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Abstract Patient admission and surgery scheduling is a complex combinatorial
optimization problem. It consists on defining patient admission dates, assigning them
to suitable rooms, and schedule surgeries accordingly to an existing master surgical
schedule. This problem belongs to the class of NP-hard problems. In this paper,
we firstly formulate an integer programming model for offline patient admissions,
room assignments, and surgery scheduling; then apply a matheuristic that combines
exact methods with rescheduling approaches. The matheuristic is evaluated using
benchmark datasets. The experimental results improve those reported in the literature
and show that the proposed method outperforms existing techniques of the state-of-
the-arts.
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1 Introduction

Patient admission scheduling problems (PASPs) concernwith decidingwhich patient
to admit and at what time. These problems can be very complex, mainly when
different subproblems are tackled at the same time, like patient-to-bed assignment
and surgery scheduling problems. The patient bed assignment problem (PBAP) is a
sub-task of the PASP and concerns the choose of a suitable room to be assigned to
patients by considering medical requirements, patient needs, and hospital resource
availability. Despite PBAPswere usually addressed only as bed capacity problems [1,
2] formalized them as an offline and combinatorial optimization problem. Interesting
problem extensions were based on it [3, 4]. New realistic situations, like patients with
a risk of overstay and postponed admission date were introduced to PASPs in [4].
The goal consists on defining patient admission dates, assigning patients to suitable
bed-room-wards, and reduce overcrowded rooms. These problems were named as
PASU. The reader is referred to [4] for more details about PASU problems. More
complex is the PASU with surgery scheduling problem [5], referred hereafter as
PASU-OR problem.

The PBAP of [2] is NP-hard [6], as well as all other similar problems based on
it, and heuristic approaches to solve benchmark instances for the aforementioned
problems were designed in the literature.

The contribution of this study is twofold. First, it fills the gap in the literature by
introducing a mixed integer programming (MIP) model for the PASU-OR problem.
It is an extension of that proposed for PASU problems in [7] and an improvement
of those proposed in [4, 8] because reduces at minimum the number of decision
variables. Second, this study tests an efficient matheuristic procedure and improves
the results on a set of benchmark instances available in the literature. Thematheuristic
was originally designed for PBAPs in [9].

The paper is organized as follows. Section 2 presents the PASU-OR and the MIP
model. Section 3 reports computational results on a set of the benchmarks of PASU-
OR. The results are compared with those reported in [5] and discussed. Conclusions
are drawn in Sect. 4.

2 Problem Statement and an Optimization Model

In the following, we introduce the problem statement and the used notation. The
PASU-OR problem is characterized by patient admission date, patient-to-room
assignment and surgery scheduling decisions. Patients are characterised by manda-
tory and preferred medical equipment, gender, admission date (which can be post-
poned up to a defined date), fixed length of the stay (LOS), medical specialty, room
preference. Rooms, located in wards, differ for medical equipment, number of beds,
and high/or medium levels of expertise in treating certain pathologies. All patients
have to be admitted to the hospital in a defined planning horizon and assigned to suit-



Offline Patient Admission, Room and Surgery Scheduling Problems 277

Table 1 Patient and room attributes

Patient

ADp =
{
ap, . . . , a

′
p

}
Range of admission dates: ap and a

′
p are the first and the latest

possible admission date, respectively

L p Length of stay as consecutive nights

Hp =
{
ap, . . . , z

′
p − 1

}
Period during which patient has a stay of L p , where
z

′
p = a

′
p + L p

spp ∈ S Patient specialty

MEp Is the set of mandatory equipment for p

Gender Male or female

For each patient inPS

lsp Length of surgery (in minutes)

δp Number of days between admission date and surgery date

SDp = {h + δp, h ∈ ADp} Range of possible surgery dates

Room

S̄r Set of specialties that cannot be treated in room r

Cr Capacity, i.e., number of beds

Er Set of equipment in room r ∈ R

gpr ∈ GP Gender policy. GP = {1, 2, 3}: 1 and 2 denote rooms restricted
to male and female patients (RGP), respectively; 3 denotes
dependent gender policy (DGP), i.e., patients with the same
gender of patients already staying in a room should be assigned

Operating room

bhs OR time (in minutes) of surgical specialty s ∈ SS on day h ∈ H

ovhs Maximum overtime of surgical specialty s ∈ SS on day h ∈ H

able hospital rooms in correspondence with their characteristics for a fixed number
of consecutive nights.

