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Abstract. We consider the problem of inferring an edge-labeled graph
from the sequence of edge labels seen in a walk of that graph. It has
been known that this problem is solvable in O(n log n) time when the
targets are path or cycle graphs. This paper presents an online algorithm
for the problem of this restricted case that runs in O(n) time, based on
Manacher’s algorithm for computing all the maximal palindromes in a
string.
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1 Introduction

Aslam and Rivest [2] proposed the problem of minimum graph inference from
a walk. Let us consider an edge-labeled undirected (multi)graph G. A walk of
G is a sequence of edges e1, . . . , en such that each ei connects vi−1 and vi for
some (not necessarily pairwise distinct) vertices v0, v1, . . . , vn. The output of the
walk is the sequence of the labels of those edges. For a string w, minimum graph
inference from a walk is the problem to compute a graph G with the smallest
number of vertices such that w is the output of a walk of G. We give an example
in Fig. 1. With no assumption on graphs to infer, trivially the graph with a single
vertex with self-loops labeled with all output symbols is always minimum. The
problem has been studied for different graph classes in the literature.

a b c a

Fig. 1. Minimum path graph that has abcaacbbbaabccbbca as a walk output
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Aslam and Rivest [2] proposed polynomial time algorithms for the minimum
graph inference problem for path graphs and cycle graphs, which include the
variant of minimum path graph inference where a walk must start from an end
of a path graph and end in the other end (Table 1), which we call an end-
to-end walk. Raghavan [6] studied the problem further and showed that both
minimum path and cycle graph inference from walk can be reduced to path
graph inference from an end-to-end walk in O(n) time. Moreover, he presented
an O(n log n) time algorithm for inferring minimum path/cycle graph from a
walk, while showing inferring minimum graph with bounded degree k is NP-
hard for any k ≥ 3. Maruyama and Miyano [4] strengthened Raghavan’s result
so that inferring minimum tree with bounded degree k is still NP-hard for any
k ≥ 3. On the other hand, Maruyama and Miyano [5] showed that it is solvable
in linear time when trees have no degree bound. They also studied a variant
of the problem where the input consists of multiple path labels rather than a
single walk label, which was shown to be NP-hard. Akutsu and Fukagawa [1]
considered another variant, where the input is the numbers of occurrences of
vertex-labeled paths. They showed a polynomial time algorithm with respect to
the size of output graph, when the graphs are trees of unbounded degree and the
lengths of given paths are fixed. They also proved that the problem is strongly
NP-hard even when the graphs are planar of unbounded degree.

Table 1. Time complexity of minimum graph inference bounded degree 2 from a walk

Algorithms Connected graph bounded degree 2

Path Cycle

End-to-end walk General walk

Aslam and Rivest [2] O(n3) O(n3) O(n5)

Raghavan [6] O(n log n) O(n log n) O(n log n)

Proposed O(n) O(n) O(n)

This paper focuses on the problem on graphs of bounded degree 2, i.e., path
and cycle graphs. We propose a linear-time online algorithm that infers a mini-
mum path graph from an end-to-end walk. Thanks to Raghavan’s result [6], this
entails that one can infer a minimum path/cycle graph in linear time from a walk,
which is not necessarily end-to-end. Aslam and Rivest [2] showed that the min-
imum path graphs that have end-to-end walks xyyRyz and xyz coincide, where
x, y, z are label strings and yR is the reverse of y. Let us call a nonempty string
of the form yyRy a Z-shape. Their result implies that to obtain the minimum
path graph of a label string, one can repeatedly contract an arbitrary occurrence
of a Z-shape yyRy to y until the sequence contains no such substring. Then the
finally obtained string is just the sequence of labels of the edges of the minimum
path graph. Raghavan [6] achieved an O(n log n) time algorithm by introducing
a sophisticated order of rewriting, which always contract the smallest Z-shapes
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in the sequence. We follow their approach of repetitive contraction of Z-shapes
but with a different order. The order we take might appear more naive; We read
letters of the input string one by one and always contract the firstly found Z-
shape. This approach makes our algorithm online. Apparently finding Z-shapes
is closely related to finding palindromes. Manacher [3] presented a linear-time
“online” algorithm that finds all the maximal palindromes in a string. To realize
linear-time Z-shape elimination, we modify Manacher’s algorithm for Z-shape
detection and elimination. Our experimental results show that our algorithm is
faster than Raghavan’s in practice, too.

