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Abstract. We study a new generalization of palindromes and gapped
palindromes called block palindromes. A block palindrome is a string that
becomes a palindrome when identical substrings are replaced with a dis-
tinct character. We investigate several properties of block palindromes
and in particular, study substrings of a string which are block palin-
dromes. In so doing, we introduce the notion of a maximal block palin-
drome, which leads to a compact representation of all block palindromes
that occur in a string. We also propose an algorithm which enumer-
ates all maximal block palindromes that appear in a given string T in
O(|T | + ‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size, which is
optimal unless all the maximal block palindromes can be represented in
a more compact way.
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1 Introduction

A palindrome is a string that is equal to its reverse, e.g., “Able was I ere
I saw Elba” (we treat upper and lower characters are the same for simple
explanations). Palindromes have been studied in combinatorics on words and
stringology.

Many research focused on finding palindromic structure of a string. Man-
acher [12] proposed a beautiful algorithm that enumerates all maximal palin-
dromes of a string. Kosolobov et al. [11] proved that, a language P k can be rec-
ognizable in O(kN) time, where P is the language of all nonempty palindromes
and N is the length of an input string. Alatabbi et al. [2] considered maximal
palindromic factorization in which all factors are maximal palindromes. They
also consider a problem of computing the fewest palindromic factorization, and
proposed off-line linear-time algorithms. Later, I et al. [9] and Fici et al. [4] inde-
pendently proposed on-line O(N log N)-time algorithms, where N is the length
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of an input string. Similar problems were also considered, such as, computing
palindromic length [3], computing palindromic covers [9], computing palindromic
pattern matching [8].

A gapped palindrome is a generalization of a palindrome that becomes a
palindrome when a center substring is replaced by a character, where the center
substring is a substring whose beginning and ending positions are equally far
from the beginning and ending positions of the input string, respectively. For
example, “Madam, he is Adam” is a gapped palindrome, and it becomes a palin-
drome if the center substring “m, he is ” is replaced by a character. Gapped
palindromes play an important role in molecular biology since they model a hair-
pin data structure of DNA and RNA sequences, see e.g. [14]. Several problems
were considered such as, enumeration of exact gapped palindromes of a string [10]
and also enumeration of approximate gapped palindromes [7,13], finding maxi-
mal length of long armed or and constrained length gapped palindrome [5].

In this paper, we consider the notion of block palindromes [1], which is
a new generalization of palindromes and also gapped palindromes 1. A block
palindrome is a string that becomes a palindrome when identical substrings are
replaced with a distinct character. More precisely, a block palindrome is a “sym-
metric” factorization f = f−n · · · f−1f0f1 · · · fn of a string with the center factor
f0 is a string (which may be empty) and each of other factor f−i = fi is a non-
empty string for any 1 ≤ i ≤ n. We also call a factor a block. For convenience,
let f = f0 when n = 0. For example, a factorization “To|kyo| |and| |Kyo|to”
is a block palindrome, where “|” is a mark to distinguish adjacent blocks. Palin-
dromes and gapped palindromes are special cases of block palindromes: For a
palindrome, all blocks are characters, and for a gapped palindrome, the center
block f0 is a string and the other blocks are characters.

We investigate several properties of block palindromes. We introduce the
notion of maximal block palindromes to concisely represent all block palindromes
in a string, and propose an algorithm which enumerates all maximal block palin-
dromes in a string T in O(|T |+‖MBP(T )‖) time, where ‖MBP(T )‖ is the output
size. This is optimal unless all the maximal block palindromes can be represented
in a more compact way.

2 Preliminaries

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The string
of length 0 is called the empty string, and is denoted by ε. Although ε is not
contained in Σ, we sometimes call ε the empty character for convenience. For
a string T = xyz, x, y and z are called a prefix, substring, and suffix of T ,
respectively. In particular, a prefix (resp. suffix) x of T is called a proper prefix
(resp. suffix) iff x �= T . A non-empty string that is a proper prefix and also a
proper suffix of T is called a border of T . Hence, a string of length N can have at
most N − 1 borders of length ranging from 1 to N − 1. A string which does not
1 Block palindromes were firstly introduced in a problem of 2015 British Informatics

Olympiad [1], but we did not know the existence at the first version of this paper.
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have any borders is called an unbordered string. For 1 ≤ i ≤ j ≤ |T |, a substring
of T which begins at position i and ends at position j is denoted by T [i . . . j].
For convenience, let T [i . . . j] = ε if j < i.

