ansari, 2016). These neurocognitive studies have been executed without much con-
tact with the relevant work in mathematics education research. The contribution by 
Ulrich and Norton (Chap. 3), focusing on children’s construction of number, nicely 
illustrates how mathematics education research might help to constrain theories of 
the ANS and its role in children’s understanding of natural number.

Ulrich and Norton (Chap. 3) aptly point to the critical difference between mag-
nitude and number. They indicate that the ANS deals with magnitude but not with 
number. Number entails the measurement of a magnitude; it needs to be constructed 
and it necessitates the understanding of a countable unit (see also Clements et al., 
Chap. 2). This points to the critical role of understanding counting, which requires 
learning number words and symbolic representations and which takes years of 
mathematical experience to develop.

The contribution of Ulrich and Norton (Chap. 3) nicely echoes recent discus-
sions in the neurocognitive field on the extent to which the ANS is numerical 
(Gebuis et al., 2016; Leibovich et al., 2017) and to which it provides a ground for 
learning symbolic number (Leibovich & Ansari, 2016). For example, Gebuis et al. 
(2016) contend that the ANS merely reflects the integration of different sensory 
cues, such as area and/or density, rather than something numerical. These authors 
argue that a sense of magnitude, based on area or density, rather than a sense of 
number, enables the discrimination between two magnitudes, as is also suggested 
by Ulrich and Norton (Chap. 3). Lyons, Bugden, Zheng, De Jesus, and Ansari 
(2018) recently coined the term Approximate Magnitude System (AMS), as an 
alternative to ANS. In line with the reasoning of Ulrich and Norton (Chap. 3), AMS 
might be a better term to denote this cognitive ability.

Another important conundrum in neurocognitive research, touched upon by 
Ulrich and Norton (Chap. 3), is the extent to which the ANS provides a ground for 
learning symbolic number (Leibovich & Ansari, 2016). While the dominant theory 
assumes that the ANS provides the ground for children’s symbolic representations 
of number (Piazza, 2010), this has been seriously challenged by developmental and 
brain imaging data (Ansari, 2016; Leibovich & Ansari, 2016). For example, Lyons 
et al. (2018) showed that in kindergartners, symbolic comparison abilities predicted 
subsequent non-symbolic comparison but not vice versa. This suggests that it is the 
acquisition of exact number that facilitates growth in the ANS, rather than vice 
versa. This aligns with the critical role of unitizing and measurement in the 
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 development of number, as discussed by Ulrich and Norton (Chap. 3; see also 
Clements et al., Chap. 2).

The contribution by Ulrich and Norton (Chap. 3) provides new avenues for fur-
ther study that can benefit from collaborations between researchers in mathematics 
education and cognitive psychology. These studies should clarify how the aware-
ness of magnitude and the development of number are related. Even though infants 
may have a sense of magnitude, it may not be critical to learning number. On the 
other hand, we need to understand how the development of number affects the 
awareness of magnitude (see Lyons et al., 2018).

This view of the ANS as relevant to magnitude rather than number also offers a 
fresh perspective on understanding dyscalculia. De Smedt et al. (2013) observed in 
their review of the literature that impairments on ANS-tasks were only observed in 
older (starting from age 10) children with dyscalculia (when compared to typically 
developing children). It might be that children with dyscalculia have a preserved 
awareness of magnitude, but that they do not benefit as much as typically develop-
ing children from their understanding of number or their ability to measure magni-
tude that allows them to fluently execute the dot comparison task. As suggested by 
Ulrich and Norton (Chap. 3), children could use different strategies to solve a seem-
ingly basic dot comparison task. Children with dyscalculia might rely more on their 
perceptual sense of magnitude to perform this task, while typically developing chil-
dren might rely more on their understanding of (symbolic) number and quantity, 
leading to differences in performance. Future studies are needed to verify this con-
jecture. They will require the consideration of different strategies that children use 
during comparison tasks, and these are not necessarily the same as the ones used by 
adults, as pointed out by Ulrich and Norton (Chap. 3).

6.4  More than Magnitude: The Roles of Subitizing, Place 
Value, and Spontaneous Focusing

Subitizing—the immediate apprehension and identification of the exact number of 
items in small sets up to four items—has been studied for a long time in cognitive 
psychological research, yet it has been relatively neglected in mathematics educa-
tion research (Clements et al., Chap. 2). It needs to be emphasized that it is not so 
easy to measure subitizing reliably, as subitizing is typically a very accurate process 
that occurs within a timeframe of less than 1 s. Clements et al. (Chap. 2) aptly point 
out that the basic process of subitizing has a much more complex and protracted 
developmental course than is assumed in cognitive psychological research. They 
argue that, during this development, a perceptual process that is in essence non- 
numerical has to be linked with an exact (symbolic) concept of number, echoing 
Ulrich and Norton’s (Chap. 3) discussion of the ANS. Fully functional subitizing 
requires the understanding of a countable unit as well as the number words to con-
struct an exact cardinal representation of a collection (Clements et al., Chap. 2), but 
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the critical question remains when in development this happens. This again empha-
sizes that number processing is in essence a symbolic activity, which requires the 
integration of multiple symbolic representations (Merkley & Ansari, 2016), the 
developmental trajectories of which remain to be further understood.

Clements et al. (Chap. 2) also discuss a more complex type of subitizing, concep-
tual subitizing, which has a high educational relevance. Conceptual subitizing refers 
to the child’s ability to organize a set of items via partitioning, decomposing, and 
composing to quickly determine its number. This conceptual subitizing provides 
children experiences with additive situations, and it fosters their understanding of 
part-whole relations, which are a critical scaffold for learning arithmetic operations. 
This discussion of Clements et al. (Chap. 2) provides a nice example of how ele-
mentary numerical activities can act as a stepping-stone for learning more complex 
arithmetic and mathematics. This type of theorizing on the mechanisms of why 
basic number processing correlates with more advanced mathematical achievement 
has been somewhat lacking in neurocognitive studies. These latter studies have typi-
cally focused on what predicts mathematics achievement but not on why it predicts 
this achievement (De Smedt et al., 2013). The combination of perspectives from 
mathematics education with psychological research might be a fruitful avenue to 
further understand these mechanisms. Such research is needed to further elucidate 
when conceptual subitizing develops and how it is related to children’s learning of 
arithmetic and its individual differences.

The large majority of neurocognitive studies on (symbolic) number processing 
have narrowed their focus to single-digit numbers, but to fully “crack the code” of 
Arabic numerals, children need to learn place value and multi-digit number mean-
ings, which are concepts that are difficult to master for many of them (Mix et al., 
Chap. 5). Mix et al. elaborate on this learning of place value and how it can be fos-
tered, through the domain-general lens of relational learning mechanisms, such as 
statistical learning and structure mapping. Their chapter nicely illustrates that the 
development of symbolic number is much more complex than the simple mapping 
between a symbol and the quantity it represents, as has often been assumed in neu-
rocognitive studies. Their chapter offers a key to the solution of the symbol- 
grounding problem in numerical cognition (Leibovich & Ansari, 2016). More 
specifically, Mix et  al. (Chap. 5) highlight that, in addition to domain-specific 
numerical mechanisms, domain-general relational learning mechanisms, which 
play a role in the acquisition of language, particularly the learning of syntax 
(Ullman, 2004), also need to be investigated. These investigations have the potential 
to further explain the strong associations between measures of language and math-
ematics (LeFevre et al., 2010) and to elucidate the comorbidity of dyscalculia with 
language disorders (Evans & Ullman, 2016).

It is important to emphasize that the learning of place value depends on the trans-
parency of the language in which children learn number. Some languages, such as 
Chinese, have a very regular alignment between the structure of their number words 
and their numerals (23 = two times ten and three) whereas other languages, such as 
Dutch, do not (23 = three-and-twenty). It is evident that the learning of place value 
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will be much harder in the latter languages than in the former and that different 
types of instruction might be needed in these different languages. In all, this high-
lights that contextual factors moderate children’s understanding of number (see also 
Clements et al., Chap. 2, and McMullen et al., Chap. 4), an issue that has been cen-
tral in educational research but that has been often ignored in neurocognitive 
studies.

McMullen et al. (Chap. 4) guide our attention to children’s spontaneous focusing 
tendencies on number (SFON) and relations (SFOR) and highlight that these are 
key elements of children’s understanding of number and its individual differences. 
McMullen et al. emphasize that children differ in their attention to mathematical 
elements of everyday situations outside the formal learning context. Children who 
are more attentive to the numerical and mathematical aspects of an everyday situa-
tion will have more (self-initiated) practice with it and, consequently, develop better 
mathematical skills. This again points to the critical role of the environment, includ-
ing both the home and school environment, and the contexts in which children are 
confronted with number as powerful moderators of children’s numerical develop-
ment. It remains, however, as yet unclear what aspects of the environment trigger 
children’s attention to number. On the other hand, it is clear that children’s under-
standing of number and numerical relations and their spontaneous focus on it 
develop in an iterative way (McMullen et al., Chap. 4).

6.5  Concluding Thoughts

The chapters in this volume collectively indicate that children’s development of 
natural number cannot be reduced to one basic neurocognitive ability but instead 
requires a multitude of skills that have different developmental trajectories. These 
chapters also suggest that these skills develop in a bidirectional way although their 
precise interactions and their developmental timing need further investigation.

It is also important to point out that the use of the term “neurocognitive” some-
times mistakenly suggests a direction of associations, such that neurocognitive vari-
ables are more easily perceived as predictive or causal in learning, in this case, 
natural number. However, it also might be that learning natural number itself 
changes related neurocognitive processes. It is the research design and not the type 
of data (i.e., either neurocognitive or brain imaging data) that determines predictive 
value or causality. This should be kept in mind when evaluating the existing neuro-
cognitive data. Intervention studies that manipulate a given factor are needed to 
further determine which factors are causal and which are not. Carefully controlled 
longitudinal studies (i.e., cross-lagged designs) can also test the directions of asso-
ciations between these skills (see McMullen et al., Chap. 4, for an example).

The idea that the so-called basic processing of number consists of a multitude of 
skills also opens opportunities for understanding the origins of dyscalculia, which 
has been characterized in neurocognitive studies as a disorder that originates from a 
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deficit in processing number (De Smedt et al., in press). Against the background of 
the chapters in this volume, it seems unlikely that such a deficit in number  processing 
can be reduced to one single deficit in one numerical ability. This echoes recent 
models of other neurodevelopmental disorders, such as dyslexia or ADHD, which 
have posited that multiple deficits rather than one single deficit account for their 
emergence (Peterson & Pennington, 2015). The numerical abilities highlighted in 
this section might all constitute risk factors for developing deficits in learning to 
calculate and consequently, future studies on atypical development should consider 
the relative contribution of each of these risk factors. As has been illustrated through-
out the chapters in this volume, these numerical skills are also related to domain- 
general learning mechanisms, such as statistical learning (Mix et  al., Chap. 5), 
perceptual abilities (Clements et al., Chap. 2), or sensorimotor abilities (Ulrich & 
Norton, Chap. 3), which also require additional consideration when studying the 
origins of atypical mathematical development.

The current collection of chapters also reveals that children’s learning of natural 
number will require specific instruction. Clements et al. (Chap. 2) and Mix et al. 
(Chap. 5) nicely illustrate that cognitive models of different types of numerical 
skills can help to inform the design of educational programs. Outlining the develop-
mental trajectories of a given numerical ability, such as subitizing, provides a ground 
for designing activities that can be optimally tailored to support students at various 
points in these different trajectories (Clements et al., Chap. 2). Similarly, general 
psychological learning mechanisms, such as statistical learning or structure map-
ping (Mix et  al., Chap. 5) can provide insight into ways to improve educational 
programs. It needs to be acknowledged that there will be individual differences in 
both these domain-specific and domain-general components that are critical to 
understanding number (Vanbinst & De Smedt, 2016). A cognitive analysis of these 
components will allow educators to verify which abilities require more scaffolding 
(weaknesses) and which abilities can be used as compensatory factors (strengths) 
(see Mix et al., Chap. 5). For example, children who are less likely to spontaneously 
attend to number and relations might require more guided instruction compared 
with others (McMullen et al., Chap. 4).

To conclude, the contributions in the current volume clearly show that children’s 
understanding of number cannot be reduced to one neurocognitive factor, such as 
the ANS, but instead represents a complex development of different types of abili-
ties that become gradually connected over development. It is clear that this develop-
ment involves domain-specific as well as domain-general learning mechanisms. 
The contributions in this volume provide fresh perspectives that will help to further 
our understanding of children’s natural number development in both the mathemat-
ics education and neurocognitive research communities. It is clear that both disci-
plines can learn from each other and that these chapters are a starting point for 
further inquiry on the cognitive mechanisms of children’s understanding of number 
as well as on the design and evaluation of educational interventions that aim to sup-
port this understanding.

B. De Smedt
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Chapter 7
Understanding Fractions: Integrating 
Results from Mathematics Education, 
Cognitive Psychology, and Neuroscience

Andreas Obersteiner, Thomas Dresler, Silke M. Bieck, and Korbinian Moeller

Abstract Many students face difficulties with fractions. Research in mathematics 
education and cognitive psychology aims at understanding where and why students 
struggle with fractions and how to make teaching of fractions more effective. 
Additionally, neuroscience research is beginning to explore how the human brain 
processes fractions. Yet, attempts to integrate research results from these disciplines 
are still scarce. Therefore, the aim of this chapter is to provide an integrated view on 
research from mathematics education, cognitive psychology, and neuroscience to 
better understand students’ difficulties with fraction processing and fraction learn-
ing. We evaluate the difficulties students encounter with fractions on various levels, 
ranging from the brain level to the classroom level. Current research suggests that 
the human cognitive system is in principle prepared for processing natural numbers 
and fractions. Although proficiency with natural numbers is fundamental to learning 
fractions, the transition from natural numbers to fractions requires modifications of 
the initial concept of numbers, and natural number processing can interfere with 
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fraction processing. Thus, when teaching fractions, it seems important to draw on 
students’ fundamental abilities to process fractions, while explicating fraction prop-
erties that are conceptually different from those of natural numbers.

Keywords Rational numbers · Conceptual change · Natural number bias · 
Fraction processing · Numerical cognition

Students’ difficulties with fractions have been studied for decades. Yet, research in 
cognitive psychology and neuroscience has only recently begun to unravel the 
underlying cognitive mechanisms of fraction processing, and this research has 
rarely been integrated with mathematics education. The aim of this chapter is, there-
fore, to make connections between these three disciplines to better understand the 
sources of difficulties students face with fractions.

In this chapter, we focus specifically on positive fractions, that is, positive ratio-

nal numbers represented in the form 
a

b
, where a and b are positive natural numbers. 

However, as fraction learning is an instance of learning about rational numbers 
more generally—which include negative fractions and numbers represented as deci-
mals (e.g., 0.25)—we also consider core issues of the transition from natural num-
ber concepts to rational number concepts.

In the first section of the chapter, we review the importance of fraction learning, 
including arguments from mathematics education and cognitive psychology. The 
second section analyzes typical difficulties students encounter in fraction learning as 
documented by empirical research, as well as potential sources of these difficulties. 
We analyze difficulties on three different levels: (a) difficulties that may be inherent 
in the learning content, (b) difficulties that may arise from the way our cognitive 
system processes fractions, including the neural correlates of fraction processing, 
and (c) difficulties that may be due to common teaching practices. In the third sec-
tion, we review experimental intervention studies aimed at supporting students’ frac-
tion learning to identify effective ways of instruction that may help students overcome 
difficulties with fractions. The fourth section includes recommendations for class-
room practice and directions for further research. In the fifth section, we conclude the 
chapter with a suggestion for merging various research perspectives.

7.1  Importance of Fraction Learning

It is widely accepted that fractions are important to learn. A basic understanding of 
fractions is needed in daily life, for example, to understand information on street 

signs (e.g., 
3

4
 mile), in cooking recipes (e.g., 

1

2
 L), or regarding time (“quarter past 

five”).
From a mathematics education perspective, fractions are important because they 

are an essential building block within the domain of numbers, one of the key 
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domains of (school) mathematics (e.g., National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010). Between primary 
school and the end of high school, students are supposed to learn about real numbers 
in a hierarchical manner. This hierarchy begins with natural numbers, and positive 
fractions are typically the first type of non-natural numbers students encounter1. 
One motivation for introducing rational numbers is that they allow for describing 
phenomena that cannot be described by natural numbers alone. For example, all 
arithmetic operations (addition, subtraction, multiplication, and division) can be 
performed within the set of rational numbers, which is not the case within natural 
numbers (e.g., 3−5 and 1÷2 are not defined within natural numbers). Moreover, 
rational numbers provide solutions to certain types of algebraic equations that do 
not have a solution within natural numbers, such as 2 · x = 1.

Fractions allow for a variety of interpretations in the domain of mathematics as 
well as the real world (Behr, Lesh, Post, & Silver, 1983; Ohlsson, 1988). For exam-

ple, fractions (e.g., 
3

4
) can be interpreted as parts of a whole (divide one whole into 

four parts and take three of these parts), as several parts of several wholes (take three 
out of four objects), as division (3 divided by 4), as operators (a function that pro-
duces three-fourths of any given input value), as measures of quantities (three quar-
ters of a mile), or as solutions of algebraic equations (the number x that solves the 
equation 4 · x = 3). The variety of possible interpretations substantiates the complex-
ity of the concept of fractions, and it suggests that the teaching and learning of frac-
tions deserves careful attention.

From a cognitive psychological perspective, understanding fractions requires a 
higher level of abstraction than understanding natural numbers (DeWolf, Bassok, & 
Holyoak, 2016; Empson, Levi, & Carpenter, 2011). It may therefore facilitate the 
transition from concrete to formal operations (Inhelder & Piaget, 1958; Piaget & 
Inhelder, 1966). In this regard, understanding of fractions seems crucial for mathe-
matical development. There is empirical evidence that fraction understanding is a 
unique predictor of later achievement in higher mathematics such as algebra. This 
holds true even when controlling for several other cognitive measures, including 
general cognitive ability and working memory (Bailey, Hoard, Nugent, & Geary, 
2012; Booth & Newton, 2012; Siegler et al., 2012; Torbeyns, Schneider, Xin, & 
Siegler, 2015).

In sum, fractions are a key target for learning from both a mathematics education 
and a cognitive psychological perspective. Because fractions are a complex con-
cept, it may not be surprising that learning and teaching fractions can pose special 
challenges. To analyze these challenges in more detail, the following section sum-
marizes typical errors students make in fraction problems, as well as potential 
sources of these errors.

1 There are also curricula in which negative integers are introduced earlier than fractions. This dif-
ference in sequencing is not essential for our analyses of difficulties with fraction learning, as we 
focus predominantly on issues related to the transition from integers to fractions rather than the 
transition from positive to negative numbers.
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7.2  Solving Fraction Problems: Errors and Their Potential 
Sources

Numerous studies over several decades have documented typical errors students 
make when solving fraction problems (e.g., Aksu, 1997; Behr, Wachsmuth, & Post, 
1985; Behr, Wachsmuth, Post, & Lesh, 1984; Carpenter, Corbitt, Kepner, Lindquist, 
& Reys, 1981; Carraher, 1996; Hart, 1981; Hasemann, 1981). More recent studies 
suggest that there has not been significant progress, and that errors are invariant 
across many different countries and cultures (Bailey et al., 2015; Lortie-Forgues, 
Tian, & Siegler, 2015; Siegler & Pyke, 2013; Stafylidou & Vosniadou, 2004).

These studies largely converge on a number of major findings. A general obser-
vation is that even students who are well able to carry out fraction arithmetic proce-
dures may make errors when problems require fraction concepts (Hallett, Nunes, & 
Bryant, 2010; Hallett, Nunes, Bryant, & Thorpe, 2012; Siegler & Lortie-Forgues, 
2015). One of the concepts that students often struggle with is that of fraction mag-
nitude (Siegler, Thompson, & Schneider, 2011). Rather than seeing a fraction as 
representing a (rational) number, students tend to interpret a fraction as two separate 
whole numbers. For example, when a representative sample of eighth-graders in the 

United States were asked to choose the closest number to the result of 
12

13

7

8
+  with 

the options 1, 2, 19, and 21, only 24% chose the correct answer 2 (Carpenter et al., 
1981). More than half of them chose 19 or 21, suggesting addition of the numerators 
(12 + 7 = 19) or the denominators (13 + 8 = 21) without considering each fractions’ 
integrated magnitude (each being approximately 1). Lortie-Forgues et  al. (2015) 
documented very similar results in a study conducted over 30 years later. Another 
example of limited understanding of fraction magnitudes is the finding that in frac-
tion addition problems, students’ most frequent error is adding the numerators and 
denominators separately, even though this produces unreasonable outcomes (e.g., 
1

2

1

2

2

4
+ = ) (Behr et  al., 1985; Brown & Quinn, 2006; Siegler & Pyke, 2013). 

Furthermore, students also struggle with understanding that different symbolic frac-
tions can represent the same numerical magnitude. For example, in a study by 
Clarke and Roche (2009), more than a third of a sample of Australian sixth-graders 

did not consider 
2

4
 and 

4

8
 to be fractions of equal numerical magnitude.

Although many students have relative strength with carrying out fraction arithme-
tic procedures compared to their understanding of fraction concepts and procedures, 
this does not mean that students’ performance on fraction arithmetic problems is 
overall high. Instead, Siegler and Pyke (2013) found that when US sixth- and eighth-
graders solved a set of fraction arithmetic problems that included all four basic arith-
metic operations (i.e., addition, subtraction, multiplication, and division), they were 
correct on only 41% (sixth-graders) and 57% (eighth-graders), respectively. They 
also found that accuracies varied substantially between the different arithmetic oper-
ations. While students were most accurate with addition and subtraction, they were 
less accurate with multiplication and division (Braithwaite, Pyke, & Siegler, 2017; 
Siegler & Lortie-Forgues, 2017). In addition to difficulties with carrying out arithme-
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tic procedures, students often struggle with predicting the  outcomes of arithmetic 
problems. For example, they are often reluctant to accept that the result of a multipli-
cation problem involving fractions can be smaller than the initial number (Obersteiner, 
Van Hoof, Verschaffel, & Van Dooren, 2016; Siegler & Lortie-Forgues, 2015; Van 
Hoof, Vandewalle, Verschaffel, & Van Dooren, 2015). In line with this finding, some 
students tend to prefer division over multiplication to solve word problems with frac-
tions for which they expect the result to be smaller than the initial number, even when 
the problem structure suggests multiplication (Swan, 2001).

Another notoriously difficult task for students is reasoning about the structure of 
the rational number domain as a whole. In a study by Vamvakoussi and Vosniadou 
(2010), about one-third of 11th-graders responded (incorrectly) that there was only 
a finite number of numbers between any two rational numbers. An especially com-
mon error is to think that increasing any given fraction’s numerator by 1 generates 

the successor of that fraction (e.g., to think that 
3

5
 is the successor of 

2

5
) 

(Vamvakoussi & Vosniadou, 2004, 2010), although rational numbers, unlike natural 
numbers, do not have successors (see Sect. 7.2.1).

In sum, evidence for students’ errors in fraction problems, which comes from a 
variety of studies collected over decades, suggests that difficulties are systematic, 
persistent over time, and exist in different learning environments. One may wonder 
what makes fractions so difficult to understand. Are fractions just a difficult math-
ematical concept? Is the human brain not well prepared to process fractions? Or are 
there limitations in the way fractions are commonly taught at school? In the follow-
ing sections, we evaluate potential sources of difficulties with fractions on three 
different levels (see Lortie-Forgues et al., 2015, for a similar approach). First, we 
consider the learning content itself. We identify what aspects of fractions differ 
substantially from natural numbers because these aspects might be particularly 
challenging for learners. Second, we explore how psychological accounts conceive 
the mechanism of fraction learning, and—more fundamentally—how well the 
human cognitive architecture is prepared for processing fractions. Third, we review 
common teaching practices in mathematics classrooms, based on the available 
research on textbooks and surveys among teachers.

7.2.1  The Learning Content Itself

Fractions are symbolic representations of rational numbers. Mathematically speak-
ing, rational numbers can be constructed as an extension of the set of integers, with 
rational numbers being defined as equivalence classes of pairs (a,b) of integers a 
and b, with b ≠ 0. Two pairs (a,b) and (c,d) are considered equivalent if and only if 
a · d = b · c. After defining the operations of addition and multiplication, one gets to 
the field of rational numbers Q. These rational numbers are an extension of the set 
of natural numbers N in the sense that Q includes N, if one identifies natural num-
bers with the equivalence classes of those pairs in which the first component is posi-
tive and the second component is 1 (e.g., 2, with the equivalence class [2,1]). 
According to this definition, natural numbers and rational numbers have shared 
properties (because natural numbers are also rational numbers). For example, for 
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rational and natural numbers, there is an order relation, meaning that for any two 
different numbers, it is possible to say which one is larger in numerical magnitude. 
Thus, rational and natural numbers can be represented on number lines.

However, despite shared properties, there are also important differences between 
the set of natural numbers and the set of rational numbers, and these differences 
may be stumbling blocks for learners when they have to make the transition from 
natural numbers to fractions (as representations of rational numbers). There are at 
least four important ways in which rational numbers—specifically in their represen-
tation as fractions—differ from natural numbers (see Obersteiner, Reiss, Van 
Dooren, & Van Hoof, in press; Prediger, 2008; Vamvakoussi & Vosniadou, 2004; 
Van Hoof, Vamvakoussi, Van Dooren, & Verschaffel, 2017). Table 7.1 provides an 
overview of these four differences.

One difference concerns the way natural numbers and fractions convey numeri-
cal magnitude. The symbolic representation of natural numbers complies to the 
base-10 place-value structure of our number system, which allows for straightfor-
ward strategies to identify numerical magnitude (see first row of Table 7.1). For 
instance, deciding which of two numbers is larger is simple because it can be done 
digit-by-digit from left to right (i.e., for three-digit numbers, comparing hundreds 
with hundreds, tens with tens, and units with units). Additionally, the number of 
digits is indicative of the magnitude of a number, with numbers consisting of more 
digits being larger in magnitude. Fractions, however, are composed of two integers, 
and only the numerator is positively related to overall fraction magnitude. Reasoning 
about fraction magnitude requires inferences about the ratio between numerators 
and denominators. As such, comparing the magnitudes of two fractions is less 
straightforward than comparing the magnitudes of natural numbers. Moreover, 

Table 7.1 Examples of differences between natural numbers and fractions

Natural numbers Fractions

1. Representation 
of Magnitude

Base-10 place-value structure
More digits—larger number
123 > 45

Quotient of two numbers
Neither number of digits nor natural 
number magnitudes as such determine 
fraction magnitudes
2

3

5

19
>

2. Symbolic 
Representation

Unique for each number
2 as unique representation

Multiple (infinitely many) fractions can 
represent the same number
1

2

2

4

4

8
= = = etc.

3. Density Unique successors and 
predecessors
Finite number of numbers 
between two natural numbers
1, 2, 3, 4, 5, etc.

No unique successors and predecessors
Infinite number of numbers between two 
fractions
3

5
 is not the successor of 2

5
4. Operation Multiplication as repeated 

addition
3 · 4 = 4 + 4 + 4
Multiplication makes bigger, 
division smaller
2 · 4 = 8, 15 ÷ 3 = 5

Multiplication as repeated addition 
insufficient, more abstract definition 
required
Multiplication and division can make 
bigger or smaller
1

2

1

4

1

8

1

2

1

4
2· ,= ÷ =
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comparing fractions may be counterintuitive because the larger fraction can be com-

posed of the larger components (e.g., 
4

5

1

3
> ), the smaller components (e.g., 

1

2

3

7
>

), or one larger component (numerator) and one smaller component (denominator, 

e.g., 
2

3

1

5
> ).

A second difference is that symbolic representations for natural numbers are 
unique in the sense that there is only one way to write any given number using only 
natural number notations (e.g., there is only one way to notate the number “2”). In 
contrast, different fraction symbols can represent the same numerical value (see 
second row of Table 7.1).

A third aspect in which fractions differ from natural numbers is density (see third row 
of Table 7.1). While natural numbers have unique successors and predecessors (except for 
number 1), this is not the case for any rational number. Moreover, while within the natural 
number domain there is only a finite number of numbers between any two natural num-
bers, there are infinitely many other fractions between any two fractions.

Fourth, fractions differ from natural numbers with respect to arithmetic opera-
tions (see fourth row of Table 7.1). There is a difference in the way arithmetic opera-
tions are conceptualized. Whereas within natural numbers, multiplication is 
typically explained as repeated addition (i.e., 3 · 4 means to add the number 4 three 
times), this explanation is not generally meaningful for fractions. In the example of 
2

3

1

2
· , it is hard to understand what adding 

2

3
 times the number 

1

2
 means. 

Furthermore, there is a difference in the effects that arithmetic operations have on 
numbers. While multiplication with natural numbers (other than 1) always yields a 
result that is numerically larger than the original operands, this is not always true for 
fractions. Instead, multiplying a positive number by  a fraction smaller than one 

(e.g., 
1

4
) makes the initial number smaller (e.g., 

1

2

1

4

1

8
· = ). Similarly, within natu-

ral numbers, division (by a number other than 1) always makes a number smaller, 
while within rational numbers, division can also make a number larger (e.g., 

4
2

3
6÷ = ).

Although the conceptual differences between natural numbers and fractions ana-
lyzed in this subsection are potential obstacles for learning, our analysis is not sufficient 
to identify learners’ actual obstacles. The reason is that the analysis of the subject domain 
does not take into account the cognitive mechanisms underlying learning. Since learning 
does not necessarily follow the logic of the subject domain, insights into the cognitive 
mechanisms of learning can complement our search for difficulties with fractions.

7.2.2  The Human Cognitive System

Learning fractions may be influenced by the way our cognitive system processes 
new information, and more specifically by the way it processes numbers in general 
and fractions in particular. The following four subsections describe theoretical 
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frameworks and empirical evidence that help in understanding the cognitive chal-
lenges of learning fractions. The first two subsections elaborate on theories of con-
ceptual learning (conceptual change) and of the cognitive processes that occur 
during problem solving (dual processes) that may account for response biases (the 
natural number bias). The remaining two subsections then “zoom in” on the more 
fundamental ways our cognitive system processes fractions, and on the neural cor-
relates of these processes.

7.2.2.1  Conceptual Change

Natural numbers are special cases of rational numbers (see Sect. 7.2.1), differing 
from other rational numbers in several respects. Therefore, learning fractions 
requires not only the extension but also the reorganization of existing knowledge 
about (natural) numbers. Accordingly, researchers have studied learning of rational 
numbers as an instance of conceptual change (Vamvakoussi, Van Dooren, & 
Verschaffel, 2012; Vamvakoussi & Vosniadou, 2004, 2010). The conceptual change 
approach was initially applied to the domain of science learning but was later trans-
ferred to mathematical learning as well (Merenluoto & Lehtinen, 2002).

In line with the conceptual change approach, there is broad evidence that stu-
dents’ errors in operating with fractions may be due to their reliance on natural 
number concepts in problems that require reasoning about rational number con-
cepts. For example, when comparing the magnitudes of two fractions, children were 
found to rely on their natural number knowledge and treat fraction components as 
two separate natural numbers, rather than reasoning about the overall magnitudes of 
the respective fractions. Only 15% of more than 300 sixth-graders in the study by 
Clarke and Roche (2009) were able to correctly choose the larger fraction from the 

pair 
5

6
 versus 

7

8
 and provide an appropriate explanation for their choice. Almost 

30% of all students in this study claimed that these fractions were the same because 
the difference between the numerator and the denominator was equal in both frac-
tions. These students relied on reasoning about number magnitudes in ways that 
apply to natural numbers (each symbol represents a separate magnitude), although 
the problem required a conceptual change (quotients of two [natural] numbers rep-
resent one [rational] number magnitude). There is evidence that students also strug-
gle with other concepts of fractions that differ from natural number concepts (i.e., 
those described in 2.1 and listed in Table 7.1), as predicted by the conceptual change 
approach (Merenluoto & Lehtinen, 2002; Vamvakoussi & Vosniadou, 2004, 2010; 
Van Hoof et al., 2017, see also the introduction to Sect. 7.2).

In contrast to such a focus on discontinuities in the learning process, other research-
ers have emphasized commonalities between natural and rational numbers and con-
sidered learning of numbers as a continuous learning path, rather than an instance of 
conceptual change. In their integrative theory of numerical development, Siegler and 
colleagues (Siegler et  al., 2011; Siegler & Braithwaite, 2017; Siegler & Lortie-
Forgues, 2014) emphasized that magnitude is the unifying idea between different 
kinds of numbers such as natural and rational numbers. As all real numbers (including 
natural and rational numbers) have magnitudes and can be represented on number 
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lines, understanding these magnitudes may be particularly helpful for learners in 
extending their number knowledge to new number domains. Although there is initial 
evidence that understanding fraction magnitudes facilitates learning of fraction con-
cepts more generally (see Sect. 7.3), the specific relation between understanding of 
fraction magnitudes and other fraction concepts remains to be understood.

Steffe and colleagues (e.g., Steffe, 2002; Steffe & Olive, 2010) proposed a construc-
tivist account of fraction learning that also emphasizes the coherence between natural 
number knowledge and learning fractions. In their reorganization hypothesis, they con-
sider how children’s natural number knowledge may be modified in productive ways to 
construct fraction knowledge (for details, see also Tzur et al., this volume).

Note that these two theoretical accounts focus on the coherence between natural 
numbers and fractions, while our focus in this chapter is more strongly on the chal-
lenges (rather than the coherence) in students’ transition from natural numbers to 
fractions. We relied on the conceptual change approach in this section because it 
connects these challenges to the conceptual differences between natural numbers 
and rational numbers. A systematic discussion of the various accounts proposed for 
learning fractions is, however, beyond the scope of this chapter.

7.2.2.2  Dual-Process Theories and the Natural Number Bias

Some researchers have focused more strongly on the cognitive processes involved 
in fraction problem solving rather than on an understanding of fraction concepts. 
Dual-process theories assume that problem solving includes two types of processes: 
Processes that are fast, largely automatic, and intuitive (“System 1 processes”) and 
processes that are analytic and time-consuming (“System 2 processes”) (Gillard, 
Van Dooren, Schaeken, & Verschaffel, 2009; Kahneman, 2000). When people solve 
rational number problems, their strongly internalized knowledge of natural numbers 
might trigger intuitive System 1 processes, while analytic System 2 processes are 
particularly important when problems require reasoning about novel and less 
automatized features of rational numbers.

The overreliance on natural number knowledge even in problems that require 
rational number reasoning has been referred to as the “whole number bias” or “natu-
ral number bias” (Alibali & Sidney, 2015; Ni & Zhou, 2005; Van Hoof et al., 2017). 
To investigate the natural number bias, researchers have compared performance on 
problems that are either congruent or incongruent with natural number reasoning. 
Problems are congruent when reasoning about natural numbers (rather than rational 
numbers) yields the correct response, and they are incongruent when this is not the 
case. For example, in fraction comparison, the two to-be-compared fractions of a 
pair can be classified as congruent when comparing denominators and numerators 

separately yields the correct result (e.g., 
4

5

1

3
>  with 4 > 1 and 5 > 3) but incongru-

ent when doing so leads to an incorrect result (e.g., 
1

2

3

7
>  although 1 < 3 and 2 < 7). 

In the case of arithmetic operations with fractions, the intuition that multiplication 
makes numbers bigger may lead to a correct response in problems congruent with 
natural number characteristics (e.g., “Is it possible that 4 · x is larger than 4?”, where 
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considering x a natural number will lead to a correct response) but to an incorrect 
response in incongruent problems (e.g., “Is it possible that 4 · x is smaller than 4?”).

Importantly, numerous studies have documented this bias, not only in primary 
and lower secondary school students, but also in upper secondary students and adu
lts (Byrnes & Wasik, 1991; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 
2013; Siegler & Lortie-Forgues, 2015; Vamvakoussi et al., 2012; Van Hoof et al., 
2015; Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). These findings suggest 
that the natural number bias in fraction problems can persist even after people have 
acquired sound conceptual knowledge of fractions. This implies that solving frac-
tion problems requires—in addition to conceptual understanding of fractions—
some inhibition of intuitive knowledge about natural numbers.

7.2.2.3  Processing of Fraction Magnitudes

Research suggests that our cognitive system is well prepared for processing natural 
numbers (see Feigenson, Dehaene, & Spelke, 2004, for a review). There is, how-
ever, more controversy about how well our cognitive system is prepared for process-
ing fractions. A central question is whether people can mentally process fractions 

holistically by their integrated fraction magnitudes (e.g., 
2

5
 as one numerical value), 

or whether they can only process fractions componentially by their components 

(e.g., 
2

5
 as two separate numbers, 2 and 5). Numerous studies have used fraction 

comparison tasks and evaluated whether participants’ comparison performance 
depended on the numerical distance between fractions or on the distances between 
fraction components. When comparing natural numbers, a typical finding is that 
responses become faster and less error prone, as the numerical distance between 
to-be-compared numbers gets larger (e.g., 1 vs. 9 is easier than 4 vs. 5). This finding 
is often referred to as the numerical distance effect. The distance effect is consid-
ered evidence that people actually rely on number magnitude information when 
comparing two numbers (Moyer & Landauer, 1967).

Initial studies found no such distance effect for fractions and concluded that 
people mentally represent fractions predominantly in a componential way, that is, 
they represent each component separately rather than represent the fraction as an 
integrated entity (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Ganor-Stern, Karasik- 
Rivkin, & Tzelgov, 2011). However, later studies revealed that the way partici-
pants process fractions depended on the type of fraction comparison and on the 
strategies they use to solve these problems (Faulkenberry & Pierce, 2011; Ganor-
Stern, 2012; Meert, Grégoire, & Noël, 2010a, b; Obersteiner et al., 2013; Schneider & 
Siegler, 2010). For instance, Obersteiner et al. (2013) found that when academic 
mathematicians solved fraction comparisons, there was a distance effect of overall 

fraction magnitude only for fraction pairs that did not have common components 

(e.g., 
11

18
 vs. 

19

24
). Additionally, they observed no natural number bias for these 

problems. However, when fraction pairs did have common components (e.g., 
17

23
 

vs. 
20

23
, or 

12

13
 vs. 

12

19
), there was no effect of overall distance and a clear natural 

number bias, which was reflected by lower performance on incongruent rather than 
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congruent problems. Together, this line of research suggests that adults rely more 
strongly on componential comparison strategies in comparison problems with com-
mon components (with less activation of holistic overall fraction magnitudes). Such 
a strategy is more prone to natural number bias. In contrast, adults seem to rely more 
strongly on holistic magnitudes in problems without common components, a strat-
egy that discourages natural number bias. Recent eye-tracking research substanti-
ated the claim that adults use different strategies depending on problem types 
(Huber, Moeller, & Nuerk, 2014; Ischebeck, Weilharter, & Korner, 2016; Obersteiner 
& Tumpek, 2016).

Research also suggests that the way people process fractions depends on how 
familiar they are with specific fractions. Liu (2018) found that when participants 
compared symbolic fractions to values marked on a number line, their performance 

depended on how close fractions were to familiar fractions (e.g., 
1

2
 or 

3

4
) that 

people used as benchmarks. Thus, whether fractions are processed holistically may 
also be a question of practice and familiarity rather than of cognitive ability alone.

These studies provide evidence that adults’ cognitive architecture allows them to 
process symbolic fractions in a holistic manner. Further research suggests that the 
ability to process fractions and ratios may be traced back to very fundamental abili-
ties for processing non-symbolic ratios, and that humans are equipped with a per-
ceptually based ratio processing system (Boyer & Levine, 2015; Lewis, Matthews, 
& Hubbard, 2016; Matthews & Chesney, 2015; Matthews, Lewis, & Hubbard, 
2016). As such, this processing system might be predisposed for developing magni-
tude representations of fractions (see Matthews et al., this volume).

7.2.2.4  Neural Correlates of Fraction Processing

In recent years, researchers have begun to evaluate the neurocognitive foundations 
of numerical cognition using neuroimaging (Arsalidou & Taylor, 2011; Dehaene, 
Piazza, Pinel, & Cohen, 2003). An increasing number of studies on adults and chil-
dren revealed that the intraparietal sulcus (IPS; see Fig. 7.1) seems to be the central 
area for representing symbolic and non-symbolic numerical magnitudes (Nieder & 
Dehaene, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Pinel, Dehaene, Rivière, 
& LeBihan, 2001). A major finding that led to this conclusion was that neural acti-
vation within the IPS is inversely related to the numerical distance between two to-
be-compared numbers in number comparison tasks (Cohen Kadosh et  al., 2005; 
Kaufmann et al., 2005), reflecting the neural instantiation of the behavioral distance 
effect (see Sect. 7.2.2.3). Studies also report activation of frontal brain areas during 
number processing, resulting in the notion of a fronto-parietal network underlying 
numerical processing (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Pesenti, 
Thioux, Seron, & Volder, 2000).

Concerning rational numbers and fractions in particular, some researchers ini-
tially suggested that fraction concepts were fundamentally incompatible with the 
neurocognitive architectures underlying numerical cognition (Dehaene, 1998; 
Feigenson et  al., 2004; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). 
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Fig. 7.1 Schematic overview of brain areas involved in fraction processing during (i) magnitude 
comparison of different notations (i.e., symbolic fractions, fraction words, line and dot ratios; 
Jacob & Nieder, 2009a, 2009b; Ischebeck et al., 2009, 2010); (ii) magnitude comparisons between 
fractions, decimals, and integers (DeWolf et al., 2016); and (iii) fraction arithmetic (i.e., addition 
and subtraction; Schmithorst & Brown, 2004). Most of the studies consistently observed activation 
in the bilateral intraparietal sulcus (IPS, full line ellipses). However, there are also studies showing 
additional bilateral prefrontal cortex activation (PFC, dashed ellipses) and left-lateralized activa-
tion for specific tasks (e.g., left inferior and middle temporal gyrus for the comparison of fractions 
and decimals, DeWolf et al. (2016); left ventral occipitotemporal and perisylvian areas were acti-
vated in fraction arithmetic, Schmithorst & Brown, 2004). In general, activation patterns observed 
for fraction processing are very similar to those found for natural number processing. This figure 
was adapted from Lewis et al. (2016).

Therefore, the question remains what the underlying neural mechanisms for frac-
tion processing are. At the moment, there exist only a few studies in adults investi-
gating the neural underpinnings of processing proportions (i.e., dot ratios, line 
ratios), symbolic fractions, or  fraction number words (Ischebeck et  al., 2010; 
Ischebeck, Schocke, & Delazer, 2009; Jacob & Nieder, 2009a, 2009b; Schmithorst 
& Brown, 2004). For instance, during fraction magnitude comparison, Ischebeck 
and colleagues (2009) observed that IPS activation was modulated by the overall 
numerical distance between the to-be-compared fractions, but not by the numerical 
distance between numerators or denominators. Moreover, Ischebeck et al. (2010) 
observed the same results during proportion comparison (involving symbolic frac-
tions and dot patterns as non-symbolic proportions), with stronger right IPS activa-
tion for dot patterns and stronger left IPS activation for symbolic fractions. Jacob 
and Nieder (2009a, 2009b) adapted participants to a certain fraction magnitude 

(e.g., 
1

6
) by showing different fractions reflecting this magnitude (e.g., 

1

6
, 
2

12
, 
5

30
) 

with interspersed deviants differing in magnitude (e.g., 
2

6

3

6

4

6

5

6
, , , ) presented in 

A. Obersteiner et al.



147

the same or a different notation (i.e., symbolic fractions and fraction words or dots 
and triangles). The authors observed that the activation in parietal cortex was spe-
cifically tuned to the overall magnitudes of fractions rather than to the magnitudes 
of their components, indicating that fraction magnitude is represented holistically in 
the same brain areas as natural numbers. Moreover, Jacob and Nieder (2009a) pro-
vided evidence for a notation-independent activation patterns. In particular, they 
reported that the same cortical areas were activated to a similar extent regardless of 

whether a fraction magnitude was presented as a symbolic fraction (i.e., 
1

4
) or written 

as a number word (i.e., “one-fourth”).
Overall, these studies indicated that the IPS plays a crucial role in the processing of 

proportion and fraction magnitude, similar to the processing of natural numbers. In con-
trast to behavioral studies on fraction magnitude comparison, which showed that holistic 
versus componential processing of fractions depended on the respective fraction type (i.e., 
with vs. without common components, see Sect. 7.2.2.3), the existing neuroimaging data 
suggest that fraction magnitudes are represented holistically on the neural level.

Furthermore, fraction arithmetic also seems to elicit patterns of neuronal activa-
tion similar to those observed for natural number arithmetic. Schmithorst and Brown 
(2004) studied adult participants solving fraction addition or subtraction problems. 
Their analyses again revealed activation in bilateral inferior parietal areas (includ-
ing the IPS) with additional activation in left-hemispheric perisylvian areas (associ-
ated with verbal processing), and ventral occipitotemporal areas (often associated 
with more perceptual aspects, i.e., ventral visual pathway, see Fig. 7.1).

In spite of the generally large overlap in the neural networks for natural numbers 
and fractions documented in these studies, DeWolf, Chiang, Bassok, Holyoak, and 
Monti (2016) found differences in activation patterns within the IPS for fractions as 
compared to whole numbers and decimals. The authors argue that these differences 
in activation patterns may be due to the differences in the symbolic notations we use 
for natural numbers and decimals (both base-10 representations) on the one hand 
and fractions on the other (two natural numbers). Presumably, our brain needs more 
resources to get access to the magnitudes of fractions than those of natural numbers 
or decimals. This assumption is in line with evidence from behavioral research 
(DeWolf, Grounds, Bassok, & Holyoak, 2014).

Finally, based on theoretical considerations and initial empirical evidence, Lewis 
et al. (2016) recently argued that there exists a neural circuitry specifically dedicated 
to represent non-symbolic proportions comprising a fronto-parietal network. 
According to these authors, this system is also recruited when representing fractions 
as it provides a non-symbolic foundation for understanding fraction concepts. In 
particular, the authors proposed that both formal and informal learning experiences 
help to generate links between perceptually based representations of non-symbolic 
ratios and fraction symbols (i.e., verbal fraction labels and symbolic-digital fraction 
symbols). This non-symbolic-to-symbolic link may be an important basis for the 
understanding of fraction magnitudes.

Taken together, these studies suggest that the human brain is able to process 
holistic fraction magnitude. The IPS, which has long been known to be the key area 
for the representation of natural number magnitude, also seems crucial for process-
ing fraction magnitudes. However, strong conclusions seem premature, due to the 
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limited number of available studies. Moreover, all existing studies examined the 
neural correlates of fraction processing in adults, and studies on the neural corre-
lates of how fraction processing develops and shapes the brain are completely lack-
ing. An important external factor that may shape the way students think about 
fractions is the way they encounter fractions in the classroom.

7.2.3  Current Classroom Teaching Practices

Fractions are complex constructs, and there are many ways to interpret and repre-
sent fractions (see Sect. 7.1). There may be considerable variation in the ways stu-
dents encounter fractions in the classroom, and varying classroom experiences may 
affect fraction learning. To date, there is little empirical evidence about how frac-
tions are actually taught in classrooms. Much of the existing research into teaching 
of fractions has focused on teachers’ competence with fractions and on the instruc-
tional materials teachers use. In the following, we first review general characteris-
tics of common classroom teaching of fractions that might contribute to students’ 
difficulties. We then focus on the quality of instructional materials, and finally on 
teachers’ competence with fractions.

7.2.3.1  Characteristics of Classroom Teaching

One characteristic of current classroom teaching of fractions—at least in many 
Western countries—is a strong focus on memorization of procedures rather than on 
understanding of fraction concepts (Lortie-Forgues et  al., 2015; National 
Mathematics Advisory Panel, 2008). Such a focus may have benefits in the short 
run: procedures are probably easier to teach, easier to test, and they may promise 
quicker success (and thus motivation). However, important disadvantages are that 
procedures are remembered less well if they are not connected to conceptual under-
standing, and that they may lead to inert knowledge that cannot be adapted for novel 
contexts (Swan, 2001). Moreover, given the sheer number and the relative complex-
ity of fraction arithmetic procedures, students may confuse fraction procedures or 
parts of them. Finally, the omnipresence of electronic computing devices in our 
modern society raises fundamental questions about the importance of learning arith-
metic procedures.

Another characteristic of current fraction teaching is the dominance of interpret-
ing fractions as discrete and countable parts of a whole (e.g., pieces of a pizza). 
Teachers often also use this approach to introduce fraction procedures. For example, 
when learning about fraction multiplication, the first type of problems is often of the 

form “natural number × fraction” (e.g., 3
1

4
· ), which can be explained by repeated 

addition (take three quarters of a pizza, or 3
1

4

1

4

1

4

1

4
· = + + ). Such a strong empha-

sis on the part-whole relation of fractions as countable objects could be problematic 
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because it could raise the expectation in students that fractions are not very different 
from natural numbers. Such an expectation may lead to overgeneralizations of natu-
ral number properties to fractions, as discussed above (see Sect. 7.2.2), including 
natural number bias and componential processing of fractions.

More generally, in many current classrooms, particularly in Western countries, 
there seems to be strong emphasis on the commonalities between natural numbers 
and fractions (as rational numbers), and only little emphasis on the differences 
between these types of numbers (Van Hoof et al., 2017). This seems problematic 
from the perspective of learning psychology, which would recommend fostering 
both generalization learning (emphasizing similarities between natural and rational 
numbers) and discrimination learning (explicating differences between natural and 
rational numbers) (see Sect. 7.4.1 for a discussion).

7.2.3.2  Instructional Material

Teaching practices may be influenced by the available instructional materials such 
as textbooks. There are a few systematic analyses of instructional materials on frac-
tions (Alajmi, 2012; Braithwaite et al., 2017; Shin & Lee, 2017; Son & Senk, 2010; 
Watanabe, 2007). Their findings suggest that the majority of fraction problems in 
textbooks require procedural rather than conceptual knowledge (Son & Senk, 2010), 
and that textbooks often focus on standard algorithms for solving these problems 
(Alajmi, 2012). Moreover, there are large variations in the frequency with which 
textbooks present different types of fraction problems. For example, fraction divi-
sion problems—the most challenging type of fraction problems for most students 
(see the introduction to Sect. 7.2)—are much less frequent than multiplication prob-
lems (Siegler & Lortie-Forgues, 2017; Son & Senk, 2010). Braithwaite et al. (2017) 
extended this finding by developing a computational model of fraction arithmetic 
that simulated students’ most frequent errors in fraction arithmetic procedures as 
documented in empirical studies. Using problems from common US mathematics 
textbooks as input, the model predicted students’ typical errors fairly well. Thus, the 
type of problems and the frequency with which these types appear in textbooks may 
to some extent explain students’ difficulties with fractions.

7.2.3.3  Teacher Competence

Classroom materials do not entirely determine how the content is taught in the 
classroom. Rather, it is the role of the teacher to use instructional materials in a 
specific way. Teachers thus need to be competent with fractions in order to teach 
fractions appropriately. Unfortunately, research suggests that not all teachers have 
sufficient competence with fractions (Ball, 1990; Depaepe et al., 2015; Ma, 1999; 
Newton, 2008; Siegler & Lortie-Forgues, 2015; Simon & Blume, 1994). For exam-
ple, Depaepe et al. (2015) found that, on average, prospective teachers were correct 
on only 75% of items that assessed conceptual fraction knowledge—even after hav-
ing taken a course on teaching rational numbers. Siegler and Lortie-Forgues (2015) 
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found that when pre-service teachers were asked to predict in which direction frac-

tion arithmetic operations would change an initial number (e.g., whether 
31

56

17

42

31

56
· >  

was true or false), they performed significantly lower (in some cases as low as about 
30% correct) when these predictions were not in line with natural number reasoning 
(i.e., when the result suggested that multiplication makes the original operand 
smaller) than when they were. Thus, these prospective teachers showed response 
biases similar to those documented in students (see Sect. 7.2.2.2). Additionally, Ball 
(1990) and Ma (1999) found that teachers had particular difficulties with generating 
appropriate stories or situations for a given fraction division problem. In conclusion, 
limitations in teachers’ understanding of fractions may aggravate the limitations of 
classroom materials discussed above.

7.3  Improvements: Evidence from Intervention Studies

While there are various intervention studies in the literature, few studies have evalu-
ated the effectiveness of interventions in controlled experimental designs (for an 
overview of intervention studies especially for students with math difficulties, see 
Shin & Bryant, 2015). In the following, we elaborate on selected studies that focused 
on fraction magnitude understanding and used highly controlled experimental 
designs with control or comparison groups.

In a study by Gabriel et al. (2012), Belgian fourth- and fifth-graders played games 
that involved cards with different representations of fractions as well as wooden disks 
that children used to represent and manipulate fractions. Using these representations, 
children worked on comparisons of fraction magnitudes and on matching symbolic frac-
tions with non-symbolic fraction representations. There were two 30-min intervention 
sessions per week, over a period of ten weeks. Results showed significantly greater 
improvements in conceptual understanding of fractions in children in the experimental 
group compared to children in a control group who received regular classroom instruc-
tion but no intervention. Instead, children in the control group showed significantly 
higher gains in procedural fraction arithmetic skills, substantiating that typical class-
room teaching focuses more strongly on procedures than on concepts (see Sect. 7.2.3.1).

Fuchs et al. (2013) designed an intervention that also included training of general 
cognitive abilities.2 Participants were US-American fourth-graders who performed 
below the 35th percentile on an arithmetic test and who were therefore considered 
to be at risk of low mathematical achievement. The study contrasted two different 
instructional approaches. The more conventional approach focused on part-whole 
aspects of fractions and on procedural aspects of fraction arithmetic, whereas the 
other, more innovative approach emphasized the measurement aspect of fractions 
and focused on fraction magnitudes. Each session lasted 30 min, with three sessions 
per week over a period of twelve weeks. The results showed that children who were 

2 See Lamon (2007) and Fazio, Kennedy, and Siegler (2016) for intervention studies with similar 
approaches.
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taught with a focus on the measurement aspect of fractions showed greater gains in 
conceptual and procedural understanding of fractions than children who received 
conventional teaching. In another study, Fuchs et al. (2016) replicated these positive 
effects with a similar version of the measurement-based intervention program in 
another sample of at-risk fourth-graders.

Finally, Hamdan and Gunderson (2017) compared an intervention based on the 
use of number lines with an intervention that focused on the area model of fractions. 
The area model represents fractions as parts of two-dimensional shapes such as 
circles. Participants were children in grades two and three in the USA. The interven-
tion occurred on one day within a 30-min time period. From pretest to posttest, rela-
tive to a control group, both interventions led to improvements on problems that 
required using the respective representation (number line or area) that children used 
during the intervention phase. However, children who used number lines were bet-
ter able to transfer their knowledge to novel problems than were learners who used 
area models during the intervention phase. This suggests that the use of number 
lines may be particularly beneficial for fraction learning.