2 Preliminaries

For a tuple e = (e1, . . . , em) of elements, we represent (e0, e1, . . . , em) by e0;e
or (e0;e). For two integers i, j, we define [i : j] = { k | i ≤ k ≤ j }.

Let Σ be an alphabet. A sequence of elements of Σ is called a string and
the set of strings is denoted by Σ∗. The empty string is denoted by ε and the
set of nonempty strings is Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y, and z
are called a prefix, a substring, and a suffix of w, respectively. The length of w
is denoted by |w|. The i-th letter of w is denoted by w[i] for 1 ≤ i ≤ |w|. For
1 ≤ i ≤ j ≤ |w|, w[i : j] represents w[i] . . . w[j]. The reversed string of w is
denoted by wR = w[|w|] · · · w[1]. The string repeating w k times is wk.

A string y is called an even palindrome if y = xxR for a string x ∈ Σ∗. The
radius of y is r = |x|. We will call an even palindrome simply a palindrome,
because we consider only even palindromes in this paper. When y occurs as a
substring w[i : j] of a string w, the position c = i + r − 1 is called the center (of
the occurrence) of y. Especially, y is said to be the maximal palindrome centered
at c iff either i = 1, j = |w|, or w[i−1] �= w[j+1]. By ρw(c) we denote the radius
of the maximal palindrome centered at c in w. The sets {c − ρw(c) + 1, . . . , c}
and {c + 1, . . . , c + ρw(c)} of positions are called the left and right arms of the
maximal palindrome centered at c, respectively.

A string z is called a Z-shape if z = xxRx for a non-empty string x ∈ Σ+.
The tail of z is the suffix xRx. When z occurs as a substring z = w[i : j] of
a string w, the positions p1 = i + s − 1 and p2 = i + 2s − 1 are called the
left and right pivots (of the occurrence) of z. The occurrence of the Z-shape is
represented by a pair 〈p1, p2〉. Note that the left and right pivots are the centers
of the constituent palindromes xxR and xRx, respectively.

Example 1. For a string w = ababccbaabca, 〈5, 8〉 is an occurrence of Z-shape
w[3 : 11] = abccbaabc.

Minimum graph inference from a walk

Let us define a binary relation → over nonempty strings by xyyRyz → xyz for
x, z ∈ Σ∗ and y ∈ Σ+. We call a string w irreducible if there is no string w′ such
that w → w′. Aslam and Rivest [2] proved that every string w admits a unique
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irreducible string w′ such that w →∗ w′, where →∗ is the reflexive and transitive
closure of →. Let us call the string w′ the Z-normal form of w and denote it by
ŵ. Their result can be written as follows.

Theorem 1. ([2]) The sequence of the labels of the edges of the minimum path
graph with output T of an end-to-end walk is its Z-normal form T̂ .

Therefore, to infer the minimum path graph from an end-to-end walk is to cal-
culate its Z-normal form.

Example 2. The Z-normal form of T = cbaaaabccbaabba is T̂ = cba, which
is obtained by cbaaaabccbaabba → cbaabccbaabba → cbaabba → cba.
Here, underlines show Z-shapes to contract. Another way to obtain T̂ is
cbaaaabccbaabba → cbaaaabccba → cbaabccba → cba.

3 Irreducible and Suffix-Reducible Strings

We call a string w suffix-reducible if every proper prefix of w is irreducible but
w is reducible. Clearly a Z-shape occurs in a suffix-reducible string as a suffix.
By deleting its tail, we obtain an irreducible string. A string w is said to be
pseudo-irreducible if every proper prefix of w is irreducible.

Starting with w = u0 = ε, our algorithm repeats the following procedure.
We extend w = ui−1 by reading letters from the input string T one by one until
it becomes a suffix-reducible string w = vi. Then we reduce vi to ui = v̂i by
deleting the tail of the Z-shape and resume reading letters of T . By repeatedly
applying the procedure, we finally obtain the normal form w = T̂ .

