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Preface

This volume contains the papers presented at the 25th International Symposium
on String Processing and Information Retrieval (SPIRE), held in Lima, Peru,
October 9–11, 2018. The annual SPIRE symposium provides an opportunity for
researchers to present original contributions in the three complementary areas of string
processing, information retrieval, and computational biology. SPIRE has its origins in
the South American Workshop on String Processing, which was first held in 1993.
Starting in 1998, the focus of the symposium was broadened to include the area of
information retrieval due to the growing emphasis on information processing. The first
24 meetings were held in Belo Horizonte (Brazil, 1993), Valparaiso (Chile, 1995),
Recife (Brazil, 1996), Valparaiso (Chile, 1997), Santa Cruz (Bolivia, 1998), Cancun
(Mexico, 1999), A Coruña (Spain, 2000), Laguna San Rafael (Chile, 2001), Lisbon
(Portugal, 2002), Manaus (Brazil, 2003), Padua (Italy, 2004), Buenos Aires (Argentina,
2005), Glasgow (UK, 2006), Santiago (Chile, 2007), Melbourne (Australia, 2008),
Saariselkä (Finland, 2009), Los Cabos (Mexico, 2010), Pisa (Italy, 2011), Cartagena de
Indias (Colombia, 2012), Jerusalem (Israel, 2013), Ouro Preto (Brazil, 2014), London
(UK, 2015), Beppu (Japan, 2016), and Palermo (Italy, 2017).

The 28 papers accepted for presentation at SPIRE 2018 were selected from 51
submissions received in response to the call for papers. Each submission was reviewed
by at least three referees. After discussion, 22 full papers were accepted, as well as a
further 6 short papers. The program also included three talks by invited speakers: Philip
Bille, from the Technical University of Denmark; Nataša Pržulj, from University
College London; and Rossano Venturini, from the Università di Pisa.

While many people helped make this conference possible, we particularly thank the
members of the Program Committee and the additional reviewers who worked dili-
gently to ensure the timely review of all submitted manuscripts. We are also grateful to
the conference sponsors: Google and eBay, who each donated 5000 USD, which
recompensed two of the invited speakers and sponsored ten 500 USD student travel
grants; the Chilean Centro de Biotecnología y Bioingeniería (CeBiB), who contributed
2500 USD for the third invited speaker; Springer, who sponsored the 1000-euro
best-paper award; and the Bioinformatics and Information Retrieval Data Structures
Analysis and Design (BIRDS) project, who sponsored the colocated 13th Workshop on
Compression, Text and Algorithms (WCTA) with funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie
grant agreement No. 690941. Submissions were managed and the proceedings pro-
duced using the EasyChair conference system.

August 2018 Travis Gagie
Alistair Moffat

Gonzalo Navarro
Ernesto Cuadros-Vargas
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Techniques for Grammar-Based Compression

Philip Bille

Technical University of Denmark

Abstract. Grammar-based compression, where one replaces a long string by a
small context-free grammar that generates the string, is a classic, simple, and
powerful paradigm that captures many popular compression schemes with little
or no reduction in compression rate. One of the most basic problems for
grammar-based compression is to compactly represent the grammar while
supporting efficient access to any character or substring without decompressing
the string. The access problem naturally appears as a computational primitive in
wide range of other problems for grammar-based compression such as indexing
and pattern matching. Despite several recent breakthroughs and significant
interest in the area many important open questions remain. In this talk we give
an overview of the main techniques and results for the access problem and its
variants. The talk is targeted to an audience with a general algorithmic back-
ground and we highlight the main general techniques, connections to other areas
(e.g. graph decompositions and data structures), and a selection of open
problems.



Mining the Integrated Connectedness
of Biomedical Systems

Nataša Pržulj

University College London

Abstract. We are faced with a flood of molecular and clinical data. Various
bio-molecules interact in a cell to perform biological function, forming large,
complex systems. Large-scale patient-specific omics datasets are increasingly
becoming available, providing heterogeneous, but complementary information
about cells, tissues and diseases. The challenge is how to mine these interacting,
complex, complementary data systems to answer fundamental biological and
medical questions. Dealing with them is nontrivial, because many questions we
ask to answer from them fall into the category of computationally intractable
problems, necessitating the development of heuristic methods for finding
approximate solutions.
We develop methods for extracting new biomedical knowledge from the

wiring patterns of systems-level, heterogeneous, networked biomedical data.
Our methods link the patterns in molecular networks and the multi-scale net-
work organization with biological function. In this way, we translate the
information hidden in the wiring patterns into domain-specific knowledge. In
addition, we introduce a versatile data fusion (integration) framework that can
effectively integrate the information obtained from mining molecular networks
with patient-specific somatic mutation data and drug chemical data to address
key challenges in precision medicine: stratification of patients, prediction of
driver genes in cancer, and re-purposing of approved drugs to particular patients
and patient groups. Our new methods stem from novel network science
approaches coupled with graph-regularized non-negative matrix
tri-factorization, a machine learning technique for dimensionality reduction and
co-clustering of heterogeneous datasets. We utilize our new framework to
develop methodologies for performing other related tasks, including disease
re-classification from modern, heterogeneous molecular level data, inferring new
Gene Ontology relationships, and aligning multiple molecular networks.



Data Compression: The Whole is Larger
than the Sum of Its Parts

Rossano Venturini

Department of Computer Science, University of Pisa

Abstract. More than 70 years of research in data compression led to the design
of several effective classes of compressors to deal with sequences of different
types and with different characteristics. Their use in practice is widespread as
encoding data to save space is of utmost importance to enable the effective
exploitation of the very large datasets managed by today’s systems.
Only recently, however, it has been investigated the possibility of boosting

the performance of a given compressor by partitioning its input sequence.
Indeed, as data compressors are very sensitive to changes of characteristics in
the underlying sequence, we can achieve better results by partitioning the input
sequence into homogeneous parts and compressing them separately rather than
compressing the entire sequence at once.
Consider the following toy example to appreciate the benefits of this

approach. We are given a sequence of n zeros followed by n ones to be com-
pressed with arithmetic coding, the most effective entropy encoder. Encoding
the whole sequence gives no compression at all as the output has size 2n bits.
Instead, partitioning it in two halves and compressing them independently gives
a compressed size of Hðlog nÞ bits. An exponential improvement!
Among all the possible partitions, we are looking for an optimal one, i.e., a

partition that minimizes the compressed size. Several optimization algorithms
have been introduced in order to compute an optimal partition for the most
important classes of compressors, e.g., zero-th and k-th order encoders [4],
Burrows-Wheeler Transform-based compressors [3, 6], Lempel-Ziv ‘77 and ‘78
[1, 2, 5, 7], Elias-Fano representation [8], and so on. In this talk we will present
those solutions and we will introduce the most important open problems.
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Recoloring the Colored de Bruijn Graph

Bahar Alipanahi(B), Alan Kuhnle, and Christina Boucher

Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL 32611, USA
{baharpan,kuhnle,christinaboucher}@ufl.edu

Abstract. The colored de Bruijn graph, an extension of the de Bruijn
graph, is routinely applied for variant calling, genotyping, genome assem-
bly, and various other applications [11]. In this data structure, the edges
are labeled with one or more colors from a set {c1, . . . , cα}, and are stored
as a m× α matrix, where m is the number of edges. Recently, there has
been a significant amount of work in developing compacted represen-
tations of this color matrix but all existing methods have focused on
compressing the color matrix [3,10,12,14]. In this paper, we explore the
problem of recoloring the graph in order to reduce the number of colors,
and thus, decrease the size of the color matrix. We show that finding the
minimum number of colors needed for recoloring is not only NP-hard but
also, difficult to approximate within a reasonable factor. These hardness
results motivate the need for a recoloring heuristic that we present in this
paper. Our results show that this heuristic is able to reduce the number
of colors between one and two orders of magnitude. More specifically,
when the number of colors is large (>5,000,000) the number of colors is
reduced by a factor of 136 by our heuristic. An implementation of this
heuristic is publicly available at https://github.com/baharpan/cosmo/
tree/Recoloring.

1 Introduction

The colored de Bruijn graph was introduced by Iqbal et al. [11] for detecting
genetic variation in one or more individual(s) of a population and then used to
disambuigate the traversal of the de Bruijn graph [2]. It extends the traditional
de Bruijn graph in that each edge in the graph has a set of one or more color(s),
each of which corresponds to an individual of the population.

We first give a constructive definition of the traditional de Bruijn graph
and show it can be extended to include color information. Given a set of DNA
sequences R of length �, a de Bruijn graph is constructed on R as follows: first, a
directed edge e = (u, v) is constructed for each unique k-length subsequence (k-
mer) in R, where u and v (the nodes or (k − 1)-mers) are labeled with the prefix
and suffix of that k-mer, and next, after all possible edges have been constructed,
nodes with the same label are glued together to a single node. Hence, in this
paper we restrict interest to the DNA alphabet consisting of the symbols A, C,
G, and T. The set of DNA sequences in R are referred to as sequence reads. An

c© Springer Nature Switzerland AG 2018
T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-030-00479-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00479-8_1&domain=pdf
https://github.com/baharpan/cosmo/tree/Recoloring
https://github.com/baharpan/cosmo/tree/Recoloring
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example of gluing is as follows: if for k = 4, node u1 with label ATG has outgoing
edge A and node u2 with the same label ATG, has outgoing edge G, since the
labels are the same, to make sure that all of the labels in de Bruijn graph are
distinctive, we glue them. This means that the outgoing edge of u2 will be added
to u1, so u1 has two outgoing edges with labels A and G, and u2 will be deleted.
In order to construct the colored de Bruijn graph, we assign a set of colors to
each edge (k-mer) in the de Bruijn graph. More specifically, we view the colored
de Bruijn graph as a de Bruijn graph G = (V,E) with a m × α binary matrix
C (m is the number of distinct k-mers, and α is the number of colors), where
there exists a row for each edge (k-mer), and a column for each color such that
C[j, a] = 1 if edge ej ∈ E contains color ca and C[j, a] = 0 otherwise. We refer to
C as the color matrix. Figure 2 (left) illustrates an example of colored de Bruijn
graph with four colors.

In this paper, we consider the case in which the colored de Bruijn graph
is used to disambiguate the traversal of the graph by assigning each sequence
read in R a unique color. We note that the necessity of colors arises from the
fact that constructing the de Bruijn graph requires that reads are split to k-
mers—making them indistinguishable from each other. Thus, the information
that ties a particular k-mer to the originating sequence(s) is lost. This problem
is circumvented in the colored de Bruijn graph by storing this information in the
color matrix. Due to the number of reads—or individuals in the original use case
of the colored de Bruijn graph—the size of the color matrix can be immense.
Typically, the number of distinct k-mers is in the order of several millions and
the number of reads or number of individuals is at least 100,000—as in the case
of the 100,000 Genome Project [1].

Given the typical size of current datasets, a significant amount of attention
has been spent on constructing and storing the colored de Bruijn graph efficiently
with respect to both memory and time. Vari [14] was the first succinct repre-
sentation of the colored de Bruijn graph. It views the colored de Bruijn graph
as the union graph of several de Bruijn graphs Gc1 , Gc2 , . . . , Gcα

, each of which
corresponds to the de Bruijn graph of a single color in color set {c1, . . . , cα}. It
uses FM-index [17] and Burrows-Wheeler Transform (BWT) [6], to efficiently
construct and store the de Bruijn graph, and stores the color matrix as a one-
dimensional row-based bit vector (the rows of C, are concatenated), which is
compressed using Elias-Fano [7,13,15] encoding. In this construction, the color
matrix is compressed during the construction to decrease the peak memory
usage. Rainbowfish [3] is another method to construct the colored de Bruijn
graph in a memory-efficient manner which is an extension of Vari. After storing
the distinct sets of colors in a table, this method is able to index the color sets
for each edge in the de Bruijn graph using variable length bit patterns similar
to Huffman coding. Bloom filter tries [10] is another tool to encode the sets of
colors along with the de Bruijn graph. This method assigns a reference to the
color set, and if the reference takes fewer bits than the set itself, the reference
will be stored. All of these methods, with some penalty to runtime, can reduce
the memory required for storage of colors without reducing the number of them.
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In this paper, we investigate a different approach for decreasing the size
of colored de Bruijn graph, namely recoloring the graph with a smaller num-
ber of colors; to differentiate the new colors from the original, the former are
called labels. First, we prove that finding the minimum number of labels needed
to recolor a colored de Bruijn graph is not only NP-hard but also difficult to
approximate within a factor of |R|1−ε, where R is the set of reads and ε > 0; since
a trivial approximation ratio is at most |R| by coloring each read with a unique
color, this is a strong inapproximability result. Given the computational hard-
ness of this problem, we present a polynomial-time heuristic that recolors the
graph by greedily giving the same label to compatible colors (defined in Sect. 2),
but still allows for the reads to be efficiently distinguished. We implement the
heuristic and demonstrate that it reduces the number of colors by up to two
orders of magnitude. In particular, when the number of colors was 5,000,000
and 10,000,000 the number of labels needed to recolor the graph was 36,686
and 75,281, respectively—which reduces the size of the color matrix by more
than half. Lastly, the recoloring algorithm uses less than 7 GB of memory and 4
hours of CPU time, even when the number of colors is large. In Sect. 2, we give an
overview of the definitions and terminology that will be used in our paper. Next,
in Sect. 3 we show that not only is determining the minimum number of colors
needed exactly is NP-complete, it is also computationally hard to determine the
number within a reasonable factor. In Sect. 4 we describe a polynomial heuristic
for recoloring a colored de Bruijn graph, and show it reduces the number of
original colors by up to 136 times. Lastly, we conclude in Sect. 5 and discuss
directions for future work.

2 Preliminaries

In this section we formally define the main concepts used in this paper.

Strings. Throughout we consider a string s = s[1 . . . x] = s[1]s[2] . . . s[x] of |s| =
x symbols drawn from the alphabet [0 . . . σ−1]. For i = 1, . . . , n we write s[i . . . x]
to denote the suffix of s of length x − i + 1, that is s[i . . . x] = s[i]s[i + 1] . . . s[x].
Similarly, we write s[1 . . . i] to denote the prefix of s of length i, that starts at
the first position and ends at i.

Given a string s[i . . . x] we denote the set of all unique k-mers of s as sk, the
set of all unique prefixes of length k − 1 of sk as prefix(sk) and the set of all
unique suffixes of length k − 1 of sk as suffix(sk).

Binary Strings. We let x and y be two binary characters, we denote x ⊕ y as
the XOR of these characters. Next, we let s1[1 . . . a] and s2[1 . . . a] be two binary
vectors (bit-vectors) of length a, we denote s1⊕s2 be equal to [s1[1]⊕s2[1], s1[2]⊕
s2[2], . . . , s1[a] ⊕ s2[a]].

Color Compatibility. As previously mentioned, in this paper we focus on colored
de Bruijn graphs in which each read is assigned a unique color and the k-mers
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corresponding to that read contain the associated color. Hence, given a colored
de Bruijn graph G constructed for read set R, we let {c1, . . . , cx} be such that a
k-mer (edge) contains color ci if it occurs in read ri.

Therefore, given two reads ri and rj with colors ci and cj , we call the colors
compatible if for any pair of k-mers in ri and rj , say sk

i ∈ ri and sk
j ∈ rj , it

follows that prefix(sk
i ) ∩ suffix(sk

j ) = ∅—meaning there does not exist a k-mer
in ri whose prefix is equal to the suffix of a k-mer in rj . Given any two reads
ri and rj with colors ci and cj , we call the colors incompatible if they are not
compatible.

Recoloring and Labels. Given a colored de Bruijn graph G with colors
{c1, . . . , cα}, we refer to a recoloring of G as a function F : {c1, . . . , cα} →
{�1, . . . , �y} that maps each color to one element in {�1, . . . , �y}. In order to
distinguish between the original set of colors, and the (smaller) set of colors
obtained by recoloring, we use the term label to refer to the latter. We denote
{�1, . . . , �y} as the set of labels and the correspond m × y label matrix as L.

Valid Recoloring. Given a colored de Bruijn graph G with colors {ci, . . . , cα} and
recoloring F with label set {�1, . . . , �y}, we refer to F as a valid recoloring if there
exists a label �j for each ci such that �j = F (ci), and F (ci) = F (cj) if and only
if ci and cj are compatible. An example of a valid recoloring is in Fig. 2; here,
by recoloring with a set of compatible colors the number of colors—or labels—is
reduced from 4 to 2.

3 Recoloring a Colored de Bruijn Graph with the
Minimum Number of Colors

We begin by formally defining the problem of recoloring a colored de Bruijn
graph with a minimum number of labels.

CDBG-Recoloring
Input: A read-colored de Bruijn graph (CDBG) G = (V,E) con-

structed from a set of sequence reads R with the set of colors
{c1, . . . , cα}.

Question: What is the minimum α′, such that there exist a valid recol-
oring of G that uses α′ labels?

Notice that the original number of colors α is irrelevant to the minimum
number of colors α′. As we show in the following theorem, any approxima-
tion algorithm for CDBG-Recoloring problem may be used to approximate the
classical Graph-Coloring problem for arbitrary graphs. A t-coloring of a graph
G′ = (V ′, E′) is a mapping H : V ′ → {1, 2, . . . , t} such that H(u) �= H(v) for
all edges (u, v) ∈ E′. We say G′ is t-colorable if G′ has a t-coloring. Figure 1
illustrates an instance of graph coloring.
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Fig. 1. In this figure, we illustrate the coloring of an arbitrary graph. (Left): Each node
has a unique color, thus five colors are used for coloring five nodes (solid Black, solid
Grey, solid White, dashed Grey, dashed White). (Right): This graph can be colored
using only 3 colors—is 3-colorable (solid Black, solid Grey, solid White).

Graph-Coloring
Input: A graph G′ = (V ′, E′).

Question: What is the minimum t such that G′ is t-colorable?

For a given graph G′, the solution of Graph-Coloring is termed the chromatic
index of G′. For the decision version of this problem, we write t-Graph-Coloring,
which is known to be NP-complete for any value of t greater than 2 [16]. For
Graph-Coloring, it is known that there is no approximation within |V ′|1−ε unless
NP=ZPP1 [8], for any ε > 0.

Theorem 1. Any γ-approximation algorithm for CDBG-Recoloring yields a γ-
approximation for Graph-Coloring; the decision version of CDBG-Recoloring is
NP-complete.

Proof. First, we give a reduction from Graph-Coloring to CDBG-Recoloring. In
particular, we show how, given an instance of Graph-Coloring G′ = (V ′, E′),
in polynomial time we can find a set S of |V ′| ternary strings such that the
following statements are equivalent:

– each node in G′ can be assigned one of t colors such that if two vertices are
neighbours then those vertices are different colors;

– each string in S can be assigned one of t labels such that if one string contains
a k-mer sk1 and another contains a k-mer sk2 with the last k − 1 characters
of sk1 equal to the first k−1 characters of sk2 , then those strings are different
colors.

Let m be the number of edges in G′ and assume m ≥ 1 without loss of
generality. We number the edges from 0 to m − 1 and label each edge with
the concatenation of two copies of the (	lg m
 + 1)-bit binary representation
of its number, separated by $. For each node v ∈ V ′ we build a string sv by
concatenating its incident edges’ labels, separated by copies of $. Finally, we
make S the set of these strings and set k = 2(	lg m
 + 1) + 2.

1 ZPP is the complexity class of problems solvable by a randomized algorithm in
expected polynomial time.
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If u and v share an edge e in G, then su contains $γ$γ and sv contains γ$γ$,
where γ is the (	lg m
+1)-bit binary representation of e’s number. Now suppose
su and sv contain k-mers suk and svk, respectively, with the k − 1-length suffix
of suk is equal to the k − 1-length prefix of svk. Since any substring of length
k − 1 = 2(	lg m
 + 1) + 1 of any string consisting of (	lg m
 + 1)-bit binary
numbers separated by copies of $ contains at least one complete number, su and
sv must contain the same number, so u and v must share an edge. That is, u and
v share an edge if and only if su and sv contain k-mers suk and svk, respectively,
with the last k − 1 characters of α equal to the first k − 1 characters of β. It
follows that we can obtain a valid coloring of G from any valid coloring of S,
or vice versa, by making each node the same color as the corresponding string.
By this one-to-one correspondence between colorings, the minimum number of
colors for both problems is the same, and the solution of any γ-approximation
for CDBG-Recoloring can be transformed in polynomial time into a solution
for Graph-Coloring with the same number of colors, yielding an approximation
algorithm with the same ratio γ for Graph-Coloring.

Given an instance of and a certificate in the form of an assignment of colors
to the strings, it is easy to check the certificate in polynomial time, so α′-CDBG-
Recoloring is also in NP and thus NP-complete. ��
Corollary 1. For any ε > 0, there is no |R|1−ε-approximation for CDBG-
Recoloring unless NP=ZPP.

Corollary 1 follows from Feige and Kilian [8] and Theorem 1; since the number
of reads |R| is usually large (in our experimental evaluation, up to 107), this is
a strong inapproximability result. At first, it may appear surprising since the a
classical de Bruijn graph on an alphabet of four symbols has chromatic index 8
[5]. However, in the CDBG-Recoloring problem, the coloring does not correspond
to edges of the de Bruijn graph; instead, it corresponds to coloring the reads,
which form paths in the graph; as shown in the proof of Theorem1, these paths
can encode an arbitrary graph structure.

4 Recoloring the Colored de Bruijn Graph

Given the computational hardness of finding the minimum number of colors,
we present a heuristic for recoloring a colored de Bruijn graph. Our algorithm
constructs a label matrix by greedily giving the same label to the colors that are
deemed to be compatible, and thus, avoids constructing the original (significantly
larger) color matrix. Each column of the label matrix is constructed one column
(per label) at a time and compressed using Elias-Fano vector encoding [7,13,15].
Thus, the algorithm avoids constructing the color matrix or the uncompressed
color matrix at any point.

4.1 A Practical Algorithm

We recall that the color matrix C is defined such that C[j, a] = 1, if k-mer kj

(jth k-mer in lexicographical order) is present in ra. Hence, colors ca and cb
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corresponding to ra and rb are compatible if there does exist any pair of k-mers
sk

a ∈ ra and sk
b ∈ rb such that prefix(sk

a) ∩ suffix(sk
b ) = ∅. It follows that colors ca

and cb are guaranteed to be compatible if C[j, a]⊕C[j, b] = ∅ for all j = 1, . . . , m.
This condition is stronger than color compatibility condition.

Our algorithm works as follows. We first initialize L to be equal to the empty
set. Then, we extract all unique k-mers from r1 ∈ R, add a new label �1 to L, and
set F (c1) = �1. Next, for each subsequent ri ∈ R, we extract the k-mers of ri

and assign a temporary color t to the corresponding k-mers. We check whether
t is compatible with any label in L by determining whether L[j, a] ⊕ t[j] = ∅,
j = 1, . . . ,m. If there exists a �′ ∈ L compatible with t then we label ri with
�′. We note that in this case the number of labels in L remains unchanged.
Otherwise, it follows that t is incompatible with all labels in L, necessitating the
creation of a new label �t that will be added to L. We continue on this process
until all reads in R have been considered.

Figure 2 illustrates the original colored de Bruijn graph (left) with 4 colors,
which using the recoloring algorithm is colored (labeled) by only 2 colors (right).
Similarly, on Fig. 3, the original color matrix (left) and the recolored matrix
(right) are shown.

R1 = ACGTGGTA, R2 = CGGTGGTC, R3 = TGACTCCA, R4 = AGACTCTG

ACGT CGTG

GTGG TGGT
GGTA

CGGT GGTCGGTG

TGAC

GACT ACTC
CTCC

CTCTAGAC

TCCA

TCTG

L1 = {R1,R3} L2 = {R2,R4}

ACGT CGTG

GTGG TGGT
GGTA

CGGT GGTCGGTG

TGAC

GACT ACTC
CTCC

CTCTAGAC

TCCA

TCTG

Fig. 2. (Left): This graph is an illustration of colored de Bruijn graph with k = 5, in
which the colors are sequence reads. Note that there is actually only one edge GTGGT

from GTGG to TGGT in the real de Bruijn graph, while in this figure we drew 2 individual
edges each with different color (solid Black and dashed Black) due to better showing
the concept of the color. The same is true for the edge GACTC. (Right): Since read R1

(solid Black) and R3 (dashed Grey) in left graph does not share any edges (k-mers),
they are compatible and can be labeled same L1 (solid Grey). The same is correct for
R2 and R4 which are labeled by L2 (solid Black).

4.2 Implementation and Datasets

We demonstrate the ability of the recoloring algorithm to reduce the number
colors using real shotgun metagenomic data. We implemented the algorithm in
C++ and tested it on a machine with two Xeon E5-2640 v4 chips, each having
10 2.4 GHz cores. The system contains 755 GB of RAM and two ZFS RAID
pools of 9 disk each for storage. We report CPU time and maximum resident set
size from Linux. We use the SDSL-Lite library [9] to store all succinct vectors.
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R1 R2 R3 R4

ACG 1 0 1 0

AGT 0 1 0 0

ATT 0 0 0 1

CGT 1 0 1 0

GAC 0 0 1 0

GTC 1 0 0 0

GTG 0 1 0 0

TAG 0 1 0 0

TAT 0 0 0 1

TTG 0 0 0 1

L1 L2

ACG 1 1

AGT 1 0

ATT 1

CGT 1 1

GAC 0 1

GTC 1 0

GTG 1 0

TAG 1 0

TAT 1 0

TTG 1 0

R1 = ACGTC, R2 = TAGTG, R3 = GACGT, R4 = TATTG L1 = {R1, R2, R4}, L2 = {R3}

Fig. 3. (Left) The color matrix constructed on four colors (reads), with k = 4. (Right)
The recoloring matrix. The compatible colors R1, R2 and R4 have same label L1, while
the color R3 has the label L2. In this example, the number of colors drops from 4 (Left)
to 2 (right).

Our test dataset consists of 87 metagenomic datasets that were obtained
from sequencing on an Illumina HiSeq 2500 system. The biological samples were
selected across a beef production system, which contain various interventions
aimed at decreasing pathogenic and antibiotic-resistant bacteria in consumable
beef. Standardized filtering and data cleaning was first done by removing con-
taminant DNA (e.g., human and bovine DNA), and filtering for k-mers (k = 32)
that have low multiplicity (< 12).

We expect the reduction in the size of the color matrix will become more
significant as the number of colors increases. In order to test this hypothesis, we
assigned a unique color to each sequence read—which, as previously mentioned,
is the use case of LueVari [2]—and varied the number of sequence reads from
25,000 to 10,000,000. The number of colors is shown in the leftmost column
of Table 1. We emphasize that our method does not need to construct the color
matrix first, and is able to directly build the recolored matrix from the beginning.

4.3 Experiments

We demonstrate the performance of the recoloring algorithm in Table 1. As
shown in the table, the recoloring heuristic produces a number of labels that
is between one and two orders of magnitude smaller than the number of col-
ors. The reduction witnessed from recoloring steadily increased as the number
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of original colors increased. To illustrate this point, we see the number of labels
produced by recoloring was 414 when there was 25,000 colors (a 60 times reduc-
tion), whereas, the number of labels produced by recoloring was 26,239 when
there was 2,000,000 colors (a 80 times reduction). The largest reduction was
witnessed with > 5,000,000 colors. For instance, in experiment with 5,000,000
and 10,000,000 reads the number of labels is 36,686, and 75,281, respectively—a
reduction by 136 and 133 times.

We show both the CPU time and peak memory usage of the recoloring algo-
rithm in Table 1. Our method required between 0.26 CPU seconds and 1.24 MB of
memory, and 3.5 CPU hours and 6.2 GB of memory. Finally, in last two columns
of this table we see that with recoloring, the resulting matrix is almost half in all
experiments. Both the color matrix and the label matrix were compressed using
Elias-Fano encoding [7,13,15].

Table 1. Results of the recoloring algorithm. In this table, we report the number of
colors before running the recoloring heuristic (Colors), the number of labels needed
to recolor (Labels), the CPU time needed to recolor (Time), peak memory usage of
constructing and recoloring the colored de Bruijn graph (Memory), the size of the
original color matrix in MB (Color Matrix) and the size of the label matrix produced
after recoloring in MB (Label Matrix). In all experiments, the k-mer size is 32 and
reads are 60 bp and 150 bp in length.

Colors Labels Time
(hh.mm.ss)

Memory Color matrix
(MB)

Label matrix
(MB)

25, 000 414 0.26 s 1.24 MB 0.0071 0.0033

100, 000 1, 315 00:00:02 1.24 MB 0.0288 0.0147

250, 000 3, 029 00:00:07 1.24 MB 0.0901 0.0488

500, 000 6, 126 00:00:26 1.24 MB 0.1989 0.1204

1, 000, 000 12, 875 00:02:22 379.68 MB 0.5408 0.2978

2, 000, 000 26, 239 00:10:27 783.42 MB 1.5263 0.8470

5, 000, 000 36, 686 00:37:52 2.54 GB 20.3215 7.82015

10, 000, 000 75, 281 03:48:15 6.21 GB 69.8746 27.5117

5 Conclusion

The colored de Bruijn graph has become an increasingly important data struc-
ture in bioinformatics in the past several years [11]. Due to this, there have
been several independent efforts to represent the colored de Bruijn graph in a
compressed manner. In this paper, we present a different approach to reducing
the size of structure—which we show is complementary to existing compression
techniques.
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We first demonstrate that determining the minimum number of colors needed
to unambiguously color the graph in NP-complete, and unlikely to be approxi-
mated within a reasonable factor in polynomial time. In light of these results, we
give a polynomial-time heuristic to recolor the colored de Bruijn graph in a man-
ner that compatible colors have same labels. By applying this approach, we show
the number of colors is greatly reduced—between 60 and 136 times. By applying
Elias-Fano encoding [7,13,15], we are able to represent the color matrix in less
than 1 GB for even very large datasets (e.g., >5,000,000 reads). We implemented
our recoloring approach in the column-based manner. The respective row-based
recoloring algorithm would require an auxiliary data structure that checks the
color compatibility—thus, increasing the space usage to store the recolored de
Bruijn graph.

We emphasize that recoloring the de Bruijn graph—which is effective in
reducing the number of colors—is complementary to compression and suc-
cinct representations of the color matrix. Lastly, due to the recent interest in
dynamic de Bruijn graphs [4], studying how to represent the color matrix in a
compressed—yet, mutable—manner is worthy of future study.

References

1. The 100,000 Genomes Project Protocol v3 (2017). https://doi.org/10.6084/m9.
figshare.4530893.v2

2. Alipanahi, B., et al.: Resistome SNP calling via read colored de Bruijn graphs. In:
RECOMB-Seq (2018)

3. Almodaresi, F., Pandey, P., Patro, R.: Rainbowfish: a succinct colored de Bruijn
graph representation. In: WABI, pp. 251–256 (2017)
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Abstract. Sequence mappability is an important task in genome re-
sequencing. In the (k, m)-mappability problem, for a given sequence T
of length n, our goal is to compute a table whose ith entry is the number
of indices j �= i such that length-m substrings of T starting at positions
i and j have at most k mismatches. Previous works on this problem
focused on heuristic approaches to compute a rough approximation of
the result or on the case of k = 1. We present several efficient algorithms
for the general case of the problem. Our main result is an algorithm that
works in O(n min{mk, logk+1 n}) time and O(n) space for k = O(1). It
requires a careful adaptation of the technique of Cole et al. [STOC 2004]
to avoid multiple counting of pairs of substrings. We also show O(n2)-
time algorithms to compute all results for a fixed m and all k = 0, . . . , m
or a fixed k and all m = k, . . . , n − 1. Finally we show that the (k, m)-
mappability problem cannot be solved in strongly subquadratic time for
k, m = Θ(log n) unless the Strong Exponential Time Hypothesis fails.

Keywords: Sequence mappability · Hamming distance
Genome sequencing · Longest common substring with k mismatches
Suffix tree

1 Introduction

Analyzing data derived from massively parallel sequencing experiments often
depends on the process of genome assembly via re-sequencing; namely, assembly
with the help of a reference sequence. In this process, a large number of reads (or
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short sequences) derived from a DNA donor during these experiments must be
mapped back to a reference sequence, comprising a few gigabases, to establish
the section of the genome from which each read has been derived. An extensive
number of short-read alignment techniques and tools have been introduced to
address this challenge emphasizing on different aspects of the process [10].

In turn, the process of re-sequencing depends heavily on how mappable a
genome is given a set of reads of some fixed length m. Thus, given a reference
sequence, for every substring of length m in the sequence, we want to count how
many additional times this substring appears in the sequence when allowing for a
small number k of errors. This computational problem and a heuristic approach
to approximate the solution were first proposed in [7] (see also [3]). A great
variance in genome mappability between species and gene classes was revealed
in [7].

More formally, let Tm
i denote the length-m substring of T that starts at

position i. In the (k,m)-mappability problem, for a given string T of length n,
we are asked to compute a table Am

≤k whose ith entry Am
≤k[i] is the number of

indices j �= i such that the substrings Tm
i and Tm

j are at Hamming distance at
most k. In the previous study [7] the assumed values of parameters were k ≤ 4,
m ≤ 100, and the alphabet of T was {A, C, G, T}.

Example 1. Consider the string T = aababba and m = 3. The following table
shows the (k,m)-mappability counts for k = 1 and k = 2.

Position i 1 2 3 4 5

Substring T 3
i aab aba bab abb bba

(1, 3)-mappability A3
≤1[i] 2 2 1 2 1

(2, 3)-mappability A3
≤2[i] 3 3 3 4 3

Difference A3
=2[i] 1 1 2 2 2

For instance, consider the position 1. The (1, 3)-mappability is 2 due to the
occurrence of bab at position 3 and occurrence of abb at position 4. The (2, 3)-
mappability is 3 since only the substring bba, occurring at position 5, has three
mismatches with aab.

For convenience, in our algorithms we compute an array Am
=k whose ith

entry Am
=k[i] is the number of positions j �= i such that substrings Tm

i and Tm
j

are at Hamming distance exactly k. Note that Am
≤k[i] =

∑k
k′=0 Am

=k′ [i]; see the
“difference” row in the example above. Henceforth we refer to this modified
problem as to the (k,m)-mappability problem.

Using the well-known LCP table [14,15,17], the (0,m)-mappability problem
can be solved in O(n) time and space. Manzini [18] proposed an algorithm work-
ing in O(mn log n/ log log n) time and O(n) space for strings over a constant-
sized alphabet for the case of k = 1. This was later improved in [2] with two
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algorithms that require worst-case time O(mn) and O(n log n log log n), respec-
tively, and space O(n) for the case of k = 1. Moreover, the authors presented
another algorithm requiring average-case time and space O(n) for uniformly
random strings over a linearly-sortable integer alphabet of size σ if k = 1
and m = Ω(logσ n). In addition, they showed that their algorithm is gener-
alizable for arbitrary k, requiring average-case time O(kn) and space O(n) if
m = Ω(k logσ n). In [1] the authors introduced an efficient construction of a
genome mappability array Bk in which Bk[μ] is the smallest length m such that
at least μ of the length-m substrings of T do not occur elsewhere in T with at
most k mismatches.

Our Contributions. We present several algorithms for the general case of the
(k,m)-mappability problem. More specifically, our contributions are as follows:

1. In Sect. 3 we present an algorithm for the (k,m)-mappability problem that
works in O(n

(
log n+k+1

k+1

)
4kk) time and O(n2kk) space for a string over an

ordered alphabet. It requires a careful adaptation of the technique of recursive
heavy-path decompositions in a tree [6].

2. In Sect. 4 we show an algorithm for the same problem that works in O(n
(
m
k

)

σk) time and O(n) space for a string over an integer alphabet. Together with
the previous one, this yields an O(nmin{mk, logk+1 n})-time and O(n)-space
algorithm for σ, k = O(1).

3. In Sect. 5 we describe O(n2)-time algorithms to compute all (k,m)-mappab-
ility results: for a fixed m and all k = 0, . . . ,m; or for a fixed k and all
m = k, . . . , n − 1.

4. Finally, in Sect. 6 we show that the (k,m)-mappability problem cannot be
solved in strongly subquadratic time for k,m = Θ(log n) unless the Strong
Exponential Time Hypothesis [12,13] fails.

In contributions 1 and 4 we apply very recent advances in the Longest Common
Substring with k Mismatches problem that were presented in [5,16], respectively
(see also [21]). In particular, in addition to [5], our contribution 1 requires careful
counting of substring pairs to avoid multiple counting and a thorough analysis
of the space usage. Technically this is the most involved contribution.

2 Preliminaries

Let T = T [1]T [2] · · · T [n] be a string of length |T | = n over a finite ordered
alphabet Σ of size |Σ| = σ. For two positions i and j on T , T [i] · · · T [j] is the
substring (sometimes called factor) of T that starts at position i and ends at
position j (it is of length 0 if j < i). A prefix of T is a substring that starts at
position 1 and a suffix of T is a substring that ends at position n. We denote
the suffix that starts at position i by Ti and its prefix of length m by Tm

i .
The Hamming distance between two strings T and S, |T | = |S|, is defined as

dH(T, S) = |{i : T [i] �= S[i], i = 1, 2, . . . , |T |}|. If |T | �= |S|, we set dH(T, S) = ∞.
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By lcp(S, T ) we denote the length of the longest common prefix of S and
T and by lcp(r, s) we denote lcp(Tr, Ts) for a fixed string T . By k-lcp(r, s) we
denote the length of the longest common prefix of Tr and Ts when k mismatches
are allowed, that is, the maximum � such that dH(T �

r , T �
s ) ≤ k.

Compact Trie. A compact trie T of a collection of strings C is obtained from the
trie of C by removing all non-branching nodes, excluding the root and the leaves.
The nodes of the trie which become nodes of T are called explicit nodes, while
the other nodes are called implicit. Each edge of T can be viewed as an upward
maximal path of implicit nodes starting with an explicit node. The string label
of an edge is a substring of one of the strings in C; the label of an edge is its first
letter. Each node of the trie can be represented in T by the edge it belongs to
and an index within the corresponding path. We let L(v) denote the path-label
of a node v, i.e., the concatenation of the edge labels along the path from the
root to v. Additionally, D(v) = |L(v)| is the string-depth of node v.

Suffix Tree. The suffix tree T (T ) of a string T is a compact trie representing
all suffixes of T . A node v is a terminal node if its path-label is a suffix of T ,
that is, L(v) = Ti for some 1 ≤ i ≤ n; here v is also labeled with index i. Each
substring of T is uniquely represented by either an explicit or an implicit node
of T (T ). The suffix link of a node v with path-label L(v) = αY is a pointer to
the node with path-label Y , where α ∈ Σ is a single letter and Y is a string.
The suffix link of v exists if v is a non-root explicit node of T (T ).

The suffix tree of a string of length n over an integer alphabet (together
with the suffix links) can be computed in time and space O(n) [9]. In standard
suffix tree implementations, we assume that each node of the suffix tree is able
to access its parent. For non-constant alphabets, in order to access the children
of an explicit node by the first letter of their edge label, perfect hashing [11] can
be used. Once T (T ) is constructed, it can be traversed in a depth-first manner
to compute D(v) for each node v.

3 O(n logk+1 n)-Time and O(n)-Space Algorithm

Our algorithm operates on so-called modified strings. A modified string α is a
string U with a set of modifications M . Each element of the set M is a pair of
the form (i, c) which denotes a substitution “U [i] := c”. We assume that the
first components of the pairs in M are pairwise distinct. By val(α) we denote
the string U after all the substitutions and by M(α) we denote the set M .

The algorithm processes modified substrings of T that are modified strings
originating from the substrings Tm

i . The index of origin of a modified substring
α is denoted by idx (α) (that is, α is a modification of Tm

i for i = idx (α)).

Overview of the Algorithm. Intuitively, the algorithm performs the task by effi-
ciently simulating transformations of a compact trie initially containing all sub-
strings Tm

i . The operation we would like to perform efficiently is copying one
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subtree unto its sibling, changing the first letter on the appropriate label. This
process effectively results in registering one mismatch for a large batch of sub-
strings at once. Combining it together with the smaller-to-larger principle, this
yields a foundation to solve the main problem in the aforementioned time.

More precisely, the algorithm navigates a compact trie of modified sub-
strings.1 The trie is constructed top-down recursively, and the final set of mod-
ified substrings that are present in the trie is known only when all the leaves of
the trie have been reached.

In a recursive step, a node v of the trie stores a set of modified substrings
MS(v). Initially, the root r stores all substrings Tm

i in its set MS(r). The path-
label L(v) is the longest common prefix of all the modified substrings in MS(v)
and the string-depth D(v) is the length of this prefix. None of the strings in MS(v)
contains a modification at a position greater than D(v). The children of v are
determined by subsets of MS(v) that correspond to different letters at position
D(v) + 1. Furthermore, additional modified substrings with modifications at
position D(v) + 1 are created and inserted into the children’s MS-sets. This
corresponds to the intuition of copying subtrees unto their siblings.

The goal is to put multiple appropriate modified substrings in a single leaf,
where they will be processed in such way that every pair of substrings (Tm

i , Tm
j )

differing on exactly k positions will be registered exactly once.
Now, we will describe the recursive routine for visiting a node.

Processing an Internal Node. Assume that our node v has children u1, . . . , ua.
First, we distinguish a child of v with maximum-size set MS; let it be u1. We will
refer to this child as heavy and to every other as light. We will recursively branch
into each child to take care of all pairs of modified strings contained in any single
subtree. We need to make sure that all relevant pairs satisfy this condition.

For this, we create an extra child ua+1 that contains all modified substrings
from MS(u2) ∪ · · · ∪ MS(ua) with the letters at position D(v) + 1 replaced by a
common wildcard character $. Note that each modified substring in ua+1 con-
tains one more substitution compared to its source in one of the light subtrees.
Hence, we refrain from copying any modified substring which already has k sub-
stitutions. This way, we will consider pairs of modified substrings that originate
from different light children.

Additionally, we insert all modified substrings from MS(u2) ∪ · · · ∪ MS(ua)
into MS(u1), substituting the letter at position D(v)+1 with the common letter
at this position of modified substrings in MS(u1). This transformation will take
care of pairs between the heavy child and the light ones.

Finally, the algorithm branches into the subtrees of u1, . . . , ua+1. A pseu-
docode of this process is presented as Algorithm 1. Note that in the special case
of a binary alphabet the child ua+1 need not be created.

Processing a Leaf. Each modified substring α stores its index of origin idx (α)
and information about modified positions. As we have seen, the substitutions
1 The true course of the algorithm will not actually perform much of its operations on

a compact trie, but the intuition is best conveyed by visualizing them this way.
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Algorithm 1. A recursive procedure of processing a trie node
Procedure processNode(v)

lcp(v): computes the longest common prefix of all the strings in MS(v)
insert(v, α): inserts α into MS(v)
splitByLetter(v, index): splits MS(v) into groups having the same

index-th letter, returning a list of groups

depth ← lcp(v)
if depth = m then

processLeaf(v)
return

children ← splitByLetter(v, depth + 1)
heavyChild ← findHeaviest(children)
heavyLetter ← least(heavyChild)[depth+1]
wildcardTree ← ∅
foreach lightChild ∈ children \ {heavyChild} do

foreach α ∈ MS(lightChild) do
if |M(α)| < k then

α′ ← α
α′[depth+1] ← $
insert(wildcardTree, α′)
α′′ ← α
α′′[depth+1] ← heavyLetter
insert(heavyChild, α′′)

foreach child ∈ children ∪ {wildcardTree} do
processNode(child)

introduced in the recursion are of two types: of wildcard origin and heavy origin.
For a modified substring α, we introduce a partition M(α) = W (α) ∪ H(α) into
modifications of these kinds. For all modified strings α in the same leaf, val(α)
is the same and, hence, W (α) is the same. Finally, by W−1(α) we denote the
set {(j, Tm

idx(α)[j]) : (j, $) ∈ W (α)}. In the end, we count the pairs of modified
substrings (α, β) that satisfy the following conditions:

H(α) ∩ H(β) = ∅, W−1(α) ∩ W−1(β) = ∅, |H(α)| + |H(β)| + |W (α)| = k.
(1)

Modified substrings α and β that satisfy (1) are called compatible. For a given
modified substring α, the number of compatible pairs (α, β) obtained in the same
leaf is counted using the inclusion-exclusion principle as follows.

For convenience, let R(α) denote the disjoint union of H(α) and W−1(α).
Let Count(s,B) denote the number of modified substrings β ∈ MS(v) such that
|H(β)| = s and B ⊆ R(β). All the non-zero values are stored in a hashmap. They
can be generated by iterating through all the subsets of R(β) for all modified
substrings β ∈ MS(v), with a multiplicative O(2kk) overhead in time and space.
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Fig. 1. Computation of (2, 3)-mappability for the string T = aababba from Example 1.
Note that in this case the alphabet is binary, so wildcard subtrees do not need to be
introduced. Edges leading to heavy children are drawn in bold. The only substitutions
are from a light child to a heavy child. The letters shown above are the original letters
before the substitutions. The pairs of modified substrings are counted as shown; in the
end, A3

=2[1] = A3
=2[2] = 1 and A3

=2[3] = A3
=2[4] = A3

=2[5] = 2 as expected.

Finally, the result for a modified substring α—by which A[idx (α)] is increased—
can be computed using the formula:

∑

B⊆R(α)

(−1)|B|Count(k − |M(α)|, B).

Examples. Examples of the execution of the algorithm for a binary and a ternary
string can be found in Figs. 1 and 2, respectively.

Correctness. Let us start with an observation that lists some basic properties of
our algorithm. Both parts can be shown by straightforward induction.

Observation 2. (a) If a node v stores modified substrings α, β ∈ MS(v), then
it has a descendant v′ with D(v′) = lcp(val(α), val(β)) and α, β ∈ MS(v′).

(b) Every node stores at most one modified substring with the same idx value.

The following lemma shows that the above approach correctly computes the
(k,m)-mappability array Am

≤k.

Lemma 3. If dH(Tm
i , Tm

j ) = k, then there is exactly one leaf v and exactly one
pair of compatible modified strings α, β ∈ MS(v) with i = idx (α) and j = idx (β).
Otherwise, there is no such leaf v and pair α, β.

Proof. Suppose that α, β ∈ MS(v) are compatible, i = idx (α), and j =
idx (β). Since W−1(α) ∩ W−1(β) = ∅, we conclude that Tm

i and Tm
j dif-

fer at positions in W (α) = W (β). They differ at positions in H(β) since
at the nodes corresponding to these positions, an ancestor of α (that is, the
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Fig. 2. Computation of (1, 2)-mappability for the string T = aabaca. This example
shows how wildcard symbols are used in the algorithm. We have A2

=1[1] = 4 and
A2

=1[2] = A2
=1[3] = A2

=1[4] = A2
=1[5] = 2.

modified substring from which α originates) was in the heavy child (because
H(α) ∩ H(β) = ∅ due to (1)) and an ancestor of β originated from a light
child. Symmetrically, Tm

i and Tm
j differ at positions in H(α). In conclusion,

they differ at positions in H(α) ∪ H(β) ∪ W (α). The three sets are disjoint, so
|H(α) ∪ H(β) ∪ W (α)| = |H(α)| + |H(β)| + |W (α)| = k by (1). This shows that
dH(Tm

i , Tm
j ) ≥ k. With val(α) = val(β), we conclude that dH(Tm

i , Tm
j ) = k.

For a proof in the other direction, assume that dH(Tm
i , Tm

j ) = k and let
1 ≤ x1 < x2 < · · · < xk ≤ m be the indices where the two substrings differ.
Further let xk+1 = m + 1.

First of all, let us show that there is at least one leaf that contains compatible
modified substrings α and β with idx (α) = i and idx (β) = j.

Claim. For every p = 1, . . . , k+1, there exists a node vp and modified substrings
αp, βp ∈ MS(vp) such that:

– idx (αp) = i and idx (βp) = j;
– lcp(val(αp), val(βp)) = xp − 1 = D(vp);
– for each position x1, . . . , xp−1, both M(αp) and M(βp) contain modifications

of wildcard origin, or exactly one of these sets contains a modification of
heavy origin;

– there are no other modifications in M(αp) or M(βp).

Proof (of Claim). The proof goes by induction on p. As α1 and β1 we take
modified substrings such that idx (α1) = i, idx (β1) = j, and M(α1) = M(β1) =
∅. They are stored in the set MS(r) for the root r, so Observation 2(a) guarantees
existence of a node v1 with D(v1) = lcp(α1, β1) and α1, β1 ∈ MS(v1).

Let p > 1. By the inductive hypothesis, the set MS(vp−1) contains modi-
fied substrings αp−1 and βp−1. The node vp−1 has children w1, w2 correspond-
ing to letters Tm

i [xp−1] and Tm
j [xp−1], respectively. If w1 is the heavy child,

then w2 is a light child and a modified string β′ such that idx (β′) = j and
M(β′) = M(βp−1) ∪ {(xp−1, T

m
i [xp−1])} is created for the recursive call in w1.
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Then, we take α′ = αp−1. The case that w2 is the heavy child is symmet-
ric. Finally, if both w1 and w2 are light children, a child u of vp−1 is created
along the wildcard symbol $. There exist modified substrings α′, β′ ∈ MS(u)
such that: idx (α′) = i, idx (β′) = j, M(α′) = M(αp−1) ∪ {(xp−1, $)}, and
M(β′) = M(βp−1) ∪ {(xp−1, $)}.

In either case, we have lcp(val(α′), val(β′)) = xp − 1. The set (M(α′) ∪
M(β′)) \ (M(αp−1) ∪ M(βp−1)) contains either a modification of heavy origin
in one of the modified substrings or modifications of wildcard origin in both.
Hence, by the inductive hypothesis we can set αp = α′, βp = β′. The node
vp with D(vp) = lcp(val(αp), val(βp)) and αp, βp ∈ MS(vp) must exist due to
Observation 2(a). ��

It suffices to apply the claim for k = p + 1. The node vk+1 is a leaf that
contains compatible modified substrings α = αk+1 and β = βk+1.

Now, let us check that there is no other pair of compatible modified substrings
(α′, β′) �= (α, β) that would be present in some leaf u and satisfy idx (α′) = i and
idx (β′) = j. Let us first note that M(α′) ∪ M(β′) must contain the positions
x1, . . . , xk (since val(α′) = val(β′)) and no other positions (otherwise, |H(α′)|+
|H(β′)| + |W (α′)| would exceed k). Let p be the greatest index in {1, . . . , k + 1}
such that xp ≤ lcp(val(α), val(α′)). By Observation 2(b), u �= vk+1, so p < k.

Thus the node vp is an ancestor of the leaf u, but the node vp+1 is not.
Let us consider the children w1, w2 of vp corresponding to letters Tm

i [xp−1] and
Tm

j [xp−1], respectively. If w1 is the heavy child, β′ must contain a modification
of heavy origin at position xp+1, so vp+1 is an ancestor of u; a contradiction.
The same contradiction is obtained in the symmetric case that w2 is the heavy
child. Finally, if both w1 and w2 are light, then either both α′ and β′ contain a
modification of wildcard origin at position xp+1, which again gives a contradic-
tion, or they both contain a modification of heavy origin, which contradicts the
first part of condition (1). ��

Remark 4. The authors also attempted to adapt the approach of [21] but failed
due to multiple counting of substring pairs, e.g., for T = aabbab, k = 2, m = 3.

Implementation and Complexity. Our Algorithm 1, excluding the counting phase
in the leaves, has exactly the same structure as Algorithm 1 in [5]. Proposition 13
from [5] provides a bound on the total size of the generated compact trie and an
efficient implementation based on finger-search trees. We apply that proposition
for a family F of size O(n) composed of substrings Tm

i to obtain the following
bounds.

Fact 5 ([5]). Algorithm 1 applied up to the leaves takes O(n
(
log n+k+1

k+1

)
2k) time.

Let us further analyze the space complexity of the algorithm.

Lemma 6. Algorithm 1 applied up to the leaves uses O(nk) working space.
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Proof. We inductively bound the working space of any recursive call. For a
node v, let us define the potential

Φ(v) = C
∑

α∈MS(v)

(k + 1 − |M(α)|),

where C is a constant which depends on the implementation details.
We shall prove that the space consumption of a recursive call to v is bounded

by Φ(v). We ignore the working space for the procedure processing leaves, so
this is trivially true if v is a leaf. Next, let us analyze an internal node with
children u1, . . . , ua, ua+1, where u1 is the heavy child, u2, . . . , ua are the light
children, and ua+1 corresponds to the wildcard character. Moreover, let LS (v) =
MS(u2) ∪ · · · ∪ MS(ua).

Outside the recursive calls, the working space is O(|MS(v)|), which is below
Φ(v) provided that C is large enough. Thus, let us analyze the space consumption
during a recursive call to ui. By the inductive hypothesis, the call uses Φ(ui)
working space. On top of that, we need to store the input for the remaining
branches, which takes O(

∑
i′ �=i |MS(ui′)|) space.

If ui is light, we observe that Φ(v) − Φ(ui) ≥ C(|MS(v)| − |MS(ui)|) ≥
1
2C|MS(v)|, which is sufficient to cover the total size O(|MS(v)|) of the input for
the remaining branches. Similarly, if i = a + 1, then Φ(v) − Φ(ui) ≥ C|MS(v)|,
because each modified string in MS(ui) has more changes than its original in
MS(v). Finally, to analyze the case i = 1 when ui is heavy, we observe that∑

i′>1 |MS(ui′)| ≤ 2|LS (v)|. However, Φ(v) − Φ(u1) ≥ C|LS (v)|, because each
modified substring from LS (v) inserted to MS(u1) has an additional substitution.

In the root call, we have Φ(r) = C · (k + 1) · |MS(r)| = O(nk), as claimed. ��

Fact 5 and Lemma 6 yield the complexity of Algorithm 1. Note that, due
to the application of the inclusion-exclusion principle in the leaves, we need to
multiply the time complexity of the algorithm by 2kk and increase the space
complexity by O(n2kk).

Theorem 7. Given a string of length n, the (k,m)-mappability problem can be
solved in O(n

(
log n+k+1

k+1

)
4kk) time and O(n2kk) space. For k = O(1), the time

becomes O(n logk+1 n) and the space is O(n).

4 O(nmk)-Time and O(n)-Space Algorithm

In this section we generalize the O(nm)-time algorithm for k = 1 and integer
alphabets from [2]. We start off with a simple O(nm

(
m
k

)
(σ−1)k)-time and O(n)-

space algorithm. We first construct the suffix tree T (T ) in O(n) time. Within
the same time complexity, we use a post-order traversal of T (T ), to compute, for
each explicit node v, a value C(v) denoting the number of terminal nodes in the
subtree rooted at v. For each Tm

i , we generate all possible
(
m
k

)
combinations of

substitution positions, create all (σ − 1)k distinct strings per combination, and
then spell each created string from the root of T (T ). Generating all combinations
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can be done in O(
(
m
k

)
) time [8] and creating and querying the strings can be

done in O(m) time per string. If we successfully spell the whole string arriving
at an explicit node v or an implicit node along an edge (u, v), we increment A[i]
by C(v). The whole process takes O(nm

(
m
k

)
(σ − 1)k) time and O(n) space. For

k, σ = O(1), the time becomes O(nmk+1). The counting of this algorithm is
correct as we do the above for all

(
m
k

)
(σ − 1)k pairwise distinct strings.

We next show how to shave a factor m from the time complexity. The main
idea comes from observing that in the algorithm described above, after spelling
from the root of T (T ) a string of length m created by a combination of substi-
tution positions, we start again from the root to spell a (potentially) completely
different string. We can instead make use of the maximal match achieved in each
spelling to query efficiently for another string. Intuitively, we construct σk

(
m
k

)

strings of length n and spell them utilizing suffix links. When we reach string-
depth m, we increment the respective counter if needed. Then the algorithm
presented below correctly counts the number of times each length-m substring
occurs in T with exactly k mismatches.

Consider a specific combination of k substitution positions with a sequence
of k letters assigned to these k positions. We apply this “mask” to all non-
overlapping length-m substrings of T (including, possibly, a suffix of length
smaller than m) thus creating a new string S of length n. We start by spelling
S from the root of T (T ) until either we have a mismatch or we are at string-
depth m. Let us denote the current depth by d ≤ m. If d < m, we follow the
suffix link of the last visited explicit node and traverse the edges down until we
reach depth max{d − 1, 0}. If d = m, we have successfully spelled Sm

1 arriving
at an explicit node v or an implicit node along an edge (u, v). In this case, we
increment A[1] by C(v) if and only if dH(Sm

1 , Tm
1 ) = k. If D(v) = m, we follow its

suffix link arriving by construction to a node of depth m−1; if not, we follow the
suffix link of its parent u and traverse the edges down until we reach depth m−1.
(Note that we know which edges we need to traverse by looking at S.) From this
point onward, we process substring Sm

i , for all 2 ≤ i ≤ n − m + 1, analogously.
Processing S takes time O(n) using an amortization argument analogous to the
suffix tree construction of McCreight [19]. The working space is clearly O(n).

It remains to argue that for each length-m substring all different combinations
with their different substitutions of k letters are induced by our construction of S.
This is easy to see by considering a sliding window of length m running through
S: it always contains k altered positions and these are uniquely determined by
the combination used for the length-m substrings starting at positions equal to
1 modulo m. The final array A becomes Am

=k. We arrive at the following result.

Theorem 8. Given a string of length n over an integer alphabet, the (k,m)-
mappability problem can be solved in O(n

(
m
k

)
σk) time and O(n) space. For k, σ =

O(1), the time becomes O(nmk).

Combining Theorems 7 and 8 gives the following result for σ, k = O(1).
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Corollary 9. Given a string of length n over a constant-sized alphabet, the
(k,m)-mappability problem can be solved in O(nmin{mk, logk+1 n}) time and
O(n) space for k = O(1).

5 Computing (k, m)-Mappability for All k or for All m

Theorem 10. The (k,m)-mappability for a given m and all k = 0, . . . ,m can
be computed in O(n2) time using O(n) space.

Proof. We first present an algorithm which solves the problem in O(n2) time
using O(n2) space and then show how to reduce the space usage to O(n).

We initialize an n×n matrix M in which M [i, j] will store the Hamming dis-
tance between substrings Tm

i and Tm
j . Let us consider two letters T [i] �= T [j] of

the input string, where i < j. Such a pair contributes to a mismatch between the
following pairs of strings: (Tm

i−m+1, T
m
j−m+1), (T

m
i−m+2, T

m
j−m+2), . . . , (T

m
i , Tm

j ).
This list of strings is represented by a diagonal interval in M , the entries of which
we need to increment by 1. We process all O(n2) pairs of letters and update the
information on the respective intervals. Then Am

=k[i] = |{j : M [i, j] = k}|.
To achieve O(1) time of a single addition on a diagonal interval, we use a

well-known trick from an analogous problem in one dimension. Suppose that we
would like to add 1 on the diagonal interval from M [x1, y1] to M [x2, y2]. Instead,
we can simply add 1 to M [x1, y1] and −1 to M [x2+1, y2+1]. Every cell will then
represent the difference of its actual value to the actual value of its predecessor
on the diagonal. After all such operations are performed, we can retrieve the
actual values by computing prefix sums on each diagonal in a top-down manner.

To reduce space usage to O(n), it suffices to observe that the value of M [i, j]
depends only on the value of M [i − 1, j − 1] and at most two letter comparisons
which can add +1 and/or −1 to the cell. Recall that M [i, j] = dH(Tm

i , Tm
j ). We

need to subtract 1 from the previous result if the first characters of the previous
substrings were equal and add 1 if the last characters of the new substrings were
different. Therefore, we can process the matrix row by row, from top to bottom,
and compute the values Am

=0[i], . . . ,A
m
=m[i] while processing the ith row. ��

Theorem 11. The (k,m)-mappability for a given k and all m = k, . . . , n − 1
can be computed in O(n2) time and space.

Proof. We first prove the following claim.

Claim. The longest common prefixes with k mismatches for all pairs of suffixes
of T can be computed in O(n2) time.

Proof (of Claim). We process the pairs in batches Bδ for δ = 1, 2, . . . , n − 1 so
that the pair (Ti, Tj), which we denote by (i, j), is in B|j−i|. It now suffices to
show how to process a single batch Bδ in O(n) time. We will do so by comparing
pairs of letters of T at distance δ from left to right. We first compute k-lcp(1, 1+
δ) naively. Then, given that k-lcp(i, j) = �, where j − i = δ, we will retrieve
k-lcp(i + 1, j + 1) using the following simple observation: either j + � − 1 = n,
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or T �
i and T �

j have exactly k mismatches and T [i + �] �= T [j + �]. In the former
case, we trivially have that k-lcp(i + 1, j + 1) = � − 1. In the latter case, we
first check whether T [i] = T [j], in which case dH(T �−1

i+1 , T �−1
j+1 ) = k and hence

k-lcp(i + 1, j + 1) = � − 1. If T [i] �= T [j], then dH(T �−1
i+1 , T �−1

j+1 ) = k − 1 and we
perform letter comparisons to extend the match. The pairs of letters compared
in this step have not been compared before; the complexity follows. ��

We store the information on k-lcp’s as follows. We initialize an n × n matrix
Q. Then, for a pair (i, j) such that k-lcp(i, j) = �, we increment by 1 the entries
Q[�, i] and Q[�, j]. Note that if k-lcp(i, j) = �, then i (resp. j) will contribute 1
to the (k,m)-mappability values Am

≤k[j] (resp. Am
≤k[i]) for all 1 ≤ m ≤ �. Thus,

starting from the last row of Q, we iteratively add row � to row �−1. In the end,
by the above observation, row m stores the (k,m)-mappability array Am

≤k. ��

6 Conditional Hardness for k, m = Θ(log n)

We will show that (k,m)-mappability cannot be computed in strongly sub-
quadratic time in case that the parameters are Θ(log n), unless the Strong Expo-
nential Time Hypothesis (SETH) of Impagliazzo, Paturi and Zane [12,13] fails.
Our proof is based on the conditional hardness of the following decision version
of the Longest Common Substring with k Mismatches problem.

Common Substring of Length d with k Mismatches
Input: Strings T1, T2 of length n over binary alphabet and integers k, d
Output: Is there a factor of T1 of length d that occurs in T2 with k mis-
matches?

Lemma 12 ([16]). Suppose there is ε > 0 such that Common Substring of
Length d with k Mismatches can be solved in O(n2−ε) time on strings over
binary alphabet for k = Θ(log n) and d = 21k. Then SETH is false.

Theorem 13. If the (k,m)-mappability can be computed in O(n2−ε) time for
binary strings, k,m = Θ(log n), and some ε > 0, then SETH is false.

Proof. We make a Turing reduction from Common Substring of Length d with k
Mismatches. Let T1 and T2 be the input to the problem. We compute the (k, d)-
mappabilities of strings T1 · T2 and T1 · T2[1..d − 1] and store them in arrays A
and B, respectively. For each i = 1, . . . , n−d+1, we subtract B[i] by A[i]. Then,
A[i] holds the number of factors of T2 of length d that are at Hamming distance
k from T1[i..i+d−1]. Hence, Common Substring of Length d with k Mismatches
has a positive answer if and only if A[i] > 0 for any i = 1, . . . , n − d + 1.

By Lemma 12, an O(n2−ε)-time algorithm for Common Substring of Length
d with k Mismatches with k = Θ(log n) and d = 21k would refute SETH. By
the shown reduction, an O(n2−ε)-time algorithm for (k,m)-mappability with
k,m = Θ(log n) would also refute SETH. ��



Efficient Computation of Sequence Mappability 25

7 Final Remarks

Our main contribution is an O(nmin{mk, logk+1 n})-time and O(n)-space algo-
rithm for solving the (k,m)-mappability problem. Let us recall that genome
mappability, as introduced in [7], counts the number of substrings that are at
Hamming distance at most k from every length-m substring of the text. One
may also be interested to consider mappability under the edit distance model.
This question relates also to very recent contributions on approximate match-
ing under edit distance [4,20]. In the case of the edit distance, in particular, a
decision needs to be made whether sufficiently similar substrings only of length
exactly m or of all lengths between m − k and m + k should be counted. We
leave the mappability problem under edit distance for future investigation.

References

1. Alamro, H., Ayad, L.A.K., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P.:
Longest common prefixes with k -mismatches and applications. In: Tjoa, A.M.,
Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018.
LNCS, vol. 10706, pp. 636–649. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73117-9 45

2. Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P., Radoszewski, J.,
Sung, W.-K.: Faster algorithms for 1-mappability of a sequence. In: Gao, X., Du,
H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 109–121. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71147-8 8

3. Antoniou, P., Daykin, J.W., Iliopoulos, C.S., Kourie, D., Mouchard, L., Pissis,
S.P.: Mapping uniquely occurring short sequences derived from high throughput
technologies to a reference genome. In: Information Technology and Applications in
Biomedicine, ITAB 2009. IEEE (2009). https://doi.org/10.1109/itab.2009.5394394

4. Ayad, L.A.K., Barton, C., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P.:
Longest common prefixes with k-errors and applications. In: Gagie, T., et al. (eds.)
SPIRE 2018. LNCS, vol. 11147, pp. 27–41. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00479-8 3

5. Charalampopoulos, P., et al.: Linear-time algorithm for long LCF with k mis-
matches. In: Navarro, G., Sankoff, D., Zhu, B. (eds.) Combinatorial Pattern Match-
ing, CPM 2018. LIPIcs, vol. 105, pp. 23:1–23:16. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2018). https://doi.org/10.4230/LIPIcs.CPM.2018.23

6. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Babai, L. (ed.) 36th Annual ACM Symposium on Theory
of Computing, STOC 2004, pp. 91–100. ACM (2004). https://doi.org/10.1145/
1007352.1007374

7. Derrien, T.: Fast computation and applications of genome mappability. PLoS ONE
7(1), e30377 (2012). https://doi.org/10.1371/journal.pone.0030377

8. Eades, P., McKay, B.D.: An algorithm for generating subsets of fixed size with a
strong minimal change property. Inf. Process. Lett. 19(3), 131–133 (1984). https://
doi.org/10.1016/0020-0190(84)90091-7

9. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 1997, pp. 137–143.
IEEE Computer Society (1997). https://doi.org/10.1109/SFCS.1997.646102

https://doi.org/10.1007/978-3-319-73117-9_45
https://doi.org/10.1007/978-3-319-73117-9_45
https://doi.org/10.1007/978-3-319-71147-8_8
https://doi.org/10.1109/itab.2009.5394394
https://doi.org/10.1007/978-3-030-00479-8_3
https://doi.org/10.1007/978-3-030-00479-8_3
https://doi.org/10.4230/LIPIcs.CPM.2018.23
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1371/journal.pone.0030377
https://doi.org/10.1016/0020-0190(84)90091-7
https://doi.org/10.1016/0020-0190(84)90091-7
https://doi.org/10.1109/SFCS.1997.646102


26 M. Alzamel et al.

10. Fonseca, N.A., Rung, J., Brazma, A., Marioni, J.C.: Tools for mapping high-
throughput sequencing data. Bioinformatics 28(24), 3169–3177 (2012). https://
doi.org/10.1093/bioinformatics/bts605
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Abstract. Although real-world text datasets, such as DNA sequences,
are far from being uniformly random, string searching average-case algo-
rithms perform significantly better than worst-case ones in most appli-
cations of interest. In this paper, we study the problem of comput-
ing the longest prefix of each suffix of a given string of length n that
occurs elsewhere in the string with k-errors. This problem has already
been studied under the Hamming distance model. Our first result is an
improvement upon the state-of-the-art average-case time complexity for
non-constant k and using only linear space under the Hamming distance
model. Notably, we show that our technique can be extended to the edit
distance model with the same time and space complexities. Specifically,

our algorithms run in O(n (c logn)k

k!
) time on average, where c > 1 is a

constant, using O(n) space. Finally, we show that our technique is appli-
cable to several algorithmic problems found in computational biology
and elsewhere. The importance of our technique lies on the fact that it
is the first one achieving this bound for non-constant k and using O(n)
space.

Keywords: Longest common prefix · Longest common substring
Longest common factor · k-mismatches · k-errors

1 Introduction

The longest common prefix (LCP) array is a commonly used data structure
alongside the suffix array (SA). The LCP array stores the length of the longest
common prefix between two adjacent suffixes of a given string as they are stored
(in lexicographic order) in the SA [27]. A typical use combining the SA and the
LCP array is to simulate the suffix tree functionality using less space [2].

However, there are many practical scenarios where the LCP array may be
applied without making use of the SA. The LCP array provides us with essential
c© Springer Nature Switzerland AG 2018
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information regarding repetitiveness in a given string and is therefore a useful
data structure for analysing textual data in areas such as molecular biology,
musicology, or natural language processing (see [28] for some applications).

It is also quite common to account for potential alterations within textual
data (sequences). For example, alterations can be the result of DNA replication
or sequencing errors in DNA sequences. In this context, it is natural to define
the longest common prefix with k-errors. Given a string x[0 . . n− 1], the longest
common prefix with k-errors for every suffix x[i . . n − 1] is the length of the
longest common prefix of x[i . . n − 1] and any x[j . . n − 1], j �= i, allowing for
up to k substitution operations [28]. Some applications are given below.

Interspersed Repeats. Repeated sequences are a common feature of genomes.
One type in particular, interspersed repeats, are known to occur in all eukaryotic
genomes. These repeats have no repetitive pattern and appear irregularly within
DNA sequences [23]. Single nucleotide polymorphisms result in the existence of
interspersed repeats that are not identical [26]. Identifying these repeats has
been linked to genome folding locations and phylogenetic analysis [33].

Genome Mappability Data Structure. In [3] the authors showed that using the
longest common prefixes with k-errors they can construct, in O(n) worst-case
time, an O(n)-sized data structure answering the following type of queries in
O(1) time per query: find the smallest m such that at least μ of the substrings
of x of length m do not occur more than once in x with at most k errors. This
is a data structure version of the genome mappability problem [4,5,13,28].

Longest Common Substring with k-Errors. The longest common substring with
k-errors problem has received much attention recently, in particular due to its
applications in bioinformatics [25,36,37]. We are asked to find the longest sub-
strings of two strings that are at distance at most k. The notion of longest
common prefix with k-errors is thus closely related to the one of longest common
substring with k-errors. For the latter see [1,10,18,19,22,34,35].

All-Pairs Suffix/Prefix Overlaps with k-Errors. Finding approximate overlaps
is the first stage of most genome assembly methods. Given a set of strings and
an error-rate ε, the goal is to find, for all pairs of strings, their suffix/prefix
matches (overlaps) that are within distance k = �ε��, where � is the length of
the overlap [24,32,38]. By concatenating the strings to form one single string x
and then computing longest common prefixes with k-errors for x only against the
prefixes of the strings we have all the information we need to solve this problem.

1.1 Our Model

We assume the standard word-RAM model with word size w = Ω(log n).
Although real-world text datasets are far from being uniformly random, string
searching average-case algorithms perform significantly better than worst-case
ones in most applications of interest [16]. When we state time complexities for our



Longest Common Prefixes with k-Errors and Applications 29

algorithms, we assume that the input is a string x of length n over an alphabet Σ
of size σ > 1 with the letters of x being independent random variables, uniformly
distributed over Σ. In molecular biology we typically have that Σ = {A,C,G,T}
and so we assume that σ = O(1) throughout unless stated otherwise.

1.2 Related Work

The problem of computing longest common prefixes with k-errors was first stud-
ied by Manzini for the restricted case of k = 1 [28]. We distinguish the following
techniques that can be applied to solve this and other related problems for k > 1.

Non-constant k and ω(n) space: We can make use of the well-known k-
errata data structure by Cole et al. [11]. The size of the data structure is
O(n (c log n)k

k! ), where c > 1 is a constant.
Constant k and O(n) space: We can make use of the techniques in [10,34,35]

which build heavily on the k-errata data structure [11]. The working space is
exponential in k but O(n) for k = O(1).

Non-constant k and O(n) space: In this case, only a simple O(n2k)-time
worst-case algorithm exists to solve the problem. The fastest known average-
case algorithm was presented in [3]. It requires O(n(σR)k log log n(log k +
log log n)) time on average, where R = �(k + 2)(logσ n + 1)�.

Other related work: In [22] it was shown that a strongly sub-quadratic-
time algorithm for the longest common substring with k-errors problem, for
k = Ω(log n) and binary strings, would refute the Strong Exponential Time
Hypothesis. Thus sub-quadratic-time solutions for approximate variants of
the problem have been developed [22]. A non-deterministic algorithm based
on the polynomial method is also known for the same problem [1].

1.3 Our Results

We continue the line of research for non-constant k and O(n) space, in particular
in the absence of any worst-case strongly sub-quadratic-time approach with these
parameters. In all algorithmic results we assume that k = o(log n), since these
are the values for which we can obtain strongly sub-quadratic-time algorithms:

1. We first show a non-trivial upper bound of independent interest: the maximal
length of the longest common prefix with k-errors between all pairs of suffixes
of x is O(k + logσ n) with high probability (w.h.p.).

2. By applying this result, we significantly improve upon the state-of-the-art
algorithm for non-constant k and using O(n) space [3]. Specifically, our algo-
rithm runs in O(n (c log n)k

k! ) time on average, where c > 1 is a constant, using
O(n) space.

3. Notably, we extend our results to the edit distance model with no extra cost.
4. As a bonus we give an algorithm for Hamming distance and general ordered

alphabets working in O(n (c logσ n)k

k! ) time on average using O(n) space.
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The importance of our technique lies on the fact that it is the first one achieving
the O(n (c log n)k

k! )-time bound for k = o(log n) using O(n) space; thus solving the
genome mappability data structure problem, the longest common substring with
k-errors problem, and the all-pairs suffix/prefix overlaps with k-errors problem.

Moreover, since our technique avoids the classic recursive heavy-path tree
decompositions [11], it is efficiently implementable. A C++ implementation of
contribution 4 is made available at https://github.com/lorrainea/PLCP.

2 Preliminaries

We begin with some basic definitions and notation. Let x = x[0]x[1] . . . x[n − 1]
be a string of length |x| = n over a finite ordered alphabet Σ of size |Σ| = σ.
For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the substring
(sometimes called factor) of x that starts at position i and ends at position j.
We recall that a prefix of x is a substring that starts at position 0 (x[0 . . j]) and
a suffix of x is a substring that ends at position n − 1 (x[i . . n − 1]). Let y be a
string of length m with 0 < m ≤ n. We say that there exists an occurrence of
y in x, or, more simply, that y occurs in x, when y is a substring of x. Every
occurrence of y can be characterised by a starting position in x. We thus say
that y occurs at the starting position i in x when y = x[i . . i + m − 1].

The Hamming distance between two strings x and y, |x| = |y|, is defined as
dH(x, y) = |{i : x[i] �= y[i], i = 0, 1, . . . , |x|−1}|. If |x| �= |y|, we set dH(x, y) = ∞.
The edit distance between x and y is the minimum total cost of a sequence of
edit operations (insertions, deletions, substitutions) required to transform x into
y. It is known as Levenshtein distance for unit cost operations. We consider this
special case here. If two strings x and y are at (Hamming or edit) distance at
most k we say that x and y match with k-errors or match with at most kerrors.

We denote by SA the suffix array of x. SA is an integer array of size n storing
the starting positions of all (lexicographically) sorted non-empty suffixes of x,
i.e. for all 1 ≤ r < n we have x[SA[r − 1] . . n − 1] < x[SA[r] . . n − 1] [27]. Let
lcp(r, s) denote the length of the longest common prefix between x[SA[r] . . n−1]
and x[SA[s] . . n − 1] for positions r, s on x. We denote by LCP the longest
common prefix array of x defined by LCP[r] = lcp(r − 1, r) for all 1 ≤ r < n,
and LCP[0] = 0. The inverse iSA of the array SA is defined by iSA[SA[r]] = r, for
all 0 ≤ r < n. It is known that SA, iSA, and LCP of a string of length n can be
computed in time and space O(n) [17,30]. A range minimum query (RMQ) data
structure over the LCP array, that can be constructed in O(n) time and O(n)
space [8], can answer lcp-queries in O(1) time per query [27]. The lcp queries are
also known as longest common extension (LCE) queries.

The permuted LCP array, denoted by PLCP, has the same contents as the
LCP array but in different order. Let i− denote the starting position of the
lexicographic predecessor of x[i . . n−1]. For i = 0, . . . , n−1, we define PLCP[i] =
LCP[iSA[i]] = lcp(iSA[i−], iSA[i]]), that is, PLCP[i] is the length of the longest
common prefix between x[i . . n − 1] and its lexicographic predecessor. For the
starting position j of the lexicographically smallest suffix we set PLCP[j] = 0.

https://github.com/lorrainea/PLCP
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For any k ≥ 0, we define lcpk(y, z) as the largest � ≥ 0 such that y[0 . . � − 1]
and z[0 . . � − 1] exist and are at Hamming distance at most k; note that this is
defined for a pair of strings. We analogously define the permuted LCP array with
k-errors, denoted by PLCPk. For i = 0, . . . , n − 1, we have that

PLCPk[i] = max
j=0,...,n−1, j �=i

lcpk(x[i . . n − 1], x[j . . n − 1]).

The main computational problem in scope can be formally stated as follows.

PLCP with k-Errors
Input: A string x of length n and a positive integer k = o(log n)
Output: PLCPk and Pk; Pk[i] �= i, for i = 0, . . . , n − 1, is such that x[i . . i +
� − 1] ≈k x[Pk[i] . .Pk[i] + � − 1], where � = PLCPk[i]

3 Computing PLCPk

In this section we propose a new algorithm for the PLCP with k-Errors prob-
lem under both the Hamming and the edit distance (Levenshtein distance) mod-
els. Our algorithms are based on a deeper look into the behaviour of the longest
common prefixes with k-errors. These turn out to be usually short, a fact that
allows us to make use of the connection between longest common prefix val-
ues and predecessor/successor queries. We already know the following result for
errors under the Hamming distance model.

Theorem 1 ([3]). The PLCP with k-Errors problem can be solved in time
O(n(σR)k log2 log n) on average, where R = �(k + 2)(logσ n + 1)�, using O(n)
extra space.

In the rest of this section, we show the following result for errors under both
the Hamming and edit distance models.

Theorem 2. The PLCP with k-Errors problem can be solved in O(n (c log n)k

k! )
time on average, where c > 1 is a constant, using O(n) extra space.

For clarity of presentation, we first do the analysis and present the algorithm
under the Hamming distance model in Sects. 3.1 and 3.2. We then show how to
extend our technique to work under the edit distance model in Sect. 3.3.

3.1 Bounding the PLCPk Values

The expected maximal value in the LCP array is 2 logσ n + O(1) [21]. We can
thus obtain a trivial O(k logσ n) bound on the maximal expected length of the
longest common prefix with k-errors for arbitrary k and σ. A related result was
recently presented in [9]; the authors show that the maximal value in the LCP
array is 2 logσ n+O(logσ logσ n) w.h.p. In this section, by looking deeper into the
behaviour of the longest common prefixes with k-errors, we show the following
non-trivial result of independent interest.
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Theorem 3. Let x be a string of length n over an alphabet of size σ > 1 and
1 ≤ k ≤ n be an integer.

(a) The maximal expected length of the longest common prefix with k-errors
between all pairs of suffixes of x is O(k + logσ n).

(b) The maximal length of the longest common prefix with k-errors between all
pairs of suffixes of x is O(k + logσ n) w.h.p.

Proof (of (a)). Let us denote the ith suffix of x by xi = x[i . . n − 1]. Further let
us define the following random variables:

Xi,j = lcpk(xi, xj) and Y = max
0≤i<j≤n−1

Xi,j .

Claim. Pr(Xi,j ≥ m) ≤
(

m

k

)
1

σm−k .

Proof (of Claim). Each possible set of positions where a substitution is allowed is
a subset of one of the

(
m
k

)
subsets of m of size k. For each of these subsets, we can

disregard what happens in the k chosen positions; in order to yield a match with
k-errors, the remaining m − k positions must match and each of them matches
with probability 1

σ . The claim follows by applying the Union-Bound (Boole’s
inequality). 	

By applying the Union-Bound again we have that

Pr(Y ≥ m) = Pr

⎛
⎝⋃

i<j

{Xi,j ≥ m}
⎞
⎠ ≤

∑
i<j

Pr (Xi,j ≥ m) ≤ n2

(
m

k

)
1

σm−k
,

for m ≥ k and Pr(Y ≥ m) = 1 for m ≤ k.
The expected value of Y is given by:

E[Y ] =
∞∑

m=1

Pr(Y ≥ m) =
α(logσ n+k)∑

m=1

Pr(Y ≥ m)

︸ ︷︷ ︸
≤α(logσ n+k)

+
∞∑

m=α(logσ n+k)+1

Pr(Y ≥ m).

(Note that we bound the first summand using that Pr(Y ≥ m) ≤ 1 for all m.)

Claim. Let rm,k =
(

m

k

)
. We have that rm,k

rm−1,k
≤ 3

2 for m ≥ 3k.

Proof (of Claim).

rm,k

rm−1,k
=

m

(m − k)
≤ 3k

(3k − k)
=

3
2
.
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Let β = α(logσ n + k) + 1 ≥ 4k, for some α > 4. We apply the above claim
to bound the second summand1.

∞∑
m=β

Pr(Y ≥ m) ≤
∞∑

m=β

n2

(
m

k

)
1

σm−k
≤

∞∑
m=β

n2

(
4k

k

)(
3
2

)m−4k 1
σm−k

=
∞∑

m=β

n2

(
4k

k

)(
2
3

)3k (
3
2σ

)m−k

≤ n2

(
4k

k

)(
2
3

)3k (
3
2σ

)β−k ∞∑
m=0

(
3
2σ

)m

≤ An2

(
4k

k

)(
3
2σ

)β−k

≤ An224k

(
3
2σ

)α logσ n+(α−1)k

=
An2

nα(1−1/ log3/2 σ)
·
(

16
(

3
2σ

)α−1
)k

for some constant A since σ ≥ 2. Then 1 − 1/ log3/2 σ > 0 and 3
2σ < 1 and thus,

for any ε > 0, we can pick an α large enough such that this sum is O(n−ε). 	

Proof (of (b)). It suffices to note that

∞∑
m=β

Pr(Y = m) ≤
∞∑

m=β

Pr(Y ≥ m),

which we can bound as above. 	

Remark 4. The above result can be also derived by adapting the analysis pre-
sented in the Appendix of [29].

3.2 Improved Algorithm for Hamming Distance

Main Idea. In light of Theorem3 it suffices on average to only consider the
multiset Xλ of all substrings of x of length λ = α logσ n, α > 0 (recall that k =
o(log n)). By our assumptions each of these λ-digit numbers fits in a computer
word; note that we can simulate a word-RAM machine with word size O(β) using
a word-RAM machine with word size β with only a constant factor slowdown.

The main idea is to exploit the connection between longest common pre-
fix values and predecessor/successor queries: the maximal length of the longest
common prefix between a queried string of length λ that is not in Xλ and any of
the strings in Xλ can be found in the time required to answer a single predeces-
sor/successor query assuming Xλ has been sorted. We can thus query for each
string that is within distance k from each of the elements of Xλ. If the length
of the longest prefix value returned is λ, we switch to any polynomial-time algo-
rithm. By Theorem 3 this will happen for O(n−ε) inputs for some ε > 0 based
on our choice of α. Thus in what follows we assume that this does not happen.

1 The reason for imposing “α > 4” instead of “α > 3” becomes clear in Sect. 3.3.
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y-Fast Trie Implementation. First let us note that we can compute the length
of the longest common prefixes with k-errors for the last λ − 1 positions of x
using LCE queries. We thus update PLCPk and Pk for each i accordingly. The
whole process takes time O(nkλ) = O(nk log n).

The y-fast trie supports insert, delete and search (exact, predecessor and
successor) operations in time O(log log U) w.h.p., using O(n) space, where n is
the number of stored values and U is size of the universe [39]. We have that
U = σλ, λ = α logσ n, and hence log log U = O(log log n + log α) = O(log log n).

We initialise the y-fast trie by inserting all elements of Xλ to it. This pro-
cedure takes time O(n log log n) in total. We further construct the SA and LCP
array of x in time O(n). We then want to find a longest prefix of the σk

(
λ
k

)
strings

of length at most λ that are at Hamming distance at most k from x[i . . i+λ−1]
that occurs elsewhere in x as well as an occurrence of it. If this prefix is of length
λ, we find all positions t �= i in x for which dH(x[i . . i+λ−1], x[t . . t+λ−1]) ≤ k
and treat each of them individually.

We query for all σk
(
λ
k

)
possible strings; including x[i . . i + λ − 1] itself. We

view each string z created after at most k substitution operations as a number;
the aim is to find its longest prefix that occurs elsewhere in x. To this end we
perform at most three queries over the y-fast trie: an exact; a predecessor; and
a successor query. One of these three queries will return an element z′ of Xλ

that attains the longest common prefix that any element of Xλ has with z of
maximal length. If it is the case that z′ only occurs at position i, we retrieve the
predecessor and successor of x[i . . i + λ − 1] from the SA and use these instead.

Having found z′, we can then compute the length of the longest common
prefix between z and z′ in constant time using standard bit-level operations.
An XOR operation between z and z′ provides us with an integer d specifying
the positions of errors (bits set on when d is viewed as binary). If d �= 0, we
take δ = �log d�, which provides us with the index of the leftmost bit set on
which in turn specifies the length of the longest common prefix between z and
z′; specifically lcp0(z, z′) = �λ�log σ�−δ−1

�log σ� �.
The combinations can be generated in O(

(
λ
k

)
) time [14]; creating and querying

the σk
(
λ
k

)
strings can be done in O(1) time using standard bit-level operations

and O(log log n) time using the y-fast trie per string, respectively. We have λ =
α logσ n positions where we need to consider the k errors, yielding an overall
time of O(nσk

(
α log n

k

)
log log n) = O(n (ασ)k

k! logk n log log n).

Remark 5. The procedure for all x[i . . i + λ − 1] is parallelisable in the CREW
PRAM model; each of the p processors is assigned �n/p� or �n/p� such positions.

Off-Line Implementation. We next show how to shave the log log n factor
by answering the exact, predecessor and successor queries in an off-line manner.
We know the lexicographic order of the elements of Xλ by the SA of x. We then
process a set B, consisting of at most one generated string per position of x, as
a batch. We allow the substitutions for each position in the same order so that
we can store them globally.
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Given a set B of at most n λ-digit numbers we can find the exact, predecessor
and successor elements of each of them in a sorted list of n integers in O(n) time
as follows. We first sort the numbers in B using radix sort in time O(n λ

log n ) =
O(n) [12]. We then apply a single step of mergesort to merge the two sorted
lists, corresponding to B and Xλ, and finally we scan the merged list once and
answer the queries. If for position i the query returns an element of the batch
occurring at position i, we retrieve the predecessor and successor of x[i . . i+λ−1]
from the SA similarly to the description in Sect. 3.2. By using this to process the
generated strings as batches, we answer each query in O(1) time after O(n)-time
pre-processing per O(n)-sized batch, thus arriving at the following result.

Theorem 2. The PLCP with k-Errors problem can be solved in O(n (c log n)k

k! )
time on average, where c > 1 is a constant, using O(n) extra space.

Remark 6. The obtained time complexity is upper bounded by n1+ε for any
ε > 0 when k = o(log n). Let m = ce log n/k. Using Stirling’s approximation we
get

ck

k!
logk n ≤ 1√

2πk
mce log n/m ≤ nce log m/m,

which is upper bounded by nε, for any ε > 0, if log m/m ≤ ε
ce , which is true for

sufficiently large n if k = o(log n).

Remark 7. We have that ck

k! ≤ cc = O(1) and hence the required time is
O(n logk n). Notably, this complexity is o(n logk n) for super-constant k.

Large Alphabets Implementation. In this section, we assume a general
ordered alphabet. The SA of a string of length n, over a general ordered alphabet,
can be computed in O(n log n) time and O(n) space [15]. We consider in total

(
λ
k

)
position sets of size k each denoting where the k errors may occur. For each set
{�0, . . . , �k−1} of error positions we want to find the longest prefix of maximum
length λ that occurs elsewhere in the string with k-errors. Let us show the process
of finding this for a single set. Considering the suffixes of x, all letters that occur
at the �0, . . . , �k−1th positions of every suffix are disregarded to intuitively obtain
n suffixes split into k + 1 substrings each. Recall that the first error occurs at
the �0th position of every suffix. Using the SA and starting with the first n
substrings of length �0, a new rank is assigned to each of them according to the
lexicographical ordering of these substrings; this can be easily derived from the
SA. Clearly, two suffixes y and z are given the same rank if lcp0(y, z) ≥ �0. Again
considering that the first error occurs at the �0th position of every suffix, the
new rank for the first n substrings will be identical to the original SA if each
substring has a unique rank i.e. no two substrings are the same. We proceed
to the next position �i of our set analogously to consider n substrings of length
�i − �i−1 − 1. To maintain O(n) space, for every consecutively considered pair
of error positions, a bucket sort is applied to the n pairs of ranks corresponding
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to the n suffixes to obtain a new ranking, and the process continues. In the end,
we have a new lexicographical ordering of the suffixes of x that disregards the
letters at the �0, . . . , �k−1th positions of every suffix. LCE queries are applied
between successive suffixes in the new ordering to obtain the longest prefixes
with k-mismatches for this set of positions. The process takes O(kn) time.

We next describe how to shave a factor of k from the time complexity. We
show in Appendix A how to generate all distinct subsets of {0, . . . , λ − 1} of
size at most k in a structured manner in time O(

(
λ
k

)
) such that consecutively

generated subsets only differ on whether they contain the largest element of their
union.

Let us denote by SAP an integer array storing the starting positions of all
lexicographically sorted suffixes of x when the ith letter of every suffix, for all
i ∈ P , is disregarded. We similarly denote by LCPP [r] the longest common
prefix of the suffixes with starting positions SAP [r − 1] and SAP [r] when the
ith letter of both suffixes, for all i ∈ P , is disregarded. The only thing we need
to show is that from SALi

and LCPLi
, where Li = {�0, . . . , �i : �0 < . . . < �i},

Li+1 = Li ∪ {�i+1} and �i+1 > �i, we can compute SALi+1 and LCPLi+1 in O(n)
time and the opposite. We get the ranks for the substrings of length �i+1 − 1
from SALi

and LCPLi
and the ranks after position �i+1 from SA and LCP, and

so we can compute SALi+1 . By preprocessing LCPLi
for RMQs it easy to see how

we can obtain LCPLi+1 with O(n) LCE queries over LCPLi
and O(n) LCE queries

over LCP. The opposite direction is similar; we can get the ranks for SALi
by

getting ranks for substrings of length �i+1−1 from SALi+1 , and the rest from the
original SA. LCPLi

can also be computed similarly. Throughout the computation
we need to maintain only SALi

, LCPLi
, SALi+1 and LCPLi+1 .

Theorem 8. The PLCP with k-Errors problem, under the Hamming dis-
tance model and for an alphabet of size σ > 1, can be solved in time
O(n (c logσ n)k

k! ) on average, where c > 1 is a constant, using O(n) extra space.

3.3 Extension to Edit Distance

We next consider computing PLCPk under the edit distance model; however in
this case we observe that x[i . . n − 1] and x[i + d . . n − 1] are at edit distance |d|
for −k ≤ d ≤ k. We hence slightly amend the definition so that PLCPk[i] refers
to the length of the longest common prefix of x[i . . n−1] with k-errors occurring
at some position j /∈ Si,k = {i − k, . . . , i + k}.

The proof of Theorem 3 can be extended to allow for k-errors under the edit
distance model. In this case we have that Pr(Xi,j ≥ m) ≤ (

m
k

)
3k

σm−k ; this can be
seen by following the same reasoning as in the first claim of the proof with two
extra considerations: (a) each deletion/insertion operation conceptually shifts
the letters to be matched (giving the 3k factor); (b) the letters to be matched
are m minus the number of deletions and substitutions and hence at least m−k.
The extra 3k factor gets consumed by (2/3)3k later in the proof since 2 3

√
3/3 < 1.

On the algorithmic side, to obtain Theorem2 for edit distance, we modify
the algorithm of Sect. 3.2 for Hamming distance and constant-sized alphabets:
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1. At each considered position, except for σ − 1 substitutions, we also consider
σ insertions and 1 deletion. This yields an extra multiplicative 2k factor in
the time complexity. We keep counters ins for insertions and del for deletions;
for each obtained length, we add del and subtract ins.

2. When querying for a string z, while processing position i, we now have to
check that we do not return a position j ∈ Si,k.

y-Fast Trie Implementation. When we start processing position i, we create
an array of size O(k) storing, for each position j ∈ Si,k, a position fj /∈ Si,k

that has a longest common prefix with x[j . . n − 1] of maximal length using
the SA and the LCP array. When a query returns a position j ∈ Si,k, we
instead consider fj . This takes O(k) time per position i.

Off-Line Implementation. Recall that we process a batch consisting of at
most one generated string per position of x. For a fixed position i in Xλ,
we essentially even query for x[j . . j + λ − 1], j ∈ Si,k. However we show
that with one more predecessor query in Xλ we usually obtain a position
r �∈ Si,k. For the rare cases that we do not, we can afford to precompute
the answer by performing O(k3) predecessor queries in total. The probability
that the predecessor of j in Xλ is in Sj,2k (which is a superset of Si,k for
j − k < i < j + k) is no more than 4k

n−λ−1 . We do precomputations for all
such pairs (i, j) in O(n + k2 · 4k

n−λ−1n) = O(n + k3). The successor queries
are handled analogously. We arrive at Theorem2.

Remark 9. The technique leading to Theorem8 that works for general ordered
alphabets is generalisable to edit distance with an overhead factor only depen-
dent on k (exponentially); we leave the details for the full version of the paper.

4 Applications

In what follows we demonstrate some algorithmic implications of our results.

4.1 Genome Mappability Data Structure

The genome mappability problem has already been studied under the Ham-
ming distance model [4,5,13,28]. We can also define the problem under the
edit distance model as follows. Given a string x of length n and integers
m < n and k < m, we are asked to count, for each length-m substring
x[i . . i + m − 1] of x, the number occ of other substrings of x occurring at a
position j /∈ Si,k = {i − k, . . . , i + k} that are at edit distance at most k from
x[i . . i + m − 1]. We then say that this substring has k-mappability equal to occ.
Specifically, we consider a data structure version of this problem [3]. Given x and
k, construct a data structure, which, for a query value μ given on-line, returns
the minimal value of m that forces at least μ length-m substrings of x to have
k-mappability equal to 0.

Theorem 10 ([3]). An O(n)-sized data structure answering genome mappabil-
ity queries in O(1) time per query can be constructed from PLCPk in time O(n).
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By combining Theorems 2 with 10 we obtain the first efficient algorithm for
the genome mappability data structure under the edit distance model.

4.2 Longest Common Substring with k-Errors

In the longest common substring with k-errors problem we are asked to find
the longest substrings of two strings that are at distance at most k. The Ham-
ming distance version has received much attention due to its applications in
computational biology [6,7,25,36,37]. Under edit distance, the problem is less
explored [34]. The average k-error common substring is an alignment-free method
based on this notion for measuring string dissimilarity under Hamming distance;
we denote the induced distance by Distk(x, y) for two strings x and y (see [37] for
the definition). Distk(x, y) can be computed in time O(|x|+ |y|) from arrays Λx,y

and Λy,x, defined as Λx,y[i] = max0≤j≤|y|−1(lcpk(x[i . . |x| − 1], y[j . . |y| − 1])).
A worst-case and more practical average-case algorithms for the computation

of Λx,y have been presented in [31,35,36]. This measure was extended to allow
for wildcards (don’t care letters) in the strings in [20]. Here we consider a natural
generalisation of this measure: the average k-error common substring under the
edit distance model. The sole change is in the definition of Λx,y[i]: except for
substitution, we also allow for insertion and deletion operations.