These examples illustrate how studies implemented interventions on enhancing 
understanding of fraction magnitudes (rather than on other aspects such as fraction 
arithmetic procedures). Overall, such a focus seems to be effective as it allows trans-
fer to other fraction concepts. Evidence from broader intervention studies not 
reported here (e.g., Butler, Miller, Crehan, Babbitt, & Pierce, 2003; Cramer, Post, & 
delMas, 2002; Moss & Case, 1999) largely supports this conclusion. On the other 
hand, most controlled intervention studies contrasted only one or two different 
teaching approaches against control conditions, making it difficult to identify which 
of the large variety of teaching approaches is the most effective one.

7.4  Recommendations and Future Directions

In this section, we first draw conclusions that are relevant for the teaching and learn-
ing of fractions in the classroom, and then discuss directions for future research.

7.4.1  Recommendations for Classroom Practice

Rather than providing a comprehensive overview of recommendations about frac-
tion teaching in general (for plenty of valuable recommendations, see, for example, 
Carraher, 1996; Moss & Case, 1999; National Mathematics Advisory Panel, 2008; 
Steffe & Olive, 2010), we restrict our discussion to six recommendations that follow 
from the different perspectives discussed in the previous sections.

Our first recommendation is that fraction teaching may benefit from drawing 
more strongly on fundamental cognitive abilities for processing fractions and ratios. 
There are plenty of psychological studies that suggest that our cognitive system is 
readily able to process magnitudes of symbolic fractions. The available neurosci-
ence studies corroborate this conclusion and suggest that processing fractions acti-
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vates a similar neural network as processing natural numbers—although caution is 
required due to the lack of evidence in young learners. Importantly, though, behav-
ioral studies including young children suggest that the ability to process fraction 
magnitudes may be rooted in fundamental abilities to process non-symbolic ratios 
(see Sect. 7.2.2.3). Thus, instruction may draw on these fundamental abilities even 
before introducing symbolic fractions, for example by using appropriate visual rep-
resentations such as bar representations. In particular, continuous rather than dis-
crete bar representations may have the advantage that they encourage students to 
focus on holistic magnitudes of fractions rather than on countable segments (Boyer, 
Levine, & Huttenlocher, 2008; Huttenlocher, Duffy, & Levine, 2002). Connecting 
these representations with symbolic fractions later on may then help prevent the 
common overreliance on natural number concepts when working with fractions 
(i.e., the natural number bias). This conclusion remains tentative because there is 
limited empirical evidence for the effectiveness of specific visual representations of 
fractions (Rau & Matthews, 2017).

Our second recommendation is that instruction on fractions may benefit from a 
stronger focus on fraction magnitudes and the use of number lines. This is related to 
the previous recommendation (in that fraction magnitudes should be linked to stu-
dents’ early abilities) but it is more general. Research shows that students have dif-
ficulties with understanding how fraction symbols represent numerical magnitudes. 
Therefore, as supported by results from controlled intervention studies (see Sect. 
7.3), students may benefit from a stronger focus on fraction magnitudes (e.g., the 
measurement aspect of fractions) rather than on the part-whole aspect of fractions. 
In particular, notwithstanding the limited empirical evidence for visual representa-
tions of fractions, number lines have proven to be effective for representing magni-
tudes of symbolic fractions. A unique advantage of the number line representation 
is that all real numbers can be represented on the same line, so that this representa-
tion may foster students’ ability to integrate their concept of numbers across number 
domains (Booth & Newton, 2012; Common Core State Standards Initiative, 2010; 
Gersten, Schumacher, & Jordan, 2017; Hamdan & Gunderson, 2017; National 
Mathematics Advisory Panel, 2008; Siegler et al., 2011).

Our third recommendation is that students may benefit from meta-level prompts 
to “stop and think” in order to inhibit potentially misleading intuitive or “System 1” 
thinking. Although reasoning about fractions necessarily requires knowledge of 
natural numbers, intuitive knowledge of natural numbers can interfere with process-
ing fractions, resulting in the natural number bias (see Sect. 7.2.2.2). Research sug-
gests that this bias is very persistent, and that it influences performance on fraction 
problems even in individuals who have acquired sound conceptual understanding of 
fractions. Thus, students may make errors because they do not engage in analytical 
thinking regardless of their level of conceptual knowledge. Therefore, it seems 
advisable to encourage students to think about the reasonableness of their responses, 
especially for fraction arithmetic. Two concrete instructional approaches to 
address that goal are prompting students to self-explain their reasoning and refuta-
tion texts that require students to argue why a given solution is wrong  (Tippett, 
2010; Van Hoof et al., 2017).
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Our fourth recommendation is that teachers should offer their students sufficient 
opportunities to acquire concepts of fractions and fraction operations. The concep-
tual change approach (see Sect. 7.2.2.1) suggests that changes in learners’ initial 
concepts may be challenging, and a content analysis (see Sect. 7.2.1) can identify 
those concepts that learners need to change in order to fully understand fractions. 
Importantly, several concepts can be relevant at the same time for understanding any 
one problem situation. To illustrate this, consider the common erroneous expecta-
tion that multiplication always makes a number bigger (see Prediger, 2008, for more 
details on that example). This expectation may be due to three misconceptions. 
First, students may have internalized as a “rule” the regularity that multiplication 
makes bigger because they have never experienced a situation in which this was not 
true. In that case, students may benefit from applying the multiplication algorithm 
to fraction multiplication problems in which they then discover that multiplication 
can actually make a number smaller. Second, students may be unable to conceptual-
ize what multiplying two fractions means because repeated addition does not offer 
a meaningful interpretation (see Sect. 7.2.1). The third scenario is related: Students 
may be unable to conceptualize what multiplying two fraction means because their 
concept of fractions is limited to the part-whole aspect. It is in fact difficult to under-

stand what multiplying 
1

4
 of a pizza with 

2

3
 of a pizza should mean. In the latter 

two scenarios, students need to acquire appropriate concepts of fractions and frac-
tion operations (see also Simon et al., this volume, for an elaboration on fraction 

multiplication). For example, the multiplication problem 
1

2

1

4
·  may be explained as 

“ 
1

2
 of 

1

4
,” where 

1

2
 is an operator that operates on 

1

4
. Alternatively, 

1

2

1

4
·  may be 

explained using the area model, in which both fractions are interpreted as measures 
of length, while the resulting fraction represents the area (see Fig. 7.2).

This example illustrates that learning fractions necessarily includes learning of 
new concepts, which is an unavoidable obstacle—whether big or small—for learn-
ers. Mathematics educators have used the term “epistemological obstacles” to refer 
to those obstacles that are inherent in the content structure (Broussou, 1983; 
Prediger, 2006, 2008; Schneider, 2014). Notably, epistemological obstacles are 
 considered an opportunity for learning in themselves. Thus, these obstacles can and 
should not be avoided during the learning process.

Our fifth recommendation is that students may benefit from explicating which 
aspects of fractions are in line with natural number concepts and which are not. The 
above content analysis showed that there are important differences between natural 
numbers and fractions (see Sect. 7.2.1), and students need to understand these differ-
ences. At the same time, in order to build on students’ existing knowledge of natural 
numbers, and to illustrate continuities in the number concept, teachers should high-
light similarities between natural numbers and fractions. Current classroom practices 
seem to put more emphasis on the similarities rather than the differences between 
natural numbers and fractions. As a consequence, students may get too little support 
in distinguishing between aspects of rational numbers that are conceptually aligned 
with natural numbers and those that are conceptually different.
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Fig. 7.2 Area model for 
fraction multiplication

Empirical evidence shows that learning of fraction division concepts can be more 
or less successful depending on whether the activated previous knowledge of natu-
ral numbers is helpful (conceptual similarity) or not (superficial similarity). In this 
context, Sidney and Alibali (2015, 2017) found that when learning about fraction 
division, students benefited more from practicing division of natural numbers (simi-
lar concept but different numbers) rather than fraction problems without division 
(similar numbers but different concept) immediately before engaging with fraction 
division. This suggested sequencing of fraction problems (fraction division directly 
preceded by natural number division) differs from common mathematics textbooks, 
where fraction division typically follows fraction multiplication. It is eventually up 
to the teacher to present fraction division in a way that students can make appropri-
ate links to natural number division.

The important role of teachers leads to our sixth and final recommendation: 
More effort is needed to provide teachers with the knowledge they need to teach 
fractions effectively. Empirical studies have documented teachers’ limitations pre-
dominantly with respect to fraction concepts (see Sect. 7.2.3). Thus, it seems imper-
ative for teacher education to enhance teachers’ content knowledge. A particular 
focus should be on fraction concepts that are counterintuitive and therefore prone to 
biased reasoning.

7.4.2  Future Directions

There are currently only a  few studies on how fractions are commonly taught in 
classrooms. This shortage concerns at least three aspects, namely teachers’ behav-
ior, classroom materials, and—more specifically—visual representations of frac-
tions used in teaching. Concerning teachers’ behavior, classroom observation 
studies are needed to find out which teaching approaches teachers actually use in 
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classrooms. With respect to classroom materials, further analyses of textbooks 
should focus more systematically on the fraction concepts and the types and nature 
of fraction problems and the visualizations that occur in textbooks. Concerning 
these visualizations, controlled intervention studies may investigate the specific 
effects of individual representations, as well as how multiple representations should 
be combined so that they are effective for students (Rau, 2017).

Although proficiency with natural numbers is a prerequisite for learning about ratio-
nal numbers, overgeneralizations of natural number principles can actually cause dif-
ficulties with learning fractions. Further research is needed to better understand the 
specific relations between previously acquired knowledge of natural numbers and frac-
tion learning. Studies to date have addressed the development of natural and rational 
number knowledge in longitudinal designs (e.g., Braithwaite & Siegler, 2017; Mou 
et al., 2016; Resnick et al., 2016; Rinne, Ye, & Jordan, 2017). However, these studies 
have focused on very specific aspects of numerical development (e.g., number magni-
tudes), and they have not included many external variables that may contribute to this 
development. To better understand the relative contributions of various factors, studies 
should consider taking into account both cognitive variables (e.g., general cognitive 
abilities, working memory) and also non-cognitive variables (e.g., mathematics self-
concept, mathematics anxiety) as well as school-related factors (e.g., classroom teach-
ing, textbooks), and socio-economic factors (e.g., learning opportunities at home).

7.5  Conclusion

In this chapter, we aimed to make connections between research on fractions from 
mathematics education and cognitive psychology, and also to include neuroscience 
evidence. We note that studies from different perspectives address issues on very 
different levels of explanation, such as the level of classrooms, of student behavior, 
or of brain activations. Integrating studies with such different perspectives is a chal-
lenge for many reasons (De Smedt et al., 2010; Nathan & Alibali, 2010; Schumacher, 
2007). For example, learning processes at different levels occur on completely dif-
ferent time scales, ranging from milliseconds (neural activation) to days or weeks 
(learning across classroom sessions). More fundamentally, authors from different 
fields do not always speak the same language or address the same questions. For 
example, mathematics educators often ask what students should learn and how they 
could learn best, whereas psychologists are more used to ask what students are able 
to learn, or when in their development they learn certain things.

On a meta-level, research should strive for a shared theoretical framework that 
provides guidance for researchers from different perspectives as to how an integra-
tion may be made most fruitful. Our attempts to make connections between various 
perspectives in this chapter may spark further discussions across disciplines. In 
spite of apparent challenges, such cross-disciplinary discussions are necessary to 
improve teaching and learning of fractions in the best possible way.
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Chapter 8
Developing Fractions as Multiplicative 
Relations: A Model of Cognitive 
Reorganization

Ron Tzur

Abstract In this chapter, I propose a stance on learning fractions as multiplicative 
relations through reorganizing knowledge of whole numbers as a viable alternative 
to the Natural Number Bias (NNB) stance. Such an alternative, rooted in the con-
structivist theory of knowing and learning, provides a way forward in thinking about 
and carrying out teaching-learning of fractions, while eschewing a deficit view that 
seems to underlie the ongoing impasse in this area. I begin with a brief presentation 
of key aspects of NNB. Then, I discuss key components of the alternative frame-
work, called reflection on activity-effect relationship, which articulates the cogni-
tive process of reorganizing one’s anticipations as two types of reflection that give 
rise to two stages in constructing fractions as numbers. Capitalizing on this frame-
work, I then delineate cognitive progressions of nine fractional schemes, the first 
five drawing on operations of iterating units and the last four on recursive partition-
ing operations. To illustrate the benefits of the alternative, conceptually driven 
stance, I link it to findings from a recent brain study, which includes significant 
gains for adult participants and provides a glance (fMRI) into circuitry recruited to 
process whole number and fraction comparisons.

Keywords Cognitive reorganization · Anticipation · Fractions · Numerical 
comparisons · fMRI

The purpose of this chapter is to articulate the reorganization hypothesis (Olive, 
1999; Steffe, 2010a) and use this articulation to depict a progression in constructing 
fractions as multiplicative relations. The work draws on epistemological and psy-
chological underpinnings of Piaget’s (1985) theory, while delving into research on 
mathematics in the brain (e.g., Dehaene, 1997). Various components of this work 
have appeared separately. In this chapter, I integrate them as a means to further theo-
rize the knowing, learning, and teaching of fractions.
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I begin with a well-known stance—Natural Number Bias (NNB)—with which 
I shall contrast my twofold stance. Then, I describe a specific model of reorgani-
zation—Reflection on Activity-Effect Relationship (Ref*AER)—and a corre-
sponding lens on fractions as multiplicative relations. Next, I present a 
reorganization progression of nine fractional schemes. I follow this with findings 
from a study on numerical comparisons in adults’ brains, to illustrate benefits of 
reorganizing natural (whole) numbers into unit fractions with multiplicative 
relations.

8.1  Contrasting Background: A Natural Number Bias (NNB) 
Stance

Properly reasoning with fractional quantities is difficult (Lamon, 2007; Verschaffel, 
Greer, & DeCorte, 2007). Behr, Wachsmuth, Post, and Lesh (1984) pointed out how 
students’ knowledge of natural numbers alters their understanding of fractions. 
Streefland (1991) portrayed this as interference; in recent years, the notions of 
whole number bias (Ni & Zhou, 2005) and natural number bias (NNB; Obersteiner 
et  al., this volume; Van Hoof, Janssen, Verschaffel, & Van Dooren, 2015) have 
gained traction.

Van Hoof, Verschaffel, and Van Dooren (2016) provided an excellent example of 
empirically grounded data that, they claimed, supported their NNB stance. They 
specified three main aspects of NNB. The first, size, refers to the ordering of frac-
tions. The second, operations, refers to carrying out and determining results of 
arithmetical operations. The third, density, refers to placing more fractions between 
any two given fractions.

To me, this three-aspect NNB stance manifests the researchers’ first-order model 
of the mathematics involved, a claim that draws on Steffe’s (1995) distinction. 
One’s own mathematics serves as her or his first-order model. A second-order 
model refers to how one makes sense of someone else’s mathematics, that is, an 
observer’s inferences about an observed person’s first-order model.

Mathematics educators’ mature, first-order models of natural numbers and frac-
tions allow them to make sophisticated distinctions. For example, they may see 
differences between density of natural and fractional numbers as “painfully obvi-
ous.” However, at issue is not how, from one’s mature frame of reference, students 
inappropriately solve such tasks while using what the researchers consider whole 
number knowledge. Rather, the challenge is to create a second-order model that 
explains how, from a student’s conceptual frame of reference as inferred by the 
researchers, her or his solutions do make sense. I contend that the notion of “bias” 
manifests (a) researcher interpretations based on their first-order models and (b) 
overlooking second-order models that articulate students’ conceptualization of nat-
ural and fractional numbers. Thus, what looks like NNB to observers may not be so 
from the student’s frame of reference.
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Fig. 8.1 A task for 
perturbing the limited 
concept of fractions as 
“parts-of-whole”

The NNB stance seems to also reflect two prevalent aspects of teaching fractions. 
The first is a reliance on an “equal-parts-of-whole” conception of fractions (Simon, 
Placa, Kara, & Avitzur, in press). This reliance seems to (a) limit students’ reason-
ing and (b) underlie much of their regress to natural number reasoning (e.g., adding 
a/n + b/n = (a+b)/(n+n), or saying that 1/6>1/5 because 6>5). This reliance seems 
to underlie adults’ inability to solve a non-routine, two-part task seen in Fig. 8.1 
(Simon, personal communication), because the yellow piece is not part of Stick A 
and is part of six, unequal parts in Stick B. I return to this task in Sect. 8.4, as it was 
used in the brain study.

The second aspect pertains to teachers’ understanding of fractions, which by- 
and- large seems limited to meaningless execution of procedures and algorithms 
(Izsák, Jacobson, de Araujo, & Orrill, 2012). Thus, it is no wonder research studies 
repeatedly demonstrated faulty use of taught procedures—including those they use 
for natural numbers. Erlwanger’s (1973) seminal study of “Benny” provided evi-
dence that a major shift is needed for teachers and students alike to construct ade-
quate meanings for fractions that help diminish what some call NNB (Behr, Harel, 
Post, & Lesh, 1992; Lamon, 2007).

8.2  Reorganization of Anticipation of Activity-Effect 
Relationship

In this section, I briefly describe key components of a model I find useful for 
explaining the knowing, learning, and teaching of fractions. At the core of this 
model is the constructivist hypothesis that learning is a cognitive process of reorga-
nizing what one already knows (Piaget, 1985). To explain such reorganization, I first 
situate mathematical knowing within the constructivist scheme theory and the 
notion of anticipation (von Glasersfeld, 1995), which I explain in more detail below. 
I illustrate this theory with an example of a natural number scheme that, if available 
to students, can become a conceptual basis for constructing fractions as 
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multiplicative relations. I then depict conceptual learning as a reorganization of 
anticipation of activity-effect relationship. To this end, I describe the mechanism of 
reflection on activity-effect relationships (Ref*AER, see Simon, Tzur, Heinz, & 
Kinzel, 2004), which was postulated as an elaboration on Piaget’s (1985) notion of 
reflective abstraction. I illustrate this mechanism with two examples. One example 
illustrates the transition from additive to multiplicative reasoning; the other example 
illustrates how the mental system may reorganize a scheme of whole numbers into 
a scheme of unit fractions (1/n), which enables solving both tasks shown in Fig. 8.1. 
Scheme theory and Ref*AER can serve as tools for both developing second-order 
models (i.e., inferences about others’ mathematics) and articulating hypothetical 
learning trajectories (HLT; see Simon, 1995, this volume) to explain, and foster, 
others’ learning of particular mathematics.

8.2.1  Scheme: An Anticipation-Centered Constituent 
of Mathematical Cognition

Building on and further interpreting Piaget’s (1985) constructivist theory, von 
Glasersfeld (1995) postulated “scheme” as a foundational, three-part constituent of 
cognition. The first part of a scheme is a situation—a sort of “recognition template” 
that frames one’s experience and sets a goal for the actions to follow. Setting such a 
goal typically involves experiencing a discrepancy between a current and a desired 
state—a perturbation that instigates activity of the mental system (Piaget, 1985; 
Skemp, 1979). The second part of a scheme is activity directed to accomplish the 
goal—typically constituted by sequencing several goal-directed (mental) actions. 
The third part of a scheme is a result yielded by the goal-directed activity. Simon 
et al. (2004) used [Goal→Action→Effect], signified as [G→A→E], to depict scheme 
as a singular mental structure consisting of a twofold anticipation (indicated by the 
arrows)—anticipation linking situation/goal with activity, and activity with its 
effect. To clarify, I use “anticipation” as a shorthand for the rather complex notion 
of relationship the mental system creates between a scheme’s goal, activity, and 
effect(s), which a person isolates as ensuing from the activity—before, during or 
after carrying it out.

As an example, I present the foundational construct of number as a composite 
unit (Steffe & von Glasersfeld, 1985), which underlies a scheme Steffe (1992) 
called the Explicitly Nested Number Sequence (ENS, see more below). Consider a 
child who is shown two opaque bags, one labeled “8 marbles” and the other “7 
marbles.” The child is asked: “If all marbles from both bags would be placed in a 
single box, how many marbles will be in that box?” After a brief silence, not using 
any observable action or language, the child responds, “there will be 15 marbles in 
the box.” To explain her solution, she says: “I gave 2 from the 7 to the 8, to make 10; 
then I added the 5 [remaining from 7] to 10.” This additive strategy was termed 
Break-Apart-Make-Ten (BAMT; see Murata & Fuson, 2006).
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For a second-order model, we can infer that to perform such a complex calcula-
tion, the child has used a scheme—explicitly nested number sequence—for operat-
ing symbolically and abstractly with numbers as composite units. Specifically, the 
child assimilated the task as a situation (recognition template) that consists of two 
quantities (8 and 7). The child could anticipate, before/without any action, that each 
of those quantities, indicated by a numerical symbol (word, or numeral), could be 
produced if the unit of 1 were iterated (while counting) up to the given number of 
marbles in each bag. This situation, along with the question in the task, sets the 
child’s goal—figure out the total of 1s that would constitute a quantity produced 
from combining the two given quantities (e.g., adding 8+7). This goal triggers a 
mental activity inferred to comprise the following sequence of five, [A➔E] 
anticipations:

 1. Call up the number 10 (not given in the task!), which embeds at least one of the 
addend(s).

 2. Select a number (here, 2) that, with 8, would be nested within 101.
 3. Strategically decompose the unit of 7 into two sub-units that are nested within it 

(here, 2 and 5), so one of those units fits the number needed to complement 8.
 4. Compose a unit of 10 from the given unit of 8 and the unit of 2 that was disem-

bedded from 7, never losing track of the unit of 5 that was also disembedded 
from 7.

 5. Compose a unit of 15 from the intermediate unit of 10 she has just composed and 
the previously disembedded unit of 5.

The example of adding 8 marbles and 7 marbles illustrates how the two anticipa-
tions that constitute the three-part notion of a scheme may be inferred from observ-
able behaviors (actions and/or language). Furthermore, it illustrates that units (e.g., 
1s, composite units) are themselves mental structures reflecting anticipation of an 
activity-effect relationship. Specifically, “8” for the child was a symbol for an antic-
ipatory effect of iterating 1 eight times; “15” was a symbol for an anticipatory effect 
of composing eight 1s and seven 1s while decomposing 7 to first capitalize on the 
nesting of 8 and 2 within 10.

This example also highlights a core distinction (see Tzur et al., 2013), between 
the child’s performance (e.g., “she got the correct answer,” “she used break-apart- 
make-ten,” “she did not use fingers,” “she knows addition of 1-digit numbers”) and 
conceptual analysis—observer’s inferences—about the child’s mental operations 
and units on which she operated (Steffe, Thompson, & von Glasersfeld, 2000). A 
focus on performance quite often manifests the observer’s use of a first-order model 
(i.e., the observer’s own model of the mathematics), whereas conceptual analysis of 
units and anticipation of relationships between goal-directed activities and their 
effects is at the heart of using a second-order model (i.e., inferences about the oth-
er’s model of the mathematics). All in all, this stance on anticipation, which I con-
sider the mental core of schemes as cognitive “building blocks,” seems compatible 
with the following:

1 The first and second activities differ, as we often see children selecting 3 to complement 7 into 10.
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Success is not preceded by trial-and-error and is not a matter of luck but is assured by 
operational anticipation. (Piaget, Inhelder, & Szeminska, 1960, p. 319)

Immediately before taking an action, the child begins to formulate in words a pattern, a 
plan of action that thereby anticipates the further course of action. (Vygotsky, 1986, p. 35; 
cited in Zinchenko, 2002, p. 21)

So to us, the term “a quantity’s magnitude” means the scheme of meanings and operations 
that allows one to anticipate, and therefore to operate under the constraint, that a quantity’s 
size is invariant under change of unit. (Thompson, Carlson, Byerley, & Hatfield, 2013)

8.2.2  Reorganization of Anticipation: Reflection on Activity- 
Effect Relationships

Building on and further specifying Piaget’s (1985) central construct of reflective 
abstraction, the mechanism postulated to bring about conceptual learning as reorga-
nization of available schemes—reflection on activity-effect relationship (Ref*AER)—
has been detailed in several papers (Simon et al., 2004; Simon & Tzur, 2004; Tzur 
& Simon, 2004). I have also proposed a preliminary set of conjectures that may link 
this mechanism to brain systems and functioning (Tzur, 2011). In this section, I thus 
provide a brief summary of Ref*AER, which essentially consists of two types of 
reflection and two stages in the construction of a new scheme through reorganizing 
previously constructed schemes (Piaget, 1985).

8.2.2.1  Ref*AER: Two Types of Reflection

The mental mechanism of reflection on activity-effect relationships (Ref*AER) 
consists of two types of reflections, that is, mental comparisons. Reflection Type-1 
involves comparing an anticipated and an actual effect of one’s goal-directed activ-
ity. For example, when beginning to learn to reason multiplicatively, a child may 
respond “6 + 3 = 9” to the task, “How many marbles are there in 6 bags, with 3 
marbles in each bag?” When asked to check that answer, the child may draw 6 cir-
cles for the bags, 3 dots in each circle for the marbles, then count each and every dot 
from 1 through 18. After counting the dots in the first 3 circles, and clearly from that 
point to the end of her counting activity, the child’s conception of numbers enables 
her to notice that the number of 1s she counted (18) does not match her initial, 
anticipated effect (9). Her mental system may then record an experience in which 
the effect of counting composite units, which she distributed equally (marble trip-
lets) over other units (bags), differs from the effect anticipated to ensue from adding 
the two units.

To explain the difference between the anticipated and actual effects of her activ-
ity, the child may begin attending to the different units operated on. This is possible 
because her assimilatory scheme (e.g., explicitly nested number sequence) already 
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includes a distinction of units she used (as input) for the activity of counting eigh-
teen 1s: composite units (e.g., 6 circles) and triplets of 1s within each of them (e.g., 
3 dots). The latter inference is supported by the child’s independent and spontane-
ous production of figural items—6 circles (for bags) and dot-triplets (for marbles) 
as a sub-goal for counting all 1s. Thus, for a goal compatible with the goal in adding 
(figure out the total of 1s), a distinction between two types of units that are being 
counted may begin to emerge for the child. These two types of units emerge through 
producing an effect that, for all numbers except for 2 × 2, differs from what the child 
anticipates would ensue from an activity of adding the two given units.

Another example of reflection type-I can be identified in children’s construction 
of unit fractions as multiplicative relations through reorganization of their concep-
tion of number as composite unit. As Simon et  al. (2004) and Hunt, Tzur, and 
Westenskow (2016) described in detail, this can occur when children are engaged in 
solving equal-sharing tasks involving paper strips (and/or computer bars) referred to 
as “French Fries” (Tzur & Hunt, 2015). To promote the intended reorganization, 
two specific constraints require the children use neither folding nor rulers. For 
example, a child may be asked to equally share a given paper strip among 5 people. 
Assimilating this task into the aforesaid explicitly nested number sequence scheme, 
she can set a goal of decomposing the given whole into 5 pieces. To accomplish this 
goal, she could then bring forth iterating of just one person’s share, which is avail-
able through her conception of iterable 1s. She can thus estimate the size of one 
person’s share, repeat it while marking the accruing length of the repeated piece, 
and notice whether or not the resulting, 5-piece whole is equal to the given whole. 
If not, the effect she would notice ensuing from her activity is a need to adjust the 
estimated size of the single person’s share. Simon et  al. (2004) referred to this 
sequence of goal-directed activities for equal sharing as the Repeat Strategy. Tzur 
and Hunt (2015) detailed two kinds of anticipations fostered by the child’s repeating 
experiences of adjusting the size of one person’s share and iterating it the given 
number of times. The first anticipation is for the direction of change—make the next 
piece shorter/longer than the previous pieces. The second anticipation is for the 
amount of change needed to one piece so, when iterated, it produces an iterated 
whole equal in size to the given whole.

Once successful in equally partitioning the given whole (e.g., among 5 people), 
the child can be engaged in solving a different task (e.g., sharing among 6 people). 
Often, children’s initial estimate of one person’s share indicates their established 
scheme for whole numbers: because 6 is larger than 5, their first estimate of one 
person’s share for 6 people may, incorrectly, be longer than the piece used for shar-
ing among 5 people. Once iterating that piece, they would notice a twofold, actual 
effect of this activity that is inconsistent with their anticipated effect: the iterated 
whole would exceed the given whole, and fewer than 5 pieces would actually fit 
within the given whole. The child may also call upon and link the inverse adjust-
ment needed with another scheme of equal sharing she possibly has constructed; 
namely, when the same quantity is shared among more people, each person gets a 
smaller share. The child may then be engaged in equally sharing the same paper 
strip (“French fry”) among 4 people, again possibly predicting that the share of one 
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person has to be shorter than the piece used for sharing among 5 or 6 people, then 
realizing the actual effect of iterating the initial estimate is inconsistent with this 
whole-number based anticipation.

With those two examples in mind, reflection type-I leads to the production and 
recording of newly noticed activity-effect dyads by the mental system (Simon et al., 
2004). A scrutiny of brain research literature (Tzur, 2011) led me to postulate that, 
for properly functioning human brains, reflection type-I occurs automatically. Not 
surprisingly, interactions with others (peers, teacher, parents) whose responses dif-
fer from one’s own quite often become a source for orienting reflection type-I.

Reflection Type-II involves comparing across mental records (instances) of recur-
ring activity-effect dyads and thus, possibly, constructing a novel, invariant activity- 
effect relationship. The key here is that the mental system has the capacity to 
distinguish, and later justify, a new regularity of what is anticipated to remain the 
same in one’s goal-directed activities (Huang, Miller, & Tzur, 2015; Simon et al., 
2004). For example, after solving a variation of tasks like the aforesaid 6 bags with 
3 marbles each, which can differ in numerical values and/or contexts, the mental 
system may isolate the invariant activity of simultaneously counting the accrual of 
composite units and of 1s that constitute each. Eventually, the activity of simultane-
ously counting 1s and composite units remains the same in the sense that it reliably 
yields the effect of the total number of 1s. That is, “1-is-3, 2-is-6, 3-is-9, 4-is-12, 
5-is-15, 6-is-18” becomes an instance of the abstracted, invariant anticipation for 
any two numbers, “1-is-k, 2-is-2k, 3-is-3k, 4-is-4k, …, n-is-n*k.” Furthermore, 
within the effect of such an activity, one may distinguish two types of units—a total 
(composite unit) of 1s, such as 18, as well as a compilation of composite units of 1s, 
such as “eighteen 1s are also 6 units of 3 units of 1” (Hackenberg & Tillema, 2009; 
Norton, Boyce, Ulrich, & Phillips, 2015; Tzur et al., 2013).

In the repeat strategy for equal sharing problems example, reflection type-II can 
focus on two recurring regularities. One regularity arises out of comparing across 
repeated instances of anticipating and adjusting the size of an estimated piece (one 
person’s share) in comparison to the given whole. For the child, a successful solu-
tion for each equal-sharing task is marked by an effect that there is a unique piece 
that could precisely fit (via iteration) the given number of times within the whole 
and, correspondingly, the whole is so many times as much as that piece. A second 
regularity arises out of comparing across instances of sharing the same whole 
among a larger/smaller number of people. For the child, successful use of previ-
ously estimated shares while varying the number of shares yields an anticipation of 
the inverse relationship between the size and number of unit fractions (e.g., for the 
goal of sharing a whole among 6 people the estimated piece must necessarily be 
smaller than the piece used for sharing it among 5 people). The first regularity can 
then be linked to the symbolic convention of unit fractions: 1/n (for any natural 
number) is a unit fraction in the sense that it constitutes a 1-to-n relationship with 
the whole. Simply put, what defines any particular unit fraction (1/n) is that the 
whole is n times as much as it. This regularity enables a single and rather straight-
forward solution to the tasks in Fig. 8.1: The yellow piece is 1/4 of Stick A, and 1/4 
of Stick B, because each of those wholes is 4 times as much as the yellow piece, 

R. Tzur



171

which one could justify/confirm by iterating the yellow piece. The second regularity 
can then be linked to the symbolic convention of inverse relations among unit frac-
tions: 1/m < 1/n for any two natural numbers m > n, regardless of the size of the 
whole, because 1/m has to fit more times into its relative whole than the 1/n into its 
relative whole. When both regularities are fully coordinated for the child, they con-
stitute the first fractional scheme, called equi-partitioning (Steffe & Ulrich, 2010; 
Tzur, 1996).

The two examples of reorganization, from additive to multiplicative reasoning 
and from whole-number to the equi-partitioning scheme, illustrate that reflection 
type-II can lead to constructing a new scheme. Specifically, this second type of 
reflection enables abstraction of the linkage between the anticipated [A→E] dyad 
and the situation/goal in which the mental system would anticipate and trigger it, 
that is, [G→[A→E]] (Simon et al., 2004).

It should be noted that a newly constructed scheme, which comprises two antici-
pations (the signified “arrows”), may differ from previous schemes in the goal, and/
or the activity the goal would trigger, and/or the effect anticipated to ensue from that 
activity. In the example of shifting from adding to multiplying the number of mar-
bles, this could be signified as [G0→[A0→E0]] reorganized into [G0→[A1→E0]]: the 
goal (figuring out the total) and the effect (anticipated total of 1s) remained the same 
whereas the activity (e.g., decomposing units vs. double-counting units) was linked 
anew. In this example, if the [A→E] dyad is also constructed as units-of-units-of-
units (e.g., 18 = 6 units of 3 units of 1), signifying this will also include the effect: 
[G0→[A1→E1]]. Empirical examples of cognitive reorganization in which one’s goal 
changes can be found in Simon et al.’s (Simon, 2012, 2015; Simon, Placa, & Avitzur, 
2016) recent work.2 The example of constructing unit fractions through the repeat 
strategy, in which the goal, the activity, and the anticipated effects were available 
through the conception of number as a composite unit (the ENS scheme) all changed 
into the equi-partitioning scheme, can be signified as the change from [G0→[A0

→E0]]] to [G1→[A1→E1]].
A crucial element of the equi-partitioning example is that it did not depict the 

construction of unit fractions based on the number of parts within a given whole. 
Rather, the reorganization of the child’s conception of whole numbers as compos-
ite units was based on the mental activity of unit iteration postulated to give rise to 
that conception of number in the first place (Olive, 1999; Steffe, 2010b; Tzur, 
1996). This is a subtle but important distinction. If cognitive reorganization is con-
sidered to evolve through one’s reflection on relationships between an activity and 
its effects, a new scheme is more likely to arise from the goal-directed activity 
available to the child through established schemes—than from the conceptual 
product (here, number) of that activity. As shown in the repeat strategy example, a 
reorganization stance presumes an incorrect use of previously established schemes 
(e.g., initially making one person’s share for 6 people larger than the share for 5 
people). However, this stance differs markedly from the NNB stance in how the 

2 Their work did not include E for effect; in my analysis, such a reorganization will be signified as 

the change from [G0→[A0→E0]] to [G1→[A0→E1]].
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observer’s sense of preference for whole numbers is explained, to which I return in 
the next section after explaining the two stages in the reorganization of a new 
scheme.

My scrutiny of brain research literature (see Tzur, 2011) led me to conjecture 
that, for properly functioning human brains, reflection type-II is a capacity of the 
mental system, but for many people it may not occur automatically. Accordingly, 
interactions with others—particularly intentional teacher–learner interactions (e.g., 
“How were your solutions to the last three tasks similar/different?”)—may be 
required to bring forth and sustain reflection type-II (for more, see Hunt & Tzur, 
2017). This is why, for students whose schemes are inferred to bring forth noticing 
and recording of novel [A→E] dyads, teaching with variation (Gu, Huang, & Marton, 
2006; Jin & Tzur, 2011b) seems a powerful pedagogical tool to promote their reflec-
tion type-II. In the next section, I elaborate on the two stages in the reorganization 
of assimilatory schemes into a new, more advanced scheme and link those stages to 
the two types of reflection that constitute the reflection on activity-effect relation-
ship (Ref*AER) mechanism.

8.2.2.2  Ref*AER: Two Stages in Constructing a New Scheme

Anticipation-centered explanations of schemes and reorganization open the way to 
explaining a renowned phenomenon observed when learners construct new schemes. 
Tzur and Simon (2004) termed it the “next day phenomenon” to capture a behavior 
sequence familiar to most teachers: (a) periods in which a learner behaves as if she 
constructed a new scheme, are followed by (b) periods in which the learner behaves 
as if she lost that scheme and regressed to previously constructed schemes, and then, 
(c) somehow resumes the use of the newly constructed scheme. A key characteristic 
of such a behavior sequence is that some sort of prompting, external and/or internal, 
allows the learner to re-enact the novel scheme, access her newly constructed 
activity- effect dyad ([A→E], conception), and explain why this relationship is antic-
ipated. Yet, independently and spontaneously (without prompting) the learner seems 
to only have access to previously constructed schemes. In the example of using the 
repeat strategy, many children would initially demonstrate an anticipation that 1/5 > 
1/6, then go back to saying “1/5 < 1/6, because 5 < 6,” and then later change again 
once engaged in the repeat strategy.

Tzur and Simon (2004) and Simon, Placa, and Avitzur (in press) proposed that 
provisional, prompt-dependent access to a newly forming scheme is a hallmark of a 
stage in the construction process, which they termed the participatory stage. This 
provisional stage is explained in that the activity-effect [A→E] dyad, while being 
abstracted, is yet to be linked with the situation/goal part of a new scheme. That is, 
the learner does not lose the new [A→E] anticipation, which has been abstracted at 
a prompt-dependent, provisional stage, as indicated by her ability to regenerate and 
use it once engaged in the activity that brings forth the newly noticed effect. 
However, what to a knowledgeable observer appears like a similar (invariant) task 
is yet to become so in the learner’s frame of reference.
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Tzur and Lambert (2011) proposed a theoretical status for the prompting experi-
ence, as a link between assimilation and anticipation. They further postulated that 
the participatory stage is a cognitive correlate of Vygotsky’s (1986) Zone of 
Proximal Development (ZPD). Tzur and Lambert (2011) emphasized that the par-
ticipatory stage is not an “on-off,” toggle-like marker within the construction pro-
cess. Specifically, they postulated gradations within the participatory stage, indicated 
through three dimensions of prompting as it is experienced by a learner. The first 
dimension of prompting is its locus, either solely mental (often indicated by a self- 
generated “oops” experience) or including external “stimuli” that bring forth the 
novel [A→E]. The second dimension of prompting is its focus, ranging on a con-
tinuum between indirect and general (e.g., “What if a friend joined your group and 
you want to give everyone an equal share of the pizza?”) to direct and specific 
(“Yesterday, after you successfully shared the ‘fry’ among 4 people, you made one 
person’s share for 5 people shorter; does this change your thinking to make the 
share for 8 people larger than for 5?”). The third dimension of prompting is the 
number (amount) of prompting experiences, ranging on a continuum between just 
one, through a few (2–3), to many (4 and more).

Eventually, this provisional stage (participatory) may give rise to a rather stable 
stage, termed anticipatory, in which a learner consistently calls upon and meaning-
fully uses the new scheme without prompting (Simon, Placa, & Avitzur, in press; 
Tzur & Simon, 2004). At this stage, a learner does not need to implement the 
scheme’s activity to produce the scheme’s result, whether with or without aware-
ness, because the activity has been stably tied to its effect(s) and both (as a single 
dyad) have been stably tied to the scheme’s situation/goal. This is signified as 
[G→[A→E]], with one or more of the three components being at a higher level than 
previous schemes.

Hunt et al. (2016) provided a detailed analysis of how two fifth graders, labeled 
by their school system as “Learning Disabled,” capably constructed a participatory 
stage and then an anticipatory stage of the equi-partitioning scheme as reorganiza-
tion in their numerical schemes. As the stage distinction predicts, once the two girls 
reached the anticipatory stage, including anticipation of both the direction and 
amount of adjustment needed to one person’s share, they could correctly and reli-
ably solve any task of ordering unit fractions—whether in symbolic form (e.g., 
“Which fraction is larger, 1/8 or 1/11?”) or in a realistic word problem (e.g., “If you 
are hungry, and can have 1/13 or 1/10 of the same-size pizza, which piece would 
you choose and why?”).

The participatory-anticipatory stage distinction provides a plausible reason for 
expecting learners to use previously constructed schemes. This distinction implies 
that, at the participatory stage of constructing a new scheme, learners are bound to 
fold back (Pirie & Kieren, 1994) to previously established schemes. The reason I 
use the term “folding back” is to eschew a connotation of “bias” (or “interference”) 
that seems to me rooted in interpreting the learner’s work through the lens of the 
observer’s first-order model. “Bias” connotes preference for one of two ways of 
reasoning that are both available to the learner, while folding back embraces the use 
of schemes available at a more established stage of construction (for a similar view 
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in science learning, see Shtulman & Valcarcel, 2012). By default, test items not 
sensitive to measuring participatory stages in fraction schemes, such as those used 
in NNB research, are likely to manifest folding back to reasoning based on natural 
numbers (Van Hoof et  al., 2015; Van Hoof, Lijnen, Verschaffel, & Van Dooren, 
2013). Instead of calling it “bias,” I embrace bringing forth natural number reason-
ing, which learners do have available, as a starting point to a reorganization process 
where their anticipated effect might prove inadequate to them (Sidney & Alibali, 
2015), and thus lead to constructing the equi-partitioning scheme. Generally, for 
learners at the participatory stage of constructing any new scheme by reorganizing 
previous, anticipatory schemes, folding back to anticipatory schemes seems a devel-
opmental necessity—not a “bias.”

8.2.2.3  Ref*AER: Linking Reflection Types with Stage Distinction

I conclude the articulation of reflection on activity-effect relationship (Ref*AER) 
by postulating links between the two types of reflection and the two stages in this 
constructive process. To recap, in reflection type-I the goal-directed modus of cog-
nitive processes provides a basis for noticing and linking novel effects to the activity 
that produced them, signified as: [G0→A0→E0] → notice E1 → link [A0-E1]. It is thus 
postulated that reflection type-I is necessary for initiating the transition to a partici-
patory (prompt-dependent) stage of a new scheme. In this regard, the instructional 
practice of bridging (Huang et al., 2015; Jin & Tzur, 2011a) seems highly effective, 
as it focuses on orienting students to call upon their available schemes in service of 
advancing to new ones.

Reflection type-II involves comparisons a learner’s mental system may make 
across instances in which novel activity-effect dyads were used to accomplish 
goal(s) set by a recognition template of available schemes (Skemp, 1979; Tzur & 
Simon, 2004). Such a comparison seems compatible with Piaget’s (1971) notion of 
reflective abstraction as involving projection onto a higher plane of operation in 
which the mental system further coordinates previously coordinated actions. This 
second type of reflection is postulated to be necessary for abstracting an anticipa-
tory stage of a new scheme. Simply put, to construct a novel scheme (that is, 
[G→A→E]), students need to compare across multiple, related [A→E] dyads.

As noted above, for many learners reflection type-II may not occur automatically 
(Tzur, 2011). However, reflection type-II may be purposely engendered by others 
(e.g., teachers) through interactions that “elevate” the learner’s attention—from 
focusing mainly on separate [A→E] dyadic instances to similarities she notices 
across those instances. In particular, proactively fostering reflection type-II seems 
crucial to cope with the constant risk faced by learners at the participatory stage—
being left behind conceptually. Questions such as “How is this solution related 
(similar, different) to previous solutions?” or “What if instead of … you’d be doing 
…?” are but two examples of pedagogical interventions that can promote this type 
of reflection (Mason, 2008). In this regard, the practice of teaching with variation 
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(Gu et al., 2006), which is commonly used by Chinese teachers to foster students’ 
progress from available to the new, intended mathematics, seems highly effective.

8.3  Developing Fractions as Multiplicative Relations: 
A Progression of Reorganizations

Having explained the equi-partitioning scheme, in this section I briefly summarize 
the subsequent reorganization of eight additional schemes for fractions as multipli-
cative relations. This summary is inspired by Steffe and Olive’s (2010) meticulous 
conceptual analyses, as well as research related to their seminal work (Hackenberg, 
2007, 2013; Hackenberg & Lee, 2015; Norton & Boyce, 2013; Norton & Hackenberg, 
2010; Norton & Wilkins, 2010, 2012; Tzur, 1999, 2000, 2004). My summary adapts 
the description of fraction schemes found in a recent paper (Tzur, 2014) that synthe-
sized Steffe, Liss, and Lee’s (2014) study on how algebraic schemes may be con-
structed as a reorganization of fractional schemes. Specifically, I focus on two 
pivotal activities inferred to underlie the progression in reorganizing fractional 
schemes (Tzur, 1996), iteration and recursive partitioning. While this conceptual 
progression arose out of empirical studies with children, my work with adults in 
general and K-12 teachers in particular (Tzur, Hodkowski, & Uribe, 2016) showed 
it can inform their learning, too.

8.3.1  Developing Fraction Schemes Based on Unit Iteration

Table 8.1 presents succinct descriptions of four, iteration-based fraction schemes 
that further reorganize the equi-partitioning scheme by operating on unit fractions 
as input for further coordination of units (Norton & Boyce, 2013). As Sáenz-Ludlow 
(1994) and Tzur (1996) explained, a focus on iteration-based schemes embodies a 
measurement approach to fractional units and operations—an approach extended 
substantially in recent work of Simon and his colleagues (Dougherty & Simon, 
2014; Simon, Placa, Kara, & Avitzur, in press). The equi-partitioning scheme is 
included, with index “0,” to indicate its commencing role in this progression. Said 
differently, an iterable unit fraction (1/n) serves as the “building block” to other 
fractions, similarly to how an iterable unit of 1 serves as the “building block” to 
other whole numbers. For example, the partitive fraction scheme is marked by rea-
soning about non-unit fractions (m/n, m>1) in terms of anticipating the effect of 
iterating unit fractions a number of times that does not exceed the n/n whole (e.g., 
3/7 is the anticipated effect of iterating 1/7 three times). Such an anticipation reflects 
constituting non-unit fractions as double-multiplicative relations, which corre-
sponds to Behr et al.’s (1992) and Tzur’s (1999, 2000) depiction of non-unit frac-
tions: m/n = m * 1/n (e.g., 3/7 = 3 * 1/7).
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Table 8.1 Progression in reorganization of iteration-based fractional schemes

Scheme Description Reorganized Anticipation

0. 
Equi- 
Partitioning 
(EPS)

Using her concept of number as 
a template for a partitioning 
operation, a learner can 
disembed a part and anticipate 
that iterating that part would 
confirm if it is (or not) an equal 
share for N people (2-level unit 
coordination). Enacting the 
iteration involves the learner in 
progressive integration (uniting) 
operations, but the learner may 
not be explicitly aware of the 
iterated segments being nested

The learner applies her ENS-based, 
simultaneous anticipation of both partitioning a 
composite unit and iterating a unit of 1 to 
produce a composite unit of size n to equally 
partition a continuous whole and give meaning 
to each iterated part as 1/n of that whole (a 
multiplicative relation to the whole and inverse 
relation among unit fractions)

1. Partitive 
Fraction 
(PFS)

Using her numerically based 
partitioning operation, a learner 
anticipates that iteration of a 
disembedded part (e.g., 1/8) can 
produce another unit, which she 
regards as a measured length 
(e.g., if 1/8 is iterated three 
times it would produce a 
non-unit fraction of length 3/8; 
here, 1/8 is not yet iterable). 
This coordinated operation 
(disembedding + iterating) can 
be linked to part-whole 
(measuring) comparisons. The 
learner cannot yet reverse this 
operation to reproduce the unit 
fraction that generated it (e.g., 
partition a 3/8 into three parts of 
1/8 each), which entails that the 
unit fraction is not yet iterable

The learner’s anticipated effect of equi- 
partitioning (1/n) serves as input for further 
activity of iteration, leading to possibly 
anticipating production of a composed 
fractional unit (m/n) via the coordinated 
operation of disembedding 1/n and iterating it 
m times

2. Splitting Fraction operation with 
simultaneous anticipation of a 
hypothetical effect (before 
enacting)—both of partitioning a 
whole into n parts of 1/n each, 
and of each part being iterable in 
the sense the whole is n times as 
many of it (n/n = n*1/n). When 
anticipatory, the result of a 
splitting scheme is an inverse 
multiplicative relation in the 
sense Gauss specified for 
extensive quantitative relations 
(see Steffe, Liss, & Lee, 2014)

The learner’s anticipation of 
partitioning + disembedding + iterating 
becomes an operation in the splitting scheme, 
and thus enables anticipating equi-partitioning 
and partitive scheme in one fell swoop

(continued)
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Table 8.1 (continued)

Scheme Description Reorganized Anticipation

3. 
Reversible 
Fraction 
(RFS)

The anticipatory effect, of 
composing non-unit fractions 
from an iterable unit fraction, 
can be reversed in the sense of 
decomposing (partitioning) a 
non-unit fraction (e.g., 3/7 or 
8/7) into the m unit fractions 
(e.g., 3 or 8 units of 1/7 each) 
that constituted it in the first 
place, for a goal of reproducing 
the original whole (e.g., 7/7) for 
which the given fraction is m/n, 
or for producing other non-unit 
fractions (e.g., 6/7, or 18/7)

The learner reorganizes anticipation of iterative 
and splitting by “undoing the iteration” to 
produce the building block unit fraction (1/n) of 
which the given non-unit fraction could be 
created as a means to create other non-unit 
fractions (whole included)

4. Iterative 
Fraction 
(IFS)

Iterable unit fraction (e.g., 1/7) 
resulting from partitioning is 
“freed” from the whole; it can 
be disembedded and iterated as a 
“thing” in and of itself. The 
learner can anticipate composing 
it with the whole (e.g., 7/7) to 
produce, say, 8/7, or 12/7, or 
14/7 as two wholes. The learner 
is aware that the composed unit 
is also a potential result of 
iterating the unit fraction so 
many times (i.e., 8/7 = 8*1/7). 
For the learner, then, any 
fraction m/n is an anticipated 
effect of integrating m units of 
1/n

The learner reorganizes anticipation of partitive 
and splitting by extending iteration of the unit 
fraction (1/n) to any number of multiples of that 
unit—not depending on the partitioned whole 
of which, initially, it was a part

Combined, the five schemes depicted in Table 8.1 tell a story of conceptual reor-
ganization that revolves around noticing and linking effects of iteration as a core, 
goal-directed, mental activity. Because iteration is inferred to underlie learners’ 
numerical schemes (Steffe, 1992), this story helps in eschewing the NNB stance, 
which seems to entail some conceptual deficit in need of fixing (Van Hoof et al., 
2016). Eschewing this stance does not mean dismissal of the recurring observation 
that (while reorganizing each scheme) a learner may fold back to anticipatory 
schemes of operating with/on natural numbers. Quite the contrary, such folding 
back is predicted by and has been grounded empirically through identification of the 
participatory stage in constructing each of those schemes (Simon et al., 2016; Tzur, 
1999, 2000, 2004).

Eschewing the NNB stance means positioning learners’ numerical schemes at 
the core of a measurement approach to fractions (Dougherty & Simon, 2014; Simon, 
Placa, Kara, & Avitzur, in press). In particular, the iterative fraction scheme culmi-
nates this progression in the sense of relating anticipatory effects of multiplying unit 
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fractions (m times 1/n = m/n) with division of non-unit fractions (m/n divided by 
m  =  1/n). Thus, the reorganization stance, in contrast to the NNB deficit view, 
embraces, and builds on, numerical schemes (anticipatory goal-directed activities 
and their effects) that are available to the learner as a means to foster the five, 
iteration- based fractional schemes. In turn, those iteration-based schemes open the 
way for constructing higher-level schemes in which unit and non-unit fractions can 
be partitioned further.

8.3.2  Developing Fractional Schemes Based on Recursive 
Partitioning

Table 8.2 presents succinct descriptions of four fractional schemes that arise out of 
the goal-directed activity of recursive partitioning, that is, applying partitioning 
operations to fractional quantities that, themselves, are the results of previous parti-
tions (Steffe, 2010c). My review of the literature suggests that Sáenz-Ludlow (1994) 
provided the first conceptual analysis of a child’s construction of recursive partition-
ing, which she coined part-partitioning. Capitalizing on her work, I studied frac-
tional schemes rooted in the same operation, but changed the term to recursive 
partitioning (Tzur, 1996). While distinguishing it from Confrey’s (1994) notion of 
splitting, I suggested to link the recursive partitioning operation with a related one, 
termed distributive partitioning. The following two quotes explicate both  opera-
tions, which underlie all four schemes in Table 8.2 below:

The first step in the child’s establishment of the distributive partitioning scheme consists of 
the child partitioning a part that was produced by partitioning a given whole into a specific 
number of sub-parts. Partitioning a part of the whole is regarded as a recursive operation, 
because the child partitions the result of a previous partitioning. To find the relationships 
between the whole, the parts of the first partitioning, and the parts of the second partition-
ing, the child distributes (first actually, then mentally) the second partitioning across each 
part of the first partitioning. (Tzur, 1996, p. 214)

The scheme of operation the children seemed to be using was indicated by their words “fit 
into.” Later (episode 14), we termed the children’s way of operating “distributive partition-
ing,” because the children distributed the sub-parts of the second partition across each of the 
“slots” of the first partition. (Tzur, 1996, p. 232)

Combined, the four schemes depicted in Table 8.2 tell a story of conceptual reor-
ganization that revolves around noticing and linking effects of recursive and dis-
tributive partitioning as a core, goal-directed mental activity. This story helps to 
further eschew the NNB stance. Recently, while substantially extending previous 
research on those schemes (Sáenz-Ludlow, 1994; Steffe & Olive, 2010; Tzur, 1996), 
Simon, Kara, Norton, and Placa (in press) demonstrated that schemes rooted in 
recursive partitioning provide a common conceptual root for multiplication of 
whole numbers and of fractions, by explicating the crucial role played by an inter-
mediate unit (e.g., “1/3” in the multiplicative sequence, 1/5 of 1/3 of the whole). I 
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Table 8.2 Progression in reorganization of recursive partitioning based fractional schemes

5. Recursive 
Partitioning (RPS; 
1/m of 1/n)

Operating mentally to partition unit fraction 
(e.g., 1/4 of 1/7) allows the learner to anticipate 
the result as if—but without or before—the 
second partitioning would have been applied to 
each and every part of the first partition (e.g., 
1/4 of a single 1/7 would be as if each 1/7 is 
partitioned into 4/4 parts and thus could 
potentially result in partitioning the original 
7/7 whole into 28/28 segments, making the 1/4 
of a part (1/7) to be 1/28 of the whole (which 
marks this scheme as an anticipatory 3-level 
unit coordination that is multiplicative)

The learner reorganizes 
anticipation of splitting 
and IFS to apply it for 
partitioning a unit fraction 
as both a “thing” and a 
part of a whole. This 
composition allows linking 
the result of the second 
partition to the whole, 
through an imagined (but 
not enacted) full split of 
each of the original unit 
fractions

6. Unit-Fraction 
Composition 
(UFCS; k/m of 
1/n, k>1)

A recursive partitioning of unit fraction (e.g., 
1/4) can include linking the result of the 
second partition back to the whole and to 
reversing the operation of composing a 
non-unit fraction of the initial segment (e.g., 
3/5 of 1/4 can be accomplished mentally by 
reversing the iteration of three 1/4s to isolate a 
single 1/4, apply it to the first partition to find 
1/20 of the whole, and then recompose with 
the three units sought, that is, 3/20). This is 
considered a first scheme for multiplying 
fractions, as eloquently articulated in Simon, 
Kara, Norton, and Placa (in press)

The learner reorganizes 
her anticipation of the 
effect of recursive 
partitioning by 
coordinating it with the 
reversible operation of 
de-iterating unit fractions 
(i.e., with reversed IFS)

7. Distributive 
Partitioning (DPS; 
1/n of k, k>1)

Anticipating effects of splitting operations 
allows the learner to recompose partitions of 
each of n items (e.g., 3 pizzas) so they can be 
shared equally into m shares (e.g., 7 people). 
The child distributes the results of splitting 
each item (e.g., 1/7 of a pizza) across all m 
shares (e.g., giving each person 1/7 from the 
first pizza, 1/7 from the second pizza, and 1/7 
from the third pizza). Key here is the learner’s 
anticipation that replicating, m times, the 
combined share of one person (e.g., shares of 
all 7 people) would necessarily reproduce the 
original whole (e.g., the given 3 pizzas), which 
implies the child must operate multiplicatively 
in the mental realm. This is compatible with 
the work of Streefland (1991), in the context of 
Realistic Mathematics Education

The learner coordinates 
anticipation of splitting 
with result of ENS (i.e., a 
composite unit produced 
from iterable 1s), and thus 
reorganizes partitioning to 
distribute its results onto 
separate items (each item 
is simultaneously a 
discrete unit within a 
composite whole and a 
continuous whole of its 
own right)

(continued)
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Table 8.2 (continued)

8. General 
Fraction 
Composition (1/n 
of k/m and later 
also b/n of k/n, 
with b>1 and 
k>1)

Applying recursive partitioning (e.g., find 1/7 
of __ or 2/7 of __), in anticipation, to a 
composed fractional unit (e.g., 5/9). The 
learner’s situation includes reversing the IFS 
for composing 5*1/9 and disembedding these 5 
pieces, then splitting each of them (as in DPS 
above) into the given number of mini-parts 
(e.g., 1/7 of each 1/9) and then composing the 
sought-after result by integrating/iterating 
these (1/63rds) five times. Using this scheme, 
the learner operates on two different composite 
fractional units (e.g., 5/9 split into 7 parts and 
the whole containing of the 9/9), which is 
compatible to the operations that constitute the 
General Number Sequence. An HLT for this 
scheme has been articulated by Simon, Kara, 
Norton, and Placa (Simon, Kara, Norton, & 
Placa, in press), including the crucial 
realization of the change in unit involved in 
such a multiplicative operation

The learner coordinates 
and generalizes the 
anticipation of two 
previous schemes—DPS 
and the reversible scheme. 
The newly linked 
anticipation allows 
operating on disembedded 
non-unit fractions (5/9) 
similarly to how the 
learner operated on 1s that 
constituted a whole 
number (e.g., 3 pizzas) 
without losing sight of the 
whole (9/9)

consider the empirically grounded HLTs they proposed for fostering all four 
schemes as strong support for a reorganization stance that embraces and builds on 
whole number and fractional schemes available to the learner.