Therefore, strings our algorithm handles are all pseudo-irreducible. We first
study mathematical properties of such strings.

Lemma 1. Every suffix-reducible string has a unique nonempty suffix palin-
drome and thus has a unique Z-shape.

There can be several suffix palindromes in an irreducible string. Lemma1 implies
that only one among those can become1 the tail of the unique Z-shape in a suffix-
reducible string (Lemma 1), in which moment the other ones that used to be
suffix palindromes are not suffix palindromes any more. This lemma suggests us
to keep watching just one (arbitrary) suffix palindrome when reading letters from
the input in order to detect a Z-shape. When the palindrome we are watching
has become a non-suffix palindrome, we look for another suffix palindrome to
track. Suppose we are tracking a suffix palindrome centered at c of radius r =
ρw(c) = |w| − c in w. When appending a new letter t from the input to w, it

1 To avoid lengthy expressions, we casually say that a palindrome centered at c in
x becomes or grows to a bigger palindrome in xy when ρx(c) < ρxy(c), without
explicitly mentioning several involved mathematical objects that should be under-
stood from the context or that are not important. Other similar phrases should be
understood in an appropriate way.
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is still a suffix palindrome in wt if and only if wt[c − r] = wt[c + r + 1] = t.
In that case, it is the tail of a Z-shape if and only if ρw(c − r − 1) ≥ r + 1.
Apparently we need to know the maximal radii at all positions to detect a Z-
shape but appending a new letter or deleting the tail of a Z-shape disturbs those
values even on positions that are not deleted. It takes more than linear time if
we keep recalculating the maximal radius at every position. Therefore, we have
to partly give up to maintain the exact values of maximal radii. However, there
is a moment when maximal radii are stable.

Definition 1. Let w be an irreducible string and c a position in w. We say that
c is stable in w, if for any string y, either

– there is a prefix x of y for which |ŵx| < c, or
– for any prefix x of y, ρŵx(c) = ρw(c).

Moreover, c is strongly stable if the former never happens.

That is, if c is stable, the maximum radius at c need not be recalculated when
appending letters or deleting a Z-shape’s tail at the end of the string, unless the
position itself is deleted. In the remainder of this section, we present conditions
for a position to be stable.

Let us write c �w d if c ≤ d − ρw(d) < d ≤ c + ρw(c) ≤ d + ρw(d), which
roughly means that the right arm of the palindrome centered at c includes the
left arm of the one at d. Clearly c �w d implies ρw(c) ≥ ρw(d). Moreover if
c �w d and c = d − ρw(d) then 〈c, d〉 is a Z-shape in w. Note that the condition
c ≤ d−ρw(d) in the above definition is redundant for a pseudo-irreducible string;
one can see that if c < d ≤ c + ρw(c) ≤ d + ρw(d) and d − ρw(d) < c, then 〈c, d〉
is a non-suffix Z-shape.

A palindrome chain from c0 in w is a sequence c = (c0, . . . , ck) of positions
in w such that ci−1 � ci for each i = 1, . . . , k. The frontier of the palindrome
chain c in w is the position Fw(c) = ck + ρw(ck), and the maximum frontier
from a position c is

Fw(c) = max{Fw(c) | c is a palindrome chain from c } .

The originator A (d) of a position d in w is the smallest position A (d) = c
such that c ≤ d ≤ Fw(c). Figure 2 illustrates a palindrome chain in a string
w = xabbcddeeddcbbaabbcddcddcy.

