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Abstract. A trie [11] is one of the best data structures for implement-
ing and searching a dictionary. However, to build the trie structure for
larger collections of strings takes up a lot of memory. Since the eXtended
Burrows-Wheeler Transform (XBWT) [8,9] is able to compactly repre-
sent a labeled tree, it can naturally be used to succinctly represent a trie.
The XBWT also supports navigational operations on the trie, but it does
not support failure links. For example, the Aho-Corasick algorithm [1] for
simultaneously searching for several patterns in a text achieves its good
worst-case time complexity only with the aid of failure links. Manzini [18]
showed that a balanced parentheses sequence P can be used to support
failure links in constant time with only 2n + o(n) bits of space, where n
is the number of internal nodes in the trie. Besides practical algorithms
that construct the XBWT, he also provided two different algorithms that
construct P . In this paper, we suggest an alternative way for constructing
P that outperforms the previous algorithms.

1 Introduction

The eXtended Burrows-Wheeler Transform (XBWT) [8,9] can be used to com-
pactly represent a trie by a character array L and a bit array Last; see Fig. 1 for
an example. A recent empirical comparison [19] of string dictionary implemen-
tations shows that the XBWT achieves the best compression of all techniques
under consideration. Moreover, in contrast to most other methods, the XBWT
supports substring searches. The compact representation of the XBWT can be
computed as follows. Each internal node v of the trie T is associated with a string
that is obtained by concatenating the characters at the edges in the upward path
from v to the root of T (the root itself is associated with the empty string ε).
If T has n internal nodes, then there are n associated strings and the (virtual)
array Π[1..n] stores them in lexicographical order. We (conceptually) number
the internal nodes of T according to Π: If node v is associated with the string
Π[i], it gets the number i. Let Li be the set of characters at outgoing edges of
node i (in no particular order) and let the character array L contain the con-
catenation of L1, L2, . . . , Ln. Furthermore, the bit array Last stores the borders
of Li: we initialize Last with zeros and for all i ∈ {1, . . . , n} we set Last[ji] = 1,
where ji =

∑i
�=1 |L�|. As already mentioned, the XBWT representation of the

trie consists of the arrays L and Last. These arrays can be calculated with the
help of an array MR, which we will define next.
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Suppose the trie T is constructed from the pairwise distinct strings x1, . . . , xk.
Let yi = xR

i , where xR
i denotes the string that is obtained by reversing xi.

Furthermore, let S = y1$y2$ . . . yk$ be the concatenation of the yi, separated by
a special character $, which is assumed to be smaller than any other character.
In the following, let m be the length of S (note that m = k +

∑k
i=1 |xi|). The

suffix array SA and the Burrows-Wheeler Transform BWT of S are obtained
by sorting the suffixes of S lexicographically (this can be done in linear time):
If S[j..m] is the i-th lexicographically smallest suffix of S, then SA[i] = j and
BWT[i] = S[j −1] is the character preceding that suffix (if j = 1, then BWT[i] =
$); see Fig. 1 for an example. Fast implementations of (semi-) external suffix
sorting algorithms exist [6,16], but multi-string BWT construction algorithms
may be competitive in the context of this paper; see [3,17]. The array MR is
defined with the help of suffix array intervals. If ω is a substring of S, then the
ω-interval is the largest interval [i..j] such that ω is a prefix of all the suffixes
in the interval [i..j]. Now MR[lb] = 1 if and only if lb is the left boundary of a
z-interval, where z is a suffix of some yi (i.e., zR is a prefix of some xi). Note that
MR[1] = 1 because ε is a suffix of all yi and [1..m] is the ε-interval. To avoid case
distinctions, we set MR[m+1] = 1. Let j1 = 1 < j2 < · · · < jn < jn+1 = m+1 be
the indices with MR[j�] = 1. For each i with 1 ≤ i ≤ n, the interval [ji..ji+1 − 1]
is the Π[i]-interval. Thus Li is the set of the characters in BWT[ji..ji+1 − 1] and
Last[pi] = 1, where pi =

∑i
�=1 |L�|. It is readily verified that the arrays L and

Last can be computed in O(m) time by simultaneously scanning the arrays MR
and BWT from left to right.

Fig. 1. Example for the input strings ab, ac, bac, aba. Left: XBWT consisting of the
arrays Last and L (the array Π is not stored). Center: Trie of the strings, where failure
links of internal nodes are indicated by dashed arrows. Right: MR, Cc, and BWT for
the concatenation of the reversed strings (i.e., S = ba$ca$cab$aba$).