In summary, the nine fractional schemes depicted in Sects. 8.3.1 and 8.3.2 pro-
vide a progression, grounded in numerous studies, of the development of fractions 
as multiplicative relations. Articulating each scheme as changes in the learner’s pre-
vious anticipations substantiates the reorganization hypothesis of whole numbers 
into fractional knowledge (Olive, 1999; Steffe, 2010a). In the next section, I use 
results from a brain study to illustrate the benefits of a reorganization stance.

8.4  Illustrating Benefits of the Reorganization Stance: Brain 
Study Findings

My purpose in this section is twofold. First, I attempt to illustrate the benefits of a 
reorganization stance for promoting the construction of the building block for frac-
tional reasoning—unit fractions (1/n) as multiplicative relations. Second, I attempt 
to support the argument that this stance greatly benefits the growing awareness of 
mathematics educators for the need to explaining knowing and learning in linkage 
with the organ (brain) that gives rise to such mental phenomena (De Smedt & 
Verschaffel, 2010; Leikin & Tzur, 2015). To this twofold purpose, I review findings 
from a study on how adults’ brains process numerical (symbolic) comparisons—
between whole numbers (e.g., “7 > 5 ?”) or between unit fractions (e.g., “1/7 > 1/5 
?”).
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This is not a research report. Detailed reports of those findings can be found 
elsewhere (Tzur & Depue, 2014a, 2014b). Nevertheless, to make sense of the find-
ings it seems helpful to first give a brief background about the study. Then, I present 
findings that highlight the beneficial impact of a purely conceptual intervention on 
the performance of numerical comparisons by adults whose pre-intervention con-
cept of unit fractions was limited to the typically taught-and-learned, part-of-whole 
conception. I culminate this section with analysis of fMRI data that indicate simi-
larities and differences in activation of brain regions when it processes those numer-
ical comparisons, and lends further support to claims about reorganization.

8.4.1  Brain Study Background

The study addressed the problem of how task design for brain research and for 
teaching unit fractions, rooted in the reorganization stance, might impact brain pro-
cessing when adults (mostly teachers) compare pairs of numbers. It focused on a 
milestone shift in reasoning—from direct comparison of whole numbers (e.g., 8>3) 
to the inverse relationship among unit fractions (e.g., 1/3>1/8 although 8>3). 
Specifically, we wanted to know more about how a purely conceptual intervention, 
which included no repeated practice of numerical comparisons, would impact per-
formance of adults who already knew the “inverse rule” for unit fractions. This 
focus arose out of a review of brain research, which at the time of designing our 
study  revealed only a few studies on how the brain processes fractions (Bonato, 
Fabbri, Umiltà, & Zorzi, 2007; Ischebeck, Schocke, & Delazer, 2009; Jacob & 
Nieder, 2009), with inconclusive findings, and none that included comparison of 
both direct and inverse relationships. The study addressed the following two research 
questions:

 1. What impact would a short, conceptually driven instruction (using the Repeat 
Strategy and the “French Fry” activity) have on adults’: (1a) responses to the 
tasks in Fig. 8.1 (Stick A, Stick B) and (1b) response time and accuracy when 
comparing whole numbers (WN) or unit fractions (FR)?

 2. What common or different brain circuitry is activated for comparing whole num-
bers (WN) vs. for comparing unit fractions (FR)?

To address these questions, the study used mixed methods (Creswell, 2009). First, 
for pretest, each individual participant (N = 20; ages 23–36; 14 females) took a pre- 
intervention, computerized test (ePrime) comprised of 4 task sets, each set includ-
ing 90, four-step number comparisons (randomized). In Step A of each task (1 s), 
the symbol of a number or an operation appeared (e.g., 7, 1/7, >, or =). In Step B 
(1 s), another symbol appeared along with the first (e.g., 7>, 1/7=). In Step C, the 
comparison task appeared fully (e.g., 7>8?, 1/7>1/8?). Answering the given com-
parison could be done within 2.5 s, by pressing a key on the right of the keyboard 
for “true” or the left for “false.” Step D showed three dots as a break between tasks 
(ITI, 0.5 s).
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A video recorded teaching session (~50  min), in which the researcher taught 
each participant individually, immediately followed the pretest. It commenced with 
me asking the participant to provide, with some drawing, her or his definition of 
fractions (using 1/4 as an example). Then, I posed the Stick A–B problem (Fig. 8.1) 
to foster the participant’s perturbation, expected to arise because an expected part- 
of- whole definition would be inadequate. I then engaged the participant in the chal-
lenging task (novel to him/her) of equally sharing unmarked paper strips among 7 
people, and then among 11, without folding the paper or using a ruler. I encouraged 
them to use the repeat strategy: estimating one person’s share, repeating that esti-
mated piece 7 times, comparing the resulting whole to the given one, adjusting the 
estimate, etc. To promote both types of reflection described above, I probed them to 
reason about adjustments they should make to one person’s share. When they 
seemed to realize the uniqueness of a piece that fits exactly the given number of 
times and the inverse relationship among pieces used for different number of peo-
ple, we discussed the generalization of why a larger denominator implied a smaller 
unit fraction. It should be noted that during the entire teaching session no practice 
of unit fraction comparisons (or whole numbers) was used.

Two posttests were conducted, the first immediately after the intervention, using 
the same (randomized) 4 task sets of 90 number comparisons each described above, 
and the second a few months later during fMRI scanning sessions. To increase fMRI 
signal, sets were altered to include 140 three-step tasks (eliminating Step B above), 
and further organized in a hybrid-block design that included random-length 
sequences of same type comparisons (e.g., 1/3>1/8, 1/7>1/2, 8=8, 5>3, 9>7, 4>3, 
6>4, etc.).

8.4.2  Brain Study Results

I first consider research question #1, “What impact would a short, conceptually 
driven instruction (using the Repeat Strategy and the ‘French Fry’ activity) have on 
adults’: (1a) responses to the tasks in Fig. 8.1 (Stick A, Stick B) and (1b) response 
time and accuracy when comparing whole numbers (WN) or unit fractions (FR)?” 
To address Question 1a, at the teaching session start, as expected, all 20 participants 
(100%) provided the limiting definition of fractions as equal-parts-of-wholes. They 
explained that a unit fraction is, “One out of so many equal parts of a whole,” drew 
a circular figure (“pizza”) partitioned into 4 parts, and shaded one to show 1/4. 
Critically, none of them were able to successfully answer both tasks about the yel-
low part on Stick B. Particularly prevalent (>50%) were responses such as, “The 
yellow part cannot be a fraction of Stick A because it is not a part of A,” and “I can-
not determine what fraction is the yellow  part of Stick B because there are six 
unequal pieces on it.”

During the teaching session, when asked to equally share a given paper strip 
among 7 people without folding it or using a ruler, they initially had no solution. 
When I prompted, “Could you estimate the share of one person and then find out?” 
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some could generate the repeat strategy independently; for the others, I suggested it 
explicitly by asking, “Could you estimate the share of just one person and use it for 
the whole ‘fry’?" When, after a few attempts, they correctly adjusted one person’s 
share for 7 people and successfully solved this task, I asked them about the share for 
11; all (100%) knew to make it shorter, “because I have to squeeze even more parts 
into the same whole.” At this point, in reference to their activity, I provided a defini-
tion (while they wrote it): “A unit fraction is a multiplicative relation to the whole; 
what makes 1/n what it is has to do with how many times it fits in the whole, or that 
the whole is n times as much of it. For example, your first estimated piece was 1/7 
because the whole is 7 times as much of it.”

Returning each of the participants to the stick task, all (100%) then correctly 
explained that the yellow part is 1/4 of Stick A and 1/4 of Stick B for one and the 
same reason, namely, “the length of the whole is 4 times as much as the shaded 
piece’s length.” These data indicate that the conceptually based intervention, via the 
repeat strategy, fostered every participant’s reconceptualization of what a unit frac-
tion is—no longer conceiving of it solely or mainly as a part of a whole but rather 
as a multiplicative relation between two magnitudes. They could thus “see” the 
shaded part on B as 1/4 in spite of the whole being marked into 6 unequal pieces, or 
as 1/4 of A although not part of A.

To address Question 1b, I conducted quantitative analysis of the accuracy rate 
(AR) and the response time (RT). On the average, the analysis of accuracy rate 
showed no significant difference across all conditions, with rates ranging from 95% 
(WN before operation in posttest) to 99% (FR before operation in pretest). This 
result deviates from previous studies (Moyer & Landauer, 1967). It is plausible this 
deviation was due to the combination between having no time pressure (2.5 s allot-
ted for each task whereas only about 1 s was actually needed) and the directions 
given to subjects: “Focus on the correct answer and only then on quickly pressing 
the button.”

Unlike error rates, participants’ response times (RT) were substantially improved 
(decreased) due to the conceptually driven intervention. To avoid possible “learning 
curves” for responding, we eliminated responses to the first set (of four) in all 3 test-
ing events of pre-, immediate-post, and remote-post. Data and analysis in Table 8.3 

Table 8.3 Impact of teaching intervention on RT in milliseconds (Stdv) from pretest to posttest

Operation first
Pre Post Difference

Fractions (FR) 1158 (249) 903 (244) −255
(t = 5.9, df = 19, p <0.0005, ES = 1.06)

Whole numbers (WN) 915 (176) 741 (194) −174
(t = 5.5, df = 19, p <0.0005, ES = 0.96)

Number first
Fractions (FR) 1112 (278) 872 (244) −240

(t = 5.7, df = 19, p <0.0005, ES = 0.94)
Whole number (WN) 941 (209) 748 (186) −194

(t = 5.1, df = 19, p <0.0005, ES = 1.00)
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confirm the hypothesis that in each of four cue conditions, comparing whole num-
bers would take significantly less time than fractions (paired-sample t-tests ranging 
between t = 4.6 and t = 8.8, with df = 19 and p <0.0005 in each). It also supports the 
hypothesis that the conceptually driven intervention (no practice) would signifi-
cantly decrease RT for comparing fractions in both cue conditions. In the operation- 
first condition, participants’ comparisons of unit fractions in posttest took, on 
average, 255 ms less than in pretest (paired-sample t = 5.9, df = 19, p <0.0005), with 
a large Cohen’s-d effect size (ES = 1.06). In the number-first condition, participants’ 
comparisons of unit fractions in posttest took, on average, 240 ms less than in pre-
test (paired-sample t = 5.7, df = 19, p <0.0005), with a large Cohen’s-d effect size 
(ES = 0.94). Those posttest results essentially reached a level comparable with pre-
test RT for whole numbers. This finding is highly encouraging, because it suggests 
performance benefits for adults who already knew the “rule,” not due to more prac-
tice but rather to reconceptualization of unit fractions through reorganization of 
their WN schemes.

Unexpectedly, the conceptually driven intervention also improved the response 
time for whole numbers. In the operation-first condition, participants’ comparisons 
of whole numbers in posttest took, on average, 174 ms less than in pretest (paired- 
sample t = 5.5, df = 19, p <0.0005), with a large Cohen’s-d effect size (ES = 0.96). 
In the number-first condition, participants’ comparisons of unit fractions in posttest 
took, on average, 194  ms less than in pretest (paired-sample t  =  5.1, df  =  19, 
p  <0.0005), with a large Cohen’s-d effect size (ES  =  1.00). This finding is also 
encouraging, because it suggests performance benefits for adults who already mas-
tered whole number comparisons, not due to more practice but rather due to recon-
ceptualization of unit fractions through reorganization of their WN schemes. My 
hypothesis, in need of further study, is that the iteration of one piece to form a whole 
(e.g., a “fry” composed of exactly 7 or 11 equal shares) also strengthened their con-
ception of number as composite unit.

I now turn to research question #2, “What common or different brain circuitry is 
activated for comparing whole numbers (WN) vs. for comparing unit fractions 
(FR)?” The study indicated overlapping and differentiated brain regions recruited 
for comparing WN and FR. Figure 8.2 shows activation of adult brain circuitry that 
indicates numerical comparisons (WN in red/yellow, FR in blue) recruit largely 
overlapping regions as compared to activation for an operation symbol. These fMRI 

Fig. 8.2 Four overlapping regions (A – Ventral Visual, B – IPS, C – Supplemental Motor Area,  
D – Posterior Dorsolateral PFC) recruited for numbers more than for operations (yellow/red and 
blue colors indicate WN and FR, respectively)
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simulations show four regions  (A, B, C, and D as explained here) known to be 
recruited for numerical processing as indicated below (Mohamed & Faro, 2010; 
Talairach & Tournoux, 1988):

 (A) the ventral visual processing stream, which is typically activated during object- 
based, visual processing—mostly in the right hemisphere.

 (B) the intraparietal sulcus (IPS) and angular gyrus, which are typically activated 
during numerical judgments.

 (C) the supplemental motor area, which is typically activated when the brain is 
preparing for a response.

 (D) the posterior dorsolateral prefrontal cortex, which is typically activated when 
the brain is attending to demanding tasks.

As for differentiation of brain regions, Fig. 8.3 shows adult brain circuitry acti-
vated more during WN than during FR comparisons, and more during FR than dur-
ing WN comparisons. Specifically, WN comparisons (Fig. 8.3a) were implicated 
more than FR comparisons in: (A) the hippocampus and (B) the medial frontal and 
anterior pole, which are typically activated during abstract retrieval from long-term 
memory. This finding is consistent with the expectation that long-mastered facts 
about whole number ordering would be accessed through such retrieval.

In contrast, substantially greater activation for FR than for WN comparisons 
were implicated in (Fig. 8.3b):

 (A) the bilateral IPS and angular gyrus, which indicate the stronger activation 
needed to process numerical judgments for ordering unit fractions; and the 
ventral visual processing stream, which indicates object-based visual process-
ing of unit fractions—possibly due to the written format and/or to the way par-
ticipants learned about them in school and during the conceptually driven 
teaching session.

 (B) the dorsal fronto-parietal control network, which is typically engaged in 
attention- demanding tasks and is hypothesized to be recruited here more for 
unit fractions than for whole numbers due to the order inversion required.

 (C) the ventral-frontal working memory network and pulvinars, which (as noted 
above) are likely recruited due to the processing of unit fractions as visually 
conceptualized objects and thus also involving attention to and selection of 
those objects.

Fig. 8.3 (a) WN > FR. (b) FR > WN
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 (D) the supplementary motor area, which (as noted above) would be recruited for 
preparing the participant’s response—likely requiring further processing due to 
less certainty about the comparison than for whole numbers.

Combined, these analyses suggest that brain circuitry used by adults to compare FR 
involves higher activation in some areas used also for WN (e.g., IPS), along with a 
more widespread use of brain regions.

8.4.3  Brain Study Significance

The findings of this brain study contribute to the growing collaborative efforts 
among mathematics educators and brain researchers (De Smedt & Verschaffel, 
2010; Thomas, Wilson, Corballis, Lim, & Yoon, 2010) to better understand mathe-
matical processes in the human brain. For mathematics education, it demonstrates 
how task design for teaching unit fractions, rooted in the reorganization stance, 
promotes adults’ desired combination of conceptual understanding (clearly shifting 
from part-of-whole to multiplicative relations) and computational fluency (~20% 
decrease in RT). Simply put, conceptualizing fractions as multiplicative relations 
supports mastery, while serving as a basis for learning higher-level mathematics.

The findings of differentiated brain circuitry recruited to compare WN and FR 
were not identified in previous studies. The limited scope of this study, including the 
lack of a control group, precludes determining when and how regions that process 
FR evolved as the participants were learning, and what impact, if any, the 
constructivist- based intervention had on adults’ brains. Nevertheless, distinguishing 
those regions can inform: (a) studying such changes in brain circuitry, (b) figuring 
out if they depend on the nature of instructional methods, and (c) appreciating the 
implied, greater cognitive load involved in making sense of and solving FR com-
parison tasks.

8.5  Concluding Remarks

In this chapter, I presented the model of reflection on activity-effect relationships 
(Ref*AER) as a specification of the constructivist reorganization stance and used it 
to explain the development of fractions as multiplicative relations. The Ref*AER 
model draws on von Glasersfeld’s (1995) depiction of schemes as a three-part build-
ing block of cognition, comprised of a situation/goal, an activity, and an effect, 
signified as [G→[A→E]]. Ref*AER extends Piaget’s (1971, 1985) core notion of 
reflective abstraction, by articulating two types of reflections (mental comparisons) 
that bring forth available schemes and, through the participatory (prompt- dependent) 
and anticipatory (spontaneous) stages, reorganize them into a new scheme (Simon, 
Placa, & Avitzur, in press; Tzur & Simon, 2004).
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I applied this model to articulate a process by which a learner’s conception of 
natural numbers as composite units (the Explicitly Nested Number Sequence) is 
reorganized into the foundational conception of unit fractions (1/n) as a multiplica-
tive relation to a given whole with inverse relations among those units (1/n>1/m if 
m>n), called the equi-partitioning scheme. I then described a progression of 8 addi-
tional schemes, four rooted in unit iteration and four in recursive partitioning, each 
being constructed through reorganization of previous schemes—fractions as well as 
natural numbers. Finally, I provided evidence from a recent study that involved both 
behavioral tasks and neuroimaging to illustrate the impact that an intervention 
rooted in the reorganization stance could have on shifting adults’ part-of-whole lim-
iting conception of unit fractions into the more powerful equi-partitioning scheme.

Throughout this chapter, I contrasted the reorganization stance with the natural 
number bias (NNB) or interference stance (Ni & Zhou, 2005; Obersteiner, Van 
Dooren, Van Hoof, & Verschaffel, 2013; Streefland, 1991; Vamvakoussi, Van 
Dooren, & Verschaffel, 2012; Van Hoof et al., 2016). This contrast emphasizes the 
need to interpret research findings not through the lens of the researchers’ first-order 
models, but rather through second-order models that explain how, for the learners, 
their ways of reasoning about both number types do make sense. To me, what seems 
at stake with NNB is the focus on demonstrating that inappropriate use of natural 
number knowledge exists—but not on explaining why, when, and for whom such 
use occurs. Thus, a “bias” stance seems to also underlie recommendations for mak-
ing teachers aware of the “bias” (see Van Hoof et al., 2016). As I contended in this 
chapter, the reorganization stance seems better slanted to explain (a) plausible 
causes (e.g., participatory stage) for people’s folding back from fractional to natural 
number reasoning and (b) teaching-learning processes conducive to diminishing 
such folding back (e.g., fostering reflection type-II as a means to support construc-
tion of the anticipatory stage of a new scheme).
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Chapter 9
Developing a Concept of Multiplication 
of Fractions: Building on Constructivist 
and Sociocultural Theory

Martin A. Simon

Abstract Promoting an understanding of multiplication of fractions has proved 
difficult for mathematics educators. I discuss a research study aimed at developing 
a concept of multiplication that supports both multiplication of whole numbers and 
multiplication of fractions. The study demonstrates how domain-specific theories 
grounded in two major psychological theories contribute to the development of an 
empirically based approach to developing this concept. Specifically, the researchers 
used Learning Through Activity, grounded in constructivism, and aspects of the 
Elkonin-Davydov Curriculum, grounded in Russian activity theory (sociocultural 
theory).

Keywords Reflective abstraction · guided reinvention · Elkonin-Davydov 
Curriculum · Mathematical operations · Hypothetical learning trajectories

In keeping with the book’s focus on the interface of psychology and mathematics 
education, I will discuss work that grew out of a confluence of Vygotskian and 
Piagetian lines of research. Vygotsky and Piaget are two of the most significant 
figures in developmental psychology; their influence persists today. The work on 
conceptualization of fraction multiplication, discussed here, was situated within the 
domain of mathematics education research. However, it was influenced by lines of 
research deriving from the work of these giants of psychology.

This is not a research report. (For the research report, see Simon, Kara, Norton, 
& Placa, in press) In this chapter, I focus on the relationship of the research to the 
two streams of theoretical work, referring to the data at times to contextualize our 
efforts. The research referred to was conducted using an adaptation (Simon, in 
press) of a single-subject teaching experiment (Steffe & Thompson, 2000). The 
subject, Kylie, was in Grade 5 (11 years old).
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9.1  Background

9.1.1  The Relationship of Constructivism and Sociocultural 
Theory

In this brief section (with an inappropriately ambitious title), I discuss how we 
brought together an important principle of each theory. This is not a philosophical 
discussion, but rather the practical utilization of theories by mathematics education 
researchers. “There is nothing so practical as a good theory” (Lewin, 1951).

Consistent with the constructivist principles of Piaget (1971), we take conceptual 
learning to be a process of individual construction. This in no way is in conflict with 
the sociocultural view of learning as a social process. These two theoretical perspec-
tives describe learning at different grain sizes and can be understood as complemen-
tary (Cobb, 2007; Cobb & Yackel, 1996; Simon, 2009).

The claim that learning is a social process recognizes the extent to which learn-
ing is socially mediated. That is, learning is afforded and constrained by interaction 
with others, language, social practices, and the use of artifacts. Thus, what is learned 
is largely determined by the cultural and historical context in which the learning 
takes place. One question that is not satisfactorily answered by sociocultural theory 
alone is how individuals learn concepts that have been developed in their culture. 
Vygotsky (1978) stressed the importance of revealing “how developmental pro-
cesses stimulated by the course of school learning are carried through inside the 
head of each individual child” (p. 91). He argued that knowledge first exists on an 
intermental level and later becomes knowledge on an intramental level through a 
process of internalization (sometimes referred to as “interiorization”). “It is through 
this interiorization of historically determined and culturally organized ways of oper-
ating on information that the social nature of people comes to be their psychological 
nature as well” (Luria, 1979, p. 45, quoted in Lantolf, 2003, p. 350). Bereiter (1985) 
observed, “How does internalization take place? It is evident from Luria’s first-hand 
account (1979) of Vygotsky and his group that they recognized this as a problem yet 
to be solved” (p. 206). In the Learning Through Activity (LTA) research program, 
we consider that constructivism provides a theoretical foundation for addressing 
this important issue.

A second related question that is not satisfactorily answered by sociocultural 
theory alone is what types of mediation (specifically pedagogy) effectively promote 
the internalization of (mathematical) concepts. Our Learning Through Activity 
(LTA) research program works to build answers to this question on the basis of 
emerging answers to the first question.
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9.1.2  A Priori Theoretical Commitments of the LTA Research 
Program

The LTA empirical and theoretical work has been developed based on the following 
two theoretical commitments.

Guided reinvention. Guided reinvention is a construct proposed by Freudenthal 
(1991). It has three parts. First is the idea that mathematics is invented, not discov-
ered. It is a human construct, not a pre-existing reality discovered by humans. 
Second, the “re” in reinvention signals that students are inventing knowledge that 
was previously invented. “The learner shall invent something that is new to him but 
well-known to the guide” (p. 48). Third, “guided” suggests that pedagogical strate-
gies are needed to allow students to reinvent mathematics that resulted from thou-
sands of years of human invention.

Freudenthal (1991) justified the use of guided reinvention:

There are sound pedagogical arguments in favour of this policy. First knowledge and ability, 
when acquired by one’s own activity, stick better and are more readily available then when 
imposed by others. Second, the discovery can be enjoyable and so learning by reinvention 
may be motivating. Third it fosters the attitude of experiencing mathematics as a human 
activity. (p. 47).

In the LTA research program, we are committed to the principle of guided reinven-
tion.1 In particular, we attempt to foster conceptual learning through the learners’ 
activity.

Learning through activity. “Piaget explains that, in his view, knowledge arises 
from the active subject’s activity, either physical or mental” (von Glasersfeld, 1995, 
p.  56). This tenet of Piaget’s constructivism was a foundational idea for LTA 
research. We reasoned that if learners develop mathematical concepts through their 
activity, we should be able to find ways to study learning by focusing on learners’ 
activity. Further, if we can identify activity through which learners can learn (rein-
vent) a new concept, we should be able to design tasks that elicit that activity, thus 
promoting the learning.

9.2  Multiplication of Fractions

Research has demonstrated that conceptualizing multiplication of fractions is often 
difficult for students (Kennedy & Tipps, 1997). This difficulty has been observed in 
their lack of success in distinguishing fraction word problems that are appropriately 
solved using multiplication (Mack, 2000; Prediger, 2008). Students also often 

1 See Simon, Kara et al. (in press) for the additional reasons that guided reinvention is a core prin-
ciple of LTA.
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struggle determining the appropriate reference unit for each number in a 
multiplication- of-fractions word problem (Hackenberg & Tillema, 2009; Izsák, 
2008; Olive, 1999; Webel & Deleeuw, 2016). The Learning Through Activity (LTA) 
research program took on the challenge of developing an empirically based hypo-
thetical learning trajectory (HLT, Simon, 1995) for promoting a unified conception 
of multiplication for whole numbers and fractions.

9.2.1  An Attempt to Use Generalizing Assimilation: 
A Constructivist Construct

Generalizing assimilation. A key theoretical construct in constructivist theory 
deriving from Piaget is the concept of assimilation. Assimilation is a complex con-
cept. For the discussion here, we focus on one aspect of assimilation. Assimilation 
is the process by which the individual recognizes that that which is perceived, imag-
ined, or thought about is an instantiation of something for which she has prior 
knowledge. Generalizing assimilation is the process by which a concept is broad-
ened by the assimilation of additional examples. Assimilation of new examples 
causes at least a minor accommodation in the concept. For example, consider some-
one whose concept of apples includes the idea that they are red. If he encounters a 
golden delicious apple, and if he assimilates it as an apple, his concept of apple will 
be changed. Apples are now red or yellow.

Application of the construct. We had determined that Kylie, as is typical among 
US students (age 10), had an equal-groups concept of multiplication (i.e., that mul-
tiplication is the totaling of equal-sized groups of units). This concept does not 
effectively support multiplication of fractions, particularly when the multiplier 
(number of groups) is a fraction. Having a fraction as the multiplicand and a whole 
number as the multiplier posed no problem. For example, Kylie had no trouble 
thinking about multiplication that indicated 5 groups of 2/3. Her equal-groups con-
cept could assimilate that without difficulty. Our hypothesis was that we could pro-
mote a concept of multiplication that would support both whole-number and fraction 
multiplication in two steps, each involving generalizing assimilation.

The basic design involved the use of the computer application JavaBars 
(Biddlecomb & Olive, 2000). Quantities were represented by the lengths of bars 
(rectangles). In our modified version of JavaBars, the bars could be partitioned, a 
part of the bar pulled out, and a bar or a part of a bar iterated,2 resulting in an equally 
partitioned bar.

2 The MARN researchers modified JavaBars by creating an “iterate” button. The iterate button 
takes a bar and a counting number (we will call it “n”) as inputs and creates a new bar that is n 
times as long as the original bar. We are grateful to Frank Iannucci for programming this 
modification.
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Our initial HLT was based on the hypothesis that students who have a multiple- 
groups concept of multiplication could expand their concept of multiplication, 
through generalizing assimilation, to include multiplying by a mixed number and 
subsequently expand their concept to include multiplication by a fraction.3 The HLT 
began by eliciting the activity of representing multiplication as iteration of a bar that 
had a length specified by the multiplicand. For example, 5×4 (5 is the multiplicand 
in our teaching experiments4) was represented by creating a bar that was 5 units 
long and iterating it 4 times. This representation was chosen because we envisioned 
that it could be used by students to represent their whole-number multiplication 
concept and come to be used for reasoning about multiplication by a mixed number 
and by a fraction.

The first two conjectures were solid. Kylie had no difficulty representing whole 
number multiplication as an iteration of a bar representing a composite unit. Second, 
she had no difficulty moving to multiplication by a mixed number (generalizing 
assimilation). The first mixed-number-multiplier task I posed was “Here is a bar that 
is 6 units long. Can you make me a bar that is 6 times 3 1/2?” Kylie iterated the bar 
3 times, partitioned the original bar into two parts, pulled out one part, and attached 
it to the bar she had created through iteration. In subsequent tasks, she moved from 
solutions of this type to narrating how she would solve the task without actually 
doing it. As predicted, the nature of the multiplicand (whole number or fraction) had 
no effect on Kylie’s ability to represent multiplication by a whole or mixed 
number.

The third conjecture was that, once she had expanded her concept of multiplica-
tion to include multiplication by a mixed number, she would be able, through gen-
eralizing assimilation, to expand her concept to include multiplication by a fraction. 
The rationale was that multiplication by a mixed number already involved multipli-
cation by a fraction as the second step. For example, in the task described above, 
Kylie seemed to have created a bar to represent 6 multiplied by 3 and a bar to rep-
resent 6 multiplied by 1/2 (before joining them). However, this conjecture was not 
borne out. When given the task “Here is a bar that is 1/3. Can you make me a bar 
that is 1/3 times 1/5?” Kylie said that she had no idea how to carry out the task. I 
modified the task to “Make me a bar that’s 1/3 times 4 1/5.” She solved the modified 
task without difficulty. Although Kylie had been able to expand her concept of mul-
tiplication, through generalizing assimilation, to include mixed-number multipliers, 
she was unable to do so with fraction multipliers.

Our explanation for the data was that multiplication for Kylie involved making 
multiple copies of the multiplicand. She was able to assimilate into her conception 
making multiple copies including a partial copy. However, Kylie did not recognize 

3 Whether the multiplicand is a fraction or a whole number was not a problem for Kylie and tends 
not to be a problem for students with a multiple-groups concept of multiplication. They can easily 
think about iterating a fractional quantity a whole number of times.
4 This convention was used in the Elkonin-Davydov curriculum. It was useful to us because the 
order of factors was consistent with the student activity (i.e., creating a bar to represent the multi-
plicand and using the multiplier to act on the multiplicand).
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multiplying by a fraction multiplier as an instance of making multiple copies, so it 
was not assimilated into her multiplication concept. Generalizing assimilation did 
not work. We needed a different approach. Rather than trying to promote expansion 
of her multiple groups conception, we needed to foster the construction of a new 
concept. For the construction of a new concept, we build on the constructivist con-
cept of reflective abstraction (Piaget, 2001; Simon, Placa, & Avitzur, 2016).

9.2.2  Reflective Abstraction: A Constructivist Construct

Piaget’s construct of reflective abstraction has been foundational to the empirical 
and theoretical work of the LTA research program. One focus of the work has been 
an elaboration of reflective abstraction for the purpose of mathematics pedagogy. 
This elaboration is discussed in detail in Simon, Kara, Placa, and Avitzur (in press) 
and Simon et al. (2016). Piaget (1980) wrote:

All new knowledge presupposes an abstraction, since, despite the reorganization it involves, 
new knowledge draws its elements from some pre-existing reality, and thus never consti-
tutes an absolute beginning. Two kinds of abstraction are distinguishable …. In the first 
place, there is a kind of abstraction then that we can refer to as empirical, because its infor-
mation is drawn directly from external objects themselves. A second form also exists which 
is fundamental in that it includes all cases of logic-mathematical abstraction. We can call it 
“reflecting abstraction”, because it is drawn not from objects, but from the coordination of 
actions or operations, (in other words from the subjects own activities). (p. 89–90, cited in 
Montangero & Maurice-Naville, 1997, p. 57).

I underscore several of the points made by Piaget in this paragraph and add a few 
points from our elaboration of the construct.

 1. All new knowledge involves an abstraction.
 2. Reflective abstraction is a process by which individuals construct mathematical 

concepts.
 3. Reflective abstraction describes the making of an abstraction through learners’ 

activity.
 4. An activity is a sequence of available goal-directed actions (Simon et al., 2016).
 5. Reflective abstraction involves a coordination of actions to create a higher-level 

action (Piaget, 2001).
 6. Reflective abstraction results in learners no longer needing to carry out the activ-

ity (sequence of actions) through which the abstraction was made. The abstrac-
tion results in an ability to anticipate the result of the activity without carrying it 
out (Simon et al., 2016).
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9.2.3  Building Design Principles on the LTA Elaboration 
of Reflective Abstraction

LTA focuses on the learning of and promoting the learning of mathematical con-
cepts. The LTA instructional design theory (see Simon, Kara et al., in press, for a 
detailed discussion) originated with the following conjecture. If reflective abstrac-
tion involves a coordination of actions deriving from activity, educators should be 
able to elicit an activity that can be the basis of the intended abstraction and foster a 
coordination of actions that produces the abstraction. LTA instructional design 
begins with two ubiquitous steps: identification of the students’ extant knowledge 
and setting of conceptual goals for the instruction. Following these steps, the two 
steps that characterize the LTA approach to instruction ensue. First, the designers 
identify an activity available to the students. Recall that an activity is a sequence of 
goal-directed actions. “Available” means that students can call on these actions 
without additional learning (i.e., based on their current conceptual knowledge). Not 
only must the activity identified be available to the students, but the designers must 
have a clear hypothesis as to how the activity can be the basis of the intended con-
cept. Once the activity has been selected, a task sequence is designed, as part of an 
HLT, to elicit the activity and promote reflective abstraction from the activity (com-
ing to anticipate the result of the activity without carrying out the activity).

9.2.4  An Attempt at Reflective Abstraction: Using 
the MULTIPLY Button

In order to promote reflective abstraction, we sought an activity that when applied 
to the multiplicand would be consistent across diverse types of multipliers (i.e., 
whole-number, mixed-number, and fraction multipliers). Our hypothesis was that if 
Kylie could engage in mentally using the multiplier as the number of times the mul-
tiplicand measures the quantity, she would be engaged in an activity through which 
she could abstract the intended (unified) concept. We began this trajectory by intro-
ducing an imaginary JavaBars function, the “MULTIPLY button.” We demonstrated 
its use with whole numbers. One starts with a bar of a certain length (e.g., 1/3), 
clicks on the bar, puts a number into the little window that opens (e.g., 4), and the 
result is a new bar (e.g., a bar that is 4 of the 1/3-unit bars or a 4/3-unit bar). Kylie 
was able to use the imaginary MULTIPLY button (i.e., create the product bar) with-
out difficulty for whole-number and mixed-number multipliers. After four mixed- 
number- multiplier tasks, I posed a task with a fraction multiplier: “This is 1/3. I 
click on [the bar] and click on the MULTIPLY button and put in 1/2. Can you show 
me what it makes?” Kylie was unable to do it. I then spontaneously modified the 
tasks.
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R: Here’s a bar. I’m not going to tell you how big it is. If I click on it, click on 
MULTIPLY and put in one third, do you know what it’s going to do?

S: ...Um...No, I don’t know.
R: Okay, how ‘bout if I click on it. And I click on MULTIPLY and I put in one and 

one-third.
S: Well then it would make one and one-third.
R: Go ahead.
S: [Kylie partitions the bar into three parts, pulls out one part, and joins it to the 

original bar.]
R: [On this one] you don’t have to do it, just tell me. If I click on this [bar], and 

then I hit MULTIPLY, and I put in two and one-fourth, what will it do?...
S: It would make two and one-fourth.
R: What do you mean, “It will make two and one-fourth”?
S: Well, if I took it and I repeated it two times, and I took that [original bar] and 

broke it up into four pieces and pulled out one of them and then attached it to the 
other pieces, and it would be two and one-fourth.

R: Okay. What if I click on this bar, click on the MULTIPLY [button] and put in 
one-half?

S: I don’t know what to do then.
R: Why?
S: Oh, I could break it into one-half and then pull out one of them and then iterate 

it once. And that would be one-half.

In Simon, Placa et al. (in press), we attributed what transpired in this excerpt to 
two changes in Kylie’s activity:

The first change was prompted by the researcher posing tasks that gave no value for the 
length of the bar used as input to the MULTIPLY button. Because there was no pair of 
numbers to multiply—there was only a bar and a number applied to the bar—Kylie focused 
on her activity that represented what the MULTIPLY button would do. That is, she focused 
on the direct effect of the number input on the bar input rather than thinking about showing 
multiplication of the numbers. The second change (perhaps also prompted by the change in 
tasks) was that she began quickly summarizing the effect of the MULTIPLY button, for 
example, “It would make two and one-fourth.” These statements provided a consolidation 
of what the MULTIPLY button did, allowing her to see the commonality, which was less 
accessible when she was describing a whole set of actions. Through her work with these 
tasks (working with a multiplicand of unspecified length) and using these consolidated 
descriptions, she came to see a commonality in her activity—she was just making a 
multiplier- sized bar using the inputted bar as her unit.

We initially questioned whether Kylie’s activity was useful. After all, she was using 
the input bar as a unit bar, so we questioned whether she was really building a con-
cept of multiplication. Subsequently, we came to see potential in Kylie’s activity 
(discussed in the next section).
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9.2.5  Reasons for Enlisting Another Approach

Our analysis of our attempt to promote reflective abstraction using the MULTIPLY 
button produced three results, which contributed to our decision to build on the 
Elkonin-Davydov (E-D, Davydov, Gorbov, Mukulina, Savelyeva, & Tabachnikova, 
1999, discussed below) approach to teaching a concept of multiplication. Because 
this is not a research report, but rather an account of the confluence of two scholarly 
traditions in developmental psychology, we summarize briefly the three relevant 
conclusions, describing only briefly the data5 on which they were based.

Lack of a unified concept of multiplication. Kylie’s work with the imaginary 
MULTIPLY button did lead to her being able to anticipate what the MULTIPLY 
button would do if a fraction multiplier were inputted. However, when questioned, 
she indicated that she had assimilated the effect of the MULTIPLY button with 
whole-number and mixed-number multipliers to her concept of multiplication, but 
considered the effect with fraction multipliers to not be multiplication. Thus, her 
work with the MULTIPLY button did not provide the means to a unified concept of 
multiplication.

Difficulty with units. In this section, I skip ahead chronologically to discuss an 
additional pedagogical problem we faced. After Kylie seemed to have developed a 
concept of multiplication by a fraction (although not unified with her whole-number 
concept) and had reinvented a multiplication-of-fractions algorithm,6 it became 
clear to us that Kylie could not identify the units of the product of a multiplication- 
of- fractions word problem and even struggled to identify the unit of the product in 
a task limited to the JavaBars context. For example, I posed the task, “A recipe calls 
for 2/3 of a cup of sugar, I want to make 3/4 of a recipe. How much sugar do I 
need?” Kylie correctly determined the answer as 6/12. However, when I asked her, 
“Six-12ths what?” she responded, “Six-twelfths of two-thirds.” If she did not under-
stand the units of the product, Kylie did not have a useful concept of multiplication 
of fractions.

A promising activity. Although Kylie’s work with the MULTIPLY button was 
unsuccessful in the ways discussed, the progress she made when applying the 
MULTIPLY button to bars of unspecified size and its relationship to the E-D 
approach (discussed below) prompted an exploration of how we might adapt the 
approach for our revised trajectory.

5 The analyses of data can be found in Simon, Placa et al. (in press).
6 See in press, Placa for a detailed account.
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9.2.6  The E-D Approach: A Product of Sociocultural Theory

One aspect of Russian activity theory. Elkonin and Davydov were major figures 
in the development of Russian activity theory (e.g., Davydov, 1990; Elkonin, 1972), 
which had its roots in the sociocultural theory of Vygotsky. In this discussion, I will 
refer to only one aspect of this theory, an aspect that was the basis of the E-D 
approach to multiplication. In Russian activity theory, and particularly the work of 
Davydov, generalization was an important focus. Davydov took generalization to be 
a key aspect of a concept and wrote, “One usually means by a ‘concept’ not just a 
group of common attributes, but a group of essential common attributes” (p. 7). 
Davydov (1966) embraced the idea of promoting learning from the general to the 
specific. By this he meant that initial experiences should be aimed at developing the 
general theoretical idea. This is followed by elaborating the idea in specific domains. 
For example, in science, one might promote understanding of the idea of an ecosys-
tem. This understanding would be deepened by exploring particular ecosystems. 
Elkonin and Davydov, in designing their elementary mathematics curriculum, 
attempted to specify as goals of instruction the most encompassing mathematical 
generalizations (concepts), generalizations that do not need to be modified as stu-
dents expand the types of numbers with which they are working (e.g., from whole 
numbers to fractions). This was true for their approach to teaching multiplication.

The E-D approach to multiplication. As might be suspected, the E-D approach 
to multiplication, which starts when students are working only with whole numbers, 
was not directed towards developing a multiple-groups concept. As we have seen, a 
multiple-groups concept is not very useful for conceptualizing multiplication by a 
fraction. Instead, the E-D curriculum aims towards a concept of multiplication as a 
change in units. Towards this end they introduce the idea of an “intermediate unit” 
(Ji Yeong & Dougherty, 2013). The idea is that if one measures a quantity with an 
intermediate unit and measures the intermediate unit with the unit, one can find the 
measurement of the quantity by the unit through multiplication. For example, if I 
know that a piece of material is 4 yards long (a yard is the intermediate unit) and that 
a yard is 36 in., I can determine that the length of the piece of material measured in 
inches is 36 × 4. Similarly, if I know that the distance between two points is 25 km 
(a kilometer is the intermediate unit) and I know that a kilometer is approximately 
3/5 of a mile, I can determine that the distance measured in miles is 3/5 × 25. In both 
cases, there is a change in units from measuring with the intermediate unit to mea-
suring with the unit. This conception of multiplication applies equally well to mul-
tiplying by whole numbers and by fractions.

This relationship is represented in the E-D curriculum by an arrow diagram. 
Figure 9.1 gives an example of the arrow diagram representing the distance task 
discussed above. Each arrow goes from the unit that is being measured with to the 
quantity being measured. The number at the middle of the arrow specifies how 
many times that unit measures that quantity.
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9.2.7  The Affordances of the E-D Approach for the LTA HLT

The work with the imaginary MULTIPLY button showed some potential, but it also 
left deficiencies in promoting an adequate concept of multiplication. The series of 
tasks involving the MULTIPLY button elicited an activity associated with the E-D 
approach. That is, the inputted bar can be understood as an intermediate unit, the 
inputted number as the measure of the quantity by the intermediate unit. We can say 
that Kylie was imagining creating a quantity measured in intermediate units. 
However, our approach did not create a unified concept of multiplication and did not 
promote a clear understanding of the units involved.

We realized that an important difference between our approach and the E-D 
approach was the E-D emphasis on multiplication as a change in units. Our approach 
focused on the generation of the quantity using the intermediate unit, which had 
been generated from or measured by the unit. A focus on a change in units has the 
potential to remediate the two problems observed. First, as discussed, the idea of a 
change in units can apply to multipliers of all types. In contrast, Kylie’s work with 
the MULTIPLY-button tasks resulted in her focusing on how the quantity was gen-
erated from the intermediate unit, creating copies or taking a part. Second, a focus 
on a change in units has the potential to promote an understanding of the units of the 
product of a multiplication of fractions task because the focus is on relating mea-
surement by two different units.

9.2.8  Combining the E-D Approach and the LTA Design 
Methodology

The challenge. It is here that we explicate the confluence of aspects of the two 
streams of theoretical and empirical research. In generating a revised HLT, we 
adapted the E-D approach to multiplication of fractions, derived from a sociocul-
tural tradition, and made use of the LTA design approach, derived from a construc-
tivist tradition. (We note that the elements combined here represent neither the vast 
expanse of sociocultural-based work nor the vast expanse of constructivist-based 
work.) The goal of combining these two approaches was to promote reflective 
abstraction of multiplication as a change in units.

One might ask, “Why was the E-D approach not sufficient on its own?” There are 
several reasons. First, the students who participate in the E-D curriculum have 

mile
distance

km

3/5 25

3/5 x 25Fig. 9.1 E-D arrow 
diagram for multiplication
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approximately 2.5 years of intensive work with measurement, units, and related rep-
resentations. Second, the E-D curriculum is not particularly focused on promoting 
reflective abstraction or guided reinvention. Third, the E-D curriculum has its own 
potential limitation on creating an understanding of multiplication of fractions. 
Following is an explanation of this last point.

In the E-D curriculum, multiplication as a change of units is the focus of the 
students’ first experience with multiplication. They learn multiplication when the 
only numbers available to them are whole numbers. Therefore, the only examples 
they encounter when developing a concept of multiplication are examples involving 
whole numbers. Based on the constructivist construct of assimilation, discussed 
earlier, we might conjecture that, even though multiplication as a change in units is 
a general concept of multiplication (from the designers’ perspective), students are 
likely to develop a limited concept of multiplication as a result of the limited set of 
examples they are able to consider. This conjecture has some empirical support. 
Dougherty (2016) reported that, in her Hawaiian adaptation of the E-D curriculum 
(Dougherty, 2008), students who had learned multiplication as a change in units did 
not recognize multiplication-of-fraction word problems as involving multiplication. 
Instead of calling on multiplication or multiplication arrow diagrams, they drew 
rectangular area diagrams to figure out a fraction of the multiplicand.

Let us look more in depth at the origin of this shortcoming as it informed our 
generation of a remedy. The work with multiplication in the E-D curriculum was 
initiated by the problem of measuring a very large quantity with a very small unit 
(e.g., the volume of water contained in a large fish aquarium measured with a drink-
ing cup). Students are encouraged to measure with an intermediate unit (e.g., a 
bucket for measuring the water in the aquarium), to make the job more efficient, and 
then figure out the measure of the aquarium in cups. Problems of this type become 
the model for the E-D students’ conception of multiplication. Based on this model, 
intermediate units are made by iterating units and quantities are made by iterating 
intermediate units. This leads to a conception that applies to natural numbers but 
does not tend to promote a concept that can assimilate multiplying by a fraction. In 
contrast, the revised HLT that follows was aimed at students who already have a 
concept of fraction, specifically fraction-as-measure (Simon, Placa, et al. in press). 
In designing the HLT, we needed to identify an activity that was not specific to a 
particular type of multiplier (e.g., whole number or fraction).

The basis of the activity. The activity that we identified was based on two Fraction 
Bars7 functions, one that we created and one that we adapted. Fraction Bars (Kaput 
Center for Research and Innovation in STEM Education, 2015) is a more user- 
friendly application based on JavaBars. The first function is a MAKE button that 
takes two inputs, a bar and a number (whole, mixed, or fractional). The bar is treated 
as a unit and the number as the number of those units in the bar produced. This func-
tion reduces to a single action an activity that students have ready at hand—the 

7 We have switched from JavaBars to Fraction Bars (Kaput Center for Research and Innovation in 
STEM Education, 2015). The latter is a more user-friendly application based on JavaBars
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ability to make a bar of any length from a unit bar. The idea is that there is a built-in 
recursive relationship among the unit, intermediate unit, and quantity. The make 
button can make the intermediate unit from the unit and (recursively) make the 
quantity from the intermediate unit. For example, the student can create the product 
9/7 × 5/4 by first inputting a unit bar to the MAKE button along with the number 
9/7. This produces the intermediate unit. By inputting the intermediate unit and the 
number 5/4, she can make the product (quantity).8

The second activity that is automated in our revised HLT is measuring. The 
MEASURE button takes two bars as inputs. The first is treated as the measurement 
unit and the second as the quantity to be measured. The output is the number that is 
the result of that measurement. Once again, the button is meant to reduce to a single 
action an activity that is ready at hand for the students. These two buttons allow 
students to perform activities as single actions. As single actions, they can be called 
on more easily as elements of the activity through which students come to abstract 
multiplication as a change in units.

9.2.9  The Revised HLT

9.2.9.1  Purpose

 1  Develop a concept of multiplication that affords reasoning about multiplication 
of fractions and subsumes a prior multiple-groups concept of whole-number 
multiplication.

 2  Develop a concept of multiplication as a change in units. Multiplication deter-
mines the number of units in a quantity, given b intermediate units in the quantity 
and a units in the intermediate unit. Multiplication can be expressed as a x b.

9.2.9.2  Prerequisites

 1. Concept of fraction-as-measure.
 2. Multiple-groups concept of whole-number multiplication.

9.2.9.3  Prior knowledge

Our revised HLT was designed to fit into a sequence of HLTs. We list here other 
knowledge that we make use of. The knowledge listed here, in contrast with the 
“prerequisites,” was not necessary for carrying out the basic idea of the HLT.

8 In this discussion, we focus only on multiplication involving two factors. The MAKE button 
could be used to produce a product of three or more factors.
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• Anticipation of the result of taking a fraction of a composite unit, when the result 
is a whole number (often referred to as “fraction of a set”).

• Anticipation of the result of multiplying a fraction multiplicand by a whole- 
number multiplier.

• Anticipation of the result of taking a unit fraction of a unit fraction.

9.2.9.4  Task Sequence

In this section, I share an abridged version of the task sequence—only those parts 
that are germane to the focus of this chapter. The original task numbering has been 
retained, so a jump in step numbers or task numbers indicates that steps or tasks 
have been deleted from this version. The full task sequence is available in Simon, 
Kara, et al. (in press). Each task listed below represents a set of similar tasks. Tasks 
are in light (not bold) italics. Only the tasks themselves are given to students.

Step 2: Measuring on the screen and introduction of the MEASURE button 
and arrow diagram.

Task 5. Estimating and measuring
[Introduce the MEASURE button and demonstrate how to use it.]

 (a) Measure the blue bar [quantity] with the yellow bar [unit]. Estimate the 
result if the yellow bar does not measure the blue bar exactly.

 (b) Measure the blue bar with the yellow bar precisely by using the MEASURE 
button.

Task 6. Recording measurement
[Introduce arrow diagram for representing measurement.] (See Fig. 9.2 for example 

of arrow diagram.) Measure the blue bar with the yellow bar using the MEASURE 
button. Record the result in an arrow diagram.

Task 7. Recording measurement of real-world quantities
[Introduce arrow diagram for real-world quantities.] (See Fig. 9.3 for example of 

arrow diagram.) Ellie measured the width of her desk with her hand. The result 
was 4 1/2. Create an arrow diagram to represent Ellie’s measurement of the 
desk. (Be specific about the unit and the quantity.)

Step 3: Introduction of MAKE button and MAKE-MEASURE tasks

Task 9. Make and measure
The bar on the screen is one unit.

 (a) Make a bar that is 5/7 of a unit long.
 (b) If you measure the bar with the unit, what result will the MEASURE button 

give?
 (c) Use the MEASURE button to verify your prediction.
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U Q
2/3

Fig. 9.2 Arrow diagram for measurement of quantity (Q) by unit (U)

hand Width of 
desk

4 1/2

Fig. 9.3 Arrow diagram for measurement of real-world quantities

Task 10. Make (using MAKE) and measure
[Introduce the MAKE button]

 (a) Use the MAKE button and the unit bar on the screen to make a bar that is 9/8 
of a unit.

 (b) Use the MEASURE button to verify what you made.

Step 4: MAKE-MAKE-MEASURE tasks.

Task 11: Prediction with computable numbers.
[Products that students can compute in their heads, whole number x whole number, 

whole number x fraction with whole number product, whole number x mixed 
number with whole number product, fraction x whole number (second number is 
the multiplier). After a few tasks, we drop parts c and d.]

The bar on the screen is one unit long.

 (a) Make a bar that is 3 units long using the MAKE button.
 (b) Use the MAKE button to make a bar that is 5 of those bars long. Because we 

unitized the 3-unit bar to make another bar (i.e., used something that was 
made from a unit as a unit), we call it an “intermediate unit.” We will call the 
bar you made from the intermediate unit the “quantity.”

 (c) If you unitize the intermediate unit and measure the quantity bar, predict 
what number you would get.

 (d) Use the MEASURE button to verify your prediction.
 (e) If you unitize the unit bar and measure the quantity bar, predict what number 

you would get.
 (f) Use the MEASURE button to verify your prediction.

Task 12: No predictions.
[Products that students are unable to compute mentally]
The bar on the screen is one unit.

 (a) Make a bar that is 5 units long. This is the intermediate unit.
 (b) Make a quantity bar that is 3 4/7 intermediate units long.
 (c) Use MEASURE. How many units long is the quantity bar you just made?
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Step 5: Word problems

Task 13: Word problems modeled by MAKE-MAKE-MEASURE activity in 
Fraction Bars.

