
ODS, Taormina, Italy, 
September 10–13, 2018

AIRO Springer Series 1 

New Trends 
in Emerging 
Complex Real 
Life Problems

Patrizia Daniele
Laura Scrimali 
Editors



AIRO Springer Series

Volume 1

Editor-in-chief

Daniele Vigo, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione
“Guglielmo Marconi”, Alma Mater Studiorum Università di Bologna, Bologna,
Italy

Series editors

Alessandro Agnetis, Dipartimento di Ingegneria dell’Informazione e Scienze
Matematiche, Università degli Studi di Siena, Siena, Italy

Edoardo Amaldi, Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB), Politecnico di Milano, Milan, Italy

Francesca Guerriero, Dipartimento di Ingegneria Meccanica, Energetica e
Gestionale (DIMEG), Università della Calabria, Rende, Italy

Stefano Lucidi, Dipartimento di Ingegneria Informatica Automatica e Gestionale
“Antonio Ruberti” (DIAG), Università di Roma “La Sapienza”, Rome, Italy

Enza Messina, Dipartimento di Informatica Sistemistica e Comunicazione,
Università di Milano-Bicocca, Milan, Italy

Antonio Sforza, Dipartimento di Ingegneria Elettrica e delle Tecnologie
dell’Informazione, Università degli Studi di Napoli Federico II, Naples, Italy



The AIRO Springer Series focuses on the relevance of operations research (OR) in
the scientific world and in real life applications.

The series publishes contributed volumes, lectures notes, and monographs in
English language resulting from workshops, conferences, courses, schools,
seminars, and research activities carried out by AIRO, Associazione Italiana di
Ricerca Operativa - Optimization and Decision Sciences: http://www.airo.org/
index.php/it/. The books in the series will discuss recent results and analyze new
trends focusing on the following areas: Optimization and Operation Research,
including Continuous, Discrete and Network Optimization, and related industrial
and territorial applications. Interdisciplinary contributions, showing a fruitful col-
laboration of scientists with researchers from other fields to address complex
applications, are welcome. The series is aimed at providing useful reference
material to students, academic and industrial researchers at an international level.

More information about this series at http://www.springer.com/series/15947

http://www.airo.org/index.php/it/
http://www.airo.org/index.php/it/
http://www.springer.com/series/15947


Patrizia Daniele • Laura Scrimali
Editors

New Trends in Emerging
Complex Real Life Problems
ODS, Taormina, Italy,
September 10–13, 2018

123



Editors
Patrizia Daniele
Department of Mathematics
and Computer Science

University of Catania
Catania, Italy

Laura Scrimali
Department of Mathematics
and Computer Science

University of Catania
Catania, Italy

ISSN 2523-7047 ISSN 2523-7055 (electronic)
AIRO Springer Series
ISBN 978-3-030-00472-9 ISBN 978-3-030-00473-6 (eBook)
https://doi.org/10.1007/978-3-030-00473-6

Library of Congress Control Number: 2018958352

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-00473-6


Preface

This book contains the contributions of the International Conference on
Optimization and Decision Science (ODS2018), held in Taormina (Messina), Italy,
from September 10 to 13, 2018. ODS2018 was the 48th annual meeting of AIRO,
the Italian Operations Research Society, and was organized in cooperation with the
Department of Mathematics and Computer Science (DMI) of the University of
Catania. ODS2018 was addressed to the entire Operations Research community
working in the field of optimization, problem-solving, and decision-making
methods. Its aim was to bring together scholars and decision-makers from both the
academic and the industrial domain in order to present results with the potential to
solve concrete problems and to provide new insights, bridging the researcher–
practitioner gap.

This book presents state-of-the-art knowledge relating to optimization, decisions
science, and problem-solving methods, as well as a large variety of applications of
extreme importance in relation to computer science, mathematical physics, engi-
neering, statistics, and economics. It constitutes a fine collection of methodological
and application-oriented papers that characterize the current research in challenging
and worthwhile areas. The papers included in this volume present new develop-
ments in topics of great interest, such as scheduling, routing, heuristics and meta-
heuristics, logistics, health care, Bayesian optimization, supply chain management,
and game theory. The selection of papers also provides novel applications in the
optimal design of photovoltaic installations, parking pricing problems, industrial
IoT networks, cybersecurity investments, and autonomous driving. Combining new
methodological advances with a wide variety of real applications, this volume is
certainly of great value not only to researchers and practitioners working in these
areas but also to the Operations Research community.

The work includes international contributions attesting to the success and global
dimension of the project. Some papers were selected for publication as full papers,
and some were accepted as short presentations. The peer-review process was
conducted by experts in Operations Research and related fields. All the abstracts
can be found at the website: http://www.airoconference.it/ods2018/.
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Moreover, we are to host three outstanding contributions given by internation-
ally distinguished professors, namely Nicholas Hall (Ohio State University, USA),
Panos Pardalos (University of Florida, USA), and Maria Grazia Speranza
(University of Brescia, Italy), which increase the overall quality of the book and
provide a deeper understanding of the fields of interest faced here.

Finally, we would like to express our thanks to the invited speakers for their
invaluable contributions, to the authors for their work and dedication, and to all
members of the Program Committee and auxiliary reviewers who helped by
offering their expertise and time. Special gratitude should be addressed to Springer
for strongly supporting us during the publishing process.

Catania, Italy Patrizia Daniele
September 2018 Laura Scrimali
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INFORMS, Analytics, Research
and Challenges

Nicholas G. Hall

Abstract The profession of operations research and analytics is experiencing a
period of exceptionally rapid changes. These changes are being stimulated by the
availability of much greater data, increased competition for publication space, and a
business environment that expects greater technical skills. This paper reviews these
significant changes and various resulting challenges for the profession. It also dis-
cusses possible responses to these challenges by INFORMS, the world’s leading
academic and professional society for operations research and analytics, and its
members.

Keywords Operations research and analytics · Emerging trends · Challenges
INFORMS

1 Introduction

This article and the related presentation at AIRO Conference, Taormina, Sicily,
in September 2018 provide an overview of (a) the current status and activities of
INFORMS, the world’s leading academic and professional society for operations
research and analytics (OR&A), (b) the impact of analytics, (c) three research areas
that will generate significant intellectual and career opportunities over the next 10
years, and (d) several challenges currently faced by the field and profession ofOR&A.
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2 INFORMS

A review of INFORMS’ current situation reveals that it stands at a time of unique
opportunity. Financially, the society is healthier than ever, with a net asset position
exceeding $22 million. Membership is also strong, with an expected total number of
members of about 12,500 by year end 2018, including regular, student and retired
members. A key component of INFORMS’ success is its publications. The variety of
publications has expanded in recent years and now includes 16 refereed journals and
twomagazines,OR/MS Today andAnalytics. The impact of INFORMS’ publications
can be measured by the number of interested readers, and the annual number of
fulltext downloads is expected to pass 2 million for the first time in 2018.

INFORMS’ current and future activities are closely aligned with its four strategic
goals, as follows:

• INFORMS will identify, recognize, and promote the work of our members.
• Decision makers will use innovative technologies and methodologies to achieve
better outcomes.

• Organizations will identify OR&A as core components of success.
• OR&A will advance society and make the world a better place.

Two major and interrelated activities of INFORMS in 2018 are Visibility and
Awareness [7]. Visibility refers to a structured live event, “Government and Ana-
lytics Summit”, which was developed for the purpose of improving outreach to
policymakers. As a U.S.-based organization, our first focus is naturally on reaching
U.S. federal agencies. The first event of this type was held on Capitol Hill in Wash-
ington on May 21, 2018. Keynote addresses were delivered by former Director of
the National Security Agency and the Central Intelligence Agency General Michael
Hayden, and former Secretary of Transportation Anthony Foxx. Their presentations
about the importance of OR&A for leaders in government were followed by three
concurrent panels featuring leading INFORMS experts on the topics of transporta-
tion, healthcare, and national security, each of which is currently a key focus area
for the U.S. government. A review of the successful Summit event appears in Tucker
[13].

Awareness refers to an ongoing advocacy campaign that is also addressed to
policymakers. The main components of this campaign are:

• Legislative Advocacy: The purpose of legislative advocacy is to build awareness,
interest, relationships and support for the value proposition of OR&A among
policymakers and their staff.

• Federal Administration Advocacy: Spreading the word to senior career officials in
federal agencies about the impact of OR&A is an important component of building
allies and advocates for INFORMS and the OR&A profession. This advocacy
provides us with an opportunity to leverage the expertise of members who have
direct experience with various agencies and with the problems and issues they
face.
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• Indirect Advocacy: We have a specific focus on working with those in the media
who study and write about public policy issues and the operations of government.
We need to ensure that they understand at a high level what OR&A is and why it
matters, and that they are familiar with compelling examples of the work OR&A
professionals do.

Together, the above advocacy initiatives represent the foundations of INFORMS’
efforts to raise interest and awareness about the value whichOR&A can bring to soci-
etal and government problems, how its use can provide greater efficiencies, effective
use of resources, and “Save money, Save lives, and Solve problems”. We expect
that these initiatives can serve as a model for similar important initiatives in other
countries.

INFORMS is also moving forward strongly with other initiatives. These initia-
tives will affect Publications, Continuing Education, and International Activities.
For Publications, we are initiating a greatly improved process for delivering already
accepted journal papers to publication. We estimate that the new process will reduce
the average time between acceptance and online publication from 184 to 36 days! See
Hall [8] for additional details. For Continuing Education, we are conducting a review
of our current programs for the purposes of enhancing them and evaluating the poten-
tial to develop new programs. For International Activities, a big focus of the current
year has been the INFORMS International Conference held in Taipei, June 17–20.
This conference attracted more than 800 participants from 25 countries. Meanwhile,
the international Teaching Effectiveness Colloquium (TEC) program started by Jim
Cochran (University of Alabama) has run workshops to help colleagues in 14 devel-
oping nations offer effective OR&A courses, with more TEC programs planned for
2019 and 2020. INFORMS currently has members in 80 countries, and there are
plans to increase this number with outreach programs including TEC.

3 Analytics

This section contains several informal comments about analytics. INFORMSuses the
following definition of analytics: “Analytics is the scientific process of transforming
data into insight for making better decisions.” An immediately relevant question
is whether OR is a subset of analytics or vice versa. However, this question can
be answered by counterexamples. First, a high school student counting cars at a
tollbooth is doing analytics, but not operations research. Whereas, the development
of a polynomial time algorithm for a special class of integer programs is operations
research, but it is not analytics.

Closely associated with, and supportive of, the analytics movement is the avail-
ability of much larger quantities of data and for a broader range of applications
than was previously the case. There are some important positive effects of greater
data availability. First, it brings models and applications closer together by enabling
calibration of modeling parameters. Second, it enables and enhances new modeling
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approaches and the study of more applications. Both these effects enable OR&A to
deliver much greater value.

However, some negative effects of the increased focus on data can also be
observed. First, some seminars and conference presentations have become less inter-
esting, due to lengthy explanations of data acquisition and preparation. A further
concern is that the data requirements of research projects are not homogeneous.
For the study of a specific urban transport or power system, where the only user of
the study is the utility that operates the system, it is certainly appropriate to expect
the use of real data to validate research results. However, for a research study on the
fundamental planning methodology of project management, there are many thou-
sands of projects for which to solicit data, with a wide variety of possible research
outcomes depending on that choice. Hence, a generic requirement to “provide real
data” in support of a research study is specious. A third concern is that data avail-
ability may distract Ph.D. students to work on applications with convenient data
availability, without regard to their level of fundamental, long-run interest in the
application being studied.

Some confusion has arisen about whether the development of analytics research
provides additional justification for empirical research that is predominantly
regression-based and provides results that are descriptive or at best predictive. How-
ever, this is a difficult case tomake, for two reasons. First, the analyticsmaturity curve
[2] classifies the “competitive advantage” of value delivered by analytics into three
levels; importantly, the highest level, “prescriptive”, uses optimization and stochastic
optimization rather than traditional empirical methodology. Secondly, analytics typi-
cally expects contributions tomultiple steps in the decisionmaking life cycle that con-
sists of: problem identification, data preparation, data exploration, model creation,
model testing and validation, model deployment, and monitoring and assessment of
models.

Finally, the impact of analytics is strongly problem dependent. There are some
business applications where the decisions to be made are very simple, and hence
the predictive and prescriptive problems are almost identical. IBM [10] provides an
example of using an analytics study of the relationship between the weather and
customer demand to plan inventory in a retail bakery, which apparently resulted in a
20% increase in profit. In this case, if demand can be accurately predicted from the
weather forecast, then the inventory planning decisions follow trivially. However,
there are many planning problems where knowledge of a data pattern still leaves a
complex decision problem to be solved, hence the benefit of analytics is less obvious
and harder to estimate.

4 Research

This section discusses three research areas where important work is expected over
the next 10 years for applications with multiple billions of dollars in annual value.
The first area is the sharing economy, for which a huge increase in impact is pre-
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dicted within the next decade. The second area is personalized health care, which
offers the potential for greatly improved health outcomes and cost reductions. The
third is project management, the business process that—along with supply chain
management—dominates the world’s economy.

4.1 The Sharing Economy

Regarding the sharing economy, Federal Trade Commission [3] predicts an increase
in annual value from $15 billion at that time to $335 billion in 2025. Very few mar-
ketplaces have the potential for such dramatic expansion. The fundamental motiva-
tion for the sharing economy comes from underutilization of individually owned,
expensive resources. A revealing perspective on this new environment is provided
by Goodwin [5]: “Uber, the world’s largest taxi company, owns no taxis. Facebook,
the world’s most popular media owner, creates no content. Alibaba, the world’s
most valuable retailer, has no inventory. Airbnb, the world’s largest accommodation
provider, owns no real estate. Something interesting is happening.” See Hu [9] for
several examples of recent research on the sharing economy.

The main features of the sharing economy marketplace include:

• Two-sided markets with externalities among users on both sides.
• A decentralized system where the intermediate platform cannot directly control
either side.

• On-demand operational decisions and incentives that allocate resources in real
time.

• The availability of massive data.

All these features, and especially the dramatic growth that is projected for the
sharing economy, will make this research topic a highly important one over the next
10 years. Specific research opportunities include:

• The design of matching mechanisms that provide the most efficient way to match
service providers and customers.

• The evaluation of social impact for different stakeholders.
• How social preferences or behavioral biases affect users’ decision making and the
dynamics of the market.

• Data-driven operational decision making, i.e. how to use data to provide guidance
to the operational decisions of policymakers and platforms.

4.2 Personalized Health Care

Chronic diseases are a leading cause of death in most developed countries. They
account for 80% of health care expenditures in the U.S. A feature of chronic diseases
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is that they are often asymptomatic in their early stages, which results in late detec-
tion and poor health outcomes. From an OR perspective, since disease progression
occurs over protracted time periods, it is necessary to make complex sequential deci-
sions under uncertainty. Steimle and Denton [12] provide an overview of research
on Markov decision processes for chronic disease treatment. Because of the seri-
ousness of many chronic diseases and the high cost of medical care, especially in
the U.S., substantial resources are being invested in personalized health care. The
concept of personalizing health care is a potentially valuable one, since biomarkers
of an individual patient may suggest which forms of treatment are most likely to be
successful, thereby improving treatment and reducing costs.

Some examples of important recent research studies follow.

• For cardiovascular disease, ongoing research is developing stochastic models of
disease progression using health records and robustMarkovmethods for optimiza-
tion of treatment policies under model ambiguity.

• Research is underway on whether biomarker-based screening strategies increase
lifespan and improve quality of life through early detection of prostate cancer,
for example through Markov model estimation using longitudinal health records
with hidden and missing information, or through the optimization of screening
decisions using partially observable Markov decision processes.

• Regarding the use of predictive models for disease diagnosis, research is study-
ing whether observational data from medical records can predict future patient
outcomes, for example by using optimization and machine learning to develop
predictive models, or using robust optimization methods and approximation algo-
rithms to account for prediction errors.

As populations in developing nations continue to age, the prevalence of chronic
diseases is likely to increase. This will make research in the area of personalized
health care of great importance for the foreseeable future.

4.3 Project Management

Project Management Institute [11] reports that the annual value of economic activity
managed as projects was $12 trillion, or approximately one-fifth of the economic
activity of the world. Moreover, the value annually at risk from a deficiency of well-
trained project managers was $4.5 trillion. More problematically, as much as 30%
of the current project management workforce is estimated to become eligible for
retirement during the next 10 years. Hence, the forecast availability of 15.7 million
new jobs in project management between 2016 and 2020. According to Project
Management Institute [11], a survey of senior managers by Economist Intelligence
Unit established that 97% of the skills needed for a successful business career fall
within the scope of project management. The expansion of professional interest in
projectmanagement is impressive,withmembership in ProjectManagement Institute
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growing from about 50,000 in 1996, to 300,000 in 2008, to more than 500,000
today. Also impressive is the increase in the number of degree programs in project
management in China from one in 2003 to 103 in 2008.

Anunusual feature of projectmanagement is that innovation from thebusiness side
has outpaced academic research over the last 20 years. For example, the development
of critical chains [4] occurred in response to observed poor performance of projects.
Similarly, agile methodology [1] was developed to address the different needs of a
new class of projects with less well determined deliverables. Important applications
within this new class include software development, pharmaceutical development,
and new product and service development. As a result of research lagging behind
practice in this area, many high value research opportunities now present themselves.
These include:

• How to design a work breakdown structure to create an efficiently executable
project.

• How to manage incentives to mitigate the effect of Parkinson’s Law, without the
loss of control implied by dropping task deadlines as is recommended within
critical chain project management.

• How to optimize learning within a project.
• How to estimate the net present value of a project that is subject to failure.
• For a given project, how to decide whether to use waterfall or agile methodology,
or even some hybrid approach.

• How to overcome a lack of scalability for agile methodology.

An overview of current research issues in project management is provided by Hall
[6]. Since such a large part of the world’s economy is managed using projects, the
economic value that is realizable through addressing any of these issues is potentially
great. Moreover, further expansion of the range of applications that are managed as
projects will generate additional research issues of similar importance.

5 Challenges

This section provides a discussion of some challenges facing INFORMS, its mem-
bers, and the profession of OR&A. The first challenge is a decline in public funding
of research. A recent restructuring of programs at the National Science Foundation,
for example, has apparently made it more difficult to obtain grants for some types of
research. These grants are not only essential to support research expenditures, but are
also an important validating component of promotion and tenure cases, especially in
U.S. engineering schools.

Some 15 years ago, more than 70% of INFORMS’ revenue came from publi-
cations. Although this number has declined to slightly below 50% due to improved
meetings and analytics revenues, publications are still a large component of
INFORMS’ financial viability. Two potential challenges are evident here. The first
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is reductions in library budgets and increased bundling of publications. The second
is open access publication, a trend which is developing slowly but in the long run
may become very significant. For authors to be able to afford open access charges
for their publications, which are typically around $3,000 per paper, a new funding
model for faculty research would be needed.

The competition for publications space has apparently intensified in recent years.
Essentially, the number of pages that are available in refereed journals viewed as
“tier one” by typical business and engineering schools has not increased with the
number of high quality submissions. As a result, acceptance rates have become very
low in some of INFORMS’ premier publications, especially Management Science
andOperations Research. Nevertheless, universities’ expectations about the number
and quality of publications required for promotion and tenure are in many cases slow
to adjust. This has placed a lot of pressure on faculty, especially those in the early
stages of their careers.

Many graduate business programs in the U.S., in particular MBA, have been
reporting declining enrollment for several years. Some nationally ranked business
schools have reported class size reductions approaching one third over a period of
less than five years. Since MBA programs have been a major source of revenue for
U.S. business schools over the last 40 years, this leaves a significant revenue gap.
This issue has generated a number of innovative responses, including alternative
Masters degree programs with a more specialized focus, for example in analytics,
finance, and operational excellence. In many cases, this has not yet fully alleviated
the revenue shortfall, but on the positive side these innovative new programs should
have potential for substantial growth.

Looking at the long run health of academic careers in OR&A, another challenge
has emerged over the last decade. The growth of analytics has led to the creation
of many technically interesting jobs within industry for which a Ph.D. degree is not
required. These positions not only offer generous salaries relative to those available
in academia, but also a variety of technical challenges and intellectual development
opportunities that previously may have led talented young people into academic
careers. The full significance of this increased competition from industry for talent,
for example on Ph.D. application numbers and on faculty retention, has yet to be
observed.
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On the Limits of Computation
in Non-convex Optimization

Panos M. Pardalos

1 Extended Abstract

Large-scale problems in engineering, the design of networks and energy systems,
biomedicine, and finance are modeled as optimization problems. Humans and nature
are constantly optimizing to minimize costs or maximize profits, to maximize the
flow in a network, or to minimize the probability of a blackout in a smart grid.

Due to new algorithmic developments and the computational power of machines
(digital, analog, biochemical, quantum computers, etc. …), optimization algorithms
have been used to “solve” problems in a wide spectrum of applications in science
and engineering.

But what do we mean by “solving” an optimization problem? What are the limits
of what machines (and humans) can compute? In the first part of the talk we are
going to address some fundamental questions about the limits of computation. In
particular we will discuss these questions:

What are the limits of what humans can compute?

What are the limits of what machines can compute?

Are these limits the same?

What are the physical foundations and limitations of computation?

After a brief discussion of different computational machines such as analog com-
puters, DNA computers, and quantum computers, I will present a short history of
optimization. In the second part of the talks we will address the question: “What is
Global Optimization” and we will focus on these questions:

How can we find a globally optimal solution (and how we can provide a certificate of
optimality?)
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How do we compute “good” locally optimal solutions? (or points that satisfy the optimality
conditions?)

Do we compute “better” solutions than “known” solutions?

How do we address in-feasibility?

Next I will summarize results on the complexity of the following problems:

Checking existence of a point satisfying the optimality conditions.

Complexity of local optimization and the fundamental question of how hard is to check the
convexity of a function.

In addition I will discuss phase transition problems and will discuss issues of
evaluation heuristic algorithms for hard optimization problems.



Operations Research in Transportation
and Supply Chain Management

M. Grazia Speranza

Abstract The developments in digital technologies are creating new challenges and
opportunities to Operations Research. In this paper, research trends in transportation
and supply chainmanagementwill be discussed and someexamples brieflypresented.

Keywords Digital technologies · Trends · Research opportunities
Transportation · Supply chain management · Logistics

1 Introduction

Information and communication technologies (ICT) are having a continuously
increasing impact on our daily life and on all economic and social activities. With
ICT we generally mean the infrastructure and components that enable modern com-
puting. Although there is no single, universal definition of ICT, the term is generally
accepted to mean all devices, networking components, applications and systems
that combined allow people and organizations (i.e., businesses, nonprofit agencies,
governments) to interact in the digital world.

Computers have been part of our daily life since the early eighties and the digi-
talization processes have proceeded at a regular pace over time since then. However,
recently newphenomena, enabled by developments in digital technologies, are taking
place and changing the economy and the society. Internet and all the technological
devices that can receive and transmit data and information, including the mobile
cellular phones, have enabled the design and introduction of new products and
services, and new management styles. Companies with a long successful history
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have disappeared, replaced by new companies because businesses have completely
changed. The behaviour of citizens, in the daily activities, keeps changing.

Expressions like Internet of things, big data, machine learning, sharing economy
may not be clearly defined but indicate global phenomena. The fact that such expres-
sions are regularly used in themedia and by everyone is a sign of the high impact they
are having. The Internet of things is the interconnection via the Internet of computing
devices embedded in everyday objects, enabling them to send and receive data. Big
data refers to data sets that are so big and complex that traditional data-processing
application software are inadequate to deal with them. Machine learning is a subset
of artificial intelligence in the field of computer science that often uses statistical and
optimization techniques to give computers the ability to ‘learn’ (i.e., progressively
improve performance on a specific task) with data. Sharing economy is an umbrella
term with a range of meanings, often used to describe economic activities involving
online transactions.

Transportation and logistics are two fields where Operations Research (OR) has
substantially contributed in the last 50 years, especially improving the efficiency
of operations but also providing support to decision making in strategic and tactical
phases of the decision processes. The meaning of ‘logistics’ is slightly different from
that of ‘supply chain management’. Logistics refers to the planning, execution, and
control of the procurement, movement, and stationing of personnel, material, and
other resources to achieve the objectives of a plan, project, or strategy. Logistics may
be defined as the management of inventory in motion and at rest. Supply chain man-
agement (SCM) is the broad range of activities required to plan, control and execute
a product flow, from acquiring raw materials and production through distribution to
the final customer. While logistics does not usually include the production phases
that transform raw materials into a final product, supply chain management does not
include the logistic operations in different areas such as the organization of events
(for example, conferences or concerts). In this paper, we will refer to contributions
to supply chain management but part of the discussion can be extended to logistics.

ICT is changing the processes in supply chain management and the way goods
and people are transported, and this in turn is changing the problems where OR can
contribute. May be it is also, at least partially, changing the domain of OR, pushing
its boundaries.

2 Supply Chain Management

Supply chain management aims at integrating the various components of a supply
chain and has been a research topic for OR for already some decades. Four major
directions for research can be derived from the technological changes: a systemic,
a collaborative, a dynamic and a data-driven direction. In the following we briefly
overview the research opportunities associated with each of these directions.
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2.1 Systemic Direction

Better solutions to problems can be identified when parts of a supply chain are jointly
modeled and optimized. The digital technologies have enabled the implementation
of integrated management styles. Research efforts in this direction have already
been made recently. For example, in the area of vehicle routing, several papers have
studied combined problems previously studied separately. Integrated vehicle routing
problems (VRPs) is the expression increasingly used to denote the class of problems
where routing decisions are taken jointly with other decisions (as outlined by the
special issue edited by Bektaş et al. [9]). Location-routing problems jointly optimize
location and routing. Inventory-routing problems combine routing and inventory
management. Production-routing problems integrate production, routing, and inven-
tory decisions. Multi-echelon routing problems optimize the routes of vehicles in
distribution systems comprising two or more echelons. Routing problems with load-
ing constraints simultaneously optimize the routing of vehicles and the loading of
goods.

Integrated VRPs combine problems that are usually NP-hard when treated indi-
vidually. However, solving the individual problems sequentially, even by means of
exact methods, leads to a sub-optimal solution for the integrated problem, even if
solved with a heuristic. The cost reduction achieved through the integration may be
an order of magnitude greater than the cost reduction usually obtained by an exact
method with respect to a heuristic. One of the first papers that showed the benefits
of integrated decisions is due to Chandra and Fisher [11]. More recently, Archetti
and Speranza [6] compared the heuristic solution of an inventory-routing problem
with the solution obtained by sequentially and optimally solving the inventory man-
agement and the routing problems. The sequential solution models a traditional
management style where customers of a supply chain control their inventory and
decide order times and quantities. Then, the supplier organizes the distribution that,
however, has to take order times and quantities as constraints. The inventory-routing
problem models a more recent integrated policy, called Vendor Managed Inventory
(VMI), where the supplier is responsible for the distribution and for the inventory
at its customers. In [6] the results of computational tests show that solutions of the
inventory-routing problem allow average savings of 10%. The integration of pro-
duction and inventory-routing is studied in [1]. The value of integrating loading and
routing is analyzed in [13].

