
Construction of Discrete Time Graphs
from Real Valued Railway Line Data

Steven Harrod

Abstract Railway timetables are frequently modeled as discrete time expanded
graphs. The selection of the magnitude of the discrete time unit can significantly alter
the structure of the graph and change the solutions generated. This paper presents a
method for generating improved mappings of real railway track segments to discrete
arc graphs given a chosen discrete time unit. The results show that the dimensions
of the generated graph are not monotonic and a range of values should be evaluated.
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1 Introduction

Frequently, railway timetabling problems are formulated as discrete time expanded
graphs. The movements of the trains however, are measured in real valued time.
In most formulations, feasible solutions require that train run times be lengthened
or rounded up to the nearest discrete time unit, resulting in some increase in travel
time and reduction in railway line capacity. It should be explained to the reader new
to railways, that nearly all railways divide their rail networks into sections called
“blocks”. Train movement authorization is given according to these blocks, and a
true microscopic model of a railway would represent each of these blocks as an arc.
These blocks can be as small as 100 m.

The number of alternative train paths, the density of the graph, and the complexity
of the problem all increase as the size of the discrete time unit shrinks. Frequently,
these timetabling problems are very large, consisting of tens of thousands of discrete
arcs, each of which is represented in a mathematical program by a binary decision
variable. One way to reduce the complexity of these problems is to select a larger
discrete time unit, with a subsequent increase in the model approximation error. This
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Fig. 1 Performance of range of discrete time units in Caimi et al. [2]

paper demonstrates a method of optimizing the discrete arc graph for a given time
unit magnitude.

The design of these discrete arc graphs is one of many tasks in a class of problems
variously referred to as “train routing” problems or “timetabling problems” (TTP).
Harrod [7] provides a detailed survey on mathematical models of this class. Various
prior papers in the literature have selected a discrete time unit according to envi-
ronmental conditions, business rules, or their judgment, but, with one exception, the
choice is not discussed at length and usually is limited to a single sentence. Exam-
ples of studies that apply a discrete time unit are Mills et al. [9], Brännlund et al. [1],
Caprara et al. [4], Şahin [11], Harrod [6], and Lusby et al. [8].

Caimi et al. [2] presents a problem of the Berne, Switzerland station area. The
paper describes assigning run times to trains as the ceiling function of the run time
divided by the discrete time unit. A range of discrete time values between 15 and 120
s are tested on one problem scenario, and the results are shown in Fig. 1. The tradeoff
between computation time and accuracy can be clearly seen. “Addl. Run Time” is
the average additional movement time for each train path through the station due to
the rounding up of the real valued run time to discrete time. The nominal run time
through the station is 250 s. The bounding lines“RT ± s .d.” are drawn one half of
the standard deviation from the “Addl. Run Time” value. In this case, the selected
discrete time unit of 90 s is approximately the headway between trains, minimizes
the computation time, and is approximately in the midrange of the induced error in
run times and capacity.
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2 A Method for Constructing a Discrete Time Network

This section proposes a method for distilling a complex real-valued railway network
structure into a smaller, discrete valued graph. Given a discrete time unit magnitude
as a starting point, the method generates a discrete graph by merging adjacent track
segments into longer segments to be represented by the graph arcs. The objective of
the process is to minimize the deviation between the real valued travel time on the
arcs and the assigned discrete travel time on the arcs.

The error created by the difference between the assigned integer time value and
the original real valued movement time is called here “induced” model error. The
chosen time unit either needs to minimize induced error over the average of all trains,
or over a favored group of trains based on some objective criteria. Not all induced
error is bad. Federal Railroad Administration [5] recommends that all simulated train
times be increased by 7% to compensate for operating delays not accounted for in
train simulations, and some additional induced error may also serve as schedule slack
to protect against stochastic delays.