The stability property can be rephrased in various ways.

x a b b c d d e e d d c b b a a b b c d d c b b c y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 2. In a string w = xabbcddeeddcbbaabbcddcbbcy, (8, 15, 20, 23) is a palindrome
chain, whose frontier is 25. The originator of any position between 8 and 25 is 8
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Algorithm 1. Z-detector
1 Let Pals be an empty array and w = ε;
2 Function ZDetect(T )
3 T := $T#; // $ and # are sentinel symbols
4 w.append(T ); // append a new letter from T to w
5 while there remains to read in T do
6 w.append(T );
7 ZDetectInChain(|w| − 1);

8 output “No Z-shape” and halt;

9 Function ZDetectInChain(c)
10 b = |w|;
11 Extend(c);
12 for d := b to c + Pals[c] do // in increasing order
13 if d + Pals[2c − d] < c + Pals[c] then Pals[d] := Pals[2c − d] ;
14 else ZDetectInChain(d) and break;

15 Function Extend(c)
16 r := |w| − c − 1;
17 while w[c + r + 1] = w[c − r] do
18 r := r + 1;
19 if Pals[c − r] ≥ r then output 〈c − r, c〉 and halt;
20 w.append(T );

21 Pals[c] := r;

Proposition 1. The following four are equivalent:

(1) c is stable in w,
(2) Fw(c) < |w|,
(3) for any string y, either

– there is a prefix x of y for which |ŵx| < c, or
– for any prefix x of y, |ŵx| > Fw(c),

(4) c �w d implies that d is stable in w for all d.

Here is another rephrasing.

Corollary 1. Suppose that positions c + 1, . . . , |w| − 1 are all stable in an irre-
ducible string w. Then a position c is stable if and only if c + ρw(c) < |w|.
It is not hard to see that a position c is strongly stable if and only if all the
positions d ≤ c are stable. If a position c is strongly stable in w, then |ŵx| > c
for any x.

4 Algorithm

Our algorithm is based on Manacher’s [3] for calculating the radius of the max-
imal palindrome at every position in an input. Algorithm1 detects the first
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occurrence of a Z-shape in the input string T . Commenting out Line 19 gives
his original algorithm with slightly different appearance. The algorithm reads
letters from the input one by one, while focusing on the left-most suffix palin-
drome among possibly many others. The algorithm computes the maximum
radius at each position from left to right and stores those values in the array
Pals. The function Extend(c) calculates Pals[c] naively comparing letters on the
left and right in the same distance from c, knowing that the radius is at least
|w| − c − 1. Due to the symmetry, the maximum radii at positions in the right
arm of a big palindrome coincide those at the corresponding positions in the
left arm, unless those palindromes in the right arm may go beyond the right
end of the big palindrome. The function ZDetectInChain(c) copies the value of
Pals[c − r] to Pals[c + r] (d = c + r in the algorithm) for r ≤ Pals[c] as long as
c + r + Pals[c − r] < c + Pals[c]. If c + r + Pals[c − r] ≥ c + Pals[c], which means
c � c + r, ZDetectInChain(c) recursively calls ZDetectInChain(c + r). If there is
no such r, it means that we have reached the frontier of the originator of c. By
the correctness of his algorithm and Lemma1, we see that Algorithm 1 outputs
the Z-shape occurrence of the shortest suffix-reducible prefix of the input. If the
input has no Z-shape, it halts with the array Pals such that Pals[c] = ρw(c) for
all the positions c. One may think of using this algorithm to compute the normal
form by deleting the tail of the found Z-shape. However, deleting a Z-shape tail
alters the maximal radii, which have been calculated before, and maintaining
those values is not a trivial issue. As we have discussed earlier, to keep recalcu-
lating the exact values of the maximal radii takes more than linear time.

4.1 Outline of Our Algorithm

Our online algorithm for calculating the Z-normal form of an input string T is
shown as Algorithm 2. Throughout the algorithm, the string w in the working
space is kept pseudo-irreducible. That is, w� = w[1 : |w|−1] is irreducible and we
would like to know if w itself is still irreducible. Algorithm 2 consists of functions
Stabilize, SlowExtend and FastExtend in addition to the main function ZReduce.
Among those, Stabilize plays the central role. The data structures we use are very
simple: a working string w, an array Pals for the maximal radius at each position
of w, and a stack of positions. Those are all global variables in Algorithm2. At
the beginning, we add extra fresh symbols $ and # to the left and right ends of
the input, respectively. Those work as sentinel symbols so that we never try to
access the working string beyond the ends when extending a suffix palindrome.