Jose walked 8 miles. His sister, Kelly, walked 1 3/5 of the distance Jose walked. How 
many miles did Kelly walk?

 (a) Make a bar to represent one mile. Use the mile bar to make a bar for the 
distance Jose walked.

 (b) Make a bar for the distance Kelly walked.
 (c) Use the MEASURE button to solve the word problem.

[Eventually, no direction will be given on what quantities to represent with bars or 
how to solve the task.]

Step 6: Recording non-context task solutions

Task 14: Using arrow diagram (see Fig. 9.4)
[Introduce diagram as a way to record the work of creating an intermediate unit, 

creating a quantity, and determining how many units in the quantity. We modified 
the E-D arrow diagram to emphasize the activity of making the intermediate unit 
from the unit and the quantity from the intermediate unit (straight across top of 
diagram). We believed this would be a more accessible representation than the 
triangle arrow diagram used by the E-D curriculum.]

 (a) The bar on the screen is one unit in length. Make a bar that is 5 1/3 units 
long. The bar you just made is the intermediate unit.

 (b) Make a quantity bar that is 4/5 intermediate units long.
 (c) How many units long is the quantity bar?
 (d) Record your work on an arrow diagram

Step 7: Recording word-problem solutions

Task 15: Using Arrow Diagram (see Fig. 9.5 for an example)
Solve the following word problems using Fraction Bars. Record your work on an 

arrow diagram. Use labels that describe what each bar represents in the word 
problem.

U IU (intermediate U) Q
4 7

?

Fig. 9.4 Arrow diagram for a non-context task
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Fig. 9.5 Arrow diagram for a context task (word problem)

Jose walked 8 miles. His sister, Kelly, walked 1 3/5 of the distance Jose walked. How 
many miles did Kelly walk?

Step 8: Creating arrow diagrams directly from word problem

Task 16: Examples and non-examples
For the following word problems, create an arrow diagram as you read the task. (Do 

not solve the tasks.) Put a question mark for the number that needs to be found. 
Some of the word problems that follow cannot be represented by an arrow dia-
gram. If the word problem cannot be represented with an arrow diagram, put 
“N/A” (not applicable) next to the task, and go on to the next one.

 (a) Melissa has 4/5 of a yard of material. She gave 3/10 of it to Nora. How much 
material did Nora receive from Melissa?

 (b) A traveler walked 2/3 of the distance to her destination. During the second 
day, she walked 1/15 of the distance to her destination. What fraction of the 
trip had she walked by the end of the second day?

Step 9: Solution of word problems with emphasis on the referents for the 
numbers.

Task 17: Referents based on arrow diagrams

 (a) Represent each word problem with an arrow diagram.
 (b) Solve for the missing number in the arrow diagram mentally or using 

Fraction Bars if needed.
 (c) Write down each of the numbers with a label describing what the number 

refers to in the word problem (e.g., 3 ft in a yard, 2 1/2 kg of sand in the bag, 
3/4 of a cup of flour in a recipe).

Step 10: Definition and symbolization of multiplication

Task 18: Connecting to multiplication
[In this set of tasks, we use whole-number and mixed-number multipliers, so stu-

dents can recognize multiplication.]

 (a) Create an arrow diagram for each word problem.
 (b) Calculate the missing number.
 (c) Write an equation to represent the word problem.
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There are 5 1/3 boxes of candies. In each box, there are 6 candies. How many can-
dies are there?

Task 19: Using new definition of multiplication
[Define multiplication: Multiplication is a change in units from measurement by the 

intermediate unit to measurement by the unit. We know the number of intermedi-
ate units in the quantity and the number of units in the intermediate unit. We need 
to find how many units in the quantity. Symbolization m x n means there are m 
units in the intermediate unit, n intermediate-units in the quantity, and m x n units 
in the quantity.]

 (a) Create arrow diagrams for the word problems. Put N/A for the word prob-
lems that cannot be represented by the arrow diagrams we have been using.

 (b) Write expressions for the word problems represented by the arrow 
diagrams.

[Word problems are similar to those exemplified in Task 16]

Step 11: From symbolic expression to word problems

Task 20: Reverse tasks

 (a) Create arrow diagrams for the multiplication expression 3/4 × 5/8.
 (b) Write a word problem that can be represented by the multiplication 

expression.

[After a few tasks, we eliminate the arrow diagram step]

9.3  Discussion

Our research on developing a unified concept of multiplication demonstrates the 
role that major theories of learning from developmental psychology can play in 
mathematics education. These major theories, such as constructivism and sociocul-
tural theory (or Russian activity theory), cannot in themselves inform most areas of 
mathematics education; more domain-specific theories must be derived from them. 
We see such domain-specific theory in the work of Elkonin and Davydov (Davydov, 
1990; Davydov & Tsvetkovich, 1991) and in the LTA work on reflective abstraction 
of mathematical concepts (Simon et al., 2016; Simon,  Kara et al., in press).

We also see in this example how domain-specific theories from more than one 
major theory can contribute to addressing a single research goal. Whereas most of 
the theoretical work of the LTA research program derives from constructivism, the 
E-D approach to multiplication, which was developed through a lens of Russian 
activity theory, made an essential contribution to this work. The E-D approach, 
which included mediation by the arrow diagrams, allowed us to develop a way to 
deal with the shortcomings of the LTA approach, lack of a unified concept, and lack 
of understanding of the units of the product. The LTA design approach allowed us 
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to develop a way to deal with the shortcoming of the E-D approach, the lack of a 
methodology for promoting students’ construction of the unified concept that was 
the potential of the approach. We emphasize that it was the domain-specific theories 
derived from the two major theories, constructivism and socio-cultural theory, that 
guided the research discussed here. It is only through the development and use of 
useful domain-specific theories that these major psychological theories contribute 
in important ways to mathematics education.
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Chapter 10
What’s Perception Got To Do with It? 
Re-framing Foundations for Rational 
Number Concepts

Percival G. Matthews and Ryan Ziols

Abstract Rational number knowledge is critical for mathematical literacy and aca-
demic success. However, despite considerable research efforts, rational numbers 
present perennial difficulties for a large number of learners. These difficulties have 
led some to posit that rational numbers are not a natural fit for human cognition. In 
this chapter, we challenge this assumption, describing recent research into intuitive 
routes to understanding rational number concepts that diverge from those popular in 
current curricular recommendations. Namely, we develop the claim that humans are 
perceptually sensitive to nonsymbolic ratio magnitudes, and that this sensitivity is an 
early developing, robust and abstract aspect of cognition. We suggest that attending 
to this perceptually based sensitivity can inform existing theory and help provide a 
basis for the design of more effective instruction on rational number concepts.

Keywords Rational numbers · Perceptual learning · Numerical cognition · 
Perception · Fractions

10.1  Introduction

Might fractions be “natural” numbers, too?1 This question might initially appear 
facetious. After all, learners’ difficulties understanding rational number-related con-
cepts are pervasive and persistent—so pervasive that both mathematics education 

1 With this play on words we challenge the long-held assumption that the counting numbers are 
“natural” to cognition whereas fractions are not. To avoid confusion, we use the term “whole num-
bers” throughout and reserve use of the word natural in the everyday sense of “existing in nature 
and not made or caused by people.”
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researchers and cognitive developmental psychologists often assume learning to 
think with and about rational numbers is neither natural to cognition nor easy to 
learn (e.g., Feigenson, Dehaene, & Spelke, 2004; Gelman & Meck, 1983; Kieren, 
1980; Wilkins & Norton, 2011; but see Boyer & Levine, 2012; Davydov & 
Tsvetkovich, 1991 for counterexamples). Indeed, many researchers converge on the 
view that whole number concepts provide the foundational tools for the cognitive 
work needed to build rational number concepts (e.g., Kieren, 1980; Siegler, 
Thompson, & Schneider, 2011; Steffe, 2002). This chapter provides an alternative 
to this influential perspective.

We argue that an emerging body of research suggests that human learners are 
equipped with visually based proto-numerical intuitions that map neatly onto rational 
number concepts. We further argue that these intuitions seem to be largely perceptual 
in nature and that they are robust and abstract at an early age. Elsewhere, we have 
referred to this perceptual ability as the Ratio Processing System (or RPS), champion-
ing a cognitive primitives approach to constructing rational number (see Lewis, 
Matthews, & Hubbard, 2016 for a review). The RPS parallels the approximate number 
system (or ANS; e.g., Halberda & Feigenson, 2008) in that it is presumed to be a 
phylogenetically ancient system that is tuned to analogs of numerical quantities. It is 
distinct from the ANS in that it processes ratios, which are inherently relational quan-
tities. We address some of these similarities and differences in Sect. 10.3.2 below.

The cognitive primitives approach differs in two key ways from most of the cur-
rently popular curricular approaches to the development of rational number con-
cepts. First, we suggest that perceptual learning can be conceptualized in ways that 
extend rather than contend with much existing theory about the nature of symbolic 
number. Second, we take the position that leveraging these proto-numerical intu-
itions to formalize a “sense” or “feel” for proportion may provide an alternate route 
to building rational number concepts (see also Abrahamson, 2014; Matthews & 
Ellis, 2018). This account is quite different from approaches positing that rational 
number concepts most naturally emerge from processes such as equipartitioning or 
learning to coordinate units (e.g., Hackenberg, 2007; Olive & Lobato, 2008; Pothier 
& Sawada, 1983; Steffe, 2002). Rather, our conception foregrounds ratio perception 
as a primitive antecedent ability that is sensitive to relations between magnitudes or 
quantities. Ultimately, we argue that this primitive cognitive ability may provide 
learners with a substantial but currently under-appreciated foundation for building 
rational number concepts and suggest it may provide fertile ground for math educa-
tion researchers to investigate further.

10.1.1  The Hegemony of Whole Numbers

The claim that rational numbers are in some way less “natural” than whole numbers 
permeates a surprisingly large portion of theories from a number of different 
research traditions (for a lengthier discussion, see Schmittau, 2003). The 
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mathematician Kronecker famously asserted that “God created the natural numbers; 
all else is the work of man” (Bell, 1986, p. 477), and many—either implicitly or 
explicitly—seem to agree. For instance, Clements and Del Campo (1990) reflected 
on the history of the development of rational numbers to argue that they are “not 
natural, and [are] needed only for the purpose of studying more mathematics” 
(p.  188). In a less value-laden judgment, cognitive psychologists Feigenson, 
Dehaene and Spelke (2004) suggested that rational number concepts are difficult 
because they are not particularly compatible with the human cognitive architecture, 
which they posit evolved to deal with natural numbers and their analogs (i.e., count-
able groups of objects) via subitizing and the ANS.

For many math education researchers, such assumptions are much more subtle 
and implicit but share key similarities. For example, Steffe (2002) hypothesized that 
rational number schemes are built largely through accommodations of whole num-
ber schemes related to partitioning and/or iterating. Indeed, Steffe has noted etymo-
logical connections between fraction concepts and the experience of breaking, such 
as the breaking of a plate into (countable) pieces—an idea put forward in 1896 by 
John Dewey and James McClellan and implicit in the etymological roots of the 
word “fraction” (from the Latin franger or “to break”; see also Norton & Hackenberg, 
2010). From a distinct, but somewhat related position,2 Confrey’s (1994) “splitting” 
model argued that rational number concepts emerge in part from a psychological 
ability to “split” a physical object into many equal-sized pieces without counting. In 
these theories, the relational aspects of rational numbers are subsidiary to processes 
of coordinating increasingly complex and layered piece-wise or unit schemes. In 
other words, the core of such theories remains focused on creating fractions from 
discrete pieces that correspond alternately to an equipartitioned whole or a “disem-
bedded” (and countable) reference unit.

In sum, multiple prominent research perspectives heavily privilege whole num-
ber intuitions and their analogs—through the use of countable, discrete parts and 
pieces—as the cornerstone for developing rational number concepts (for discussion, 
see Davydov & Tsvetkovich, 1991; Schmittau, 2003). Our purpose here is neither to 
exhaustively catalog the prevalence of whole number based approaches to learning 
rational numbers nor to argue against the pedagogical power of such approaches. 
Instead, we want to convey the general dominance of views that presume a primacy 
for whole numbers in building fractions and other rational number-related concepts, 
whether via counting-first, fair-sharing, or equipartitioning, as a backdrop against 
which we present our current perceptually based framework.

2 For one perspective on how “splitting” is related to aspects of Steffe’s “reorganization hypothe-
sis,” see Steffe and Olive (2010). On our reading, the n-split of Confrey’s model (e.g., Confrey & 
Smith, 1995) is clearly a case of equipartitioning that primarily maps to whole numbers. However, 
the similarity-based aspects of splitting discussed by Confrey seem to be a case of the RPS in 
action.
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10.1.2  Nonsymbolic Ratio as Relational Magnitude

Turning to our theory, the central argument we present is that perception can and 
does provide intuitive access to ratio (i.e., relationally defined) magnitudes (e.g., 
Abrahamson, 2012; Bonn & Cantlon, 2017; Carraher, 1993; Jacob, Vallentin, & 
Nieder, 2012; Lewis et al., 2016; Matthews & Chesney, 2015). By relational, we 
refer to the fact that ratio quantities–such as that denoted by a:b or a/b–are defined 
based on the relative magnitudes of components a and b rather than by the magni-
tudes of either component considered in isolation. Moreover, we argue that this 
sensitivity to ratio is rooted in the basic psychophysics that governs human percep-
tion of magnitudes in multiple modalities and formats (Bonn & Cantlon, 2017; 
Matthews & Chesney, 2015; Sidney, Thompson, Matthews, & Hubbard, 2017). We 
further suggest that perceptual intuitions about ratios may provide an important 
foundation for building formal understandings of rational number concepts—
including fractions—that are distinct from and complementary to understandings 
built on whole number knowledge.

A vulgar view of perception might cast it as primarily concerned with “lower- 
order” phenomena as opposed to higher-order relational concepts. Accordingly, in 
Sect. 10.2, we begin by reviewing two arguments that clarify what we mean by 
perception and the potential it may have for generating “boundary work” between 
mathematics education researchers and cognitive psychologists.3 First, we argue 
that perception is not merely some “low-level” activity; it often involves extracting 
higher-order relations from the environment. In other words, perception as we con-
ceptualize it involves robust forms of abstraction that can support meaningful 
engagement in mathematical thinking and learning (see also de Freitas, 2016; 
Howison, Trninic, Reinholz, & Abrahamson, 2011; Stroup, 2002). Indeed, we sug-
gest that perceptual learning is actually compatible with several aspects of social 
and radical constructivisms in this regard (e.g., Ernest, 1998; von Glasersfeld, 
1984).

In Sect. 10.2, we review empirical work that has marshaled considerable evi-
dence that humans and even nonhuman primates have perceptual sensitivity for 
nonsymbolic ratio magnitudes (see Fig.  10.1). We cite this not to argue about 
whether monkeys and apes do math but rather to suggest that aspects of formal 
mathematics can be accessed in part by leveraging phylogenetically ancient percep-
tual sensitivities. Finally, in Sect. 10.4 we consider possible implications for research 
and pedagogy concerning the development of rational number concepts. Specifically, 
we highlight the need for recruiting math education researchers’ expertise if we are 
to successfully formulate approaches for using nonsymbolic ratios in ways that can 
support mathematical thinking.

3 We wish to recognize that a good number of math education researchers, particularly those who 
employ an embodied perspective, already conceive of perception as concerned with higher-order 
thinking (e.g., Abrahamson, 2014; de Freitas, 2016).
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Fig. 10.1 Sample nonsymbolic ratios made from paired circle areas, line segment lengths, and dot 
arrays. All three represent a ratio of 1/3 instantiated in different graphical formats. These three 
formats are just a small sample of the space of possible nonsymbolic ratios that can be represented 
graphically (adapted from Matthews, Meng, Toomarian, & Hubbard, 2016)

10.2  Perception as Selective Extraction of Relevant 
Information

10.2.1  Perception vs. “Raw Sensation”

Researchers concerned with perceptual learning have long argued that perception 
should not be conceived of as only concerned with low-level sensorimotor represen-
tations of the external world (e.g., Barsalou, 2008). Rather, perception is highly 
selective and can be a source of complex and abstract understandings (Gibson, 
1979; Goldstone & Barsalou, 1998; Goldstone, Landy, & Son, 2010; Kellman, 
Massey, & Son, 2010). From a Gibsonian perspective, perception is fundamentally 
about selectively attending to relevant information and relations from the vast 
amount of information taken in by the senses (e.g., Gibson & Gibson, 1955). Here, 
it is critical to underscore the selective nature of perception versus the indiscrimi-
nate nature of what we call “raw sensation.” Perception sifts through the vast amount 
of information from the entirety of a visual display and registers the presence of 
simple features. This can be profoundly more powerful than verbally mediated 
thought for detecting meaningful features in the environment—largely due to the 
prodigious volume of things that can be visually processed in parallel compared to 
the limited serial processing of verbally mediated logic (e.g., Goldstone & Barsalou, 
1998).

For instance, we can effortlessly recognize a good friend’s face, but our ability to 
verbally describe the similarities and differences between her face and another is 
much more limited. There is a reason that a picture is sometimes worth more than a 
thousand words, and that reason lies in the sheer computational power of our per-
ceptual processing abilities (Larkin & Simon, 1987). As Kellman and Massey 
(2013) have argued:
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“Sensorimotor knowledge” does not convey the scope and power of what perceptual mech-
anisms deliver. Not only is explicit abstract thinking a newer evolutionary acquisition, but 
the work of abstraction is not exclusively the province of [conscious] thinking processes 
alone. Much of thinking turns out to be seeing, if seeing is properly understood. (p. 120)

This notion of “seeing…properly understood” is an example of how current psycho-
logical notions of perception go well beyond a simple sight-as-sensation concept. 
Elements of abstraction are deeply entangled with perception, and with experience, 
perception can be trained to select socially designated relevant information from a 
“background” of mostly unconscious sensory information (cf. de Freitas, 2016; Gal 
& Linchevski, 2010).

10.2.2  Perceptual Learning and Concept Formation

It is no small feat that even infants can rapidly learn to identify dogs as members of 
a category distinct from other animals (Quinn, Eimas, & Rosenkrantz, 1993). From 
experience with only a few exemplars, children are able to extract relevant features 
that allow them to identify previously encountered instances and to generalize and 
recognize new, quite different instances—while also excluding superficially similar 
exemplars that belong to another category (Kellman & Massey, 2013). For instance, 
Quinn et al. (1993) documented the ability of 3- and 4-month-old infants to exclude 
cat photos from the dog category, even though they share a large number of surface 
features (coloring, fur, number of legs, shape, tails, number of eyes, etc.). This is 
because perception filters sensory inputs so that we extract increasingly complex 
and abstract relations relevant to detecting ecologically important properties of 
objects (like dogs and cats) and events (Gibson, 1969, 1979; Goldstone, 1998; 
Kellman & Massey, 2013).

The relevance of perceptual learning for concept acquisition is not restricted to 
such simple examples. Because of the power of perceptual learning, humans are 
able to become chess experts, Olympic judges, radiologists, and air traffic control-
lers (Gauthier, Tarr, & Bubb, 2009; Kellman et al., 2010). In each of these profes-
sions, people must develop perceptual tools for rapidly categorizing their worlds 
and making complex conceptual distinctions that cannot be separated from percep-
tion (Gauthier et al., 2009; Goldstone et al., 2010). That is, these experts’ perceptual 
processes have been tailored by experience such that there are experience-induced 
changes in the ways these experts extract information about the world (Kellman & 
Garrigan, 2009). It is in part because we can make such perceptually based 
 conceptual distinctions over and above ever-emerging novelty and variation that we 
can develop the abstracting powers needed to solve problems, reason, and create 
(Goldstone and Barsalou, 1998; Kellman & Massey, 2013). Indeed, as we argue in 
the next section, perceptual learning also plays a critical role in mathematical learn-
ing and mastery.
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Fig. 10.2 When asked to evaluate the top expression, participants often will answer 18. When 
presented with the lower expression, they are more likely to answer 70. The difference in the solu-
tions offered is primarily due to perceptual groupings, as they are the same according to the formal 
order of operations (adapted from Landy & Goldstone, 2007)

10.2.3  Perception and Mathematical Notation

Even efficiently reading mathematical notation involves training the perceptual sys-
tem to isolate certain regularities. As Landy and Goldstone (2007) have noted, 
“although notational mathematics is typically treated as a particularly abstract sym-
bol system, it is nevertheless the case that these notations are visually distinctive 
forms that occur in particular spatial arrangements and physical contexts” (p. 720).

It may seem counterintuitive to some, but this same sort of perceptual learning 
helps provide a foundation for much mathematical thinking involving symbols 
(Kellman et al., 2010; Landy, Allen, & Zednik, 2014; Landy & Goldstone, 2007). 
This is because with practice, we can train our perceptual systems to tune into the 
particular features of a symbolic representation that matter and ignore the rest. For 
example, Landy and Goldstone (2007) found that the same arithmetic expressions 
written with somewhat different spacing consistently led their participants to gener-
ate different solutions, despite the fact that the order of operations dictates that they 
should be equivalent (Fig. 10.2). Thus, even our processing of symbolic systems is 
quite often largely perceptual in nature (Landy et al., 2014).

10.3  Ratios as Percepts: The Ratio Processing System

10.3.1  Perceptual Access to Rational Number Concepts

How could something as mathematically complicated as ratio possibly be an object 
of perception? Why would sensitivity to ratios of things in the world be picked by 
natural selection? If one begins with a formal mathematical analysis of rational 
numbers, then it may be hard to see how perception might apply in any more than a 
trivial sense (see Matthews and Ellis, 2018 for a distinction between “perceived 
ratio” and “mathematical ratio”). To illustrate, we provide an intuitive example of 
the relevant properties of visual perception that will be familiar to the reader. 
Consider the following:

 1. Figure 10.3a shows a cup pictured on a table.
 2. The same cup is shown in b and c at different distances along the table.
 3. Consider this question: Could the cup in panel d be the same cup? Why or why not?
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Fig. 10.3 The set of panels (a–d) show a set of coffee cups in different positions on a table. 
Perceptual sensitivity to ratio allows us to see that the cup in d is different from the other cups

The reader will recognize the cups in panels a, b, and c as possibly the same 
because they share the same aspect ratio of width:height. Even though the same cup 
casts images of different sizes on the retina as it is moved closer to or farther from 
us, the aspect ratio of those images is conserved. In contrast, we know that the cup 
in panel d cannot be the same because it has a different aspect ratio. It is easy to 
generate examples like this, because perceptual sensitivity to ratio is ecologically 
important (Jacob et al., 2012). Basic visual sensitivity to ratio helps us to perceive 
object identity and to discriminate between different objects (cf. Confrey & Smith, 
1995; Piaget & Inhelder, 1969/2008).

This sensitivity to ratio is important for a wide range of organisms and presum-
ably has been for a large swath of evolutionary time. Jacob et al. (2012) provide a 
brief but informative review of examples ratio sensitivity across species. To list a 
few, chimpanzees attack rival groups only when they outnumber their rivals by a 
ratio of 3:2 (Wilson, Britton, & Franks, 2002); lions avoid battle when the propor-
tion of roars in a rival group passes a certain threshold (McComb, Packer, & Pusey, 
1994); and feeding mallards distribute themselves according to ratios of foraging 
patch richness (Harper, 1982). All told, there is considerable evidence that multiple 
species exhibit a primitive sensitivity to nonsymbolic ratios. Thus, from an evolu-
tionary perspective, it is reasonable to suspect that humans may also have evolved 
to be sensitive to ratios composed of physical features in the environment.

10.3.2  The Ratio Processing System vs. the Approximate 
Number System

To be clear, the ratio processing system should not be confused with the approxi-
mate number system (ANS)—the perceptual system thought by many to allow the 
rapid enumeration of discrete sets such as dot arrays (e.g., Dehaene, 
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Dehaene- Lambertz, & Cohen, 1998; Feigenson et al., 2004; Meck & Church, 1983; 
Nieder, 2005; Piazza, 2010). There are several clear distinctions between the two 
systems. First, the ANS is conceived of as processing individual dot arrays (or other 
discrete quantities) that correspond to whole numbers, whereas the RPS processes 
magnitudes that emerge relationally from pairs of magnitudes. Thus, a typical ANS-
based task might involve estimating the numerosity of a single dot array or judging 
the larger of two such arrays. In contrast, an RPS-based estimation task requires 
concatenating two arrays, treating the separate numerosities such as those on the 
right in Fig. 10.1 as a single relational magnitude. Second, the ANS is limited to 
processing discrete stimuli, whereas the RPS can process a broader set of stimuli, 
including ratios composed of line segments (Jacob et al., 2012; Matthews, Lewis, & 
Hubbard, 2016), circle areas (Matthews & Chesney, 2015), the implied areas of 
numerical fonts (Matthews & Lewis, 2017), and areas of squares (Bonn & Cantlon, 
2017). Finally, the RPS covers a much broader set of magnitudes than the ANS can. 
The pairing of discrete components confines the RPS to rational numbers. However, 
when ratios are constructed as continuous stimuli each component can be made 
arbitrarily large or small, which means the RPS can process magnitudes that corre-
spond to real numbers. For instance, the ratio made by juxtaposing the diagonal of 
a square with one of its sides corresponds to 2 .

These differences noted, the exact relations between the ANS and the RPS have 
yet to be fully determined. There are obvious reasons to suspect that there may be 
connections. For example, a task comparing the larger of two dot arrays is usually 
conceived of as an ANS-based task governed by Weber’s law. However, the classic 
formulation of Weber’s law holds that discriminability between two stimulus mag-
nitudes depends not upon the absolute magnitudes of the stimuli, but upon the ratio 
between them (Fechner, Howes, & Boring, 1966; Piazza, 2010). Thus, it is reason-
able to ask whether the typical ANS discrimination task might be reframed as a ratio 
perception task if we foreground ratio by rotating the stimuli and considering them 
as a single ratio whose magnitude is to be estimated as closer to one (more difficult 
to discriminate) or farther from one (easier to judge). Although this alternative fram-
ing seems reasonable when considering ratios made from pairs of dot arrays, it is 
clear that the ANS as typically conceived cannot be responsible for RPS processing 
of circle stimuli, because the ANS cannot process that class of stimuli.

Ultimately, answers regarding possible connections between the ANS and the 
RPS will have to wait for more basic research on the psychophysics of quantity 
perception. Several authors have pointed to similarities in the developmental trajec-
tories of discrimination acuities for quantities in multiple formats (e.g., Feigenson, 
2007; Odic, Libertus, Feigenson, & Halberda, 2013; Walsh, 2003). To the extent 
that processing different classes of quantities relies upon shared neurocognitive 
architectures, the more likely it is that a given person’s ANS acuity can predict that 
person’s discrimination abilities for other types of quantities, including RPS acu-
ities for ratios constructed from these stimuli. To the extent that quantity processing 
among different stimulus types is dissociated, the more separate the ANS and the 

10 What’s Perception Got To Do with It



222

more general RPS will seem. For the moment, we adopt an agnostic view on the 
possible connections between the ANS and RPS and focus on the demonstrated 
abilities of the RPS.

10.3.3  Ratio Sensitivity and Math Education Research

Turning to mathematics education research, it is this type of perceptually accessible, 
nonsymbolic ratio that Carraher (1996) highlighted when he pointed to the distinc-
tion between a ratio of quantities and a ratio of numbers. According to his definition, 
a ratio of quantities concerns the relationship between two nonsymbolic magni-
tudes, such as the ratio of the lengths of two line segments considered in tandem 
(e.g., “1/2” instantiated as ). In this case, each of the two component 
line segments can be conceptualized as an extensive quantity. That is, their magni-
tudes can be defined by their lengths considered in isolation from each other. In 
contrast, the ratio of these nonsymbolic magnitudes is an intensive quantity deter-
mined by the ratio between them. Carraher further suggested that nonsymbolic 
ratios could serve as a proto-numerical foundation for reasoning about ratio con-
cepts since number knowledge is “developed through acting and reflecting upon 
physical quantities” (p. 241).

In parallel arguments, Abrahamson (2012) argued that educators should attempt 
to leverage what he called perceptually privileged intensive quantities—that is, holis-
tic or intuitive understandings children have for ratio-based magnitudes such as 
slope, velocity, or likelihood (see also Abrahamson, Shayan, Bakker, & Van Der 
Schaaf, 2015). Importantly, much research has demonstrated that very young chil-
dren show considerable—albeit naïve and difficult to articulate—sensitivity to the 
magnitudes of ratio-based quantities (Duffy, Huttenlocher, & Levine, 2005; McCrink 
& Wynn, 2007; Sophian & Wood, 1997; Spinillo & Bryant, 1991). As intensive 
quantities, these are all fundamentally based on ratios between and among elements 
of a system; they are not a summary catalog of the overall amount of “stuff” in a 
system. Both Abrahamson’s and Carraher’s arguments presuppose (1) that ratios are 
perceptually accessible on some level and (2) that this perceptual access can help 
lead to conceptual understandings when leveraged via socially mediated practice.

It is important to underscore that what we mean by ratio sensitivity here is a 
primitive perceptual competence and not an explicitly constructed, verbally medi-
ated scheme. This differs substantially from accounts such as the incrementally 
acquired protoquantitative ratio sensitivity described by Resnick and Singer (1993). 
On Resnick and Singer’s formulation, ratio sensitivity is a sort of scheme built 
slowly over time that combines (a) explicitly reasoning about “fittingness” of 
objects (i.e., the intuitive understanding that some things go together, such as a 
round peg and a round hole) and (b) noticing co-variation of “size-ordered series” 
(see also Singer & Resnick, 1992). By contrast, our concept of perceptual sensitiv-
ity to ratio magnitudes is not so particular or developed so gradually. Instead, as we 
describe below, it emerges at a very young age and is fairly abstract.
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10.3.4  Considering the Empirical Evidence for Ratio 
Sensitivity

So far in this chapter, we have largely appealed to intuitive examples and analogies 
to illustrate the nature and extent of humans’ perceptual access to ratio. However, 
recent research has begun to more systematically examine the nature and scope of 
human sensitivity to ratio properties, and the findings are compelling. Although 
formal instruction on rational numbers typically does not begin until grades 3 and 4 
(National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010), children far younger than this demonstrate some under-
standing of nonsymbolic ratios. For instance, McCrink and Wynn (2007) demon-
strated that even 6-month-old infants are sensitive to nonsymbolic ratios. Infants 
who were habituated to specific nonsymbolic ratios subsequently looked longer at 
novel ratio stimuli that differed by a factor of 2. For example, infants perceived a 2:1 
ratio composed of yellow Pacmen intermixed with blue pellets as different from a 
4:1 ratio. By 4 years of age, children can order pictures of part-whole ratios based 
on ratio magnitudes (Goswami, 1995) and perform above chance on tasks that 
require the addition and subtraction of nonsymbolic ratios (Mix, Levine, & 
Huttenlocher, 1999).

Moreover, this sensitivity to nonsymbolic ratios is flexible and abstract: Singer- 
Freeman and Goswami (2001) showed that children can draw proportional analo-
gies among pizzas, chocolates, and lemonade even though the materials equated are 
visually dissimilar. Matthews and Chesney (2015) recently demonstrated the 
abstract nature of ratio magnitude perception by having participants make 
 cross- format ratio comparisons (Fig.  10.4). Adult participants could quickly and 
accurately judge which was larger between a ratio composed of circle areas and a 
ratio composed of dot arrays or between symbolic numerical ratios and nonsym-
bolic ones.

Here we highlight several important aspects of these tasks and the observed pat-
tern of results: First, they were created so that participants had to rely on perception 
to feel out the ratios represented in these different formats. The comparison tasks 
involved ratio magnitudes presented in nonsymbolic formats that were not amena-

Fig. 10.4 Examples of comparison tasks used with adult participants. Adults were able to easily 
make accurate and fast comparisons across both numeric and non-numeric ratios when controlling 
for dot numerosity and scalar differences in sizes of component parts (adapted from Matthews & 
Chesney, 2015)
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ble to counting or to calculation via symbolic algorithms. Circle ratios were com-
posed of pairs of continuous quantities that cannot easily be partitioned into 
uniformly regular parts to facilitate coordination among counted units. Moreover, 
dot ratios were composed of a minimum of 46 dots, far too many to count in the 
approximately 1100–1400 ms on average it took participants took to make their 
decisions. Second, participants compared nonsymbolic ratios without first translat-
ing them into symbolic form. The clearest evidence for this is that participants made 
nonsymbolic ratio comparisons across formats (i.e., circles versus dot arrays) faster 
than they made symbolic comparisons within the same format (e.g., 3/5 vs. 2/3). If 
participants had first converted nonsymbolic ratios into symbolic form, there would 
be a cost for translation added to the time for symbolic comparison. Finally, partici-
pants responded as though the ratio stimuli were perceived as intensive quantities. 
Any given nonsymbolic ratio magnitude could be instantiated in a multitude of 
ways, because it was not the size of any individual component that determined the 
ratio magnitude. Still, participants were proficient making these cross-format com-
parisons despite the variability of representations.

Additionally, in a recent study we found that preschool-age children show a sen-
sitivity to nonsymbolic ratios that parallels that of adults with similar tasks 
(Matthews, 2015). To avoid the linguistic difficulties involved with explaining ratio 
comparison tasks with young children, we used match-to-sample tasks with non-
symbolic images like those in Fig. 10.4. Preschool children, kindergartners, fifth- 
grade students, and college undergraduates from a selective university were 
presented with target nonsymbolic ratios corresponding to specific ratio magnitudes 
and asked to indicate which of two stimuli matched each target magnitude. 
Nonsymbolic ratios took two forms—ratios of circle areas and ratios of line seg-
ment lengths (Fig. 10.5). The ratios between matching and distractor stimuli were 
presented at each of five levels to assess discrimination acuity (3:1; 2:1, 3:2, 4:3, and 
6:5 in order of increasing difficulty). Note that each of these levels indicates a ratio 
of ratios. For instance, pairing a nonsymbolic 1/2 with a nonsymbolic 1/6 corre-
sponds to a ratio of 3:1.
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Fig. 10.5 Stimuli (left) and comparisons of accuracy on match-to-sample tasks (right) for young 
children in preschool (blue line)  and kindergarten  (red line), fifth graders  (green line), and 
adults (purple line). Note that fifth graders performed better than adults in some instances (green 
vs. purple lines) and accuracy shows similar patterns across all groups (adapted from Matthews, 
2015)
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We found that children’s performance followed the same pattern as college stu-
dents’ performance, with accuracy well above chance and increasing as the ratio 
between matching and distractor stimuli approached one (Fig. 10.5). Fifth-grade 
participants performed at least as well as college undergraduates, despite obvious 
differences in mathematical experience. Moreover, the top half of kindergarten and 
preschool children performed at near-adult levels, despite not having formal instruc-
tion with rational number concepts. Considering the tasks involved, and the ages at 
which participants demonstrated competence, these results present a clear case in 
which perception is sensitive to ratio, a higher-order relation. In the parlance of 
cognitive psychology, these results imply that people can encode nonsymbolic ratio 
magnitudes in a relatively specific analog format (i.e., in an intuitive, nonverbal, and 
approximate form). Stated more plainly, these results suggest that perceptual sensi-
tivity to ratio emerges early and across different nonsymbolic formats.

All told, sensitivity to the magnitudes of nonsymbolic ratios has been demonstrated 
for multiple animal species (Drucker, Rossa, & Brannon, 2016; Jacob et al., 2012; 
Rugani, McCrink, de Hevia, Vallortigara, & Regolin, 2016) and among pre- verbal 
infants (McCrink & Wynn, 2007), elementary school-aged children (Boyer, Levine, & 
Huttenlocher, 2008; Duffy et al., 2005; Jeong, Levine, & Huttenlocher, 2007; Meert, 
Grégoire, Seron, & Noël, 2013; Sophian, 2000; Spinillo & Bryant, 1999), typically 
developing adults (Hollands & Dyre, 2000; Matthews & Lewis, 2017; Meert, Grégoire, 
Seron, & Noël, 2012; Stevens & Galanter, 1957), and individuals with limited number 
vocabularies and formal arithmetic skills (McCrink, Spelke, Dehaene, & Pica, 2013). 
This widespread competence—even among nonhuman animals, infants, and societies 
without formal number concepts—indicates that these abilities are present even in the 
absence of formal education (Lewis et  al., 2016; Matthews & Chesney, 2015; 
Matthews, et al., 2016). Such empirical evidence raises important questions about the 
assumption that rational number pedagogy must or should begin with an established 
whole number schema as a sole or primary foundation.

10.4  Implications for Pedagogy

In this section, we explore some potential directions and implications for education. 
On the front end, we wish to note that research on the RPS is in its infancy. As such, 
much more research is required before we would feel comfortable making any 
strong statements about the adaptation of basic research in this domain to practical 
pedagogy. With this caveat in mind, we offer a few speculative points below.

10.4.1  Exploring with Continuous Roots

Some research suggests that attending to countable elements in a ratio display can 
actually interfere with children’s tendencies to rely on their perceptual sensitivity to 
ratio (e.g., Boyer & Levine, 2012; Jeong et al., 2007). The ratio similarity between 
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Fig. 10.6 When asked to choose which drink has the same juice to water mixture that Wally Bear 
wanted, children were much more successful when partitions were removed (a) than when parti-
tions were present (b) Reprinted from Boyer, T. W., & Levine, S. C. (2012). Child proportional 
scaling: Is 1/3 = 2/6 = 3/9 = 4/12? Journal of Experimental Child Psychology, 111, 516–533, with 
permission from Elsevier

the images on the left of the two portions of Fig. 10.6 and those on the right should 
be easy for the reader to see. The only difference is that the left panels are presented 
in unpartitioned, continuous form whereas the right panels are partitioned. However, 
whether figures are partitioned mattered for young children. In experiments involv-
ing stimuli from Fig. 10.6, young children (6–8 years) were told that the left-most 
of the three images in each box corresponds to the way Wally Bear prefers to mix 
his juice and asked which of the two alternatives on the right would taste the same 
as Wally’s mixture. Young children were far more likely to pick the accurate solu-
tion when presented in unpartitioned form (Fig.  10.6b) vs. the partitioned form 
(Fig. 10.6b). It seems that the unpartitioned form allowed children to rely on their 
perceptual abilities, whereas the partitioned form led them to use count-based sche-
mas that did not generalize to the ratio context.

We should pay close attention to the contrast in children’s competence with these 
two types of representation given currently dominant instructional practices. 
Because conventional instruction on rational numbers typically begins by leaning 
heavily on discrete and/or partitioned representations and engages count-based 
logic, it may be that conventional instruction misses opportunities to support chil-
dren’s perceptually based sensitivity to nonsymbolic ratio. To the extent that these 
perceptual abilities can foster meaningful mathematical thinking about rational 
number concepts, it is worthwhile to think about the potential gains to be realized 
by designing instruction to more directly build on children’s intuitive ratio sensitiv-
ity. Our point mirrors that made by Lewis et al. (2016):

…if the brain of the elementary school child - like that of the human adult or the nonhuman 
primate - is able to represent the holistic magnitudes of these nonsymbolic ratios, pedago-
gies based on this capacity may also help children build an intuitive understanding of [ratio-
nal number] that serves as a generative foundation for future learning…[i]n comparison to 
count-based methods, which may bind thought in terms of whole numbers, proper engage-
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ment of [nonsymbolic ratio sensitivity] can potentially help students develop a clearer 
understanding of the relational properties of numbers (p. 156).

10.4.2  The Potential of Perceptual Training

As mentioned above, one potential route for leveraging the RPS is to employ vari-
ous perceptual learning modules (e.g., Gibson, 2000; Goldstone et  al., 2010; 
Kellman et al., 2010). In contrast to top-down or discourse-based teaching methods 
typically thought of as encouraging “mathematical thinking,” perceptual learning 
modules can at first blush appear relatively simplistic. As succinctly described by 
Kellman et al. (2010), perceptual learning modules involve (1) tasks requiring dis-
crimination or classification (much like the ratio comparison and match-to-sample 
tasks described above); (2) many short trials in which a learner makes a decision 
and receives feedback; and (3) minimal emphasis on explicit instruction.

Although such rapid-fire training may evoke images of “drill and kill,” principled 
use of perceptual training is far from mindless. Indeed, studies have shown the criti-
cal role that perceptual learning plays in complex domains including symbolic math-
ematics (Goldstone et al., 2010) and language learning (Saffran, Aslin, & Newport, 
1996). At the heart of perceptual training techniques is creating a scenario in which 
a learner is continually confronted with to-be-learned structures in multiple instantia-
tions so that commonalities or variations in structures begin to “pop out.”

To be more concrete, research reviewed above demonstrates that humans are 
readily able to extract important aspects of ratio magnitudes from visual displays 
made from paired nonsymbolic stimuli. At the same time, it is abundantly clear that 
learners face difficulties extracting the same structure from symbolically presented 
rational numbers, despite being quite knowledgeable about the whole number com-
ponents that comprise them (e.g., Lipkus, Samsa, & Rimer, 2001; National 
Mathematics Advisory Panel, 2008; Newton, 2008; Post, Harel, Behr, & Lesh, 
1991; Stigler, Givvin, & Thompson, 2010). It may be that using symbolic ratios and 
fractions alongside nonsymbolic ratios in a perceptual learning intervention can 
help learners map the relational quantities they see in nonsymbolic ratios onto ratio-
nal number symbols.

Of course, as Erlwanger’s (1973) well-circulated case of Benny has shown, tar-
geted interventions are limited by how well they are integrated into the socio- 
cultural milieu. Thus, we wish to make clear that we do not necessarily advocate 
for a contemporary version of plugging children into more sophisticated and data- 
driven “workbooks.” Rather, we wish to suggest that “practice” as repetition is 
necessary at some level for developing mathematical thinking and that modules 
can be designed in ways that align well with perception. When employed as part of 
a larger and comprehensive set of efforts, perceptual learning modules may offer 
fruitful paths for mathematics learning that are as yet unappreciated in popular 
theory.
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10.4.3  Further Considerations and Implications for Further 
Research

Our aim in this chapter so far has been to describe with cautious optimism the 
potential benefits of aligning perceptual sensitivity to nonsymbolic ratio magnitudes 
with instructional approaches that incorporate this sensitivity. We have focused on 
magnitudes in particular because a raft of recent studies have demonstrated that 
understanding rational number magnitude is an important piece of conceptual 
knowledge that predicts general mathematics achievement (Bailey, Hoard, Nugent, 
& Geary, 2012; Fazio, Bailey, Thompson, & Siegler, 2014; Mazzocco & Devlin, 
2008; Siegler et al., 2011; Torbeyns, Schneider, Xin, & Siegler, 2015). Nonsymbolic 
ratios thus have the potential to serve as a powerful pedagogical tool for learning 
about this aspect of rational number knowledge.

That said, we are less sanguine about assuming that nonsymbolic ratios will 
prove very useful in promoting other important aspects of rational number knowl-
edge. It is particularly difficult for us to see how nonsymbolic ratios can be used to 
teach arithmetic procedures with rational numbers. The composed units reasoning 
at the heart of most research (and referenced above) in rational number pedagogy is 
certainly a critical component for developing competence with rational numbers. 
Our perspective is based on a deep and abiding respect for Kieren’s (Kieren, 1980) 
position that rational numbers should be seen as a mega-concept involving many 
interwoven strands (or a series of subconstructs); rational numbers thus can be seen 
as representing part-whole relations, as ratios, as quotients, as measures, and as 
operators (see also Behr, Lesh, Post, & Silver, 1983). Yet as powerful as the domi-
nant composed-units approach may be, it is clear that (a) its reliance on whole 
number knowledge to support knowledge about rational numbers can be difficult for 
young learners and (b) it does not address every strand of this mega-concept. We 
thus propose that pre-existing intuitions in the form of nonsymbolic ratios may both 
be more accessible to learners and help supplement existing approaches educators 
may take in building rational number sense (Abrahamson, 2012; Abrahamson & 
Sánchez-García, 2016; Matthews & Ellis, 2018).

Of course, this view must be balanced by two very important caveats addressed 
to some extent above: First, representations do not teach on their own. Even if 
humans have some native sensitivity to visually presented nonsymbolic ratios, the 
mapping from nonsymbolic sensation to symbolic representations and formal con-
cepts is neither automatic nor simple (Rau & Matthews, 2017). Additionally, psy-
chophysics is a normative science. Learners may need to approach rational number 
learning in a variety of ways that do not align well with a visually mediated approach 
to learning. However, to underscore with redundancy, we are not advocating for a 
universal approach to ratio learning. Rather, for ratio sensitivity to be a productive 
tool in education much additional work must be dedicated to investigating how we 
might use privileged nonsymbolic representations as didactic objects within class-
room discourses (e.g., Sfard, 2007; Thompson, 2002). That is, how might we deploy 
these and other related representations and intuitions as things that support reflec-
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tive mathematical discourse about rational numbers? This work is the clear province 
of mathematics education researchers, and indeed a number of math education 
researchers have written explicitly about the use of perception to construct rational 
number (e.g., Abrahamson et al., 2015; Carraher, 1993; Confrey & Smith, 1995; 
Davydov & Tsvetkovich, 1991; Kaput & Maxwell-West, 1994; Resnick & Singer, 
1993; Stroup, 2002).

10.5  Concluding Remarks

A growing body of research suggests that human beings are sensitive to nonsym-
bolic ratio magnitudes composed of pairs of objects in multiple formats. This per-
ceptually based sensitivity provides intuitive access to intensive quantities that 
correspond to rational numbers. Nonsymbolic ratios may not be numbers per se, but 
they most certainly correspond to rational numbers and illustrate important qualities 
of rational numbers—most directly those involving size or magnitude. In this sense, 
our ability to perceive ratios parallels abilities like the ANS or subitizing; it is a 
basic ability that can be co-opted to support mathematical thinking (Feigenson 
et al., 2004; Piazza, 2010).

This nonsymbolic ability appears to develop early and may even be phylogeneti-
cally ancient. Why should this concern us? It should concern us because teaching 
and learning are fundamentally tied up in the work of trying to get evolutionarily 
ancient brains to become adept at engaging in and transforming culturally con-
structed activities. This often involves complex coordination of primitive abilities. 
On this point, we find Dehaene and Cohen’s (2007) neuronal recycling hypothesis 
to be compelling: it essentially says that we will be proficient at culturally con-
structed activities to the extent that we succeed at leveraging ancient abilities in 
support of (new) cultural modes of thought. It is plausible to suspect that sensitivity 
to nonsymbolic ratio is in fact a basic property of human cognition—one that has 
proved important enough to persist through millennia of human evolution. This 
primitive intuition about ratio is something that we should seriously consider when 
thinking about teaching and learning.

To date, educational researchers seeking to leverage perception for training about 
rational number have done so without recent insights into the psychophysics of ratio 
perception that have emerged over the past half-decade. This newer work (a) pro-
vides explicit evidence about the ability to process specific ratio magnitudes in ana-
log form (e.g., Matthews & Chesney, 2015; Matthews & Lewis, 2017); (b) 
demonstrates that these perceptually processed ratio magnitudes automatically 
affect symbolic processing in certain contexts (e.g., Matthews & Lewis, 2017); and 
(c) explicates neuropsychological theories regarding the potential for linking the 
general human psychophysical apparatus to process specific ratio magnitudes (e.g., 
Bonn & Cantlon, 2017; Chen & Verguts, 2017; Jacob et  al., 2012; Lewis et  al., 
2016; Sidney et al., 2017). Many of these new insights come from cognitive psy-
chology, but we openly admit the limits of the discipline. Thus, we are convinced 
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that the pedagogical potential of the psychophysically based gaze on nonsymbolic 
ratio sensitivity will not be fully actualized without considerable effort to determine 
how this ability may be harnessed by educators and learners alike.

Many important open questions remain regarding whether and how we might 
adapt (or exapt)4 this ratio sensitivity for pedagogical purposes. At the moment, 
cognitive psychologists have made considerable headway in showing that this intui-
tive sense of proportion exists, but they have made very little progress in translating 
this research so that it applies to educational concepts. We thus ask: Might nonsym-
bolic ratio images provide more intuitive access to certain subconstructs of the 
rational number mega-concept? If so, how can these intuitions be brought to bear on 
mathematical thinking? That is, how can nonsymbolic images that engage these 
intuitions best be made use of as didactic objects? Finally, how might new pedago-
gies that engage ratio perception be integrated with existing pedagogies that focus 
on units-coordination logic?

At this point, the questions currently outnumber the answers. What we do know 
is that ratio perception is a basic capacity that clearly aligns with important aspects 
of rational number concepts that are not given much play in current school curri-
cula. Given learners’ perennial difficulties with rational number concepts, it seems 
prudent to consider how these basic abilities might help us better understand and 
supplement existing approaches.
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Chapter 11
Commentary on Fractions

Sybilla Beckmann

Abstract This commentary raises and discusses questions based on some of the 
agreements, disagreements, and themes found in the four chapters on fractions. It 
considers (1) the importance of tasks that are based in perception and readily avail-
able activity in light of an emphasis on problem solving in mathematics education, 
and the role that theories about thinking and learning play in designing such tasks; 
(2) some potential connections among various theories about thinking and learning 
as they relate to fractions; (3) the natural number bias and how ideas about natural 
numbers could serve as a foundation for fractions; and (4) the roles that magnitude, 
measurement, and linear representations of number play for fractions.

Keywords Fractions · Magnitude · Measurement · Multiplication · Ratio · 
Rational numbers

Fractions are one of the most difficult topics in school mathematics. Much research 
has investigated why this is so and how we might help students make better sense of 
fractions and reason productively with fractions. Several themes are discussed 
across the four chapters on fractions in this volume: considering fraction thinking 
from different angles and different research domains, attending to components and 
foundations of fraction thinking, investigating into the nature of fraction thinking as 
it develops, and comparing student thinking about fractions with expert thinking.

In keeping with the goals of this book, the authors of all four chapters express a 
desire to work across research traditions, to find productive ways to join modes of 
inquiry and theoretical approaches, or to make connections and integrate findings 
produced by different approaches. Because fractions are such a complex topic, it 
makes sense to consider issues involved in their learning from many different 
angles, and the four chapters foreground and highlight different aspects of fraction 
learning. Obsersteiner, Dresler, Bieck, and Moeller (this volume, Chap. 7) focus on 
what makes fractions so difficult for students. They locate sources of difficulty in 
the transition from natural numbers to fractions. Students sometimes apply 

S. Beckmann (*) 
Department of Mathematics, University of Georgia, Athens, GA, USA

© Springer Nature Switzerland AG 2019 
A. Norton, M. W. Alibali (eds.), Constructing Number, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-030-00491-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00491-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-00491-0_7
https://doi.org/10.1007/978-3-030-00491-0_11#DOI


238

 knowledge and reasoning about natural numbers to fractions even when these do not 
apply, and brain studies indicate that natural number knowledge can interfere even 
with experts’ performance on fraction tasks. On the other hand, Obersteiner, Dresler, 
Bieck, and Moeller note that a focus on fraction magnitudes seems to be promising 
for helping students learn fraction concepts. Tzur (this volume, Chap. 8) discusses 
how an understanding of fractions could arise from a reorganization of natural num-
ber conceptions. Tzur foregrounds the actions of iterating and (recursive) partition-
ing and the role that reflection on such activities plays in helping students reorganize 
what they anticipate the effect of these activities will be in situations that lead to 
fractions. Similarly, Simon (this volume, Chap. 9) foregrounds activity and reflec-
tive abstraction as means for internalizing mathematical concepts. He develops 
empirically based hypothetical learning trajectories for promoting a conception of 
multiplication that spans whole numbers and fractions. Matthews and Ziols (this 
volume, Chap. 10) do not take as given that the natural numbers must be a sole or 
primary foundation for learning fractions. Instead, they argue that humans have an 
inherent perceptual ability to process non-symbolic ratios and that perceptual learn-
ing that leverages this ability might provide an alternate route into fractions.

In the remainder of this commentary I will discuss some commonalities, differ-
ences, ideas, and themes that stand out to me among the issues and approaches 
discussed in the four fraction chapters. These commonalities, differences, ideas, and 
themes raise questions for research on mathematics education, for combining 
research across different fields, and for teaching mathematics.

11.1  Tasks Based in Perception and Activity Versus Problem 
Solving

In mathematics education, we often place a high value on solving challenging prob-
lems. We expect students to work on problems that they do not immediately know 
how to solve, to persevere even when their initial attempts fail, and to monitor their 
thinking and progress during the process (e.g., National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010). Yet the 
fraction chapters in this volume point to the importance of mathematical engage-
ment of a very different sort—based in perception and in readily available actions—
even though these would seem to involve a much lower form of cognitive engagement 
than mathematical problem solving. As Matthews and Ziols (this volume, Chap. 10) 
put it “a vulgar view of perception might cast it as primarily concerned with ‘lower 
order’ phenomena as opposed to higher-order relational concepts” (p. 6). Has the 
importance of engaging in perception and other activities that are readily available 
to students been somewhat overlooked in mathematics education today? Why might 
tasks based in perception and activity be important?

Matthews and Ziols (this volume, Chap. 10) suggest that perceptual intuitions 
about non-symbolic ratios that humans are naturally endowed with—what they 
term a Ratio Processing System (RPS)—could be an important foundation for con-
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structing rational number concepts. They argue that perceptual intuitions about non- 
symbolic ratios are robust and abstract at an early age, and that leveraging these 
proto-numerical intuitions might provide an alternate route to building rational 
number concepts. On their proposal, perceptual learning, based in selective atten-
tion to relevant information and relations, might help students develop fraction 
ideas. Matthews and Ziols are cautious to distinguish the perceptual training they 
have in mind from “drill and kill.” But what are characteristics of well-designed 
tasks based in perception and activity?

Although a worksheet of fraction comparison problems could be an example of 
a readily available activity for a student, the kinds of tasks that Tzur (this volume, 
Chap. 8) and Simon (this volume, Chap. 9) present in their chapters are very differ-
ent. For one, almost all of them ask students to engage with quantities that are pre-
sented either physically (e.g., a strip of paper representing a “French Fry”) or on a 
computer screen. But also, Tzur and Simon developed their tasks based on their 
theories of learning. Tzur’s tasks are designed so that even though students can 
readily engage with the activities of the task, they may notice a difference between 
anticipated and actual effects of their activities. For example, when a student who 
has just shared a French Fry equally among five people is asked to estimate one 
share if six people share such a French Fry, the student might initially make a larger 
piece than before (because six is greater than five). Upon iterating that piece, the 
student finds that the actual effect of their activity—six copies of the piece is longer 
than the original Fry—is different from their anticipated effect—they expected six 
copies of the piece to be the same length as the original Fry. This feature of Tzur’s 
task is linked directly to his theory, Reflection on Activity-Effects Relationships 
(Ref*AER), which he posits as a mechanism for learning. Similarly, Simon formu-
lates hypothetical learning trajectories based directly on his theory of learning. 
Simon posits that some learning can occur by broadening the examples that a learner 
recognizes as an instance of something already known, but new mathematical con-
cepts arise from coordinating available goal-directed actions so as to create a higher- 
level action. Thus the tasks in Simon’s hypothetical learning trajectories intend to 
elicit activities that will either be recognized as a new kind of example for a known 
activity or will foster a coordination of actions.