Recall that node i in the trie T is associated with the string Π[i]. In this
context, the failure link of i points to the node j so that Π[j] is the longest proper
prefix of Π[i]. Failure links are not supported by the XBWT representation of T ,
but Manzini [18] showed that a balanced parentheses sequence P can be used to
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support them in constant time with only 2n+o(n) bits of space. P can be defined
by means of Π: For i = 1, . . . , n a pair of parentheses is written by repeating
the following: (1) For each � < i, for which its closing parenthesis has not been
written yet and Π[�] is not a prefix of Π[i], write a closing parenthesis. (2) Write
the opening parenthesis for i. After termination of this for-loop, write a closing
parenthesis for each �, for which its closing parenthesis has not been written yet.
In the example of Fig. 1, we have P = (((()))(())(())). P can be preprocessed in
linear time, using only o(n) bits, so that the operations rank, select, and enclose
can be supported in constant time [7,15,20]. Using these operations on P , failure
links can be supported in constant time; see [18, Lemma 4] for details. Manzini
[18] devised two different algorithms that construct P . In the next section, we
suggest an alternative way for constructing P that outperforms his algorithms.

2 The New Algorithm

Our new construction algorithm uses an idea of Belazzougui [4], who devised
a rather simple method to build the balanced parenthesis representation of a
suffix tree topology. He writes: “Our key observation is that we can easily build
a balanced parenthesis representation by enumerating the suffix array intervals.
More precisely for every position in [1..n], we associate two counters, one for open
and the other for close parentheses implemented through two arrays of counters
Co[1..n] and Cc[1..n]. Then given a suffix array interval [i, j] we will simply
increment the counters Co[i] and Cc[j]. Then we scan the counters Cc and Co

in parallel and for each i from 1 to n, write Co[i] opening parentheses followed
by Cc[i] closing parentheses. It is easy to see that the constructed sequence is
that of the balanced parentheses of the suffix tree.” Since we do not want to
represent a suffix tree topology, we cannot enumerate all suffix array intervals.
Instead, we must enumerate all z-intervals for which z is a suffix of some yi (for
then zR is a prefix of some xi). Recall that MR[lb] = 1 if and only if lb is the
left boundary of such a z-interval. Consequently, the array MR[1..m] coincides
with the array Co[1..m]. Moreover, observe that if z is a suffix of some yi, then
the left boundary bz of the z-interval in the suffix array of S coincides with the
left boundary bz$ of the z$-interval because z$ is a substring of S and $ is the
smallest character.

For the explanation of the pseudo-code of our new construction algorithm
(Algorithm 1), we need a few preliminaries. For each character c, C[c] is the
overall number of occurrences of characters in BWT[1..m] that are strictly smaller
than c. Given the ω-interval [lb..rb] and a character c, the cω-interval [i..j] can be
computed by i = C[c] + rankc(BWT, lb − 1) + 1 and j = C[c] + rankc(BWT, rb),
where rankc(BWT, lb − 1) returns the number of occurrences of character c in
the prefix BWT[1..lb−1] (we have i ≤ j if cω is a substring of S; otherwise i > j);
see [10] for details. The (balanced) wavelet tree [14] of the BWT supports such
a backward search step in O(log σ) time, where σ is the size of the alphabet.
Backward search can be generalized on the wavelet tree as follows: Given an
ω-interval [lb..rb], a slight modification of the procedure getIntervals([lb..rb])
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Algorithm 1. Computation of the arrays MR and Cc

1: function visit(bz$, ez$, ez) � the z$-interval is [bz$..ez$] and the z-interval is
[bz$..ez], where z is a suffix of some string yi

2: MR[bz$] ← 1
3: Cc[ez] ← Cc[ez] + 1
4: list ← getIntervals([bz$..ez$])
5: for each (c, [bcz$..ecz$]) with c �= $ in list do
6: if ez = ez$ then
7: ecz ← ecz$
8: else
9: ecz ← C[c] + rankc(BWT, ez)

10: visit(bcz$, ecz$, ecz)

described in [5] returns the list [(c, [i..j]) | cω is a substring of S and [i..j] is the
cω-interval], where the first component of an element (c, [i..j]) is a character.
The worst-case time complexity of the procedure getIntervals is O(occ + occ ·
log(σ/occ)), where occ is the number of elements in the output list; see [12,
Lemma 3].