The working string is initialized to be the empty string and is expanded by
appending letters from T one by one by append. Suppose that we have read u
from the input and w = û is in the working space. When the function Stabilize(c)
is called, we know that c + ρw�(c) = |w�| but not yet sure if c + ρw(c) = |w|
holds. Then Stabilize(c) processes the shortest prefix v of the unprocessed suffix
of T such that c is stable in the resultant string w′ = ŵv, i.e., Fw′(c) = |w′|− 1.
In an extreme case, we have w′ = w and just confirm Fw(c) = |w|−1. After the
execution of Stabilize(c), unless it returns true, it is guaranteed that all positions
d ∈ [c : Fw′(c)] are stable in w′ and satisfy Pals[d] = ρw′(d). This is why we
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Algorithm 2. Z-reducer
1 Let Stack be an empty stack, Pals an empty array and w = ε;
2 Function ZReduce(T )
3 T := $T#; // $ and # are sentinel symbols
4 w.append(T );
5 while there remains to read in T do
6 w.append(T ); Stack .clear();
7 Stabilize(|w| − 1);

8 return w[2 : |w| − 1]; // strip the sentinel symbols

9 Function Stabilize(c)
10 b = |w|; unstable := true;
11 while unstable do
12 unstable := false;
13 if SlowExtend(c) then return true;
14 for d := c + Pals[c] downto b do // in decreasing order
15 if d + Pals[d] ≥ c + Pals[c] then
16 if FastExtend(d) then
17 if Stabilize(d) then
18 if c = |w| then return true;
19 if d = |w| then Pals[d] := Pals[2c − d];
20 w.append(T ); unstable := true;
21 break;

22 Stack .push(d);

23 return false;

24 Function SlowExtend(c)
25 r := |w| − c − 1;
26 while w[c + r + 1] = w[c − r] do
27 r := r + 1;
28 if Pals[c − r] ≥ r then // detect a suffix Z-shape 〈c − r, c〉
29 w := w[1 : c − r]; // contract the suffix Z-shape
30 Pals := Pals[1 : c − r]; // same as above
31 return true;

32 Pals[c + r] := Pals[c − r]; // transfer the value
33 w.append(T );

34 Pals[c] := r; // Pals[c] = ρw(c)
35 return false;

36 Function FastExtend(d)
37 while Stack is not empty do
38 r := Stack .top() − d;
39 if Pals[d − r] ≥ Pals[d + r] then Stack .pop();
40 else Pals[d] := r + Pals[d − r]; return false; // Pals[d] = ρw(d)

41 return true;
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name the function Stabilize. Moreover if the call of Stabilize(c) was from the main
function ZReduce(T ), c = Aw′(c) and those positions d are all strongly stable.

To stabilize all the positions up to the (future) frontier of c, Stabilize(c)
recursively calls Stabilize(d) for positions d such that c � d. This accords with the
definition of the frontier. To determine positions d on which we should recursively
call Stabilize(d), we need to know the value of ρw(c) first of all. The function
Stabilize(c) first calls SlowExtend(c). When the function SlowExtend(c) is called,
we are sure c + ρw�(c) ≥ |w�|. By reading more letters from the input, it does
three tasks. One is to calculate the maximal radius at c exactly, taking the unread
part of the input into account. One is to detect and contract a Z-shape whose
right pivot is c. The last one is to transfer the values of Pals on the left arm to
the right arm. We extend the palindrome at c by comparing values of w[c − r]
and w[c+r+1]. When it happens that Pals[c−r] ≥ r, this means that we find a
Z-shape occurrence 〈c− r, c〉. In this case, the suffix palindrome shall be deleted,
and the function returns true. When the palindrome has become non-suffix, it
returns false. During the extension of the palindrome at c, it copies the value of
Pals[c− r] to Pals[c+ r]. This transfer might appear nonsense, since it might be
the case that ρw(c−r) �= ρw(c+r). However, this “sloppy calculation” of radii is
advantageous over the exactly correctly calculated values. Those copied values
are “adaptive” in extensions and deletions of succeeding part of the working
string (and thus the maximal radius at c), in the sense that they can always
be used to certainly detect a Z-shape occurrence where the concerned position
is the left-pivot. The exactly correct values are too rigid to have this property.
Those values will be fixed in the recursive calls of Stabilize.