The algorithm of Sect. 3.3 can be applied to compute Λx,y under the edit
distance model within the same complexities. We start by constructing Xλ,
using λ = α logσ(|x|+ |y|) as above for x and then do the queries for the suffixes
of y. We obtain the following result.

Theorem 11. Given two strings x and y of length at most n and a distance
threshold k, arrays Λx,y and Λy,x and Distk(x, y) can be computed in time
O(n (c log n)k

k! ) on average, where c > 1 is a constant, using O(n) extra space.

Remark 12. By applying Theorem11 we essentially solve the longest common
substring with k-errors for x and y within the same complexities. A similar
worst-case time bound for constant k was recently shown in [34].

4.3 All-Pairs Suffix/Prefix Overlaps with k-Errors

Given a set of strings and an error-rate ε, the goal is to find, for all pairs of
strings, their suffix/prefix matches (overlaps) that are within distance k = �ε��,
where � is the length of the overlap [24,32,34,38].

Using our technique but setting Xλ to be the set of prefixes of length λ of
the strings and querying for all starting positions (suffixes) in a similar manner
as in Sect. 3.1, we obtain the following result (see also [34] for constant k).

Theorem 13. Given a set of strings of total length n and a distance threshold
k, the maximal length of the longest suffix/prefix overlaps of every string against
all other strings within distance k can be computed in time O(n (c log n)k

k! ) on
average, where c > 1 is a constant, using O(n) extra space.
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A K-Combinations Generation Process

We generate all combinations of size K of the set [N ] using the following folklore
algorithm. We build a tree in a recursive way. Each node v has a label �(v) ∈ [N ],
apart from the root which is labeled with 0. We say that a node v represents the
set r(v) = {�(v)} ∪ {�(u)|u is an ancestor of v} \ {0}. By construction, no two
nodes will represent the same set. At the end of the process each of the O(

(
N
K

)
)

leaves will represent a distinct K-combination. The procedure works as follows:

1. It takes as input a node v with satellite data �(v) and |r(v)|.
2. It creates N − �(v) − K + |r(v)| child nodes of v, labeled �(v) + 1 to N − K +

|r(v)| + 1.
3. For each newly created node u, if |r(u)| = |r(v)| + 1 < K, the procedure

recursively calls itself.

Initiating this procedure with an input node u, with �(u) = 0 and |r(u)| = 0,
all K-combinations are generated in time O(

(
N
K

)
) if K ≤ N/2 as shown below.

Note that each node of the tree is associated with a unique subset of [N ] and
neighbouring nodes only differ on whether they contain the largest element of
their union.

To upper bound the time complexity, it suffices to bound the number of
nodes in the tree with a single child, since the rest internal nodes are trivially
upper bounded by the number of leaves. A node with label N − i will have a
single child only if it is the (K − i)th element added in a combination. This
can happen O(

(
N−i−1
K−i−1

)
) times. Given our assumption that K ≤ N/2 and using

Pascal’s identity
(
m
j

)
=

(
m−1
j−1

)
+

(
m−1

j

)
, we bound the number of nodes with a

single child as follows:

K−1∑

i=1

(
N−i−1
K−i−1

)
= 1 +

K−2∑

i=1

(
N−i

K−i−1

) −
K−2∑

i=1

(
N−i−1
K−i−2

)

= 1 +

K−2∑

i=1

(
N−i

K−i−1

) −
K−1∑

i=2

(
N−i

K−i−1

)
= 1 +

(
N−1
K−2

) − 1 =
K(K − 1)

N(N − K + 1)

(
N
K

) ≤ (
N
K

)
.
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Abstract. In this paper we introduce a new family of string processing
problems. We are given two or more strings and we are asked to compute
a factor common to all strings that preserves a specific property and has
maximal length. Here we consider two fundamental string properties:
square-free factors and periodic factors under two different settings, one
per property. In the first setting, we are given a string x and we are asked
to construct a data structure over x answering the following type of on-
line queries: given string y, find a longest square-free factor common to
x and y. In the second setting, we are given k strings and an integer
1 < k′ ≤ k and we are asked to find a longest periodic factor common to
at least k′ strings. We present linear-time solutions for both settings. We
anticipate that our paradigm can be extended to other string properties.
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1 Introduction

In the longest common factor problem, also known as longest common substring
problem, we are given two strings x and y, each of length at most n, and we are
asked to find a maximal-length string occurring in both x and y. This is a classical
and well-studied problem in computer science arising out of different practical
scenarios. It can be solved in O(n) time and space [8,15] (see also [18,23]).
Recently, the same problem has been extensively studied under distance metrics;
that is, the sought factors (one from x and one from y) must be at distance at
most k and have maximal length [1,7,21,22,24,25] (and references therein).

In this paper we initiate a new related line of research. We are given two or
more strings and our goal is to compute a factor common to all strings that pre-
serves a specific property and has maximal length. An analogous line of research
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was introduced in [9]. It focuses on computing a subsequence (rather than a fac-
tor) common to all strings that preserves a specific property and has maximal
length. Specifically, in [2,9,16], the authors considered computing a longest com-
mon palindromic subsequence and in [17] computing a longest common square
subsequence.

We consider two fundamental string properties: square-free factors and peri-
odic factors [20] under two different settings, one per property. In the first setting,
we are given a string x and we are asked to construct a data structure over x
answering the following type of on-line queries: given string y, find a longest
square-free factor common to x and y. In the second setting, we are given k
strings and an integer 1 < k′ ≤ k and we are asked to find a longest peri-
odic factor common to at least k′ strings. We present linear-time solutions for
both settings. We anticipate that our paradigm can be extended to other string
properties.

1.1 Definitions and Notation

An alphabet Σ is a non-empty finite ordered set of letters of size σ = |Σ|. In this
work we consider that σ = O(1) or that Σ is a linearly-sortable integer alphabet.
A string x on an alphabet Σ is a sequence of elements of Σ. The set of all strings
on an alphabet Σ, including the empty string ε of length 0, is denoted by Σ∗.
For any string x, we denote by x[i..j] the substring (sometimes called factor)
of x that starts at position i and ends at position j. In particular, x[0..j] is the
prefix of x that ends at position j, and x[i..|x| − 1] is the suffix of x that starts
at position i, where |x| denotes the length of x. A string uu, u ∈ Σ∗, is called a
square. A square-free string is a string that does not contain a square as a factor.

A period of x[0..|x| − 1] is a positive integer p such that x[i] = x[i + p]
holds for all 0 ≤ i < |x| − p. The smallest period of x is denoted by per(x).
String u is called periodic if and only if per(u) ≤ |u|/2. A run of string x is
an interval [i, j] such that for the smallest period p = per(x[i..j]) it holds that
2p ≤ j − i + 1 and the periodicity cannot be extended to the left or right, i.e.,
i = 0 or x[i − 1] �= x[i + p − 1], and, j = |x| − 1 or x[j − p + 1] �= x[j + 1].

1.2 Algorithmic Toolbox

The maximum number of runs in a string of length n is less than n [3], and,
moreover, all runs can be computed in O(n) time [3,19].

The suffix tree ST(x) of a non-empty string x of length n is a compact trie
representing all suffixes of x. ST(x) can be constructed in O(n) time [12]. We can
analogously define and construct the generalised suffix tree GST(x0, x1, . . . , xk−1)
for a set of k strings. We assume the reader is familiar with these data structures.

The matching statistics capture all matches between two strings x and y [6].
More formally, the matching statistics of a string y[0..|y| − 1] with respect to a
string x is an array MSy[0..|y| − 1], where MSy[i] is a pair (�i, pi) such that (i)
y[i..i + �i − 1] is the longest prefix of y[i..|y| − 1] that is a factor of x; and (ii)
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x[pi..pi + �i − 1] = y[i..i + �i − 1]. Matching statistics can be computed in O(|y|)
time for σ = O(1) by using ST(x) [5,14,15].

Given a rooted tree T with n leaves coloured from 0 to k − 1, 1 < k ≤ n, the
colour set size problem is finding, for each internal node u of T , the number of
different leaf colours in the subtree rooted at u. In [8], the authors present an
O(n)-time solution to this problem.

In the weighted ancestor problem, introduced in [13], we consider a rooted
tree T with an integer weight function μ defined on the nodes. We require that
the weight of the root is zero and the weight of any other node is strictly larger
than the weight of its parent. A weighted ancestor query, given a node v and an
integer value � ≤ μ(v), asks for the highest ancestor u of v such that μ(u) ≥ �,
i.e., such an ancestor u that μ(u) ≥ � and μ(u) is the smallest possible. When T
is the suffix tree of a string x of length n, we can locate the locus of any factor
of x[i..j] using a weighted ancestor query. We define the weight of a node of the
suffix tree as the length of the string it represents. Thus a weighted ancestor
query can be used for the terminal node corresponding to x[i..n − 1] to create
(if necessary) and mark the node that corresponds to x[i..j]. Given a collection
Q of weighted ancestor queries on a weighted tree T on n nodes with integer
weights up to nO(1), all the queries in Q can be answered off-line in O(n + |Q|)
time [4].

2 Square-Free-Preserved Matching Statistics

In this section, we introduce the square-free-preserved matching statistics prob-
lem and provide a linear-time solution. In the square-free-preserved matching
statistics problem we are given a string x of length n and we are asked to con-
struct a data structure over x answering the following type of on-line queries:
given string y, find the longest square-free prefix of y[i..|y| − 1] that is a factor
of x, for all 0 ≤ i < |y| − 1. (For related work see [10].) We represent the answer
using an integer array SQMSy[0..|y| − 1] of lengths, but we can trivially modify
our algorithm to report the actual factors. It should be clear that a maximum
element in SQMS gives the length of some longest square-free factor common to
x and y.

Construction. Our data structure over string x consists of the following:

– An integer array Lx[0..n − 1], where Lx[i] stores the length of the longest
square-free factor starting at position i of string x.

– The suffix tree ST(x) of string x.

The idea for constructing array Lx efficiently is based on the following crucial
observation.

Observation 1. If x[i..n−1] contains a square then Lx[i]+1, for all 0 ≤ i < n,
is the length of the shortest prefix of x[i..n − 1] (factor f) containing a square.
In fact, the square is a suffix of f , otherwise f would not have been the shortest.
If x[i..n − 1] does not contain a square then Lx[i] = n − i.
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We thus shift our focus to computing the shortest such prefixes. We start by
considering the runs of x. Specifically, we consider squares in x observing that
a run [�, r] with period p contains r − � − 2p + 2 squares of length 2p with the
leftmost one starting at position �. Let r′ =�+2p−1 denote the ending position
of the leftmost such square of the run. In order to find, for all i’s, the shortest
prefix of x[i..n − 1] containing a square s, and thus compute Lx[i], we have two
cases:

1. s is part of a run [�, r] in x that starts after i. In particular, s = x[�..r′] such
that r′ ≤ r, � > i, and r′ is minimal. In this case the shortest factor has
length � + 2p − i; we store this value in an integer array C[0..n − 1]. If no run
starts after position i we set C[i] = ∞. To compute C, after computing in
O(n) time all the runs of x with their p and r′ [3,19], we sort them by r′. A
right-to-left scan after this sorting associates to i the closest r′ with � > i.

2. s is part of a run [�, r] in x and i∈ [�, r]. This implies that if i≤r−2p+1 then
a square starts at i and we store the length of the shortest such square in an
integer array S[0..n − 1]. If no square starts at position i we set S[i] = ∞.
Array S can be constructed in O(n) time by applying the algorithm of [11].

Since we do not know which of the two cases holds, we compute both C
and S. By Observation 1, if C[i] = S[i] = ∞ (x[i..n − 1] does not contain a
square) we set Lx[i] = n − i; otherwise (x[i..n − 1] contains a square) we set
Lx[i] = min{C[i], S[i]} − 1.

Finally, we build the suffix tree ST(x) of string x in O(n) time [12]. This
completes our construction.

Querying. We rely on the following fact for answering the queries efficiently.

Fact 2. Every factor of a square-free string is square-free.

Let string y be an on-line query. Using ST(x), we compute the matching
statistics MSy of y with respect to x. For each j ∈ [0, |y| − 1], MSy[j] = (�i, i)
indicates that x[i..i + �i − 1] = y[j..j + �i − 1]. This computation can be done
in O(|y|) time [5,15]. By applying Fact 2, we can answer any query y in O(|y|)
time for σ = O(1) by setting SQMSy[j] = min{�i, Lx[i]}, for all 0 ≤ j ≤ |y| − 1.

We arrive at the following result.

Theorem 3. Given a string x of length n over an alphabet of size σ = O(1),
we can construct a data structure of size O(n) in time O(n), answering SQMSy

on-line queries in O(|y|) time.

Proof. The time complexity of our algorithm follows from the above discussion.
We next show the correctness of our algorithm. Let us first show the cor-

rectness of computing array Lx. The square contained in the shortest prefix of
x[i..n − 1] (containing a square) starts by definition either at i or after i. If
it starts at i this is correctly computed by the algorithm of [11] which assigns
the length of the shortest such square in S[i]. If it starts after i it must be the
leftmost square of another run by the runs definition. C[i] stores the length of
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the shortest prefix containing such a square. Then by Observation 1, Lx[i] is
computed correctly.

It suffices to show that, if w is the longest square-free substring common to
x and y occurring at position ix in x and at position iy in y, then (i) MSy[iy] =
(�, ix) with � ≥ |w| and x[ix..ix + � − 1] = y[iy..iy + � − 1]; (ii) w is a prefix of
x[ix..ix +Lx[ix]−1]; and (iii) SQMSy[iy] = |w|. Case (i) directly follows from the
correctness of the matching statistics algorithm. For Case (ii), since w occurs at
ix and w is square-free, Lx[ix] ≥ |w|. For Case (iii), since w is square-free we
have to show that |w| = min{�i, Lx[i]}. We know from (i) that � ≥ |w| and from
(ii) that Lx[ix] ≥ |w|. If min{�i, Lx[i]} = �, then w cannot be extended because
the possibly longer than |w| square-free string occurring at ix does not occur in
y, and in this case |w| = �. Otherwise, if min{�i, Lx[i]} = Lx[ix] then w cannot
be extended because it is no longer square-free, and in this case |w| = Lx[ix].
Hence we conclude that SQMSy[iy] = |w|. The statement follows. ��

The following example provides a complete overview of the workings of our
algorithm.

Example 4. Let x = aababaababb and y = babababbaaab. The length of a
longest common square-free factor is 3, and the factors are bab and aba.

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a a b a b a a b a b b

C[i] 5 6 5 4 3 5 5 4 3 ∞ ∞
S[i] 2 4 4 6 ∞ 2 4 ∞ ∞ 2 ∞
Lx[i] 1 3 3 3 2 1 3 3 2 1 1

j 0 1 2 3 4 5 6 7 8 9 10 11

y[j] b a b a b a b b a a a b

MSy[j] (4,2) (5,1) (4,2) (5,6) (4,7) (3,8) (2,9) (3,4) (2,0) (3,0) (2,1) (1,2)

SQMSy[j] 3 3 3 3 3 2 1 2 1 1 2 1

3 Longest Periodic-Preserved Common Factor

In this section, we introduce the longest periodic-preserved common factor prob-
lem and provide a linear-time solution. In the longest periodic-preserved common
factor problem, we are given k ≥ 2 strings x0, x1, . . . , xk−1 of total length N and
an integer 1 < k′ ≤ k, and we are asked to find a longest periodic factor common
to at least k′ strings. We represent the answer LPCFk′ by the length of a longest
factor, but we can trivially modify our algorithm to report an actual factor. Our
algorithm, denoted by lPcf, works as follows.

1. Compute the runs of string xj , for all 0 ≤ j < k.
2. Construct the generalised suffix tree GST(x0, x1, . . . , xk−1) of x0, x1, . . . , xk−1.
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3. For each string xj and for each run [�, r] with period p� of xj , augment GST
with the explicit node spelling x[�..r], decorate it with p�, and mark it as a
candidate node. This can be done as follows: for each run [�, r] of xj , for all
0≤j <k, find the leaf corresponding to xj [�..|xj |−1] and answer the weighted
ancestor query in GST with weight r−�+1. Let aGST be this tree.

4. Mark as good the nodes of aGST having at least k′ different colours on the
leaves of the subtree rooted there.

5. Return as LPCFk′ the string depth of a candidate node in aGST which is also
a good node, and that has maximal string depth (if any, otherwise return 0).

Theorem 5. Given k strings of total length N on alphabet Σ = {1, . . . , NO(1)},
and an integer 1 < k′ ≤ k, algorithm lPcf returns LPCFk′ in time O(N).

Proof. Let us assume wlog that k′ = k, and let w with period p be the longest
periodic factor common to all strings. By the construction of aGST (Steps 1-4
of lPcf), the path spelling w leads to a good node nw as w occurs in all the
strings. We make the following observation.

Observation 6. Each periodic factor with period p of string x is a factor of
x[i..j], where [i, j] is a run with period p.

By Observation 6, in all strings, w is included in a run having the same
period. Observe that for at least one of the strings, there is a run ending with
w, otherwise we could extend w obtaining a longer periodic common factor.
Therefore nw is both a good and a candidate node. By definition, nw is at string
depth at least 2p and, by construction, LPCFk′ is the string depth of a deepest
such node; thus |w| will be returned by Step 5.

As for the time complexity, Step 1 [3,19] and Step 2 [12] can be done in O(N)
time. Since the total number of runs is less than N [3], Step 3 can be done in
O(N) time using off-line weighted ancestor queries [4], and the size of the aGST
is still in O(N). Step 4 can be done in O(N) time [8]. Step 5 can be done in
O(N) by a post-order traversal of aGST. ��

The following example provides a complete overview of the workings of our
algorithm.

Example 7. Consider x = ababbabba, y = ababaab, and k = k′ = 2. The runs
of x are: r0 = [0, 3], per(abab) = 2, r1 = [1, 8], per(babbabba) = 3, r2 = [3, 4],
per(bb) = 1, and r3 = [6, 7], per(bb) = 1; those of y are r4 = [0, 4], per(ababa) = 2
and r5 = [4, 5], per(aa) = 1. Figure 1 shows aGST for x, y, and k = k′ = 2.
Algorithm lPcf outputs 4 = |abab|, with per(abab) = 2, as the node spelling
abab is the deepest good one that is also a candidate.

4 Final Remarks

We introduced a new family of string processing problems. The goal is to com-
pute factors common to a set of strings preserving a specific property and having
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Fig. 1. aGST for x = ababbabba, y = ababaab, and k = k′ = 2.

maximal length. We showed linear-time algorithms for square-free and periodic
factors. We anticipate that our paradigm can be extended to other string prop-
erties.
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17. Inoue, T., Inenaga, S., Hyyrö, H., Bannai, H., Takeda, M.: Computing longest com-
mon square subsequences. In: 29th Symposium on Combinatorial Pattern Matching
(CPM), LIPIcs, vol. 105, pp. 15:1–15:13 (2018)

18. Kociumaka, T., Starikovskaya, T., Vildhøj, H.W.: Sublinear space algorithms for
the longest common substring problem. In: Schulz, A.S., Wagner, D. (eds.) ESA
2014. LNCS, vol. 8737, pp. 605–617. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44777-2 50

19. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: 40th Symposium on Foundations of Comp Science, pp. 596–604 (1999)

20. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge (2005)

21. Peterlongo, P., Pisanti, N., Boyer, F., do Lago, A.P., Sagot, M.: Lossless filter for
multiple repetitions with hamming distance. J. Discr. Alg. 6(3), 497–509 (2008)

22. Peterlongo, P., Pisanti, N., Boyer, F., Sagot, M.-F.: Lossless filter for finding long
multiple approximate repetitions using a new data structure, the Bi-factor array.
In: Consens, M., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 179–190.
Springer, Heidelberg (2005). https://doi.org/10.1007/11575832 20

23. Starikovskaya, T., Vildhøj, H.W.: Time-space trade-offs for the longest common
substring problem. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 223–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 22

24. Thankachan, S.V., Aluru, C., Chockalingam, S.P., Aluru, S.: Algorithmic frame-
work for approximate matching under bounded edits with applications to sequence
analysis. In: Raphael, B.J. (ed.) RECOMB 2018. LNCS, vol. 10812, pp. 211–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89929-9 14

25. Thankachan, S.V., Apostolico, A., Aluru, S.: A provably efficient algorithm for the
k-mismatch average common substring problem. J. Comput. Biol. 23(6), 472–482
(2016)

https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1007/978-3-319-23826-5_6
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/978-3-662-44777-2_50
https://doi.org/10.1007/978-3-662-44777-2_50
https://doi.org/10.1007/11575832_20
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1007/978-3-319-89929-9_14


Adaptive Computation of the
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Abstract. The discrete Fréchet distance is a measure of similarity
between point sequences which permits to abstract differences of res-
olution between the two curves, approximating the original Fréchet dis-
tance between curves. Such distance between sequences of respective
length n and m can be computed in time within O(nm) and space within
O(n + m) using classical dynamic programming techniques, a complex-
ity likely to be optimal in the worst case over sequences of similar length
unless the Strong Exponential Time Hypothesis is proved incorrect. We
propose a parameterized analysis of the computational complexity of the
discrete Fréchet distance in function of the area of the dynamic program
matrix relevant to the computation, measured by its certificate width ω.
We prove that the discrete Fréchet distance can be computed in time
within O((n + m)ω) and space within O(n + m).

Keywords: Adaptive algorithm · Dynamic programming
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1 Introduction

Measuring the similarity between two curves has applications in areas such
as handwriting recognition [14], protein structure alignment [10], quantifying
macro-molecular pathways [13], morphing [3], movement analysis [7], and many
others [15]. One of the most popular solutions, the Fréchet Distance is a
measure of similarity between two curves P and Q, that takes into account the
location and ordering of the points along the curves. It permits, among other
features, to abstract the difference of resolution between P and Q, with appli-
cation to morphing, handwriting recognition and protein structure alignment,
among others [15]. In 1995, Art and Godau [9] described an algorithm comput-
ing the Fréchet Distance between two polygonal curves composed of n and
m segments respectively in time within O(mn log(mn)).

One year before (1994), Eiter and Mannila [4] had extended the notion of
the Fréchet Distance between curves to the Discrete Fréchet Distance
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between sequences of points of respective sizes n and m, demonstrating that
the latter can be used to approximate the former in time within O(nm) and
space within O(n + m) using classical dynamic programming techniques. Two
decades later (2014), Bringmann [2] showed that this worst case complexity is
likely to be optimal, unless a bunch of other problems (among which CNF SAT)
can be computed faster than usually expected. Hence, the bounds about the
computational complexity of the Discrete Fréchet Distance in the worst
case over instances of input sizes n and m are reasonably tight.

Yet, for various restricted classes of curves (e.g. κ-bounded, backbone, c-
packed and long-edged [8] curves), both the Fréchet Distance and the
Discrete Fréchet Distance are known to be easier to compute. Among other
examples, we consider the Fréchet Distance Decision problem, which con-
sists in deciding whether the Fréchet Distance between two curves is equal to
a given value f . In 2018, Gudmundsson et al. [8] described an algorithm decid-
ing if the Fréchet Distance is equal to a given value f in time linear in the
size of the input curves when each edge is longer than the Fréchet Distance

between those two curves. Those results easily project to the Discrete Fréchet
Distance.

Those results for the mere computation of the Discrete Fréchet Distance

suggest that one does not always need to compute the n × m values of the
dynamic program. Can such approaches be applied to more general
instances, such that the area of the dynamic program which needs to
be computed measures the difficulty of the instance?

In this work we perform a parameterized analysis of the computational com-
plexity of the Discrete Fréchet Distance, in function of the area of the
dynamic program matrix relevant to the computation, measured by its certifi-
cate width ω. After describing summarily the traditional way to compute the
Discrete Fréchet Distance and the particular case of long edged curves
(Sect. 2), we describe an optimization of the classical dynamic program based on
two simple techniques, banded dynamic programming and thresholding (Sect. 3),
and we prove that this program runs in time within O((n + m)ω) and space
within O(n + m) (Sect. 4). We conclude with a discussion in Sect. 5 of how our
results generalize those of Gudmundsson et al. [8], and the potential applica-
tions and generalizations of our techniques to other problems where dynamic
programs have given good results.

2 Preliminaries

Before describing our results, we describe some classical results upon which
we build: the classical dynamic program computing the Discrete Fréchet
Distance, and the “easy” case of long-edged curves described by Gudmundsson
et al. [8].

Classical Dynamic Program: Let P [1..n] and Q[1..m] be sequences of n and
m points with n ≥ m. The Discrete Fréchet Distance between P and Q is
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the minimal width of a traversal of P and Q, where the width of a traversal is
the maximal distance separating two points u ∈ P and v ∈ Q, where u and v
progress independently, but always forward.

Such a distance is easily computed using classical techniques from dynamic
programming. Algorithm 1 (page 4) describes a simple implementation in
Python, executing in time within O(nm).

While such a simple algorithm also requires space within O(nm), a sim-
ple optimization yields a space within O(n + m), by computing the Discrete

Fréchet Distance between P [1..i] and Q[1..j] for increasing values of i and j,
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one column and row at the time, keeping in memory only the previous column
and row. We describe in Sect. 3 a more sophisticated algorithm which avoids
computing some of the n × m values computed by Algorithm 1.

Easy Instances of the Fréchet Distance: For various restricted classes of
curves, such as long-edged [8] curves, both the Fréchet Distance and the
Discrete Fréchet Distance are known to be easier to compute (or approxi-
mate). In 2018, Gudmundsson et al. [8] showed that in the special case where all
the edges of the polygonal curve are longer than the Fréchet Distance, the
latter can be decided (i.e., checking a value of the Fréchet Distance) in linear
time in the size of the input, computed in time within O((n + m) lg(n + m)).

In the next section, we describe a quite simple algorithm which not only takes
advantage of long edged curves, but of any pair of curves for which a consequent
part of the array of the dynamic program can be ignored.

3 An Opportunistic Dynamic Program

We describe an algorithm based on two complementary techniques: first, a banded
dynamic program, which approximates the value computed by a classical dynamic
program by considering only the values of the dynamic program within a range
of width w (for some parameter w) around the diagonal (a technique previously
introduced for the computation of the Edit Distance between two strings); and
second, a thresholding process, which accelerates the computation by cutting the
recurrence any time the distance computed becomes larger or equal to a threshold
t (for some parameter t corresponding to a distance already achieved by some
traversal of the two curves). The combination of those two techniques, combined
with a parametrization of the problem, yields the parameterized upper bound
on the computational complexity of the Discrete Fréchet Distance.

Banded Dynamic Program: When computing the Edit Distance (e.g.,
the Delete Insert Edit Distance, or the Levenshtein Edit Distance [1])
between similar strings S ∈ [1..σ]n and T ∈ [1..σ]m (i.e., their Edit Distance d
is small), it is possible to compute less than n×m cells of the dynamic program
array, and hence compute the Edit Distance in time within O(d(n + m)) ⊆
O(nm). The “trick” is based on the following observation: when the distance
between the two strings is d, the “paths” corresponding to d operations trans-
forming S into T in the matrix of the dynamic program errs at most at distance
d from the diagonal between the cell (1, 1) and the cell (n,m). Based on this
observation, it is sufficient to compute the number of operations corresponding
to paths inside a “band” of width d around such a diagonal [1]. This tech-
nique needs some adaptation to be applied to the computation of the Discrete

Fréchet Distance f between two curves, for two reasons: first, f is a real
number (it corresponds to the Euclidean distance between two points) and not
an integer as the number of edition operations, and this number is independent
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of the number of cells of the dynamic program being computed; and second, the
definition of the Discrete Fréchet Distance is based on a maximum rather
than a sum, which actually makes another optimization possible, described in
the next paragraph.

Thresholding: Given two sequences of points P [1..n] and Q[1..m], consider the
Euclidean matrix E(P,Q) of all n × m distances between a point u ∈ P and a
point v ∈ Q. Any parallel traversal of P and Q corresponds to a path in E(P,Q)
from the top left cell (1, 1) to the bottom right cell (n,m); the width of such
a traversal is the maximum value in E(P,Q) on this path; and the Discrete

Fréchet Distance is the minimum width achieved over all such traversals.
Now suppose that, as for the Edit Distance between two similar strings,

the traversal of the Euclidean matrix E(P,Q) corresponding to the Discrete

Fréchet Distance f between P and Q is close to the diagonal from (1, 1) to
(n,m), and that any traversal diverging from such a path “encounters” a pair of
points (u, v) at euclidean distance larger than f (in particular, this happens when
the two curves are “long edged” compared to f). Then, some of the values of
the cells of the dynamic program matrix outside of this diagonal can be ignored
for the computation of the Discrete Fréchet Distance between P and Q.

In the following paragraph we describe how to combine those two techniques
into an adaptive algorithm taking advantage of “easy” instances where a large
quantity of cells of the dynamic program can be ignored.

Combining the Two Techniques: The solution described consists of two algo-
rithms: an approximation Algorithm 2 which computes a parameterized upper
bound on the Discrete Fréchet Distance, and a computation Algorithm 3
which calls the previous one iteratively with various parameter values, in order
to compute the real Discrete Fréchet Distance of the instance.

Algorithm 2 lists an implementation in Python of an algorithm which, given
as parameters two arrays of points P and Q, an integer width w, and a float
threshold t; computes an upper bound of the Discrete Fréchet Distance

between P and Q, obtained by computing only the cells within a band of width
2w around the diagonal from the top left cell (1, 1) to the bottom right cell
(n,m), and cutting all sequences of recursive calls when reaching a distance of
value t or above. This algorithm uses space within (n + m) as it computes the
values from (1, 1) to (n,m) by updating and switching alternatively two arrays of
size n and two arrays of size m (respectively corresponding to rows and columns
of the dynamic program matrix). Its running time is within O(w(n + m)), as it
computes at most w(n + m) cells of the dynamic program array. Furthermore,
it not only returns the value of the upper bound computed, but also a Boolean
breached indicating if the border of the banded diagonal has been reached during
this computation. When such a border has not been reached (and the threshold
value t is smaller than or equal to the Discrete Fréchet Distance between
P and Q), the value returned is equal to the Discrete Fréchet Distance

between P and Q.
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Algorithm 3 lists an implementation in Python of an algorithm which, given
as parameters two sequences of points P and Q, calls the approximation Algo-
rithm 2 on P and Q for widths of exponentially increasing value (by a factor
of two). The first call is performed with an infinite threshold (no information is
available on the similarity of the curve at this point), but each successive call
uses the best upper bound on the Discrete Fréchet Distance between P
and Q previously computed as a threshold.

In the next section, we analyze the running time of Algorithm 3, and describe
a parameterized upper bound on it.

4 Parameterized Upper Bound

The running time of the approximation Algorithm 2 when given parameter w
is clearly within O(w(n + m)): it computes within O(w) cells in at most n + m
rounds, each in constant time. A finer upper bound taking into account the value
of the parameter t requires more hypothesis on the relation between P and Q,
for which we need to consider the running time of the computation Algorithm 3.
We model such hypothesis on the instance in the form of a certificate, and more
specifically in the form of a certificate area of the Euclidean matrix corresponding
to a set of values which suffice to certify the value of the Discrete Fréchet
Distance.

Definition 1. Given two sequences of points P [1..n] and Q[1..m] of respective
lengths n and m and of Discrete Fréchet Distance f , a Certificate Area of
the instance formed by P and Q is an area of the Euclidean matrix of P and Q
containing both (1, 1) and (n,m), and delimited by two paths (one above and one
below), both such that the minimum value on this path is larger than or equal to
f . The width of such a certificate area is the minimal width of a banded diagonal
containing both paths.
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The surface of such an area is a good measure of the difficulty to certify the
Discrete Fréchet Distance, but the minimal width of such an area lends
itself better to an analysis of the running time of the computation Algorithm 3:

Definition 2. Given two sequences of points P [1..n] and Q[1..m], the Certifi-
cate Width ω of (P,Q) is the minimum width of a certificate area, taken over
all possible certificate areas of (P,Q).

Such a width can be as large as n + m in the worst case over instances
formed by sequences of points of respective lengths n and m, but the smaller
this certificate width is, the faster Algorithm 3 runs:

Theorem 1. Given two sequences of points P [1..n] and Q[1..m] forming an
instance of certificate width ω, Algorithm 3 computes the Discrete Fréchet
Distance between P and Q in time within O((n + m)ω) and space within
O(n + m).

Beyond the necessity to measure experimentally the certificate width of prac-
tical instances of the Discrete Fréchet Distance, and the exact running time
of Algorithm 3 on such instances, we discuss some more subtle options for future
work in the next section.

5 Discussion

The results described in this work are by far only preliminary. Among the vari-
ous questions that those preliminary results raise, we discuss here the relation to
the long edged sequences recently described by Gudmundsson et al. [8]; a poten-
tial parameterized conditional lower bound matching our parameterized upper
bound on the computational complexity of the Discrete Fréchet Distance;
(the not so) similar results on the Orthogonal Vector decision problem; and
the possibility of a theory of reductions between parameterized versions of poly-
nomial problems without clear (parameterized or not) computational complexity
lower bounds.

Relation to Long Edged Sequences: In 2018, Gudmundsson et al. [8]
described an algorithm deciding if the Fréchet distance is equal to a given value
f in time linear in the size of the input curves when each edge is longer than
the Fréchet Distance between those two curves. Algorithm 3 is more general
than Gudmundsson et al.’s algorithm [8], but it also performs in linear time on
long-edged instances: the traversal corresponding to the Fréchet Distance of
such an instance is along the diagonal, implying a certificate width of 1. See
Figs. 1, 2 and 3 for the Euclidean matrix, Fréchet Matrix and Dynamic Program
Matrix of a random instance formed of 5 points, each edge of length 100 with a
Fréchet Distance of 13.45.
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The ratio between the Fréchet Distance and the minimal edge length of
the curves might prove to be a more “natural” parameter than the certificate
width to measure the “difficulty” of computing the Fréchet Distance of a
pair of curves: we focused on the certificate width in the hope that such a tech-
nique can find applications in the analysis of other problems on which dynamic
programming has yield good solutions (Fig. 4).

1.41 101.43 193.97 294.66 199.17 227.36
100.14 13.45 94.67 195.37 99.5 142.89
199.48 97.99 5.39 105.43 6.13 113.25
290.44 192.56 104.04 6.0 97.26 109.6
193.23 93.14 13.17 104.98 10.44 99.05
232.69 156.27 112.89 104.58 107.64 6.4

Fig. 1. Euclidean matrix for a long
edged instance: the 6 points from the
first curve were randomly generated at
distance 100 of each other, while the
points from the second curve were gen-
erated by perturbing within a distance
of 10 from the points of the first curve.

1.41 101.43 193.97 294.66 294.66 294.66
100.14 13.45 94.67 195.37 195.37 195.37
199.48 97.99 13.45 105.43 105.43 113.25
290.44 192.56 104.04 13.45 97.26 109.6
290.44 192.56 104.04 104.98 13.45 99.05
290.44 192.56 112.89 104.58 107.64 13.45

Fig. 2. Fréchet matrix for the same
long edged instance as Fig. 1: the
traversal corresponding to the
Fréchet Distance of the instance
is along the diagonal (highlighted in
bold here), resulting in a Fréchet
Distance of 13.45.

1.41 inf inf −1.0 −1.0 −1.0
inf 13.45 inf inf −1.0 −1.0
inf inf 13.45 inf 6.13 −1.0
−1.0 inf inf 13.45 inf inf
1.0 1.0 13.17 inf 13.45 inf

Fig. 3. Dynamic program matrix for
the same long edged instance as
Fig. 1, with width 3 and threshold 20:
“inf” denotes interrupted recurrences
because the distance found is already
larger than the threshold, meanwhile
values outside of the band of width 3
are marked with “−1”.

9.43 19.48 19.48 −1.0 −1.0 −1.0
18.81 11.31 11.31 16.86 −1.0 −1.0
18.81 14.26 11.31 11.31 inf −1.0
−1.0 inf 16.07 11.31 16.5 13.77
−1.0 −1.0 inf 11.31 11.31 11.31

Fig. 4. Dynamic program matrix for a
general instance. The 6 points from the
first curve were randomly generated at
distance 10 of each other, the points
from the second curve by perturbing
within a distance of 10 the points of
the first curve. The computation of the
matrix is performed with width 3 and
threshold 20 as before.

Parameterized Conditional Lower Bound: The original motivation for this
work was to prove a parameterized conditional lower bound on the computational
complexity of the Discrete Fréchet Distance as a step-stone for doing the
same for the computation of various Edit Distances. The first step in this direc-
tion was the identification of a parameter for this problem: the certificate width,
that seems to be a good candidate. The next step is to refine the reduction from
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CNF SAT to the Discrete Fréchet Distance described by Bringmann [2],
in order to define a reduction from (a potential parameterized version of) CNF

SAT to a parameterized version of the Discrete Fréchet Distance.

Parameterized Upper and Lower Bound for the Computation of
Orthogonal Vectors: Bringmann [2] mentions that the reduction from SAT

CNF to the computation of the Discrete Fréchet Distance is similar to
Williams’ reduction from SAT CNF to the (polynomial) problem of deciding
if two sets of vectors contain an Orthogonal Vector pair, and that there
might be a reduction from the Orthogonal Vector decision problem to the
computation of the Discrete Fréchet Distance. This mention called the
Orthogonal Vector decision problem to our attention, and in particular
(1) the possibility of a parametrization of the analysis of this problem, and
(2) a potential linear (or parameterized) reduction from such a parameterized
Orthogonal Vector decision problem to the parameterized computation of
the Discrete Fréchet Distance described in this work. It turns out that there
exists an algorithm solving the Orthogonal Vector decision problem in time
within O((n + m)(δ + log(n) + log(m))), where n and m are the respective sizes
of the sets of vectors forming the instance, and δ is the certificate density mea-
suring the proportion of cells from the dynamic program which are sufficient to
compute in order to certify the answer to the program. The reduction of this to
the Discrete Fréchet Distance will be more problematic: the two measures
of difficulty seem completely unrelated.

A Theory of Reduction Between Polynomial Parameterized Problems:
The study of the parameterized complexity of NP-hard problems [6,11] yields
a theory of reduction between pairs formed by a decision problem P and a
parameter k. The study of adaptive sorting algorithms [5,12] yields a theory of
reductions between parameters measuring the existing disorder in an array to be
sorted (which can also be seen as a theory of reductions between pairs of problems
and parameters, but where all the problems are equal). Considering the theory
of reductions between polynomial problems such as the Discrete Fréchet
Distance, the various Edit Distances between strings, the Orthogonal

Vector decision problem, and many others, one can imagine that it would
be possible to define a theory of reductions between parameterized versions of
these problems.
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Fréchet distance. J. Bioinform. Comput. Biol. 6(1), 51–64 (2008)

11. Marx, D.: Parameterized complexity of constraint satisfaction problems. In: Pro-
ceedings of 19th Annual IEEE Conference on Computational Complexity (CCC),
pp. 139–149 (2004)

12. Moffat, A., Petersson, O.: An overview of adaptive sorting. Aust. Comput. J. (ACJ)
24(2), 70–77 (1992)

13. Seyler, S.L., Kumar, A., Thorpe, M.F., Beckstein, O.: Path similarity analysis:
a method for quantifying macromolecular pathways. PLoS Comput. Biol. 11,
e1004568 (2015)

14. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based app-
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Abstract. There are efficient dynamic programming solutions to the
computation of the Edit Distance from S ∈ [1..σ]n to T ∈ [1..σ]m, for
many natural subsets of edit operations, typically in time within O(nm)
in the worst-case over strings of respective lengths n and m (which is
likely to be optimal), and in time within O(n + m) in some special cases
(e.g., disjoint alphabets). We describe how indexing the strings (in linear
time), and using such an index to refine the recurrence formulas underly-
ing the dynamic programs, yield faster algorithms in a variety of models,
on a continuum of classes of instances of intermediate difficulty between
the worst and the best case, thus refining the analysis beyond the worst
case analysis. As a side result, we describe similar properties for the
computation of the Longest Common Sub Sequence LCSS(S, T ) between
S and T , since it is a particular case of Edit Distance, and we discuss
the application of similar algorithmic and analysis techniques for other
dynamic programming solutions. More formally, we propose a parame-
terized analysis of the computational complexity of the Edit Distance
for various sets of operators and of the Longest Common Sub Sequence
in function of the area of the dynamic program matrix relevant to the
computation.

Keywords: Adaptive algorithm · Dynamic programming
Edit distance · Longest Common Sub-Sequence

1 Introduction

Given a set of edition operators on strings, a source string S ∈ [1..σ]n and a target
string T ∈ [1..σ]m of respective lengths n and m on the alphabet [1..σ], the Edit
Distance is the minimum number of such operations required to transform the
string S into the string T . Introduced in 1974 by Wagner and Fischer [14], such
computation is a fundamental problem in Computer Science, with a wide range
of applications, from text processing and information retrieval to computational
biology. The typical edit distance between two strings is defined by the minimum
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number of insertions, deletions (in both cases, of a character at an arbitrary
position of S) and replacement (of one character of S by some other) needed
to transform the string S into T . Many generalizations have been defined in the
literature, including weighted costs for the edit operations, and different sets of
edit operations – the standard set is {insertion, deletion, replacement}.

(n, m)-Worst Finer Results
Operators Case Complexity Distance Parikh vectors

Swap O(n2) [14] O(n(1 + lg d/n) lg n) DNA
Delete, Insert O(nm) [6] O(d2) O(

∑
nαmα lgnm)

Delete, Replace O(nm) [17] O(d2) O(
∑

nαmα lgnm)
Delete, Swap NP-complete [15] O(1.6181dm) [1] O(σ2nmγσ−1) [3]
Replace, Swap O(nm) [17] O(d2) O(

∑
nαmα lgnm)

Delete, Insert, Replace O(nm) [6] O(d2) O(
∑

nαmα lgnm)
Delete, Insert, Swap O(nm) [15] O(d2)
Delete, Replace, Swap O(nm) [15] O(d2)
Insert, Replace, Swap O(nm) [15] O(d2)

Delete, Insert, O(nm) [6] O(d2)
Replace, Swap

Fig. 1. Summary of results for various combinations of operators from the basic set
{Insert, Delete, Replace, Swap}. The column labeled “(n, m)-Worst Case Complex-
ity” presents results in the worst case over instances of fixed sizes n and m, while
the columns labeled “Finer Results” present results where the analysis was refined
by various parameters: the distance d, the size σ of the alphabet, and some form of
imbalance γ = maxα∈[1..σ] min{nα, mα−nα} between the Parikh vectors of S and T .
For brevity, the only distance based on a single operator presented is the Swap Edit
Distance, as the computation of the others is always linear in the size of the input.

Each distinct set of correction operators yields a distinct correction distance
on strings (see Fig. 1 for a summary). For instance, Wagner and Fischer [14]
showed that for the three following operations, the insertion of a symbol at
some arbitrary position, the deletion of a symbol at some arbitrary position,
and the replacement of a symbol at some arbitrary position, the Edit Distance
can be computed in time within O(nm) and space within O(n + m) using tradi-
tional dynamic programming techniques. As another variant of interest, Wagner
and Lowrance [15] introduced the Swap operator (S), which exchanges the posi-
tions of two contiguous symbols. For two of the newly defined distances, the
Insert Swap Edit Distance and the Delete Swap Edit Distance (equiva-
lent by symmetry), the best known algorithms take time exponential in the input
size [3,4], which is likely to be optimal [14]. The Edit Distance itself is linked
to many other problems: for instance, given the two same strings S ∈ [1..σ]n

and T ∈ [1..σ]m, the computation of the Longest Common Sub-Sequence
(LCSS) L between S and T is equivalent to the computation of the Delete
Insert Edit Distance d, as the symbols deleted from S and inserted from T in
order to “edit” S into T are exactly the same as the symbols deleted from S and
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T in order to produce L. Hence, the LCSS between S and T can be computed
in time within O(nm) and space within O(n + m) using traditional dynamic
programming techniques.

Most of these computational complexities are likely to be optimal in the
worst case over instances of size (n,m): the algorithms computing the three
basic distances in linear time are optimal as any algorithm must read the whole
strings; the Insert Swap Edit Distance and its symmetric the Delete Swap
Edit Distance are NP-hard to compute [16]; and in 2015 Backurs and Indyk [2]
showed that the O(n2) upper bound for the computation of the Delete Insert
Replace Edit Distance is optimal up to a sub-polynomial factor unless the
Strong Exponential Time Hypothesis (SETH) is false.

More recently, Barbay and Pérez-Lantero [3,4], complementing Meister’s pre-
vious results [12] by the use of an index supporting the operators rank and
select on strings, described an algorithm computing this distance in time within
O(σ2nmγσ−1) in the worst case over instances where σ, n,m and γ are fixed,
where γ = maxα∈[1..σ] min{nα,mα−nα} measures a form of imbalance between
the frequency distributions of each string.

Hypothesis: Given this situation, is it possible to take advantage of indexing
techniques supporting rank and select in order to speed up the computa-
tion of other edit distances? Can a similar analysis to that of Barbay and
Pérez-Lantero [3,4] be applied to other edit distances? Are there instances
for which the edit distance is easier to compute, and do such instances
occur in real applications of the computation of the edit distance?

Our Results: We answer all those questions positively, and describe general tech-
niques to refine the analysis of dynamic programs beyond the traditional analysis
in the worst case over inputs of fixed size. More specifically, we analyze the com-
putational cost of four Edit Distances using various rank and select text
indices, as a function of the Parikh vector [13] of the source S and target T
strings. As a side result, this yields similar properties for the computation of the
Longest Common Sub Sequence LCSS(S, T ) between S and T , and definitions
and techniques which can be applied to other dynamic programs. After defin-
ing formally the notion of Parikh’s vector and various index data structures
supporting rank and select on strings in Sect. 2, we describe the algorithms
taking advantage of such techniques in Sect. 3: for the Longest Common Sub
Sequence and Delete-Insert Edit Distance (Sect. 3.1), the Delete Insert
Replace Edit Distance (Sect. 3.2), and finally for the Delete-Replace Edit
Distance and its dual, the Insert-Replace Edit Distance (Sect. 3.3). We
describe some preliminary experiments and their results, which seem to indicate
that those instances are not totally artificial and occur naturally in practical
applications in Sect. 4. We conclude in Sect. 5 with a discussion of other poten-
tial refinement of the analysis, and the extension of our results to other Edit
Distances.
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2 Preliminaries

Before describing our proposed algorithms to compute various Edit Distances,
we describe formally in Sect. 2.1 the notion of Parikh vector which is essential
to our analysis technique; and in Sect. 2.2 two key implementations of indices
supporting the rank and select operators on strings.

2.1 Parikh Vector

Given positive integers σ and n, a string S ∈ [1..σ]n, and the integers n1, . . . , nσ

such that nα denotes the number of occurrences of the letter α ∈ [1..σ] in the
string S, the Parikh vector of S is defined [13] as p(S) = (n1, . . . , nσ).

Barbay and Pérez-Lantero [3] refined the analysis of the Insert Swap Edit
Distance from a string S ∈ [1..σ]n to a string T ∈ [1..σ]m via a function of the
Parikh vectors (n1, . . . , nσ) of S and (m1, . . . , mσ) of T , the local imbalance
γα = min{nα,mα−nα} for each symbol α ∈ [1..σ], projected to a global measure
of imbalance, γ = maxα∈[1..σ] γα. In the worst case among instances of fixed
Parikh vector, they describe an algorithm to compute the Insert Swap Edit
Distance in time within O(σ2nmγσ−1) in the worst case over instances where
σ, n,m and γ are fixed.

Such a vector is essential to the fine analysis of dynamic programs for com-
puting Edit Distances when using operators whose running time depends on
the number of occurrence of each symbol, such as for the rank and select
operators described in the next section.

2.2 Rank and Select in Strings

Given a symbol α ∈ [1..σ], an integer i ∈ [1..|X|] and an integer k > 0, the
operation rank(X, i, α) denotes the number of occurrences of the symbol α in the
substring X[1..i], and the operation select(X, k, α) denotes the value j ∈ [1..|X|]
such that the k-th occurrence of α in X is precisely at position j, if j exists. If
j does not exist, then select(X, k, α) is null.

A simple way to support the rank and select operators in reasonably good
time consists in, for each symbol α ∈ [1..σ], listing all the occurrences of α in
a sorted array (called a “Posting List” [17]): supporting the select operator
reduces to a simple access to the sorted array corresponding to the symbol
α; while supporting the rank operator reduces to a Sorted Search in the
same array, which can be simply implemented by a Binary Search, or more
efficiently in practice by a Doubling Search [5] in time within O(qα lg(nα/qα))
when supporting qα monotone queries in a posting list of size nα (for a given
symbol α ∈ [1..σ]).

Golynski et al. [9] described a more sophisticated (but asymptotically more
efficient) way to support the rank and select operators in the RAM model, via
a clever reduction to Y -Fast Trees on permutations supporting the operators in
time within O(lg lg σ). We describe how to use those techniques to speed up the
computation of various Edit Distances in the following sections.
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3 Adaptive Dynamic Programs

For each of the problems considered, we describe how to compute a subset of the
values computed by classical dynamic programs. We start with the computation
of the Longest Common Sub Sequence (LCSS) and the Delete Insert
(DI) Edit Distance (Sect. 3.1) because it is the simplest; extend its results to
the computation of the Levenshtein Edit Distance (Sect. 3.2); and project
those to the computation of the Delete Replace (DR) Edit Distance and
its symmetric Insert Replace (IR) Edit Distance (Sect. 3.3).

3.1 LCSS and DI-Edit Distance

The Delete Insert Edit Distance is a classical problem in Stringology [6], if
only as a variant of the Longest Common Sub Sequence problem. It is clas-
sically computed using dynamic programming: we describe the classical solution
first, which we then refine.

Classical Solution: Given two strings S ∈ [1..σ]n and T ∈ [1..σ]m, we note
dDI(n,m) the Delete Insert Edit Distance from S to T . If the last symbols
of S and T match, the edit distance is the same as the edit distance between the
prefixes of respective lengths n − 1 and m − 1 of S and T . Otherwise, the edit
distance is the minimum between the edit distance when inserting a copy of the
last symbol of T in S (i.e. deleting this symbol in T ) and the edit distance when
deleting the mismatching symbol in T . More formally:

dDI(S[1..n], T [1..m]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n if m == 0;
m if n == 0;
dDI(S[1..n − 1], T [1..m − 1]) if S[n] == T [m]; and

1 + min
{

dDI(S[1..n − 1], T [1..m]),
dDI(S[1..n], T [1..m − 1])

}

otherwise.

This recursive definition directly yields an algorithm to compute the Delete
Insert Edit Distance from S to T in time within O(nm) and space within
O(n + m). We describe in the next section a technique taking advantage of the
discrepancies between the Parikh vectors of S and T .

Refined Analysis: It is natural to wonder if techniques described in the pre-
vious section can be used in to take advantage of cases where a symbol occurs
many times in one string, but occurs only once in the other: at some point,
the dynamic program will reduce to the case described in the previous section.
To be able to notice when this happens, one would need to maintain dynam-
ically the counters of occurrences of each symbol during the execution of the
dynamic program, or more simply pre-compute an index on S and T supporting
the operators rank and select on it.
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Given the support for the rank and select operators on both S and T , we
can refine the dynamic program to compute the distance dDI(n,m) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if m == 0;
m if n == 0;
dDI(n − 1,m − 1) if S[n] == T [m];
1 + dDI(n − 1,m) if rank(S, T [m]) == 0;
1 + dDI(n,m − 1) if rank(T, S[n]) == 0;

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + dDI(n − 1,m − 1),
n − select(S, T [m])

+ dDI(select(S, T [m], rank(S, T [m]) − 1) − 1,m − 1),
m − select(T, S[n])

+ dDI(n − 1, select(T, S[n], rank(T, S[n]) − 1)) − 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

otherwise.

The running time of the algorithm can then be expressed as a function of
the number of recursive calls, the number of rank and select operations per-
formed on the strings, in order to yield various running times depending upon
the solution used to support the rank and select operators.

Theorem 1. Given two strings S ∈ [1..σ]n and T ∈ [1..σ]m of respective Parikh
vectors (na)a∈[1..σ] and (ma)a∈[1..σ], the dynamic program above computes the
Delete Insert Edit Distance from S to T and the Longest Common Sub
Sequence between S and T

1. through at most 4
∑

a∈[1..σ] nama recursive calls;
2. within O(

∑
a∈[1..σ] nama) operations rank or select;

3. in time within O(
∑

a∈[1..σ] nama × lg(maxa{na,ma}) × lg(nm)) in the com-
parison model; and

4. in time within O(
∑

a∈[1..σ] nama × lg lg σ × lg(nm)) in the RAM memory
model.

Proof. We prove point (1) by an amortization argument. Point (2) is a direct
consequence of point (1), given that each recursive call performs a finite number
of calls to the rank and select operators. Point (3) is a simple combination of
Point (2) with the classical inverted posting list implementation [17] of an index
supporting the select operator in constant time and the rank operator via
doubling search [5]; while point (4) is a simple combination of Point (2) with the
index described by Golynski et al. [9] to support the rank and select operators.

Albeit quite simple, this results corresponds to real improvement in practice:
see in Fig. 2 how the number of recursive calls is reduced by using such indexes.
Moreover, such a refinement of the analysis and optimization of the computation
can be applied to more than the Delete Insert Edit Distance: in the next
sections, we describe a similar one for computing the Levenshtein Distance
(Sect. 3.2) and the Delete Replace and Insert Replace Edit Distance
(Sect. 3.3).
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3.2 Levenshtein Distance, or DIR-Edit Distance

In information theory, linguistics and computer science, the Levenshtein dis-
tance is a string metric for measuring the difference between two sequences [6].
It generalizes the Delete Insert Edit Distance explored in the previous
section by adding the Replace operator to the operators Delete and Insert
(so that it can be also called the Delete Insert Replace Edit Distance, or
DIR for short). The recursion traditionally used is a mere extension from the
one described in the previous section, and the adaptive version only a technical
extension of the one for the Delete Insert Edit Distance: we will compute
the distance dDIR(n,m) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if m == 0;
m if n == 0;
dDIR(n − 1, m − 1) if S[n] == T [m];

1 + dDIR(n − 1, m − 1)
if rank(S, T [m]) == 0
and rank(T, S[n]) == 0;

1 + dDIR(n − 1, m)
if rank(S, T [m]) == 0
but rank(T, S[n]) > 0;

1 + dDIR(n, m − 1)
if rank(T, S[n]) == 0
but rank(S, T [m]) > 0;

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n − select(S, T [m])
+ dDIR(select(S, T [m], rank(S, T [m]) − 1) − 1, m − 1),

m − select(T, S[n])
+ dDIR(n − 1, select(T, S[n], rank(T, S[n]) − 1)) − 1),

1 + dDIR(n − 1, m − 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

otherwise.

The refined analysis yields similar results (we omit the proof for lack of
space):

Theorem 2. Given two strings S ∈ [1..σ]n and T ∈ [1..σ]m of respective Parikh
vectors (na)a∈[1..σ] and (ma)a∈[1..σ], the dynamic program above computes the
Levenshtein Edit Distance from S to T

1. through at most 4
∑

a∈[1..σ] nama recursive calls;
2. within O(

∑
a∈[1..σ] nama) operations rank or select;

3. in time within O(
∑

a∈[1..σ] nama × lg(maxa{na,ma}) × lg(nm)) in the com-
parison model; and

4. in time within O(
∑

a∈[1..σ] nama × lg lg σ × lg(nm)) in the RAM memory
model.

It is important to note that for two strings S and T , the computation of the
Levenshtein Edit Distance from S to T actually generates more recursive
calls than the computation of the Delete Insert Edit Distance from S to
T , but that the analysis above does not capture this difference. In the follow-
ing section, we project this result to two equivalent edit distances, the Delete
Replace and Insert Replace Edit Distances, for which the dynamic pro-
gram explores only half of the position in the dynamic program matrix compared
to the Levenshtein Edit Distance or Delete Insert Edit Distance.
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3.3 DR-Edit Distance and IR-Edit Distance

Given a source string S ∈ [1..σ]n and a target string T ∈ [1..σ]m, the Delete
Replace Edit Distance from S to T and the Insert-Replace Edit Distance
from T to S are the same, as the sequence of Insert or Replace operations
transforming S into T is the symmetric to the sequence of Delete or Replace
operations transforming T back into S.

As before, if the last symbols of S and T match, the edit distance is the same
as the edit distance between the prefixes of respective lengths n−1 and m−1 of
S and T . Otherwise, the edit distance is the minimum between the edit distance
when inserting a copy of the last symbol of T in S (i.e. deleting this symbol in
T ) and the edit distance when replacing the mismatching symbol in S by the
corresponding one in T .

As in the two previous sections, given the support for the rank and select
operators on both S and T , we can refine the dynamic program to compute the
Delete Replace Edit Distance dDR(n,m) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if m == 0;
∞ if n < m;
dDR(n − 1,m − 1) if S[n] == T [m];
1 + dDR(n − 1,m) if rank(T, S[n]) == 0;
1 + dDR(n − 1,m − 1) if rank(S, T [n]) == 0;

min

⎧
⎨

⎩

n − select(S, T [m])
+ dDR(select(S, T [m], rank(S, T [m]) − 1) − 1,m − 1),

1 + dDR(n − 1,m − 1)

⎫
⎬

⎭
otherwise.

The analysis from the two previous sections projects to a similar result.

Theorem 3. Given two strings S ∈ [1..σ]n and T ∈ [1..σ]m of respective Parikh
vectors (na)a∈[1..σ] and (ma)a∈[1..σ], the dynamic program above computes the
Delete Replace Edit Distance from S to T

1. through at most 4
∑

a∈[1..σ] nama recursive calls;
2. within O(

∑
a∈[1..σ] nama) operations rank or select;

3. in time within O(
∑

a∈[1..σ] nama × lg(maxa{na,ma}) × lg(nm)) in the com-
parison model; and

4. in time within O(
∑

a∈[1..σ] nama × lg lg σ × lg(nm)) in the RAM memory
model.

Parameterizing the analysis of the computation of the Longest Common
Sub Sequence, of the Levenshtein Edit Distance and of the Delete
Replace or Insert Replace Edit Distance would be only of moderate theo-
retical interest, if it did not correspond to some correspondingly “easy” instances
in practice. In the next section we describe some preliminary experimental results
which seem to indicate the existence of such “easy” instances in information
retrieval.
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4 Experiments

In order to test the practicality of the parameterization and algorithms described
in the previous section, we performed some preliminary experiments on some
public data sets from the Gutenberg project [11]. We considered each text as a
sequence of words (hence considering as equivalent all the word separations, from
blank spaces to punctuations and line jumps), which results in large alphabets.
Due to some problems with the implementation, we could not run the algorithms
for texts larger than 32 kB (a memory issue with a library in Python), so we
extracted the first 32 kB of the texts “Romeo & Juliet” (English), “Romeo &
Julia” (German), “Hamlet” (German), and “The hound of the Baskervilles”
(English), “The war of the worolds” (English); the last two texts being randomly
picked non Shakespeare texts.

Figures 2, 3 and 4 show the runtime for five pairs of texts for each algo-
rithm described in Sect. 3, the main difference is the use of constant time rank
and select: “Hamlet” (English) vs “Hamlet” (German), “The hound of the
Baskervilles” (English) vs “The war of the worlds” (English), “The hound of
the Baskervilles” (English) vs “Romeo and Juliet” (English), “Romeo & Juliet”
(English) vs “Romeo & Julia” (German), and “Romeo & Juliet” (English) vs
“Hamlet” (German).

Fig. 2. Experimental results for the Delete Insert Edit Distance with constant
rank and select.

For the two types of Edit Distances and the five pairs of texts, the adap-
tive variant is faster. In the case of the Delete Replace Edit Distance, since
the rank and select structures take from 15 to 18 s of preprocessing time, the
adaptive variant is slower in 3 cases. For the three types of Edit Distances, the
speedup of the adaptive variant is less between two texts from the same author
(i.e. “Romeo & Juliet” (English) vs “Hamlet” (English)), because the vocabulary
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Fig. 3. Experimental results for the Levenshtein Edit Distance with constant rank

and select.

Fig. 4. Experimental results for the Delete Replace Edit Distance with constant
rank and select.

is the same, and is the most between texts of distinct languages (i.e. “Romeo
& Juliet” (English) vs “Romeo & Julia” (German) and “Hamlet” (English) vs
“Hamlet” (German)), because the vocabulary (i.e. the alphabet) is mostly dis-
tinct, there seems to be a correlation between alphabet intersection and speedup.
Still, for two texts in the same language, but from distinct authors (i.e. “The
hound of the Baskervilles” (English) vs “The war of the worlds” (English)), the
difference is quite sensible for Delete Insert and Delete Insert Replace
edit distances. Obviously, those experimental results are only preliminary, and a
more thorough study is needed (and underway), both with a larger data set and
with a larger range of measures, from the running time with various indexing
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data structures supporting the operators rank and select, to the number of
entries of the dynamic program matrix being effectively computed. We discuss
additional perspectives for future work in the next section.

5 Discussion

We have shown how the computation of other Edit Distances than the
Insert Swap and Delete Swap Edit Distance is also sensitive to the Parikh
vectors of the input. We discuss here various directions in which these results
can be extended, from the possibility of proving conditional lower bounds in the
refined analysis model, to further refinements of the analysis for these same Edit
Distances, and to the analysis of other dynamic programs.

Adaptive Conditional Lower Bounds: Backurs and Indyk [2] showed that
the O(n2) upper bound for the computation of the Delete Insert Replace
Edit Distance is optimal unless the Strong Exponential Time Hypothesis
(SETH) is false, and since then the technique has been applied to various other
related problems. Should the reduction from the SETH to the Edit Distance
computation be refined as shown here for the upper bound, it would speak in
favor of the optimality of the analysis.

Other Measures of Difficulty: Abu-Khzam et al. [1] described an algorithm
computing the Insert Swap Edit Distance d from S to T in time within
O(1.6181dm), which is polynomial in the size of the input and exponential in
the output size d. The output distance d itself can be as large as n, but such
instances are not necessarily difficult: Barbay and Pérez-Lantero [3] showed that
the gap vector between the Parikh vectors separate the hard instances from
the easy ones, and we showed that the same can be applied to other Edit
Distances.

But still, among instances of fixed input size, output distance, and imbalance
between the Parikh vectors, there are instances easier than others (e.g. the
computation of the Insert Swap Edit Distance on an instance where all the
insertions are in the left part of S while all the swaps are in the right part
of S). A measure which to refine the analysis would be the cost of encoding a
certificate of the Edit Distance, one which is easier to check than recomputing
the distance itself.

Indexed Dynamic Programming: Our results are close in spirit to those
in fixed-parameter complexity, but with an important difference, namely, try-
ing to spot one or more parameters that explain what makes an instance hard
or easy. For the computation of the Insert Swap and Delete Swap Edit
Distances, the size of the alphabet d makes the difference between polynomial
time and NP-hardness. However, Barbay and Pérez-Lantero [3] showed that dif-
ferent instances of the same size can exhibit radically different costs-for a given
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fixed algorithm. The parameterized analysis captures in parameters the cause
for such cost differences. We described how the same logic applies to other types
of Edit Distances, and it is likely that similar situations happen with many
other algorithms based on dynamic programming, such as the computation of
the Fréchet Distance [10], the Discrete Fréchet Distance [8] and the
decision problem Orthogonal Vector [7].
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subquadratic algorithms unless SETH fails. In: Proceedings of the 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 661–670.
IEEE Computer Society, Washington, DC (2014)

8. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical report,
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Abstract. We consider the communication complexity of fundamen-
tal longest common prefix (Lcp) problems. In the simplest version, two
parties, Alice and Bob, each hold a string, A and B, and we want to
determine the length of their longest common prefix � = Lcp(A, B)
using as few rounds and bits of communication as possible. We show
that if the longest common prefix of A and B is compressible, then we
can significantly reduce the number of rounds compared to the optimal
uncompressed protocol, while achieving the same (or fewer) bits of com-
munication. Namely, if the longest common prefix has an LZ77 parse of
z phrases, only O(lg z) rounds and O(lg �) total communication is nec-
essary. We extend the result to the natural case when Bob holds a set
of strings B1, . . . , Bk, and the goal is to find the length of the maximal
longest prefix shared by A and any of B1, . . . , Bk. Here, we give a pro-
tocol with O(log z) rounds and O(lg z lg k + lg �) total communication.
We present our result in the public-coin model of computation but by
a standard technique our results generalize to the private-coin model.
Furthermore, if we view the input strings as integers the problems are
the greater-than problem and the predecessor problem.

Keywords: Communication complexity · LZ77 · Compression
Upper bound · Output sensitive · Longest common prefix · Predecessor

1 Introduction

Communication complexity is a basic, useful model, introduced by Yao [14],
which quantifies the total number of bits of communication and rounds of com-
munication required between two or more players to compute a function, where
each player holds only part of the function’s input. A detailed description of the
model can be found, for example, in the book by Kushilevitz and Nisam [5].

Communication complexity is widely studied and has found application in
many areas, including problems such as equality, membership, greater-than, and
predecessor (see the recent book by Rao and Yehudayoff [9]). For the approx-
imate string matching problem, the paper by Starikovskaya [12] studies its
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deterministic one-way communication complexity, with application to streaming
algorithms, and provides the first sublinear-space algorithm. Apart from these
results, little work seems to have been done in general for the communication
complexity of string problems [13].

In this paper, we study the fundamental longest common prefix problem,
denoted Lcp, where Alice and Bob each hold a string, A and B, and want to
determine the length of the longest common prefix of A and B, that is, the
maximum � ≥ 0, such that A[1..�] = B[1..�] (where � = 0 indicates the empty
prefix). This problem is also called the greater than problem, since if we view
both A and B as integers, the position immediately after their longest com-
mon prefix determines which is larger and smaller. The complexity is measured
using the number of rounds required and the total amount of bits exchanged
in the communication. An optimal randomized protocol for this problem uses
O(lg n) communication and O(lg n) rounds [8,11] where n is the length of the
strings. Other trade-offs between communication and rounds are also possible
[10]. Buhrman et al. [2] describe how to compute Lcp in O(1) rounds and O(nε)
communication.

We show that if A and B are compressible we can significantly reduce the
number of needed rounds while simultaneously matching the O(lg n) bound on
the number of bits of communication. With the classic and widely used Lempel-
Ziv 77 (LZ77) compression scheme [15] we obtain the following bound.

Theorem 1. The Lcp problem has a randomized public-coin O(lg z)-round pro-
tocol with O(lg �) communication complexity, where � ≤ n is the length of the
longest common prefix of A and B and z ≤ � is the number of phrases in the
LZ77 parse of this prefix.

Compared to the optimal uncompressed bound we reduce the number of
rounds from O(lg n) to O(lg z) (where typically z is much smaller than �). At
the same time we achieve O(lg �) = O(lg n) communication complexity and
thus match or improve the O(lg n) uncompressed bound. Note that the number
of rounds is both compressed and output sensitive and the communication is
output sensitive.

As far as we know, this is the first result studying the communication com-
plexity problems in LZ77 compressed strings. A previous result by Bar-Yossef
et al. [1] gives some impossibility results on compressing the text for (approxi-
mate) string matching in the sketching model, where a sketching algorithm can
be seen as a public-coin one-way communication complexity protocol. Here we
exploit the fact that the common prefixes have the same parsing into phrases
up to a certain point, and that the “mismatching” phrase has a back pointer
to the portion of the text represented by the previous phrases: Alice and Bob
can thus identify the mismatching symbol inside that phrase without further
communication (see the “techniques” paragraph).

We extend the result stated in Theorem 1 so as to compute longest com-
mon prefixes when Bob holds a set of k strings B1, . . . , Bk, and the goal is to
compute the maximal longest common prefix between A and any of the strings
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B1, . . . , Bk. This problem, denoted Lcpk, naturally captures the distributed sce-
nario, where clients need to search for query strings in a text database stored at
a server. To efficiently handle many queries we want to reduce both communi-
cation and rounds for each search. If we again view the strings as integers this
is the predecessor problem. We generalize Theorem 1 to this scenario.

Theorem 2. The Lcpk problem has a randomized public-coin O(lg z) round
communication protocol with O(lg z lg k+lg �) communication complexity, where
� is the maximal common prefix between A and any one of B1, . . . , Bk, and z is
the number of phrases in the LZ77 parse of this prefix.

Compared to Theorem 1 we obtain the same number of rounds and only
increase the total communication by an additive O(lg z lg k) term. As z ≤ � the
total communication increases by at most a factor lg k.

The mentioned results hold only for LZ77 parses without self-references (see
Sect. 2). We also show how to handle self-referential LZ77 parses and obtain
the following bounds, where we add either extra O(lg lg �) rounds or extra
O(lg lg lg |A|) communication.

Theorem 3. The Lcp problem has a randomized public-coin protocol with

1. O(lg z + lg lg �) rounds and O(lg �) communication complexity,
2. O(lg z) rounds and O(lg � + lg lg lg |A|) communication complexity

where � is the length of the longest common prefix of A and B, and z is the
number of phrases in the self-referential LZ77 parse of this prefix.

Theorem 4. The Lcpk problem has a randomized public-coin protocol with

1. O(lg z + lg lg �) rounds and O(lg z lg k + lg �) communication complexity,
2. O(lg z) rounds and O(lg z lg k + lg � + lg lg lg |A|) communication complexity

where � is the length of the maximal common prefix between A and any one of
B1, . . . , Bk, and z is the number of phrases in the self-referential LZ77 parse of
this prefix.

Turning again to LZ77 parses without self-references we also show the fol-
lowing trade-offs between rounds and communication.

Theorem 5. For any constant ε > 0 the Lcp problem has a randomized public-
coin protocol with

1. O(1) rounds and O(zε
A) total communication where zA is the number of

phrases in the LZ77 parse of A,
2. O(lg lg �) rounds and O(zε) total communication where z is the number of

phrases in the LZ77 parse of the longest common prefix between A and B.
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We note that all the given bounds are in expectation. Using the standard
transformation technique by Newman [7] all of the above results can be converted
into private-coin results for bounded length strings: If the sum of the lengths
of the strings is ≤ n, then, Newman’s construction adds an O(lg n) term in
communication complexity, and only gives rise to 1 additional round.

Techniques. Our results rely on the following key idea. First, we want to per-
form a binary search over the LZ77-parses of the strings, to find the first phrase
where Alice and Bob disagree. Then, the longest common prefix must end some-
where in the next phrase (see Fig. 1). So Alice needs only to send the offset and
length of her next phrase, and Bob can determine the longest common prefix
with his string or strings (as proven in Lemma 6).

A

B

1 . . . . . . . . . . . . �

Fig. 1. If the longest common prefix L of A and B has z phrases, then the first z − 1
phrases of A, B, and L are identical.

To implement the idea efficiently, we use standard techniques that allow Alice
and Bob to check if a specific prefix of their strings match using O(1) commu-
nication, with only constant probability of error (we call this the Equality
problem). Similarly, if Bob holds k strings, they can check whether any of the
k strings matches Alice’s string with only O(log k) communication, with con-
stant error probability (we call this the Membership problem). This leads to
the following O(log z) round communication protocol.

1. Alice and Bob do an exponential search, comparing the first, two first,
four first, etc., phrases of their strings using Equality or Membership,
until they find a mismatch.

2. Alice and Bob do a binary search on the last interval of phrases from Step 1,
again, using Equality or Membership, until they find their longest common
prefix up to a phrase border.

3. Alice sends the offset and length of her next phrase, and Bob uses this to
determine the longest common prefix.

To efficiently cope with errors in each step (which can potentially accumu-
late), we show how to extend techniques for noisy binary search [4] to an expo-
nential search. Our new noisy exponential search only increases the number of
rounds by a constant factor.

Paper Outline. In Sect. 2, we review protocols for Equality and
Membership. Section 2 also contains a formal definition of the LZ77-parse of a
string. In Sect. 3, we recall efficient techniques to handle errors using noisy binary
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search, and extend them to exponential search. In Sect. 4 we go on to prove The-
orems 1 and 2. In Sect. 5, we show how to extend our results to self-referencing
LZ77 (Theorems 3 and 4). Finally, in Sect. 6, we give the constant-round and
near-constant round protocols promised in Theorem 5.

2 Definition and Preliminaries

A string S of length n = |S| is a sequence of n symbols S[1] · · · S[n] drawn from
an alphabet Σ. The sequence S[i, j] is the substring of S given by S[i] · · · S[j]
and, if i = 1, this substring is a prefix of S. Strings can be concatenated, i.e. S =
S[1, k]S[k+1, n]. Let Lcp(A,B) denote the length of the longest common prefix
between strings A and B. Also, denote by [u] the set of integers {1, 2, . . . , u}.

Communication Complexity Primitives. We consider the public-coin and
private-coin randomized communication complexity models. In the public-coin
model the parties share an infinite string of independent unbiased coin tosses
and the parties are otherwise deterministic. The requirement is that for every
pair of inputs the output is correct with probability at least 1 − ε for some
specified 1/2 > ε > 0, where the probability is on the shared random string. We
note that any constant probability of success can be amplified to an arbitrarily
small constant at the cost of a constant factor overhead in communication. In
the private-coin model, the parties do not share a random string, but are instead
allowed to be randomized using private randomness. Newman [7] showed that
any result in the public-coin model can be transformed into private-coin model
result at the cost of an additive O(log log T ) bits of communication, where T
is the number of different inputs to the players. In our results this leads to an
O(log n) additive overhead, if we restrict our input to bounded length strings
where the sum of the lengths of the strings is ≤ n.

In the Membership problem, Alice holds a string A of length |A| ≤ n, and
Bob holds a set B of k strings. The goal is to determine whether A ∈ B (we
assume that n and k are known to both parties) [9].

Lemma 1. The Membership problem has a public-coin randomized 1-round
communication protocol with m communication complexity and error probability
k2−m, for any integer m > 0.

Proof Sketch. Let F : {0, 1}n → {0, 1}m be a random linear function over GF (2)
where the coefficients of F are read from the shared random source (public coin).
Alice applies F to A and sends the resulting m bits to Bob, i.e., she computes
the product between a random m × n matrix and her string as a vector. Bob
applies the same function to each of his strings, i.e., he computes the product
between the same random matrix and each of his strings. If one of these products
is the same as the one he received from Alice he sends a “1” to Alice indicating a
match. This protocol has no false-negatives and by union bound the probability
of a false-positive is at most k2−m. For further details see e.g. [2,6]. ��
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In the Equality problem, Alice holds a string A of size |A| ≤ n, and Bob
holds a string B. The goal is to determine whether A = B (we assume that n is
known to both parties). Lemma1 implies the following corollary.

Corollary 1. The Equality problem has a public-coin randomized 1-round
communication protocol with m communication complexity and error probabil-
ity 2−m.

Lempel-Ziv Compression. The LZ77 parse [15] of a string S of length n
divides S into z substrings f1f2 . . . fz, called phrases, in a greedy left-to-right
order. The ith phrase fi starting at position ui is the longest substring having
at least one occurrence starting to the left of ui plus the following symbol. To
compress S, we represent each phrase as a tuple (si, li, αi) ∈ ([n] × [n] × Σ),
such that si is the position of the previous occurrence, li is the length of the
previous occurrence, and αi is the symbol at position ui + li. It follows that
s1 = l1 = 0, u1 = 1, α1 = S[1] and we define ei = ui+ li for i ∈ z. That is, the ith

phrase of S ends at position ei. We call the positions e1, . . . , ez the borders of S
and the substring S[si, si+li−1] is the source of the ith phrase fi = S[ui, ui+li].

When a phrase is allowed to overlap with its source, the parse is self-
referential. A more restricted version does not allow self-references and thus
requires that si + li ≤ ui for i ∈ [z]. We consider LZ77 parse without self-
references unless explicitly stated. An LZ77 parse of S can be found greedily in
O(n log |Σ|) time from the suffix tree of S. It is easy to see that z = Ω(lg n) if
self-references are not allowed, while z = Ω(1) for self-referential parses.

3 Noisy Search

The noisy binary search problem is to find an element xt among a sequence of
elements x1, . . . , xn where xi ≤ xi+1 using only comparisons in a binary search.
Each comparison may fail with a constant probability less than 1/2 and faults
are independent.

Lemma 2 (Feige et al. [4, Theorem 3.2]). For every constant Q < 1/2, we
can solve the noisy binary search problem on n elements with probability at least
1 − Q in O(lg(n/Q)) steps.

We now show how to generalize the algorithm by Feige et al. to solve the noisy
exponential search problem. That is, given a sequence x1, x2, . . . where xi ≤ xi+1

and an element x� find an element xr such that � ≤ r ≤ 2� using exponential
search.

Lemma 3. For every constant Q < 1/2, we can solve the noisy exponential
search problem searching for x� with probability at least 1 − Q in O(lg(�/Q))
steps.
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Proof. In case of no errors we can find xr on O(lg �) steps comparing x� and xi

for i = 1, 2, 4, 8 . . . until xi ≥ x�. At this point we have � ≤ i ≤ 2�.
Consider the decision tree given by this algorithm. (See Fig. 2). This tree is

simply a path v0, v1, v2, . . . and when reaching vertex vi the algorithm compares
elements x� and x2i . In order to handle failing comparisons we transform this
tree by adding a path with length li (to be specified later) as a child of vertex
vi. Denote such a path with pi. The search now performs a walk in this tree
starting in the root and progresses as follows: Reaching vertex vi we first check
if x� ≥ x2i−1 . If not, this reveals an earlier faulty comparison and we backtrack
by moving to the parent. Otherwise, we check if x� ≥ x2i . If so we move to vertex
vi+1. Otherwise, we move to the first vertex on the path pi. Reaching a vertex u
on a path pi we test if x� ≥ x2i−1 and if x� < x2i . If both tests are positive, we
move to the only child of u. Otherwise, this reveals an earlier faulty comparison
and we backtrack by moving to the parent of u. When reaching a leaf on path
pi we terminate and report the element corresponding to vi.

The search can be modeled as a Markov process. Assume that �lg �	 = j
and thus j = O(lg �) and direct all edges towards the leaf u on the path pj . For
every vertex v 
= u, exactly one adjacent edge is directed away from v and the
remaining edges are directed towards v. Without loss of generality we can assume
that the transition probability along an outgoing edge of a vertex is greater than
1/2 and the transition probability along the remaining edges is less than 1/2
(this probability can be achieved by taking the majority of O(1) comparisons).

Let b be the number of backward transitions and f the number of forward
transitions. We need to show that f − b ≥ j + lj with probability at least 1− Q
for Q < 1/2 implying that the search terminates in the leaf u. Setting li = ic1
this follows after c2(lg(2j/Q)) = O(lg(�/Q)) rounds from Chernoff’s bound [3]
with suitable chosen constants c1 and c2. ��

. . .
. . .. .

.

Fig. 2. In the proof of Lemma 3, the decision tree for exponential search (left) is trans-
formed to a fault-tolerant decision tree (right).

4 Communication Protocol for Lcp

We now present our protocol for the Lcp problem without self-references. We
consider the case with self-references in the next section. First, we give an efficient
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uncompressed output sensitive protocol that works for an arbitrary alphabet
(Lemma 4). Secondly, we show how to encode LZ77 strings as strings from a small
alphabet (Lemma 5) which allows us to efficiently determine the first phrase
where Alice and Bob disagree. Thirdly, we show that given this phrase Alice
and Bob can directly solve Lcp (Lemma 6). Combining these results leads to
Theorem 1. Finally, we generalize the results to the Lcpk case.

First we show how to solve the Lcp problem with output-sensitive complexity
for both the number of rounds and the amount of bits of communication.

Lemma 4. Let A and B be strings over an alphabet Σ known to the parties.
The Lcp problem has a public-coin randomized O(lg �)-round communication
protocol with O(lg �) communication complexity, where � is the length of the
longest common prefix between A and B.

Proof. Alice and Bob compare prefixes of exponentially increasing length using
equality, and stop after the first mismatch. Let t be the length of the prefixes
that do not match and observe that t ≤ 2�. They now do a binary search on the
interval [0, t], using equality to decide if the left or right end of the interval should
be updated to the midpoint in each iteration. The parties use Corollary 1 with
m = 2, and new random bits from the shared random source for every equality
check. Thus, the probability of a false-positive is at most 1/4, and the faults
are independent. Using Lemmas 3 and 2 we get that we can solve the problem
in O(lg(�/Q)) rounds of communication with probability at least 1 − Q for any
constant Q < 1/2. ��

Note that the size of the alphabet Σ does not affect the complexity of this
protocol. Alice and Bob do however need to agree on how many bits to use per
symbol in order to use the same number of random bits for the equality checks.
Because Σ is known to the parties, they sort the alphabet and use lg |Σ| bits
per symbol.

We move on to consider how to handle LZ77 compressed strings. Recall that
the ith phrase in the LZ77 parse of a string S is represented as a tuple (si, li, αi)
consisting of the source si, the length li of the source, and a symbol αi ∈ Σ.
Observe that the LZ77 parse can be seen as a string where each tuple describing a
phrase corresponds to a symbol in this string. Because we consider LZ77 without
self-references a phrase is never longer than sum of the lengths of the previous
phrases and we can thus bound the number of bits required to write a phrase.

Lemma 5. Let Zi = (s1, l1, α1), . . . , (si, li, αi) be the first i elements in the LZ77
parse of a string S. Then, si and li can be written in binary with i bits.

Proof. Recall that ej is the position in S of the last symbol in the jth phrase.
Since we have no self-references si and li are both no larger than ei−1 they can
be written with lg ei−1 bits. By definition uj = ej−1+1. Therefore, ej = uj+lj =
ej−1 + 1 + lj ≤ 2ej−1 + 1, and it follows that ei−1 ≤ 2ei−2 + 1 ≤ · · · ≤ 2i − 1
since e1 = 1. ��



82 P. Bille et al.

We show that � = Lcp(A,B) can be determined from Lcp(ZA, ZB) with
only one round and O(lg �) communication, where ZA and ZB are the respective
LZ77 parses of A and B.

While a LZ77 parse of a string is not necessarily unique, in this case, we can
assume that the parties as part of the protocol agree deterministically upon their
same decisions on LZ77-compression algorithm (e.g. taking always the leftmost
source when there are multiple possibilities). This ensures that we obtain the
same parsing for equal strings, independently and without any communication.

Lemma 6. Let A and B be strings and let ZA and ZB be their respective LZ77
parses. If Alice knows A and Bob knows B and the length of the longest common
prefix Lcp(ZA, ZB), then they can determine the length � = Lcp(A,B) of the
longest common prefix of A and B in O(1) rounds and O(lg �) communication.

Proof. First, ZA and ZB themselves can be seen as strings over the special
alphabet Σ′ ≡ ([n] × [n] × Σ) of tuples. Letting z = Lcp(ZA, ZB), these LZ77
parses of A and B are identical up until but no longer than their zth tuple. Now,
let � = Lcp(A,B). Let ai and bi denote the ith phrase border in the LZ77 parse
of A and B respectively.

Observe that A[1, az] = B[1, bz] but A[1, az+1] 
= B[1, bz+1] because of how
we choose z and, thus, az = bz ≤ � < az+1, bz+1. Let sz+1, lz+1 be the source
and length of the (z + 1)th phrase in ZA. Alice sends sz+1, lz+1 to Bob in one
round with O(lg az) = O(lg �) bits of communication since sz+1, lz+1 ≤ az. At
this point, it is crucial to observe that Bob can recover A[1, az+1] by definition
of LZ77 parsing: he deduces that A[1, az+1] = B[1, bz]B[sz+1, sz+1 + lz+1], from
which he can compute Lcp(A[1, az+1], B[1, bz+1]) = Lcp(A,B). ��

We can now combine Lemmas 4, 5, and 6 to prove Theorem1. Alice and
Bob construct the LZ77 parse of their respective strings and interpret the parse
as a string. Denote these strings by ZA and ZB . They first use Lemma 4 to
determine Lcp(ZA, ZB), where the parties decide to use 2i+ lg |Σ| random bits
for the equality check of the ith symbols (from Σ′), which suffices by Lemma 5.
Then they apply Lemma 6 to determine Lcp(A,B). In conclusion this proves
Theorem 1.

4.1 The Lcpk Case

In this section we generalize the result on LCP to the case where Bob holds
multiple strings. Here, Alice knows a string A and Bob knows strings B1, . . . , Bk,
where all strings are drawn from an alphabet Σ known to the parties.

The main idea is to substitute the equality-tests by membership queries. We
first generalize Lemma 4 to the Lcpk-case.

Lemma 7. The Lcpk-problem has a randomized public-coin O(lg �)-round com-
munication protocol with O(lg � lg k) communication complexity, where � is the
length of the maximal longest common prefix between A and any Bi.
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Proof. Along the same lines as the proof of Lemma,4, Alice and Bob per-
form membership-queries on exponentially increasing prefixes, and then, perform
membership-queries to guide a binary search. They use Lemma 1 with m = 2 lg k,
and exploit shared randomness as in the previous case. Again, the probability of
a false positive is ≤ 1/4, and the faults are independent. Thus Lemmas 3 and 2
gives us an O(lg �/Q) round communication protocol with total error probability
1 − Q for any constant choice of Q < 1/2.

Since there are O(lg �) rounds in which we spend O(lg k) communication, the
total communication becomes O(lg � lg k). ��

We go on to show that the maximal Lcp(A,Bi) can be determined from
solving Lcpk on ZA and {ZB1 , . . . , ZBk

} with only one additional round and
O(lg n) communication.

Lemma 8. Let ZA, ZB1 , . . . , ZBk
be the LZ77 parses of the strings A,B1, . . . ,

Bk. If Alice knows A, and Bob knows B1, . . . , Bk and the length of the maximal
longest common prefix between ZA and any ZBi

, they can find maxi Lcp(A,Bi)
in O(1) rounds and O(lg n) communication.

Proof. In this case, Bob holds a set, B′, of at least one string that matches Alice’s
first z phrases, and no strings that match Alice’s first z+1 phrases. Thus, if Alice
sends the offset and length of her next phrase, he may determine Lcp(A,Bi) for
all strings Bi ∈ B′. Since the maximal Lcp among Bi ∈ B′ is indeed the maximal
over all Bi ∈ B, we are done. ��
Combining Lemmas 7 and 8 we get Theorem 2.

5 Self-referencing LZ77

We now consider how to handle LZ77 parses with self-references. The main
hurdle is that Lemma 5 does not apply in this case as there is no bound on the
phrase length except the length of the string. This becomes a problem when the
parties need to agree on the number of bits to use per symbol when computing
Lcp of ZA and ZB , but also when Alice needs to send Bob the source and length
of a phrase in order for him to decide Lcp(A,B).

First we show how Alice and Bob can find a bound on the number of random
bits to use per symbol when computing Lcp(ZA, ZB).

Lemma 9. Bob and Alice can find an upper bound �′on the length of the longest
common prefix between A and B where

1. �′ ≤ �2 using O(lg lg �) rounds and O(lg lg �) total communication,
2. �′ ≤ |A|2 using O(1) rounds and O(lg lg lg |A|) total communication.

Proof. Part (1): Alice and Bob do a double exponential search for � and find
a number � ≤ �′ ≤ �2 using equality checks on prefixes of their uncompressed
strings in O(lg lg �) rounds. Again, at the cost of only a constant factor, we apply
Lemma 3 to deal with the probability of false positives.
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Part (2): Alice sends the minimal i such that |A| ≤ 22
i

thus i = �lg lg |A|	
can be written in O(lg lg lg |A|) bits. Alice and Bob can now use n = 22

i

as an
upper bound for �, since � ≤ |A| ≤ 22

i

< |A|2. ��
Assume that Alice and Bob find a bound �′ using one of those techniques,

then they can safely truncate their strings to length �′. Now they know that
every symbol in ZA and ZB can be written with O(lg �′ + lg |Σ|) bits, and
thus, they agree on the number of random bits to use per symbol when doing
equality (membership) tests. Using Lemma 4 they can now find the length of
the longest common prefix between ZA and ZB in O(lg �) rounds with O(lg �)
communication.

We now show how to generalize Lemma 6 to the case of self-referential parses.

Lemma 10. Let A and B be strings and let ZA and ZB be their respective self-
referential LZ77 parses. If Alice knows A and Bob knows B and the length of the
longest common prefix between ZA and ZB, then they can determine the length
� of the longest common prefix of A and B in

1. O(1 + lg lg �) rounds and O(lg �) communication,
2. O(1) rounds and O(lg � + lg lg lg |A|) communication.

Proof. Let si, ei and li be the respective source, border and length of the ith

phrase in ZA. The proof is the same as in Lemma 6 except that the length lz+1

of the (z +1)th phrase in ZA that Alice sends to Bob is no longer bounded by �.
There are two cases. If lz+1 ≤ 2ez, then lz+1 ≤ 2�, and Alice can send lz+1

to Bob in one round and O(lg �) bits and we are done.
If lz+1 > 2ez then the source of the (z + 1)th phrase must overlap with the

phrase itself and thus the phrase is periodic with period length at most ez and
has at least 2 full repetitions of its period. Alice sends the starting position of
the source of the phrase si+1 along with a message indicating that we are in
this case to Bob in O(lg �) bits. Now Bob can check if they agree on next 2ez

symbols. If this is not the case, he has also determined Lcp(A,B) and we are
done. Otherwise, they agree on the next 2ez symbols and therefore (z + 1)th

phrases of both A and B are periodic with the same period. What remains is
to determine which phrase that is shorter. Let la and lb denote the lengths of
respectively Alice’s and Bob’s next phrase. Then (1) follows from Alice and Bob
first computing a number �′ ≤ �2 using a double exponential search and equality
checks in O(lg lg �) rounds and total communication. Clearly either la or lb must
be shorter than �′ and the party with the shortest phrase sends its length to the
other party in O(lg �) bits and both can then determine Lcp(A,B). To get the
result in (2) Alice sends the smallest integer i such that la ≤ 22

i

in a single round
and O(lg lg lg |A|) bits of communication. Bob then observes that if lb ≤ 22

i−1
,

then lb = � and he sends � to Alice using O(lg �) bits. If lb > 22
i

then la = �

and he informs Alice to send him la in O(lg �) bits. Finally, if 22
i−1 < lb and

la ≤ 22
i ≤ �2 he sends lb to Alice using O(lg �) bits. ��

Theorem 3 now follows from Lemmas 4, 9, and 10.
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5.1 Lcpk in the Self-referential Case

Finally, we may generalize Theorem 2 to the self-referential case. Substituting
equality with membership, we may directly translate Lemma9:

Lemma 11. Bob and Alice can find an upper bound on the length �′ of the
maximal longest common prefix between A and B1, . . . , Bk where

1. �′ ≤ �2 using O(lg lg �) rounds and O(lg lg � log k) total communication,
2. �′ ≤ |A|2 using O(1) round and O(lg lg lg |A|) total communication.

Using the lemma above, we can generalize Corollary 10 to the Lcpk-case.

Lemma 12. Let A and B1, . . . , Bk be strings, and let ZA and ZBi
be their

respective self-referential LZ77 parses. If Alice knows A and Bob knows
B1, . . . , Bk and Bob knows the length of the maximal longest common prefix
between ZA and any ZBi

, then they can determine � in

1. O(1 + lg lg �) rounds and O(lg � lg k) communication,
2. O(1) rounds and O(lg � lg k + lg lg lg |A|) communication.

Proof tweak.. Alice and Bob have already found a common prefix of size ez –
question is whether a longer common prefix exists. As before, if Alice’s next
phrase is shorter than 2ez, she may send it. Otherwise, she sends the offset, and
indicates we are in this case. Now, Bob can check if any of his strings agree with
Alice’s on the next 2ez symbols. If none do, we are done. If several do, he forgets
all but the one with the longest (z +1)st phrase, and continue as in the proof of
Corollary 10. ��

Theorem 4 now follows from the combination of Lemmas 11 and 12.

6 Obtaining a Trade-Off via D-ary Search

We show that the technique of Buhrman et al. [2], to compute Lcp of two strings
of length n in O(1) rounds and O(nε) communication, can be used to obtain
a compressed communication complexity. Note that we again consider LZ77
compression without self-references. We first show the following generalization
of Lemma 4.

Lemma 13. Let A and B be strings over an alphabet Σ known to the parties.
The Lcp problem has a public-coin randomized communication protocol with

1. O(1) rounds and O(|A|ε) communication
2. O(lg lg �) rounds and O(�ε) communication

where � is the length of the longest common prefix between A and B, and ε > 0
is any arbitrarily small constant.



86 P. Bille et al.

Proof. Assume the parties agree on some parameter C and have previous knowl-
edge of some constant ε′ with 0 < ε′ < ε (i.e. ε′ and ε are plugged into their
protocol). They perform a D-ary search in the interval [−1, C] with D = Cε′

. In
each round, they split the feasible interval into D chunks, and perform equality
tests from Corollary 1 with m = 2 lg(D/ε′) on the corresponding prefixes. The
feasible interval is updated to be the leftmost chunk where the test fails. There
are lgD C = 1/ε′ = O(1) rounds. The communication per round is 2D lg(D/ε′)
and the total communication is 1/ε′ ·2D lg(D/ε′) = O(Cε′

lgC). The probability
of a false positive for the equality test is 2−m, and thus, by a union bound over D
comparisons in each round and 1/ε′ rounds, the combined probability of failure
becomes 1/4.

1. Alice sends |A| to Bob in lg |A| = O(|A|ε) bits and they use C = |A|. The
total communication is then O(Cε′

lgC) = O(|A|ε) with O(1) rounds.
2. Alice and Bob use Lemma 9 to find an �′ such that � ≤ �′ ≤ �2 in O(lg lg �)

rounds and communication. They run the D-ary search protocol where ε′ <
ε/4, setting C = �′. The extra communication is O(Cε′

lgC) = O(�ε).

��
We can now combine Lemmas 13, 5, and 6 to prove Theorem 5. Alice and

Bob construct the LZ77 parse of their respective strings and interpret the
parses as strings, denoted by ZA and ZB . They first use Lemma 13 to deter-
mine Lcp(ZA, ZB), and then Lemma 6 to determine Lcp(A,B). The parties use
2i+lg |Σ| random bits for the ith symbol, which suffices by Lemma 5. This enables
them to apply Lemma 13 to ZA and ZB. In conclusion this proves Theorem 5.

We note without proof that this trade-off also generalizes to self-referential
parses by paying an additive extra O(lg lg lg |A|) in communication for Theorem 5
(1) and an additive O(lg �) communication cost for Theorem 5 (2). The same
goes for Lcpk where the communication increases by a factor O(lg k) simply by
increasing m by a factor lg k and using the techniques already described.
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Abstract. Representing the trajectories of mobile objects is a hot topic
from the widespread use of smartphones and other GPS devices. How-
ever, few works have focused on representing trips over public trans-
portation networks (buses, subway, and trains) where user’s trips can
be seen as a sequence of stages performed within a vehicle shared with
many other users. In this context, representing vehicle journeys reduces
the redundancy because all the passengers inside a vehicle share the
same arrival time for each stop. In addition, each vehicle journey follows
exactly the sequence of stops corresponding to its line, which makes it
unnecessary to represent that sequence for each journey.