Let H be a planning horizon, and P be the set of elective patients, indexed by h
and p, respectively. L p denotes the length of stay (LOS), which could be extended
by one night for some patients with a risk of overstay. For each patient is known
the range of admission dates AD, and Hp that is the range of days between the first
possible admission date and the last day of hospitalization. Some patients have to
undergo a surgery and exactly δp days after their admission. Surgeries are scheduled
by considering an already defined master surgical schedule (MSS). In addition, some
patients were already assigned to rooms before the current planning phase. Let P0
be this set of patients. A transfer in a different room is allowed only for them, even
if is penalised in order to reduce patient discomfort. Let R, S and SS, be the set of
rooms, medical and surgical specialties, indexed by r and s, respectively. The main
attributes of patients, rooms and ORs are reported in Table 1.

To simplify the readability of the model formulation, we define Hov
p ={

z p, . . . , z
′
p

}
as the range of possible overstay nights, and the following sub-

sets of patients and rooms: PF , PM , PS, and Pov are the sets of woman, men,
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patients who have to undergo surgery, and patients with a risk of overstay, respec-
tively. Let R̄dgp = {r ∈ R|gpr = 3}, be the set of rooms with DGP. Let R̄p ={
r ∈ R : spp /∈ S̄r , MEp ⊆ Er

}
, and R̄dgp

p = {
r ∈ R̄p|gpr = 3

}
, be the subsets of

rooms feasible for patient p and those with DGP, respectively.
Hard constraints are on room capacity, mandatory equipment, patient specialty,

and patient stay as consecutive nights. A surgery has to be performed in a defined
date and scheduled in those OR blocks assigned to the related surgical specialty, as
defined by the MSS. Requirements related to preferred equipment, room capacity
preference, gender policies, department specialism, delayed admissions, transfers,
and overcrowded rooms due to overstay patients, OR underutilization, and OR over-
time express desired properties. They are tackled as soft constraints since do not
influence the validity of a schedule but impact on its quality. Violated soft constraints
are penalised in objective function.

2.1 An Optimization Model for Offline Patient Admission,
Rooms and Surgery Scheduling Problems

Before to introduce our optimization model, we define the decision variables and
their meaning as follows. adprh = 1 and xprh = 1, if patient p ∈ P is admitted on
day h ∈ ADp and then assigned to room r ∈ R̄p over Hp; osprh = 1 if p ∈ Pov is in
room r ∈ R on day d ∈ Hov

p ; tp = 1, if p ∈ P0 is not assigned to the already occupied
room r̄ p;mrh = 1 if male patients are in room r ∈ R̄dgp on day d ∈ H , and bgrh = 1
if there are both male and female patients. The above binary decision variables take
value 0 otherwise. Delayed admission (in days) is denoted by delp ≥ 0. A room
r is overcrowded on day h ∈ H if ocrh > 0. Finally, variables related to surgeries
scheduling are: sdph = 1 if patient p undergoes surgery on day h ∈ SDp; auxiliary
variables are sovhs , tovh , and uh denoting daily OR overtime per surgical specialty,
overall OR overtime and OR underutilization, respectively. The overall OR time
underutilization is computed as deviation of utilised OR time from a constant ku ,
defined as ku = min {reqOR, avOR}, where reqOR and avOR are the overall
requested OR time and the overall available OR time. The objective function is a
weighted sum of eight terms. The costs are listed in Table 2.