Integrated optimization problems model integrated management styles adopted
in supply chain management, contribute to exploit the advantages of the integration
and can quantify the benefits. The research opportunities in this direction are endless.
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2.2 Collaborative Direction

Different forms of collaboration in supply chain management have been discussed,
internal and external, horizontal and vertical. When dealing with road transportation,
horizontal cooperation among carriers can be further classified according to the oper-
ational collaboration mode in order sharing and capacity sharing (see, for instance,
the recent survey [20]).

Obviously, partners of a collaboration initiative aim at improving the performance
of their own business. Each partner will be focused on its own business rather than
on global performance. The collaboration initiative may bring benefits to some of
the partners only or the benefits may be distributed in a way that is unacceptable
to some of the partners. Thus, integration must be mediated with individual inter-
ests to make the collaboration initiative successful. This concept makes models for
decision support in collaboration initiatives often different from models for global
optimization.

Several statistics show that approximately 90% of freight travels on road. In Euro-
pean countries between 15 and 30% of trucks travel empty and contribute to traffic,
pollution, accidents. The average load of a truck is much lower than its capacity,
especially in city distribution. As a consequence, the number of trucks on road is
much higher than it could be. Collaboration among carriers may improve the statis-
tics and generate economic benefits for the carriers involved, a sector which lives
on very low margins, as well as social and environmental benefits. A pilot European
project, called ‘Collaboration Concepts for Co-modality’, has been implemented by
two companies with production sites in Belgium and with large quantities of goods
delivered to Greece. One of the two companies transports light large-volume goods,
the other heavy low-volume goods. The project has achieved a reduction of 150,000
km travelled, and a reduction of 17% of the routing costs.

As an example, in Fernández et al. [14] a collaboration scheme is adopted by a
consortium of carriers. Each carrier can decide which of its customers to serve and
which ones to share with the other carriers. A shared customer can be served by
any of the carriers. A carrier will tend to share customers not conveniently located
and/or with low demand. The revenue from a shared customer is partly collected by
the ‘owner’ of the customer and partly by the one actually serving the customer. The
optimization model proposed assigns the shared customers to carriers and builds the
routes for all the carriers to serve all the customers in such a way that the total cost
is minimized and each carrier has a profit at least as high as the profit it would have
without collaboration. The computational results show that the profit increase in the
collaborative setting strongly depends on the location and demand of customers, and
ranges from small values to up to 85%.

The research opportunities include themodelling and the solution of collaborative
schemes. While imposing that the individual participants in a collaborative initiative
gain with respect to a non collaborative scheme is a necessary condition for the
individuals to join the initiative, it may not be a sufficient condition, as the profit may
end up being distributed in an unfair way among the participants.
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2.3 Dynamic Direction

The flow of data about customers, purchases, deliveries, locations, inventories, com-
bined with the frequency of the update of the information, gives rise to a number of
new dynamic problems. The phenomenon of e-commerce is in constant growth and
is challenging all commercial companies and their logistics partners. The last-mile
delivery problem remains a challenging problem to solve and logistic companies
keep exploring new ways to offer a service to their customers that is up to their
expectations. Additional transportation needs are set by the flow of on-line ordered
goods that are returned, and in general by the reverse logistics.

Classical optimization models are based upon the assumption that information is
available, that a model is solved and the solution implemented. This is a less and
less realistic assumption. While until few years ago a delivery time of 5–10 days
was acceptable to customers, today on-line customers wish and expect to receive the
goodswithin the same day of the order or the day after.Moreover, theywish to choose
the day, the time, the delivery point. The increased frequency and the reduction in
quantities of the deliveries to shops and retailers make the urban logistics even more
complex. The urban city logistics keep changing because new and disruptive ways
to tackle the problem are being experienced by the logistic companies, sometimes
under constraints or incentives set by the public authorities.

Dynamic problems in transportation have been discussed for a long time (for
example, by Psaraftis [18]), but research on dynamic and stochastic VRPs received
increasing interest only in the last decade (see the recent survey by Ritzinger et al.
[19] where the importance of appropriately modeling dynamic events and simultane-
ously incorporating information about the uncertainty of future events is outlined).
Research opportunities related to the dynamism of supply chains are discussed in
[21].

Another challenge to the OR community implied by the dynamism of processes is
related to the computational times needed to find a solution to a problem. Also, long
computational times may not be justified when the solution may be only partially
implemented and the data is likely to change shortly after.

2.4 Data-Driven Direction

The quantity of data available is huge because of the devices that can collect and
transmit data and because of the capacity of the systems that can store the data.
Data creates enormous learning opportunities in all sectors. The amount of research
in machine learning (see, for example, [3]) has been growing over the last years
and various machine learning techniques have been successfully applied to a num-
ber of real life situations. Machine learning is related to mathematical optimization
because several learning problems are modelled as optimization problems where the
cost function, to be minimized, measures the discrepancy between the forecasts of
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the model and the real observations over time. A different relation with mathemat-
ical optimization consists in using the machine learning techniques in optimization
problems. Presentations on the use of machine learning techniques in transportation
and supply chain management have started to appear in conferences but this line of
research is still in its infancy.

3 People Transportation

OR has contributed to the solution of many problems with big impact in people
transportation, especially problems related to modes, air, railways, buses, for exam-
ple, timetabling and crew scheduling. The way people move is, however, changing
dramatically. Cars are becoming connected and, especially in the United States, huge
research resources are invested on the development of autonomous vehicles. People
expect to have flexible transportation services, with different levels of cost and com-
fort. Bike and car sharing are services already offered in most towns. In this field, we
hear more and more the expression transportation as a service. Someone predicts
that private cars will be owned in the future for the pleasure of driving and not for
the need of people to be transported.

Public authorities need to study solutions that protect the well-being of citizens,
challenged by high-frequency deliveries of small quantities of goods and cars with
one passenger only. Space for the parking of cars and for the loading/unloading
operations of vehicles is a scarce resource. The evolution towards electric vehicles
will reduce pollution in urban areas but will not reduce the number of traveling
vehicles, the need for space and the level of congestion.

From the OR perspective, the only optimization models OR contributed to private
vehicles have been those aimed to optimize the shortest path from origin and desti-
nation, embedded nowadays in the several sat-nav systems available. The evolution
of the way people are transported is opening new research directions to OR.

3.1 On-demand Services

The number of traveling vehicles can be reduced only by reducing the number of
people in need of travel and/or by increasing the number of people transported in the
same vehicle. While OR can hardly contribute to the former option, contribution of
OR may be relevant in supporting the latter.

The main reason that leads people to use their own vehicle is the lack of flexibility
of mass transit systems. Such systems work on fixed itineraries and fixed schedules.
Nowadays, for most potential customers the frequency is too low and the travel time
is too high, with changes of transportation mean and waiting times. Moreover, those
systems do not provide a transportation service from origin to destination. Taxis, on
the other hand, are too expensive for regular use for most travelers.
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Demand Responsive Transit (DRT) systems (also called dial-a-ride systems) are
flexible services that provide ‘door-to-door’ transportation. DRT systems have been
mainly implemented as services for small groups of people (see [12] for a survey).

Martínez et al. [17] have suggested a classification of DRT systems:

• with fixed itineraries and stops, with pre-booking;
• with fixed itineraries and stops with possible detours;
• with unspecified itineraries and predefined stops;
• with unspecified itineraries and unspecified stops.

An implementation of a DRT system in Maryland is presented by Marković
et al. [16] and the benefits, with 450 trip requests daily, of a computerized rout-
ing and scheduling system are estimated with annual savings of $0.82 million, or
about 18% of the total annual expense, with respect to manual operations.

In [7] a simulation study is performed where a conventional mass transit system,
say buses, is offered together with an on-demand service without fixed itineraries and
schedules, provided through minibuses. A minibus, if acceptable to the user in terms
of arrival time to destination, will pickup the user at the origin of the trip and deliver
him/her to the destination. In case neither the conventional bus nor the on-demand
minibus provide an acceptable service to the user, he/she will use a private car.
A recent paper [8] introduced a Flexible Mobility On Demand (FMOD) system that
offers different services, taxis, shared taxis andminibuses, where the minibus service
works as a regular bus service with fixed schedules.

The so called dynamic ride-share systems share with the DRT systems the goal
of increasing the number of people sharing the same vehicle. Such systems aim to
bring together travelers with similar itineraries and time schedules on short-notice.
Optimization methods that match drivers and riders in real-time are necessary for a
successful implementation of such systems (see [2] for a review of dynamic ride-
sharing systems).

The need for parking space can be also reduced through car sharing systems,where
a car is pre-booked, used and returned to a parking station. One-way, with respect to
two-way, systems provide more flexibility to users since cars can be dropped-off at
any station (see, for instance, [10]). Research opportunities include the location of
stations and cars, car relocation problems, coordination of reservations.

3.2 New Shortest Path problems

As previouslymentioned, sat-nav systems nowadays embed shortest path algorithms.
Real-time information on traffic conditions imply the need of different algorithms
that consider time-dependent uncertain travel times (see [15] for a recent survey).

Moreover, coordination opportunities among the routes of vehicles exist because
of their capability of receiving and transmitting information. In [4] a model is pro-
posed for the problem of coordinating the routes of vehicles in such a way that
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congestion is eliminated or reduced to a minimum level by keeping the inconve-
nience, measured as the increase of the traveling time, with respect to the minimum
possible, for cars below a given threshold.

3.3 People and Freight

Collaboration opportunities are being explored by companies in all directions, includ-
ing collaboration of people to transport goods with the goal of reducing the costs
of a distribution process that is extremely expensive. The line between freight and
passenger transportation, which was clearly defined until some time ago, is not any
longer. An example is related to regular customers of shops who may become avail-
able, for a small compensation, to deliver goods to on-line customers on their way
home. These customers are called occasional drivers (see, for example, [5]) and can
contribute to make the delivery of goods to on-line customers more efficient.

4 Conclusions

New research opportunities keep arising because of new and disruptive options for
transporting goods and people, enabled by the digital technologies. Lack of data has
been an obstacle to the implementation of OR models and algorithms. Nowadays,
data is huge in volume, variety, velocity and OR can exploit its potential, provided
it will be capable of adapting to the new research challenges.
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Energy Optimization of a Speed-Scalable
and Multi-states Single Machine
Scheduling Problem

MohammadMohsen Aghelinejad, Yassine Ouazene and Alice Yalaoui

Abstract This study deals with the single-machine scheduling problem tominimize
the total energy consumption costs. The considered machine has three main states
(OFF, ON, Idle), and the transitions between states OFF and ON are also considered
(Turn-on and Turn-off). Each of these states as well as the processing jobs consume
different amount of energy. Moreover, a speed scalable machine is addressed in
this paper. So, when the machine performs a job faster, it consumes more units of
energy than with a slower speed. In this study, two new mathematical formulations
are proposed to model this problem, and their efficiency are investigated based on
several numerical experiments.

Keywords Energy efficiency · Single machine scheduling · Time-dependent
energy cost · Speed-scalable multi-states system

1 Introduction

In the last few years, the increase of the electricity price, which is one of themain type
of energy used in manufacturing industry, attracted the attention of many researchers
all around the world. They studied minimization of manufacturing system’s energy
consumption or total energy cost to reduce the total production costs and environ-
mental impacts simultaneously. A comprehensive review of previous researches
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shows that, the minimization of energy consumption in a manufacturing system
can be applied in different sectors such machine-level, product-level, and system-
level. Unlike the two other levels that need enormous financial investments, in the
system-level, manufacturers may reduce the system’s energy consumption by using
the existing decision models and optimization techniques in production planning and
scheduling. Based on the literature review analysis, the studies which deal with the
energy efficiency of a manufacturing system generally consider decreasing energy
consumption value or energy consumption cost (operational cost) as the main objec-
tive. In the following, at first, the papers which deal with energy consumption are
analyzed and then, a summary of papers on the minimization of total energy costs
are presented.

In practical cases, the energy consumption of a production system is composed
of the amount of energy consumed during the non-processing states (NPE) (start-
up, transition between different states, shut down and idle states), and the amount of
energy consumed during the processing state (PE). So, the energy consumption of the
machine is state-dependent.Moreover, several characteristics may change the energy
consumption of anymachine during the processing (ON) states (PE) such as: the type
of the machine (machine-dependent), the type of the processing job (job-dependent)
and the processing speed of the machine (speed-dependent). Investigating the NPE
consumption, and using a scheduling method to change the processing job’s order
and machine’s state during a production shift is one of the easiest and most popular
ways.

The complexity of the non-preemptive classical deadline-based scheduling prob-
lems under a variable processing speed to minimize the total energy consumptions is
analyzed in [4]. The minimization of energy consumption and total completion time
of a singlemachine is addressed in [11] using amulti-objective genetic algorithm and
dominance rules. A framework is presented in [8] to minimize total energy consump-
tion and total tardiness simultaneously when idle and setup energy are considered.

In practice, electricity suppliers in different countries propose variable pricing to
balance the electricity supply and demand to improve the reliability and efficiency
of electrical power grids. The most common categories of time-varying rates which
are used previously to investigate the total energy cost of a system are Time-Of-Use
(TOU), Critical Peak Pricing (CPP) and Real Time Pricing (RTP). The variation of
electricity prices during the time period may impact the total energy costs of any
production system. In some papers, the time-dependent energy cost is assumed to
compute the total energy consumption cost. While, in the others, the other character-
istics which may change the energy consumption of the machine are also considered.
For example, an energy-conscious single machine scheduling problem when each
processing job has its power consumption, and electricity prices may vary from
hour to hour throughout a day is assumed in [5]. Several single machine scheduling
problems with arbitrary power demands for the jobs and uniform or variable speeds
for processing, are studied in [6] to minimize total electricity cost under a time of
use electricity tariffs. They also investigated the complexity of these two problems
in preemptive and non-preemptive cases. A preemptive scheduling problem with
energy constraint in each period, different energy consumption for each job, and the
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electricity time-varying prices is investigated in [7] to minimize the total electricity
consumption costs and operation’s postponement penalty costs.

A mathematical model is proposed in [10], to minimize total energy consumption
costs when variable energy prices, different possible states and energy consumption
are considered for the machine. Aghelinejad et al. [1] studied the same problem
as [10] to improve the previous mathematical model. They also presented a new
mathematical model to obtain the optimal schedule for the machine state and job’s
sequence simultaneously. Then, a new heuristic algorithm and a genetic algorithm
are proposed in [2] to solve this problem. The complexity of the preemptive version
of this problem, using a dynamic programming approach, is analyzed in [3].

Based on the literature review analysis, some papers addressed the energy effi-
ciency of a multi-states single machine system and some other papers addressed the
energy efficiency of a multi-speeds single machine system. So, to the best of our
knowledge, there is no previous work which studies the energy efficiency of a multi-
states and multi-speeds single machine system with the time-dependent electricity
cost. This paper aims to fill this gap within the literature.

The remainder of this work is organized as follows. Section 2 introduces the
considered problem with different notations and assumptions. Section 3 describes
two new mathematical models which are presented for this problem. Moreover,
Sect. 4 represents the numerical experiments’ results to evaluate the efficiency of the
proposed models. Finally, Sect. 5 draws the conclusions of this paper, as well as the
future directions for this study.

2 Problem Definition

This paper deals with the energy efficient scheduling of n jobs on a single machine
system during T periods. The TOU electricity pricing is considered for each
period. The studied machine has 3 main states (ON, OFF and Idle), and the
possible transitions between OFF and ON states (Ton and Toff) are considered
(Fig. 1). The machine consumes a different amount of energy (es) in each state
(s ∈ {ON , OFF, Idle, Ton, Toff }), and must be in the same state for a specific
number of periods (ds). Moreover, the energy consumption of the machine dur-
ing state ON is depends on the processing job. Since a speed scalable machine is
addressed in this work, there are different possibilities for processing each job. That
means for each job j = 1, . . . , n with vj possible speeds, there are different values
for the processing time as Pj = {pj,1, . . . , pj,vj }, and for each pj,i, a corresponding
energy consumption qj,i is associated. Qj = {qj,1, . . . , qj,vj } is the set of the different
energy consumptions of job j = 1, . . . , n. Without loss of generality, the following
relations are assumed:

pj,1 > pj,2 > · · · > pj,vj ; ∀ j ∈ {1, . . . , n} (1)

qj,1 < qj,2 < · · · < qj,vj ; ∀j ∈ {1, . . . , n} (2)
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Fig. 1 Machine states and possible transitions

The machine must be in OFF state during the initial and final periods. The
machine’s energy consumption in state OFF is equal to 0 (eOFF = 0). When it is
decided to turn on the machine, this transition takes β1 periods and it consumes
eTon units of energy. Then the machine is in ON state and is ready to process a job
j = 1, . . . , n with speed i = 1, . . . , vj, that takes pj,i periods and consumes qj,i units
of energy per period. Once the job is processed completely, there are three possibil-
ities for the machine: it may stay in ON state and process another job; it can go to
Idle state for one period or more; the machine can go to OFF state. Regarding to the
energy consumption and the unit of energy price, any of these possibilities may be
selected. Note that, in this study the transition time between Idle and ON state, and
its energy consumption are neglected. In addition, the transition between Idle and
OFF states is not allowed. Therefore, when the machine is in Idle state, for the next
period, it may stay in Idle state or go to ON state (Fig. 1).

The objective of this study is to find the most economical production scheduling
for the jobs and the machine’s states in terms of energy consumption costs during
the horizon time. In the next section, two new mathematical models are proposed for
this problem.

3 Mathematical Formulations

3.1 First Model

To describe this programming model, first of all, the parameters and decision vari-
ables are defined and then, the mathematical model including objective functions
and constraints is presented.
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Parameters:

n: Number of jobs
T : Total number of periods
ct : Unit of energy price in period t
vj : Number of possible processing speed for job j

pj,i: Processing time of job j with speed i = {1, . . . , vj} (in number of periods)
qj,i: Energy consumption of job j per period which is associated with pj,i
s: States of the machine (s = {1,2, 3} for ON, OFF and idle states, respectively)

Es: Energy consumption of the machine during state s
Ess′ : Energy consumption of the machine in transiting between s and s′
dss′ : Required number of periods for switching from state s to s′ (s �= s′).

Decision variables:

αs,t = 1 if machine is in state s during period t, 0 otherwise.
βss′,t = 1 if machine is in transition from state s to s′ in period t, 0 otherwise.
xj,i = 1 if job j is processed with speed i = {1, . . . , vj}, 0 otherwise.
yj,i,t = 1 if job j is processed with speed i in period t, 0 otherwise.

Mathematical model:

Min
T∑

t=0

ct

⎛

⎝
n∑

j=1

vj∑

i=1

qj,i · yj,i,t +
3∑

s=2

Es · αs,t +
3∑

s=1

3∑

s′=1

Ess′ · βss′,t

⎞

⎠ (3)

3∑

s=1

αs,t +
3∑

s=1

3∑

s′=1

βss′,t = 1; ∀ t ∈ {0, . . . ,T } (4)

αs,t ≤
3∑

s′=1|dss′ =0

αs′,t+1 +
3∑

s=1|dss′′ ≥1

3∑

s′′=1

βss′′,t+1; ∀ t ∈ {0, . . . ,T − 1}; ∀ s ∈ {1, 2, 3}

(5)

βss′,t ≤ βss′,t+1 + αs′,t+1; ∀ t ∈ {0, . . . ,T − 1}; ∀ s, s′ ∈ {1, 2, 3}| dss′ ≥ 1
(6)

t+dss′∑

t′=t+1

βss′,t′ ≥ (αs,t + βss′,t+1 − 1) · dss′ ; ∀ t ∈ {0, . . . ,T − 1}; ∀ s, s′ ∈ {1, 2, 3}| dss′ ≥ 1

(7)

βss′,t + βss′,t+dss′ ≤ 1; ∀ t ∈ {0, . . . ,T − tss′ }; ∀ s, s′ ∈ {1, 2, 3}| dss′ ≥ 1
(8)

n∑

j=1

vj∑

i=1

yj,i,t = α1,t; ∀ t ∈ {1, . . . ,T } (9)
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n∑

j=1

vj∑

i=1

yj,i,t ≤ 1; ∀ t ∈ {0, . . . ,T } (10)

t−pj,i∑

t′=0

yj,i,t′ +
T∑

t′=t+pj,i

yj,i,t′ ≤ pj,i · (1 − yj,i,t);

∀ t ∈ {pj,i, . . . ,T − pj,i − 1}; ∀ j ∈ {1, . . . , n}; ∀ i ∈ {1, . . . , vj}
(11)

vj∑

i=1

xj,i = 1; ∀ j ∈ {1, . . . , n} (12)

T∑

t=0

yj,i,t ≥ pj,i · xj,i; ∀ j ∈ {1, . . . , n}; ∀ i ∈ {1, . . . , vj} (13)

α2,t = 1; ∀ t ∈ {0,T } (14)

In this model, the objective value depends on the machine states, the processing
job, the processing speed (energy consumption of the machine), and the unit of elec-
tricity price in each period (Eq. (3)). Equation (4) expresses that in each period the
machine must be in one of the possible states (ON, OFF, Idle, Ton, and Toff). Equa-
tions (5) and (6) limit the machine’s state in each period regarding to the machine’s
state in previous period. Equations (7) and (8) identify lower and upper number of
periods that takes for Ton and Toff states. Equation (9) indicates that the machine
may process at most one job per period, and if the machine processes job j during
period t, it must be in ON state (s = 1). Equation (10) imposes the constraint that
the machine can process at most one job per period. Equation (11) demonstrates the
non-preemption constraints of the jobs. Equation (12) imposes the constraint that
each job must be processed with only one speed. Equation (13) specifies the pro-
cessing time of each job, regarding to its processing speed. Equation (14) identifies
that the machine is in OFF state during the initial and final periods.

3.2 Second Model

In the first formulation, two decision variables (yj,i,t and xj,i) and three indexes (j,
i and t) are used to model the problem. In this section, it is attempted to propose a
more efficient model to formulate the problem by using just one decision variable
and two indexes. This formulation is inspired by the approach proposed by [9].

Let define M jobs such that M = ∑n
j=1 vj, and J = {J1, J2, . . . , Jn} the set of all

the job such that J1 = {1, 2, . . . , v1}, Jj = {vj−1 + 1, . . . , vj−1 + vj}; ∀ j = 2, . . . , n.
Let also consider the set P = {p1, . . . , pM } of the processing time of each job
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k ∈ J and the set Q = {q1, . . . , qM } of the energy consumptions of the jobs k ∈ J
such that qk is the unit of energy consumption corresponding to the processing
time pk . Rk,t = ∑t+pk−1

τ=t cτ is also defined to compute the sum of energy unit cost
if the machine performs job k = 1, . . . ,M from period t to period t + pk − 1.
Then, qk ∗ Rk,t represents the total energy consumption for performing job k from
period t. Moreover, xk,t is used as a decision variable to formulate the problem:

xk,t =
{
1 ; If jobk ∈ {1, . . . ,M }begins to be processed at period t
0 ;Otherwise

So, in this model, the objective function can be written as follow:

Min
T∑

t=0

M∑

k=1

qk · xk,t · Rk,t +
T∑

t=0

ct ·
(

3∑

s=2

Es · αs,t +
3∑

s=1

3∑

s′=1

Ess′ · βss′,t

)
(15)

Also, the constraints which consist of yj,i,t and xj,i (Eqs. (9)–(13)) must be changed.
Therefore, Eq. (16) is replaced (9), (11) and (13). Moreover, equations (17) and (18)
respectively replace equations (10) and (12). The new equations are given in the
following:

3∑

s=2

αs,t +
3∑

s=1

3∑

s′=1

βss′,t = 1 −
M∑

k=1

t∑

t′=t−pk+1

xk,t′ ; ∀ t ∈ {0, . . . ,T } (16)

M∑

k=1

xk,t ≤ 1; ∀ t ∈ {0, . . . ,T } (17)

∑

k∈Jj

T∑

t=0

xk,t = 1; ∀ j ∈ {1, . . . , n} (18)

It must be mention that, in the secondmodel all the related constraints for defining
themachine’s state in each period are kept the same as in the firstmodel (Eqs. (4)–(8)).

Note that, the second model integrates a pre-treatment phase that computes the
value of parameter Rk,t for any k and t.

4 Numerical Experiments

The performance of these two mathematical models have been examined by several
randomly generated instances. For this purpose, CPLEX 12.6.1 software is used to
solve instances with the exact method (Branch and Cut). Five different examples
are randomly generated for each instance by changing the processing times and the
energy consumptions of the jobs among [1, 8], as well as the unit of energy price
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Table 1 Comparison between Model1 and Model2

(n-v-T) cons1 cons2 GAP (%) var1 var2 GAP (%) CPU1(s) CPU2(s)

(2-3-15) 578 517 11.80 295 289 2.08 0.36 0.29

(3-3-25) 1030 858 19.95 556 547 1.65 1.23 0.49

(4-3-30) 1318 1029 28.03 757 745 1.61 2.00 0.82

(5-2-40) 1677 1370 22.39 913 903 1.11 3.08 1.07

(5-3-40) 1827 1370 33.36 1123 1108 1.35 4.46 1.07

(5-5-40) 2150 1370 56.89 1543 1518 1.65 4.12 1.62

(10-2-80) 4149 2735 51.69 2613 2593 0.77 375.67 2.58

(10-3-80) 4857 2735 77.57 3433 3403 0.88 188.57 2.56

(10-5-80) 6277 2735 129.48 5073 5023 1.00 390.72 3.22

(15-5-120) 12609 4100 207.54 10603 10528 0.71 1748.52 4.32

Average 63.87 1.28 271.87 1.80

in each period among [1, 10]. It must be mention that these generations are inspired
from the literature [10]. The computation time for all the experiments was set to 1 h
or 3600 s. By using the first model, CPLEXwas able to find the optimal solutions for
the problems smaller than 15 jobs, 5 speeds, and 120 periods. Therefore, the results
of the models in terms of the number of constraints and variables, as well as the
computation time are compared together. These results are presented in Table 1. The
second model is very faster than the first one (in average, it takes 271.87 s for the first
model, and 1.80 s for the second one), and it decreased the number of constraints
and variables of about 64% for the number of constraints and 1.3% for the number
of variables in average.

5 Conclusion

A speed scalable and multi-states single machine scheduling problem is addressed
in this paper to minimize the total energy consumption costs. The main contribution
of this paper consists of the proposition of two new mathematical formulations to
model the problem. In the first formulation, two decision variables and three indexes
are used, while, just one decision variable and two indexes are used in the second
one. The performance of these models are evaluated on several randomly generated
instances. The numerical results demonstrates that, the second model is very faster
than the first one, and it decreased the number of constraints and variables.