On Line 14 of Algorithm2, we recursively call Stabilize(d) in decreasing order
for positions on the right arm of the palindrome at c. This “reversed” order might
appear unnatural, but this is also related to the adaptability of values in Pals.
To stabilize positions, anyway we have to calculate the maximal radius at some
positions, though they are not yet stable. If we calculate ρw(d) in increasing
order, they are not adaptive any more. In this case, once some suffix of the
working string is deleted and then extended, those exact values would become
useless. Contrarily, we calculate ρw(d) in the opposite order. Then the previously
copied values of Pals on the left are adaptive and remain useful, unless they are
deleted.

Palindromes overlap a lot even in an irreducible string and we must avoid
scanning the same position multiple times. The function FastExtend(d) tells
us whether the palindrome at d is a suffix of w� without looking at let-
ters in the working space. The computation is quickly done by using a stack
which stores positions c0, . . . , ck forming a palindrome chain with d such that
Fw�(d, c0, . . . , ck) = |w�|. Moreover, it is guaranteed that those positions ci are
stable and Pals[ci] = ρw(ci). If the right arm of the palindrome centered at d
can reach |w�|, the left arm of it must have the structure that can be seen as
the “reversed” palindrome chain symmetric to the one in Stack . By examin-
ing whether Pals[2d − ci] = Pals[ci] for each i, one can tell whether the right
arm of the maximal palindrome at d can reach the position |w| − 1. If it is the
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case, FastExtend(d) returns true and lets SlowExtend extend the palindrome by
investigating further. Otherwise, FastExtend(d) lets Pals[d] = ρw(d) and returns
false.

Example 3. We show a running example of Algorithm2. Consider an input
string T = abbaa1221aabbaa11aabbb. Assume that ZReduce(T ) has read
w = $abbaa12 and computed Pals[1 : 7], where the red part has been stabi-
lized. Then, Stabilize(8) extends the palindrome at 8 by SlowExtend(8) up to
w = $abbaa1221aabbaa. Next, Stabilize(15), called by Stabilize(8), finds a
maximal palindrome aa in w = $abbaa1221aabbaa1. Then 15 is pushed to
the stack. After that, FastExtend(13), called via Stabilize(13) by Stabilize(8),
reveals that ρw(13) ≥ 3 in w = $abbaa1221aabbaa1 using Stack = (15).
Then SlowExtend(13) extends the radius of the palindrome at 13 by one as
w = $abbaa1221aabbaa11. Then Stabilize(13) calls Stabilize(17). By reading fur-
ther letters from T , the working string becomes w = $abbaa1221aabbaa11aab,
where a Z-shape occurrence 〈13, 17〉 = 1aabbaa11aab is found. By deleting the
tail of it, we have w = $abbaa1221aab, on which Stabilize(8) resumes cal-
culation. Now the palindrome is extended as w = $abbaa1221aabbb. Then
Stabilize(18) calls Stabilize(14), which detects and contracts 〈13, 14〉 = bbb.
We now have w = $abbaa1221aa. After that, Stabilize(8) continues extending
the palindrome and obtains w = $abbaa1221aab#. Finally, ZReduce halts with
T̂ = w[2 : |w| − 1] = abbaa1221aab.

4.2 Correctness and Complexity of the Algorithm

To prove the correctness of our algorithm, we first introduce some technical
definitions, which characterize “adaptive” values.

Definition 2. Let us write i ∼k j if min{i, k} = min{j, k}. We say that Pals
on w is accurate enough between c and d if for any e ∈ [c : d], it holds that
Pals[e] ∼d−e ρw(e). We denote this property by Æw(c, d) with implicit under-
standing of Pals.

Let νw(c) denote the largest e such that e � c. If there is no such e, let
νw(c) = 1. We say that c is left-good in w if Æw(νw(c), c) holds. We say that c
is right-good in w if Æw(c, c + ρw(c)) holds.

Clearly Æw(c1, d1) implies Æw(c2, d2) if [c2 : d2] ⊆ [c1 : d1].