In this paper, we also consider half-positions k+1/2 for integers 0 ≤ k ≤ |T |.
For convenience, for a half-position i and an integer r such that 1/2 ≤ i − r ≤
i + r ≤ |T | + 1/2, let T [i − r . . . i + r] = T [�i − r� . . . �i + r�]. Note that T [i] for a
half-position i is the empty character. The position c = (|T | + 1)/2 is called the
center position of T , T [c] is called the center character of T , and T [c−d . . . c+d]
for an integer d is called a center substring of T .

For a string T and integers 1 ≤ i, j ≤ |T |, a longest common extension (LCE)
query LCET (i, j) asks the length of the longest common prefix of the two suf-
fixes T [i . . . |T |] and T [j . . . |T |] of T . When clear from the context, LCET (i, j)
is abbreviated as LCE (i, j). It is well known that if T is drawn from an integer
alphabet of size polynomially bounded in |T |, then LCE queries for T can be
answered in constant time after an O(|T |)-time preprocessing, e.g., by construct-
ing the suffix tree of T and a data structure for lowest common ancestor queries
on the tree [6].

For a block palindrome f = f−n · · · f−1f0f1 · · · fn, the length of f denoted by
|f | is the total length of blocks, and the size of f denoted by ‖f‖ is the number
of non-empty blocks. A block palindrome is even if its size is even (that is, the
center block f0 is the empty string), and otherwise odd (that is, the center block
f0 is non-empty).

3 Properties of Block Palindromes

In this section, we investigate the properties of block palindromes. We assume
that T is an input string of length N in the rest of the paper.

Since there are O(2N ) factorization of T and block palindromes are symmet-
ric, there are O(2N/2) block palindromes of T . Moreover, there is a tight example
that T consists of only the same characters.

Although there are a huge number of block palindromes of a string, they
are very redundant. To look for more essential properties of block palindromes,
we define the largest block palindrome which is a representative of other block
palindromes. A block palindrome f = f−n · · · fn of T that has the largest number
of blocks among all block palindromes of T is called the largest block palindrome.
Note that each block fi for 0 ≤ i ≤ n is an unbordered substring and fi for
0 < i ≤ n is the shortest border of T [k + 1 . . . N − k], where k = 0 if i = n and
k = |fi+1 · · · fn| otherwise. So, the largest block palindrome of T is unique. The
largest block palindrome is a representative of all block palindromes in the sense
that all block palindromes can be represented as block palindromes of f .

A natural and prompt question would be about how to efficiently compute
the largest block palindrome of T . The following theorem answers this question.

Theorem 1. The largest block palindrome f−n · · · fn of T can be computed in
O(N) time.
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Proof. We construct a data structure in O(N) time that can answer any LCE
query in constant time.

We greedily compute the blocks from outside fn to inner f1 by LCE queries.
We assume that we compute the shortest border fi of T [b . . . e]. For k = 1 to
�(e − b + 1)/2�, we check whether T [b . . . b + k − 1] is the border of T [b . . . e]
or not by checking whether LCE (b, e − k + 1) ≥ k or not. If T [b . . . e] does not
have any border, we obtain f0 = T [b . . . e]. Otherwise, we obtain the shortest
border fi = T [b . . . b + k − 1] of T [b . . . e], and compute the more inner blocks
for T [b + k . . . e − k]. Since the number of LCE queries is O(N) and each LCE
query takes constant time, the largest block palindrome of T can be computed
in O(N) time. 
�

So far, we have considered only block palindromes that are equal to T itself.
Next, we consider block palindromes that appear as substrings in T . We define
a maximal block palindrome which is a representative of some block palindromes
in T , and study how many maximal block palindromes can appear in T .

For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, let FT (c, d) =
{f |f = f−n · · · f0 · · · fn is the largest block palindrome, f0 = T [c − d + 1 . . . c +
d − 1], f = T [c − d − k + 1 . . . c + d + k − 1], k = |f1 · · · fn|} be the set of largest
block palindromes whose center positions are the same and whose center blocks
appear at T [c−d+1 . . . c+d−1]. When context is clear, we denote FT by F . For
a string T , a largest block palindrome f ∈ F (c, d) such that |f | is the longest,
namely the number of blocks are maximal among all largest block palindromes
of F (c, d), is called a maximal block palindrome.

We remark that the maximal block palindrome of F (c, d) is a representative
of all the largest block palindromes of F (c, d).

Remark 1. For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, any
largest block palindrome f = f−n · · · fn ∈ F (c, d) is a sub-factorization of the
maximal block palindrome g = g−m · · · gm ∈ F (c, d), that is, n ≤ m and fi = gi

for 0 ≤ i ≤ n.