For the future works, first of all, we are interested to solve the problem by using
the other exact methods. Then, since this problem is NP-hard, it could be also inter-
esting to propose some heuristic and meta-heuristic algorithms to solve the large size
instances.
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Constrained Job Rearrangements
on a Single Machine

Arianna Alfieri, Gaia Nicosia, Andrea Pacifici and Ulrich Pferschy

Abstract In several scheduling applications, one may be required to revise a
pre-determined plan in order to meet a certain objective. This may happen if changes
in the scenario predicted beforehand occur (e.g., due to disruptions, breakdowns, data
values different from the expected ones). In this case costly reorganization of the cur-
rent solution impose a limit on the allowed number of modifications. In our work,
we address a single-machine scheduling problem where we need to alter a given
(original) solution, by re-sequencing jobs with constraints on the number and type
of allowed job shifts. For different objectives and rearrangement types, we propose
mathematical programming models and possible solution approaches.

Keywords Scheduling · Integer linear programming · Re-sequencing · Dynamic
programming
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1 Introduction

Scheduling decisions in real world applications are often taken in multiple phases.
This is the case, for instance, in multi-echelon supply chain processes where, at
each stage, the solution computed in the previous phase may be altered in order to
account for possible different criteria and constraints (see e.g., [1]). Hence, as the
orders proceed from one level to the next—since it is unlikely that the same schedule
gives a good performance value for all the stages of the supply chain—re-sequencing
operations may be needed at intermediate inventories to consider new requirements;
unless one decides to opt for suboptimal solutions and considers robust schedules
instead [2].

Also in other settings the need of rearrangements may occur: Consider a system
with a single objective function and subject to events that lead to a perturbation of
the originally given or estimated data, e.g., changes in the expected job durations or
availabilities as in [3]. In this case, the given, previously optimal, solution sequence
is not performing so well anymore and re-scheduling should be carried out.

Re-scheduling could be of course very expensive in terms of both costs and opera-
tional difficulties associated to unstable solutions (as in the the so-called nervousness
phenomenon [6]). As a consequence, when changing a solution schedule, the cost
and stability trade-off becomes of primary importance. On these grounds, we aim at
balancing the cost for re-positioning the jobs and the improvement in the objective.
In the following, we specifically refer to this problem as scheduling with rearrange-
ments.

2 Problem Definition

Consider a deterministic single-machine environment where n jobs with given pro-
cessing times have to be scheduled according to a regular objective function C(σ )

(e.g., minimization of the total completion time, or minimization of the maximum
tardiness, etc.), which depends on the job sequence σ .

Without loss of generality, it is assumed that an initial sequenceσ0 = 〈1, 2, . . . , n〉,
of the n jobs (representing an optimal or satisfactory solution for the original data)
is given and that job j is the job placed in the j-th position of σ0. Suppose now that,
due to changed conditions (e.g., altered processing times, different objective at the
current supply chain echelon, etc.), σ0 is no more adequate in terms of the current
performance indicator C(·). In order to get back to a satisfactory solution, it is
possible to rearrange jobs, so that a new sequence σ = 〈σ1, σ2, . . . , σn〉 is obtained
which achieves a better performance. The problem we address in this work is to
determine a new job sequence σ such that:

(i) C(σ ) is minimum (or, at least, C(σ ) ≤ C(σ0)) and
(ii) the value of a “distance function” between the new sequence σ and the initial

sequence σ0 is bounded.



Constrained Job Rearrangements on a Single Machine 35

Fig. 1 As the conveyor belt
proceeds leftward, three
moves are performed

1 2 3 4 5 6 7

1 2 3 4 5 6 7
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Several different metrics are used in the literature to define distances between
rankings. Hereafter, the ranking of a job denotes its position in the sequence (e.g.,
the ranking of job j in σ0 is j) and hence a permutation or sequence is completely
described by the rankings of its jobs. In [4] a number of classical metrics are surveyed
and new ones are proposed.

The metric we adopt in this paper is the number of moves necessary to reach σ

starting from σ0, where a move is the extraction of a job from the current sequence
and its insertion in a successive position. By “successive position”wemean a position
with larger index number, i.e., further “to the right” of the sequence. This restricted
notion of moves is motivated by the real-world example of a machine that receives its
input by a conveyor belt. Since the conveyor keeps moving forward, it is not possible
to insert an extracted job in an earlier position in the sequence, i.e., in front of the
queue. An illustration is given in Fig. 1, where the new sequence σ is obtained in
three moves. As the conveyor belt proceeds to the left, we can remove jobs 1 and 2
to place them after 4 and 6, respectively. Doing so, 3 becomes the first job of the new
sequence. Note that, in this setting, we would not be allowed to move jobs 3 and 4
before job 1.

Observe that even under our restricted definition of moves, every permutation of
the jobs can be obtained from σ0 by a suitable sequence of feasible moves. Note also
that in our metric we do not care about the distance (i.e., number of positions) a job
is moved (as it is done in the classical Kendall-Tau or Kemeny distance, where the
number of neighbour interchanges is counted), but we focus on the number ofmoving
operations. This is motivated by the practical situation where a job is associated with
an item (work piece, part of a machinery) and moving such an item entails, for
instance, a forklift to pick up the item and drive it to the new position. In this case,
driving distance is mostly negligible, while the pickup and placing operations are
costly.

The following Lemma determines the number ofmoves necessary to reach a given
sequence σ , starting from the initial sequence σ0. (Recall that, in σ0, the name of a
job indicates its position/ranking in the sequence.)

Lemma 1 Transforming a starting sequence σ0 into a new, given sequence σ by
moves to successive positions, a job j destined for a position i in σ must be moved
from its original position j in σ0, if and only if, there is a job k > j placed before
the i-th position in σ .
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Proof (⇐ ) Assume in σ there is a job k > j placed at a smaller position number
than job j . Since in the original sequence σ0, j was placed before k and only “right-
ward” moves are allowed, there is no way for k to reach a position “left of” j by a
move, but σ can be obtained only by moving j “behind” k.
(⇒ ) Suppose that, contrary to the assumption, in σ there is no such job k but any
job � placed in positions 1, 2, . . . , i − 1 is such that � ≤ j . Thus, by the pigeon-hole
principle, i cannot exceed j , i.e., i ≤ j . This means that the new position i of j in
σ does not have a larger position number than j in σ0. Hence it is not meaningful to
move job j “to the right” in order to reach position i .

For instance, in Fig. 1, σ = 〈3, 4, 1, 6, 5, 2, 7〉, therefore 1, 5, and 2, have been
re-positioned, since they are preceded by higher ranking jobs, while 3, 4, 6 and 7
have not.

Let Sn indicate the set of all sequences (i.e. permutations) of the n jobs. We are
now in the position to give a formal definition of our problem.

Single-machine Scheduling with Rearrangements (SSRP)
Given: a set J = {1, . . . , n}, a sequence of jobsσ0 = 〈1, 2, . . . , n〉with nonnegative process-
ing times p j , j = 1, . . . , n, a regular objective function C : Sn −→ �+, and an integer k;
Find: a sequence σ ∈ Sn that can be reached in at most k moves from σ0 such that C(σ ) is
minimum.

The job in position i in the sequence σ ∈ Sn is denoted by γσ (i) ∈ {1, 2, . . . , n}
(e.g., γσ0(i) = i), while πσ ( j) denotes the position of job j . If it is clear from the
context which sequence we are talking about, we omit the subscript σ and write, e.g.,
π(γ (i)) = i or γ (π( j)) = j .

3 Solution Approaches and Preliminary Results

We propose integer linear programming models for three cases of our problem,
corresponding to three different objective functions. In addition, we present efficient
procedures to solve restricted versions of SSRP. These can be of use, as building
blocks, in devising heuristic solution algorithms for the general case.

3.1 Mathematical Programming Model

Hereafter we introduce MIP models for our problem. Since the mathematical pro-
grams for the three objective functions are very similar, we first introduce a MIP for
a generic objective function C(σ ) and then describe the linear expressions for the
three different objectives.

In all programs, we use the assignment variables x ∈ {0, 1}n×n , where x j (i) = 1
indicates that job j is placed in position i in σ and variables z ∈ {0, 1}n to count the
number of jobs that are to be repositioned. The quantities γ (i) and π( j) introduced
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above may be easily expressed in terms of the x variables. In particular, in the
following models, we use γ (i) = ∑n

j=1 j x j (i).
The Single-machine Scheduling with Rearrangements problem can be

modelled as follows:

minC(σ ) (1)

s.t.x ∈ A (2)

zi ≥ 1

n
(γ (h) − γ (i)) h = 1, . . . , i − 1; i = 1, . . . , n (3)

n∑

i=1

zi ≤ k (4)

x j (i), zi ∈ {0, 1} (5)

where Eq. (2) are the usual assignment constraints (
∑n

i=1 x j (i) = 1 for all j and∑n
j=1 x j (i) = 1 for all positions i), (3) enforce the counting of moves in zi : Variable

zi must assume value 1 when there is a job with index greater than i at position h
before the job in position i . Finally, (4) bounds the total number of moves by k.

We consider the minimization of three objective functions, total completion time
C1, maximum lateness C2, and number of tardy jobs C3:

C1 =
n∑

i=1

i∑

h=1

n∑

j=1

p j x j (h) (6)

C2 = Lmax with Lmax ≥
i∑

h=1

n∑

j=1

p j x j (h) −
n∑

j=1

d j x j (i) ∀ i = 1, . . . , n. (7)

C3 =
n∑

i=1

Ui with Ui ≥ 1

M

⎛

⎝
i∑

h=1

n∑

j=1

p j x j (h) −
n∑

j=1

d j x j (i)

⎞

⎠ ∀ i = 1, . . . , n. (8)

Note that the RHS of (7) becomes positive if the completion time of the job in
position i exceeds its due date and hence Ui = 1 in (8) (for suitably large M).

We performed a number of preliminary computational experiments on randomly
generated instances using the commercial ILP solver Gurobi v7.5.0 on a 3.6 GHz
Quad Core i7, 16GB RAM PC. These tests show that Gurobi is able to solve quite
efficiently instances with up to n = 40 jobs and k = 3. As soon as n or k grows,
the time required to solve the problem becomes prohibitively large. So, we also
implemented a few simple greedy rules to detect the k jobs to be repositioned and
on which positions to schedule them. Such greedy rules are extremely fast (a few
milliseconds for quite large instances), but poorly effective when the number of jobs
is small. However, their performance improves when the number of jobs becomes
larger.
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A few experiments were also performed to test how the value of k influences the
objective function values. In most cases, it turns out that it is possible to find the
optimal solution as soon as k reaches ≈ n

3 .

3.2 Restricted Problems

We consider a restricted variant of SSRP in which the set K of k jobs that we are
allowed to move is given as an input. For this restriction we are able to provide exact
and efficient solution algorithms for the three objectives (6)–(8).

The following algorithms can also be used to find a solution for the general
(unrestricted) SSRP. In fact, one may run them for all possible choices ofK , i.e., for
all k-tuples of jobs, and return the best solution found. This also shows that, when k
is fixed, SSRP can be solved in polynomial time for all three objective functions.

3.2.1 Minimizing the Total Completion Time

It is not hard to see and to prove by an exchange argument that the jobs inK induce
a partitioning of σ0 into segments in each of which the jobs inK will be positioned
in SPT-order among themselves.

Lemma 2 Given the set of movable jobs K for SSRP with total completion time
minimization, if i, j ∈ K and pi < p j , then either i precedes j in any optimal
schedule σ , or j < i and π( j) < i .

The first case pi < p j refers to the SPT-order of jobs in the same segment while
the second case means that j and π( j) are in a segment separated from a subsequent
segment containing i by same (large) jobs.

This gives rise to a simple algorithm: Consider the jobs in K in non-increasing
order of processing times. For each job j ∈ K , find the best new position for j by
moving it right and evaluating the objective function for all possible slots. Place j
in that position π( j) (permanently) and remove it fromK , iterate. Note that jobs in
different segments will not interact with each other.

3.2.2 Minimizing the Maximum Lateness

In this case, we may easily adapt Lawler’s algorithm for 1 | prec | Lmax to express
the precedences induced by movable and unmovable jobs.

Figure 2 illustrates the idea: Digraph (a) represents the original sequence where
the grey nodes are the movable jobs K , while digraph (b) illustrates the input
precedence-constraints that must be considered when applying Lawler’s algorithm.

Note that this result easily extends to theminimizationof regular functionsC(σ ) =
fmax = max j∈J { f j (C j (σ ))} where f j (·) are nondecreasing functions.



Constrained Job Rearrangements on a Single Machine 39

(a)

(b)

Fig. 2 Example of precedence for application of Lawler’s algorithm

3.2.3 Minimizing the Number of Tardy Jobs

Minimizing the number of tardy jobs on a single machine can be done optimally by
Moore’s algorithm [5]. Unfortunately, Moore’s algorithm is not useful for our SSRP
in its general form for unknownK . The following example shows that—even if the
original starting sequence is EDD—the same algorithm does not provide any insight
on the jobs that one should move in order to minimize the number of tardy jobs.
In fact, the best solution consists in moving jobs that Moore’s algorithm would not
move. Consider an instance with the following data sorted by EDD.

Job 1 2 3 4 5 6 7
p j 1 2 5 6 20 20 20
d j 1 2 6 12 30 50 70

If we apply Moore’s algorithm it is quite easy to show that it would move jobs 2
and 5 and find an optimal solution in which 2 jobs are late.

If we restrict ourselves to move only one job, i.e. k = 1, then we can observe that
if we move job 2 we get a solution with 4 late jobs (2, 5, 6, and 7). The same solution
value is attained when job 5 is delayed (so that jobs 2, 3, 4, and 5 are late). However,
if we consider the solution in which job 3 is moved at the end of the schedule, we
can see that the number of tardy jobs (jobs 2 and 3) is 2, so it is optimum.

Turning back to our restricted version of SSRP, i.e., if we assume that the set
K of k jobs which are allowed to be moved is known, determining a schedule
that minimizes the number of late jobs can be done by a two-dimensional, strictly
polynomial, dynamic programming scheme which we sketch hereafter. The set of
jobs J is partitioned intomovable jobsK and the complement setU := J \ K . The
algorithm is based on the following three structural properties (whose easy proofs
are omitted). Here, removing a job j ∈ K means that we extract j from the schedule
and append it at the end of the schedule in the final step of the algorithm.

1. Jobs j ∈ K are either scheduled on time or they are removed.
2. All jobs j ∈ K which are on time are scheduled inEDDorder among themselves

(disregarding all jobs in U ).
3. If a job j ∈ K is on time, it is always scheduled at the latest possible time.

Assuming the k jobs in K are numbered in EDD order; the procedure starts from
an empty schedule and proceeds by iteratively inserting jobs inK . Whenever a job
j ∈ K is inserted, all jobs in U positioned before j in σ0 are scheduled as well.
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Let C j (�,m), � = 0, 1, . . . , n, m = 0, 1, . . . , |U |, j = 0, 1, . . . , k, indicate the
minimum makespan—not considering the removed jobs—of a schedule in which
exactly � jobs in J are late, the first m jobs of U are scheduled, and each of the
first j jobs in K is scheduled or removed. In each partial schedule represented by
C j (�,m), the last scheduled job is always a job from K . C j (�,m) := +∞ if no
such solution exists. The optimal solution of SRRP, minimizing the number of late
jobs, is given by the minimum � such thatCk(�, |U |) is finite (and theU -jobs placed
after the latest on time K -job have to be inserted).

C j (�,m) can be determined by adding job j to every finite previously generated
dynamic programming entryC j−1(�,m). To do so, new candidate entriesCC j (�,m)

are computed. At the end of each iteration, C j (�,m) is calculated as the minimum
over all generated candidates CC j (�,m) (if any). Two cases are to be distinguished:

Case (i): j is removedandclassified as late job, setCC j (� + 1,m) := C j−1(�,m).
Case (i i): j is scheduled on time (if this is possible). Thus, all unscheduled jobs in

U with positions afterm, but before j in σ0, must also be inserted preceding j in the
resulting sequence. Moreover, due to the above property 3, j is possibly moved to the
right, by inserting some other jobs inU , as long as j remains on time. This implies
the placement for a subsetU ⊆ U of jobs out of which u′ are late. Eventually, a new
candidate solution is obtained by appending jobs U and j at the end of the current
sequence given by C j (�,m) (which ends with a job inK ):

CC j (� + u′,m + |U |) := C j−1(�,m) +
∑

i∈U
pi + p j .

4 Conclusions

In this paper, we address SSRP, a task rearrangement scheduling problem on a single
machine. Similar decision problems are relevant in dynamic scenarios, where a pre-
computed optimal schedule becomes sub-optimal due, e.g., to parameter changes, or
errors in the data used in the computations.

We propose an integer programming approach and report about its performance
on some preliminary test sets. In addition, we propose some efficient methods for the
solution of restricted versions of SSRP.We believe, those may be effectively adapted
as subroutines in a heuristic algorithm for solving the original (general) version of our
problem. This, together with a computational complexity characterization of SSRP,
is also our main future direction for this study.
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Reducing Overcrowding
at the Emergency Department Through
a Different Physician and Nurse Shift
Organisation: A Case Study

Roberto Aringhieri, Giovanni Bonetta and Davide Duma

Abstract Overcrowding is a widespread problem affecting the performance of an
Emergency Department (ED). In this paper we deal with the overcrowding problem
at the ED sited at Ospedale Sant’Antonio Abate di Cantù, Italy. Exploiting the huge
amounts of data collected by the ED,we propose a new agent-based simulationmodel
to analyse the real impact on theEDovercrowding of a different physicians and nurses
shift organisations. The proposed simulation model demonstrates its capability of
analysing the ED performance from a patient-centred perspective.

Keywords Emergency department · Overcrowding · Agent based simulation

1 Introduction

An Emergency Department (ED) is a medical treatment facility inside of a hospital
or another primary care centre and is specialised in emergency medicine providing a
treatment to unplanned patients, that is patients who present without scheduling. The
ED operates 24 h a day, providing initial treatment for a broad spectrum of illnesses
and injuries with different urgency. Such treatments require the execution of sev-
eral activities, such as visits, exams, therapies and intensive observations. Therefore
human and medical resources need to be coordinated to efficiently manage the flow
of patients, that varies over time for volume and characteristics.
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A phenomenon that affects EDs all over the world reaching crisis proportions
is the overcrowding [12]. It is manifested through an excessive number of patients
in the ED, long waiting times and patients Leaving Without Being Seen (LWBS);
sometimes patients being treated in hallways and ambulances are diverted [2, 3, 10].
Consequently, the ED overcrowding has a harmful impact on the health care: when
the crowding level raises, the rate of medical errors increases and there are delays in
treatments, that is a risk to patient safety.Not only overcrowding represents a lowering
of the patient outcomes, but it also entails an increase in costs [9]. Moreover, the ED
overcrowding causes stress among the ED staff, patient dissatisfaction and episodes
of violence [6].

Simulation is widely used to test what-if scenarios to deal with overcrowding [12],
analysing the use of different resources, setting or policy within the care planning
process. Although most of the solutions proposed in literature foresee the use of
new additional resources, often they are scarce and there is no economic possibility
of new investments [5]. Then human and equipment resources available should be
used as efficiently as possible in order to improve the ED processes. For this rea-
son, research addressing short-term decision problems are becoming increasingly in
recent years [1]. Placing in the perspective to alleviate the ED overcrowding without
changing the ED resources and settings, there are two way to act: (i) changing the
human resources planning [13] or (ii) adopting different policies in the allocation of
the human and equipment resources [8, 11].

In this paper we deal with the problem of the management of the staff (physicians
and nurses) operating at the ED sited at Ospedale Sant’Antonio Abate di Cantù,
which is a medium size hospital in the region of Lombardy, Italy. Exploiting the huge
amounts of data collected by the ED,we propose a new agent-based simulationmodel
to analyse the real impact of a different physicians and nurses shift organisations on
the ED overcrowding.

2 Modelling Approach

After a brief description of the case study under consideration (more details available
in [7]), we report the pre-processing procedure to make the huge amounts of data
usable within the simulation model.
The case study. The resources available within the ED are: 4 beds for the medical
visits placed in 3 different visit rooms, in addition to one bed within the shock-
room and another one in the Minor Codes Ambulatory (MCA), one X-ray machine,
5 Short-Stay Observation (SSO) units (beds), 10 stretchers and 10 wheelchairs to
transport patients with walking difficulties. The medical staff is composed of 4–6
nurses and 1–3 physician(s), depending on the time of day and the day of week, in
addition to the X-ray technician.

A patient is interviewed and registered as soon as possible by a triage-nurse on
his/her arrival in the ED, recording personal data, the main symptom and the urgency
code c from 1 (most urgent) to 5 (less urgent). Table 1 reports all the activities that



Reducing Overcrowding at the Emergency Department … 45

Ta
bl
e
1

A
ct
iv
iti
es

in
a
pa
tie

nt
pa
th

Id
D
es
cr
ip
tio

n
C
la
ss

E
D
c

T
S

Id
D
es
cr
ip
tio

n
C
la
ss

E
D
c

T
S

A
T
ri
ag
e

T
ri
ag
e

�
t E

B
M
ed
ic
al
V
is
it

V
is
it

�
t E

C
Sh

oc
k-
R
oo
m

V
is
it

�
t E

D
M
C
A
V
is
it

V
is
it

�
t E

E
Pa
ed
ia
tr
ic

Fa
st
-T
ra
ck

D
is
ch
ar
ge

t P
F

T
he
ra
py

Te
st
s
an
d
C
ar
e

�
t P
,t

E

G
L
ab
or
at
or
y

E
xa
m
s

Te
st
s
an
d
C
ar
e

�
t P
,t

R
H

X
-R

ay
E
xa
m
s

Te
st
s
an
d
C
ar
e

�
t P
,t

R

I
C
om

p.
To

m
og
-

ra
ph
y

(C
T
)

Te
st
s
an
d
C
ar
e

t P
,t

R
J

E
ch
og
ra
ph
y

Te
st
s
an
d
C
ar
e

t P
,t

R

K
Sp

ec
ia
lis
tV

is
it

Te
st
s
an
d
C
ar
e

t P
,t

R
L

SS
O

Te
st
s
an
d
C
ar
e

�
t S
,t

E

M
Pr
e-
ho
sp
.S

SO
Te
st
s
an
d
C
ar
e

�
t S
,t

E
N

R
ev
al
ua
tio

n
V
is
it

R
ev
al
ua
tio

n
�

t E

O
H
os
pi
ta
lis
at
io
n

D
is
ch
ar
ge

�
t E

P
D
is
ch
ar
ge

(o
rd
in
ar
y)

D
is
ch
ar
ge

�
t E

Q
In
te
rr
up
tio

n
D
is
ch
ar
ge

t E



46 R. Aringhieri et al.

Fig. 1 A simplified path for a patient within the ED and the human resources associated

could be performed by a patient within the ED, each one classified into 5 classes
(Triage, Visit, Tests and Care, Revaluation and Discharge). Columns EDc indicate
those that are competence of the ED. Columns TS report the timestamps available
from the data, that is the start time tS , the prescription or request time tP , the report
time tR and the end time tE .

Figure 1 depicts a simplified version of the patient path also reporting the human
resources associated to each activity: after the triage, a Visit class activity is always
provided except for a LWBS patient. Then the patient can be discharged or continue
with a sequence of Tests and Care class activities, that is always followed by a
revaluation visit, after which the patient can be discharged or go on with other Tests
and Care class activities.
Data analysis. In order to supply our simulation model, we are required to pre-
process the ED dataset to create an event log, which consists of a set of traces
(i.e. ordered sequences of events of a single case), their multiplicity and other infor-
mation about the single events, such as timestamps and/or durations, resources, case
attributes and event attributes. The event log has been generated taking into account
the 27 039 accesses of the year 2015. Each case of the event log consists in an
access and events consist in activities, which has been classified into 17 event classes
corresponding to the activities reported in Table 1.

We should take into account several noises in the dataset to estimate start and end
time of each activity. In the following, we consider the following 7 noises, that is
missing timestamps (N0), timely execution (N1), forgetfulness in therapies recording
(N2), multiple recording (N3), fake or missing revaluation visit (N4), fake medical
visit (N5), tests reported after discharge (N6).

In accordance with Table 2, the pre-processing algorithm has been implemented
as follows with parameters τ and δ fixed to 10 and 30 min:

1. Start time and end time of each activity are estimated in accordance with Table 2
(N0).

2. A sorting time t̄ is fixed for each activity in order to avoid overlapping of activities
(because ofN0); we chose the more reliable time, that is t̄ = tS for activities F ,
L and M , t̄ = tE for the other ones.

3. If activity E occurs, all the other activities are removed, except the triage (N5).
4. The activities of the same path are sorted in chronological order of t̄ composing

the trace.
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5. For each trace, let t̄exit be the sorting time of the discharge (one among activities
O, P and Q) and let τ > 0 be a parameter denoting the amount of time before the
discharge inwhich the forget recording of therapies is remedied. If t̄exit − t̄F < τ ,
then t̄F = max{t̄F , t FR + 1 min}, where t FR is the prescription time of that therapy
(N2).

6. For each trace, let t̄Y be the sorting time of a certain Tests and Care class activity.
If t̄Y > t̄exit, then t̄Y is fixed one minute before the first revaluation visit after the
prescription time of that activity (N6).

7. For each activity of each trace, if it precedes the triage time, then it is moved
one minute after the triage time (N1); if it is not a triage and it precedes the visit
time, then it is moved one minute after the visit time (N1).

8. For each trace, if there is no revaluation visit between a Tests and Care activity
and the discharge, then a fake revaluation visit is inserted a minute before the
discharge (N4).

9. For each trace, consecutive Tests and Care activities of the same type such that
the time between them is less than δ are merged keeping the start time of the
first one and the end time of the last one (N3).

The simulation model. We propose an Agent-Based Simulation (ABS) model to
represent the interactions among patients and medical personnel inside the patient
path within the ED by replicating in detail the progress of ED activities. ABS is
well suited for modelling such a type of interactions [4]. Five type of agents are
implemented as follows:

Decision-maker. A unique agent is used to manage the resource allocation and
to assign tasks to the medical staff. When a patient require the execution of an
activity, such a request is inserted in a prioritised queue recording the patient ID,
the request timestamp, the set of resources needed, the urgency code c and the
priority class γ initially equals to c. Every time a new request ismade or a resource
is released, the agent scans the queue considering the priority, that is (i) patients
with lower values of γ first, and (ii) patients with the same value of γ are sorted in
decreasing order of the waiting time. When the whole set of resources to provide
an activity is available, the agent send a message to the agents representing the
patient and the human resources involved in the activity.