There are two, sometimes opposing, objectives in this method. First, to minimize
the number of blocks |B| so that the number of arcs or decision variables in the
model is minimized. Second, to dimension the blocks so that the resulting discrete
train travel time is a close match to the real valued train time and minimizes induced
error. A number of parameters support this process, such as s, the minimum number
of track segments to combine, which can define a default train separation or headway.
If, for example, the track segments represent signalled track segments, and the rules
dictate a two block separation (which is very common), then s = 3 will ensure a set
of blocks B which will maintain this headway. Another factor to consider in merging
track segments is the rolling minimum operating headway. Track segments should
not be combined in such a way that they create large variation in the arc travel times,
and thus create a bottleneck and reduce the overall flow rate of the line.

Figure2 displays an example set of track blocks to be combined. The top picture
depicts a length of track with signals and two occupying trains, separated by red and
yellow signals. The source data is represented below by arcs (a) with travel times
labeled. The bottleneck on this route is the segment with travel time t = 5, so the
maximum flow on this route is one train each 5 time units (because only one train
may occupy each segment at a time). The middle set of arcs (b) shows the effect of
combining the first three track segments. The flow is not affected. The bottom set of
arcs (c) makes a poor choice in combining the last two track segments and reduces
the maximum flow to one train each 6 time units.

The combination of track segments into model track blocks is determined by
problem (P), which is a simple set partitioning exercise. Refer to Table1 for expla-
nation of the set notation. The first component of the objective is a tie-breaker. In
the event that more than one combination of track blocks offers the same objective
value, the one with the least number of members is preferred. The selection of a
coefficient of 0.001 is arbitrary, within a range. It should be small to insure that the
second component of the objective is the dominant decision maker, but it should not
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Numbers are segment travel times.
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(b)
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Fig. 2 Example track segment combination process

be too small, as extreme magnitude differences in coefficients can lead to numerical
difficulties for integer program solvers [3].

The second component of the objective is the sum of the induced error for the
source train data considered. All real valued train times are rounded up to the next
integer discrete time value, thus assuring operational feasibility of the resultingmodel
solution timings. The induced error α is the difference of the real value equivalent
of the discrete time value and the source real valued train time. The error is then
approximately the discrete time unit (μ) minus themodulo of the real time (t) divided
by the time unit (Eq. 1).

μ − (t mod μ) (1)

All combinations of track segments are enumerated in set Ω , whose members are
a couple (i, k) where i is the number of track segments combined and k is the
first track segment index. For example, set member (3, 5) defines the combina-
tion of track segments {5, 6, 7}, set member (4, 3) defines the combination of track
segments {3, 4, 5, 6}, set member (5, 8) defines the combination of track segments
{8, 9, 10, 11, 12}, etc. The size of the combination of track segments is limited by
s, which may determine a minimum physical headway, a user selected maximum
combination size l, and the maximum of the rolling minimum operating headway
or bottleneck time described earlier. The single constraint requires that any solution
cover all source track segments. This problem should be solved for a wide range of
values of u (the discrete time unit value, see Table1), and then the total induced error
and number of model track blocks |B| calculated and compared for each value prior
to making a final selection.
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Table 1 Components of Problem 2

Component Type Description

xi,k Binary variable Represents the selection of segment set (i, k) as a
model network track block

u Parameter Real value of discrete time unit

tr,i,k Parameter Total real travel time for train r on segment set (i, k)

αr,i,k Parameter Induced error for train r on segment set (i, k) for
given discrete time unit, αr,i,k = u − mod(tr,i,k , u)

h Parameter Ruling minimum headway or maximum of rolling
value of minimum operating headway

s Parameter Minimum number of track segments to combine into
one model track block

l Parameter Maximum number of track segments to combine into
one model track block

Γ Set The set of trains considered

Θ Set The ordered set of source track segments or blocks,
ordered by network sequence (original data)

Ω Set The set of possible derived blocks, each member,
(i, k), maps to a contiguous subset of Θ , starting at
position k in set Θ and including i consecutive
members (track segments)

Ω =
{
i ∈ {s . . . l}, k ∈ {1 . . . |Θ|}

∣∣∣∣k ≤

(|Θ| − i + 1),maxr tr,i,k ≤ h

}

Δθ Set The set of derived or merged blocks from Ω that
contain the indicated original source track segment θ

Δθ = {(i, k) ∈ Ω|k ≤ θ < k + i}

(P)

min
∑

(i,k)∈Ω

0.001xi,k +
∑

r∈Γ,(i,k)∈Ω

αr,i,k xi,k (2)

s.t.