If z = ε is the empty string, then the z-interval is [bz..ez] = [1..m] and the z$-
interval is [bz$..ez$] = [1..k]. The function call visit (1, k,m) computes the arrays
MR = Co and Cc; the pseudo-code of this function can be found in Algorithm1.
The function first counts an opening parenthesis at position bz = bz$ and a
closing parenthesis at position ez. With the help of the procedure getIntervals
it then computes all non-empty cz$-intervals, where c ∈ Σ and c �= $. The fact
that a cz$-interval [bcz$..ecz$] is not empty means that cz is a suffix of some
yi. It follows as a consequence that the cz-interval [bcz..ecz] is also not empty.
Again, bcz = bcz$ holds true, but the right boundary ecz of the cz-interval is not
known yet. Now there are two cases. If the right boundaries of the z-interval and
the z$-interval coincided, then so do the right boundaries ecz and ecz$ of the cz-
interval and the cz$-interval. If they were not the same, ecz must be computed
by evaluating C[c]+rankc(BWT, ez) as in backward search. Finally, the function
recursively calls itself with the new parameters bcz$, ecz$, ecz.

The overall time complexity of the construction of P is O(m log σ) because
the BWT can be build in O(m) time, the wavelet tree of the BWT can be
constructed in O(m log σ) time, initialization and computation of the arrays MR
and Cc takes O(m + n log σ) time (n is the number of internal nodes of the trie
and satisfies n ≤ m), and the computation of P based on MR and Cc requires
O(m) time.

Let us consider the working space of Algorithm 1. By the definition of P , there
are at most maxi |xi| consecutive closing parentheses, thus the array Cc requires
m log(maxi |xi|) bits. The array MR occupies only m bits and the wavelet tree of
the BWT essentially uses m�log σ� + o(m log σ) bits of space; see e.g. [21]. The
stack for the recursion contains (at any point in time) at most maxi |xi| elements.
Each stack element stores a list returned by the procedure getIntervals; this
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Algorithm 2. Computation of P with less space
1: input: BWT
2: compute the bit array MR of size m
3: preprocess MR so that rank-queries can be answered in constant time
4: initialize an array C′

c of size n = rank1(MR, m) with zeros
5: visit2(1, k, m)
6: initialize an array P of size 2n with zeros � 2n opening parentheses
7: k ← 1
8: for i ← 1 to n do
9: k ← k + 1 � opening parenthesis because P [k] = 0

10: for j ← 1 to C′
c[i] do

11: P [k] ← 1 � write closing parentheses
12: k ← k + 1

13: return: P

list contains at most σ elements of the form (c, [lb..rb]). Since every list element
requires O(1) space, the whole stack uses O(σ · maxi |xi|) space.

3 Saving Space

As already observed by Manzini [18], the number n of ones in the bit array MR
gives the number of internal nodes of the trie. If one computes MR in a first phase
(for instance, by the algorithm in [18, Fig. 4]), then n is known and more space-
efficient algorithms for computing P can be deduced. Manzini suggests to use two
arrays RCP′ and LEN′ of length n that use O(n log(maxi |xi|)) bits of memory
and store only values for which the corresponding entry in the array MR equals
1. His algorithm [18, Fig. 5] calculates P based on these arrays. We would like to
follow this approach, but the example from Fig. 1 shows that there are non-zero
entries Cc[i] for which MR[i] = 0 (i = 12 in Fig. 1). We next derive a version of
Algorithm 1 that increments only counters at indices i for which MR[i] = 1. To
distinguish the new version from Algorithm1, we use Ĉc to denote the array of
counters (which is still of size m). Recall that Algorithm 1 increments Cc[ez] by
one, where ez is the right boundary of a z-interval. The new version increments
Ĉc[j] instead, where j = max{i | i ≤ ez and MR[i] = 1}. In other words, if
MR[ez] = 1, it increments Ĉc[ez] and if MR[ez] = 0, it increments the counter at
which the previous one in MR can be found. In the example from Fig. 1 it would
increment the counter at index 11 instead of that at i = 12. To see that this
preserves correctness, consider two indices i and j so that MR[i] = 1, MR[j] = 1,
and MR[k] = 0 for all k with i < k < j (the case in which i is the last index
with MR[i] = 1 follows similarly). On the one hand, if we use the array Cc, an
opening parenthesis will be written for MR[i] = 1, followed by

∑j−1
k=i Cc[k] closing

parentheses, and then an opening parenthesis will be written for MR[j] = 1. On
the other hand, if we use the array Ĉc, an opening parenthesis will be written for
MR[i] = 1, followed by Ĉc[i] closing parentheses and an opening parenthesis for
MR[j] = 1. Since Ĉc[i] =

∑j−1
k=i Cc[k], it follows that both algorithms compute
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the same sequence of parentheses. Algorithm 2 implements the new version of
Algorithm 1, however, it uses an array C ′

c of length n and size n log(maxi |xi|)
bits instead of the array Ĉc of length m. First, it computes the bit array MR
and then preprocesses it so that rank-queries can be answered in constant time.
Then it calls the function visit2 with parameters 1, k,m. Function visit2 can
be obtained from function visit by deleting line 2 in Algorithm1 and replacing
the assignment in line 3 by C ′

c[rank1(MR, ez)] ← C ′
c[rank1(MR, ez)] + 1. That

is, for a z-interval [bz..ez], function visit2 increments C ′
c[rank1(MR, ez)] by one.