Patient. The patient population is reproduced from the event log: an agent is cre-
ated for each access to the ED from the dataset and relevant information for the
replication of its path (i.e. urgency code c, trace, arrival time and several activity
durations) are represented by agent attributes. Each agent progresses in their path
within the ED replying that in Fig. 1 in accordance with its trace.

Physician. Each physician shift is represented by an agent with an attribute that
indicates its competence (visit rooms, SSO units, etc.). This agent is characterised
by two relevant aspects determined by the end of the shift and the handover
between physicians: (i) λ1 min before the shift end, the agent can be assigned
only to urgent patients with c ≤ 2, or taken over previously; (ii) the last ρ min of
the shift models the handover to the next physician (whose agent arrives ε min
before starting the shift) in which the agent is no more available for any tasks.
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Before the handover, the agent waits for a task assignment from the decision-
maker agent.

Nurse. The agent is implemented as well as the physician, omitting the handover
of the medical records. We denote with λ2 the min before the shift end in which
the agent deal with only urgent patients with c ≤ 2.

X-ray technician. The agent is implemented as well as the nurse, omitting the lim-
itation on serving non-urgent patients close to the shift end. Since at nighttime no
technician is working in the ED, we model the on demand technician availability
by adding a delay of 30 min to represent the time needed to reach the ED.

The ABS approach allows us to model the continuity of the care process, which
is allowed by the ability to identify individual resources (i.e., single physician and
nurses) and to simulate their interactions: the same physician is always assigned to a
patient for the activities that follow its first medical visit, that is revaluation visits and
discharge; furthermore, if the assigned physician ends its shift before the completion
of the care process, the activities are performed by the physician to which themedical
record has been passed.

Another important aspect represented by the ABS model is the simulation of the
behaviour of the human resources during the beginning and the ending of their shift,
which are the critical moments that cause a slowdown in the flow of patients. To this
end, the parameters ε, ρ and λ1,2 have been introduced: the arrival of the physician ε

min before the beginning of the shift is a common practice to ease the handover made
in the last ρ min of the current physician shift; the assignment of non-urgent patients
to physicians and nurses λ1,2 min before the end of the shift is usually avoided to
guarantee continuity in the process of care. Finally, to avoid the starvation of the less
urgent patients, a re-prioritisation of such patients has been planned each υ hours
of stay increasing the urgency code c by 1, without going beyond 2 if c ≥ 3 and 1
otherwise.

3 Quantitative Analysis

The dataset of all the accesses to the ED of the year 2015 is used for the analysis in
this section. The shifts of the medical staff replicate those of the real case, as reported
in Table 3. In last 4 columns the competence of the ED staff are indicated with a
check symbol; an asterisk means that the competence is limited to a time slot in
which SSO units do not have a dedicated physician. Furthermore, a X-ray technician
is available in the ED from 8:00 to 20:00 every day. The model is implemented in
AnyLogic 7.3.7. The average computational time for a simulation run is 10 s.

To validate the model, we compare the obtained average waiting times of the
patients belonging to 4 urgency classes and the overall, with those computed from
the real data. To this purpose we fix ε = 15min and range υ in [0.5, 6]with step 0.5 h
and both λ1 and λ2 in [15, 30] with step 5 min. The best fitness has been obtained
for the values υ = 2 h, λ1 = 20 min, λ2 = 10 min.
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Table 3 Shifts of the ED staff (real case)

Resource Shift Competence

Type Number Start Duration
(h)

Weekday Weekend Triage Visits MCA SSO

Physician 2 8:00 8 � � � �∗

2 16:00 7 � � � �∗

1 23:00 9 � � � �
1 8:00 8 � � �∗

1 8:00 7 � �
Nurse 2 7:00 7 � � �

2 14:00 7 � � �
1 21:00 10 � � �
2 7:00 7 � � �
3 14:00 7 � � �
2 21:00 10 � � �
1 7:00 7 � � �
1 14:00 7 � � �
1 21:00 10 � � �
1 8:00 8 � �

Starting from a request of the ED, a what-if analysis is conducted with the aim
of reducing the waiting times of the patients without adding new resources but only
changing the time span of the shifts. Table 4 reports the structure of the shifts consid-
ered: from the real case (base), we obtain other physician shifts by moving them of
30 and 60 min forward and backward. After selecting the best shift structure for the
physicians (phase 1), we repeat the same experiment for the nurse shifts (phase 2).We
measure the average waiting times and the average ED Length of Stay (EDLOS) of
the patients to evaluate the best configuration: the former is the time elapsed between
the triage and the beginning of the first visit, while the latter starts with the first visit
and ends with the discharge.

From the results of the phase 1 reported in Table 4, the base configuration seems
to be the best for minimising both waiting times and EDLOS. However, most urgent
codes could take a slight advantage when the physician shifts are postponed of 30
min. On the contrary, all the other shift configuration worse the waiting times up
to 26 min and the the EDLOS up to 30 min in the worst case compared with the
base configuration. Regarding the phase 2, the nurse shifts postponed of 30 min can
give slightly improvements, that is 2 min for the waiting times and 8 min for the
EDLOS on average. On the contrary, the preponing of the nurse shifts of 30 min
causes a significant worsening of the indices. These results demonstrate the urgent
need of additional resources for a significant reduction of the overcrowding. For this
reason, we provide a further analysis, in which we evaluate the impact of adding one
physician. Starting from the best shift configuration in accordance with Table 4, we
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Table 5 Adding one physician: what-if analysis

Additional
shift

Average waiting time (min) Average EDLOS (h)

1 2 3 4–5 Overall 1 2 3 4–5 Overall

None 10 31 72 101 68 8.4 7.5 4.9 4.1 5.3

S1 23 33 74 95 68 8.6 7.4 4.8 3.9 5.3

S2 10 24 58 84 55 8.2 6.9 4.2 3.5 4.7

S3 6 22 56 82 53 8.3 6.6 4.2 3.4 4.7

S4 6 26 65 91 60 8.5 6.9 4.5 3.7 5.0

analyse the performance inserting a physician shifts with competence on the visit
rooms in four different way: (S1) from 8:00 to 16:00 in weekdays, (S2) from 15:00
to 23:00 in weekdays, (S3) from 12:00 to 20:00 in weekdays, and (S4) from 10:00
to 16:00 in weekdays and from 11:00 to 16:00 in weekend.

The resulting average waiting times and the EDLOS are reported in Table 5
proving that an inadequate addition of physician shifts would be useless for the
overall performance or even worse, as shown by S1. The best configuration is S3,
for which patients wait 15 min less and have an EDLOS 40 min shorter, on average.

4 Conclusions

The proposed ABS model demonstrates its capability of analysing the ED perfor-
mance from a patient-centred perspective. The change of the existing physician and
nurse shifts seems to be insufficient to get a significant alleviation of the ED over-
crowding. However the insertion of one physician can reduce the average waiting
times of the 24% and the EDLOS of the 14% compared to the current ones.
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Integrating Mental Health
into a Primary Care System: A Hybrid
Simulation Model

Roberto Aringhieri, Davide Duma and Francesco Polacchi

Abstract Depression and anxiety appear to be themost frequently encountered psy-
chiatric problems in primary care patients. It has been also reported that primary care
physicians under-diagnose psychiatric illness in their patients. Although collabora-
tive care has been shown to be a cost-effective strategy for treating mental disorders,
to the best of our knowledge few attempts of modelling collaborative care interven-
tions in primary care are known in literature. The main purpose of this paper is to
propose a hybrid simulation approach to model the integration of the collaborative
care for mental health into the primary care pathway in order to allow an accurate
cost-effectiveness analysis. Quantitative analysis are reported exploiting different
and independent input data sources in order to overcome the problem of the data
appropriateness. The analysis demonstrates the capability of the collaborative care
to reduce the usual general practitioner overcrowding and to be cost-effective when
the psychological treatments have a success rate around the 50%.

Keywords Mental health · Collaborative care pathway · Cost effectiveness
Discrete event · Agent based · Hybrid simulation

1 Introduction

World Health Organization (WHO) estimates that as much as 24% of all patients
contacting general health services suffer from well-defined psychological disorders
and that another 10% have psychological problems which may not meet the criteria
for a formal diagnosis of mental disorder, but diminish the quality of life and cause
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disability [13]. Nowadays such disorders are often diagnosed and treated in primary
care settings adopting the collaborative care approach [9], in which specialised
staff, i.e., psychologists, support the primary care practices. In Italy, collaborative
care experiences are reported in [7] confirming also the association betweenmedical-
psychiatric co-morbidity and frequent utilisation of primary care resources, that is
frequent attenders of a primary care service are usually affected by some mental
disorders.

Cost-effectiveness analysis plays an important role in the economic evaluation
of such interventions [14]. A critical review of model-based economic studies of
depression argued hat little attention has been paid to issues around modelling stud-
ies with a focus on potential biases [1]. To the best of our knowledge, few attempts
of modelling collaborative care interventions in primary care are known in litera-
ture [2]. None of these works analyse the impact of the frequent attenders to the
usual general practitioner overcrowding. Further, the problem of the appropriateness
of data sources used to estimate input parameters is discussed in [12].

The main purpose of this paper is to propose a hybrid simulation approach to
model the integration of the collaborative care for mental health into the primary care
pathway in order to allow an accurate cost-effectiveness analysis. The hybridisation
of different methodologies is a way to deal with challenging problem arising in
health care analysis [4]. In this problem, the challenge is to model the behaviour of
the population pertaining the general practitioner, which differs from their frequency
of attendance, and the patient flowwithin the collaborative care pathway. To this end,
the proposed hybrid approach exploits the Agent Based Simulation (ABS) and the
Discrete Event Simulation (DES) methodologies to model the population behaviour
and the collaborative care pathway, respectively. Instead of using our own data, we
use different and independent data sources in order to overcome the problem of their
appropriateness.

2 The Mental Care Pathway: A Case Study

In the last years, several trials has been carried out in Piedmont Region.1 Among
them, we selected the trial carried out at the local health unit ASLTO3 in Turin. The
trial consists in offering mental care for 10 h per week within a general practitioner
office. Further, phone and home support is also provided. Such a trial defines a
mental primary care pathway, that is the the step-by-step patient flow within the
collaborative care pathway.

The mental primary care pathway implemented at the ASLTO3 is depicted in
Fig. 1. The general practitioner (GP) meets a patient that could suffer from a mental
disorder. If the GP recognises a mental disorder and the patient is willing to accept

1Regione Piemonte, Indirizzi e raccomandazioni per l’implementazione dell’assistenza psicologica
nelle cure primarie nella rete sanitaria territoriale del Piemonte, Scheda P.A.S. 2012 - n. 4.1.7,
2013.
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psychological care, the collaborative care process starts with a counselling between
the GP and the psychologist in order to define the level (low, medium or high) of the
mental disorder. In the case of indecision, the patient can follow the usual primary
care pathway or can accept a consultation with the psychologist before starting the
collaborative care process. Each treatment ends up with a success or a failure. A
success consists in a remission of the patient’ symptoms with a decrease in the
number of visits to the GP: in our case study, the success of a treatment is measured
adopting the CORE-OM self-evaluation scale [6], which evaluates the improvement
of the patient’s life quality. Note that only patients with a low or medium level of
mental disorder—in accordance with ICD-10 criteria—are treated, while high level
patients will be in charge of the specialised service.

3 The Hybrid Model

We report the proposed hybrid (DES and ABS) simulation model to represent the
integration of the collaborative care for mental health into the primary care pathway
in order to allow an accurate cost-effectiveness analysis.

Modelling themental primary care pathwaywith DES. Inspired by the case study
discussed in Sect. 2, we propose a model for the mental primary care pathway. The
DESmodel is a straightforward implementation of the pathway depicted in Fig. 1. As
mentioned in the introduction, one of the main characteristics of our approach is to
different and independent data sources to animate our model. From this perspective,
the main interesting part of the DES model is its parametrization. According to
the daily schedule of an Italian GP (the studio is open at least 4 h per day) and to
the national statistics [11], the number of daily patients is 20 (5 per hour) and, if
the patient requires a consultation, it lasts around 30 min. The inter-arrival time of a
patient is modelled using an exponential distributionwhile the duration is a triangular

Fig. 1 Collaborative care pathway at the ASLTO3
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Fig. 2 Behavioural model: state-chart representing all the possible status of a patient

in the [20, 40] interval. Among all the patient entering to the GP, the percentage of
the those suffering from a mental disorder is 24% as reported in [13].

According to the case study trial, the psychologist can work with no more than
3 patients per week for no more than 10 h per week. The treatment duration for
low and medium level patients is, on average, 3 (in the case of the treatment is a
simple consultation) and 8 h (in the case of the treatment is a psychotherapy). The
percentage of high level patients is 7.3% while the remaining have low or medium
level. Among them, the 42.1% follows a psychotherapy while the remaining the
simple consultation. Finally, the success rate of a treatment is set to 80%, as in the
case study.

Modelling the population behaviour with ABS. Different studies [7] confirm that
primary care frequent attenders are usually affected by mental disorders. Thus we
should pay a particular attention when modelling the population pertaining a GP
since we have to take into account their frequency. As in [3], we would exploit the
ABSmethodology to describe a behavioural model representing the different patient
status. Figure 2 describes the proposed behavioural model of a patient.

The patient usually stays at home, that is he/she is not going to the GP; when
needed, the patient goes to the GP to have a consultancy; after the consultancy, two
possible paths are available: the former is the usual care pathway while the latter
is the collaborative care one. On the usual care pathway will flow all the patients
not affected by a mental disorder and those affected but not recognised and/or not
accepting the collaborative care pathway. Starting the collaborative care pathway,
after a while a patient could be cured (depending on the treatment success) becoming
a routine attender. We recall that the remission of the patient’ symptoms implies also
a decrease in the number of visits to the GP.

In our ABS model, a population of patients pertaining a given GP is modelled by
generating a number of agents, each one following the behavioural model depicted
in Fig. 2. The behavioural model of each agent is characterised by a specialised
setting determining, for instance, if that patient is a routine or a frequent attenders.



Integrating Mental Health into a Primary Care … 59

Such settings are defined according to the parameters reported in Table 1, which also
report the source of each value.

The hybrid model. The proposed hybrid model is composed of a population of n
patients (n ∈ [1300, 1350] [11]) pertaining of a given GP. Each patient is modelled
by an agent following the behavioural model depicted in Fig. 2. When the agent
have a state transition from “patient at home” to “patient at GP studio”, the hybrid
model generates an item to represent the patient flowing within the usual care or
collaborative care pathways following the DES model. If the patient will follow the
usual care pathway then a state transition will be enabled from “patient at GP studio”
to “usual care”; otherwise, the model will enable a state transition from “patient at
GP studio” to “collaborative care”. When the patient finishes his/her “collaborative
care” a state transition to “patient is cured” is enabled. When this item exits from the
DES, the agent/patient makes a state transition from the “usual care” or “patient is
cured” to the “patient at home”.

4 Quantitative Analysis

We provide an overview of the results that can be obtained using the proposed hybrid
model. We recall that the reported results are obtained running the model using
different and independent data sources in order to overcome the problem of the data
sources appropriateness. The hybrid model is implemented using AnyLogic [5]. The
running time required for each experiment is negligible.

Validation. Although the validation of a simulation model usually requires a quite
complex analysis, in our case it is quite easy due to the simplicity of our DES model.
Our validation experiment consists in a repeated test (30 times) to evaluate the output
and the outcome of the model. The validation experiment is performed by forcing
that the number of patients entering in the collaborative care process is around the
number of patients actually participated in the trial, that is 41. Further, the time
horizon is the same of the trial, that is two years.

The output, at the end of the time horizon, complies with the trial, that is the
number of low/medium patients treated with a consultation is 17, those treated with
a psychotherapy is 11 and those taken in charge by the specialised territorial service
is 3. The remaining 10 patients have not yet finished their pathway. The outcome
of the collaborative care is measured in term of successes and failures of the treat-
ments. Again, the results at the end of the time horizon complies with the trial: the
consultation has 14 successes and 3 failures while the psychotherapy 9 and 2.

On the basis of these considerations, the comparison is satisfactory with respect to
our objective, that is the validation of the logical correctness of the proposed hybrid
model.

Tuning of theparameters. The tuning of themodel consists in determining a suitable
parametrization of the resources involved in the DES model: actually, the validation
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Table 1 Values of the parameters determining the patient population (MD = mental disorder)

Description Value (%) Source Description Value Source

Number of
frequent
attenders (FA)

15.0 [11] Number of
high level
among FAs

11.8% [8]

Number of
routine
attenders (RA)

85.0 [11] Number of
high level
among RAs

1.85% [8]

Number of
FAs suffering
from MD

30.2 [8] Number of
accesses to the
GP by FA

>12 per year [11]

Number of
RAs suffering
from MD

10.8 [8] Number of
accesses to the
GP by RA

<5 per year [11]

of the DES model has been performed on the case study which involved a limited
number of resources, that is 1 psychologists operating for 10 h per week (from
Monday to Friday). We refer to this case as scenario S1.

We introduce a further scenario, say S2, in which 2 psychologists operate for 20
h per week for a grand total of 40 h which seems closer to the real needs of a mental
primary care pathway. Both scenarios shares the same settings about service times
within the DES model while the patient population has been generated according to
the Table 1. We recall that the success rate of the treatments is estimated at the 80%
as in the case study reported in Sect. 2.

Table 2 reports the results regarding the two scenario S1 and S2. The table is
divided in three main sections: population, accesses to the GP and mental primary
care pathway. Regarding the first section, it is worth noting that the composition of
the population complies with the values reported in Table 1. Regarding the number
of accesses, the number of saved accesses is an estimate computed with respect to the
instant in which a frequent attender with mental disorder is cured becoming a routine
attender. This estimate is higher in scenario S2 due to the higher number of resources
available. Anyway, it shows that the mental primary care pathway can effectively
reduce the GP overcrowding. The third and last section shows the number of patient
treated and those waiting for a treatment. Note that the increase of the number of
patient treated in scenario S2 is proportional to the increased number of hours offered
by the psychologists.

Cost-effectiveness analysis In this section, we would provide an analysis in order
to evaluate the cost effectiveness of the integration of the collaborative care for
mental health into the primary care pathway, In this analysis, we will consider a third
scenario, say S3, which is the same of S2 but the time horizon is extended from 2
to 5 years. This scenario is introduced to evaluate the economic sustainability in the
medium/long term.
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Table 2 Tuning the hybrid model: results on the scenario S1 and S2
Description S1 S2

Population

Total number of patients 1328 1329

Number of FAs with mental
disorder

61 62

Number of RAs with mental
disorder

123 123

Number of patients with
low/medium mental disorder

174 176

Accesses to the GP

Number of accesses by FAs 375 380

Number of accesses by RAs 1879 1895

Number of saved accesses by
FAs

154 640

Mental primary care pathway

Number of patients treated 30 120

Number of patients waiting for
their treatment

141 53

While it is quite easy to identify the cost of a psychologist treatment within the
mental primary care pathway, the cost of the usual care pathway is more difficult
since it is concerned with different way of treating a not recognised mental disorder.
Considering the Italian NHS, to the best of our knowledge the most accurate estima-
tion is reported in [11] in which a range of yearly costs per patient is reported: the
usual care costs from 2100 to 2500 e while the mental primary care costs from 900
to 1100e. This difference is due to the fact that the latter is essentially the hourly cost
of a psychologist multiplied the number of hours of the treatment while the former
should considers not only the cost of the GP but also of the examinations usually
prescribed by the GP himself.

Table 3 reports a cost comparison between the two pathways, that is the mental
primary care and the usual care pathways. The results show the cost effectiveness
of the mental primary care pathway proving also the capability of reducing the cost
of the whole NHS system. Further, results for scenario S3 show the sustainability of
the system in the medium/long term.

The treatment success rate is the crucial parameter: actually, a lower success rate
can determine the cost-ineffectiveness of the mental care pathway. To provide more
insights to our analysis, we repeated our cost analysis varying the success rate of
the psychologist treatment so far set to the 80%. We report the results only for the
scenario S2 since those for S3 are almost the same.
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Table 3 Cost analysis: ranges of results (in Euro) on the 3 scenarios

Description S1 S2 S3

Estimated costs (e)

Mental primary care
pathway overall cost

26850–32816 107880–131853 148350–181316

Usual care pathways
overall cost

43470–51750 179340–213500 264030–314416

Variations 16860–18707 71460–81527 115010–133170

Table 4 Cost analysis: ranges of results (in Euro) varying the success rate on scenario S2
Description 80% 40% 50%

Estimated costs

Mental primary care
pathway overall cost

107880–131853 108270–132330 108000–132000

Usual care pathways
overall cost

179340–213500 88130–104917 108920–129667

Variations 71460–81527 −20140 to −27413 900 to −2334

Table 4 reports the results of the analysis. It is worth noting that themental primary
care pathway become cost effective as soon as the treatment success rate is around the
50%. Note that the same result is reported in the well-known Depression Report [10]
providing also a further ex-post model validation.

5 Conclusions

We proposed a hybrid simulation model to evaluate the integration of collaborative
care for mental health into a primary care system. In line with the current trends, the
hybrid approach allows us to face properly the challenging modelling issues, that is
how to model and integrate the behaviour of the population pertaining the general
practitioner and the patient flow within the collaborative care pathway overcoming
the the main weakness of the previous analysis, that is the appropriateness of data
sources. To the best of our knowledge, this is the first attempt in the health care
management literature. The quantitative analysis demonstrates the capability of the
collaborative care to reduce the usual GP overcrowding and to be cost-effective when
the psychological treatments have a success rate around the 50%, as reported in [10].
The proposed model could be extended to evaluate (i) the net social benefits in terms
of quality-adjusted life years, and (ii) several resource sharing strategies and their
impact on the GPs overcrowding.
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Cost Minimization of Library Electronic
Subscriptions

Laura Bigram, Patrick Hosein and Jonathan Earle

Abstract Many libraries, particularly those at Universities in developing countries,
are facing challenging financial times. This has led to the need for budget cuts and
more efficient management of limited resources. One of the major costs of an aca-
demic library are the fees paid for subscriptions to electronic journals, databases,
conference proceedings and for costs associated with downloads of individual papers
if there is no subscription to the corresponding resource. Typically the decision as to
whether or not a particular subscription is acquired is done based on faculty member
requests, information about the resource (such as cost) and policies of the library.
However, with the availability of a wide range of collected statistics, (number of
downloads, impact factors, etc.) one can make better informed decisions. In this
paper we provide a decision support system in which we define a metric for the value
obtained per access to a resource and then determine the minimum budget required
to achieve a given total value of this metric.

Keywords Optimisation · Data analysis · Decision support system

1 Introduction

Due to the recent economic downturn in some countries, many academic institutions
are having to slash their budgets resulting in a reduction infinancial allocations to their
libraries. Many academic libraries have been left with the challenge of providing the
same value and experience to faculty and students despite the significant decrease
in funding and spiraling increases in resource costs over the past few years [4].
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Acquisitions of resources can account for several millions of dollars in a budget and
so even small percentage reductions can result in significant savings. For example,
in one particular library, approximately eighty two percent of the library’s budget
was spent on e-resource acquisitions for the year 2015. Decision support systems
have been successfully used in the past to manage human resources in libraries (e.g.,
see [1]) with considerable savings. We focus on library cost savings for electronic
subscriptions.

In this paper we provide a model for optimizing the selection of resources to
subscribe to at the beginning of the academic year. We formulate the associated
mathematical model and develop an algorithm for obtaining the solution. We then
use the approach to determine the optimal subscriptions using real data and compare
this solution with the actual performance in prior years.

We first develop a metric that measures the value of electronic resources to an
academic community. For example, a simple metric is the number of downloads;
more downloads implies more value to the community because of the increased
knowledge provided. However, we go further and add other factors that affect value,
such as impact factors and the importance of the field to the general goals of the
university or country. Given this metric we can nowmeasure the total value achieved
for the given subscriptions made. What we then do is minimize the total cost while
keeping the total value fixed. To our knowledge, this particular model is new to the
area. The optimization approach is also one of our contributions. Note that, the work
in [1–3] assumes material acquisition is budgeted by categories (books, journals
etc.) whereas we optimize over all categories. The reason being that e-resources are
becoming the preferred form of acquisitions and hence categorization can contribute
to underutilization.

Although the model can take into account any of the resources acquired by the
library, we only had access to a subset of the data, that of Science Direct e-journals.
Since this formed a significant percentage (approximately 18%) of the resources, we
believe that the results reflect what can be obtained if all resources are taken into
account. We obtained statistics on e-journals in the Science Direct database for the
years 2011–2015. This dataset consists of 1739 individual journals and for each of
these it includes the title, a unique identifier, year, number of downloads for the year,
annual subscription cost, cost per download and subject areas (keywords). One of
our objectives is to check how closely the subscribed journals relate to the research
goals of a university. We therefore also produced a list of the keywords that reflect
such goals. Journals that have more common subject areas with the set of keywords
in the research goals should be given more value.

2 Mathematical Model

In this section we provide the optimization objective and a mathematical model that
will be used to achieve this objective. Note that the library pays for a service (access
to resources) and the associated community receives some value from this service.
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The service cost is easily obtained but the associated value of a downloaded resource
depends on various factors. In this paper, we take into account two of the factors that
contribute to the value but others can be added in the formulation in the future. Note
that in this paper we are focused only on subscription or pay-per-download services
of electronic journals and not acquisition of books.

Let J denote the set of resources (e.g., Journals, Conference Proceedings, etc.)
accessible through the library, either through subscriptions or pay-per-download. For
any resource j ∈ J we use the following notation:

Sj = the annual subscription rate for the resource

Pj = the price per publication download for the resource

I j = the Impact Factor of the resource

Dj = the number of completed downloads for the year

R j = the number of requested downloads for the year.

Note that some requests for a paper may not be satisfied because there is no jour-
nal subscription and no pay-per-download option or the cost for the download is
considered too much or the budget for downloads has been exhausted and hence
R j ≥ Dj .

We next take into account the relevance of the journal/conference resource to
the goals of the university. In many developing states the Government has indicated
specific areas that need to be developed as high priority as part of an overall vision
for the country. For example, in a small island state there may be less interest in
Quantum Physics research than in ICT since the latter will help in development of
the country. If this is the case, we take this factor into account as follows. For any
resource j , let K j denote the set of keywords for the resource. Let O denote the set
of keywords that represent the development objectives of the country. We assume
that members of O are contained within the union of the sets K j . We will weight
each resource by the number of its keywords that are included in O .