∑
(i,k)∈Δθ

xi,k =1 ∀θ ∈ Θ (3)

x ∈ {0, 1}

To date, the author has solved these directly using commercial solvers such as Cplex
without difficulty. What is more difficult is managing the input data for these prob-
lems. A formal database structure is valuable for managing this data and the logical
relationships between various data entries. The initial objective is to format the track
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network into a series of minimum dimension units for pre-processing. Each unit has
dimensions of start location, end location, capacity (number of tracks), connected
track segments at each end, and is tabulated as a record in the database. A suitable
database for these records is displayed in Fig. 3. An initial impulse might be to record
the track in one mile or kilometer units, but most signal systems do not allow the
control of trains in these increments, so other dimensions or division points should be
used. Most North American railways operate a fixed installation signalling system,
with train control points fixed at the location of color light or position signals, so the
locations of these signals are the best starting points for track segment records.

3 Application to a Real Test Case: The BNSF
Transcontinental Railway, Winslow to Flagstaff, Arizona

This double track railway is at the midpoint of the journey between Chicago and
Los Angeles, and is the dominant traffic lane for BNSF. In addition to the heaviest
freight traffic on the BNSF network, the line hosts one daily passenger train in each
direction, Amtrak’s Southwest Chief between Chicago and Los Angeles. Winslow
is a crew change point, and both Winslow and Flagstaff are station stops for the
Southwest Chief. Between them lies 54 miles of double track through remote lands
and a Navajo Indian Reservation.

Track network data and train timing data are supplied by BNSF. Signals are
installed on this line approximately every 2–3 miles, so with source track segments
of the same length, there are approximately 21 segments between Winslow and
Flagstaff (approximate depending on one’s interpretation of the signaling system).
Train timing data is provided as computer simulations of a variety of trains. For each
train timing, data is supplied westbound (WB: Winslow to Flagstaff), eastbound
(EB: Flagstaff to Winslow), and for wet and dry rail in each direction, for a total of
4 timings for each train. Wet rail timings are longer than dry rail timings, because
the wet rail limits acceleration and braking, so these timings are used as the more
robust of the two choices. A two block separation is presumed. That is, each train
is presumed to be trailed by a red signal, a yellow signal, and finally a green signal,
and so s = 3. An arbitrarily large value of l = 7 is applied.

The train types considered are limited to the G and X class freight trains and the
Amtrak Southwest Chief. Calculated over a 3 track segment rolling horizon, the bot-
tleneck time for a freight train is approximately 25min and occurs westbound around
Darling, Arizona (milepost 326). Eastbound the bottleneck time is only 14min, and
at the same location. The bottleneck time for Amtrak is only 12min, at the same
location, and in both directions. This mix of trains was arbitrarily chosen to demon-
strate a variety of train types. The typical train mix on this line is actually much
more diverse, and will vary according to season, day of week, and time of day. The
methods presented here may be applied to any specific scenario.
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Table 2 Discrete timings for u = 4.5

Milepost Block no. True miles Freight Amtrak

WB EB WB EB

288
(Winslow)

1 16.6 6 4 3 3

304 2 10.0 4 3 2 2

314 3 8.8 4 2 2 2

323 4 9.5 5 3 3 3

333
(Flagstaff)

5 11.3 6 4 4 4

Model network track blocks are determined usingProblem2 for discrete time units
in 0.5min increments from 1 to 20, based upon the train timings of the dominant
freight trains only. The solution statistics are presented in Fig. 4. The induced error
is displayed as a percentage of the real valued train timing. Again, all integer valued
train timings are determined by rounding up (ceiling function) the real valued train
timings, and the induced error is the sum of the integer valued train timings minus
the real valued train timings. The problem complexity is estimated to be proportional
to the arc count, presented as a complexity factor, (1/u)|B|. That is, the formulation
complexity is a function of the number of geographic arcs and the granularity of the
time horizon to be analyzed.