To solve data management for transportation systems, we designed a
conceptual model that gave us a better insight into this data domain
and allowed us the definition of relevant terms and the detection of
redundancy sources among those data. Then, we designed two compact
representations focused on users’ trips (TTCTR) and on vehicle trips
(AcumM), respectively. Each approach owns some strengths and is able
to answer some queries efficiently.

We include experimental results over synthetic trips generated from
accurate schedules obtained from a real network description (from the
bus transportation system of Madrid) to show the space/time trade-off of
both approaches. We considered a wide range of different queries about
the use of the transportation network such as counting-based/aggregate
queries regarding the load of any line of the network at different times.
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1 Introduction

The management of public transportation systems is a complex problem that has
been typically faced from the point of view of the offer (lines, stops, schedules of
journeys for each line, ...). In the last decade, the widespread use of new technolo-
gies allowing somehow the tracking of users’ movements along a network trans-
portation system (mobile phones with GPS, use of RFID technologies, smart
cards used to pay and enter buses/trains, ...) brings new opportunities to gather
the actual usage of the transportation systems allowing to study the problem
from the point of view of users’ demand. In consequence, it is now possible to
develop new applications to exploit those data in order to effectively handle the
resources of the transportation system and to give a better service to the users.

The management of the transportation system has become a Big Data prob-
lem in many important cities around the world, where millions of passengers
use the public transportation network every day. Therefore, even though we can
assume the gathered data is reliable (even in the case of depending on the smart
cards provided to users that typically gather only the entry point to the network,
the end point can commonly be derived using historical data from user trips and
transportation models [9]), the problem lies now on how to represent user trips
in such a way that not only we provide a compact representation but also we
enable performing queries in an efficient way.

While there exist many works that tackle the problem of representing tra-
jectories of mobile objects constrained to networks [5,6,12], they typically aim
at locating the position of those objects from the underlying trajectories. Oth-
ers [7,8] focus on solving strict and approximate path queries that permit to find
the trajectories that follow a given line pattern within a given time interval. The
latter work [7] is, to the best of our knowledge, the first work using a compact
data structure to represent the spatial data (a FM-index [4]). Yet, none of them
have been designed to tackle the analysis of the usage of the transportation net-
work and would hardly support queries such as count the number of user trips
that went from stop X to stop Y , or show the load of the lines at a given hour.

In [1], a representation for user trips along a transportation network referred
to as CTR was presented. The different stops from bus lines were given a node-ID.
Then, each user trip was associated a string composed of the sequence of node-
IDs traversed. Finally, a CSA-based representation [13] was used to represent the
collection with all users’ trips, and a Wavelet Matrix (WM) [2] aligned with the
CSA represented, for each trip, the time instant when every node from that trip
was reached. CTR enabled answering counting-based aggregated queries (number
of users that started/ended a trip at a given node within a given time interval,
number of users that used a node, top-k most used nodes, etc.). In addition,
since it represented the actual trips in a compact self-indexed way, CTR still
possessed enough flexibility to support more complex queries. CTR succeeded at
providing a compact representation for general trips. Yet, it still represented trips
in a redundant way when considering public transportation by bus, train, and
subway. This happens because it does not exploit the fact that all the passengers
in the same bus/train traverse each stop at the same time, nor the topology of
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the network (for all the users’ trips from a stop X to a stop Y along a given line,
all the intermediate stops are always the same).

In this work, we have analyzed the problem of representing both offer (stops,
lines, schedule for each line) and users’ demand (user trips, and stages that
include stops where users get on/off or switch lines) within a public transporta-
tion network. We present a conceptual model that provides valuable insights into
this domain and shows both the data needed and the relationships among them.

Then, we present two complementary structures to represent those data and
show how they handle some useful queries in this context. The first solution
is named Topology&Trip − aware CTR (TTCTR) and is based on a modifica-
tion of CTR that also represents all the user trips but exploits both the net-
work topology and the fact that all the passengers of the same vehicle journey
reach the same stops at the same time, hence temporal information can be
related to the vehicle journey rather than to each user trip. Therefore, it still
makes up a general representation focused on users’ trips. The second solution,
named Accumulated − Matrix (AcumM), does not actually represents user’s trips.
It focuses on the journeys of each line, and accumulates the number of passengers
that get on/off in each stop of each journey. Therefore, AcumM is a summariza-
tion of the load each line had considering each of its journeys, in the same way
a data warehouse is a summarization of the operational data in a database.

The structure of the paper is as follows. In Sect. 2 we discuss the conceptual
model associated to the network transportation problem and provide some def-
initions. In Sect. 3, we present our representation of the offer (lines, stops and
journeys) which is then used in our two solutions. The next sections describe
both TTCTR and AcumM and discuss the types of queries they are designed for.
Section 7 includes experimental results to show the space/time trade-offs of our
proposals. And finally, conclusions and future work are discussed in Sect. 8.

2 A Model to Describe a Public Transportation Network

The E-R conceptual model at Fig. 1 represents the relevant data of any public
transportation system including data related with both the offer and the demand.
We did not include entities such as vehicles or drivers, as they are out of the
scope of this work. To create that model we have defined the following concepts:

– Stop (or Stop-place). Places were passengers can get on/off from a vehicle.
– Lines. A line (or route) is a sequence of stops that starts at a given stop X

and ends in another stop Y . We consider a line and its return line as different
lines because they include different sequences of stops.

– Journeys. We define a journey (or vehicle journey, or line trip) as a trip that
a vehicle performs. It departs at a given day and time from the first stop of a
specific line and follows the complete sequence of stops of that line until the
ending stop, allowing passengers to get on and to get off in each stop. For
instance, a journey is the trip that a bus performed along line L1 departing
at 9:00 am on 2017/05/05, and stopping at each stop of the line. In addition
to the day and time each journey starts, it could be interesting to have the



New Structures to Solve Aggregated Queries for Trips 91

time at which each stop was reached by each specific journey of the line. Yet,
if such an accurate time is not needed, we can save a large amount of space
by only storing, for each stop of a line, the average accumulated time needed
to reach that stop from the initial stop (as in the examples shown along this
paper). Some other solutions, with different trade-off between accuracy of the
temporal data and storage space, are possible. For example, we could store
the average time to get to each stop of a line in peak and non-peak hours.
In any case, all those strategies enable us to associate temporal data to the
user-trips done within a given vehicle journey.

– Stages. A stage represents the pair of stops where a given user respectively
gets on/off to/from a vehicle doing a given journey of a given line.

– User trip. We define a user trip as a sequence of stages. That is, a user trip
can begin at stop A from line 3 and continue up to stop B (first stage), then
change to line 2 up to stop C (second stage), and so on. This enables tracking
user trips from an origin to a destination. Note that, since stages refer to a
given journey, and we can know the time when a journey traverses a stop X,
we can also know when a given user trip reached such stop X.

stop-place line

journey

belongs totraverses

contains

stop

get-on

get-offstage

user-trip

id

num

loc

num-st

seq

time

id st-time end-time
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day num

num-
get-on

num-
get-off

Fig. 1. E-R model for a public transportation network.

3 Towards a Practical Representation: Common
Structures to Represent the Offer

In Sects. 4 and 5, we present two representations. The first one is focused on the
representation of user trips, whereas the second one is focused on the journeys
of each line and basically stores the number of users that get on/off at any
given stop for each journey of a any line. Both techniques require some common
structures that handle the data that represents the offer of public transportation
the network provides. Such offer refers to the structure of the network and
includes the representation of the lines, and, for each line, the schedule of its
journeys; that is, their departure time from the starting stop. In addition, we
use two aligned arrays for each line, one with the sequence of stops, and another
with the average accumulated time to reach each stop from the first stop of
the line. Note that instead of assigning a unique sequence of estimated times to
reach any stop from the line, we could have dealt with several, probably more
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accurate, estimations for peak/low periods, or even we could have stored the
actual time each journey reached each stop. In any case, we can estimate the
time when each journey reaches each stop.

S1 S2 S3 

S4 
S6 

S10 

S5 

S7 
S8 

S9 

S11 

S12 

S14 

S13 

LINE 1 
LINE 2 

LINE 1 

LINE 2 

-  S1 – S2 –  S3 – S10 –  S4 – S7 –  S8 – S9 – S14  (sequence of stops) 

- S13 – S6 – S10 –  S5 – S11 – S9 – S12             (sequence of stops) 
  

    0  180   305   415   550  679   790  883   980  (avg estimated time –in seconds-)     

    0  140   300   433   550  700  805             (avg estimated time –in seconds-)   

 journeys departing each day 
 from 6:00 to 23:40 every 20 minutes:  

journeys departing each day 
from 6:00 to 00:30 every 15 minutes:  

Description of lines 

STOPS -  S1 – S2 – S3 – S4 – S5 – S6 – S7 – S8 – S9 – S10 – S11 – S12 – S13 – S14  
    A    A    A    A    B    B    A    A    A     A     B     B     B     A  

Lines including each stop (inverted index for stops) 

                                            B     B 

06:00

06:23

06:25h 

 (day1) 06:00 – 06:20 – 06:40 –  …   (day2) 06:00 – 06:20 – 06:40 –  … 

  (day1) 06:00 – 06:15 – 06:30 – …   (day2) 06:00 – 06:15 – 06:30 – …  

            journey-ids      0            1             2                                  48           49          50              

               journey-ids      0            1             2                                  64           65          66                           

Fig. 2. Example of (bus) public transportation network.

Figure 2 includes an example of a bus network with two lines (1 and 2). For
each line we show the stops that compose it (e.g. Line 2 contains the sequence
of stops 〈S13, S6, S10, S5, S11, S9, S14〉) and the accumulated times from the
initial stop (e.g. the average time to reach the fourth stop S5 from the starting
stop of the line is 433 s). We also include the starting times for each journey of
each line. In this case, Line 1 has 48 journeys per day, the first one starts at
6:00 am, the second one at 6:20 am, etc.

Note that given a line X we have direct access to the information related
to the i-th stop. Yet, given a stop, we do not know the line/s it belongs to. To
overcome this issue, we include, for each stop Y , the list of lines that include
such stop Y . It is referred to as inverted index for stops in the bottom of Fig. 2.

To sum up, we saw that to represent the network offer we need: (i) a sequence
of stops for each line1; (ii) a schedule with the starting times of the journeys of
each line; and (iii), an inverted index to mark the lines each stop belongs to.

Apart from the network offer, in Fig. 2 we also include (arrows) five user trips
done along the network. For example, there is a user trip (dashed arrow from
S3) that starts at stop S3 at 06:25 am on day-1 (6:20 am + 305 sec.), and follows
the journey of line 1 until S10, where the user switches to line 2 at time 6:35 am
(6:30 am + 300 sec.) and continues the corresponding journey of line 2 (the one
started as 06:30 h in S13) up to stop S12. That is, it includes two stages.
1 We also store average estimated times to reach each stop from first stop of the line.
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4 Topology&Trip − Aware CTR (TTCTR):
A Representation Focused on User’s Trips

A previous representation for user trips along a transportation network, named
CTR [1], basically associates an integer si to each stop in the network, and
represents a user trip ti as the sequence of the stops traversed plus a terminator
$ (ti = s1, s2, . . . , sk$). Finally, a CSA-based representation is used to represent
the collection with all users’ trips, and a Wavelet Matrix (WM) aligned with
the CSA keeps, for each trip, the (discretized) time instant in which every stop
from that trip was reached. For example, the trip from Fig. 2 that started at S3
would be represented as 〈S3, S10, S5, S11, S9, S12, $〉 and the times associated
to those stops would be discretized into 5-min time periods. CTR exploited the
indexing capabilities of the underlying CSA and WM to solve counting-based
spatial, temporal, and spatio-temporal queries.

Our TTCTR is an adaptation of CTR that represents a user trip as a sequence
of stages rather than as a sequence of stops (hence exploiting the topology of the
network). Furthermore, instead of having to represent the time each user trip
reaches a stop, we will only store a reference/id of the journey (within a vehicle
of a line) that the user used. The building process of TTCTR is presented below.

Let us assume a network with ns stops (S) numbered s ∈ [1, ns]; nl lines (L)
numbered [1, nl], and that there are nl

j journeys (J l) for each line l ∈ L numbered
[0, nl

j − 1]. Additionally, we have the starting times for each journey and the
accumulated average times for the stops of each line as discussed in the previous
section. We can define that a user gets on/off from a vehicle following the journey
j of line l at a given stop s, as a triple (s, l, j) where l ∈ L, s ∈ S, j ∈ J l.

Let us define T = {t1, t2, . . . , tz} as a set of z user trips. Since we want
to represent a user trip tx as a sequence of k stages, but it holds that
the final stop of a stage and the starting stop of the next stage are the
same (or close in walking distance), it is not necessary to explicitly repre-
sent the final stop of each stage, except for the final stop. We define tx =
〈(s1, l1, j1), (s2, l2, j2), . . . , (sk+1, lk+1, jk+1)〉, k ≥ 1. That is, we have a sequence
of k triples that indicate that the user got on a vehicle corresponding to the
ji-th journey of line li at stop si. The last triple indicates where the user finally
got off. Note that, for the last two triples, lk = lk+1, and jk = jk+1 since the
beginning of the last stage is represented by the k-th triple, and its end by the
(k + 1)-th triple.

Example 1. Assuming that all the user trips depicted in Fig. 2 belong to our 1st-
day, those user trips can be represented as: t1 = 〈(1, 1,0), (10, 2,1), (11, 2,1)〉,
t2 = 〈(2, 1,1), (7, 1,1)〉, t3 = 〈(3, 1,1), (10, 2,2), (12, 2,2)〉, t4 = 〈(6, 2,0), (11,
2,0)〉, and t5 = 〈(13, 2,2), (9, 1,2), (14, 1,2)〉. Note that, for example, (13, 2,2)
from t5 indicates that, at stop 13, the user got on a vehicle from line 2, that
corresponds to the 2-nd journey. We know it is the 2-nd journey because t5
started at 06:30 h, which is the departure time of journey 2. Note also that the
line and journey ids of the last triple of each trip are identical to the ones in the
previous triple. ��
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In TTCTR, we represent both the spatial (lines and stops) and the temporal
component (journeys) of the user trips of our collection of trips T using respec-
tively a CSA and a WM aligned with the CSA. In the following sections we show
how we handle such components, and how we solve some queries of interest.

4.1 Representing the Spatial Component of TTCTR with a CSA

We use a variant of the CSA [3] for integer alphabets to represent the spatial
component, i.e. the sequence of pairs (si, li) that compose each user trip in T .
However, in order to create a CSA we need to assign each pair (stop, line) a
unique integer id. This will allow us to create an integer sequence S[1, n] (ended
by a $ terminator) over which our CSA will be built. For this purpose we create
a vocabulary V (with 1 + ns(1 + nl) entries) as follows:

– Entry V [0] is reserved for the terminator symbol $.
– Entries 〈V [1], V [2], . . . V [ns]〉 are associated to stops 〈1, 2, . . . , ns〉 and are

used to represent the final stops of the trips. That is, when a given stop x
ends a user trip, it is given id ← x.

– The last nl × ns entries are associated to the sequence composed of the pairs
(s, l) ∈ S × L considering that those pairs are sorted by s and l respectively.
That is, entry V [ns +1] is given to (s, l) = (1, 1); V [ns +2] to (1, 2); V [ns +3]
to (1, 3); . . . ; V [ns+nl] to (1, nl); V [ns+nl+1] to (s, l) = (2, 1), V [ns+nl+2]
to (2, 2), and so on. In practice, in this case, the id/pos-in-V for a pair (s, l)
is obtained as id ← ns + nl(s − 1) + l.

Note that there will be a large number of unused entries (holes) in V . Yet,
this can be efficiently handled by a bitvector B with rank/select capabilities
that marks the used entries from V . Therefore, once we gather the position
(id) corresponding to a pair (s, l) in V , we obtain its final position (id′) in a
vocabulary without holes (V ′) as id′ ← rank1(B, id). Our id′ assignment ensures
that the used pairs (si, l), corresponding to a given stop si, receive contiguous
id′s. This will be interesting at query time.

The next step processes each user trip ti ∈ T , i ∈ [1, z] replacing all the pairs
(stop, line) in ti (except in the last one where the line is already known and we
only need s) by their corresponding id′. After each trip, a 0 (id′ for terminator $)
is added. That is, a trip ti with k stages is regarded as a string s1s2 . . . skslast$,
where 1 ≤ slast ≤ rank1(B,ns) is the id′ of ending stop given to stop s.

Once this process has completed, a sequence S[1, n] that contains only values
from V ′ is obtained, and a CSA can be built on S.

In parallel with the construction of S, we create a sequence Jcodes[1, n]
aligned to S where we set, for each trip ti, the journey-id corresponding to each
stage in ti. Recall the journey-id is the third term from the triples (si, li, ji), i ∈
[1, k] from ti. In addition, assuming that S[p] contains the 0 corresponding to the
terminator $ for the trip, we set Jcodes[p] ← j1 (i.e. the same journey-id as the
starting stop of the trip). According to the discussion above, Fig. 3 shows, for
the user trips in Example 1: (step-1) the sequence of pairs (stop, line) for each
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Fig. 3. Structures involved in the creation of a TTCTR.

trip, and the corresponding Jcodes; (step-2) the vocabularies, including V , B,
and V ′ (ending stops s of trips do not need the line, therefore we use “s :∗”.);2

and (step-3) the structures involved in the creation of CSA from which TTCTR
uses Ψ , D, (and V ′, B).

As in CTR [1], we sort the terminators considering that each trip is a cyclical
string. For instance in Fig. 3, S[18] = 0 would traditionally be followed by S[19] =
0, but for sorting purposes we consider it is instead followed by S[15] = 11. After
that, we make Ψ cyclical in the terms of each user trip. That is, let us assume
that a user trip lays on S[i] . . . S[i + k + 1], i.e. the terminator of the trip is
at position e = i + k + 1 in S. Therefore, being A[j] = e, we modify Ψ [j] in
such a way that A[Ψ [j]] points not to the initial position e + 1 of the next user
trip, but it cyclically points to the beginning of the same trip; that is, we set
Ψ [j] ← Ψ [A−1[i]].3 Using a cyclical Ψ will enable searching efficiently for user
trips that started at a stop X and ended at a stop Y , as we will see below.

4.2 Representing the Temporal Component of TTCTR with a WM

The temporal component of TTCTR includes the sequence Jcodes described
above. Recall Jcodes contains journey-ids aligned to the values in S, and that,
for every line l there are nl

j journeys sorted by their starting time and numbered
as 0 . . . nl

j − 1, and also we have average accumulated times to reach each stop
in the line. Therefore, this representation allows us to describe exact times for
each stop. In practice, we use JcodesΨ , which is aligned to Ψ rather than to S.
See step-4 in Fig. 3. Note that Jcodes[8] = 1 corresponds to JcodesΨ [14] = 1,
since A[14] = 8; Jcodes[9] = 2 corresponds to JcodesΨ [18] = 2, since A[18] = 9;

2 In this example, with only 5 trips, we have only 11 used pairs in V , but in a real
scenario for each stop of each line (existing pair (s, l)) there will be a 1 in B.

3 Note that A−1 is the inverse of the suffix array A; i.e. A−1[i] = j iff A[j] = i.
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and so on. We represent the sequence JcodesΨ with a WM. This saves space,
and provides indexing capabilities to the temporal component.

5 Dealing with Aggregated Data: Accumulated − Matrix

We propose AcumM as an intuitive solution for the representation of two-
dimensional matrices of integers with support to aggregated queries by row,
column, or window/range. In the context of a public transportation network we
found queries referred to a given line where data must be aggregated either by
stop (e.g. number of users that got on a vehicle at stop X); by time-interval,
hence referred to a sequence of consecutive journeys within that time-interval
(e.g. number of users got on at any stop of the line on 2017/03/24); or by stop
and time-interval.

Fig. 4. Example, for a given line, of get-on matrix (a), accumulated matrix (b), and
compact representation with gaps (c). Stop and column 0 are virtual. The values in
column/row 0 are set to zero to simplify operations.

Let us assume that, for a given line, we have a matrix M+ that stores the
number of users that got-on at each stop (column) from each journey (row).
Figure 4(a) includes an example. To efficiently support aggregated queries, we
create, for each line, the accumulated get-on matrix M for M+. We compute
the value of a cell M(r, c) ←

∑r
i=1

∑c
j=1 M+(i, j). That is, each cell con-

tains the sum of all the values from position (1, 1) to position (r, c). M is
depicted in Fig. 4(b). The accumulated matrix M allows us to solve a range
count query over M+ in O(1) time by computing: countRange((x1, y1), (x2, y2)) ←
M(x2, y2) − M(x2, y1 − 1) − M(x1 − 1, y2) + M(x1 − 1, y1 − 1). In AcumM, we
actually represent, for each line, two accumulated matrices that count, respec-
tively, the passengers that get on and get off to/from a journey in each stop.

countRange allows us to add: (i) consecutive values of a column (e.g. users
that got on in a stop X in consecutive journeys, such as those in one day); (ii)
consecutive values in a row (e.g. users that, for a given journey, got on along
a consecutive sequence of stops, such as those in a neighborhood); and (iii)
values in a window (e.g. users that got on in a consecutive sequence of stops in
consecutive journeys).

Being C the capacity of a vehicle, a simple way to decrease space usage
on M (it has ns × nl

j integers) consists in keeping the middle column m ←
(ns + 1)/2 explicitly, and representing the values in the other columns m ± k
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as the difference with respect to column m. This is depicted in Fig. 4(c). The
differences in columns m ± k require at most �log2 kC� bits, while retaining
direct access.

6 Performing Queries on TTCTR and AcumM

AcumM and TTCTR are designed for different purposes and therefore each high-
light in different types of queries.

Queries for Accumulated − Matrix: This data structure resembles a data-
warehouse, i.e. it stores aggregated values (rather than individual trips) to
efficiently answer aggregated queries about the number of users (load of the
network) in a given stop or group of stops over one or more journeys. Recall
countRange efficiently sums the values of any submatrix. Yet, some useful queries
could need more than one countRange operation, and then to either aggregate or
compute the average of those results. For example, if we want to know the aver-
age number of users that got on in line L in stops of a neighborhood (consecutive
stops) between 8:00 and 9:00 along the last month, we will need a countRange
operation for each window including the consecutive stops and the consecutive
journeys inside that period for each day. Finally, we add the results of those
countRange operations (one per day) and divide the result by the number of
days in the month.

Since we have both the accumulated matrix for users getting on and getting
off, we can easily compute queries about the load of the journeys. For example, to
know how many users were inside the vehicle of journey j from line L, between
the stops X and X + 1, we compute: tot up ← how many users got on in
such journey j between stops 1 and X (inclusive), using the accumulated get-on
matrix for line L (countRange of a row); in the same way, using the accumulated
get-off matrix, we compute tot down ← how many users got off in the same
journey and range of stops; and finally, we return the value total ← tot up −
tot down.

Queries for TTCTR: Recall that TTCTR actually stores all the individual trips.
This allows it to answer queries about the patterns users follow when using the
transportation network. For example, queries about how many users start their
trips in stop X, or end their trips in stop Y , or even started their trips in stop X
and ended in stop Y , can be efficiently answered because CSA easily locates the
subsection devoted to each stop, and the cyclic encoding of the trips allows to
ask for patters such as $X or Y $ or even Y $X. Note also that our way to encode
the pairs stop:line guaranties that the occurrences of a stop for different lines are
consecutive in the CSA, therefore, we can ask both how many users start their
trips in stop X or how many users start their trips in stop X of line L. Finally,
using the WM we can filter out those queries by time using the journeys.

Note that none of those queries can be answered by AcumM, which stores the
number of passengers getting on to (off from) a journey in each stop but cannot
track individual trips. On the other hand, in TTCTR, queries about the load
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of the transportation network, such as number of passengers into the vehicle in
journey j between stops X and X + 1, would become very time consuming.

7 Experimental Evaluation

We created a synthetic collection of user trips generated from a GTFS4 descrip-
tion of urban and medium-distance buses5 from Madrid, with 1049 different lines
and 10913 stop locations. We used real stop times from the journeys provided by
the GTFS to generate ten million user trips over the span of a month. Each user
trip created had one or more stages, defined as pairs (stop in, stop out), being
stop in and stop out respectively triples (stop, line, journey) that determine the
stop, line, and the journey where the user got on and got off.

The created user trips started from a random stop on a random journey, and
followed the stops on that journey. After at least two traversed stops, we used
a probability table to determine if the stage ends and user switch lines. In such
case, we simulate the user getting off from that journey and either waiting on
the same stop (at most 30 min) or walking to a nearby (100 m) stop to get on to
a new journey. We ensured there were no inconsistencies in our generated trips
(i.e. users getting on the same line from which they just got off). Trip lengths
were limited to 100 stops. Yet, after each traversed stop, the probability for
ending the trip was 0.01λ, where λ is the number of previously traversed stops.

Finally, we represented all those trips using TTCTR and AcumM.

Implementation Details: Due to the relatively small size of the network, the
common structures were built using plain arrays of fixed size integers. Table 1
shows the space occupied by these structures.

For TTCTR, we used the CSA from [3] tuned the sampling rate for Ψ (tΨ ) to
the values tΨ = {32, 128, 512}. To represent bitvector D we used a SDArray [10].
In Table 2 (left) we show the space required by Ψ , D, B, and V ′ for an input
of 35,702,981 entries in S and Jcodes, when compared to a baseline that uses
fixed width integers to represent the pairs (line, stop) in the trips (that is, of
�log2 |V |� bits/entry, where V is the vocabulary defined in Sect. 4.1). In the WM
of the TTCTR we used a RRR bitvector to compress the bitmaps [11]. We set
sampling parameter s ∈ {32, 64, 128}, as shown in the Table 2 (right), where we
compare the space of WM with a plain representation of the journey-ids that
uses the number of bits needed to represent the maximum number of journeys
on any line, arg maxl∈L�log2 J l�.

For AcumM, we consider both the simple accumulated-matrix and the version
using differential encoding. In the former case we have a simple matrix of integers.
In the latter one, the middle column is kept apart as an integer array. For the
rest of columns in the differential matrix values in each cell are encoded with
� log2 N� bits, being N the maximum difference (i.e. value on those columns).
The space requirements of those structures are shown in Table 3.

4 https://developers.google.com/transit/gtfs/reference.
5 Provided by CRTM (http://www.crtm.es).

https://developers.google.com/transit/gtfs/reference
http://www.crtm.es
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Table 1. Size of common structures (in KiB).

(i) Lines (ii) Schedules (iii) Inverted index of stops Overall size

Size (KiB) 176.54 7299.66 139.96 7616.17

Table 2. Compression of the CSA (left) and WM (right) components from TTCTR.
Percentages refer to the sizes with respect to the size of the uncompressed baseline

tΨ

32 128 512
iCSA 27.13 MB

(39.84)%
21.91 MB
(32.17)%

20.58 MB
(30.22)%

RRR sampling
32 64 128

WM 42.35 MB
(71.07)%

39.43 MB
(66.18)%

37.98 MB
(63.73)%

Table 3. Sizes of the different AcumM variants.

Accumulated matrix Differential matrix

Get-on matrix 11189 KB (100%) 5596 KB (50.01%)

Get-off matrix 11189 KB (100%) 5596 KB (50.01%)

Query Execution Times: We run experiments to show the query execution
times of our proposals. An Intel Xeon E5-2620v4@2.1 GHz machine was used.

On TTCTR, we tested several configurations for the query number of user
trips from stop X to stop Y , labeled as xy∗ in Table 4. The entry for xy with no
subindices applies no line nor time restriction. xyS and xyE restrict, respectively,
the Starting and Ending stop to a specific line. xyT denotes a Temporal restric-
tion (at one random day). Therefore, combinations of these subindices stand for
combinations of these three restrictions. We randomly generated a set of 10, 000
query patterns by choosing trips from all the available user trips. In the densest
setup (tΨ = 32, RRR = 32) all the queries are answered in around 6–30µs.

The last row also includes the times to solve the query: How many users got
on in a stop X on a given line during a given day? (JkS1). We also implemented
this query in AcumM to compare the efficiency for these type of queries.

Table 4. Performance at query time shown in µsecs/query for TTCTR.

RRR = 32 RRR = 64 RRR = 128

tΨ = 32 tΨ = 128 tΨ = 512 tΨ = 32 tΨ = 128 tΨ = 512 tΨ = 32 tΨ = 128 tΨ = 512

xy 6.94 10.28 22.89 6.90 10.23 22.80 6.87 10.21 22.82

xyS 6.89 10.23 22.95 6.86 10.22 22.82 6.90 10.21 22.74

xyE 29.37 62.63 192.86 29.13 62.60 192.01 29.14 62.38 192.28

xySE 29.21 61.84 192.11 28.88 61.83 190.46 28.92 62.05 190.47

xyT 31.85 64.66 195.62 31.63 65.52 195.06 31.95 65.47 195.31

xyST 31.61 63.83 193.41 31.12 65.05 193.14 31.54 64.78 194.23

xyET 31.73 65.04 195.53 31.66 65.73 195.15 32.01 65.09 195.45

xySET 31.36 63.96 194.12 31.17 64.99 193.11 31.42 64.42 193.40

JkS1 5.05 5.85 9.14 5.20 6.01 9.30 5.41 6.31 9.63
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Table 5. Performance at query time for the variants of AcumM (in ns per query).

Accumulated matrix Differential matrix

JkS1(column) 131 211

J1S∗ (rows) 107 221

JkSk (window) 76 182

To test AcumM we considered three types of queries: The query JkS1 dis-
cussed above; total number of passengers that got on in all the stops of a given
journey (1-row), labeled J1S∗; and total passengers that got on along a range of
consecutive stops from several consecutive journeys (window), labeled JkSk. We
generated 20, 000 query patterns based on the real data (line number, stop num-
ber, and journeys), and then run the tests obtaining query times around 0.1µs
when using the accumulated matrix. As expected, the differential accumulated
matrix performs around twice slower. Yet, AcumM performs more than one order
of magnitude faster than TTCTR on query JkS1. Table 5 shows the results.

8 Conclusions and Future Work

We have analyzed the problem of representing trips over a public transportation
network and presented two data structures designed to efficiently answer two
subsets of useful queries. Both approaches use some common data structures
defined to represent the transportation network, that is the offer (lines, schedule
of their journeys and stops) it provides.

The first proposal, TTCTR, represents the whole set of user trips during a
period of time. Each user trip is composed of stages performed over specific
journeys of different lines. This data structure is useful to analyze user trip
patterns, that represent the real demand over the transportation network. Yet,
TTCTR enables not only counting-based queries for the number of passengers
related to any stop of the network, but also queries for stops or stops-lines were
users start/end trips or switch lines. It also allows to retrieve individual trips.

The second structure (AcumM) focuses on the usage of lines. For each line, it
keeps in an accumulated fashion, the number of passengers that, at each stop, get
on/off from the vehicle performing a specific journey of the line. This simplifies
solving queries regarding the load of the different journeys and therefore to
analyze when specific lines must be reinforced with a more frequent schedule.

We understand more research is needed in this topic. Even we can see AcumM
as a data warehouse were we store basically the same information but in an aggre-
gated way, we consider that avoiding the redundancy between both structures
would be desirable. As future work, we are interested in developing a unique
self-indexed structure providing the functionality included in both TTCTR and
acumM .
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Abstract. Much research has been published about trajectory manage-
ment on the ground or at the sea, but compression or indexing of flight
trajectories have usually been less explored. However, air traffic manage-
ment is a challenge because airspace is becoming more and more con-
gested, and large flight data collections must be preserved and exploited
for varied purposes. This paper proposes 3DGraCT, a new method for
representing these flight trajectories. It extends the GraCT compact data
structure to cope with a third dimension (altitude), while retaining its
space/time complexities. 3DGraCT improves space requirements of tra-
ditional spatio-temporal data structures by two orders of magnitude,
being competitive for the considered types of queries, even leading the
comparison for a particular one.

1 Introduction

Geopositioned data is ubiquitously and continuously generated to describe dif-
ferent types of trajectories; e.g. routes of professional transportation vehicles
or our daily running paths. Obviously, large and varied trajectory datasets are
being consolidated, and they are exploited for different and innovative purposes.
Disregarding their final application, managing trajectory datasets poses many
challenges that have attracted much research efforts.

A prominent domain that demands efficient trajectory management is Air
Traffic Management (ATM). ATM systems analyze very large flight-related data-
sets to make decisions to improve air traffic performance, reducing costs, or mak-
ing safer and environmentally friendly airspaces. Currently, ATM services are
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evolving to support and leverage “next generation” technologies like Automatic
Dependent Surveillance-Broadcast (ADS-B). ADS-B is a surveillance technol-
ogy in which aircrafts determine flight parameters (latitude, longitude, altitude,
etc.) via navigation systems, and broadcast them to ground stations, that then
deliver this data to ADS-B providers; e.g. the OpenSky Network [16], that is the
provider of the ADS-B datasets used in our experiments.

ADS-B has been progressively adopted by many aircraft manufacturers, and
more ground stations have been deployed around the world. It has increased
ADS-B coverage, and also the size of ADS-B datasets, whose storage and query-
ing has become more difficult. Storage issues were first addressed using colum-
nar compression [20,22]. Although their numbers are moderately successful, the
resulting representations can not be efficiently queried. More recently, a com-
pressed index for ADS-B (called ADS-BI) has been proposed [21]. It performs
block partitioning and stores descriptive metadata about the block to enable
some types of queries. Block contents are then encoded by columns using uni-
versal compression (e.g. gzip or p7zip), reporting competitive numbers. Although
ADS-BI resolves some type of queries by time or 2D-position, it does not support
altitude-based searches, which is highly desirable for ATM systems; for instance,
when a controller looks for aircrafts flying at certain flight level in a given region.

Therefore, our main objective is to propose a data structure that allows 3D
trajectories to be effectively compressed, and searches to be performed by time
and/or any of the three positional dimensions. It is not a new problem [7], and
some researches have been previously published about 2D (latitude, longitude),
and 3D (including altitude) trajectory management. Data structures like 3DR-
tree [19], HR-tree [13], the MVR-tree [17], or PIST [2] have been successfully
used for many years, but currently show scalability issues when they are used to
manage larger trajectory datasets. The Douglas-Peucker algorithm [8] has been
used to make trajectories more compact; other examples are dead reckoning [18],
TrajStore [6] and Trajic [15].

Our approach, called 3DGraCT, proposes a new compact data structure that
stores and indexes 3D trajectories in compressed space. 3DGraCT enhances
GraCT [14] to manage altitude information, and also to enable query resolu-
tion by this dimension. Our experiments, using different-size ADS-B datasets,
show that 3DGraCT improves space requirements of traditional spatiotemporal
data structures by two orders of magnitude, and competes with them in query
performance, leading the comparison for queries asking for large time intervals.

2 Background

k2-tree. The k2-tree [5] is conceptually an unbalanced k2-ary tree constructed
from a binary matrix by recursively subdividing the matrix into k2 submatrices
of the same size, if k = 2, it is a space/time efficient version of a region quadtree.
First, the original matrix is divided into k2 submatrices of size n2/k2, being
n × n the size of the matrix. Each of these submatrices generates a child of
the root node whose value is 1, if there is at least one 1 in the cells of that
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submatrix, and 0 otherwise. The subdivision continues recursively for each child
with value 1 until a submatrix full of 0s is found or the cells of the original
matrix (i.e., submatrices of size 1 × 1) ar reached. Figure 1 shows an example
of this subdivision (left) and the resulting conceptual k2-ary tree (right up) for
k = 2.

The k2-tree is stored using two bitmaps T and L (see Fig. 1). T stores all the
bits of the k2-tree, except those in the last level, following a level-wise traversal:
first the k2 binary values of the children of the root node, then the values of the
second level, and so on. L stores the last level of the tree.

Fig. 1. Example of a binary matrix (left), the k2-tree conceptual representation (top
right), and the compact representation (bottom right), where k = 2.

k3-tree. The k2-tree can be generalized to deal with a three-dimensional binary
cube, instead of a two-dimensional binary matrix. It can be trivially done by
extending the space partitioning, while maintaining the representation tech-
niques used for k2-trees. Thus, each 1 in the binary cube of the k3-tree [1]
represents a tuple 〈x, y, z〉, where (x, y) are the coordinates in the 2D space, and
z is the altitude. It is possible to obtain efficiently the value of a cell, a cube,
or slices of the cube, by just performing rank and select operations [10] over T
and L.

Re-Pair. Re-Pair [12] compresses a sequence by recursively substituting pairs
of symbols by a new one. Given a sequence of integers I (called terminals) the
compression process is as follows: (1) it obtains the most frequent pair of integers
ab in I; (2) it adds rule W → ab to dictionary R, where W is a new symbol not
present in I (called a non-terminal); (3) every occurrence of ab in I is replaced
by W , and (4) it repeats steps 1–3 until all pairs in I appear only once (see
Fig. 2). The resulting sequence after compressing I is called C.

GraCT. GraCT [4] is a compact data structure to represent and query tra-
jectories of moving objects in a free space of two dimensions. It requires that
all objects declare their positions at regular time instants (e.g. each minute),
but interpolation is used when an object does not inform its position in a given
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Fig. 2. Example of Re-Pair compression.

instant. GraCT uses a raster model to represent the space; i.e. it is divided into
cells (squares) of a fixed size, and it is assumed that objects fit in one of these
cells. The size of the cells and the time elapsed between consecutive instants are
parameters that can be adapted to particular cases.

To store absolute positions of all objects, every d time instants, GraCT uses
a data structure based on the k2-tree, which is called snapshot. The distance,
d, between snapshots is another parameter of GraCT. Between two consecutive
snapshots, the trajectory of each moving object is represented as a log, which is
an array of relative movements with respect to the previous time instant.

3 3DGraCT

3DGraCT proposes an extension of GraCT to three dimensions, so the space is
divided into cells (small cubes) of fixed length, that form a bigger cube.

Snapshots. Each d time instants, there is a snapshot Sk, where k is the time
instant represented by the snapshot. These snapshots are organized as k3-trees.
A leaf of the k3-tree set to 1 (i.e., a 1 in the bitmap L) means that one or
more aircrafts1 are placed in the corresponding cell, but the snapshot needs to
determine which objects are located in that cell. Following the order of 1s in
L, an array of object identifiers (aircrafts) holds that information. This array is
denoted as perm, since it is a permutation [11]. An additional bitmap, called Q,
is aligned with perm. It marks with 0 that the aligned object identifier in perm
is the last object in the corresponding cell, and 1 means that more objects are
located in that cell.

Figure 3 shows an example of snapshot.2 The two matrices models the first
two slices of an 8×8×8 cube representing the 3D space. Each slice contains the
horizontal positions of all aircrafts flying at a given altitude. Each matrix shows
object identifiers at certain positions, and the corresponding k3-tree encodes this
information by assuming that no objects are contained in the remaining slices.
Each non-empty position in matrix corresponds to a bit set to 1 in L. The object
identifiers corresponding to the first 1 in L (which is at position 3 of L) are stored
starting at position 1 of perm. Q is then accessed to count the number of objects
1 From now on, we will refer to them simply as objects or moving objects.
2 Note that only shaded structures are used to encode the snapshot, the other ones

are used for illustration purposes.
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that are located in this cell: a sequential search is performed from Q[1] until the
first 0 (located at Q[2]). Thus, there are two objects in the inspected cell. The
corresponding object identifiers are retrieved from perm[1] = 3 and perm[2] =
6. Now, in position 3 of perm starts the object identifiers corresponding to the
second 1 in L, and so on.

Fig. 3. The position of objects in the 3D space (top left), the conceptual k3-tree (top
right), and the snapshot (bottom).

These structures allow 3DGraCT to address two types of queries:

– Find the objects in a box of the 3D space. The k3-tree is traversed from the
root to the leaves to obtain positions n1, n2, . . . nm, in L, that corresponds to
positions marked with 1 in the queried box. For each ni, we count the number
of 1s in the array of leaves L until the position ni; it obtains the number of
non-empty leaves up to the nth

i leaf, x = rank1(L, ni). Then, the position of
the (x − 1)th 0 in Q is obtained, which indicates the last bit of the previous
leaf (with objects), and by adding 1, we get the first position in perm with
the objects of the leaf corresponding to ni, p = select0(Q,x − 1) + 1. From
p, object identifiers aligned with 1s in Q are retrieved, until a 0 is reached (it
marks the last object identifier located in a leaf).

– Find the position in the 3D space of a given object. The desired object identi-
fier is first searched in perm. Our permutation is enhanced with shortcuts to
avoid sequential searches. Assuming the object identifier is located at position
k, the following step looks for its corresponding position in L. We calculate
the number of leaves before the object at perm[k]: y = rank0(Q, k− 1). Then
we find in L the position of the (y+1)th 1, that is, select1(L, y+1). This value
is used to traverse the k3-tree upwards in order to obtain the cell position in
the 3D space, and thus the horizontal position and altitude of the object.
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Log of Relative Movements. The use of a snapshot for encoding each time
instant would consume too much space, instead, between snapshots, 3DGraCT
stores for each aircraft the relative movements with respect to the last known
position. A relative movement consists of 3 values, 〈x, y, z〉, which are the number
of cells of difference between the new position and the last known position, in
each dimension. Probably, 〈x, y, z〉 will be numbers with a small magnitude, as
the differences between consecutive time instants cannot be very big. Instead of
using 32 bits for each value, we fit the three values into a 32-bit integer using
12 bits for the x and y values and 8 bits for the z component. In Fig. 4(a), we
can see a relative movement of 1 cell up on the y-coordinate, 3 cells to the right
on the x-coordinate and 2 cells down on the z-coordinate. Below, observe that
those values are encoding using Zig-Zag encoding (−1 → 1, 1 → 2,−2 → 3, . . .),
and then they are packed in a 32-bit integer.

Obviously, this works well as long as the assumption that there are small
differences between two consecutive positions is maintained. However, there may
be periods of time without information about the positions of the aircraft (for
example, the aircraft is in an area without reception stations). In those cases,
the 32-bit integer comprising 〈x, y, z〉 would not be enough. Observe that, to
save space, our method does not explicitly store the time instant of a recorded
position, it can be derived from its position inside the log. Therefore, 3DGraCT
requires a method to manage that disappearances/appearances.

Between two consecutive snapshots Sk and Sk+d, each object is represented
by a log, Lk,k+d(idj), where idj is the identifier of the object. It is a sequence of
codewords of the following types: (1) an integer encoding a relative movement;
(2) Disappearance (D) codeword, which means that we have no information
about the position object idj from one time instant of Lk,k+d(idj) until its end;
(3) Absolute appearance (AA), which means that we have no information about
the position of idj from the beginning of Lk,k+d(idj) until a time instant cov-
ered by Lk,k+d(idj), where that information appears; (4) Relative disappearance,
which means that the information about the position of idj disappears in a time
instant of Lk,k+d(idj), but reappears in a time instant of the same portion of
the log.

In order to maintain the synchronization of the sequences of values in
Lk,k+d(idj), the appearances and disappearances require the storage of their
corresponding time instant. In addition, they also require the storage of the
absolute position of the appearance/disappearance. The relative disappearances
imply the storage of the number of time instants they lasted and the relative
movement with respect to the last known position.

In Fig. 4(b), it is shown an example. The relative movements are depicted
with the three relative displacements 〈z, x, y〉3. The array D stores the duration
of a relative disappearance and the exact time instant of absolute appearances
and disappearances. For example, in L0,4(1), there is a relative disappearance
that lasts two instants, and in L0,4(7), the object appears at time instant 3.
In addition, array P stores the relative movements of relative disappearances

3 〈z, x, y〉 notation indicated that these three values are packed in a 32-bit integer.
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and the absolute position of absolute appearances or disappearances. For exam-
ple, in L0,4(1), the 〈1, 4, 1〉 tuple in P0,4(1) means that the object reappeared
1 cell upwards in the z-coordinate, 4 cells to the right in the x-coordinate, and
1 cell upwards in the y-coordinate. In L0,4(7), the object appears in the abso-
lute position (0, 5, 2) (see P0,4(7)). In the figure, the values are aligned to their
corresponding time instants, but this is only for illustration purposes, thanks to
the array D, for one object, all the logs are stored as a sequence. D and P are
compressed with DACs [3], a compressor for sequences of integers that provides
direct access to any position without the need of decompressing the previous
numbers.
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t1 t2 t3 t4

RM
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Fig. 4. The encoding of relative movements (left) and logs of objects (right).

Compressing the Log. Logs represent an important saving in space with
respect to snapshots, but it is possible to obtain additional compression tak-
ing advantage the following fact: aircrafts spend most of the time following the
same course at a constant speed. This situation will be represented in the logs
as sequences of repetitive numbers, that is, the same relative displacements with
respect to the previous time instant. These series of similar numbers are com-
pressed very efficiently using a grammar compressor, such as Re-Pair.

To improve the query processing, the Re-Pair rules in 3DGraCT are enriched
with additional information. Each rule in R has the following information: s →
a, b,#t, x, y, z,MBB, where: (1) s, a and b are the components of a normal rule
of Re-Pair, (2) #t is the number of instants covered by the rule, (3) 〈z, x, y〉 are
the relative coordinates of the final position of the object after the application
of the rule (that is, the displacement considering (0, 0, 0) the initial position
before the application of the rule) and, (4) MBB is the Minimum Bounding
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Box enclosing the movements of the rule. MBB is represented by six coordinates
(z1, x1, y1, z2, x2, y2), which are the points at the ends of a diagonal of the box.

For example, in Fig. 4, in L0,4(4), the two 〈1, 1, 1〉 consecutive relative move-
ments produce a rule, W → 〈1, 1, 1〉, 〈1, 1, 1〉, 2, 〈2, 2, 2〉, (0, 0, 0, 2, 2, 2), and then
L0,4(4) = W,D. Thanks to the additional information, the non-terminal symbols
of the logs do not need to be decompressed in many cases. For example, if we
wish to know the position of object 4 at t2, we obtain its absolute position in
the snapshot S0 (Fig. 3), which is (0,4,0), and then the first symbol of L0,4(4)
(W ) is applied. Since W covers 2 time instants, its application to the position
at t0 produces the position of the object at the queried time instant. For this,
the relative displacement (2, 2, 2) is added to the original position, obtaining the
position (2, 6, 2).

4 Querying

Obtain the Position of an Object. To obtain the position of an object at
a given time instant tq, first, the algorithm retrieves the position of the object
in the closest snapshot to tq. If the snapshot does not represent tq, then the
algorithm follows the movements through the log until it reaches tq, as it was
explained in the previous section, using the relative coordinates included in the
rules when possible. When the nearest snapshot is located before tq, the process
follows a forward traversal of the log, otherwise, the process performs a backward
traversal.

Obtain the Trajectory of an Object. Given an interval of time [ts, te] and
an object, this query obtains all the positions of the object between ts and te.
First, the query obtains the position of the object at ts using the algorithm
explained for the previous query, and then it applies the movements of the log
until it reaches the position at te. Since the additional information of the rules
does not contain the detailed positions of the trajectory, the algorithm has to
decompress every non-terminal value of the log containing a ti ∈ [ts, te].

Time Slice Query. Let r = [x1, y1, z1] × [x2, y2, z2] be a rectangular cuboid
(or box) and tq a time instant, this query returns all objects within r at tq. Let
(sx, sy, sz) be the maximum speed vector of any object in our dataset, that is,
the maximum speed in each of the three axes of the space achieved by any object
in the dataset. We denote Er(tk, tq), the expanded region of r from tk to tq, as
the area that contains any object active at tk capable of being located within r
at tq. Hence, Er(tk, tq) is r extended in the three dimensions; in the x-axis to
the coordinates [x1 − sx · (tq − tk), x2 + sx · (tq − tk)], and repeat the same for
the y-axis and z-axis. Assuming that the closest snapshot is Sk and that tk ≤ tq,
the algorithm obtains the candidate objects C inside Er(tk, tq) at tk. If tk = tq,
the algorithm returns C. Otherwise, it tracks the movements in Lk,k+d for each
object in C until it reaches tq. During this process, after obtaining the position
of an object cj at ti, we can discard cj if it is outside Er(ti, tq). The position at
tq can be given by a terminal or a non-terminal value. In the first case, we apply
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the movement and check if the object is within r. In the second case, the object
is part of the solution when the MBB of the additional information of the rule
defining the non-terminal value is completely contained in r, and the object can
be pruned if its MBB does not intersect r. However, when the MBB intersects r
(but it is not completely contained), the algorithm has to decompress the non-
terminal symbol using the Re-Pair rule to obtain the exact position of the object
at tq. If the closest snapshot to tq is after it, then the algorithm performs the
same process backwards.

Time Interval Query. Given a box r and an interval of time [ts, te], this query
obtains all objects within r at any ti ∈ [ts, te]. This query could be solved in a
similar way to the previous one. However, to avoid large expanded regions, that
lead to track too many candidate objects, the query interval [ts, te] is divided
into as many queries as portions of log overlaps. Then, each one of these portions
[t′s, t

′
e] can be solved in a similar way to time-slice. First, the algorithm obtains

the candidates from the closest snapshot, using the expanded region with respect
to t′e; then it applies the movements of the log. During the processing of the log
of a candidate object cj , the algorithm has to take into account that when the
traversal reaches a symbol sm that after its application obtains the position
(xi, yi, zi) at a time instant ti ∈ [ts, te]: (1) cj is part of the solution if (xi, yi, zi)
is within r; (2) if (xi, yi, zi) is not within Er(ti, t′e), then cj can be discarded of
the processing of the current portion; (3) if (xi, yi, zi) is outside r but within
Er(ti, t′e), then cj continues as a candidate that needs to be tracked. If sm is
a non-terminal symbol that produces a position at ti > t′e and covers the time
interval [tu, ti], where tu ≤ t′e: (1) if the MBB of sm is fully within r, then cj is
part of the solution (2) if the MBB of sm does not intersect r, then cj is discarded
in the processing of the current portion. (3) if the MBB of sm intersects r, the
algorithm has to decompress sm to check if sm involves any tl ∈ [tu, t′e] whose
position is within r.

5 Experimental Evaluation

Our experiments analyze space/time tradeoffs of 3DGraCT using real-world
ADS-B data. We also evaluate the use of interpolation to fill in large periods of
missing data during the trajectory. For comparison purposes, we propose a base-
line including the MVR-tree [17], but we do not include ADS-BI [21] because it
does not provide altitude-based queries, and its inner index stores some string
dimensions which are not covered by 3DGraCT.

Both 3DGraCT and the MVR-tree are coded in C++. 3DGraCT uses some
structures from SDSL [9] and MVR-tree is obtained from the spatialindex library
(libspatialindex.github.io). All experiments were run on an Intel R© CoreTM

i7-3820 CPU@3.60 GHz (4 cores), 10 MB of cache and 64 GB of RAM, over
Ubuntu 12.04.5 LTS (kernel 3.2.0-115, 64 bits), using gcc 4.6.4 with -O9 flag.

Dataset Details. We use four real ADS-B datasets including descriptive data
of flights between different airports of Europe (see details in Appendix A). Each
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dataset covers a different period of time, namely one day, one week, two weeks,
and one month. Positions are discretized into a cube where the cell size is 5 km
in x-axis, 5 km in y-axis, and 100 m in z-axis. Since aircraft positions can contain
incorrect information and they can be emitted at different time rates, we discard
incorrect positions and normalize timestamps to obtain regular instants every
15 s.

Gate-to-gate trajectories are difficult to reconstruct from ADS-B data
because some broadcasted positions are lost, mainly due to lack of coverage.
Although we use disappearance and reappearance codewords to represent these
situations, we consider relevant to understand how they affect to 3DGraCT
tradeoffs. We use the original datasets to generate a new ones, where aircraft
positions are interpolated when no information is available during, at least, 15
minutes. As consequence, we have eight datasets: four real-world datasets (1D,
1W, 2W, 1M ) and four interpolated datasets (1D-I, 1W-I, 2W-I, 1M-I ). Table 1
shows the details of each dataset. Note that the fourth and fifth rows give,
respectively, dataset sizes of binary and p7zip-compressed representations.

Table 1. Dataset details.

Dataset 1D 1D-I 1W 1W-I 2W 2W-I 1M 1M-I

Time 1 day 1 day 1 week 1 week 2 weeks 2 weeks 1 month 1 month

Objects 1082 1082 1764 1764 2003 2003 2263 2263

Interpolated No Yes No Yes No Yes No Yes

Binary 7.31M 7.68M 55.32M 58.27M 115.57M 122.03M 261.01M 275.35M

p7zip 1.71M 1.86M 12.58M 13.09M 26.03M 27.18M 57.45M 60.14M

(ratio) 23.41% 24.19% 22.73% 22.47% 22.53% 22.27% 22.01% 21.84%

Compression Ratio. We define compression ratio as the ratio between the
binary size and the compressed size. The last row of Table 1 gives compression
ratios reported by p7zip for all datasets, while Fig. 5(a) illustrates 3DGraCT
numbers for one day and one month datasets, using different periods of snap-
shot (120, 240, 360 and 720 time instants). p7zip report stable ratios around 22–
24%, but 3DGraCT effectiveness is clearly influenced by the distance between
snapshots, because snapshot encoding requires more space than log compression.
Thus, the more-distanced the snapshots are, the better the results are. In our
experiments, 3DGraCT reports its best ratios using a separation of 720 time
instants between snapshots, outperforming p7zip in all datasets. For instance,
3DGraCT reports 22.29% for 1D and p7zip 23.41%. This gap increases for larger
datasets: 3DGraCT only needs 14.73% of the original 1M size, while p7zip
demands 22.01%. Thus, 3DGraCT is more effective than a powerful compressor
like p7zip, while retaining search capabilities.

This comparison also applies for interpolated datasets. Note that, in this case,
3DGraCT reports slightly better results, meaning that missing information adds
an small overhead (≈ 2%) to our structure.

Query Times. Query times are averaged over the following settings: (1) Object
t : 20,000 queries that obtain the position of an object at a given time instant, (2)
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Trajectory : 10,000 queries obtaining trajectories that cover 2,000 time instants,
(3) Time Slice S : 1,000 time slice queries involving a small region (20×20×20),
(4) Time Slice L: 1,000 time slice queries specifying large regions (160 × 160 ×
160), (5) Time Interval S : 1,000 time interval queries involving small regions and
intervals of 50 time instants, (6) Time Interval L: 1,000 time interval queries
specifying large regions and intervals of 400 time instants. Query times for 3D-
GraCT over real-world (3D-GraCT) and interpolated (3D-GraCT-I) datasets
are distinguished in the following figures.

Figure 5(b) shows that query times of Object t increase with distance between
snapshots because larger log portions must be processed. On the contrary,
Fig. 5(c) shows that Trajectory queries are slowler for less distanced snapshots
because more snapshots must be checked.

In region queries, Time Slice and Time Interval, the number of candidates
depends on the period between snapshots. Time Slice is slower as the distance
between snapshot gets larger (see Figs. 5(d) and (e)), because the extended region
grows and the number of candidates that are tracked is also larger. Figures 5(f)
and (g) show that Time Interval queries behave similar to Time Slice ones,
except in the right part of Fig. 5(g). In this case, the expanded region covers the
whole space for each period of snapshot, so the number of candidates between
different settings remains constant. Thus, traversing the log demands the same
computation, but less snapshots are checked for larger periods.

Finally, it is worth noting that the effect of interpolation is not very relevant
to 3DGraCT performance. It is only a slight improvement for region queries and
large datasets. Thus, we conclude that the interpolation of missing positions
avoids the cost of managing appearances and reappearances, improves Re-Pair
effectiveness, and allows logs to be processed faster. For this reason, querying
real-world datasets are 3%–10% slower.

Comparison with MVR-Tree. 3DGraCT and MVR-tree are compared over
the real-world datasets of our setup: 1D, 1W, 2W and 1M. It is worth noting
that MVR-Tree space requirements are 250–300 times larger than 3DGraCT
one, but we tune MVR-Tree to run on main-memory.

Our analysis show that MVR-tree is only efficient for Time Slice, Time Inter-
val, and knn queries. Although MVR-tree can obtain the position of an object
at a given time instant, or can follow the trajectory of the object in a given
interval, these are expensive queries.

MVR-tree can be enhanced with an auxiliary 3DR-tree [17], but the resulting
structure would consume even more space. Thus, we only analyze queries where
MVR-tree is efficient.

Figures 5(d) and (e) show that MVR-tree outperforms 3DGraCT in Time
Slice queries. However, our structure is better in Time Interval queries for large
intervals (Fig. 5(g)). We study the turning point where the 3DGraCT starts to
improve the MVR-tree, by increasing the time interval length. Figure 5(h) shows
this comparison for the 1M dataset, and a period of snapshot of 720. 3DGraCT
outperforms MVR-tree for time intervals over 550 and 200 time instants in small
and large regions, respectively.
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6 Conclusions

This paper introduces 3DGraCT, a new data structure capable of compressing
and querying 3D trajectories with no prior decompression. 3DGraCT extends
an existing 2D compact data structure (GraCT) to support a third dimen-
sion, enabling object positions to be enhanced with descriptive altitude data.
Our improvements to GraCT are more than just improving object descriptions
because 3DGraCT also enables for resolving altitude-based queries.

3DGraCT has been evaluated using real-world trajectories reconstructed
from ADS-B descriptions. 3DGraCT reports better compression ratios than
universal compressors like p7zip (3DGraCT uses up to 50% less space), while
retaining search capabilities. Compared to traditional spatio-temporal solutions,
3DGraCT needs 2 orders of magnitude less space than MVR-tree, being com-
petitive in query performance. Finally, we also study the effect of missing sub-
trajectories, concluding that interpolation is effective in different cases.

A Appendix

The datasets used in our experimentaion have been obtained from the Open-
Sky Network4. We have chosen ADS-B messages broadcasted by aircrafts of 30
different airlines and describe flights between 30 European airports:

– Airlines (ICAO code): AEA, AEE, AFR, AUA, AZA, BAW, BEE, BEL, BER,
DLH, EIN, EWG, EZS, EZY, FDX, FIN, GWI, IBE, IBK, IBS, KLM,
LOT, NAX, NLY, RYR, SAS, SHT, SWR, TAP, and VLG.

– Airports (ICAO code): EBBR, EDDF, EDDK, EDDL, EDDM, EDDT, EFHK,
EGCC, EGKK, EGLL, EGPH, EGSS, EHAM, EIDW, EKCH, ENGM, EPWA,
ESSA, LEBL, LEMD, LEPA, LFPG, LFPO, LGAV, LIMC, LIRF, LOWW,
LPPT, LSGG, and LSZH.

ADS-B messages were captured from 2017-01-02 to 2017-01-31, and sampled
as follows:

– 1day : 2017-01-02.
– 1week: 2017-01-02 -- 2017-01-08.
– 2weeks: 2017-01-02 -- 2017-01-15.
– 1month: 2017-01-02 -- 2017-01-31.
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Abstract. Big research efforts have been devoted to efficiently manage
spatio-temporal data. However, most works focused on vectorial data,
and much less, on raster data. This work presents a new representation
for raster data that evolve along time named Temporal k2raster. It faces
the two main issues that arise when dealing with spatio-temporal data:
the space consumption and the query response times. It extends a com-
pact data structure for raster data in order to manage time and thus, it is
possible to query it directly in compressed form, instead of the classical
approach that requires a complete decompression before any manipula-
tion. In addition, in the same compressed space, the new data structure
includes two indexes: a spatial index and an index on the values of the
cells, thus becoming a self-index for raster data.

1 Introduction

Spatial data can be represented using either a raster or a vector data model [6].
Basically, vector models represent the space using points and lines connecting
those points. They are used mainly to represent man-made features. Raster
models represent the space as a tessellation of disjoint fixed size tiles (usually
squares), each one storing a value. They are traditionally used in engineering,
modeling, and representations of real-word elements that were not made by
men, such as pollution levels, atmospheric and vapor pressure, temperature,
precipitations, wind speed, land elevation, satellite imagery, etc.

Temporal evolution of vectorial data has been extensively studied, with a
large number of data structures to index and/or store spatio-temporal data.
Examples are the 3DR-tree [14], HR-tree [10], the MVR-tree [13], or PIST [3].
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In [9] the classical Map Algebra of Tomlin for managing raster data is
extended to manage raster data with a temporal evolution. The conceptual solu-
tion is simple, instead of considering a matrix, it considers a cube, where each
slice of the temporal dimension is the raster corresponding to one time instant.

Most real systems capable of managing raster data, like Rasdaman, Grass, or
even R are also capable of managing time-series of raster data. These systems,
as well as raster representation formats such as NetCDF (standard format of
the OGC1) and GeoTiff, rely on classic compression methods such as run length
encoding, LZW, or Deflate to reduce the size of the data. The use of these
compression methods poses an important drawback to access a given datum or
portion of the data, since the dataset must be decompressed from the beginning.

Compact data structures [7,11] are capable of storing data in compressed
form and enable us to access a given datum without the need for decompressing
from the beginning. In most cases, compact data structures are equipped with an
index that provides fast access to data. There are several compact data structures
designed to store raster data [2,8]. In this work, we extend one of those compact
data structures, the k2raster [8], to support representing time-series of rasters.

2 Related Work

In this section, we first revise the k2tree, a compact data structure that can be
used to represent binary matrices. Then, we also present several compact data
structures for representing raster data containing integers in the cells. We pay
special attention to discuss one of them, the k2raster, which is the base of our
proposal Temporal k2raster (T−k2raster).

k2tree: The k2tree [5] was initially designed to represent web graphs, but it also
allows to represent binary matrices, that is, rasters where the cells contain only
a bit value. It is conceptually a non-balanced k2-ary tree built from the binary
matrix by recursively dividing it into k2 submatrices of the same size. First, the
original matrix is divided into k2 submatrices of size n2/k2, being n × n the
size of the matrix. Each submatrix generates a child of the root whose value
is 1 if it contains at least one 1, and 0 otherwise. The subdivision continues
recursively for each node representing a submatrix that has at least one 1, until
the submatrix is full of 0s, or until the process reaches the cells of the original
matrix (i.e., submatrices of size 1 × 1).

The k2tree is compactly stored using just two bitmaps T and L. T stores
all the bits of the conceptual k2tree, except the last level, following a level-wise
traversal: first the bit values of the children of the root, then those in the second
level, and so on. L stores the last level of the tree.

It is possible to obtain any cell, row, column, or window of the matrix very
efficiently, by running rank and select operations [7] over the bitmaps T and L.

k3tree: The k3tree [2] is obtained by simply adding a third dimension to the
k2tree, and thus, it conceptually represents a binary cube. This can be trivially
1 http://www.opengeospatial.org/standards/netcdf.

http://www.opengeospatial.org/standards/netcdf
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done by using the same space partitioning and representation techniques from
the k2tree, yet applied to cubes rather than to matrices.

Thus, each 1 in the binary cube represents a tuple 〈x, y, z〉, where (x, y) are
the coordinates of the cell of the raster and z is the value stored in that cell.

k2acc: The k2acc [2] representation for a raster dataset is composed by as many
k2trees as different values can be found in the raster. Given t different values in
the raster: v1 < v2 < · · · < vt, k2acc contains K1,K2, . . . ,Kt k

2trees, where each
Ki has a value 1 in those cells whose value is v ≤ vi.

2D-1D Mapping: In [12], it is presented a method that uses a space-filling
curve to reduce the raster matrix to an array, and the use of one dimensional
index (for example a B-tree) over that array to access the data.

k2raster: k2raster has proven to be superior in both space and query time [8,12]
to all the other compact data structures for storing rasters. In [8], it was also
compared with NetCDF. It drew slightly worse space needs than the compressed
version (that uses Deflate) of NetCDF, but queries performed noticeably faster.

k2raster is based in the same partitioning method of the k2tree, that is, it
recursively subdivides the matrix into k2 submatrices and builds a conceptual
tree representing these subdivisions. Now, in each node, instead of having a
single bit, it contains the minimum and maximum values of the corresponding
submatrix. The subdivision stops when the minimum and maximum values of
the submatrix are equal, or when the process reaches submatrices of size 1 × 1.
Again the conceptual tree is compactly represented using, in addition to binary
bitmaps, efficient encoding schemes for integer sequences.

More in detail, let n × n be the size of the input matrix. The process begins
by obtaining the minimum and maximum values of the matrix. If these values
are different, they are stored in the root of the tree, and the matrix is divided
into k2 submatrices of size n2/k2. Each submatrix produces a child node of the
root storing its minimum and maximum values. If these values are the same,
that node becomes a leaf, and the corresponding submatrix is not subdivided
anymore. Otherwise, this procedure continues recursively until the maximum
and minimum values are the same, or the process reaches a 1 × 1 submatrix.

Figure 1 shows an example of the recursive subdivision (top) and how the
conceptual tree is built (centre-top), where the minimum and maximum values
of each submatrix are stored at each node. The root node corresponds to the
original raster matrix, nodes at level 1 correspond to submatrices of size 4× 4,
and so on. The last level of the tree corresponds to cells of the original matrix.
Note, for instance, that all the values of the bottom-right 4× 4 submatrix are
equal; thus, its minimum and maximum values are equal, and it is not further
subdivided. This is the reason why the last child of the root node has no children.

The compact representation includes two main parts. The first one represents
the topology of the tree (T ) and the second one stores the maximum/minimum
values at the nodes (Lmin/Lmax). The topology is represented as in the k2tree,
except that the last level (L) is not needed. The maximum/minimum values
are differentially encoded with respect to the values stored at the parent node.
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Fig. 1. Example (using k = 2) of integer raster matrix (top), conceptual tree of the
k2raster, conceptual tree with differential encoding, and final representation of the raster
matrix. Lmax and Lmin contain the maximum and minimum values of each node
following a level-wise order and using differential encoding.

Again, these values are stored as arrays following the same method of the k2tree,
that is, following the same level-wise order of the conceptual tree. By using
differential encoding, the numbers become smaller. Directly Addressable Codes
(DACs) [4] take advantage of this, and at the same time, provide direct access.
The last two steps to create the final representation of the example matrix are
also illustrated in Fig. 1. In the center-bottom and bottom parts, we respectively
show the tree with the differences for both the maximum and minimum values,
and the data structures that compose the final representation of the k2raster.
Therefore, the original raster matrix is compactly stored using just a bitmap
T , which represents the tree topology, and a pair of integer arrays (Lmax and
Lmin), which contain the minimum and maximum values stored at the tree.
Note that when the raster matrix contains uniform areas, with large areas of
equal or similar values, this information can be stored very compactly using
differential encoding and DACs.

The maximum/minimum values provide indexation of the stored values, this
technique is usually known as lightweight indexation. It is possible to query
the structure only decompressing the affected areas. Queries can be efficiently
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computed navigating the conceptual tree by running rank and select operations
on T and, in parallel, accessing the arrays Lmax and Lmin.

3 T−k2raster: A Temporal Representation for Raster
Data

Let M be a raster matrix of size n×n that evolves along time with a timeline of
size τ time instants. We can define M = 〈M∞,M∈, . . . ,Mτ 〉 as the sequence
of raster matrices Mi of size n × n for each time instant i ∈ [1, τ ].

A rather straightforward baseline representation for the temporal raster
matrix M can be obtained by simply representing each raster matrix Mi in
a compact way with a k2raster. In this section we use a different approach. The
idea is to use sampling at regular intervals of size tδ. That is, we represent with
a k2raster all the raster matrices Ms, s = 1 + i tδ, i ∈ [0, (τ − 1)/tδ]. We will
refer to those Mi rasters as snapshots of M at time i. The tδ − 1 raster matrices
Mt, t ∈ [s + 1, s + tδ − 1] that follow a snapshot Ms are encoded using Ms as
a reference. The idea is to create a modified k2raster′ to represent Mt where, at
each step of the construction process, the values in the submatrices are encoded
as differences with respect to the corresponding submatrices in Ms rather than
as differences with respect to the parent node as usual in a regular k2raster.

With this modification, we still expect to encode small gaps for the maximum
and minimum values in each node of the conceptual tree of Mt. Yet, in addition,
when a submatrix in Mt is identical to the same submatrix in Ms, or when
all the values in both submatrices differ only in a unique gap value α, we can
stop the recursive splitting process and simply have to keep a reference to the
corresponding submatrix of Ms and the gap α (when they are identical, we
simply set α = 0). In practice, keeping that reference is rather cheap as we only
have to mark, in the conceptual tree of Mt, that the subtree rooted at a given
node p has the same structure of the one from the conceptual tree of Ms. For
such purpose, in the final representation of k2raster′, we include a new bitmap
eqB, aligned to the zeroes in T . That is, if we have T [i] = 0 (node with no
children), we set eqB[rank0(T, i)] ← 1,2 and set Lmax[i] ← α. Also, if we have
T [i] = 0, we also can set eqB[rank0(T, i)] ← 0 and Lmax[i] ← β (where β is
the gap between the maximum values of both submatrices) to handle the case
in which the maximum and minimum values in the corresponding submatrix are
identical (as in a regular k2raster).

The overall construction process of the k2raster′ for the matrix Mt related
to the snapshot Ms can be summarized as follows. At each step of the recursive
process, we consider a submatrix of Mt and the related submatrix in Ms. Let the
corresponding maximum and minimum values of the submatrix of Mt be maxt

and mint, and those of Ms be maxs and mins respectively. Therefore:

2 From now on, asume rankb(B, i) returns the number of bits set to b in B[0, i − 1],
and rankb(B, 0) = 0. Note that the first index of T , eqB, Lmax, and Lmin is 0.
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Fig. 2. Structures involved in the creation of a T−k2raster considering τ = 3.

– If maxt and mint are identical (or if we reach a 1×1 submatrix), the recursive
process stops. Being zt the position in the final bitmap T , we set T [zt] ← 0,
eqB[rank0[T, zt]] ← 0, and Lmax[zt] ← (maxt − maxs).3

– If all the values in Ms and Mt differ only in a unique value α (or if they
are identical, hence α = 0), we set T [zt] ← 0, eqB[rank0[T, zt]] ← 1, and
Lmax[zt] ← (maxt − maxs).

– Otherwise, we split the submatrix Mt into k2 parts and continue recursively.
We set T [zt] ← 1, and, as in the regular k2raster, Lmax[zt] ← (maxt−maxs),
and Lmin[rank1(zt)] ← (mint − mins).

Figure 2 includes an example of the structures involved in the construction
of a T−k2raster over a temporal raster of size 8 × 8, with τ = 3. The raster
matrix corresponding to the first time instant becomes a snapshot that is rep-
resented exactly as the k2raster in Fig. 1. The remaining raster matrices Ms+1

and Ms+2 are represented with two k2raster′ that are built taking Ms as a ref-
erence. We have highlighted some particular nodes in the differential conceptual
trees corresponding to Ms+1 and Ms+2. (i) the shaded node labeled 〈0: 0〉 in
Ms+1 indicates that the first 4× 4 submatrix of both Ms and Ms+1 are identical.

3 Since in k2raster′ we have to deal both with positive and negative values, we actually
apply a zig-zag encoding for the gaps (maxt − maxs).
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Therefore, node 〈0: 0〉 has no children, and we set: T [2] ← 0, eqB[1] ← 1, and
Lmax[2] ← 0. (ii) the shaded node labeled 〈1: 1〉 in Ms+2 illustrates the case in
which all the values of a given submatrix are increased by α ← 1. In this case
values 〈6, 6, 5, 5〉 in Ms become 〈7, 7, 6, 6〉 in Ms+2. Again, the recursive traversal
stops at that node, and we set: T [8] ← 0, eqB[3] ← 1, and Lmax[8] ← 1 (values
are increased by 1). (iii) the shaded node labeled 〈1: 2〉 in Ms+1 corresponds
to the node labeled 〈3: 2〉 in Ms. In this case, when we sum the maximum and
minimum values of both nodes we obtain that node in Ms+1 has the same max-
imum and minimum values (set to 4). Consequently the recursive process stops
again. In this case, we set T [7] ← 0, eqB[3] ← 0, and Lmax[7] ← 1.

4 Querying Temporal Raster Data

In this section, we show two basic queries over T−k2raster.

Obtaining a Cell Value in a Time Instant: This query retrieves the value
of a cell (r, c) of the raster at time instant t: v ← getCellV alue(r, c, t). For
solving this query, there are two cases: if t is represented by a snapshot, then the
algorithm to obtain a cell in the regular k2raster is used, otherwise, a synchronized
top-down traversal of the trees representing that time instant (Mt) and the
closest previous snapshot (Ms) is required.

Focusing on the second case, the synchronized traversal inspects the two
nodes at each level corresponding to the submatrix that contains the queried
cell. The problem is that due to parts of Mt or Ms having the same value, the
shape of the trees representing them can be different. Therefore, it is possible
that one of the two traversals reaches a leaf, whereas the other does not. In such
a case, the traversal that did not reach a leaf, continues, but the process must
remember the value in the reached leaf, since that is the value that will be added
or subtracted to the value found when the continued traversal reaches a leaf.

Indeed, we have three cases: (a) the processed submatrix of Mt is uniform,
(b) the original submatrix of Ms is uniform and, (c) the processed submatrix
after applying the differences with the snapshot has the same value in all cells.

Algorithm 1 shows the pseudocode of this case. To obtain the
value stored at cell (r, c) of the raster matrix Mt, it is invoked as
getCell(n, r, c, 1, 1, Lmaxs[0], Lmaxt[0]), assuming that the cell at position (0,
0) of the raster is that in the upper-left corner.

zs is used to store the current position in the bitmap T of Ms (Ts) during the
downward traversal at any given step of the algorithm, similarly, zt is the position
in T of Mt (Tt). When zs (zt) has a −1 value, it means that the traversal reached
a leaf and, in maxvals (maxvalt) the algorithm keeps the maximum value stored
at that leaf node. Note that, Ts, Tt, Lmaxs, Lmaxt, and k are global variables.

In lines 1–11, the algorithm obtains the child of the processed node that
contains the queried cell, provided that in a previous step, the algorithm did not
reach a leaf node (signaled with zs/zt set to −1). In maxvals (maxvalt), the
algorithm stores the maximum value stored in that node.
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Algorithm 1. getCell(n, r, c, zs, zt,maxvals,maxvalt) returns the value
at cell (r, c)
1 if zs �= −1 then
2 zs ← (rank1(Ts, zs) − 1) · k2 + 1
3 zs ← zs + �r/(n/k)	 · k + �c/(n/k)	 +1
4 vals ← Lmaxs[zs − 1]
5 maxvals ← maxvals − vals
6 end
7 if zt �= −1 then
8 zt ← (rank1(Tt, zt) − 1) · k2+1
9 zt ← zt + �r/(n/k)	 · k + �c/(n/k)	 +1

10 maxvalt ← Lmaxt[zt − 1])

11 end
12 if (zs > |Ts| or zs = −1 or Ts[zs] = 0) and (zt > |Tt| or zt = −1 or Tt[zt] = 0) then

/* Both leafs */
13 return maxvals + ZigZag Decoded(maxvalt)
14 end
15 else if zs > |Ts| or zs = −1 or Ts[zs] = 0 then /* Leaf in Snapshot */
16 zs ← −1
17 return getCell(n/k, r mod (n/k), cmod (n/k), zs, zt, maxvals, maxvalt)

18 end
19 else if zt > |Tt| or zt = −1 or Tt[zt] = 0 then /* Leaf in time instant */
20 if zt �= −1 and Tt[zt] = 0 then
21 eq ← eqB[rank0(Tt, zt)]
22 if eq = 1 then zt ← −1 ;
23 else return maxvals + ZigZag Decoded(maxvalt) ;

24 end
25 return getCell(n/k, r mod (n/k), cmod (n/k), zs, zt, maxvals, maxvalt)

26 end
27 else /* Both internal nodes */
28 return getCell(n/k, r mod (n/k), cmod (n/k), zs, zt, maxvals, maxvalt)
29 end

If the condition in line 12 is true, the algorithm has reached a leaf in both
trees, and thus the values stored in maxvals and maxvalt are added/subtracted
to obtain the final result. If the condition of line 15 is true, the algorithm reaches
a leaf in the snapshot. This is signaled by setting zs to −1 and then a recursive
call continues the process.

The If in line 19 treats the case of reaching a leaf in Mt. If the condition of
line 20 is true, the algorithm uses bitmap eqB to check if the uniformity is in
the original Mt submatrix or if it is in the submatrix resulting from applying
the differences between the corresponding submatrix in Ms and Mt. A 1 in eqB
implies the latter case, and this is solved by setting zt to −1 and performing
a recursive call. A 0 means that the treated original submatrix of Mt has the
same value in all cells, and that value can be obtained adding/subtracting the
values stored in maxvals and maxvalt, since the unique value in the submatrix
of Mt is encoded as a difference with respect to the maximum value of the same
submatrix of Ms, and thus the traversal ends.

The last case is that the treated nodes are not leaves, that simply requires a
recursive call.

Retrieving Cells with Range of Values in a Time Instant: 〈[ri, ci]〉 ←
getCells(vb, ve, r1, r2, c1, c2, t) obtains from the raster of the time instant t, the
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positions of all cells within a region [r1, r2] × [c1, c2] containing values in the
range [vb, ve].

Again, if t is represented with a snapshot, the query is solved with the normal
algorithm of the k2raster. Otherwise, as in the previous query, the search involves
a synchronized top-down traversal of both trees. This time requires two main
changes: (i) the traversal probably requires following several branches of both
trees, since the queried region can overlap the submatrices corresponding to
several nodes of the tree, (ii) at each level, the algorithm has to check whether
the maximum and minimum values in those submatrices are compatible with
the queried range, discarding those that fall outside the range of values sought.

5 Experimental Evaluation

In this section we provide experimental results to show how T−k2raster han-
dles a dataset of raster data that evolve along time. We discuss both the space
requirements of our representation and its performance at query time.

We used several synthetic and real datasets to test our representation, in
order to show its capabilities. All the datasets are obtained from the TerraCli-
mate collection [1], that contains high-resolution time series for different vari-
ables, including temperature, precipitations, wind speed, vapor pressure, etc.
All the variables in this collection are taken in monthly snapshots, from 1958 to
2017. Each snapshot is a 4320 × 8640 grid storing values with 1/24◦ spatial res-
olution. From this collection we use data from two variables: TMAX (maximum
temperature) is used to build two synthetic datasets, and VAP (vapor pressure)
is compressed directly using our representation. Variable TMAX is a bad sce-
nario for our approach, since most of the cells change their value between two
snapshots. In this kind of dataset, our T−k2raster would not be able to obtain
good compression. Hence, we use TMAX to generate two synthetic datasets
that simulate a slow, and approximately constant, change rate, between two real
snapshots. We took the snapshots for January and February 2017 and built two
synthetic datasets called T 100 and T 1000, simulating 100 and 1000 interme-
diate steps between both snapshots; however, note that to make comparisons
easier we only take the first 100 time steps in both datasets. We also use a real
dataset, VAP, that contains all the monthly snapshots of the variable VAP from
1998 to 2017. Note that, although we choose a rather small number of time
instants in our experiments, the performance of our proposal is not affected by
this value: it scales linearly in space with the number of time instants, and query
times should be unaffected as long as the change rate is similar.

We compared our representation with two baseline implementations. The
first, called k2raster4 is a representation that stores just a full snapshot for
each time instant, without trying to take advantage of similarities between
close time instants. The second baseline implementation, NetCDF, stores the dif-
ferent raster datasets in NetCDF format, using straightforward algorithms on

4 https://gitlab.lbd.org.es/fsilva/k2-raster.

https://gitlab.lbd.org.es/fsilva/k2-raster


126 A. Cerdeira-Pena et al.

top of the NetCDF library5 (v.4.6.1) to implement the query operations. Note
that NetCDF is a classical representation designed mainly to provide compres-
sion, through the use of Deflate compression over the data. Therefore, it is not
designed to efficiently answer indexed queries.

We tested cell value queries (getCellValue) and range queries (getCells). We
generated sets of 1000 random queries for each query type and configuration:
1000 random cell value queries per dataset, and sets of 1000 random range queries
for different spatial window sizes (ranging from 4× 4 windows to the whole
matrix), and different ranges of values (considering cells with 1 to 4 possible
values). To achieve accurate results, when the total query time for a query set
was too small, we repeated the full query set a suitable number of times (in
practice, 100 or 1000 times) and measured the average time per query.

All tests were run on an Intel (R) Core TM i7-3820 CPU @ 3.60 GHz (4 cores)
with 10 MB of cache and 64 GB of RAM, over Ubuntu 12.04.5 LTS with kernel
3.2.0-126 (64 bits). The code is compiled using gcc 4.7 with -O9 optimizations.

Table 1. Space requirements (in MB) of T−k2raster, k2raster and NetCDF over synthetic
datasets.

T−k2raster (varying tδ) k2raster NetCDF (varying deflate level)

4 6 8 10 20 50 0 2 5 9

T 100 398.2 407.0 429.6 456.7 584.4 820.8 769.3 14241.3 615.3 539.5 528.0

T 1000 170.4 152.5 151.2 154.6 196.2 304.6 496.6 14241.3 435.0 344.7 323.6

Table 1 displays the space requirements for the datasets T 100 and T 1000 in
all the representations. We tested our T−k2raster with several sampling intervals
tδ, and also show the results for NetCDF using several deflate levels, from level
0 (no compression) to level 9. Our representation achieves the best compression
results in both datasets, especially in T 1000, as expected, due to the slower
change rate. In T 100, our approach achieves the best results for tδ = 4, since
as the number of changes increases our differential approach becomes much less
efficient. In T 1000, the best results are also obtained for a relatively small tδ
(6–8), but our proposal is still smaller than k2raster for larger tδ. NetCDF is only
competitive when compression is applied, otherwise it requires roughly 20 times
the space of our representations. In both datasets, NetCDF with compression
enabled becomes smaller than the k2raster representation, but T−k2raster is
able to obtain even smaller sizes.

Figure 3 shows the space/time trade-off for the datasets T 100 and T 1000
in cell value queries. We show the results only for NetCDF with compression
enabled (deflate level 2 and 5), and for T−k2raster with a sampling interval of 6
and 50. The T−k2raster is slower than the baseline k2raster, but is much smaller
if a good tδ is selected. Note that we use two extreme sampling intervals to show
the consistency of query times, since in practice only the best approach in space
5 https://www.unidata.ucar.edu/software/netcdf/.

https://www.unidata.ucar.edu/software/netcdf/
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Fig. 3. Space/time trade-off on T 100 and T 1000 datasets for cell value queries.

would be used for a given dataset. In our experiments we work with a fixed tδ, but
straightforward heuristics could be used to obtain an space-efficient T−k2raster
without probing for different periods: for instance, the number of nodes in the
tree of differences and in the snapshot is known during construction, so a new
snapshot can be built whenever the size of the tree of differences increases above
a given threshold.

Table 2. Range query times over T 100 and T 1000 datasets. Times shown in μs/query
for different spatial windows (wnd) and range of values (rng).

T 100 T 1000

T−k2raster k2raster NetCDF T−k2raster k2raster NetCDF

wnd rng 6 50 2 5 6 50 2 5

16 1 3.6 3.8 2.8 6130 10070 3.3 3.4 2.5 6160 10020

4 5.1 5.5 3.6 6240 10100 3.5 3.5 2.6 6160 10100

256 1 222.9 248.1 163.9 9610 15330 207.1 228.9 167.6 9370 15110

4 429.3 489.4 301.7 9340 14790 213.4 234.3 172.7 9510 15240

All 1 111450 126220 78250 443830 580660 79650 89380 63350 436400 568730

Table 2 shows an extract of the range query times for all the representations
in datasets T 100 and T 1000. We only include here the results for T−k2raster
with a tδ of 6 and 50, and for NetCDF with deflate level 2 and 5, since query times
with the other parameters report similar conclusions. We also show the results
for some relevant spatial window sizes and ranges of values. In all the cases,
T−k2raster is around 50% slower than k2raster, due to the need of querying two
trees to obtain the results. However, the much smaller space requirements of our
representation compensate for this query time overhead, especially in T 1000.
NetCDF, that is not designed for this kind of queries, cannot take advantage of
spatial windows or ranges of values, so it is several orders of magnitude slower
than the other approaches. The last query set (ALL) involves retrieving all the
cells in the raster that have a given value (i.e. the spatial window covers the
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complete raster). In this context, NetCDF must traverse and decompress the
whole raster, but our representation cannot take advantage of its spatial indexing
capabilities, so this provides a fairer comparison. Nevertheless, both T−k2raster
and k2raster are still several times faster than NetCDF in this case, and our
proposal remains very close in query times to the k2raster baseline.
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wnd rng 6 50 2 5

4 1 2.2 2.2 1.6 5570 9520
2 2.0 2.0 1.4 5530 9430
3 1.9 1.8 1.3 5580 9430
4 1.7 1.7 1.3 5550 9470

16 1 4.3 4.2 3.1 5670 9670
2 3.7 3.7 2.7 5630 9730
3 3.3 3.4 2.4 5660 9660
4 2.9 3.0 2.2 5720 9740

64 1 26.4 26.1 19.5 6150 10470
2 21.1 21.6 16.1 6140 10440
3 16.8 17.3 12.9 6130 10450
4 16.2 16.6 12.6 6220 10660

256 1 239.6 242.5 179.4 8720 14820
2 207.2 218.7 161.0 8660 14640
3 181.7 187.9 140.3 8590 14430
4 142.2 146.5 112.9 8300 14020

ALL 1 60400 62900 46200 411700 552500

Fig. 4. Results for VAP dataset. Left plot shows space/time tradeoff for cell value
queries. Right table shows query times for range queries. Times in μs/query.

Figure 4 (left) shows the space/time trade-off for the real dataset VAP.
Results are similar to those obtained for the previous datasets: our represen-
tation, T−k2raster, is a bit slower in cell value queries than k2raster, but also
requires significantly less space. The NetCDF baseline is much slower, even if it
becomes competitive in space when deflate compression is applied.

Finally, Fig. 4 (right) displays the query times for all the alternatives in
range queries over the VAP dataset. The k2raster is again a bit faster than the
T−k2raster, as expected, but the time overhead is within 50%. NetCDF is much
slower, especially in queries involving small windows, as it has to traverse and
decompress a large part of the dataset just to retrieve the values in the window.
Note that even if the window covers the complete raster, T−k2raster and k2raster
achieve significantly better query times.

6 Conclusions and Future Work

In this work we introduce a new representation for time-evolving raster data. Our
representation, called T−k2raster, is based on a compact data structure for raster
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data, the k2raster, that we extend to efficiently manage time series. Our proposal
takes advantage of similarities between consecutive snapshots in the series, so it is
especially efficient in datasets where few changes occur between consecutive time
instants. The T−k2raster provides spatial and temporal indexing capabilities,
and is also able to efficiently filter cells by value. Results show that, in datasets
where the number of changes is relatively small, our representation can compress
the raster and answer queries very efficiently. Even if its space efficiency depends
on the dataset change rate, the T−k2raster is a good alternative to compress
raster data with high temporal resolution, or slowly-changing datasets, in small
space.

As future work, we plan to apply to our representation some improvements
that have already been proposed for the k2raster, such as the use of specific
compression techniques in the last level of the tree. We also plan to develop
an adaptive construction algorithm, that selects an optimal, or near-optimal,
distribution of snapshots to maximize compression.
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Abstract. An extended special factor of a word x is a factor of x whose
longest infix can be extended by at least two distinct letters to the left
or to the right and still occur in x. It is called extended bispecial if it
can be extended in both directions and still occur in x. Let ρ(n) be
the maximum number of extended bispecial factors over all words of
length n. Almirantis et al. have shown that 2n − 6 ≤ ρ(n) ≤ 3n − 4
[WABI 2017]. In this article, we show that there is no constant c < 3
such that ρ(n) ≤ cn. We then exploit the connection between extended
special factors and minimal absent words to construct a data structure for
computing minimal absent words of a specific length in optimal time for
integer alphabets generalising a result by Fujishige et al. [MFCS 2016].
As an application of our data structure, we show how to compare two
words over an integer alphabet in optimal time improving on another
result by Charalampopoulos et al. [Inf. Comput. 2018].

Keywords: Special factors · Minimal absent words · String algorithms

1 Introduction

We begin with basic definitions and notation, generally following [14]. Let x =
x[0]x[1] . . . x[n−1] be a word of length n = |x| over a finite ordered alphabet Σ of
size σ, i.e. σ = |Σ|. In particular, we consider the case of an integer alphabet ; in
this case each letter is replaced by its rank such that the resulting word consists
of integers in the range {1, . . . , n}. In what follows we assume without loss of
generality that Σ = {0, 1, . . . , σ − 1}. We also define Σx to be the alphabet of
word x and σx = |Σx|. For two positions i and j on x, we denote by x[i . . j] =
x[i] . . . x[j] the factor (sometimes called subword) of x that starts at position i
and ends at position j (it is empty if j < i), and by ε the empty word, word of
length 0. We recall that a prefix of x is a factor that starts at position 0 (x[0 . . j])
and a suffix is a factor that ends at position n − 1 (x[i . . n − 1]). A factor of x is
called proper if it is not x itself. If a word y is both a proper prefix and a proper
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suffix of a non-empty word x, then y is called a border of x. A factor x[i . . j] of
x that is neither a prefix nor a suffix of x is called an infix of x.

Let w = w[0 . . m − 1] be a word, 0 < m ≤ n. We say that there exists an
occurrence of w in x, or, more simply, that w occurs in x, if w is a factor of x.
Every occurrence of w can be characterised by a starting position in x. Thus we
say that w occurs at (starting) position i in x when w = x[i . . i + m − 1].

A factor u �= ε of a word x is called bispecial if there exist a, b, c, d ∈ Σ with
a �= b and c �= d such that au, bu, uc and ud occur in x. The notion of special
factors has been extensively studied in literature, mainly in the case of infinite
words or infinite languages [4,8–10,18–20]. We extend this definition here as
follows. We call extended left-special the factors ayb, where a, b ∈ Σ, y �= ε is a
factor of x and cy occurs in x for some c ∈ Σ � {a}. Similarly, we call extended
right-special the factors ayb, where a, b ∈ Σ, y �= ε is a factor and yd occurs in x
for some d ∈ Σ � {b}. Factors that are both extended left-special and extended
right-special are called extended bispecial. The following result is known.

Lemma 1. ([2]). For any word x of length n the number of extended right-special
factors is no more than 3n − 2 − 2σx.

By symmetry the same bound holds for extended left-special factors. It
also holds for extended bispecial factors, since these are a subset of extended
right-special factors. In [2], the authors provide a word with a linear number of
extended bispecial factors: ban−2b which has 2n − 6 of them. Let ρ(n) be the
maximum number of extended bispecial factors over all words of length n.

Theorem 2. ([2]). 2n − 6 ≤ ρ(n) ≤ 3n − 4.

The main algorithm presented in [2] computes statistically overabundant
words of a word over an integer alphabet in linear time, by first computing
all extended right-special factors of the word and then filtering out some of
them based on a simple computation. We can easily adapt the algorithm to
compute the extended left-special factors; the extended bispecial factors can be
then retrieved easily within the same complexity. We thus know the following.

Theorem 3. ([2]). Given a word of length n over an integer alphabet all
extended left-, right-special and bispecial factors can be computed in O(n) time.

2 A Lower Bound on Extended Bispecial Factors

In this section, we improve the lower bound of Theorem2.

Definition 4. A word x over an alphabet Σ of size σ is a de Bruijn sequence
of order k if and only if all words of length k over Σ occur exactly once in x.

By definition, a de Bruijn sequence of order k has length σk + k − 1.

Theorem 5. There is no constant c < 3 such that ρ(n) ≤ cn.
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Proof. In a de Bruijn sequence of order k all words over Σ of lengths 3 to k
(inclusive) are extended bispecial factors. In addition, by the definition of de
Bruijn sequences, the σk − 1 subwords of x of length k + 1 are all distinct and
each of them is an extended bispecial factor as its longest infix is of length k − 1
and hence it can be extended by all letters in Σ in any direction and still occur
in x. We thus have at least

σ3 + . . . + σk + σk − 1 = σk − 1 + σ3 ·
k−3∑

i=0

σi = σk − 1 + σ3 · σk−2 − 1
σ − 1

extended bispecial factors. By letting σ = 2, the above formula becomes 2k −
1 + 2(2k − 4) = 3 · 2k − 9. We now look at the ratio of the number of bispecial
factors over the length of the sequence as k increases and have that

lim
k→∞

3 · 2k − 9
2k + k − 1

= 3

by L’Hôpital’s rule. ��

3 Minimal Absent Words via Extended Special Factors

The word y is an absent word of x if it does not occur in x. The absent word y of x
is minimal if and only if all its proper factors occur in x. The set of all minimal
absent words for a word x is denoted by Mx. The set of all minimal absent
words of length � for a word x is denoted by M�

x. For example, if x = abaab,
then Mx = {aaa, aaba, bab, bb} and M3

x = {aaa, bab}. If we suppose that all
the letters of Σ appear in x and |x| = n, the length of a minimal absent word
of x lies between 2 and n + 1. It can be equal to n + 1 if and only if x is of the
form an, a ∈ Σ. So, if x contains occurrences of at least two different letters, the
length of any minimal absent word of x is upper bounded by n. In what follows,
we perform the computations considering all minimal absent words of length at
least 3; the ones of length 2 can be handled separately in the same manner.

The upper bound on the number of minimal absent words is O(σn) and it is
tight for integer alphabets [12]; in fact, for large alphabets, such as when σ ≥ √

n,
this bound is also tight even for minimal absent words of the same length [1].

In many real-world applications of minimal absent words, such as in sequence
comparison [12], data compression [17], on-line pattern matching [15], and iden-
tifying pathogen-specific signatures [24], only a subset of minimal absent words
may be considered, and, in particular, the minimal absent words of length (at
most) �. State-of-the-art algorithms compute all minimal absent words of x in
O(σn) time [3,16] or in O(n + |Mx|) time [23]. There also exist space-efficient
data structures based on the Burrows-Wheeler transform of the input that can
be applied for this computation [5,6]. In the worst case, the number of minimal
absent words of x is Θ(σn) and we would thus need Ω(σn) space to represent
them explicitly.
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3.1 The Data Structure

We next present an alphabet-independent data structure that stores information
related to extended special factors. It allows for counting and reporting minimal
absent word queries in optimal time. Specifically, we show the following result.

Theorem 6. Given a word x of length n over an integer alphabet, we can con-
struct in O(n) time an O(n)-sized data structure that outputs, for a given on-line
query �, M�

x in O(1 + |M�
x|) time or |M�

x| in O(1) time.

Let us start with a simple but crucial lemma. It unveils the connection
between extended special factors and minimal absent words (see also [4], Sect. 2).

Lemma 7. Given a minimal absent word awb of x, where a, b ∈ Σ and w ∈ Σ∗,
either (i) w occurs as an infix of x and any word cwd, c, d ∈ Σ, that occurs in
x is an extended left- or right-special factor of x; or (ii) wb is a prefix of x, aw
is a suffix of x and w occurs only twice in x.

Proof. If w occurs as infix of x at position i, then x[i − 1 . . i + |w|] �= awb and
since aw and wb occur in x, x[i − 1 . . i+ |w|] is an extended left- or right-special
factor; this is case (i). If w does not occur as infix in x, we are at case (ii). ��
Proposition 8. [22]. In a word x of length n there is at most one minimal
absent word awb of type (ii) (Lemma 7) and we can compute it in O(n) time.