2.1 Resource Value and Cost

The cost of a subscribed resource j is simply the annual cost of the subscription, Sj .
For other resources the cost depends on the number of downloads and is given by
Pj D j . Naturally if Sj < Pj R j then one should subscribe to the resource otherwise
it is better to pay for each download. Therefore we define the cost of resource j as a
function of the number of satisfied requests x as:

C j (x) = min{x Pj , Sj } (1)

Since we do not know the number of downloads in advance we will use historical
data (with linear regression) to estimate the number of requests in the upcoming year.
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For the value Vj of a resource we may take into account the Impact Factor as well
as the goals of the university. This is given by,

Vj = 1 + αI j + β|K j ∩ O| (2)

where α and β determine the importance of each factor. The third component is the
number of common keywords between the resource and goals. For our numerical
results we do not have Impact Factors and so we set α = 0. For Governmental
research goals we use β = 0.1.

2.2 Problem Formulation

The objective of this problem is to minimize the total cost for a given total value.
However, as we mentioned before, this optimization requires knowledge of the num-
ber of requests per resource which is not known in advance. This will be obtained by
using historical data to predict the expected number of requests for each resource.
Let x j represent the number of requests satisfied for resource j . This is the decision
variable over which we must optimize. Note that the number of requests is integer
but we relax this constraint and assume that x j is continuous. We will find that, in the
optimal solution of the relaxed problem, all but one of the optimal variables x j will
in fact be integral and hence we may only need to round one decision variable with
negligible loss in optimality. We use F(x) to denote the objective function value for
a given decision vector x. The optimization problem can be stated as follows:

min
x

F(x) ≡
∑

j∈J
C j (x j ) (3)

s.t.
∑

j∈J
Vj x j = T

and 0 ≤ x j ≤ R j ∀ j ∈ J

where T denotes the total value to be achieved.Wefirst provide an important property
of the optimal solution.

Lemma 1 The optimal solution has the property that, for all except maybe one
resource, either all requests are satisfied or none is satisfied.

Proof This is a well known property of the solution obtained when taking the mini-
mization of a sum of concave functions over a polytope. �

Although this property is helpful it is still difficult to check all possible solutions
to find the optimal one. Next, we consider amodified versionwhich can be solved and
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has a solution close to optimal. Consider the following lower bound to the objective
function:

C ′
j (x) = min

{
Pj ,

Sj

R j

}
x ≡ G j x (4)

For convenience we use the representation G j x for some constant G j for each j .
Note that for all feasible x we haveC ′(x) ≤ C(x). Consider the problem (3) but with
C(x) replaced with C ′(x) or equivalently Gx since for a given resource the function
is linear in x . Furthermore we convert the optimization problem to a maximization
problem by considering the negative of the objective function value. This modified
problem can be solved using Lagrange Multiplier methods by introducing λ,μ and
γ. The Lagrangian is given by,

L(x,λ,μ,γ) = −λT +
∑

j∈J
−G j x j + λVj x j + μ j x j − γ j (x j − R j ) (5)

s.t μ j x j = 0, γ j (x j − R j ) = 0, μ j ≥ 0, γ j ≥ 0 ∀ j ∈ J (6)

Taking partial derivatives and setting to zero we obtain:

∂L
∂x j

= −G j + λVj + μ j − γ j = 0 (7)

∂L
∂λ

= −T +
∑

j∈J
Vj x j = 0 (8)

Let us consider the various cases:

μ j > 0, γ j > 0 ⇒ x j = 0, x j = R j not possible

μ j > 0, γ j = 0 ⇒ x j = 0, λ <
G j

Vj

μ j = 0, γ j > 0 ⇒ x j = R j , λ >
G j

Vj

μ j = 0, γ j = 0 ⇒ 0 ≤ x j ≤ R j , λ = G j

Vj

Therefore, we just need to find λ = λ∗ that satisfies these conditions. This can be
accomplished by starting with the resource with the smallest ratio G j

Vj
and satisfying

all of the requests for that resource. We then go to the resource with the next smallest
ratio and repeat. We keep track of the total value and stop when this total reaches T .
In the case in which Vj = 1 we note that all optimal decision variables are integers
and hence the optimal solution for the relaxed (approximate) problem is the same
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as that of the integer (approximate) problem. The solution of the modified problem
will be used for our numerical results and so we next show that the error is bounded
and in fact quite small. We start with the following Lemma.

Lemma 2 Let x∗ denote the optimal solution to the original problem (3) and let
y∗ denote the optimal solution to the modified problem then F(y∗) − F(x∗) ≤
max j∈J Sj .

Proof Note that the solution of the modified problem also has the property that for
all but one resource, requests are totally satisfied or not satisfied. Suppose that some
resource i is not at an extreme point. Since C ′(x) < C(x) then the optimal solution
for the modified problem is less than that of the original problem so,

F(x∗) ≥ F ′(y∗) (9)

where F ′ is used to represent the objective function value of the modified prob-
lem. Now note that for all resources j except i we have C ′(y j ) = C(y j ) since
both functions are equal at extreme points. Hence, we can write F(y∗) = F ′(y∗) +
Ci (yi ) − C ′

i (yi ). Also, note that the maximum difference between Ci (yi ) and C ′
i (yi )

is Si and hence we can write F(y∗) ≤ F ′(y∗) + Si . Inserting this into (9) we obtain
F(x∗) ≥ F(y∗) − Si and hence,

F(y∗) − F(x∗) ≤ Si ≤ max
j∈J

Sj (10)

�

Note that, if in the optimal solution all resources are at extreme points then the
optimal solution for the modified problem is also optimal for the original one. Since
subscriptions for hundreds of resources are acquired and these contribute to F then
the error is small when compared to the optimal function value. We will compute
this error for our numerical results to illustrate this point.

3 Numerical Results

In this section, we provide numerical results to illustrate the performance of the
proposed model as well as present our prediction model. We focus on the year 2014.
The subscription decisions for 2014 must be made in 2013 and so to make a fair
comparison we assume that only information available in 2013 can be used for the
proposed algorithm. Using the publication download statistics for years prior to
2014 we predict download values for 2014. We use simple linear regression for this
prediction. In addition to the journals that are active in 2014 (i.e., had at least one
download), we also include in our model journals that are potential candidates for
downloads. To do this, we look at historical data and if a journal previously had a
subscription we predict what the number of downloads would have been had it been
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kept as an option. We use the Symmetric Mean Absolute Percent Error (sMAPE) to
ensure that our predictions were sufficiently accurate.

Note that our model also requires the 2014 target value which is also not known
in 2013. We again use historical data with linear regression to estimate this value
for 2014. Given the predicted downloads and predicted target value we can run the
optimization algorithm to determine the set of journals that should be subscribed,
J ∗
s and the set of journals for which the library should pay per download J ∗

d .
In order to compare the proposed approach with the actual 2014 subscriptions, we

have to evaluate the resulting cost for both approaches given the actual downloads in
2014. Let Js and Jd denote the subscription and non-subscription journal decisions
made by the library for 2014 and x̂ j denote the number of pay-per-downloads for
journal j . The total cost to the library would therefore be:

Clib =
∑

j∈Js

S j +
∑

j∈Jd

x̂ j Pj (11)

Let us now consider the cost that would have resulted if the proposed approach was
used.Different subscription decisionsmade in 2013would have affected the resulting
downloads. There may have been journals that the optimal solution decided not to
purchase (either by subscription or pay-per-download) but the library solution had
allowed it. In such cases the cost would be included for the library solution but not for
the optimal solution. There may also be journals that the optimal solution decided to
include (i.e. theywere included in the past and the optimal solution includes them) but
there are no downloads for these in 2014. For such cases we include the cost for the
predicted values instead. For each such journal j , let x∗

j denote the optimal number
of requests for the journal. The 2014 cost for the optimal solution can therefore be
written as:

Copt =
∑

j∈J ∗
s

S j +
∑

j∈J ∗
d

x∗
j Pj (12)

SoClib provides the cost incurred based on the library’s decisions whileCopt denotes
the cost incurred if the optimal algorithm is used.

Let us now consider the target values. The proposed algorithm uses a predicted
target value but this can be different to the value actually obtained in 2014. Let Topt
be used to denote the value achieved in 2014 if the optimal solution was used and let
Tlib denote the actual value achieved in 2014. Since we have costs for different total
values then we need to normalize them and so we compute the cost ratio as,

Q = Copt/Topt
Clib/Tlib

(13)

This ratio determines the cost gain obtained with the optimization approach.
We also repeated this computation with perfect prediction. In other words, we

ran the algorithm using the downloads actually experienced in 2014. This allows us
to see the gain that is possible without including prediction errors. We performed



72 L. Bigram et al.

Table 1 Performance Results

Year Prediction Value function Cost ratio Q Error bound

2014 Perfect Downloads 0.036 0.012

2014 Perfect Downloads +
goals

0.038 0.092

2014 Regression Downloads 0.051 0.077

2014 Regression Downloads +
goals

0.091 0.075

these evaluations for two use cases V = 1 (i.e. just using downloads) and also for
the value function for the keyword component using a value of β = 0.1. These
are all included in Table1. Note the significant cost savings that are achievable by
simply making better subscription choices. For the case of imperfect predictions
and including research goals in our objective the cost for the optimized approach
is approximately 10% of that of the present approach. The source of these savings
can easily be verified by inspection. For example, for the journal Surgery (Oxford),
the library paid per download while the optimal solution decision was to pay for a
subscription which resulted in a savings of $157,423. On the other hand in the case
of Journal of Sound and Vibration the library subscribed to the journal but there were
few downloads and so the optimal solution decision was to pay for each download
rather than to subscribe and this resulted in a savings of $7,122. We also find that the
error bounds are relatively small and will become even tighter when the complete
dataset is considered.
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The Mahalanobis Distance for Feature
Selection Using Genetic Algorithms: An
Application to BCI

Maria Elena Bruni, D. Nguyen Duy, Patrizia Beraldi and Antonio Violi

Abstract High dimensionality is a big problem that has been receiving a lot of
interest from data scientists. Classification algorithms usually have trouble handling
high dimensional data, and Support Vector Machine is not an exception. Trying to
reduce the dimensionality of data selecting a subset of the original features is a
solution to this problem. Many proposals have been applied and obtained positive
results, including the use ofGeneticAlgorithms that has beenproven to be an effective
strategy. In this paper, a newmethod usingMahalanobis distance as a fitness function
is introduced. The performance of the proposedmethod is investigated and compared
with the state-of-the-art methods.

Keywords Mahalanobis distance · Genetic algorithm · Feature selection

1 Introduction

Recent technological developments such as the Internet of Things, microarrays and
the advent of Big Data, have facilitated the emergence of enormous amounts of
complex multivariate data in various applications involving thousands of attributes.
In the machine learning context, an individual measurable property of the process
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being observed is called feature. Using a set of features is necessary to perform clas-
sification, however, many of them could be highly correlated with other variables
leading to an extra classification burden and unwanted noise that might introduce
bias and reduce the classification performance. By eliminating the redundant vari-
ables with little or no predictive information, the relevant information content can
be obtained from fewer unique features, that have enough discrimination power. To
remove irrelevant features, without significantly degrading the performance of the
system, several techniques have been developed to identify and select an informative
subset of features. The aims of these techniques (called feature selection methods)
are multifold, since they try to avoid over-fitting, reduce data dimension, improve
classification and clustering performance and produce models which can interpret
data better (see [2] and the references therein).

There are two main groups of feature selection methods proposed in the litera-
ture: filters and wrappers. Filter approaches use only intrinsic properties of the data,
regardless the chosen classifier. Some popular methods from this group are Infor-
mation Gain, ReliefF, Correlation-based Feature Selection and Consistency-based
Feature Selection [11]. In the second approach, the selection criterion of the features
depends on the learning algorithm used to construct the classifier [5]. In particular,
the predictor is used as a black box and its performance as the objective function to
evaluate the feature subset. Since exhaustive search methods can become computa-
tionally intensive for large datasets, heuristic search algorithms have been employed
to find a subset of variables which maximizes the objective function. These can be
broadly classified as sequential search, which start with an empty set (full set) and
add features (remove features) until the maximum objective function is obtained,
and evolutionary algorithms [6]. Among them, genetic algorithms (GAs, for short),
which are popular meta-heuristics inspired by Darwin’s theory about evolution, are
the most used [1, 3, 4]. In this heuristics, a few individuals belonging to a generation
are selected, their genetic information recombined and randomly mutated through
the application of genetic operators, to produce a new generation, hopefully better
than the previous one. The selection is guided by a so-called fitness function, which
has been commonly considered as the classification accuracy, usually obtained by
applying a classic linear SVM method [12]. The straightforward approach of apply-
ing GA in the feature selection process has a drawback, since evolution, guided by
classification accuracy, will favour individuals with many features and hence high
classification accuracy. To overcome this problem, a GA with Aggressive Mutation
(GAAM) was proposed by Rejer [9], where individuals contain a specified number
of features. This number of features, set by the user, can be still too high and running
the algorithm several times using different number of genes, time consuming. To
overcome this weakness, a variant of the GAAM has been proposed in [10], called
by the authors GA with melting individuals (GAMI, for short). The optimization
process not only maximizes the classifier accuracy but also minimizes the number
of features, by randomly removing from each individual one feature in successive
iterations of the algorithm. In the selection step of both the GAAM and the GAMI,
the fitness function was evaluated as the classifier accuracy, tested with tenfold cross-
validation. Even though classification accuracy has been commonly used, and it has
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been proven to be a good method, its main drawback is the slow performance, due
to the fact that the classifier has to be applied to each single feature subset.

This paper proposes a new method that uses the separation between classes of
data (i.e. the Mahalanobis distance) as the fitness function within the GAAM and
GAMI approaches reviewed above. This new approach will be referred to as GAMI
with Mahalanobis distance (GAMD, for short).

2 The Proposed Approach

In order to be applied, each GA needs a proper encoding of the genetic information
of the individuals, a fitness function for evaluating individuals in each generation,
and genetic operators used for mutation and reproduction. The initial population is
usually randomly generated and one ormore individuals are selected from the current
population, randomly mutated and then recombined to form a new generation, that
will be used in the next iteration of the algorithm.

In the GAAM algorithm, each individual is represented by a chromosome with a
fixed number of genes N (set at the beginning of the algorithm), corresponding to a
subset of N features out of P .Hence,M individuals are created randomlyby choosing
values from the set {0, 1, 2, . . . P}, where a value of 0means that any feature has been
selected.When this occurs, the number of features of the individual is reduced by one.
The aggressive mutation of the GAAM is performed on each of the M individuals of
the population, by randomly mutating a gene for each children. Therefore, a total of
NM new individuals will be created. Then, the classic one-point crossover (with a
probability equal to one) is applied on the individuals from the previous population
hence creating M new individuals during the crossover operation (the population
now has M + NM + M individuals). On the basis of the fitness function, the worst
NM + M individuals will be discarded, and only the best M individuals will remain
in the population. In the variant proposed later on, the GAMI, the number of features
is iteratively decremented during the algorithm and a threshold θ for the fitness value
of the best individual φ is used to eventually terminate the algorithm, stuck in a local
optimum. In Fig. 1, the scheme of the GAMI is reported.

In this paper, we present our proposal which is based on a modification of the
GAMI approach reviewed above, on which we embed the Mahalanobis distance
function, used as a fitness function (thatwill be indicated in the followingwithφMAL ).
The Mahalanobis distance is a well known statistical distance function, between two
or moremultidimensional points in the space defined by correlated variables. Since it
accounts for correlations between groups of features, it will adequately evaluate the
distance between classes of data points. Only when the features are uncorrelated, the
distance under a Mahalanobis distance metric is identical to that under the Euclidean
distance metric. In particular, if we have two groups of data with mean x̂ i and x̂ j ,
respectively, and a covariance matrix Σ , the Mahalanobis distance is given by

φMal =
√

(x̂ i − x̂ j )�Σ−1(x̂ i − x̂ j ).
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Fig. 1 The work-flow of the GAMI

Whilst the commonly used Euclidean distance metric assumes that each feature
of data point is equally important and independent from others, the Mahalanobis
distance is able to identify important features and discriminate relevant and irrelevant
features. This claim is supported by a previous research [7], where an experiment
was conducted to asses the relationship between the Mahalanobis distance and the
performance of the SVM. The obtained results indicated a noticeable decline in
the performance when the Mahalanobis distance decreases. This suggests that if
we could reduce the dimensionality of feature vectors, while increasing or even
just not deteriorating the Mahalanobis distance, the performance of the SVM would
be improved as well. Moreover, distance metric is a key issue in many machine
learning algorithms [13]. One family of algorithms is developed with known class
labels of training data points. Also in our case, the threshold τ is derived by using
class label information brought by training examples and, in particular, it equals
the Mahalanobis distance between the feature vectors of the positive samples and
those classified as negative samples in training data. Then, each subset of features
is evaluated by considering the distance between the positive and the negative data
and by comparing it with the threshold τ . The higher is the Mahalanobis distance,
the more distinct two groups are, the better is.

The algorithm starts with a random population of M individuals coding different
subsets of features. Then, theGAAM is applied for a given number of iteration I Tmax .
In each iteration the individuals are crossed-over and mutated. Since the individuals
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from the mother population Pcurr , as well as from the mutated population Pmut and
from the new generation obtained by applying one-point crossover crossover Pcross

are selected in Step 15, the last population is the best one. Then, the individual that
has the highest fitness function is selected from the current population and its fitness
value compared with the threshold τ . If φMAL

currbest ≥ τ the number of genes is reduced
by randomly selecting and discarding one gene from each individual, otherwise, the
algorithm terminates. The workflow of the GAMD is reported in Algorithm 1.

Algorithm 1: The workflow of the GAMD
1 Input: The maximum number of iterations I Tmax , the maximum number of of genes of an

individual Nmax and the threshold τ .
2 Initialization: Set the number of genes N := Nmax , best, currentbest := null;

Pcurr , Pcross , Pmut , Pbest = ∅.
3 Create an initial population of M individuals randomly choosing N values from the set

{0, 1, 2, . . . , P} and store them in Pcurr

4 repeat
5 i t = 0
6 Pit = Pcurr

7 while i t ≤ I Tmax do
8 Pcross , Pmut = ∅
9 for i ∈ Pit do

10 Apply 1 -point crossover operator to i , obtaining anew individual and store it in
Pcross

11 end
12 for i ∈ Pit do
13 for g = 1, . . . , N do
14 Assign a random value from the interval {0, 1, 2, . . . , P} to the gene g and

save the individual i as a new individual in Pmut

15 end
16 end
17 Select the best M individuals from Pmut ∪ Pit ∪ Pcross according to the evaluated

fitness function φMAL and store them in Pcurr

18 it:=it+1
19 end
20 currentbest = argmini∈Pcurr φMAL

i
21 if φMAL

currbest > φMAL
best then

22 best:=currentbest
23 end
24 for i ∈ Pcurr do
25 Randomly select one gene to discard
26 end
27 Set the number of genes N := N − 1
28 until φMAL

currentbest < τ ;
29 Return best
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3 Experimental Phase

In this Section, we empirically evaluate the GAMD for classification of Brain-
Computer Interface (BCI, for short) data.BCI technology represents a highly growing
field of research with applications in many fields, ranging from prevention to neu-
ronal rehabilitation for serious injuries. BCIs are systems that measure and convert
electro-physiological measures from the brain into external devices, enabling com-
munication between humans and computers. From a datamining point of view, this is
a challenging task for several reasons, among which the presence of noisy, correlated
and highly dimensional data.

The experiments were performed considering the data set III motor imagery,
taken from the second BCI Competition provided by the Department of Medical
Informatics, Institute for Biomedical Engineering, Graz University of Technology.
This dataset was recorded from a female, 25 years old, sat in a relaxing chair with
armrests. The task was to control a feedback bar by means of imagery left or right
hand movements. The whole data set contains data from 280 trials, but target values
(1—left hand, 2—right hand), are known only for 140 trials. These trials have been
then used to test the algorithms, anddivided into two subsets, thefirst (with cardinality
50) for classifier training and the second for external classifier testing. Ten-cross fold
validation was used to measure the fitness function of individuals in the GAAM and
GAMI and to assess the accuracy of the solution provided by the GAMD. In both
cases,

φi =
10∑

k=1

Rk
Uk

10

where φi is the fitness value of i th individual (or the best one), Rk (k = 1, . . . , 10) is
the number of correctly classified samples andUk is the number of all samples in the
kth validation subset. The simulations have been performed on a personal computer
with a CPU Intel(R) Core(TM) i5-2450M@2.50 GHz, 8 GB DDR II RAM and 500
GB of HDD Hitachi. Matlab (The Mathworks, USA; version 2016a) has been used
to implement the heuristics as well as for running the SVM classifier.

In the first set of experiments the GAAM, the GAMI and the GAMDwere run 10
times with the following parameter setting. Nmax = 6, the number of generations for
theGAAM (also equal to I Tmax in theGAMI andGAMD)was set to 100, the number
of individuals in eachpopulationM was set to 10, τ = 0.8 for theGAMIand τ = 2.34
for the GAMD. Since Provost and Fawcett [8] have pointed out that accuracy is not
always a suitable assessment metric, when, for instance, the class distribution is
imbalanced which is our case, the AUC has been used as an alternative metric for
assessing classifiers. The larger the AUC, the better the classifier is. Table 1 shows
the best solutions and the corresponding fitness value and AUC values obtained after
running GAAM, GAMI and GAMD 10 times each.

In comparison with other methods, GAMI always obtains solutions with a smaller
number of features. Although the best subset of features came from the combination
of GAMI and SVM, in general the GAMD achieves better performance than others.
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The average CPU is, respectively, 792.26, 2593.2 and 5.09 for theGAAM, theGAMI
and the GAMD.

In order to provide a statistical comparison between the performances of different
genetic algorithms, a t-test was employed. Each algorithmwas run 100 times. For the
data sets, it is revealed that there is no significant difference between the classification
accuracy of GAAM versus GAMI (h = 0 with p = 0.9948). The null hypothesis at
the 0.05 significance level is rejected instead if we compare GAMD versus GAMI.

The second set of experiments is devoted to the comparison of the GAMD
approachwith the approaches GAAMandGAMI, in terms of classification accuracy.
In order to guarantee a fair comparison, the algorithms were run 50 times (except
SVM because it is deterministic) with the parameters used in the papers [9, 10]
for the GAAM and the GAMD, respectively. The first 112 samples were used for
training the algorithms. The resulting threshold for the GAMD was τ = 3.538. The
classification accuracy of the final classifier calculated over the whole set is reported
in Table 2. The conclusion that could be drawn after observing the results is that
GAMD returned feature sets with higher classification accuracy with a maximum
vale of 0.96 and an average improvement of at least 7% in classification accuracy
with respect to the other methods.

Table 2 Classification accuracy obtained from 50 runs

GAAM GAMI GAMD GAAM GAMI GAMD GAAM GAMI GAMD

1 0.71 0.82 0.82 21 0.71 0.71 0.86 41 0.82 0.68 0.89

2 0.79 0.71 0.93 22 0.68 0.71 0.71 42 0.68 0.75 0.93

3 0.64 0.79 0.86 23 0.71 0.79 0.79 43 0.68 0.71 0.93

4 0.86 0.75 0.79 24 0.71 0.75 0.86 44 0.68 0.86 0.79

5 0.89 0.71 0.96 25 0.82 0.82 0.82 45 0.82 0.71 0.75

6 0.71 0.82 0.61 26 0.75 0.79 0.93 46 0.75 0.75 0.89

7 0.71 0.71 0.75 27 0.71 0.71 0.93 47 0.71 0.71 0.79

8 0.75 0.79 0.93 28 0.93 0.82 0.79 48 0.82 0.86 0.79

9 0.64 0.75 0.79 29 0.75 0.86 0.86 49 0.57 0.79 0.93

10 0.75 0.71 0.82 30 0.68 0.79 0.82 50 0.75 0.89 0.93

11 0.68 0.82 0.79 31 0.82 0.86 0.79 Avg 0.74 0.76 0.83

12 0.71 0.71 0.79 32 0.68 0.71 0.96

13 0.86 0.79 0.79 33 0.68 0.82 0.93

14 0.68 0.75 0.93 34 0.86 0.82 0.93

15 0.79 0.71 0.79 35 0.71 0.79 0.86

16 0.79 0.82 0.79 36 0.86 0.68 0.89

17 0.71 0.71 0.93 37 0.64 0.71 0.79

18 0.68 0.79 0.79 38 0.68 0.86 0.68

19 0.68 0.75 0.93 39 0.75 0.82 0.68

20 0.71 0.71 0.79 40 0.79 0.75 0.89
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4 Conclusions

In this paper, we have investigated and solved the problem of features selection
of small or high dimension data and proposed a new approach for this problem
using GA and the Mahalanobis distance as fitness function. In general, the proposed
method worked well in terms of accuracy and CPU time. As future work, a more
comprehensive study on the relationship between the separation of data, the number
of features and classification accuracy should be conducted.
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An Iterated Local Search Algorithm
for the Pollution Traveling Salesman
Problem

Valentina Cacchiani, Carlos Contreras-Bolton, John W. Escobar,
Luis M. Escobar-Falcon, Rodrigo Linfati and Paolo Toth

Abstract Motivated by recentworks on the PollutionRouting Problem (PRP), intro-
duced in Bektas and Laporte (Transp Res Part B: Methodol 45(8):1232–1250, 2011)
[1], we study the Pollution Traveling Salesman Problem (PTSP). It is a generalization
of thewell-knownTraveling Salesman Problem,which aims at finding aHamiltonian
tour that minimizes a function of fuel consumption (dependent on distance travelled,
vehicle speed and load) and driver costs.We present aMixed Integer Linear Program-
ming (MILP) model for the PTSP, enhanced with sub-tour elimination constraints,
and propose an Iterated Local Search (ILS) algorithm. It first builds a feasible tour,
based on the solution of the Linear Programming (LP) relaxation of theMILPmodel,
and then loops between three phases: perturbation, local search and acceptance cri-
terion. The results obtained by the ILS on instances with up to 50 customers are
compared with those found by a Cut-and-Branch algorithm based on the enhanced
MILP model. The results show the effectiveness of the ILS algorithm, which can
find the best solution for about 99% of the instances within short computing times.
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1 Introduction

Nowadays, environmental issues are becomingmore important. Emissions fromvehi-
cles traveling on roads are one of the main causes of pollution. Therefore, reducing
carbon emissions is one of themost important goals that have to be taken into account
in vehicle routing problems [4, 7]. In [1], the Pollution Routing Problem (PRP) was
introduced: it is a variant of the Vehicle Routing Problem (VRP) in which the goal is
not only to minimize the travel distance, but also the amount of green-house emis-
sions, fuel, travel times and their costs. The authors proposed aMixed Integer Linear
Programming (MILP) model, and analyzed trade-offs between various performance
measures of vehicle routing, such as distance, load, emissions and costs. In [3], the
MILP model was extended to allow for low travel speeds, and an effective adap-
tive large neighborhood search heuristic was proposed for the PRP. A matheuristic
approach was proposed in [5] for PRP and other green VRP variants.