Lemma 2. Suppose that c is left-good and ρw(c) = |w| − c for a pseudo-
irreducible string w. Then w has a Z-shape occurrence 〈c − ρw(c), c〉 if and only
if Pals[c − ρw(c)] ≥ ρw(c). Suppose in addition Pals[c − r] = Pals[c + r] for all
r = 1, . . . , ρw(c). Then, c is right-good.

If Æw(d, c) holds, then one can correctly determine whether w has a Z-shape
with right pivot c. Namely, 〈d, c〉 is a Z-shape if and only if Pals[d] ≥ c − d. We
detect a suffix Z-shape whose right pivot is c extending a suffix palindrome at c
in SlowExtend(c). Lemma 2 means that this indeed works well when c is left-good



Linear-Time Online Algorithm Inferring the Shortest Path from a Walk 321

and values on the left arm are copied to the corresponding positions on the right
arm. Note that the left-goodness depends on w[1 : c] only. This means that this
property is robust against deletion and extension of the right arm.

We will show that the function Stabilize satisfies the following precondition
and postcondition, where w and w′ are the working strings before and after a
call, respectively.

Condition 1 (Precondition of Stabilize(c)).

– Stack is empty,
– c + ρw(c) ≥ |w| − 1,
– c is left-good,
– For all positions d ∈ [1 : A (c) − 1] ∪ [c + 1 : |w| − 1], d is stable in w and

Pals[d] = ρw(d).

Condition 2 (Postcondition of Stabilize(c)).

– If it returns true, then
• w′ = ŵu for the shortest string u appended from the input such that

|w′| ≤ c,
• Stack is empty.

– If it returns false, then w′ = ŵu for the shortest string u appended from the
input such that

• (c;Stack) is a palindrome chain such that Fw′(c) = Fw′(c;Stack) =
|w′| − 1,

• d is stable in w′ and Pals[d] = ρw(d) for all d ∈ [c : |w′| − 1].

Lemma 3 (Stabilize). Suppose that c satisfies Condition 1. Then after executing
Stabilize(c), Condition 2 is satisfied.

Assuming that Lemma 3 is true, we establish the following proposition.

Proposition 2. Algorithm2 calculates the normal form of the input.

When Stablize(c) tries to fix the value Pals[c] to be ρw(c), the right arm of
the palindrome at c may be cut in the middle after finding the end of the right
arm in a string, unless it has been stabilized. Then we need to extend it again.
The while loop is repeated until c becomes stable.

Condition 3 (Precondition of the while loop). In addition to Condition 1,

– for all positions d ∈ [b : |w| − 1], Pals[d] = Pals[2c − d].

In what follows we give some lemmas that explain the behavior of our algo-
rithm in a more formal way.

Lemma 4 (SlowExtend). Suppose that at the beginning of an iteration of the
while loop of Stabilize(c), Condition 3 holds. Let w and w′ be the working strings
before and after execution of SlowExtend(c), respectively. Then either
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– SlowExtend(c) returns true,
– w′ = ŵu for u appended from the input such that wu is suffix-reducible and

the right pivot of the Z-shape is c,

or

– SlowExtend(c) returns false,
– w′ = wu for u appended from the input such that c + ρw′(c) = |w′| − 1 and

w′ is pseudo-irreducible,
– Pals[c] = ρw′(c),
– for all r ∈ [1 : Pals[c]], Pals[c + r] = Pals[c − r].

Lemma 5 (FastExtend). Suppose that FastExtend(d) is called from Stabilize(c)
satisfying that

– (c;Stack) is a palindrome chain from some e > d such that Fw(c;Stack) =
max{Fw(e) | d < e ≤ c + Pals[c] } = |w| − 1,

– c is left-good and right-good,
– for all e ∈ [d + 1 : |w| − 1], e is stable and Pals[e] = ρw(e),

Then after the execution,

– if it returns true, then d + ρw(d) ≥ |w| − 1 and Stack is empty,
– if it returns false, then

• (d;Stack) is a palindrome chain such that Fw(d;Stack) = max{Fw(e) |
d ≤ e ≤ c + Pals[c] } = |w| − 1,

• for all e ∈ [d : |w| − 1], e is stable and Pals[e] = ρw(e) .