Carefully designed activities that draw on perception and other readily available 
actions and that are crafted to develop mathematical concepts based on our under-
standing of how people learn are very different from routine drill worksheets. But 
they are also different from some descriptions of problem solving as a challenge that 
involves looking for ways to approach the problem. It seems likely that we need both 
of these experiences in mathematics teaching and learning. The four fraction chap-
ters in this volume make a persuasive case that perceptual training or activity together 
with socially mediated reflection on it is likely to be valuable for helping students 
learn fraction ideas. This leads to several questions. When and for what purpose 
should we seek to develop mathematical ideas and skills through problem solving 
and when and for what purpose might it be better to draw on perception and readily 
available actions? Will students learn different things from these different kinds of 
experiences? Are some ideas and skills better learned one way than the other?
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11.2  Potential Connections Across Theories About Thinking 
and Learning

The theories about thinking and learning that the four fraction chapters in this vol-
ume draw from concern very different aspects of thinking, such as how and in what 
region the brain processes numerical information versus sociocultural influences. 
These theories might therefore not be directly related, even though they could be 
connected at some level—for example if human cognition is founded on a handful 
of core systems that include one for numbers and one for social partners (Spelke & 
Kinzler, 2007). So studies that investigate how the brain processes numerical infor-
mation may not need to consider sociocultural theory, and conversely. Other theo-
ries or parts of theories that are discussed in these chapters seem like they could be 
closely related and invite the question of whether they are different ways of describ-
ing similar phenomena or similar ways of describing different phenomena. I will 
discuss a few such examples that stand out to me.

To discuss perceptual learning, Matthews and Ziols (this volume, Chap. 10) cite 
(among others) Goldstone, Landy, and Son (2010), who describe “rigged up percep-
tual systems,” in which scientific and mathematical reasoning is grounded in per-
ceptual processing by co-opting natural perceptual processes for tasks requiring 
abstract or analytic reasoning. Goldstone et al. argue that systematically training 
perception and action systems is a highly effective way of facilitating sophisticated 
responses and that deep conceptual understanding requires the support of perceptual- 
motor grounding. They further claim that making and perceptually interpreting dia-
grams can be methods for changing perceptions and that diagramming processes are 
not just a means to explicate abstractions but can substitute for abstraction. Is this 
“rigged up perceptual systems” view of systematically training perception and 
action systems related to Tzur’s (this volume, Chap. 8) theory of Reflection on 
Activity-Effects Relationships and Simon’s (this volume, Chap. 9) theory in his 
Learning Through Activity research program?

Based on their theories, both Tzur and Simon have students repeatedly carry out 
carefully selected actions designed to foster specific understandings, and they 
include built-in feedback. For example, Tzur describes tasks that have students esti-
mate and then check the size of one person’s share when a given whole is to be 
shared equally among some number of people. Simon describes tasks that ask stu-
dents to measure one bar with another bar and to make another bar of a given 
numerical (including mixed number and fractional) length, given a bar that is 1 unit 
long. Are such tasks systematically training perception and action systems a la 
Goldstone et al.? Are Tzur and Simon in essence co-opting natural perceptual pro-
cesses for tasks that involve abstract reasoning about fractions? On the other hand, 
the tasks that Tzur and Simon use may be significantly different from tasks in the 
kinds of “perceptual learning modules” that Matthews and Ziols discuss. These per-
ceptual learning modules have the feature that their tasks require discrimination or 
classification, which the tasks that Tzur and Simon describe do not require, or at 
least not directly.
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At the theory level, both Tzur (this volume, Chap. 8) and Simon (this volume, 
Chap. 9) use elaborations of Piaget’s notion of reflective abstraction. Tzur considers 
two types of reflection. The first type comes from making predictions and seeing 
that the outcome is inconsistent with what was expected. Tzur posits that this first 
type of reflection occurs automatically and leads to newly noticed activity-effect 
dyads. Tzur’s second type of reflection generally needs to be facilitated by interac-
tion with others. Tzur posits that this second type of reflection enables the abstrac-
tion of a linkage between an anticipated activity-effect dyad and the situation or 
goal in which the mental system would anticipate and trigger it. Tzur then links 
these two types of reflection to two stages of construction of a scheme, and he uses 
these two stages to explain why students are sometimes capable of carrying out an 
activity but cannot yet see that such an activity would help them solve a problem 
they are given. Simon cites Piaget who described two types of reflection, empirical 
reflection, which draws information directly from external objects, and reflecting 
abstraction, which is drawn from coordination of subjects’ own mental activities. 
Simon explains that his elaboration of reflective abstraction is for the purpose of 
mathematics pedagogy. But might Simon’s and Tzur’s theories inform theories 
about training perception and action systems, and conversely?

There are other recent theories that concern perception and action, which were 
not discussed in the four fraction chapters, but might be relevant to the discussion 
above. These come from the idea that the brain functions by prediction. Brain 
cells “support perception and action by constantly attempting to match incoming 
sensory inputs with top-down expectations or predictions” (Clark, 2013, p. 181). 
And “research and theory are converging on the idea of the brain as an active 
inference generator that functions according to a Bayesian approach to probabil-
ity: sensory inputs constrain estimates of prior probability (from past experience) 
to create the posterior probabilities that serve as beliefs about the causes of such 
inputs in the present” (Barrett & Simmons, 2015, p. 419). Do these Bayesian the-
ories of prediction and revision apply only to lower-level sensory inputs, or might 
they be like a fractal and also apply to higher-order thinking, such as reasoning 
about a fraction task? Are these Bayesian theories related to theories that Tzur and 
Simon draw on? For example, in discussing scheme theory, Tzur highlights antici-
pation. Anticipation links a situation or goal with an activity and it links an activ-
ity with its effect. Is the “anticipation” of scheme theory related to the “prediction” 
of Bayesian theories about the brain? Is there a relationship between viewing 
learning as involving the construction of an invariant activity-effect relationship 
(Tzur) or a coordination of actions to create a higher-level action (Simon) and 
Bayesian views?

Ultimately, of course, theories must be useful for the specific purpose at hand. In 
his concluding comments, Simon notes the importance of domain-specific theories. 
Although he drew from both constructivism and socio-cultural theory, it was 
domain-specific theories derived from those broader theories that guided his 
research and that he believes can contribute in important ways to mathematics 
education.
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11.3  The Natural Number Bias and Natural Numbers 
as a Foundation for Fractions

Obersteiner et al. (this volume, Chap. 7) discuss a number of persistent difficulties 
that students tend to have with fractions and they locate the source of these difficul-
ties in the mathematical content itself and in the human cognitive system. 
Mathematically, there are significant differences in the systems of fractions and 
whole numbers. Obersteiner et al. discuss differences related to how fractions and 
whole numbers are represented, issues of successors and density, and how the oper-
ation of multiplication behaves. However, they caution us that even though these 
differences pose potential obstacles for learning, learners’ actual obstacles may be 
different because learning does not necessarily follow the logic of a subject domain. 
Thus we should seek insights from looking into the cognitive mechanisms of learn-
ing. Obsersteiner et al. consider a number of theories on cognition and learning, 
some of which concern thinking at the neuro-cognitive level. Overall, the theories 
and the empirical evidence that Obersteiner et al. review lead to a mixed picture of 
both coherence and discontinuity across whole numbers and fractions.

A disagreement across the four fraction chapters of this volume is in whether or 
not there is a natural number bias. For Obersteiner et al. (this volume, Chap. 7), the 
natural number bias is “the over-reliance on natural number knowledge even in 
problems that require rational number reasoning” (p. 15). They cite research that 
shows differences in performance on fraction tasks according as these tasks are 
congruent or incongruent with reasoning one would use with whole numbers. These 
differences occur even for people who have acquired sound conceptual knowledge 
of fractions. Obsersteiner et  al. conclude that solving fraction problems requires 
inhibition of intuitive knowledge about natural numbers. In contrast, Tzur (this vol-
ume, Chap. 8) eschews the natural number bias, which he sees as entailing a deficit 
view of children and as a manifestation of researchers’ own sophisticated distinc-
tions between natural numbers and fractions. For Tzur, the researchers’ distinctions 
do not take into account students’ conceptual frames of reference, from which stu-
dents’ solutions do make sense. I will make an overlapping point in the next 
paragraph.

One facet of the natural number bias that may not have been adequately explored 
is whether some of the reasoning that is attributed to over-reliance on natural num-
ber knowledge has been accurately characterized. For example, given the task of 
comparing 5/6 and 7/8, suppose a student imagines a set of six marbles, five of 
which are blue and another set of eight marbles, seven of which are blue. The stu-
dent may see a sameness in the two sets—in both cases, all but one marble is blue—
and may therefore say that the fractions 5/6 and 7/8 are the same. Similarly, a student 
who is asked to add 5/6 and 7/8 might imagine combining those two sets of marbles 
and therefore write 5/6 + 7/8 = 12/14 because 12 out of the 14 total marbles are blue. 
I do not see these examples as misapplications of natural number concepts to cases 
where rational number concepts are needed. Instead, I see the issue as one of the 
norms of mathematical communication and the very precise ways that we use math-
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ematical ideas and notation to express particular interpretations of situations. From 
the point of view of the student, the eqs. 5/6 = 7/8 and 5/6 + 7/8 = 12/14 may appear 
to express their ideas about the sets of marbles. In fact, the fractions 5/6 and 7/8 do 
legitimately apply to the sets of marbles, an equation is a statement about sameness, 
and addition does model combining things. It is only by appealing to our very pre-
cise conventions about what exactly equations and addition mean in the mathemat-
ics community that we can explain why the mathematics community does not use 
5/6 = 7/8 and 5/6 + 7/8 = 12/14 to model the two marble situations.

As an alternative to the natural number bias, Tzur (this volume, Chap. 8) takes 
the stance that fractions can be learned by reorganizing whole number knowledge. 
Tzur describes a progression of fraction schemes that students could develop, start-
ing from whole number schemes. In recent years there has been much research on 
how children learn natural number concepts, with ongoing inquiry and debate (for 
example, see Spelke, 2017). If ideas about fractions are grounded in ideas about 
natural numbers, then it seems natural to ask whether the natural number schemes 
on which fraction schemes are grounded fit with current conceptualizations of how 
children understand natural numbers. For example, in discussing how a child might 
think about combining eight marbles and seven marbles, Tzur describes a very spe-
cific way of thinking about the numbers in this context, namely as symbols for the 
anticipatory effect of iterating 1 a certain number of times, e.g., “‘8’ for the child 
was a symbol for an anticipatory effect of iterating 1 eight times” (p. 7). Viewing 
whole numbers in terms of iterating is important in Tzur’s theory because the frac-
tion schemes he presents are based on iteration. According to Tzur, “an iterable unit 
fraction (1/n) serves as the ‘building block’ to other fractions, similar to how an 
iterable unit of 1 serves as the ‘building block’ to other whole numbers” (p. 20). But 
how faithful is Tzur’s iteration model to the way children think about cardinalities 
of sets in situations like the marbles? It seems unlikely that the child would think of 
the set of marbles itself as formed by iterating one marble eight times—for one, the 
marbles might have different colors and sizes. Instead, the child might think of each 
marble as an object that falls under a “marble” category. Tzur’s assumption thus 
seems to be that the child sees the cardinality of the set of marbles through the idea 
of counting the marbles one by one, viewed as measuring the set by one marble. Do 
children think about cardinality that way?

There is evidence that humans, including babies who cannot count and adults 
who are well versed at counting, automatically process set size through the approxi-
mate number system (e.g., see Dehaene, 2011 and Chap. 4 of this volume). One 
current proposal is that children’s natural number understanding builds on innate 
systems, including the approximate number system and a collection of systems that 
serve to represent objects as members of kinds (Spelke, 2017, p.  148). Thus, it 
seems possible that even children who understand how to determine the cardinality 
of a set by counting might still view cardinality primarily in a way that is different 
from counting and different from iterating 1 s. In other words, it seems possible that 
cardinality is not usually viewed as the result of measurement by a unit, a point to 
which I will return in the next section.
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11.4  Magnitude, Measurement, and Linear Representation 
of Numbers

The idea that numbers, including fractions, can be viewed in terms of magnitude or 
lengths, or located on number lines, is recognized as important across all four frac-
tion chapters in this volume. Obersteiner et al. (this volume, Chap. 7) discuss work 
of Siegler et al. (2012), who have proposed an integrated theory of whole number 
and fraction development, with magnitude as a unifying idea. Based on findings 
from a number of studies, Obsersteiner et al. conclude that overall, a focus on frac-
tion magnitudes seems to be effective and transfers to other fraction concepts. As a 
consequence, one of their recommendations for classroom practice is that instruc-
tion should focus on fraction magnitudes and the use of number lines.

The central argument that Matthews and Ziols (this volume, Chap. 10) make is 
that perception can and does provide intuitive access to relationally defined magni-
tude and that these perceptual intuitions may provide an important foundation for 
building formal understanding of rational number concepts. They further suggest 
that a foundation built on perceptual intuitions may be distinct from and comple-
mentary to understandings built on whole number knowledge. How might percep-
tual intuitions be leveraged to build fraction ideas? One type of example that could 
be useful is two adjacent strips or line segments. As Matthews and Ziols show (see 
their Figs. 1 and 6), this kind of example has been used in empirical work that shows 
evidence of perceptual sensitivity for non-symbolic ratio magnitudes. If humans 
have an intuitive sense that given pair of strips are in some specific relationship, one 
can imagine leveraging this intuitive sense to define numbers as the result of mea-
suring one strip by another strip. In fact, this is exactly the approach that Davydov 
and Tsvetkovich (1991) take, which Simon (this volume, Chap. 9) adapts for his 
revised hypothetical learning trajectory to develop a unified sense of multiplication 
across whole numbers and fractions.

In my own work with Andrew Izsák and our research group, we have also empha-
sized a measurement sense of number in our courses for future middle grades and 
secondary mathematics teachers. We discuss (positive) whole numbers and frac-
tions as the result of questions of the form “how many of this strip does it take to 
make that strip exactly?” and we use this measurement view of numbers to define 
multiplication as coordinated measurement. Our definition applies across whole 
numbers and fractions and across every type of multiplication word problem (see 
Izsák & Beckmann, 2018). Our approach to multiplication is similar to (but more 
general than) Simon’s (this volume, Chap. 9) adaptation of the Elkonin-Davydov 
approach, which Simon proposes to use in his revised hypothetical learning trajec-
tory. However Izsák and I treat unit fractions (1/n) differently from Simon (Simon, 
Placa, Avitzur, & Kara, in press) or Tzur (this volume, Chap. 8), even though all of 
us see measurement as important to understanding fractions. Izsák and I emphasize 
that a unit fraction (1/n) can be viewed not only as a unit, which is “stuff” that can 
be counted (e.g., 9/7 is 9 one-sevenths), but also as the result of measurement, i.e., 
as the answer to a “how many of this strip does it take to make that strip exactly?” 
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question. Neither Tzur nor Simon et al. emphasize that unit fractions can be viewed 
as the result of measurement. We think that viewing unit fractions primarily as units 
with which to measure and not also as results of measurement by a larger unit could 
be a significant shortcoming because we believe this will not adequately support 
understanding unit fractions as multipliers, as I will explain.

Izsák and I have found that the future teachers in our courses are generally suc-
cessful at using our coordinated measurement definition of multiplication. Most of 
the future teachers can use the definition to explin why fraction multiplication or 
division (which we view as multiplication with an unknown factor) model given 
word problems. They are also able to develop and explain why fraction multiplica-
tion and division procedures work and to generate fraction multiplication and divi-
sion word problems for a given equation. However, a sticky point occurs for virtually 
all of our research participants across multiple years and multiple iterations of our 
courses: the future teachers do not always maintain a measurement view of fractions 
in places where, from our point of view, it would be helpful. In particular, they 
sometimes interpret a fraction as a unit—stuff—instead of as how much of a unit 
there is. For example, suppose a future teacher intends to interpret the fraction 1/8 
as a multiplier. According to our definition of multiplication, the 1/8 should be inter-
preted in a measurement sense, as how many groups one is considering. With our 
coordinated measurement view of multiplication, there is a quantity called 1 group 
that functions as a measurement unit, and when we use this unit to measure another 
quantity of interest in this situation (the product amount), the result is 1/8. In such 
situations, future teachers sometimes seem to interpret 1/8 as standing for stuff, and 
in particular as standing for the group itself, not as how many groups one is consid-
ering. To interpret 1/8 • X, the future teacher might draw a strip, partition it into 8 
equal parts, and consider one of those parts to be 1 group that contains X instead of 
understanding 1/8 as how much of X one is considering. In many cases, such inter-
pretations are fleeting and the future teachers go on to revise their thinking. However, 
we conjecture that an important part of expertise might be knowing when it is pro-
ductive to think of fractions (and even whole numbers) as “stuff” that can be parti-
tioned, iterated, and counted and when it is better to view fractions as results of 
measurement, as how many or much of 1 unit there is in the given stuff. For further 
discussion of these issues, see Beckmann & Izsák (2018a, b).

Turning now to Simon’s (this volume, Chap. 9) research participant, Kylie, I 
wonder whether her difficulties with extending multiplication of whole numbers to 
fractions could be due to differences in how Kylie thinks about whole numbers and 
fractions. Does Kylie know that fractions, as well as whole numbers, can be viewed 
as a result of measurement by a unit, namely as how many or how much of 1 unit 
there is in some given stuff? Could it be that Kylie views whole number multipliers 
as how many of the multiplicand she is considering but does not think of fractional 
multipliers in that same way? For example, when Kylie models 5 times 4 by creat-
ing a bar that is 5 units long and iterating it 4 times and when she models 6 times 3 
½ by creating a bar that is 6 units long, iterating it 3 times, and then partitioning the 
original bar into 2 parts, pulling out one, and attaching it to the bar she had created 
through iteration, perhaps she interprets the 4 and the 3 as how many of her initial 
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bar she should make. But does Kylie think of the ½ in 3 ½ in the same way, or does 
she think of the ½ as operating on the 6 units to create 3 units? More generally, we 
know that Kylie is able to interpret fractions as operating on stuff to produce stuff 
because she is able to take a part of a part and a fraction of a set (Simon, Kara, 
Norton, & Placa, in press, p. 18). But viewing a fraction as operating on stuff—tak-
ing a part of something—is perhaps different for students from viewing the fraction 
as how much of the stuff one is considering. So even though Kylie understands how 
to take a part of a part, when Kylie is unable to make a bar that is 1/3 times 1/5, 
could it be because she does not see 1/5 as how much of the 1/3 she should consider? 
When Kylie works on the task, “A recipe calls for 2/3 of a cup of sugar, I want to 
make ¾ of a recipe, how much sugar do I need?” (Simon, p. 14) and is asked “Six- 
12ths what?” and responds “Six-twelfths of two-thirds,” could it be because Kylie 
is viewing the 6/12 as stuff that came from taking a fraction of some stuff (the 2/3), 
and therefore sees the 6/12 as “of” the 2/3 in that way? Could Kylie be thinking of 
“6/12” as a name for the stuff she is considering instead of seeing it as the result of 
measurement by a unit? These seem like sensible ways for Kylie to be thinking, 
even though they are not the precise ways sanctioned by the mathematics 
community.

Experts may have internalized the mathematics community’s conventions and 
rules about how to connect notation to quantities. Experts may also be able to move 
easily, flexibly, and even subconsciously between viewing fractions as stuff, frac-
tions as operating on stuff to produce stuff, and fractions as how much of 1 unit it 
takes to make some stuff, selecting a view that is appropriate for the purpose at 
hand. But for Kylie and for the future teachers that Izsák and I teach, knowing the 
exact conventions of mathematical notation and knowing that many different views 
can apply to fractions—and when to use which view—might be pieces of expertise 
they are still developing.

Returning to the findings that Obersteiner et al. (this volume, Chap. 7) discuss 
about magnitude, they point out that although there is evidence that understanding 
fraction magnitudes is helpful, the specific relationship between understanding frac-
tion magnitudes and other fraction concepts remains to be understood. Even more 
mysterious is the link between understanding fraction magnitudes and other topics, 
such as algebra. For example, Siegler et al. (2012) suggest that fraction magnitudes 
should be crucial for algebra because students who do not understand fraction mag-
nitudes would not know that “for the equation ¾ X = 6, the value of X must be 
somewhat, but not greatly, larger than 6” (p. 692). But another possibility is that 
students’ understanding of fraction magnitudes and fraction equations both benefit 
from a measurement sense of fractions, i.e., an understanding of fractions as answers 
to how much of a unit there is in something. To plot numbers (including fractions) 
accurately on a number line it should help to understand the numbers as how many 
of 1 unit it takes to make an interval from 0. To understand an equation such as ¾ 
X = 6 it should help to interpret ¾ in a measurement sense: the ¾ in the equation ¾ 
X = 6 is how much of X is being considered and that portion of X is 6. A student who 
thinks of ¾ as “stuff” might equate the ¾ with X, just as in the case of the 1/8 ∙ X = 6 
example I described above.
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11.5  Conclusion

Fractions are a surprisingly deep and subtle topic in mathematics, which are diffi-
cult yet essential for students to learn. This combination makes fractions an impor-
tant and intriguing topic in mathematics education. Just what is it about fractions 
that makes them so difficult? How does fraction thinking fit within cognition more 
generally? What ideas do we draw on when we reason with fractions? What ideas 
need more attention to help students learn to reason proficiently with fractions? 
Which teaching-learning paths through fraction ideas can help students make sense 
of fractions? The fraction chapters in this volume make the case that we should 
consider strands of research from within mathematics education as well as from 
psychology when we grapple with questions like these. In this commentary I have 
used some of the themes and points that were raised in the four fraction chapters in 
this volume to generate a number of speculative questions and directions that might 
be considered in future research. I hope readers will find these interesting and worth 
considering.
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Chapter 12
Understanding Negative Numbers

Laura Bofferding

Abstract This chapter focuses on the development of concepts that children draw 
on as they work toward understanding negative numbers. Framed from a conceptual 
change lens, I discuss different interpretations children have of minus signs, numer-
ical order, numerical values, and addition and subtraction operations and how chil-
dren draw on these varied conceptions to solve addition and subtraction problems 
involving negative numbers. Children’s unconventional attempts at solving these 
problems reflect their efforts to make sense of negatives in light of their whole num-
ber understanding.

Keywords Negative numbers · Conceptual change · Mental models · Meanings of 
the minus sign · Linear value · Absolute value

Negative numbers have an unfortunate name, unfairly characterizing them as some-
thing to be avoided. Their name reflects their challenging history in being accepted 
by mathematicians (e.g., Bishop et al., 2014; Vlassis, 2008), which some use as an 
excuse for delaying their introduction in school. Negative numbers may be difficult 
for many to learn because they seem to contradict prior learning about whole num-
bers, but also because significantly less time is devoted to them compared to whole 
numbers (Bofferding, 2014; Fuson, 1988, Ulrich, Tillema, Hackenberg, & Norton, 
2014). In fact, in the United States and internationally, standards for learning nega-
tive numbers are pushed to middle school (e.g., Ginsburg, Leinwand, & Decker, 
2009; National Governor’s Association for Best Practices & Council of Chief State 
School Officers, 2010; van den Heuvel-Panhuizen & Wijers, 2005). However, chil-
dren frequently have positive reactions to learning about negative numbers, demon-
strating a willingness to play around with and think about these cryptic numbers 
(e.g., Bofferding, Aqazade, & Farmer, 2018; Featherstone, 2000; Wessman- 
Enzinger, 2018). This chapter focuses on students’ endeavors to understand nega-
tive numbers, highlighting the complexity involved in this process as well as the 
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insightfulness that students demonstrate as they grapple with the formal (culturally 
accepted) meaning of negative numbers.

12.1  From Whole Numbers to Negative Numbers1

The body of literature on children’s understanding of whole numbers is quite broad; 
in comparison, research on children’s understanding of negative numbers is in its 
infancy. Early accounts of negative number learning primarily come from teachers 
and professors detailing their methods for teaching negative number operations 
(e.g., Ashlock & West, 1967; Cotter, 1969; Snell, 1970) or highlighting students’ 
initial encounters with negative numbers and integer arithmetic (e.g., Cochran, 
1966; Malpas & Matthews, 1975). However, few of these accounts describe stu-
dents’ understanding of negative numbers themselves, as a prerequisite to opera-
tions. Fuson (1992) identified a need to extend current whole number research to 
negative numbers. Just as students’ conceptions of arithmetic operations change 
based on their understanding of whole numbers, students’ conceptions of arithmetic 
operations change based on their understanding of negative numbers. Several con-
cepts comprise students’ understanding of whole numbers: their understanding of 
the number sequence, of units, of numbers’ values or cardinality, and of numerals or 
notation (Case, 1996; Fuson, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 
1983). Similar concepts comprise students’ understanding of negative numbers, 
with some caveats. Negative numbers do not exist as tangible entities in the same 
way that positive numbers do; their values are more abstract and directed. Further, 
in addition to numerals, negative numbers also involve a sign to designate that they 
are negative. I discuss each of these concepts in turn as well as how students put 
these concepts together through the lens of conceptual change and mental models.

12.2  Framework Theory of Conceptual Change and Mental 
Models

As posited by Fuson (1988) and demonstrated by several of the examples included 
later in this chapter, students’ difficulties with negative numbers arise from the num-
bers “being too closely connected to the cardinal numbers, that is, from inadequate 
differentiation from the cardinal numbers” (p. 406). This interference is described 
nicely by the framework theory approach to conceptual change.

Based on the framework theory of conceptual change, children’s conceptions 
align with one of a set of mental models that change over time in response to their 
everyday experiences and learning opportunities (Vosniadou, 1994, 2007; 

1 For the sake of this chapter, the use of number refers to integers unless otherwise specified.
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Vosniadou & Brewer, 1992). Accordingly, children develop a framework theory for 
number that is based on their experiences with the world and that they use to make 
sense of new numbers (Vosniadou, Vamvakoussi, & Skopeliti, 2008); namely, they 
construct meaning for whole numbers and base experiences with new numbers, 
such as negative numbers, on their whole number and operations understanding 
(Bofferding, 2014). Children’s initial mental models for negative numbers reflect 
an attempt to interpret negatives by using their framework theory. Therefore, they 
interpret negatives as similar to positives, ignoring information that does not fit 
their theory.

As they learn about negative numbers or encounter them in new ways, children 
try to assimilate the new information within their current conceptual structure, 
which causes some changes to their conceptual structure and usually results in syn-
thetic mental models for negative numbers (a hybrid of their framework theory and 
formal understanding). The synthetic mental models are unstable (Vosniadou, 
2007), and when children have enough experiences so that they can successfully 
reorganize their mental structures to accommodate the new information in a way 
that reflects their culture’s accepted use of a concept, they are classified as having a 
formal mental model for negative numbers. The conceptual change process is messy, 
so at any particular moment, a student may be transitioning from exhibiting an ini-
tial mental model to a synthetic mental model (transition I mental model) or from 
exhibiting a synthetic mental model to a formal mental model (transition II mental 
model) (Bofferding, 2014).

In previous work, I outlined how children’s integer (including negative integers) 
mental models for order and value align with conceptual change theory and involve 
a combination of children’s understanding of the number sequence including nega-
tives, the meanings of the minus sign, and integer values (Bofferding, 2014). As if 
that were not complicated enough, when doing addition and subtraction with inte-
gers, children also need to reorganize their conceptual structures for whole number 
addition and subtraction, to accommodate negatives, as addition no longer only 
means “getting larger” and subtraction does not necessarily mean “getting smaller” 
when negatives are involved (Bruno & Martinón, 1999).

12.3  From a Whole Number Sequence to a Negative Number 
Sequence

An important conceptual structure for whole number understanding is the number 
sequence conceptual structure. Students’ number sequence conceptual structures go 
through several changes. As detailed by Fuson (1988), at the first level, a student’s 
number sequence exists as a string where the student recites the entire sequence to 
produce number words, and some of the words may be grouped together and con-
sidered as one. There are no reported accounts of children using the negative num-
ber sequence in this manner, perhaps because children typically learn the negative 
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number sequence after moving beyond the string level for the positive number 
sequence, making the starting point of the number sequence ambiguous.

At the second level, a student’s whole number sequence exists as an unbreakable 
list where the number words are distinguishable and the student can use the sequence 
to count perceptual unit items (Steffe et al., 1983) but must start counting at one 
(Fuson, 1988). At the third level, the breakable chain level, the student can begin 
their count at any word and count on or back using perceptual unit items (Fuson, 
1988). From there, at the numeral chain level, the student can use the numbers in the 
sequence as sequence unit items (Fuson, 1988) and do not need to use other objects 
for counting, and at the final bidirectional chain level, the process of counting for-
ward or backward is done with ease starting at any number.

The list of counting words for positive numbers has four main features identified 
by Fuson (1988):

 1. The list is comprised of number words. [number words feature]
 2. The list is a list (the words are said in one standard order that is stable over 

repeated productions of the list). [stable-word feature]
 3. Each word in the list is unique (it appears once in the list). [unique-word 

feature]
 4. The list has a decade structure between 20 and 100. [decade structure feature] 

(p. 389).

The same features hold with the inclusion of negative numbers, although a word 
designating negativity is included before each number word (number words fea-
ture), and the starting point for integers is ambiguous2 (stable-word feature). There 
are several accounts of children making up a non-standard but stable sequence in 
place of standard negative numbers, exhibiting nearly formal (transition II) mental 
models for the integer sequence. These include using children’s names to represent 
positions to the left of zero on a number line (Aze, 1989), which violates the number 
words feature; using the prefix “zero cousin minus” before each numeral (Wilcox, 
2008); or adding a prefix of “zero” or “something” before each numeral (Bishop, 
Lamb, Philipp, Schappelle, & Whitcare, 2011).

Students will often continue counting beyond the part of the whole number list 
they know (Fuson, 1988), either violating the stable-order feature or unique-word 
feature of the list. Determining a violation of the unique-word feature is tricky 
because it “might reflect a child’s awareness of the repeated pattern but a failure to 
notice or to have learned the additional differentiating syllables” (Fuson, 1988, 
p. 391) of other numbers in the sequence that contain names of other numbers (e.g., 
1 versus 21). These violations also occur when children are asked to continue the 
number sequence into the negatives. Bofferding et al. (2018) asked second and fifth 
graders to fill in missing numbers on a number path. The number path had the num-
bers 5, 4, and 3 filled-in starting from the right end and empty boxes on the left, so 
that students could write in negative numbers to −11, if they knew about them. After 

2 If we only consider the negative integer sequence, the starting point is −1, just as 1 is the starting 
point of the positive integer sequence.
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1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Fig. 12.1 Number path with a descending number pattern

16 15 14 13 12 11 10 9 8 7 6 0 1 2 3 4 5

Fig. 12.2 Number path with a continued number sequence to the left of zero

11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5

Fig. 12.3 Number path with positive numbers on both sides of zero

filling in 2, 1, and 0, several students asked what they should put in the other empty 
boxes. Although some students just left the boxes blank, others made descending 
number patterns, reflecting initial mental models (see Fig. 12.1; Bofferding et al., 
2018).

Others exhibited initial mental models by continuing the forward number 
sequence with “6” to the left of zero (see Fig. 12.2; Bofferding et al., 2018).

Many also wrote in positive numbers symmetric around 0 (see Fig.  12.3; 
Bofferding et al., 2018).

Bofferding (2014) found similar results when asking first graders to fill in miss-
ing numbers on a number line. While the number pattern example clearly violates 
the unique-word feature, a similar conclusion cannot be made without additional 
evidence about those who wrote in symmetric positive numbers; students who write 
or say, “One” instead of “Negative one” might just not know the differentiating 
symbol “-” or term “negative.” In many cases, Bofferding et al. (2018) had addi-
tional evidence from interviews or students’ solutions to arithmetic problems that 
they exhibited initial mental models and considered the numbers as positive. These 
results indicate that students’ willingness to violate the unique-word feature for 
natural numbers can occur much later than age 5 as found by Fuson (1988). Students 
who understand the unique-word feature but do not know or remember how to write 
negatives will often make up their own notation, such as “1`” (Bofferding et al., 
2018, p. 12), “m1” (Liebeck, 1990, p. 226), “S1” (Bishop et al., 2011, p. 353), or 
“N1” (Bofferding, 2014; Bofferding et al., 2018) to represent −1.

In terms of learning the standard negative number list (starting with −1), even 
young students can make significant progress. For example, 23 first graders were 
asked to count backward from 10 before and after an intervention in which they said 
the numbers they passed through while moving on a board game (in the form of a 
horizontal number path) with squares labeled −10 to 10 (see Bofferding & Hoffman, 
2014 for more details). On the pretest, all but one student correctly said the forward 
sequence to 10, and all but two of the students could say the backward sequence to 
1 or 0; one of them continued to −10. On the posttest, all correctly said the forward 
number sequence to 10, and all but one said the backward sequence to 1 or 0; they 
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made significant gains in reciting the backward number sequence into the negatives 
(Bofferding & Hoffman, 2014), with 10 of them doing so. These students had played 
the counting game for three sessions of 15 min each, and most were able to say the 
negative number sequence from 0 to −10 as they moved without correction before 
the end of the first session. Around a dozen needed a prompt in subsequent sessions 
but quickly corrected themselves after the prompt. Unsurprisingly, additional stu-
dents in a control group who did not practice the sequence did not make significant 
gains in counting backwards into the negatives (Bofferding & Hoffman, 2014).

On the other hand, in a similar study with 23 kindergarteners, all but three cor-
rectly recited the forward number sequence, and only 12 of them could say the 
backward number sequence to 1 or 0 on the pretest with none of them continuing 
into the negatives after prompting. On the posttest, all but four correctly said the 
forward sequence and only 11 could say the backward number sequence to 1 or 0; 
the kindergarteners did not make significant gains in reciting the negative number 
sequence after playing the game, as only two of them recited it.

Given the gains made by the first graders as opposed to the kindergarteners, the 
evidence suggests that students’ whole number sequence conceptual structure needs 
to be at the breakable chain level (where students can produce the backward number 
sequence) in order for the board game experiences with the negative number 
sequence to make an impact; even then, producing the new sequence is difficult for 
many. Of the eight kindergarteners who received the board game intervention and 
counted back from 10 to 0 on the posttest, only two counted into the negatives 
(25%) compared to 0% of the 15 who did not count back from 10 to 0; of the 23 first 
graders who received the board game intervention and counted back from 10 to 0 on 
the posttest, ten also counted into the negatives (43%). The extent to which the dif-
ficulty of saying the negative number sequence is due to interference from children 
first learning the positive number sequence (or not considering the negative num-
bers as part of the regular counting down sequence) is not known, although clearly 
a factor.

One way the coordination between whole numbers and negative numbers mani-
fests is through the use of multiple zeroes, reflecting a transition I mental model. 
When counting backward, some students will say or write, “3, 2, 1, 0, 0, 0…” 
(Bofferding, 2014; Bofferding et  al., 2018; Wilcox, 2008). These students often 
explain that zero is nothing, which just continues (e.g., Wilcox, 2008). The assertion 
that zero is the end of the sequence hints at the strength of whole number knowl-
edge, but the willingness of students to violate the unique-word feature suggests 
that some students may realize that numbers continue indefinitely in both direc-
tions. The extension of the number sequence in both directions from zero is a fifth 
feature of the extended integer list.

Perhaps the easiest way to remember the negative number sequence is to use an 
analogy with positive numbers and just add the word “negative” before each numeral 
name; however, students usually base the analogy on the whole numbers, which 
leads them to include negative zero in the sequence (or substitute negative zero for 
zero), (Bofferding, 2014; Bofferding et al., 2018). In fact, when saying the negative 
number sequence, “Negative three, negative two, negative one,” my 3-year-old con-
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Table 12.1 Descriptions of the mental model levels in terms of the integer sequence (integer 
order)

Mental 
models Description of the integer sequence (order) mental models

Initial Students only say or write positive or whole numbers. (e.g., “5, 4, 3, 2, 1, 0”)
Transition I Students include repeated zeroes (e.g., “5, 4, 3, 2, 1, 0, 0, 0…”)
Synthetic Students include negatives but they are reversed (e.g., “5, 4, 3, 2, 1, 0, −10, −9, 

−8”), or they write negatives connected to positives in non-standard ways (e.g., 0, 
1, 2, 3, 4, 5, −1, −2, −3, −4, −5)

Transition 
II

Students include −0 or use their own consistent labels for negatives (e.g., “5, 4, 3, 
2, 1, 0, −0, −1, −2, −3… or write n5, n4, n3, n2, n1, 0, 1, 2, 3, 4, 5)

Formal Students say or write the integer sequence (e.g., “5, 4, 3, 2, 1, 0, −1, −2…”)

tinued, “Negative zero,” exhibiting this transition II mental model for the integer 
sequence. Others also seem to pay attention to the symmetry of the numbers but 
leave out zero (−3, −2, −1, 1, 2, 3 or − 3, −2, 1, 2, 3). Finally, some students will 
make an analogy with the positive or whole numbers and begin their negative num-
ber sequence with a large negative (e.g., −10 or − 100), reversing the negatives and 
patterning the sequence after the positive numerals. Therefore, their backward 
counting sequences will be “3, 2, 1, -10, -9...” or “3, 2, 1, -100,3 -99…” (Bofferding, 
2014; Bofferding et al., 2018). Widjaja, Stacey, and Steinle (2011) found similar 
results for a preservice teacher’s placement of negative decimals (i.e., the preservice 
teacher labeled −1.2 closer to 0 than −0.5), so it would be worthwhile to explore 
students’ negative numerical sequences for numbers beyond integers. For a descrip-
tion of students’ integer sequence or integer order responses in terms of the concep-
tual change mental model levels, see Table 12.1 (see also Bofferding, 2014).

Just as practice with the whole number sequence can increase young students’ 
performance on counting tasks (Griffin, Case, & Capodilupo, 1995), practicing the 
negative number sequence can increase students’ performance with the sequence if 
they have sufficient understanding of the whole number sequence (Bofferding & 
Hoffman, 2014). Further, on a number placement task with a scale from −1000 to 
0, sixth and seventh graders’ performance paralleled findings for a placement task 
with positive numbers, although the accuracy and linearity of their placements was 
less than typically found for positive numbers. Yet, accuracy and linearity of placing 
the negative numbers was higher for the older students who likely had more experi-
ence with negatives (Young & Booth, 2015).

In another study, second graders analyzed worked examples of integer addition 
and subtraction problems illustrated with a gingerbread man moving up and down a 
number path labeled from −10 to 10 that was situated on a hill (see Fig. 12.4). For 
example, when comparing 5 − 3 and −5 − 3, they pointed out that the gingerbread 
man started at different numbers (one had a negative sign and one did not), moved 
the same number of spaces, moved in the same direction, and ended at different 
numbers. They also practiced solving similar problems. After this exposure to the 

3 Students will pick a large negative number to start their negative sequence.
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Fig. 12.4 Example of contrasting worked examples that students compared and contrasted

written, integer counting sequence on a number path, there was an increase in 
second- grade students’ ability to correctly extend the whole number sequence into 
the negatives (Aqazade, Bofferding, & Farmer, 2016).

12.4  Application of the Negative Number Sequence 
in Addition and Subtraction

Students can use the extended integer number sequence to effectively solve integer 
addition and subtraction problems via counting-based strategies, especially if they 
interpret adding a positive number as going up in the sequence and subtracting a 
positive number as going down in the sequence (Bishop, Lamb, Philipp, Whitacre, 
& Schappelle, 2014). As with whole number problems, students might use fingers 
to help them keep track of their counts. For example, Violet, a second grader, 
sequentially raised five fingers as she counted from −8 to −4  in order to solve 
−9 + 5 (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014), and Timmy, another 
second grader, used a similar strategy to solve −9 + 2 (Aqazade, Bofferding, & 
Farmer, 2017). In fact, students across the ages use counting sequence strategies, 
sometimes with the aid of fingers, number lists or paths, or number lines (Bishop, 
Lamb, Philipp, Whitacre, & Schappelle, 2014, Bishop, Lamb, Philipp, Whitacre, 
Schappelle, & Lewis, 2014; Bofferding, 2010; Wessman-Enzinger, 2017). In some 
cases, providing young students with a number path, which is a count model 
(Neagoy, 2012)—as opposed to a number line, which is a measurement model—can 
help them leverage the counting sequence and solve problems that they would not 
be able to solve without the support. For example, when asked to solve −3 + 2, one 
first grader answered “5.” However, when given a number path to solve −3 + 1, the 
student correctly answered, “-2.”

Students can also use the integer sequence to solve more difficult integer prob-
lems, such as missing addend problems (e.g., −5 + __ = 7 or __ + −5 = 7). If the 
missing number is the first addend, students might use trial and error, starting at 
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different numbers until they find the right combination (Bishop, Lamb, Philipp, 
Whitacre, & Schappelle, 2014). As with whole number chunking strategies, some 
students solve problems with negative numbers by chunking to zero and calculating 
beyond zero. For example, when solving 3 −  5, one second grader first solved 
3 − 3 = 0 and then knew the two left over would result in negative two (Bishop, 
Lamb, Philipp, Whitacre, & Schappelle, 2014; see also Schwarz, Kohn, & Resnick, 
1993–1994).

12.5  From Unsigned Numerals to Signed Numerals

As discussed in the previous section, students may continue their number sequence 
into the negatives without knowing the formal notation for negatives, so they may 
use invented notations or leave out any indication that the numbers are negative. 
Once again, students’ knowledge of whole number operations may contribute to 
this phenomenon because up until this point, children associated the minus sign 
with the operation of subtraction. However, subtraction is just one of the three 
meanings of the minus sign. Teachers have discussed the three meanings of the 
minus sign in mathematics education journals as early as the 1920s (e.g., Barber, 
1926). These three meanings involve interpreting the minus sign as a subtraction 
sign, which corresponds to the subtraction operation or taking the difference (a 
binary function); interpreting the minus sign as a negative sign, which corresponds 
to negative numbers or answers to equations (a unary function); and interpreting the 
minus sign as indicating multiplication by negative one, which corresponds to tak-
ing the opposite (a symmetric function; Gallardo & Rojano, 1994; Vlassis, 2004, 
2008).

Students’ interpretations of the minus sign as a subtraction, negative, or opposite 
sign are based on their knowledge (or lack thereof) of negative numbers as well as 
the placement of the symbol in relation to the numerals around it. In one study, 
eighth graders demonstrated a set of rules for interpreting minus signs in 
polynomials:

Placed at the beginning of the expression, the minus is considered as attached to the num-
ber. Placed between two like terms, students explain that the minus is used for subtracting, 
and between two unlike terms, that it is used for splitting, operating, or making the follow-
ing term negative. (Fagnant, Vlassis, & Crahay, 2005, p. 89)

Before providing students with negative number instruction, I interviewed 61 first 
graders on a series of integer problems (see Bofferding, 2014). One set asked stu-
dents to look at two equations (−5 − 3 + −1 = −10 and 3 − −2 + 4 = 6 + 3) and 
circle the minus signs that tell them to subtract. Overall, 43% of the students (26/61) 
only circled the subtraction signs and not the negative signs. When asked how they 
knew which minuses meant to subtract, some students referenced spatial features 
and indicated that the negative signs were smaller or higher. Similar to the eighth 
graders described previously, one first grader indicated that the subtraction signs are 
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“in the middle of two numbers.” Such spatial cues are important; in equations with-
out negative signs, moving the subtraction sign closer to the numeral following it (a 
right-shift) may prompt adults to interpret the sign and numeral together as a nega-
tive number (Jiang, Cooper, & Alibali, 2014).

Further work should investigate the role spatial cues can play in helping students 
distinguish negatives as well as learn about the relation between subtraction and 
negatives. For example, as suggested by Jiang et al. (2014), teachers could capital-
ize on students’ potential of seeing a right-shifted subtraction sign as a negative sign 
to help them make sense of the equivalence between adding a negative and subtract-
ing a positive. Booth and Davenport (2013) found that end-of-year sixth, seventh, 
and eighth graders’ conceptual knowledge of minus signs (e.g., 3 − 4x is equivalent 
to 3 + −4x but not 4x − 3) was the greatest predictor of equation-solving success, 
but students had a difficult time encoding the minus signs (i.e., subtraction and 
negative signs) when asked to recreate equations that they viewed; “They deleted 
them, changed them into an addition sign (or other operation), and included addi-
tional negative or subtraction signs” (J. Booth, personal communication, March 22, 
2018).

12.6  Use of the Three Meanings of the Minus Sign 
in Addition and Subtraction

Students’ interpretations of the minus sign contribute to their interpretations of inte-
ger addition and subtraction problems and their subsequent solution strategies. In 
fact, in an investigation of students’ performance in Algebra I classes, minus sign 
errors were common across all topics and were the most persistent (Booth, Barbieri, 
Eyer, & Paré-Blagoev, 2014); these errors included “Moving, deleting, or adding a 
negative sign, including subtracting when addition is indicated or addition when 
subtraction is indicated…Moving a term without changing its sign” (p. 14). To alle-
viate these errors, there should be more focus on helping students make sense of the 
multiple meanings of the minus sign (symmetric, opposite sign; binary, subtraction 
sign; and unary, negative sign). In this section, I describe the meanings of the minus 
sign more fully and provide examples of how each interpretation could manifest in 
students’ solutions to integer arithmetic problems.

Symmetric meaning. Of the three meanings of the minus sign, the symmetric or 
opposite meaning is often unfamiliar to students even when they have learned about 
negative numbers; middle school students who struggle with this meaning may not 
know that “–x” could be positive or negative depending on the value of “x” (Fagnant 
et al., 2005; Lamb, Bishop, Philipp, Schappelle, & Whitacre, 2012). At the same 
time, students, even before learning about negative numbers, utilize the symmetric 
meaning naturally when they make analogies between negative number problems 
and whole number problems (e.g., Murray, 1985; Schwarz et  al., 1993–1994; 
Wessman-Enzinger, 2017; Wessman-Enzinger & Bofferding, 2018). For example, 
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during one of my interviews with second graders, one student who had no prior 
instruction with negatives solved −8 − −5 to get −3 as follows, “I think it’s…yeah, 
negative three…because it’s just like eight minus five, then you’re making it nega-
tive.” This student thought of the problem as a whole number problem and then 
added the negative sign at the end. The same student made a somewhat different 
analogy to solve −1 + −7 = −8, saying, “Because you’re adding one, and it’s just 
like normal numbers. If you were to go seven, eight, that’s, so it’s seven, negative 
seven, negative eight.” Here the student related the counting on process for adding 
one with positive numbers to adding negative one with the negative numbers.

Binary meaning. Before learning about negatives, many students will ignore the 
extra minus signs (e.g., treat 5 − −3 as 5 − 3) (Bofferding, 2010; Murray, 1985) or 
signs in positions that do not follow a traditional subtraction problem structure, such 
as when there is a negative at the beginning of a number sentence as in −5 + 3 
(Bofferding, Aqazade, & Farmer, 2017). Other students will treat negative signs as 
subtraction signs regardless of their placement. For example, they might solve 
5 + −3 by starting with five, adding three, and then subtracting three (Murray, 1985) 
or 9 − −1 by subtracting one twice (Bofferding, 2010; Murray, 1985). An interest-
ing case arises for students who interpret the negative sign in problems such as 
−5 + 3 as a subtraction sign. Because there is no initial number, some students will 
interpret −5 as a number taken away from itself, solving 5 − 5 + 3 (Bofferding, 
2010; Hughes, 1986). One first grader whom I interviewed (see Bofferding, 2014) 
presented an interesting version of this idea for −1 + 8, “The person who wrote it 
[the problem] just thinks they really have to show you there used to be a one (points 
to -1), but it’s gone…so I’m just going to put an eight.”

Other students who treat an initial minus sign as a subtraction sign will insert a 
number, such as zero, at the beginning so that they can subtract (Bofferding, 2010). 
Inserting 0 at the beginning (e.g., 0 − 5 + 3) would lead to the correct answer and 
could help students make a connection between subtracting a positive and adding a 
negative; however, many students refuse to subtract a larger number from a smaller 
one. For example, one student (4.A07) when solving −1 + −7 read the problem as 
“zero minus one plus minus seven” (i.e., 0 − 1 + −7). This student reversed numbers 
in order to subtract smaller numbers from larger ones and calculated 1 − 0 = 1, 
ignored the plus sign, and then did 7 − 1 = 6 to solve this problem.

Unary meaning. Students who productively use the unary meaning of the minus 
sign interpret negatives in a variety of ways. Table 12.2 displays some of the con-
ceptual models (Wessman-Enzinger & Mooney, 2014) and contexts used to give 
meaning to negative numbers.

Just as the minus sign has multiple meanings, negative numbers also have mul-
tiple meanings, as illustrated in Table 12.2. They can represent deficits (e.g., money 
owed, points in the hole), a number in a sequence (e.g., points or locations before or 
below zero on a number line or path), and movements in a negative direction (e.g., 
going down). Cable (1971) argued that it is confusing to talk about negatives as both 
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Table 12.2 Popular models and contexts for negative numbers

Conceptual 
models Contexts

Instructional 
models Examples

Bookkeeping Gaining and losing 
money or points

Number line Mukhophadyay, Resnick, and 
Schauble (Mukhopadhyay, Resnick, 
& Schauble, 1990)
Stephan and Akyuz (2012)
Whitacre, Bishop, Philipp, Lamb, & 
Schappelle (2014)

Counterbalance Protons/electrons
Net worth
Net score
Floats and anchors

Colored chips
Double Abacus

Cotter (1969)
Stephan and Akyuz (2012)
Liebeck (1990)
Wessman-Enzinger and Bofferding 
(2014)
Williams, Linchevski, and Kutscher 
(2008)
Ulrich (2012)
Pettis and Glancy (2015)

Relativity Stones in a bag Number line Coles (2016)
Translation Changes in elevation

Changes in 
temperature Elevator 
movements
Traveling

(Empty) 
Number line
Number path

Swanson (2010)
Bell (1993)
Bofferding (2018)
Thompson and Dreyfus (1988)
Aqazade, Bofferding, and Farmer 
(2016)

points and displacements on a number line and advocated using negatives to repre-
sent points and R2 or L2 to indicate a displacement of 2 in a particular direction 
(right or left) on the number line. However, even young students routinely use posi-
tive numbers as both points in the positive number sequence and as displacements 
when they count using the number sequence or an empty number line (e.g., showing 
2 + 2 as starting at 2, a hop of 2, and landing at 4 using an empty number line), so 
using negatives in both situations may not be problematic. At an advanced level, 
Ulrich (2012) advocates strongly for interpreting negative numbers (and signed 
quantities in general) as changes in quantity or as one-dimensional vectors, i.e., 
directed differences.

Multiple interpretations. Students need to be able to think about positive num-
bers flexibly; likewise, they need to understand the many uses of negative numbers, 
the unary meaning of the minus sign. The net-worth instructional unit utilized by 
Stephan and Akyuz (2012) involved seventh graders interpreting negatives in mul-
tiple ways. The students talked about negatives as debts, treating them as quantities 
with values opposite that of positive integers. However, in order to operate with 
them, they also treated negatives as ordered points on a number line, as jumps on the 
number line, or as changes in net worth. Use of the number line facilitated the class 
in making arguments about the relative values of the negative numbers.
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Physical interpretations. One difficulty attached to the unary meaning of the 
minus sign (i.e., interpreting negatives as debts or other types of quantities) is in 
representing negative values. Students, even in the fifth grade, struggle with prob-
lems such as 3 − 5, answering zero or reversing the numbers and answering two 
(Bofferding, 2010; Murray, 1985; Peled, Mukhopadhyay, & Resnick, 1989) because 
you cannot take away more than you have. Any physical representation of negatives, 
such as with the colored chip instructional models4 (see Nurnberger-Haag, 2018), 
involves imposing a negative label onto the physical objects and treating them as 
opposite in value to their absolute value counterparts. For example, a first grader 
who solved 3 − 9 used fingers to represent the initial amount and demonstrate the 
taking-away process, while counting the nine he was taking away (Bofferding & 
Wessman-Enzinger, 2017). After putting down the three fingers, he continued to 
represent his count by raising six fingers, which he interpreted as negative six. This 
process leveraged the number sequence with the help of fingers. Similarly, Alice, a 
fifth grader, solved −18 + 12 = −6 by drawing 18 tallies in one color and crossing 
off 12 using a second color; her process involved interpreting the quantities as oppo-
sites (Wessman-Enzinger, 2015). Certainly, these strategies can be effective as long 
as students do not forget what the physical objects they use represent.

Directed interpretations. The terms directed magnitudes, directed differences, 
and directed displacements hint at the importance of attending to the sign of inte-
gers. On a number line, a displacement of −3 represents the same amount of move-
ment as a displacement of 3, but they are in opposite directions. One challenge in 
interpreting integers as directed displacements identified by Thompson and Dreyfus 
(1988) is considering the direction and amount of displacement multiplicatively. In 
their work with two second graders, Thompson and Dreyfus found that the students 
initially interpreted a turtle’s movement in terms of its displacement, qualifying the 
movement with a direction (symmetric meaning of the minus sign); eventually, they 
were able to talk about the movement as a directional displacement (unary meaning 
of the minus sign).

A benefit of interpreting integers as directed displacements or one-dimensional 
vectors is that this interpretation can support thinking about relative changes 
(Thompson & Dreyfus, 1988; Ulrich, 2012; Wessman-Enzinger & Mooney, 2014). 
In thinking about relative changes in opposite directions (e.g., +59, −88, +29), stu-
dents might be more likely to reason about changes in relation to zero, making addi-
tive inverses to get to zero; Ulrich (2013) suggests this conception involves 
interpreting addends as “reified composite units” characteristic of someone who has 
constructed a generalized number sequence (p. 260). Further, interpreting integers 
as one-dimensional vectors makes the commutative property of addition more obvi-
ous because the order of two changes in quantities does not make a difference 

4 In colored chip models, one color of counters (i.e., chips) represents positives and another color 
of counters represents negatives. A positive counter cancels out a negative counter. For −3 + 4, one 
would put out three negative chips and four positive chips. Three of the positive and negative chip 
pairs would cancel out, leaving one positive chip, or an answer of 1.
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(Ulrich, 2012). A drawback to the interpretation of integers as directed displace-
ments is that it lends itself well to the addition operation, interpreting combinations 
of transformations, but not the subtraction operation—especially the take-away 
meaning of subtraction. Ulrich (2012) argues that students instead need to interpret 
subtraction problems (e.g., 3 − −5) as missing addend problems (e.g., −5 + __ = 3) 
or as an addition of the additive inverse of the subtrahend (e.g., 3 + 5).