Motivated by these recent works on the PRP, we study the Pollution Traveling
Salesman Problem (PTSP), i.e. the problem of determining a Hamiltonian tour that
minimizes a function of fuel consumption (dependent on vehicle speed and load)
and driver costs. More precisely, we refer to the PRP as modelled in [3] and consider
the single vehicle case. The PTSP is formally described in Sect. 2, where we also
present a MILP model, enhanced with explicit subtour elimination constrains, for
its exact solution. The main contribution of this work is an Iterated Local Search
(ILS) algorithm [6], presented in Sect. 3, that is able to find good solutions for
PTSP instances in very short computing times. In Sect. 4, we report computational
experiments on instances with up to 50 customers, proposed in [3] and adapted here
for the single vehicle case: in particular, we compare the results obtained by the ILS
algorithm with those found by a Cut-and-Branch algorithm, based on the enhanced
MILP model, we developed for the PTSP. Finally, we draw some conclusions in
Sect. 5.

2 Problem Description and Formulation

The PTSP is defined on a complete directed graph G = (N ,A ) where N =
{0, . . . , n} is the set of nodes, 0 is a depot andA is the set of arcs. The distance from
node i to node j is denoted by di j . The setN0 = N \ {0} is the customer set. Each
customer i ∈ N0 has a non-negative demand qi , and a service time ti . We define
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Table 1 Parameters used in the PTSP model

Notation Description Typical values

w Curb-weight (kg) 6350

ξ Fuel-to-air mass ratio 1

k Engine friction factor (kJ/rev/L) 0.2

N Engine speed (rev/s) 33

V Engine displacement (L) 5

g Gravitational constant (m/s2) 9.81

Cd Coefficient of aerodynamic drag 0.7

ρ Air density (kg/m3) 1.2041

A Frontal surface area (m2) 3.912

Cr Coefficient of rolling resistance 0.01

ηt f Vehicle drive train efficiency 0.4

η Efficiency parameter for diesel engines 0.9

fd Driver wage per (£/s) 0.0022

κ Heating value of a typical diesel fuel (kJ/g) 44

ψ Conversion factor (g/s to L/s) 737

vl Lower speed limit (m/s) 5.5 (or 20 km/h)

vu Upper speed limit (m/s) 25 (or 90 km/h)

D = ∑
i∈N 0

qi as the capacity of the vehicle, and fd as the driver wage per unit time.
We consider a discretized speed function defined by |R| non-decreasing speed lev-
els v̄r (r ∈ R), where each r ∈ R corresponds to a speed interval [vl , vu], and v̄r is
set as (vl + vu)/2 (where vl and vu are, respectively, the lower and upper speed
limits).

We adopt the fuel consumption expression proposed in [3], which extends the
one presented in [1] to allow for speeds lower than 40 km/h, and refer the interested
reader to these papers for explanations of how it is derived. For a given arc (i, j) ∈ A
of length di j , traversed at speed v by a vehicle carrying load M = w + fi j (where w
is the weight of the empty vehicle a.k.a. curb weight, and fi j is the load carried by
the vehicle on this arc), the fuel consumption can be expressed as:

F(v) = λkNVdi j/v + λβγ di j v
2 + λwγαi j di j + λγαi j fi j di j (1)

where λ = ξ/κψ and γ = 1/1000ηt f η are constants, β = 0.5CdρA is a vehicle spe-
cific constant, αi j = τ + g sin θi j + gCr cos θi j is an arc specific constant depending
on the road angle θi j , and all other parameters and values, taken from [3], are reported
in Table 1. In particular, the first two terms of (1) represent the speed-induced energy
requirements, while the last two terms represent the load-induced energy require-
ments.
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The PTSP calls for determining theminimum cost tour that departs from the depot
and visits each customer exactly once by serving its demand, where the cost is given
by the sum of the fuel consumption and driver wage. We introduce the following
decision variables: (i) binary variables xi j assuming value 1 if arc (i, j) ∈ A is
traversed; non-negative variables fi j representing the amount of flow (i.e. the load
on the vehicle) on arc (i, j) ∈ A ; (iii) binary variables zri j assuming value 1 if arc
(i, j) ∈ A is traversed at speed level r ∈ R. The MILP model for the PTSP reads
as follows:

Minimize
∑

(i, j)∈A
λkNVdi j

∑

r∈R
zri j/v̄

r + ∑

(i, j)∈A
λβγ di j

∑

r∈R
zri j (v̄

r )2 (2)

+ ∑

(i, j)∈A
λwγαi j di j xi j + ∑

(i, j)∈A
λγαi j di j fi j (3)

+ fd(
∑

(i, j)∈A

∑

r∈R
(di j/v̄r )zri j + ∑

i∈N 0

ti ) (4)

subject to
∑

j∈N 0

f0 j = D (5)

∑

j∈N 0

f j0 = 0 (6)

∑

j∈N
xi j = 1, ∀i ∈ N (7)

∑

i∈N
xi j = 1, ∀ j ∈ N (8)

∑

j∈N
f ji − ∑

j∈N
fi j = qi , ∀i ∈ N0 (9)

q j xi j ≤ fi j ≤ (D − qi ) xi j ,∀ (i, j) ∈ A (10)
∑

r∈R
zri j = xi j , ∀ (i, j) ∈ A (11)

xi j ∈ {0, 1}, ∀ (i, j) ∈ A (12)

fi j ≥ 0, ∀ (i, j) ∈ A (13)

zri j ∈ {0, 1}, ∀ (i, j) ∈ A ,∀r ∈ R (14)

The objective function consists of three main components to be minimized: (2)
and (3) represent the fuel consumption, as defined in (1), by taking into account,
respectively, the energy required by speed variations and that used to curry the curb
weight and the load on the vehicle, while (4) corresponds to the driver wage, where
the term in the external brackets is the total tour duration which depends on the speed
and service times. Constraints (5) and (6) ensure, respectively, that the vehicle leaves
full and returns empty at the depot. Constraints (7) and (8) guarantee that each node
is visited exactly once. Constraints (9) and (10) define the load of the vehicle on
each visited arc. Finally, constraints (11) link the x and z variables by imposing that
exactly one speed level is chosen for each arc (i, j) ∈ A , and constraints (12)–(14)
define the variable domains.
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We enhance model (2)–(14) with the explicit subtour elimination constraints
(SECs), as proposed in [2] for the Asymmetric TSP:

∑

i∈S

∑

j∈N \S
xi j ≥ 1, S ⊂ N , S �= ∅. (15)

Model (2)–(15) is used as benchmark in the computational experiments to eval-
uate the performance of the proposed ILS algorithm. In particular, we solve model
(2)–(15) by a Cut-and-Branch algorithm, in which the SECs are separated, at the
root node, by using the separation procedure proposed in [8], and the general pur-
pose solver CPLEX is used to derive integer solutions.

3 Iterated Local Search Algorithm

The pseudo-code of the ILS algorithm is reported in Algorithm 1. The first step
(lines 1–7) consists of iteratively solving the Linear Programming (LP) relaxation of
model (2)–(15), by applying the separation procedure proposed in [8] to derive a set
S containing a sub-tour: if one exists, then the corresponding cut (15) is added to the
model and the LP-relaxation is solved again. Once the optimal solution x of the LP-
relaxation has been derived, it is used to build a feasible tour, as follows. Initially, we
define the depot 0 as the starting node h. Then, iteratively, we select the node j such
that xhj + x jh has the highest value: arc (h, j) is added to the tour, and j becomes
the new starting node h. If, for all nodes j connected to h, xhj + x jh = 0, then we
choose the arc with the smallest dhj . The procedure is repeated until we obtain a
complete feasible tour. We call s∗ the locally optimal solution and s∗∗ the current
best solution. The following loop (lines 9–29) is made of three phases: perturbation,
local search and acceptance criterion.

To perturb the current best solution s∗∗ (lines 10–14) we apply, with probability
80% a double-bridge move, and a scramble tour move otherwise. The former move
consists of randomly removing four edges (A,B), (C,D), (E,F), (G,H) and reconnect-
ing them as (A, F), (G, D), (E, B), (C, H). The latter move corresponds to randomly
choose a path of the tour and randomly mixing its nodes. After perturbation, we
obtain solution s ′.

The following phase (lines 15–24) is local search that is applied to the locally
optimal solution s∗: with probability 80% we apply a 2-opt move, otherwise we
perform an exchange improvement. The former move consists of executing the 2-opt
procedure by using as arc costs only di j (i, j) ∈ A , and the procedure is stopped at
the first improvement. The latter move requires exchanging two nodes of the tour: if
an improvement is obtained, then the exchange is performed, otherwise the original
tour is kept. This procedure is executed |N | times. After applying local search,
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we obtain solution s ′′. Then, we choose to store in s∗ the best solution between s ′
and s ′′, by considering function φ that gives the value of the PTSP objective function
(2)–(4).

The last phase (lines 25–27) is the acceptance criterion (check-history): if s∗∗ has
not been improved for 10 iterations, then we apply an additional local search step to
s∗∗ by executing the 2-opt procedure. It uses as arc costs di j (i, j) ∈ A , but each time
an improvement is possible, it checks if the PTSP objective function value improves
too, and accepts the change only in this case.

Finally, the best solution between s∗ and s∗∗ is stored in s∗∗. The termination
condition is reachedwhen I iterations are performed (I = 5000 in our computational
experiments).

Algorithm 1 Iterated Local Search

1: repeat
2: x ← solve LP-relaxation of (2)–(15)
3: S ← separation-procedure(x)
4: if S �= ∅ then
5: LP-relaxation of (2)–(15) ← add-cut(S )
6: end if
7: until S = ∅
8: s∗, s∗∗ ← build-feasible-tour(x)
9: repeat
10: if rnd(0, 1) < 0.8 then
11: s′ ← double-bridge-move(s∗∗)
12: else
13: s′ ← scramble-subtour(s∗∗)
14: end if
15: if rnd(0, 1) < 0.8 then
16: s′′ ← 2-opt-move(s∗)
17: else
18: s′′ ← exchange-improvement(s∗)
19: end if
20: if φ(s′) < φ(s′′) then
21: s∗ ← s′
22: else
23: s∗ ← s′′
24: end if
25: if check-history(φ(s∗∗)) then
26: s∗ ← 2-opt-improvement(s∗∗)
27: end if
28: s∗∗ ← store if φ(s∗) < φ(s∗∗)

29: until termination condition

4 Computational Experiments

We used instances with 10–25, and 50 customers, proposed in [3] for the PVRP
and adapted them to the PTSP. In particular, to make the instances feasible for a
single vehicle, we removed the time window constraints for every customer, and
used a vehicle with capacity D = ∑

i∈N 0
qi . In addition, we generated instances

with 30–45 customers. Each set of instances contains 20 instances. The ILS and
model (2)–(15) were implemented in C++, and all experiments were executed on an
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Intel Core i7-6900 K with 16-Core 3.20 GHz and 66 GB RAM (single thread). We
used CPLEX 12.7.1 as LP and MILP solver, and set a time limit of two hours for the
Cut-and-Branch algorithm.

In Table 2, we report the computational results obtained on instances with up to
50 customers by the Cut-and-Branch C&B and ILS algorithms. We wish to mention
that we also solved model (2)–(14) with CPLEX, but the Cut-and-Branch is able to
find some additional optimal solutions and has a smaller average gap and computing
time. Therefore, we only report the results obtained by the C&B. Each row of Table 2
corresponds to a set of instances and shows average results over the 20 instances in the
set. For the C&B algorithm, we report the integer solution value (UB) and the lower
bound (LB) obtained at the end of the C&B solution process, the final percentage
gap (Gap%) between UB and LB, the number of obtained optimal solutions (#Opt),
and the computing time (Time) in seconds. For the ILS algorithm, we executed 10
runs on each instance in every set, and we report the average (Avg) and the minimum
(Min) results obtained over 10 runs. In particular, we show the solution value (Val),
the percentage gap (Gap%) with respect to UB (if negative, then an improvement has
been obtained by ILS), the number of best solutions (#B) found (i.e. solutions having
the same value or a smaller value than that of the solutions found by the C&B), and
the computing time (Time) in seconds. Obviously, the computing time for obtaining
the minimum out of 10 runs is ten times the value reported in column Time for Avg.
Finally, the last row reports, for each column, the average value over all the sets of
instances.

We observe that the C&B is capable of deriving the optimal solution for all the
instances with up to 25 customers in very short computing times (on average about
22 s). All but one instance with 30 customers are solved even though the computing
time increases (on average about 911 s). As expected, instances that contain more
customers are more difficult: in particular, no instance with 45 or more customers
can be solved to optimality within the time limit. The average percentage gap is
rather small for instances with up to 40 customers, while it increases up to 5.55%
for instances with 50 customers.

When considering the average results obtained, for each instance, by the ILS
algorithm over 10 runs, we can see that several best solutions can be found (for
more than half of the instances on average), and the average gap from UB is very
small: only 0.083% on average. The computing time is very short, being 0.50 s on
average. Given the very short computing time, the ILS algorithm can be executed 10
times for every instance to select the solution found in the best of the 10 runs. In this
case, the best solutions can be found, on average, for 19.78 instances in 5 s, and the
gap is slightly negative (−0.004%). I.e., the ILS algorithm obtains the best solution
for 98.9% of the instances. In addition, we notice that for instances with 40 and 50
customers, the average gap is negative, meaning that the ILS algorithm is able to
derive better solutions than C&B.
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5 Conclusions

We proposed an Iterated Local Search (ILS) algorithm for the Pollution Traveling
Salesman Problem (PTSP), a generalization of the TSP in which fuel consumption
and driver wage are objectives to be minimized. The ILS algorithm starts by building
a feasible tour: it is computed by using the Linear Programming (LP) solution of
a Mixed Integer Linear Programming (MILP) model for the PTSP, that contains
exponentially many sub-tour elimination constraints. Then, the ILS algorithm loops
between three phases: perturbation, local search and acceptance criterion.

We tested the ILS on instances with up to 50 customers adapted from those
proposed in [3] for the Pollution Routing Problem. To evaluate the performance
of the ILS algorithm we developed a Cut-and-Branch algorithm, in which subtour
elimination constraints are added at the root node. The obtained results show that
the Cut-and-Branch is able to derive the optimal solution for instances with up to
30 customers. However, no instance with 45 or more customers can be solved to
optimality within two hours of time limit. The ILS algorithm is very effective, as it is
able to derive, in 5 s, the best solution for about 99%of the instances. Futureworkwill
be devoted to develop exact methods that combine the ILS with the Cut-and-Branch
algorithm in order to solve instances with a larger number of customers.
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Data Throughput Optimization
for Vehicle to Infrastructure
Communications
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Abstract The ultra-high bandwidth available at millimeter (mmWave) and Tera-
hertz (THz) frequencies can effectively realize short-range wireless access links
in small cells enabling potential uses such as driver-less cars, ultra-high-definition
infotainment services and data backhauling. In this context, in alternative to fiber-
based and legacy wireless-based backhauling, vehicles can be used as digital mules
to increase the data throughput of a region served by a software defined network
(SDN) transmitting data to the Software Defined Base Station (SD-BS), equipped
with only one mmWave/THz transceiver. In real applications, multiple vehicles may
concurrently pass through the region and related data throughput depends on the rel-
ative distance with respect to the transceiver. For technological reasons, the SD-BS
transceiver can be used by just one vehicle at each time instant (time-slot). Hence, an
operational decision problem arises consisting in determining the assignment of the
vehicles to the time-slots of the SD-BSmaximizing the data throughput. The problem
can be conceived as a variant of different combinatorial optimization problems like
scheduling and assignment problems. An original mixed integer linear programming
formulation of the problem is presented and tested on real-like instances generated
from a case study.
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Keywords Millimeter wave and TeraHertz communications · Data throughput
optimization · Generalized assignment · Scheduling

1 Introduction

The proliferation of outdoor small cell deployments, already started in 2017, gives
rise to spectrum scarcity and congestion problems in the sub-6 GHz bands [11].
Among the different solutions proposed to tackle these problems, one of the most
promising is the use of millimeter-wave (mmWave) (around 30–100GHz) and Ter-
ahertz (THz) (around 0.1–10THz) frequencies.

Unfortunately, the severe path loss for a traveling wave in the mmWave and THz
Bands limits the range of communications to 200 m for mmWave and few meters
for THz [2, 8], respectively. In this context, an alternative architecture, based on the
use of vehicles as digital mules, i.e., mobile small cells and data caches, has been
proposed with particular reference to data backhauling. Indeed, using the vehicles
as digital mules, it is possible to reduce the load on the backhaul and core network
[13, 14].Moreover, the vehicles during their trip have the possibility to get in the range
of communication of mmWave and THz so allowing the use of these frequencies.

In this work we tackled the problem presented in literature [3], where a fleet of
vehicle passes through a region served by a software defined network (SDN) and the
vehicles have to transmit data to a Software Defined Base Station (SD-BS), equipped
with only one mmWave/THz transceiver. The arising optimization problem consists
in finding the schedule of the connections between the vehicles and the SD-BS that
maximizes the transmitted data, satisfying also several operational constraints. To
this aim, an original mixed integer linear programming model has been formulated
and tested on instances generated from the real problem.

The paper is organized as follows: in Sect. 2 a detailed description of the real
problem is given. In Sect. 3 different combinatorial optimization models, which
can represent the case study, are discussed and an original mixed integer linear
programming model is proposed. In Sect. 4 we report the computational results of
the tests performed on instances generated from the real problem. Finally, in Sect. 5,
conclusions and research perspectives are given.

2 Problem Description

In real applications, multiple vehiclesmay concurrently pass through a region, served
by a SDN, transmitting data in a given time horizon to a SD-BS. The vehicles are char-
acterized by specific communication needs, i.e. the amount of data to transfer (e.g.
a content related to the specific part of the region which the vehicle passes through),
that bounds the maximum amount of transmittable data by a vehicle. Moreover, each
vehicle is supposed to be provided with a GPS technology and, since the SD-BS
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transceiver position is fixed, it is possible to assume that the localization of both the
vehicles and the transceiver is known in each time instant.

Since the data throughput depends on the relative distance between the vehicles
and the transceiver of the SD-BS, the full knowledge of the localization of the ele-
ments of the network in each time instant, togetherwith the assumption that the routes
and the speed of the vehicles are known in advance, allows us to compute off-line
the value of the data shower bulk (data throughput) transmittable by adopting the
presented architecture. To this aim, it would be necessary to formulate the analytic
derivation of the capacity. The approach is out of scope of this work, hence only
the fundamental elements needed to present the expression of the data throughput
will be provided and, for further information, the interested reader is addressed to
[3]. Let dv be the relative distance between a generic vehicle and the transceiver of
the SD-BS. Let also Rmm = (dTHz, dmm] (RTHz = (0, dTHz]) be the distance interval
in which a mmWave (THz) communication is established. It is possible to define a
function Lmm(dv) (LTHz(dv)) that is equal to 1 if dv ∈ Rmm(RTHz), 0 otherwise. More-
over, let Cmm(dv) be the capacity in mmWave and CTHz(dv) the capacity in THz. On
this basis, it is possible to express the capacity available for transmitting data C(dv)
by a generic vehicle v at a given distance dv, as follows:

C(dv) = Cmm(dv)Lmm(dv) + CTHz(dv)LTHz(dv) (1)

The capacity C(dv) is expressed in bit/s. Since each vehicle has a different route to
follow, the relative distance dv is not fixed but is a function of the time dv(t). Hence,
also the capacity is a function of the time C(dv(t)) and so the expression of the data
transmittable by a vehicle v for a given capacity function C(dv(t)) is:

zv =
∫ tend

tstart

C(dv(t))dt (2)

where tstart and tend are the time instants when the data transmission starts and ends,
respectively. If all the vehicles could connect to the SD-BS simultaneously, the total
data throughput transmitted would be the sum of the data transmittable by each
vehicle.

Aspreviously said, theSD-BS is equippedwith onlyonemmWave/THz transceiver
so allowing to connect one vehicle at a time.

Therefore, the SDN controller has to schedule the vehicles at different time-
instants, i.e. it chooses when and which vehicle has to connect to the SD-BS in
such a way that the total data throughput is maximized. Moreover, it decides which
physical layer between the mmWave or THz one should be used for a given SD-BS
to vehicle communication.

The problem in this form could be very hard to solve, so we have assumed that the
system operates in a discrete time horizon and so the time interval (0, t] is segmented
into a sequence of t/h (where h is an integer) time slots each of duration h > 0. In
Fig. 1 an example of the capacity over time horizon for two vehicles and the related
discretization is represented.
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Fig. 1 Example of the
capacity over time of two
vehicle and related
discretization

Fig. 2 All possible solutions
with 2 vehicles and 8
time-slots

On this assumption, the SDN controller has to schedule the vehicles to connect
to the SD-BS throughout the different time-slots. It is important to underline that
the vehicles during the considered time horizon follow their routes, so we have
different amounts of transmittable data for each vehicle in each time-slot, since
they depend on the position of a given vehicle in a given time-slot. Hence, at each
schedule of the vehicles will correspond a different data throughput. For example, if
we consider a problem with 2 vehicles and 8 time-slots, supposing that the SD-BS
is always connected to one vehicle, all the possible schedules are 28 = 256, from
the one where the first vehicle is assigned to every time-slots to the one where the
second vehicle is assigned to every time-slots (a schematic illustration of all the
possible schedules and the corresponding data throughputs is reported in Fig. 2).
Therefore, the SDN controller has to determine the optimal schedule that maximizes
the data throughput among all the possible ones. Moreover, in the determination
of the optimal scheduling, the SDN controller will have to take into account also
the overhead time caused by the beamsteering complexity which affects the data
throughput. Indeed, before an assigned vehicle can connect to the SD-BS, a beam
alignment between vehicle and SD-BS is required. During the beam alignment data
cannot be transmitted, so resulting in a loss of transmittable data in a time-slot when
the alignment is required [5, 15].
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3 Problem Formulation

To determine the schedule that maximizes the total data throughput, the problem
can be formulated referring to different combinatorial optimization problems, like
scheduling and assignment problems.

Indeed, scheduling is concernedwith the allocation of limited resources over time.
Scheduling problems involving multiple customers (jobs) competing for a common
processing resource. In our problem the limited resource is represented by the SD-
BS while the jobs are represented by the vehicles. In particular, the problemunder
investigation can be classified as a scheduling problem on a single machine (the
SD-BS) with setup times (overhead time), release dates and deadlines (the beginning
and the end of each time-slot), maximizing the data transmitted without taking into
account the processing and completion times of the jobs [1, 4, 12].

Instead, assignment problems arise when we have to assign resources to several
activities in such a way that a cost function is maximized/minimized. In our case,
the problem is a particular variant of the generalized assignment problem where
resource is represented by the time-slots to be assigned to vehicles, the activities are
represented by the vehicles and the objective function is the total transmitted data
[6, 9, 10].

Conceiving the problem under investigation as an assignment problem, we
propose an original mixed integer linear programming model. To this aim, let
V = {i, . . . , v} be the set of vehicles, each one characterized by the communication
needs ki. Let T = {i, . . . , t} be the set of time-slots of predefined fixed duration h.
Each time-slot t ∈ T can be considered to be composed of two parts: the first part
is reserved for the beam alignment between the vehicle and the base station (syn-
chronization part), while the second one is reserved for the data transmission. The
durations of synchronization and transmission parts are fixed and known in advance.
It is important to highlight that, if a vehicle is assigned to two consecutive time-slots,
it can transmit the data in the synchronization part of the second time-slot since it has
already performed the alignment with the base station in the first time-slot. Hence,
being eji and nji the maximum number of bits that the vehicle i can transmit during
the synchronization part and transmission part of the time-slot j, respectively, we
compute them by:

eji =
∫ sjend

sjstart

C(di(t))dt and nji =
∫ tjend

tjstart

C(di(t))dt (3)

where di(t) is the relative distance between the i-th vehicle and the SD-BS at a given
time t, and sjstart and sjend (tjstart and tjend ) are the starting and ending time instant of
the synchronization part (transmission part) of the j-th time-slot. Finally, we have
to take also into account the operational constraints related to the communication
needs, which impose that if a vehicle transmits more than a predefined threshold
the exceeding transmitted data are unuseful and can be neglected. Therefore, we
have to distinguish two kinds of data: the total data transmitted and the meaningful
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data transmitted. To represent the meaningful data transmitted, we can introduce
two kind of continuous variables: xji, i ∈ V, j ∈ T and yji, i ∈ V, j ∈ T , where xji are
the meaningful data transmitted by the vehicle i during the transmission part of the
time-slot j and yji are the meaningful data transmitted by the vehicle i during the
synchronization part of the time-slot j.

Moreover, we define a binary variable φ
j
i , i ∈ V, j ∈ T , that is equal to 1 if the

vehicle i is assigned to the time-slot j, 0 otherwise. The products njiφ
j
i and njiφ

j
iφ

j−1
i

are the data transmitted by the vehicle i in the transmission and synchronization part
of the time-slot j, respectively.

On the basis of this notation, it is possible to formulate the followingmixed integer
linear programming model:

max z =
∑
i∈V

∑
j∈T

(yji + xji) (4)

∑
i∈V

∑
j∈T

(yji + xji) ≤ ki ∀ i ∈ V (5)

∑
i∈V

φ
j
i ≤ 1 ∀ j ∈ T (6)

yji ≤ ejiφ
j
i ∀ i ∈ V,∀ j ∈ T (7)

yji ≤ ejiφ
j−1
i ∀ i ∈ V,∀ j ∈ {2, . . . ,T } (8)

φ0
i = 0 ∀ i ∈ V (9)

xji ≤ njiφ
j
i ∀ i ∈ V,∀ j ∈ T (10)

φ
j
i ∈ {0, 1} ∀ i ∈ V,∀ j ∈ T (11)

0 ≤ yji ≤ eji ∀ i ∈ V,∀ j ∈ T (12)

0 ≤ xji ≤ nji ∀ i ∈ V,∀ j ∈ T (13)

The objective function (4) maximizes the total meaningful transmitted data. Con-
straints (5) ensure that the meaningful data transmitted by the vehicle i cannot exceed
its threshold ki. Constraints (6) guarantee that, during each time slot of the consid-
ered time horizon, there exists at most one vehicle in connection with the SD-BS.
Constraints (7)–(9) ensure that a vehicle i needs to synchronize with the base station
in the time-slot j if another vehicle l, l �= i has been assigned to the time-slot j − 1.
Constraints (10) guarantee that a data transmission is possible only if the vehicle
and SD-BS are connected. Requirements for the nature of the variables are given by
(11)–(13). The difference

∑
i∈V

∑
j∈T (yji + xji − (njiφ

j
i + ejiφ

j
iφ

j−1
i )) represents the

data transmitted which are not meaningful, since the vehicle that has transmitted the
data has already satisfied its communication needs. It is possible to find the optimal
solution of instances of hundreds vehicles and hundreds of time-slots in few seconds
solving the proposed model by a commercial optimization solver. In our experiments
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we have noted that if the values of the communication needs of the vehicles are sim-
ilar, the time needed to solve the model increases. Indeed, in this case there are many
similar solutions in terms of data throughput.