min
∑
p∈P

∑

r∈R̄p

∑
h∈Hp

wpr xprh +
∑

r∈R̄dgp

∑
h∈H

wgbgrh + wt

∑
p∈P0

tp +
∑
p∈P

(wdeldelp)+

+
∑
r∈R

∑
h∈H

wococrh +
∑
h∈H

∑
s∈SS

wsovsovhs +
∑
h∈H

wtovtovh + wu(ku −
∑
h∈H

uh) (1)

∑

r∈R̄p

∑
h∈ADp

adprh = 1 ∀p ∈ P (2)
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Table 2 Violations of the soft constraints and related penalty costs

Violation Soft constraint Penalty cost Violation Soft constraint Penalty cost

v1 Preferred
equipment

wpe v7 Delay wdel

v2 Room
capacity
preference

wcr v8 Overcrowded
room

woc

v3 Department
specialism

wsp v9 Surgical
specialty
overtime

wsov

v4 RGP wg v10 Overall OR
overtime

wtov

v5 DGP wg v11 OR underuti-
lization

wu

v6 Transfers wt

delp =
∑

r∈R̄p

∑
h∈ADp

adprh(h − ap) ∀p ∈ P (3)

h+L p−1∑
k=h

xprk ≥ adprh L p ∀p ∈ P, r ∈ R̄p, h ∈ ADp (4)

∑
h∈Hp

xprh = L padprh ∀p ∈ P, r ∈ R̄p (5)

Cr ≥
∑
p∈P

h∈Hp,r∈R̄p

x prh ∀r ∈ R, h ∈ H (6)

mrh ≥ xprh ∀r ∈ R̄dgp
p , p ∈ PM , h ∈ H (7)

bgrh + 1 ≥ mrh + xprd ∀r ∈ R̄dgp, p ∈ PF , h ∈ Hp (8)

tp =
∑

r∈R\r̄ p
x pr1 ∀p ∈ P0 (9)

osprk = adpr,k−L p ∀p ∈ Pov, r ∈ R̄p, k ∈ Hov
p (10)

Cr + ocrh ≥
∑
p∈P|

h∈Hp,r∈R̄p

x prh +
∑
p∈Pov |

h∈Hov
p ,r∈R̄p

osprh ∀r ∈ R, h ∈ H (11)

sdp,h+δp =
∑

r∈R̄p

adprh ∀p ∈ PS, h ∈ ADp (12)

sdph ≤ bh,spp ∀p ∈ PS, h ∈ SDp (13)
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bhs + sovhs ≥
∑

p∈PS|spp=s,h∈SDp

lspsdph ∀h ∈ H, s ∈ SS (14)

∑
s∈SS

bhs + tovh ≥
∑

p∈PS|h∈SDp

lspsdph ∀h ∈ H (15)

uh =
∑

p∈PS|h∈SDp

lspsdph −
∑
s∈SS

sovhs ∀h ∈ H (16)

sovhs ≤ uvsovs ∀h ∈ H, s ∈ S (17)

tovh ≤ uvtov ∀h ∈ H (18)

Objective function (1) plans patient admissions, assigns patients to rooms according
to quality of care and patient preferences, and schedules surgeries. The first term
considers violations v1 − v4: patient-to-room assignments are penalised per night by
wpr , which is the sum of the first four costs. The subsequent four terms penalise
v5 − v8, respectively; the last three terms penalise overall OR overtime computed
per all specialties, OR under-utilization and overall OR under-utilization, respec-
tively. Constraints (2) ensure that each patient is admitted only once in ADp and
has to be assigned only one room among those feasible. Constraints (3) evaluate
delayed admissions and Constraints (4)–(5) ensure patient stay as consecutive L p

nights. Constraints (6) state that the number of patients assigned to a room cannot
be greater than the number of beds. Constraints (7)–(8) capture the presence of male
patients and DGP violation if there both male and female patients on the same day,
respectively. Constraints (9) evaluate transfers, and Constraints (10)–(11) consider
overstays and overcrowded rooms. Constraints (12) and (13) ensure that each patient
p ∈ PS undergoes surgery δp days after admission, only once, and on day in which
his/her specialty has allotted OR time in the MSS. Constraints (14)–(16) are on
surgical specialty overtime, overall OR overtime per day, and OR under-utilization,
respectively. Finally, Constraints (17)–(18) impose an upper value to OR overtime.
The above defined decision variables complete the MIP model formulation.