This simulates the new version of Algorithm 1, in which Ĉc[j] is incremented,
where j = max{i | i ≤ ez and MR[i] = 1}.

In contrast to Algorithm 1, Algorithm 2 uses two passes to compute MR and
C ′

c separately. That is, it saves space by using C ′
c instead of Cc, but the run-time

doubles in practice (its time complexity is also O(m log σ)).

4 Experimental Results

We experimentally compared our new XBWT construction algorithms with
the ones presented in [18]. More precisely, we implemented the following algo-
rithms, as we could not find an implementation of Manzini’s algorithms:
– MAN : algorithm by Manzini [18, Sect. 4]
– MAN-LW : lightweight algorithm by Manzini [18, Sect. 4]
– OSB : our new algorithm (Sect. 2)
– OSB-LW : lightweight version of the new algorithm (Sect. 3)

Our test data—the files dblp.xml, dna, proteins, english, and sources—originate
from the Pizza & Chili corpus.1 In our experiments, we constructed tries for each
of the files using the above-mentioned algorithms, where the distinct lines of a
file were used as input strings for trie construction.

Table 1. Trie construction results. The left column lists test data along with its size
and the length of its longest string. The other columns show, for each test case, the
construction time in seconds and the memory peak during construction, excluding
suffix array and BWT construction.

1 http://pizzachili.dcc.uchile.cl.

http://pizzachili.dcc.uchile.cl
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Algorithm 3. Computation of P by a depth-first traversal of a generalized ST
1: function dft(v)
2: if v is leaf and its incoming edge has a label �= $ then
3: write an opening parenthesis and a closing parenthesis

4: if v is an internal node then
5: if v has an outgoing edge with label $ then write an opening parenthesis

6: for each child node w of v (in lexicographical order of the labels of the
outgoing edges from v) call dft(w)

7: if v has an outgoing edge with label $ then write a closing parenthesis

The experiments were conducted on a 64 bit Ubuntu 16.04.4 LTS system
equipped with two 16-core Intel Xeon E5-2698v3 processors and 256 GB of RAM.
All programs were compiled with the O3 option using g++ (version 5.4.1). Our
programs and the benchmark are publically available.2 Table 1 shows the results
of the experiments. Among all tested algorithms, OSB-LW has the lowest memory
peak. Surprisingly, if the trie is built from long strings (dna), Algorithm MAN-LW
requires a lot of memory, probably because of a stack that stores items consisting
of several components. Algorithms MAN and OSB are the fastest construction
methods, but despite of a lower memory peak, OSB often outperforms MAN (we
think this is caused by cache-misses in MAN, which occur during accesses to the
suffix array and the test data).

Summing up, our new algorithms OSB and OSB-LW outperform the algorithms
MAN and MAN-LW in terms of memory consumption, and perform similarly fast
or even faster. As OSB requires only a little more memory than OSB-LW, but
performs similarly fast as MAN, algorithm OSB has a good space-time tradeoff
and therefore is our method of choice for XBWT construction.

Our implementation is based on the sdsl-lite library [13] and we further
tried to reduce the memory peak of our algorithms by using compressed wavelet
trees supported by the sdsl-lite library. With Huffman-shaped wavelet trees
that use rrr-bitvectors [13], it is possible to obtain a 25% reduction of the memory
peak on average, but the construction time increases by a factor of 2.5 on average.
It might be worth trying other compressed wavelet trees such as the one described
in [2], but unfortunately its implementation contained in the sdsl-lite library
lacks support for the procedure getIntervals.

5 Concluding Remark

Some readers may prefer to construct the balanced parentheses sequence P by
means of a suffix tree, and of course this is possible. To this end, build the
generalized suffix tree ST of the reversed input strings y1, y2 . . . , yk. In such a
generalized suffix tree, all strings are either terminated by $ or they are ter-
minated by pairwise different symbols $1, $2 . . . , $k. Here, we will use $. Then
traverse ST in a depth-first fashion, i.e., call function dft of Algorithm 3 with
2 https://www.uni-ulm.de/in/theo/research/seqana/.

https://www.uni-ulm.de/in/theo/research/seqana/
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the root of ST as parameter. If an internal node v is visited during the traversal,
the algorithm writes parentheses for that node only if v has an outgoing edge
with label $ because in this case the path from the root to v corresponds to a
suffix of some yi. Moreover, leaves whose incoming edge has label $ are ignored.
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