4 Computational Results

In this section we report the computational results of several instances based on the
real case study, presented in [3], where SD-BS is located along a straight road. In
our instances we have considered a road traveled by three hundreds vehicles and a
time horizon of 1280 s grouped in time-slots of different durations. In particular, we
have generated 5 instances considering the duration of each time-slot equal to 1.25,
2.5, 5, 10, 20 s. Moreover, each instance is characterized by a fixed synchronization
time equal to 1 s. We consider the range of the transceiver of the SD-BS equal to 200
m and so a vehicle i can transmit data to the SD-BS in a time-slot j if the relative
distance between vehicle and SD-BS is lower or equal to 200 m. In particular, we
have computed the data transmittable by each vehicle in each time-slot simulating
the relative distance of each vehicle in each time-slot. To this aim, we have assumed
that each vehicle is characterized by a certain speed and an initial time-slot during
which the vehicle enters in the range of the SD-BS transceiver. The speeds of the
vehicles are randomly generated in the range (10–30 Km/h) that are coherent with
the speed of a vehicle that travels along a city road. The times-slot during which a
vehicle enters in the communication range is randomly chosen between the time-
slots of the time horizon. On this basis, it is possible to compute the relative distance
and so the matrix of transmittable data, i.e. the maximum number of bits that each
vehicle can transmit during the synchronization part and transmission part of each
time-slot . Moreover, each vehicle is characterized by certain communication needs
randomly generated in the range (0.5e13–1.5e13 bites) coherently with the flood of
data generated by an autonomous vehicle [7]. The tests were run on an Intel Core
i7-4750HQ, 2.00 GHz, 8 GBRAM,Windows 10 (64 bit). The details of the instances
and the corresponding results are given in Table 1 where:

Name Instance name.
|V | Number of vehicles.
h Duration of each time-slot in seconds.
|T | Number of time-slots.
Cn Sum of the communication needs of all the vehicles in bit.
Dt Total amount of transmitted data in bit.
MDt Total amount of meaningful transmitted data in bit.
Nv Number of vehicles that transmit the data to the SD-BS.
Nsv Number of vehicles that have satisfied their communication needs.
Ts Number of time-slots during which the synchronization with the SD-BS has

been avoided.
Time Computation time needed to solve the instance in seconds.
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Table 1 Case study—instances details and computational results

Name |V | h |T | Cn(E + 15) Dt(E + 15) MDt(E + 14) Nv Nsv Ts Time

IS1 300 20 64 3.03 2.05 5.58 55 40 4 0.7

IS2 300 10 128 3.03 1.59 8.12 101 41 23 1.2

IS3 300 5 256 3.03 1.14 9.64 146 37 87 2.6

IS4 300 2.5 512 3.03 1.15 9.79 174 20 301 6

IS5 300 1.25 1024 3.03 1.11 9.92 180 8 774 33

We can observe that, for all the instances, the upper bound, represented by the sum
of the communication needs of each vehicle, on the total meaningful data transmit-
ted, and so on the objective function value, has not been exceeded by the total data
transmitted. Moreover, the results show that a greater number of time-slots of shorter
duration lead to a decrease of the total data transmitted and an increase of the mean-
ingful data transmitted. The reduction of the difference between the data transmitted
and the meaningful data transmitted shows a better management of the connection
between SD-BS and vehicles. These results are explainable considering that if more
time-slots of shorter duration are available the SDN controller in the same period of
time can choose between different vehicles, so avoiding that a vehicle exceeds its
communication needs. This explanation is supported observing that, when a greater
number of time-slots are available, the number of the vehicles connecting to the
SD-BS increases and the number of vehicles exceeding their communication needs
decreases.

Hence, it is clear that, the duration of each time-slots represents a key parameter
of the problem. On this basis, let us also remark that for duration smaller than a
certain value the variation of the objective function value become less significant.
This value of the duration of the time-slots depends on the synchronization time and
on the particular configuration of the matrix of the transmittable data. Hence, a trade-
off arises between the effectiveness of the assignment and the level of discretization
of the problem.

5 Conclusions

In this paperwehave presented and analyzed a real problemarising in communication
networks when vehicles can be used as digital mules in alternative to fiber-based and
wireless backhauling. Different combinatorial optimization problems can be used
to schematize the problem and an original assignment based mixed integer linear
programming model has been presented. Some computational results on instances
based on a real case study have been presented.

Future research perspectives may include: an extensive analysis on the choice
of the duration time of each time-slots; an integration/adaptation of the proposed
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model to the case with more than one SD-BS; the development of exact and heuristic
approaches able to effectively tackle real large size instances with low computation
time given the real time requirement of the problem under investigation.
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Evaluation of Cascade Effects for Transit
Networks

Antonio Candelieri, Ilaria Giordani, Bruno G. Galuzzi
and Francesco Archetti

Abstract This paper presents a network analysis approach to simulate cascading
effects in a transit network with the aim to assess its resilience and efficiency. The
key element of a cascade is time: as time passes by, more locations or connections of
the transit network which are nodes and edges of the associated graph can be affected
consecutively as well as change their own condition. Thus, modifications in terms
of efficiency and resilience are also dynamically evaluated and analysed along the
cascade. Results on the two case studies of the RESOLUTE project (i.e., Florence,
in Italy, and the Attika region, in Greece) are presented. Since the two case studies
are significantly different, important differences are reflected also on the impacts of
the relative cascades, even if they were started in both the two cases from the node
with the highest betweenness centrality.
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1 Introduction

In complex Urban Transport System (UTS), such as urban city or regional transports,
the nodes individually experience a load, such as the volume of passengers passing
through that node, and in normal circumstances, this load does not exceed the capacity
of that node [1]. Cascades failures are initiated when a heavily loaded node is lost
for some reason (an accident, an infrastructure collapses or an attack) and a load of
that node (i.e. the flow passing through it) must be redistributed to other nodes of
the UTS. This redistribution may cause other nodes to exceed their capacity causing
them also to fail. Then, the number of failed nodes increase, propagating throughout
the network.

The analysis of cascades in complex networks [2–4] is an important topic towards
modelling and assessment of network resilience. In this case, the term resilience indi-
cates the capability of a UTS to resist to a node failure, and the possible resulting
cascade. Resilience has come to define a set of properties of a much broader socio-
technical framework to cope with infrastructure threats and disruptions including
preparedness, response, recovery and adaptation. All these concepts run across sev-
eral application domains like ecology, economics and networked infrastructures.

Methods of representation and analysis of resilience come from several different
communities like statistical physics, graph theory, optimization, network science and
engineering design. An interesting tool of quantitative analysis of recovery capability
of a system is reported in [5], which considers the London underground where a new
resiliencemeasure is proposed according to the speedwithwhich the passenger count
time series return to normal condition. This information is taking as an indicator of
how quickly the underground transport system is able to recover from the shock and,
after that, resume normal operations.

In the extensive literature about cascades and resilience, a primary distinction
must be made between percolation cascades and capacity cascades [6]. In the former,
e.g. epidemiological networks, the nodes change their status due to interaction with
their neighbourhood. In the latter, e.g. water distribution networks [7, 8] and transit
networks, cascades occur when, due to failure in edges/nodes, the flow can no longer
be carried out by the edges with their capacities or when some of the nodes fail. The
failure in a capacity cascade can jump to nodes that are many hops away from the
initial failure also skipping the neighbourhoods.

This paper is focused on the capacity cascades in UTSs. Recent works about it
can be found, for example, in [9] and [10]. The main goal is to characterize the
level of efficiency and resilience that ensure the persistence of key functions even
in the presence of cascading failures. This is coherent with the activities of the EU
project RESOLUTE (http://www.RESOLUTE-eu.org), whose general aim is the
operationalization of the resilience guidelines and development of software tools for
resilience assessment and support to a quick recovery of the service.

Twomain lines of analysis have been pursued and are represented in the literature.
When demand and supply data are available, the interaction between demand and
supply is simulated through mathematical modelling and/or software simulation and

http://www.RESOLUTE-eu.org
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generates the flow within the network. Simulation allows to capture the operational
and economic aspects, such as the flow-induced costs, and the behaviour of users
both prior and post any disruptions, as presented in [11].

When, as in most cases, data are not available, one is left to work with the network
topology; traffic flows are not explicitly modeled, and the number of shortest paths
between any two points passing through a node/link is taken as a proxy of the traffic
demand in that node/link. This approach is adopted, for instance, in [12] and [13].
The topological structure of a network provides critical information and enables the
computation of efficiency/resilience measure, which has been applied to study the
Boston subway network and the transit networks of major cities worldwide [14].
Typically, only information about the interconnections is needed to create the graph
associated to the transit infrastructure and still they can provide fundamental insights
about the structural weakness of a transport network. Therefore, to operationalize
resilience management in a wide set of conditions, the topological approach has been
adopted in this paper, based on the description of a transit network and a possible
capacity cascade using the graph theory.

2 Graph-Based Modelling of a Transit Network

The main elements of a networked infrastructure, such as a UTS, can be easily
mapped into elements of a directed graph G = (V, E), where V is a set of n nodes
and E is a set of edges, which are ordered 2-element subsets (i, j), with i and j
elements of the V set. In case of a UTS, the nodes represent the locations of interest
on the transportation network, such as towns, bus/rail stops, road intersections, etc.
whereas the edges represent connections/links between locations, such as roads, rail
lines, bus line sections, etc. Furthermore, another relevant concept is the route, that
can be mapped into a series of connected edges of the graph, and with a specific
label, to distinguish by other routes.

Considering connectivity information at node levels, a measure of the network
organization is the betweenness centrality [15], computed for each node i as:

g(i) =
∑

j,k∈V, j �=i,k �=i

σ jk(i)

σ jk
, (1)

where σ jk is the total number of shortest paths from the node j to node k and σ jk(i)
is the number of those paths passing through node i. Two different parameters are
considered to measure the efficiency and the resilience of a network, during and
after a cascade. The first is the relative size of the largest connected component (S)
[12, 13], defined as

S = N
′

N
, (2)
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where N
′
and N are, respectively, the number of nodes in the largest connected

component after and before the cascade. The second is the network efficiency (E)
[16], defined as

E = 1

n(n − 1)

∑

i, j∈V,i �= j

1

di j
, (3)

where di j = d(i, j) represent the length of shortest path between nodes i and j,
named distance. Normalization by n(n − 1) ensures that E ≤ 1, where 1 is obtained
for a complete graph. These two quantities can be computed before, during and after
the cascade event.

3 Capacity Cascades Caused from a Station Closure

Disruptions of a transportation network can be of different types (accidents, infras-
tructure collapses, attacks, etc.) and can lead to impacts with different severities:
injuries, fatalities. Common disruptions, such as a road link blocked, a rail service
interruption, a strike, etc., have an impact with low severity. In this work, we simulate
a capacity cascade caused by the closure of a station or stop, that means the access
to that station/stop is disabled but transport lines/routes passing through it are not
interrupted. In this case, the node k of a graph, corresponding to the station of the
UTS, is removed from the graph but with the possibility that all the paths passing
through it are still maintained. The resulting graph after this event is G

′ = (V
′
, E

′
)

where: V
′ = V − {k} and

E
′ = E − {(i, k) ∈ E, (k, j) ∈ E} ∪ {(i, j) : ∃(i, k) ∈ E ∧ ∃(k, j) ∈ E} (4)

To select the station to close, the g value is computed for every node of the network
and the node with the highest g value is selected as target node. The intentional
capacity cascade in the network is simulated starting from the removal of the target
node. As in [1], we definite Li (t) the total number of shortest paths, or load, passing
through node i at a certain iteration t of the cascade, whereas ψi is the maximum
load that the node i can handle, or capacity. This value corresponds to the initial load
at iteration t = 0, multiplied by a tolerance parameter α ≥ 1:

ψi = α Li (0) i = 1, 2, . . . , n (5)

To start the cascading effect, the node with higher (initial) load is removed, and a
new graph is re-computed using Eq. 4. Then, the g value for each of the remained
nodes is re-computed: if any node has a g value exceeding its own capacity, then that
node is removed from the network. The process iterates until no more node must be
removed from the network, that is the termination of the cascade. Note that the load
for each node is updated along the iterations of the cascade simulation, whereas the
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capacities are set at the beginning. Logically, capacity could be increased with the
aim to contrast cascades of failures in the network.

4 Experimental Setting and Results

In this section, we report the results obtained from network analysis applied to two
real UTSs. These systems aremodelled through a directedmulti-graph, becausemore
than one route/line may connect two stations; moreover the graph is direct to model
direction of each line from one stop to the next.

The first one consists of the public bus transportation in Florence. The number
of bus stops is 999, whereas the number of directed edge is 3226. Figure 1a shows
the associated graph of the network. To improve the visualization, we did not draw
multiple edges. The different colors and sizes of the nodes indicate the different
values of their g-value. Passing from the yellow color to the blue one, and from the
lower size to the greater size of the nodes, we have an increase of the g-value. The
bigger red point indicates the node with the highest g-value (35517.7).

Fig. 1 aGraph of the bus transport network in Florence before the cascade. bGraph of the transport
network in Attika region before the cascade. c Graph of the bus transport network in Florence after
the cascade. d Graph of the transport network in Attika after the cascade effect. In (a) and (b) the
red points represent the nodes from which the cascades begin (the ones with the highest g-value),
whereas in (c) and (d) the red points represent the node failed along the cascade
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The second network consists of the public transportation network (bus, tramway,
…), in the Attika region. The number of stops is 7681, whereas the number of
directed edges is 18.128. Figure 1b shows the associated graph of the network. Again,
passing from the green color to the blue one we have an increase of the g-value,
and the bigger red point indicates the node with the highest g-value (438585.6). The
peculiar location of the node with highest betweenness in Attika depends on different
factors. First of all, the Attika’s UTS has more branches towards peripheral regions.
This leads to having some sub-graphs (i.e. clusters) associated with the peripheral
areas. Nodes—as well as links—connecting clusters in a graph, are characterized by
high values of betweenness since all the paths between two clusters pass through
them. Thus, several nodes with high betweenness values are located on the branches
connecting peripherals. Secondly, there are a lot of nodeswith very high betweenness
also in the center of the network, however the rule we have adopted to choose the
“triggering” node is just to select the one with highest node betweenness value, even
if the differencewith the second or the third ones—which could be less peripheral—is
very small.

To simulate a possible capacity cascade for the two networks we simulate the
removal of the node with the largest g-value of the graphs. The re-computation of
the g-value for each node permits to identify the new failing nodes in the cascade
(i.e. nodes with the capacity lower than the current load). These nodes are removed,
and the process iterated until no more nodes fail. Figure 1c, d show the two final
networks at the end of the cascade, respectively, in which the black points represent
the nodes removed along the cascade. Figure 2a, b show the values of E and S
computed during the cascade, for Florence (black) and Attika (red), respectively. In
Fig. 2c, d we represent also the number of remaining nodes and edges of the two
networks, during cascades. Both these quantities are divided by their corresponding
values before the cascade.

For both the cases we note that the removal of a such critical nodes generate
an important disruption of the network, causing the decrease of both E and S. In
particular, in the Florence UTS S and E decrease from 1 to 0.35, and from 0.044 to
0.007, respectively, with a cascade consisting of 17 iterations. In the second Attika
UTS case we also note a decrease of S and E, decreasing from 1 to 0.32 and from
0.023 to 0.002, respectively, with a longer cascade consisting of 37 iterations.

The decrease of such quantities is coherent with the decrease of the number of
nodes and edges of the two graphs, during the cascade. However, the Attika’s UTS
shows a greater resilience to the cascading failure compared to the Florence’s one.
Indeed, it requires a largest number of iteration to reach similar values of E and
S during the cascade, with no significant changes between the first and the fifth
iteration.
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Fig. 2 Values of S (a), E (b), the relative number of remaining nodes (c), and the relative number
of remaining edges (d), along the cascade. Black curves refer to the Florence UTS; red curves refer
to the Attika UTS

5 Conclusions

The experimental results have demonstrated that a set of analytical functionalities
can be used simulate a cascading failure and assess, dynamically along the cascade,
the re-organization of flows into the network. A software tool has been developed
to dynamically analyse the graph associated to the UTS, even under changing con-
ditions, to identify the new failing components along the cascade and, therefore,
the critical components which could potentially be empowered to block or at least
mitigate the impact of the cascade. This analytical tool is important for assessing
the resilience, as well as the efficiency, of a UTS even with respect to disruptive
events starting from different locations (i.e. selecting any node as the target) and to
support decisions about the capacity increase on critical nodes (i.e. those which may
guarantee a lower impact).

Finally, the analytical software tool has been validated on two real UTSs, the
bus transport network in Florence and the transport system in the Attika region,
respectively. The analysis allowed to identify important differences between the two
UTSs with respect to the impact of the corresponding cascades, even if, in both the
two cases, the cascade was started by considering, as starting node, the node with
highest betweenness centrality in the two networks.
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Maximizing Lifetime for a Zone
Monitoring Problem Through Reduction
to Target Coverage

F. Carrabs, R. Cerulli, C. D’Ambrosio and A. Raiconi

Abstract We consider a scenario in which it is necessary to monitor a geographical
region of interest through a network of sensing devices. The region is divided into
subregions of regular sizes (zones), such that if a sensor can even partially monitor
the zone, the detected information can be considered representative of the entire
subregion. The aim is to schedule the sensor active and idle states in order tomaximize
the lifetime of the network. We take into account two main types of scenarios. In the
first one, the whole region is partitioned into zones. In the second one, a predefined
number of possibly overlapping zones are randomly placed and oriented inside the
region. We discuss how to transform any problem instance into a target coverage
one, and solve the problem through a highly competitive column generation-based
method.

Keywords Wireless sensor networks · Maximum lifetime problem · Zone
monitoring · Area coverage · Target coverage
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1 Introduction

The issue of monitoring efficiently geographical regions through sensor networks
has been intensively studied in the literature. Given the limited amount of energy
provided by the battery of each device, it is indeed of great relevance to optimize
their usage in order to prolong the working time (or lifetime) of the network for as
long as possible. This is particularly relevant in vast or hardly accessible areas, where
frequent substitutions of the sensors could be not practical or impossible. In order
to face this issue, many researchers have proposed approaches for the Maximum
Lifetime Problem (MLP). The underlying idea is to activate at any given time only
a subset of sensors, capable of performing the required monitoring task, while the
others are kept idle in order to preserve their batteries. Such a subset of sensors is
called cover. Formally, the problem consists in finding a family of covers and in
determining for how long each of them should be activated (activation time). The
aim is maximize the sum of these activation times, while respecting the battery
duration constraints of each sensor. The MLP problem is usually studied in terms
of target coverage, meaning that we consider the existence of some special points
of interest inside the area, called targets. A subset of sensors is then a cover if all
targets fall within the sensing range of at least a sensor. The most effective resolution
approaches proposed in the literature for MLP are based on the Column Generation
(CG) technique. In such methods, the master problem is an LP formulation that
individuates the optimal solution given a set a covers, while the pricing subproblem
identifies new covers that could be introduced into the set considered by the master in
order to improve the incumbent solution. The main differentiating factor among such
CGbased approaches is represented by themethod used to solve the subproblem, that
is NP-Hard. A simple greedy heuristic is proposed in [1]. A genetic algorithm (GA)
was instead proposed in [2]. To the best of our knowledge, this algorithm represents
to date the most effective resolution approach for the target coverage MLP problem.
CG based approaches have also been proposed to study several MLP variants with
additional requirements, see for instance [3–9]. An alternate proposed definition of
the problem considers area coverage, that is, the case in which we are interested to
observe the entire area, rather than single points of it. Hence, the region resulting
from the union of the sensing ranges for each cover should correspond to the whole
area. It was however shown ([10, 11]) that any area coverage instance can be reduced
to an equivalent target coverage one, by identifying in pre-processing specific targets,
such that their coverage would induce coverage for the whole area.

In this work, we aim to solve MLP within a context that does not strictly corre-
spond neither to target nor to area coverage. We start by observing that, in an area
coverage context, the requisite to cover the whole area can usually be realistically
relaxed in real-world applications. Suppose that, for instance, we are interested to
collect average temperatures or monitor the occurrence of fires. Within small dis-
tances, a sensorwould not detect significantly different values.We can then discretize
the original area into sub-areas of appropriate size (zones), and guarantee a partial
coverage for each of them in each cover. Analogously, in a target coverage case, we
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can imagine that collecting information in the close proximities of the chosen target
location can generally be sufficient. Again, in this case we can define a zone around
each target. By relaxing in both cases the coverage requirement, such an approach
can bring improvements in the network lifetime, without decreasing the quality of the
solution, given appropriately chosen zone sizes. As will be shown, this new problem
can be reduced to an equivalent target coverage one as well.

The specific considered scenarios are described in Sect. 2. In Sect. 3 we discuss
the reduction to target coverage, and resume the algorithm presented in [2] that we
use to solve it. Finally, computational results are presented in Sect. 4.

2 Considered Scenarios

We consider zone monitoring in the context of two different test scenarios, that we
call Type 1 and Type 2, respectively. The Type 1 scenarios are meant to model area
coverage. Given a square area, with L being the length of its side, we partition it into
(L/ l)2 square zones with side l. An example of Type 1 instance (with L/ l = 5) is
shown in Fig. 1a, along with an example of cover (only active sensors are shown). As
can be seen, each zone is at least partially within a sensing range, even if a relevant
portion of the area is uncovered.

Type 2 scenarios model the target coverage case instead. To build these instances,
we first randomly dispose a predefined number of targets within the area. Then, we
consider for each target a square zone, such that the target is the center point of
it. To further generalize this case, each zone in a Type 2 instance is rotated by a

Fig. 1 Example instances and covers for the two considered scenario types
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randomly chosen angle. Note that, differently from Type 1 instances, the zones may
present overlaps, and their union does not necessarily correspond to the whole area.
An example of Type 2 instance and cover is shown in Fig. 1b.

3 Reduction to Target Coverage and CG Solution Approach

In order to reduce our problem to a target coverage one, we first need to perform
a preprocessing on each input instance. For each sensor si and zone zk , we use the
position of si and of the center point of zk , the radius of si and the area size of zk to
determine whether zk intersects the sensing range of si . Hence, we derive a binary
parameter δik equal to 1 if si can keep zk under observation, and 0 otherwise. We
note that any instance of our problem can then be reduced to an equivalent instance
of the target coverage MLP problem, in which there exists a target tk for each zone
zk , and such that any given sensor si covers tk if and only if δik = 1.

In order to solve the problem, we apply the highly effective CG-based exact
algorithm proposed in [2]. Let C = {C1, . . . ,Ch} be a set of covers. Note that the
overall number of covers can be exponential, hence the aim of the CG algorithm is
to find the optimal solution while avoiding to generate most of them. The master
problem is defined as follows:

[MP]max
∑

C j∈C
wj (1)

s.t.

∑

C j∈C :si∈C j

w j ≤ bi ∀si ∈ S (2)

wj ≥ 0 ∀C j ∈ C (3)

Each wj variable models the activation time of C j in the solution. The objective
function maximizes the network lifetime that can be obtained using these covers,
while the constraints (2) impose that sensor battery durations are respected (bi is a
parameter representing themaximal activation time for si , expressed in time units). In
the coefficient matrix of [MP], the column associated to wj represents the encoding
ofC j . Indeed, in the position corresponding to the i th constraint of type (2) it contains
value 1 if si ∈ C j , and 0 otherwise. The aim of the pricing subproblem is to identify
a new cover with potential to improve the [MP] objective value if introduced in C .
The subproblem can be modeled using the following ILP formulation:

[SP] min
∑

si∈S
πi xi − 1 (4)
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s.t.

∑

si∈S:δik=1

xi ≥ 1 ∀zk ∈ Z (5)

xi ∈ {0, 1} ∀si ∈ S (6)

Each binary variable xi represents the choice related to the inclusion of sensor
si ∈ S in the new cover. The constraints (5) make sure that at least a sensor is chosen
among the ones that can monitor each zone. The πi values are the shadow prices
associated to constraints (2) after solving [MP]. The objective function identifies the
cover with minimum reduced cost, where the constant value 1 corresponds to the
coefficient of each variable in (1). If the optimal [SP] solution value is greater or
equal than 0, the incumbent solution found by [MP] is also optimal, otherwise the
new cover (which is said to be attractive) is added toC and [MP] is solved again. The
CG procedure can be iterated until a proven optimal solution is found. The [SP] is an
NP-hard covering problem, hence the algorithm proposed in [2] also integrates a GA
to solve it heuristically. In more detail, after each [MP] resolution, the algorithm first
calls the GA. If the final population of the GA contains one or more attractive covers,
they are all added to C . Otherwise, [SP] is used to solve the subproblem; clearly,
the exact resolution of the subproblem is needed at least once, in order to certify the
optimality of the solution. In the following, we briefly resume the GA procedure;
for additional details, see [2]. Each chromosome corresponds to a solution for [SP],
and is therefore a binary string of size |S|, representing the encoding of a cover. The
fitness function coincides with the objective function value of [SP]. The GA starts
from a fixed-size population P , composed of randomly generated chromosomes. For
a predefined number of iterations i t , two parent chromosomes are chosen through
binary tournament selection, and the following operators are applied in sequence to
produce a child chromosome c:

• Crossover: The crossover builds c by applying a bitwise AND operation on p1
and p2. Each sensor then belongs to c if and only if it belongs to both p1 and p2.

• Mutation: Given the chromosome c obtained after applying the crossover, the
mutation operator switches the value of one of its elements, chosen randomly
among those that have identical value among the two parents. If the parents are
completely different, a random element of c is mutated.

• Feasibility: The c chromosome resulting from crossover and mutation could be
unfeasible, that is, some zones could be uncovered. Iteratively, the feasibility oper-
ator choses at random a sensor that can cover additional zones, and sets the related
bit to 1 in c, until feasibility is obtained.

• Redundancy: The redundancy operator is used to remove from c sensors that are
not needed for feasibility. Iteratively, it computes a list of such redundant sensors,
choses a random element of it and sets the related bit to 0 in c.

Finally, if the new produced chromosome c is not already in P , it is introduced in
the population, and replaces an older chromosome, chosen among the |P|/2 ones with
worse fitness function. Otherwise, it is discarded. The described GA is also used to
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generate the starting columns belonging to C , used to first solve [MP]. In this case,
random values are used for the shadow prices πi , and the entire final population P
is assigned to C .

4 Computational Results

In this section, we report and comment the results obtained by the CG algorithm used
to solve the two different proposed scenarios. The algorithm was coded in C++ on
an OSX platform, and was run on an 3.1 Ghz Intel Core i5 processor with 8 GB of
RAM. The [MP] and [SP] formulations within the CG approach have been solved
using the Concert library of IBM ILOGCPLEX 12.7, running in single thread mode.