Candidate discrete time unit values are tagged with vertical lines in Fig. 4. The
first candidate, a discrete time unit of u = 3, offers a desirable induced error of 6%,
but a complexity factor of 1.67. At a discrete time unit value of 3.5min, not only
does the error increase, but the complexity increases as well. This is because the
optimal number of model blocks increases from 5 to 6 at this discrete unit size. The
next candidate unit size is u = 4.5, which offers an error of 9% and a complexity
factor of 1.11, or approximately a 33% reduction in arc count for an admittedly 50%
increase in error. This net error is still below 10% and is a practical level providing
some schedule slack and compensating for the difference between simulated timings
and expected timings. In this data set the trade-off between problem complexity and
induced error becomes increasingly less favorable as the discrete unit size increases.

The resulting train timings in discrete timeunits of 4.5min are presented inTable2.
The Amtrak trains are faster than the general freight trains by a factor of nearly
2 (compare column Freight/WB with column Amtrak/WB in Table2), in spite of
the fact that the top allowable speed of Amtrak trains is not twice that of freight
trains as a rule. The authorized passenger speed between Winslow and Flagstaff
is approximately 79 mph, and for general freight it is approximately 45 mph, or a
ratio of approximately 1.75. The superior acceleration and braking properties of the
Amtrak train allow it to navigate the route much faster than the general freight trains.
Also note how the method has homogenized the arc dimensions. Block 1 is twice as
many miles as block 3, but in 3 of 4 columns it is only 50% greater in travel time.
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Fig. 4 Induced error and complexity as a function of discrete time unit

Reflecting back to the discussed [2] in the introduction, the results of this specific
example demonstrate some similarities. First of all, Figs. 1 and 4 display the same
trends, but recall also that Caimi et al. finds that the headway time between trains
is a good heuristic for the preferred discrete time unit. In this example the limiting
train headway on the BNSF line is not known, but it may be estimated by established
methods described in [10]. In this case, the dominant freight traffic runs at 45 mph,
a two block signal separation is expected, and the blocks are 2–3 miles long. The
trains should thus typically operate with a five mile separation or about 6.66min,
which is a little higher than the result suggested by Fig. 4, but a good initial value.
The advantage of this method is that clear guidance can be obtained quickly and with
direct evidence, without the necessity of actually constructing and testing alternative
models.

4 Conclusion

This paper introduced the application of discrete time units in scheduling problems
for railways, and cited [2] as an example of the range of values that could be selected
and their impact on the problem complexity and accuracy. Caimi et al. obtains its
results by trial and error on a complex railway scheduling problem.This paper offers a
mathematical program for generating prospective time unit values specific to a given
railway line and train performance. The results and application are comparable. This
research could be further extended with more detailed, large problem examples.

The choice of discrete time unit must not be arbitrary, because small changes in
unit size can have large effects on the model’s representation of and authenticity to
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actual operations. The problem demonstrated here is not of a large enough size for
practical application, but the limitation at the moment is not the capability of solvers
such as Cplex, but the time necessary to collect and structure the data. There are
approximately 119 signaled track segments between Winslow and Needles, and the
westbound freight journey time is 432min. Using the principles described here, this
network could be abstracted to a graph of 24 track blocks and a 4min discrete time
unit, offering approximately an 8% induced error and a complexity factor of 6.0.

Themethod described here provides a fast process for approximating a real valued
set of sequential railway track segments as a discrete arc graph. Multiple discrete
time magnitudes may be evaluated and compared on their induced error and result-
ing graph complexity. The progression of the graph development as the discrete time
unit increases is not linear. In some cases a larger time unit offers reduced com-
plexity without incurring larger induced error. Further investigation of this method
could evaluate the robustness of the actual train timetabling solutions produced under
different discrete time unit values.
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