Proof. We assume that the statement does not hold. Let fj be a block that
fj �= gj , and j = 0 or fi = gi for 0 ≤ i < j ≤ n. If |fj | < |gj |, fj is a border of gj

and it contradicts that gj is the largest block palindrome. We can say the same
things for the case |fj | > |gj |. Therefore, such fj and gj do not exist and this
statement holds. 
�

We are interested in how many maximal block palindromes can appear in T .
It is trivially upper bounded by O(N2) since there are O(N2) substrings which
can be center substrings. If there is no limitation on the size of maximal block
palindromes, we can easily see that it is tight. For a string T of length N in
which the characters are all distinct, any substring w is unbordered, and there is
at least one maximal block palindrome that contains w as a center block. Thus,
T can contain Θ(N2) maximal block palindromes. The following example says
that the number of maximal block palindromes having three blocks has also the
same tight upper bound.
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Example 1. The number of maximal block palindromes in T = anbnabanbn

that have at least three blocks is Θ(N2), where cn for a character c denotes run
of c of length n, and n = (N − 2)/4.

For convenience, we denote T by T = A0B1A1B2A2B3, where A0, B1, A1, B2,
A2, and B3 are strings an, bn, a, b, an, and bn, respectively. There are maximal
block palindromes of size three that, for 1 < i ≤ n, 1 < j ≤ n, T [n−j+1 . . . N −
n+ i−1] = (A0[n− j +1 . . . n]B1[1..i−1])(B1[i . . . n]A1B2A2[1 . . . j])(A2[n− j +
1 . . . n]B3[1 . . . i − 1]) and they are unbordered, where the parentheses indicate
blocks.

Remark that the upper bound is reduced to O(N) if we impose a limitation
on the lengths of center blocks.

Remark 2. For any constant k ≥ 0, a string of length N can contain Θ(N)
maximal block palindromes whose center blocks are of length ≤ k because there
are O(N) possible center blocks. In particular, a string contains at most N − 1
maximal block palindromes of even size (i.e., the center blocks must be empty)
because the number of occurrences of center blocks are at most N − 1.

The following lemma shows an interesting property of maximal block palin-
dromes, and this property can be used for the proof of Lemma2.

Lemma 1. For a half-position 1 ≤ c ≤ N and two integers 1 ≤ d < d′ ≤ N/2,
two largest block palindromes f = f−n · · · fn ∈ F (c, d) and g = g−m · · · gm ∈
F (c, d′) do not share the block boundaries, namely, the ending positions of blocks
ki and k′

i such that ki = c + d − 1 + |f1 · · · fi| and k′
i = c + d′ − 1 + |g1 · · · gj | do

not equal for any 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. Similar to Remark 1, if we assume that this lemma does not hold, a block
of f or g must have a border and it contradicts that f and g are the largest
block palindromes. 
�

Let ‖MBP(T )‖ denote the sum of the sizes of all maximal block palindromes
in T .

Lemma 2. For any string T of length N , ‖MBP(T )‖ ≤ N(2N − 1).

Proof. From Lemma 1, any two largest block palindromes, whose center positions
are same but center blocks are different, do not share the block boundaries.
This implies that, for a half-position c, the number of blocks of maximal block
palindromes whose center position is c is up to N . Since there are 2N − 1 center
positions, we have ‖MBP(T )‖ ≤ N(2N − 1). 
�

4 Enumeration of Maximal Block Palindromes

In this section, we consider how to enumerate all the maximal block palindromes
MBP(T ). A brute-force approach based on Theorem1 would compute the largest
block for every possible substring T [b . . . b + � − 1] (while suppressing output of
non-maximal ones), which takes Θ(

∑N
�=1 �(N − �)) = Θ(N3) time.

We propose an optimal solution running in o(N3) time.
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Theorem 2. All maximal block palindromes that appear in T can be enumerated
in O(N + ‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size.

We actually consider a variant of the problem: We propose an algorithm to
enumerate all the maximal block palindromes of size ≥2, whose total output
size is denoted by ‖MBP≥2(T )‖, in optimal O(N + ‖MBP≥2(T )‖) time. That
is to say, we can completely ignore maximal block palindromes of size 1, which
might not be interesting if we focus on palindromic structures in T . If we want
to enumerate MBP(T ), we can do that by slightly modifying the algorithm.

Our algorithm proceeds in two steps: (i) enumerate all the pairing unbordered
blocks for all center positions in a batch processing, and (ii) build maximal block
palindromes from the enumerated blocks.

In Step (i), we firstly enumerate every pair of occurrences of an unbordered
substring in T . Note that the pair will be a component of a maximal block
palindrome, and the total number of enumerated pairs is O(‖MBP≥2(T )‖). We
preprocess T in O(N) time and space to support LCE queries in constant time.
We also compute, for every character in T , the list storing all the occurrences
of the character in increasing order, all of which can be obtained by sorting the
positions i of T with the key T [i] by radix sort in O(N) time and space.