Lemma 6. Suppose that c is right-good and c �w d in a pseudo-irreducible
string w. Then d is left-good in w.

Hence, when FastExtend(d) returns true, Condition 1 for d is satisfied.
Now we have prepared enough for analyzing the function Stabilize(c). Our

goals is to show that Condition 2 holds for Stabilize(c) provided that Condition 1
holds. The function Stabilize(c) calls Stabilize(d) recursively. For now we assume
that Condition 1 implies Condition 2 for those d. Then this inductive argument
completes a proof of Lemma 3.

Suppose that Condition 1 holds for Stabilize(c). If SlowExtend(c) returns true,
clearly Condition 2 holds by Lemma 4. Hereafter we suppose that SlowExtend(c)
returns false.

Lemma 7 (for loop). Suppose that Condition 3 is satisfied at the beginning of
every iteration of the while loop. Then, at the beginning of each iteration of the
for loop of Stabilize(c), the following holds.

– (c;Stack) is a palindrome chain such that

Fw(c;Stack) = max({Fw(e) | d < e ≤ c + Pals[c] } ∪ {c + Pals[c]}) = |w| − 1,

– c is left-good,
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– for all e ∈ [c + 1 : d], Pals[d] = Pals[2c − d],
– for all e ∈ [d + 1 : |w| − 1], e is stable and Pals[e] = ρw(e).

Moreover if we break the loop, still Condition 3 holds. If we return true on
Line 18, Condition 2 holds for c.

Lemma 8 (while loop). At the beginning of an iteration of the while loop in
Stabilize(c), Condition 3 holds. Moreover if it returns true, Condition 2 holds.

Theorem 2. Algorithm2 calculates the normal form of the input in linear time.

Proof. The function Stabilize is called from ZReduce or Stabilize itself. In both
cases, Stabilize(c) is called right after a new letter is appended at position c + 1.
More precisely, in the latter case, Stabilize(d) is called just after SlowExtend(c)
or Stabilize(c) appended a new letter at position d + 1. Note that when while
loop repeats, the letters on the positions d + 1 for which Stabilize(d) was called
are deleted. Therefore, the number of calls of Stabilize is bounded by |T |.

This explanation about the number of calls of Stabilize also shows that the
total number of the execution of the while loop is bounded by |T | and this
implies the number of calls of SlowExtend is also bounded by |T |. The total
running time of SlowExtend is bounded by the number of its calls and the times
of appending letters from T , which is bounded by O(|T |) in total. The same
argument on the number of calls of Stabilize applies to that of executions of the
for loop. This implies that the total number of positions that is pushed onto the
stack is bounded by |T |, which implies that total running time of FastExtend is
bounded by O(|T |).

All in all, Algorithm 2 runs in linear time. �
By using Algorithm 2 and Raghavan’s algorithm [6], the smallest path and

cycle can be inferred from walks in linear time.

Corollary 2. Given a string w of length n, the smallest path and cycle on which
w is the output of a walk can be inferred in O(n) time.

5 Experiments

This section presents experimental performance of our algorithm comparing with
Raghavan’s O(n log n) time algorithm [6].

We implemented these algorithms in C++ and compiled with Visual C++
12.0 (2013) compiler. The experiments were conducted on Windows 7 PC with
Xeon W3565 and 12GB RAM. In the whole experiments, we got the average
running time for 10 times of attempts.

First, for randomly generated strings of length between 105 and 106 over Σ of
size |Σ| = 2, 6, 10, we compared the running time of the algorithms (Fig. 3 (a)).
For any alphabet size, our proposed algorithm ran faster.

Furthermore, we conducted experiments for strings of length between 106

and 107 with the same alphabets, and got a similar result (Fig. 3 (b)). Here,
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Fig. 3. Running time for the random strings with |Σ| = 2, 6, 10

the slope of Raghavan’s algorithm’s performance increases slightly as the string
length increases. On the other hand, our proposed algorithm keeps the same
slope. This shows the proposed algorithm runs in linear time in practice.
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