3 Computational Results

In this section we present computational results carried out on the small short family
[5] for assessing the quality of the matheuristic solution and found good schedules in
reasonable times. This family consists of three sets and 15 instances. Main features
are summarised in Table 3.

The PASU-OR benchmark are infeasible instances owing a greater demand than
resource. To overcome this, the planning horizon is doubled with respect to the
original, and roomunderutilization related to the H isminimized. This term is defined
as deviation of the overall room utilization from a constant. The constant is kbed =
min {reqB, avB}, where reqB and avB are the overall bed requests and the overall
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Table 3 Main features of the short family instances

Family |Dep| |R| |S| |P| |OR| |H |
Short 1 2 25 9 391–439 2 14

Short 2 4 50 18 574–644 4 14

Short 3 6 75 23 821–925 5 14

number of beds, respectively. The term (kbed − ∑
h∈H buh), denoted by v̄12 in Table

4, is penalised and added to objective function (1).
As already stated in Sect. 1, PASU-OR problems are NP-hard and heuristic

approaches were devised to find good solutions in a reasonable time because exact
solvers are not effective to explore the solution space mainly of large instances. The
solution approach here implemented is based on the matheuristic FiNeMath, devel-
oped to solve PBAPs in [9].Metaheuristic algorithms are generic solution procedures
based on exploring the solution space by considering an incumbent solution and iter-
atively changing it in favour of a new solution. FiNeMath exploits complementarity
among fix-relax methods, neighbourhood-based searches, and exact solvers. Let s0
be an initial feasible schedule, and F0 its objective function value. Some patient-to-
room assignments are selected from s0 randomly and added to the MIP model as
constraints. They are thus fixed components, while the remaining ones are repaired
by an exact solver in the defined neighbourhood. The procedure is iterated until a
stopping criterion is reached. The objective function value is thus improved itera-
tively by destroying a current schedule and repairing it by an exact solver. A high
level pseudocode is provided below, named as Algorithm 1. For more details, the
reader is referred to [9].

Algorithm 1 FiNeMath
Require: MIP model, Max I ter , s0 (an initial feasible schedule)
i ← 0
while i 	= Max I ter do
Select randomly some patient-to-room assignments from the incumbent solution
Add these assignments as constraints to MIP model
Solve the current MIP model
i ← i + 1

end while

Thenumber of patient-to-roomassignments added as constraints to theMIPmodel
influences both improvements in the objective function value and computational
times [9]. The percentage range of fixed assignments was set in the range 10–40%;
each MIP problem was solved with a gap of 3%, that decreases up to 1% in the latest
iterations; the number of iterations was set to 32. The computational experiments
were performed using IBM ILOG CPLEX V12.7.1, Academic license. We used the
cost values reported in [5]. We evaluated the improvement/worsening of our results
with respect to the best-known mean values RCS , found by a simulated annealing
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approach in [5]. All the best-known values RCS were improved. Table 4 lists the
results in terms ofmean values per set of instances, and reports the single components
of the objective function. In the last column there are the percentage improvement
values, which were evaluated byΔF = (RCS value−our value)

(RCS value) × 100. Observe that they
are in the range 4.7–10.5%.

4 Conclusion

In this paper, we formulated an optimization model to manage patients admissions,
hospital rooms, and surgeries. Schedules with planned patient admissions, patient-
to-room assignments and planned surgeries are developed using the matheuristic
FiNeMath, which is based on solving the optimization formulation. Preliminary
results achieved on a set of benchmark instances, point out that our approach is
promising. Currently, we are working on improving the FiNeMath efficiency by
developing suitable solution destroying phases to reduce computational times.
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