An alternative way of interpreting integer addition and subtraction problems is in 
terms of directed operations (Bofferding, 2014). Typically with whole number oper-
ations, students think of addition as “getting more” and subtraction as “getting less.” 
With a directed operation interpretation, students think of addition as getting more 
positive or more negative and subtracting as getting less positive or less negative, 
depending on the sign of the integer being added or subtracted. Such an interpreta-
tion acknowledges that numbers exist on a continuum where more positive is equiv-
alent to less negative and where magnitudes can be interpreted from either a positive 
or negative perspective. In my current research, students (as young as second grade) 
who can reason in this way can effectively solve problems such as 3 − −1 = 4 by 
reasoning that getting less negative means moving in the positive direction (see 
Table 12.3 for a description of mental models as they relate to conceptions of addi-
tion and subtraction).

Multiple perspectives. Some contexts used to teach negative numbers, in particu-
lar gaining and losing money, can be solved without using negative numbers at all. 
When given a question about borrowing money and asked to write an equation 
representing the situation, 80% of the seventh graders interviewed wrote an equa-
tion with only positive numbers, taking the perspective of the borrower and detail-
ing how much money they would owe (e.g., I owe $13 instead of I have -$13) 
(Whitacre, Bishop, Philipp, Lamb, & Schappelle, 2014). After being pressed, most 

Table 12.3 Description of integer addition and subtraction mental models

Mental 
model Description

Initial Students ignore negative signs in operations and subtract larger minus smaller 
numbers; plus sign means more, so go up toward greater absolute values; 
subtraction sign means less, so go down toward lesser absolute values

Transition 
I

Students treat negative signs as subtraction signs (either subtract the number from 
itself or from another number); they subtract larger minus smaller numbers; they 
may use multiple signs (e.g., to solve 5 + −3, they start with five, add three, and 
then subtract three)

Synthetic Students treat negatives as positive (use their absolute values) and make the 
answers negative; plus sign either means go up OR go in the direction of greater 
magnitude; subtraction sign means either go down OR go in the direction of 
smaller magnitude

Transition 
II

Students can subtract smaller minus larger numbers; their responses are mostly 
consistent with the formal level but may revert to synthetic interpretations

Formal Students understand the directed nature of the operations; adding a positive means 
go more positive; adding a negative means go more negative; subtracting a positive 
means go less positive; subtracting a negative means go less negative
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Table 12.4 Descriptions of students’ minus sign mental models in the context of integers

Mental 
model Description

Initial The minus sign corresponds to the binary (subtraction) operation, but minus signs 
are ignored if they are not between two numbers

Transition 
I

The minus sign corresponds to the binary (subtraction) operation, and minus signs 
attached to a number indicate that that number is subtracted from itself; a negative 
sign appearing after a plus or subtraction sign is interpreted as a second subtraction 
sign

Synthetic The unary minus sign is interpreted as a symmetric minus sign (i.e., students work 
with the numerals first and attach the minus sign to the resulting numeral)

Transition 
II

There is non-consistent use of the unary meaning of the minus sign

Formal A minus sign attached to a number corresponds to the unary meaning, and a minus 
sign between two numbers corresponds to the binary meaning

of the students agreed that negative numbers could be used to represent the situation 
if they took a loss perspective or interpreted the situation from the perspective of the 
lender (Whitacre et al., 2014). Prather and Alibali (2008) observed a similar effect 
with undergraduate students. Those who did not have a strong understanding of 
arithmetic principles (e.g., when adding a positive number and negative number, 
increasing either operand increases the sum) were less likely to use negative num-
bers in their equations to represent word problem situations than those with a stron-
ger grasp of principles. See Table 12.4 for alignment between students’ interpretations 
of the minus signs in relation to the mental model levels for integers.

12.7  From Cardinal Quantities to Integer Values

The multiple meanings of negative numbers make interpreting their values, espe-
cially compared to whole numbers, challenging. Students may refer to order-based 
or magnitude-based reasoning in their interpretations of negatives (Whitacre et al., 
2017). For example, one second grader explained that −9 is 9 below 0 (Aqazade 
et al., 2017). During interviews, 10- and 11-year-old students described −5 as “you 
have to get 5 to get to 0” (order-based), as “5 below 0” (order-based), and as “less 
than 0” (magnitude-based) (Murray, 1985, p.  148). Similarly, other fourth-grade 
students (generally 9- and 10-year-olds) described negatives as “below 0” or “to the 
left of 0” (order-based), “smaller than 0” (magnitude-based), and “0 minus some-
thing” or “subtracting a large number from a small number” (magnitude- and 
operation- based) (Hativa & Cohen, 1995, p. 425). The latter two responses might 
involve order- or magnitude-based reasoning but could be more appropriately cate-
gorized as difference-based reasoning, aligning to the relativity and translation con-
ceptual models. These responses are also close to another interpretation of negatives: 
as a shift in a negative direction (e.g., Galbraith, 1974).
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Interpreting negatives as shifts in a negative direction would not help students 
make integer comparisons, as a shift of five in a negative direction is equivalent in 
magnitude to a shift of five in a positive direction. Further, magnitude-based reason-
ing can lead to students interpreting negatives’ values as equivalent to their positive 
counterparts—essentially using absolute values, an initial mental model conception 
(Bofferding, 2014)—or as equivalent to zero, a transition I mental model concep-
tion (Bofferding, 2014; Hativa & Cohen, 1995; Schwarz et al., 1993–1994). Based 
on formal mathematics, which preferences order-based reasoning (i.e., linear val-
ues), positive numbers have greater value than negative numbers, and negatives with 
smaller absolute values have greater linear values than negatives with larger abso-
lute values.

Traditionally, integer tasks test students’ understanding of these formalities 
while having students compare two integers (i.e., positive versus positive, positive 
versus negative, negative versus negative, and comparisons with zero). In one such 
task with students in second, fourth, seventh, and 11th grades, Whitacre et al. (2017) 
found clear trends by grade level and problem type. Students with more negative 
number experience had higher performance. Further, positive-positive comparisons 
were easiest, followed by positive-negative comparisons, zero-negative compari-
sons, and negative-negative comparisons. Within the negative-negative compari-
sons, Whitacre et al. found that near comparisons (−5 versus −6) were harder than 
far comparisons (−5 versus −100). In general, students in their sample used order- 
based reasoning the most to justify their comparisons and were most successful 
when they used this type of reasoning.

Whitacre et al.’s (2017) study focused on students’ identification of the larger 
integer (in terms of linear value). However, changing the language of the compari-
son question can alter students’ performance. For example, Bofferding and Farmer 
(2018) asked 88 second- and 70 fourth graders to select the hottest of three integer 
temperatures. In both grades, students had the highest performance when all three 
integers were positive and the lowest performance when all three were negative, 
similar to Whitacre et al.’s (2017) findings. However, when asked to identify the 
coldest of three integer temperatures, students had the hardest time with the positive- 
negative comparisons (Bofferding & Farmer, 2018). These mixed comparisons 
were more prone to interference from students’ magnitude reasoning. When all 
three integers were negative, the students also did better when determining which 
integer was coldest as opposed to hottest (Bofferding & Farmer, 2018); the perspec-
tive of the question also influences students’ thinking.

Whitacre et al.’s (2017) results are consistent with reaction-time studies in psy-
chology and the integer order and value mental models described by Bofferding 
(2014). Students exhibiting mental models at Bofferding’s initial and transition I 
levels would likely only do well on positive-positive comparisons or positive-zero 
comparisons because they interpret negatives as positives or as worth zero. These 
nuances are not obvious without interviewing students. However, adding in a “tie” 
option to the comparisons can help clarify students’ conceptions when interviews 
are not feasible. In some of my later work, we gave 47 first graders who completed 
all phases of a larger study (see Bofferding & Hoffman, 2014) a series of integer 
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comparisons. Students chose between two integers or a “tie” option. In comparisons 
with options “4, -4, tie” and “3, -3, tie,” 21 of the 47 first graders chose “tie” for both 
sets; five others selected “tie” for just one set. These responses are consistent with a 
conception of treating negatives as equivalent to positives (or ignoring the negative 
signs). Likewise, five first graders chose “tie” for negative-negative or negative-zero 
comparisons, responses consistent with interpreting negatives as worth nothing or 
as equivalent to each other.

At the next set of levels articulated by Bofferding (2014), synthetic and transition 
II, students understand that negatives are less than positives and zero; therefore, 
positive-negative comparisons would be the next easiest. These students would still 
struggle with negative-negative comparisons, arguing that, for example, −6 is higher 
in the negatives or a larger negative than −2 (Bofferding, 2014). The language used 
in comparison questions can add to or decrease students’ focus on absolute value. In 
the same comparison study described above, the first graders completed compari-
sons where they were asked to determine which of the integers was higher, more, 
closer to 10, and farther from 10. The higher and more responses were significantly 
correlated, suggesting that the students interpreted higher in terms of magnitude 
(Bofferding & Hoffman, 2015)—the use of higher to denote magnitude as opposed 
to order in the number sequence was identified as a source of confusion among 
users on Pinterest.com who tagged material related to negative numbers (Hertel & 
Wessman-Enzinger, 2017). Further, students did better on the order-based compari-
sons closer to 10 and farther from 10 (Bofferding & Hoffman, 2015), possibly due 
to the linear board game some of them played during which they said the integer 
sequence multiple times (see Bofferding & Hoffman, 2014).

This latter result suggests that order-based comparison language may prime stu-
dents’ order-based reasoning, which students across grade levels used successfully 
a higher percentage of the time than magnitude-based reasoning in Whitacre et al.’s 
(2017) study. Wessman-Enzinger (2018) presented a compelling exchange among 
three fifth-grade students who were trying to decide who should go first in a game 
based on who drew the highest card (they drew −8, −7, and − 4). Their exchange 
illustrates the difficulty some students have in aligning magnitude-based concep-
tions with order-based ones, as one student argued that −8 was highest because it 
was the biggest negative while the other two argued that −4 was highest because it 
was closest to one.

Finally, students at transition II and formal levels demonstrate an understanding 
that negatives with larger absolute values (or farther from zero in the number 
sequence) are considered to be smaller than negatives with smaller absolute values 
(or closer to zero in the number sequence). Reaction-time studies often evaluate 
how quickly adults can determine which of two integers is larger, with more recent 
studies also focusing on middle-school students (e.g., Varma & Schwartz, 2011). 
These studies aim to clarify how people extend their positive integer understanding 
to include negative integers, often finding evidence that people use their knowledge 
of positives plus a set of rules to deal with negatives or that they include negative 
integers on their mental number lines (Varma & Schwartz, 2011).
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Table 12.5 Descriptions of mental models for integer values

Mental 
model Description

Initial Students treat negatives as worth positives (ignores the negative signs)
Transition I Students treat negatives as worth zero (or greater than zero but less than positives)
Synthetic Students know positives are greater than negatives; they use absolute value to 

determine which negative is greater: they treat larger negatives as greater than 
smaller negatives

Transition 
II

Students alternate between using absolute value and linear value to determine 
which negative is greater

Formal Students use linear values to determine which number is greater: positives are 
greater than negatives and smaller negatives are greater than larger negatives

If people use rules to make the comparisons, they should be faster on compari-
sons of positive and negatives because they can use the rule that positives are greater 
than negatives; however, if they consult an extended number line, comparisons of 
numbers far apart should be easier than those close together (i.e., exhibit a distance 
effect) (see Whitacre et al., 2017 for a more detailed summary of these two hypoth-
eses). Varma and Schwartz (2011) presented additional evidence suggesting that 
adults use a combination of an extended mental number line plus rules about the 
symmetric nature of the number line in order to make integer comparisons; further, 
based response patterns, they found that middle-school children, who may not have 
reorganized their mental number lines, appeared to use rules for making the com-
parisons. See Table 12.5 for a summary of the integer value mental model levels 
(see also Bofferding, 2014).

A noticeable weakness in the reaction-time studies is they did not use order- 
based questions (i.e., Which integer is closer to [a set number]?) in addition to the 
magnitude-based questions focused on identifying which integer is more or larger. 
People’s willingness to interpret large negatives as large (far from 0 or 1) may 
account for some of the discrepancies noted in their results, especially as profes-
sionals in areas such as chemistry, physics, and computer science refer to negatives 
further from 0 as large negatives. Further, without the option to select “tie,” some 
participants’ performance (especially in the case of younger students) might be 
overestimated based on their random selection of integers. A more important issue 
is whether it is even meaningful to ask comparison questions with magnitude-laden 
vocabulary unless the point of reference is made explicit. The terms “larger” and 
“more” leave themselves open to people interpreting them as “larger negative” or 
larger positive” or “more positive” or “more negative.” Future comparison studies 
should be organized around a context with explicit referents (e.g., hottest or coldest 
temperature to help clarify students’ conception; see Bofferding & Farmer, 2018, 
for further discussion of these issues).
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12.8  From Whole Number to Integer Addition 
and Subtraction

During the conceptual change process, students’ conceptions of any of the elements 
of integer understanding (sequence or order, sign, value, operation) might change, 
while the others remain stable. This results in a variety of responses on integer arith-
metic problems. In the following sections, I illustrate relations among the elements 
in terms of the mental models and how students might solve integer addition and 
subtraction problems, providing examples of how students integrate their separate 
mental models. To do this, I draw on examples from the literature as well as my own 
interviews with first, second, and fifth graders.

12.8.1  Initial Integer Mental Models

There are two versions of initial mental models for integers. The first, whole number 
mental model, is characteristic of students who ignore all negative signs and con-
tinue to operate with negative numbers as if they were positive (Bofferding, 2014). 
For example, when given “5, 4, 3” on a number path with several empty squares, 
one second grader (4.A06) filled in “2, 1, 0” in the empty squares and left the squares 
for negatives blank. Further, when solving problems, the student ignored negative 
signs. When solving −9 + 2, the student said, “Nine plus two…I know this one. This 
one’s eleven.”

The second version of the initial mental model, absolute value mental model, is 
similar in that students treat negatives as having positive values, although they can 
properly order them (Bofferding, 2014). For example, when filling in the number 
path, one second grader (4.B03) correctly filled in “2, 1, 0, -1, -2…-11” in the empty 
squares. However, when reading 3 + −3, the student said, “Three plus three” and 
provided an answer of six.

12.8.2  Transition I Integer Mental Models

Students exhibiting transition I mental models pay attention to the negative sign and 
either interpret it as a subtraction sign or interpret negative numbers as worth zero 
(Bofferding, 2014). One fifth grader (3.T01) correctly filled in negative numbers on 
the number path but sometimes interpreted negative signs as subtraction signs and 
sometimes treated negatives as worth zero. When solving 4  +  −6, the student 
answered 2, effectively solving 6 −  4  =  2. However, when solving 3 − −1 and 
−7 − 3, the same student answered 3 for both, treating the negatives, −1 and −7, as 
worth nothing. Others have also noted students’ tendency to treat negatives as worth 
zero (e.g., Aqazade et al., 2016; Schwarz et al., 1993–1994). Another second grader 
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(3.D02) who only wrote in positive numbers on a number path interpreted negative 
signs as subtraction signs, solving 9 − −2 to get 5 in the following way, “Nine in my 
head and took away two, two times,” subtracting the two twice.

12.8.3  Synthetic Integer Mental Models

Synthetic mental models involve over-focusing on magnitude when working with 
negative numbers although these students know that positives are considered greater 
than negatives (Bofferding, 2014). Some evidence that students exhibit synthetic 
mental models is that they will solve arithmetic problems as if they are positive and 
then make the answer negative (Kuchemann, 1980); this sometimes results in cor-
rect answers, as in the case of interpreting −4 − −3 as 4 − 3 and then making that 
answer (1) negative (−1). One second grader (4.A05) who primarily exhibited a 
synthetic mental model initially interpreted negatives as worth zero saying, “Three 
plus negative three would be three. Because you’re not adding anything.” However, 
in subsequent problems, the student frequently solved the problems as positive and 
added a negative sign. For −8 − 5, the student explained, “Negative eight minus five 
equals negative—I think it’s—yeah, negative three. Because it’s just like eight 
minus five, then you’re making it negative.” The student used similar reasoning 
when solving 3 − −1, answering −2.

One of the difficulties students experience when they solve negative integer 
problems involves knowing in which direction to count (Bishop, Lamb, Philipp, 
Whitacre, Schappelle, & Lewis, 2014). Students who exhibit synthetic mental mod-
els, often use the same interpretation of addition (or subtraction) when adding (or 
subtracting) positive numbers as they do for negative numbers. The same second 
grader as above (4.A05) who solved −8 − 5 as −(8 − 5) also solved −1 + −7 saying, 
“Negative one plus negative seven—negative eight. Because you’re adding one, and 
it’s just like normal numbers. If you were to go seven, eight, that’s—so it’s seven—
negative seven, negative eight.” The student used magnitude reasoning to think 
about addition as getting more in magnitude (addition should result in a number 
with larger absolute value). Likewise, the student incorrectly answered −16 for 
−8 + 8. Similarly, Violet from Bishop, Lamb, Philipp, Whitacre, and Schappelle’s 
study (2014) had difficulty solving problems involving adding or subtracting nega-
tives although she could correctly reason about integer problems if she added or 
subtracted a positive number to a negative one.

Instead of focusing on magnitude, some students focus on a direction that they 
associate with an operation. People tend to associate subtraction signs with a left-
ward direction (Pinhas, Shaki, & Fischer, 2014), leading them to count to the left on 
a number line or count down. Likewise, many students will count in the same direc-
tion regardless of whether they are subtracting a positive number or a negative num-
ber. For example, one fifth grader (3.N13) provided answers consistent with starting 
at the initial number and counting down the second number for subtraction prob-
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lems. On 1 − −6, the student answered −5, consistent with starting at 1 and  counting 
down 6, and on −3 − 3, the student answered −6, consistent with starting at −3 and 
counting down 3.

12.8.4  Transition II Integer Mental Models

Students exhibiting transition II integer mental models sometimes interpret larger 
negatives to have larger values and sometimes interpret them to have smaller values 
than smaller negatives (Bofferding, 2014); likewise, they may be uncertain in which 
direction to count when adding or subtracting.

12.8.5  Formal Integer Mental Models

Formal integer mental models describe responses consistent with the culture’s 
understanding of negatives (Bofferding, 2014). One second grader (3.H07) cor-
rectly filled in a number path with negatives and knew which numbers were consid-
ered higher or closer to positive ten. The student correctly solved problems such as 
1 − −6 by explaining, “I did one minus a negative six, so I went up six.” The student 
also clarified, “Because anything taking away a negative is going up.” Likewise, the 
student correctly knew that subtracting a positive meant going down and correctly 
answered problems such as 4 − 5 = −1 and −7 − 3 = −10. Although this student had 
a perfect score on integer subtraction problems, his mental model for the addition 
operation was still largely tied to increases in magnitude, which led him to give 
inconsistent answers for integer addition problems.

12.9  Wrapping Up

Overall, the process of conceptual change in terms of transitioning from whole 
number understanding to negative number understanding is complex. As illustrated, 
although students may display a formal understanding of integer order and values, 
their solutions to integer addition and subtraction problems may be inconsistent if 
they have not revised their mental models of addition and subtraction. Further, stu-
dents’ thinking might change depending on the context and language used to elicit 
their understanding (Bofferding & Farmer, 2018), but starting the process of learn-
ing negatives early (i.e., at least by second grade) has benefits (Aqazade et  al., 
2017). In order to further our understanding of negative number cognition, it is 
imperative that, as we move forward, we draw on multiple perspectives, including 
mathematics education, neuroscience, linguistics, and psychology.
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In my current work, we draw on multiple perspectives through a series of experi-
mental studies incorporating ideas from cognitive science, mathematics education, 
and linguistics. We investigate children’s understanding of integer values through 
questions using both order-based language (e.g., which number is closest to positive 
or regular ten) and magnitude-based language with the perspective indicated (e.g., 
which temperature is hottest, which number is most positive, which temperature is 
coldest, which number is least negative). Further, we make use of linguistic theory 
to help explain why certain terms might be easier for students to interpret and why 
certain comparisons might be easier (see, e.g., Bofferding & Farmer, 2018). Our 
interventions use methods that have proven fruitful in cognitive psychology (e.g., 
contrasting cases, worked examples, preparation for future learning); they involve 
children comparing, contrasting, and analyzing a series of worked examples of inte-
ger addition or subtraction problems (sometimes paired to highlight a contrast 
between examples) and participating in a lesson on integer addition and subtraction. 
We draw on conceptual change theory and literature on the multiple meanings of the 
minus in our data analysis (see, e.g., Aqazade et al., 2016; Bofferding et al., 2017).

Does instruction in integer order, value, and symbols lead to changes in students’ 
approaches to integer arithmetic? Yes! Because of the number of factors involved in 
our studies, the data is messy, but reflecting on the data as a whole, one result is 
clear: as children begin to notice negative signs and wonder about their values and 
order, they interpret the integer addition and subtraction problems differently and 
thus solve them differently. For example, one second grader (2.W05) started out by 
ignoring all negative signs in addition problems with negatives and determined 
which of two integers was larger based on their absolute values (again ignoring the 
negatives). During the intervention, the student began to notice the negative signs, 
and on the posttest, although 2.W05 still chose which integer was larger based on 
absolute value, the student solved all addition problems by adding the absolute val-
ues of the numbers and making the answer negative (Aqazade et al., 2016).

We are still in the process of sorting through all of the data based on the students’ 
pretest interpretations and the instructional interventions they experienced. However, 
we see some general shifts emerging in students’ integer addition and subtraction 
strategies as they learn more about negatives: shifting from ignoring negative signs 
in arithmetic problems to making all answers negative, shifting from ignoring nega-
tive signs to treating them as subtraction signs, shifting from considering large neg-
atives to be larger than small negatives and operating based on absolute value to 
interpreting negative values based on their linear order and operating based on mov-
ing or counting in a particular direction.

Does instruction in interpretations of integer operations, particularly addition 
and subtraction, lead to changes in students’ conceptions of integer order, value, and 
symbols? This is less clear. In particular, we need a more robust understanding of 
how early instruction in the difference meaning of subtraction (especially in terms 
of directed distances) could impact students’ learning and understanding of integers 
as signed or directed quantities (see Kilhamn, 2018, for an interesting discussion of 
some of these ideas). Likewise, we need a deeper understanding of the impacts of 
early language use around operations (e.g., treating adding as meaning getting 
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more) versus directed language use (e.g., getting more positive). It is through target-
ing the collective knowledge and practices across the fields of linguistics, psychol-
ogy, mathematics education, and others (and acknowledging the immense potential 
that young children have) that we will be able to answer these questions and craft 
instruction and interventions to help students more fully understand the wonderful 
world of negative numbers.
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Chapter 13
Integers as Directed Quantities

Nicole M. Wessman-Enzinger

Abstract Mathematics education researchers have long pursued—and many still 
pursue—an ideal instructional model for operations on integers. In this chapter, I 
argue that such a pursuit may be futile. Additionally, I highlight that ideas of relativ-
ity have been overlooked; and, I contend that current uses of translation within cur-
rent integer instructional models do not align with learners’ inventions. Yet, 
conceptions of relativity and translation are essential for making sense of integers as 
directed quantities. I advocate for drawing on learners’ unique conceptions and 
actions about directed number in developing instructional models. Providing evi-
dence of student work from my research, I illustrate the powerful constructions of 
relativity and translation as students engage with directed quantities.

Keywords Conceptual models · Integers · Integer addition and subtraction · 
Integer instructional models · Integer operations · Number line

13.1  Introduction: Pursuit of the Ideal Instructional Model 
for Integers

The perfect model for teaching and learning operations on integers is the holy grail 
of integer research in mathematics education. After taking over 1500 years to for-
mally account for integers (e.g., Henley, 1999), mathematicians and educators have 
sought the perfect model for integer operations through various contexts, including 
the number line (e.g., Heeffer, 2011; Schubring, 2005; Wessman-Enzinger, 2018a). 
Yet, the use of the much-vaunted number line broke down for nineteenth century 
mathematicians for the operations of multiplication and division (Heeffer, 2011). 
Centuries later, even our social media is proliferated with math teacher chats, 
groups, and tweets posting and discussing their wonderings about instructional 
models for integers. For example, a recent post in a large Facebook group of 
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mathematics education teachers and researcher quickly welcomed 33 different com-
ments (not including replies) on the following question (Mathematics Education 
Researchers, 2017):

Does anybody know a good model of negative integer (number) operations? I am working 
with middle school teacher and students. It’s hard to find a visual model that illustrates the 
meaning of negative number division/multiplication such as 10/−2. Is there a good explana-
tion that makes sense of the operation with a good connection with the division topic?

This holy grail—the ideal model for teaching and learning of integer opera-
tions—will always remain mythical. We will never find the perfect instructional 
model for all integer operations, despite our commitment, because all models for 
integers break down at some point (Galbraith, 1974). Although all models have 
affordances and limitations (Vig, Murray, & Star, 2014), integer instructional mod-
els have particular limitations (Peled & Carraher, 2008) because of the constraints 
on the physical embodiment of negative numbers (Martínez, 2006).

For a few instructional models, some of these affordances and limitations are high-
lighted in Table 13.1. In an article about mythical creatures in The New Yorker, Schultz 
(2017) commented, “One of the strangest things about the human mind is that it can 
reason about unreasonable things” (para. 2). Despite the affordances and limitations 
of instructional models for integers, we can still reason about them. Perhaps this is 
why an ideal instructional model for integers has been pursued so vigorously.

Table 13.1 highlights only a diminutive portion of the different instructional mod-
els that have been proposed across decades of integer research (e.g., Bruno & 
Martinon, 1996; Janvier, 1985; Liebeck, 1990; Linchevski & Williams, 1999; 
Schwarz, Kohn, & Resnick, 1993; Thompson & Dreyfus, 1988). There will always be 
a hunt for the ideal integers instructional model. This pursuit of the unattainable is not 
so uncommon: “The relative plausibility of impossible beings tells you a lot how the 
mind works” (Schultz, 2017). It seems that an ideal instructional model for integer 
operations might exist, for we know that robust models exist for whole number opera-
tions. Furthermore, studies with instructional models for integers make the existence 
of such a model seem plausible because these investigations provide interesting results 
and insights into students’ thinking (e.g., Bofferding, 2014; Tsang, Blair, Bofferding, 
& Schwartz, 2015). Consequently, math educators and psychologists will continue to 
pursue better instructional models for integer operations (e.g., Moreno & Mayer, 
1999; Pettis & Glancy, 2015; Stephan and Akyuz, 2012; Tsang et al., 2015).

Yet, we can do better than pursuing an ideal integer instructional model. In this 
chapter, rather than presenting more top-down integer instructional models, I instead 
point to how conceptualizing integers as directed quantities is a powerful concep-
tual tool. We should focus on the constructions of learners and the integer models 
they create prior to their use of integer instructional models made by adults. It is 
notable that many of our instructional models (those formed by adults) incorporate 
ideas of movement and measurement metaphors (Chiu, 2001; Lakoff & Núñez, 
2000), which align to larger mathematical ideas. This is likely because our students 
naturally employ ideas of movement and measurement; yet, we need to understand 
what learners’ integer constructions around movement and measurement for inte-
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gers look like. Conceptualizing integers as directed quantities, with movement and 
measurement, requires mathematical ideas of translation and relativity.

13.2  Definitions of Relativity and Translation

The conceptualization of integers as directed quantities requires using integers as a 
relative number (Gallardo, 2002; Thompson & Dreyfus, 1988). The starting point 
and directions that are attributed as positive and negative numbers are arbitrary, 
even if intentionally determined making integers inherently relative. Relativity 
entails using the integers as comparative numbers or relative numbers (Wessman- 
Enzinger, 2015). The integers describe relative positions. Zero represents the point 
of reference, which may be intentionally or arbitrarily selected. Distinctively, the 
zero does not represent a quantity of nothing, but is treated as a referent for com-
parison, as one reasons about integers with relativity.

The conceptualization of integers as directed quantities includes both movement 
and measurement as operations with integers are performed (e.g., Bofferding, 2014; 
Chiu, 2001; Lakoff & Núñez, 2000; Thompson & Dreyfus, 1988). These ideas of 
linear movement point to conceptualizations of translations. Translation entails 
using integers as vectors (Wessman-Enzinger, 2015). Integers are often treated as 
vectors moving right or left or up and down a linear model, coordinate plane, or 
three-dimensional space. Zero may be conceptualized as a vector or a translation of 
no movement. Similar to conceptualizations of relativity, the zero can also represent 
any arbitrary point with the addition and subtraction of positive and negative num-
bers representing the translation in one direction or another from the relative 
zero (Thompson & Dreyfus, 1988).

When conceptualizing integers with translation, distance may be used without 
direction specified, called absolute value (Wessman-Enzinger & Bofferding, 2018); 
for example, the distance between -2 and -3 is 1 (going from -2 to -3, or -3 to -2). 
Although it is possible to conceptualize distance without direction, it is still consid-
ered to be drawing upon translation because all distance must be conceptualized with 
direction at some point. When the direction of the distance is explicit, allowing for 
negative distances, this is called directed value (Wessman-Enzinger & Bofferding, 
2018); e.g., the distance from -2 to -3 is -1 and from -3 to -2 is 1. Moving in “more” 
and “least” negative (or positive) directions support use of directed value (Bofferding, 
2014; Bofferding & Farmer, 2018). Translation may also be employed with the use 
of counting strategies because counting fundamentally draws on movement and 
order (Bofferding & Wessman-Enzinger, 2018; Wessman-Enzinger, 2015).

These definitions of translation and relativity describe two broad types of con-
ceptualizations that learners construct as they engage with integer operations. 
Learners’ constructions of relativity and translation are powerful conceptual tools 
for making sense of integers as directed number. We should focus more on the con-
ceptual tools learners construct within instruction rather than top-down integer 
instructional models.
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13.3  Directed Numbers as a Powerful Conceptual Tool

You have the negatives like a thought thing. It’s kind of mental. And, you can like literally 
take away so many apples or slices of pie from someone and you can still have it. And the 
other person would still end up having some. Whereas, negatives, if you have something and 
you take something away from them and they don’t have any, you can still keep taking more. 
But, you don’t really have anything. You still won’t. (Drake, Grade 8)

In this excerpt, we see Drake, a student with 3 years of experience operating with 
negative integers, struggling with the abstract nature of the physical embodiment of 
these numbers. Negative integers, as Drake points out, cannot be physically mod-
eled with discrete objects in our world and are abstracted mathematical objects. 
Although all numbers are abstract, learning about the negative integers demands a 
different realm of abstraction (Fischbein, 1987).

Learners use manipulatives or hands-on activities as they learn whole numbers 
and fractions (e.g., Martin & Schwartz, 2005; Moyer, 2001; Siegler & Ramani, 
2009). For these reasons, mathematics educators might think that one affordance of 
using physical objects with the teaching and learning of integers is that learners 
draw upon something familiar (e.g., Bolyard & Moyer-Packenham, 2006). 
Embodied cognitive scientists and psychologists also recognize that our experi-
ences and actions impact our thoughts (e.g., Barsalou, 2008; Goldin-Meadow, 
Cook, & Mitchell, 2009; Lakoff & Núñez, 2000; Tsang et al., 2015). Yet, there are 
obstacles when extending previous experiences with whole number and physical 
objects to negative integers; negative integers are not naturally extended in the phys-
ical realm and have limitations in physical embodiment (e.g., Peled & Carraher, 
2008; Martínez, 2006). Negative integers, for instance, have to be mapped to the 
physical objects representing them. For example, the use of two-colored chips, or a 
cancellation model, is one way that integers are represented with physical objects, 
where the negative integers are represented by red chips and positive integers by 
black chips (e.g., Liebeck, 1990). A negative integer, -n, is modeled with n objects 
that need to be physically present and countable. Then, -n is represented, by exten-
sion, with each countable object representing -1. A consequence of this type of 
modeling with physical objects is that some problems, such as 2 − -1, may not be 
intuitive and modeling them with physical objects can be challenging (Bofferding & 
Wessman-Enzinger, 2017; Vig et al., 2014).

Consequently, inaugural learning experiences with integers need to overcome 
traditional notions of the physical embodiment of number. Specifically, these learn-
ing experiences need to support the transition from discrete and static ways of think-
ing about number to thinking about number as continuous directed quantities. One 
way to so is to provide learners with opportunities to create their own models, rather 

Fig. 13.1 Alice’s drawing 
of discrete objects that 
supports transitioning from 
discrete to continuous 
objects

N. M. Wessman-Enzinger
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than giving them instructional models. Learners may create models that bridge dis-
crete and continuous representations of integers (see, e.g., Fig. 13.1).

Figure 13.1 illustrates work from a Grade 5 student, Alice, who drew two sets of 
discrete objects, 4 tallies to the left, and 2 tallies to the right when solving 4 − □ = 6.

Alice: [Draws four tally marks. Thinks for a bit and draws two more tally marks 
lower and to the right. Then writes -2 in the box.] I did four minus negative 
two and I got six because … I did four right here (points to upper tallies) and 
two (points to lower tallies). And, then this is six.

Teacher-researcher: How did you know it was -2?
Alice: Well, because I did two… I did it backwards (moves pen across 4 − -2 = 6). 

If I did two plus four I got six. So, then I thought it would be negative two.
Teacher-researcher: What do you mean by backwards?
Alice: If like six (points at 6) minus two would give you four [6 − 2 = 4]. So, I 

thought four minus negative two would give you six [4 − -2 = 6].

Alice used additive inverses, changing 4 − □ = 6 to 6 + □ = 4. She used 6 − 2 
(instead of stating 6 + -2) when she solved this. Building on her discrete representa-
tions, she made analogies to whole number addition and subtraction (e.g., “working 
backwards,” comparing to 6 − 2). Her representation of discrete objects, paired with 
addition and subtraction, points to potential for developing notions of directed number. 
Instructional experiences could connect Alice’s invented reasoning to her drawing. A 
teacher could ask, “In what ways is Alice’s drawing related to her strategy?” Then, her 
drawing could leverage ideas of movement; that 4 − □ = 6 and 6 + □ = 4 can represent 
equivalent situations. Or, her representation could be built upon and turned into a con-
tinuous model (e.g., her tallies can be related to spaces on a number line).

As learners transition from thinking about whole number operations to integer 
operations, a wealth of significant conceptual changes need to occur (Bofferding, 
2014). As Drake’s excerpt above illustrates, learners need to transition from physi-
cally operating with number to “thought things.” Some of the potential challenges of 
transitioning from thinking about whole numbers to integers are highlighted below:

• Whole numbers can be physically embodied naturally with counting objects 
(e.g., Smith, Sera, & Gattuso, 1988); integers have limitations with physical 
embodiment, especially with counting physical objects (Martínez, 2006; Lakoff 
& Núñez, 2000).

• Whole number units are positive (Steffe, 1983); integer units are positive units or 
negative units.

• Whole number direction is one-directional; integer direction is two-directional 
(Bofferding, 2014).

• Whole numbers have similar order and magnitude, 2 < 5 and |2| < |5|; integers 
have different order and magnitude, −2 > −5 and |−2| < |−5| (Bofferding, 2010, 
2014; Wessman-Enzinger, 2018a, c).

• Integers are relative numbers (Gallardo, 2002) in ways that only positive num-
bers are not.

Engaging with directed number as an inventive, playful “thought thing,” outside 
of pre-determined instructional models, may help learners make these transitions 
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(Bofferding, Aqazade, & Farmer, 2018; Wessman-Enzinger, 2018b, c). Directed 
quantities—an inherent part of making sense of integer operations (Poirier & 
Bednarz, 1991; Ulrich, 2013; Thompson & Dreyfus, 1988)—is a rich place to enter 
discussion about what thinking about integer operations entails: relativity and trans-
lation. Although thinking and learning about integers as directed quantities may 
have challenges, I argue that conceptualizing integers as directed quantity offers 
more than any singular instructional model. The following sections delineate some 
of the ways children construct directed quantities through the lens of the mathemati-
cal ideas of relativity and translation. Learners make sense of directed number in 
powerful ways (e.g., Bofferding, 2014; Bishop, Lamb, Philipp, Whitacre, Schappelle, 
& Lewis, 2014; Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2016), negating 
the need to find the mythical, perfect instructional model for integer addition and 
subtraction. Examples of student work later in this chapter highlight that if we build 
on learners’ created models, rather than giving top-down models, there is no longer 
a need for a singular, ideal integer instructional model. The tenants of directed num-
ber, like translation and relativity, are often overlooked in descriptions of children’s 
thinking; examining these specific ways of thinking can provide insight into the 
most robust types of models. Yet, if we build on learners’ constructions of number 
as the “instructional model” instead, then we need to describe their constructions of 
translation and relativity in more depth.

In the following sections, I describe translation and relativity as components of 
understanding ways learners construct directed quantities. Specifically, I address the 
following points:

 1. There are rich historical backgrounds that support the conceptualizations of 
translation and relativity of integers; as a society we grappled with ideas of trans-
lation and relativity for centuries.

 2. Existing research highlights the capabilities and thinking of learners as they 
engage with integer addition and subtraction; yet, how learners construct ideas of 
relativity is underrepresented.

 3. Many different contextual situations and problem types support different ways of 
thinking about translation and relativity of integers; one instructional model 
alone cannot fulfill these needs.

 4. Children create powerful ways of thinking with translation and relativity that are 
significantly different than traditional integer instructional models. Children’s 
unique constructions will point us in better directions for thinking and learning 
in instructional spaces.

13.4  Coordinating Relativity and Integers as Directed 
Quantities

The idea of relativity is a mathematical concept that extends itself beyond integer 
operations (e.g., choosing to use a Cartesian coordinate plane or polar coordinate 
plane is an example of relativity). In this section, I discuss the idea of coordinating 
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relativity with integer addition and subtraction as a conceptual tool to make sense of 
integers as directed number.

13.4.1  A Historical Perspective of Relativity

Nineteenth century North American arithmetic and algebra texts first present inte-
gers as relative numbers (Wessman-Enzinger, 2018a). Some of the first illustrations 
of the number line in North American school mathematics arithmetic and algebra 
texts included a relative number line. It is worth noting that the relative number line 
in Fig. 13.2 does not highlight zero, but rather a point “O,” where numbers to the 
right are positive numbers and numbers to the left are negative numbers.

The mathematical concept of relativity, which is foundational for using integers 
as directed number, evolved over time (Wessman-Enzinger, 2018a). Our modern 
definition of integers, with integers as a subset of the real numbers and rational 
numbers, prioritizes the integers as objects and overlooks relativity. Current curri-
cula and standards do not support extensive time to build the integers conceptually 
(e.g., integers are often not in the elementary curricula). Our modern curricula and 
standards, in fact, omit ideas of relativity with integers. Yet, without relativity tradi-
tional instructional cancellation models do not work well with subtraction. Consider, 
for example, illustrating 2 − -3 with a two-colored chip model. One needs to use 
relativity to represent 2 in multiple ways in order to remove -3 chips.

Our modern curricula and standards even treat the integers as though they are 
fixed objects on a number line (e.g., negatives must always go on the left side of the 
number line). These types of ideas, such as negative integers being placed anywhere 

Fig. 13.2 Illustration of a relative number line in Durrell and Robbins (1897, p. 20)
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on the number line (e.g., negatives on the right side instead of the left side), are 
absent from curricula and standards. Our standard documents (e.g., National Council 
of Teachers of Mathematics, 2000; National Governors Association Center for Best 
Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010) do not 
highlight the relativity of integers. The implication is that learners must implicitly 
think about and use relativity; yet, relativity is essential for constructing directed 
number. Learners need time to conceptualize and build their meanings of relativity, 
which they might do naturally if allowed to construct models for themselves.

Despite the lack of emphasis on developing relativity in modern standards and 
curricula, researchers have reflected on it. Gallardo (2002) points to different under-
standings of integers, making explicit that one of those includes recognizing inte-
gers as relative numbers. Carraher, Schliemann, and Brizuela (2001) reflected on an 
N-number line, where the ordering is centered on N (e.g., N − 3, N − 2, N − 1, N, 
N + 1, N + 2, N + 3). A distinguishing element of this N-number line is that N is 
unknown and could be represented by any number, thus incorporating the idea of 
relativity. The N-number line presented by Carraher et al. captures the essence of 
“relative numbers” and “relative number lines” found in early arithmetic and alge-
bra texts in the nineteenth century (see, e.g., Durell and Robbins, 1897; Loomis, 
1857). For example, Loomis (1857) began his introduction of the negative integers 
by describing the order of the negative integers through the context of the thermom-
eter. After discussing the thermometer and ordering, Loomis commented on relativ-
ity in reference to contexts beyond temperature:

It has already been remarked, in Art. 5, that algebra differs from arithmetic in the use of 
negative quantities, and it is important that the beginner should obtain clear ideas of their 
nature. In many cases, the terms positive and negative are merely relative. They indicated 
some sort of opposition between two classes of quantities, such that if one class should be 
added, the other ought to be subtracted. Thus, if a ship sails alternately northward and 
southward, and the motion in one direction is called positive, and the motion in the opposite 
direction should be considered negative. (pp. 18–19)

In this description, the integers are described as a relative number, where two 
directions are provided in “opposition” from an arbitrary referent.

13.4.2  A Contextual Perspective of Relativity

Say you are down five runs in the first inning of a baseball game. And you end up losing by 
fifteen runs. You would have to have ten runs in the other innings to be down by fifteen runs. 
(Joseph, Grade 8, -5 + □ = -15)

Joseph, posing a story for -5 + □ = -15, makes use of integers as relative num-
bers with an unknown referent. When Joseph posed this story for the first time, I 
remember initially thinking this was quite a novel context—and then, I reflected on 
the mathematics he employed. What is the score of the game? Although the score of 
the game is unknown, the zero in Joseph’s context represents a “tied game.” Joseph 
drew on the relativity of the negative integers, illustrating runs below the tied score 
(i.e., the unknown referent).
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Many contexts implicitly use integers as relative number: up and down runs in a 
baseball game without a known score (Wessman-Enzinger & Mooney, 2014); 
increases and decreases in money in a piggy bank with an unknown amount of 
money (Ulrich, 2012); getting on and off a train with an unknown number of riders 
(Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2010). As learners coordinate 
their understanding of relativity with the integers in contexts, they must first deter-
mine a relative position, which points out the need for learners coordinate what a 
relative zero is.

Herbst (1997) reflected on how translation is related to relativity. He wrote, “The 
statement of an addition of the number line involves the juxtaposition of two arrows, 
a relative position” (p. 38). Herbst’s reference to this relative position is similar to 
referencing a relative zero, or a starting location that uses 0. Similarly, Marthe (1982) 
used a river problem for investigating the thinking and learning of integer addition 
and subtraction. In this problem, the positive integers represented moving upstream 
and the negative integers represented moving downstream. This upstream and down-
stream movement is relative to the initial starting point on the river. Wherever one 
starts at on the river, represents the zero. Exactly where one starts at this river is 
unknown; yet, everything is measured from this point. This is a relative zero. Because 
part of conceptualizing relativity requires using zero as an unknown reference (with 
an infinite number of possibilities), this may be challenging for learners.

Ulrich (2012) referred to this use of zero as an unspecified reference point. 
Similar to Joseph’s story where we do not know the score of the tied game, Ulrich 
defined an unspecified reference point as being able to conceptualize changes with-
out an actual quantity known. Ulrich highlighted that this ability to think about rela-
tivity and use an “unknown” reference point, like Joseph did in his story, impacts 
students later in mathematics. For example, unknown reference points are important 
when working with vectors and matrices in linear algebra. Although we use concep-
tions of relativity beyond making sense of directed number, we lack explicit explo-
rations of how these types of conceptions develop early on with directed number. 
The next section provides an example how a Grade 5 student constructed use of 
relativity with directed number.

13.4.3  Illustration of Relativity and Directed Quantities: 
The Case of Jace

Figure 13.3 illustrates the work of a Grade 5 student, Jace, for the same number 
sentence type (i.e., -a + □ = b, where |a| < |b|; Murray, 1985) at two different points 
in a 12-week teaching experiment (Steffe & Thompson, 2000) focused on integer 
addition and subtraction. Jace produced the drawing for -4 + □ = 10 during his first 
individual open number sentence session with me and produced the drawing for 
-6 + □ = 15 during his second individual open number sentence session. In the first 
session, Jace created an empty number line with -4 on the left and 10 on the right. 
He then used three sets of distances, with varying direction: -4 to 0 (a distance of 4, 
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Fig. 13.3 Two number 
line drawings produced by 
Jace, a Grade 5 student, 
illustrating use of relativity 
with directed number

left to right), 0 to 4 (a distance of 4, left to right), and 10 to 4 (a distance 6, right to 
left). After summing his three distances, he concluded that the solution to -4 + □ = 10 
is 14. In contrast, when solving -6 + □ = 15 2 weeks later, Jace placed -6 on the 
right side and 15 on the left of the empty number line. This differed from the first 
session in that the negative numbers are represented on the right side of the number 
line, rather than the left side. Also, he found two distances, instead of three: first 
examining 15 to 0 (a distance of 15, left to right) and then going from -6 to 0 (a 
distance of 6, right to left).

First, Jace’s drawings of empty number lines highlight that the use of integers as 
a directed number ultimately requires using integers as relative number. Whether 
the integers are on the left or the right side of the number line, both of these repre-
sentations are correct. Although our culture, curricula, representations of mental 
models, models in mathematics education, and research place negative numbers on 
the left side of a horizontal number line or on the bottom of a vertical number line, 
children do not necessarily attend to these conventions.

Second, Jace started to develop conceptions of zero as a referent. In the first 
drawing, he produced a number line with zero as a number on the number line. By 
the second drawing, we see that he, in fact, omitted an explicit 0. Yet, in both cases, 
he drew on 0 as a flexible referent to find the distances.

Third, Jace’s strategy of finding the distance implicitly used directed number 
relatively for determining the absolute value or distance. Jace physically illustrated 
directed number from one relative number to another with motions and drawings, 
using these motions flexibly (sometimes right to left, other times left to right). When 
solving -6 + □ = 15, for example, Jace first moved his marker from left to right (i.e., 
15 to 0) and then right to left (i.e., -6 to 0). Jace accounts for incremented distances 
verbally and flexibly, writes only these distances above his number line, and uses 
these distances to determine the solution of the directed distance (i.e., he sums of the 
two absolute values required to translate -6 to 15).

13.4.4  Connecting Themes of Relativity Across Mathematics 
Education and Developmental Psychology

Although the use of integers as relative numbers seems underemphasized in both 
mathematics education (i.e., not mentioned in curricula or standards documents) 
and developmental psychology (i.e., relativity has not been directly investigated), 
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relativity is addressed both explicitly and implicitly in mathematics education and 
developmental psychology research. As illustrated above, the relativity of integers 
is an integral part of mathematics and thinking about directed number. What entails 
the starting point of the physical movement (i.e., our unknown referent)? Are the 
positive integers on the right or left side of a horizontal number line? Is the move-
ment associated with adding or subtracting one-dimensional, or is that relative as 
well? These notions of relativity have implications for embodied cognition (e.g., 
Lakoff & Núñez, 2000), mental models (Bofferding, 2014), and integer instruc-
tional models (e.g., Saxe, Diakow, & Gearhart, 2013). Not only are integers relative 
numbers (Gallardo, 2002; Schwarz et al., 1993), conceptualizing relativity is implic-
itly imbedded in our work. Now, we need to learn more about how learners con-
struct conceptualizations about relativity as it pertains to directed number.

13.5  Coordinating Translation and Integers as Directed 
Quantities

In contrast to the relativity of integers, coordinating translation and the integers as 
directed quantities represents a prominent theme in both mathematics education and 
developmental psychology from describing thinking to describing integer instruc-
tional models. In terms of integer instructional models, Herbst (1997) discussed the 
use of the number line metaphor as a way to make sense of integer addition and 
subtraction. Lakoff and Núñez’s (2000) identification of order as a foundational 
component of mathematical cognition supports and informs the use of integers with 
translation. Whether talking about integer instructional models or ways of thinking 
about directed number, negative numbers may be constructed as point locations 
within this motion metaphor. Using a motion metaphor draws on the idea of sym-
metry on the number line (Herbst, 1997; Lakoff & Núñez, 2000). Ubiquitous peda-
gogical approaches support thinking about the addition or subtraction of integers as 
translations (e.g., Nurnberger-Haag, 2007; Tillema, 2012).

Although number lines (e.g., Saxe et al., 2013) and movement on linear scales 
(e.g., Nurnberger-Haag, 2007) are prevalent pedagogical tools, children do not nec-
essarily construct movement or use number lines like top-down integer instructional 
models dictate (Wessman-Enzinger, 2018b). Rather, children create unique uses of 
movement and number line. These learner-generated constructions provide a con-
ceptual tool for making sense of integers as directed number.

13.5.1  A Historical Perspective of Translation

The concept of a number line is foundational, not only for informing thinking and 
learning about translation, but also for informing current research in mathematics 
education on student thinking about number, and specifically negative integers (e.g., 
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Bofferding, 2014; Saxe et al., 2013). Although historical developments of a concept, 
such as number line, may not parallel educational and psychological developments, 
a deep understanding of the past can offer researchers and educators perspectives on 
the present and help them make decisions for the future. As Sfard (2008) pointed 
out, “one becomes … bewildered when one notices the strange similarity between 
children’s misconceptions and the early historical versions of the concepts” (p. 17).

Historically, we know that although some mathematicians had conceived of the 
number line in the seventeenth and eighteenth centuries (e.g., Wallis, 1685), most 
mathematicians and educators did not refer to number lines when attempting to make 
sense of operations with negative integers (Heeffer, 2011). Rather, mathematicians 
during the seventeenth and eighteenth centuries often made sense of negative inte-
gers by using contexts, such as debts of money, or incorporated geometrical 
approaches within explanations of rules of operations with negative integers 
(Wessman-Enzinger, 2018a). Heeffer (2011) presented historical evidence that math-
ematicians struggled in the past using number lines with operations, such as division, 
in their efforts to make sense of negative numbers and their operations. Indeed, the 
number line as a pedagogical tool evolved over several centuries to be incorporated 
into school mathematics (Wessman-Enzinger, 2018a)—with illustrations of the 
number line itself delayed for centuries after verbal descriptions of it. And, texts that 
included references to number line often paired it with contextual situations.

The historical struggle of mathematicians connecting operations with integers to 
the number line points to conceptual struggles of using the integers and number 
line; however, these are not necessarily places where the number line actually breaks 
down as contemporary learners engage with integers. Reflecting on potential break-
ing points for integers and number line, Liebeck (1990) stated, “The number line, 
then, emphasizes ordinality at the expense of cardinality” (p. 237). Liebeck hinted 
at the idea that the number line is not an infallible tool and certain integer instruc-
tional models, like number lines, offer different affordances. The number line is an 
important pedagogical tool, but specific tools may support some ways of reasoning 
more than others. Liebeck points to a conceptual leap that a child may have to 
undertake to begin to use the number line with integer operations—ordinality over 
cardinality.

In terms of using a number line, integer operations are often paired contrived 
rules. For example, Nicodemus (1993) described a “Linesman” where a human is 
standing on a number line facing right, negative number represents facing the oppo-
site direction or walking backwards, and addition and subtraction represent moving 
forwards or backwards. Herbst (1997) also found these types of rules in a textbook 
analysis. For example, when considering the number sentence 2 − -3, it is suggested 
that one conceptualizes starting at 2 on the number line, turning around, and walk-
ing backwards three spaces on the number line, ending at 5.

These types of rules may not be intuitive to children, yet metaphors of movement 
are (e.g., Lakoff & Núñez, 2000). However, even these intuitions of movement do 
not guarantee that children will construct our cultural convention of a number line 
and translations on that number line. How will children use number line and integer 
operations, without us imposing our conventions and models on them?
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We know that a major challenge that children may have, for example, with the 
number line is that the distance unit between the tick marks is to be used, not the tick 
marks themselves (Carr & Katterns, 1984; Ulrich, 2012). When learners count the 
tick marks, rather than the distances between the tick marks, they will end up with 
one more (or one less) than anticipated (Barrett et al., 2012). A major assumption 
with the number line as an integer instructional model is that learners will be able to 
extend their previous knowledge about whole numbers and the number line to oper-
ations with the integers and the number line. Ernest (1985) stated that the “number 
line model does not have any compelling inner logic. Instead it assumes familiarity 
with underlying representational conventions, which are to some extent arbitrary” 
(p. 418). Major assumptions of using the number line as an integer instructional 
model are that it is used in similar ways and that it supports learners’ ways of think-
ing. Yet, we know that the same integer instructional model is not used in the same 
way by teachers (e.g., Murray, 2018). We also know that children create unique and 
sophisticated ways of working with integers (e.g., Bofferding, 2014; Bishop et al. 
2016) that often surprise us.

Although the number line can certainly be tool for extending whole number rea-
soning with integers, we have to re-evaluate ways that it is developed and used. It 
took centuries for mathematicians to develop and use the number line; our students 
need time to develop use of the number line, particularly with integers. Learners 
may extend their use of a number line with whole number by using a number path 
(Bofferding & Farmer, 2018) incorporating negative integers. They may or may not 
use the number line as mathematically or culturally expected (e.g., Wessman- 
Enzinger & Bofferding, 2014; Wessman-Enzinger, 2018b). We cannot expect learn-
ers to create number lines that necessarily align with our cultural conventions.

13.5.2  A Contextual Perspective of Translation

Most research literature that discusses transformations of integers is specifically 
focused on translations (Marthe, 1979; Thompson & Dreyfus, 1988; Vergnaud, 
1982) in contextualized situations for addition and subtraction only. While some 
researchers have pointed to using translation as a way to think about integer addition 
and subtraction (e.g., Wheeler, Nesher, Bell, and Gattegno, 1981), other research-
ers, like Marthe (1979) and Vergnaud (1982), have provided problem types that 
support translation as well. Bell (1982), Marthe (1979), and Vergnaud (1982) pre-
sented integer addition and subtraction as beginning with a relative number or initial 
starting point, using a translation, and then ending at a relative number or final end-
ing point. Supporting this work, Bishop, Lamb, Philipp, Whitacre, and Schappelle 
(2014) shared that the children in their study solved integer problems with transla-
tion: “Starting point + Change = Ending Point.” Directed number can be conceptu-
alized as more than just “Starting point + Change = Ending Point,” but also can be 
used with distances or difference (Bofferding & Wessman-Enzinger, 2017; Selter, 
Prediger, Nührenbörger, & Hußmann, 2012; Whitacre, Schoen, Champagne, & 
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Goddard, 2016). Thus, a variety of both contexts and problem types provide differ-
ent opportunities for conceptualizing the integers (Wessman-Enzinger & Mooney, 
2014; Wessman-Enzinger & Tobias, 2015).

Although many of the contexts used for whole numbers include discrete objects 
without movement (Carpenter, Fennema, Franke, Levi, & Empson, 2015), learners 
also engage in contexts with linear movement that supports translation as it begins 
to work with negative integers. We also know that different problem types support 
different ways of reasoning for whole number (Carpenter et al., 2015); this is likely 
the case for integers and translation as well.