Proof. The word w must be a border of x that does not occur elsewhere in x1;
this can only be the longest border u of x: any other border of x is also a border
of u [22]. We locate u and check if it has another occurrence in x in O(n) time
[14], thus retrieving this minimal absent word of type (ii), if there is one. ��

Main Idea. For each word w that is the longest infix of a minimal absent word,
we compute the letters that precede it in x, the ones that succeed it and the
pairs of letters (a, b) such that awb occurs in x. The total size of these sets is
O(n) by Lemmas 1 and 7. If the minimal absent words with longest infix w are
no more than twice the number of factors of the form awb of x we pre-compute
them in O(n) time in total; otherwise we off-load the computation to the query.

Construction. Since word x is stored in internal memory, in what follows, we
assume a constant-sized representation of arbitrary-length factors and minimal
absent words of x. We first compute all extended left- and right-special factors in
O(n) time using Theorem 3. We form their union U , assign their longest infix w
as their representative, group the elements of U based on their representatives’
length, and sort them lexicographically based on the representatives in each
group. The sorting can be done in O(n) time, for all groups together, using
standard tools that exploit longest common prefix information [14] and radix
1 In this case, x is called closed. Such words are an object of combinatorial interest

[21].
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sort. We then identify in O(n) time the prefixes Px (resp. suffixes Sx) of x of
the form wb (resp. aw), where cwd ∈ U , a, b, c, d ∈ Σ and w ∈ Σ∗, that do
not occur elsewhere in x. This can also be implemented using longest common
prefix information [14]. We assign the longest proper prefix (resp. suffix) of each
element of Px (resp. Sx) as its representative.

We then group the elements of V = U∪Sx∪Px based on their representatives’
length and store them in each such group based on the representatives. We do
this by inferring the representatives’ lexicographical order in O(n) time by using
the same tools. The size of V is O(n) by Lemma 1.

For each such representative w, we construct the following sets:

– B(w) = {(α, β)|α, β ∈ Σ ∪ {ε} and αwβ ∈ V with representative w};
– B′(w) = {(α, β)|(α, β) ∈ B(w), α �= ε, β �= ε};
– L(w) = {α|α ∈ Σ, (α, β) ∈ B(w)} and R(w) = {β|β ∈ Σ, (α, β) ∈ B(w)}.

We also construct these sets for the single minimal absent word of type (ii) if
there is one. By definition, the minimal absent words whose longest infix is w are
the ones of the form αwβ, where α ∈ L(w), β ∈ R(w), and (α, β) /∈ B′(w). We
lexicographically sort the elements in L(w), R(w) and B′(w), for all w together,
in O(n) time using radix sort. Then if

|B′(w)| ≥ |L(w)| · |R(w)| − |B′(w)| ⇐⇒ |L(w)| · |R(w)| ≤ 2|B′(w)|,
we pre-compute all minimal absent words with longest infix w in O(|B′(w)|)
time by generating all possible awb, a ∈ L(w), b ∈ R(w) in lexicographical
order, filtering out awb such that (a, b) ∈ B′(w) by scanning B′(w) at the same
time. We store these words in the linked list Λ1(|w|).

Otherwise, if |L(w)|·|R(w)| > 2|B′(w)|, we store L(w), R(w) and B′(w) as an
element in the linked list Λ2(|w|). This requires O(n) time in total by Lemma 1;
and the total size of Λ1 and Λ2 is O(n).

By definition, the number of minimal absent words whose longest infix is w
is |L(w)| · |R(w)|− |B′(w)|. We can thus maintain this information per length in
an integer array C initialised to zeros, by adding this number to C[|w|], for all
representatives w. This requires O(n) time in total and the array is of size O(n).

Querying. For a reporting on-line query �, we can output M�
x in O(1+|M�

x|) time
as follows. We locate the elements in V with representatives of length � − 2. For
the representatives for which we have already pre-computed the minimal absent
words we output them from Λ1(�− 2); for the rest, we perform the computation
described above for each w based on the sets L(w), R(w) and B′(w), which are
stored in Λ2(� − 2). For a counting on-line query �, we output |M�

x| = C[� − 2].
Lemma 7 guarantees the correctness of the algorithm and we thus arrive

at Theorem 6. If we apply Theorem 6 for pre-processing and then query for
� = 2, . . . , n + 1, we obtain the respective result of [23], which is based on
constructing the directed acyclic word graph for x [7,13] and on refining the
algorithm of [16].

Corollary 9. ([23]). Given a word x of length n over an integer alphabet, Mx

can be computed in the optimal O(n + |Mx|) time.
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3.2 Sequence Comparison

In [11], the authors introduced a measure of similarity between two words x
and y based on the notion of minimal absent words. Let M�

x (resp. M�
y) denote

the set of minimal absent words of length at most � of x (resp. y). The authors
made use of a length-weighted index to provide a measure of similarity between
x and y, using their sample sets M�

x and M�
y, by considering the length of each

member in the symmetric difference M�
x � M�

y of the sample sets. In [12] the
authors considered a more general measure of similarity for two words x and y.
It is based on the set Mx � My, and is defined by

LW(x, y) =
∑

w∈Mx�My

1
|w|2 ,

so without any restriction on the lengths of minimal absent words. The smaller
the value of LW(x, y), the more similar we assume x and y to be; in fact, LW(x, y)
is a metric on Σ∗ [12]. Note that LW(x, y) is affected by both the cardinality of
Mx �My and the lengths of its elements; longer words in Mx �My contribute
less in the value of LW(x, y) than shorter ones. Hence, intuitively, the shorter
the words in Mx � My, the more dissimilar x and y are.

One of the main results of [12] is that LW(x, y) can be computed in
O(σ(|x|+ |y|)) time. In what follows, we improve this result for integer alphabets
by avoiding to compute the minimal absent words explicitly. We rather exploit
the connection between minimal absent words and extended special factors, and
thus remove the dependency on the alphabet size—a somewhat surprising result.

Theorem 10. Given two words x and y over an integer alphabet, LW(x, y) can
be computed in the optimal O(|x| + |y|) time.

Proof. It suffices to compute the size of the set M�
x �M�

y, for all 2 ≤ � ≤ n+1.
We will do that by computing the number of words awb ∈ M�

x � M�
y, a, b ∈ Σ

for each w that is the longest infix of some minimal absent word of x or of y.
Let us denote by Mz,w the minimal absent words of z whose longest infix is

w. By definition we have that

Mx,w � My,w = (Mx,w ∪ My,w) \ (Mx,w ∩ My,w).

This implies

|Mx,w � My,w| = |Mx,w ∪ My,w| − |Mx,w ∩ My,w| =
|Mx,w| + |My,w| − 2|Mx,w ∩ My,w|.

We further denote the sets L(w), R(w), B′(w) for word z by Lz(w), Rz(w),
B′

z(w). By the definition of minimal absent words, we have that

|Mx,w| = |Lx(w)| · |Rx(w)| − |B′
x(w)|.
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This can be computed, for all w, in O(|x|) time by applying the data structure
of Theorem 6. We obtain |My,w| analogously. We thus only need to compute:

|Mx,w ∩ My,w| =

|{(a, b)|(a, b) ∈ (Lx(w) × Rx(w)) ∩ (Ly(w) × Ry(w)), (a, b) �∈ B′
x(w) ∪ B′

y(w)}| =

|{(a, b)|(a, b) ∈ (Lx(w) ∩ Ly(w)) × (Rx(w) ∩ Ry(w)), (a, b) �∈ B′
x(w) ∪ B′

y(w)}|.

The quantities |(Lx(w)∩Ly(w))× (Rx(w)∩Ry(w))| can be computed in O(|x|+
|y|) time, for all w, since we store the elements of the sets sorted. We can then
check for each (α, β) ∈ B′

x(w) ∪ B′
y(w) whether it occurs in (Lx(w) ∩ Ly(w)) ×

(Rx(w) ∩ Ry(w)), for all w, within the same complexity as follows. Since all our
sets are sorted, we can check whether α ∈ Lx(w) ∩ Ly(w) in time linear in the
total size of B′

x(w), B′
y(w), Lx(w) and Ly(w), for all pairs (α, β); if so, we keep

(α, β). After we do this for all w, we (globally) sort the surviving pairs based on
their second element—using integer identifiers for representatives w so that we
can regroup them—and conclude in an analogous manner as before by employing
Rx(w) ∩ Ry(w). The result then follows from Theorem 3. ��
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at the Université Paris-Est, where part of this work has been conducted.

References

1. Almirantis, Y., et al.: On avoided words, absent words, and their application to
biological sequence analysis. Algorithms Mol. Biol. 12(1), 5:1–5:12 (2017)

2. Almirantis, Y., et al.: Optimal computation of overabundant words. In: Schwartz,
R., Reinert, K. (eds.) 17th International Workshop on Algorithms in Bioinformatics
(WABI 2017), Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, vol. 88, pp. 4:1–4:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)
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Abstract. The directed acyclic word graph (DAWG) of a string y is the
smallest (partial) DFA which recognizes all suffixes of y and has O(n)
nodes and edges. Na et al. [11] proposed k-truncated suffix tree which
is a compressed trie that represents substrings of a string whose length
up to k. In this paper, we present a new data structure called k-truncated
DAWGs, which can be obtained by pruning the DAWGs. We show that
the size complexity of the k-truncated DAWG of a string y of length n is
O(min{n, kz}) which is equal to the truncated suffix tree’s one, where z is
the size of LZ77 factorization of y. We also present an O(n log σ) time and
O(min{n, kz}) space algorithm for constructing the k-truncated DAWG
of y, where σ is the alphabet size. As an application of the truncated
DAWGs, we show that the set MAW k(y) of all minimal absent words
of y whose length is smaller than or equal to k can be computed by
using k-truncated DAWG of y in O(min{n, kz} + |MAW k(y)|) time and
O(min{n, kz}) working space.

1 Introduction

Text indexes are fundamental data structures for string processing that allow
for efficient processing of string data. Several data structures have been devel-
oped for string processing such as suffix trees [13], suffix arrays [9] and directed
acyclic word graphs (DAWGs) [1,4]. Na et al. [11] proposed k-truncated suffix
trees which are the truncated version of suffix trees that require less space than
the suffix trees. The k-truncated suffix tree of y is a compressed trie that rep-
resents substrings of y whose length is less than or equal to k. They also show
an application of truncated suffix trees for LZ77 [14] that compresses using a
sliding window of a fixed size [11]. Later, Tanimura et al. [12] showed that the k-
truncated suffix tree of a string y of length n can be represented in O(min{n, kz})
space, where z is the size of LZ77 factorization of y.

In this paper, we focus on directed acyclic word graphs (DAWGs) [1]. The
DAWG of a string y, denoted by DAWG(y), is an edge-labeled directed acyclic
graph obtained by merging isomorphic subtrees of the suffix trie of y. It is known
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Fig. 1. The smallest automaton which represents all substrings of y = abbabab of
length 3 or less.

that each node in DAWG(y) represents strings that have the same set of ending
positions in the string y. DAWG(y) also can be seen as the smallest automaton
recognizing all suffixes of y. We can make the smallest automaton recognizing
all substrings of length k or less, by minimizing the trie representing substrings
of y whose length less than or equal to k (see Fig. 1). However, it is difficult to
construct the smallest automaton in an online manner and sometimes it does
not become small e.g. when all characters in y are different from another (see
Fig. 2). This problem can be solved by representing some substrings whose length
is more than k.

Fig. 2. The smallest automaton
which represents all substrings
of y = abcdefg of length 3 or
less.

In this paper, we propose a new data struc-
ture called k-truncated DAWG, which is the
DAWG with some of its nodes and edges omit-
ted. The k-truncated DAWG of y, denoted
by k-TDAWG(y), is a subgraph of DAWG(y)
where a node in DAWG(y) is also a node
in k-TDAWG(y) if and only if the length of
the shortest string represented by the node
in DAWG(y) is k or less. We show that
k-TDAWG(y) can be stored in O(min{n, kz})
space, where n is the length of y and z is the size
of the LZ77 factorization of y. We also present an
O(n log σ) time and O(min{n, kz}) space algo-
rithm for constructing k-TDAWG(y), where σ is

the alphabet size. The proposed algorithm is based on the online DAWG con-
struction algorithm by Blumer et al. [1]. We add node and edge deletion opera-
tions to the algorithm and show that these deletion operations can be performed
safely while maintaining O(min{n, kz}) working space.

For a string y, it is known that the suffix links of the DAWG(y) coincide with
the edges of the suffix tree of yR [6], where yR is the reverse string of y. We show
that this property also holds between the truncated DAWG of y and the trun-
cated suffix tree of yR. Moreover, truncated DAWGs contain secondary edges,
which do not present in truncated suffix trees. Therefore, truncated DAWGs
contain more information than suffix trees for the same space complexity.
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As an application of k-TDAWG(y), we present an algorithm to compute the
set MAW k(y) of all minimal absent words of y whose size is smaller than or equal
to k by using k-TDAWG(y). A string x is said to be a minimal absent word of
another string y if x does not occur in y and all proper substrings of x occur in
y. Minimal absent words have some applications such as to build phylogeny [3]
and pattern matching [5]. Let MAW (y) be the set of minimal absent words of y.
Fujishige et al. [7] proposed an algorithm to compute MAW (y) from DAWG(y)
in O(n + |MAW (y)|) time. Their algorithm uses DAWG(y) and its suffix links.
This problem cannot be solved with the suffix tree of y and its suffix links in the
same time and space complexity. We show that MAW k(y) can be computed from
k-truncated DAWG in O(min{n, kz} + |MAW k(y)|) time. Similar to MAW (y),
MAW k(y) cannot be computed with the truncated suffix tree of y with its suffix
links in the same time and space complexity.

2 Preliminaries

2.1 Strings

Let Σ denotes the alphabet. An element of Σ∗ is called a string. Let ε denotes
the empty string and Σ+ = Σ∗ \ {ε}. For any string y, we denote its length
by |y|. For any 1 ≤ i ≤ |y|, we use y[i] to denote the i-th character of y. For
any string y, we denote the reverse string of y by yR = y[|y|] . . . y[1]. For any
u, v, w ∈ Σ∗ such that y = uvw, then u, v, and w are a prefix, substring, and
suffix of y, respectively. For any 1 ≤ i ≤ j ≤ |y|, y[i..j] denotes the substring of y
which begins at position i and ends at position j. For convenience, let y[i..j] = ε
if i > j. Let Prefix (y), Substr(y) and Suffix (y) denote the set of all prefixes, all
substrings, and all suffixes of y, respectively. Moreover, let Substrk(y) denotes
the set of substrings of y of length k and suffixes of y whose length is less than
or equal to k, namely Substrk(y) = {y[i..min{i + k − 1, |y|}] | 1 ≤ i ≤ |y|}.
Throughout this paper, we will use y to denote the input string.

For any string x ∈ Σ∗, we define BegPos(x) = {i | i ∈ [1, |y|− |x|+1], y[i..i+
|x| − 1] = x} and EndPos(x) = {i | i ∈ [|x|, |y|], y[i − |x| + 1..i] = x}, i.e., the
set of beginning and end positions of occurrences of x in y, respectively. For any
strings s, t, we write s ≡L t (resp. s ≡R t) iff BegPos(s) = BegPos(t) (resp.
EndPos(s) = EndPos(t)). For any string x ∈ Σ∗, the equivalence classes with
respect to ≡L and ≡R that x belongs to, are respectively denoted by [x]L and
[x]R. Also, −→x and ←−x respectively denote the longest elements of [x]L and [x]R.

For any set S of strings where no two strings are of the same length, let
long(S) = arg max{|x| | x ∈ S} and short(S) = arg min{|x| | x ∈ S}.

In this paper, we assume that the input string y of length n is over the
ordered alphabet Σ of size σ. We use the standard word RAM model, thus the
space complexities will be evaluated by the number of words (not bits).

2.2 LZ77 Factorization

The Lempel-Ziv 77 factorization (LZ77 factorization) with self-references [14] of
a string y is a sequence f1f2 · · · fz = y that satisfies the following conditions:
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– f1 = y[1],
– fi = y[|f1 · · · fi−1| + 1] if y[|f1 · · · fi−1| + 1] does not occur in f1 · · · fi−1,
– otherwise, fi is the longest prefix of y[|f1 · · · fi−1|+1..|y|] such that fi begins

at a position inside y[1..|f1 · · · fi−1|].
In this paper, z denotes the size of LZ77 factorization of y. For example, for
string y = ababbbabbba, LZ77 factorization of y is f1 = a, f2 = b, f3 = ab, f4 =
bb, f5 = abbba and this factorization size is 5.

2.3 Suffix Trees and DAWGs

Suffix trees [13] and directed acyclic word graphs (DAWGs) [1] are fundamental
text data structures. Both of these data structures are based on suffix tries. The
suffix trie for string y, denoted by STrie(y), is a trie representing Substr(y),
formally defined as follows.

Definition 1. STrie(y) for a string y is an edge-labeled rooted tree (VT ,ET )
s.t.

VT = {x | x ∈ Substr(y)}
ET = {(x, b, xb) | x, xb ∈ VT , b ∈ Σ}.

The second element b of each edge (x, b, xb) is the label of the edge. We also
define the set LT of labeled “reversed” edges called the suffix links of STrie(y)
by

LT = {(ax, a, x) | x, ax ∈ Substr(y), a ∈ Σ}.

As can be seen in the above definition, each node v of STrie(y) can be iden-
tified with the substring of y that is represented by v. Assuming that string
y terminates with a unique character that appears nowhere else in y, for each
suffix y[i..|y|] ∈ Suffix (y) there is a unique leaf �i in STrie(y) such that the suffix
y[i..|y|] is spelled out by the path from the root to �i.

It is well known that STrie(y) requires O(n2) space and this bound is tight.
One idea to reduce its space to O(n) is to compress each path consisting only
of non-branching edges into a single edge labeled with a non-empty string. This
leads to the suffix tree STree(y) of string y. Following [2,8], STree(y) is defined
as follows.

Definition 2. STree(y) for string y is an edge-labeled rooted tree (VS ,ES ) s.t.

VS = {[x]L | x ∈ Substr(y)}
ES = {([x]L, β, [xβ]L) | [x]L, [xβ]L ∈ VS , x�≡Lxβ, β ∈ Σ+, b = β[1],

−→
xb = xβ}.

The second element β of each edge ([x]L, β, [xβ]L) is the label of the edge. We also
define the set LS of labeled “reversed” edges called the suffix links of STree(y)
by

LS = {([ax]L, a, [x]L) | [x]L, [ax]L ∈ VS , a ∈ Σ},

and denote the tree (VS ,LS ) of the suffix links by SLT (y).
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Fig. 3. STrie(y), STree(y), and DAWG(y) for y = abbabab.

Observe that each internal node of STree(y) is a branching internal node in
STrie(y). Assuming that y terminates with a unique character, the leaves in
the subtree rooted at [x]L correspond to BegPos(x) for any x ∈ Substr(y). By
representing each edge label β with a pair of integers (i, j) such that y[i..j] = β,
STree(y) can be represented with O(n) space.

An alternative way to reduce the size of STrie(y) to O(n) is by regarding
STrie(y) as a partial DFA which recognizes Suffix (y) and minimizing it. This
leads to the directed acyclic word graph DAWG(y) of string y. Following con-
ventions from [2,8], DAWG(y) is defined as follows.

Definition 3. DAWG(y) of string y is an edge-labeled DAG (VD ,ED) s.t.

VD = {[x]R | x ∈ Substr(y)}
ED = {([x]R, b, [xb]R) | x, xb ∈ Substr(y), b ∈ Σ}.

We define the set LD of labeled “reversed” edges called the suffix links of
DAWG(y) by

LD = {([ax]R, a, [x]R) | x, ax ∈ Substr(y), a ∈ Σ, [ax]R �= [x]R}.

For any node v ∈ VD of DAWG(y) and character b ∈ Σ, we write δD(v, b) = u
if (v, b, u) ∈ ED for some u ∈ VD , and δD(v, b) = nil otherwise. For any suffix
link (u, a, v) ∈ LD of DAWG(y), we write slD(u) = v. Note that there is exactly
one suffix link coming out from each node u ∈ VD\{[ε]R} of DAWG(y), so the
character a is unique for each node u.

An edge e = (u, a, v) ∈ ED of DAWG(y) is called secondary if |long(u)|+1 <
|long(v)|. See Fig. 3 for examples of STrie(y), STree(y), and DAWG(y).

Minimization of STrie(y) to DAWG(y) can be done by merging isomorphic
subtrees of STrie(y) which are rooted at nodes connected by a chain of suffix
links of STrie(y). Since the substrings represented by these merged nodes end
at the same positions in y, each node of DAWG(y) forms an equivalence class
[x]R.

2.4 k-truncated Suffix Trees

Na et al. [11] proposed k-truncated suffix trees which are pruned suffix trees.
The k-truncated suffix tree of y is a compressed trie that represents substrings
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of y whose length is less or equal to k. Formally, the k-truncated suffix tree
k-TSTree(y) for string y is defined as follows.

Definition 4. k-TSTree(y) for string y is an edge-labeled rooted tree
(Vk-TS ,Ek-TS ) such that

Vk-TS = {[x]L | x ∈ Substr(y), |x| ≤ k}
Ek-TS = {([x]L, β, [xβ]L) | [x]L, [xβ]L ∈ Vk-TS , x�≡Lxβ, b = β[1],

(
−→
xb = xβ ∧ |xβ| ≤ k) ∨ (|−→xb| > k ∧ |xβ| = k ∧ xβ ∈ Prefix (

−→
xb))}.

Figure 4 shows an example of k-truncated suffix tree. The truncated suffix
trees is useful for LZ77 that compresses using a sliding window of a fixed size [11].
Since basic operations of suffix tree can be simulated against strings of length k
or less on truncated suffix tree, it can be used as suffix trees for some algorithms
such as data compression [11] and pattern matching [12]. The k-truncated suffix
tree can be computed in O(n log σ) time [11]. The following lemma holds for the
size of k-TSTree(y).

Lemma 1 ([12]). The k-truncated suffix tree of y can be represented in
O(|Substrk(y)|) space, where |Substrk(y)| = O(min{n, kz}).

3 k-truncated DAWGs

In this chapter, we present a new data structure called truncated DAWGs, that is
data structures that can be obtained by pruning the DAWGs, and also show the
truncated DAWGs properties. First, we define k-truncated DAWG as follows.

Definition 5. k-TDAWG(y) for string y is a DAG (Vk-TD ,Ek-TD) such that

Vk-TD = {[x]R | x ∈ Substr(y), |x| ≤ k}
Ek-TD = {([x]R, b, [xb]R) | x, xb ∈ Substr(y), |xb| ≤ k, b ∈ Σ}.

For any node v ∈ Vk-TD of k-TDAWG(y) and character b ∈ Σ, we write
δTD(v, b) = u if (v, b, u) ∈ Ek-TD for some u ∈ Vk-TD , and δTD(v, b) = nil
otherwise.

We also define the set Lk-TD of labeled “reversed” edges called the suffix links
of k-TDAWG(y) by

Lk-TD = {([ax]R, a, [x]R) | x, ax ∈ Substr(y), [ax]R ∈ Vk-TD , a ∈ Σ, [ax]R �= [x]R}.

For any suffix link (u, a, v) ∈ Lk-TD of k-TDAWG(y), we write slTD(u) =
v. Note that there is exactly one suffix link coming out from each node u ∈
Vk-TD\{[ε]R} of k-TDAWG(y), so the character a is unique for each node u.

By the definition, clearly Vk-TD ⊆ VD ,Ek-TD ⊆ ED , and Lk-TD ⊆ LD hold.
See Fig. 5 for examples of DAWG(y) and 3-TDAWG(y). Because it is a sub-
graph of DAWG, the size of k-TDAWG(y) is smaller than or equal to the size of
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Fig. 4. The suffix tree and 2-truncated suffix tree for y = abbabab.

Fig. 5. The DAWG and 3-truncated DAWG for y = abbabab. The solid arcs represent
edges and the broken arcs represent suffix links.

DAWG(y). From the definition of k-truncated DAWG, k-TDAWG(y) can simu-
late δD and slD on strings of length k or less similar to DAWG(y).

For a string y, it is known that the number of nodes of DAWG(y) coincides
with the number of nodes of STree(yR) [6]. From the definition, this property
also holds between k-TDAWG(y) and k-TSTree(yR).

Lemma 2. For any string y, the number of nodes of k-TDAWG(y) coincides
with the number of nodes of k-TSTree(yR).

Proof. For convenience, let BegPosR(x) be the set of beginning positions of x in
yR, s ≡R

L t iff BegPosR(s) = BegPosR(t) and [x]RL be equivalence classes with
respect to ≡R

L . BegPosR(xR) can be defined as {n−i+1 | i ∈ EndPos(x)}. Since
EndPos(s) = EndPos(t) iff BegPosR(sR) = BegPosR(tR), s ≡R t iff sR ≡R

L tR.
Because [x]R to [xR]RL mapping is a one-to-one correspondence, the number of
nodes of k-TDAWG(y) is equal to the number of nodes of k-TSTree(yR). ��
By using the above property, we can show that the following theorem holds for
the space complexity of k-truncated DAWGs.

Theorem 1. Given a string y of length n and natural number k, k-TDAWG(y)
can be stored in O(min{n, kz}) space, where z is the size of LZ77 factorization
of y.

Proof. First, we prove |Vk-TD | ∈ O(min{n, kz}). From Lemma 2, the number of
nodes of k-TDAWG(y) is the same as the number of nodes of k-TSTree(yR).
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Algorithm 1. O(n log σ)-time construction algorithm of TDAWG(y)
Input: string y of length n.
Output: k-TDAWG(y) = (Vk-TD ,Ek-TD) and Lk-TD

1 V, E and L are empty;
2 make new node v;
3 V ← V ∪ {v};
4 for i = 1 to n do
5 u ← v;
6 make a new node v;
7 V ← V ∪ {v};
8 while δTD(u, y[i]) = nil and slTD(u) �= nil and |long(u)| < k do
9 E ← E ∪ {(u, y[i], v)};

10 u ← slTD(u);

11 if (u, y[i], δTD(u, y[i])) is a secondary edge then
12 if short(u) = k then
13 E ← E\{(u, a, δTD(u, a)) | ∀a ∈ Σ};

14 split(u, δTD(u, y[i]));

15 if there is no in-degree edge of v then
16 V ← V \v;
17 v ← δTD(u, y[i]);

18 L ← L ∪ {(v, δTD(u, y[i]))};

19 Output (V, E) and L;

Since |Substrk(yR)| = |Substrk(y)| = O(min{n, kz}) and the number of nodes of
k-TSTree(yR) is O(|Substrk(yR)|) by Lemma 1, thus |Vk-TD | ∈ O(min{n, kz}).
Next, we prove |Ek-TD | ∈ O(min{n, kz}). Let l(v) be arg minx{|x| | x ∈ v} for
each node v ∈ Vk-TD . Consider a spanning tree T on the k-TDAWG consisting
of the shortest path from the root to each node, the number of edges in T is
obviously O(min {n, kz}). Let E be the set of edges of truncated DAWG of y
not included in T . For λ = ([x]R, b, [xb]R) ∈ E, consider a function f , f(λ) =
short([x]R) ·s, where |short([x]R) ·s| = k, s[1] = b and short([x]R) ·s ∈ Substr(y)).
Since, f is injective function from E to k-mers of y, |E| ∈ O(kz). Moreover,
Ek-TD ∈ O(n) because Ek-TD ⊂ ED . Therefore, |Ek-TD | ∈ O(min{n, kz}). ��

4 Construction of Truncated DAWG

In this section, we present a construction algorithm of k-truncated DAWGs.
As previously mentioned, k-TDAWG(y) is a subgraph of DAWG(y). Therefore,
k-TDAWG(y) can be constructed in O(n log σ) time and O(n) working space
by traversing all edges and vertices of DAWG(y) and deleting unnecessary ones,
but the working space is not optimal. Therefore, we propose an optimal work-
ing space algorithm that can construct k-TDAWG(y) in O(min{n, kz}) working
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Algorithm 2. O(n log σ)-time construction algorithm of DAWG(y) [1]
Input: string y of length n.
Output: DAWG(y) = (VD ,ED) and LD

1 V, E and L are empty;
2 make new node v;
3 V ← V ∪ {v};
4 for i = 1 to n do
5 u ← v;
6 make a new node v;
7 V ← V ∪ {v};
8 while δD(u, y[i]) = nil and slD(u) �= nil do
9 E ← E ∪ {(u, y[i], v)};

10 u ← slD(u);

11 if (u, y[i], δD(u, y[i])) is a secondary edge then
12 split(u, δD(u, y[i]));

13 L ← L ∪ {(v, δD(u, y[i]))};

14 Output (V, E) and L;

space Our algorithm is based on the online DAWG construction algorithm by
Blumer et al. [1].

The main idea of our algorithm is that the algorithm deleting unnecessary
nodes and edges while creating new nodes and edges similarly to DAWG(y) con-
struction algorithm. In order to construct k-TDAWG(y) similarly to DAWG(y),
first we show the following lemma.

Lemma 3. Let v be a node of both DAWG(y[1..i]) and DAWG(y[1..i + 1]). If v
does not exist in k-TDAWG(y[1..i]), v does not exist in k-TDAWG(y[1..i + 1]).

Proof. Let, [x]iR be the equivalence class represented by v in DAWG(y[1..i]) and
[x]i+1

R be the equivalence class represented by v in DAWG(y[1..i + 1]). Assume
that v does not exist in k-TDAWG(y[1..i]) and exists in k-TDAWG(y[1..i + 1]).
From the assumption, there is a string w such that w /∈ [x]iR, w ∈ [x]i+1

R , and
|w| ≤ k. However, [x]i+1

R ⊆ [x]iR holds from the definition, which is a contradic-
tion. ��
By Lemma 3, we can safely delete nodes whose exist in k-TDAWG(y[1..i − 1])
but not in k-TDAWG(y[1..i]) and do not need to consider the nodes that have
been deleted when constructing k-TDAWG(y) in an online manner. Thus, we
can construct k-TDAWG(y[1..i + 1]) from k-TDAWG(y[1..i]) online in a similar
way to the DAWG construction algorithm in [1]. Algorithm 1 shows a pseudo-
code of the proposed algorithm, provided that the function split is defined by
Blumer et al. [1]. For strings s and t (|s| < |t|) which holds [s]i−1

R = [t]i−1
R and

[s · y[i]]iR �= [t · y[i]]iR, the function split compute [sy[i]]iR and [ty[i]]iR by splitting
the node [s]i−1

R = δD(u, y[i]). Figure 6 shows a snapshot during the construction
of 3-TDAWG for y = abbabab.
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Fig. 6. Snapshots during the construction of 3-TDAWG(y) for y = abbabab on Algo-
rithm 1.

Algorithm 1 satisfies the following theorem.

Theorem 2. Given a string y of length n over an ordered alphabet and a
natural number k, Algorithm1 computes k-TDAWG(y) in O(n log σ) time and
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Algorithm 3. An O(min{n, kz} + |MAW k(y)|)-time algorithm for com-
puting MAW k(y)
Input: k-truncated DAWG k-TDAWG(y) of y.
Output: All minimal absent words of length up to k for y

1 MAW k ← ∅;
2 for each non-source node u of k-TDAWG(y) do
3 for each character b such that δTD(slTD(u), b) �= nil do
4 if δTD(u, b) = nil ∧ |long(slTD(u))| ≤ k − 2 then
5 x ← long(slTD(u));
6 MAW k ← MAW k ∪ {axb}; // (u, a, slTD(u))∈Lk-TD

7 Output MAW k;

O(min{n, kz}) working space in an online manner, where z is the size of LZ77
factorization of y.

Proof. Algorithm 1 shows construction algorithm of k-TDAWG(y) and Algo-
rithm2 shows construction algorithm of DAWG(y). Basically, the differences
between these algorithms are operations of deleting nodes and edges in line 12–
13 and line 15–17 of Algorithm1. First, we show the correctness of our algorithm.
By the definition of truncated DAWGs, it is clear that truncated DAWGs moves
in the same manner as DAWGs for u ∈ Vk-TD . For each step, because algorithm
runs on the nodes u which corresponded to y[i−k..i−1] and connected nodes by
suffix links, any nodes v such that |short(v)| > k is never visited (see Lemma 3).
Therefore the nodes and edges which corresponded only to strings whose length
is greater than k can be deleted immediately. Thus we can construct truncated
DAWGs in an online manner by adding delete operation of nodes and edges in
each the step.

Next, we prove the working space in O(min{n, kz}). The nodes and edges
are deleted only in line 13 and 16. These deleted nodes and edges are made in
line 6 or line 14, their size is obviously not over the size of k-truncated DAWG
of y[1..i − 1]. Thus working space complexity is O(kz). ��

5 Applications of Truncated DAWGs for Minimal Absent
Words

In this section, we show an algorithm to compute the set of all minimal absent
words with length k or less of a given string as an application of k-truncated
DAWG.
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Fig. 7. Computing mini-
mal absent words from a
truncated DAWG.

For two strings x and y, x is said to be an absent
word of y if x /∈ Substr(y). An absent word x of y
is said to be a minimal absent word (MAW ) of y if
and only if Substr(x) \ {x} ⊂ Substr(y). The set of
all MAWs of y is denoted by MAW (y). For example,
given Σ = {a, b, c} and y = abaab, then MAW (y) =
{aaa, aaba, bab, bb, c}.

Given a string y, the following lemma holds for the
number of MAWs of y.

Lemma 4 ([10]). For any string y ∈ Σ∗, σ ≤ |MAW (y)| ≤ (σy −1)(|y|−1)+σ,
where σ = |Σ| and σy is the number of distinct characters occurring in y. This
bound is tight.

MAWs can be computed from DAWGs with suffix links in linear time.

Lemma 5 ([7]). Given a DAWG of string y of length n, MAW (y) can be com-
puted in O(n + |MAW (y)|) time with O(n) working space.

Let the MAWs of y which length k or less be MAW k(y). Now we show
that MAW k(y) can be computed from k-TDAWG(y) including the suffix links.
Algorithm 3 shows an algorithm for computing MAW k(y).

Theorem 3. Given a k-truncated DAWG of string y of length n, Algorithm3
computes MAW k(y) in O(min{n, kz} + |MAW k(y)|) time with O(min{n, kz})
working space, where z is the size of LZ77 factorization of y.

Proof. First, we show the correctness of our algorithm. For any node u of
k-TDAWG(y) where short(u) is less than k, EndPos(slD(u)) ⊃ EndPos(u) holds
since every string in slD(u) is a suffix of the strings in u. Thus, if there is an
out-edge of u labeled c, then there is an out-edge of slD(u) labeled c. Hence, the
task is to find every character b such that there is an out-edge of slD(u) labeled
b but there is no out-edge of u labeled b. The for loop of Line 3 of Algorithm3
tests all such characters and only those. Hence, Algorithm 3 computes MAW k(y)
correctly.

Let Fig. 7 shows k-TDAWG(y). The string ax occurs in y, ax�≡Rx and [x]R
has out-going edges labeled a, b, and c. So xa, xb, and xc occur in y. On the
other hand, [ax]R has out-going edges labeled a and c, but not b, i.e. axa and
axc occur in y and axb not. Because ax and xb occur in y and axb not, axb is a
minimal absent word of y.

Second, we analyze the efficiency of our algorithm. As mentioned above,
minimal absent words of length 1 for y can be found in O(n + σ) time and
O(1) working space. By Lemma 4, σ ≤ |MAW k(y)| and hence the σ-term is
dominated by the output size |MAW k(y)|. Now we consider the cost of finding
minimal absent words of length at least 2 and k or less by Algorithm 3. Let b be
any character such that there is an out-edge e of slTD(u) labeled b.

There are two cases: (1) If there is no out-edge of u labeled b, then we output
a MAW, so we can charge the cost to check e to an output. (2) If there is an
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out-edge e′ of u labeled b, then the trick is that we can charge the cost to check
e to e′. Since each node u has exactly one suffix link going out from it, each
out-edge of u is charged only once in Case (2). Moreover, since the out-edges of
every node u and those of slTD(u) are both sorted, we can compute their differ-
ence for every node u in k-TDAWG(y) in overall O(min{n, kz}) time. Overall,
Algorithm 3 runs in O(min{n, kz} + |MAW k(y)|) time. The space requirement
is clearly O(min{n, kz}). ��

6 Conclusion

In this paper, we proposed a new data structure called truncated DAWGs.
We show that the k-truncated DAWG of y, denoted by k-TDAWG(y), is a
subgraph of DAWG(y), and can be stored in O(min{n, kz}) space. We also
present an O(n log σ) time and O(min{n, kz}) space algorithm for constructing
k-TDAWG(y), where n is the length of y, σ is the alphabet size, and z is the
size of LZ77 factorization of y. As an application of k-TDAWG(y), we present
an O(min{n, kz}+ |MAW k(y)|) time algorithm to compute the set MAW k(y) of
all minimal absent words of y whose size is smaller than or equal to k by using
k-TDAWG(y).

Our future work is to find a way to construct truncated DAWGs in
O(min {n, kz}) time by using compressed strings such as LZ77 factorization.
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Abstract. Due to the increased availability of large datasets of biolog-
ical sequences, tools for sequence comparison are now relying on effi-
cient alignment-free approaches to a greater extent. Most alignment-
free approaches require the computation of statistics when comparing
sequences, even if such computations may not scale well in in internal
memory when very large collections of long sequences are considered.
In this paper, we present a new conceptual data structure, the colored
longest common prefix array (cLCP), that allows to efficiently tackle sev-
eral problems with an alignment-free approach. In fact, we show that such
a data structure can be computed via sequential scans in semi-external
memory. By using cLCP, we propose an efficient lightweight strategy to
solve the multi-string Average Common Substring (ACS) problem, that
consists in the pairwise comparison of a single string against a collec-
tion of m strings simultaneously, in order to obtain m ACS induced
distances. Experimental results confirm the high practical efficiency of
our approach.

Keywords: Longest common prefix · Average Common Substring
Matching statistics · Burrows-Wheeler transform
Alignment-free methods

1 Introduction

The rapid increase in the availability of large sets of biological sequences observed
in the last two decades, particularly triggered by the human sequencing project,
posed several challenges in the analysis of such data. So far, traditional methods
based on sequence alignment worked well for small and closely related sequences,
but scaling these approaches up to multiple divergent sequences, especially of
large genomes and proteomes, is a difficult task. To keep pace with this, several
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algorithms that go beyond the concept of sequence alignment have been devel-
oped, called alignment-free [37]. Alignment-free approaches have been explored
in several large-scale biological applications ranging, for instance, from DNA
sequence comparison [12,14,17,21,29,30] to whole-genome phylogeny construc-
tion [13,15,25,35,36] and the classification of protein sequences [14,18]. Most
alignment-free approaches aforementioned require, each with its own specific
approach and with the use of appropriate data structures, the computation of
statistics of the sequences of the analyzed collections. However, it is interesting
to note that the increasing number of completely sequenced genomes is causing
the computation of many statistics that do not scale well in internal memory,
determining the need for lightweight strategies for the comparative analysis of
very large collections of long sequences.

In this paper, we propose a new conceptual data structure, the colored longest
common prefix array (cLCP), that implicitly stores all the information necessary
to compute statistics on distinguishing, repeating, or matching substrings within
a collection or different collections of strings. Loosely speaking, given a collection
S, in which each string (or subset of strings) is identified by a specific color, we
can generally define cLCP as an integer array representing the longest common
prefix between any specific suffix of a string sr ∈ S and the nearest suffixes
of a specific string st ∈ S in the sorted list of suffixes of S. Here, we assume
that S is partitioned in two subsets and consider the comparison of suffixes of
strings belonging to different subsets, but we remark that one can consider any
situation and note also that the definition can be easily adapted to more than
two sets. We also show that cLCP can be computed via sequential scans and
therefore acquires the characteristics of an appropriate structure for analyzing
large collections of strings stored in external memory.

cLCP can be used in several application contexts. In this paper we explore the
multi-string Average Common Substring (ACS) [36] problem. More specifically,
the ACS measure is a simple and effective alignment-free method for pairwise
string comparison [13,35], based on the concept of matching statistics (MS) [12,
15,24,30]. Given two strings s and t, it can be defined by the arrays MS(s, t) and
MS(t, s), which store, at each position i, the length of the longest substring that
starts at position i of the string given as first parameter that is also a substring
of the string given as second parameter.

ACS approach has been employed in several biological applications [15,16,
19,25,36]. Generalization of measures based on longest matches with mismatches
have been proposed in [7], also with distributed approaches [23]. Similarly to [33],
we define the multi-string ACS problem as the pairwise comparison of a single
string, say sχ ∈ S0 of length nχ, against a set of m strings, say sr ∈ S1 with
1 ≤ r ≤ m, by considering the strings in S1 all together, in order to obtain m
ACS induced distances at once. A major bottleneck in the computation (and
application) of ACS and MS initially consisted in the construction of a suffix
tree. More recent approaches use efficient indexing structures [9], CDAWG [10],
backward search [30] or enhanced suffix arrays [25]. However, to the best of
our knowledge, the above mentioned approaches would require a great effort,
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especially in terms of RAM space, when applied to compare very large collections
of long strings.

In this paper we use cLCP to efficiently solve the above mentioned multi-
string ACS problem. Preliminary experimental results show that our algorithm
is a competitive tool for the lightweight simultaneous computation of pairwise
distances between a single string and all strings in another collection, allowing
us to suppose that this data structure and its computational strategy can be
used for more general versions of the multi-string ACS problem.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet with c1 < c2 < . . . < cσ,
where < denotes the standard lexicographic order. We consider finite strings such
as s ∈ Σ∗, where s[1], s[2], . . . , s[n] denote its characters and |s| = n its length.
A substring of a string s is written as s[i, j] = s[i] · · · s[j], with a substring s[1, j]
being called a prefix, while a substring s[i, n] is referred to as a suffix. A range is
delimited by a square bracket if the correspondent endpoint is included, whereas
a parenthesis means that the endpoint is excluded.

The BWT [11] is a well known reversible string transformation widely used
in data compression. The BWT can be extended to a collection of strings
S = {s1, s2, . . . , sm}. Such an extension, known as EBWT or multi-string BWT,
is a reversible transformation that produces a string (denoted by ebwt(S)) that
is a permutation of the characters of all strings in S [28]. Lightweight implemen-
tations of EBWT have been proposed [8,22,26]. We append to each string si

of length ni a distinct end-marker symbol $i <c1 (for implementation purposes,
we could simply use a unique end-marker $ for all strings in S). The output
string ebwt(S) is the concatenation of the symbols (circularly) preceding each
suffix of the strings in S, sorted according to the lexicographic order. More in
detail, the length of ebwt(S) is denoted by N =

∑m
i=1 ni +m and ebwt(S)[i] = x,

with 1 ≤ i ≤ N , if x circularly precedes the i-th suffix sj [k, nj + 1] (for some
1 ≤ j ≤ m and 1 ≤ k ≤ nj + 1), according to the lexicographic sorting of the
suffixes of all strings in S. In this case we say the suffix sj [k, nj +1] is associated
with the position i in ebwt(S). We can associate to each string si ∈ S a color i in
ID = {1, 2, . . . ,m}. The output string ebwt(S), enhanced with the array id(S)
of length N where id(S)[i] = r, with 1 ≤ r ≤ m and 1 ≤ i ≤ N , if ebwt(S)[i] is
a symbol of the string sr ∈ S, is called colored EBWT.

The longest common prefix (LCP) array of the collection S [20,26,32] is the
array lcp(S) of length N + 1, such that lcp(S)[i], with 2 ≤ i ≤ N , is the length
of the longest common prefix between the suffixes associated to the positions
i and i − 1 in ebwt(S) and lcp(S)[1] = lcp(S)[N + 1] = −1 set by default.
We denote by LCP(i, j) the length of the LCP between the suffixes associated
with positions i and j in ebwt(S), i.e. min{lcp(S)[l] : i < l ≤ j}. An interval
[i, j] with 1 ≤ i < j ≤ N , is an k-lcp interval if lcp(S)[i] < k, LCP(i, j) = k,
lcp(S)[j + 1] < k. The set S will be later omitted if it is clear from the context.
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3 Colored Longest Common Prefix Array

In this section we present a novel data structure, the colored longest common
prefix array (cLCP). Loosely speaking, the cLCP array represents the longest
common prefix between a suffix that belongs to a string of the collection S and
the nearest suffixes belonging to another string of S, in the list of sorted suffixes
of S. In this paper, for simplicity of description, we assume that S is partitioned
into two subsets and consider the comparison of suffixes of strings belonging to
different subsets, but we remark that one can consider any situation and note
also that the definition can be easily adapted for more than two sets.

For i = 1, . . . , N and t = 1, . . . m, let prev(i, t) = max{x |1≤x < i, id(S)[x]=
t} and next(i, t) = min{x | i <x≤N, id(S)[x]= t} (if such an x exists, and null
otherwise).

In order to give the notion of the cLCP array, we first define the Upper colored
LCP array (UcLCP) and the Lower colored LCP array (LcLCP), as follows.

Definition 1. The upper (resp. lower) colored longest common prefix array
(UcLCP) (resp. LcLCP) is a (N × m)-integer array where, for each ir ∈ {

1, 2,

. . . , N
}

with id[ir] = r and t ∈ ID, UcLCP[ir][t] = LCP(prev(ir, t), ir) (resp.
LcLCP[ir][t] = LCP(ir, next(ir, t))). Both LCP(null, ir) and LCP(ir, null) are
set equal to 0.

Definition 2. The colored longest common prefix array (cLCP) is a (N × m)-
integer array where, for each ir ∈ {1, 2, . . . , N} with id[ir] = r and t ∈ ID,
cLCP[ir][t] = max(UcLCP[ir][t], LcLCP[ir][t]).

For simplicity UcLCP, LcLCP, and cLCP are also defined when r = t. For
all ir such that id[ir] = r, UcLCP[ir][t] coincides with the corresponding value
in the usual lcp({sr}). As mentioned before, the notion of UcLCP, LcLCP, and
cLCP can be also given for a pair of disjoint collections of strings S0 and S1 by
obtaining an array defined for the pairs (ir, t), where id[ir] = r and t ∈ ID such
that sr and st belong to a different collection.

A given string sχ ∈ S0 with color χ implicitly induces a partition of lcp(S)
into open intervals delimited by consecutive suffixes having color χ (or the posi-
tions 1 and N+1 of lcp), called χ-intervals. Let us consider a position ir contained
within a χ-interval such that id[ir] = r and sr ∈ S1. Then, we can use a similar
procedure as the one employed in [25], such that

UcLCP[ir][χ] = LCP(prev(ir, χ), ir) = min{lcp[x] : prev(ir, χ) < x ≤ ir}, (1)
LcLCP[ir][χ] = LCP(ir, next(ir, χ)) = min{lcp[x] : ir < x ≤ next(ir, χ)}. (2)

Additionally, we notice that there exists a relationship between the values
of UcLCP related to the suffixes of sr and the values of LcLCP related to the
suffixes of sχ. Indeed, if jχ is a position where id[jχ] = χ, then

LcLCP[jχ][r] = LCP(jχ, next(jχ, r)) = UcLCP[next(jχ, r)][χ]. (3)
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Table 1. Let Σ = {A, C, G, T}, sχ = ACGCGCC$χ ∈ S0, s1 = ACGAGACGAT$1 ∈
S1, and s2 = AACGCCGCCGGCA$2 ∈ S1. Then, Score(sχ, s1) = 11/7,
Score(sχ, s2) = 19/7, Score(s1, sχ) = 15/10, Score(s2, sχ) = 30/13, and thus
ACS(sχ, s1) = 0.67 and ACS(sχ, s2) = 0.34. In bold are all positions associated with
suffixes of sχ (i.e. the limits of the χ-intervals)

UcLCP LcLCP cLCP

# id S ebwt lcp D lcpχ α ζ χ 1 2 χ 1 2 χ 1 2 Sorted suffixes of S
1 χ 1 C -1 0 -1 ∞ 0 0 0 0 0 0 0 $χ

2 1 0 T 0 0 0 0 0 0 0 $1
3 2 0 A 0 0 0 0 0 0 0 $2
4 2 0 C 0 2 0 1 0 1 1 A $2
5 2 0 $2 1 0 0 1 0 1 1 A A C G C C G C C G G C A $2
6 1 0 $1 1 4 0 3 0 3 3 A C G A G A C G A T $1
7 1 0 G 4 0 0 3 0 3 3 A C G A T $1
8 2 0 A 3 5 0 4 0 4 4 A C G C C G C C G G C A $2
9 χ 1 $0 4 0 0 ∞ 0 3 4 1 0 3 4 A C G C G C C $χ

10 1 0 G 1 0 1 0 1 0 1 A G A C G A T $1
11 1 0 G 1 0 1 0 1 0 1 A T $1
12 χ 1 C 0 2 0 ∞ 0 0 0 1 1 1 1 C $χ

13 2 0 G 1 0 1 0 1 1 1 C A $2
14 χ 1 G 1 3 1 ∞ 0 0 1 1 2 1 2 C C $χ

15 2 0 G 2 0 2 0 2 1 2 C C G C C G G C A $2
16 2 0 G 3 0 2 0 2 1 2 C C G G C A $2
17 1 0 A 1 3 1 2 1 2 2 C G A G A C G A T $1
18 1 0 A 3 0 1 2 1 2 2 C G A T $1
19 χ 1 G 2 5 1 ∞ 0 2 1 0 4 2 4 C G C C $χ

20 2 0 A 4 0 4 0 4 3 4 C G C C G C C G G C A $2
21 2 0 C 5 0 4 0 4 3 4 C G C C G G C A $2
22 χ 1 A 3 0 3 ∞ 0 2 3 0 2 2 3 C G C G C C $χ

23 2 0 C 2 0 2 0 2 0 2 C G G C A $2
24 1 0 A 0 2 0 1 0 1 1 G A C G A T $1
25 1 0 C 2 0 0 1 0 1 1 G A G A C G A T $1
26 1 0 C 2 0 0 1 0 1 1 G A T $1
27 2 0 G 1 3 0 2 0 2 2 G C A $2
28 χ 1 C 2 4 0 ∞ 0 1 2 0 3 1 3 G C C $χ

29 2 0 C 3 0 3 2 3 2 3 G C C G C C G G C A $2
30 2 0 C 4 0 3 3 3 2 3 G C C G G C A $2
31 χ 1 C 2 0 2 ∞ 0 1 2 0 1 1 2 G C G C C $χ

32 2 0 C 1 0 1 0 1 0 1 G G C A $2
33 1 0 A 0 0 0 0 0 0 0 T $1

−1 −1

Similarly, there exists a relationship between the values of UcLCP related to
suffixes of sχ and the values of LcLCP related to suffixes of sr. In particular,

UcLCP[jχ][r] = LCP(prev(jχ, r), jχ) = LcLCP[prev(jχ, r)][χ]. (4)

Table 1 shows the values of UcLCP, LcLCP and cLCP of the running example,
in which the collection S is partitioned into two subsets S0 = {ACGCGCC$χ}
and S1 = {ACGAGACGAT$1, AACGCCGCCGGCA$2}.

4 Lightweight Computation of cLCP

In this section we describe a lightweight strategy to compute the colored longest
common prefix array cLCP. For sake of simplicity we consider the case in which
the collection S is partitioned into two subsets S0 and S1, and S0 consists of a
single string sχ of length nχ. The general case can be treated analogously.
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Definition 3. A colored k-lcp interval is a k-lcp interval [i, j] such that, among
all the suffixes associated to the range [i, j], at least one suffix belongs to S0 and
at least one suffix belongs to S1.

Definition 4. Let D[1, N + 1] denote an integer array such that D[i] = k if a
colored (k−1)-lcp interval starts at position i and for every colored h-lcp interval
starting at position i then h ≤ k − 1.

Table 1 highlights the conceptual blocks of suffixes that are associated to the
positions i of D such that D[i] �= 0.

Note that the array D can be easily computed in Θ(N) time by linearly
scanning the arrays lcp(S) and id(S), and using a stack that simulates the com-
putation of the colored k-lcp intervals. During the sequential scan, each element
can be inserted or deleted from the stack at most once. Furthermore, considering
that each suffix could take part into no more than max lcp(S) nested blocks, the
stack requires O(max lcp(S)) space, at most. We note that this upper bound in
space is unlikely to be reached in practice, especially since the stack is emptied
when two consecutive values of id corresponding to strings of different subsets
are found. It is important to specify that the above mentioned stack could be
stored in external memory.

In the following we describe a sequential strategy to construct the cLCP array
of the collection S from the arrays id(S), lcp(S), and D(S).

Without loss of generality, let us consider a generic string sr ∈ S1 and sχ ∈
S0. Assume that ebwt[ir], with 1 ≤ ir ≤ N , is associated with a suffix of sr,
i.e. id[ir] = r �= χ, and let χ1 = prev(ir, χ) and χ2 = next(ir, χ). Moreover,
for simplicity, let UcLCPr (resp. LcLCPr) denote UcLCP of sr versus sχ (resp.
LcLCP of sr versus sχ), i.e. the values UcLCP[ir][χ] (resp. LcLCP[ir][χ]) for all
such ir; and LcLCPχ (resp. UcLCPχ) denote LcLCP (resp. UcLCP) of sχ versus
sr, i.e. the values LcLCP[jχ][r] (resp. UcLCP[jχ][r]) for all 1 ≤ jχ ≤ N such that
id[jχ] = χ.

UcLCPr computation — This is the easiest case, since Eq. 1 allows us to directly
compute UcLCPr sequentially and linearly in the total size N of lcp. This enables
us to scan lcp forward only once for all suffixes of all m strings in S1, by keeping
track of the minimum value found since the beginning of each conceptual χ-
interval (see column α in Table 1). If we consider the χ-interval (χ1, χ2), by
employing a variable α we can iteratively compute the minimum value among
consecutive elements of lcp and determine, for every ir ∈ (χ1, χ2), the LCP
between the suffix associated with position ir and the suffix associated with
position χ1: UcLCP[ir][χ] = LCP(χ1, ir) = min{lcp[x] : x ∈ (χ1, ir]} = α.

Example 1 (Running example). If the χ-interval is (14, 19) and ir = 18, then
UcLCP[18][χ] = LCP(14, 18) = min{lcp[x] : x ∈ (14, 18]} = α[18] = 1.

LcLCPχ computation — Since LcLCPχ is strictly related to UcLCPr by Eq. 3, we
would like to compute it sequentially and linearly as well. Suppose that we have
just computed UcLCP[ir][χ] and ir represents the first suffix of sr encountered
since the beginning in (χ1, χ2). Then, by Eq. 3, LcLCP[χ1][r] = UcLCP[ir][χ]. To
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keep track of the first instance of every sr ∈ S1 in the interval, we could resort
to a bit-array of m elements for χ1.

Nevertheless, this is not sufficient to complete the construction of LcLCPχ,
because there might be no suffixes of a particular string sr ∈ S1 within (χ1, χ2),
but other suffixes of sr might exist at positions > χ2. To tackle this issue, once
we have thoroughly read lcp and filled LcLCPχ using the above procedure, we
can propagate the computed values of LcLCPχ backward from lower to higher
lexicographically ranked suffixes of χ, in order to complete LcLCPχ. For example,
to propagate the information from χ2 to χ1, we must compute:

LcLCP[χ1][r] = min{LCP(χ1, χ2), LcLCP[χ2][r]}. (5)

Thus, iteratively, we can propagate the information backward from the lowest
ranked suffixes of χ to the top of LcLCPχ.

Example 2 (Running example). After the first scan of lcp in the example of
Table 1, LcLCP[12][1] (i.e. suffix of sχ in row 12 versus string s1 ∈ S1) would be
0, whereas by propagating the information back from the suffix of sχ in row 14,
we obtain: LcLCP[12][1] = min{LCP(12, 14), LcLCP[14][1]} = min{1, 2} = 1.

LcLCPr computation —The most interesting part is computing LcLCPr in such
a way as to avoid the backward scan of id and lcp suggested by Eq. 2 and,
concomitantly, for particular applications such as the multi-string ACS problem
discussed below, to reduce the memory footprint required to keep both UcLCPr

and LcLCPr to a somehow negligible one. Thus, we show how to sequentially
determine, for every ir ∈ (χ1, χ2), the LCP between the suffix associated with
position ir and the suffix associated with position χ2.

Let us consider the array D introduced in Definition 4. Intuitively, D pro-
vides an interlacing forward information that could be exploited to compute
LcLCP[ir][χ] sequentially, as soon as we reach position ir. Firstly, observe that,
for any 1 ≤ ir ≤ N with id[ir] = r and any χ1 < x < χ2, prev(x, χ) =
prev(ir, χ) = χ1 and next(x, χ) = next(ir, χ) = χ2.

Remark 1. For any x1 < x2, with χ1 ≤ x1 < χ2 and χ1 < x2 ≤ χ2,
LCP(x1, x2) ≥ LCP(χ1, χ2).

Lemma 1. For any 1 ≤ ir ≤ N , if LCP(ir, χ2) = k − 1 then there exists an x,
with χ1 < x ≤ ir, such that D[x] = k �= 0 if and only if LCP(χ1, χ2) < k − 1.

Moreover, it follows that D[x] would be (the only) maximum in the range
(χ1, ir] and its value is ≥ 2. Hence, we can determine LcLCP[ir][χ] = LCP(ir, χ2).

Theorem 1. For any 1 ≤ ir ≤ N such that id[ir] = r, if LCP(χ1, ir) >
LCP(χ1, χ2) then LCP(ir, χ2) = LCP(χ1, χ2), otherwise LCP(ir, χ2) =
max{max{D[x] : χ1 < x ≤ ir} − 1,LCP(χ1, χ2)}.

By using Theorem 1 we need to keep track of the maximum value (decreased
by 1) among consecutive D values since the beginning of each conceptual χ-
interval (see column ζ in Table 1). An immediate example of Theorem 1 is given
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in column LcLCP[·][χ] of Table 1, which provides the final values of LcLCPr,
where LCP(χ1, ir) is computed using Eq. 1 and LCP(χ1, χ2) through lcp(S0)
(or, shortly, lcpχ).

Example 3 (Running example). Let ir = 16 (with prev(ir, χ) = 14 and
next(ir, χ) = 19) such that LCP(14, 16) = UcLCP[16][χ] = 2 > LCP(14, 19) =
lcpχ[5] = 1; then, LcLCP[17][χ] = LCP(16, 19) = LCP(14, 19) = 1. Con-
versely, by considering ir = 17 (with prev(ir, χ) = 14 and next(ir, χ) = 19,
as before), LCP(14, 17) = UcLCP[17][χ] = 1 = LCP(14, 19) = lcpχ[5] =
1; therefore, LcLCP[17][χ] = LCP(17, 19) = max{max{D[x] : 14 < x ≤
17} − 1,LCP(14, 19)} = max{2, 1} = 2. Furthermore, we consider the third
case of Theorem 1 such that, for ir = 13 (where prev(ir, χ) = 12 and
next(ir, χ) = 14), LCP(12, 13) = UcLCP[13][χ] = 1 = LCP(12, 14) = lcpχ[4] = 1
and thus LcLCP[13][χ] = LCP(13, 14) = max{max{D[x] : 12 < x ≤ 13} −
1,LCP(12, 14)} = max{−1, 1} = 1.

UcLCPχ computation —Similarly to LcLCPχ, we can compute UcLCPχ by
exploiting Eq. 4 and the previously computed LcLCPr within each χ-interval
(compare columns UcLCP[·][1] and UcLCP[·][2] against column LcLCP[·][χ] in
Table 1). To complete the construction of UcLCPχ, we need then to propagate
forward the information from higher to lower lexicographically ranked suffixes of
χ. For example, to propagate the information from χ1 to χ2, we must compute
UcLCP[χ2][r] = min{LCP(χ1, χ2),UcLCP[χ1][r]}.

To reduce the memory footprint, for instance for applications such as multi-
string ACS, we could use a single matrix cLCPχ[1, nχ][1,m] (initialized with all
0s) to keep track of the maximum values between the corresponding positions of
UcLCPχ and LcLCPχ, which could be then refined at most twice by propagation.
Observe that UcLCPχ, alone, can be directly computed sequentially, eventually
reducing the additional space to a negligible one of size O(m), as seen before for
UcLCPr and LcLCPr.

Example 4 (Running example). After the first scan of lcp, UcLCP[22][1] (i.e.
suffix of sχ in row 22 versus string s1 ∈ S1) would be 0, whereas by prop-
agating the information forward from the suffix of sχ at row 19, we obtain:
UcLCP[22][1] = min{LCP(19, 22),UcLCP[19][1]} = min{3, 2} = 2.

Computational complexity — The first phase of the algorithm consists of
the semi-external memory computation of the D array in Θ(N) time and
O(max lcp(S)). Notice that UcLCPr and LcLCPr can be determined sequentially
(forward) requiring nothing but to update variables α and ζ, while keeping track,
respectively, of the minimum among consecutive lcp values and of the maximum
among consecutive D values since the last sχ suffix encountered. Moreover one
can observe that also in UcLCPχ and LcLCPχ computation both lcpχ and cLCPχ

are actually accessed either sequentially forward or sequentially backward, up to
one position before or after the currently processed one, allowing them to reside
in external memory too. This means that we need O(m) additional space in
RAM. In order to optimally use the available size M of RAM, assuming Q ≥ 2
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is the number of m-elements rows of cLCPχ that we could accommodate in
RAM, at any moment we could just keep in memory and process only a sin-
gle block of lcpχ and cLCPχ of size proportional to Q. Such a block, together
with the bit-array of size m required in first part of LcLCPχ computation, yield
O(mQ + max lcp(S)) overall required space (with Q a configurable parameter).
Furthermore, since cLCPχ values could be refined at most twice by propagation,
a global cost of O(N + mnχ) time is deduced. Note that, instead, a straight-
forward approach that just uses Eqs. 1 and 2 would have required to process
in RAM at least three data structures, each of size ∼ N , using O(nχN) time
(without propagation). In order to evaluate the number of I/O operations, we
denote by B the disk block size and we assume that both the RAM size and B
are measured in units of (log N)-bit words. The overall complexity of the algo-
rithm, including the number of I/O operations need to process the arrays id(S),
lcp(S), D(S), lcpχ, and cLCPχ, is summarized by the following theorem.

Theorem 2. Let S a collection of m strings. Given id(S)[1, N ], lcp(S)[1, N +1]
and lcp(sχ)[1, nχ + 1], cLCP(S) can be computed by sequential scans in O(N +
mnχ) time and O(m + L1) additional space, where L1 = max lcp(S). The total

number of I/O disk operations is O
(

1
B log N (N log m + N log L1 + nχ log L2 +

nχm log L1)
)
, where L2 = max lcp(sχ).

5 Multi-string ACS Computation by cLCP

The cLCP is a data structure that implicitly stores information useful to com-
pute distinguishing and repeating strings in different collections. Its lightweight
computation described in previous section enables the use of cLCP in several
contexts in which large collections of long strings are considered.

Here, we describe its use for computing the matching statistics (MS) [12,24]
and therefore the Average Common Substring measure (ACS). Indeed, the ACS
induced distance is typically computed from the matching statistics by proceed-
ing in two steps. Let us first consider two strings sr, of length nr, and st, of
length nt, over the alphabet Σ of size σ. In the first step, ACS asymmetrically
computes the longest match lengths of sr versus st, MS(sr, st), where sr is the
base string. MS(sr, st)[1, nr] is an integer array such that, for any position jr of
sr, MS(sr, st)[jr] is the length of the longest prefix of the suffix of sr starting
at position jr that is also a substring of st (see Table 2). In the second step,

ACS takes the average of these scores Score(sr, st) =
∑nr

jr=1 MS(sr,st)[jr]

nr
; nor-

malizes it by the lengths of sr, st, and σ Norm(Score(sr, st)) = logσnt

Score(sr,st)
−

2 logσnr

(nr+1) ; and finally makes the measure symmetrical by defining ACS(sr, st) =
Norm(Score(sr,st))+Norm(Score(st,sr))

2 , in order to achieve an induced distance. We
observe that ACS is not a metric, because the triangular inequality might not
hold in general. Nevertheless, if we assume sr and st be generated by finite-state
Markovian probability distributions, it follows that ACS is a natural distance
measure between these distributions [36].



162 F. Garofalo et al.

Table 2. Matching statistics MS(s0, s1) and MS(s1, s0) for s0=ACGCGCC$0 and
s1=ACGAGACGAT$1 on Σ = {A, C, G, T}. It follows that Score(s0, s1) = 11/7,
Score(s1, s0) = 15/10 and, thus, ACS(s0, s1) = 0.67.

s0[j0] A C G C G C C

MS(s0, s1)[j0] 3 2 1 2 1 1 1

s1[j1] A C G A G A C G A T

MS(s1, s0)[j1] 3 2 1 1 1 3 2 1 1 0

For simplicity, we assume that we have a set consisting of only one string
S0 = {sχ}, of length nχ, and a set of strings S1 = {s1, s2, . . . , sm}, of length
N1 =

∑
1≤r≤m nr, and we want to compute the pairwise ACS induced distances

between S0 (or, more explicitly, sχ) and every other string in S1 simultaneously,
as in the multi-string ACS problem. Our approach could be also applied to a
more general case.

Firstly, we observe that there is a clear correspondence between the cLCP
array previously described, computed for sχ versus all strings in S1, and MS.
More precisely:

Proposition 1. Given any two strings sr, sχ ∈ S, MS(sr, sχ) is a permutation
of all values in cLCP(S) related to the suffixes of sr (the base string) versus sχ:
MS(sr, sχ)[jr] = cLCP[ir][χ], where 1 ≤ ir ≤ N such that id(S)[ir] = r, and jr is
the starting position in sr of the suffix associated with ebwt(S)[ir].

Indeed, for each suffix of every string sr ∈ S1, associated with ebwt[ir],
cLCP[ir] would account for the longest prefix that is a substring of sχ, and this
must correspond to one of the nearest suffixes belonging to sχ immediately above
(prev(ir, χ)) or below (next(ir, χ)) row ir in the sorted suffixes list, in particular
to the closest prefix matching one.

We can thus exploit the above proposition to compute MS using cLCP, by
using the strategy described in previous section. In fact, computing MS by
straightly using the Eqs. 1 and 2 would require to explicitly keep track of cLCP
for each χ-interval, which could have width Θ(N) in the worst case. In this
section we show that this additional space can be controlled and reduced by
using our lightweight computation of cLCP.

Using the construction described in Sect. 4 we can determine UcLCPr and
LcLCPr sequentially (forward) and these values are definitive (they are not sub-
ject to refinement by propagation). We can thus reduce the multi-string ACS
memory footprint by summing up all the maximum values between the respec-
tive positions in UcLCPr and LcLCPr for every specific string sr ∈ S1, and for
every position ir, and storing them into an array Scorer of size m as they are
computed during forward phase, without explicitly maintaining the cLCPr val-
ues in either internal or external memory. On the other hand, since UcLCPχ and
LcLCPχ require propagation to be completed, we need to maintain (a Q-sized
portion of) cLCPχ matrix and similarly cumulate cLCPχ values for every position
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jχ and for every string sr ∈ S1 into an array Scoreχ of size m, as these values
became definitive during backward phase. Accordingly, multi-string ACS com-
putation does not add to cLCP construction more than Θ(m) space and O(mnχ)
time. Note that in a typical application, m can be assumed � N and negligible
compared to the internal memory available. Here, we show a simplified version
of our strategy described in Sect. 5. For simplicity, we index the files as arrays
but the reader can note that we only access to them sequentially. We need to
keep in memory the length of the strings for the m ACS scores.

6 Preliminary Experiments

As a proof-of-concept, we tested our new data structure (cLCP) using a prototype
C++ tool, named cLCP-mACS [1], designed to specifically solve the multi-string
ACS problem.

To assess the performance of our algorithm we consider the two collections of
genomes listed in [1] and described in Table 3. All tests were done on a MacBook
Pro (13-inch), Intel Core i7 at 3, 5 GHz, with 16 GB of RAM, HDD of type SSD
and with O.S. macOS 10.13.5.

We show that our preliminary experiments confirm the effectiveness of our
approach for the multi-string ACS problem, that consists in the pairwise com-
parison of a single string against a set of m strings simultaneously, in order to
obtain m ACS induced distances. This is not a limitation, because the com-
putation of pairwise distances between strings of a collection S can be treated
analogously, in the sense that one could execute our tool more times, without
computing the data structures of the preprocessing step.

We experimentally observed that the preprocessing step is more computa-
tionally expensive than the step for computing the m ACS distances via cLCP.
The problem of computing the ebwt(S), lcp(S), id(S) has been extensively stud-
ied, and improving its efficiency is out of the aim of this paper. Therefore, we
omit time/space requirements of the preprocessing step, since (i) these data
structures can be reused and (ii) different programs [2–5] are used to construct
them with different space-time trade-offs. So, we solely focus on the phase of
computation of the matrix distances.

Notice that an entirely like-for-like comparison between our implementation
and the below existing implementation is not possible, since, for the best of our
knowledge, our tool is the first lightweight tool.

ACS has been implemented in the k-Mismatch Average Common Substring
approach tool (kmacs) [6], which has been shown to be one of the most per-
forming ones to compute the classic ACS problem (with k = 0) [25]. Other
algorithms besides kmacs [31,35] have been designed to compute alignment-
free distances based on longest matches with mismatches, but for the special
case k = 0 kmacs is the software that has the better change to scale with
the dataset size. We remark that the current implementation of kmacs works
completely in internal memory (and not in sequential way), but can be easily
adapted to solve the multi-string ACS problem (with k = 0), even though not
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Table 3. The first collection contains 932 genomes, the second one contains 4, 983
genomes. Note that |sχ| = 5, 650, 368 for the first collection and |sχ| = 3, 571, 103 for
the second one. In both cases these values are greater than the average length of the
strings in the respective collection. The amount of time elapsed from the start to the
completion of the instance. The column memory is the peak Resident Set Size (RSS).
Both values were taken with /usr/bin/time command.

|ebwt(S)| Min length Max length Max lcp Program Wall clock Memory

(Gbytes) (mm:ss) (kbytes)

1 3.434 1,080,084 10,657,107 1,711,194 cLCP-mACS 13:37 10,716

kmacs 23:30 4,213,364

2 9.258 744 14,782,125 5,714,157 cLCP-mACS 40:21 10,780

kmacs 57:43 9,637,964

natively. Indeed, it shows a high intrinsic redundancy in the multiple creation
of the same supporting data structures and thus when loading these structures
into RAM. More in detail, it works in m steps, at each step it builds the suffix
array [27] and the lcp array of two strings si and sj (for 1 ≤ i < j ≤ m) in order
to compute the ACS distance between si and sj . We modified the current imple-
mentation, which takes in input multiple sequences, by fixing sχ = s1 to achieve
a more fair assessment and thus compare only sχ with sj , for all 2 ≤ j ≤ m + 1.
Note that the performance in terms of time of kmacs could be improved by
separately considering the computation of the auxiliary data structures. How-
ever, the occupation of RAM as well as its redundancy would remain almost the
same.

The experimental results shown in Table 3 indicate that our algorithm is a
competitive tool for the lightweight simultaneous computation of the pairwise
ACS distance of a string versus all strings in another collection. In cLCP-mACS,
the auxiliary external disk space used was 34 GB for the first collection and
108 GB for the second one. Moreover, since D tends to be typically a sparse
array, one could reduce its size in external memory by storing only non-zero
values the number of consecutive empty slots, or using an alternative encoding
such as Sadakane’s encoding [34].

7 Conclusion and Future Work

We have first introduced the colored longest common prefix array (cLCP): given
a collection of strings S, the cLCP array stores the length of the longest common
prefix between the suffix of any string in S and the nearest suffixes of another
string in S, by exploiting the lexicographically sorted list of suffixes in the lcp
array and some other combinatorial properties of it. This notion has been then
extended in a natural way to compute the longest common prefix between any
pair of strings in two different collections of strings S0 and S1. We have further
provided a versatile, lightweight method to compute cLCP via sequential scans
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when S0 consists of a single string, which could be further extended to cope
with the more general case. This makes cLCP suitable for computing several
kinds of statistics on large collections of long strings, while dramatically reduc-
ing the amount of computational resources used. In particular, we have proved
that cLCP(S) produces a permutation of the matching statistics (MS) for the
strings of the collection of S and exploited it to efficiently solve the multi-string
ACS problem — i.e. computing pairwise MS between a string in S0 and all m
strings in S1 simultaneously, — that is nowadays crucial in many practical appli-
cations, but demanding for large string comparisons. This is also supported by
experimental results.

Moreover, it is interesting to note that cLCP and its sequential strategy of
computation are intrinsically dynamic, i.e. cLCP can be efficiently updated when
the collection is modified by inserting or removing a string. In particular, after
the removal of a string, cLCP can be updated by exploiting the mathematical
properties of the permutation associated with the EBWT. The insertion of a new
string in the collection can be managed by using the merging strategy proposed
in [22], which works in semi-external memory. In this case, the intermediate
array D used to compute cLCP can be constructed directly during this merging
phase. Finally, we plan to extend our framework to solve the many-to-many
pairwise ACS problem on a collection S of m sequences or between all strings of
a collection versus all strings of another collection simultaneously.
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Abstract. Nowadays, one of the main sources for people to access and
read news are social media platforms. Different types of news trigger
different emotional reactions to users who may feel happy or sad after
reading a news article. In this paper, we focus on the problem of pre-
dicting emotional reactions that are triggered on users after they read
a news post. In particular, we try to predict the number of emotional
reactions that users express regarding a news post that is published on
social media. In this paper, we propose features extracted from users’
comments published about a news post shortly after its publication to
predict users’ the triggered emotional reactions. We explore two different
sets of features extracted from users’ comments. The first group repre-
sents the activity of users in publishing comments whereas the second
refers to the comments’ content. In addition, we combine the features
extracted from the comments with textual features extracted from the
news post. Our results show that features extracted from users’ com-
ments are very important for the emotional reactions prediction of news
posts and that combining textual and commenting features can effec-
tively address the problem of emotional reactions prediction.

1 Introduction

In recent years, social media platforms have become an integral part of news
industry. News agents post news articles on social media platforms such as Face-
book1 and Twitter2. These news articles are accessible to users who can comment
or express their opinion about them. Some of the news articles posted on social
networks trigger a large number of emotional reactions whereas others do not.
Predicting the number of emotional reactions that will be triggered on users is
very useful for information spreading and fake news detection. For example, fake
news are written to attract users’ attention and to trigger emotions to a large

1 https://www.facebook.com/.
2 https://twitter.com/.
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number of people [24]. Therefore, the number of emotional reactions can be used
as an additional information for fake news or clickbait detection.

Emotional reactions prediction is a challenging problem. The structure of the
network or other external factors such as users’ location are some of the factors
that can affect the number of the triggered emotional reactions. Intuitively, the
content of the news post is one of the most important factors that influences the
emotional reactions that will be triggered [1]. However, content is not sufficient
alone since there are other factors that may influence the triggered reactions.
Information extracted from users’ early comments (i.e., comments published
within the first ten minutes after the publication of the news post) can be very
useful for an effective emotional reaction prediction.

The problem of emotional reactions prediction is related to online content
popularity prediction. Most prior work on news articles’ popularity prediction is
based on early-stage measurements, whereas little effort has been made on the
pre-publication prediction scenario [4,5]. Although the problem of predicting the
number of emotional reactions has apparent similarities with predicting the pop-
ularity of a piece of news, the two problems are not the same. A piece of news
that triggers emotional reactions has certainly higher probabilities of receiving
attention compared to news articles that do not trigger any emotional reaction.
However, predicting the triggered emotional reactions depends on many factors
such as, for example, the affective words that the news post contains, the struc-
ture of the network and the early commenting activity. Therefore, for an effective
prediction it is very important to combine features extracted from the news post
content and the comments that are posted after the news post is published.

In this paper, we focus on the problem of predicting the ordinal level in
regards to the number of the emotional reactions triggered on users after reading
a news post per emotion (e.g., low, medium, high number of anger reactions).
We propose two different sets of features extracted from users’ early comments
to perform the prediction on five standard emotional reactions (love, surprise,
joy, sadness, anger). The two proposed sets of features capture two different
aspects of information: the commenting activity (e.g., when the first comment
is published) and the content of the comments (e.g., relevance to the post). In
addition, we combine the features extracted from early comments with the terms
of the news post and we show that this combination can effectively address the
problem of emotional reactions prediction.

2 Related Work

One aspect that is relevant to the emotional reaction prediction is popularity
prediction. Prior work tried to predict the popularity of different web items such
as images, videos or tweets prior and after their publication. A wide range of
features have been explored and the most informative have shown to be those
extracted from early activity [8]. To this end, a large number of researchers
tackled the online content prediction after publication by modeling the early
users’ behavior [18] or by using temporal patterns of online content [29].



170 A. Giachanou et al.

Tsagkias et al. [27] explored different features such as the length of the article
and the number of authors to address the problem of news articles’ popularity
prediction. Tsagkias et al. addressed the problem as a binary classification where
the news articles were classified as having low or high popularity. Bandari et
al. [5] tackled the prediction task as both regression and classification, and used
various features including category of the article and named entities. Bandari et
al. reached the conclusion that predicting the popularity of web items is feasible
without any early activity signals. However, recently Arapakis et al. [4] extended
the study of Bandari et al. and they showed that predicting the popularity of
news articles prior to their publication is not a viable task.

The problem of the emotional reactions prediction is also related to opin-
ion and emotion analysis that have been applied on different social media
platforms, including blogs [10], forums [28] and microblogs [12,14,17]. Prior
work on emotion and sentiment analysis include classification and lexicon-based
approaches [11]. The classification based approaches [3,17,22] leverage classi-
fiers that are trained on several features such as n-grams, stylistic features (e.g.,
number of exclamation and question marks), negation, or part-of-speech tags.
Lexicon-based approaches use list of words known as opinion or sentiment lexi-
cons which convey a specific sentiment or emotion to label the text [26].

Regarding emotional reactions, Clos et al. [9] proposed a unigram mixture
model to create an emotional lexicon that was used to predict the probabilities
of five different emotional reactions. In addition, Alam et al. [1] focused on mood
level prediction of readers on news articles (ranging from 0 to 1) using features
such as character, words and affect scores. Alam et al. showed that n-grams
and stylometric features are the most important. More recently, Goel et al. [15]
focused on predicting the intensity of emotions in tweets using an ensemble
of three neural-network approaches. However, our problem is not the same as
emotional intensity, since an article may trigger an emotion that is intense to
only a small number of people. Consider the case of a strike in the means of
transportation in a small city. In such a case, some people may feel very angry
(e.g., “I got stuck in traffic for an hour and a half! #busStrike”) but such intense
emotion might be triggered only in a small number of people.

The study that is the most similar to ours is the one presented by Giachanou
et al. [13] who also focused on predicting the ordinal level regarding the number of
emotional reactions triggered by news posts. However, in their study they only
explored pre-publication features including similarities and entities extracted
from the article’s content. Different from Giachanou et al., we focus on features
that are extracted from the users’ comments to understand how effective they are
in predicting the emotional reactions of the news post. We study the effectiveness
of two groups of features extracted from users’ comments regarding the post. In
addition, we propose combining simple textual and early commenting features
for effectively predicting the triggered emotional reactions.
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3 Problem Definition

The problem of emotional reactions prediction of news posts published on a
social network is defined as: Given a news article post and data about users’
early comments published regarding the post, the task consists in predicting the
qualitative ordinal level of emotional reactions that the post will trigger. Note
that the main aim is to classify a news post with regards to the volume of the
emotional reactions it will trigger per emotion. We focus on the following five
different emotions: love, surprise, joy, sadness, anger. We address the problem
as both 3-class and 5-class ordinal classification task to capture the different
levels of the reactions. Hence, given a news post we assign to it one of these
labels: low, medium, high for the 3-class task and one of these labels very low,
low, medium, high, very high for the 5-class task. The labels refer to the number
of reactions that the post will collect per emotion.

4 Features

Intuitively, content is very important for predicting if a news article will trigger
a high number of a certain emotional reaction. To this end, in our study we
start with terms extracted from the news post. Terms can be very important to
understand why a specific article triggered massive emotions. Furthermore, we
extract features from users’ comments published shortly after the publication of
the post to investigate if there is any pattern in commenting that can be useful
for predicting the emotional reactions’ popularity.

4.1 Term Frequencies

The first feature we use is the terms of the news post. Although terms is a sim-
ple feature, it is one of the most important features for news articles’ popularity
prediction [1,27] as well as similar information retrieval tasks [2,20]. For terms
feature we use the bag-of-words representation of a news post. In particular,
we use the classic term frequency-inverse document frequency (TF-IDF) app-
roach [23] that considers how important is a term in a corpus to represent the
content of the post. On the contrary to other studies [27] that used only a small
percentage of the vocabulary to represent textual features, we are using all the
terms that appear in the collection after stopwords removal. In the rest of the
paper, we use terms to refer to the TF-IDF representation of the post’s content.

4.2 Early Commenting Features

As already mentioned, once a news post is published on a social network, the
users can publish their comments regarding the post. These comments usually
appear below the post. We explore two groups of features extracted from users’
comments. The first group represents the commenting activity and includes fea-
tures such as how fast the users publish a comment. For the second group we
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extract features from the content of the comments such as their relevance to the
news post.

Here we should note that activity of emotional reactions can also be very
useful (e.g., number of sadness reactions in the first ten minutes). However, we
do not have access to these data. Therefore, we use features from the early
comments of users to capture early patterns in the users’ comments. To extract
the commenting features we use three different time range settings: 10, 20, and
30 min after the publication date of the news post to explore how useful the
different time ranges are and if there is any improvement in performance when
a wider time range is used. Finally, we do not differentiate between comments
and replies to comments.

Early Commenting Activity. The early commenting activity features aim
to capture the patterns in the activity of publishing comments below the news
post. We explore the following features:

1. First comment. Time difference in seconds between publication date of the
post and the first comment, if the first comment is published within the
specified time range.

2. Number of comments. Number of comments published within the specified
time range.

3. Commenting ratio. Mean time of commenting for those published within the
specified time range.

4. Unique authors. Number of unique authors for the comments published within
the specified time range. This feature can partially capture the discussion
activity in the comments since a certain author will post more than one
comments when there is a discussion.

Early Comments’ Content Features. In this section we propose features
that are extracted from the comments’ content. These features can reveal if there
is any pattern in the content of the comments that are posted about a news post
and the emotional reactions it triggers. We propose three features: the length
of the comments, the relevance to the post and the sentiment expressed in the
comments.

1. Length of comments. This feature is calculated based on the average length
of the comments published. The length of a comment is represented by the
number of words it contains. This feature is useful because users might tend to
post shorter or longer comments regarding the news posts that trigger specific
emotional reactions. In addition, longer comments might express stronger
emotional reactions that may relate to the reactions triggered regarding the
news post.

2. Relevance to the post. This feature represents the average relevance of the
comments published within the specified time range to the post. This feature
is important since there may be comments not related to the post. To calcu-
late the relevance, we use the word2vec model that is an embedding model
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proposed by Mikolov et al. [19] and which learns word vectors via a neural
network with a single hidden layer. First, we calculate the average vector for
all words in the comment and the post and then we use cosine similarity
between the vectors to calculate the similarity score. We use the pre-trained
word embeddings that are publicly available and which are generated from
news articles3 to generate the word vectors.

3. Sentiment in comments. We also measure the sentiment expressed in the com-
ments published within the specified time range. In particular, we calculate
the positive, neutral and negative sentiment ratio of the comments. We use an
opinion lexicon [16] to calculate the sentiment expressed in a comment. More
formally, let Nt(z, s) be the number of comments that express a sentiment s
towards the news post z posted during a particular time period t and Nt(z)
the number of total comments posted regarding z at t. Then, we can define
the ratio of comments that share a common sentiment s as:

rt(z, s) =
Nt(z, s)
Nt(z)

We calculate the ratio for all the three sentiment polarities: positive, neutral
and negative.

5 Experimental Setup

In this section, we describe the experimental setup of the study. First, we describe
the dataset and next we present the experimental settings we applied for our
study.

5.1 Dataset

For this study, we collected news posts from The New York Times group4 in
Facebook together with the number of 5 different emotional reactions: love,
surprise, joy, sadness, and anger for each post. We used Facebook API5 to
collect the posts, the reactions, and the comments6. The number of reactions are
used to determine how many reactions each post has triggered. Other types of
posts, such as tweets, do not contain information about the emotional reactions,
and therefore, they need to be manually annotated, a process that is very costly
in time and resources.

Our collection consists of 26,560 news posts that span from April 2016 to
September 2017. We use a 10-fold cross validation to perform the experiments.
We keep training and test sets always separate. As an example, Fig. 1 shows
the distribution of the posts with regards to the emotional reaction love. More

3 https://code.google.com/p/word2vec/.
4 https://www.facebook.com/nytimes/.
5 https://developers.facebook.com/.
6 Facebook allows users to select an emotional reaction with regards to a post.

https://code.google.com/p/word2vec/
https://www.facebook.com/nytimes/
https://developers.facebook.com/
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Fig. 1. (a). Frequency of posts versus number of the emotional reaction love (binned).
(b). Number of love reactions per post versus number of posts with that number of
love reactions (log-scale).

specifically, Fig. 1(a) shows the number of posts versus the number of the love
reactions triggered. For clarity, we show only the first part of the distribution
and cut the long tail after 1,000 love reactions. Figure 1(b) shows the number of
love reactions per post versus the number of posts that triggered that number of
love reactions. The other emotional reactions follow similar distributions. From
the figures, we can observe that the number of reactions per post follows a long-
tail distribution. In other words, few posts collect a high number of reactions,
while the majority of posts get very few.

5.2 Experimental Settings

In this study, we performed two tasks: a 3-class and 5-class emotional reaction
ordinal classification task. For those tasks, we divided the collection into 3 (and
5) balanced classes with regards to the number of each emotional reaction. A
balanced classification formulation has also been chosen by several prior studies
on popularity prediction [8,25]. For the 3-class task a news post can get one
of the following labels: low, medium, high, while for the 5-class one of: very
low, low, medium, high, very high. We predicted the number of the following
five different emotional reactions: love, surprise, joy, sadness, and anger. The
emotional reactions were addressed individually.

Table 1 shows the boundaries of the different classes. From the table, we
observe that the range of the high and very high classes of the 3-class and 5-
class task respectively is wide. For example, the class very high of the 5-class
task contains posts that received from 122 to 67K love reactions. This is due to
the long-tail distribution of the data and the balanced classes setting.

For the ordinal classification of the emotional reactions, we used Random
Forest [7], a decision tree meta classifier7. For all the experiments, we used the

7 We use Random Forest because it obtained the best results on the run trained
on terms among the various classifiers that we tried including SVM and Logistic
Regression.
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Table 1. Boundaries of the different classes.

3-class

Love Surprise Joy Sadness Anger

Low 0–9 0–8 0–3 0–2 0–2

Medium 10–47 9–39 4–21 3–31 3–35

High 48–67K 40–23K 22–27K 32–50K 36–67K

5-class

Love Surprise Joy Sadness Anger

Very low 0–5 0–4 0–1 0–0 0–0

Low 6–13 5–11 2–4 1–4 1–3

Medium 14–33 12–28 5–13 5–18 4–17

High 34–121 29–89 15–63 19–110 18–134

Very high 122–67K 90–23K 64–27K 111–50K 135–67K

open source machine learning toolkit scikit-learn8. To generate the word vectors
we used publicly available pre-trained word embeddings (see footnote 3). To
calculate the sentiment expressed in a comment, we used the opinion lexicon
described in [16]. Pre-processing of the posts involved stop-words removal and
stemming with Porter stemmer [21].

Mean Absolute Error (MAE) is reported for both 3-class and 5-class tasks
and for each emotional reaction. We used the runs trained on terms and
activity+content t=10 as our baselines. Significance is measured with the non-
parametric Wilcoxon signed-rank test that is appropriate for the ordinal classi-
fication.

6 Results and Discussion

Tables 2 and 3 show the results using the early commenting features on predicting
the number of emotional reactions triggered on users regarding a news post
for the 3-class and 5-class ordinal classification respectively. The tables show
the MAE scores (the lower the value, the better the approach performs) for
three different groups of features: the commenting activity features (activity), the
comments’ content features (content) and their combination (activity+content).
The approach based on post’s terms is used as a baseline.

From the results we observe that post’s terms are better predictors compared
to using only the early commenting activity or the comments’ content in the
case of love, sadness and anger. However, in case of surprise and joy the early
commenting activity runs perform better compared to terms and in fact in some
cases the difference is statistically better (e.g., 5-class classification of surprise
and joy). Also, we observe, that in general the runs that use the comments’

8 http://scikit-learn.org/.

http://scikit-learn.org/
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Table 2. Performance results (MAE) for the 3-class ordinal classification using early
commenting features. Scores with ∗ indicate statistically significant improvements with
respect to the terms approach.

Post’s terms Love Surprise Joy Sadness Anger

0.629 0.649 0.542 0.565 0.503

activityt=10 0.743 0.631 0.517∗ 0.730 0.596

activityt=20 0.732 0.616 0.504∗ 0.699 0.560

activityt=30 0.724 0.602 0.493∗ 0.690 0.544

contentt=10 0.697 0.655 0.556 0.633 0.507

contentt=20 0.686 0.660 0.583 0.618 0.507

contentt=30 0.683 0.664 0.590 0.609 0.505

activity+contentt=10 0.612∗ 0.568∗ 0.448∗ 0.586 0.442∗
activity+contentt=20 0.581∗ 0.539∗ 0.426∗ 0.551∗ 0.408∗
activity+contentt=30 0.555∗ 0.534∗ 0.413∗ 0.539∗ 0.388∗

Table 3. Performance results (MAE) for the 5-class ordinal classification using early
commenting features. Scores with ∗ indicate statistically significant improvements with
respect to the terms approach.

Post’s terms Love Surprise Joy Sadness Anger

1.232 1.269 1.101 1.059 0.982

activityt=10 1.396 1.195∗ 1.009∗ 1.334 1.122

activityt=20 1.377 1.161∗ 0.989∗ 1.300 1.070

activityt=30 1.362 1.142∗ 0.956∗ 1.275 1.044

contentt=10 1.334 1.249 ∗ 1.078∗ 1.175 0.989

contentt=20 1.311 1.250∗ 1.114 1.151 0.972∗
contentt=30 1.298 1.256∗ 1.125 1.124 0.960∗
activity+contentt=10 1.177∗ 1.093∗ 0.895∗ 1.103 0.857∗
activity+contentt=20 1.112∗ 1.039∗ 0.846∗ 1.042∗ 0.794∗
activity+contentt=30 1.074∗ 1.021∗ 0.822∗ 1.014∗ 0.766∗

content features obtain a lower performance compared to terms. One exception
is the case of surprise and joy on the 5-class task where there are runs that
perform statistically better to terms (e.g., contentt=10 run).

Regarding the performance between the runs that are based only on the
activity and those based only on the comments’ content, we observe that the
emotional reactions perform in a different way. More specifically, activity leads
to a better performance compared to comments’ content in case of surprise and
joy, whereas regarding love, sadness and anger, the comments’ content features
are better predictors compared to activity. This result shows that users’ follow
different patterns in commenting regarding the different emotional reactions and
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they probably tend to write more useful comments regarding love, sadness and
anger.

More importantly, the majority of runs that use all the early commenting fea-
tures (i.e. activity+content) perform statistically better compared to the ones
trained on the terms of the post. The only exception is the case of sadness in
the activity+content t=10 run. This suggests that in case of sadness the terms
from the post are stronger predictors compared to commenting activity. How-
ever, the results also prove that for most of the reactions the features that are
extracted from the users’ commenting activity shortly after the post is published
can effectively predict the number of emotional reactions.

Fig. 2. Gini impurity score for the activity+content t=10 run for the 3-class ordinal
classification per each emotional reaction.

To understand the contribution of each feature on the prediction, we calcu-
lated the Gini impurity scores as described in [6]. Figure 2 shows the Gini impu-
rity score for each feature in the activity+content t=10 run for the 3-class classifi-
cation per each emotional reaction. From the figure we observe that the number
of comments that have been published in the first ten minutes are good predic-
tors for all the five emotional reactions. Indeed for the reaction joy, the number of
comments is the best predictor. Similarly, the number of unique authors feature
is important for the reactions joy and surprise.

An interesting observation is that in case of sadness and anger, the negative
ratio has the highest Gini impurity score. This result suggests that users tend
to express their feelings in comments to the posts that trigger sadness or anger.

Tables 4 and 5 show the performance of runs trained on combining the
terms extracted from the news post with the early commenting features (activ-
ity+content t=10) for the 3-class and 5-class tasks respectively. We use features
from the first ten minutes (i.e. t = 10) because we believe that they are very
important for the prediction while keeping the advantage of quick access after
the post is published.

From the results, we observe that the performance after combining the terms
with the early commenting features leads to significant improvements over both
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Table 4. Performance results (MAE) for the 3-class ordinal classification on combin-
ing terms with early commenting features. Scores with ∗ and † indicate statistically
significant improvements with respect to terms and activity+content t=10 respectively.

Love Surprise Joy Sadness Anger

Post’s terms 0.629 0.649 0.542 0.565 0.503

activity+contentt=10 0.612 0.568 0.448 0.586 0.442

terms+activity+contentt=10 0.540∗† 0.510∗† 0.405∗† 0.499∗† 0.403∗†

Table 5. Performance results (MAE) for the 5-class ordinal classification on combin-
ing terms with early commenting features. Scores with ∗ and † indicate statistically
significant improvements with respect to terms and activity+content t=10 respectively.

Love Surprise Joy Sadness Anger

Post’s terms 1.232 1.269 1.101 1.059 0.982

activity+contentt=10 1.177 1.093 0.895 1.103 0.857

terms+activity+contentt=10 1.078∗† 1.012∗† 0.830∗† 0.949∗† 0.789∗†

terms and activity+content t=10 runs. Also, we notice that this improvement is
not consistent across the emotional reactions. For example, the least improve-
ments over terms are observed for the reaction sadness (e.g., regarding the 3-class
classification, the improvement of terms+activity+content t=10 over the terms is
12.41%) whereas the largest improvements are observed for joy (28.93%).

One possible explanation for this inconsistency could be that in case of news
that trigger a large number of anger and sadness, the textual features are very
important predictors regardless if they are extracted from the news post or the
comments’ content. To investigate if there are any different patterns in com-
menting across the different reactions, we display the boxplot of the number of
comments published in the first ten minutes for each class and for each emotional
reaction in Fig. 3. The figure suggests that there is a difference in the distribu-
tions of sadness compared to joy and surprise. Therefore, we also calculate the
statistical differences in the number of comments published in the first ten min-
utes for the posts that triggered a high number of sadness compared to surprise
and joy. The results showed that there is a statistical difference between sad-
ness and surprise (2-sample t-test, p-value < 0.001) as well as sadness and joy
(2-sample t-test, p-value < 0.001). This suggests that users may have different
commenting patterns on news posts that trigger sadness compared to those that
trigger surprise or joy.

Analysis on Terms. We also carried out further analysis to explore which
terms were the most informative for the prediction. As an example, we present
the top 20 terms that are the most informative for the 3-class classification of the
emotional reactions surprise and sadness. Figure 4 shows the most informative
terms sorted by their Gini impurity score [6] for the reactions of (a) surprise, and
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Fig. 3. Boxplot showing the number of comments published in the first ten minutes for
the five emotional reactions and the classes low, medium, high. The yellow and black
line refer to median and mean number of comments respectively. (Color figure online)

(b) sadness. We observe that in both cases the most informative terms are donald,
trump and president. We believe that this happens because of the time range
of our collection that contains a lot of articles referring to US Elections 2016.
In addition, we observe that there are also some terms that convey sentiment,
such as the terms kill and attack that are informative for the emotional reaction
sadness.