Now we focus on an occurrence b of T [b], and identify every pair of occurrences
of an unbordered substring such that the left one starts at b. Let b < b1 < b2 <
· · · < bk be the occurrences of T [b] in T [b . . . N ]. We process bi ∈ {b1, . . . , bk}
in increasing order to identify common unbordered substrings starting at b and
bi using LCE queries. At the first round for b1, we see that for any � with
1 ≤ � ≤ min(LCE (b, b1), b1 − b), the common substring of length � starting
at b and b1 is unbordered, and thus, we report each pair of such unbordered
substrings. While processing bi ∈ {b1, . . . , bk} in increasing order, we maintain
a set L of positive integers � (by a sorted list of intervals) such that T [b . . . b +
� − 1] has a border caused by the common substrings starting at b and bi’s
processed so far. We use L to efficiently skip �’s such that T [b . . . b + � − 1] has a
border in the later rounds. For example, in the first round, we add the interval
[b1 − b + 1 . . . b1 − b + LCE (b, b1)] to L (which is initially empty) as, for any
� ∈ [b1 − b+1 . . . b1 − b+LCE (b, b1)], T [b . . . b+ �−1] has a border caused by the
common substring starting at b and b1. When processing bi for 1 < i ≤ k, we see
that for any � ∈ [1 . . . min(LCE (b, bi), bi−b)]\L, the common substring of length
� starting at b and bi is unbordered. Updating L can be easily done in O(1) time
by adding (merging if necessary) the interval [bi − b + 1 . . . bi − b + LCE (b, bi)]
to L (observe that the new interval is always pushed back to L or merged with
the last interval of L as we process {b1, . . . , bk} in increasing order). Note that
[1 . . . min(LCE (b, bi), bi − b)] \ L always contains 1, and we can incrementally
enumerate its element in constant time per element because L is maintained
as a sorted list of intervals. Thus, the computation cost can be charged to the
number of output, i.e., it runs in O(N + ‖MBP≥2(T )‖) time in total.

When we find a pair of occurrences bl < br of an unbordered substring of
length �, we list it up as a triple (c, br, br + �), where c = (bl + br + � − 1)/2 is
the center of the pairing blocks. After listing up all those triples, we sort them
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using the first and second elements as keys by radix sort, which can be done in
O(N + ‖MBP≥2(T )‖) time and space.

Now we are ready to proceed to Step (ii) in which we build the maximal block
palindromes from the sorted list of triples computed in Step (i). For building the
maximal block palindromes with center c, we scan the sublist of triples having
center c and connect the pairing blocks whose beginning and ending positions
are adjacent using the information of the second (the beginning position of the
block) and third (the ending position of the block plus one) elements of the
triples. We build all the c-centered maximal block palindromes by extending
their blocks outwards simultaneously with a 0-initialized array A of length N .
When we look at a triple (c, br, br + �), we write br to A[br + �], and connect
the block with the block ending at br − 1 if such exists (which can be noticed
by the information A[br] �= 0). Since the block boundaries are not shared due to
Lemma 1, the information written in A can be propagated correctly to extend
the blocks. It runs in time linear to the size of the sublist. We can also clear A
in the same time by scanning the sublist again while writing 0 to the entries we
touched.

Since the initialization cost O(N) of A is payed once in the very beginning
of Step (ii) and the other computation cost can be charged to the output size,
the total time complexity is O(N + ‖MBP≥2(T )‖).

For enumerating MBP(T ), we modify Step (ii). While scanning the sublist for
center c, we can identify all the positions e ≥ c such that e is not an ending posi-
tion of some pairing block, for which the substring T [2c − e . . . e] is unbordered.
If the unbordered substring cannot be extended outwards by blocks (which can
also be checked while scanning the sublist), it is the maximal block palindrome
of size 1 to output for MBP(T ). The algorithm runs in O(N + ‖MBP(T )‖) time
in total as the additional cost can be charged to the output size.

5 Conclusions

In this paper, we investigated several properties of block palindromes which are
the generalization of palindromes and gapped palindromes. We also proposed an
optimal-algorithm to enumerate all maximal block palindromes appearing in a
given string. As mentioned in Remark 2, if we impose a limitation on the lengths
of center blocks, the upper bound of the number of maximal block palindromes
is reduced to O(N), where N is the length of an input string. In particular, for
maximal block palindromes of even size, the center blocks are super restricted to
be empty. The situation is similar to considering ordinal palindromes (in which
the center blocks are strict) versus maximal gapped palindromes (in which the
restriction on the center blocks are relaxed). It would be interesting to investigate
the properties of maximal block palindromes whose center blocks have restricted
lengths and develop efficient algorithms to enumerate only such a subset of
maximal block palindromes.
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