For translation problem types, Marthe (1979) classified different problem types 
for additive structures for integers. The first category was SiTSf, where the initial 
state (Si) is translated (T) to the final state (Sf). Marthe then described that any of Si, 
T, or Sf could be the unknowns in a given problem. A second category Marthe 
described was T1T2T3. He described T1, T2, and T3 as “transformations” although 
they can also be described as linear translations. From this problem type, Marthe 
described that there are three subsequent problems that can be posed, where T1, T2, 
or T3 are unknowns, and T1, T2, or T3 have differing magnitudes and signs. Marthe 
provided contextual examples of each of these problems. For example, for the prob-
lem type T1T2T3 with T2 unknown, T1 and T3 with opposite signs, and |T1| <  |T3|, 
Marthe provided the example, “A car makes an initial journey of 20 km upstream. 
Then it makes a second journey. If it had made only one journey from its starting 
point to its destination, it would have made a journey of 25  km downstream. 
Describe the second journey” (p. 156). Marthe stated that this problem type is more 
challenging than STS.

Temperature is an example of a context for connecting integer operations to 
directed number, with both translation and relativity (Altiparmak & Özdoğan, 2010; 
Beatty, 2010; Bofferding & Farmer, 2018). Using the context of temperature, we 
modified the Marthe (1979) problem types to include a distinction between directed 
distance and undirected distance, with state-state-translation (SST) and state-state- 
distance (SSD), respectively (Wessman-Enzinger & Tobias, 2015). When a problem 
is posed with two given relative numbers and the translation is unknown, this is 
classified as an SST problem. Whereas, when a problem with two numbers and a 
distance, without a clearly distinguished direction, this is considered to be an SSD 
problem (see Table 13.2 for the distinction between SST and SSD). Consider the 
SST problem type posed by a prospective teacher: “It was 12° outside Wednesday. 
It was 17 below zero degrees Thursday. How much had the temperature dropped 
since Wednesday?” Compare this to the SSD problem type posed by a prospective 
teacher: “One day in New York it is -14 degrees out. In Maine the same day it was 
-20°. What is the difference between the two states’ temperatures?” The distinguish-
ing feature of the SSD problem type from the SST is that no direction is provided in 
the problem. The problem types modified from Marthe (1979) are summarized in 
Table 13.2 below.

Similarly, in terms of the STS problem type, Vergnaud (1982) pointed out that 
the minus sign can illustrate a translation, or the minus sign can represent the inver-
sion of a directed translation, which is more challenging. The “minus sign” is used 
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Table 13.2 Relativity and translation problem types from Wessman-Enzinger and Tobias (2015)

Problem 
type Description

STS A problem posed with a relative number and a translation, with the second relative 
number as the unknown

TTT A problem posed with two given translations and the third translation is unknown
SST A problem posed with two given relative numbers and the translation is unknown
SSD A problem posed with two relative numbers and a distance, without specified 

direction

for finding differences; yet, the plus sign can also mean a difference between two 
directed numbers of different signs. Vergnaud, for example, provided “x + (+4) = -3, 
x = (-3) − (+4) = -(3 + 4)” (p. 73) and stated, “My view is that equalities and equa-
tions do not fit equally well all situations met and handled by learners, but only a 
few of them” (p. 74). In terms of using translation, Vergnaud made an important 
distinction that thinking about moving backwards two units from 1 may be repre-
sented by both the expression 1 − 2 or 1 + -2; however, these expressions may not 
conceptually represent this situation equally for the student.

As Vergnaud highlights, I have similarly found in my own work that children’s 
thinking about contextual problems with integers, and the number sentences they 
write, do not always match the context (Wessman-Enzinger, in press). Three Grade 
5 children (Alice, Jace, Kim) solved the following problem:

The warmest recorded temperature of the North Pole is about 5° Celsius. The warmest 
recorded temperature of the South Pole is about -9° Celsius. Which place has the warmest 
recorded temperature? And, how much warmer is it?

Alice, Jace, and Kim each wrote different number sentences: 5  −  -9  =  14, 
-9 + 5 = 4, and 5 + 9 = 14, respectively (Fig. 13.4).

How learners conceptualize this problem does not necessarily coordinate with 
the problem type, but it might. Here we see that both Alice and Kim obtained the 
solution of 14, yet Kim did not even use subtraction (i.e., 9 + 5 = 14). For Kim, 
5 − -9 = 14 did not conceptually match this context; she stated that she did not agree 
that subtraction should be involved when one is adding distances. Similarly, Alice 
did not agree with 9 + 5 = 14 initially because she stated that +9 is not in the context 
of the problem; -9 is. Alice’s conceptualization matched the problem type (SST); 
but, Kim’s conceptualization of the problem did not. In this vein, although various 
problem types for integers may provide insight into how learners solve problems, 
they do not necessarily solve the problems with translations as we expect.

Thompson and Dreyfus (1988) provided a rich instructional context in a micro-
world, called INTEGERS, for two Grade 6 students in order to investigate concep-
tions about integers. Within the microworld, the Grade 6 students solved contextual 
problems that were often of the problem type TTT, even illustrating directed num-
bers as linear vectors on a horizontal number line. For example, they constructed 
two different translations of a turtle and determined the net translation of the turtle 
with the vectors. Thompson and Dreyfus conducted the teaching experiment using 
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these net translations for 6 weeks. Similar to Thompson and Dreyfus (1988), but 
using a person instead of turtle, Liebeck (1990) included a number line with a per-
son that moved along this number line. Liebeck’s activity differed from Thompson 
and Dreyfus as it did not incorporate visualized directed vectors. Liebeck’s activity 
also supported a different problem type—STS. Students in Liebeck’s study started 
at different relative points, such as 2 or -5, translated the person from that point, and 
then found the ending point. Addition and subtraction of integers was described as 
“when we add, we move forwards” and “when we take away, we move backwards,” 
respectively (p. 233). Liebeck provided a table for students to record the starting 
place, moving forwards or backwards, the ending place, and then the “answer” or 
the number sentence. This use of the person moving on the number line related to 
the STS problem. Both the contexts from Thompson and Dreyfus (1988) and from 
Liebeck (1990) used a conventional number line (e.g., partitioned, negatives on the 
left) and interpreted addition and subtraction unidirectionally (i.e., subtraction 
moves left on a conventional horizontal number line).

The contexts of Thompson and Dreyfus (1988) and Liebeck (1990) facilitated 
students’ thinking about integers and translation, and there are many other contexts 
that may also support thinking about integers and translation. Some of these contexts 
include: a timeline with BC and AD dates (Gallardo, 2003); temperature increasing 
and decreasing (Wessman-Enzinger & Tobias, 2015); traveling up and down a river 
(Marthe, 1979); riding in an elevator (Iannone & Cockburn, 2006; Larsen & Saldanha, 
2006); and balloons moving up and down (Janvier, 1985; Reeves & Webb, 2004). 
Despite all of these contexts supporting linear movement and directed number, some 
of the contexts support different types of conceptualizations of translation. The con-
text used by Thompson and Dreyfus (1988) supports net translations (i.e., TTT); the 
context used by Liebeck (1990) and grounding metaphors with movement support 
identifying a relative number and translating to another relative number (i.e., STS); 
and, other contexts, like temperature (e.g., Wessman-Enzinger, in press), support 
using directed and undirected distance (e.g., SST, SSD). While there is often a quest 
for a “perfect” instructional model or a meaningful context for integers, these exam-
ples illustrate how working within a variety of contexts and problem types provides 
different opportunities to think about and work with integers as directed number, all 
of which are crucial for understanding integers.

Selter et al. (2012) differentiated between the take-away and difference models 
of subtraction. These models are related to both the problem types discussed above 
and to conceptualizations of translation. SST and SSD problem types are directly 
related to the difference model of subtraction, with one representing a directed dis-
tance and the other an undirected distance, and STS problem types seem related to 
the take-away model, with the change or “take-away” as a directed movement. 
Although STS, SST, and SSD are presented above as problem types in contexts, 
these problem types also point to ways that learners may conceptualize translations 
with integer addition and subtraction. Interpreting integer subtraction often requires 
a transition from take-away models of subtraction to distance models of subtraction 
(Bofferding & Wessman-Enzinger, 2017; Whitacre, Schoen, Champagne, & 
Goddard, 2016). Yet, our top-down instructional models for integer addition and 
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subtraction do not explicitly support these transitions. Learners are capable of 
inventing their own constructions, using their own conceptions of translation to cre-
ate ways to deal with integer subtraction and transition. Learners’ ways of reasoning 
can be supported, in alignment to structures we understand (e.g., distance models, 
SST, SSD), without top-down integer instructional models (e.g., walk backwards, 
turn around, on a number line).

13.5.3  Illustration of Translation and Directed Quantities: 
The Case of Kim

The following example illustrates a student construction that differs substantially 
from conventional integer instructional models that support translation and directed 
quantities. Figure 13.5 illustrates a drawing of an empty number line from a Grade 
5 student, Kim, at the end of a 12-week teaching experiment. Kim’s number line 
highlights how she used directed quantity in unconventional ways. It is important to 
note that in this teaching experiment I did not provide any instructional models 
(e.g., chips models, number line models) to the students, and provided students only 
open number sentences or contexts without illustrations. The following excerpt of 
transcript is from when Kim solved -1 − □ = 8 shown in Fig. 13.5.

Negative one minus something would equal eight. So if I did nine, it would be negative ten. 
So I turned it into a negative nine and so, it’s sort of like this (starts drawing a number line). 
Here’s a negative one (marks negative one on the number line), here’s zero (marks zero on 
the number line). That’s really far. Then right here is eight (marks eights on the number 
line). Then, nine, that’s, they’re both negative so you’re going to subtract regularly. So like 
five minus three, you are going to subtract regularly with positive numbers, but it’s negative 
numbers this time. When you do subtract it nine is a lot greater than the starting off number. 
So, it’s going to hit zero when it’s lost one (mark number line). And, then there’s eight 
remaining over and then you can just like go into the positive though (waves hand to the 
right). You know, keep going with your remaining eight and get eight.

Kim constructed empty number lines like the one in Fig. 13.5, where she used 
STS as a strategy for integer subtraction: she started at a relative number and trans-
lated right to a second relative number. Integer subtraction like this conventionally 
may be thought of as the distance between two states, where -1 − □ = 8 would be 
conceptualized as the distance between -1 and -9. Instead, Kim uniquely used 
motion and a directed number starting at -1 and translating “-9” units to 8. Kim 
stated, “it’s going to hit zero when it’s lost one,” decomposing the -9 units to -1 and 

Fig. 13.5 Kim’s unique 
use of translation and 
directed quantity with 
integer subtraction
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-8 and using negative distance or directed number. Kim created a strategy where 
subtraction moved right (see Fig.  13.5), when traditionally subtraction involves 
moving left on this type of conventional number line (i.e., negative numbers on the 
left and positive numbers on the right). Comparing this to whole number reasoning, 
where addition moves right, marks this type of reasoning a powerful construction. 
Furthermore, she conceptualized distance as negative (see the “-1” written above 
the empty number line). Comparing the use of negative distance to whole number 
reasoning, where distance is always positive and not directional, marks another area 
of a distinct invention.

Kim’s empty number line drawing and use of directed quantity highlight the 
uniqueness of her constructions, relative to typical instructional models for integer 
addition and subtraction. Kim’s example provides evidence of a sophisticated and 
unique mathematical construction from a Grade 5 student. Her construction does 
not align well with current integer instructional models, yet does draw on the ideas 
of motion.

Using movement on the empty number line, Kim used her translations with addi-
tion and subtraction flexibly. That is, addition moved right on her empty number 
line (with positive directed distance) and subtraction also moved right on her empty 
number line (with negative directed distance). Comparing this to reasoning with 
whole number, where all directed distance is positive—addition moves right and 
subtraction moves left on a number line like hers—is novel. Furthermore, many 
instructional models for integer addition and subtraction maintain this type of whole 
number reasoning with the integer models (i.e., where addition moves right only 
and subtraction moves left only, but uses integer operations). Thus, Kim’s construc-
tion and flexibility of using both addition and subtraction for moving right on her 
number line is powerful. Kim’s construction offers a perspective on integer addition 
and subtraction where distance is relative (distance can be positive or negative) and 
movement is relative (subtraction can move right or left). Kim’s invention high-
lights a way of thinking about integer subtraction absent from current integer 
instructional models and even subtraction models of take-away and distance.

13.5.4  Connecting Themes of Translation Across Mathematics 
Education and Developmental Psychology

Although the use of integers with translation is emphasized in both mathematics 
education and developmental psychology (e.g., use of movement on number line), 
the use of translation that is represented, both explicitly and implicitly, may be dif-
ferent from learners’ constructions. As illustrated above, Kim used translation in an 
unconventional way. Her interpretation of subtraction with movement to the right 
marks a unique construction. She uniquely “lost” negative distance. What are other 
ways that children may create and construct translation? How are these unique con-
structions related to conceptions of relativity? For instance, if distance is interpreted 
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as positive, then subtraction may be interpreted as a translation to the left (on a 
conventional number line). And, if distance is interpreted negative, subtraction may 
be interpreted as movement to the right (or left). Learning more about the depth of 
learners’ constructions of translation and how this is related to conceptions of rela-
tivity has implications for embodied cognition (e.g, Lakoff & Núñez, 2000), mental 
models (Bofferding, 2014), and integer instructional models (e.g., Saxe et al., 2013), 
as it impacts the ways we leverage learning.

13.6  Concluding Remarks

The examples from students discussed here are intended to highlight and extend key 
themes in the literature: children are capable of creating robust and sophisticated 
constructions of translation and relativity in relation to integers as directed quanti-
ties, but we need to explore these constructions more in depth. Additionally, the 
examples are intended to challenge typical notions of what instructional models for 
integers entail. We must abandon the search for the holy grail of integer research—
the illusive, infallible integer instructional model. Instead, let us take up pursuit of 
learners’ robust and sophisticated constructions of integer operations.

Rather than using integer instructional models from top-down perspectives 
(instructional models created by teachers and researchers), we can draw on learners’ 
constructions as the instructional models. As we look more towards learners’ con-
structions, we should focus on overlooked ideas of relativity, paired with transla-
tion, for insight into directed quantity. Children have produced mathematical ideas 
(such as relativity) that have been overlooked in our own integer work. Yet, the ideas 
that the children have constructed are essential to directed quantity. As we learn 
more about conceptualizations of translation and relativity in relation to directed 
quantity, we can investigate how to leverage these student-constructed ideas to other 
advanced mathematics.
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Chapter 14
Cognitive Science Foundations of Integer 
Understanding and Instruction

Sashank Varma, Kristen P. Blair, and Daniel L. Schwartz

Abstract This chapter considers psychological and neuroscience research on how 
people understand the integers, and how educators can foster this understanding. 
The core proposal is that new, abstract mathematical concepts are built upon known, 
concrete mathematical concepts. For the integers, the relevant foundation is the 
natural numbers, which are understood by reference to a mental number line (MNL). 
The integers go beyond the natural numbers in obeying the additive inverse law: for 
any integer x, there is an integer −x such that x + (−x) = 0. We propose that practic-
ing applying this law, such as when students learn that the same quantity can be 
added or subtracted from both sides of an equation, transforms the MNL. In particu-
lar, perceptual mechanisms for processing visual symmetry are recruited to repre-
sent the numerical symmetry between the integers x and −x. This chapter reviews 
psychological and neuroscience evidence for the proposed learning progression. It 
also reviews instructional studies showing that the hypothesized transformation can 
be accelerated by novel activities that engage symmetry processing compared to 
conventional activities around number lines and cancellation. Ultimately, these 
instructional insights can guide future psychological and neuroscience studies of 
how people understand the integers in arithmetic and algebraic contexts.
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14.1  Introduction

When psychology and neuroscience ask how people understand mathematical con-
cepts, they search for fundamental mechanisms of mind and brain. Studies from 
these fields have demonstrated that adults possess magnitude representations on 
which natural number concepts are constructed (Moyer & Landauer, 1967); have 
tracked the increasing precision of these representations over development (e.g., 
Sekuler & Mierkiewicz, 1977; Xu & Spelke, 2000); and have identified neural cor-
relates of these representations (e.g., Pinel, Dehaene, Rivière, & Le Bihan, 2001). 
Central to cognitive science is the question of how these basic cognitive capacities 
are organized to understand culturally constructed number systems.

Education asks a different question. What experiences best support the learning 
of new, evermore abstract mathematical concepts? Research, for example, has 
investigated the ideal sequencing of concepts and procedures in mathematics 
instruction (Rittle-Johnson, Schneider, & Star, 2015; Rohrer & Taylor, 2007). It has 
also examined how to use concrete manipulatives to teach more abstract concepts 
(e.g., Martin & Schwartz, 2005). Ideally, the work of cognitive science can inform 
the educational enterprise of improving learning.

In this chapter, we develop the cognitive science foundations of how people under-
stand integers and how these foundational insights contribute to instruction. The inte-
gers consist of a perceptually available number class, the natural numbers {0, 1, 2, 
…}, coupled with the much less perceptually obvious negative integers {−1, −2, …}. 
When walking in the woods, people can count the number of squirrels on their fingers, 
but they will not have an easy way to count the number of negative squirrels.

The integers are a relatively new human construction. The concept of negative 
numbers as debts arose as early as 250 BCE in China and seventh century India, but 
for much of history the idea of negative numbers was absurd, and the modern sys-
tem of negative numbers did not arise until the nineteenth century (Gallardo, 2002; 
Hefendehl-Hebeker, 1991). The integers provide an excellent point of contact for 
psychology, neuroscience, and education because they are an important abstract 
concept that students need to learn. They also represent a quantitative system that is 
culturally constructed. Unlike the perceptual sense of magnitude, which helps 
understand that 5 is bigger than 4, negative numbers do not exhibit an obvious map-
ping to basic perceptual abilities. Thus, they represent a test-bed for researchers 
from all three disciplines to study how an abstract mathematical concept can be 
nurtured from fundamental cognitive and perceptual-motor capacities.

14.2  A Learning Progression for Integer Understanding

How might one understand numerical expressions such as “−4”, questions about 
magnitude such as “which is greater −4 or 3?”, and questions about arithmetic 
expressions such as “−4 + 3”? One intuition might be that people do so by reference 
to a mental number line (MNL), organized and oriented in the mind’s eye in the 
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same way as physical number lines are organized and oriented in the world. Zero 
would be in the middle, negative integers on the left side, and positive integers on 
the right. We call this model analog+ because it extends the well-established MNL 
for natural numbers (Moyer & Landauer, 1967; Sekuler & Mierkiewicz, 1977).

An alternative intuition might be that negative integers are too abstract to repre-
sent directly, and that people reason about them using positive numbers and rules 
for manipulating the negative and positive signs. For example, to decide if −4 is less 
than −7, one might reason that 7 is greater than 4, but with negative numbers, one 
reverses the decision, so −4 is greater than −7. To decide if −4 is greater than 3, one 
might apply a rule that negative numbers are always less than positive numbers. We 
call this model symbol+ under the assumption that mapping is via symbolic rules, 
and negative magnitudes are not accessed directly.

Recent research indicates both analog+ and symbol+ have merit. People obviously 
can reason about integers in these ways, as demonstrated by the fact that one can under-
stand the verbal descriptions of each model in the preceding paragraphs. Surprisingly, 
however, adults appear to rely on yet a third model that lends more sophistication to 
their abilities to reason about integers. In the following, we describe this model and 
offer hypotheses for how it develops and how instruction can support it.

In doing so, we build on our earlier proposals (Blair, Tsang, & Schwartz, 2014; 
Schwartz, Blair, & Tsang, 2012) to develop a learning progression for how people 
come to understand abstract mathematical concepts such as the integers. This pro-
posal is depicted in Fig. 14.1. New mathematical concepts are built upon known 
mathematical concepts, but they can also incorporate additional perceptual primi-
tives that provide structure not found in the original mathematical concepts.

For the integers, the relevant foundational concepts come from knowledge of the 
natural numbers. As previewed above, psychological and neuroscience evidence 
suggests that natural numbers are understood by reference to magnitude representa-
tions organized as an MNL. These representations support judgments such as decid-
ing which of 1 and 9 is greater.

When people first learn about the integers, they reason about them using the rules 
of the governing symbol system, i.e., according to symbol+. This is not surprising: 
Conventional classroom instruction introduces procedures for handling this new, 
abstract number class by reference to the procedures for handling natural num-
bers—the more concrete number class that children have already mastered.

Children learn the integers, but the standard instruction does not capture the key 
law that creates the class of integers. This is the additive inverse law, which states 
that any integer plus its “inverse” equals zero: x + −x = 0. Our proposal is that as 
children learn algebra, they practice applying the additive inverse law in its collo-
quial form: the same quantity can be added or subtracted from both sides of an 
equation. This practice transforms their understanding of integers, extending the 
MNL for natural numbers “to the left” of zero, to also include the negative integers. 
Critically, this new MNL is not a simple extension of the positive number line as 
suggested by analog+, but rather a transformation that incorporates the symmetry 
between pairs of additive inverses x and −x in a novel way. In doing so, it combines 
the mind’s capacity for representing magnitudes with its capacity for processing 
symmetry. We call this transformed mental representation analog-x.
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Fig. 14.1 Learning progression for integer understanding. People understand the natural numbers 
using magnitude representations. Initially, they reason about integers directly, by using the rules of 
the defining symbol system, most notably the additive inverse principle (symbol+). Through expe-
riences with balancing equations, they recruit symmetry processing, transforming their mental 
representation of integers to directly reflect the additive inverse principle (analog-x). The trans-
formed representation supports learning of advanced mathematical concepts

In the remainder of this chapter, we develop the case for the learning progression 
depicted in Fig. 14.1. We begin with a review of psychological and neuroscience 
studies of how adults mentally represent the integers, and how this representation 
shifts over development. This research has primarily evaluated the analog+ and 
symbol+ models and found both wanting. We next introduce the analog-x model, 
which accounts for many of these challenging findings, and consider additional 
evidence for its proposals. We then selectively review classroom-based research, 
focusing on examples of symmetry-based instruction, which then feeds back to fur-
ther inform our understanding of mental representations.

14.3  Cognitive and Developmental Science Studies of Integer 
Understanding

Our review of the literature begins with a consideration of some cognitive and 
developmental studies of how adults and children understand integers. Psychologists 
and neuroscientists utilize a set of standard laboratory paradigms for investigating 
the mental representation and processing of symbolic numbers, particularly with 
respect to how they relate to perceptual-motor primitives for comparing physical 
magnitudes. In this section, we selectively review studies that have used some of 
these paradigms to reveal how people understand negative integers. Our focus is on 
findings that distinguish the analog+ and symbol+ models, and that motivate the 
analog-x model developed in the next section.
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14.3.1  Distance Effect

The comparison paradigm dominates studies of numerical cognition. In this para-
digm, people are presented with two numbers and make a judgment about which 
one is greater (or lesser) as quickly as possible while maintaining high accuracy. 
Response times are then used to make inferences about underlying mental represen-
tations and processes. Moyer and Landauer (1967) found that when adults compare 
pairs of one-digit natural numbers, the farther apart the numbers, the faster the judg-
ment (e.g., 1 vs. 9 is judged faster than 1 vs. 3). From this distance effect, they 
inferred that people understand one-digit natural numbers using magnitude repre-
sentations. More precisely, people possess an MNL for natural numbers, organized 
and oriented in space with smaller numbers “on the left” and larger numbers “on the 
right.”1 When comparing which of two numbers is greater, they map them to points 
on the MNL and discriminate which point is “to the right.” The farther apart the 
points, the easier the discrimination, and thus the faster the judgment. The distance 
effect has been extended to infants and children (Sekuler & Mierkiewicz, 1977; Xu 
& Spelke, 2000) and to multi-digit natural numbers, rational numbers, and irrational 
numbers (Dehaene, Dupoux, & Mehler, 1990; Patel & Varma, 2018; Schneider & 
Siegler, 2010; Varma & Karl, 2013).

Recently, psychological researchers have used the comparison paradigm to 
investigate the mental representation of integers. Two kinds of comparisons have 
received the bulk of attention. For negative comparisons, where both numbers are 
negative integers, adults and children show a distance effect. For example, they 
compare −1 vs. −9 faster than they compare −1 vs. −3 (Tzelgov, Ganor-Stern, & 
Maymon-Schreiber, 2009; Varma & Schwartz, 2011). This finding is consistent 
with analog+, which proposes that negative integers are represented as points on the 
extended MNL to the left of zero. The greater the distance between two points, the 
easier it is to discriminate which point is farther “to the right,” just as it is when 
comparing natural numbers; hence the distance effect. This finding is also consis-
tent with symbol+, which proposes that comparisons of negative integers are first 
mapped to comparisons of positive integers (e.g., which is greater, −1 vs. 
−9? → which is lesser, 1 vs. 9?); the positive integers are compared using the MNL 
for natural numbers (e.g., 1 < 9); and these judgments are mapped back to the nega-
tive integer domain (e.g., 1 < 9 → −1 > −9). It is the middle step, where the mapped 
positive integers are compared using the MNL, that produces the distance effect. 
Thus, negative comparisons cannot differentiate analog+ and symbol+ because both 
models predict a distance effect.

1 Cultural differences may influence the left-right orientation of the number line, based on whether 
numbers are read from left-to-right or right-to-left in one’s native language. However, there is also 
evidence that a left-to-right orientation may be innate. (See Zohar-Shai, Tzelgov, Karni, and 
Rubinsten (2017) for a review of this literature.) This chapter does not address this culture differ-
ence. Instead, it assumes a left-right orientation, consistent with the data from English-speaking 
countries.
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What can differentiate the two models are mixed comparisons, where one integer 
is negative and the other positive (e.g., −1 vs. 2 and −1 vs. 7). Analog+ proposes 
that the two integers are mapped to points on the extended MNL and discriminated, 
and therefore predicts a distance effect. By contrast, symbol+ proposes that the rule 
“positives are greater than negatives” is applied. Because this rule does not rely on 
magnitude representations, there should be no effect of distance.2 These conflicting 
predictions mean that, in principle, the data can be used to choose between the two 
models. However, in practice, this has proven difficult. One difficulty is that rela-
tively few psychological studies have looked for distance effects (or a lack thereof) 
for mixed comparisons. Another difficulty is that those that have done so have found 
inconsistent results. Nevertheless, some inferences are possible.

No study has found a conventional distance effect for mixed comparisons, which 
would be consistent with analog+. Some studies have found no effect of distance, 
consistent with symbol+. For example, Tzelgov et  al. (2009) found no effect of 
distance for mixed comparisons of the form −x vs. y, where the integers have differ-
ent absolute values (e.g., −2 vs. 4); see also Ganor-Stern, Pinhas, Kallai, and 
Tzelgov (2010). Remarkably, other studies have found an inverse distance effect! 
Tzelgov et al. (2009) found an inverse distance effect for mixed comparisons of the 
form −x vs. x, where the integers have the same absolute value (e.g., −1 vs. 1 is 
judged faster than −4 vs. 4). Varma and Schwartz (2011) also found an inverse dis-
tance effect for mixed comparisons of the form x vs. y (e.g., −1 vs. 2 is judged faster 
than −1 vs. 7); see also Krajcsi and Igács (2010). These mixed findings limit the 
strength of the inferences that can be drawn about the mental representation and 
processing of negative integers. With this caveat in mind, the remainder of this 
chapter assumes that the inverse distance effect is “real” (although we note several 
other inconsistencies in the literature below and give reasons for them in Sect. 14.6).

14.3.2  SNARC Effect

Further evidence for people’s mental representation of number comes from the 
Spatial-Numerical Response Codes (SNARC) effect. This is the finding that smaller 
numbers are associated with the left side of space and larger numbers with the right 
side of space, reflecting their respective locations on the MNL as conventionally 
oriented. This effect was first documented in a study where adults judged the parity 
of one-digit natural numbers (Dehaene, Bossini, & Giraux, 1993). Adults were faster 
to judge the parity of small numbers (e.g., 2) when the response (e.g., “even”) was 
made on the left vs. right side of space, and faster to judge the parity of large numbers 
(e.g., 9) when the response (e.g., “odd”) was made on the right vs. left side of space. 
The SNARC effect for one-digit natural numbers has been replicated many times 

2 In addition to mixed comparisons, zero comparisons can also differentiate the analog+ and sym-
bol+ models. These are comparisons where one of the two numbers is zero (e.g., −2 vs. 0). See 
Varma and Schwartz (2011) for further discussion.
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(Gevers & Lammertyn, 2005). However, this effect extends inconsistently to other 
number classes such as multi-digit natural numbers and rational numbers (Bonato, 
Fabbri, Umiltà, & Zorzi, 2007; Toomarian & Hubbard, 2018; Varma & Karl, 2013).

Analog+ and symbol+ agree in predicting that the SNARC effect extends to inte-
gers. However, they make different predictions regarding the form of this extension. 
Analog+ predicts a continuous SNARC effect, with negative integers responded to 
faster on the left vs. right side of space and positive integers showing the opposite 
pattern. This is because it proposes that negative integers correspond to points “to the 
left” of zero on the MNL (and positive integers to points “to the right” of zero). By 
contrast, symbol+ predicts a piecewise SNARC effect, with negative integers show-
ing an inverse SNARC effect (and positive integers a conventional SNARC effect). 
The inverse SNARC effect results because negative integers are mapped to positive 
integers before processing them (i.e., −x → |−x| → x). Thus, large negative integers 
are processed as small positive integers (e.g., −1 → 1) and small negative integers as 
large positive integers (e.g., −9 → 9), yielding an inverted SNARC effect.

That analog+ and symbol+ predict different SNARC effects means that, in prin-
ciple, the data can be used to choose between them. Unfortunately, the literature is 
full of mixed results. Some studies have found the continuous SNARC effect pre-
dicted by analog+ (Fischer, 2003) whereas others have found the piecewise SNARC 
effect predicted by symbol+ (Fischer & Rottman, 2005). Shaki and Petrusic (2005) 
showed that these different findings are due in part to differences in methodology. 
They had adults make positive comparisons (e.g., 1 vs. 2) and negative comparisons 
(e.g., −1 vs. −2), holding the distance between each pair of numbers constant. 
When positive comparisons and negative comparisons were intermixed in the same 
block of trials, participants showed a continuous SNARC effect consistent with ana-
log+. However, when these different comparison types were segregated in different 
blocks, participants showed the piecewise SNARC effect predicted by symbol+. 
This study suggests that adults possess multiple integer representations and choose 
among them based on task demands. We return to this flexibility in Sect. 14.6.

14.3.3  Number Line Estimation Task

The number line estimation (NLE) paradigm has also been used to investigate the 
mental representation of integers. In this paradigm, participants are presented with 
a number and a number line with only the endpoints labeled and have to mark the 
position of the number on the number line with a pencil or computer pointer. This 
task was originally used with children and with natural numbers in the ranges 1–100 
to 1−1000. Not surprisingly, the error in children’s estimates decreases over devel-
opment. The more interesting finding is that the pattern of errors also changes over 
development. The pattern for older children is veridical, with linearly spaced num-
bers. By contrast, the pattern for younger children is logarithmic, with exaggerated 
spaces between smaller numbers and compressed spaces between larger numbers 
(Siegler & Opfer, 2003). These developmental trends have been extended to rational 
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numbers, whether expressed as fractions or decimal proportions. In both cases, chil-
dren as young as 10 years old already make linear estimates, with error decreasing 
with further development into adulthood (Iuculano & Butterworth, 2011; Siegler, 
Thompson, & Schneider, 2011). Finally, for irrational numbers, adults make linear 
and accurate estimates of radical expressions such as 2  and 90  (Patel & 
Varma, 2018).

Analog+ and symbol+ do not make strong predictions about performing the NLE 
task on integers, and how this performance changes over development. For this rea-
son, we simply present some of the core findings. First, there appears to be a logarith-
mic-to-linear shift with development in the estimation of negative integers, one that 
parallels that for natural numbers. Brez, Miller, and Ramirez (2015) found evidence 
that second graders rely on logarithmically scaled representations when estimating 
numbers in the range −1000 to 0, just as they do when estimating numbers in the 
range 0–1000. This representation shifts over elementary school, and by fourth (and 
especially sixth) grade, children exhibit linear representations for both ranges. By 
middle school, children’s estimates are linear in the much larger range −10,000 to 0 
and also in the combined range −1000 to 1000 (Young & Booth, 2015).

14.4  Neuroimaging Studies

Additional insight into the mental representation and processing of integers can be 
gained from neuroscience studies. We focus here on functional Magnetic Resonance 
Imaging (fMRI) studies that have utilized the comparison paradigm, as these are of 
greatest relevance to competitively evaluating the analog+ and symbol+ models.

Chassy and Grodd (2012) identified areas that show greater activation when 
adults make negative comparisons (e.g.. −3 vs. −2) vs. positive comparisons (e.g., 
5 vs. 4). One such area was the superior parietal lobule (SPL). This area is adjacent 
to the intraparietal sulcus (IPS), which prior studies have identified as a neural 
 correlate of the MNL for natural numbers. Specifically, the IPS shows a neural dis-
tance effect when comparing natural numbers, with greater activation for harder 
near- distance comparisons (e.g., 1 vs. 2) than for easier far-distance comparisons 
(e.g., 1 vs. 9) (Pinel et al., 2001). The researchers interpreted activation of the SPL 
similarly, as evidence that negative integers also have magnitude representations.3 
This interpretation is consistent with the extended MNL representation proposed by 
analog+ but not with the mapping rules of symbol+.

Stronger evidence would be provided by an experiment that looked for distance 
effects and that included mixed comparisons. Blair, Rosenberg-Lee, Tsang, 
Schwartz, and Menon (2012) provided such evidence in an fMRI study of adults 

3 SPL and IPS are also associated with visuospatial reasoning (e.g., Zacks, 2008). Thus, it is pos-
sible that they are recruited here not to process the magnitudes of positive integers and negative 
integers, but rather to process their symmetric relationship about zero. We consider the role of 
symmetry processing in integer understanding below, when describing the analog-x model.
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who made positive, negative, and mixed comparisons of pairs of integers in which 
the distance varied systematically. Their results concerning positive vs. negative 
comparisons largely replicated those of Chassy and Grodd (2012). A finding of 
interest involved a representational similarity analysis. In this kind of analysis, the 
neural response patterns elicited by different stimuli are compared. The idea is that 
the more dissimilar the patterns for two stimuli, the more distinct the representa-
tions. The researchers focused on the IPS and the neural patterns elicited when 
people make near- vs. far-distance comparisons. They found that near- vs. far- 
distance comparisons elicited more distinct neural patterns for positive integers than 
for negative integers. This implies that positive integers may have a “sharper tun-
ing” in IPS than negative integers. This finding is consistent with analog+, suggest-
ing that negative integer magnitudes are less well differentiated than positive integer 
magnitudes. With regard to mixed comparisons, this study did not find a behavioral 
effect of distance, but the neuroimaging data told a more complex story. No areas 
were more active for mixed comparisons than for negative comparisons or positive 
comparisons. This null result is inconsistent with symbol+, which predicts recruit-
ment of areas in prefrontal cortex associated with rule application (i.e., “positives 
are greater than negatives”).

Gullick, Wolford, and Temple (2012) conducted a study similar to Blair et al. 
(2012). The results were comparable overall, but one finding is worth highlighting. 
There was an inverse distance effect for mixed comparisons of the form −x vs. y 
where both −x < y and |x| < |y| (e.g., −3 vs. 5). This was true behaviorally, with far- 
distance comparisons slower than near-distance comparisons, and this was also true 
neurally, with far-distance comparisons eliciting greater activation in IPS and SPL 
than near-distance comparisons. These inverse behavioral and neural distance 
effects are inconsistent with both analog+, which predicts conventional distance 
effects, and with symbol+, which predicts no effects of distance.

To summarize, these neuroimaging studies of adults provide limited insight into 
the representation and processing of negative integers. Negative comparisons elicit 
greater activation than positive comparisons in IPS and SPL, areas associated with 
the MNL and visuospatial processing (Blair et al., 2012; Chassy & Grodd, 2012; 
Gullick et al., 2012). In addition, negative comparisons do not elicit greater activa-
tion than positive comparisons in prefrontal areas associated with rule processing 
(Gullick et al., 2012). These findings can be interpreted as evidence for analog+ and 
against symbol+, respectively. However, neither of these models can explain the 
inverse distance effect that Gullick et al. (2012) found for (a subset of) mixed com-
parisons, both behaviorally and in the activations of IPS and SPL.

By contrast, the findings are clearer from the lone neuroimaging study that has 
investigated how children understand negative integers. Gullick and Wolford (2013) 
had fifth and seventh graders make negative comparisons and positive comparisons. 
The important finding was that for the fifth graders, negative comparisons elicited 
greater activation than positive comparisons in prefrontal areas associated with rule 
processing. For seventh graders, however, there was no such difference. This suggests 
that younger children reason according to symbol+. This also suggests that older chil-
dren might have shifted to a new model of integer understanding, whether because of 
development, experience, or instruction. We consider a candidate model next.
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14.5  Analog-x

The psychological and neuroscience literatures on integer understanding are small 
and in some cases inconsistent. Nevertheless, they support tentative inferences 
about the nature of the underlying mental representations and processes.

We begin with mixed comparisons, where people judge whether a positive integer 
or negative integer is greater, because this case provides the most leverage for choos-
ing between possible models. Analog+ proposes that integers are understood with 
respect to an extended MNL, where negative integers are located “to the left” of zero. 
It predicts a standard distance effect for mixed comparisons, with far- distance pairs 
(e.g., −1 vs. 7) judged faster than near-distance pairs (e.g., −1 vs. 2). Because no 
study in the literature has found support for this prediction, analog+ can be ruled out. 
Symbol+ proposes that negative integers are not understood directly, by reference to 
magnitude representations, but rather indirectly, by applying rules. In particular, 
mixed comparisons are made by applying the rule “positive integers are greater than 
negative integers.” Because this rule makes no reference to the magnitudes of the 
integers, symbol+ predicts no effect of distance. Varma and Schwartz (2011) found 
support for this prediction among sixth graders who had just learned about negative 
numbers. This makes sense if conventional instruction builds new procedures for 
working with integers on top of known procedures for working with natural num-
bers, which students have already mastered. Some studies of adults have also found 
support for this prediction (Ganor-Stern et al., 2010; Tzelgov et al., 2009).

However, our assessment is that adults likely reason according to a different 
model. This follows from numerous other studies of adults that have instead found 
an inverse distance effect for mixed comparisons (Gullick et al., 2012 for compari-
sons of the form −x vs. y where both −x < y and |x| < |y|; Krajcsi & Igács, 2010; 
Varma & Schwartz, 2011; Tzelgov et al., 2009, for mixed comparisons of the form 
−x vs. x). In these studies, adults are faster to judge near-distance pairs (e.g., −1 vs. 
2) than far-distance pairs (e.g., −1 vs. 7). The inverse distance effect is inconsistent 
with the predictions of the analog+ and symbol+ models and raises the question of 
how adults understand the integers? We address it here by describing a third model 
and reviewing evidence for its key proposal that adults understand integers by com-
bining magnitude representations with symmetry processing.

14.5.1  Integer Understanding = Magnitude 
Representations + Symmetry Processing

The natural numbers coupled with the addition operation form a system that obeys 
the commutative law x + y = y + x, the associative law (x + y) + z = x + (y + z), and 
the identity law x + 0 = x, with 0 the additive identity. Critically, the integers bring 
additional structure: they also obey the inverse law, which states that for every x, 
there is a corresponding −x such that their sum is the identity x + −x = 0.
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Extending one’s understanding of number from the natural numbers to the inte-
gers requires understanding the additional structure brought by the inverse law. 
Initially, this understanding is explicit. When children first learn about the integers, 
they apply the governing laws in a deliberate and controlled manner to work with 
integers in arithmetic expressions and algebraic equations. This is one sense in 
which they reason according to symbol+. With development and experience, how-
ever, children’s integer understanding shifts. They come to an implicit understand-
ing of the integers, such that they no longer recruit rule-based processing as heavily. 
Rather, they gain an intuitive understanding of how integers can and cannot be 
manipulated in arithmetic and algebraic contexts. This raises the question of what it 
means to have an intuitive understanding of the integers, in particular to understand 
that additive inverse law that enriches them beyond the natural numbers.

Analog-x provides an answer to this question. It proposes that adults understand 
negative integers as they understand natural numbers, with reference to magnitude 
representations. That is, there is an MNL for integers. Critically, it is not the MNL 
proposed by analog+: it does not extend the MNL for natural numbers “to the left.” 
Rather, it reflects the MNL for natural numbers to directly represent the inverse 
relationship between the pairs −x and x. In this way, analog-x combines the mind’s 
capacity for representing magnitudes with its capacity for processing symmetry.

Figure 14.2 depicts the combination of magnitude and symmetry mechanisms 
proposed by analog-x. At the center is a reference axis that helps locate the natural 
number MNL and the negative integer MNL. The natural number MNL is shown 
above the reference axis. Its nonlinear form captures the psychophysical scaling of 
magnitude representations. The magnitude of a natural number is given by the 
height of the corresponding point above the reference axis. Natural numbers are 
compared in the usual way, by discriminating their magnitudes (i.e., heights). As the 
examples in Fig. 14.2 show, the model predicts a distance effect for positive com-
parisons (i.e., 1 vs. 8 is more discriminable than 1 vs. 3).

A new proposal is that the MNL for negative integers is a reflection of the MNL 
for natural numbers about the reference axis. This reflective organization has two 
important consequences. First, it directly models the inverse relationship between 
−x and x, in the vertical alignment of the corresponding points. In this way, analog-x 
captures people’s intuitive understanding of the additional structure that the integers 
bring over the natural numbers. Negative integers are compared in the same way as 
natural numbers, by discriminating the corresponding magnitudes (i.e., heights). 
The model predicts a distance effect for negative comparisons, as the examples in 
Fig. 14.2 show (i.e., −1 vs. −8 is more discriminable than −1 vs. −3).

The second consequence of the reflective relationship between the natural num-
ber and negative integer MNLs concerns mixed comparisons. Specifically, this 
reflective relationship predicts the inverse distance effect observed by some 
researchers (Gullick et al., 2012 for comparisons of the form −x vs. y where both −x 
< y and |x| < |y|; Krajcsi & Igács, 2010; Varma & Schwartz, 2011; Tzelgov et al., 
2009, for mixed comparisons of the form −x vs. x). Positive and negative integers 
that are close together on the standard number line (e.g., −2 vs. 1), and thus hard to 
discriminate, correspond to magnitudes (i.e., heights) that are quite different in the 
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Fig. 14.2 The analog-x model. The reference axis at the center helps locate the natural number 
MNL (above) and the negative integer MNL (below), which are reflections of each other. It pre-
dicts conventional distance effects for positive comparisons and for negative comparisons, as 
shown by the projections on the right. Critically, it predicts an inverse distance effect for mixed 
comparisons across the two MNLs, as shown by the projection on the left

analog-x representation, and thus easy to discriminate. The reverse is true for posi-
tive and negative integers that are far apart on the standard number line (e.g., −2 vs. 
6): the corresponding heights in the analog-x representation are quite similar, and 
thus difficult to discriminate.4

14.5.2  Studies of Symmetry and Integer Processing

A novel proposal of analog-x is that the integer MNL encodes the additive inverse 
law using symmetry processing. Tsang and Schwartz (2009) tested this proposal in 
a behavioral study of adults. They developed an integer bisection paradigm where 
participants are presented with pairs of integers and have to name the midpoints as 
quickly as possible. They predicted that performance would be best for two cases 
where the symmetry of integers about 0 could be exploited. The first is for symmet-
ric pairs of the form (−x, x), where the midpoint is 0. Computing the midpoint 
should be particularly easy because in analog-x, the corresponding points are verti-
cally aligned to capture the additive inverse relationship between x and −x. The 
second case is for pairs of the form (−x, 0) and (0, x), where 0—the point of sym-
metry—can be used to anchor midpoint estimation. They further predicted that 
symmetric processing would confer some advantage for pairs close to these two 
cases, e.g., (−6, 8) because it is almost symmetric, and (−1, 13) because it is almost 

4 The analog-x model shown in Fig. 14.2 can be formalized and quantitatively fit to the data. See 
Varma and Schwartz (2011) for the details.
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anchored. Their results supported these predictions. Response times were fastest for 
bisections that were symmetric, anchored, or nearly so; see Fig. 14.3a.

Tsang, Rosenberg-Lee, Blair, Schwartz, and Menon (2010) followed up this 
behavioral study with an fMRI study investigating the neural correlates of integer 
bisection. They predicted that bisection of symmetric pairs (e.g., (−7, 7)) or nearly 
symmetric pairs (e.g., (−6, 8)) would produce greater activation in posterior areas 
associated with processing visual symmetry. This prediction was supported. In par-
ticular, the more symmetric the pair of integers being numerically bisected, the 
greater the activation in left lateral occipital cortex, an area associated with process-
ing visual symmetry in dot patterns (Sasaki, Vanduffel, Knutsen, Tyler, & Tootell, 
2005); see Fig. 14.3b.

14.6  Instructional Studies and the Symmetry of Positive 
and Negative Integers

Analog-x is a model of how adults understand the integers. Its key proposal is that 
symmetry processing is recruited to represent that additive inverse law, resulting in 
a transformed MNL as shown in Fig. 14.2. It is this symmetry that allows analog-x 
to predict the inverse distance effect for mixed comparisons and privileged perfor-
mance on the integer bisection task for symmetrical and anchored pairs. In contrast, 
symbol+ provides a better characterization of children’s understanding of integers. 
Behaviorally, children show no effect of distance (Varma & Schwartz, 2011), and 
neurally, they show increased recruitment of prefrontal areas associated with delib-
erate rule processing (Gullick & Wolford, 2013). This raises the question of the 
factors that drive the progression on how integers are understood, from applying 
symbolic rules to referencing a transformed MNL.

One hypothesized factor is learning algebra. This requires practicing applying the 
additive inverse law in its colloquial form: The same quantity can be added or sub-
tracted from both sides of an equation. This practice could transform children’s under-
standing of integers, restructuring their MNL to directly incorporate the symmetry 
between pairs of additive inverses x and −x; see Fig. 14.1. Evidence for this develop-
mental claim could come from a longitudinal study tracking changes in the integer 
representation over schooling. Unfortunately, no such study has been run to date.

Another perspective on how the integer representation changes over develop-
ment comes from instructional studies of how best to teach the integers to children. 
Some of these interventions have emphasized the use of standard number lines and 
can be understood as consistent with analog+ (Hativa & Cohen, 1995; Moreno & 
Mayer, 1999; Schwarz, Kohn, & Resnick, 1993; Thompson & Dreyfus, 1988). 
Others have focused on teaching rules for manipulating negative numbers (e.g., the 
SR condition of Moreno & Mayer, 1999), consistent with the symbol+ model. Still 
others have focused directly on the additive inverse principle, using different col-
ored chips or other discrete entities to represent positive and negative quantities, 
which cancel each other out (Bolyard, 2006; Liebeck, 1990; Linchevski & Williams, 
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Fig. 14.3 Integer bisection paradigm. (a) Bisection of integer pairs is privileged when the num-
bers are either more symmetric around 0 or more anchored to 0. (b) The greater the numerical 
symmetry of the pair, the greater the activation in left lateral occipital cortex, an area associated 
with processing of visual symmetry

1999; Streefland, 1996). A potential downside of these discrete cancellation-based 
approaches is that they do not emphasize order, and thus are isolated from linear 
magnitude representations of number (Bofferding, 2014).

Three recent studies have moved beyond instructional approaches aligned with 
analog+ and symbol+ or focused on the additive inverse principle in isolation. These 
studies have developed new approaches to instruction that focus on the symmetry of 
the positive and negative integers about zero, and as a result they are better aligned 
with analog-x.
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14.6.1  Instructional Approaches Incorporating Symmetry

Two recent studies that have started from a conceptual analysis of the elements 
necessary to understand integers have derived instructional approaches that incor-
porate a focus on symmetry. Saxe, Earnest, Sitabkhan, Haldar, Lewis, and Zheng 
(2010) designed one part of their instruction around the task of marking the position 
of an integer on a standard number line, where other numbers might already be 
marked. They identified five principles necessary for successful performance. The 
fifth principle was understanding symmetry and absolute value: “For every positive 
number, there is a negative number that is the same distance from 0” (p. 440). Their 
instructional materials included problems that required reasoning about this sym-
metry, such as locating −150 on a number line where 0 and 150 were already 
marked. Their learning assessments included items measuring understanding of this 
symmetry, such as judging as correct or incorrect a number line where −1000 and 
1000 were marked but were not equidistant from 0 (which was also marked) and 
providing a justification for why.

Bofferding (2014) developed and evaluated new instructional approaches for 
teaching the integers to first graders.5 These approaches derived in part from a 
 conceptual analysis of what it means to understand the integers, which revealed three 
meanings of the “−” sign. The first and second meanings are familiar: as a mark 
distinguishing negative integers from positive integers (e.g., −7 vs. 7) and as the 
name of the subtraction function (e.g., 9 − 3). The third meaning had been previously 
overlooked in the education literature: as the name of the “symmetric function” for 
“taking the opposite” (e.g., −(7) = −7). This study also revealed the roles symmetry 
plays in the mental models children have for the integers. Only the most sophisti-
cated of these models represents that positive integers and negative integers are sym-
metric about zero. In addition, only these models correctly distinguish the values vs. 
magnitudes of negative integers (e.g., 8 < 9 but −8 > −9), which is critical for making 
“more” vs. “less” (and “high” vs. “low”) judgments of negative integers.

In these studies, symmetry is thoughtfully incorporated into the instruction and 
models of student learning. An important limitation is that the value of symmetry 
for learning is not tested directly.

14.6.2  An Instructional Study Directly Comparing Symmetry 
to other Approaches

We see convergence in the psychological, neuroscience, and mathematics education 
literatures that symmetry plays a critical role in what it means to understand the 
integers. A study that builds on this convergence is Tsang, Blair, Bofferding, and 

5 This study is notable in testing children much younger than those in prior psychological and 
educational studies.
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Schwartz (2015), which directly compared an instructional approach that incorpo-
rated symmetry to more traditional number line and cancellation approaches. The 
instructional approaches were built around three manipulatives embodying different 
underlying models. The “jumping” approach modeled arithmetic operations as 
movements along an extended number line (Fig. 14.4a); it corresponds to analog+. 
The “stacking” approach modeled arithmetic operations on the cancellation of dis-
crete items (Fig. 14.4b). The “folding” approach combined elements of jumping 
(i.e., directed magnitudes) and stacking (i.e., cancellation) (Fig.  14.4c). What is 
novel about this approach is that adding or subtracting integers requires bringing the 
two operands into alignment using symmetric processing.

Post-test measures found substantial evidence for the efficacy of the folding 
approach, and thus for the use of symmetry. When estimating the position of a nega-
tive integer on a number line where the corresponding positive integer was already 
marked, the folding group was most likely to use a symmetry strategy, which was 
associated with more accurate performance. More importantly, the folding group 
performed best on far-transfer problems such as estimating the position of negative 
fractions on number lines and solving missing operand problems (e.g., 1 + −4 = [ 
] + −2), which had been not covered in class. These far-transfer findings are evi-
dence for the analog-x proposal that symmetry is particularly important when 
 students learn pre-algebra and must apply the additive inverse law to manipulate 
equations.

The results of Tsang et  al. (2015) suggest that including symmetry in integer 
instruction allows learners to generalize to solve new types of negative number 
problems that they had not directly been taught, including those that focus on the 
additive inverse property. These findings bring useful questions back to the study of 
mental representations of number. For example, there are relatively few neuroimag-
ing studies of integer processing in general, and even fewer where the participants 
are children. How do different instructional approaches affect children’s neural rep-
resentations of integers as they become more fluent? Does an instructional approach 
that focuses on symmetry and the additive inverse property increase the recruitment 
of brain areas associated with visual symmetry, even when learners are reasoning 
about symbolic numbers?

14.7  Conclusion

This chapter has considered how adults understand an abstract mathematical con-
cept, the integers, and how educators can foster this understanding in children. It has 
built a corridor of explanation from neuroimaging data to response times to hands-
 on activities in the classroom. The result is a clearer picture of how magnitude rep-
resentations and symmetry processing support integer understanding, and how these 
capacities are coordinated and integrated through learning.

Our first proposal is that acquiring a new, abstract mathematical concept requires 
mastering the governing symbol system. More novel is our second proposal: mas-
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Step 1
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Fig. 14.4 Actions taken by students when evaluating the equation 3 + −2 = 1 in the (a) jumping, 
(b) stacking, and (c) folding instructional conditions. These correspond to analog+, symbol+, and 
analog-x, respectively. (Note. From “Learning to ‘see’ less than nothing: Putting perceptual skills 
to work for learning numerical structure,” by J. M. Tsang, K. P. Blair, L. Bofferding, and D. L. 
Schwartz, 2015, Cognition and Instruction, 33, p.  167. Copyright 2015 by Taylor & Francis. 
https://www.tandfonline.com/toc/hcgi20/current. Reprinted with permission)

tery enriches the mental representation of known concepts to reflect the unique 
properties of the new concept, and it does so by recruiting additional perceptuo- 
motor capacities. In this way, people can build intuition for ideas quite far from 
perceptual-motor experience (Blair et al., 2014; Schwartz et al., 2012). Specifically, 
analog-x makes the surprising claim that the MNL for natural numbers is trans-
formed through symmetry processing to directly encode that −x and x are additive 
inverses. We speculate that this transformation is accelerated when students learn 
algebra, and practice applying the additive inverse law in its colloquial form (“the 
same quantity can be added to or subtracted from both sides of the equal sign”) to 
manipulate equations. It is an open question whether this transformation can be 
accelerated further, for example, by developing instructional activities where 
younger children coordinate magnitude representations and symmetry processing 
of integers. The folding condition of Tsang et al. (2015) offers initial evidence that 
this might be possible.
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Our review began with neuroscience and psychological studies and progressed 
towards educational studies. We end by considering a path less often trodden: how 
education can inform psychology and neuroscience. Educational research can guide 
future lab studies of how analog-x (and analog+ and symbol+) scale to arithmetic 
and algebraic contexts. For example, there are few psychological studies of how 
people understand arithmetic operations on integers (e.g., Prather & Alibali, 2008), 
and the neural correlates of this understanding (e.g., Gullick & Wolford, 2014). By 
contrast, there is an extensive mathematics education literature on different 
approaches for teaching integer arithmetic (Hativa & Cohen, 1995; Liebeck, 1990; 
Linchevski & Williams, 1999; Moreno & Mayer, 1999; Saxe et al., 2010; Schwarz 
et al., 1993; Streefland, 1996; Thompson & Dreyfus, 1988). This asymmetry repre-
sents an opportunity for psychological and neuroscience research, as many of the 
phenomena that have been documented in the classroom merit further study in the 
lab. One example is Bofferding’s (2014) proposal that to understand the integers is 
to understand three meanings of the “−” sign, including its easily overlooked mean-
ing as a “symmetric function” for reversing the sign of an integer expression. 
Another example is the Tsang et al. (2015) finding that understanding the symmet-
ric organization of positive integers and negative integers about zero is associated 
with better performance on pre-algebra problems demanding sensitivity to the 
meaning of the “=” sign (i.e., missing operand problems). What mental and neural 
mechanisms undergird understanding the “−” sign as a “symmetric function” and 
pre-algebraic reasoning about integers?