What is important to mention is that there are some words that are informa-
tive for both emotions (e.g., breaking, Donald, Trump, president). This obser-
vation suggests that there are terms that in general trigger either a large or a
small number of emotional reactions regardless of the emotion. In addition to

Fig. 4. Top 20 most important terms for the 3-class ordinal classification for (a) sur-
prise and (b) sadness.
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those terms, there are also terms (e.g., excited, attack, etc.) that are important
only for a specific emotion (e.g. sadness).

7 Conclusions and Future Work

In this study, we presented a methodology for predicting the ordinal level regard-
ing the number of emotional reactions triggered on users by news posts. For our
study, we focused on the following five emotional reactions: love, surprise, joy,
sadness, and anger. We studied the prediction task by using features extracted
from the comments of users. In addition, we studied the effectiveness of combin-
ing early commenting features with news posts’ terms on predicting the emo-
tional reactions.

Our results suggested that features extracted from comments are very impor-
tant for the emotional prediction task. More importantly, we showed that the
commenting features contain more predictive power compared to terms for all the
reactions except for sadness. In addition, we showed that the different features
extracted from comments are not equally important for the different emotional
reactions because there are different commenting patterns across reactions. For
example, we found that the negative ratio is the most important feature for sad-
ness and anger. Finally, our results suggested that the most effective prediction
models are those trained on both terms and comments.

In the future, we plan to address the prediction task as a regression problem
and we will try to predict the exact number of each emotional reaction. In
addition, we would like to explore the effect of time on the prediction task since
news articles are extremely sensitive to time and temporal information can be
very useful.
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Abstract. We study a new generalization of palindromes and gapped
palindromes called block palindromes. A block palindrome is a string that
becomes a palindrome when identical substrings are replaced with a dis-
tinct character. We investigate several properties of block palindromes
and in particular, study substrings of a string which are block palin-
dromes. In so doing, we introduce the notion of a maximal block palin-
drome, which leads to a compact representation of all block palindromes
that occur in a string. We also propose an algorithm which enumer-
ates all maximal block palindromes that appear in a given string T in
O(|T | + ‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size, which is
optimal unless all the maximal block palindromes can be represented in
a more compact way.

Keywords: Palindrome · Enumeration algorithm
Factorization

1 Introduction

A palindrome is a string that is equal to its reverse, e.g., “Able was I ere
I saw Elba” (we treat upper and lower characters are the same for simple
explanations). Palindromes have been studied in combinatorics on words and
stringology.

Many research focused on finding palindromic structure of a string. Man-
acher [12] proposed a beautiful algorithm that enumerates all maximal palin-
dromes of a string. Kosolobov et al. [11] proved that, a language P k can be rec-
ognizable in O(kN) time, where P is the language of all nonempty palindromes
and N is the length of an input string. Alatabbi et al. [2] considered maximal
palindromic factorization in which all factors are maximal palindromes. They
also consider a problem of computing the fewest palindromic factorization, and
proposed off-line linear-time algorithms. Later, I et al. [9] and Fici et al. [4] inde-
pendently proposed on-line O(N log N)-time algorithms, where N is the length
c© Springer Nature Switzerland AG 2018
T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 183–190, 2018.
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of an input string. Similar problems were also considered, such as, computing
palindromic length [3], computing palindromic covers [9], computing palindromic
pattern matching [8].

A gapped palindrome is a generalization of a palindrome that becomes a
palindrome when a center substring is replaced by a character, where the center
substring is a substring whose beginning and ending positions are equally far
from the beginning and ending positions of the input string, respectively. For
example, “Madam, he is Adam” is a gapped palindrome, and it becomes a palin-
drome if the center substring “m, he is ” is replaced by a character. Gapped
palindromes play an important role in molecular biology since they model a hair-
pin data structure of DNA and RNA sequences, see e.g. [14]. Several problems
were considered such as, enumeration of exact gapped palindromes of a string [10]
and also enumeration of approximate gapped palindromes [7,13], finding maxi-
mal length of long armed or and constrained length gapped palindrome [5].

In this paper, we consider the notion of block palindromes [1], which is
a new generalization of palindromes and also gapped palindromes 1. A block
palindrome is a string that becomes a palindrome when identical substrings are
replaced with a distinct character. More precisely, a block palindrome is a “sym-
metric” factorization f = f−n · · · f−1f0f1 · · · fn of a string with the center factor
f0 is a string (which may be empty) and each of other factor f−i = fi is a non-
empty string for any 1 ≤ i ≤ n. We also call a factor a block. For convenience,
let f = f0 when n = 0. For example, a factorization “To|kyo| |and| |Kyo|to”
is a block palindrome, where “|” is a mark to distinguish adjacent blocks. Palin-
dromes and gapped palindromes are special cases of block palindromes: For a
palindrome, all blocks are characters, and for a gapped palindrome, the center
block f0 is a string and the other blocks are characters.

We investigate several properties of block palindromes. We introduce the
notion of maximal block palindromes to concisely represent all block palindromes
in a string, and propose an algorithm which enumerates all maximal block palin-
dromes in a string T in O(|T |+‖MBP(T )‖) time, where ‖MBP(T )‖ is the output
size. This is optimal unless all the maximal block palindromes can be represented
in a more compact way.

2 Preliminaries

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The string
of length 0 is called the empty string, and is denoted by ε. Although ε is not
contained in Σ, we sometimes call ε the empty character for convenience. For
a string T = xyz, x, y and z are called a prefix, substring, and suffix of T ,
respectively. In particular, a prefix (resp. suffix) x of T is called a proper prefix
(resp. suffix) iff x �= T . A non-empty string that is a proper prefix and also a
proper suffix of T is called a border of T . Hence, a string of length N can have at
most N − 1 borders of length ranging from 1 to N − 1. A string which does not
1 Block palindromes were firstly introduced in a problem of 2015 British Informatics

Olympiad [1], but we did not know the existence at the first version of this paper.
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have any borders is called an unbordered string. For 1 ≤ i ≤ j ≤ |T |, a substring
of T which begins at position i and ends at position j is denoted by T [i . . . j].
For convenience, let T [i . . . j] = ε if j < i.

In this paper, we also consider half-positions k+1/2 for integers 0 ≤ k ≤ |T |.
For convenience, for a half-position i and an integer r such that 1/2 ≤ i − r ≤
i + r ≤ |T | + 1/2, let T [i − r . . . i + r] = T [�i − r� . . . �i + r�]. Note that T [i] for a
half-position i is the empty character. The position c = (|T | + 1)/2 is called the
center position of T , T [c] is called the center character of T , and T [c−d . . . c+d]
for an integer d is called a center substring of T .

For a string T and integers 1 ≤ i, j ≤ |T |, a longest common extension (LCE)
query LCET (i, j) asks the length of the longest common prefix of the two suf-
fixes T [i . . . |T |] and T [j . . . |T |] of T . When clear from the context, LCET (i, j)
is abbreviated as LCE (i, j). It is well known that if T is drawn from an integer
alphabet of size polynomially bounded in |T |, then LCE queries for T can be
answered in constant time after an O(|T |)-time preprocessing, e.g., by construct-
ing the suffix tree of T and a data structure for lowest common ancestor queries
on the tree [6].

For a block palindrome f = f−n · · · f−1f0f1 · · · fn, the length of f denoted by
|f | is the total length of blocks, and the size of f denoted by ‖f‖ is the number
of non-empty blocks. A block palindrome is even if its size is even (that is, the
center block f0 is the empty string), and otherwise odd (that is, the center block
f0 is non-empty).

3 Properties of Block Palindromes

In this section, we investigate the properties of block palindromes. We assume
that T is an input string of length N in the rest of the paper.

Since there are O(2N ) factorization of T and block palindromes are symmet-
ric, there are O(2N/2) block palindromes of T . Moreover, there is a tight example
that T consists of only the same characters.

Although there are a huge number of block palindromes of a string, they
are very redundant. To look for more essential properties of block palindromes,
we define the largest block palindrome which is a representative of other block
palindromes. A block palindrome f = f−n · · · fn of T that has the largest number
of blocks among all block palindromes of T is called the largest block palindrome.
Note that each block fi for 0 ≤ i ≤ n is an unbordered substring and fi for
0 < i ≤ n is the shortest border of T [k + 1 . . . N − k], where k = 0 if i = n and
k = |fi+1 · · · fn| otherwise. So, the largest block palindrome of T is unique. The
largest block palindrome is a representative of all block palindromes in the sense
that all block palindromes can be represented as block palindromes of f .

A natural and prompt question would be about how to efficiently compute
the largest block palindrome of T . The following theorem answers this question.

Theorem 1. The largest block palindrome f−n · · · fn of T can be computed in
O(N) time.
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Proof. We construct a data structure in O(N) time that can answer any LCE
query in constant time.

We greedily compute the blocks from outside fn to inner f1 by LCE queries.
We assume that we compute the shortest border fi of T [b . . . e]. For k = 1 to
�(e − b + 1)/2�, we check whether T [b . . . b + k − 1] is the border of T [b . . . e]
or not by checking whether LCE (b, e − k + 1) ≥ k or not. If T [b . . . e] does not
have any border, we obtain f0 = T [b . . . e]. Otherwise, we obtain the shortest
border fi = T [b . . . b + k − 1] of T [b . . . e], and compute the more inner blocks
for T [b + k . . . e − k]. Since the number of LCE queries is O(N) and each LCE
query takes constant time, the largest block palindrome of T can be computed
in O(N) time. 
�

So far, we have considered only block palindromes that are equal to T itself.
Next, we consider block palindromes that appear as substrings in T . We define
a maximal block palindrome which is a representative of some block palindromes
in T , and study how many maximal block palindromes can appear in T .

For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, let FT (c, d) =
{f |f = f−n · · · f0 · · · fn is the largest block palindrome, f0 = T [c − d + 1 . . . c +
d − 1], f = T [c − d − k + 1 . . . c + d + k − 1], k = |f1 · · · fn|} be the set of largest
block palindromes whose center positions are the same and whose center blocks
appear at T [c−d+1 . . . c+d−1]. When context is clear, we denote FT by F . For
a string T , a largest block palindrome f ∈ F (c, d) such that |f | is the longest,
namely the number of blocks are maximal among all largest block palindromes
of F (c, d), is called a maximal block palindrome.

We remark that the maximal block palindrome of F (c, d) is a representative
of all the largest block palindromes of F (c, d).

Remark 1. For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, any
largest block palindrome f = f−n · · · fn ∈ F (c, d) is a sub-factorization of the
maximal block palindrome g = g−m · · · gm ∈ F (c, d), that is, n ≤ m and fi = gi

for 0 ≤ i ≤ n.

Proof. We assume that the statement does not hold. Let fj be a block that
fj �= gj , and j = 0 or fi = gi for 0 ≤ i < j ≤ n. If |fj | < |gj |, fj is a border of gj

and it contradicts that gj is the largest block palindrome. We can say the same
things for the case |fj | > |gj |. Therefore, such fj and gj do not exist and this
statement holds. 
�

We are interested in how many maximal block palindromes can appear in T .
It is trivially upper bounded by O(N2) since there are O(N2) substrings which
can be center substrings. If there is no limitation on the size of maximal block
palindromes, we can easily see that it is tight. For a string T of length N in
which the characters are all distinct, any substring w is unbordered, and there is
at least one maximal block palindrome that contains w as a center block. Thus,
T can contain Θ(N2) maximal block palindromes. The following example says
that the number of maximal block palindromes having three blocks has also the
same tight upper bound.
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Example 1. The number of maximal block palindromes in T = anbnabanbn

that have at least three blocks is Θ(N2), where cn for a character c denotes run
of c of length n, and n = (N − 2)/4.

For convenience, we denote T by T = A0B1A1B2A2B3, where A0, B1, A1, B2,
A2, and B3 are strings an, bn, a, b, an, and bn, respectively. There are maximal
block palindromes of size three that, for 1 < i ≤ n, 1 < j ≤ n, T [n−j+1 . . . N −
n+ i−1] = (A0[n− j +1 . . . n]B1[1..i−1])(B1[i . . . n]A1B2A2[1 . . . j])(A2[n− j +
1 . . . n]B3[1 . . . i − 1]) and they are unbordered, where the parentheses indicate
blocks.

Remark that the upper bound is reduced to O(N) if we impose a limitation
on the lengths of center blocks.

Remark 2. For any constant k ≥ 0, a string of length N can contain Θ(N)
maximal block palindromes whose center blocks are of length ≤ k because there
are O(N) possible center blocks. In particular, a string contains at most N − 1
maximal block palindromes of even size (i.e., the center blocks must be empty)
because the number of occurrences of center blocks are at most N − 1.

The following lemma shows an interesting property of maximal block palin-
dromes, and this property can be used for the proof of Lemma2.

Lemma 1. For a half-position 1 ≤ c ≤ N and two integers 1 ≤ d < d′ ≤ N/2,
two largest block palindromes f = f−n · · · fn ∈ F (c, d) and g = g−m · · · gm ∈
F (c, d′) do not share the block boundaries, namely, the ending positions of blocks
ki and k′

i such that ki = c + d − 1 + |f1 · · · fi| and k′
i = c + d′ − 1 + |g1 · · · gj | do

not equal for any 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. Similar to Remark 1, if we assume that this lemma does not hold, a block
of f or g must have a border and it contradicts that f and g are the largest
block palindromes. 
�

Let ‖MBP(T )‖ denote the sum of the sizes of all maximal block palindromes
in T .

Lemma 2. For any string T of length N , ‖MBP(T )‖ ≤ N(2N − 1).

Proof. From Lemma 1, any two largest block palindromes, whose center positions
are same but center blocks are different, do not share the block boundaries.
This implies that, for a half-position c, the number of blocks of maximal block
palindromes whose center position is c is up to N . Since there are 2N − 1 center
positions, we have ‖MBP(T )‖ ≤ N(2N − 1). 
�

4 Enumeration of Maximal Block Palindromes

In this section, we consider how to enumerate all the maximal block palindromes
MBP(T ). A brute-force approach based on Theorem1 would compute the largest
block for every possible substring T [b . . . b + � − 1] (while suppressing output of
non-maximal ones), which takes Θ(

∑N
�=1 �(N − �)) = Θ(N3) time.

We propose an optimal solution running in o(N3) time.
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Theorem 2. All maximal block palindromes that appear in T can be enumerated
in O(N + ‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size.

We actually consider a variant of the problem: We propose an algorithm to
enumerate all the maximal block palindromes of size ≥2, whose total output
size is denoted by ‖MBP≥2(T )‖, in optimal O(N + ‖MBP≥2(T )‖) time. That
is to say, we can completely ignore maximal block palindromes of size 1, which
might not be interesting if we focus on palindromic structures in T . If we want
to enumerate MBP(T ), we can do that by slightly modifying the algorithm.

Our algorithm proceeds in two steps: (i) enumerate all the pairing unbordered
blocks for all center positions in a batch processing, and (ii) build maximal block
palindromes from the enumerated blocks.

In Step (i), we firstly enumerate every pair of occurrences of an unbordered
substring in T . Note that the pair will be a component of a maximal block
palindrome, and the total number of enumerated pairs is O(‖MBP≥2(T )‖). We
preprocess T in O(N) time and space to support LCE queries in constant time.
We also compute, for every character in T , the list storing all the occurrences
of the character in increasing order, all of which can be obtained by sorting the
positions i of T with the key T [i] by radix sort in O(N) time and space.

Now we focus on an occurrence b of T [b], and identify every pair of occurrences
of an unbordered substring such that the left one starts at b. Let b < b1 < b2 <
· · · < bk be the occurrences of T [b] in T [b . . . N ]. We process bi ∈ {b1, . . . , bk}
in increasing order to identify common unbordered substrings starting at b and
bi using LCE queries. At the first round for b1, we see that for any � with
1 ≤ � ≤ min(LCE (b, b1), b1 − b), the common substring of length � starting
at b and b1 is unbordered, and thus, we report each pair of such unbordered
substrings. While processing bi ∈ {b1, . . . , bk} in increasing order, we maintain
a set L of positive integers � (by a sorted list of intervals) such that T [b . . . b +
� − 1] has a border caused by the common substrings starting at b and bi’s
processed so far. We use L to efficiently skip �’s such that T [b . . . b + � − 1] has a
border in the later rounds. For example, in the first round, we add the interval
[b1 − b + 1 . . . b1 − b + LCE (b, b1)] to L (which is initially empty) as, for any
� ∈ [b1 − b+1 . . . b1 − b+LCE (b, b1)], T [b . . . b+ �−1] has a border caused by the
common substring starting at b and b1. When processing bi for 1 < i ≤ k, we see
that for any � ∈ [1 . . . min(LCE (b, bi), bi−b)]\L, the common substring of length
� starting at b and bi is unbordered. Updating L can be easily done in O(1) time
by adding (merging if necessary) the interval [bi − b + 1 . . . bi − b + LCE (b, bi)]
to L (observe that the new interval is always pushed back to L or merged with
the last interval of L as we process {b1, . . . , bk} in increasing order). Note that
[1 . . . min(LCE (b, bi), bi − b)] \ L always contains 1, and we can incrementally
enumerate its element in constant time per element because L is maintained
as a sorted list of intervals. Thus, the computation cost can be charged to the
number of output, i.e., it runs in O(N + ‖MBP≥2(T )‖) time in total.

When we find a pair of occurrences bl < br of an unbordered substring of
length �, we list it up as a triple (c, br, br + �), where c = (bl + br + � − 1)/2 is
the center of the pairing blocks. After listing up all those triples, we sort them
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using the first and second elements as keys by radix sort, which can be done in
O(N + ‖MBP≥2(T )‖) time and space.

Now we are ready to proceed to Step (ii) in which we build the maximal block
palindromes from the sorted list of triples computed in Step (i). For building the
maximal block palindromes with center c, we scan the sublist of triples having
center c and connect the pairing blocks whose beginning and ending positions
are adjacent using the information of the second (the beginning position of the
block) and third (the ending position of the block plus one) elements of the
triples. We build all the c-centered maximal block palindromes by extending
their blocks outwards simultaneously with a 0-initialized array A of length N .
When we look at a triple (c, br, br + �), we write br to A[br + �], and connect
the block with the block ending at br − 1 if such exists (which can be noticed
by the information A[br] �= 0). Since the block boundaries are not shared due to
Lemma 1, the information written in A can be propagated correctly to extend
the blocks. It runs in time linear to the size of the sublist. We can also clear A
in the same time by scanning the sublist again while writing 0 to the entries we
touched.

Since the initialization cost O(N) of A is payed once in the very beginning
of Step (ii) and the other computation cost can be charged to the output size,
the total time complexity is O(N + ‖MBP≥2(T )‖).

For enumerating MBP(T ), we modify Step (ii). While scanning the sublist for
center c, we can identify all the positions e ≥ c such that e is not an ending posi-
tion of some pairing block, for which the substring T [2c − e . . . e] is unbordered.
If the unbordered substring cannot be extended outwards by blocks (which can
also be checked while scanning the sublist), it is the maximal block palindrome
of size 1 to output for MBP(T ). The algorithm runs in O(N + ‖MBP(T )‖) time
in total as the additional cost can be charged to the output size.

5 Conclusions

In this paper, we investigated several properties of block palindromes which are
the generalization of palindromes and gapped palindromes. We also proposed an
optimal-algorithm to enumerate all maximal block palindromes appearing in a
given string. As mentioned in Remark 2, if we impose a limitation on the lengths
of center blocks, the upper bound of the number of maximal block palindromes
is reduced to O(N), where N is the length of an input string. In particular, for
maximal block palindromes of even size, the center blocks are super restricted to
be empty. The situation is similar to considering ordinal palindromes (in which
the center blocks are strict) versus maximal gapped palindromes (in which the
restriction on the center blocks are relaxed). It would be interesting to investigate
the properties of maximal block palindromes whose center blocks have restricted
lengths and develop efficient algorithms to enumerate only such a subset of
maximal block palindromes.
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R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 289–301. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46078-8 24

12. Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest
initial palindrome of a string. J. ACM 22(3), 346–351 (1975)

13. Narisada, S., Diptarama, Narisawa, K., Inenaga, S., Shinohara, A.: Computing
longest single-arm-gapped palindromes in a string. In: Steffen, B., Baier, C., van
den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS,
vol. 10139, pp. 375–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-51963-0 29

14. Smith, G.R.: Meeting DNA palindromes head-to-head. Genes Dev. 22, 2612–2620
(2008)

http://olympiad.org.uk/2015/index.html
http://olympiad.org.uk/2015/index.html
https://doi.org/10.1080/02522667.2015.1103044
https://doi.org/10.1016/J.TCS.2012.01.047
https://doi.org/10.1007/978-3-319-07566-2_16
https://doi.org/10.1016/j.tcs.2009.09.013
https://doi.org/10.1007/978-3-662-46078-8_24
https://doi.org/10.1007/978-3-319-51963-0_29
https://doi.org/10.1007/978-3-319-51963-0_29


Maximal Motif Discovery in a Sliding
Window

Costas S. Iliopoulos, Manal Mohamed, Solon P. Pissis, and Fatima Vayani(B)

Department of Informatics, King’s College London, London, UK
{c.iliopoulos,manal.mohamed,solon.pissis,fatima.vayani}@kcl.ac.uk

Abstract. Motifs are relatively short sequences that are biologically sig-
nificant, and their discovery in molecular sequences is a well-researched
subject. A don’t care is a special letter that matches every letter in the
alphabet. Formally, a motif is a sequence of letters of the alphabet and
don’t care letters. A motif m̃d,k that occurs at least k times in a sequence
is maximal if it cannot be extended (to the left or right) nor can it be
specialised (that is, its d′ ≤ d don’t cares cannot be replaced with letters
from the alphabet) without reducing its number of occurrences. Here we
present a new dynamic data structure, and the first on-line algorithm, to
discover all maximal motifs in a sliding window of length � on a sequence
x of length n in O(nd�+d� �

w
� ·∑n−1

i=� |diffi
i−1|) time, where w is the size

of the machine word and diffi
i−1 is the symmetric difference of the sets

of occurrences of maximal motifs at x[i− � . . i− 1] and at x[i− �+1 . . i].

Keywords: Motif discovery · Sequence motifs
Genome analysis

1 Introduction

As next-generation sequencing technology advances, there is an increase in the
production of genomic data that requires de novo assembly and analyses. One
such analysis is motif discovery [1,9–12,14]. Motifs are relatively short sequences
that are biologically significant. Examples of these are protein-binding sites, such
as transcription factor recognition sites [6].

We highlight that the maximal motif discovery problem discussed in this
paper differs significantly from the well-established ( �, d)-motif search prob-
lem: find all �-length motifs that occur in at least k sequences from a given
collection of sequences, where each occurrence of the motif can contain up to d
mismatches [16].

The obvious caveat of (�, d)-motif search approaches is that the length of
the motif is restricted and in reality, a longer or shorter motif could be more
significant. We, therefore, focus on the more general problem of maximal motif
discovery. A maximal motif m̃d,k is not determined by a given length, rather,
its significance is based on its number of occurrences compared to its substrings.
A motif is maximal because it cannot be extended to the left or right without
c© Springer Nature Switzerland AG 2018
T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 191–205, 2018.
https://doi.org/10.1007/978-3-030-00479-8_16
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reducing its number of occurrences. As importance is given to the number of
occurrences, the first parameter k sets a minimum threshold for the number
of occurrences of a reported maximal motif. The second parameter d is more
restrictive in that mismatches occur in up to d specific positions in the motif,
known as don’t care letters and denoted by �. Thus, a motif is also maximal
because its don’t care letters cannot be specialised without reducing its number
of occurrences. For instance, given the sequence ACGTTATGTT and d = 1, one
should conclude that the significant motif is A�GTT rather than, for instance,
GTT; both of which have exactly the same number of occurrences. However, if we
are restricted to � = 3, this important observation would be missed. Importantly,
we take a purely de novo approach, where only one sequence is needed as input.

In [4], Grossi et al. proposed, to the best of our knowledge, the most current
combinatorial solution for maximal motif discovery: a data structure termed
motif trie. A motif trie represents all prefixes, suffixes and occurrence positions
of each maximal motif m̃d,k in the set Md,k of maximal motifs. The authors
present an output-sensitive algorithm with a time complexity of O(nd + d3 ·∑

m̃d,k∈Md,k
|occ(m̃d,k)|), where occ(m̃d,k) is the set of occurrences of m̃d,k,

assuming the input sequence of length n is built on a constant-sized alphabet.

Our Contribution. Motivated by the aim of discovering interesting regions in
large genomic sequences, in this paper, we propose a data structure as sensi-
tive as the motif trie, and crucially, that has the additional advantage of being
a dynamic data structure. The motivation behind creating a dynamic structure
was to facilitate a sliding window on the input sequence. Specifically, this ensures
the additional ability to find interesting �-length regions of the sequence, which
is useful in various bioinformatics applications, including the prediction of the
origin of chromosomal replication (OriC) [8]. The length of OriC in model bac-
terial species ranges from 120 to 300bp; for example, it is 240bp in E. coli [7].
Furthermore, motifs that occur within OriC, such as DnaA boxes, show that d
and k are small constants (for example, d = 2 and k = 4) in practice [3]. Before
presenting the problem formally, let us denote by Mi,d,k the set of the maximal
motifs in the �-length window ending at position i in string x, each of which
must occur at least k times in the window and contain at most d don’t care
letters.

Maximal Motif Discovery in a Sliding Window (MMDSW)
Input: A string x of length n and integers �, k > 1 and d.
Output: An array Sx of scores, where Sx[i] = |Mi,d,k| and � ≤ i < n.

We present the first on-line algorithm to find the occurrences of all maximal
motifs in a sliding window in O(nd� + d� �

w � ·
∑n−1

i=� |diffi
i−1|) time, where w is

the size of the machine word and diffi
i−1 is the symmetric difference of the sets

of occurrences of maximal motifs at x[i − � . . i − 1] and at x[i − � + 1 . . i]. The
space complexity of our algorithm is O(�2). This result poses an improvement
over the time required to solve the same problem using the motif trie [4], which
would then be O(nd� + d3 ·

∑n−1
i=�,m̃d,k∈Mi,d,k

|occ(m̃d,k)|). This improvement is
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significant as a single occurrence of a maximal motif would be reported O(�)
times by the latter approach. Therefore, the proposed algorithm results in a
speed-up of O(d2w) per occurrence of a maximal motif.

2 Definitions and Algorithmic Toolbox

We begin with a few definitions and notation, generally following [2,5]. An alpha-
bet Σ is a finite non-empty set of letters of size |Σ|. A string built on Σ is a finite
sequence of letters of Σ. In the current context, we assume that the alphabet is
fixed, that is, |Σ| = O(1). The length of a string x is denoted by |x|. We denote
the empty string by ε. For two positions i and j, we denote by x[i . . j] = x[i] . . x[j]
the factor (or substring) of x that starts at i and ends at j; it is ε if j < i. For
any string x = uyv, where y, u and v are strings, if u = ε then y is a prefix of x.
Conversely, if v = ε then y is a suffix of x.

Suffix Tree. Given a string x of length n > 0, the suffix tree Tx of x is a compact
trie representing all suffixes of x. The nodes of the trie which become nodes of
the suffix tree are explicit nodes; all other nodes are implicit. That is, a node v
in the trie with only one outgoing edge is implicit in the suffix tree. The root
node r represents the empty string ε. Each edge of the suffix tree can be viewed
as a path of implicit nodes from one explicit node to another.

Each implicit node can be represented by a tuple 〈γ, μ, λ〉, where μ is the
number of implicit nodes skipped on the edge from explicit node γ, and the edge
label begins with α = x[λ]. The path-label P (v) of a node v is the concatenation
of the edge labels along the path from r to v. Henceforth, we will use P (v) and
v interchangeably to refer to the factor of x that v represents. The string-depth
D(v) = |P (v)| of a node v is the total number of implicit and explicit nodes in
the path from r to v.

Node v is known as a terminal node if its path-label is a suffix of x, that is,
P (v) = x[i . . n − 1], 0 ≤ i < n. Note that, each leaf in Tx is a terminal node. If
each terminal node is a leaf node then Tx is an explicit suffix tree, otherwise Tx

is an implicit suffix tree. We denote the set of occurrences of a factor v in x by
occ(v), such that |occ(v)| corresponds to the number of terminal nodes in the
subtree rooted at v.

The suffix link from a suffix origin, node v, with path-label P (v) = αw, is
a pointer to a suffix target, node s(v), path-labelled P (s(v)) = w, where α ∈ Σ
and w is a factor of x.

An internal node of Tx is an explicit, non-root, non-leaf node. The explicit
child of a node v is the nearest explicit node that has an incoming edge from v.
We define an explicit parent in a similar way. We define the ancestors of a node
u as the set of all internal nodes in the path from r to u, if any. Similarly, we
define the descendants of an internal node v as the set of all internal nodes in
the subtree rooted at v, if any.

Maximal Motifs. Each factor of x is uniquely represented by the path-label
of a node of Tx. More specifically, each right-maximal repeated factor of x is
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uniquely represented by an internal node of Tx. In other words, at least one
occurrence of this factor (of which there are at least two) in x is followed by
a letter that is distinct from the rest. Therefore, a right-maximal factor of x
cannot be extended to the right without reducing its number of occurrences.
A right-maximal factor is also left-maximal if the preceding letter of at least one
of its occurrences in x is distinct from the rest. If the number of occurrences of a
suffix target is not equal to that of its suffix origin, or if it is a target of multiple
suffix links, then the suffix target is left-maximal. That is, it cannot be extended
to the left without reducing its number of occurrences. If a node is left-maximal,
all of its ancestors are also left-maximal. Henceforth, we will refer to repeated
factors that are both left- and right-maximal as seeds, and their corresponding
suffix tree nodes as seed nodes. Note that every seed node is an internal node in
a suffix tree, but not every internal node corresponds to a seed. The number of
seeds are thus O(n) because the number of nodes in a suffix tree are O(n).

A don’t care, denoted as �, is a special letter that matches every letter in
Σ. We denote a non-deterministic string ỹ which contains such letters with a
tilde, and say that ỹ is built on Σ� = Σ ∪ {�}. An occurrence of ỹ at position
i in x is a sequential match of each letter in ỹ with the corresponding letter in
x[i . . i + |ỹ| − 1]. The set of occurrences of ỹ in x is denoted as occ(ỹ).

For our purposes and given thresholds d and k, we define a motif m̃d,k that
occurs in a given string x, as a sequence of d′ don’t cares and up to d′ + 1 seeds,
where 0 ≤ d′ ≤ d and |occ(m̃d,k)| ≥ k. A motif m̃d,k is maximal as it cannot
be extended (to the left or right) nor can it be specialised (that is, its don’t
cares cannot be replaced with letters from Σ) without reducing its number of
occurrences. Each motif must begin and end with a seed, as occ(m̃d,k) is not
affected by flanking m̃d,k with don’t cares [4]. A singleton seed can be a motif,
where d′ = 0; this will be referred to as a singleton motif. We denote the set of
all maximal motifs in x as Md,k.

Motif Graph. It is evident that the suffix tree is useful in finding seeds and
we now explain how it can be augmented to find maximal motifs. We term this
augmented suffix tree a motif graph. Each internal node v of Tx is decorated with
(1) an integer variable |occ(v)|; and (2) a Boolean variable isSeed(v), which is
true if node v is a seed (and false otherwise). Each node v, where isSeed(v) =
true, is further augmented with (1) a Boolean variable isMotif(v), which is
true if node v represents a singleton motif (and false otherwise); and (2) a
bit-vector B(v), of total size n bits, indicating the occurrences of v.

A labelled, directed edge u d′
→ v, from seed node u to seed node v, indicates

that u �d′
v occurs at least k times in the string, where 0 < d′ ≤ d. Note that,

u = v is possible. We will refer to these extra edges as motif edges. To facilitate
their construction, we store an array E of linear size in which each element
keeps a list of pointers to seed nodes which have an occurrence ending at the
corresponding position in x.

We define the bit-vector B(u d′
→ v) of a motif edge as the bit-vector resulting

from a shift-and operation of B(u) and B(v), which represents the starting
positions of occurrences of u�d′

v in x. Note that the shift accounts for D(u) and



Maximal Motif Discovery in a Sliding Window 195

d′. If every occurrence of u is succeeded by �d′
v, and every occurrence of v is

preceded by u�d′
, we say B(u) ≡ B(v) ≡ B(u d′

→ v). We denote as indegree(u)
(resp. outdegree(u)) the number of incoming (resp. outgoing) motif edges to
(resp. from) the seed node u.

Each maximal motif corresponds to a maximal path of motif edges, where
the maximality is satisfied by the following two conditions with respect to d
and k. Suppose m̃d,k = u �d′

1 z1 �d′
2 z2 . . �d′

q−1 zq−1 �d′
q zq corresponds to a path

p = u d′
1−→ z1

d′
2−→ z2 . . d′

q−1−→ zq−1
d′
q−→ zq, then

∑q
i=1 d′

i ≤ d and |occ(p)| =
|occ(m̃d,k)| ≥ k. In other words, p is maximal if its corresponding motif occurs
at least k times in the string and contains no more than d don’t cares.
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Bv1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Bv2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Bv3 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

Bv4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

Bv7 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0

Fig. 1. The motif graph built upon the explicit suffix tree of the string x =
AGCTAGTTCTAGCTAGCTAG$, given d = 1 and k = 2. Each leaf node has been labelled with
the index of the suffix that it represents. Suffix links are shown as dashed directed edges.
The set of all internal nodes, {v1, . . . , v9}, represents the right-maximal repeated factors
of x. As |occ(v5)| = 5 = |occ(v1)|, v5 is not a seed; as |occ(v1)| = 5 �= |occ(v8)| = 4,
v1 is a seed; and so on. Thus, the set of all seed nodes is {v1, v2, v3, v4, v7}. Motif edges
are shown in bold.
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The longest prefix (resp. suffix) of p, denoted by prefix(p) (resp. suffix(p)),
is the path resulting from the truncation of the last (resp. first) edge in p.
If |occ(p)| = |occ(prefix(p))| (resp. = |occ(suffix(p))|), then prefix(p)
(resp. suffix(p)) is also a maximal path and hence corresponds to a motif. The
bit-vector B(p) of path p can be computed by a series of shift-and operations
of the bit-vectors of the edges in p.

Example 1. Given the string x = AGCTAGTTCTAGCTAGCTAG$, the set of seeds is
{v1 = AG, v2 = AGCTAG, v3 = CTAG, v4 = CTAGCTAG, v7 = T}. For d = 1 and k = 2,
we find the following set Md,k of motifs from the motif graph shown in Fig. 1.

m̃d,k AG AG�T AGCTAG AGCTAG�T CTAG CTAG�T CTAGCTAG

|occ(m̃d,k)| 5 4 3 2 4 3 2

3 Sliding Window

The main computational challenge in reporting motifs in a sliding window is
maintaining the left- and rightmost seeds in two respects: checking their maxi-
mality (nodes) and updating their relationship with neighbouring seeds (edges).
These changes to the motif graph identify and thus efficiently update only the
subset of motifs occurring at both ends of the window.

Specifically, in what follows, we describe the effect on Mi,d,k and the motif
graph when adding a letter to the right of the window, and deleting a letter from
the left, thus simulating the sliding window on x.

3.1 Update of Set of Motifs for a Sliding Window

Before proceeding with updates, the set Mi,d,k is copied from the set Mi−1,d,k

from the previous window.

Adding a Letter to the Right. When adding a letter x[i] = α to the right
of the window, the following cases are checked in order, if |occ(α)| ≥ k in the
window.

1. If α now extends at least k occurrences of some motif m̃ ∈ Mi,d,k, it becomes
the suffix of a new motif m̃′ = m̃ �d′

α, which occurs at least k times in the
window, where 0 ≤ d′ ≤ d. In this case, the new motif m̃′ is added to Mi,d,k.
If the number of occurrences of m̃ is equal to m̃′, m̃ is deleted from Mi,d,k,
as it is no longer maximal. Let M be the number of motifs added to Mi,d,k.

2. The letter α can be added to Mi,d,k as a singleton motif if it is not already
there and if M = 0; if M = 1 and |occ(α)| > |occ(m̃′)|; or if M > 1.
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Deleting a Letter from the Left. When deleting the leftmost letter α of the
window, every motif m̃′ = αm̃ ∈ Mi,d,k must be deleted if now |occ(m̃′)| < k
in the window. After this possible deletion, the following cases are considered.

– If m̃ = ε, and thus m̃′ = α, then nothing more is done.
– Otherwise, m̃ is added to Mi,d,k, if and only if m̃ ∈ Mi,d,k and it is not a

prefix of a motif m̃′′ ∈ Mi,d,k where |occ(m̃′′)| = |occ(m̃)|.

3.2 On-Line Update of Suffix Tree for a Sliding Window

As the motif graph is fundamentally a suffix tree, we will first provide an overview
of how a letter can be added to the right and deleted from the left, namely by
Ukkonen’s [15] and Senft’s [13] algorithms, respectively.
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Fig. 2. The implicit suffix tree of the string x = AGCTAGTTCTAGCTAGCTAG. Observe that,
the most recent leaf to be added is suffix j−1 = 11. The active point, A = 〈v3, 4, 15〉, is
represented as a black dot on the path between nodes v3 and leaf node 8. The longest
repeated suffix x[12 . . 19] = CTAGCTAG is the path from r to A.

Adding a Letter to the Right. The following is a summary of the relevant
details of Ukkonen’s algorithm; for further details, refer to [15]. The algorithm
iteratively builds Tx, where the tree Txi

at each iteration i represents the implicit
suffix tree of the prefix x[0 . . i] of x, where only j suffixes are represented as leaf
nodes and leaf j − 1 is the most recent leaf added to the suffix tree, where
0 ≤ j −1 ≤ i < n. If j −1 = i, the suffix tree Tx is explicit. The algorithm makes
use of a special pointer to a node known as the active point A = 〈γ, μ, λ〉 that
corresponds to the longest repeated suffix of x[0 . . i]; see Fig. 2.
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When adding a letter x[i] = α to the right of the string, and thus extending
each existing suffix β ∈ {β0, . . . , βi−1}, the following three rules are applied.

– If there is no path from r representing βα, we do either of the following. Let
P (v) = β.

• If v is a leaf node, we simply append α to the label of the edge ending at
v. This is a Rule 1 extension.

• If v is not a leaf node, observe that A is pointing to v. We create a new
leaf node u, for which the label of its incoming edge from v is α. Thus, u
represents the jth suffix of x. If v is an implicit node, it becomes explicit.
The active point A becomes 〈v, 0, i〉. This is a Rule 2 extension.

– If βα already exists within the suffix tree, the structure of the tree is
unchanged and μ is incremented. However, if A reaches an explicit node v′,
then A = 〈v′, 0, i〉. This is a Rule 3 extension and we say that A is moving
along a branch of Tx, as i moves away from j.

If a Rule 2 extension results in making a node v explicit, then it becomes the
suffix origin of a newly created suffix link. Additionally, further leaf nodes may
need to be added by moving A to s(v). In this case, we say that A is following
a suffix link, as j moves closer to i.

Example 2. In Fig. 2, leaf nodes 10 and 11 were added when letter x[16] = C was
added.

Deleting a Letter from the Left. The following is a summary of the relevant
details of Senft’s algorithm; for further details, refer to [13]. When deleting a
letter α from the left of the window, the longest unique prefix of the window
is being deleted, which is in fact the whole window. In doing so, all repeated
prefixes of suffixes must be maintained, by giving importance to the longest
repeated prefix β, where β[0] = α. Let P (u) = βδ be the longest unique prefix
and P (v) = β be the longest repeated prefix; thus v is an ancestor of u.

– If v is an explicit node, we simply delete the leaf u. If v now only has one
remaining child u′, we delete v and merge the edge that was directed at v
with the edge that is directed at u′.

– If v is an implicit node, then β is also the longest repeated suffix. We delete
the leaf u and replace it with a leaf u′, where P (u′) = β.

The representation of edge labels can be updated efficiently due to the correct-
ness of their offsets relative to the start of the window. Thus, a batch update of
all labels can be done after every � window shifts.

Example 3. Considering Fig. 2, the deletion of the leftmost letter (A) would result
in the deletion of the leaf node that represents the longest suffix. This would
cause the subsequent deletion of node v2 as it would have one remaining child;
the edges from v1 to v2 and v2 to leaf node 10 would be merged.
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4 Maximal Motif Discovery Algorithm

The proposed algorithm works in an on-line manner. In order to facilitate this
efficiently, we begin by appending to the start of x a string of � letters /∈ Σ. We
also append a unique letter /∈ x to the end of x to ensure that the motif graph
(augmented suffix tree Tx) of the final window is explicit.

First, we must redefine and extend our original definition of the motif graph as
follows. For an internal node v, |occ(v)| and isSeed(v) are now defined relative
to the window, not the whole string. The same applies to isMotif(v) for a seed
node v. Similarly, B(v) is now of size � bits, and in order to maintain it efficiently,
we introduce an integer variable pivot(v), which acts as an anchor so that B(v)
is only updated when an occurrence of v is added or deleted, rather than in
every step i of the algorithm. Additionally, E is now a dynamic structure, of size
O(�), in which each element keeps a list of pointers to seed nodes which have
an occurrence ending at the corresponding position in the current window. The
aforementioned definition of a motif edge remains; however, the shift operation
that produces its bit-vector now also takes the pivot into consideration.

Before proceeding, we define the following subroutines used throughout the
algorithm. Given a bit-vector B, the function popCount(B) returns the number
of set bits in B. Similarly, the Boolean function kPopCount(k,B) returns true
if the number of set bits in B is at least k (and false otherwise). The function
checkEndPositions() returns a list E′ in which, for each d′ and for each pointer
to a node v in the list at position j′ = j − d′ − 1 in E, a pair 〈v, j′〉 is added,
where 0 < d′ ≤ d and j − 1 is the most recent leaf added to the suffix tree, as
described in Sect. 3.2.

Importantly, note that the algorithm assumes that the window is moving
with respect to j. Therefore, when a leaf j is added to the motif graph, the leaf
j − � is deleted and the score is updated accordingly. Therefore, the score of a
window represents the number of motifs that occur in the window, such that
each motif has at least k starting positions in x[j − � + 1 . . j].

4.1 Reading a Letter on the Right

Recall that the active point A represents the rightmost seed that has an occur-
rence at position j of x. We, therefore, describe in the following the various cases
of how A is updated when reading letter x[i].

A starts moving along a new branch from r . The active point A = 〈r , 1, i〉
is initialised, where isSeed(A) = true and |occ(A)| is computed by incre-
menting the occurrence of its explicitChild(A) by one. If |occ(A)| ≥ k,
B(A) and pivot(A) are copied from explicitChild(A) and shifted to accom-
modate the extra occurrence at position j. Incoming motif edges are then
added to A in the following way. First, the list E′ is obtained by calling
checkEndPositions(). Each pair in E′ corresponds to a potential motif
edge v d′

→ A. If kPopCount(k,B(v d′
→ A)) is false the edge is discarded.

If they exist, the remaining potential motif edges are clustered with respect
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to |occ(v �d′ A)|. In each cluster, the edges are sorted with respect to D(v),
and the motif edge v d′

→ A is added from the deepest. For d′ > 1, an edge can
only be added if there is no edge from a descendant seed node of v to A with
the same bit-vector as v d′

→ A. Importantly, this is regardless of the label d′

of either edge. After the possible addition of motif edges, isMotif(A) is set
to false if there is any edge v d′

→ A such that B(A) ≡ B(v d′
→ A), where

0 < d′ ≤ d. An update is made to isMotif(v) in a similar way.
A advances along a branch and reaches an internal node u. The active

point A = 〈u, 0, i〉 points to an internal node u, which is updated as follows.
First, |occ(u)| is incremented and isSeed(u) is updated. If isSeed(u) = true
and |occ(u)| ≥ k, then u is updated by copying missing information from
A regarding its new occurrence at position j, before the extra structures
and incoming edges of A can be deleted. Specifically, B(u) and pivot(u) are
copied from A, and a pointer to u is added to the list of pointers representing
position j + D(u) − 1 in E. Then, for each incoming motif edge to A, the
motif edge is copied to u if it does not already exist. If the motif edge already
exists, it is not duplicated, however, it may affect whether u is a singleton
motif.

A moves further along a branch and passes by a seed node u. The
active point A = 〈u, 1, i〉 is updated in the same way that is described when
A = 〈r , 1, i〉. Incoming motif edges do not need to be computed ab initio,
however, E′ must still be computed. For each incoming motif edge to u with
label d′, where 〈v, j′〉 ∈ E′ and 0 < d′ ≤ d, a motif edge with the same label is
copied to A if the number of set bits in the bit-vector of potential motif edge
to A is at least k. If the bit-vector of the new motif edge to A is equivalent
to that of the corresponding motif edge to u, the duplicate motif edge to u is
deleted. Finally, isMotif(A) is updated as described earlier.

A eventually becomes an explicit node vA. In this case, A = 〈vA, 0, i〉.
Therefore, no extra work is being done by initiliasing A as a seed node pre-
maturely. At this point, all information is copied from A to vA and a leaf
node representing suffix j is added from vA. In preparation for the next step,
E′ is initialised as mentioned earlier. Note that, it is at this point that the
leaf j − � must be deleted; see Sect. 4.2.

A moves to another branch following the suffix link from vA. After the
leaf node j is added, A moves to a different branch by following the suffix
link from vA and becomes A = 〈s(vA), 0, i〉. This is in order to prepare to
add the leaf node representing the next suffix from u = s(vA); observe that
j is incremented. First, |occ(u)| is incremented and isSeed(u) is updated. If
isSeed(u) = true and |occ(u)| ≥ k, then B(u) and pivot(u) are updated
to reflect the new occurrence of u at position j. A pointer to u is added to the
list of pointers representing position j + D(u) − 1 in E. Finally, motif edges
are added as described earlier but with one crucial difference: when an edge is
added, the cluster to which it belongs is deleted from E′. Lastly, isMotif(u)
is updated. Importantly, an update is also done in the aforementioned way
for all ancestors of u. There are two possibilities after this step.
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– If another suffix link is to be followed due to the addition of the next
suffix as a leaf node, then firstly, note that it is at this point that leaf
j − � must be deleted; see Sect. 4.2. Secondly, E′ is updated to reflect the
incrementation of j by deleting all pairs where (after the incrementation)
j′ = j − 1 − d and adding pairs (obtained from E) where j′ = j − 1. This
entire step is repeated until j is no longer incremented.

– There may come a point during the addition of subsequent suffixes as leaf
nodes where j = i and i once again begins increasing. In other words, A
may follow suffix links around the suffix tree multiple times as j increases,
but A may halt on a branch and begin moving down it. As μ is incre-
mented to 1 after A = 〈v, 0, i〉 followed a suffix link to v, all ancestor
seed nodes of v are updated, from the shallowest to the deepest, by sim-
ulating the movement of A down the current branch as described at the
beginning of this section.

It is evident that as A moves down a branch in the suffix tree and D(A)
elongates, |occ(A)| reduces each time it passes an internal node. Thus, each
seed node is augmented with a subset of edges of its parent seed node.

4.2 Deleting a Letter from the Left

When the leaf node j is added, a leaf node j − � must be deleted and its explicit
parent node may also be deleted, as described in Sect. 3.2. Let v′ be the deep-
est remaining ancestor node of the deleted leaf. The following is done for each
internal node v in the path from v′ to r , inclusive. Note that, every node v is
necessarily a seed node. The number of occurrences of v is decremented and
isSeed(v) is updated. Outgoing motif edges are then updated as follows.

We say a motif edge is relevant if it originates at v and its destination is a
node z which occurs at position j−�+D(v)+d′, where 0 < d′ ≤ d. That is, v�d′

z
has lost one occurrence. After losing the occurrence, if |occ(v �d′

z)| = k −1, the
edge v d′

→ z must be deleted. Alternatively, we say the edge is affected.
If |occ(v)| = k−1 or v is no longer a seed, all of its motif edges are outgoing,

relevant and must be deleted. If |occ(v)| ≥ k, only a subset of its outgoing edges
may be relevant and of those, a subset must be deleted and another subset are
affected. Relevant motif edges are dealt with depending on s(v), the suffix target
of v, as follows.

– If s(v) = r, any outgoing motif edge from v that does not exist from s(v),
with the same label and destination node, is copied. If |occ(v �d′

z)| = k − 1,
then the corresponding motif edge from v is deleted.

– Otherwise, any motif edge such that |occ(v �d′
z)| = k − 1 is deleted, where

0 < d′ ≤ d.

Nodes v and s(v) are then updated as follows.

– If |occ(v)| = k−1 or v is no longer a seed, there are two possible cases. If the
non-empty suffix of v was not a seed, s(v) becomes a seed and all information
is moved from v to s(v). If the non-empty suffix of v was already a seed, then
pointers to v in E, B(v), pivot(v) and isMotif(v) are all deleted.



202 C. S. Iliopoulos et al.

– If |occ(v)| ≥ k, then pivot(v) and B(v) are updated.

For every motif edge that is added from s(v) by this update, isMotif of s(v)
and the destination nodes must be updated. Finally, isMotif(v) is updated.

4.3 Updating the Score Array

We are now in the position to describe how the algorithm computes the score
array Sx. Recall that each motif m ∈ Mj,d,k contributes to Sx[j] and m has at
least k occurrences in x[j − � + 1 . . j]. A motif can either be a singleton motif
or a maximal path of motif edges. A seed node u can be a singleton motif if
it has no incoming or outgoing motif edges, or, it does not have an incoming
(resp. outgoing) motif edge from (resp. to) a node v where each occurrence of u
is preceded (resp. succeeded) by v.

Before detailing how the score is updated for either side of the window, we
describe how a maximal path can be elucidated on the right-hand side of the
window (similar logic applies to the left-hand side), given a seed node u and a
position j of one of its occurrences. A motif edge v d′

→ u, where v occurs at
position j − d′ − D(v) + 1 and kPopCount(k,B(v d′

→ u)) = true, can be
extended to the left by following a path of motif edges, where at each extension,
two conditions must hold.

– If popCount(B(v d′
→ u)) = k, the bit-vector of the extended path must

match exactly with B(v d′
→ u). Alternatively, if popCount(B(v d′

→ u)) > k,
then the bit-vector of the extended path must contain at least k set bits one
of which must correspond to position j.

– The cumulative total of the labels of the motif edges in the path must not
exceed d.

Reading a Letter on the Right. In Sect. 4.1, we describe how updates are
made to the motif graph. Consequently, the score is updated for each relevant
seed node u as follows.

– When a new motif edge v d′
→ u is added, the score is incremented by one for

each maximal path ending with v d′
→ u, if v d′

→ u is not an extension of the
prefix of the path. If no such paths exist, then the score is incremented for
the motif edge.

– If v �d′
u gains an occurrence, the score is decremented for each maximal path

ending with v d′
→ u, if v d′

→ u is now an extension of the prefix of the path,
such that the prefix already contributes to the score.

– If a motif edge is duplicated due to A passing a seed node, the total score for
all paths ending at the given motif edge is doubled. When A reaches a seed
node and both share a motif edge from the same node with the same label,
the total score for all paths ending at the given motif edge is halved.

– The score is incremented when a seed becomes a singleton motif; it is decre-
mented when a singleton motif is no longer so. The computation that estab-
lishes this has been described in Sect. 4.1 and is done following the addition
or deletion of any motif edges.
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Deleting a Letter from the Left. In Sect. 4.2, we describe how updates are
made to the motif graph. Consequently, the score is updated for each relevant
seed node v as follows.

– When a motif edge v d′
→ z from v must be deleted but s(v) d′

→ z already
exists, the score is decremented for every maximal path that starts with
v d′

→ z if its occurrence positions are distinct from those of the same paths but
starting with s(v) d′

→ z. Before v d′
→ z is deleted, the score is decremented

for each path that begins with v d′
→ z, if the occurrence positions of the suffix

of the path differ. Then, the score is incremented for the suffix of the path,
if it is not a prefix of a longer motif, which would already be contributing to
the score.

– For each motif edge copied from v to s(v), ending at some seed node z, the
score is incremented for each path starting with s(v) d′

→ z if it has different
occurrence positions to v d′

→ z. If v d′
→ z has been deleted, the score is

incremented without this check. Alternatively, if s(v) was already a seed and
a singleton motif, and motif edge s(v) d′

→ z is added to it, if s(v) has the
same occurrence positions as s(v)�d′

z, s(v) is no longer a singleton motif and
the score is decremented. A similar check is done for the destination node z
whenever such a motif edge is added.

– If s(v) has just become a seed and a singleton motif, the score is incremented.
If |occ(v)| = k − 1 or v is no longer a seed, but v was a singleton motif, the
score is decremented. If v is still a seed, |occ(v)| ≥ k and isMotif(v) = false
but all of its motif edges have been deleted, v becomes a singleton motif; the
score is incremented. If any remaining outgoing motif edge from v has the
same occurrence positions as v and v was a singleton motif, it is no longer so;
the score is decremented. If no such match is found and v was not a singleton
motif, it becomes one; the score is incremented.

5 Algorithm Analysis

The following theorem summarises the complexity of the proposed algorithm.

Theorem 1. Given a sequence x of length n, a window length �, thresholds
k and d, and size w of the machine word, the score array Sx is computed in
O(nd� + d� �

w � ·
∑n−1

i=� |diffi
i−1|) time using O(�2) space.

Proof. Given a string of length n, the suffix tree can be built for a sliding window
in O(n) time using Ukkonen’s [15] and Senft’s [13] algorithms. Each time a leaf
is added, the number of occurrences on all of its O(�) ancestor nodes must be
incremented. This results in O(n�) time complexity for building and maintaining
the nodes of the suffix tree. For each node vi in the suffix tree, where i < � per
window, at most O(d�) motif edges can be added. Thus, in the worst case, the
number of motif edges added are bounded by O(nd�). Each motif corresponds
to at least one motif edge, so there cannot be more than |Mi,d,k| motif edges
in the motif graph per window. The time required to update the motif graph at
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each deletion and addition step is proportional to the number of occurrences of
motifs deleted and introduced at either end of the window. All bit-operations
used in the algorithm can be implemented in O(� �

w �) time. Thus elucidating
each maximal path requires O(d� �

w �) time. When a leaf is added, updating E
takes O(�) time. Thus the overall time complexity for maintaining E is O(n�).
Summing the above gives the overall time complexity.

The size of the motif graph is O(� · � �
w �), where the largest extra structure

that each node holds is a bit-vector of size O(� �
w �). The lookup table used by

popCount() is of size O(2log2 �) = O(�). The dynamic structure E of size O(�2)
gives an upper bound for the space complexity as each of the O(�) positions in E
can hold pointers to at most � seed nodes. The array Sx is not stored in memory
as scores are reported in an on-line fashion. ��

6 Concluding Remarks

In this paper, we presented a motif discovery algorithm with the purpose of
finding biologically significant regions in genomic sequences.

Our goal is to verify our theoretical findings and claims of improvement
compared with the algorithm presented in [4] by implementing our algorithm
and testing it using real genomic data.
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Abstract. Given a string S of n integers in [0, σ), a range minimum
query RMQ(i, j) asks for the index of the smallest integer in S[i . . . j].
It is well known that the problem can be solved with a succinct data
structure of size 2n + o(n) and constant query-time. In this paper we
show how to preprocess S into a compressed representation that allows
fast range minimum queries. This allows for sublinear size data struc-
tures with logarithmic query time. The most natural approach is to use
string compression and construct a data structure for answering range
minimum queries directly on the compressed string. We investigate this
approach using grammar compression. We then consider an alternative
approach. Even if S is not compressible, its Cartesian tree necessar-
ily is. Therefore, instead of compressing S using string compression, we
compress the Cartesian tree of S using tree compression. We show that
this approach can be exponentially better than the former, and is never
worse by more than an O(σ) factor (i.e. for constant alphabets it is never
asymptotically worse).

Keywords: RMQ · Grammar compression · SLP · Tree compression
Cartesian tree

1 Introduction

Given a string S of n integers in [0, σ), a range minimum query RMQ(i, j) returns
the index of the smallest integer in S[i . . . j]. A range minimum data structure
consists of a preprocessing algorithm and a query algorithm. The preprocessing
algorithm takes as input the string S, and constructs the data structure, whereas
the query algorithm takes as input the indices i, j and, by accessing the data
structure, returns RMQ(i, j). The range minimum problem is one of the most
fundamental problems in stringology, and as such has been extensively studied,
both in theory and in practice (see e.g. [11] and references therein).

Range minimum data structures fall into two categories. Systematic data
structures store the input string S, whereas non-systematic data structures do
not. A significant amount of attention has been devoted to devising RMQ data
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structures that answer queries in constant time and require as little space as
possible. There are succinct systematic structures that answer queries in constant
time and require fewer than 2n bits in addition to the n log σ bits required to
represent S [11]. Similarly, there are succinct non-systematic structures that
answer queries in constant time, and require 2n + o(n) bits [8,11].

The Cartesian tree C of S is a rooted ordered binary tree with n nodes. It is
defined recursively. Let i be the index of the smallest element of S (if the smallest
element appears multiple times in S, let i be the first such appearance). The
Cartesian tree of S is composed of a root node whose left subtree is the Cartesian
tree of S[1, i − 1], and whose right subtree is the Cartesian tree of S[i + 1, n].
See Fig. 1. By definition, the character S[i] corresponds to the i’th node in an
inorder traversal of C (we will refer to this node as node i). Furthermore, for any
nodes i and j in C, their lowest common ancestor LCA(i, j) in C corresponds to
RMQ(i, j) in S. It follows that the Cartesian tree of S completely characterizes S
in terms of range minimum queries. Indeed, two strings return the same answers
for all possible range minimum queries if and only if their Cartesian trees are
identical. This well known property has been used by many RMQ data structures
including the succinct structures mentioned above. Since there are 22n−O(log n)

distinct rooted binary trees with n nodes, there is an information theoretic lower
bound of 2n − O(log n) bits for RMQ data structures. In this sense, the above
mentioned 2n + o(n) bits data structures [8,11] are nearly optimal.

1.1 Our Results and Techniques

In this work we present RMQ data structures whose size can be sublinear in the
size of the input string that answer queries in O(log n) time. This is achieved by
using compression techniques, and developing data structures that can answer
RMQ/LCA queries directly on the compressed objects. Since we aim for sublin-
ear size data structures, we focus on non-systematic data structures. We consider
two different approaches to achieve this goal. The first approach is to use string
compression to compress S, and devise an RMQ data structure on the com-
pressed representation. This approach has also been suggested in [1, Sect. 7.1] in
the context of compressed suffix arrays. See also [8, Theorem 2], [11, Theorem
4.1], and [3] for steps in this direction. The second approach is to use tree com-
pression to compress the Cartesian tree C, and devise an LCA data structure
on the compressed representation. To the best of our knowledge, this is the first
time such approach has been suggested. Note that the two approaches are not
equivalent. For example, consider a sorted sequence of an arbitrary subset of n
different integers from [1, 2n]. As a string this sorted sequence is not compress-
ible, but its Cartesian tree is an (unlabeled) path, which is highly compressible.
In a nutshell, we show that the tree compression approach can exponentially out-
perform the string compression approach. Furthermore, it is never worse than
the string compression approach by more than an O(σ) factor. We next elaborate
on these two approaches.

Using String Compression. In Sect. 2.1, we show how to answer range min-
imum queries on a grammar compression of the input string S. A grammar
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compression is a context-free grammar that generates only S. The grammar is
represented as a straight line program (SLP) S. I.e., the right-hand side of each
rule in S either consists of the concatenations of two non-terminals or of a single
terminal symbol. The size |S| of the SLP S is defined as the number of rules
in S. Ideally, |S| � |S|. Computing the smallest possible SLP is NP-hard [7],
but there are many theoretically and practically efficient compression schemes
for constructing S [7,12,13,15] that reasonably approximate the optimal SLP.
In particular, Rytter [14] showed an SLP S of depth log n (the depth of an SLP
is the depth of its parse tree) whose size is larger than the optimal SLP by at
most a multiplicative log n factor.

In [1], it was shown how to support range minimum queries on S with a data
structure of size O(|S|) in time proportional to the depth of the SLP S. Bille et
al. [6] designed a data structure of size O(|S|) that supports random-access to S
(i.e. retrieve the i’th symbol in S) in O(log n) time (i.e. regardless of the depth
of the SLP S). We show how to simply augment their data structure within the
same O(|S|) size bound to answer range minimum queries in O(log n) time (i.e.,
how to avoid the logarithmic overhead incurred by using the solution of [1] on
Rytter’s SLP).

Theorem 1. Given a string S of length n and an SLP-grammar compression
S of S, there is a data structure of size O(|S|) that answers range minimum
queries on S in O(log n) time.

Using Tree Compression. In Sect. 2.2, we give a data structure for answering
LCA queries on a compressed representation of the Cartesian tree C. By the
discussion above, this is equivalent to answering range minimum queries on S.
We use DAG compression of the top-tree of the Cartesian tree C of S. We now
explain these concepts.

A top-tree [2] of a tree T is a hierarchical decomposition of the edges of
T into clusters. Each cluster is a connected subgraph of T with the property
that any two crossing clusters (i.e., clusters whose intersection is nonempty and
neither cluster contains the other) share at most two vertices; the root of the
cluster (called the top boundary node) and a leaf of the cluster (called a bottom
boundary node). Such a decomposition can be described by a rooted ordered
binary tree T , called a top-tree, whose leaves correspond to clusters with indi-
vidual edges of T , and whose root corresponds to the entire tree T . The cluster
corresponding to a non-leaf node of T is obtained from the clusters of its two
children by either identifying their top boundary nodes (horizontal merge) or by
identifying the top boundary node of the left child with the bottom boundary
node of the right child (vertical merge). See Fig. 1.

A DAG compression [9] of a tree T is a representation of T by a DAG
whose nodes correspond to nodes of T . All nodes of T with the same subtree
are represented by the same node of the DAG. Thus, the DAG has two sinks,
corresponding to the two types of leaf nodes of T (a single edge cluster, either
left or right), and a single source, corresponding the root of T . If u is the parent
of � and r in T , then the node in the DAG representing the subtree of T rooted
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at u has edges leading to the two nodes of the DAG representing the subtree of
T rooted at � and the subtree of T rooted at r. Thus, repeating rooted subtrees
in T are represented only once in the DAG. See Fig. 1.

A top-tree compression [5] of a tree T is a DAG compression of T ’s top-tree T .
Bille et al. [5] showed how to construct a data structure whose size is linear in the
size of the DAG of T and supports navigational queries on T in time linear in the
depth of T . In particular, given the preorder numbers of two vertices u, v in T ,
their data structure can return the preorder number of LCA(u, v) in T . We show
that their data structure can be easily adjusted to work with inorder numbers
instead of preorder, so that, given the inorder numbers i, j of two vertices in T
one can return the inorder number of LCA(i, j) in T . This is precisely RMQ(i, j)
when T is taken to be the Cartesian tree C of S.

Theorem 2. Given a string S of length n and a top-tree compression T of the
Cartesian tree C, there is a data structure of size O(|T |) that answers range
minimum queries on S in O(depth(T )) time.

By combining Theorem 2 with the greedy construction of T given in [5] (in
which depth(T ) = O(log n)), we can obtain an O(|T |) space data structure that
answers RMQ in O(log n) time.

We already mentioned that, on some RMQ instances, top-tree compression
can be much better than any string compression technique. As an example,
consider the string S = 123 · · · n. Its Cartesian tree is a single (rightmost, and
unlabeled) path, which compresses using top-tree compression into size |T | =
O(log n). On the other hand, since σ = n, S is uncompressible with an SLP. By
Theorem 2, this shows that the tree compression approach to the RMQ problem
can be exponentially better than the string compression approach. In fact, for
any string over an alphabet of size σ = Ω(n), any SLP must have |S| = Ω(n)
while for top-trees |T | = O(n/ log n) [5]. In Sect. 3 we show that, for small
alphabets, T cannot be much larger nor much deeper than S for any SLP S.

Theorem 3. Given a string S of length n over an alphabet of size σ, for any
SLP-grammar compression S of S there is a top-tree compression T of the Carte-
sian tree C with size O(|S| · σ) and depth O(depth(S) · log σ).

Plugging Rytter’s [14] SLP into Theorem 3 shows that, at least for small
alphabets σ, the top-tree compression approach to RMQ is never far worse than
the SLP approach.

Corollary 1. Given a string S of length n over an alphabet of size σ, let S
denote the smallest possible SLP-grammar compression of S. There is a top-
tree compression T of the Cartesian tree C of S with size at most |T | =
min(O(n/ log n), O(|S| · σ)), and there is a data structure of size O(|T |) that
answers range minimum queries on S in O(log n · log σ) time.



210 S. Jo et al.

2 RMQ on Compressed Representations

2.1 Compressing the String

Given an SLP compression S of S, Bille et al. [6] presented a data structure of
size O(|S|) that can report any S[i] in O(log n) time. The proof of Theorem 1
is a rather straightforward extension of this data structure to support range
minimum queries.

The key technique used in [6] is an efficient representation of the heavy path
decomposition of the SLP’s parse tree. For each node v in the parse tree, we
select the child of v that derives the longer string to be a heavy node. The other
child is light. Heavy edges are edges going into a heavy node and light edges are
edges going into a light node. The heavy edges decompose the parse tree into
heavy paths. The number of light edges on any path from a node v to a leaf is
O(log |v|) where |v| denotes the length of the string derived from v. A traversal
of the parse tree from its root to the i’th leaf S[i] enters and exists at most log n
heavy paths. Bille et al. show how to simulate this traversal in O(log n) time on
a representation of the heavy path decomposition that uses only O(|S|) space
(note that we cannot afford to store the entire parse tree as its size is n which
can be exponentially larger than |S|). We do not go into the internals of their
representation but it is important to note that for each heavy path P encountered
during the traversal their structure computes the total size (number of leaves)
of all subtrees hanging with light edges from the left (respectively right) of P
between the entry point and exit point in P . This is achieved with a binary
search tree (called an interval biased search tree) that ensures that collecting
these values (as well as finding the entry and exit points) on all encountered
heavy paths telescopes to a total of O(log n) time (rather than O(log2 n)).

In order to extend their structure to support range minimum queries we
need only the following two changes: (1) in the interval biased search tree, apart
from storing for each node the number of leaves in its subtree, we also store the
location of the minimum value leaf. This means that apart from accumulating
subtree sizes we can also compare their minimums. (2) for each heavy path in
their representation we add a standard linear-space constant query-time RMQ
data structure [4] over the left (respectively right) hanging subtree minimums.
This RMQ structure will be queried only on the unique heavy path containing
the lowest common ancestor of the i’th and j’th leaves in the parse tree.

2.2 Compressing the Cartesian Tree

We next prove Theorem 2, i.e. how to support range minimum queries on S using
a compressed representation of the Cartesian tree [16]. Recall that the Cartesian
tree C of S is defined as follows: If the smallest character in S is S[i] (in case of a
tie we choose a leftmost position) then the root of C corresponds to S[i], its left
child is the Cartesian tree of S[1, i − 1] and its right child is the Cartesian tree
of S[i + 1, n]. By definition, the i’th character in S corresponds to the node in
C with inorder number i (we will refer to this node as node i). Observe that for
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Fig. 1. The string S = “23110122102313” and its corresponding (a) Cartesian tree,
(b) top-tree, and (c) DAG representation of the top-tree. In (a), each node is labeled
by its corresponding character in S (these labels are for illustration only, the top-tree
construction treats the Cartesian tree as an unlabeled tree). In (b) and (c), each node
is labeled by el or er (atomic edge clusters), v (a vertical merge), or h (a horizontal
merge). Four clusters are marked with matching colors in (a) and in (b). (Color figure
online)

any nodes i and j in C, the lowest common ancestor LCA(i, j) of these nodes in C
corresponds to RMQ(i, j) in S. This implies that without storing S explicitly, one
can answer range minimum queries on S by answering LCA queries on C. In this
section, we show how to support LCA queries on C on a top-tree compression [5]
T of C. The query time is O(depth(T )) which can be made O(log n) using the
(greedy) construction of Bille et al. [5] that gives depth(T ) = O(log n). We first
briefly restate the construction of Bille et al., and then extend it to support LCA
queries.

The top-tree of a tree T (in our case T will be the Cartesian tree C) is a
hierarchical decomposition of T into clusters. Let v be a node in T with children
v1, v2.1 Define T (v) to be the subtree of T rooted at v. Define F (v) to be the
forest T (v) without v. A cluster with top boundary node v can be either (1) T (v),
(2) {v} ∪ T (v1), or (3) {v} ∪ T (v2). For any node u �= v in a cluster with top
boundary node v, deleting from the cluster all descendants of u (not including
u itself) results in a cluster with top boundary node v and bottom boundary node
u. The top-tree is a binary tree defined as follows (see Fig. 1):

– The root of the top-tree is the cluster T itself.
– The leaves of the top-tree are (atomic) clusters corresponding to the edges of

T . An edge (v, parent(v)) of T is a cluster where parent(v) is the top boundary
node. If v is a leaf then there is no bottom boundary node, otherwise v is a
bottom boundary node. If v is the right child of parent(v) then we label the
(v, parent(v)) cluster as er and otherwise as e�.

1 Bille et al. considered trees with arbitrary degree, but since our tree T is a Cartesian
tree we can focus on binary trees.
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– Each internal node of the top-tree is a merged cluster of its two children. Two
edge disjoint clusters A and B whose nodes overlap on a single boundary
node can be merged if their union A ∪ B is also a cluster (i.e. contains at
most two boundary nodes). If A and B share their top boundary node then
the merge is called horizontal. If the top boundary node of A is the bottom
boundary node of B then the merge is called vertical and in the top-tree A
is the left child and B is the right child.

Bille et al. [5] proposed a greedy algorithm for constructing the top-tree:
Start with n identical clusters, one for each edge of T , and at each step merge
all possible clusters. More precisely, at each step, first do all possible horizontal
merges and then do all possible vertical merges. After constructing the top-
tree, the actual compression T is obtained by representing the top-tree as a
directed acyclic graph (DAG) using the algorithm of [9]. Namely, all nodes in
the top-tree that have a child with subtree X will point to the same subtree
X (see Fig. 1). Bille et al. [5] showed that using the above greedy algorithm,
one can construct T of size |T | that can be as small as log n (when the input
tree T is highly repetitive) and in the worst-case is at most O(n/ log0.19

σ n).
Dudek and Gawrychowski [10] have recently improved the worst-case bound to
O(n/ logσ n) by merging in the i’th step only clusters whose size is at most αi

for some constant α. Using either one of these merging algorithms to obtain the
top-tree and its DAG representation T , a data structure of size O(|T |) can then
be constructed to support various queries on T . In particular, given nodes i and
j in T (specified by their position in a preorder traversal of T ) Bille et al. showed
how to find the (preorder number of) node LCA(i, j) in O(log n) time. Therefore,
the only change required in order to adapt their data structure to our needs is
the representation of nodes by their inorder rather than preorder numbers.

The local preorder number uC of a node u in T and a cluster C in T is
the preorder number of u in a preorder traversal of the cluster C. To find the
preorder number of LCA(i, j) in O(log n) time, Bille et al. showed it suffices if
for any node u and any cluster C we can compute uC in constant time from uA

or uB (the local preorder numbers of u in the clusters A and B whose merge is
the cluster C) and vice versa. In Lemma 6 of [5] they show that indeed they can
compute this in constant time. The following lemma is a modification of that
lemma to work when uA, uB and uC are local inorder numbers.

Lemma 1 (Modified Lemma 6 of [5]). Let C be an internal node in T cor-
responding to the cluster obtained by merging clusters A and B. For any node u
in C, given uC we can tell in constant time if u is in A (and obtain uA) in B
(and obtain uB) or in both. Similarly, if u is in A or in B we can obtain uC in
constant time from uA or uB.

Proof. We show how to obtain uA or uB when uC is given. Obtaining uC from
uA or uB is done similarly. For each node C, we store a following information:

– �(A) (r(A)): the first (last) node visited in an inorder traversal of C that is
also a node in A.
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– �(B) (r(B)): the first (last) node visited in an inorder traversal of C that is
also a node in B.

– the number of nodes in A and in B.
– u′

C , where u′ is the common boundary node of A and B.

Consider the case where C is obtained by merging A and B vertically (when
the bottom boundary node of A is the top boundary node of B), and where B
includes vertices that are in the left subtree of this boundary node, the other
case is handled similarly:

– if uC < �(B) then u is a node in A and uA = uC .
– if �(B) ≤ uC ≤ r(B) then u is a node in B and uB = uC − �(B) + 1. For the

special case when uC = u′
C then u is also the bottom boundary node in A

and uA = �(B).
– if uc > r(B) then u is a node in A visited after visiting all the nodes in B

then uA = uC − |B| + 1.

When C is obtained by merging A and B horizontally (when A and B share
their top boundary node and A is to the left of B):

– if uC < r(A) then u is a node in A and uA = uC .
– if uC ≥ r(A) then u is a node in B and uB = uC − |A| + 1. For the special

case when uC = u′
C then u is also the top boundary node in A and uA = |A|.

3 Compressing the String vs. the Cartesian Tree

In this section we compare the sizes of the SLP compression S and the top-tree
compression T . We show that given any SLP S of height h we can construct a
top-tree compression T based on S (i.e. non-greedily) such that |T | = O(|S| · σ)
and the height of T is O(h log σ). Using T , we can then answer range minimum
queries on S in time O(h log σ) as done in Sect. 2.2. Furthermore, we can con-
struct T using Rytter’s SLP [14] as S. Then, the height of S is h = log n and the
size of S is larger than the optimal SLP by at most a multiplicative log n fac-
tor. Combined with Rytter’s SLP, and since every unlabeled tree has a top-tree
compression T of size O(n/ log n) and height log n [5], we obtain Theorem 3.

Consider a rule C → AB in the SLP. We will construct a top-tree (a hierarchy
of clusters) of C (i.e. of the Cartesian tree of the string derived by the SLP
variable C) assuming we have the top-trees of A and of B. We show that the
top-tree of C contains only O(σ) new clusters that are not clusters in the top-
trees of A and of B, and that the height of the top-tree is only O(log σ) larger
than the height of the top tree of A or the top tree of B. To achieve this, for any
variable A of the SLP, we will make sure that certain clusters (associated with
its rightmost and leftmost paths) must be present in its top-tree. See Fig. 2.

We first describe how the Cartesian tree CT (C) of the string derived by
variable C can be described in terms of the Cartesian trees CT (A) and CT (B).
We label each node in a Cartesian tree with its corresponding character in the
string. These labels are only used for the sake of this description, the actual
Cartesian tree is an unlabeled tree. By definition of the Cartesian tree, the
labels are monotonically non-decreasing as we traverse any root-to-leaf path.
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Fig. 2. The Cartesian tree of SLP variables A, B, C where C → AB. The single addi-
tional clusters of Cr

3 (in green) is formed by merging existing clusters from A (in blue)
and from B (in red). First, cluster CAB is formed by alternating subpaths of the left-
most path in CT (B) and the rightmost path in CT (A) (here, x = 3, y = 7, and z = 8).
Then, CAB is merged with Br

3 , v, and Ar
3. In this example, As = {Ar

i | i > 3} and
Bp = {B�

i | i > 3}. (Color figure online)

Let �(A) (respectively r(A)) denote the path in CT (A) starting from the root
and following left (respectively right) edges. Since we break ties by taking the
leftmost occurrence of the same character we have that the path �(A) is strictly
increasing (the path r(A) is just non-decreasing).

Let x be the label of the root of CT (B). To simplify the presentation we
assume that the label of the root of CT (A) is smaller or equal to x (the other
case is handled similarly). Split CT (A) by deleting the edge connecting the last
occurrence of x on r(A) with its right child (again, for simplicity of presentation
we assume without loss of generality that this node exists). The resulting two
subtrees are the Cartesian trees CT (Ap) and CT (As) of a prefix Ap and a
suffix of As of A whose concatenation is A. Split CT (B) by deleting the edge
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connecting the root to its left child. The resulting two subtrees are the Cartesian
trees CT (Bp) and CT (Bs) of a prefix and a suffix of B. The Cartesian tree
CT (C) of the concatenation C = AB is obtained as follows. Compute recursively
the Cartesian tree CT (AsBp) of the concatenation of As and Bp, and attach
CT (AsBp) as the left child of the rightmost leaf in CT (Ap). Then attach CT (Bs)
as the right child of the rightmost leaf in CT (Ap). See Fig. 2.

We move on to describing the clusters of the top-tree. For a node with label
i appearing in �(A) we define A�

i to be the subtree rooted at the node’s right
child. We do this for all nodes except for the first node of �(A) (i.e. the root of
CT (A)). Next consider the path r(A). For every label i there can be multiple
vertices with label i that are consecutive on r(A). We define Ar

i to be the union
of all vertices of r(A) that have label i together with the subtrees rooted at
their left children. Again, we treat the first node of r(A) (i.e. the root of CT (A))
differently: if its label is i then Ar

i does not include this vertex (the root) nor its
left subtree. See Fig. 2 (left).

We define the top-tree recursively by describing how to obtain the clusters
for the top-tree of the Cartesian tree CT (C) from the top-trees of CT (A) and
CT (B). For each variable (say A) of the SLP S of S, we require that in the
top-tree of S there is a cluster for every A�

i and every Ar
i . We will show how to

construct all the C�
i and Cr

i clusters of C by merging clusters of A and B while
introducing only O(σ) new clusters, and with O(log σ) increase in height. First
observe that for every i we have that C�

i = A�
i so we already have these clusters.

Next consider the clusters Cr
i . Let x denote the label of the root of CT (B). It

is easy to see that Cr
i = Ar

i for every i < x and that Cr
i = Br

i for every i > x.
Therefore, the only new cluster we need to create is Cr

x.
The cluster Cr

x is composed of the following components: First, it contains
the cluster Ar

x. Then, the root of CT (B) (denoted v, and whose label is x) is
connected as the right child of the bottom boundary node of Ar

x. The right child
of v in Cr

x is the top boundary node of Br
x and all of Br

x is contained in Cr
x.

The left child of v in Cr
x is the top boundary node of a single new cluster CAB

consisting of O(σ) existing clusters.
The cluster CAB consist of all clusters B�

i and the clusters Ar
i for i > x. More

precisely, let y denote the smallest number larger than x such that Ar
y appears

in r(A). Starting from top to bottom, CAB first contains a leftmost path that
is a prefix of �(B). More precisely, it is the prefix of �(B) containing all nodes
with labels i for x < i < y. For each such node, its right subtree is the cluster
B�

i . After this leftmost path CAB then continues with a rightmost path that is a
subpath of r(A) consisting of all nodes in r(A) with labels i for y ≤ i ≤ z. Here
z is the smallest number greater or equal to y such that B�

z appears in �(B). In
this way, CAB keeps alternating between subpaths of �(B) and of r(A) (along
with the subtrees hanging from these subpaths). Overall, CAB composes to O(σ)
clusters consisting of single edges, clusters Ar

i , and clusters B�
i . We merge these

clusters into the single cluster CAB by first doing a horizontal merge for every
B�

i with a single edge cluster and then greedily doing vertical merges for all O(σ)
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clusters of the path. This adds O(σ) new clusters and adds O(log σ) to the height
of the cluster’s hierarchy. Finally, we obtain Cr

x by merging CAB , Ar
x, and Br

x.
To conclude, once we have all clusters of the SLP’s start variable, we merge

them into a single cluster (i.e. obtain the top-tree of the entire Cartesian tree of
S) by greedily merging all its O(σ) clusters (introducing O(σ) new clusters and
increasing the height by O(log σ)) similarly to the above.

4 Conclusions

In this paper we have investigated compressed RMQ. We have shown that com-
pressing the Cartesian tree can be exponentially better than compressing the
string itself, and is never worse by more than an O(σ) factor. Improving this
O(σ) factor or finding a counter example that actually exhibits an Ω(σ) factor
remains an interesting open question.
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Abstract. The wavelet tree is a compact data structure that supports
various types of operations on a sequence of n integers in [0, σ). Although
Munro et al. (SPIRE 2014 and Theoretical Computer Science 2016) and
Babenko et al. (SODA 2015) showed that wavelet trees can be con-
structed in O(n�lg σ/

√
lg n�) time, there has been no empirical study

on their construction methods possibly due to its heavy use of precom-
puted tables, seemingly limiting its practicality. In this paper, we propose
practical variants of their methods. Instead of using huge precomputed
tables, we introduce new techniques based on broadword programming
and special CPU instructions available for modern processors. Experi-
ments on real-world texts demonstrated that our proposed methods were
up to 2.2 and 4.5 times as fast as the naive ones for the wavelet tree and
the wavelet matrix (a variant of wavelet trees), respectively, and up to
1.9 times as fast as a state of the art for the wavelet matrix.

1 Introduction

The wavelet tree is a compact data structure that efficiently answers to various
types of queries on a sequence of integers, including rank and select queries known
as important primitives for many compact data structures. After invented for
compressed text indexing [9], it has found a wide range of applications like space-
efficient representations of inverted indexes in information retrieval and grids of
points in computational geometry. Figure 1 shows an example of wavelet trees
over an alphabet [0, 16) = {0, . . . , 15}. For more details on wavelet trees, see,
e.g., an excellent survey [15] and textbook [16].

Given an input sequence S of n integers over [0, σ), it is easy to construct
its wavelet tree in O(n lg σ) time. Almost ten years after its invention, Munro
et al. [14] and Babenko et al. [1] independently improved this construction time
to O(n lg σ/

√
lg n) by exploiting the bit-level parallelism of the RAM of word

size w ≥ lg n (we assume σ ≤ n). More recently, Shun [20] improved the parallel
construction time of wavelet trees based on the idea of [1,14].

To our best knowledge, however, there is no empirical study on these meth-
ods. There is thus a gap between the theory and practice of wavelet tree con-
struction. This gap is possibly because the idea of [1,14] requires precomputed
tables of O(2bbτ) bits of space for some integers 1 ≤ b ≤ w and 1 ≤ τ ≤ lg σ.

c© Springer Nature Switzerland AG 2018
T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 218–232, 2018.
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Although b = 1
2 lg n and τ =

√
lg n are chosen in theory to minimize the total

construction time within o(n) space, they can be chosen independently of the
input size n in practice. Assume that, for example, b = w = 64 (i.e., bits in a
word) and τ = 8 (i.e., bits in a byte) that are appropriate for modern CPUs.
This combination of b and τ , however, requires precomputed tables of more than
264 · · · 23 words, apparently limiting the practicability.

[8,16)[0,8)

[2,4)

[10,12) [12,16)

[14,16)[12,14)[0,2) [4,6) [6,8) [8,10) [10,12)

[0,8)[0,4)

[0,16)

6 4 1 0 5 7 2 3
1 1 0 0 1 1 0 0

8 9 14 11 12 13 15 10
0 0 1 0 1 1 1 0

1 0 2 3
0 0 1 1

6 4 5 7
1 0 0 1

8 9 11 10
0 0 1 1

14 12 13 15
1 0 0 1

1 0
1 0

2 3
0 1

4 5
0 1

6 7
0 1

8 9
0 1

11 10
1 0

12 13
0 1

14 15
0 1

756 31218 9 4 14 11 15 2 3 0101
0 0 01 1 11 0 1 1 1 0 00 0 1

Fig. 1. An example wavelet tree on an input sequence S = 6 8 9 4 14 11 1 0 5 7 12 13
15 2 3 10 or, in binary form, S = 01102 10002 10012 01002 11102 10112 00012 00002

01012 01112 11002 11012 11112 00102 00112 10102 of 4-bit integers over an alphabet
[0, 16). The binary and decimal numbers in the box represent the bit vector and the
input integers for each node, respectively. The corresponding interval to each node is
attached to the bottom right of the box.

Our Contribution. In this paper, we propose practical variants of fast the-
oretical wavelet tree construction by Munro et al. [14] and Babenko et al. [1].
The key of our variants is efficient implementations of packed lists of integers
that exploit special CPU instructions, called Packed Shuffle Bytes (pshufb) and
Parallel Bits Extract (pext), in addition to so-called broadword programming
techniques. Experiments on real-world texts demonstrated that our proposed
methods were up to 2.2 times as fast as a naive one for levelwise wavelet trees (a
variant of wavelet trees), and that ours were up to 4.5 and 1.9 as fast as the
naive and state of the art [5], respectively, for wavelet matrices (another variant
of wavelet trees). Note that unlike the recent literature on the parallel con-
struction of wavelet trees [5,6,12,19,20], we study the sequential construction.
Although our techniques can be applied to the standard wavelet tree, our exper-
iments focus on two variants of wavelet trees: the levelwise wavelet tree [2] and
the wavelet matrix [3].

In this paper, we are not concerned with o(n)-time construction of rank and
select indexes on bit vectors of length n. although Munro et al. [14] and Babenko
et al. [1] have improved the construction time of the indexes as well. This is
because (1) as Shun [19] pointed out, there are various choices of rank and select
indexes in practice, (2) query time and index space are the main concern of rank
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and select indexes, and (3) practical variants of o(n)-time construction of rank
and select indexes are already implemented in sdsl [7], a library of succinct data
structures, or easily derived from its current code1.

Related Work. Despite extensive studies on the wavelet tree and its applica-
tions, there had been no theoretical work focusing on its efficient sequential con-
struction, except for a few papers [4,21] on how to reduce its construction space.
Recently, Munro et al. [14] and Babenko et al. [1] proved that wavelet trees can be
constructed in O(n�lg σ/

√
lg n�) time on the standard word RAM. In contrast,

its efficient parallel construction has attracted much attention both in theory
and practice. The first practical parallel wavelet tree construction was presented
by Fuentes-Sepúlveda et al. [6], and subsequently improved by Shun [19], Labeit
et al. [12], and again Shun [20]. Very recently, Fischer et al. [5] have proposed
bottom-up approaches to both sequential and parallel wavelet tree construction.
The authors of [5] reported that their sequential methods were faster than the
previous state of the art [19] using less space.

2 Preliminaries

We assume the standard RAM of w-bit words with w ≥ lg n as our model of
computation: basic bitwise and arithmetic operations on O(1) w-bit integers can
be executed in constant time. Throughout this paper, we follow the notations
for bitwise operations used by Knuth in [11]: bitwise and x & y, bitwise or x | y,
bitwise xor x ⊕ y, bitwise not x, and bitwise shift x � k and x 	 k for any
integers x, y, and k in [0, 2w).

Let Σ = [0, σ) be a set of integers, called the alphabet, and S be a sequence
of n integers in Σ. For such S, we denote by S[i] its i-th element and by |S|
its length n. Let x be any integer in [0, 2w). We denote by |x|0 (resp. |x|1) the
number of 0’s (resp. 1’s) in the binary representation of x, and by (xw−1 · · · x0)2
the binary representation of x with x =

∑w−1
i=0 xi2i. When there is no confusion,

we omit the parentheses. Finally, we define bit(x, i) as the i-th least significant
bit in x for 0 ≤ i < w, rank1(x, i) as the number of 1’s up to position i in x for
0 ≤ i < w, select1(x, i) as the position of the i-th 1 in x for 1 ≤ i ≤ |x|1, and
select0(x, i) as the position of the i-th 0 in x for 1 ≤ i ≤ |x|0.

2.1 Wavelet Trees

We assume that σ ≤ n. Given S of length n over Σ as input, its wavelet tree
is a perfect binary tree of σ − 1 nodes, each of which covers an interval in
1 For a practical variant of o(n)-time construction of rank indexes, see the class
sdsl::rank support v5 that supports rank queries in constant time using 0.0625n
additional bits and note that sdsl builds it word by word. To our best of knowledge,
there exists no practical variant of o(n)-time construction of select indexes. However,
the combined sampling technique [17] of reusing sampled answers to rank in addition
to those of select can be implemented in o(n) time using sdsl::rank support v5

because sampling answers to select takes o(w) time per word by using an efficient
implementation of select in a w-bit word developed in [8,18,22].
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[0, σ) and stores a bit vector, recursively defined as follows. The root covers the
alphabet [0, σ) and stores a bit vector that sets its i-th bit to 0 if S[i] belongs
to Σ0 = [0, σ/2) and to 1 if S[i] belongs to Σ1 = [σ/2, σ). Let S0 (resp. S1)
be the subsequence of S that consists of integers in Σ0 (resp. Σ1). Then, the
left (resp. right) child of the root is the wavelet tree of S0 (resp. S1) over Σ0

(resp. Σ1). For each node v in the wavelet tree, we denote by Bv its bit vector,
by Sv its subsequence, by Σv its corresponding interval of the alphabet.

For convenience, we assume that each edge to the left (resp. right) child is
labeled by 0 (resp. 1). For node v in the wavelet tree, we define the label of v to
be the concatenation of the label on the path from the root to v and the depth
of v to be the length of the label. In general, every bit vector is augmented by
auxiliary data structures for supporting rank and select queries on it in constant
time. Overall, the wavelet tree uses n�lg σ� + o(n lg σ) + O(σ lg n) bits of space.

The Levelwise Wavelet Tree. The levelwise wavelet tree [2] is a variant of
wavelet trees that eliminates the pointers in the standard wavelet trees, saving
O(σ lg n) bits of space. A levelwise wavelet tree consists of �lg σ� bit vectors of
length n, each of which is the concatenation of the bit vectors of all the nodes
of the same depth from left to right. For any integer 0 ≤ � < �lg σ�, we denote
by B� the bit vector of level � obtained from the nodes of depth �. It is known
that levelwise wavelet trees can simulate the traversal of pointers with rank
and select queries on the concatenated bit vectors, thus preserving most of the
functionality of the standard wavelet trees. At the left side of Fig. 2, we show an
example levelwise wavelet tree of the same sequence S as Fig. 1.

Fig. 2. The levelwise wavelet tree (left) and packed lists (right) of an example sequence
over σ = [0, 16). The decimal numbers represent the subsequence S� for each level
� ∈ [0, 4). The vertical lines represent the boundaries of the nodes. At the left side, the
bit sequences represent B� for level � ∈ [0, 4). At the right side, each binary number
represents its above number in binary form, where the binary numbers surrounded by
solid lines are those of big nodes, the binary numbers in bold are actually stored in
packed lists, and the bits that compose B� are underlined in case of τ = 2.

The Wavelet Matrix. The wavelet matrix [3] is another variant of wavelet trees
that discards the tree structure of the (levelwise) wavelet tree. A wavelet matrix
consists of �lg σ� bit vectors of length n and an array of size �lg σ� for storing how
many 0’s exist in each bit vector. The difference between the (levelwise) wavelet
tree and wavelet matrix of the same input sequence S is how to shuffle S at each
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level: the levelwise wavelet tree shuffles S according to the prefix of each input
integer S[i], while the wavelet matrix shuffles S according to the reversed prefix
of S[i]. At the left side of Fig. 3, we show an example wavelet matrix of the same
sequence S as Fig. 1.

Fig. 3. The wavelet matrix (left) and packed lists (right) of an example sequence over
σ = [0, 16). The decimal numbers represent the subsequence S� for each level � ∈ [0, 4).
The vertical lines represent the boundaries of the intervals. At the left side, the bit
sequences represent the B� for each level � ∈ [0, 4). At the right side, each binary number
represents its above number in binary form, where the binary numbers surrounded by
solid lines are those of big nodes, the binary numbers in bold are actually stored in
packed lists, and the bits that compose B� are underlined in case of τ = 2.

3 Proposed Wavelet Tree Construction

We show our proposed methods for wavelet tree and matrix construction. Our
methods combine the idea of Munro et al. [14] and Babenko et al. [1] with
practical implementations of core operations, called bit packing and list splitting.
First, we describe their construction method. Then, we introduce two special
CPU instructions used later in this section. Finally, we present our techniques
for efficient implementation of bit packing and list splitting.

3.1 Two-Phase Wavelet Tree Construction

We describe the O(n�lg σ/
√

lg n�)-time construction of wavelet trees proposed by
Munro et al. [14] and Babenko et al. [1]. In this section, we refer to their method
as the two-phase construction of wavelet trees since it conceptually consists of
two phases. Although we assume the standard wavelet tree, it can be also applied
to the levelwise wavelet tree and the wavelet matrix.

Let τ be an integer in [0, �lg σ�). For some integer α with 0 ≤ ατ < �lg σ�, we
call a node v of depth ατ a big node. For simplicity, we assume lg σ and lg σ/τ
to be integers. The two-phase construction is based on two observations:

1. For every big node u of depth ατ , we can build the subsequences of all its big
descendants of depth (α + 1)τ from Su.

2. For nodes v whose deepest big ancestor is u, we can build their bit vectors
Bv from relevant τ bits of each Su[i].
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According to these observations, the two-phase construction of wavelet trees
builds the subsequences of all big nodes at its first phase, and it builds the bit
vectors of all nodes at its second phase.

Before describing each phase in detail, we introduce the key data structure,
called packed lists, used for the second phase of the two-phase construction. For
each node v of depth ατ + t (0 ≤ t < τ), the two-phase construction stores
the concatenation of the τ relevant bits in each Sv[i], starting at the ατ -th
most significant bit, into �|Sv|τ/w� words. For some integer b ≤ w, such a
representation enables us to process 
b/τ� τ -bit integers at one time. We call
this representation the packed list of v and denote by Xv. For simplicity, we
assume τ divides b and w and thus each b-bit block can hold exactly N = b/τ
τ -bit integers. Then, we define two core operations on packed lists as follows:

Definition 1 (Bit packing operation). Let x be any packed list of N τ -bit
integer with N = b/τ , and t be an integer in [0, τ). The bit packing operation
pack(x, t) is defined as follows:

pack(x, t):
return a b-bit integer z such that bit(z, i) = bit(x[i], t) for 0 ≤ i < N
and bit(z, i) = 0 for N ≤ i < b.

Definition 2 (List splitting operation). Let x be any packed list of N τ -bit
integer with N = b/τ , and t be an integer in [0, τ). The list splitting operation
split(x, t) is defined as follows:

split(x, t):
return a pair (z0, z1) of b-bit integers both interpreted as packed lists
such that zc[i] = x[selectc(r, i + 1)] for 0 ≤ i < |r|c and zc[i] = 0 for
|r|c ≤ i < N , where c ∈ {0, 1} and r = pack(x, t).

In what follows, we explain each phase in more detail.
At the first phase, for every big node v, we build its subsequence Sv recur-

sively as follows. The root is a big node of depth 0 and its subsequence is the
input sequence S itself. Suppose that for a big node u of depth ατ , its subse-
quence Su is already built. Then, all the subsequences of its big descendants of
depth (α+1)τ can be built in O(|Su|) time in total by scanning through Su and
appending each Su[i] to an appropriate subsequence Sv if Su[i] belongs to Σv.
This phase takes O(n lg σ/τ) time in total because the total length of all the
subsequences of depth ατ is always n and α ranges in [0, lg σ/τ).

At the second phase, for every node v, we build its bit vector Bv recursively
as follows. Suppose that for a node v of depth ατ + t (0 ≤ t < τ), its packed
list Xv is already built. Then, we build three components by scanning through
Xv: the bit vector Bv of v, the packed list Xv0 of the left child v0 of v, and the
packed list Xv1 of the right child v1 of v. The bit vector Bv can be built by
iteratively reading the next b bits x (i.e., the next N = b/τ τ -bit integers) from
Xv to process and appending pack(x, t) to Bv. The packed list Xv0 and Xv1 can
be built by iteratively reading the next b bits x from Xv and splitting x into z0
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and z1 by executing (z0, z1) ← split(x, t). By precomputing universal tables of
O(2bbτ) bits, the three components can be built in O(|Su|τ/b) time. Finally, we
recursively build Bv0 (resp. Bv1) from Xv0 (resp. Xv1) of v0 (resp. v1) of depth
ατ + t+1. We can start this process with its deepest big ancestor u of depth ατ
because its subsequence Su is already built at the first phase. This phase takes
O(n lg στ/b + σ) = O(n lg στ/b) time for σ ≤ n because the total length of the
lists is O(n lg σ).

The total time can be minimized by setting τ =
√

lg n, and it become
O(n�lg σ/

√
lg n�). Figures 2 and 3 show the packed lists of the levelwise wavelet

tree and the wavelet matrix, respectively, of the same input sequence as Fig. 1
for τ = 2, where each bit in bold is stored in packed lists. For example, the
packed list of level 0 is (012, 102, 102, 012, 112, 102, 002, 002, 012, 012, 112, 112, 112,
002, 002, 102) in both the levelwise wavelet tree and the wavelet matrix.

The main practical disadvantage of their approach, however, is that they
cannot fully exploit the bit-level parallelism of the RAM if w is much greater
than lg n due to the universal tables. Later in this section, we introduce alter-
native approaches to both the bit packing and list splitting based on broadword
computation and advanced CPU instructions. In what follows, we assume that
b = w and thus N = b/τ = w/τ .

3.2 CPU Instructions for Efficient Bit and Byte Manipulation

For fast wavelet tree and matrix construction, we introduce two advanced CPU
instructions pshufb and pext, called Packed Shuffle Bytes and Parallel Bits
Extract, respectively. Later in this section, we present practical implementations
of bit packing and list splitting based on pshufb and pext. Also in Sect. 4, we
empirically demonstrate that both pshufb and pext are effective in practice.

The packed shuffle bytes instruction, pshufb, is an advanced CPU instruction
for reordering bytes efficiently. It receives two 64-bit integers x and y as input: x
is a packed list of bytes to be shuffled; y is another packed list of bytes to specify
how to shuffle x. Formally, pshufb is defined as follows.

Definition 3 (Packed Shuffle Bytes). Given two integers x and y interpreted
as packed lists x = (x[0], . . . , x[7]) and y = (x[0], . . . , x[7]) of 8 bytes, packed
shuffle bytes pshufb(x, y) is defined as follows for i in [0, 8):

pshufb(x, y)[i] =

{
x[y[i]] mod 23 if y[i] < 27

0 otherwise.

The parallel bits extract, pext, is an advanced CPU instruction for packing
bits efficiently. It is included in advanced CPU instruction sets tailored for bit
manipulation, called Bit Manipulation Instruction Sets 2 (BMI2). It receives two
64-bit integers x and y as input: x is a bit vector to be packed; y is another bit
vector to specify which bits in x are packed. Formally, pext is defined as follows.
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Definition 4 (Parallel Bits Extract). Given two 64-bit integers x and y
viewed as bit vectors, parallel bits extract pext(x, y) is defined as follows for i in
[0, 64):

bit(pext(x, y), i) =

{
bit(x, select1(y, i + 1)) for 0 ≤ i < |y|1
0 for |y|1 ≤ i < 64.

Compact data structures heavily use bit manipulation, and thus it is often
effective in practice to use the so-called broadword programming [11] and/or
advanced CPU instructions beyond basic bitwise and arithmetic ones, both of
which can process multiple chunks of bits in parallel. Vigna [22] initiated a line
of research of speeding up compact data structures by broadword programming
or SWAR (SIMD Within A Register) techniques for aiming to exploit 64-bit (or
longer) registers of modern processors. Gog and Petri [8] studied the effect of
SSE instructions in their practical implementation of compact data structures.
More recently, Pandey [18] introduced the parallel bits deposit instruction in
BMI2 for fast select queries. The most famous example is popcnt (introduced
in SSE4.2) that counts 1’s in one register, which can speed up rank and select
queries on bit vectors [8,23]. In what follows, we show how to use pshufb and
pext for the two-phase construction of wavelet trees and matrices.

3.3 Practical Techniques for Bit Packing

For bit packing pack(x, t), we introduce two techniques: our first technique is
based on broadword computation; our second technique is based on the parallel
bits extract instruction pext. Let N = �w/τ� be the number of τ -bit integers per
w-bit word, and x be a packed list of N packed τ -bit integers. For simplicity, we
assume that τ divides w and thus N = w/τ .

Let L = (20, . . . , 20) = (1, . . . , 1) be a packed list of τ -bit integers with
only the least significant bit set. We use an auxiliary function on packed lists:
check1(x, t), whose i-th τ -bit integer becomes 1 if bit(x[i], t) = 1 and 0 otherwise.
This can be implemented in constant time and space by check1(x, t) = (x 	
t) & L.

Broadword Programming. Our first (folklore) technique for pack(x, t) is
based on the so-called broadword programming [11,22]. This assumes τ ≥ N =
w/τ and thus τ ≥ √

w. Then, pack(x, t) can be implemented as follows:

pack(x, t) = (check1(x, t) × B) 	 (w − N).

First, we extract bit(x[i], t) for i in [0, N) by check1(x, t). Then, we multiply
check1(x, t) with a precomputed bit vector B with bit(B, i) = 1 iff i ∈ {w −
N − (τ − 1)k | 0 ≤ k < N}. This multiplication virtually makes N copies of
check1(x, t), shifts the k-th copy to the left by w − N − (τ − 1)k for k ∈ [0, N),
and takes the bitwise or of all the shifted copies simultaneously. For example,
bit(B, i) = 1 holds for i ∈ {0, 7, 14, 21, 28, 35, 42, 49, 56} in case of w = 64 and τ =
8. Finally, we shift the N most significant bits to be the N least significant ones.
This techniques implements pack(x, t) in constant time and space (in words).
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Parallel Bits Extract. Our second technique for pack(x, t) uses parallel bits
extract pext, introduced in Sect. 3.2. With pext and L = (1, . . . , 1), pack(x, t)
can be implemented as follows:

pack(x, t) = pext(x,L � t).

This is much simpler than the folklore technique based on broadword program-
ming without any assumption on τ . This technique implements pack(x, t) in
constant space (in words).

3.4 Practical Techniques for List Splitting

For list splitting split(x, t), we propose four practical techniques: our first and
second techniques are both based on the idea of monotone routing [13], our third
technique is based on packed shuffle bytes pshufb, and our fourth technique is
based on parallel bits extract pext.

Let H = (2τ−1, . . . , 2τ−1) be a packed list of N τ -bit integers with only the
most significant bit set. In addition to check1(x, t), we use two auxiliary functions
on packed lists: check0(x, t), whose i-th element becomes 1 if bit(x[i], t) = 0 and
0 otherwise; fill(x), whose i-th element is filled with 1’s if bit(x[i], 0) = 1 and
filled with 0’s otherwise. These can be also implemented in constant time and
space by check0(x, t) = ((x 	 t) & L) ⊕ L and fill(x) = (H − (x & L)) ⊕ H.

Dynamic Monotone Routing. Our first technique for list splitting split(x, t)
dynamically determines how to move τ -bit integers based on the idea of mono-
tone routing [13]. We call this technique dynamic monotone routing. We assume
that τ ≥ 1 + 
lg N� such that any integer in [0, N) can be held in τ bits. Then,
split(x, t) can be implemented as follows. We describe how to build z1. In a similar
way, z0 can be built. First, we check if bit(x[i], t) = 1 by r ← check1(x, t). Then,
we build another packed list d such that each d[i] holds the distance between the
position in x and that in z1, i.e., d[i] = i− rank1(r, i−1). To obtain d, we execute
P −((r×L) 	 τ), where P is a precomputed packed list with P [i] = i. Now that
we obtain d, we can move all x[i] with bit(x[i], t) = 1 at O(lg N) steps, where
each x[i] with d[i] mod 2k = 1 is shifted by 2k at step k, based on the idea of
monotone routing. Algorithm1 shows the whole procedure. As a consequence,
we obtain the following lemma:

Lemma 5. For 1 + 
lg(w/τ)� ≤ τ ≤ w, list splitting on n packed τ -bit integers
can be implemented in O((nτ/w) lg(w/τ)) time using O(1) w-bit masks.

Static Monotone Routing. Our second technique for list splitting split(x, t)
uses precomputed tables to speed up dynamic monotone routing. We call this
technique static monotone routing. This technique assumes that each τ -bit inte-
ger can hold the distance between its source and destination, i.e., τ ≥ 1+
lg w/τ�
holds. Notice that in Algorithm 1, bit mask m in the k-th loop can be determined
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Algorithm 1. Our implementation of list splitting split(x, t) based on dynamic
monotone routing for x in [0, 2w) and t in [0, τ). Here, L, H, and P are pre-
computed packed lists of τ -bit integers such that L[i] = (0 · · · 01)2, H[i] =
(10 · · · 0)2, and P [i] = i, respectively, for i in [0, N). As auxiliary operations,
we use check1(x, t) = (x 	 t) & L, check0(x, t) = ((x 	 t) & L) ⊕ L, and
fill(x) = (H − (x & L)) ⊕ H.
1: z0 ← 0; z1 ← 0;
2: for i ← {0, 1} do
3: r ← checki(x, t);
4: m ← fill(r);
5: d ← P − ((r × L) � τ);
6: zi ← x & m;
7: for k ← 0, . . . , �lg w/τ	 do
8: m ← fill((d � k) & L);
9: zi ← (zi & m) | ((zi & m) � (τ 
 k)));

10: d ← (d & m) | ((d & m) � (τ 
 k)));

11: return (z0, z1);

by k and bit(x[i], t) stored in r. Because there exist 2N possible values for r, it
is sufficient to precompute a table of 2N w-bit masks for each k. With w = 64,
τ = 8, and thus N = 8, such precomputed tables require only 3 · 28 · 8 ≈ 6k
bytes. As a consequence, we obtain the following lemma:

Lemma 6. For τ ≥ 1+ 
lg w/τ�, list splitting on n packed τ -bit integers can be
implemented in O(�nτ/w� lg(w/τ)) time using O(2w/τ lg(w/τ)) w-bit masks.

Packed Shuffle Bytes. Our third technique for list splitting split(x, t) uses
packed shuffle bytes pshufb. This technique assumes w = 64, τ = 8, and thus N =
w/τ = 8 due to the specification of pshufb. The main difficulty is how to com-
pute an appropriate bit mask y for packing x as desired. Assume that we want
to compute z1 as z1 = pshufb(x, y1) with an appropriate bit mask y1. To obtain
such y1 efficiently, we precompute a universal table using O(2N ) words, associ-
ating 2N possible values of N -bit integers r ← pack(check1(x, t), 0) with their
corresponding packed lists yr that hold integers in [0, 8)∪{27}. The correspond-
ing packed list yr is defined to be (select1(r, 1), . . . , select1(r, |r|1), 27, . . . , 27). By
reusing the same table with the N least significant bits of the complement r of
r, we can compute z0 as well. This technique implements split(x, t) in constant
time using O(2N ) = O(2w/τ ) space (in words).

Parallel Bits Extract. Our fourth technique for split(x, t) uses parallel
bits extract pext. This technique just assumes w = 64. With pext, split(x, t)
can be implemented as follows. First, we execute r0 ← check0(x, t) and
r1 ← check1(x, t), such that r0[i] (resp. r1[i]) becomes 1 if bit(x[i], t) = 0
(resp. bit(x[i], t) = 1) and 0 otherwise for i ∈ [0, N). Then, we build bit masks
y0 and y1 used with pext by y0 ← fill(r0) and y1 ← fill(r1). Note that each y0[i]
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(resp. y1[i]) is filled with τ 1’s if bit(x[i], t) = 0 (resp. bit(x[i], t) = 1) and filled
with τ 0’s otherwise. Finally, we build z0 and z1 as output by z0 ← pext(x, y0)
and z1 ← pext(x, y1). This technique implements split(x, t) in constant time and
space (in words).

4 Experiments

We empirically compare our four methods based on dynamic monotone routing
(route-d), static monotone routing (route-s), packed shuffle bytes (pshufb), and
parallel bits extract (pext), with three existing ones: a naive method (naive), the
bottom-up method based on prefix counting [5] (pc), and the bottom-up method
based on prefix sorting [5] (ps).

As our datasets, we used 15 real-world text collections from the Pizza and
Chilli Corpus2 and Lightweight Corpus3. The data sizes n and alphabet sizes
σ of our datasets are shown in Table 1 (and Table 2). All our experiments were
conducted on a machine with Intel Core i7-4790 processors (3.60 GHz and 8
MB cache) and 16 GB main memory running Ubuntu 18.04. All our code was
implemented in C++ and integrated into an existing library4 that included
naive, pc, and ps implemented and used by the authors of [5]. Then, all our and
their code was compiled by g++8 with -O3 and -march=native flags. All our
methods were configured with w = 64 and τ = 8, and used the parallel bit
extract technique for bit packing because all of them except for route-d5 showed
slightly better performances with the technique on most of our datasets.

Implementation Notes. We explain some details of our implementations. To
store the packed lists of the current and next levels, we allocated two buffers of
�nτ/w� = �n/8� words. To maintain the boundaries of the node or intervals of
the current and next levels, we kept two arrays of σ words for the wavelet tree and
of just 2 words for the wavelet matrix. To avoid multiple scans over the packed
list of each level, we determined the boundaries of the next level while computing
the bit vector and packed list of the current level. The packed shuffle bytes and
parallel bits extract instructions were used via intrinsics mm shuffle pi8 and
pext u64, respectively [10].

Time for Wavelet Tree Construction. We show experimental results for
wavelet trees in Table 1. First, we compare our methods to the baseline naive. For
wavelet tree construction, all our methods outperformed naive on any dataset. As
expected, our pext and pshufb outperformed our route-d and route-s by exploiting
CPU instructions tailored for complex bit and byte manipulation. In particular,
both of our pshufb and pext were 1.9 times as fast as naive on average. Notably,
they were much faster than naive on our largest dataset english. Note that even

2 http://pizzachili.dcc.uchile.cl/.
3 http://people.unipmn.it/manzini/lightweight/corpus/.
4 https://github.com/kurpicz/pwm.
5 route-d showed better performances in combination with bit packing based on

multiplication for wavelet matrix construction.

http://pizzachili.dcc.uchile.cl/
http://people.unipmn.it/manzini/lightweight/corpus/
https://github.com/kurpicz/pwm
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Table 1. Elapsed times (in seconds) for constructing wavelet trees without rank and
select indexes, as in [5]. For each combination of datasets and methods, the median of
five trials is reported. The best construction time on each dataset is underlined.

Text n σ naive pc [5] ps [5] route-d route-s pshufb pext

dblp.xml 2.96 · 108 97 5.57 2.99 3.03 4.33 3.65 3.09 03.04

dna 4.04 · 108 16 4.43 2.42 2.72 2.47 2.29 2.07 2.05

english 2.21 · 109 238 53.0 27.2 28.8 32.1 27.9 23.7 23.5

pitches 5.58 · 107 132 1.25 0.685 0.812 0.741 0.659 0.576 0.570

proteins 1.18 · 109 27 16.1 8.29 8.67 12.8 10.9 9.27 9.12

sources 2.11 · 108 229 4.94 2.54 2.61 3.21 3.09 2.37 2.55

chr22.dna 3.46 · 107 5 0.233 0.143 0.188 0.190 0.173 0.157 0.156

etext99 1.05 · 108 145 2.32 1.31 1.62 1.57 1.35 1.16 1.14

gcc-3.0.tar 8.66 · 107 149 1.91 1.32 1.12 1.467 1.105 0.949 0.935

howto 3.94 · 107 196 0.832 0.478 0.496 0.592 0.512 0.438 0.432

jdk13c 6.97 · 107 113 1.30 0.708 0.789 1.03 0.877 0.829 0.755

linux-2.4.5.tar 1.16 · 108 255 2.76 1.41 1.45 2.24 1.95 1.30 1.51

rctail96 1.15 · 108 93 2.25 1.18 1.20 1.66 1.40 1.19 1.17

rfc 1.16 · 108 120 2.28 1.25 1.27 1.62 1.42 1.20 1.19

sprot34.dat 1.10 · 108 66 2.12 1.14 1.36 1.54 1.70 1.13 1.13

w3c2 1.04 · 108 255 2.30 1.30 1.28 1.66 1.41 1.30 1.18

our route-d, which requires many bitwise and arithmetic instructions, was 1.4
times as fast as naive on average. Next, we compare our methods with pc since
it outperformed ps except for four datasets (jdk13c, rctail96, rfc, and w3c2).
Although our pshufb and pext were 1.4 times as fast as pc on gcc-3.0.tar, no clear
winner existed on other datasets. In fact, on average our pext and pshufb were
just 1.1 times as fast as pc, and ours became slightly slower than pc on some
datasets. Overall, our experiments for wavelet tree construction demonstrated
that our practical variants of the two-phase construction by [14] and [1] ran well
on real-world datasets, although our improvement depended on datasets.

Time for Wavelet Matrix Construction. We show experimental results
for wavelet matrices in Table 2. Our improvement for wavelet matrices is more
notable than that for wavelet trees. First, as in the case of wavelet trees, all our
methods outperformed naive on any dataset. On average, our pshufb and pext
improved naive by factors of 3.0–4.6 and 2.5–4.5, respectively. Unlike the case of
wavelet trees, our pshufb and pext always outperformed pc by factors of 1.1–1.9.
This difference between wavelet trees and matrices can be explained by the fact
that our implementation for wavelet trees tends to require more instructions
than that for wavelet matrices to treat the boundaries of intervals in bit vectors.

Space for Wavelet Tree and Matrix Construction. On our datasets with
σ � n, pc was the most space-efficient method for both wavelet tree and matrix
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Table 2. Elapsed times (in seconds) for constructing wavelet matrices without rank
and select indexes, as in [5]. For each combination of datasets and methods, the median
of five trials is reported. The best construction time on each dataset is underlined.

Text n σ naive pc [5] ps [5] route-d route-s pshufb pext

dblp.xml 2.96 · 108 97 6.20 3.00 3.01 3.65 2.74 2.02 2.05

dna 4.04 · 108 16 5.88 2.43 2.70 1.81 1.53 1.29 1.30

english 2.21 · 109 238 57.0 27.2 28.5 26.7 20.6 15.8 15.9

pitches 5.58 · 107 132 1.37 0.684 0.709 0.595 0.495 0.429 0.547

proteins 1.18 · 109 27 22.4 8.29 8.41 11.1 8.44 6.36 6.43

sources 2.11 · 108 229 5.81 2.54 2.95 2.69 2.28 1.57 1.59

chr22.dna 3.46 · 107 5 0.385 0.143 0.164 0.132 0.110 0.130 0.092

etext99 1.05 · 108 145 3.01 1.27 1.34 1.30 1.00 0.803 0.771

gcc-3.0.tar 8.66 · 107 149 2.18 1.05 1.29 1.13 0.828 0.633 0.639

howto 3.94 · 107 196 1.011 0.478 0.494 0.495 0.384 0.295 0.298

jdk13c 6.97 · 107 113 1.57 0.708 0.705 1.17 0.665 0.500 0.506

linux-2.4.5.tar 1.16 · 108 255 3.14 1.41 1.64 1.46 1.14 0.872 1.11

rctail96 1.15 · 108 93 2.37 1.22 1.19 1.39 1.27 0.779 0.792

rfc 1.16 · 108 120 2.65 1.30 1.28 1.34 1.05 0.791 0.811

sprot34.dat 1.10 · 108 66 2.81 1.14 1.38 1.27 0.982 0.905 0.855

w3c2 1.04 · 108 255 2.63 1.54 1.27 1.73 1.07 0.80 0.81

construction, and our methods needed about twice the space of pc because ours
kept 2�nτ/w� = 2�n/8� words of packed lists. The bottom-up methods pc and
ps aggressively exploit an assumption that σ ≤ n. However, such an assumption
does not hold in some applications in numerical and geometrical data analysis [3].
We leave as future work investigating the space on other datasets with σ ≥ n.

5 Conclusion

In this paper, we introduced new techniques for fast wavelet tree and matrix con-
struction, making theoretical work by [14] and [1] feasible in practice. Our experi-
mental results demonstrated that our methods based on special CPU instructions
pshufb and pext were attractive choices in practice especially for wavelet matrix
construction. Important future work includes conducting more comprehensive
experiments and presenting an experimental map to choose the best method for
given datasets and resource. It is an interesting challenge to extend our technique
by using SSE/AVX instructions on 128-bit or 256-bit registers and/or by com-
bining them with recent improved parallel wavelet tree and matrix construction
by Shun [20].

Acknowledgments. I would like to thank the authors of [5] for making their code
public, the anonymous reviewers for their helpful comments that greatly improved the
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6. Fuentes-Sepúlveda, J., Elejalde, E., Ferres, L., Seco, D.: Parallel construction of
wavelet trees on multicore architectures. Knowl. Inf. Syst. 51(3), 1043–1066 (2017)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

8. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Softw.
Pract. Exp. 44(11), 1287–1314 (2014)

9. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), pp. 841–850 (2003)

10. Intel: Intel intrinsics guide. https://software.intel.com/sites/landingpage/Intrinsics
Guide/

11. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional,
Boston (2009)

12. Labeit, J., Shun, J., Blelloch, G.E.: Parallel lightweight wavelet tree, suffix array
and fm-index construction. J. Discret. Algorithms 43, 2–17 (2017)

13. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Array,
Trees, Hypercubes. Morgan Kaufmann, Burlington (1992)

14. Munro, J.I., Nekrich, Y., Vitter, J.S.: Fast construction of wavelet trees. Theor.
Comput. Sci. 638(C), 91–97 (2016)

15. Navarro, G.: Wavelet trees for all. J. Discret. Algorithms 25, 2–20 (2014)
16. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge Uni-

versity Press, Cambridge (2016)
17. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,

R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30850-5 26

https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1007/978-3-642-24583-1_19
https://doi.org/10.1007/978-3-642-24583-1_19
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.1007/978-3-642-30850-5_26


232 Y. Kaneta

18. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: making every bit count. In: Proceedings of the 2017 ACM International
Conference on Management of Data, (SIGMOD 2017), pp. 775–787 (2017)

19. Shun, J.: Parallel wavelet tree construction. In: Proceedings of the 2015 Data Com-
pression Conference (DCC 2015), pp. 92–101 (2015)

20. Shun, J.: Improved parallel construction of wavelet trees and rank/select structures.
In: Proceedings of the 2017 Data Compression Conference (DCC 2017), pp. 92–101
(2017)

21. Tischler, G.: On wavelet tree construction. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 208–218. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21458-5 19

22. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68552-4 12

23. Zhou, D., Andersen, D.G., Kaminsky, M.: Space-efficient, high-performance rank
and select structures on uncompressed bit sequences. In: Bonifaci, V., Demetrescu,
C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 151–163.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8 15

https://doi.org/10.1007/978-3-642-21458-5_19
https://doi.org/10.1007/978-3-642-21458-5_19
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-642-38527-8_15


Faster Recovery of Approximate Periods
over Edit Distance

Tomasz Kociumaka , Jakub Radoszewski , Wojciech Rytter ,
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Abstract. The approximate period recovery problem asks to compute
all approximate word-periods of a given word S of length n: all primi-
tive words P (|P | = p) which have a periodic extension at edit distance
smaller than τp from S, where τp = � n

(3.75+ε)·p� for some ε > 0. Here, the
set of periodic extensions of P consists of all finite prefixes of P ∞.

We improve the time complexity of the fastest known algorithm for
this problem of Amir et al. [Theor. Comput. Sci., 2018] from O(n4/3) to
O(n log n). Our tool is a fast algorithm for Approximate Pattern Match-
ing in Periodic Text. We consider only verification for the period recov-
ery problem when the candidate approximate word-period P is explicitly
given up to cyclic rotation; the algorithm of Amir et al. reduces the gen-
eral problem in O(n) time to a logarithmic number of such more specific
instances.

Keywords: Edit distance · Periods · Approximate pattern matching

1 Introduction

The aim of this work is computing periods of words in the approximate pattern
matching model (see e.g. [8,10]). This task can be stated as the approximate
period recovery (APR) problem that was defined by Amir et al. [2]. In this
problem, we are given a word; we suspect that it was initially periodic, but
then errors might have been introduced in it. Our goal is to attempt to recover
the periodicity of the original word. If too many errors have been introduced,
it might be impossible to recover the period. Hence, a requirement is imposed
that the distance between the original periodic word and the word with errors
is upper bounded, with the bound being related to the period length. Here, edit
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distance is used as a metric. The fastest known solution to the APR problem is
due to Amir et al. [1].

A different version of the APR problem was considered by Sim et al. [16],
who bound the number of errors per occurrence of the period. The general prob-
lem of computing approximate periods over weighted edit distance is known to
be NP-complete; see [15,16]. Other variants of approximate periods have also
been introduced. One direction is the study of approximate repetitions, that
is, subwords of the given word that are approximately periodic in some sense
(and, possibly, maximal); see [3,12,17,18]. Another is the study of quasiperiods,
occurrences of which may overlap in the text; see, e.g., [4–6,11,14].

Let ed-dist(S,W ) be the edit distance (or Levenshtein distance) between the
words S and W , that is, the minimum number of edit operations (insertions,
deletions, or substitutions) necessary to transform S to W . A word P is called
primitive if it cannot be expressed as P = Qk for a word Q and an integer k ≥ 2.
The APR problem can now formally be defined as follows.

Approximate Period Recovery (APR) Problem
Input: A word S of length n

Output: All primitive words P (called approximate word-periods) for which
the infinite word P∞ has a prefix W such that ed-dist(S,W ) < τp, where
p = |P | and τp = � n

(3.75+ε)·p� with ε > 0

Remark 1. Amir et al. [1] show that each approximate word-period is a subword
of S and thus can be represented in constant space. Moreover, they show that
the number of approximate word-periods is O(n). Hence, the output to the APR
problem uses O(n) space.

The solution of Amir et al. [1] works in O(n4/3) time1. Our result is an O(n log n)-
time algorithm for the APR problem.

Let us recall that two words U and V are cyclic shifts (denoted as U ≈ V )
if there exist words X and Y such that U = XY and V = Y X. The algorithm
of Amir et al. [1] consists of two steps. First, a small number of candidates are
identified, as stated in the following fact.

Fact 2 (Amir et al. [1, Sect. 4.3]). In O(n) time, one can find O(log n) sub-
words of S (of exponentially increasing lengths) such that every approximate
word-period of S is a cyclic shift of one of the candidates.

For a pattern S and an infinite word W , by ED(S,W ) let us denote the
minimum edit distance between S and a prefix of W . By Fact 2, the APR problem
reduces to O(log n) instances of the following problem.

1 Also the APR problem under the Hamming distance was considered [2] for which an
O(n log n)-time algorithm was presented [1] for the threshold � n

(2+ε)·p� with ε > 0.
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Approximate Pattern Matching in Periodic Text (APM Problem)
Input: A word S of length n, a word P of length p, and a threshold k

Output: For every cyclic shift U of P , compute ED(S,U∞) or report that
this value is greater than k

Amir et al. [1] use two solutions to the APM problem that work in O(np)
time and O(n+k(k +p)) time, respectively. The main tool of the first algorithm
is wrap-around dynamic programming [9] that solves the APM problem without
the threshold constraint k in O(np) time. The other solution is based on the
Landau–Vishkin algorithm [13]. For each p and k < τp, either algorithm works
in O(n4/3) time.

Our Results. We show that:

– The APM problem can be solved in O(n + kp) time.
– The APR problem can be solved in O(n log n) time.

Our solution to the APM problem involves a more efficient combination of wrap-
around dynamic programming with the Landau–Vishkin algorithm.

2 Approximate Pattern Matching in Periodic Texts

We assume that the length of a word U is denoted by |U | and the letters of U
are numbered 0 through |U |−1, with U [i] representing the ith letter. By U [i . . j]
we denote the subword U [i] · · · U [j]; if i > j, it denotes the empty word. A prefix
of U is a subword U [0 . . i] and a suffix of U is a subword U [i . . |U | − 1], denoted
also as U [i . .].

The length of the longest common prefix of words U and V is denoted
by lcp(U, V ). The following fact specifies a well-known efficient data structure
answering such queries over suffixes of a given text; see, e.g., [7].

Fact 3. Let S be a word of length n over an integer alphabet of size σ = nO(1).
After O(n)-time preprocessing, given indices i and j (0 ≤ i, j < n) one can
compute lcp(S[i . .], S[j . .]) in O(1) time.

2.1 Wrap-Around Dynamic Programming

Following [9], we introduce a table T [0 . . n, 0 . . p−1] whose cell T [i, j] denotes the
minimum edit distance between S[0 . . i − 1] and some subword of the periodic
word P∞ ending on the (j − 1)th character of the period. More formally, for
i ∈ {0, . . . , n} and j ∈ Zp, we define

T [i, j] = min{ed-dist(S[0 . . i − 1], P∞[i′ . . j′]) : i′ ∈ N, j′ ≡ j − 1 (mod p)};

see Fig. 1. The following fact characterizes T in terms of ED.

Fact 4. We have min{ED(S,U∞) : U ≈ P} = min{T [n, j] : j ∈ Zp}.
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Fig. 1. The first four columns show the table T for S = CBAACAABCA and P = ABCA.
The asterisks represent values that are greater than k = 3; these values need not be
computed in our algorithm. The next columns contain copies of T ; the highlighted
diagonals show the computation of the array D (see below). Note that T [3, 1] = 1
because T [2, 0] = 1 and S[2] = A = P [0].

Proof. First, let us observe that the definition of T immediately yields

min{T [n, j] : j ∈ Zp} = min{ed-dist(S, P∞[i′ . . j′]) : i′, j′ ∈ N}.

In other words, min{T [n, j] : j ∈ Zp} is the minimum edit distance between
S and any subword of P∞. On the other hand, min{ED(S,U∞) : U ≈ P} by
definition of ED is the minimum edit distance between S and a prefix of U∞ for
a cyclic shift U of P . Finally, it suffices to note that the sets of subwords of P∞

and of prefixes of U∞ taken over all U ≈ P are the same. 	

Below, we use ⊕ and � to denote operations in Zp.

Lemma 5 ([9]). The table T is the unique table satisfying the following formula:

T [0, j] = 0,

T [i + 1, j ⊕ 1] = min

⎧
⎨

⎩

T [i, j ⊕ 1] + 1
T [i, j] + [S[i] = P [j]]

T [i + 1, j] + 1

⎫
⎬

⎭
.

Let us mention that the above formula contains cyclic dependencies that
emerge due to wrapping (the third value in the minimum). Nevertheless, the
table can be computed using a graph-theoretic interpretation. With each T [i, j]
we associate a vertex (i, j). The arcs are implied by the formula in Lemma 5: the
arcs pointing to (i + 1, j ⊕ 1) are from (i, j ⊕ 1) with weight 1 (deletion), from
(i, j) with weight 0 or 1 (match or substitution), and from (i + 1, j) with weight
1 (insertion). Then T [i, j] is the length of the shortest path from any vertex
(0, j′) to the vertex (i, j). With this interpretation, the table T is computed
using Breadth-First Search, with the 0-arcs processed before the 1-arcs.
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2.2 Wrap-Around DP with Kangaroo Jumps

Our next goal is to compute all the values T [n, j] not exceeding k. In the algo-
rithm, we exploit two properties that our dynamic programming array has.

First of all, let us consider a diagonal modulo length of the period, that is,
cells of the form T [i, j ⊕ i] for a fixed j ∈ Zp. We can notice that the sequence of
values on every diagonal is non-decreasing. This stems from the fact that on each
diagonal the alignment of the pattern is the same and extending a prefix of S and
a subword of P∞ by one letter does not decrease their edit distance. This results
in a conclusion that if we would like to iteratively compute the set of reachable
cells within a fixed distance, then we can convey this information with just the
indices of the furthermost reachable cells in each of the diagonals. Our task is to
check whether we can reach some cell in the last row within the distance k. To
achieve this, we can iteratively find the set of cells reachable within subsequent
distances 0, 1, . . .. More formally, for d ∈ {0, . . . , k} and j ∈ Zp, we define

D[d, j] = max{i : T [i, j ⊕ i] ≤ d};

see Fig. 1.
Secondly, we observe that it is cheap to check how many consecutive cost-0

transitions can be made from a given cell. Let us remind ourselves that our only
free transition checks whether the next letters of the pattern and the periodic
word are equal. To know how far we can stack this transition is, in other words,
finding the longest common prefix of appropriate suffixes of S and P∞. We
obtain the following recursive formulae for D[d, j]; see Fig. 2.

Fact 6. The table D can be computed using the following formula:

D[0, j] = lcp(S, P∞[j . .]),
D[d + 1, j] = i + lcp(S[i . .], P∞[i ⊕ j . .]),

where i = min(n, max{D[d, j] + 1, D[d, j � 1], D[d, j ⊕ 1] + 1}).

Proof. We will prove the fact by considering the interpretation of T [i, j] as dis-
tances in a weighted graph (see Sect. 2.1). By Lemma 5, from every vertex (i, j)
we have the following outgoing arcs:

• (i, j) 1−→ (i + 1, j),

• (i, j)
[S[i] �=P [j]]−−−−−−−→ (i + 1, j ⊕ 1),

• (i, j) 1−→ (i, j ⊕ 1).

Moreover, the value T [i, j] is equal to the minimum distance to (i, j) from some
vertex (0, j′). The only arc of cost 0 is (i, j) 0−→ (i + 1, j ⊕ 1) when S[i] =
P [j]. Therefore, when we have reached a vertex (i, j), the only vertices we can
reach from it by using only 0-arcs are (i, j), (i + 1, j ⊕ 1), . . . , (i + k, j ⊕ k), where
k is the maximum number such that S[i] = P [j], S[i + 1] = P [j ⊕ 1], . . . ,
S[i + (k − 1)] = P [j ⊕ (k − 1)]. Therefore, k = lcp(S[i . .], P∞[j . .]).
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Fig. 2. Illustration of definition and computation of the array D.

Hence, D[0, j] = lcp(S, P∞[j . .]) holds for distance 0. Taking advantage of
monotonicity of distances on each diagonal, we know that full information about
reachable vertices at distance d can be stored as a list of the furthest points
on each diagonal. Moreover, to reach a vertex of distance d + 1 we need to
pick a vertex of distance d, follow a single 1-arc and then zero or more 0-arcs.
Combining this with the fact that arcs changing diagonal can be arbitrarily used
at any vertex, it suffices to consider only the bottom-most point of each diagonal
with the distance d as the starting point of the 1-arc, as we can greedily postpone
following an arc that switches diagonals. 	


To conclude, assuming we know the indices of furthest reachable cells in each
of the diagonals for an edit distance d, we can easily compute indices for the next
distance. In the beginning, we update the indices by applying available 1-arcs
and afterwards, we increase indices by the results of appropriate lcp-queries. In
the end, we have computed the furthest reachable cells in each of the diagonals
within distance d+1 and achieved that in linear time with respect to the number
of diagonals, i.e., in O(p) time. This approach is shown as Algorithm 1.

Lemma 7. Algorithm 1 for each j ∈ Zp computes T [n, j] or reports that
T [n, j] > k. It can be implemented in O(n + pk) time.

Proof. We use Fact 3 to answer each lcp-query in constant time, by creating a
data structure for lcp queries for the word S#P r where # is a sentinel character
and r is an exponent large enough so that |P r| ≥ n + p. 	
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Algorithm 1. Compute all values T [n, j] not exceeding k

T [n, 0 . . p − 1] := (⊥, . . . , ⊥)
for d := 0 to k do

foreach j ∈ Zp do
if d = 0 then

i := 0
else

i := min(n, max(D[d − 1, j] + 1, D[d − 1, j � 1], D[d − 1, j ⊕ 1] + 1))
D[d, j] := i + lcp(S[i . .], P ∞[i ⊕ j . .]);
if D[d, j] = n and T [n, j ⊕ n] = ⊥ then

T [n, j ⊕ n] := d

2.3 Main Results

The table T specifies the last position of an approximate match within the period
of the periodic word. However, in our problem we need to know the starting
position, which determines the sought cyclic shift of the period. Thus, let TR

be the counterpart of T defined for the reverse words SR and PR. Its last row
satisfies the following property:

Fact 8. For every j ∈ Zp, we have

TR[n, p � j] = ED(S,U∞) where U = P [j . . p − 1] · P [0 . . j − 1].

Here, U a cyclic shift of P with the leading j characters moved to the back.

Proof. By definition of TR and T , for 0 ≤ i ≤ n and j ∈ Zp, we have

TR[n, j] = min{ed-dist(SR, (PR)∞[i′ . . j′]) : i′ ∈ N, j′ ≡ j − 1 (mod p)}
= min{ed-dist(S, P∞[j′ . . i′]) : i′ ∈ N, j′ ≡ −j (mod p)}
= min{ed-dist(S, P∞[p � j . . i′]) : i′ ∈ N}
= ED(S, P∞[p � j . .]).

Consequently,

TR[n, p � j] = ED(S, P∞[j . .]) = ED(S, (P [j . . p − 1] · P [0 . . j − 1])∞)

holds as claimed. 	

Example 9. If P = ABCA and S = CBAACAABCA (as in Fig. 1), then TR[10, 2] =
ED(CBAACAABCA, (CAAB)∞) = ed-dist(CBAACAABCA, CAABCAABCA) = 2.

Running Algorithm 1 for the reverse input, we obtain the solution to the
APM problem.

Theorem 10. The Approximate Pattern Matching in Periodic Text problem
can be solved in O(n + kp) time.

By combining Fact 2 and Theorem 10 with k < τp, we arrive at an improved
solution to the APR problem.

Theorem 11. The Approximate Period Recovery problem can be solved in
O(n log n) time.
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Abstract. Much attention has been devoted recently to the dynamic
model of pattern matching. In this model the input is updated or changed
locally. One is interested in obtaining the appropriate search result in
time that is shorter than the time necessary to search without any pre-
vious knowledge. In particular, searching for a pattern P in an indexed
text is done in optimal O(|P |) time. There has been work done in search-
ing for a fixed pattern in a dynamic text, as well as finding all maximum
common substrings of two strings in a dynamic setting.

There are real-world applications where the text is unchanged and
the pattern is slightly modified at every query. However, in the current
state-of-the-art, a new search is required if the pattern is modified. In
this paper we present an algorithm that reduces this search time to be
sublinear, for a variety of types of pattern modification - in addition to
the insertion, deletion, and replacement of symbols, we allow copy-paste
and delete substring operations.

We also make a step toward a fully dynamic pattern matching model
by also supporting text changes, albeit much more modest than the pat-
tern changes. We support dynamic pattern matching where symbols may
also be either added or deleted to either the beginning or the end of the
text. We show that we can support such a model in time O(log n) for
every pattern modification or text change. We can then report all occ
occurrences of P in the text in O(occ) time.

1 Introduction

Historical pattern matching in which one seeks all occurrences of a pattern in a
text is a widely known problem that has been motivated by many fields such as
digital libraries, Molecular Biology, Medicine, and more [1,2,9,13,22,25,26,32].
In this problem the text and the pattern are given as an input and the algo-
rithm outputs all the indices in which the pattern is located in the text. Several
linear-time solutions were offered, the first being the classic Knuth-Morris-Pratt
algorithm [22].

Another important model of the problem is Indexing [35]. In this model
we preprocess the text T so that one can answer a query of the form ‘find
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a pattern P in the text T ’, without the need to scan the text for each query.
The suffix tree [6,8,14,15,23,28,33,35], suffix array [21,27] and Burrows-Wheeler
transform [3] are all data structures that resulted from the study of the indexing
problem. They are constructed in the preprocessing stage and allow answering
the query in time O(m + occ), where m is the pattern length and occ is the
number of occurrences of the pattern in the text. The indexing problem has an
online version, where the text is input one symbol at the time and the new letters
are appended or prepended to the text. Algorithms such as Ukkonen’s [33] were
developed to solve the online variation of indexing. In these algorithms symbol
insertion or deletion is handled in an amortized time and thus the preprocessing
time of the text is linear on the input size.

The next generalization of the problem is when one wants to support a
dynamic text, a text which can be modified. Various types of modifications
were considered - insertion, update or deletion of a single letter in the text,
copy-pasting a substring of the text to a new location, or deleting a substring.
This model also led to the development of efficient algorithms [16,17,20,30,31].
Recently, Gawrychowski et al. [18] showed an O(log2 n) algorithm per text
update and O(m) query time, where m is the query pattern’s length. In their
algorithm a modification changes the text data structure which then requires
another search query to report new pattern occurrences.

Amir et al. [7] introduced a dynamic text indexing algorithm where the pat-
tern is fixed. They save query time by not reporting all of the occurrences but
only the difference between the new and old occurrences of the pattern when
a letter in the text is updated. They achieve a O(log log n + occnew + occold)
time per text update, where n is the text length, occnew is the number of new
occurrences and occold is the number of old occurrences which no longer exist.

Recently, Bille et al. [10] consider a more comprehensive case in which a
source string S is compressed relatively to a reference string R. In this com-
pression S is covered by substrings of R. Their compression is proved to be
2-competitive to the optimal compression under edit distance operations on S,
insertion, deletion and update of single characters of S. They support the edit
distance operations in O(log log |R|+ log n

log log n ) time using O(|R|+n) space when
n is the optimal cover size.

Reporting the longest common factor (LCF) of two strings S and T dynam-
ically is a new problem. The first result on dynamic LCF was given by Amir et
al. [4]. They achieved ˜O(1) time reporting the LCF after a single edit operation,
i.e. either insertion, deletion or update of a character, in either S or T . This
result was soon generalized to support the fully dynamic LCP in sublinear time
per character modification [5]. Both algorithms preprocessing time and space is
˜O(n).

In this paper we tackle two challenges: (1) We would like to spend time
sublinear in the pattern length to find all pattern occurrences, when the pattern
has been changed. As an example, modern applications often display the search
results while the pattern is being typed by the user. If, in the middle of the
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pattern, a change is made, the current search algorithms require starting the
text search from the beginning.

We present an algorithm that supports fast searches of the pattern when
the pattern is modified by two new operations: copy-pasting a substring of the
pattern to a new location or deleting a substring from the pattern in addition to
edit distance operations, that were considered by Bille et al. [10]. Our algorithm
achieves this goal in time O(log n) for each pattern modification and then reports
all occurrences of the pattern in the text.

(2) We take a step toward a fully dynamic pattern matching algorithm. As
described above, we allow many types of modifications to the pattern, but we also
support text changes, albeit much more modest. We support dynamic pattern
matching when symbols are added to the text at its ends - added to either the
beginning or the end of the text.

2 Problem Formulation

Definition 1. A modification of a string S is one of the following operations:

– Remove the single symbol at index i of S, where i ∈ [1, |S|]. The resulting
string’s length is decreased by 1.

– Insert a single character σ following index i−1 of S, where σ ∈ Σ and i is the
index of the inserted character within the resulted string, i.e. i ∈ [1, |S| + 1].
The resulting string’s length is incremented by 1.

– Rename S[i] = a, where i ∈ [1, |S|] and a ∈ Σ.
– Copy-paste a substring of S to start following index i − 1 of S, where i ∈

[1, |S|+1]. The length of the string is incremented by the length of the copied
substring.

– Delete a substring of S. The length of S is decremented by the length of the
deleted substring.

Definition 2 (The modified pattern reporting problem).
Input: Let T be a text and P be a pattern (the pattern might be empty).
Preprocessing: We wish to process both the text and the initial pattern in a
manner that supports modifications to the pattern.
Pattern Modification: For each modification, we efficiently update the data
structures in a manner that allows reporting of pattern occurrences.
Occurrence Reporting: For a given X, report the first X occurrences of the
pattern in the text in time O(X). Also, in time O(occ) report all occ occurrences
of the pattern in the text.

Theorem 1. Given a string T and an initial pattern P , let n be the text length.
The modified pattern reporting problem can be solved in the following complex-
ity: Preprocessing is done in ˜O(n) time and space. Subsequently, a single letter
modification, text extension and pattern modification, are solved in O(log n) time
per change. A substring modification, copy-pasting a substring of P and deleting
a substring of P , in O(log n+ l) time per change, where l is the substring length.
The algorithm returns an iterator which can be used to report the occ occurrences
using O(occ) time or X first occurrences in O(X) time.
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3 Preliminaries

Let Σ be an alphabet. A string T over Σ is a finite sequence of letters from Σ. By
T [i], for 1 ≤ i ≤ |T |, we denote the ith letter of T . The empty string is denoted
by ε. By T [i..j] we denote the string T [i] . . . T [j] called a substring of T (if i > j,
then the substring is an empty string). A substring is called a prefix if i = 1 and
a suffix if j = |T |. By Si we denote the suffix which starts from index i in T . By
lcp(S, S′) we denote the longest common prefix (lcp) of S and S′. In case S and
S′ are suffixes Si and Sj , respectively, we denote lcp(i, j) = lcp(Si, Sj) for short.
By TR we denote the reversal (the mirror image) of T .

A suffix tree of a string T , denoted ST (T ), is a compacted trie containing
all the suffixes of T$, where $ is a unique character not occurring in Σ. In
a compacted trie we define the depth of a node to be its number of explicit
ancestors, and the string depth to be the length of the string it represents. In a
suffix tree we define the suffix link of a node representing the string as to be a
pointer to the node representing s. Every explicit node v stores such a link sl(v).

Definition 3 (suffix array and inverse suffix array). Let T be an n-length
string. Let {Sj1 , . . . , Sjn} be the set of T ’s suffixes sorted in lexicographic order.
Then the suffix array of T is the array SA, such that SA[i] = ji, i = 1, . . . , n,
i.e. the ith suffix in the sorted list is at index i of the suffix array. The inverse
suffix array is an array in which ith element indicates the rank of Si in the sorted
array of suffixes.

Definition 4 (lcp array). Let T be an n-length string. The lcp array of T stores
the lengths of the longest common prefixes of adjacent suffixes in the suffix array.
Formally, LA[i] = lcp(SA[i], SA[i + 1]), i = 1, . . . , n − 1.

4 The Cover Idea and Previous Work

The basic and simplest case is when both the pattern and the modified pattern
(after a single modification) occur in the text. Based on the knowledge about the
pattern locations in the text, it is possible to quickly find the modified pattern
in the text. For example, via a binary search on the suffix array.

The general case, when there is a sequence of modifications such that only
after applying the last modification the pattern starts to occur, turns to be
difficult. We, therefore, need a data structure to store the intermediate repre-
sentations of the pattern. The idea is to represent the pattern by substrings of
the text that “cover” it. Ultimately, if the pattern is represented by a single
substring of the text then there exists an occurrence of the pattern in the text.

In order to implement this idea we need a cover scheme whose elements have
a maximality property which allows us to minimize the number of text elements
covering the pattern. We use the cover definition that was introduced in [7]. The
idea is to cover the pattern by substrings of T such that a concatenating of every
two consecutive substrings is not a substring of T . Formally,
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Definition 5 ([7]). Let S and S′ = s′
1 . . . s′

n be strings over alphabet Σ. A cover
of S by S′ is a partition of S, S = τ1 . . . τv, each τi, i = 1, . . . , v, satisfying the
following conditions.

– substring property: τi is a substring of S′,
– maximality property: τiτi+1 is not a substring of S′, i = 1, . . . , v − 1.

When the context is clear we call a cover of S by S′ simply a cover. We also
say that τh is an element of the cover. A cover element τh is represented by a
triple [i, j, k] where τh = s′

i . . . s′
j , and k, the index of the element, is the location

in S where the element appears, i.e. k = Σh−1
l=1 |τl| + 1.

A pattern symbol that does not exist in the text is represented by a special
substring of T which is an imaginary character (substring of length 1) found after
the last text character. This scenario exists in real life applications. For example
in C and C + +, every string ends with a special null-terminated character.

Minimizing the number of cover elements relies on the idea of substrings
concatenation. A substring concatenation query has two substrings of T : S′ and
S′′, as its parameters. It returns whether their concatenation is a substring of
T or not. If yes, the query returns one of the locations of S′S′′ in T . This query
is performed in O(log log n) time and using O(n) space, following a linear time
preprocessing for a static text [10]. In Sect. 5.2 we show how to support the
online query.

The next step is to store the cover in a data structure that supports splitting
and merging of cover elements and a search query that returns the element which
covers a given index in the pattern. While under hamming distance modifications
a van Emde Boas tree [34] can be used to store the cover elements, a dynamic
partial sums [10] data structure is used to store the cover under edit distance
operations.

Definition 6 ([10]). The dynamic partial sums problem is to maintain an array
of integers Z[1..s] under the following operations.

– sum(i): returns the sum of the first i elements, i.e. Σi
j=1Z[j],

– update(i,Δ): update Z[i] = Z[i] + Δ,
– search(t): return 1 ≤ i ≤ |Z| such that sum(i − 1) < t ≤ sum(i).
– insert(i,Δ), inserts new entry in Z with value Δ before Z[i],
– delete(i), deletes the entry Z[i] of value at most Δ,
– merge(i), replace entry Z[i] and Z[i + 1] with a new entry with value Z[i] +

Z[i + 1],
– divide(i, t), where 0 ≤ t ≤ Z[i], replace entry Z[i] by two new consecutive

entries with value t and Z[i] − t, respectively.

Assume we are using the RAM model in which accessing memory by indexes
and w-bit integers arithmetical operations are supported in constant time.
Assume Z is an array of w-bit integers and Δ < 2δ, for some constant δ. All the
above operations can be answered in O( log |Z|

log(w/δ) ) time per operation using linear
space [10].
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The idea is to store an array Z in which at index i we store |τi|, the length of
the ith element in the cover. This allows us to calculate the beginning location of
each element as the sum of the lengths of the previous array elements. Therefore,
a search query is used to locate an element which covers a given index in the
pattern. Merging and splitting cover elements is done by the merge and split
queries respectively.

Theorem 2. Let T be a text, P be a pattern and a cover of P by T . Then using
the dynamic partial sums data structure it is possible to support the following
three queries: locate an element which covers a given index, merge two elements
to one, and split an element into two elements.

– in space O(m) and time O( log m
log log n ) per operation if substring modifications,

copy-pasting or deleting of substrings, are not allowed.
– in space O(m) and time O(log m) per operation if all pattern modifications

are allowed.

Proof. The difference between the cases relies on the choice of Δ, which is the
maximal bound on the increasing or decreasing amount allowed to be added
to an element in the dynamic partial sums array Z. If we are assuming that
no substring modifications occur then Δ is chosen to be 1, because appending
or removing single letter result in increasing or decreasing an element in Z by
1. Otherwise if allowing substring modifications, Δ = m because one might
copy-paste or delete substrings of size at most m, which then causes an element
in Z to be increased or decreased by O(m). Based on those choices we take
δ = log(Δ + 1), such that Δ < 2δ is true.

Other parameters are the same for both cases, w = O(log n) is the word size
in the RAM model and |Z| ≤ m, the number of elements in the cover.
In the first case, O( log |Z|

log(w/δ) ) = O( log m
log log n ).

While in the second case, O( log |Z|
log(w/δ) ) = O( log m

log(log n/ log m) ) = O(log m).
Notice that m can be O(n) and therefore the denominator is a constant. ��

5 Supporting the Online Text

5.1 Idea

We wish to report the pattern occurrences online in a text which is input symbol
by symbol, w.l.o.g assume the text is input online by prependings symbols at the
beginning. The major problem that needs to be addressed when supporting an
online text is the following. Since the method we use is covering the pattern with
text substrings that are maximal, in the sense that the concatenation of any two
adjacent cover elements is not a substring of T , then prepending letters to the
text may invalidate the maximality property. In the worst case scenario, the fear
is that after every letter was prepended the algorithm may need to concatenate
O(m) cover elements in order to sustain the maximality property.
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A second problem that needs addressing is that the pattern might start to
occur in the text as a result of new prepended letters. It turns out that by trying
to concatenate the last two elements of the cover when a new symbol arrives it is
possible to report new occurrences of the pattern if the pattern start to appear
in the text. This technique works when changes are not applied to the pattern
until the pattern starts to occur in the text.

Theorem 3. Let T be a text, P be a pattern, C be a cover of P by T . Assume
the text is input online by prepending symbols. Assume also that after every
prepended text symbol we concatenate the last two cover elements, if possible.
Then new occurrences of the pattern are reported correctly when they start to
appear at the beginning of the text.

Proof. Let A and B be the last two cover elements. Due to the maximality
property AB is not a substring of T . Let R(T, P ) be the longest string which is
a prefix of T and a suffix of P , then R(T, P ) is a proper suffix of AB because
AB is not a substring in T . Let T ′ = σT be the text after σ ∈ Σ was prepended.
If we cannot concatenate A and B then the following properties remain correct:
AB is not a substring of T ′ and the new R(T ′, P ) must be a suffix of AB. If A
and B can be concatenated then B′ = AB. Let A′ and B′ = AB be the last
two cover elements. Then A′B′ is not a substring of T because B′ exists only
once as a prefix of T . Furthermore, R(T ′, P ) is a substring of A′B′, in particular
R(T ′, P ) = B′. By induction, any cover C where |C| ≥ 2 satisfies these two
properties. When a concatenation results in a cover with a single element, then
the pattern is a prefix of T . ��

We are now ready to tackle the case where symbols are being prepended
to the text online as well as the pattern being modified. We will see that this
requires a greater number of concatenations of cover elements. Nevertheless, we
shows that the number of concatenation of cover elements is competitive with
the smallest number of operations that one needs to apply so that the pattern
will occur in the text, when operation means either a letter prepending to the
text or a modification of the pattern (in the online algorithms sense, i.e. the
number of concatenations does not exceed some constant times the number of
operations).

Definition 7. Let T and P be a text and a pattern. The occurring distance of
the pattern P from the text T , denoted by DT (P ), is the smallest number of
pattern modifications and text prependings that one needs to apply in order for
the resulting pattern to occur in the text.

Formally, let G = {XT | X ∈ ⋃

0≤i≤|P | Σ
i} a set of all possible texts after

at most |P | prependings.

DT (P ) = min{|T ′| − |T | + Modif(T ′, P ) | T ′ ∈ G} (1)

Where |P | = m, |T | = n, and Modif(S1, S2) is the smallest number of modifica-
tions of S2 that causes it to appear in S1.
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Lemma 1 ([10]). Let P and T be a pattern and a text, respectively. Then the
size of every cover C that holds the maximality property is 2-competitive to the
optimal cover, the cover which has the smallest number of elements. And it holds
that |C| ≤ 2|C ′| − 1, where C ′ is the optimal cover.

Lemma 2. Let P and T be a pattern and a text, respectively. Then |C| is 4-
competitive to the occurring distance DT (P ), if C holds the maximality property.
And it holds that |C| ≤ 4DT (P ) − 1.

Proof. Let C be a cover that holds the maximality property. Assume that the
occurring distance is achieved by performing q text prepending operations and p
pattern modifications. If q = 0, only pattern modification are performed. Based
on Lemma 1 the cover with maximality property is 2-competitive to the optimal
cover. The optimal cover in this case has at most 2p elements. In the worst
case scenario, all the changes in the pattern are of deletion of letters which are
not in the text. And each of the p changes has its own cover element. Thus,
|C| ≤ 4p − 1 Otherwise, q > 0. It means that the pattern starts to occur at the
prefix of T , since if this not the case, we can take a smaller q in contradiction
to the minimality of occurring distance. The first q character of P are covered
by at most q elements, while the remaining pattern of size |P | − q occurs at the
initial text after performing p modifications. Thus, |C| ≤ q + 4p − 1. ��
Lemma 3. For all k > 0 and j > 0 integers it holds that

⌈

k
2j

⌉

=
⌈

k
2j+1

⌉

+
⌊

k
2j+1

⌋

.

Proof. Let k = c ·2j+1+d, where c is the quotient of 2j+1 and d is the remainder
of the division of k by 2j+1, 0 ≤ d < 2j+1. Then,

⌈

k
2j

⌉

= 2c +
⌈

d
2j

⌉

. And,
⌈

k
2j+1

⌉

+
⌊

k
2j+1

⌋

= c +
⌈

d
2j+1

⌉

+ c. Where d = 0, the expressions equal to 2c,
otherwise if d > 0, they equal to 2c + 1. ��
Corollary 1. For all k > 0,

k =
⌈

k
2

⌉

+
⌊

k
2

⌋

=
⌈

k
4

⌉

+
⌊

k
4

⌋

+
⌊

k
2

⌋

=
⌈

k
2j

⌉

+ Σj
i=1

⌊

k
2i

⌋

Theorem 4. We use the same notations as in the previous theorem. Let k′ be
the occurring distance of P from T at the first occasion of the cover C in which
the pattern does not occur in T . Then the algorithm is α-competitive to k′. We
show that α = 8. Furthermore, we can maintain a competitive cover by applying
16 concatenations to the cover elements in a cyclic manner.

Proof. Assume 	 operations were applied, where after operation 	 the pattern
occurs in the text. Let {ki}�

i=0 be the sequence of the occurring distances, where
ki is the occurring distance after applying the ith operation, 1 ≤ i ≤ 	. k� = 0,
and k0 = k′ is the value before any operation was applied. An operation is called
good if all consecutive operations have smaller occurring distances. Formally, the
ith operation is good if ∀j > i, kj < ki.

Let k = max1≤i≤�{ki} the maximal occurring distance.
We want to prove that the cover size approaches 1 when the pattern appears

in the text. By induction we show that after Σj
i=1

⌊

1
2i k

⌋

good operations, |C| ≤
2
⌈

1
2j−1 k

⌉ − 1.
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The base case where j = 0 and no operation has been done, we know that
|C| ≤ 4k′ − 1 ≤ 4k − 1 due to the preprocessing stage.

The induction step, assume correctness for j and proof for j + 1. Assume
Σj

i=1

⌊

1
2i k

⌋

good operations have been done, during the next
⌊

1
2j+1 k

⌋

good oper-
ations there were at least 16

⌊

1
2j+1 k

⌋ ≥ 8
⌈

1
2j+1 k

⌉ ≥ 2
⌈

1
2j−1 k

⌉

> |C| concatena-
tions. Thus by Lemma 2, |C| ≤ 2

⌈

1
2j k

⌉ − 1, because the cover is 2-competitive
to the occurring distance after Σj

i=1

⌊

1
2i k

⌋

which is
⌈

1
2j k

⌉

.
Let 1 ≤ ⌈

1
2j k

⌉ ≤ 2, it means that the pattern is very close to the text, in
the sense of occurring distance. In this case we know from the induction that
|C| ≤ 2

⌈

1
2j−1k

⌉

− 1 ≤ 4
⌈

1
2j k

⌉ − 1 ≤ 8 − 1 = 7. This means that by trying
to concatenate an most 16 elements each time we can detect when the pattern
starts to appear in the text. ��

5.2 Substring Concatenation

The ideas for a changing text rely heavily on substring concatenation. This was
the tool in all previous papers for dynamic source string (e.g. the text) and
static reference string (e.g. the pattern) [7,10,19]. The problem is that in all
previous papers, one string, either the text or pattern, is assumed to be fixed,
and thus many results were developed for extremely efficient substring matching.
We are exploring the first steps toward a fully dynamic algorithm. Our pattern
is heavily modified, and our text may increase at either end (for simplicity we
describe prepending symbols to the text, but the algorithm is general enough
to handle adding symbols at both ends of the text). As a result of the changing
text, we need to revisit the substring concatenation tool.

The concatenation query on the online text is based on two suffix tree con-
structions and data structures are built on these suffix trees. We build two suffix
trees for both T and TR. Each leaf of the suffix tree corresponds to a suffix. We
label each two suffixes that represent the full text, i.e. ti+1 . . . tn and ti . . . t1,
with the same value i + 1. When a query of the form S′S′′ is given we search
for a node that correspond to (S′)R in the suffix tree of TR and a node that
correspond to S′′ in a suffix tree of T . This search can be done in a constant time
by locating the suffix leaf whose prefix is the desired string and then performing
a weighted ancestor query [19]. By a range query (also called tree cross product
query) [12] we find whether S′S′′ exist in the text. If it does, then we find one
of the locations in the text where this string is located.

Implementation: Breslauer and Italiano [11] show how to construct a suffix
tree, both with additions at the beginning and additions at the end, in time
O(log log n) per symbol change. The dynamic weighted ancestor can be sup-
ported in O(log n) worst case time and O(n) space [24]. Finally, a dynamic tree
cross product can be supported in time O(log n) per change [12]. The overall
space is O(n

√
log n).
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6 Supporting Copy-Pasting and Deleting Substrings

Bille et al. [10] presented a construction for the dynamic partial prefix sum prob-
lem. The classical partial prefix sum problem is to support three operations on
an array of integers Z.

– sum(i): returns the sum of the first i elements, i.e. Σi
j=1Z[j],

– update(i,Δ): update Z[i] = Z[i] + Δ,
– search(t): return 1 ≤ i ≤ |Z| such that sum(i − 1) < t ≤ sum(i).

In the dynamic variation, Bille et al. [10] consider also the following operations:
insert(i,Δ), inserts new entry in Z with value Δ before Z[i], delete(i), deletes
the entry Z[i] of value at most Δ, merge(i), replace entry Z[i] and Z[i+1] with
a new entry with value Z[i] + Z[i + 1], divide(i, t), where 0 ≤ t ≤ Z[i], replace
entry Z[i] by two new consecutive entries with value t and Z[i] − t, respectively.

Assume we are using the RAM model in which accessing memory by indexes
and w-bit integers arithmetical operations are supported in constant time.
Assume Z is an array of w-bit integers and Δ < 2δ, for some constant δ. All the
above operations can be answered in O( log |Z|

log(w/δ) ) time [10]. Their data structure
is based on B-trees in which each node stores a small data structure which has
the same functionality but is of size O(B) = wO(1) and answers the queries in a
constant time. This data structure extends an data structure of [29] to support
all the above operations. Each small data structure is valid for O(B) insertions
and afterwards a new one is needed to be reconstructed in O(B) time. By spend-
ing an additional constant time at each insertion, it is possible to reconstruct
the data structure.

Deleting a substring P [i..j] is done by finding the cover elements which con-
tain the first and the last indexes i and j. Then a divide operation is called
to split these intervals so that we can safely remove the substring from P . By
removing all the values between these two intervals we achieve a substring dele-
tion in O(log n + |j − i + 1|) time. The log n exists because after the deletion
we perform a concatenation query on the divided elements with their neighbor
elements to ensure the cover remain valid. Similarly, we can copy a string to
another location by spending O(log n + |j − i + 1|).

7 Reporting Pattern Occurrences in O(occ) Time

Based on an online suffix tree and knowledge about one of the indexes in which
the pattern occurs, we show how to report all occ occurrences in O(occ) time.
We also show how to represent an iterator to report all these occurrences. Let i
be one of the pattern locations in the text, we start from a leaf that corresponds
to the suffix Si in the suffix tree, then we go to the ancestor node whose depth
is the minimal depth that is at least |P |, all the suffixes in the rooted tree are
occurrences of P and no other occurrences are in the text. Traversing to a such
a node is done by a special weighted ancestor construction [19]. We define the
weight of each node to be the length of the string from the root that one needs
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to treat. The preprocessing time is O(n) and online suffix is supported. And
weighted ancestor query is answered in a constant worst case time. Thus, the
iterator is represented by the pair (i, |P |), and it allows to iterate all pattern
occurrences in the text.

8 Conclusion

We have shown how to report all pattern occurrences in a changing text under
pattern modifications: copy-pasting substrings of the pattern to a new locations
and deleting substrings of the pattern in addition to insertions, deletions and
updates of single letters in the pattern. After each operation, modification of
the pattern or extension of the text by one symbol, we detect in sublinear time
whether the modified pattern now appears in the text. If it does, then we provide
a subroutine that reports all pattern occurrences in O(log n) time.

Our solution relies on a dynamic partial prefix sums data structure, which
then implies the lower bound of Ω( log m

log log m ). It would be interesting to store the
cover elements in a different structure that, perhaps, reduces this bound or, on
the other hand, to show that it is impossible, i.e. this bound stands also for the
cover storage problem.

Moreover, it would be useful to know a solution for the fully dynamic case
in which both the pattern and the text are allowed to be modified when the
pattern is reported in a sublinear time after each modification.
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Abstract. The suffix array SAw of a string w of length n is a permuta-
tion of [1..n] such that SAw[i] = j iff w[j, n] is the lexicographically i-th
suffix of w. In this paper, we consider variants of the reverse-engineering
problem on suffix arrays with two given permutations P and Q of [1..n],
such that P refers to the forward suffix array of some string w and Q
refers to the backward suffix array of the reversed string wR. Our results
are the following: (1) An algorithm which computes a solution string over
an alphabet of the smallest size, in O(n) time. (2) The exact number of
solution strings over an alphabet of size σ. (3) An efficient algorithm
which computes all solution strings in the lexicographical order, in time
near optimal up to log n factor.

1 Introduction

Text indexing is a task to build a data structure for a given text string w so
that subsequent pattern matching queries can be answered quickly. The most
well-known text indexing structure is the suffix tree [26], which is a compacted
trie that represents all the suffixes of w. Another classical indexing structure
is the suffix array [17], which is an array of length |w| such that its i-th entry
stores the beginning position of the lexicographically i-th suffix of w.

In some applications such as bidirectional pattern searches, it is helpful to
build indexing structures for both w and its reversed string wR. For an arbitrarily
fixed string w, we call w as a forward string and its reverse wR as a backward
string. Also, we call an indexing structure for w as a forward structure and that
for wR as a backward structure.

There have been a few studies on the structural relations between forward and
backward indexing structures. For instance, it is known that the suffix tree of w is
isomorphic to the suffix link tree of the directed acyclic word graph (DAWG) [3]
of wR. This relation is preserved in the compacted versions of the DAWG and
suffix tree, called the compact DAWG (CDAWG) [2], in such a manner that
the CDAWGs of w and wR share the same nodes. The affix tree [25] is another
modification of the suffix tree such that both the affix trees of w and wR share
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the same nodes. However, no explicit, non-trivial properties are known for the
relationship between the forward and backward suffix trees/arrays.

In this paper, we aim to reveal new relationships between the forward and
backward suffix arrays in the context of reverse-engineering problems. Namely,
we are given two permutations P and Q of [1..n] as inputs, and the task is to
recover a string, count and/or enumerate all strings for which P is the forward
suffix array and Q is the backward suffix array. We call a string w, a solution
string, if P is the forward suffix array and Q is the backward suffix array for w.
This paper presents:

1. An O(n)-time algorithm to find the lexicographically smallest solution string
w.

2. The exact number of solution strings.
3. An O(M log n)-time algorithm to enumerate all solution strings in the lexi-

cographical order where M is the number of solution strings.

Technically speaking, our results can be seen as a generalization of the known
results for recovering, counting and/or enumerating solution string(s) in the mere
case of forward strings.

Duval and Lefebvre [9], and Bannai et al. [1] independently showed how to
recover the lexicographically smallest solution string for a given permutation P in
O(n) time. While there always exists a solution string for any single permutation
P , in our case there do not exist solution strings for some pair of permutations
P and Q.

Schürmann and Stoye [23] showed the exact number of solution strings for
a given permutation P . Our analysis for the exact number of solution strings
for a given pair of permutations P and Q is based on their result. Schürmann
and Stoye also pointed out that the problem of computing all solution strings
for a given single permutation P is equivalent to computing all non-decreasing
sequences of length n. While it is easy to enumerate non-decreasing sequences in
their lexicographical order, this does not directly provide us with an algorithm
which enumerates the solution strings in the lexicographical order of the strings.
We first show that a compact representation of all the solutions for a given
single permutation P can be enumerated in lexicographical order. Then, we will
remark that it is straightforward to extend this result to our case of two given
permutations P and Q.

Related Work. The string recovering/counting/enumerating problems for var-
ious string-oriented data structures have been studied, such as suffix arrays [1,
9,23], DAWGs [1], suffix trees [4,13,24], border arrays [8,10,16], and many oth-
ers (e.g., [5–7,11,12,14,15,18,20–22]). One of the main motivations for studying
string recovering/counting/enumerating problems is to gain further insights into
the characteristics of the data structures, which may be of future use for develop-
ing better algorithms for their construction and use. To our knowledge, however,
there have been no studies on recovering/counting/enumerating problems that
deal with both forward and backward strings.
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2 Preliminaries

2.1 Strings

Let Σ be an integer alphabet [1..σ] of size σ. An element of Σ∗ is called a string.
The length of a string w is denoted by |w|. The empty string ε is a string of length
0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a
string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i, j] denote the substring of w
that begins at position i and ends at position j. For convenience, let w[i, j] = ε
when i > j.

2.2 Suffix Arrays and Permutations

Let [1..n] be the set of n distinct integers such that each element i satisfies
1 ≤ i ≤ n. If a sequence s of length n satisfies

⋃
i{s[i]} = [1..n], we call s a

permutation of [1..n]. A permutation of [1..n] is said to be the suffix array [17]
of a string w, denoted by SAw, if the i-th entry SAw[i] stores the index of
lexicographically i-th suffix among all the non-empty suffixes of w in increasing
order. We will also consider the suffix array of w where each suffix is identified
by the reversed index, and denote it by rSAw. Namely, rSAw[i] = n − j + 1
iff SAw[i] = j for any 1 ≤ i ≤ n. We will use this suffix array with reversed
indices in order that the same indices can be used for the suffix arrays of string
w and its reversal wR. For any permutation P of [1..n], P−1 denotes the inverse
array of P , namely, P [i] = j iff P−1[j] = i for any 1 ≤ i ≤ n. For any integer
sequences s and t, s ≡ t denotes the fact that the set of all elements of s and the
set of all elements of t is the same. Let 〈〈i〉〉j be the integer sequence of length
j such that each element is i.

In this paper, we consider strings w such that SAw = P and rSAwR = Q for
two given permutations P and Q of [1..n]. P is called a forward suffix array of
a string w if SAw = P and Q is called a backward suffix array if rSAwR = Q for
the reversed string wR.

Example 1. Let w = 1, 3, 1, 2, 3. Then, SAw = 3, 1, 4, 5, 2 (forward suffix array of
w) and rSAwR = 1, 3, 4, 2, 5 (backward suffix array of wR). Moreover, SAw

−1 =
2, 5, 1, 3, 4 and SAw[3, 5] ≡ rSAwR [3, 5].

3 Strings over an Alphabet of Smallest Size

In this section, we solve the following problem. Given two permutations P,Q of
[1..n], determine whether there exists a string w such that P is the forward suffix
array and Q is the backward suffix array of w. If so, compute such a string over
an alphabet of the smallest size.

Duval and Lefebvre [9] solved the problem for a single permutation P . More
formally, they proposed a linear time algorithm that computes a string w over an
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alphabet of the smallest size such that SAw = P where P is a given permutation
of [1..n]. It is clear that, for a single permutation, there exists a string w such
that SAw = P for any P , while for the problem, a solution string does not
necessarily exist for any P and Q.

In this section, we give the following result.

Theorem 1. Given two permutations P,Q of [1..n], we can determine whether
there exists a string w such that P is the forward suffix array and Q is the
backward suffix array of w in O(n) time and space. If it exists, we can compute
such a string over an alphabet of the smallest size in O(n) time and space.

Firstly, in Sect. 3.1, we give an overview of the algorithm in [9] since our
algorithm is a natural extension of theirs. In Sect. 3.2, we show our algorithm.

3.1 Computing a String from the Forward Suffix Array

The following lemma ensures the correctness of their algorithm.

Lemma 1 (Theorem 1 of [23]). Let P be a permutation of [1, n] and w a
string of length n. P is the suffix array of w iff the following conditions hold for
all i ∈ [1, n]: (1) w[P [i]] ≤ w[P [i+1]] and (2) P−1[P [i]+1] > P−1[P [i+1]+1] ⇒
w[P [i]] < w[P [i + 1]].

This lemma implies that solution strings can be obtained by the set

IP = {i | P−1[P [i] + 1] > P−1[P [i + 1] + 1]}.

In other words, w[P [i]] has to be smaller than w[P [i + 1]] for any i ∈ IP .
Let P = 3, 1, 4, 5, 2 and Σ = {1, 2, 3}. Then, IP = {2, 3}. This means that

each string w such that P is the forward suffix array of w must satisfy the
condition w[P [2]] ≺ w[P [3]] ≺ w[P [4]]. A string w over the alphabet of the
smallest size satisfies w[P [1]] = w[P [2]] ≺ w[P [3]] ≺ w[P [4]] = w[P [5]]. We can
obtain w = 1, 3, 1, 2, 3 since w[3] = w[1] = 1 ≺ w[4] = 2 ≺ w[5] = w[2] = 3.

It is known that IP and w can be computed in O(n) time and space [9].

3.2 Computing a String from Forward and Backward Suffix Arrays

We consider the set IQ that is similar to IP as follows:

IQ = {i | Q−1[Q[i] − 1] > Q−1[Q[i + 1] − 1]}.

Notice that we can also compute IQ and a string w such that Q is the backward
suffix array of w in O(n) time and space. Let IPQ = IP ∪ IQ = {i1, . . . , id}
where i1 < . . . < id (for convenience, i0 = 0, id+1 = n). We consider the
factorization P1, . . . , Pd+1 of P (resp. Q1, . . . , Qd+1 of Q) based on IPQ such
that Pj = P [ij−1 + 1], . . . , P [ij ] (resp.Qj = Q[ij−1 + 1], . . . , Q[ij ]) for any
1 ≤ j ≤ d + 1. Note that id < n by the definition.

The key idea of our algorithm is shown in the following lemma, which states
a necessary and sufficient condition for the existence of a solution string.
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Lemma 2. There exists a string w such that SAw = P and rSAwR = Q iff
Pi ≡ Qi for all 1 ≤ i ≤ d + 1.

Proof. (⇐) Let w be a string which can be obtained as follows:

∀j. w[P [j]] = i s.t. P [j] ∈ Pi. (1)

It is clear from Lemma 1 that SAw = P . Since Pi ≡ Qi for any 1 ≤ i ≤ d + 1,
then rSAwR = Q. (⇒) From the definition of Pj and Qj , |Pj | = |Qj | holds.
Assume for a contradiction that there exists k = min{j | Pj �≡ Qj}. This implies
that there exist integers α, β such that α ∈ Pk, α /∈ Qk, β ∈ Qk, β /∈ Pk, and
α �= β. Let k1 (resp. k2) be the integer such that β ∈ Pk1 (resp. α ∈ Qk2). It is
clear that k < k1 and k < k2. Due to Lemma 1, w[i] < w[i′] must hold for any
i ∈ Pk and i′ ∈ Pk1 . This means that w[α] < w[β] holds. Similarly, w[i] < w[i′]
must hold for any i ∈ Pk and i′ ∈ Pk2 . This means that w[β] < w[α] holds.
Hence, w cannot exist in this case.

Therefore, the lemma holds. �
Based on this lemma, we can compute w (obtained by Eq. (1)) over an alpha-

bet of the smallest size such that P is the forward suffix array of w and Q is the
backward suffix array of w. Since we can compute IP and IQ in O(n) time, we
can also compute IPQ and w explained by Eq. (1) in O(n) time. Therefore, we
get Theorem 1.

Let P = 8, 4, 1, 9, 3, 5, 6, 7, 2 and Q = 1, 4, 8, 9, 3, 5, 6, 2, 7. Then, IPQ =
{3, 5, 7} since IP = {3, 7} and IQ = {3, 5, 7}. The factorization of P is
8, 4, 1 | 9, 3 | 5, 6 | 7, 2. The factorization of Q is 1, 4, 8 | 9, 3 | 5, 6 | 2, 7. We
notice from the above lemma that there exists a solution string w since Pj ≡ Qj

for any j. Since a solution string w over an alphabet of the smallest size has to
satisfy w[1] = w[4] = w[8] < w[3] = w[9] < w[5] = w[6] < w[2] = w[7], then we
can obtain w = 1, 4, 2, 1, 3, 3, 4, 1, 2.

4 Counting Strings from Forward and Backward Suffix
Arrays

In this section, we discuss the number of solution strings, for given permutations
P and Q, over an alphabet Σ, and give Theorem 2. For a single permutation,
Schürmann and Stoye [23] showed the number of strings w such that P is the
forward suffix array of w where P is a given permutation of [1..n].

We first summarize their idea since our proof follows them. Let bP be the
string of length n obtained by the algorithm described in Sect. 3.1, and m a non-
decreasing integer sequence of length n of elements in [0, σ − d − 1] where σ is
the alphabet size and d is the size of IP . MP denotes the set of all m. Consider
a string s(P,m) defined as s(P,m)[P [i]] = bP [P [i]] + m[i] (1 ≤ i ≤ n). Then, P
is the forward suffix array of s(P,m). They also showed that

⋃
m∈MP

{s(P,m)} is
the set of all solution strings. This implies that the number of solution strings is
equal to the size of MP .
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Now we consider the extension to our problem. Let IPQ = {i1, . . . , id} such
that ij < ij+1(1 ≤ j < d). For convenience, i0 = 0 and id+1 = n. We consider the
set of positions I ′

PQ defined as follows: I ′
PQ =

⋃
j∈[1..d+1]{i′ | Pj [ij−1 + 1, i′] ≡

Qj [ij−1+1, i′], Pj [i′+1, ij ] ≡ Qj [i′+1, ij ], ij−1+1 < i′ < ij}. It is easy to see that
IPQ ∩ I ′

PQ = ∅ holds. We show an example of this set if P = 1, 4, 2, 6, 9, 5, 3, 8, 7
and Q = 1, 2, 6, 4, 5, 9, 3, 7, 8. Then, IPQ = {4, 6} and I ′

PQ = {1, 7}.
By using IPQ and I ′

PQ, we obtain the following result.

Theorem 2. Let P,Q be permutations of [1..n] such that |IPQ| = d and |I ′
PQ| =

d′, and Σ an alphabet of size σ. The number of strings w such that SAw = P
and rSAwR = Q is

(
d′ + σ

σ − d − 1

)

.

To prove this result, we first characterize all solution strings for given P and
Q. We refer to the string obtained by our algorithm in the previous section as the
basic string, denoted by bPQ. I denotes IPQ ∪ I ′

PQ. Let I = {i1, . . . , id+d′} such
that ij < ij+1(1 ≤ j < d+d′). For convenience, i0 = 0, id+d′+1 = n. We consider
the factorization P ′

1, . . . , P
′
d+d′+1 of P (resp. Q′

1, . . . , Q
′
d+d′+1 of Q) based on I

such that P ′
j = P [ij−1 + 1], . . . , P [ij ] (resp.Q′

j = Q[ij−1 + 1], . . . , Q[ij ]) for any
1 ≤ j ≤ d + d′ + 1. Let cPQ be the sequence of length d + d′ + 1 such that
cPQ[i] = bPQ[j] where P [j] ∈ P ′

i . Notice that bPQ[P [j1]] = bPQ[P [j2]] for any
j1, j2 such that P [j1], P [j2] ∈ P ′

i . Let m be a non-decreasing integer sequence of
length d + d′ + 1 of elements in [0, σ − d − 1], and M the set of all m. We define
C(PQ,m) as C(PQ,m)[i] = cPQ[i] + m[i] for any 1 ≤ i ≤ d + d′ + 1. We also define
s(PQ,m) as s(PQ,m)[P [i]] = C(PQ,m)[�] such that i�−1 < i ≤ i�.

We give an example of these sequences in Fig. 1. For any P [i], P [i′] ∈ P ′
j ,

w[P [i]] = w[P [i′]] has to hold where w is a solution string. cPQ[j] stores the char-
acter bPQ[P [i]] such that P [i] ∈ P ′

j . For example, in Fig. 1, bPQ[5] = bPQ[9] = 2
is stored in cPQ[3] since P ′

3 = 9, 5. These correspondences are represented by
arrowed lines in Fig. 1. If we are given m, C(PQ,m) is determined. C(PQ,m)[j]
stores the new character which is applied to s(PQ,m)[P [i]] such that P [i] ∈ P ′

j .
We prove

⋃
m∈M{s(PQ,m)} is the set of solution strings. Lemma 3 shows that

s(PQ,m) is a solution string for any m ∈ M. Lemma 4 shows that s(PQ,m′) is not
a solution string for any integer sequence m′ /∈ M of length d + d′ + 1.

Lemma 3. For any m ∈ M, s(PQ,m) ∈ Σ∗,SAs(PQ,m) = P and rSAsR(PQ,m)
= Q.

Proof. By the definition of cPQ and m, cPQ[j] ≤ cPQ[j + 1] and m[j] ≤ m[j +
1] (1 ≤ j < d + d′ + 1). Then, C(PQ,m)[j] ≤ C(PQ,m)[j + 1] by the definition of
C(PQ,m). Assume that P [i] ∈ P ′

j . If P [i + 1] ∈ P ′
j , s(PQ,m)[P [i]] = s(PQ,m)[P [i +

1]] = C(PQ,m)[j]. If P [i + 1] ∈ P ′
j+1, then s(PQ,m)[P [i]] ≤ s(PQ,m)[P [i + 1]]

since s(PQ,m)[P [i]] = C(PQ,m)[j] and s(PQ,m)[P [i + 1]] = C(PQ,m)[j + 1]. Thus,
Condition (1) of Lemma 1 holds for s(PQ,m) w.r.t. P . On the other hand, for
any i such that P−1[P [i] + 1] > P−1[P [i + 1] + 1] (i.e., i ∈ IPQ), there exists
j such that P [i] ∈ P ′

j and P [i + 1] ∈ P ′
j+1 holds. This implies that cPQ[j] <
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Fig. 1. s(PQ,m) = 1, 2, 4, 2, 3, 2, 5, 5, 3, for m = 0, 1, 1, 1, 2 ∈ M, is a solution string.

cPQ[j + 1] (∵ bPQ[P [i]] < bPQ[P [i + 1]]). Then, C(PQ,m)[j] < C(PQ,m)[j + 1]
and s(PQ,m)[P [i]] < s(PQ,m)[P [i + 1]]. Hence, Condition (2) of Lemma 1 holds
for s(PQ,m) w.r.t. P . Thus, the forward suffix array of s(PQ,m) is P . We can
also prove that the backward suffix array of s(PQ,m) is Q in a similar way. On
the other hand, C(PQ,m)[d + d′ + 1] ≤ σ since cPQ[d + d′ + 1] = d + 1 and
m[d+d′ +1] ≤ σ −d−1. By the definition, C(PQ,m)[i] ≤ C(PQ,m)[d+d′ +1] ≤ σ
for any 1 ≤ i ≤ d + d′ + 1. This implies that s(PQ,m) is a string over Σ. �
Lemma 4. Let m′ be a non-decreasing integer sequence of length d+d′ +1. For
any m′ /∈ M, s(PQ,m′) /∈ Σ∗ or SAs(PQ,m′) �= P or rSAsR

(PQ,m′)
�= Q.

Proof. Assume that m′ is not a non-decreasing sequence. There exists j (1 ≤ j <
d + d′ + 1) such that m′[j] > m′[j + 1]. Let i ∈ I be the position in P such that
P [i] ∈ P ′

j and P [i + 1] ∈ P ′
j+1. If i ∈ I ′

PQ, then cPQ[j] = cPQ[j + 1] holds. Then,
C(PQ,m′)[j] = cPQ[j] + m′[j] > cPQ[j + 1] + m′[j + 1] = C(PQ,m′)[j + 1]. Hence,
s(PQ,m′)[P [i]] > s(PQ,m′)[P [i+1]]. This contradicts Condition (1) of Lemma1. If
i ∈ IPQ, then cPQ[j] = cPQ[j+1]−1 holds. Then, C(PQ,m′)[j] = cPQ[j]+m′[j] ≥
(cPQ[j+1]−1)+(m′[j+1]+1) = C(PQ,m′)[j+1] (∵ m′[j] ≥ m′[j+1]+1). Hence,
s(PQ,m′)[P [i]] ≥ s(PQ,m′)[P [i + 1]]. Moreover, since i ∈ IPQ, P−1[P [i] + 1] >
P−1[P [i + 1] + 1] holds. This contradicts Condition (2) of Lemma1.

Assume that m′ is a non-decreasing integer sequence of length d+d′ +1 such
that m′[i] > σ−d−1 for some i. Then, m′[d+d′+1] > σ−d−1. By the definition,
cPQ[d+d′+1] = d+1. Hence, C(PQ,m′)[d+d′+1] = cPQ[d+d′+1]+m′[d+d′+1] >
σ, and s(PQ,m′)[P [i]] > σ for any P [i] ∈ P ′

d+d′+1. Thus, s(PQ,m′) /∈ Σ∗.
Assume that m′ is a non-decreasing integer sequence of length d+d′ +1 such

that m′[i] < 0 for some i. Then, m′[1] < 0. By the definition, cPQ[1] = 1. Hence,
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C(PQ,m′)[1] = cPQ[1]+m′[1] ≤ 0, and s(PQ,m′)[P [i]] ≤ 0 for any P [i] ∈ P ′
1. Thus,

s(PQ,m′) /∈ Σ∗.
Therefore, the lemma holds. �
By using these facts and the following lemma, we show Theorem 2. The fol-

lowing lemma describes about the number of non-decreasing sequences.

Lemma 5 (Lemma 9 of [23]). Let M(s, t) be the number of non-decreasing
sequence of length s of elements in [0, t − 1]. For any positive integers s and t,

M(s, t) =
(

s + t − 1
t − 1

)

.

Proof (of Theorem 2). It is clear from the definition of s(PQ,m) that s(PQ,m1) �=
s(PQ,m2) for any distinct sequences m1,m2 ∈ M. From Lemmas 3, 4, M produces
all strings w such that P is the forward suffix array and Q is the backward suffix
array of w. Hence, the number of all solution strings is equal to the size of M.
From Lemma 5, the number of elements in M is

(
d′+σ

σ−d−1

)
(by setting s = d+d′+1

and t = σ − d). �

5 Enumerating Strings from Suffix Arrays

In this section, we consider enumeration problems. Due to the previous section,
each m produces a solution string w, and the w can be computed by using m and
given permutations. In this paper, we consider enumerating all m instead of all
solution strings. Our algorithm computes all m in lexicographically increasing
order w.r.t. solution strings. We propose two enumeration algorithms, one is for
a single permutation and another is for two permutations. We explain only the
first algorithm (for a single permutation) in this paper (in Sect. 5.1) since the
second algorithm can be obtained by a natural extension based on the previous
section.

5.1 Enumerating Strings from the Forward Suffix Array

Let SP be the set of strings which have P as the forward suffix array, namely,
SP =

⋃
m∈MP

s(P,m). mk ∈ MP denotes the non-decreasing sequence of length n
of elements in [0, σ−d−1] such that s(P,mk) is the lexicographically k-th smallest
string in SP . If m = 〈〈0〉〉n, it is clear that s(P,m) is the lexicographically smallest
string in SP (i.e., m1 = 〈〈0〉〉n). Similarly, if m = 〈〈σ − d − 1〉〉n, s(P,m) is the
lexicographically largest string in SP (i.e., m|MP | = 〈〈σ − d − 1〉〉n).

We show a way to compute mk+1 when we know mk in the following lemma.
Due to a technical reasons, we assume that mk[n + 1] = σ − d − 1 for all k.

Lemma 6. Let ik = arg max
�

P [�] where � ∈ {i | mk[i] < mk[i + 1], 1 ≤ i ≤ n}
for any 1 ≤ k < |MP |. Then,

mk+1[i] =

⎧
⎪⎨

⎪⎩

mk[i] + 1 (if P [i] = P [ik]),
mk[i] (if P [i] < P [ik]),
mk+1[i − 1] (if P [i] > P [ik]).

(2)
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Proof. From the definition of s(P,m), we show the correctness of the following in
order to prove the correctness of Eq. (2):

⎧
⎪⎨

⎪⎩

s(P,mk+1)[P [i]] = s(P,mk)[P [i]] + 1 (if P [i] = P [ik]),
s(P,mk+1)[P [i]] = s(P,mk)[P [i]] (if P [i] < P [ik]),
s(P,mk+1)[P [i]] ≤ s(P,mk)[P [i]] (if P [i] > P [ik]).

It is clear that s(P,mk) ≺ s(P,mk+1) holds since s(P,mk)[1, P [ik] − 1] = s(P,mk+1)[1,
P [ik] − 1] and s(P,mk)[P [ik]] < s(P,mk+1)[P [ik]]. We prove that there does not
exist k′ such that s(P,mk) ≺ s(P,mk′ ) ≺ s(P,mk+1). Assume for a contradiction
that there exists k′ such that s(P,mk) ≺ s(P,mk′ ) ≺ s(P,mk+1). By the assumption,
s(P,mk)[1, P [ik] − 1] = s(P,mk′ )[1, P [ik] − 1] = s(P,mk+1)[1, P [ik] − 1]. This implies
that either s(P,mk′ )[P [ik]] = s(P,mk)[P [ik]] or s(P,mk′ )[P [ik]] = s(P,mk+1)[P [ik]]
holds.

Suppose that s(P,mk′ )[P [ik]] = s(P,mk)[P [ik]] (see also Fig. 2). Let j = min{i |
s(P,mk)[i] ≺ s(P,mk′ )[i]} and i′ be the integer such that P [i′] = j. Then, mk[i′] <
mk′ [i′] (∵ s(P,mk)[j] = bP [j] + mk[i′] and s(P,mk′ )[j] = bP [j] + mk′ [i′]). Let
i′′ = min{i | mk′ [i′] ≤ mk[i], i′ < i}. Then, mk[i] < mk′ [i′] for any i ∈ [i′ +
1..i′′ − 1]. Since mk′ is a non-decreasing sequence, mk′ [i′] ≤ mk′ [i] for any i ∈
[i′ + 1..i′′ − 1]. Therefore, for any i ∈ [i′ + 1..i′′ − 1], we have mk[i] < mk′ [i]
and thus s(P,mk)[P [i]] < s(P,mk′ )[P [i]]. Since s(P,mk)[1, j − 1] = s(P,mk′ )[1, j − 1],
P [i] > j for any i ∈ [i′ + 1..i′′ − 1]. Thus, P [i′′ − 1] > j (= P [i′]) > P [ik] holds.
By the definition of i′′, mk[i′′ − 1] < mk[i′′]. Hence, mk[i′′ − 1] < mk[i′′] and
P [ik] < P [i′′ − 1], which contradicts the definition of ik.

Suppose that s(P,mk′ )[P [ik]] = s(P,mk+1)[P [ik]]. Let j = min{i | s(P,mk′ )[i] ≺
s(P,mk+1)[i]} and i′ be the integer such that P [i′] = j. Then, mk′ [i′] < mk+1[i′].
Let i′′ = max{i | mk+1[i] ≤ mk′ [i′], i < i′}. Then mk′ [i′] < mk+1[i] for any i ∈
[i′′+1..i′−1]. Since mk′ is a non-decreasing sequence, mk′ [i] ≤ mk′ [i′] for any i ∈
[i′′+1..i′−1]). Therefore, for any i ∈ [i′′+1..i′−1], we have mk′ [i] < mk+1[i] and
thus s(P,mk′ )[P [i]] < s(P,mk+1)[P [i]]. Since s(P,mk′ )[1, j − 1] = s(P,mk+1)[1, j − 1],
P [i] > j for any i ∈ [i′ + 1..i′′ − 1]. Thus, P [i′′ + 1] > j (= P [i′]) > P [ik] holds.
Although, this implies that mk+1[i′′] = mk+1[i′′ + 1] has to hold by the third
case of Eq. (2), mk+1[i′′] < mk+1[i′′ + 1] holds by the definition of i′′. This is a
contradiction.

Hence, such k′ cannot exist, showing that Eq. (2) correctly updates mk

to mk+1. Finally, we show that this update procedure eventually produces
〈〈σ − d − 1〉〉n. Suppose that mk �= 〈〈σ − d − 1〉〉n. This implies that there exists
i ≥ 1 such that mk[i] < σ − d − 1. Thus, there always exists ik such that
1 ≤ ik ≤ n, and we can update mk to mk+1. �

Now we show an efficient algorithm that traverses all m ∈ MP . We can
overwrite mk+1 on mk from left to right, due to Eq. (2). Let m(k,i) be the non-
decreasing sequence of integers which is updated from the first to the i-th ele-
ments, namely, m(k,i) = mk+1[1, i]mk[i + 1, n]. Notice that m(k,n) = mk+1 (an
example is given in Fig. 3).
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Fig. 2. This figure shows the conditions of strings (left) and m (right), when
s(P,mk′ )[P [ik]] = s(P,mk)[P [ik]] holds.

Fig. 3. This is an example of computing mk+1 from P and mk which are shown in the
figure. An arrowed line which is drawn between two adjacent values indicates that the
left value is strictly smaller than the right. An underlined value is different from the
value which is the same position in the previous array. We have omitted m(k,i) from
the figure if equal to m(k,i−1) (e.g., m(k,7) = m(k,6)).

In our algorithm, we maintain sets U(k,i) and D(k,i) defined as follows:

U(k,i) = {P [j] | m(k,i)[j] < m(k,i)[j + 1], 1 ≤ j ≤ n},

D(k,i) = {(j, P [j]) | m(k,i)[j − 1] < m(k,i)[j], 1 ≤ j ≤ n}.

Remark that mk[0] = 0,mk[n+1] = σ −d−1 for any 1 ≤ k ≤ |MP |. We can see
that the maximum element of U(k−1,n) is P [ik], which is required for updating
mk to mk+1 (Eq. (2)). Values in D(k,n) are searched to find i where P [i] > P [ik]
and mk[i] �= mk+1[i] to update the remaining positions (third case of Eq. (2)).

By the following operations, we can update U(k,i−1) to U(k,i) (respectively,
D(k,i−1) to D(k,i)).

When mk[i] is rewritten as mk[i] + 1 (the first case of Eq. (2)), we

– insert P [i − 1] to U(k,i−1) (if not a member),
– insert P [i] to D(k,i−1) (if not a member),
– if mk+1[i] = mk[i + 1],
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• delete P [i] from U(k,i−1),
• delete P [i + 1] from D(k,i−1).

When mk[i] is rewritten as mk+1[i − 1] (the third case of Eq. (2)), we

– insert P [i] to U(k,i−1) (if not a member),
– insert P [i + 1] to D(k,i−1) (if not a member),
– delete P [i − 1] from U(k,i−1),
– delete P [i − 1] from D(k,i−1).

We can correctly update U(k,i) and D(k,i) by the above operations, due to
simple observations on mk and Lemma 6. Roughly speaking, U(k,i) stores each
position which is the left position of an arrowed line (in Fig. 3) in m(k,i), and
D(k,i) stores each positions which is the right position of an arrowed line in m(k,i).

The number of operations is constant for each changed value in mk. The total
number of operations to compute U(|MP |−1,n) and D(|MP |−1,n) can be bounded
by O(|MP |), which can be seen from the following arguments: For each k, there
is exactly one update on mk, corresponding to the first case of Eq. (2), which
increments a value for mk. Thus, the total number of such updates is |MP |. For
each update that corresponds to the third case of Eq. (2) and mk[i] �= mk+1[i],
a value of mk is decreased. Since only one value is incremented when updating
mk to mk+1, the total number of values which can be decreased is also bounded
by |MP |.