In addition, mathematics education research can potentially reframe how we 
understand the inconsistent results of some of the psychological studies reviewed 
above. This was true for the distance effect and the SNARC effect, with different 
studies finding evidence consistent with the three different models of integer under-
standing (i.e., analog+, symbol+, and analog-x). These inconsistencies are deeply 
problematic for psychologists and neuroscientists because they make it impossible 
to choose between competing models, and ultimately to make scientific progress. 
The conventional explanation for mixed findings is noise in the signal: the samples 
are too small, the methods are too varied, and so on. Mathematics education research 
offers a different perspective on this heterogeneity. The participants in these studies 
learned about the integers in classrooms spread across the United States and indeed 
the world. We have seen that different instructional approaches are aligned with the 
three different models of integer understanding. Thus, it is possible that some of the 
inconsistencies observed in psychological studies are not the product of noise in the 
data or even individual differences in basic cognitive abilities. Rather, they may be 
the product of instructional differences. Understanding this systematic variation is a 
goal for future research.
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Chapter 15
Commentary on Negative Numbers: 
Aspects of Epistemology, Cognition, 
and Instruction

Guershon Harel

Abstract This commentary reviews each of the three content chapters in the inte-
gers section and offers questions to promote further discussion. In addition to the 
themes raised in the three chapters, I introduce the role of formal mathematical 
structure in generalizing systems of number, from natural numbers to integers, and 
analogously, from real numbers to complex numbers. Integers, in particular, are 
structured by algebraic relations, which imply, for example, that (−1) ⋅ (−1) = 1. 
Historical observations and anecdotal evidence of children’s reasoning pertaining to 
this role raise important cognitive, pedagogical, and metaphysical questions.

Keywords Additive inverse · Algebraic invariance · Complex numbers · 
Epistemological obstacles · Negative numbers · Structural reasoning · Symbols

Understanding students’ understanding of negative numbers is a central, shared 
goal of the three chapters comprising this portion of the book. The objective is not 
merely academic, of only theoretical interest; rather, it is geared toward the improve-
ment of the learning and teaching of negative numbers. Collectively, the authors of 
these chapters make a significant contribution to our understanding of the complex-
ity inherent in the cognition of negative numbers, of the instructional implications 
of this cognition, and of the existing gaps in our understanding of the developmental 
interdependency among the cognitive, neurological, linguistic, and educational fac-
ets of negative numbers. In this brief commentary, I did not attempt—nor could I, if 
endeavored—to capture the richness of the findings, instructional implications, and 
open research questions discussed in the three chapters. Instead, I choose to reflect 
on a central theme of each chapter, while focusing on a common concern that 
engendered questions not addressed in the chapters. At the heart of this concern is 
the structure of negative numbers and their symbolic representation.

G. Harel (*) 
Department of Mathematics, University of California, San Diego, CA, USA
e-mail: harel@math.ucsd.edu

© Springer Nature Switzerland AG 2019 
A. Norton, M. W. Alibali (eds.), Constructing Number, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-030-00491-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00491-0_15&domain=pdf
mailto:harel@math.ucsd.edu
https://doi.org/10.1007/978-3-030-00491-0_15#DOI


330

15.1  Contributions Through a Common Three-Tier Thesis

Although not organized in this manner, each of the chapters offers a three-tier the-
sis: a diagnostic tier framing the problem; a clinical tier offering ways to study the 
problem; and a prognostic tier proposing pedagogical paths to solve the problem.

Nicole Wessman-Enzinger.
Based on an extensive review of current research, Wessman-Enzinger concludes that 
the search for an ideal instructional model for integers—one that can help children 
conceptualize the domain of integers as a “natural” extension of the domain of 
whole numbers—is futile. Such a model, she maintains, does not exist, for the sim-
ple reason that the emergence of negative numbers marks a breakdown in humans’ 
early schemes of number and quantity. Hence, no model can possibly overcome this 
conceptual discontinuity. She supports this claim by examining the limitations and 
affordances of a list of instructional models for integer operations, stressing that the 
list is “only a diminutive portion of the different instructional models that have been 
proposed across decades of integer research.”

Wessman-Enzinger offers an alternative strategy for studying the problem: redi-
rect the energy that, for decades, has been invested in the search for an ideal model, 
toward trying to understand children’s constructions of constituent elements of 
negative numbers. She suggests using the insights gained from studying children’s 
constructions to develop instructional activities that help children build bottom-up 
their own model, where negative numbers are conceptualized as a set of collinear 
vectors stemming from an arbitrary point on a line (i.e., the origin), whereby form-
ing a directed number line. Underlying this conceptualization are two constructs: 
relativity and translation. Relativity refers to the arbitrariness of two elements of a 
number line: the location of the origin on the number line and the assignment of the 
vector direction as positive or negative. Translation refers to the movement of vec-
tors along the number line together with their magnitude.

Sashank Varma, Kristen Blair, and Daniel Schwarz.
Approaching development of knowledge from a cognitive science perspective, 
Varma, Blair, and Schwarz consider the problem of how children and adults under-
stand integers, and how educators can foster adults’ understanding in children. They 
discussed three cognitive models that account for, at least partially, learners’ under-
standings of negative numbers. The models build upon the foundation of natural 
numbers, whose conceptualization is analogous to the structure of the positive num-
ber line, referred to as the mental number line (MNL). The first of these three mod-
els is the analog+ model—an extension of the MNL for natural numbers. It is 
“organized and oriented in the mind’s eye in the same way as physical number lines 
are organized and oriented in the world. Zero would be in the middle, negative inte-
gers on the left side, and positive integers on the right.” The second model is called 
symbol+. It is a model where judgments, such as those involving order relations 
between negative numbers, are made on the basis of knowledge of order relations 
between natural numbers and symbolic rules for manipulating negative and positive 
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signs (e.g., a〈b ↔  − a〉 − b). The third model, called analog−x, is Varma et al.’s 
novel contribution to the field. According to analog−x, the MNL for natural num-
bers is reflected symmetrically, rather than extended, creating in the process the 
crucial concept of additive inverse: for any number x, there exists a number −x, such 
that x + (−x) = 0; and with it, the entire domain of integers. Thus, analog−x com-
bines in it (a) magnitude representation, modeled by the MNL for natural numbers; 
(b) the integer symbol system, modeled by symbol+ through the application of the 
additive inverse property; and (c) the symmetry processing developed and enhanced 
through equation-solving activities.

Varma et al. (this volume) draw two pedagogically important implications relevant 
to the focus of this commentary. The first implication is that a necessary cognitive 
prerequisite for the acquisition of new, abstract mathematical concepts is a mastery 
of the governing symbol system. The second implication is that such mastery 
“enriches the mental representation of known concepts to reflect the unique proper-
ties of the new concept, and it does so by recruiting additional perceptuo-motor 
capacities. In this way, people can build intuition for ideas quite far from perceptual-
motor experience.”

Laura Bofferding.
What conceptual changes take place with children as their understandings of nega-
tive numbers evolve toward the institutionalized, taken-to-be-shared meaning of 
these numbers? Approached from the perspective of the theory of conceptual 
change, Bofferding addresses this question by examining (a) the interpretations that 
children generate for constituent dimensions of negative numbers: notation, order 
relation, numerical values, and addition and subtraction operations; and (b) chil-
dren’s use of these interpretations as they attempt to solve addition and subtraction 
problems involving negative numbers. She demonstrates the complexity of this con-
ceptual change and the role that children’s prior knowledge—acquired through 
schooling or everyday experience—plays as they transition from the domain of 
whole numbers to the domain of negative numbers. As Bofferding points out, it’s of 
particular importance that the transition is not unidirectional, but dialectical. 
Students’ mental structures of whole numbers affect their understanding of negative 
numbers and, conversely, as they attempt to make sense of negative numbers, they 
reorganize their conceptual structures for whole numbers.

Children’s struggle to make sense of the notation of negative numbers is an 
example of this complex dual transition. Bofferding discusses the three meanings 
attached to the minus sign: (a) as a subtraction operation; (b) as a symbol denoting 
a negative number; and (c) as a multiplication by negative one. In school mathemat-
ics, spatial cues are often used to differentiate among these meanings. Bofferding 
encouragingly finds that instruction “focuse[d] on integer order, value, and symbols 
lead to changes in students’ approaches to integer arithmetic.” For example, she 
reports a shift “from considering large negatives to be larger than small negatives 
and operating based on absolute value to interpreting negative values based on their 
linear order and operating based on moving or counting in a particular direction.”
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15.1.1  Negative Numbers: Symbolism and Structure

Structural reasoning is a fundamental, ubiquitous, practice in mathematics. “Look 
for and make use of structure” is one of the eight standards for mathematical prac-
tices called for by the Common Core State Standards in Mathematics (CCSSM, 
2010). The meaning and use of structural reasoning in the mathematics education 
literature is diverse, characterized by a wide range of abilities (see Harel, 2013b; 
Harel & Soto, 2016). Relevant to our discussion here is the question of how to plant 
the seeds for structural reasoning as children struggle to make sense of negative 
numbers. The concerns and ideas discussed in the three chapters inspired attention 
to the following manifestations of structural reasoning.

 1. Presumed Meaning. The ability to carry out purposeful actions on meaningless 
symbols using structural rules, with the a priori assumption that meaning for the 
symbols will be constructed subsequently.

 2. Formation of conceptual entities. The ability to conceive of a string of symbols 

representing, simultaneously, an operation and an outcome (e.g., 2 ⋅ x, 2 + x x,
) as a conceptual entity, as an input for further operations.

 3. Multiple Interpretations. The ability to interpret mathematical symbols in mul-
tiple ways.

The meaning of these characteristics of structural reasoning and their relevance to 
the three chapters under discussion will become clearer as the rest of the commen-
tary unfolds. We begin with a brief historical account.

15.2  A Snapshot into Leibniz and Euler’s Views of Negative 
Numbers

At the heart of the difficulties children encounter with negative numbers is the transi-
tion from whole numbers to negative numbers. This, of course, is not unique to nega-
tive numbers. Any extension of one domain of numbers into a larger domain of 
numbers involves what Brousseau (1997) calls epistemological obstacles—obstacles 
that are unavoidable due to the meaning inherent in the concept; the well- documented 
phenomenon concerning obstacles learners encounter as they transition from whole-
number operators (multipliers or divisors) to fraction operators is an example.

Epistemological obstacles observed with individuals usually have traces in the 
history of mathematics. Those involved in the conceptualization of negative num-
bers are a case in point. Consider the following argument by Antoine Arnauld 
(1612–1694), a theologian and mathematician. Applying the conceptualization of a 
number as a representation of a quantity, measure, or capacity, Arnauld ques-

tionedthe validity of negative numbers by pointing to the equality, 
+
−

=
−
+

1

1

1

1
. Since 

+1 > − 1, how could, he asked, a greater to a smaller equal a smaller to a greater? 
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(Kline, 1972). Not less fascinating is Leibniz’ response to Arnauld’s claim. 
According to Kline, Leibniz agreed with Arnauld’s objection but “argued that one 
can calculate with such proportions because their form is correct, just as one calcu-
lates with imaginary quantities” (emphasis added; Kline, 1972, p. 252).

What might Leibniz have meant by his analogy to complex numbers? The history 
of the development of complex numbers began with the sixteenth-century discovery 
of a solution formula to cubic equations, primarily by Cardano (1501–1576). As the 
mathematicians of the time looked into this new result, they encountered baffling 
behaviors (Trignol, 1980). One of the most perplexing was that in certain cases the 
cubic formula yielded (at the time) meaningless solutions involving the square roots 
of negative numbers when real roots are known. However, when these solutions were 
treated as if they were meaningful expressions, the manipulation yielded the expected 
meaningful solutions. (e.g., for the cubic equation, x3 = 15x + 4,the cubic formula 

yields the solution, x = + − + + −2 121 2 1213 3 . But when this solution is 
manipulated by algebraic rules, pretending as if the expressions involving the square 
roots of negative numbers are meaningful, the manipulation results in the solution 4, 
as expected. For an extended discussion of this history and its instructional implica-
tions, see Harel (2013b). In his response, it is safe to assume, Leibniz was referring 

to this very process. Hence, he argued, the meaningfulness ofthe equality 
+
−

=
−
+

1

1

1

1
 

is structural; it is derived from the symbolic rules of algebra.
Euler’s explanation to the rule “negative multiplied by negative is positive” is 

equally as intriguing. Euler first justifies this rule, “negative multiplied by positive 
is negative,” through the interpretation of negative numbers as debt. Then he writes:

It remains to resolve the case in which − is multiplied by −; or, for example, −a by −b. It 
is evident, at first sight, with regard to the latter that the product will be ab; but is doubtful 
whether the sign +, or the sign −, is to be placed before it; all we know is, that it must be 
one or the other of these signs. Now, I say that it cannot be the sign −; for −a by +b gives 
−ab, and −a by −b cannot produce the same result as −a by +b; but must produce a con-
trary result, that is to say, +ab; consequently, we have the following rule: − multiplied by + 
produces +, that is the same as + multiplied by +.

Both Leibniz and Euler’s justifications resorted to the structure of symbols rather 
than the quantitative referents represented by the symbols involved. Leibniz did so 
by analogizing symbolic manipulations of negative numbers to those applied suc-
cessfully earlier in the development of complex numbers. While Euler remained in 
the context of negative numbers, he also rested his case on symbolic structure con-
siderations—that two different symbolic rules cannot yield the same outcome.

15.3  Presumed Meaning

In discussing ways children’s constructions could be leveraged to ideas of transla-
tion, or movement, Wessman-Enzinger brings up an excerpt of a response by Alice, 
a fifth grader who was asked to solve the equation 4 − ☐ = 6. The following dia-
logue ensued.
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Alice: Well, because I did two… I did it backwards (moves pen across 
4 − −2 = 6). If I did two plus four, I got six. So, then I thought it would be 
negative two.

W-E: What do you mean by backwards?
Alice: If like six (points at 6) minus two would give you four. So, I thought four 

minus negative two would give you six.

A key question here is this: How did Alice conceptualize the equation? If “sub-
traction makes bigger” was not part of her scheme, her response points to potential 
for reasoning along the following lines:

Assuming it is meaningful to take away a number from 4 to get 6, then 6 plus that 
number must be 4. What number could that be? It must be a number that, when 
added to 6, the result would be 4. −2 is that number.

The theorem in action (Vergnaud, 1994) underlying this reasoning is, “if the dif-
ference between a and b is c, then the sum of c and b is a.”, as suggested by 
Wessman-Enzinger. Reasoning where one assumes existence of a number satisfying 
an equation inconsistent with her or his prior knowledge and acts upon that number 
in accordance with a structural rule, corresponds to the reasoning applied in the 
development of the complex numbers and argued by Leibnitz in the case of negative 
numbers.

Fascinated by Alice’s response, I posed the same question to Lei, a mathemati-
cally advanced 5-year-old child, who was taught negative numbers through the tra-
ditional models of “debt,” “temperature,” etc., but was not exposed to equations of 
the form 4 − ☐ = 6.

Lei: [the answer is] −2.
I: How did you get −2?
Lei: Has to be a negative number, because when you take away a number from 4, 

you never get 6, because 6 is bigger than 4. Then I understood it has to be a 
negative number.

The subsequent dialogue with Lei was less clear, but he mentioned the fact that 
6 + (−2) = 4.

Lei’s response, too, is reminiscent of Leibniz’ defense of the use of structure- 
based arguments, but it also resembles Euler’s justification-by-elimination. Lei’s 
response might be interpreted as follows: The only additive connecter between 4 
and 6 is 2, again perhaps using his MNL for natural numbers. But, the solution to 
the equation cannot be (positive) 2, since it is not possible to subtract 2 from 4 and 
get 6. The remaining option is, therefore, negative 2.

This brings me to the enduring question of how to teach the rule, “negative 
times negative is positive.” Anecdotally, I observed that elementary school teach-
ers  typically respond positively to the following structural justification. As the 
reader can see, the justification includes elements of Euler’s considerations, but it 
goes beyond them in that it uses the concept of additive inverse and its unique-
ness, as well as other basic properties of integers (e.g., associativity and 
distributivity).
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• Assume the product (−1) ⋅ (−1) is meaningful, resulting in an integer. Then it 
must have a unique additive inverse.

• We suspect that its additive inverse is 1 or −1 (along the line of reasoning 
expressed by Euler). Claim: −1 is the additive inverse of (−1)  ⋅  (−1). Here is 
why:

• [(−1) ⋅ (−1)] + (−1) = [(−1) ⋅ (−1)] + (−1) ⋅ 1 = (−1) ⋅ [(−1) + 1] = (−1) ⋅ 0 = 0
• By the uniqueness property of additive inverse, (−1) ⋅ (−1) = 1

I hasten to add that if we have learned any lesson from the New Math era, this 
explanation in its current form is entirely inadequate for elementary school students. 
However, if indeed fifth-grade children are capable of reasoning structurally, as the 
three authors seem to suggest, and following Wessman-Enzinger’s call to use chil-
dren’s own constructions as guide for negative number instruction, the following 
questions are of cognitive and pedagogical interest.

 1. Are young children capable of reasoning in terms of presumed meaning?
 2. Should we encourage the development of curricula that utilize this ability to help 

students overcome the transition from whole numbers to negative numbers, espe-
cially in dealing with problems involving multiplicative operations?

 3. What are the characteristics of learning trajectories (Simon, 1995) that lead up 
to the development of this ability?

 4. How can we avoid the risk that the presumed meaning kind of reasoning would 
diminish attention to quantitative reasoning?

As the above discussion demonstrates, the ideas of additive inverse and unique-
ness of additive inverse are key in the conceptualization of negative numbers. Varma 
et al.’s central claim is that the analog−x model provides an answer to “the question 
of what it means to have an intuitive understanding of the integers, in particular to 
understand that additive inverse law that enriches them beyond the natural num-
bers.” Analog−x is proposed as a model that accounts for adult’s understanding, 
including, I assume, the institutionalized understanding of the integers. It is signifi-
cant to note that the model implies—mathematically, due to its symmetry process-
ing—an essential condition about the additive inverse property: uniqueness—that 
for any integer x, there exists a unique integer −x, such that x  +  (−x) = 0. This 
property, implicit in the model, together with the commutative property, the associa-
tive property, and the closure of the binary operation, +(⋅,  ⋅), makes the integers a 
group. Without this property, the structure of the integers as we know it crumbles; 
for example, the equality we have just discussed, (−1) ⋅ (−1) = 1, is no longer valid. 
This raises several questions:

 5. What foundations, perceptual or conceptual, provide impetus for the develop-
ment of the uniqueness property?

 6. What formal and informal experiences engender or enhance this development?
 7. Where in the learning progression of the integers proposed by the authors, par-

ticularly in the analog−x model does the uniqueness property fall?
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15.4  Formation of Conceptual Entities

Students’ difficulties with negative numbers are often attributed in part to the 
“abstract nature” of the concept. APOS theory (Dubinsky, 1991) pours cognitive 
meaning into the term “abstract” by specifying the types of abstractions learners 
must go through in order to cope with mathematical concepts and ideas. Abstraction 
in APOS theory involves four levels of conceptualizations: action, process, object, 
and schema (hence, the acronym). Relevant to our discussion here are the first three 
levels. The essential feature of understanding the symbol −x at the level of process 
conception is that the learner can imagine taking any natural number x and through 
the processing symmetry claimed by analog−x, transform it into a new integer, −x. 
The key here is the ability to reason in terms of a universal quantifier, expressed by 
the pronoun, any. Without this ability, the learner might be able to deal with −x at the 
level of action conception; that is, given a specific number (e.g., 4) the learner can 
produce its negative counterpart. But he or she would be handicapped in dealing with 
algebraic expressions involving the minus sign, as was pointed out by Bofferding.

Entailed from APOS theory is that there is a reflexive developmental relationship 
between the formation of negative numbers as objects and the use of their symbolic 
representation as an input of a relation (e.g., an equation or a function). For exam-
ple, in dealing with the equation, − =x 7 , −x is an input for the function t t→
. Reasoning conceptually, not procedurally, along the line, “The square of what 
number of the form −x is 7?” is an indication of conceiving −x as an object, for it is 
taken as an argument of a function. The point of this discussion is that negative 
numbers are perhaps the earliest opportunity to engage students in reasoning about 
mathematical symbols at the level of object conception. Clearly, a critical ingredient 
in this reasoning is the concept of additive inverse.

Varma et  al. speculate that the acquisition of this concept is accelerated when 
students learn to solve equations, a practice that involves applying the additive 
inverse property to isolate the equation’s unknown—definitely a structure-based 
practice. They raise the question whether this capacity can be accelerated further 
through certain instructional activities. Equations and inequalities involving absolute 
values (e.g., |1 − x| − |x| > 2) are likely to be instrumental in both strengthening stu-
dents’ practice of additive inverse and reasoning at the level of object conception.

15.5  Multiple Interpretations

Given the critical role negative numbers play in algebra and the difficulties algebra 
students have in encoding their symbolic designations, Bofferding is right to call for 
further investigation into the role of spatial cues in helping students differentiate 
among the meanings assigned to the minus sign. Yet a faulty interpretation associ-
ated with negative numbers common among algebra students is that the very appear-
ance of the negative sign in front of an expression implies that the expression is 
negative. This misconception manifests itself, for example, in the difficulty students 
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have with the algebraic definition of absolute value. On the one hand, students learn 
that the absolute value of an integer is always positive, since it represents the dis-
tance of a point on the number line from the origin. On the other hand, the algebraic 
definition states that |x| =  − x (when x < 0), a negative value by the appearance of 
the latter equality.

Mathematically, there is a unified meaning for the negative sign. The symbol 
“−x” denotes the additive inverse of an integer x. The binary operation, a − b, is “a 
plus the additive inverse of b”, that is, a − b = a + (−b). And (−1) ⋅ x =  − x is a theo-
rem (not a predetermined property, an axiom, such as 1 ⋅ x = x) asserting that the 
product of −1 and an integer x is the additive inverse of x (which, as stated, is 
denoted by −x). Clearly, this unified meaning of the minus sign is not suitable for 
young children, but questions for researchers and curriculum developers are:

 8. Should this meaning be promoted in school mathematics?
 9. If so, how to intellectually necessitate it (Harel, 2013a) for the students? And
 10. In what stage of their conceptual development?

The intellectual value of constructing a unified meaning cannot be overestimated, as 
pointed out by Jacques Hadamard: “The creation of a word or a notation for a class 
of ideas may be, and often is, a scientific fact of great importance, because it means 
connecting these ideas together in our subsequent thought” (Edwards, 1979, p. 89; 
quoted by Moreno-Armella, 2014).

The suggestion to consider the merit of teaching this unified meaning is not to 
avoid the multiple meanings of the minus sign. Rather, as Bofferding indicates, 
“students need to be able to think about positive numbers flexibly; likewise, they 
need to understand the many uses of negative numbers, the unary meaning of the 
minus sign.” The unavoidable difficulties associated with the multiple interpreta-
tions of negative numbers detailed by Bofferding should be welcomed, not circum-
vented. It is through these difficulties that learners are likely to construct one of the 
most valuable—indeed essential—ways of thinking in mathematics: that symbols 
can have multiple interpretations and that it is advantageous to attribute different 
interpretations to symbols in the process of solving problems.

A quote from Otte (2006) by Moreno-Armella (2014) captures this sentiment: “a 
mathematical object, such as a ‘number’ or ‘function’ does not exist independently 
of the totality of its possible representations, [and the object] must not be confused 
with any particular representation, either” (p.  17). Moreno-Armella continues: 
“Each representation provides a door of access, but what one ‘finds’ through it must 
not be confused with the object under consideration.” (p. 628)

15.6  Concluding Remarks

A piece of literature—a journal article, a poem, an essay—is judged not only by the 
factual observations it makes or positions it expresses, but also by the questions it 
engenders. Each of the chapters discussed in this commentary raises questions entailed 
from a literature review or a research investigation. As I read and reflected on these 
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chapters, more questions arose. In this narrative I focused on those pertaining to the 
role of symbolism and structure in the development of negative numbers, both in his-
tory and with individual learners. There remains, however, one question—metaphysi-
cal in nature and belonging to the philosophy of meaning—about the ability to carry 
out purposeful actions on meaningless symbols using structural rules, with the a priori 
assumption that meaning for the symbols will be constructed subsequently.

 11. Are purposeful actions on meaningless symbols using structural rules meaning-
ful? If so, what meaning do they have?

As discussed, these actions had enormous success in the development of the 
complex numbers and negative numbers. The success of these actions accelerated 
later in the nineteenth century, turning into part of the mathematical practice of the 
time. They were known as operational method (Friedman, 1991). The mathematical 
area known as functional analysis initially emerged to put the method on solid logi-
cal grounds. We would be hard pressed to ignore this historical development, espe-
cially if children invent such actions spontaneously in dealing with negative 
numbers. The final question, then, is:

 12. Should the presumed meaning approach be considered by curriculum develop-
ers and teachers? If yes, how?

Elsewhere (Harel, 2008) I defined two ways of thinking associated with the use 
of symbols: the non-referential symbolic and algebraic invariance. The non- 
referential symbolic is a way of thinking by which one operates on symbols as if 
they possess a life of their own, not as representations of entities in a coherent real-
ity. Algebraic invariance, on the other hand, is a way of thinking by which one 
recognizes that algebraic expressions are not manipulated haphazardly, but rather 
with the purpose of arriving at a desired form and maintaining certain properties of 
the expression invariant. The difference between the two ways of thinking is critical 
for mathematics educators. While the latter includes the ability to pause at will to 
probe into a referential meaning for the symbols involved, the latter does not. The 
goal of instruction is to help children develop the presumed meaning practice in the 
context of negative numbers in such a manner that it becomes an instantiation of the 
algebraic invariance way of thinking, not the non-referential way of thinking.

A significant part of this commentary addressed what Varma et al. call adults’ 
understanding of integers, with reference to the institutionalized knowledge of this 
domain at various points in the historical development of mathematics, including 
the modern era. I did so because the ultimate goal of mathematics education is to 
help students gradually refine and modify their understandings toward those that 
have been institutionalized—those the mathematics community at large accepts as 
correct and useful in solving mathematical and scientific problems. As a mathemat-
ics educator, not a cognitive scientist, the approach I have taken here dovetails with 
Varma et al.’s succinct distinction between the research focus of a cognitive scientist 
and that of a mathematics educator: “Central to cognitive science is the question of 
how … basic cognitive capacities are organized to understand culturally constructed 
number systems. Education asks a different question. What experiences best sup-
port the learning of new, evermore abstract mathematical concepts?”
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Chapter 16
Synergizing Research on Constructing 
Number: Themes and Prospects

Martha W. Alibali and Anderson Norton

Abstract The overarching theme of this book can be simply stated: Building on a 
foundation of biologically based abilities, children construct number via sensorimo-
tor and mental activity. In this chapter, we return to this theme, and we connect it to 
three additional themes that emerge across chapters: comparing competing models 
for conceptual change; consideration of multiple concepts for natural numbers, 
fractions, and integers; and understanding interrelations of conceptual and proce-
dural knowledge in the construction of number. We close by suggesting ways that 
psychologists and mathematics educators might move forward with interdisciplin-
ary research that addresses important questions about the construction of number. 
Indeed, the chapters in this volume chart many possible paths.

Keywords Numerical development · Conceptual change · Procedural knowledge · 
Sensorimotor activity · Interdisciplinary research

16.1  Introduction

How do learners construct number, including natural numbers, rational numbers, 
and integers? The purpose of this volume was to bring together research from dif-
ferent intellectual traditions, including mathematics education, cognitive psychol-
ogy, developmental psychology, and neuroscience, to address this broad question. 
Different chapters take different theoretical stances and use different methodologi-
cal tools. Taken together, they highlight that the development of number depends 
both on foundational systems that provide an early basis for number, and on activi-
ties that build upon, enrich, restructure, or otherwise modify early knowledge. The 
overarching theme of the book can be simply stated: Building on a foundation of 

M. W. Alibali 
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA 

A. Norton (*) 
Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
e-mail: norton3@vt.edu

© Springer Nature Switzerland AG 2019 
A. Norton, M. W. Alibali (eds.), Constructing Number, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-030-00491-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00491-0_16&domain=pdf
mailto:norton3@vt.edu
https://doi.org/10.1007/978-3-030-00491-0_16#DOI


342

biologically based abilities, children construct number via sensorimotor and mental 
activity.

Several chapters in the volume address biologically based, foundational abilities 
and systems that engage with sensory input in mathematical ways. Young children’s 
construction of number builds on these foundations. These foundational abilities 
and systems include the ability to subitize (the focus of Chap. 2, by Clements, 
Sarama, and MacDonald), the approximate number system (a focus of Chap. 4, by 
Ulrich and Norton), the ratio processing system (the focus of Chap. 10, by Matthews 
and Ziols), and perceptual mechanisms for processing visual symmetry (considered 
in Chap. 14, by Varma, Blair and Schwartz).

Other chapters in this volume focus on later developments and on activities that 
engage these systems and build on them in specific ways. In some cases, early 
knowledge seems to stand in the way of later knowledge, causing difficulties or 
interfering with performance. For example, the shift from reasoning about natural 
numbers to reasoning about fractions poses many challenges for learners, as dis-
cussed by Obersteiner, Dressler, Bieck, and Moeller (Chap. 7). At the same time, 
early knowledge also positions children to take in and to construct new, mathemati-
cally relevant information, both in informal settings, as highlighted by McMullen, 
Chan, Mazzocco, and Hannula-Sormunen (Chap. 4), and in more formal, educa-
tional settings. Understanding precisely how later developments build on founda-
tional abilities and systems is one key challenge for contemporary research at the 
interface of psychology and mathematics education. Ulrich and Norton (Chap. 5) 
present an attempt at such integration, casting the approximate number system as 
yielding a sense of gross quantity, which is refined through the child’s activity to 
yield progressively richer understanding of magnitude, per se.

Many later developments occur primarily in formal educational settings. Several 
of the chapters focus on elements of these settings, including the activities that chil-
dren engage in and their consequences for children’s thinking. For example, 
Clements, Sarama, and MacDonald (Chap. 2) consider instructional activities 
through which children can build on their subitizing skills to discover key properties 
of natural numbers, such as cardinality. Obersteiner and colleagues (Chap. 7) pro-
vide recommendations about instructional practices in light of current knowledge 
about how natural number knowledge can interfere with fraction knowledge. Mix, 
Smith, and Crespo (Chap. 5) consider the cognitive processes afforded and encour-
aged by existing curricular materials for place value. Varma and colleagues (Chap. 
14) highlight a range of conceptual models that form the bases for curricular materi-
als about integers. Several of the chapters consider educational practices that bridge 
from or build on biologically based abilities.

Other chapters in this volume seek to characterize the nature of children’s under-
standing of different types of number and the range and sequence of conceptions 
that children may hold. For example, Tzur (Chap. 8) describes schemes for concep-
tualizing fractions that draw on the operations of iterating units and recursive parti-
tioning. Bofferding (Chap. 12) describes children’s shifting concepts of negative 
numbers as they engage in a process of conceptual change, with a focus on how 
concepts of negative numbers draw on foundational concepts of numerical order, 
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numerical values, and operations. Wessman-Enzinger (Chap. 13) focuses on a par-
ticular model of integers as directed numbers, and the foundational concepts that are 
required for such a model—specifically, relativity, or distance from an arbitrary 
referent (0), and translation, or moving from one number to another.

Across chapters, one key focus is on mechanisms of change in children’s think-
ing. For example, Mix, Smith, and Crespo (Chap. 5) focus on statistical learning and 
structure mapping as two foundational learning mechanisms that are implicated in 
children’s learning about place value. Simon (Chap. 9) focuses on the Piagetian 
construct of reflective abstraction as a mechanism by which learners construct con-
cepts, through coordinating actions that derive from activity. Tzur (Chap. 8) focuses 
on children’s reflection on the effects of their activity. Beckmann (Chap. 11) sug-
gests that when children experience the outcomes of actions, they may update their 
expectations in ways that align with Bayesian models of inference—a perspective 
that underpins a growing body of contemporary research in cognitive development 
(e.g., Gopnik & Bonawitz, 2014; Sobel & Kushnir, 2013; Xu & Tenenbaum, 2007). 
Thus, a central theme in understanding and effecting change in children’s under-
standing of number is the importance of activity. Moreover, as the chapters in the 
current volume make clear, activity is often structured in important ways by educa-
tional materials, tasks and settings, and by social partners such as teachers and 
peers.

In this closing chapter, we reflect on the roles of sensorimotor and mental activity 
in the construction of number. In doing so, we also consider three additional themes 
that arise repeatedly throughout the book: (1) processes of conceptual change in the 
development of number concepts, (2) multiple concepts of natural numbers, frac-
tions, and integers, and (3) interrelations of conceptual and procedural knowledge 
in the construction of number. We close by considering the implications of the work 
considered in this volume for bringing together psychology and mathematics 
education.

16.2  Sensorimotor Activity in the Construction of Number

In the opening chapter of this volume, we argued that sensorimotor activity is foun-
dational for constructing mathematical objects, including number. We further pro-
posed that sensorimotor activity could be a meeting point for psychologists and 
mathematics educators, in the sense that activity is involved in the mechanisms of 
development, and that specific forms of activity can be encouraged or promoted in 
educational practices in both formal and informal settings.

Many chapters in this volume have identified or described activities that support 
the development of mathematical knowledge. For example, Simon (Chap. 9) 
describes a student’s construction of a concept of multiplication that generalizes 
from natural numbers to fractions—specifically, multiplication as a change of units. 
Simon conceptualizes the construction of this general concept as a process of 
“guided reinvention” that involves both physical activity within a specially designed 
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learning environment (involving fraction bars) and reflective abstraction that is 
socially supported by a teacher. McMullen, Chan, Mazzocco, and Hannula- 
Sormunen (Chap. 3) describe activities that encourage young children to focus on 
number in their everyday environments, by arranging toys and other materials in 
ways that make numerical features highly salient—creating what they call “bait” for 
noticing and reflecting on numerical properties. Varma, Blair, and Schwartz (Chap. 
14) discuss instructional approaches for integers using manipulatives that embody 
conceptualizations of integers as “jumping” (movement along a number line), 
“stacking” (cancellation), or “folding” (symmetry) (Tsang, Blair, Bofferding, & 
Schwartz, 2015). Some chapters consider specifically how activity can build on 
biologically based systems, such as the approximate number system (Ulrich & 
Norton, Chap. 5) and the ratio processing system (Matthews & Ziols, Chap. 10). 
Indeed, both Ulrich and Norton and DeSmedt (Chap. 6) emphasize that sensorimo-
tor activity can “feed back” to affect the approximate number system, in the sense 
that mathematically relevant activities can enhance the acuity of the system. In this 
way, children’s activity influences how the approximate number system is engaged 
in their construction of number.

The chapters in this volume consider a range of different ways in which children 
establish, extend, and organize their mathematical thinking through activities. In 
this regard, two distinctions are  worth highlighting. First, activities may include 
both physical activities and mental ones. Children’s actions with their bodies and 
with objects in the world provide them many opportunities for taking in, operating 
on, and generating mathematical information, as emphasized in many contempo-
rary theories of embodied cognition (see Alibali & Nathan, 2018). Some objects are 
specially designed to afford particular sorts of actions that connect in particular 
ways to specific mathematical concepts, for example, base-10 blocks, fraction bars, 
and two-color counters for representing integers. Some activities involve actions on 
symbolic representations, such as number lines or number statements, that can be 
visually perceived but cannot be handled, grasped, or moved. Other activities occur 
in the mental realm. For example, unitizing and disembedding involve mental activ-
ity that may not have a specific outward manifestation. Moreover, reflective abstrac-
tion describes a process for mentally coordinating such actions.

Second, activities can be engaged in individually or they can occur in social set-
tings. Children engage in many mathematically relevant activities spontaneously 
and on their own—including physical activities such as counting, measuring, and 
aligning, and mental activities such as noticing mathematical properties, reflecting 
on mathematical ideas, and thinking about connections. Understanding the nature of 
children’s spontaneous mathematical activity is an important focus of current 
research, as demonstrated in the programmatic work of McMullen and colleagues 
(Chap. 3). Children also engage in mathematically relevant activities in informal 
social interactions, including conversations and play interactions with peers and adu
lts (Gunderson & Levine, 2011; Levine, Ratliff, Huttenlocher, & Cannon, 2012; 
Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010). Finally, a great 
deal of mathematically relevant activity—and in particular, activity relevant to con-
structing more advanced mathematics—occurs in formal educational contexts.
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The activities that occur in instructional contexts are heavily shaped by cultural 
practices about who goes to school, how schools and classrooms are organized, how 
teachers and students are expected to interact, and the kinds of curricular materials 
and technological tools that are available. Many of the chapters in this book describe 
instructional activities that use particular sorts of curricular materials or technologi-
cal tools within particular sorts of physical and social contexts. For example, Mix, 
Smith, and Crespo (Chap. 5) consider the opportunities for learning offered by 
activities in three different curricula about place value. Tzur (Chap. 8) and Simon 
(Chap. 9) consider activities that children can engage in with fraction bars—either 
using simple paper strips (“French fries”) or using a specially designed computer 
application that allows children to make and measure the bars. Broadly speaking, 
instruction provides opportunities for activities that can be involved in—and can 
provoke—processes of knowledge change.

A deeper understanding of how children construct knowledge through activi-
ties—including both physical and mental activities, and both individual and socially 
supported ones—can guide the design of instructional approaches, curricular mate-
rials, and technological tools that promote engaging in such mathematically rele-
vant activities. This focus on activity is woven through our consideration of other 
themes that recur throughout the volume.

16.3  Processes of Conceptual Change in the Development 
of Number

A central issue in understanding the development of number has to do with the 
“shape” or nature of change. Once an initial conceptual structure is in place, does 
change involve elaborating and enriching that initial structure? Or does change 
involve reorganizing and restructuring that initial structure? Researchers from dif-
ferent theoretical traditions have offered different answers to this question. This 
general issue is of particular importance for researchers who study fractions and 
integers, because knowledge of these number types builds on knowledge of natural 
numbers in many ways.

It is well established that natural number concepts can sometimes interfere with 
reasoning about other types of numbers. The tendency to inappropriately draw on 
natural number knowledge in reasoning about fractions has been termed the “natu-
ral number bias” (Ni & Zhou, 2005); some of the research documenting the natural 
number bias in fraction reasoning is reviewed by Obersteiner, Dressler, Bieck, and 
Moeller (Chap. 7). A similar pattern of interference from natural number knowledge 
is also evident in people’s reasoning about irrational numbers (Obersteiner & 
Hofreiter, 2017).

Although interference from natural numbers is well documented, it is not 
observed in every sample or in every setting. Indeed, some research has suggested 
that reasoning about natural numbers can also support reasoning about other  number 
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types. For example, drawing on whole number division concepts can support stu-
dents’ reasoning about dividing fractions (Sidney & Alibali, 2015, 2017). With 
respect to integers, some researchers have argued that negative numbers are actually 
represented as natural numbers that are bound together with polarity on an as- 
needed basis (Ganor-Stern, Pinhas, Kallai, & Tzelgov, 2010; Ganor-Stern & 
Tzelgov, 2008). According to this perspective, negative numbers are created from 
natural number components when required by the task at hand.

Indeed, because natural numbers are the earliest learned type of number, they 
provide a basis for learners’ concepts of other types of numbers. At issue is just how 
learning about other number types builds on natural numbers. The answer to this 
question should yield insights into how knowledge of natural numbers and knowl-
edge of fractions and integers are related.

Is the transition from whole numbers to fractions and integers best characterized 
as an extension of natural number knowledge into new realms? Some scholars have 
argued that this is the case for fractions (e.g., Siegler & Lortie-Forgues, 2014; 
Siegler, Thompson, & Schneider, 2011). Or is this transition better characterized as 
a process of reorganization and restructuring, as other scholars have argued (e.g., 
Vamvakoussi & Vosniadou, 2004)? Shall we, as Tzur (Chap. 8) argues, “embrace 
bringing forth natural number reasoning, which learners do have available, as a 
starting point to a reorganization process”? Further, if the shift is best characterized 
in terms of restructuring, what is the relation between the initial, pre-restructuring 
knowledge state and the later, post-restructuring knowledge state? Are those states 
incommensurable, in the sense that new concepts are not definable in terms of previ-
ous ones, as Carey (1991) describes? Put another way, when a child’s view of the 
number system changes from one based solely on natural numbers to one that incor-
porates fractions and/or integers, is the child’s view of number fundamentally 
changed?

It seems likely that both types of change—that is, change best characterized as 
enrichment and more fundamental, structural change—occur during the course of 
children’s mathematical development. Some forms of learning may yield enrich-
ment of existing structures, whereas others may involve more far-reaching, struc-
tural reorganization. One challenge for researchers and educators is to determine 
what sorts of learning activities provoke change of each kind, and to understand 
what sequence of activities may help students to progress in understanding in ways 
that are optimal.

In this regard, one important question for future study has to do with the notion 
of backward transfer (Cook, 2003; Hohensee, 2014, 2016) which occurs when new 
learning reaches back to alter previously learned knowledge. Might children’s new 
learning about fractions and integers provoke changes in the knowledge about natu-
ral numbers upon which it built? For example, might learning about numerical den-
sity for fractions change how learners view numerical density for whole numbers? 
Although there is only one natural number between 3 and 5, there are infinitely 
many numbers; could learning about numerical density for fractions compel chil-
dren to reconsider their views about numerical density more broadly? As a second 
example, could learning about negative numbers compel changes in children’s 
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views of natural numbers, by highlighting a measurement view of number, rather 
than a discrete quantity view?

Further, if such backward transfer does occur, what mechanisms might underlie 
it? Restructuring provoked by new learning could yield novel insights into struc-
tures that were previously unanalyzed. For example, learning about place value in 
the context of multi-digit addition and subtraction (including “carrying” and “bor-
rowing”) might provoke insights into numerical representations such as number 
names, which might initially be understood in unanalyzed form. A child might 
begin to think of “fourteen” as one ten and four ones, rather than as fourteen count-
able entities. Properties of numerical language may also support (or prevent) 
insights into relevant structure, a point discussed by De Smedt (Chap. 6).

Whether change involves restructuring or elaboration may also depend on the 
nature of people’s initial whole number concepts, which presumably depend on 
instructional experiences,  both formal and informal. For example, a concept of 
whole numbers as places on number line might readily support extension to inte-
gers, whereas a concept of whole numbers as the result of a counting operation may 
be more difficult to extend. It may be that restructuring occurs only when a shift in 
conceptualization is required.

Different sorts of activities may also promote different sorts of changes in chil-
dren’s knowledge—either more elaborative, enrichment types of changes or more 
structural changes. For this reason, richer and more complete theories are needed 
that can both explain and guide the further design of activities to promote desired 
sorts of changes. Consider, for example, what sorts of activities might promote chil-
dren’s thinking about equipartitioning, about place value, or about the additive 
inverse. With greater knowledge about how different kinds of activities promote 
knowledge change, we will be in a better position to design learning trajectories that 
promote desired sorts of changes in children’s thinking.

16.4  Multiple Concepts of Natural Numbers, Fractions, 
and Integers

Another theme that arises in many of the chapters in this volume is the idea that 
there are multiple ways to conceptualize numbers of different types. For example, 
natural numbers may be conceptualized as the result of a counting operation or as a 
place on a number line. Fractions may be conceptualized as parts of a whole, as 
measures, as ratios, or as proportions of a collection. Integers may be conceptual-
ized in terms of cancellation, symmetry, or movement along a number line.

Operations also allow for multiple conceptualizations. For example, subtraction 
can be conceptualized in terms of “taking away” (e.g., If Jordan had 5 candies and 
gave 3 to Alyn, how many did Jordan have left?) or in terms of “comparing” (e.g., 
If Jordan has 5 candies and Alyn has 3 candies, how many more candies does Jordan 
have than Alyn?). Division can be conceptualized in terms of forming groups of a 
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particular size (quotative division) or in terms of forming a particular number of 
groups (partitive division).

Given that there are multiple ways to conceptualize numbers and operations on 
numbers, it seems likely that the construction of number may involve both acquiring 
new conceptualizations for numbers or operations and linking distinct conceptual-
izations. Moreover, these learning experiences may also be viewed in terms of 
enrichment and structural change. With respect to fractions, Kieren (1980) described 
five subconstructs, including part-whole, measurement, ratio, quotient, and opera-
tor. Initial research on these subconstructs treated them as separate components 
necessary for a robust understanding of fractions (e.g., Behr, Lesh, Post, & Silver, 
1983)—aligning with an enrichment model of conceptual change. More recent 
research has linked the subconstructs by demonstrating, for example, how children 
can reorganize mental actions that comprise their part-whole schemes to construct 
measurement schemes (e.g., Wilkins & Norton, 2018)—aligning more closely with 
a reorganization model of conceptual change.

This example suggests close connections between the three themes we have dis-
cussed thus far in this chapter: the role of activity in constructing number, different 
kinds of knowledge change, and multiple concepts of numbers. If students hold 
multiple concepts of various kinds of number, linking them might yield reorganiza-
tions in students’ concept of number in general, and these linkages might also rely 
on activity. For instance, if students have available concepts of partitive and quota-
tive division of whole numbers, we might ask what activities students can engage in 
to relate those concepts to one another and to apply them to ratios or fractions. Here, 
we see some progress in recent work (e.g., Beckmann & Izsák, 2015; Sidney & 
Alibali, 2017).

For each of the number types we have considered, activity can play a central role 
in establishing and linking differing concepts of mathematical entities and opera-
tions. As demonstrated within several of the chapters in this volume, teachers can 
promote concepts and linkages by engaging students in tasks that elicit relevant 
activity. For example, Wessman-Enzinger (Chap. 13) describes a task in which a 
student was asked to represent number sentences of the form −a + □ = b, where 
|a| < |b|, on a number line. The student used the number line to locate positions of the 
numbers, a and b, relative to 0 and then to sum up their distances from 0 (a + b). 
Thus, the task served as an opportunity for the student to link additive reasoning with 
whole numbers to a concept of integers as directed numbers, using 0 as a referent.

Beckmann (Chap. 11) characterizes rich, interconnected knowledge of multiple 
concepts of different number types as a form of expertise. With respect to fractions, 
she notes, “Experts may also be able to move easily, flexibly, and even subcon-
sciously between viewing fractions as stuff, fractions as operating on stuff to produce 
stuff, and fractions as how much of 1 unit it takes to make some stuff, selecting a 
view that is appropriate for the purpose at hand.” From this perspective, constructing 
such interconnected knowledge about different concepts of numbers is a case of the 
development of expertise. Like the development of expertise, it presumably has a 
protracted developmental course and requires extensive experience (see, e.g., 
Ericsson, Krampe, & Tesch-Römer, 1993; Macnamara, Hambrick, & Oswald, 2014).
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Mathematical symbols can also have multiple interpretations, and students need 
to learn these different interpretations as well as the relations among them. As one 
case in point, Bofferding (Chap. 12) discusses multiple interpretations of the minus 
sign. The value inherent in having multiple interpretations is highlighted by Harel 
(Chap. 15). In his view, “The unavoidable difficulties associated with the multiple 
interpretations …. should be welcomed, not circumvented. It is through these diffi-
culties that learners are likely to construct one of the most valuable—indeed essen-
tial—ways of thinking in mathematics: that symbols can have multiple interpretations 
and that it is advantageous to attribute different interpretations to symbols in the 
process of solving problems.”

At the same time, Harel argues that there is also value in constructing a single, 
unified meaning. Focusing on the multiple interpretations of the minus sign dis-
cussed by Bofferding (Chap. 12), he argues that different interpretations can be 
subsumed into a unified meaning that centers on the concept of additive inverse. He 
makes a case for the intellectual value of constructing this unified meaning, and 
raises the question of how instruction should address this unified meaning.

To date, relatively little research has focused on how students acquire and build 
connections among different concepts of natural numbers, integers, and fractions, 
among different concepts of mathematical operations, or among different interpre-
tations of mathematical symbols. Likewise, relatively little research has focused on 
how learners apply or shift among different concepts or interpretations as they 
attempt to solve problems. Future research is needed to address these issues, and to 
develop instructional activities to help students link multiple views of number, oper-
ations, and mathematical symbols.

16.5  Conceptual and Procedural Knowledge 
in the Construction of Number

Robust mathematical competence requires not only knowing how to solve prob-
lems, but also understanding of principles and relationships (Baroody & Dowker, 
2003; Crooks & Alibali, 2014; Rittle-Johnson, Schneider, & Star, 2015). Although 
the interrelations among conceptual and procedural knowledge were not a primary 
focus of this volume, many of the chapters touch on this general issue in one way or 
another. In the realm of number, children must not only learn how to operate on dif-
ferent types of numbers (i.e., operations on natural numbers, fractions, and inte-
gers), but they must also learn the principles that underlie those procedures, so that 
they can flexibly apply and adapt procedures as needed for solving problems. They 
must learn about different conceptions of number and operations and how they 
relate to one another, as discussed in the previous section, and they must learn how 
different number types relate to one another.

Mathematical activities vary in their implications vis-à-vis knowledge of con-
cepts and procedures. Indeed, activities are often designed to target one form of 

16 Synergizing Research on Constructing Number: Themes and Prospects

https://doi.org/10.1007/978-3-030-00491-0_12
https://doi.org/10.1007/978-3-030-00491-0_15
https://doi.org/10.1007/978-3-030-00491-0_12


350

knowledge or the other; however, the distinction between the two forms of knowl-
edge can be blurry, and it is often unclear what kinds of knowledge children actually 
use or activate for particular tasks. If children engage in similar tasks over and over 
again, their approach to such tasks can become routinized, and they may fail to 
activate conceptual knowledge when engaging in those tasks. On the other hand, 
children may choose to reflect about procedures as they implement them, even for 
tasks that are highly routine, and so tasks that seem procedural at face value may 
also activate conceptual knowledge, at least for some children. Context matters, as 
well; for example, children show differential gains in conceptual knowledge from a 
lesson about division by a fraction, depending on whether the lesson was preceded 
by a warm-up task about whole number division or one about fraction addition and 
subtraction (Sidney & Alibali, 2015)—activities which provide different opportuni-
ties for structure mapping. Thus, activities may engage conceptual and procedural 
aspects of knowledge to different degrees, for different learners, at different points 
in time and in different contexts.

Many mathematical activities involve solving problems, which can involve 
applying, adapting, or generating procedures of various sorts. Carrying out proce-
dures creates opportunities for noticing regularities, via mechanisms of statistical 
learning like those described by Mix, Smith, and Crespo (Chap. 5). Regularities 
may vary for different number types; for example, when adding natural numbers, 
the sum is always greater than either of the addends, but this is not the case when 
adding integers (see Prather & Alibali, 2008, for discussion). Noticing such regu-
larities (and considering their scope of application) may provide the basis for infer-
ring relevant concepts. Further, noticing cases in which regularities no longer apply 
may provoke reflection or spark reorganization.

More generally, the chapters in this volume highlight the many ways in which 
activities may engage and influence children’s knowledge of concepts and proce-
dures. A deeper understanding of the knowledge that children draw on as they 
engage in different sorts of activities could shed light on mechanisms of knowledge 
change. Indeed, the chapters in this volume point toward many potentially fruitful 
avenues for future research on the role of activity in fostering and connecting con-
ceptual and procedural knowledge.

16.6  Bringing Together Psychology and Mathematics 
Education

A principal aim of this volume was to bring together research on fundamental num-
ber concepts from a range of disciplinary perspectives. In framing this volume and 
in synthesizing across chapters, we have focused in particular on activity, because 
we view it as a meeting point for mathematics educators and psychologists. Activity 
is involved in the mechanisms of development, and indeed, many educational prac-
tices call for or implement specific forms of activity. Thus, a focus on activity brings 
together the theoretical and the practical, the basic and the applied. As discussed 
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earlier in this chapter, a focus on activity also highlights considerations of physical 
versus mental, and individual versus social.

In this volume, we sought to give voice to scholars who work at or near the inter-
sections of psychology and education, to highlight common foci and to encourage 
both authors and readers to present their work to a broad, multi-disciplinary audi-
ence. We recognize that scholars’ disciplinary roots “show” in their choices of ques-
tions and research methods, in their views of the nature of mathematics, in the kinds 
of data that they consider and present, and even in their stylistic practices and 
authorship conventions (Norton & Nurnberger-Haag, 2018). At the same time, we 
have been pleased to see genuine engagement with and consideration of diverse 
points of view among the chapter authors.

Embedded within many of the chapters (in more or less explicit form) are ideas 
and bits of advice from scholars within one discipline for scholars in other disci-
plines. For example, Ulrich and Norton (Chap. 4) call for more precise definitions of 
magnitude and number. McMullen and colleagues (Chap. 3) call for an appreciation 
of children’s spontaneous numerical activity (and individual differences therein). 
Tzur (Chap. 8) calls for a more charitable view of the natural number “bias” in frac-
tion reasoning, encouraging educators (and scholars) to embrace natural number rea-
soning as a starting point for reorganization. Matthews and Ziols (Chap. 10) call for 
recognition of non-symbolic ratio processing as a potential basis for fractional rea-
soning. De Smedt (Chap. 6) calls for greater attention to individual differences in 
mathematical thinking, and for a greater appreciation of the bidirectional relations 
between neurocognitive abilities and learning of mathematical content.

It is our hope that this volume will contribute to breaking down some of the 
“silos” that separate researchers in different disciplines. For this to happen, how-
ever, scholars need to appreciate the value of research that uses methods that differ 
from the ones most prevalent in their own disciplines. Such “methodological open-
ness” is an important foundation for successful collaboration across fields (Alibali 
& Knuth, 2018). Even for scholars who do not wish to directly collaborate across 
disciplines, such openness is critical for gaining a deep knowledge of the relevant 
literature—because there are multiple informative perspectives on every research 
issue and on every important real-world problem. In our view, scholars from psy-
chology, mathematics education, and neuroscience (as well as other fields) have 
different and valuable perspectives on development, learning, and teaching. 
Productive discussions can be had, even when scholars do not agree on what meth-
ods are most suitable or even appropriate for answering research questions.

Our aim in this volume was to bring together research from a range of method-
ological and disciplinary perspectives on how children construct number. Across 
chapters, this body of work highlights the importance of the foundational knowl-
edge and systems upon which children build numerical knowledge. It also high-
lights the importance of children’s activity, including both sensorimotor and mental 
activity, which takes place in contexts with different forms of informal and formal 
social support. It is our hope that this effort to bring together distinct perspectives 
will spark future collaborations that yield a fuller account of the similar and diverse 
ways in which children construct natural numbers, fractions, and integers.
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