By maintaining U(k,i) by using a balanced search tree, we can insert or delete
an element in O(log n) time since the size of the above set is O(n). We can also
find the maximum element in the set in O(log n) time. This implies that we can
find P [ik] (and ik) in O(log n) time. On the other hand, we maintain D(k,i) by
using a priority search tree [19].

Lemma 7 ([19]). Let S be a dynamic set of ordered pairs (x, y) over the set
[1, j], and consider the following operations applied to S:

1. Insert (delete) a pair (x, y) into (from) S.
2. Given query integers x0, x1, and y0, among all pairs (x, y) in S such that

x0 ≤ x ≤ x1 and y ≤ y0, find a pair with the smallest x.

These operations can be done in O(log n) time with an O(n) space data structure
where n is the cardinality of S.

Note that we can easily change the condition of y ≤ y0 to y ≥ y0 by consider-
ing the reversed y-axis. Let i′ be some position in m such that mk+1[i′] �= mk[i′],
and i′′ the largest position in m such that mk+1[i′′] �= mk[i′′] and i′′ < i′ if it
exists, or i′′ = 0 otherwise. Assume that we have computed m(k,i′′). By setting
query integers as x0 = i′′ +1, x1 = n and y0 = P [ik]+1 we can find i′ in O(log n)
time. Hence, we can traverse all m ∈ MP (with no outputs) in O(|MP | log n)
time in total.

Theorem 3. We can traverse all m ∈ MP in lexicographically increasing order
w.r.t. solution strings in O(|MP | log n) time and O(n) space.
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It is easy to see that we can output all m ∈ MP (instead of strings) explicitly.

Corollary 1. We can compute all m ∈ MP in lexicographically increasing order
w.r.t. solution strings in O(|MP |n) time and O(n) working space.

We propose a compact representation of all m ∈ MP . Let μk be the set of
pairs (i, δi), for any i which satisfies mk[i] �= mk+1[i], where δi = mk+1[i]−mk[i].
Our data structure is defined as follows:

– the ordered set of μk for all 1 ≤ k < |MP |, and
– mi for all i = jτ (1 ≤ j ≤ � |MP |

τ �) where τ is a parameter.

It is clear from the above algorithm that this data structure is O( |MP |
τ n+ |MP |)

space (O( |MP |
τ n) space for all mi and O(|MP |) space for all μk), and it can be

computed in O( |MP |
τ n + |MP | log n) time. By using this data structure, we can

return the lexicographically j-th solution string, for any given 1 ≤ j ≤ |MP |,
in O(τn) time (we first find the most nearest explicit m, and we decode all m
from the nearest one to the j-th by using μ). If we set τ = n, we can compute
the j-th solution string in O(n2) time with a linear space data structure.

Theorem 4. We can compute in O( |MP |
τ n + |MP | log n) time, an O( |MP |

τ n +
|MP |)-space data structure that can answer the lexicographically j-th solution
string in O(τn) time for any given j.

Finally, we state our result for the problem of two permutations. We can
obtain the following results by natural extensions of the above arguments.

Theorem 5. We can traverse all m ∈ M in lexicographically increasing order
w.r.t. solution strings in O(|M| log n) time and O(n) space.

Theorem 6. We can compute O( |M|
τ n + |M|)-space data structure which

returns the lexicographically j-th solution strings in O(τn) for any given j in
O( |M|

τ n + |M| log n) time.
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Abstract. The suffix array is a fundamental data structure for
many applications that involve string searching and data compression.
Designing time/space-efficient suffix array construction algorithms has
attracted significant attentions and considerable advances have been
made for the past 20 years. We obtain the first in-place linear time suffix
array construction algorithms that are optimal both in time and space
for (read-only) integer alphabets. Our algorithm settles the open prob-
lem posed by Franceschini and Muthukrishnan in ICALP 2007. The open
problem asked to design in-place algorithms in o(n log n) time and ulti-
mately, in O(n) time for (read-only) integer alphabets with |Σ| ≤ n. Our
result is in fact slightly stronger since we allow |Σ| = O(n). Besides, we
provide an optimal in-place O(n log n) time suffix sorting algorithm for
read-only general alphabets (i.e., only comparisons are allowed), recov-
ering the result obtained by Franceschini and Muthukrishnan which was
an open problem posed by Manzini and Ferragina in ESA 2002.

Keywords: Suffix sorting · Suffix array · In-place

1 Introduction

In SODA 1990, suffix arrays were introduced by Manber and Myers [25] as
a space-saving alternative to suffix trees [9,29]. Since then, it has been used
as a fundamental data structure for many applications in string processing,
data compression, text indexing, information retrieval and computational biol-
ogy [1,10,12,14,15]. Particularly, the suffix arrays are often used to compute
the Burrows-Wheeler transform [5] and Lempel-Ziv factorization [39]. Compar-
ing with suffix trees, suffix arrays use much less space in practice. Abouelhoda
et al. [2] showed that any problem which can be computed using suffix trees
can also be solved using suffix arrays with the same asymptotic time complex-
ity, which makes suffix arrays very attractive both in theory and in practice.
Hence, suffix arrays have been studied extensively over the last 20 years (see
e.g., [11,18,19,22,31,33,34]). We refer the readers to the surveys [8,35] for many
suffix sorting algorithms.

c© Springer Nature Switzerland AG 2018
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In 1990, Manber and Myers [25] obtained the first O(n log n) time suffix
sorting algorithm over general alphabets. In 2003, Ko and Aluru [22], Kärkkäinen
and Sanders [18] and Kim et al. [21] independently obtained the first linear time
algorithm for suffix sorting over integer alphabets. Clearly, these algorithms are
optimal in terms of asymptotic time complexity. However, in many applications,
the computational bottleneck is the space as we need the space-saving suffix
arrays instead of suffix trees, and significant efforts have been made in developing
lightweight (in terms of space usage) suffix sorting algorithms for the last decade
(see e.g., [4,11,13,22,26,28,31–34]). In particular, the ultimate goal in this line
of work is to obtain in-place algorithms (i.e., O(1) additional space), which are
also asymptotically optimal in time.

1.1 Problem Setting

Problem: Given a string T = T [0 . . . n − 1] with n characters, we need to
construct the suffix array (SA) which contains the indices of all sorted suffixes
of T (see Definition 1 for the formal definition of SA).

Here, we consider the following two popular settings. We measure the space
usage of an algorithm in the unit of words same as [11,31]. A word contains
�log n� bits. One standard arithmetic or bitwise boolean operation on word-sized
operands costs O(1) time.

1. Read-only integer alphabets: The input string T is read-only. Each T [i] ∈
[1, |Σ|], where |Σ| = O(n). Note that the constant alphabets (e.g., ASCII
code) is a special case of integer alphabets, and the read-only integer alpha-
bets is commonly used in practice.

2. Read-only general alphabets: The input string T is read-only and the only
operations allowed on the characters of T are comparisons. Each comparison
takes O(1) time. We cannot write the input space, make bit operations, even
copy an input character T [i] to the work space. Clearly, Ω(n log n) time is a
lower bound for suffix sorting in this case, as it generalizes comparison-based
sorting.

The workspace used by an algorithm is the total space needed by the algo-
rithm, excluding the space required by the input string T and the output suffix
array SA. An algorithm which uses O(1) words workspace to construct SA is
called an in-place algorithm. See Tables 11 and 2 for existing and new results.

1.2 Related Work and Our Contributions

Read-Only Integer Alphabets. In ICALP 2007, Franceschini and Muthukr-
ishnan [11] posed an open problem for designing an in-place algorithm that takes
o(n log n) time or ultimately O(n) time for (read-only) integer alphabets with

1 Some previous algorithms state the space usages in terms of bits. We convert them
into words.



270 Z. Li et al.

Table 1. Time and workspace of suffix sorting algorithms for read-only integer alpha-
bets Σ

Time Workspace (words) Algorithms

O(n2 log n) cn + O(1) c < 1 [26–28]

O(n2 log n) |Σ| + O(1) [16]

O(n2) O(n) [38]

O(n log2 n) O(n) [36]

O(n log n) O(n) [23,25]

O(vn) O(n/
√

v) v ∈ [1,
√

n] [19]

O(n
√|Σ| log(n/|Σ|)) O(n) [3]

O(n log log n) O(n) [20]

O(n log log |Σ|) O(n log |Σ|/ log n) [13]

O(n log |Σ|) |Σ| + O(1) [32]

O(n) O(n) [18,19,21,22]

O(n) n + n/ log n + O(1) [33,34]

O(n) |Σ| + O(1) [31]

O(n) O(1) This paper

|Σ| ≤ n (in fact, they did not specify whether the input string T is read-only or
not). The current best result along this line is provided by Nong [31], which used
|Σ| words workspace (Nong’s algorithm is in-place if |Σ| = O(1), i.e., constant
alphabets). Note that in the worst case |Σ| can be as large as O(n). We list
several previous results and our new result in Table 1.

In this paper, we settle down this open problem by providing the first optimal
linear time in-place algorithm, as in the following theorem. Note that our result is
in fact slightly stronger since we allow |Σ| = O(n) instead of |Σ| ≤ n mentioned
in the open problem [11].

Theorem 1 (Main Theorem). There is an in-place linear time algorithm for
suffix sorting over integer alphabets, even if the input string T is read-only and
the size of the alphabet |Σ| is O(n).

Read-Only General Alphabets. Now, we consider the case where the only
operations allowed on the characters of string T (read-only) are comparisons.
See Table 2 for an overview of the results. In 2002, Manzini and Ferragina [28]
posed an open problem, which asked whether there exists an O(n log n) time
algorithm using o(n) workspace. In 2007, Franceschini and Muthukrishnan [11]
obtained the first in-place algorithm that runs in optimal O(n log n) time. Their
conference paper is somewhat complicated and densely-argued.

We also give an optimal in-place algorithm which achieves the same result,
as in the following theorem. In addition, our algorithm does not make any bit
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Table 2. Time and workspace of suffix sorting algorithms for read-only general alpha-
bets

Time Workspace (words) Algorithms

O(n log n) O(n) [23,25]

O(vn + n log n) O(v + n/
√

v) v ∈ [2, n] [4]

O(vn + n log n) O(n/
√

v) v ∈ [1,
√

n] [19]

O(n log n) O(1) [11]

O(n log n) O(1) This paper

operations while theirs uses bit operations heavily. Our algorithm is also arguably
simpler.

Theorem 2. There is an in-place O(n log n) time algorithm for suffix sorting
over general alphabets, even if the input string T is read-only and only compar-
isons between characters are allowed.

1.3 Difficulties and Our Approach

Difficulties: Typically, the suffix sorting algorithms are recursive algorithms.
The size of the recursive (reduced) sub-problem is usually less than half of the
current problem. See e.g., [11,19,22,31,33–35]. However, all previous algorithms
require extra arrays, e.g., bucket array (which needs |Σ| words at the top recur-
sive level and n/2 words at the deep recursive levels), type array (which needs
n/ log n words) and/or other auxiliary arrays (which need up to O(n) words), to
construct the reduced problems and use the results of the reduced problems to
sort the original suffixes.2

In particular, Nong et al. [33] made a breakthrough by providing the SA-
IS algorithm which only required one bucket array (which needs max{|Σ|, n/2}
words) and one type array (n/ log n words). Note that the bucket array and type
array are reused for each recursive level.

Currently, the best result was provided by Nong [31]. However, Nong’s algo-
rithm still requires the bucket array for the top recursive level, but not for the
deeper levels. Hence, it needs |Σ| words instead of max{|Σ|, n/2} words. Note
that |Σ| can be O(n) in the worst case for integer alphabets. For the type array,
Nong used this bucket array to indicate the type information at the top recursive
level. For the deeper levels, Nong removed the type array.

Thus, the main technical difficulty is to remove the workspace for the bucket
array at the top recursive level since there is no extra space to use. Note that
it is non-trivial since T is read-only and SA needs to store the final order of all
suffixes. Besides, the previous sorting steps or tricks may not work if one removes
the bucket array. For example, Nong [31] used the bucket array to indicate the

2 The definitions of bucket array and type array can be found in Sect. 2.
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type information. If the bucket array was removed, one would need the type
array.

Our Approach: We briefly describe our optimal in-place linear time suffix sort-
ing algorithms that overcome these difficulties. We provide an interior counter
trick which can implicitly represent the dynamic LF/RF-entry information (see
Sect. 2 for the definition) in SA. Besides, we provide a pointer data structure
which can represent the bucket heads/tails in SA. Combining these two tech-
niques, we can remove the workspace needed by the bucket array entirely. Note
that it is non-trivial for the top recursive level which is the most difficult part,
since the pointer data structure needs nonconstant workspace and we only have
O(1) extra workspace. As a result, we divide the sorting step into two stages
to address this issue. In order to remove the type array, we provide some use-
ful properties and observations which allows us to retrieve the type information
efficiently. For the general alphabets case, we provide simple sorting steps and
extend the interior counter trick to obtain an optimal in-place O(n log n) time
suffix sorting algorithm.

Organization: The remaining of the paper is organized as follows. Section 2
covers the preliminary knowledge. In Sect. 3, we describe the framework and the
details of our optimal in-place suffix sorting algorithm for the read-only integer
alphabets. Finally, we conclude in Sect. 4. For the read-only general alphabets,
we defer the details of our optimal in-place algorithm to the full version of this
paper [24].

2 Preliminaries

Given a string T = T [0 . . . n−1] with n characters, the suffixes of T are T [i . . . n−
1] for all i ∈ [0, n − 1], where T [i . . . j] denotes the substring T [i]T [i + 1] . . . T [j]
in T . To simplify the argument, we assume that the final character T [n − 1]
is a sentinel which is lexicographically smaller than any other characters in Σ.
Without loss of generality, we assume that T [n − 1] = 0.3 Any two suffixes in
T must be different since their lengths are different, and their lexicographical
order can be determined by comparing their characters one by one until we see
a difference due to the existence of the sentinel.

Definition 1. The suffix array SA contains the indices of all suffixes of T which
are sorted in lexicographical order, i.e., suf(SA[i]) < suf(SA[j]) for all i < j,
where suf(i) denotes the suffix T [i . . . n − 1].

For example, if T = “1220”, then all suffixes are {1220, 220, 20, 0} and SA =
[3, 0, 2, 1]. Note that SA always uses n words no matter what the alphabets Σ
are, since it contains the permutation of {0, . . . , n − 1}, where n is the length of
T .

A suffix suf(i) is said to be S-suffix (S-type suffix) if suf(i) < suf(i + 1).
Otherwise, it is L-suffix (L-type suffix) [22]. The last suffix suf(n−1) containing
3 Some previous papers use $ to denote the sentinel.
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only the single character 0 (the sentinel) is defined to be an S-suffix. Equivalently,
the suf(i) is S-suffix if and only if (1) i = n − 1; or (2) T [i] < T [i + 1]; or (3)
T [i] = T [i + 1] and suf(i + 1) is S-suffix. Obviously, the types can be computed
by a linear scan of T (from T [n − 1] to T [0]). We further define the type of a
character T [i] to S-type (or L-type resp.) if suf(i) is S-suffix (or L-suffix resp.).
For the same example, the types are “SLLS”.

A suffix suf(i) is called an LMS-suffix (Leftmost S-type) if T [i] is S-type
and T [i − 1] is L-type, for i ≥ 1 [33]. Similarly, a character T [i] is called LMS-
character if suf(i) is LMS-suffix. A substring T [i . . . j] is called an LMS-substring
if both T [i] and T [j] are LMS-characters, and there is no other LMS-characters
between them, or i = j = n − 1 (the single sentinel). We also define the LML-
suffix (Leftmost L-type), LML-character and LML-substring similarly.

Obviously, the indices of all suffixes, which begin with the same character,
must appear consecutively in SA. We denote a subarray in SA for these suffixes
with the same beginning character as a bucket, where the head and the tail of
a bucket refer to the first and the last index of the bucket in SA respectively.
Moreover, we define the first common character as its bucket character. For the
same example SA = [3, 0, 2, 1], the buckets are {SA[0],SA[1],SA[2, 3]} and the
bucket characters are 0, 1, 2, respectively. If the bucket character is T [i], we refer
to the bucket as bucket T [i]. The bucket head and tail of bucket 2 is 2 and
3, respectively. Note that S-suffixes always appear after the L-suffixes in any
bucket, i.e., if an S-suffix and an L-suffix begin with the same character, the
L-suffix is always smaller than the S-suffix.

Induced Sorting: The induced sorting technique, developed by Ko and Aluru
[22], is responsible for many recent advances of suffix sorting algorithms [11,31,
33–35], and is also crucial to us. It can be used to induce the lexicographical order
of L-suffixes from the sorted S-suffixes. Now, we briefly introduce the standard
induced sorting technique which needs the bucket array and type array explicitly.
The bucket array contains |Σ| integers and each denotes the position of a bucket
head/tail (depending on induced sorting the L-suffixes or S-suffixes) in SA. The
type array contains n bits and each entry denotes an L/S-type information for
T (i.e., 0 for L-type and 1 for S-type).

Inducing the Order of L-suffixes from the Sorted S-suffixes: Assume
that all indices of the sorted S-suffixes are already in their correct positions in
SA (i.e., in the tail of their corresponding buckets in SA). Now, we define some
new notations (e.g., LF/RF-entry) to simplify the representation. We scan SA
from left to right (i.e., from SA[0] to SA[n − 1]). We maintain an LF-pointer
(leftmost free pointer) for each bucket which points to the leftmost free entry
(called the LF-entry) of the bucket. The LF-pointers initially point to the head
of their corresponding buckets. When we scan SA[i], let j = SA[i] − 1. If suf(j)
is an L-suffix (indicated by the type array), we place the index of suf(j) (i.e., j)
into the LF-entry of bucket T [j], and then let the LF-pointer of this bucket T [j]
point to the next free entry. The LF-pointers are maintained in the bucket array.
If suf(j) is an S-suffix, we do nothing (since all S-suffixes are already sorted in
the correct positions). We give a running example in our full version [24].
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Sorting all S-suffixes from the sorted L-suffixes is completely symmetrical: we
scan SA from right to left, maintaining an RF-pointer (rightmost free pointer) for
each bucket which points to the RF-entry (rightmost free entry) of the bucket.

The idea of induced sorting is that the lexicographical order between suf(i)
and suf(j) is decided by the order of suf(i+1) and suf(j +1) if suf(i) and suf(j)
are in the same bucket (i.e., T [i] = T [j]). We only need to specify the correct
order of these L-suffixes in the same buckets since we always place the L-suffixes
in their corresponding buckets. Consider two L-suffixes suf(i) and suf(j) in the
same bucket. We have suf(i+1) < suf(i) and suf(j+1) < suf(j) by the definition
of L-suffix. Since we scan SA from left to right, suf(i + 1) and suf(j + 1) must
appear earlier than suf(i) and suf(j). Hence the correctness of induced sorting
is not hard to prove by induction.

Actually, Nong et al. [33] observed that one can sort all L-suffixes from the
sorted LMS-suffixes (instead of S-suffixes). Roughly speaking, the idea is that
in the induced sorting, only LMS-suffixes are useful for sorting L-suffixes. We
also provide a running example in the full version [24]. They also showed that
one can use the same induced sorting step to sort all LMS-substrings from the
sorted LMS-characters of T .

Note that in this preliminary section, the induced sorting steps are not in-
place since they require explicit storage for the bucket and type arrays.

3 Suffix Sorting for Read-Only Integer Alphabets

In this section, we provide an interior counter trick which can implicitly repre-
sent the dynamic LF/RF-entry information in SA. Besides, we provide a pointer
data structure which can represent the bucket heads/tails in SA. Combining
these two techniques, we can remove the workspace needed by the bucket array
entirely. To address the issue of the hardest part (i.e. the top recursive level),
we divide the sorting step into two stages. For removing the type array, we give
some useful properties and observations between string T and SA to obtain the
L/S-type information.

3.1 Framework

First, we define some notations. Let nL and nS denote the number of L-suffixes
and S-suffixes, respectively. Let n1 denote the length of the reduced problem T1,
i.e., n1 equals to the number of LMS-suffixes (Case 1) or LML-suffixes (Case 2).
Note that the number of LMS-characters, LMS-suffixes, and LMS-substrings are
the same. Now, we describe the framework of our algorithm as follows:

1. If nL ≤ nS (i.e., the number of L-suffixes is no larger than that of S-suffixes),
then:
(1) (Sect. 3.2) Sort all LMS-characters of T .

We use counting sort to sort all LMS-characters of T in SA[n−n1 . . . n−1].
In the counting sort step, we use SA[0 . . . n/2] as the temporary space
(counting array). After this step, all indices of the sorted LMS-characters
are stored in SA[n − n1 . . . n − 1].
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(2) (Sect. 3.4) Induced sort all LMS-substrings from the sorted LMS-
characters.
This induced-sorting step is the same as Step (4) below where we induced-
sort all suffixes from the sorted LMS-suffixes. Thus, we only describe the
details of this step in Sect. 3.4. After this step, all indices of the sorted
LMS-substrings are stored in SA[n − n1 . . . n − 1].

(3) (Sect. 3.3) Construct and solve the reduced problem T1 from the sorted
LMS-substrings.
We construct the reduced problem T1 using the ranks of all sorted LMS-
substrings which are stored in SA[n−n1 . . . n−1], where the ranks of LMS-
substrings correspond to the lexicographical order of the sorted LMS-
substrings. Then we get the reduced problem T1 in SA[0 . . . n1 − 1] and
solve T1 recursively to obtain the sorted LMS-suffixes. In the recursive
step, we use SA1 = SA[n−n1 . . . n−1] as the output space for T1. After this
step, all indices of the sorted LMS-suffixes are stored in SA[n−n1 . . . n−1].

(4) (Sect. 3.4) Induced sort all suffixes of T from the sorted LMS-suffixes (T1).
We induced-sort all suffixes of T from the sorted LMS-suffixes which are
stored in SA[n − n1 . . . n − 1]. Note that the in-place implementation of
this induced sorting step is the main technical part of our optimal in-place
algorithm. As we discussed before, we develop the interior counter trick
and the pointer data structure, and then divide this sorting step into two
stages to remove the workspace. After this step, all indices of the suffixes
of T are sorted and stored in SA[0 . . . n − 1].

2. Otherwise, execute the above steps switching the role of LMS with LML.

Without loss of generality, we assume that nL ≤ nS . Note that we compare
the number of L-suffixes and S-suffix at the beginning since we need half of the
space of SA to construct our pointer data structure for induced-sorting the L-
suffixes (from the sorted LMS-suffixes) and S-suffixes (from the sorted L-suffixes)
in Step (4). Note that the empty space is enough since the number of LMS-
suffixes (i.e., n1) and L-suffixes (i.e., nL) both are less than or equal to n/2, where
n1 ≤ n/2 since any two LMS-characters are not adjacent by the definition of
LMS-characters, and nL ≤ n/2 since nL ≤ nS . Note that for previous algorithms
(e.g., [31,33]), they do not need the comparison at the beginning since they use
the bucket array (which needs |Σ| words workspace) in the induced sorting step
(i.e. Step (4)). Here, we construct the pointer data structure and combine our
interior counter trick to remove the bucket array.

Now, we describe the details of our in-place algorithm in the following sec-
tions.

3.2 Sort All LMS-Characters of T

In this section, we sort all LMS-characters of T and place their indices in SA[n−
n1 . . . n − 1]. Recall that n1 denotes the number of LMS-characters.

Now, we describe the details. Since |Σ| = O(n), we can assume that |Σ| ≤ dn
for some constant d. We divide the LMS-characters of T into 2d partitions and
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sort each partition one by one. The partition i contains the LMS-characters which
belong to

[
i|Σ|
2d + 1, (i+1)|Σ|

2d

]
, for 0 ≤ i < 2d. We use mi to denote the number

of LMS-characters in partition i. Then for each partition i, we use the standard
counting sort (see e.g., [7, Chap. 8]) to sort these mi LMS-characters (the LMS-
characters can be identified by scanning T once from right to left). Concretely, we
use SA[0 . . . n/2] as the temporary counting array, and use SA[n/2 +

∑i−1
j=0 mj +

1 . . . n/2+
∑i

j=0 mj ] as the output array. After this counting sort step, the indices
of these mi sorted LMS-characters have been placed in SA[n/2 +

∑i−1
j=0 mj +

1 . . . n/2 +
∑i

j=0 mj ].
Note that we can use the counting sort step for each partition. Because the

gap of each partition is |Σ|
2d ≤ dn

2d = n
2 , the space of SA[0 . . . n/2] is enough for the

temporary counting array (its size equals to the gap) of counting sort step. It is
not hard to see that the sorting step takes O(n) time and uses O(1) workspace
since we only make 2d times of counting sort steps (each step takes linear time).

After sorting all 2d partitions, all indices of the sorted LMS-characters are
placed in SA[n/2 + 1, n/2 +

∑2d−1
j=0 mj ] (i.e., SA[n/2 + 1, n/2 + n1]). Then we

move them to SA[n − n1 . . . n − 1], which can be easily done in linear time and
O(1) workspace.

3.3 Sort All LMS-Suffixes of T by Solving the Reduced Problem T1

Construct the Reduced Problem T1: We construct the reduced problem
T1 using the ranks of all sorted LMS-substrings which are stored in SA[n −
n1 . . . n − 1] from the Step (2) (see the framework in Sect. 3.1), where the ranks
of LMS-substrings are corresponding to the lexicographical order of the sorted
LMS-substrings. Note that this construction step is not difficult and similar to
the previous algorithms (e.g., [31,33]).

Now, we spell out the details for this step. Initially, all LMS-substrings are
sorted in SA[n−n1 . . . n−1]. First, we let the rank of the smallest LMS-substring
(i.e., the LMS-substring which begins from index SA[n − n1]) be 0 (it must be
the sentinel). Then, we scan SA[n−n1 +1 . . . n−1] from left to right to compute
the rank for each LMS-substring. When scanning SA[i], we compare the LMS-
substring corresponding to SA[i] and that corresponding to SA[i−1]. If they are
the same, SA[i] gets the same rank as SA[i − 1]. Otherwise, the rank of SA[i]
is the rank of SA[i − 1] plus 1. Since we have no extra space, we need to store
the ranks in SA as well. In particular, the rank of SA[i] is stored in SA[�SA[i]

2 �].
There is no conflict since any two LMS-characters are not adjacent. Finally, we
shift nonempty entries in SA[0 . . . n − n1 − 1] to the head of SA, so that the
ranks occupy a consecutive segment of the space. Now, we have obtained the
reduced problem T1 which is stored in SA[0 . . . n1 − 1]. In other words, SA[i]
(i ∈ [0, n1 − 1]) stores the new name of the i-th LMS-substring with respect to
its appearance in the input string T . An example of this step can be found in
our full version [24].

Now, we have the following lemma.
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Lemma 1. T1 can be constructed and stored in SA[0 . . . n1 −1] using O(n) time
and O(1) workspace.

The proof easily follows from the following observation, i.e., the whole compari-
son process takes O(n) time because the total length of all LMS-substrings (each
of them is identified by this observation) is less than 2n.

Observation 1. For any index i of T , let j ∈ [i+1, n−1] be the smallest index
such that T [j] < T [j + 1] (So T [j] is S-type). Furthermore let k ∈ [i + 1, j] be
the smallest index such that T [l] = T [j] for any k ≤ l ≤ j. Then T [k] is the first
S-type character after index i. Moreover, all characters between T [i] and T [k]
are L-type, and characters between T [k] and T [j] are S-type.

Solve T1 Recursively: Now, we sort all LMS-suffixes by solving T1 recursively
and place their indices in the tail of SA (i.e. SA[n − n1 . . . n − 1]). This step is
carried out as follows:

1. We first solve T1 recursively. Recall that T1 is stored in SA[0 . . . n1 − 1]. We
define SA1 to be SA[n − n1 . . . n − 1] and use SA1 to store the output of the
subproblem T1.

2. Now, we put all indices of LMS-suffixes in SA. First we move SA1 to
SA[0 . . . n1 − 1] (i.e., move SA[n − n1 . . . n − 1] to SA[0 . . . n1 − 1]). Then
we scan T from right to left. For every LMS-character T [i], place i (i.e., index
of suf(i)) in the tail of SA.

3. For notational convenience, we define LMS[0 . . . n1] � SA[n − n1 . . . n − 1].
Now, we obtain the sorted order of all LMS-suffixes of the original string T
by letting SA[i] = LMS[SA[i]] for all i ∈ [0, n1 − 1].

4. Finally, we finish this step by moving SA[0 . . . n1 − 1] to SA[n − n1 . . . n − 1].
Now, all indices of the sorted LMS-suffixes are stored in SA[n − n1 . . . n − 1].

Lemma 2. All LMS-suffixes can be sorted by solving the reduced problem T1

recursively and placed in the tail of SA using O(n) time and O(1) workspace.

Proof. The time and space used in this step are easy to verify.4 We only show the
correctness of this step. Each character of T1 corresponds to an LMS-substring
of T and this character is the rank of the corresponding sorted LMS-substring.
Hence, the lexicographical order of LMS-suffixes of T is the same as the order
of suffixes in T1.

3.4 Induced-Sort All Suffixes of T from the Sorted LMS-Suffixes

In this section, we show how to in-place induced-sort all suffixes from the sorted
LMS-suffixes which have been placed in SA[n−n1 . . . n−1] from the previous step
(see Lemma 2). Let SAL = SA[0 . . . nL − 1] and SAS = SA[nL . . . n − 1]. Recall
4 If one worries the O(log n) workspace in the recursion, one can use the highest bits

in SA (i.e., n bits) to store them since the size of the reduced sub-problem is no
larger than n/2.
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that nS and nL denote the number of S-suffixes and L-suffixes, respectively. Also
note that nL + nS = n. First, we sort all nL L-suffixes from the sorted LMS-
suffixes which are stored in SA[n − n1 . . . n − 1] and store the sorted L-suffixes
in SAL. Then, we sort all nS S-suffixes from the sorted L-suffixes and store the
sorted S-suffixes in SAS . Note that sorting the L-suffixes from the sorted LMS-
suffixes is totally symmetrical as sorting the S-suffixes from the sorted L-suffixes,
as stated in Sect. 2. Thus, we only need to show the details of how to sort all nS

S-suffixes from the sorted L-suffixes which has already been stored in SAL, and
then store the sorted S-suffixes in SAS .

We briefly recall the original (not in-place) induced sorting step here. We
scan SA from right to left (i.e., from SA[n − 1] to SA[0]). When we scan SA[i],
let j = SA[i] − 1. If suf(j) is an S-suffix (indicated by the type array), we place
the index of suf(j) (i.e. j) into the RF-entry of bucket T [j], and then let the RF-
pointer of this bucket T [j] point to the next free entry. If T [j] is L-type, we do
nothing (since all L-suffixes are already sorted). The RF-pointers are maintained
by the bucket array.

Inducing the Order of S-suffixes from the Sorted L-suffixes: In order
to obtain the in-place algorithm, we develop the interior counter trick and the
pointer data structure to remove the workspace needed by the bucket array
and type array in the induced sorting step. Briefly speaking, the purpose of
the pointer data structure is to indicate the bucket tails of S-suffixes, and the
purpose of the interior counter trick is to maintain the RF-pointers of the buckets
dynamically. Thus, for a query of RF-entry for suf(j) in bucket T [j], we know
the tail of the bucket T [j] from the pointer data structure in constant time
(Lemma 6), then we use the interior counter trick to indicate the RF-entry in
this bucket (Lemma 3). For removing the type array, we use the Lemma 4 to
identify the L/S-suffixes in the induced sorting step.

Now, we describe the details step by step. First, we introduce our interior
counter trick assuming that the tail of the bucket of any S-suffix is known (which
is indicated by the Lemma 6).

Interior Counter Trick: Note that the buckets of the S-suffixes we discussed
in this section are in SAS = SA[nL . . . n − 1], since we already have placed the
sorted L-suffixes in SAL = SA[0 . . . nL − 1]. Thus, we only need to sort all S-
suffixes to their corresponding buckets in SAS and the buckets only contains
S-suffixes now.

Here we only describe the details of interior counter trick for one bucket since
other buckets are the same. Recall that we assume that the tail of the bucket
of any S-suffix is known (Lemma 6). Thus, to simplify the representation, we
assume the bucket from index 0 to index m − 1 of SAS , where m is the size of
this bucket (i.e. the number of S-suffixes in this bucket is m). We only describe
the case where m > 3 since other cases with m ≤ 3 are similar and simpler. We
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define five special symbols BH (head of the bucket), BT (tail of the bucket), E
(Empty), R1 (one remaining S-suffix) and R2 (two remaining S-suffixes)5.

First, we use three special symbols to initialize this bucket, i.e., let SAS [0] =
BH, SAS [m − 2] = E and SAS [m − 1] = BT. Let Si denote the index of the
i-th S-suffix which needs to be placed into the RF-entry of this bucket. Now,
we describe how to place the indices of these m S-suffixes into the RF-entry of
this bucket one by one. We distinguish the following four cases (To demonstrate
these four cases more clearly, we also provide a demonstration in our full version
[24].):

(1) If SAS [m − 1] = BT, and SAS [m − 2] = E or SAS [m − SAS [m − 2] − 3] 	= BH:
In this case, we place the index of the current S-suffix (i.e., Si) into the RF-
entry of this bucket, where 1 ≤ i ≤ m − 3. Concretely, we know the position
of the tail of this bucket in SAS , i.e., m − 1 according to the assumption.
Then, we use SAS [m− 2] as the counter to denote the number of the indices
of S-suffixes has been placed so far. Note that the RF-entry of this bucket
is pointed by this counter (i.e. RF-pointer). Thus, we can place the index of
the current S-suffix (Si) into the RF-entry of this bucket in constant time,
and then update the counter SAS [m − 2].

(2) If SAS [m − 1] = BT and SAS [m − SAS [m − 2] − 3] = BH: In this case, we
place the index of the third to last S-suffix (i.e. Sm−2) into the RF-entry of
this bucket. Concretely, we shift the previous m − 3 S-suffixes which stored
in SAS [1, . . . , m − 3] to SAS [2, . . . , m − 2]. Then, we place Sm−2 into SAS [1]
and let SAS [m − 1] = R2. This step takes O(m) time since we shift m − 3
S-suffixes.

(3) If SAS [m − 1] = R2: In this case, we place the index of the second to last
S-suffix (i.e. Sm−1) into the RF-entry of this bucket. We shift the previous
m−2 S-suffixes which stored in SAS [1, . . . , m−2] to SAS [2, . . . , m−1]. Then,
we place Sm−1 into SAS [1] and let SAS [0] = R1. This step takes O(m) time
since we shift m − 2 S-suffixes.

(4) Otherwise: In this case, we place the index of the last S-suffix (i.e. Sm) into
the RF-entry of this bucket. First, we know the tail of the bucket indicated
by our pointer data structure in constant time. Then, we search the entries
before the tail one by one until that we find the special symbol R1. We let this
entry to be Sm. This step takes O(m) time since we search m − 1 S-suffixes.

Note that this step uses O(1) workspace since there is no bucket array and
type array, and the space needed by our interior counter trick and pointer data
structure is in SAS . The purpose of the interior counter trick is to dynamic
maintain the RF-pointers of the buckets. E.g., for a query of RF-entry for suf(j)
in bucket T [j], first we know the tail of the bucket T [j] by the assumption, then

5 We use at most five special symbols in this paper. The special symbol is only used to
simplify the argument and we do not have to impose any additional assumption to
accommodate these symbols (including the read-only general alphabets case). These
special symbols can be handled using an extra O(1) workspace. The details can be
found in our full version [24].
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we use the interior counter trick to indicate the RF-entry in this bucket. We
have the following lemma.

Lemma 3. If the tail of the bucket of any S-suffix is known, one can sort the S-
suffixes from the sorted L-suffixes using the induced sorting step with the interior
counter trick in linear time and O(1) workspace.

Note that in the induced sorting step, one uses the type array to identify
whether the suf(j) is S-suffix or not. For removing the type array, we use the
following Lemma 4 to identify the type of the L- or S-suffix in the induced-
sorting step. Note that it is not hard to decide whether all S-suffixes in the
current scanning bucket T [SA[i]] are already sorted or not by using an extra
variable (reused for all buckets).

Lemma 4. If T [j] 	= T [SA[i]], the type of suf(j) can be obtained immediately,
where j = SA[i] − 1. Otherwise T [j] = T [SA[i]] (this case suf(j) belongs to the
current scanning bucket T [SA[i]]), if all S-suffixes of T that belong to bucket
T [SA[i]] are not already sorted, then the suf(j) is S-suffix.

Get the Tails of the Buckets: Now, there is only one thing left: how to know
the tails of the bucket of S-suffixes in the induced sorting step (this is the only
assumption we used above). The purpose of the pointer data structure is to
indicate the tails of the bucket of S-suffixes. However, the pointer data structure
requires cp words, where the value of cp will be specified later. Thus, we need
to divide this induced-sorting step into two stages. The first stage is to sort the
first nS −cp S-suffixes (i.e. the largest nS −cp S-suffixes), where our pointer data
structure exists. The second stage is to sort the last cp S-suffixes, where there is
no space for the pointer data structure.

The First Stage: Now, we construct our pointer data structure which supports
to find the tails of the buckets in constant time. We store the pointer data
structure in the tail of SAS , recall that SAS = SA[nL, . . . , n−1]. Now, we describe
the details. We divide the S-suffixes of T into 4d parts according to their first
characters, and construct the pointer data structure for each part respectively.
The 4d parts are divided by T [j] ∈

[
i|Σ|
4d + 1, (i+1)|Σ|

4d

]
, for 0 ≤ i < 4d. Let Di

denote the pointer data structure of the i-th part. We only show the details how
we construct the pointer data structure D0 as follows, since constructing Di is
similar for 0 < i < 4d (i.e., shift T [j] with i|Σ|

4d ).

(1) First, we let SAS [i] = 1 for all i ∈ [1, |Σ|
4d ]. Then we scan T from right to left.

For every S-type T [i] ∈ [1, |Σ|
4d ], we increase SAS [T [i]] by one.

(2) Then we scan SAS [1 . . . |Σ|
4d ] from left to right. We use a variable sum to

count the sum, first initialize sum = −1. For each SAS [i] which is being
scanned, first let sum = sum + SAS [i], then let SAS [i] = sum. Now, for any
S-suffix suf(i) satisfying T [i] ∈ [1, |Σ|

4d ], SAS [T [i]] − T [i] must indicate the
tail of bucket T [i] in SAS . Since we want every entry in SAS [1 . . . |Σ|

4d ] to be
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distinct, we initialize SAS [i] = 1 for all i ∈ [1, |Σ|
4d ] in Step (1). Hence the tail

of bucket T [i] is SAS [T [i]] − T [i].
(3) Finally, we construct D0 for SAS [1 . . . |Σ|

4d ] according to Lemma 5. D0 uses
at most c(n + |Σ|

4d )/ log n words space. We store D0 in the tail of SAS (i.e.,
SAS [nS − c(n + |Σ|

4d )/ log n . . . nS − 1]). D0 supports to find the tail of the
bucket of any S-suffix suf(i) satisfying T [i] ∈ [1, |Σ|

4d ] in constant time.

Lemma 5. For any m distinct integers 0 ≤ a0 < a1 . . . < am−1 ≤ n, where
m ≤ n and n > 1024, one can construct a data structure using linear time (i.e.,
O(n) time) and at most cn/ log n words, where 1 < c < 2, such that each query
to the i-th smallest integer ai (select(i)) can be answered in constant time.

The Lemma 5 is proved by using the classical select query in a bitmap (see
e.g., [6,17,30]). The proof can be found in our full version [24]. After this step,
the pointer data structure (i.e. Di for all 0 ≤ i < 4d) is stored in SAS [nS −
cp . . . nS −1], where cp = �4d · (c(n+ |Σ|

4d )/ log n)� ≤ �5dcn/ log n�. Now, we have
the following lemma.

Lemma 6. We can construct the pointer data structure in linear time, and this
pointer data structure uses at most cp words and can support to find the bucket
tail of any S-suffix in constant time.

Now according to Lemmas 3, 4 and 6, we can sort the first largest nS − cp S-
suffixes from the sorted L-suffixes which stored in SAL using the induced sorting
step.

The Second Stage: Now, we describe the details to sort the last cp S-suffixes
which is occupied by our pointer data structure. First, we move the sorted largest
nS −cp S-suffixes to the tail of SAS , i.e., SAS [cp, nS −1]. Then we scan the T from
right to left to place the smallest cp S-suffixes into SAS [0, cp − 1]. Now, we use
merge sort with the in-place linear time merging algorithm [37] to sort these cp

S-suffixes, the sorting key for each S-suffix is its beginning character. After this
sorting step, these cp S-suffixes have been placed in their corresponding buckets
in SAS [0, cp − 1]. Note that we can use the same sorting step (which we used
for sorting the first nS − cp S-suffixes) to sort the last cp S-suffixes without the
pointer data structure.

The key point is that we can use the binary search (instead of the pointer
data structure) to find the tails of the bucket for these cp S-suffixes, since cp ≤
�5dcn/ log n� is small enough (i.e. cp log n = O(n)) to maintain that the time
complexity of our algorithm is O(n). Using the binary search to extend interior
counter trick is not very difficult, one can find the details in our full version [24]
where we induced sort all L-suffixes from the sorted S-suffixes for the read-only
general alphabets.

After the second stage, all nS S-suffixes are sorted in SAS . Now we have all
sorted L-suffixes in SAL (i.e., SA[0 . . . nL − 1]) and all sorted S-suffixes in SAS

(i.e., SA[nL . . . n − 1]). Then, we use the stable, in-place, linear time merging
algorithm [37] to merge the ordered SAL and SAS (the merging key for SA[i] is
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T [SA[i]], i.e., the first character of suf(SA[i])). After this merging step, all suffixes
of T have be sorted in SA[0 . . . n − 1].

Theorem 3 (Main Theorem). Our Algorithm takes O(n) time and O(1)
workspace to compute the suffix array of string T over integer alphabets Σ, where
T is read-only and |Σ| = O(n).

4 Conclusion

In this paper, we present the optimal in-place algorithms for suffix sorting over
(read-only) integer alphabets and read-only general alphabets. All of them are
optimal both in time and space. Concretely, we provide the first optimal lin-
ear time in-place suffix sorting algorithm for (read-only) integer alphabets. Our
algorithms solve the open problem posed by Franceschini and Muthukrishnan
in ICALP 2007 [11]. For the read-only general alphabets (the details of this
part can be found in our full version [24]), we provide simple sorting steps to
obtain an optimal in-place O(n log n) time suffix sorting algorithm, which recov-
ers the result obtained by Franceschini and Muthukrishnan [11] which was an
open problem posed by Manzini and Ferragina [28].
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Abstract. In this article we present practical and theoretical improve-
ments to the computation of the Burrows-Wheeler similarity distribution
for all pairs of strings in a collection. Our algorithms take advantage of
the Burrows-Wheeler transform (BWT) computed for the concatenation
of all strings, instead of the pairwise construction of BWTs performed
by the straightforward approach, and use compressed data structures
that allow reductions of running time while still keeping a small memory
footprint, as shown by a set of experiments with real datasets.

Keywords: Burrows-wheeler transform · String similarity
String collections

1 Introduction

Computing similarities among strings is an important task in computational
biology and information retrieval [1,16]. Many measures of similarity exist
for strings. In particular, measures based on the Burrows-Wheeler transform
(BWT) [2,11] are interesting because they may be computed faster than mea-
sures based on alignments or block-edit distances while still capturing the notion
of similarity between strings.

Mantaci et al. [9] introduced an extension of the BWT for string collections,
called eBWT, and defined a class of similarity measures [10], which takes into
account how much the symbols of two strings S1 and S2 are shuffled in their
eBWT. The key idea is that the more the symbols are intermixed by the trans-
formation, the greater the number of shared substrings, and as consequence, the
more similar S1 and S2 are.

Yang et al. [21] recrafted the method by Mantaci et al. and introduced the
Burrows-Wheeler similarity distribution (BWSD) of two strings S1 and S2 based
on the BWT of their concatenation. The authors evaluated similarity measures
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based on the expectation and entropy of the BWSD to efficiently construct phy-
logenetic trees for DNA and protein sequences.

In this article we present two new algorithms to compute the BWSD-based
distances among all pairs of strings in a collection. Our algorithms compute the
BWT for the concatenation of all strings only once, instead of the straightforward
pairwise construction of BWTs performed by Yang [21], and use compressed
data structures that allow reductions of running time while still keeping a small
memory footprint, as shown by a set of experiments with real datasets.

The algorithms introduced here contribute to the solution of phylogenetic
tree reconstruction, where a matrix with all pairs of distances is computed and
given as input for algorithms like UPGMA and Neighbor-Joining, extensively
used in the literature [16]. Improved practical algorithms to evaluate pairwise
distances among strings are useful because biological datasets are getting larger
over time, both in the number and in the length of sequences. Growing datasets
are also a reality for non-biological textual documents, like web-pages, books
and other manuscripts, that may also be related by phylogenies to enable visual
exploration by content similarity [19].

2 Background

2.1 Notation

Let S[1, n] be a string of length |S| = n over an ordered alphabet Σ of size
σ. The i-th symbol of S is denoted by S[i], with 1 ≤ i ≤ n. The substring
S[i] . . . S[j] is denoted by S[i, j], for 1 ≤ i ≤ j ≤ n. S[i, n] is the suffix of S that
starts at position i. We assume that S[n] = $ is a terminator symbol which is
not present elsewhere in S and precedes every other symbol in Σ. Juxtaposition
is the concatenation operator of strings or symbols.

The suffix array (SA) [5,8] of a string S[1, n] is an array of integers in the
range [1, n] that gives the lexicographic order of all suffixes of S, such that
S[SA[1], n] < S[SA[2], n] < . . . < S[SA[n], n]. The suffix array may be con-
structed in O(n) time [15,20].

The Burrows-Wheeler transform (BWT) [2] of a string S is a reversible trans-
formation that tends to group identical symbols in runs. The BWT may be
defined in terms of the suffix array, such that

BWT[i] = S[SA[i] − 1] if SA[i] �= 1 or BWT[i] = $ otherwise. (1)

We define the context i of the BWT as the prefix of the i-th sorted suffix
up to and including the terminal symbol $. The BWT can be obtained from the
text and its SA or can be computed directly, without computing SA, in linear
time [18]. Figure 1(a) and (b) show the BWTs and the contexts for S1 = banana$
and S2 = anaba$.

Let S = S1, S2, . . . , Sd be a collection of d strings over Σ of lengths
n1, n2, . . . , nd, such that N =

∑d
i=1 ni. The suffix array for collection S can

be obtained by computing the SA of the concatenated string S = S1S2 . . . Sd,
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Fig. 1. BWTs for S1 = banana$, S2 = anaba$ and S = S1S2 = banana$1anaba$2.

such that each terminal symbol is replaced by a symbol $i, with $i < $j iff i < j.
The BWT for collection S can be also obtained by the SA of the concatenated
string as in Eq. 1.

The suffix array of S[1, N ] is commonly accompanied by the document array
(DA), where DA[i] stores the index of the string which context SA[i] came
from. Figure 1(c) shows the BWT, the document array and the contexts for
S = S1S2 = banana$1anaba$2.

The suffix array for S may be constructed in O(N) time on the concatenated
string without replacing the terminators by distinct symbols while still preserv-
ing the order among equal contexts [7], thus avoiding increasing the alphabet
size. DA can also be computed in O(N) time together with the suffix array of
S[1, N ] [7].

A rank query on a bitvector B[1, n], denoted by rank1(B, i), returns the num-
ber of occurrences of bit 1 in B[1, i]. A select query on a bitvector B[1, n], denoted
by select1(B, i), returns the position of the i-th occurrence of bit 1 in B[1, n]. B
can be preprocessed in O(n) time so that rank/select queries are supported in
O(1) time using o(n) bits of additional space [12].

A wavelet tree [6] for an array A[1, n] with σ distinct symbols supports
rank/select queries in O(lg σ) time. The wavelet tree uses n lg σ + o(n lg σ) bits
of space and can be built in O(n� lg σ√

lg n
�) time [13].

A range minimum query (rmq) on an array A[1, n] returns the smallest value
in a given interval of A, that is, rmq(i, j) = mini<k≤j{A[k]}, for 1 ≤ i < j ≤ n,
whereas a range maximum query (RMQ) returns the largest value in a given
interval. The rmq and RMQ operations may be solved in constant time with a
linear time preprocessing [3].
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2.2 Burrows-Wheeler Similarity Distribution

The Burrows-Wheeler similarity distribution (BWSD) of a pair of sequences is
constructed as follows. Given the BWT of S = S1S2, we create a bitvector α1,2

of size n1 + n2 such that α1,2[i] = 0 if BWT[i] = $2 or BWT[i] is a symbol from
string S1 and BWT[i] �= $1, and α1,2[i] = 1 otherwise. In other words, αx,y[i] = 0
if DA[i] = x, that is, the i-th context came from string Sx, and αx,y[i] = 1 if
DA[i] = y.

The bitvector α1,2 may be represented as a sequence of runs in the form
r = 0k11k20k31k4 . . . 0km1km+1 , where ikj indicates that i repeats kj times and
such that only k1 and km+1 may be zero. Note that |r| = m + 1 is at most
2 × (min(n1, n2) + 1). Let tkj

be the number of occurrences of 0kj and 1kj in r.
The largest possible value for kj is kmax = max(n1, n2). Let s = t1 + t2 + . . . +
tkj

+ . . . + tkmax .

Definition 1. BWSD(S1, S2) is the probability mass function P{kj = k} = tk/s
for k = 1, 2, . . . , kmax.

For example, given strings S1 = banana$1 and S2 = anaba$2 we have

BWT(S1S2) = aanbnn$1ba$2aaa

α1,2 = {0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0}

r = 011101120111011102110110

Therefore, t1 = 9, t2 = 2 and s = 11. The BWSD(S1, S2) is

P{kj = 1} = 9/11, P{kj = 2} = 2/11.

Yang et al. [21] defined the following distances between S1 and S2.

Definition 2. DM(S1, S2) = E(kj) − 1, where E(kj) is the expectation of
BWSD(S1, S2).

Definition 3. DE(S1, S2) = −∑
k≥1,tk �=0(tk/s) log2(tk/s) is the Shannon

entropy of BWSD(S1, S2).

Note that if S1 = S2, then the BWSD is P{kj = 1} = n1+n2
n1+n2

= 1 and
DM(S1, S2) = DE(S1, S2) = 0. Also, since α1,2 is equal to the complement of
α2,1, then both have the same distribution and DE(S1, S2) = DE(S2, S1) and
DM(S1, S2) = DM(S2, S1) for any two strings.

BWSD(S1, S2) can be computed straightforward by first building the BWT of
S1S2 and α1,2 and then obtaining t1, t2, . . . , tkmax and s. The BWT and α1,2 may
be constructed in linear time [7] and computing tkj

also takes linear time. Then
computing BWSD(S1, S2) takes O(n1 + n2) time. DM and DE can be computed
in O(max(n1, n2)) time.

Therefore, given a collection of d strings of total length N = n1+n2+· · ·+nd,
computing all pairs of distances will take

∑d
i=1

∑d
j>i O(ni + nj) = O(dN) time.
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3 Algorithm 1

Given a collection of strings S = {S1, S2 . . . , Sd} as input, Algorithm 1 outputs a
strictly upper triangular matrix M, where each entry M(i, j) is either DM(Si, Sj)
or DE(Si, Sj).

Algorithm 1 concatenates all strings into S = S1S2 . . . Sd. Then it computes
the BWT and the document array of S. In the sequel, the algorithm builds d
bitvectors Bi, |Bi| = N , where Bi[j] = 1 if DA[j] = i or Bi[j] = 0 otherwise, and
builds an O(1) rank/select structure over each Bi. The algorithm then proceeds
line by line on the matrix. To evaluate the distances among Si and Sj>i, the
algorithm selects the intervals over DA that contain consecutive occurrences of i.
For each interval the algorithm counts the kj occurrences of j, which corresponds
to the existence of the run 1kj in the sequence of runs for Si and Sj . The runs
0�j+1 are computed when �j consecutive intervals do not contain any occurrence
of j.

The pseudocode for the algorithm is shown in Fig. 1. At each step i = 1, . . . , d,
it computes the distances in line i of M as follows. Initially, qs is set to 1. For
p = 1, . . . , ni, the algorithm sets qe such that DA[qe] corresponds to the p-th
value equal to i in DA[1, N ]. Then, for each j ∈ [i + 1, d], it counts the number
of j’s in the interval DA[qs, qe] by computing rank1(Bj , qe) − rank1(Bj , qs) and
stores it in kj . If kj > 0 it means that the run 0�j1kj occurs in ri,j , thus tjkj

and

tj�j are increased by 1 and �j gets 1 for the next iteration. Otherwise, if kj = 0,
it means that the block 0�j1001 in ri,j can be collapsed into 0�j+1. To this end,
�j must be increased by one. In a next iteration, when kj > 0, counter tj�j is
increased by one. At the end of the iteration, qs receives qe.

The document array will enable selecting up to the last symbol of Si but
there can be symbols from Sj , j > i, to the right of such position. Then, lines
22-29 will deal with the last blocks of 0s and 1s accordingly and invoke the
computation of the distance measure from tj .

We remark that the second rank operation (lines 10 and 23) can be avoided
by storing the result of the first rank of the previous iteration. Also, another
practical improvement can be achieved by storing, in an auxiliary array, for each
position DA[i] = j the position of next value equal to j in DA, such that, in the
for loop of line 9, if the next position j in DA is greater than qe, we can avoid
two rank operations and go to line 17 (in this case kj = 0).

3.1 Theoretical Costs

The BWT and DA construction for the concatenated string S can be done in
O(N) time [7]. The construction of all bitvectors Bi with rank/select support
takes O(dN) time. For each string Si the algorithm performs ni select operations
(line 8), each one in O(1) time, and performs (ni + 1)d rank operations (lines
10 and 23), each one in O(1) time. The cost to compute each distance (line 28)
is O(ni + nj). Therefore, the total running time is O(dN) time. The space used
by the algorithm is N lg σ bits for S, N lg σ bits for the BWT, N lg d bits for DA
and dN + o(dN) bits for the bitvectors.
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Algorithm 1. Compute Distances
Data: S = {S1, S2, . . . , Sd}, |Si| = ni

Result: result matrix M
1 Build BWT and DA for S = S1S2 . . . Sd

2 Compute Bi, for i = 1, 2, . . . , d;
3 for i ← 1 to d do
4 qs ← 1;
5 �j ← 0 for all j;

6 tj
kj

← 0 for all kj ;

7 for p ← 1 to ni do
8 qe ← select1(Bi, p);
9 for j ← i + 1 to d do

10 kj ← rank1(Bj , qe) − rank1(Bj , qs);
11 if kj > 0 then

12 tj
�j
++ ; // 0�j

13 tj
kj
++ ; // 1kj

14 �j ← 1;

15 end
16 else
17 �j++;
18 end

19 end
20 qs ← qe;

21 end
22 for j ← i + 1 to d do
23 kj ← rank1(Bj , N) − rank1(Bj , qs);

24 tj
�j
++ ; // 0�j

25 if kj > 0 then

26 tj
kj
++ ; // 1kj

27 end

28 M[i][j] ← compute distance(tj , ni, nj);

29 end

30 end

3.2 Implementation Alternatives

Sparse Bitvectors: Each bitvector Bi[1, N ] is very sparse, containing exactly ni

bits equal to 1. We can use Elias-Fano compressed bitvectors with rank/select
support [17], and then each Bi will take ni lg N

ni
+1.92ni+o(ni) bits of space. The

total space will be reduced to
∑d

i=1(ni lg N
ni

+1.92ni+o(ni)) =
∑d

i=1 (ni lg N
ni

) +

1.92N + o(N) = N
∑d

i=1(
ni

N lg N
ni

) + 1.92N + o(N) = NH0(DA) + 1.92N + o(N)
bits, where H0(DA) is the entropy compressed size of DA. The running time will
increase to O(dN ×log N

avg(ni)
), because each rank operation will take O(log( N

ni
))

time, where avg(ni) is the average length of the strings.
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Wavelet Trees: Another alternative is replacing all bitvectors by a single wavelet
tree built over DA[1, N ]. The alphabet size of such wavelet tree is σ = d. The
space used by the d bitvectors will be reduced to N lg d + o(N log d) bits for the
wavelet tree. The running time will increase to O(dN lg d), because each rank
and select operations will take O(lg d) time.

4 Algorithm 2

For collections of unsimilar strings the number of runs in all Bi, say z, is much
smaller than the maximal possible O(dN). In the extreme case each Bi consists
of only two runs and the sum of all runs is therefore as small as z = d2 − d, but
Algorithm 1 would still require O(dN) steps to compute all αi,j . We will now
show how to improve the running time to O(N + z).

We precompute again the document array DA of the concatenation S =
S1S2 . . . Sd. Next, we compute an array Li for each string Si, with Li[j] equal to
the index of the j-th occurrence of i in DA and Li[0] = −1. Then, we compute
arrays prev and next, such that prev[i] = max{j|j < i and DA[j] = DA[i]} or
−1 if no such j exists and next[i] = min{j|j > i and DA[j] = DA[i]} or n if
no such j exists. We add a range minimum query structure on prev (rmqprev)
and a range maximum query structure on next (RMQnext) in order to extract
the leftmost and the rightmost occurrence of all r distinct documents in any
arbitrary range in DA in O(r) time; see [14] for details. Adding an array R, where
R[i] = rankDA[i](DA, i), allows to get the frequency of each distinct document in
O(1) time.

Now for each string i, we can compute the number and length of all runs which
break the runs of string i as follows. We traverse all intervals DA[1, Li[1] − 1],
DA[Li[ni] − 1, N − 1] and DA[Li[j − 1] + 1, Li[j] − 1] for j = 2, . . . , ni. For each
interval we use rmqprev and RMQnext to determine all r distinct documents and
their frequencies in r time. Note that it is not necessary in this step to maintain
the number and length of runs of string i as this is calculated symmetrically
when the other strings �= i are traversed.

4.1 Theoretical Costs

The precomputation of DA, prev, next, rmqprev, RMQnext and R requires O(N)
time and space. Generating all intervals requires

∑d
i=1(ni +1) = O(N) time and

each run of every αi,j is handled in constant time. So overall we achieve a time
complexity which is upper bounded by O(N + z), where z is the sum of all runs
in all αi,j (1 ≤ i < j ≤ d), improving the computation of all αi,j by Algorithm
1, which is O(dN). The cost to compute all pairs of distances is still O(dN).
Therefore, the total running time is O(dN).

5 Experiments

We have analyzed the performance of the algorithms for computing the upper
triangular entries of the distance matrix Md×d. We computed the expectation
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based distances DM (Definition 2). We compared the straightforward approach
(SF) [21] to compute the distances with three versions of Algorithm 1, using plain
bitvectors (BIT), using Elias-Fano compressed bitvectors (BIT sd) and using a
wavelet tree (WT).

Although Algorithm 2 has a better theoretical running time, the higher con-
stants in the RMQ queries degrades its practical performance. The worst case
for Algorithm 1 would be exhibited when the bitvector has the form {0ni1nj}∗,
an unlikely situation in practice where two strings are completely “different”,
for instance when they come from interleaved and disjoint alphabets. In a situa-
tion like this, Algorithm 2 could pay off. Thus, results for Algorithm 2 were not
included below.

The algorithms were implemented in C++ using the SDSL library [4] ver-
sion 2.01. We computed the BWTs and document arrays using gSACA-K2 [7].
The source code of all algorithms are freely available at https://github.com/
felipelouza/bwsd.

The experiments were conducted on a machine with Debian GNU/Linux 8
(kernel 3.16.0-4) 64 bits operating system with an Intel Xeon Processor
E5-2630 v3 20M Cache 2.40-GHz, with 384 GB of RAM and a 13 TB SATA
storage. The sources were compiled by g++ v 4.7.2, with flags std=c++14, -O3,
-m64 and -fomit-frame-pointer.

We used four different real data collections with up to d =15,000 strings,
described in Table 1.

Table 1. Datasets used in our experiments and their attributes.

Dataset σ Total length No. of strings Max length Avg length

reads 4 1,422,718 15,000 101 94.85

uniprot 25 3,454,210 15,000 2,147 230.28

ests 4 11,313,165 15,000 1,560 754.21

wikipedia 208 25,430,657 15,000 150,768 1,695.38

reads: is a collection of reads from Human Chromosome 14 (library 1)3.
uniprot: is a collection of protein sequences from Uniprot/TrEMBL protein
database release 2015 094.
ests: is a collection of DNA sequences of ESTs from C. elegans5.
wikipedia: is a collection of pages from a snapshot of the English-language
edition of Wikipedia6.

1 https://github.com/simongog/sdsl-lite.
2 https://github.com/felipelouza/gsa-is/.
3 http://gage.cbcb.umd.edu/data/index.html.
4 http://www.ebi.ac.uk/uniprot/download-center/.
5 http://www.uni-ulm.de/in/theo/research/seqana.html.
6 http://algo2.iti.kit.edu/gog/projects/ALENEX15/collections/ENWIKIBIG/.

https://github.com/felipelouza/bwsd
https://github.com/felipelouza/bwsd
https://github.com/simongog/sdsl-lite
https://github.com/felipelouza/gsa-is/
http://gage.cbcb.umd.edu/data/index.html
http://www.ebi.ac.uk/uniprot/download-center/
http://www.uni-ulm.de/in/theo/research/seqana.html
http://algo2.iti.kit.edu/gog/projects/ALENEX15/collections/ENWIKIBIG/
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5.1 Running Time

Figure 2(a) shows the running time (in seconds) of each algorithm. The running
time includes the time spent in building all auxiliary data structures, which is
a small fraction of the total time, less than 1%. The elapsed time was recorded
using the clock() function of ANSI/C.

BIT and BIT sd were the fastest algorithms in all experiments. Comparing
with the straightforward approach, BIT was 2.4 times faster than SF and BIT sd
was 2.0 times faster than SF, on the average. For wikipedia, BIT was 2.9 times
faster than SF, whereas BIT sd was approximately 2.4 times faster. WT was 1.4
times faster than SF, on the average.

This result shows that Algorithm 1 represents a practical improvement, even
with the additional time taken by the rank/select operations when plain bitvec-
tors (BIT) are replaced by compressed bitvectors (BIT sd) or wavelet trees (WT),
been always better than the straightforward approach.

5.2 Peak Memory

Figure 2(b) shows the log2 peak memory usage (in GB) of each algorithm. The
input collection uses N bytes, whereas the output matrix takes (d2−d)/2 entries
(upper triangular matrix), each one of 8 bytes (double variable). The total size
of the output matrix was approximately 868 MB for collections with 15,000
strings. We measured memory usage with the malloc count library7.

The space used by SF was the smallest. As expected it was very close to what
is needed for the input and output, as only O(max(ni)) bytes are added for the
BWT and auxiliary variables. BIT sd and WT were also lightweight. BIT sd used
approximately 1.02 GB and WT used approximately 1.23 GB when d = 15,000.
The space used by BIT was, however, much larger. For wikipedia, BIT used
approximately 64 times more space than SF. We remark that the data structures
used by the algorithms were the same, except for bitvectors and wavelet tree.

This result shows that the space used by the d plain bitvectors (BIT) can be a
bottleneck for Algorithm 1. On the other hand, the compressed data structures
used by BIT sd and WT provide good space-efficient alternatives comparable to
SF.

We may conclude that time and memory requirements of BIT sd show that
this version of Algorithm 1 provides a good time/space trade-off, being the best
alternative in our experiments.

7 http://panthema.net/2013/malloc count.

http://panthema.net/2013/malloc_count
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Fig. 2. Running time in seconds and peak memory in GB (in logarithmic scale) for the
aternatives of Algorithm 1 and for the straightforward approach on all datasets.
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6 Conclusions

In this paper we presented two new algorithms to compute the Burrows-Wheeler
similarity distribution (BWSD) for collections of strings. We evaluated our algo-
rithms with a set of real collections. Our experimental results showed that the
three different versions of Algorithm 1 outperformed the straightforward app-
roach by a factor of up to 2.9, and that two versions have a small memory
footprint.

Our algorithms contribute for solving the problem of comparing strings
in practice and are specially interesting for the case of biological sequences
and other large datasets. The approach may be extended to different distance
measures, broadening its application. Parallel versions for our algorithms may
improve practical applications as well.
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Abstract. In Discrete Applied Mathematics 2010, Adi et al. intro-
duce and study a variant of the well known Longest Common Subse-
quence problem, named Repetition Free Longest Common Subsequence
(RFLCS). In RFLCS the input consists of two strings A and B over an
alphabet Σ and the goal is to find the longest common subsequence con-
taining only distinct characters from Σ. Adi et al. prove that the problem
is APX -hard and show three approximation algorithms. Castelli et al.
(Operations Research Letters 2013) propose a heuristic genetic algorithm
and Blum and Blesa introduce metaheuristic algorithms (International
Conference on Artificial Evolution 2013 and Evolutionary Computation
in Combinatorial Optimization 2016).

In this paper we design and test several new heuristic algorithms for
RFLCS. The first algorithm, uses dynamic programming and in our test-
ing setup outperforms the algorithms of Adi et al. The second heuris-
tic algorithm improves upon the first and becomes comparable to the
state-of-the-art algorithms of Blum and Blesa. The third algorithm trans-
forms the RFLCS instance into an instance of the Maximum Independent
Set (MIS) problem with the same value of the optimum solution. Then,
we apply known algorithms for the MIS problem. We also augment one of
the approximation algorithms of Adi et al. and we prove that we achieve
an approximation of factor 2

√
min{|A|, |B|}.

Finally, we introduce a new variant of the LCS problem, named Mul-
tiset Restricted Common Subsequence (MRCS), that is a generalization
of RFLCS. We present an exact polynomial time algorithm for MRCS
for constant size alphabet. Additionally, we show that MRCS admits a
2
√

min{|A|, |B|} approximation.
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1 Introduction

Motivation and previous work. The Longest Common Subsequence prob-
lem (LCS) is long studied [3,4,15] and its importance is further emphasized by
its wide array of applications in diverse fields such as data compression, com-
putational biology, text editing and comparison (notable examples include the
Unix diff utility and plagiarism detection systems), pattern recognition.

In the field of computational biology, advances in genome sequencing tech-
niques are bringing about the need for algorithms to be used in the analysis and
reconstruction of genomic data. An important and often occurring task in this
field is, given two genomes, to compute the similarity between them. A straight-
forward solution is to compute the LCS between them as a similarity metric.
However, depending on the desired focus of the similarity metric, LCS may not
be the best choice. As a consequence, many LCS variants have been developed to
interpret the DNA sequence fragments resulting from various DNA sequencing
procedures.

There are situations where, for instance, we want to focus on the occurrence
of some specific sequence that is known to appear in both inputs. If there exist
many copies of other sequences in the inputs they might outweigh the target
sequence in the computation of the LCS similarity measure. This is the case
for the Constrained LCS problem (CLCS) first presented by Tsai [17] and later
proven to be equivalent to a particular case of Constrained Sequence Alignment
(CSA) [12].

Another approach to measure genome similarity is to consider only one rep-
resentative of each gene appearing in the inputs and disregard duplicates for the
purpose of contributing to the value of similarity. This has lead to the exemplar
model based LCS variants, namely the Exemplar LCS (ELCS) variants [8] and
the Repetition Free LCS (RFLCS) problem [1]. A generalization of the CLCS and
RFLCS problems exists in the Doubly Constrained LCS problem (DCLCS) [9].

To have a better overview of the considered common subsequence problem
family we present the formal definitions and go over some results regarding these
problems:

– LCS: Given a set of strings S, find the longest string that is a subsequence
to all the strings in S. A subsequence of a string is obtained by deleting some
symbols (possibly none). It is well known that the above problem is NP-hard
for a set of strings of arbitrary size [16] while 2-LCS is solvable in polynomial
time by dynamic programming [15,18].

– CLCS: Given two strings A, B and a set of constraint strings C, find a longest
common subsequence R of A and B such that each string in C is a subsequence
of R. For an arbitrary number of constraints the problem is NP-hard [14],
while CLCS with a single constraint string is polynomial time solvable [12,17].

– RFLCS: Let there be two strings A and B over an alphabet Σ. Find the
longest common subsequence R of A and B such that R contains at most one
occurence of each σ ∈ Σ. The problem is known to be APX -hard even when
each symbol can occur at most twice in each input string [1].
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– DCLCS is a generalization of CLCS and RFLCS: Given two strings A, B over
alphabet Σ, a set of constraint strings C and a function occurence : Σ → N,
find a longest common subsequence R of A and B such that each string in C is
a subsequence of R and R contains no more than occurence(σ) of each symbol
σ. Because it is a generalization, DCLCS inherits the hardness properties of
CLCS and RFLCS and is therefore APX -hard [9].

– ELCS has four versions and is based on splitting the alphabet Σ into two
disjoint sets, namely the set of mandatory symbols Σm and the set of optional
symbols Σo. The problems consist of finding R the LCS of two strings A and
B over alphabet Σ = Σm ∪ Σo such that:

• ELCS(1): R has exactly 1 of each σ ∈ Σm and arbitrary many σ ∈ Σo.
• ELCS(≥1): R has at least 1 of each σ ∈ Σm and arbitrary many σ ∈ Σo.
• ELCS(1,≤1): R has exactly 1 of each σ ∈ Σm and at most one of each

σ ∈ Σo.
• ELCS(≥1,≤1): R has at least 1 of each σ ∈ Σm and at most one of each

σ ∈ Σo.
Note that RFLCS is a special case of the last two problems when Σm = ∅. For
two input strings, it is known that 2-ELCS(1,≤1) and 2-ELCS(≥1,≤1) are
APX -hard even when each symbol may appear at most twice in each input
sequence [9]. Moreover, the existence of a feasible solution for 2-ELCS can be
determined in polynomial time if there are at most 3 occurrences in total of
each symbol in the input strings, but determining a feasible solution becomes
NP-hard if at most 3 occurrences of each symbol are allowed in each of the
input strings.

In this paper we select the RFLCS problem and design practical heuristic
algorithms for obtaining approximate solutions and give a new theoretical result
regarding a previous approximation algorithm. Motivated by genome similarity
metrics, we further introduce a new LCS variant, MRCS.

In the comparison of our designed algorithms, we often refer to the first
heuristic algorithm for RFLCS, namely Algorithm 1 from [1], henceforth called
A1. For the definition of A1 see Sect. 6.

It is noteworthy that in [10] Castelli et al. present a hybrid genetic algo-
rithm for approximating RFLCS which is noticeably better than A1 on shorter
inputs but not as good on longer input strings. In parallel with Castelli et al.,
Blum et al. present an alternative metaheuristic-based approach, Beam-ACO
[7]. Afterwards, Blum and Blesa apply a new metaheuristic named CMSA [5].
For a comprehensive review of the state-of-the-art algorithms for RFLCS, refer
to [6].

Our results. We focus our efforts on the RFLCS problem for which we obtain
these new results:

1. A dynamic programming heuristic algorithm for RFLCS is presented in Sect. 2
which obtains good solutions in practice. Our algorithm produces better aver-
age solution lengths than A1 in all tested cases (see Table 1).
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2. An improvement to the previous dynamic programming heuristic, named Top-
k is described in Sect. 3. The designed algorithm performance becomes com-
parable to that of the state-of-the-art algorithms [5–7,11] while maintaining
low computation time.

3. In Sect. 4 we design a way to transform any RFLCS instance into a Max-
imum Independent Set (MIS) problem instance. The solution for the MIS
problem can be transformed back into a solution for our RFLCS instance. As
a consequence, any heuristic for MIS can provide a solution for RFLCS.

4. We present experimental results regarding the heuristics in Sect. 5.
5. Section 6 describes a 2

√
min(n,m)-approximation for RFLCS based on A1.

We modify A1 to achieve an approximation that is not dependent on the
number of occurrences of the most frequent common symbol, but on the
length of the input sequences.

In this paper we also define and study a RFLCS generalization, named Mul-
tiset Restricted Common Subsequence (MRCS). The formal definition follows.

Problem 1 (MRCS). The input consists of two strings A and B of length n and
m, respectively, over an alphabet Σ and a multiset M of characters from Σ.
The goal is to find a common subsequence R between A and B, that contains
the maximum number of characters from M.

More precisely, the objective of MRCS as an optimization problem is to
minimize |M \ R| as a multiset difference or, equivalently, to maximize |M ∩ R|
as a multiset intersection.

Example 1.
A = abccbaa MRCS(A,B,bba) ∈ { abb, bba, abba, abbaa}
B = cabbaac MRCS(A,B,abc) ∈ { abc, cba, cbaa}

MRCS(A,B,cc) = cc

The solutions for the RFLCS problem are included in the special case of
MRCS where M = Σ. The MRCS solution set includes all RFLCS solutions
of the optimum length as well as all common subsequences of A and B which
contain these optimum solutions as a subsequence. To obtain RFLCS solutions,
one can find MRCS(A,B,Σ) and remove all repeated occurrences of each σ ∈ Σ.
As such, if MRCS(A,B,Σ) is solvable in polynomial time, then RFLCS(A,B)
can be solved in polynomial time as well. However, since RFLCS is APX -hard,
MRCS is APX -hard as well.

Regarding the newly introduced MRCS problem we are able to present the
following results:

1. An approximation algorithm for MRCS is given in Sect. 7. LCS is a natural
approximation for MRCS, almost in the same way A1 approximates RFLCS.
The difference is that it is not required to eliminate the symbols that appear
more than the required number of times, since such solutions are equally as
good as the optimum, according to the definition.

2. For a constant size alphabet we show that MRCS is solvable in polynomial
time in Sect. 8. Thus, the difficult cases of MRCS are like those of RFLCS
when the alphabet size grows linearly as a function of the input size.
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2 Dynamic Programming (DP) Heuristic for RFLCS

Given A = a1a2 . . . an, a string of length n, we denote the non-empty substring
between positions i and j as A[i..j] = aiai+1 . . . aj−1aj , with 1 ≤ i ≤ j ≤ n. The
length of such a substring is j − i + 1. We denote the empty substring of A as
any A[i..j] where i > j or that has j = 0.

Let S(i, j) be the subset of alphabet Σ that is used in the solution of our DP
heuristic algorithm for substrings A[1..i] and B[1..j]. Let SA,B denote S(n,m)
on inputs A and B of length n and m, respectively. We define S(i, j) as:

S(i, j) =

⎧
⎪⎨

⎪⎩

S(i − 1, j − 1) ∪ {ai}, if ai = bj = σt and σt /∈ S(i − 1, j − 1)
S(i − 1, j), if |S(i − 1, j)| ≥ |S(i, j − 1)|
S(i, j − 1), otherwise

(1)
Boundary conditions: S(i, 0) = ∅ and S(0, j) = ∅, for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.

By backtracking through the dynamic programming table that is constructed
from position (n,m) to (0, 0) we can easily recover the solution (common sub-
sequence). Otherwise, assume that S(i, j) is an ordered set (i.e. repetition free
subsequence) and the solution is always S(n,m) after algorithm termination.

The following example shows that this algorithm cannot have an approxima-
tion factor better than

√
OPT .

Example 2. Let rev : Σ∗ → Σ∗ be the function that reverses a string. With the
previous notation together with the colon operator : denoting string concatena-
tion we define recursively the following strings:

Pi+1 = rev(Ri+1) : Pi : Ri+1

Qi+1 = Qi : rev(Ri+1) : Ri+1

Additionally, let P1 = Q1 = σ (some start symbol) and let Ri+1 share no
symbols with Pi, have no repeated symbols and be of length i + 1. For instance:

Pi Qi |SPi,Qi
| |OPT |

a a 1 1
cb:a:bc a:cb:bc 2 3

fed:cbabc:def acbbc:fed:def 3 6
jihg:fedcbabcdef:ghij acbbcfeddef:jihg:ghij 4 10

In other words, we are able to describe a case where the optimum of the
solution increases by i at each step, while the solution size given by our algorithm
increases by 1. In the general case we get a solution of size n when the optimum
is n(n+1)/2. This is possible because of the way S(i, j) always selects S(i−1, j)
instead of S(i, j − 1) when they are of equal size.

The above example also brings us to the conclusion that:

Lemma 1. The DP algorithm is not symmetrical on the input strings i.e. SA,B

is not necessarily equal to SB,A.

In fact, on Example 2 SQi,Pi
is always the optimum.
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3 Top-k Heuristic for RFLCS

Analyzing the traces of our previously described DP algorithm on random
instances, we notice that we can perform some improvements. In the following,
we present our Top-k heuristic algorithm which builds upon DP.

First, let us consider the example in Fig. 1. The inputs are A=bdacbd and
B=abdcbd and the optimum solution is acbd. We observe that our DP algorithm
(pictured top left in Fig. 1) fails to reach the optimum because of the limitation
to select S(i, j) to be the S(i − 1, j) set, in case that |S(i − 1, j)| = |S(i, j − 1)|.
More specifically, the highlighted cell in the top left table does not contain a,
which is a component of the optimum. However, even if such choices are flipped
(the table of the modified algorithm is pictured top right in Fig. 1), we still fail
to retain a, because it is of smaller size than the bd set.

a b d c b d
b b b b b b
d b bd bd bd bd
a a b bd bd bd bd
c a b bd bdc bdc bdc
b a ab bd bdc bdc bdc
d a ab abd bdc bdc bdc

a b d c b d
b b b b b b
d b bd bd bd bd
a a a bd bd bd bd
c a a bd bdc bdc bdc
b a ab ab bdc bdc bdc
d a ab abd abd abd abd

a b d c b d
b b b b b b
d b b,bd b,bd b,bd b,bd
a a a,b a,bd a,bd a,bd a,bd
c a a,b a,bd ac,bdc ac,bdc ac,bdc
b a a,ab ab,bd ac,bdc acb,bdc acb,bdc
d a a,ab ab,abd abd,bdc acb,abd acb,acbd

Fig. 1. Three dynamic programming tables illustrating our Top-k heuristic. The inputs
bdacbd and abdcbd are displayed as the first column and line, respectively, for each
table. The top left table corresponds to our base DP algorithm where, upon encounter-
ing equally sized set candidates for (i, j), the set in the above cell (i−1, j) is preferred.
Similarly, in the top right, is the same DP algorithm with the modification that now
(i, j − 1) is preferred when the set candidates are equal size. The bottom table corre-
sponds to a Top-2 heuristic and obtains the optimum solution, acbd. The traces of the
obtained solutions are in bold and the critical decision points are highlighted.

Our idea is to retain several sets for each cell in the DP table, such that we
may reach a better solution. Keeping all of the sets leads to an exponential time
algorithm, so we keep at most k in each cell. A natural question that follows is:
how do we select which sets to keep? Retaining the largest sets alone hampers
the quality of the solution, as seen in Fig. 1. Given the example, what would be
a good heuristic to retain a in order to reach the optimum?

One answer is to also keep the sets that overlap the least with the remainder
of the two inputs. To be exact, retain the sets that have the smallest intersection
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with the intersection of the alphabets of the remainder of the inputs. For an
example, consider the moment we decide the contents of the highlighted a,bd
cell. We have chosen bd because of its size and then we have chosen a over b
because |a∩cbd| < |b∩cbd|.

For our implementation of this algorithm, each cell in the DP table will be
a set of sets. We consider for the contents of cell (i, j) the union of the sets at
(i−1, j −1), (i−1, j), (i, j −1). If ai = bj we are careful to add ai to each of the
sets inside set (i − 1, j − 1). Note that, since they are sets, nothing is changed
if ai is already present. We sort the entire collection in (i, j) by set size. In the
case of equally sized sets, the ones that overlap the remaining alphabet of the
inputs less, take precedence over the others. We then discard all but the top k
results. The solution is the largest of the sets in cell (n,m) for A[1..n], B[1..m].

4 A Polynomial Time Reduction from RFLCS to MIS

Given a graph G = (V,E), the objective of the Maximum Independent Set (MIS)
problem problem is to find the largest subset S ⊆ V such that no two vertices
from S are adjacent. The MIS problem is long studied and there are heuristic
approaches to approximating it that work well in practice, e.g. [2], as well as
exact algorithms, e.g. [19].

Theorem 1. Instances of RFLCS can be reduced in polynomial time to MIS
instances with the same optimum.

Proof. We describe how to transform a RFLCS instance into a MIS instance that
has the same value of the optimal solution. The resulting graph has a vertex set
V = {(i, j)|ai = bj} corresponding to all matching symbols between the two
input strings A, B. The solution for the MIS problem is a subset S ⊆ V and
each vertex (i, j) in S corresponds to a symbol ai contained in the solution for
the RFLCS problem. More precisely, each (i, j) corresponds to a matching in
the two input strings of symbol ai that we want in our solution. By building a
suitable edge set we can model the two constraints of our string problem:

1. Common subsequence: two matchings (i, j) and (k, �) can exist in a common
subsequence only if (k, �) are both either smaller or larger than (i, j). Other-
wise the matchings are mutually exclusive. For the MIS problem this becomes
an edge i.e. for all distinct (i, j) and (k, �) we add an edge between them if
(i < k) and (j > �).

2. Repetition-free: Two matchings (i, j) and (k, �) are mutually exclusive if ai =
ak because we require no more than one ai in the final solution. Therefore
we need to add edges between all such vertices, forming a clique for every
distinct symbol.

Moreover, since we require the maximum independent set, that immediately
leads to a longest repetition free common subsequence. ��
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5 Experimental Results Regarding Our Heuristics

In this section we showcase the results of testing our designed algorithms (DP
and Top-k). To analyze our RFLCS-to-MIS reduction method, we have chosen
to employ a basic greedy vetex cover algorithm as a proof of concept. The com-
plement of such a cover gives a solution for the MIS problem from which we
recover a solution to the initial RFLCS instance.

We compare in Table 1 the average solution length of the algorithms and we
use as a reference our own implementation of A1, which we consider represen-
tative amongst the three algorithms in [1].

Our test instances are pairs of strings of length n composed of uniformly
random strings (i.e. for each position in such a string, each symbol from the
alphabet Σ has equal chance to be selected). We prefer using a larger number of
instances (400) than the experiments of [1,5–7]. While this allows for much more
accurate values for the mean of the solution length, it is impossible to obtain
the optimum for each solution (in reasonable time) without a highly specialized
algorithm. As such, we follow the guidelines from [13] and provide the expected
value for the optimum solution for each batch of tests.

Remarks regarding the tests in Table 1:

1. Our testing shows that the mean of the solution length for our DP and Top-20
algorithms is superior to that of A1 on the same set of instances.

2. The solutions of Top-20 are consistently the best across all test instances.
3. However basic, our greedy vertex cover heuristic shows that there is much

potential for MIS heuristics in solving RFLCS. Best performance is observed
in the n/8 and 2n/8 cases, where its solutions are superior to that of A1 even
on length 512 inputs.

4. There is a missing value for the column MIS on length 512 and alphabet size
n/8. That is because the edge set of the constructed instances din not fit into
the test machine memory (8GB).

5. Due to lack of space, the running times of the algorithms were omitted. We
report that the highest average running time per instance was achieved by
Top-20 on length 512 and alphabet size n/8 at 6.94 s. For the same case, the
highest average time for the greedy vertex cover algorithm (including graph
construction in memory) reaches 3.55 s.

6. Although we cannot directly compare our results with those in [5,6] due to
the different number of test instances, we observe that our average solutions
for Top-20 are within 4% of the average solutions in [5,6].

6 A 2
√
min(n,m)-approximation for RFLCS

In [1] Adi et al. construct three algorithms that are p-approximations for the
RFLCS problem, where p = maxσ∈Σ mσ(A,B) and the amount mσ(A,B) rep-
resents the minimum between the number of occurrences of σ in A and the
occurrences of σ in B.

We give here the definition of A1:
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Table 1. Comparison between the average solution lengths of our algorithms and our
implementation of A1 from [1]. The first column is the size of the alphabet Σ and the
second column is the length n of the two strings A, B we approximate RFLCS on.
The third coumn is the value reported by A1. The next column represents the value of
the complement of a greedy vertex cover on reduced MIS instances. After that is the
average solution length of our DP algorithm. Then follows the average length reported
by the Top-20 heuristic. The column EOPT is the expected value of the optimum
solution calculated according to [13]. Finally, in the last column are plots describing
the fraction average solution

EOP T
over n and separately for each |Σ|. The data is computed

by averaging the results of 400 instances per case.
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Algorithm 1. A p-approximation for RFLCS
1. Compute the LCS of the input strings.
2. Remove all duplicates of each σ ∈ Σ (i.e. keep a random occurrence, if any).

We can use the results for A1 to obtain a 2
√

min(n,m)-approximation for
RFLCS, where n = |A|, m = |B|. The modified algorithm is as follows:

Algorithm 2. A 2
√

min(n,m)-approximation for RFLCS

1. Remove all the symbols σ from both A and B that have mσ(A, B) >
√

min(n, m).
2. Apply A1 on the resulting subsequences A′ and B′ over Σ′.

Theorem 2. Algorithm2 is a 2
√

min(n,m)-approximation for RFLCS.

Proof. The number of symbols σ ∈ Σ removed at Step 1 of the algorithm is at
most

√
min(n,m). If this was not the case, by removing more than

√
min(n,m)

symbols, each symbol occurring at least
√

min(n,m) times in each string, the
length of the removed subsequences exceeds the length of the shorter string,
contradiction. Thus, the value of the optimum solution OPT for the original
strings A, B is OPT ≤ (

√
min(n,m) + OPT2) where OPT2 is the optimum for

the two subsequences A′, B′ from Step 2 of the algorithm.
At Step 2 we apply the analysis from [1]. A1 gives us a solution S of size

greater or equal to
OPT2

maxσ∈Σ mσ(A′, B′)
.

Since for each σ ∈ Σ it is true that mσ(A′, B′) ≤ √
min(n,m) then

maxσ∈Σ mσ(A′, B′) ≤ √
min(n,m).

Therefore
OPT2

maxσ∈Σ mσ(A′, B′)
≥ OPT2√

min(n,m)
so that A1 gives us a

√
min(n,m)-approximation for RFLCS(A′, B′) in this case. Assume that there

exists at least 1 common symbol between A′ and B′. Then the following holds
and completes our proof:

S ≥ max

(

1,
OPT2√

min(n,m)

)

≥
√

min(n,m) + OPT2

2
√

min(n,m)
≥ OPT

2
√

min(n,m)
��

7 Approximation Algorithm for MRCS

A straightforward approximation for MRCS is the LCS of the input strings A, B.
By definition, an optimal solution for MRCS(A,B,M) is a common subsequence
R that maximizes |M ∩ R|. We observe that:

|M ∩ MRCS(A,B,M)| ≥ |M ∩ LCS(A,B)| ≥ |M ∩ A1(A,B)|
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Consider the special case when M = Σ. All common subsequences of A, B that
have RFLCS(A,B) as a subsequence are an optimal solution of this special case
of MRCS. The LCS of A, B has the same objective function value as A1 and
gives us the same approximation ratios. In other words:

|Σ ∩ MRCS(A,B,Σ)| ≥ |Σ ∩ LCS(A,B)| = |Σ ∩ A1(A,B)|
Therefore, in the general case, the LCS of the input strings also approximates
MRCS. In fact, this is a 2

√
min(n,m)-approximation.

8 A Polynomial Time Algorithm for MRCS
with Constant Size Alphabet

We show that solving the MRCS problem for a constant size alphabet |Σ| = �
can be done in polynomial time.

Let A = a1a2 . . . an and B = b1b2 . . . bm be the two input strings over alpha-
bet Σ = {σ1, σ2, . . . , σ�}. If M = {σ1

c1 , σ2
c2 , . . . , σ�

c�} is the multiset of symbols
whose occurrences we want to maximize in the resulting subsequence, then let
C = {c1, c2, . . . , c�} be count set of each σi in M. With this formulation, we are
searching for a solution with a count set X = {x1, x2, . . . , x�} that minimizes
the objective function

∑�
i=1 max(ci − xi, 0).

We use a boolean function F (i, j, x1, x2, . . . , x�) to denote the existence of a
solution with exactly xt occurrences of each symbol σt for substrings A[1..i] and
B[1..j].

Lemma 2. For 1 ≤ i ≤ n, 1 ≤ j ≤ m and xt = 0:

F (i, j, x1, x2, . . . , x�) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,if ai = bj = σt and
F (i − 1, j − 1, x1, x2, . . . , xt − 1, . . . , x�) = 1

F (i − 1, j, x1, x2, . . . , x�)∨
∨F (i, j − 1, x1, x2, . . . , x�), otherwise

(2)

The boundary conditions are:

1. F (i, j, 0, 0, . . . , 0) = 1 i.e. if no symbol is required then any common sub-
sequence of A and B is a solution (in particular, the empty subsequence is
certainly a solution).

2. F (i, 0, x1, x2, . . . , xt, . . . , x�) = 0 where xt = 0 : if there exists a nonzero xt,
since we cannot match any more σt from A then there is no solution.

3. F (0, j, x1, x2, . . . , xt, . . . , x�) = 0 where xt = 0 : if there exists a nonzero xt,
since we cannot match any more σt from B then there is no solution.

Proof. We prove by induction that F is correctly defined. For the first step we
consider two strings A and B and a multiset M = {σt} containing a single
required symbol. Thus we are in the case where we are concerned with the value
of F (i, j, 0, 0, . . . , xt = 1, . . . , 0). To solve the problem we evaluate if ai = bj =
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σt. Should this be true, the problem is reduced to F (i − 1, j − 1, 0, 0, . . . , 0)
which is known to be true (first boundary condition). Otherwise if ai = bj ,
the problem is reduced to whether F (i − 1, j, 0, 0, . . . , xt = 1, . . . , 0) is true or
F (i, j − 1, 0, 0, . . . , xt = 1, . . . , 0) is true. Because the strings are finite, we will
locate a pair such that ap = bq = σt for some p, q with 1 ≤ p ≤ i, 1 ≤ q ≤ j if
such a solution exists. Otherwise we end up finishing searching the strings and
obtain the value of boundary conditions 2 and 3 which is false. Thus, there is no
solution because A[1..i] and B[1..j] do not each contain at least one σt.

In the general step, we focus on satisfying the xt-th occurrence of some σt,
knowing the truth value of all F for up to xi occurrences of all σi and for up to
xt−1 occurrences of σt. If ai = bj and F (i − 1, j − 1, x1, x2, . . . , xt − 1, . . . , x�) =
1 from the induction hypothesis then F (i, j, x1, x2, . . . , xt, . . . , x�) is immediately
true by using the first case of the recurrence. Otherwise if ai = bj we go back
searching for one F (p, q, x1, x2, . . . , xt, . . . , x�) with 1 ≤ p ≤ i, 1 ≤ q ≤ j that
verifies ap = bq. If such a F (p, q, x1, x2, . . . , xt, . . . , x�) with ap = bq exists,
then we have to apply the first case of the definition to find its truth value
and we can immediately determine it because we know the truth values for all
F (p, q, x1, x2, . . . , xt − 1, . . . , x�) from the induction hypothesis. Otherwise, we
run into a boundary condition and a solution that satisfies xt occurrences of σt

does not exist, resulting in F (i, j, x1, x2, . . . , xt, . . . , x�) = 0.

Theorem 3. The MRCS of two input strings A = a1a2 . . . an and B =
b1b2 . . . bm over alphabet Σ = {σ1, σ2, . . . , σ�}, given multiset M =
{σ1

c1 , σ2
c2 , . . . , σ�

c�} can be computed in time O(nmt�), where t = max
σi

ci∈M
ci.

Proof. Using the dynamic programming approach we may construct a multidi-
mensional array to hold all values of F as we compute them starting with the
boundaries. The space required to store the array is O(nmt�). Each element is
visited once for storing its value. To compute the value for a specific index in
the array we are either in the first case where memory lookups are performed in
constant time or we are in the second case where we compute the logical or ∨
of two elements in the array also in constant time. During the construction of
the array, we may record the index (i, j, x1, x2, . . . , x�) that has the best solution
size x1 + x2 + · · · + x�. The total time required to find the solution is the size of
the array multiplied by the time needed to fill up each cell. Consequently, this
algorithm takes O(nmt�) time.

9 Conclusions and Future Work

We present polynomial time dynamic programming-based algorithms for RFLCS
whose average solutions are comparable to the state-of-the-art algorithms, while
maintaining a low computation time. It would be interesting to see how far the
average solution length can be pushed by further improving on these heuristics.
In particular, our Top-k heuristic can be used to quickly solve small instances
or provide useful initial solutions for exact methods (e.g. ILP model solving).
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We introduce a new problem, MRCS, which is APX -hard in the general case
and admits a 2

√
min(n,m)-approximation. For constant size alphabet, we show

that MRCS is polynomial time solvable.
We describe a way to use MIS heuristics to obtain a solution for RFLCS

from the transformed problem. Our comparative study regarding the solution
length given using this approach and the previous algorithms yields encouraging
results. It is worthwhile to employ and modify MIS heuristics in order to obtain
better algorithms for approximating RFLCS. The reduction is also suitable for
exact methods. Because we also have extra information about the cliques in the
graph we create, it is possible to obtain a speedup for the heuristic methods
used. In this way we may see good, fast solutions even if the heuristic considered
does not normally perform that well on general graphs.

For RFLCS we modify A1 to achieve an approximation factor that is depen-
dent on input length and not on the frequence of the most common symbol. As
stated by Adi et al. [1], it is interesting to see if there exists a constant factor
approximation algorithm for RFLCS.
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References

1. Adi, S.S., et al.: Repetition-free longest common subsequence. Discret. Appl.
Math. 158(12), 1315–1324 (2010). https://doi.org/10.1016/j.dam.2009.04.023,
traces from LAGOS07 IV Latin American Algorithms, Graphs, and Optimization
Symposium Puerto Varas - 2007

2. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the max-
imum independent set problem. J. Heuristics 18(4), 525–547 (2012). https://doi.
org/10.1007/s10732-012-9196-4

3. Apostolico, A.: String editing and longest common subsequences. In: Rozenberg,
G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 361–398. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-0 8

4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proceedings Seventh International Symposium on String Process-
ing and Information Retrieval, SPIRE 2000, pp. 39–48 (2000). https://doi.org/10.
1109/SPIRE.2000.878178

5. Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application to the
repetition-free longest common subsequence problem. In: Chicano, F., Hu, B.,
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Abstract. We consider the problem of inferring an edge-labeled graph
from the sequence of edge labels seen in a walk of that graph. It has
been known that this problem is solvable in O(n log n) time when the
targets are path or cycle graphs. This paper presents an online algorithm
for the problem of this restricted case that runs in O(n) time, based on
Manacher’s algorithm for computing all the maximal palindromes in a
string.

Keywords: Graph inference · Walk · Palindrome

1 Introduction

Aslam and Rivest [2] proposed the problem of minimum graph inference from
a walk. Let us consider an edge-labeled undirected (multi)graph G. A walk of
G is a sequence of edges e1, . . . , en such that each ei connects vi−1 and vi for
some (not necessarily pairwise distinct) vertices v0, v1, . . . , vn. The output of the
walk is the sequence of the labels of those edges. For a string w, minimum graph
inference from a walk is the problem to compute a graph G with the smallest
number of vertices such that w is the output of a walk of G. We give an example
in Fig. 1. With no assumption on graphs to infer, trivially the graph with a single
vertex with self-loops labeled with all output symbols is always minimum. The
problem has been studied for different graph classes in the literature.

a b c a

Fig. 1. Minimum path graph that has abcaacbbbaabccbbca as a walk output
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Aslam and Rivest [2] proposed polynomial time algorithms for the minimum
graph inference problem for path graphs and cycle graphs, which include the
variant of minimum path graph inference where a walk must start from an end
of a path graph and end in the other end (Table 1), which we call an end-
to-end walk. Raghavan [6] studied the problem further and showed that both
minimum path and cycle graph inference from walk can be reduced to path
graph inference from an end-to-end walk in O(n) time. Moreover, he presented
an O(n log n) time algorithm for inferring minimum path/cycle graph from a
walk, while showing inferring minimum graph with bounded degree k is NP-
hard for any k ≥ 3. Maruyama and Miyano [4] strengthened Raghavan’s result
so that inferring minimum tree with bounded degree k is still NP-hard for any
k ≥ 3. On the other hand, Maruyama and Miyano [5] showed that it is solvable
in linear time when trees have no degree bound. They also studied a variant
of the problem where the input consists of multiple path labels rather than a
single walk label, which was shown to be NP-hard. Akutsu and Fukagawa [1]
considered another variant, where the input is the numbers of occurrences of
vertex-labeled paths. They showed a polynomial time algorithm with respect to
the size of output graph, when the graphs are trees of unbounded degree and the
lengths of given paths are fixed. They also proved that the problem is strongly
NP-hard even when the graphs are planar of unbounded degree.

Table 1. Time complexity of minimum graph inference bounded degree 2 from a walk

Algorithms Connected graph bounded degree 2

Path Cycle

End-to-end walk General walk

Aslam and Rivest [2] O(n3) O(n3) O(n5)

Raghavan [6] O(n log n) O(n log n) O(n log n)

Proposed O(n) O(n) O(n)

This paper focuses on the problem on graphs of bounded degree 2, i.e., path
and cycle graphs. We propose a linear-time online algorithm that infers a mini-
mum path graph from an end-to-end walk. Thanks to Raghavan’s result [6], this
entails that one can infer a minimum path/cycle graph in linear time from a walk,
which is not necessarily end-to-end. Aslam and Rivest [2] showed that the min-
imum path graphs that have end-to-end walks xyyRyz and xyz coincide, where
x, y, z are label strings and yR is the reverse of y. Let us call a nonempty string
of the form yyRy a Z-shape. Their result implies that to obtain the minimum
path graph of a label string, one can repeatedly contract an arbitrary occurrence
of a Z-shape yyRy to y until the sequence contains no such substring. Then the
finally obtained string is just the sequence of labels of the edges of the minimum
path graph. Raghavan [6] achieved an O(n log n) time algorithm by introducing
a sophisticated order of rewriting, which always contract the smallest Z-shapes
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in the sequence. We follow their approach of repetitive contraction of Z-shapes
but with a different order. The order we take might appear more naive; We read
letters of the input string one by one and always contract the firstly found Z-
shape. This approach makes our algorithm online. Apparently finding Z-shapes
is closely related to finding palindromes. Manacher [3] presented a linear-time
“online” algorithm that finds all the maximal palindromes in a string. To realize
linear-time Z-shape elimination, we modify Manacher’s algorithm for Z-shape
detection and elimination. Our experimental results show that our algorithm is
faster than Raghavan’s in practice, too.

2 Preliminaries

For a tuple e = (e1, . . . , em) of elements, we represent (e0, e1, . . . , em) by e0;e
or (e0;e). For two integers i, j, we define [i : j] = { k | i ≤ k ≤ j }.

Let Σ be an alphabet. A sequence of elements of Σ is called a string and
the set of strings is denoted by Σ∗. The empty string is denoted by ε and the
set of nonempty strings is Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y, and z
are called a prefix, a substring, and a suffix of w, respectively. The length of w
is denoted by |w|. The i-th letter of w is denoted by w[i] for 1 ≤ i ≤ |w|. For
1 ≤ i ≤ j ≤ |w|, w[i : j] represents w[i] . . . w[j]. The reversed string of w is
denoted by wR = w[|w|] · · · w[1]. The string repeating w k times is wk.

A string y is called an even palindrome if y = xxR for a string x ∈ Σ∗. The
radius of y is r = |x|. We will call an even palindrome simply a palindrome,
because we consider only even palindromes in this paper. When y occurs as a
substring w[i : j] of a string w, the position c = i + r − 1 is called the center (of
the occurrence) of y. Especially, y is said to be the maximal palindrome centered
at c iff either i = 1, j = |w|, or w[i−1] �= w[j+1]. By ρw(c) we denote the radius
of the maximal palindrome centered at c in w. The sets {c − ρw(c) + 1, . . . , c}
and {c + 1, . . . , c + ρw(c)} of positions are called the left and right arms of the
maximal palindrome centered at c, respectively.

A string z is called a Z-shape if z = xxRx for a non-empty string x ∈ Σ+.
The tail of z is the suffix xRx. When z occurs as a substring z = w[i : j] of
a string w, the positions p1 = i + s − 1 and p2 = i + 2s − 1 are called the
left and right pivots (of the occurrence) of z. The occurrence of the Z-shape is
represented by a pair 〈p1, p2〉. Note that the left and right pivots are the centers
of the constituent palindromes xxR and xRx, respectively.

Example 1. For a string w = ababccbaabca, 〈5, 8〉 is an occurrence of Z-shape
w[3 : 11] = abccbaabc.

Minimum graph inference from a walk

Let us define a binary relation → over nonempty strings by xyyRyz → xyz for
x, z ∈ Σ∗ and y ∈ Σ+. We call a string w irreducible if there is no string w′ such
that w → w′. Aslam and Rivest [2] proved that every string w admits a unique
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irreducible string w′ such that w →∗ w′, where →∗ is the reflexive and transitive
closure of →. Let us call the string w′ the Z-normal form of w and denote it by
ŵ. Their result can be written as follows.

Theorem 1. ([2]) The sequence of the labels of the edges of the minimum path
graph with output T of an end-to-end walk is its Z-normal form T̂ .

Therefore, to infer the minimum path graph from an end-to-end walk is to cal-
culate its Z-normal form.

Example 2. The Z-normal form of T = cbaaaabccbaabba is T̂ = cba, which
is obtained by cbaaaabccbaabba → cbaabccbaabba → cbaabba → cba.
Here, underlines show Z-shapes to contract. Another way to obtain T̂ is
cbaaaabccbaabba → cbaaaabccba → cbaabccba → cba.

3 Irreducible and Suffix-Reducible Strings

We call a string w suffix-reducible if every proper prefix of w is irreducible but
w is reducible. Clearly a Z-shape occurs in a suffix-reducible string as a suffix.
By deleting its tail, we obtain an irreducible string. A string w is said to be
pseudo-irreducible if every proper prefix of w is irreducible.

Starting with w = u0 = ε, our algorithm repeats the following procedure.
We extend w = ui−1 by reading letters from the input string T one by one until
it becomes a suffix-reducible string w = vi. Then we reduce vi to ui = v̂i by
deleting the tail of the Z-shape and resume reading letters of T . By repeatedly
applying the procedure, we finally obtain the normal form w = T̂ .

Therefore, strings our algorithm handles are all pseudo-irreducible. We first
study mathematical properties of such strings.

Lemma 1. Every suffix-reducible string has a unique nonempty suffix palin-
drome and thus has a unique Z-shape.

There can be several suffix palindromes in an irreducible string. Lemma1 implies
that only one among those can become1 the tail of the unique Z-shape in a suffix-
reducible string (Lemma 1), in which moment the other ones that used to be
suffix palindromes are not suffix palindromes any more. This lemma suggests us
to keep watching just one (arbitrary) suffix palindrome when reading letters from
the input in order to detect a Z-shape. When the palindrome we are watching
has become a non-suffix palindrome, we look for another suffix palindrome to
track. Suppose we are tracking a suffix palindrome centered at c of radius r =
ρw(c) = |w| − c in w. When appending a new letter t from the input to w, it

1 To avoid lengthy expressions, we casually say that a palindrome centered at c in
x becomes or grows to a bigger palindrome in xy when ρx(c) < ρxy(c), without
explicitly mentioning several involved mathematical objects that should be under-
stood from the context or that are not important. Other similar phrases should be
understood in an appropriate way.
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is still a suffix palindrome in wt if and only if wt[c − r] = wt[c + r + 1] = t.
In that case, it is the tail of a Z-shape if and only if ρw(c − r − 1) ≥ r + 1.
Apparently we need to know the maximal radii at all positions to detect a Z-
shape but appending a new letter or deleting the tail of a Z-shape disturbs those
values even on positions that are not deleted. It takes more than linear time if
we keep recalculating the maximal radius at every position. Therefore, we have
to partly give up to maintain the exact values of maximal radii. However, there
is a moment when maximal radii are stable.

Definition 1. Let w be an irreducible string and c a position in w. We say that
c is stable in w, if for any string y, either

– there is a prefix x of y for which |ŵx| < c, or
– for any prefix x of y, ρŵx(c) = ρw(c).

Moreover, c is strongly stable if the former never happens.

That is, if c is stable, the maximum radius at c need not be recalculated when
appending letters or deleting a Z-shape’s tail at the end of the string, unless the
position itself is deleted. In the remainder of this section, we present conditions
for a position to be stable.

Let us write c �w d if c ≤ d − ρw(d) < d ≤ c + ρw(c) ≤ d + ρw(d), which
roughly means that the right arm of the palindrome centered at c includes the
left arm of the one at d. Clearly c �w d implies ρw(c) ≥ ρw(d). Moreover if
c �w d and c = d − ρw(d) then 〈c, d〉 is a Z-shape in w. Note that the condition
c ≤ d−ρw(d) in the above definition is redundant for a pseudo-irreducible string;
one can see that if c < d ≤ c + ρw(c) ≤ d + ρw(d) and d − ρw(d) < c, then 〈c, d〉
is a non-suffix Z-shape.

A palindrome chain from c0 in w is a sequence c = (c0, . . . , ck) of positions
in w such that ci−1 � ci for each i = 1, . . . , k. The frontier of the palindrome
chain c in w is the position Fw(c) = ck + ρw(ck), and the maximum frontier
from a position c is

Fw(c) = max{Fw(c) | c is a palindrome chain from c } .

The originator A (d) of a position d in w is the smallest position A (d) = c
such that c ≤ d ≤ Fw(c). Figure 2 illustrates a palindrome chain in a string
w = xabbcddeeddcbbaabbcddcddcy.

The stability property can be rephrased in various ways.

x a b b c d d e e d d c b b a a b b c d d c b b c y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 2. In a string w = xabbcddeeddcbbaabbcddcbbcy, (8, 15, 20, 23) is a palindrome
chain, whose frontier is 25. The originator of any position between 8 and 25 is 8
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Algorithm 1. Z-detector
1 Let Pals be an empty array and w = ε;
2 Function ZDetect(T )
3 T := $T#; // $ and # are sentinel symbols
4 w.append(T ); // append a new letter from T to w
5 while there remains to read in T do
6 w.append(T );
7 ZDetectInChain(|w| − 1);

8 output “No Z-shape” and halt;

9 Function ZDetectInChain(c)
10 b = |w|;
11 Extend(c);
12 for d := b to c + Pals[c] do // in increasing order
13 if d + Pals[2c − d] < c + Pals[c] then Pals[d] := Pals[2c − d] ;
14 else ZDetectInChain(d) and break;

15 Function Extend(c)
16 r := |w| − c − 1;
17 while w[c + r + 1] = w[c − r] do
18 r := r + 1;
19 if Pals[c − r] ≥ r then output 〈c − r, c〉 and halt;
20 w.append(T );

21 Pals[c] := r;

Proposition 1. The following four are equivalent:

(1) c is stable in w,
(2) Fw(c) < |w|,
(3) for any string y, either

– there is a prefix x of y for which |ŵx| < c, or
– for any prefix x of y, |ŵx| > Fw(c),

(4) c �w d implies that d is stable in w for all d.

Here is another rephrasing.

Corollary 1. Suppose that positions c + 1, . . . , |w| − 1 are all stable in an irre-
ducible string w. Then a position c is stable if and only if c + ρw(c) < |w|.
It is not hard to see that a position c is strongly stable if and only if all the
positions d ≤ c are stable. If a position c is strongly stable in w, then |ŵx| > c
for any x.

4 Algorithm

Our algorithm is based on Manacher’s [3] for calculating the radius of the max-
imal palindrome at every position in an input. Algorithm1 detects the first
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occurrence of a Z-shape in the input string T . Commenting out Line 19 gives
his original algorithm with slightly different appearance. The algorithm reads
letters from the input one by one, while focusing on the left-most suffix palin-
drome among possibly many others. The algorithm computes the maximum
radius at each position from left to right and stores those values in the array
Pals. The function Extend(c) calculates Pals[c] naively comparing letters on the
left and right in the same distance from c, knowing that the radius is at least
|w| − c − 1. Due to the symmetry, the maximum radii at positions in the right
arm of a big palindrome coincide those at the corresponding positions in the
left arm, unless those palindromes in the right arm may go beyond the right
end of the big palindrome. The function ZDetectInChain(c) copies the value of
Pals[c − r] to Pals[c + r] (d = c + r in the algorithm) for r ≤ Pals[c] as long as
c + r + Pals[c − r] < c + Pals[c]. If c + r + Pals[c − r] ≥ c + Pals[c], which means
c � c + r, ZDetectInChain(c) recursively calls ZDetectInChain(c + r). If there is
no such r, it means that we have reached the frontier of the originator of c. By
the correctness of his algorithm and Lemma1, we see that Algorithm 1 outputs
the Z-shape occurrence of the shortest suffix-reducible prefix of the input. If the
input has no Z-shape, it halts with the array Pals such that Pals[c] = ρw(c) for
all the positions c. One may think of using this algorithm to compute the normal
form by deleting the tail of the found Z-shape. However, deleting a Z-shape tail
alters the maximal radii, which have been calculated before, and maintaining
those values is not a trivial issue. As we have discussed earlier, to keep recalcu-
lating the exact values of the maximal radii takes more than linear time.

4.1 Outline of Our Algorithm

Our online algorithm for calculating the Z-normal form of an input string T is
shown as Algorithm 2. Throughout the algorithm, the string w in the working
space is kept pseudo-irreducible. That is, w� = w[1 : |w|−1] is irreducible and we
would like to know if w itself is still irreducible. Algorithm 2 consists of functions
Stabilize, SlowExtend and FastExtend in addition to the main function ZReduce.
Among those, Stabilize plays the central role. The data structures we use are very
simple: a working string w, an array Pals for the maximal radius at each position
of w, and a stack of positions. Those are all global variables in Algorithm2. At
the beginning, we add extra fresh symbols $ and # to the left and right ends of
the input, respectively. Those work as sentinel symbols so that we never try to
access the working string beyond the ends when extending a suffix palindrome.

The working string is initialized to be the empty string and is expanded by
appending letters from T one by one by append. Suppose that we have read u
from the input and w = û is in the working space. When the function Stabilize(c)
is called, we know that c + ρw�(c) = |w�| but not yet sure if c + ρw(c) = |w|
holds. Then Stabilize(c) processes the shortest prefix v of the unprocessed suffix
of T such that c is stable in the resultant string w′ = ŵv, i.e., Fw′(c) = |w′|− 1.
In an extreme case, we have w′ = w and just confirm Fw(c) = |w|−1. After the
execution of Stabilize(c), unless it returns true, it is guaranteed that all positions
d ∈ [c : Fw′(c)] are stable in w′ and satisfy Pals[d] = ρw′(d). This is why we
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Algorithm 2. Z-reducer
1 Let Stack be an empty stack, Pals an empty array and w = ε;
2 Function ZReduce(T )
3 T := $T#; // $ and # are sentinel symbols
4 w.append(T );
5 while there remains to read in T do
6 w.append(T ); Stack .clear();
7 Stabilize(|w| − 1);

8 return w[2 : |w| − 1]; // strip the sentinel symbols

9 Function Stabilize(c)
10 b = |w|; unstable := true;
11 while unstable do
12 unstable := false;
13 if SlowExtend(c) then return true;
14 for d := c + Pals[c] downto b do // in decreasing order
15 if d + Pals[d] ≥ c + Pals[c] then
16 if FastExtend(d) then
17 if Stabilize(d) then
18 if c = |w| then return true;
19 if d = |w| then Pals[d] := Pals[2c − d];
20 w.append(T ); unstable := true;
21 break;

22 Stack .push(d);

23 return false;

24 Function SlowExtend(c)
25 r := |w| − c − 1;
26 while w[c + r + 1] = w[c − r] do
27 r := r + 1;
28 if Pals[c − r] ≥ r then // detect a suffix Z-shape 〈c − r, c〉
29 w := w[1 : c − r]; // contract the suffix Z-shape
30 Pals := Pals[1 : c − r]; // same as above
31 return true;

32 Pals[c + r] := Pals[c − r]; // transfer the value
33 w.append(T );

34 Pals[c] := r; // Pals[c] = ρw(c)
35 return false;

36 Function FastExtend(d)
37 while Stack is not empty do
38 r := Stack .top() − d;
39 if Pals[d − r] ≥ Pals[d + r] then Stack .pop();
40 else Pals[d] := r + Pals[d − r]; return false; // Pals[d] = ρw(d)

41 return true;



Linear-Time Online Algorithm Inferring the Shortest Path from a Walk 319

name the function Stabilize. Moreover if the call of Stabilize(c) was from the main
function ZReduce(T ), c = Aw′(c) and those positions d are all strongly stable.

To stabilize all the positions up to the (future) frontier of c, Stabilize(c)
recursively calls Stabilize(d) for positions d such that c � d. This accords with the
definition of the frontier. To determine positions d on which we should recursively
call Stabilize(d), we need to know the value of ρw(c) first of all. The function
Stabilize(c) first calls SlowExtend(c). When the function SlowExtend(c) is called,
we are sure c + ρw�(c) ≥ |w�|. By reading more letters from the input, it does
three tasks. One is to calculate the maximal radius at c exactly, taking the unread
part of the input into account. One is to detect and contract a Z-shape whose
right pivot is c. The last one is to transfer the values of Pals on the left arm to
the right arm. We extend the palindrome at c by comparing values of w[c − r]
and w[c+r+1]. When it happens that Pals[c−r] ≥ r, this means that we find a
Z-shape occurrence 〈c− r, c〉. In this case, the suffix palindrome shall be deleted,
and the function returns true. When the palindrome has become non-suffix, it
returns false. During the extension of the palindrome at c, it copies the value of
Pals[c− r] to Pals[c+ r]. This transfer might appear nonsense, since it might be
the case that ρw(c−r) �= ρw(c+r). However, this “sloppy calculation” of radii is
advantageous over the exactly correctly calculated values. Those copied values
are “adaptive” in extensions and deletions of succeeding part of the working
string (and thus the maximal radius at c), in the sense that they can always
be used to certainly detect a Z-shape occurrence where the concerned position
is the left-pivot. The exactly correct values are too rigid to have this property.
Those values will be fixed in the recursive calls of Stabilize.

On Line 14 of Algorithm2, we recursively call Stabilize(d) in decreasing order
for positions on the right arm of the palindrome at c. This “reversed” order might
appear unnatural, but this is also related to the adaptability of values in Pals.
To stabilize positions, anyway we have to calculate the maximal radius at some
positions, though they are not yet stable. If we calculate ρw(d) in increasing
order, they are not adaptive any more. In this case, once some suffix of the
working string is deleted and then extended, those exact values would become
useless. Contrarily, we calculate ρw(d) in the opposite order. Then the previously
copied values of Pals on the left are adaptive and remain useful, unless they are
deleted.

Palindromes overlap a lot even in an irreducible string and we must avoid
scanning the same position multiple times. The function FastExtend(d) tells
us whether the palindrome at d is a suffix of w� without looking at let-
ters in the working space. The computation is quickly done by using a stack
which stores positions c0, . . . , ck forming a palindrome chain with d such that
Fw�(d, c0, . . . , ck) = |w�|. Moreover, it is guaranteed that those positions ci are
stable and Pals[ci] = ρw(ci). If the right arm of the palindrome centered at d
can reach |w�|, the left arm of it must have the structure that can be seen as
the “reversed” palindrome chain symmetric to the one in Stack . By examin-
ing whether Pals[2d − ci] = Pals[ci] for each i, one can tell whether the right
arm of the maximal palindrome at d can reach the position |w| − 1. If it is the
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case, FastExtend(d) returns true and lets SlowExtend extend the palindrome by
investigating further. Otherwise, FastExtend(d) lets Pals[d] = ρw(d) and returns
false.

Example 3. We show a running example of Algorithm2. Consider an input
string T = abbaa1221aabbaa11aabbb. Assume that ZReduce(T ) has read
w = $abbaa12 and computed Pals[1 : 7], where the red part has been stabi-
lized. Then, Stabilize(8) extends the palindrome at 8 by SlowExtend(8) up to
w = $abbaa1221aabbaa. Next, Stabilize(15), called by Stabilize(8), finds a
maximal palindrome aa in w = $abbaa1221aabbaa1. Then 15 is pushed to
the stack. After that, FastExtend(13), called via Stabilize(13) by Stabilize(8),
reveals that ρw(13) ≥ 3 in w = $abbaa1221aabbaa1 using Stack = (15).
Then SlowExtend(13) extends the radius of the palindrome at 13 by one as
w = $abbaa1221aabbaa11. Then Stabilize(13) calls Stabilize(17). By reading fur-
ther letters from T , the working string becomes w = $abbaa1221aabbaa11aab,
where a Z-shape occurrence 〈13, 17〉 = 1aabbaa11aab is found. By deleting the
tail of it, we have w = $abbaa1221aab, on which Stabilize(8) resumes cal-
culation. Now the palindrome is extended as w = $abbaa1221aabbb. Then
Stabilize(18) calls Stabilize(14), which detects and contracts 〈13, 14〉 = bbb.
We now have w = $abbaa1221aa. After that, Stabilize(8) continues extending
the palindrome and obtains w = $abbaa1221aab#. Finally, ZReduce halts with
T̂ = w[2 : |w| − 1] = abbaa1221aab.

4.2 Correctness and Complexity of the Algorithm

To prove the correctness of our algorithm, we first introduce some technical
definitions, which characterize “adaptive” values.

Definition 2. Let us write i ∼k j if min{i, k} = min{j, k}. We say that Pals
on w is accurate enough between c and d if for any e ∈ [c : d], it holds that
Pals[e] ∼d−e ρw(e). We denote this property by Æw(c, d) with implicit under-
standing of Pals.

Let νw(c) denote the largest e such that e � c. If there is no such e, let
νw(c) = 1. We say that c is left-good in w if Æw(νw(c), c) holds. We say that c
is right-good in w if Æw(c, c + ρw(c)) holds.

Clearly Æw(c1, d1) implies Æw(c2, d2) if [c2 : d2] ⊆ [c1 : d1].

Lemma 2. Suppose that c is left-good and ρw(c) = |w| − c for a pseudo-
irreducible string w. Then w has a Z-shape occurrence 〈c − ρw(c), c〉 if and only
if Pals[c − ρw(c)] ≥ ρw(c). Suppose in addition Pals[c − r] = Pals[c + r] for all
r = 1, . . . , ρw(c). Then, c is right-good.

If Æw(d, c) holds, then one can correctly determine whether w has a Z-shape
with right pivot c. Namely, 〈d, c〉 is a Z-shape if and only if Pals[d] ≥ c − d. We
detect a suffix Z-shape whose right pivot is c extending a suffix palindrome at c
in SlowExtend(c). Lemma 2 means that this indeed works well when c is left-good
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and values on the left arm are copied to the corresponding positions on the right
arm. Note that the left-goodness depends on w[1 : c] only. This means that this
property is robust against deletion and extension of the right arm.

We will show that the function Stabilize satisfies the following precondition
and postcondition, where w and w′ are the working strings before and after a
call, respectively.

Condition 1 (Precondition of Stabilize(c)).

– Stack is empty,
– c + ρw(c) ≥ |w| − 1,
– c is left-good,
– For all positions d ∈ [1 : A (c) − 1] ∪ [c + 1 : |w| − 1], d is stable in w and

Pals[d] = ρw(d).

Condition 2 (Postcondition of Stabilize(c)).

– If it returns true, then
• w′ = ŵu for the shortest string u appended from the input such that

|w′| ≤ c,
• Stack is empty.

– If it returns false, then w′ = ŵu for the shortest string u appended from the
input such that

• (c;Stack) is a palindrome chain such that Fw′(c) = Fw′(c;Stack) =
|w′| − 1,

• d is stable in w′ and Pals[d] = ρw(d) for all d ∈ [c : |w′| − 1].

Lemma 3 (Stabilize). Suppose that c satisfies Condition 1. Then after executing
Stabilize(c), Condition 2 is satisfied.

Assuming that Lemma 3 is true, we establish the following proposition.

Proposition 2. Algorithm2 calculates the normal form of the input.

When Stablize(c) tries to fix the value Pals[c] to be ρw(c), the right arm of
the palindrome at c may be cut in the middle after finding the end of the right
arm in a string, unless it has been stabilized. Then we need to extend it again.
The while loop is repeated until c becomes stable.

Condition 3 (Precondition of the while loop). In addition to Condition 1,

– for all positions d ∈ [b : |w| − 1], Pals[d] = Pals[2c − d].

In what follows we give some lemmas that explain the behavior of our algo-
rithm in a more formal way.

Lemma 4 (SlowExtend). Suppose that at the beginning of an iteration of the
while loop of Stabilize(c), Condition 3 holds. Let w and w′ be the working strings
before and after execution of SlowExtend(c), respectively. Then either
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– SlowExtend(c) returns true,
– w′ = ŵu for u appended from the input such that wu is suffix-reducible and

the right pivot of the Z-shape is c,

or

– SlowExtend(c) returns false,
– w′ = wu for u appended from the input such that c + ρw′(c) = |w′| − 1 and

w′ is pseudo-irreducible,
– Pals[c] = ρw′(c),
– for all r ∈ [1 : Pals[c]], Pals[c + r] = Pals[c − r].

Lemma 5 (FastExtend). Suppose that FastExtend(d) is called from Stabilize(c)
satisfying that

– (c;Stack) is a palindrome chain from some e > d such that Fw(c;Stack) =
max{Fw(e) | d < e ≤ c + Pals[c] } = |w| − 1,

– c is left-good and right-good,
– for all e ∈ [d + 1 : |w| − 1], e is stable and Pals[e] = ρw(e),

Then after the execution,

– if it returns true, then d + ρw(d) ≥ |w| − 1 and Stack is empty,
– if it returns false, then

• (d;Stack) is a palindrome chain such that Fw(d;Stack) = max{Fw(e) |
d ≤ e ≤ c + Pals[c] } = |w| − 1,

• for all e ∈ [d : |w| − 1], e is stable and Pals[e] = ρw(e) .

Lemma 6. Suppose that c is right-good and c �w d in a pseudo-irreducible
string w. Then d is left-good in w.

Hence, when FastExtend(d) returns true, Condition 1 for d is satisfied.
Now we have prepared enough for analyzing the function Stabilize(c). Our

goals is to show that Condition 2 holds for Stabilize(c) provided that Condition 1
holds. The function Stabilize(c) calls Stabilize(d) recursively. For now we assume
that Condition 1 implies Condition 2 for those d. Then this inductive argument
completes a proof of Lemma 3.

Suppose that Condition 1 holds for Stabilize(c). If SlowExtend(c) returns true,
clearly Condition 2 holds by Lemma 4. Hereafter we suppose that SlowExtend(c)
returns false.

Lemma 7 (for loop). Suppose that Condition 3 is satisfied at the beginning of
every iteration of the while loop. Then, at the beginning of each iteration of the
for loop of Stabilize(c), the following holds.

– (c;Stack) is a palindrome chain such that

Fw(c;Stack) = max({Fw(e) | d < e ≤ c + Pals[c] } ∪ {c + Pals[c]}) = |w| − 1,

– c is left-good,
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– for all e ∈ [c + 1 : d], Pals[d] = Pals[2c − d],
– for all e ∈ [d + 1 : |w| − 1], e is stable and Pals[e] = ρw(e).

Moreover if we break the loop, still Condition 3 holds. If we return true on
Line 18, Condition 2 holds for c.

Lemma 8 (while loop). At the beginning of an iteration of the while loop in
Stabilize(c), Condition 3 holds. Moreover if it returns true, Condition 2 holds.

Theorem 2. Algorithm2 calculates the normal form of the input in linear time.

Proof. The function Stabilize is called from ZReduce or Stabilize itself. In both
cases, Stabilize(c) is called right after a new letter is appended at position c + 1.
More precisely, in the latter case, Stabilize(d) is called just after SlowExtend(c)
or Stabilize(c) appended a new letter at position d + 1. Note that when while
loop repeats, the letters on the positions d + 1 for which Stabilize(d) was called
are deleted. Therefore, the number of calls of Stabilize is bounded by |T |.

This explanation about the number of calls of Stabilize also shows that the
total number of the execution of the while loop is bounded by |T | and this
implies the number of calls of SlowExtend is also bounded by |T |. The total
running time of SlowExtend is bounded by the number of its calls and the times
of appending letters from T , which is bounded by O(|T |) in total. The same
argument on the number of calls of Stabilize applies to that of executions of the
for loop. This implies that the total number of positions that is pushed onto the
stack is bounded by |T |, which implies that total running time of FastExtend is
bounded by O(|T |).

All in all, Algorithm 2 runs in linear time. �
By using Algorithm 2 and Raghavan’s algorithm [6], the smallest path and

cycle can be inferred from walks in linear time.

Corollary 2. Given a string w of length n, the smallest path and cycle on which
w is the output of a walk can be inferred in O(n) time.

5 Experiments

This section presents experimental performance of our algorithm comparing with
Raghavan’s O(n log n) time algorithm [6].

We implemented these algorithms in C++ and compiled with Visual C++
12.0 (2013) compiler. The experiments were conducted on Windows 7 PC with
Xeon W3565 and 12GB RAM. In the whole experiments, we got the average
running time for 10 times of attempts.

First, for randomly generated strings of length between 105 and 106 over Σ of
size |Σ| = 2, 6, 10, we compared the running time of the algorithms (Fig. 3 (a)).
For any alphabet size, our proposed algorithm ran faster.

Furthermore, we conducted experiments for strings of length between 106

and 107 with the same alphabets, and got a similar result (Fig. 3 (b)). Here,
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Fig. 3. Running time for the random strings with |Σ| = 2, 6, 10

the slope of Raghavan’s algorithm’s performance increases slightly as the string
length increases. On the other hand, our proposed algorithm keeps the same
slope. This shows the proposed algorithm runs in linear time in practice.
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Abstract. A trie [11] is one of the best data structures for implement-
ing and searching a dictionary. However, to build the trie structure for
larger collections of strings takes up a lot of memory. Since the eXtended
Burrows-Wheeler Transform (XBWT) [8,9] is able to compactly repre-
sent a labeled tree, it can naturally be used to succinctly represent a trie.
The XBWT also supports navigational operations on the trie, but it does
not support failure links. For example, the Aho-Corasick algorithm [1] for
simultaneously searching for several patterns in a text achieves its good
worst-case time complexity only with the aid of failure links. Manzini [18]
showed that a balanced parentheses sequence P can be used to support
failure links in constant time with only 2n + o(n) bits of space, where n
is the number of internal nodes in the trie. Besides practical algorithms
that construct the XBWT, he also provided two different algorithms that
construct P . In this paper, we suggest an alternative way for constructing
P that outperforms the previous algorithms.

1 Introduction

The eXtended Burrows-Wheeler Transform (XBWT) [8,9] can be used to com-
pactly represent a trie by a character array L and a bit array Last; see Fig. 1 for
an example. A recent empirical comparison [19] of string dictionary implemen-
tations shows that the XBWT achieves the best compression of all techniques
under consideration. Moreover, in contrast to most other methods, the XBWT
supports substring searches. The compact representation of the XBWT can be
computed as follows. Each internal node v of the trie T is associated with a string
that is obtained by concatenating the characters at the edges in the upward path
from v to the root of T (the root itself is associated with the empty string ε).
If T has n internal nodes, then there are n associated strings and the (virtual)
array Π[1..n] stores them in lexicographical order. We (conceptually) number
the internal nodes of T according to Π: If node v is associated with the string
Π[i], it gets the number i. Let Li be the set of characters at outgoing edges of
node i (in no particular order) and let the character array L contain the con-
catenation of L1, L2, . . . , Ln. Furthermore, the bit array Last stores the borders
of Li: we initialize Last with zeros and for all i ∈ {1, . . . , n} we set Last[ji] = 1,
where ji =

∑i
�=1 |L�|. As already mentioned, the XBWT representation of the

trie consists of the arrays L and Last. These arrays can be calculated with the
help of an array MR, which we will define next.
c© Springer Nature Switzerland AG 2018
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Suppose the trie T is constructed from the pairwise distinct strings x1, . . . , xk.
Let yi = xR

i , where xR
i denotes the string that is obtained by reversing xi.

Furthermore, let S = y1$y2$ . . . yk$ be the concatenation of the yi, separated by
a special character $, which is assumed to be smaller than any other character.
In the following, let m be the length of S (note that m = k +

∑k
i=1 |xi|). The

suffix array SA and the Burrows-Wheeler Transform BWT of S are obtained
by sorting the suffixes of S lexicographically (this can be done in linear time):
If S[j..m] is the i-th lexicographically smallest suffix of S, then SA[i] = j and
BWT[i] = S[j −1] is the character preceding that suffix (if j = 1, then BWT[i] =
$); see Fig. 1 for an example. Fast implementations of (semi-) external suffix
sorting algorithms exist [6,16], but multi-string BWT construction algorithms
may be competitive in the context of this paper; see [3,17]. The array MR is
defined with the help of suffix array intervals. If ω is a substring of S, then the
ω-interval is the largest interval [i..j] such that ω is a prefix of all the suffixes
in the interval [i..j]. Now MR[lb] = 1 if and only if lb is the left boundary of a
z-interval, where z is a suffix of some yi (i.e., zR is a prefix of some xi). Note that
MR[1] = 1 because ε is a suffix of all yi and [1..m] is the ε-interval. To avoid case
distinctions, we set MR[m+1] = 1. Let j1 = 1 < j2 < · · · < jn < jn+1 = m+1 be
the indices with MR[j�] = 1. For each i with 1 ≤ i ≤ n, the interval [ji..ji+1 − 1]
is the Π[i]-interval. Thus Li is the set of the characters in BWT[ji..ji+1 − 1] and
Last[pi] = 1, where pi =

∑i
�=1 |L�|. It is readily verified that the arrays L and

Last can be computed in O(m) time by simultaneously scanning the arrays MR
and BWT from left to right.

Fig. 1. Example for the input strings ab, ac, bac, aba. Left: XBWT consisting of the
arrays Last and L (the array Π is not stored). Center: Trie of the strings, where failure
links of internal nodes are indicated by dashed arrows. Right: MR, Cc, and BWT for
the concatenation of the reversed strings (i.e., S = ba$ca$cab$aba$).

Recall that node i in the trie T is associated with the string Π[i]. In this
context, the failure link of i points to the node j so that Π[j] is the longest proper
prefix of Π[i]. Failure links are not supported by the XBWT representation of T ,
but Manzini [18] showed that a balanced parentheses sequence P can be used to
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support them in constant time with only 2n+o(n) bits of space. P can be defined
by means of Π: For i = 1, . . . , n a pair of parentheses is written by repeating
the following: (1) For each � < i, for which its closing parenthesis has not been
written yet and Π[�] is not a prefix of Π[i], write a closing parenthesis. (2) Write
the opening parenthesis for i. After termination of this for-loop, write a closing
parenthesis for each �, for which its closing parenthesis has not been written yet.
In the example of Fig. 1, we have P = (((()))(())(())). P can be preprocessed in
linear time, using only o(n) bits, so that the operations rank, select, and enclose
can be supported in constant time [7,15,20]. Using these operations on P , failure
links can be supported in constant time; see [18, Lemma 4] for details. Manzini
[18] devised two different algorithms that construct P . In the next section, we
suggest an alternative way for constructing P that outperforms his algorithms.

2 The New Algorithm

Our new construction algorithm uses an idea of Belazzougui [4], who devised
a rather simple method to build the balanced parenthesis representation of a
suffix tree topology. He writes: “Our key observation is that we can easily build
a balanced parenthesis representation by enumerating the suffix array intervals.
More precisely for every position in [1..n], we associate two counters, one for open
and the other for close parentheses implemented through two arrays of counters
Co[1..n] and Cc[1..n]. Then given a suffix array interval [i, j] we will simply
increment the counters Co[i] and Cc[j]. Then we scan the counters Cc and Co

in parallel and for each i from 1 to n, write Co[i] opening parentheses followed
by Cc[i] closing parentheses. It is easy to see that the constructed sequence is
that of the balanced parentheses of the suffix tree.” Since we do not want to
represent a suffix tree topology, we cannot enumerate all suffix array intervals.
Instead, we must enumerate all z-intervals for which z is a suffix of some yi (for
then zR is a prefix of some xi). Recall that MR[lb] = 1 if and only if lb is the
left boundary of such a z-interval. Consequently, the array MR[1..m] coincides
with the array Co[1..m]. Moreover, observe that if z is a suffix of some yi, then
the left boundary bz of the z-interval in the suffix array of S coincides with the
left boundary bz$ of the z$-interval because z$ is a substring of S and $ is the
smallest character.

For the explanation of the pseudo-code of our new construction algorithm
(Algorithm 1), we need a few preliminaries. For each character c, C[c] is the
overall number of occurrences of characters in BWT[1..m] that are strictly smaller
than c. Given the ω-interval [lb..rb] and a character c, the cω-interval [i..j] can be
computed by i = C[c] + rankc(BWT, lb − 1) + 1 and j = C[c] + rankc(BWT, rb),
where rankc(BWT, lb − 1) returns the number of occurrences of character c in
the prefix BWT[1..lb−1] (we have i ≤ j if cω is a substring of S; otherwise i > j);
see [10] for details. The (balanced) wavelet tree [14] of the BWT supports such
a backward search step in O(log σ) time, where σ is the size of the alphabet.
Backward search can be generalized on the wavelet tree as follows: Given an
ω-interval [lb..rb], a slight modification of the procedure getIntervals([lb..rb])
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Algorithm 1. Computation of the arrays MR and Cc

1: function visit(bz$, ez$, ez) � the z$-interval is [bz$..ez$] and the z-interval is
[bz$..ez], where z is a suffix of some string yi

2: MR[bz$] ← 1
3: Cc[ez] ← Cc[ez] + 1
4: list ← getIntervals([bz$..ez$])
5: for each (c, [bcz$..ecz$]) with c �= $ in list do
6: if ez = ez$ then
7: ecz ← ecz$
8: else
9: ecz ← C[c] + rankc(BWT, ez)

10: visit(bcz$, ecz$, ecz)

described in [5] returns the list [(c, [i..j]) | cω is a substring of S and [i..j] is the
cω-interval], where the first component of an element (c, [i..j]) is a character.
The worst-case time complexity of the procedure getIntervals is O(occ + occ ·
log(σ/occ)), where occ is the number of elements in the output list; see [12,
Lemma 3].

If z = ε is the empty string, then the z-interval is [bz..ez] = [1..m] and the z$-
interval is [bz$..ez$] = [1..k]. The function call visit (1, k,m) computes the arrays
MR = Co and Cc; the pseudo-code of this function can be found in Algorithm1.
The function first counts an opening parenthesis at position bz = bz$ and a
closing parenthesis at position ez. With the help of the procedure getIntervals
it then computes all non-empty cz$-intervals, where c ∈ Σ and c �= $. The fact
that a cz$-interval [bcz$..ecz$] is not empty means that cz is a suffix of some
yi. It follows as a consequence that the cz-interval [bcz..ecz] is also not empty.
Again, bcz = bcz$ holds true, but the right boundary ecz of the cz-interval is not
known yet. Now there are two cases. If the right boundaries of the z-interval and
the z$-interval coincided, then so do the right boundaries ecz and ecz$ of the cz-
interval and the cz$-interval. If they were not the same, ecz must be computed
by evaluating C[c]+rankc(BWT, ez) as in backward search. Finally, the function
recursively calls itself with the new parameters bcz$, ecz$, ecz.

The overall time complexity of the construction of P is O(m log σ) because
the BWT can be build in O(m) time, the wavelet tree of the BWT can be
constructed in O(m log σ) time, initialization and computation of the arrays MR
and Cc takes O(m + n log σ) time (n is the number of internal nodes of the trie
and satisfies n ≤ m), and the computation of P based on MR and Cc requires
O(m) time.

Let us consider the working space of Algorithm 1. By the definition of P , there
are at most maxi |xi| consecutive closing parentheses, thus the array Cc requires
m log(maxi |xi|) bits. The array MR occupies only m bits and the wavelet tree of
the BWT essentially uses m�log σ� + o(m log σ) bits of space; see e.g. [21]. The
stack for the recursion contains (at any point in time) at most maxi |xi| elements.
Each stack element stores a list returned by the procedure getIntervals; this
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Algorithm 2. Computation of P with less space
1: input: BWT
2: compute the bit array MR of size m
3: preprocess MR so that rank-queries can be answered in constant time
4: initialize an array C′

c of size n = rank1(MR, m) with zeros
5: visit2(1, k, m)
6: initialize an array P of size 2n with zeros � 2n opening parentheses
7: k ← 1
8: for i ← 1 to n do
9: k ← k + 1 � opening parenthesis because P [k] = 0

10: for j ← 1 to C′
c[i] do

11: P [k] ← 1 � write closing parentheses
12: k ← k + 1

13: return: P

list contains at most σ elements of the form (c, [lb..rb]). Since every list element
requires O(1) space, the whole stack uses O(σ · maxi |xi|) space.

3 Saving Space

As already observed by Manzini [18], the number n of ones in the bit array MR
gives the number of internal nodes of the trie. If one computes MR in a first phase
(for instance, by the algorithm in [18, Fig. 4]), then n is known and more space-
efficient algorithms for computing P can be deduced. Manzini suggests to use two
arrays RCP′ and LEN′ of length n that use O(n log(maxi |xi|)) bits of memory
and store only values for which the corresponding entry in the array MR equals
1. His algorithm [18, Fig. 5] calculates P based on these arrays. We would like to
follow this approach, but the example from Fig. 1 shows that there are non-zero
entries Cc[i] for which MR[i] = 0 (i = 12 in Fig. 1). We next derive a version of
Algorithm 1 that increments only counters at indices i for which MR[i] = 1. To
distinguish the new version from Algorithm1, we use Ĉc to denote the array of
counters (which is still of size m). Recall that Algorithm 1 increments Cc[ez] by
one, where ez is the right boundary of a z-interval. The new version increments
Ĉc[j] instead, where j = max{i | i ≤ ez and MR[i] = 1}. In other words, if
MR[ez] = 1, it increments Ĉc[ez] and if MR[ez] = 0, it increments the counter at
which the previous one in MR can be found. In the example from Fig. 1 it would
increment the counter at index 11 instead of that at i = 12. To see that this
preserves correctness, consider two indices i and j so that MR[i] = 1, MR[j] = 1,
and MR[k] = 0 for all k with i < k < j (the case in which i is the last index
with MR[i] = 1 follows similarly). On the one hand, if we use the array Cc, an
opening parenthesis will be written for MR[i] = 1, followed by

∑j−1
k=i Cc[k] closing

parentheses, and then an opening parenthesis will be written for MR[j] = 1. On
the other hand, if we use the array Ĉc, an opening parenthesis will be written for
MR[i] = 1, followed by Ĉc[i] closing parentheses and an opening parenthesis for
MR[j] = 1. Since Ĉc[i] =

∑j−1
k=i Cc[k], it follows that both algorithms compute
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the same sequence of parentheses. Algorithm 2 implements the new version of
Algorithm 1, however, it uses an array C ′

c of length n and size n log(maxi |xi|)
bits instead of the array Ĉc of length m. First, it computes the bit array MR
and then preprocesses it so that rank-queries can be answered in constant time.
Then it calls the function visit2 with parameters 1, k,m. Function visit2 can
be obtained from function visit by deleting line 2 in Algorithm1 and replacing
the assignment in line 3 by C ′

c[rank1(MR, ez)] ← C ′
c[rank1(MR, ez)] + 1. That

is, for a z-interval [bz..ez], function visit2 increments C ′
c[rank1(MR, ez)] by one.

This simulates the new version of Algorithm 1, in which Ĉc[j] is incremented,
where j = max{i | i ≤ ez and MR[i] = 1}.

In contrast to Algorithm 1, Algorithm 2 uses two passes to compute MR and
C ′

c separately. That is, it saves space by using C ′
c instead of Cc, but the run-time

doubles in practice (its time complexity is also O(m log σ)).

4 Experimental Results

We experimentally compared our new XBWT construction algorithms with
the ones presented in [18]. More precisely, we implemented the following algo-
rithms, as we could not find an implementation of Manzini’s algorithms:
– MAN : algorithm by Manzini [18, Sect. 4]
– MAN-LW : lightweight algorithm by Manzini [18, Sect. 4]
– OSB : our new algorithm (Sect. 2)
– OSB-LW : lightweight version of the new algorithm (Sect. 3)

Our test data—the files dblp.xml, dna, proteins, english, and sources—originate
from the Pizza & Chili corpus.1 In our experiments, we constructed tries for each
of the files using the above-mentioned algorithms, where the distinct lines of a
file were used as input strings for trie construction.

Table 1. Trie construction results. The left column lists test data along with its size
and the length of its longest string. The other columns show, for each test case, the
construction time in seconds and the memory peak during construction, excluding
suffix array and BWT construction.

1 http://pizzachili.dcc.uchile.cl.

http://pizzachili.dcc.uchile.cl
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Algorithm 3. Computation of P by a depth-first traversal of a generalized ST
1: function dft(v)
2: if v is leaf and its incoming edge has a label �= $ then
3: write an opening parenthesis and a closing parenthesis

4: if v is an internal node then
5: if v has an outgoing edge with label $ then write an opening parenthesis

6: for each child node w of v (in lexicographical order of the labels of the
outgoing edges from v) call dft(w)

7: if v has an outgoing edge with label $ then write a closing parenthesis

The experiments were conducted on a 64 bit Ubuntu 16.04.4 LTS system
equipped with two 16-core Intel Xeon E5-2698v3 processors and 256 GB of RAM.
All programs were compiled with the O3 option using g++ (version 5.4.1). Our
programs and the benchmark are publically available.2 Table 1 shows the results
of the experiments. Among all tested algorithms, OSB-LW has the lowest memory
peak. Surprisingly, if the trie is built from long strings (dna), Algorithm MAN-LW
requires a lot of memory, probably because of a stack that stores items consisting
of several components. Algorithms MAN and OSB are the fastest construction
methods, but despite of a lower memory peak, OSB often outperforms MAN (we
think this is caused by cache-misses in MAN, which occur during accesses to the
suffix array and the test data).

Summing up, our new algorithms OSB and OSB-LW outperform the algorithms
MAN and MAN-LW in terms of memory consumption, and perform similarly fast
or even faster. As OSB requires only a little more memory than OSB-LW, but
performs similarly fast as MAN, algorithm OSB has a good space-time tradeoff
and therefore is our method of choice for XBWT construction.

Our implementation is based on the sdsl-lite library [13] and we further
tried to reduce the memory peak of our algorithms by using compressed wavelet
trees supported by the sdsl-lite library. With Huffman-shaped wavelet trees
that use rrr-bitvectors [13], it is possible to obtain a 25% reduction of the memory
peak on average, but the construction time increases by a factor of 2.5 on average.
It might be worth trying other compressed wavelet trees such as the one described
in [2], but unfortunately its implementation contained in the sdsl-lite library
lacks support for the procedure getIntervals.

5 Concluding Remark

Some readers may prefer to construct the balanced parentheses sequence P by
means of a suffix tree, and of course this is possible. To this end, build the
generalized suffix tree ST of the reversed input strings y1, y2 . . . , yk. In such a
generalized suffix tree, all strings are either terminated by $ or they are ter-
minated by pairwise different symbols $1, $2 . . . , $k. Here, we will use $. Then
traverse ST in a depth-first fashion, i.e., call function dft of Algorithm 3 with
2 https://www.uni-ulm.de/in/theo/research/seqana/.

https://www.uni-ulm.de/in/theo/research/seqana/
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the root of ST as parameter. If an internal node v is visited during the traversal,
the algorithm writes parentheses for that node only if v has an outgoing edge
with label $ because in this case the path from the root to v corresponds to a
suffix of some yi. Moreover, leaves whose incoming edge has label $ are ignored.
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Abstract. In this paper we study the semantic parsing problem of map-
ping natural language utterances into machine interpretable meaning
representations. We consider a text-to-denotation application scenario
in which a user interacts with a non-human assistant by entering a ques-
tion, which is then translated into a logical structured query and the
result of running this query is finally returned as response to the user.
We propose encoder-decoder models that are trained end-to-end using
the input questions and the corresponding logical structured queries. In
order to ensure fast response times, our models do not condition the
target string generation on previously generated tokens. We evaluate
our models on real data obtained from a conversational banking chat
service, and we show that conditionally-independent translation models
offer similar accuracy numbers when compared with sophisticate trans-
lation models and present one order of magnitude faster response times.

1 Introduction

Around 38% of American consumers have used virtual-assistant services on their
smartphones recently.1 Conversational banking, for instance, enables users to
interact with a non-human about their finances, allowing them to check accounts’
balances, request deposits and wire transfers, and find out how much was spent
on groceries. A key technology for developing such conversational interfaces is
semantic parsing (Liang 2014), which allows mapping natural language utter-
ances into denotations (answers) via intermediate logical forms, such as a struc-
tured query (Berant et al. 2013) on which a machine can act.

Typical approaches for semantic parsing are based on domain-specific hand-
crafted features, lexicons, and grammars (Berant et al. 2013). An alternate and
prominent approach to semantic parsing is based on training end-to-end deep
architectures (Dong and Lapata 2016; Jia and Liang 2016), thus making very few
domain-specific assumptions with minimal feature engineering. In this case, the
mapping between questions or commands entered by the user and their logical

1 http://econ.st/1MAEREf.
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T. Gagie et al. (Eds.): SPIRE 2018, LNCS 11147, pp. 334–347, 2018.
https://doi.org/10.1007/978-3-030-00479-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00479-8_27&domain=pdf
http://econ.st/1MAEREf


Fast and Effective Neural Networks for Translating Natural Language 335

forms is learned by presenting a set of translation examples, so that the network
parameters are found by minimizing some loss function (Andreas et al. 2013;
Dong and Lapata 2016).

Network architectures for semantic parsing have been largely inspired by
works in neural machine translation (Gehring et al. 2016; Kalchbrenner et al.
2014, 2016; Vaswani et al. 2017). These works resulted in great improvements,
but they also resulted in increasingly complex systems, with networks containing
millions (Bahdanau et al. 2015) or billions (Shazeer et al. 2017) of parameters and
which demand a lot of computation. While this complexity might be necessary for
achieving state-of-the-art performance in natural language translation, we claim
that semantic parsing models in which the target representation is machine-
readable rather than human-readable, can be greatly simplified, enabling much
faster response times without hurting accuracy.

In this paper, we propose models based on deep architectures for semantic
parsing. We explicitly assume that target token generation depends only on the
meaning of a sentence, and thus we propose end-to-end network architectures
that are conditionally independent, that is, the target sentence is translated at
once with each token having no dependency on previous outputs. While this
assumption is unrealistic and is not correct in general, it usually holds in seman-
tic parsing applications which do not show long-range dependencies. By making
independence assumptions we can drastically reduce the complexity of our mod-
els, while still achieving close to perfect accuracy.

We built a dataset from the logs of a conversational banking chat system
in order to evaluate our models. These logs contain questions and commands
entered by different users, along with the corresponding logical outcomes. We
also evaluate diverse network architectures and components, including recurrent
networks with gated recurrent units (GRU), attention mechanisms (Bahdanau
et al. 2015), and ByteNets (Kalchbrenner et al. 2016). The main contributions
of this work are:

– We propose three encoder-decoder convolutional architectures that assume
conditional independence between the target generation and previously gen-
erated tokens. For six different generated models using our proposed archi-
tectures, we obtained near 100% accuracy results in conversational banking
data.

– Our proposed networks present faster training and response times than com-
petitors. In particular, we show that our best model is more than 9 times
faster to respond than ByteNets and recurrent networks, while our fastest
model is more than 16 times faster.

2 Related Work

Next, we discuss recent related work focusing on neural semantic parsing models.
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Semantic Parsing as Machine Translation. In Andreas et al. (2013), the
authors show that standard machine translation components can be adapted into
a semantic parser. As a general advantage, semantic parsing approaches based
on machine translation are trained considerably faster than conventional alter-
natives. In Dong and Lapata (2016), the authors also propose to solve seman-
tic parsing using machine translation approaches. Specifically, the authors pro-
pose a neural machine translation approach based on recurrent networks, named
Seq2Tree, in which the tree structure of logical form is explicitly incorporated
into the model. There are many other neural machine translation approaches,
which are typically based on the general encoder-decoder translation process,
where predictions are made sequentially using inexact inference, such as greedy
or beam search Jia and Liang (2016). While these approaches were originally
designed for machine translation, they can also be applied to more restricted
application scenarios, such as semantic parsing. In Bahdanau et al. (2015), the
authors propose a translation model based on an LSTM network with an atten-
tion component in the decoder, thus freeing the model from having to encode
a whole source sentence into a fixed-length vector. In Gehring et al. (2016),
the authors propose an encoder based on a succession of convolutional layers.
This network architecture is faster to train than typical bi-directional LSTMs.
In Kalchbrenner et al. (2016), the authors propose the ByteNet translation
model, which uses a 1-D convolutional network to encode the source sentence
and decode the target sentence.

Recent Advances in Neural Machine Translation. In order to achieve
superior accuracy numbers, neural machine translation approaches are becoming
increasingly complex and hard to train. In Ranzato et al. (2016), the authors pro-
pose translation models that employ reinforcement learning to fine-tune trans-
lations, improving BLEU scores. In Yang et al. (2017), the authors propose a
translation model based on generative adversarial learning, which tries to min-
imize the distinction between human translation and the translation given by
their model. Translation models such as the one proposed in Gehring et al.
(2017) takes 37 days to be trained, using 8 GPUs. And the model in Vaswani
et al. (2017), significantly faster, still takes +3 days to train using 8 GPUs.

Reliable Conversation Models. In applications such as conversational bank-
ing, models must be reliable in the sense that wrong mappings are extremely
expensive. In Khani et al. (2016), the authors present the unanimity principle,
guaranteeing 100% precision, by proposing a system which can abstain from
doubtful mappings. The authors employ a set of models and a response is only
provided if all models that are consistent with the training data predict the
same output. In Popescu et al. (2003), the authors propose a system which is
able to detect questions that cannot be handled correctly and which requests a
paraphrase for these questions.
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Our Work. The aforementioned works are mainly focused on achieving high
translation scores. We advocate that there are other important dimensions that
must be taken into account. In particular, we consider application scenarios where
lengthy time delays between consecutive responses may hurt user engagement in
the conversation. We are also interested in scenarios where users are unwilling to
trade reliable and predictable interfaces for intelligent but unreliable ones. In this
paper, we are particularly interested in learning semantic parsing models in which
the user should wait minimally for receiving the correct answer.

3 Conditionally-Independent Models

Our aim is to learn a model that maps natural language input x = x1, x2, . . . , x|x|
to a logical form representation of its meaning y = y1, y2, . . . , y|y|. With this
objective, we have as input a training set, which consists of a set of pairs of source
and target statements (that is, the training set is essentially a parallel corpus).
The training set is used to construct a probabilistic model which transforms an
arbitrary natural language utterance x into its correct formal expression y. The
test set contains only natural language utterances, and the model learned from
the training set produces translations for these utterances. Under this learning
scenario, we are particularly interested in semantic parsing models that deal
with two potentially conflicting objectives:
– Near perfect accuracy: the model must respond to users’ requests accurately,

otherwise it gives unhelpful information and wrong answers, exposing users
to risk.

– Interactive response time: the model must meet real-time constraints or a level
of acceptable asynchronous behavior, otherwise users may get distracted.

The models we propose consist of an encoder, which encodes natural lan-
guage input x into a vector representation, and a decoder, which learns to gen-
erate y conditioned on the encoding vector. These models may vary greatly in
terms of their network capacity. Highly accurate models can be learned using
sophisticate deep architectures, such as recurrent neural networks coupled with
attention mechanisms. Choices of architecture, however, may greatly increase
response times. To meet high accuracy numbers and fast interactive response
time simultaneously, we propose three encoder-decoder convolutional2 network
architectures that make independence assumptions. The three architectures are
described in the following sections.

3.1 Fast Semantic Parsing

The architecture shown in Fig. 1 does not condition the target string generation
on previously generated tokens, thus assuming conditional independence:

p (yi|y1:i−1, x) = p (yi|x)

where x is the input sentence and yi is the token at position i.
2 Feed-forward neural networks have the potential to be much faster than recurrent

networks.
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Fig. 1. Fast Semantic Parsing architecture.

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5 t6 t7

Encoder

Decoder

Fig. 2. Reduced Fast Semantic Parsing
architecture.
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Fig. 3. Reduced MultiLinear Network
architecture.

The proposed Fast Semantic Parsing architecture uses full convolutions with
dilation (Yu and Koltun 2015) in both the encoder and decoder. The encoder
generates distributed representations with the same length as the source sen-
tence, which is then padded with zeros before being sent to the decoder. The
decoder then convolves all inputs at once, simultaneously generating all tokens
in the target sentence. Convolutional networks with dilated representations have
a dependency size which is exponential in the number of layers.

Given a pre-specified kernel-size and maximum input/output sentence
lengths, we calculate the number of layers in the encoder and decoder such that
each token in the output sentence will have as dependency size the whole input
sentence. Models based on this architecture not only generate all target tokens
at once during training, but they also do this at test time, since outputs do not
depend on the previous ones. As a consequence, models based on this architec-
ture are extremely fast to be trained and to translate text-to-denotation.

3.2 Reduced Fast Semantic Parsing

Next we propose the Reduced Fast Semantic Parsing architecture, as shown
in Fig. 2. It also employs an encoder-decoder mechanism, but in this case
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the encoder generates a single representation of the source sentence, which is
then deconvoluted3 (Shelhamer et al. 2017) to generate the target sentence. Its
encoder uses 1-D convolutions with stride to reduce the source sentence to a 1-D
representation. Its decoder, then, uses deconvolutions to produce the target sen-
tence from this representation. Again, the target sentence is generated at once
with no dependency on previous outputs, which makes translation extremely
fast. Since it reduces the size of the representations, it becomes even faster,
specially in CPUs.

3.3 Reduced MultiLinear Network

Finally, we propose the Reduced MultiLinear Network architecture, as shown
in Fig. 3. It uses a linear layer followed by a softmax to generate an output
probability distribution, such as:

p(yi|x) = Softmax (W · di)

where W is a linear transformation and di is a representation of the input x for
target position i.

Since we are not conditioning our sentences in the previous outputs, we won-
dered if explicitly conditioning the tokens we generate on their position in the
target sentence could improve translations. For this, we create a new type of
module, called here MultiLinear Layer, which is composed by a set of indepen-
dent linear transformations, as follows:

W =
{

W (1),W (2), . . . ,W (m)
}

where m is the maximum target sentence length in the training set. Each W (i)

is used coupled with the position of the token to be generated, thus conditioning
the output probability distribution on its position in the target sentence, such
that:

p(yi|x, pos = i) = Softmax
(
W (i) · di

)

The Reduced MultiLinear Network architecture uses the same encoder as the
Reduced Fast Semantic Parsing architecture to create a representation for the
source sentence. It then uses MultiLinear transformations to output tokens as
follows:

d:,0 = Encoder(x)

di,j = W (i,j) · σ (di,j−1) , W (i,j) ∈ W {j}

where d:,0 is the source sentence representation, di,j is the positional dependent
representation in layer j and position i, σ is a non-linearity, and W {j} is a
MultiLinear transformation. The output probability distribution is given as:

p(yi|x, pos = i) = Softmax (di,l)
3 It is technically upconvoluted, but this is typically referenced as deconvolution in

the literature.
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where l is the number of layers in the decoder. Note that, in this architecture,
there are no convolutions in the decoder.

4 Experiments

In this section, we present the dataset and baselines used to evaluate our pro-
posed semantic parsing models. Then, we discuss our evaluation procedure and
report the results. In particular, our experiments aim to answer the following
research questions:

RQ1 How accurate are the different models based on the architectures described
in Sect. 3?

RQ2 What is the speedup of simpler models over sophisticate ones?
RQ3 Are conditionally-independent models effective?
RQ4 Can we select a set of best models for this task?
RQ5 What is the accuracy vs. training size trade-off for the models?

4.1 Dataset

In order to evaluate different models we gathered data from real conversations
between customers of a bank institution and trained attendants. Specifically,
customers entered natural language sentences into a web chat session, and the
attendants interpreted these sentences and then executed queries in order to
return the correct answers to the customers. In summary, the corpus contains
4,959 examples of sentences in natural language paired with the correspond-
ing queries in the formal query language, and was obtained from a large bank
institution in Brazil. Questions entered by the customers are of diverse types,
including:

– ‘how much’: typically asking how much money was spent on something (e.g.,
“how much did the client spend on groceries in April?”)

– ‘did I pay’: typically asking if a specific bill was paid (e.g., “did the client pay
the electricity last month?”)

– ‘where did I spend’: typically asking where something happened (e.g., “where
did the client spent most money in the month?”)

Since this data comes from a real bank scenario, questions have a limited
scope (banking activities), so several questions have similar contexts or phras-
ing, which results in the high accuracies seen. This corpus also contains many
sentences with construction errors, which the model must learn to translate cor-
rectly. The output vocabulary size is 69 and an example of query is “SELECT
History FILTER Timestamp EQ MONTH DAY 5 June KEEP Balance”.
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4.2 Models

We considered the following models based on the network architectures presented
in Sect. 3:

– FaSP: it uses the Fast Semantic Parsing architecture followed by a simple
linear transformation and a softmax.

– FaSP (ML): it uses the Fast Semantic Parsing architecture followed by a
MultiLinear transformation and a softmax.

– RedFaSP: it uses the Reduced Fast Semantic Parsing architecture followed
by a simple linear transformation and a softmax.

– RedFaSP (ML): it uses the Reduced Fast Semantic Parsing architecture
followed by a MultiLinear transformation and a softmax.

– RedMulNet (1): it uses the Reduced MultiLinear Network architecture with
a single decoder layer.

– RedMulNet (2): it uses the Reduced MultiLinear Network architecture with
two decoder layers.

4.3 Baselines

We considered the following models in order to provide baseline comparison:

– RNN: Recurrent Neural Network (Sutskever et al. 2017) using Gated Recur-
rent Units (GRU) as recurrent modules.

– Attn-RNN: Recurrent Neural Network using Gated Recurrent Units (GRU)
with an attention mechanism (Bahdanau et al. 2015).

– Bytenet: Architecture with a fully convolutional encoder-decoder which has
a training time that is linear in the target sentence sizes (Kalchbrenner et al.
2016). This architecture uses masked convolutions in the decoder to condition
translations on the previously translated words.

– Bytenet (ML): ByteNet architecture followed by a MultiLinear transforma-
tion and a softmax layer.

4.4 Setup

The measure used to evaluate the effectiveness of our models is the standard
accuracy of full sentence translations, which means the whole output sentence
needs to match the ground truth to be considered correct. We conducted ten-fold
cross validation, where the dataset is arranged into ten folds with approximately
the same number of examples. At each run, eight folds are used as training set,
one fold is used as validation set, and the remaining fold is used as test set.
The training set is used to learn the models, the validation set is used to tune
hyper-parameters and the test set is used to estimate the accuracy of the models.
Unless otherwise stated, the results reported are the average of the ten runs, and
are used to assess the overall effectiveness of each model.
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Training and Model Selection. We used stochastic gradient descent (Hinton
2012) with learning rate set to 0.01, maximizing the log-likelihood of the training
set. We used Exponential Linear Units (ELU, Clevert et al. 2016) as non linear
activations and a dropout probability of 0.2. The mini-batch size is fixed to 16
and training was stopped after 50 epochs with no improvement. We trained each
of the convolutional architectures with kernel sizes of {3, 5, 7} and hidden sizes
{256, 512}. While the recurrent architectures were trained for number of layers
in {1, 3, 5} and hidden sizes in {256, 512}. We perform a grid search for these
hyper-parameters, tuning on the validation set, with early stopping. The best
model for each architecture was chosen as the smallest loss on the validation set.

4.5 Results and Discussion

Next we report results obtained from the execution of the experiments, and
discuss these results in the light of our research questions.

Accuracy of the Models. The first experiment is concerned with RQ1. We
present a comparison between all considered models in terms of their accuracy
numbers. Table 1 shows the average accuracy numbers in the validation and test
sets. It is clear that all considered models present very high accuracy on conver-
sational banking data. Specifically, accuracy varies from 98.19% using RedMul-
Net(1), to 99.46% using RNN.

Speedup. The next set of experiments is devoted to answer RQ2. Both train-
ing and translation times can be seen in Table 2. We can see that the training
time per epoch for all convolutional based methods is considerably smaller than
for recurrent networks. We can also see that training times per epoch for the
architectures with MultiLinear transformations at the top layers are not very
different from the ones with common Linear transformations. These MultiLin-
ear architectures have a training time bigger than their counterparts, which is
expected since they have more parameters to learn. Nevertheless, the increase
in training time in FaSP and ByteNet is not very large when compared with the
increase for models based on recurrent architectures.

While the training times from our conditionally-independent models are sim-
ilar to the one from ByteNet and ByteNet (ML), translation times are consider-
ably different, both for CPU and GPU.4 Analyzing Table 2 we can see that both
ByteNet and ByteNet (ML) take almost 3 min to translate the dataset, while the
slowest conditionally-independent model takes only 27 s. FaSP (ML) takes only
18 s. On CPU, ByteNet architectures are even slower than RNN, taking more
than 10−12 min, while RNN takes approximately 3.5 min and FaSP only 1 min.

4 Translation times correspond to the time taken to translate the entire dataset, con-
sisting of 4,959 questions. Both training and testing (GPU) were done using a single
K40 GPU, on a 12 core dedicated server with 32GB of RAM, while CPU times were
collected in a dedicated 16 core server with 36GB of RAM.
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Table 1. Results for best
configurations.

Model Accuracy

Val Test

FaSP 98.99% 98.97%

ByteNet 99.01% 98.93%

RedFaSP 98.55% 98.49%

RNN 99.48% 99.46%

Attn-RNN 99.11% 99.17%

FaSP (ML) 98.89% 98.91%

ByteNet (ML) 98.99% 98.97%

RedFaSP (ML) 98.47% 98.57%

RedMulNet (1) 98.23% 98.19%

RedMulNet (2) 98.57% 98.53%

Table 2. GPU training times. GPU and CPU
response times. (Best models)

Model Training (GPU) Translation

Epoch Total GPU CPU

FaSP 0m08s 56m 0m20s 2m28s

ByteNet 0m04s 57m 2m48s 10m09s

RedFaSP 0m04s 38m 0m10s 0m32s

RNN 0m29s 178m 3m16s 3m28s

Attn-RNN 2m11s 539m 4m34s 12m23s

FaSP (ML) 0m06s 67m 0m18s 1m01s

ByteNet (ML) 0m06s 88m 2m59s 12m36s

RedFaSP (ML) 0m06s 95m 0m17s 1m23s

RedMulNet (1) 0m03s 92m 0m21s 0m34s

RedMulNet (2) 0m05s 153m 0m27s 0m53s

Effectiveness of Conditionally-Independent Models. The next set of
experiments is devoted to answer RQ3. Table 3 shows if there is a statistical
differences between each pair of models evaluated. The statistical difference was
evaluated by comparing the ten runs for each pair of models and running a
Welch’s t-test (unequal variances t-test), with p = 0.01. It can be seem that
there is no statistical difference between the RNN, Attn-RNN, FaSP (ML) and
ByteNet (ML) models, for which the accuracy on the test set vary from 98.91%
to 99.46%.

From Table 3, we can also see that the only models that are statistically
better than others are RNN, which beats several of the simpler models, and
Attn-RNN, which only beats RedMulNet(1), our simplest model. This means
that FaSP (ML), a conditionally independent model which uses only convolu-
tions for semantic parsing in conversational banking data, presents statistically
similar results to the three best conditional models, ByteNet (ML), Attn-RNN
and RNN. Therefore, conditionally independent models, specially FaSP (ML),
are effective for conversational banking data. When we apply Bonferroni correc-
tion (Bonferroni 1950) to the statistical tests, no differences present statistical
significance.

Table 4 shows detailed results for the best models in terms of accuracy in the
test set. From this table we can see that RNN indeed is a robust model. What
might be surprising is that FaSP(ML) was more robust than both ByteNet(ML)
and Attn-RNN. Another important result is that the model with the highest
accuracy in the test set was FaSP(ML), with a kernel size of 7 and a hidden size
of 512, beating RNN, Attn-RNN and Bytenet(ML) models.
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Table 3. (Color online) Statistical difference of results.
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significant difference with p = 0.01
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Table 4. Detailed results for best models.

Test accuracy

(number of layers,
hidden size)

(1, 256) (3, 256) (5, 256) (1, 512) (3, 512) (5, 512)

RNN 99.40% 99.19% 99.40% 99.40% 99.40% 99.46%

Attn-RNN 92.94% 99.19% 30.85% 55.85% 97.78% 99.17%

(kernel size, hidden size) (3, 256) (5, 256) (7, 256) (3, 512) (5, 512) (7, 512)

FaSP (ML) 98.91% 99.19% 99.19% 98.79% 98.99% 99.60%

ByteNet (ML) 97.38% 98.79% 98.97% 99.19% 99.40% 99.19%

Pareto Optimality. Having the translation times and accuracy numbers of our
models, we can find a set of Pareto optimal models in order to answer RQ4. The
graphs in Fig. 4(left) and (right) show accuracy numbers and translation times
on GPU and CPU, respectively. By analyzing these graphs, we can find this set
of Pareto optimal points for either running this system on CPU or GPU. On
CPU, this set is composed of RedMulNet(1), RedFaSP, RedMulNet(2), FaSP,
FaSP (ML) and RNN, which either have a better accuracy or translation time on
CPU than all other models. When running on GPU, this set is composed only of
RedFaSP, RedFaSP (ML), FaSP, FaSP (ML), ByteNet (ML) and RNN. Notice
that Attn-RNN and ByteNet are in neither of these sets, while ByteNet (ML) is
only in the GPU one, but is hardly a good choice, since it has statistically the
same result as FaSP (ML), with a much larger translation time.
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Fig. 4. (Color online) Accuracy and translation times on GPU (left) and on CPU
(right). Y-axis is flipped for better visualization of the Pareto frontiers. (Best models)

Training Size vs. Accuracy. The last set of experiments concerns RQ5.
Figure 5 shows the accuracy of the models as the size of the dataset increases.
To build this graph, we trained each model on smaller parts of the training set
{6.25%, 12.5%, 25%, 50%, 100%}, again saving models every epoch and selecting
the best one according to the smallest loss on the full validation set. After that
we evaluated each model on the full test set.

Analyzing this graph we can see that the models based on recurrent archi-
tectures are more robust to training size, almost dominating conditionally-
independent models in terms of accuracy. This is expected, since RNN models
the entire source sentence in a vector with a constant size, independent of sen-
tence length, while convolutional units have a dependency which is exponential

Fig. 5. (Color online) Accuracy numbers for reduced training sets.
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with its number of layers, so the minimum number of parameters used by these
architectures is usually bigger.

Further, for smaller training sizes, models with Linear transformations at the
output layers outperform models with MultiLinear transformations. This is also
coherent with theory, since Linear architectures have less parameters and must
learn to generalize better, even with fewer samples. With 50% of the training
set, most models already generalize well achieving accuracy numbers around
97%. RNN and ByteNet architectures having equal accuracies of 97.97%, FaSP
(ML) and Attn-RNN achieving 97.17%, ByteNet (ML) with 97.57% and only
RedMulNet(2) still not being able to learn, with only 31.11%.

5 Conclusions

In this paper, we proposed neural models for conversational banking. Our models
are based on three new network architectures that assume conditional indepen-
dence of the target tokens. Although this is a fairly dangerous assumption to
make in traditional machine translation and semantic parsing applications, we
showed that our models are able to provide results that are statistically equiv-
alent to either recurrent models or more complex convolutional models, like
ByteNet, with much faster training time than the recurrent models and an order
of magnitude faster translation time in GPU than traditional models. We also
proposed the MultiLinear module, which can be plugged in any network architec-
ture used to solve sequence to sequence problems where targets are positionally
dependent. As shown in our experiments, the MultiLinear module can improve
results, at the cost of needing larger training sets. Our fastest conditionally-
independent models, which still achieve 98, 49% accuracy, can translate 4,959
questions in only 10 s using a K40 GPU and in only 32 s on a 16 core CPU.
This is relevant because financial institutions have large number of clients and
in conversational banking, to maintain user engagement, real-time answers must
be given to a large set of these concurrent users simultaneously.
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Abstract. Two-level indexes have been widely used to handle trajec-
tories of moving objects that are constrained to a network. The top-
level of these indexes handles the spatial dimension, whereas the bottom
level handles the temporal dimension. The latter turns out to be an
instance of the interval-intersection problem, but it has been tackled by
non-specialized spatial indexes. In this work, we propose the use of a
compact data structure on the bottom level of these indexes. Our exper-
imental evaluation shows that our approach is both faster and smaller
than existing solutions.

Keywords: Space-efficient data structures · Moving-objects · Indexing

1 Introduction

Spatio-temporal information has gained popularity in decision making systems,
such as optimization of transportation systems, urban planning, and so on. The
proliferation of different types of sensors to capture or generate this kind of data
has made these applications possible but, at the same time, it has also made
challenging the storage and processing of spatio-temporal data. The work in this
paper focuses on a subcategory of spatio-temporal data, that is, trajectory of
moving objects, which can be reconstructed by the GPS devices of smart-phones
or, at a different granularity, by smart transportation cards.

Trajectories can be classified as free-trajectories, in which movement is not
constrained, and network-based trajectories, in which movement is constrained
to a network and cannot exist outside such network. Hurricanes and animal
migrations are examples of the former, whereas public transportation is an exam-
ple of the latter. Useful queries that can be answered by handling trajectories
are: count the number of vessels inside a region during a time period (e.g. fishing
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closed season) or find the shortest path between two stops of a transportation
system during a time period.

Several spatio-temporal indexes have been proposed to handle both free and
network-based trajectories. However, classical solutions to deal with moving-
object data are inefficient when facing the data volume collected through new
sensor technology and the increasing interest for data analysis. On the other
hand, space-efficient data structures have been proved to be successful for han-
dling large volumes of data in many different domains, such as the Web, biological
sequences, documents and code repositories, to name some examples.

In this work, we focus on two-level indexes for network-based trajectories and
propose a new solution that uses compact data structures on the bottom level.
This approach turns out to be smaller and faster than existing solutions.

2 Background and Related Work

A data structure for trajectories must provide access methods that allow
the processing of spatio-temporal queries. These queries can be classified into
coordinate- and trajectory-based queries [26]. Coordinate-based queries include
time-slice queries that determine the position of objects at a given time instant,
time-interval queries that extend time-slice queries to a time range, and queries
about nearby neighbors. As for trajectory-based queries, they include topologi-
cal queries, which involve information regarding the movement of an object, and
queries related to navigation, which involve information derived from the move-
ment, such as speed or direction. There also exist combinations such as “Where
was object X at a given time instant”.

Various data structures have been proposed to efficiently support queries
on trajectories. These structures can be broadly classified into two categories:
(i) Data structures to support free movements on a space, such as 3D R-tree (a
three-dimensional extension of the R-tree [17]), TB-tree [26] (which preserves the
trajectories while allowing typical range queries on an R-tree) and MV3R-tree
[32] (which uses a multi-version R-tree, called MVR-tree, along with an auxiliary
3D R-tree). (ii) Data structures to support movements on networks, such as
FNR-tree [14] (which uses a combination of a 2D R-tree with a forest of 1D
R-trees), MON-tree [1] (using 2 levels of 2D R-trees) and PARINET [28] (based
on graph partitioning and the use of B+-tree). Among the previous structures,
FNR-tree and MON-tree have in common the separation of spatial and temporal
dimensions, using a spatial structure (two-dimensional) and a forest of temporal
structures (one-dimensional) to tackle each of these sub-problems separately.

Like FNR-tree and MON-tree, we focus on these two-level indexes. To solve
the spatial problem, that is, the representation of the network in space (two-
dimensional plane), aforementioned structures use a 2D R-tree, storing the seg-
ments of the network as lines. With the spatial problem solved, time has to be
associated with segments in the network. More precisely, it is necessary to look
for all the time intervals (times in which some objects pass through a segment)
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that intersect with a given query interval. This problem is known in the litera-
ture as interval intersection, an extension of the interval stabbing problem [30].
Classical structures to solve this problem are Interval trees and Priority trees [5].

As for the subproblem in the temporal dimension, FNR-tree makes use of
a one-dimensional R-tree for each segment. These 1D R-trees index the objects
whose trajectories pass through the segments of the network, storing the instant
they enter and leave the segment in the form of a time interval (tentry, texit).
Since only these intervals are stored, the structure assumes that objects do not
stop or change speed or direction in the middle of a segment, they can only do so
at nodes. MON-tree eliminates this restriction by replacing the one-dimensional
R-trees with two-dimensional R-trees, where they store the relative movement
within the segments as rectangles in the 2D R-tree of the form (p1, p2, t1, t2),
with (p1, p2) a range of relative positions and (t1, t2) a temporal interval.

While some of aforementioned structures support queries efficiently on large
datasets, they are incapable of handling the increasing data volume of current
applications. This has forced the use of compression techniques for data storage
and transmission. Some techniques are to reduce the number of points in a
curve [23] or to use features at each point, such as speed and orientation [27].
Both techniques work in free spaces and, when the movement is restricted to
networks, it is even possible to get a better compression, like the ones shown
in [18–20,29].

Previous compression techniques improve storage requirements and transmis-
sion time of large datasets. However, the compression can be directly exploited
by data structures that can maintain a compact representation of the data while
allowing for indexed search capabilities. These structures have been called self-
indexes and have been successfully implemented in other domains, such as infor-
mation retrieval [24].

Recently, compact data structures have been also used for the represen-
tation of trajectories. GraCT [9], for free paths, uses a k2-tree [10] to store
the absolute position of the objects in regular time intervals (snapshots) plus
compressed logs for the representation of the movements between snapshots.
ContaCT [8] improves GraCT with more efficient logs. Both structures answer
spatio-temporal queries where space and time are the main filters, such as, “find-
ing trajectories that went through a specific region at a given time instant”. On
the other hand, CTR [7] supports trajectories restricted to networks by combin-
ing compressed suffixes arrays (CSA), to represent the nodes on the network an
object passes through, and a balanced Wavelet matrix for the temporal compo-
nent of the movement. In CTR, trajectories (or trips) are defined as sequences
of labels, which represent the nodes of the network. Hence, it solves other types
of queries in which the space is represented with such labels, such as “find the
number of trajectories that started at X and ended at Y ”. This is a fundamental
difference with our proposal, in which the spatial dimension are coordinates in
a two-dimensional space, and not labels. This is also the main difference with
CiNCT [20], which boosts CTR in terms of memory storage and query time.
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Another difference with previous solutions is that our approach uncouples
the network from the trajectories. This model known as Network-Matched has
been successfully used [12,22], but without using compact data structures in its
implementation. Our approach has the advantage that mapping trajectories to
a network facilitates the finding of similar trajectories and, in consequence, it
allows a better use of space.

3 Data Structures for Network-Based Trajectories

Similarly to the FNR-tree and MON-tree, we propose an index with two levels:
spatial (top level) and temporal (bottom level). In a preliminary experimental
evaluation, we observed that the spatial level requires negligible space compared
with the temporal level. For example, for the Oldenburg network (see Sect. 4),
in the baseline structure, the temporal level uses about 89% of the total memory
with 1,000 objects circulating and about 94% with 2,000 objects. The more data
are stored, the more negligible the spatial level becomes (due to the almost-static
nature of the transportation network in comparison with the moving objects).
Hence, we focus on optimizing the temporal level and process the spatial level
with a 2D R-tree, as the FNR-tree and MON-tree do. Recall that the R-tree
is a balanced tree in which each leaf stores an entry of the form (id, MBB),
where id is a reference to the data (in this case to a temporal index) and MBB
is the Minimum Bounding Box that covers the spatial object (a line segment, in
this domain). The R-tree does not provide worst-case guarantees as it may be
forced to examine the entire tree in O(n) time, even when the output is empty.
However, it performs well in practice and is ubiquitous in spatial databases.

Each leaf of the R-tree contains a reference to a temporal index. These indexes
solve the Interval Intersection problem. Before presenting alternatives to solve
this problem, we give an overview of a query algorithm for spatio-temporal range
queries, which are the most general coordinate-bases queries. First, a spatial
query, a 2D window, is solved on the 2D R-tree, which returns a set of leaves
whose segment may intersect the window. As in most spatial indexes, a refine-
ment step is then executed to eliminate false positives, i.e. network segments
whose MBBs intersect the window, but they do not actually intersect the win-
dow. After this refinement, the interval intersection query is executed in each
temporal index referenced by the remaining leaves of the R-tree. Results from
all these temporal indexes are then combined using an implementation of a set.
Hence, all the structures below store object identifiers to allow this merge.

3.1 Temporal Level: Data Structures for the Interval Intersection
Problem

Unlike the FNR-tree and MON-tree, which use variants of an R-tree, we explore
the use of specialized data structures for the interval-intersection problem.
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Interval-Tree [5]. This is a binary tree that is constructed recursively in the
following way: (i) The median xmed of all the interval endpoints is computed. (ii)
Intervals are classified in three sets, Imed, Ileft and Iright, which contain intervals
stabbed by xmed, intervals to the left of xmed and intervals to the right of xmed,
respectively. (iii) Imed is stored in a structure composed of two arrays sorted by
left and right endpoints, and associated with the root, whereas Ileft and Iright
are recursively processed and assigned as left and right child, respectively.

A search for the intervals that intersect with the query interval (lq, rq) is
solved recursively starting from the root. The intervals within the visiting node
that intersect the query interval are returned and the search is continued in the
left child if lq is less than xmed and/or in the right child if rq is greater than
xmed. This data structure requires linear space and O(log n + k) query time,
where k is the number of reported results.

Schmidt. The structure presented in [30] to solve the Interval Stabbing problem
can be extended to solve also the Interval Intersection problem [11]. It defines
the father of an interval as the rightmost interval among those that cover it
completely. This relation forms a tree where siblings are ordered from left to
right, and the root of the tree is a special node that acts as the father of all the
intervals that are not covered by any other. In addition, for each possible end-
point of an interval, the structure stores an array called start, with a pointer to
the node representing the rightmost-starting interval that intersects such point,
and an array start2, storing a pointer to the node representing the rightmost
interval starting up to such point (which may not be stabbed by it).

To solve an interval intersection query q, the algorithm first reports the right-
most interval that intersects q, which is max(start[lq], start2[rq]), if it exists.
Then, the algorithm recursively reports the siblings to the left of the node while
its right endpoint is greater than or equal to lq, also searching among the right
children of the reported nodes. This structure requires linear space and optimal
O(1+k) query time. Note, however, that this solution works only for small integer
ranges. In order to work with intervals whose endpoints are floats, these end-
points are stored in sorted arrays and two binary searches are used to translate
the query to rank space [11], which results in a total complexity of O(log n+ k).

Compact Data Structure Based on Independent Interval Sets (IIS).
A set of intervals I = {i1, i2, ..., in} is called an Independent Interval Set if no
interval ij ∈ I is contained in any other interval ik ∈ I.

Report the k intervals of an IIS that intersect a query interval Q = [lq, rq]
can be easily computed if we have the intervals in order. Note that, by definition
of IIS, the order of the left endpoints of the intervals is the same as that of
the right endpoints. If the first and the last interval intersected by the query
are located, it is enough to iterate between them to return all the intersected
intervals (see Fig. 1).

In order to locate these two intervals, we could store the left and right coordi-
nates of the intervals in two sorted arrays and use binary search to locate them,
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Fig. 1. An Independent Interval Set (IIS) and its representation with two bitvectors.
In red, the last interval stabbed in start and the first one in end. (Color figure online)

which is similar to what we did in previous solution. However, for this domain,
we propose a simple solution that facilitates the use of compact data structures.
Recall that the endpoints of our intervals are timestamps represented as float
numbers. We multiply these timestamps by a scale factor to convert them to
integers. For example, if we work with timestamps with up to 6 decimals it is
enough to multiply each one of them by 106 to discretize the space. With this
procedure, we obtain integer endpoints in an universe U and, the larger the scale
factor, the larger the universe.

After this discretization, we use two bitvectors, one for the left endpoints,
start, and another for the right endpoints, end, of each interval in the set
(see Fig. 1). A 1-bit in these bitvectors indicate that an interval starts (or ends,
respectively), at such position. Then, for a query Q = [lq, rq] also discretized to
this universe, two rank operations on these bitmaps are used to locate the first
and last intervals intersected by the query: rank1(end, lq) and rank1(start, rq),
respectively. As we mentioned above, the larger the scale factor, the larger the
size of the universe u, which is the number of bits in these bitmaps. However, the
number of set bits in them is n, which is the number of intervals (independently
of the scale factor). Hence, we use the Elias-Fano representation [25] for this
bitmaps, which takes 2n + n log u

n bits of space. Note that, for a constant c and
u = O(nc), it uses O(n) words of space as previous structures. The query time
of rank operations on these bitmaps is O(log u

n ), thus, this structure can report
the k intervals intersecting the query in O(log u

n + k) time.
Although this solution only works for IIS, a general set of intervals can be

decomposed into m independent sets in O(n logm) time, for example, with Fred-
man’s algorithm [13] to find the optimal number of shuffled upsequences in a
permutation (by considering the rightmost endpoints of the intervals as the per-
muted values). This leads to a solution that requires O(m log u

n + k) time to
report the k solutions. This does not provide worst case guarantees as m can be
as large as n, however, this adaptive analysis shows that this is an efficient solu-
tion for domains in which m is small. The empirical evaluation in next section
shows that this is precisely the case in our domain.
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4 Experimental Results

All the implementations evaluated in this paper were coded in C++11. For
the baselines, we use some available implementations: R-tree [2], Interval-tree1

[15] and Schmidt [31]. We also make use of some succinct data structures from
the SDSL library [16]. The experiments were run in a computer with an Intel
Xeon E3-1220 v5 of 3.00 GHz CPU, 64 GB of RAM, and implementations were
compiled with g++ 5.4.0 over Ubuntu 16.04 (64 bits).

We first evaluate the performance of all the implementations for interval
intersection on synthetic datasets, and then, the best candidates are evaluated
in the complete solution for network-based trajectories.

4.1 Evaluation of Interval Intersection Data Structures

We evaluated the performance in three scenarios with different types of intervals:
(i) fixed size (Fig. 2), (ii) random size (Fig. 3), and (iii) intervals of trajectories
extracted from a trajectories dataset generated with Brinkhoff’s generator [6]
over San Francisco’s network (Fig. 4). For each of these scenarios, we created
a dataset with 800,000 intervals and a queryset with 500 random queries. We
report average time per query.
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Fig. 2. Fixed size intervals

Figure 2 shows the performance of the structures using fixed size intervals.
The compact data structure shows the best performance among the four struc-
tures, with a considerable advantage in both query time and memory usage. In
this scenario, intervals do not fully cover each other (except for precision issues),
which produces a low number of independent sets in the IIS structure (only 6
for 800,000 intervals). This explains the outstanding performance of IIS.

Figure 3 shows the performance of the structures for random size intervals.
The compact data structure keeps the best results in query time and memory

1 This implementation uses sequential search in each node, which is not optimal in
theory, but performs well in practice.
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Fig. 3. Random size intervals.

usage (although in a tie with the Interval-tree) while the building time is dras-
tically increased (up to 900 times the building time of the Interval-tree). This is
explained by the high number of independent sets (3,273 for 800,000 intervals),
which is caused by the frequency with which intervals fully cover each other.
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Fig. 4. Intervals from trajectories.

Figure 4 shows the performance of the structures using time intervals
extracted from synthetic trajectories obtained with Brinkhoff’s generator. The
compact data structure shows a performance in between the two previous cases,
but more similar to the first one. Note, however, that results in these three sce-
narios are not directly comparable due to differences in the number of intervals
reported in the queries. This shows the sensibility of the structure to the number
of independent sets. In this dataset, intervals of trajectories have often similar
length, producing a relatively low number of independent sets (29 for 800,000
intervals). Each temporal index is associated with a segment of the network, and
moving objects usually traverse a same segment at a similar speed.

We also evaluated the sensibility of the structures to the scale used to trans-
form original float-number times to integers. In this procedure, each time is
multiplied by a scale factor and then truncated. In our datasets, original times
use up to 8 digits to the right of the decimal point. Hence, a scale factor of 108

guarantees a lossless transformation, whereas lower scale factors may produce a
lossy transformation. Results are shown in Fig. 5.
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Fig. 5. Performance according the scale of the intervals. The last point of IIS in the
last graph was omitted, because it is about 40 times larger than the others.

Query time shows an almost constant behavior, except for the increase suf-
fered by Schmidt, which is caused by the high number of duplicates when only
2 or less digits are used for the fractional part. In terms of space and construc-
tion time, the compact data structure is more sensible than the other structures,
which is caused by the scale process. As we explain in previous section, the larger
the scale factor, the larger the size of the bitmaps in this structure. Even so, this
structure obtains the best results in both query time and memory usage, also
giving the possibility to improve the performance in applications where the user
can afford losing some precision.

4.2 Overall Evaluation

From the experiments in previous section, we conclude that Schmidt’s struc-
ture is always outperformed by the others, and thus it is not considered in the
implementation of data structures for trajectories. In the following experiments
we compare our proposal, based on compact data structures, with two baselines:
the original FNR-tree and an ad-hoc baseline in which 1D R-trees are replaced by
interval trees. Note that in these experiments we are comparing three two-level
indexes, all of them using a 2D R-tree on the top level.

The datasets of trajectories were created using Brinkhoff’s generator [6] over
the real road networks of Oldenburg and San Francisco. The former consists of
6,105 nodes and 7,305 edges, whereas the latter consists of 175,343 nodes and
223,343 edges. We created trajectories for 1,000, 2,000, 3,000, 4,000 and 5,000
objects during 100 units of time for both networks.

Memory Usage. Figure 6 shows the space required by each of the structures.
The proposed space-efficient solution (labeled as IIS in the graphs) obtained the
best results in all the experiments. In addition, the larger the number of objects
moving over the network, the larger the advantage of this structure over the
baselines. For small number of moving objects, the total space used by the data
structures is dominated by the spatial level, however, as this number increases,
the temporal level dominates, and our proposal takes more advantage.
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Fig. 6. Total memory usage.

Table 1. Memory usage
per object (KB / object)
[5,000 objects and 100
time units].

Structure Old. S.F.

FNR-tree 5 32

baseline 4 26

IIS 1.5 11

The approximated memory usage per object is shown in Table 1, which shows
that our approach requires about 70% less memory than the FNR-tree, and about
60% less memory than the baseline, when there are 5,000 objects moving over
the networks. The difference between the two datasets is explained by the size
of the network, the San Francisco network being much larger. First, part of the
space charged to each object is due to the spatial index. However, the size of
the network has also an impact on the distribution of objects per edge of the
network. As this distribution is very skewed, the larger the network, the larger
the number of nodes with few objects, which means an overhead.

Query Time. The time performance of the structures was evaluated for three
types of queries, which are the same used in the original evaluation of the FNR-
tree [14]: (i) Range Queries with Equal Spatial and Temporal Extent, such as
“find all objects within a given area during a given time interval”; (ii) Range
Queries with Larger Temporal Extent, which query for very large time intervals,
including intervals expanding the whole temporal dimension, such as “find all the
objects having ever passed through a given area”; and (iii) Time Slice Queries,
that only consider a time instant, such as “find all the objects that were in a
given area at a given time instant”. For each of these scenarios, we created three
query-sets with 500 random queries for each network.

Figure 7 shows the results for the first type of queries. The first row shows
results for Oldenburg and the second row for San Francisco. For both datasets,
we show the results of random queries of different sizes, 1%, 10% and 20% in
each dimension. Similar frameworks will be used to evaluate the other two types
of queries. This is the same experimental setting used in [14].

In all the experiments our proposal outperforms both baselines. Just for small
queries, 1% of the dimensions, the FNR-tree shows competitive results with our
proposal. This is more evident in the largest network. The justification is the
relative importance of the spatial part of the query with respect to the temporal
part, which depends on the size of the network. Also important, our proposal
shows better scalability on the number of objects moving through the network.
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Fig. 7. Range queries. First row for Oldenburg and second row for San Francisco. Each
column contains queries of different size from 1% to 20%.
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Fig. 8. Range queries with larger temporal extent. First row for Oldenburg and second
row for San Francisco. Each column indicates x%− y%, being x the size of each spatial
dimension (1% or 10%) and y the size of the time intervals (10% or 100%).

Figure 8 shows the results for range queries with larger temporal extent. In
these experiments the temporal extent is always larger than the spatial extent,
expanding the whole temporal dimension in the second and third column.
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Fig. 9. Time slice queries. First row for Oldenburg and second row for San Francisco.
Each columns contains queries of different spatial extent (1% to 100%).

Results in this scenario are similar to the previous one, but the advantage of
our proposal is even more obvious. Recall that our structure performs two rank
operations in each independent set and then it just iterates over the results,
which is very efficient. Finally, Fig. 9 shows the results for time slice queries.

The analysis of these experiments is quite different from the previous ones,
as the FNR-tree usually outperforms all the other approaches. There are two
main reasons for this. First, large spatial queries lead querying many temporal
indexes (all of them for the experiments in the last column). Second, most of
these queries to temporal indexes produce empty results or very few results,
which is expensive in our proposal. Each of these queries needs to perform the
two rank operations in each independent set just to detect that there are no
results to iterate through. Hence, this scenario represents the worst case for our
proposal.

5 Conclusions

We have proposed a new data structure for trajectories of moving objects, which
movement is constrained to a network. Our proposal is inspired by two-level
indexes, such as the FNR-tree and MON-tree and, indeed, we use the same two-
dimensional R-tree for the spatial dimension. Hence, the difference from previous
solutions is in the temporal dimension. This is justified by our experimental
evaluation showing that the spatial dimension requires negligible space compared
with the temporal dimension. For this dimension, we propose a structure based
on a decomposition on independent sets of intervals and the use of succinct data
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structures. Our experimental evaluation shows that the resulting structure is
smaller than previous solutions, and also faster for a broad set of queries.

The interval intersection problem can be reduced to 2-sided range report-
ing [11], a problem for which efficient data structures have been successfully
applied in LZ-indexes [3,4,21]. As these structures are not adaptive to the num-
ber of independent interval sets, a combination of both approaches would be
interesting as future work. Second, to handle larger datasets, it is necessary to
improve construction time. Note, however, that we used larger datasets than
those used in the evaluation of the FNR-tree. Third, some parts of the structure
could be further optimized. We have observed that the distribution of the moving
objects through the network is very skewed, which produces few temporal indexes
storing many intervals and many indexes storing very few intervals. Hence, in
order to use this index in practice, it is necessary to determine a threshold under
which the intervals are just stored in an array and sequentially searched. Finally,
bitmaps supporting append operations should be used to support dynamism.
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