For Type 1 instances, we considered a square area with side length L = 500,
partitioned into 25, 100 or 400 zones; hence, the side length l of each zone is equal
to either 100, 50 or 25. For each of these cases, we considered instances containing
500, 750 or 1000 randomly deployed sensors (bi = 1 for each sensor), generating
10 different instances for each combination of parameters. Average results for Type
1 instances are reported in Table 1.

The first three columns in the table contain instance characteristics, while the
remaining two contain the lifetime value (Lifetime) in time units and the compu-
tational time (Time) required by the CG algorithm in seconds. From the Lifetime
column we can note that, as expected, by reducing the number of zones (and thus
increasing their size) we can prolong the lifetime of the network. Within instances
containing the same number of zones, it is also predictably possible to obtain a longer
lifetime by and the same occurs by increasing the number of deployed sensors. In
more detail, we can observe that reducing the number of zones from 400 to 25 brings
to a lifetime that is about three times longer, while by increasing the number of
sensors from 500 to 1000 the lifetime can be roughly doubled. With respect to com-
putational times, all the instances are optimally solved in less than 1minute, showing

Table 1 Computational results for Type 1 instances

Zones l Sensors Lifetime Time

L=500 25 100 500 67.80 3.36

750 102.10 7.72

1000 135.70 13.22

100 50 500 34.00 3.38

750 53.90 8.39

1000 71.90 17.74

400 25 500 21.40 8.97

750 31.40 24.91

1000 42.10 48.31
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the efficiency of the CG algorithm. We can observe that the more complex instances
are the ones containing more zones. In the worst case, corresponding to 400 zones
and 1000 sensors, 48.31 s are required on average.

For the Type 2 instances, extending target coverage problems, we considered areas
with side length L equal to either 500 or 1000. We randomly disposed in the area
either 15 or 30 targets and, again, 500, 700 or 1000 sensors. The diagonal length d
of each zone was chosen equal to either 0, 50, 100 or 150. Note that the case d = 0
corresponds to a classical target coverage problem. Again, we generated 10 instances
for each combination of the parameters, reporting average values in Table 2, where
columns report instance characteristics and solution values, like in Table 1.

We can note that the average computational time required to solve each scenario
never exceeds 14 s. As for Type 1 instances, both increasing the zone sizes and the
number of sensors bring to lifetime improvements. In particular, in the instances with
L = 500 and 1000 sensors, moving from the target coverage case to the one with
d = 150 brings a 26% improvement (15 zones) or a 45% improvement (30 zones).
The improvement is much less noticeable for the instances with L = 1000, given that
the same zones are scattered over a larger area, and therefore the overlap of sensors
with multiple zones is less likely. Overall, given instances with the same number of
sensors and zones, the lifetimes obtained for L = 1000 is usually about half of the
ones for L = 500.

5 Conclusion

We presented the problem of lifetime maximization for zone monitoring by means
of wireless sensor networks. In this variant, the coverage requirement of specific
points that is usually considered by target coverage problems is relaxed to allow
partial coverage of a wider surrounding portion of the area. We considered two types
of scenarios, aimed at modeling both classical area coverage and target coverage
problems, and discussed how to reduce the new problem to a classical target coverage
one. Computational results obtained by using a competitive algorithm available in the
literature validate the idea that the approach can be used to obtain a longer network
lifetime, in particular when applied to area coverage or to target coverage scenarios
with a large number of targets.
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Mathematical Formulations
for the Optimal Design of Resilient
Shortest Paths

Marco Casazza, Alberto Ceselli and Andrea Taverna

Abstract Westudy aResilient Shortest Path Problem (RSPP) arising in the literature
for the design of communication networks with reliability guarantees. A graph is
given, in which every edge has a cost and a probability of availability, and in which
two vertices are marked as source and destination. The aim of our RSPP is to find a
subgraph ofminimumcost, containing a set of paths from the source to the destination
vertices, such that the probability that at least one path is available is higher than a
given threshold. We explore its theoretical properties and show that, despite a few
interesting special cases can be solved in polynomial time, it is in generalbreak NP-
hard. Computing the probability of availability of a given subgraph is already NP-
hard; we therefore introduce an integer relaxation that simplifies the computation
of such probability, and we design a corresponding exact algorithm. We present
computational results, finding that our algorithm can handle graphs with up to 20
vertices within minutes of computing time.
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1 Introduction

In a world where everything is connected, the value of network reliability can be
hardly overestimated. Everyday more and more companies rely on the availability of
their online platforms, and the trend is to push services to the cloud in order to reduce
costs. Within such a context, network reliability is a key factor for the success of a
business: physical links are subject to failures, entire portions of a network can fail
due to local disruptions, and the overall probability of success of a communication,
called availability, is often subject to Service Level Agreements (SLA) between
network operators and clients. Therefore, simple shortest path structures are too
fragile, since the failure of a single link induces the overall connection failure. At
the same time, there might be alternative ways to re-establish connectivity, ensuring
path protection by considering one or more backup paths [3]. However duplicating
flows through multiple paths increases also the cost of the communications.

We address what we call the Resilient Shortest Path Problem (RSPP). It is given
a network where each edge has both a cost and a probability of being available. Two
vertices of the network are marked as endpoints of connections. The RSPP is the
problem of finding a minimum cost subgraph, whose probability of containing an
available path between the endpoints is not lower than a given threshold.

The problem of establishing reliable communications has already been investi-
gated in several works, such as [4], where the authors investigate on the complexity
of computing the probability of failure of a network, and [2], where the authors
proposed heuristic methods and an exact model based on an enumeration of all the
possible states of the network.

In this paper we formally model the RSPP and investigate its theoretical proper-
ties. In Sect. 2 we formalize the RSPP, we provide its mathematical programming
formulation, and we highlight theoretical properties. However, computing the avail-
ability of a solution to the RSPP is already a NP-hard task that can be accomplished
through complex methodologies such as Markov Chains and Bayesian Networks.
Therefore, in Sect. 3 we focus on solving a noticeable integer relaxation, whose
simplifying idea is to consider path failures as independent events. We name such a
relaxation Independent-paths RSPP (IRSPP): we provide a branch-and-price algo-
rithm that solves it to proven optimality. In Sect. 4 we present the results of our
experimental analysis and include some brief conclusions

2 Formal Description

An undirected graph G = (V, E) is given, where V is the set of vertices and E
is the set of edges. A source vertex s ∈ V and a destination vertex t ∈ V are also
given. For each edge e ∈ E we are given a cost ce and its availability, that is the
probability 0 ≤ pe ≤ 1 that such an edge will not fail. In this paper we assume that
failures of single edges are independent events. A feasible path r = (σ1, σ2, . . . , σk)
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is a sequence of vertices σm having σ1 = s, σk = t , and such that it exists an edge
between each pair of vertices σm and σm+1, form = 1, . . . , k − 1. An RSPP solution
is a subset of edges Ē ⊆ E ; the solution cost is the sum of the costs of edges in Ē .
Given aSLAavailability 0 ≤ A ≤ 1, anRSPP solution Ē is feasible if the probability
of finding a path from s to t in Ē which is not failing is greater than or equal to A .
A feasible RSPP solution is optimal when its cost is minimum.

Intuitively, the RSPP is the problem of selecting a set of feasible paths such that
A is met and the sum of the costs of the selected edges is minimum. When an edge
e is traversed by at least one path, its cost ce is paid. The cost of an edge is paid only
once even if it is shared by many paths.

2.1 Modelling

Let R be the set of all feasible paths. Each path r ∈ R is modelled as a pattern
z̄r ∈ B

|E | having z̄re = 1 if edge e is selected, and 0 otherwise. We model the RSPP
as follows:

min
∑

e∈E
ce · xe (1)

s.t. P(y) ≥ A (2)
∑

r∈R

z̄re · yr ≤ |{r ′ ∈ R : z̄re = 1}| · xe ∀e ∈ E (3)

xe ∈ B ∀e ∈ E (4)

yr ∈ B ∀r ∈ R (5)

where each yr is a binary variable associated to a path r and it is set to 1 if path r is
selected, 0 otherwise, each xe is a binary variable that is set to 1 if an edge e belongs
to at least one path in the solution, and 0 otherwise, and P(y) is a function computing
the probability that at least one of the paths having yr = 1 succeeds. The objective
function (1) aims at minimizing the overall cost of the selected edges. Constraint
(2) imposes that the set of selected paths ensures the SLA on availability, that is the
overall probability of availability is not below the given threshold. Constraints (3)
impose that each variable xe is set to 1 if edge e belongs to at least a path.

2.2 Theoretical Properties

Let us denote as p̄r = ∏
e∈E pe · z̄re the probability of each path r ∈ R to be available.

We can first observe that:
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Observation 1 If (1)–(5) is feasible, then there always exists an optimal solution
where no path r having p̄r = 0 is selected.

Therefore we assume w.l.o.g. that:

Remark 1 An edge having pe = 0 can be removed from E .

We also prove that:

Observation 2 If an optimal solution exists, in which a path r with p̄r = 1 is
selected, then also the solution selecting only r is optimal.

In fact, by selecting a path having probability equal to 1, any availability targetA is
satisfied. It also follows that:

Corollary 1 If a path r having p̄r = 1 is not representing an optimal solution, then
no optimal solution exists in which such a path is selected.

These observations lead to the following:

Theorem 1 When A = 1 any instance of RSPP can be solved in polynomial time.

A simple proof is to solve a Shortest Path Problem on a graph having edges with
pe = 1 only. Therefore, since whenA = 0 the problem admits a trivial null solution,
in the following we assume w.l.o.g. 0 < A < 1.

We remark that, in this general case, even the problem of deciding if a RSPP
solution is feasible is NP-hard [1].

However, Theorem 1 leads to the following:

Observation 3 A path having p̄r = 1, if any, can be found in polynomial time.

We therefore conclude by observing the following.

Observation 4 Given an instance of RSPP, an optimal solution is the best between
the shortest path found on the subset of edges having pe = 1 as in Theorem 1, and
the solution on a RSPP where paths having p̄r = 1 are forbidden.

In the following,we then assume that all paths having p̄r = 0 and p̄r = 1are excluded
from set R, since the former are never selected in an optimal solution, while the best
of the latter can be found in a preprocessing phase.

2.3 Integer Relaxation

Computing P(y) is hard in the general case, because the paths in R could share
edges, and thus, their failure events would not be independent. Therefore, we build
our computational methods around the following relaxation:
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Theorem 2 When the failures of the paths are assumed to be independent, Inequal-
ity (2) becomes:

P̃(y) = 1 −
∏

r∈R

(1 − p̄r · yr ) ≥ A (6)

thereby obtaining an integer relaxation of the RSPP.

Indeed Equation (6) is nonlinear, but by means of logarithmic mapping and since yr

are binary variables, we obtain:

∑

r∈R

log(1 − p̄r ) · yr ≤ log(1 − A ). (7)

Formally, we indicate as Independent-paths RSPP (IRSPP) the relaxed model
obtained by (1)–(5), replacing (2) with (7).

3 Solving the IRSPP

To compute our relaxation, that is solving the IRSPP, we propose a branch-and-
price algorithm. In fact, the set R grows exponentially in the size of the graph, and
we recur to column generation techniques to solve the continuous relaxation of the
IRSPP,whichwe refer to asMasterProblem (MP): we solve to optimality aRestricted
MP (RMP) involving a small set of columns R̄ ⊆ R, and we iteratively search for
negative reduced cost variables solving a pricing problem. If no negative reduced
cost variable is found, the optimal RMP solution is optimal for the MP as well, and
the corresponding value is a valid lower bound for both the IRSPP and RSPP. If the
final RMP solution is integer, then it is also optimal for the IRSPP, otherwise we enter
a search tree by performing branching operations to find a proven global optimum.
In particular, integrality conditions on yr variables are relaxed as follows:

yr ≤ 1 ∀r ∈ R̄ (8)

and non-negativity conditions. While these variable upper bounds are often disre-
garded in column generation algorithms, in our case the following holds.

Theorem 3 By dropping (8), an optimalMP solution always exists, in which a single
path having best ratio between cost and availability is selected (possibly in multiple
copies).

In our preliminary tests, this yielded very poor lower bounds. On the other hand,
constraints (8) are exponential in number: their handling requires a special procedure,
which is discussed in the following.
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3.1 Pricing Problem

We initialize the RMP by including both the shortest path and the highest probability
path in R. Let λe ≤ 0, μr ≤ 0, and η ≤ 0 be the dual variables corresponding to
Eqs. (3), (8), and (7), respectively. The pricing problem can be stated as follows:

min −
∑

e∈E
λe · ze −

∑

r∈R̄

μr · ur − η · log
(
1 −

∏

e∈E
pe · ze

)
(9)

s.t. z is a path from s to t (10)

ur = 1 if z = z̄r ∀r ∈ R̄ (11)

ur ∈ B ∀r ∈ R̄ (12)

ze ∈ B ∀e ∈ E (13)

where each variable ze is set to 1 if edge e is selected, and 0 otherwise, each variable
ur is set to 1 if the path is already in the set R̄, and 0 otherwise.

In our pricing problem we pay a cost −λe to select edge e and a cost −μr when
the generated path r is already in R̄. Instead, we gain a profit η that is proportional
to the logarithm of the probability of failure of the path. The objective function (9)
minimizes the difference between costs and profit.

To solve our pricing problem we design a label correcting algorithm: let l =
(i, c, p, ρ) be a label defining the cost c and the probability p of a partial path
ρ = (s, . . . , i). Our algorithm is implemented as follows:

initialization: we start by creating a single label l = (s, 0, 1, (s)) in a label queue;
extension: at each iterationwe select a label l = (i, c, p, ρ) from the queue and create

a new label l ′ = ( j, c′, p′, ρ ′) for each neighbour j of i , such that c′ = c − λe and
p′ = p · pe, where e is the edge connecting i and j , and ρ ′ = (s, σ1, σ2, . . . , i, j);

dominance: for each new label l = (i, c, p, ρ) we perform a dominance check: we
define μmin

ρ as the minimum between all the μr values such that ρ is a partial
path contained in r . Therefore −μmin

ρ is the maximum cost of generating a path
containing ρ; if it exists a label l ′ = (i, c′, p′, ρ ′) such that c ≥ c′, p ≤ p′, c −
η · log(1 − p) ≥ c′ − η · log(1 − p′) − μmin

ρ ′ , and at least one inequality is strict,
then label l cannot lead to an optimal solution, and therefore can be deleted.
Otherwise, we add l to the labels queue;

stopping criteria: when the labels queue is empty, we stop and select the label l =
(t, c, p, r) corresponding to a path r having minimum c − η · log(1 − p) − μr .

We remark that paths not in R̄ have −μr cost equal to 0: in fact such a cost is the
dual variable corresponding to Inequality (8), but for paths not in R̄ such inequality
is not binding.

Set of generated paths.

One of the key elements of our label correcting algorithm is how we manage the set
of generated paths, in order to pay μr and μmin

ρ costs. To overcome such a problem
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we designed an enumeration tree T R = (N R, AR), where N R is the set of nodes of
the tree and AR the set of the edges. The tree starts with N R = {s} and AR = ∅.
When a new path r = (σ1, σ2, . . . , σk) is discovered, the tree is updated: first, we
search for the longest subpath (σ1, . . . , σm) of r in the tree T R ; if no subpath is found,
r is inserted into the tree as it is, eventually creating copies of its nodes, otherwise
(σm, . . . , σk) is appended to such a subpath in the tree. It follows that our tree has a
root node that is the source node s, while each leaf is a copy of the destination node
t . At each leaf corresponds a path r , to which is attached the cost μr . The cost of
each other node of the tree is computed as follows:

cT ((σ1, . . . , σm)) =
{

μr , if σm = t

minσm+1∈nodeChildren{cT ((σ1, . . . , σm, σm+1))} (14)

3.2 Branching Strategy

When we find an optimal solution to MP that is fractional, we perform branching to
enforce integrality.We use a single branching rule to fix edges in the integer solution:
we search for themost fractional edge ê, such that ê ∈ argmine∈E |xe − 0.5|, and then
create two new branching nodes: one having xê = 1 and one where xê = 0. In both
nodes we add a constraint to the MP:

∑
r∈R̄ z̄e · yr ≥ 1 for the first branching node

and
∑

r∈R̄ z̄e · yr ≤ 0 for the second one.
Unfortunately our branching strategy changes the nature of our pricing algorithm,

because setting xê = 1 may induce a profit for selecting edge ê in a solution to the
pricing problem. Therefore we modify dominance rules in such a way that a label l
is dominated by a label l ′ only if the partial path ρ has visited all vertices in ρ ′. When
xê = 0 instead, the pricing problem is solved removing edge ê from the graph.

3.3 Primal Heuristic

To speed up the overall branch-and-bound procedurewe design a fast primal heuristic
that works as follows: (a) we find a shortest path from s to t and we add such a path
to a set of shortest paths; (b) if the paths contained in such a set satisfy the target
availability, we stop with a feasible solution; (c) otherwise all the edges belonging
to shortest paths in the set are removed from the graph, and procedure restarts from
step (a). If no path is found, the heuristic stops without any feasible solution. We
remark that any solution found by our heuristic is feasible also for RSPP, because
no edge is shared between paths, paths are independent, and the probability of their
success is greater than A also for RSPP.
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4 Computational Results and Conclusions

We implemented our algorithm in C++ using SCIP framework and CPLEX 12.6 to
solve LPs. We generated a random dataset to evaluate the quality of our approach:
each vertex is a point, whose coordinates are randomly drawn in the range
(−100, 100). For each pair of vertices, we include an edge connecting them
with probability γ . For each edge, we fix the cost ce as the euclidean distance
between its endpoints, and the availability probability pe by choosing at random
one value in the set {1 − 5 × 10−3, 1 − 10−3, 1 − 10−4, 1 − 10−5}. Each instance
differs in size (|V | ∈ {10, 15, 20}) and density (γ ∈ {0.25, 0.5, 0.75}), and for each
of their combinations we generated 5 instances. Also, we set different availability
A ∈ {0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999, 0.99995, 0.99999}, for a total
of 405 instances.

All our tests have been conducted on a PC equipped with an Intel i7-6700K CPU
and 32GB of memory and setting a time limit of 1 h of computing time to evaluate
the effort required to solve instances to proven optimality. In Table 1, for each pair
of graph size and density, we report the number of instances for which IRSSP is
infeasible, the number of instances solved to optimality, and the average number of
explored branching nodes, column generation iterations, LP solving time, variable
pricing time, overall computing time, and the absolute gap between the availability
of an IRSPP solution mapped to an RSPP one and the target A .

Our results show that our algorithm is able to solve up to 97% of the instances,
most of them within a few minutes. The convergence of our column generation
procedure is also obtained within few iterations and most of the computing time
is spent solving the LP subproblems, while the computing time spent pricing new
reduced cost variables is on average smaller by an order of magnitude. We can also
observe that when a graph is more dense, our algorithm requires more iterations of

Table 1 Computational effort required to solve instances with up to 20 vertices

|V | γ #
inf.

#
sol.

Nodes CG iter. LP t(s) Price t(s) Algo. t(s) A gap

10 0.25 12 45 6 8 0.0 0.0 0.0 2.57e−06

10 0.5 0 45 85 102 0.1 0.0 0.2 1.14e−04

10 0.75 0 45 1489 1757 41.0 2.7 48.4 7.17e−07

15 0.25 0 45 27 34 0.0 0.0 0.0 1.38e−07

15 0.5 0 45 200 250 0.7 0.1 1.0 4.69e−08

15 0.75 0 45 682 926 12.3 1.6 15.5 2.30e−05

20 0.25 0 45 810 950 10.2 1.3 13.6 1.63e−06

20 0.5 0 42 1957 2551 276.2 27.4 314.4 8.21e−07

20 0.75 0 39 466 1403 625.4 42.9 680.5 2.29e−06
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column generation to converge. Furthermore, the violation of the target availability
of an IRSPP solution when mapped to an RSPP one is almost negligible.

Our approach proves therefore to be promising. Our plan is to include it in a
perspective framework to exactly solve the full RSPP.
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A Two-Stage Stochastic Model
for Distribution Logistics
with Transshipment and Backordering:
Stochastic Versus Deterministic Solutions

Rossana Cavagnini, Luca Bertazzi and Francesca Maggioni

Abstract We present a two-stage stochastic program for a distribution logistic
system with transshipment and backordering under stochastic demand and we first
argue that it is NP-hard. Then, we perform a computational analysis based on a distri-
bution network. In the casewith two retailers,we show thatmodeling uncertaintywith
a stochastic program leads to better solutions with respect to the ones provided by the
deterministic program, especially if limited recourse actions are admitted. Although
there are special cases in which the deterministic and the stochastic solutions select
the same retailers towards which sending items, in general, the deterministic solution
cannot be upgraded in order to find the optimal solution of the stochastic program.
Finally, in the case with four retailers, transshipment can provide more flexibility
and better results.

Keywords Optimization under uncertainty · Transshipment · Backordering
Stochastic solution analysis

1 Introduction

In recent years, competition pressure has increased and logistics has become more
and more crucial for the success of companies due to its impact on costs and service
levels. An efficient distribution system is fundamental to satisfy customers’ requests
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with reduced lead times and with a good service level. Traditionally, the distribution
network is organized as a hierarchical process in which the flow of goods is shipped
from the uppermost level of the distribution chain to the lowest. One of the purposes
of this paper is to study a more flexible distribution network, where the shipment of
products between locations at the same level of the distribution system is admitted.
This strategy is called transshipment and it allows companies to reduce stock out
risks, to share surplus stocks and to improve warehouses management, coping with
demand uncertainty.

Based on the inventory system, ordering and transshipment characteristics, [12]
present a complete review of the transshipment literature. Examples of stochas-
tic transshipment problems are [5], where fixed replenishment costs are taken into
account, while [11] considers the unidirectional transshipment problem, where loca-
tions have different backordering and stockout costs. Backordering is not consid-
ered in [15], while [16] studies the multi-location transshipment problem including
lead times. Finally, [14] proposes a stochastic transshipment model for humanitarian
emergencies.

Our contribution is to provide insights about the importance of considering uncer-
tainty in a distribution system with transshipment and backordering.

The remainder of the paper is organized as follows. Section 2 presents the problem
description and formulation. Section 3 shows our computational results and, finally,
in Sect. 4, conclusions and research perspectives are outlined.

2 Problem Description and Formulation

The analyzed problem deals with a single echelon distribution system composed of
a single supplier and a set I of M retailers with a centralized decision making.
Transshipment is admitted and, in order to keep track of the origin and destination
of product flows, we represent retailers performing transshipment by index i and
retailers receiving transshipped quantities by index j (i ∈ I , j ∈ I ). In this prob-
lem transshipment is intra-level (since it involves only retailers), bi-directional (each
retailer can both transship products to other retailers and receive products from them)
and reactive (it is performed in emergency situations, after demand realization). We
deal with a single product complete pooling transshipment (retailer i can not keep
any inventory quantity if retailer j has a shortage of product), where the priority prin-
ciple is respected (each retailer satisfies its demand at first and then transshipment
is performed if necessary), backordering to supplier is allowed and, consequently,
the demand can potentially be covered with supplied quantities, with transshipment
quantities and with backordered quantities. The unsatisfied demand represents a lost
sale. Since retailers are supposed to be close to each other, lead times are considered
negligible. Our problem is described on two time intervals: t0, which represents the
time at which we have to take the decision about the quantities to ship from the sup-
plier to retailers and t1, in which, after demand realization, we decide the quantities
to transship and the quantities to backorder.
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Moreover, the problem is characterized by risk presence: the demand is a
phenomenon which can not be exactly forecast, but it is stochastic. We denote
by d all possible values for the demand, that is a random variable having dis-
crete (mutually indipendent) probability distributions Di , defined over the support
U1 = {d, . . . , d}, where 0 < d ≤ d. Furthermore, we represent byS the set of sce-
narios s, s = 1, . . . , S and by prs the probability of each scenario s ∈ S , so that ds

i
denotes the demand realization for retailer i in scenario s. The measure adopted to
evaluate the system performance is the total expected cost.

At time t0, the decision variables of thismodel are xi , which represent the decisions
to take at the first stage, i.e. the quantity to ship from the supplier to each retailer
i , taking into account the supplier’s total inventory availability q and the associated
unit inventory cost h0. We introduce a capacity Ci for each vehicle employed in the
shipment of units from the supplier to retailer i and an integer variable vi , standing
for the number of total vehicles used to serve retailer i by direct shipping. The
transportation cost between the supplier and each retailer is represented by a variable
cost fi , proportional to the number of shipped units and by a fixed component Fi ,
paid for each vehicle used.

If retailer j has to face a demand ds
j greater than the initial inventory level I i0

plus the quantity xi received from the supplier, transshipment and/or backordering
can be used to avoid stock-out. Thus, at t1 the decision variables are represented
by ysi j which stand for the quantity to transship from retailer i to retailer j , for
each possible scenario s, after the demand realization ds

i and by bsi which represent
the quantity to backorder from the supplier for each retailer and for each possible
scenario s, after demand realization ds

i . On one hand, we introduce a capacity CT

for vehicles used to transship units (note that the capacity of vehicles used to ship
units from supplier to retailers is typically bigger than the capacity of vehicles used
for transshipment) and integer variables V s

i j representing the number of vehicles
employed for transshipment from retailer i to retailer j for each scenario s. The
total transshipment cost is composed of a unit cost ti j for each transshipped unit and
a fixed cost Ti j for each vehicle used. On the other hand, backordering is done by
using vehicles with the same capacity Ci of vehicles used for the shipment from the
supplier to retailer i and we represent the number of vehicles used for backordering
with the variables r si . The total backordering cost is composed of a unit backordering
cost gi for each backordered unit and a fixed cost Gi for each vehicle used. Finally,
the variables I si represent the balance quantity at each retailer i for each scenario
s and they are given by the sum of the initial inventory level I i0 plus the quantity
received from the supplier, the quantity received through transshipment and through
backordering minus the sum of the customers’ demand and of the transshipped units.
If this quantity is positive, it stands for the inventory level and the associated unit cost
is represented by hi . If the quantity is negative, then the balance quantity stands for
the stock-out quantity and retailer j has to pay a unit penality cost p j . In particular,
if the product surplus at retailer i is transshipped to retailer j , but it is not sufficient
to fully cover the shortage of product of retailer j , and no quantities are backordered,
retailer i has neither inventory nor stock-out costs, while retailer j has to face stock-
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out costs for the unsatisfied demand. We also consider the warehouse capacity Qi

for each retailer i .
Consequently, we formulate the following integer non linear two stage stochastic

programming model.
Model T

min h0(q −
∑

i∈I
xi ) +

∑

i∈I
( fi xi + Fivi )+

+
∑

s∈S
prs[h0(q −

∑

i∈I
xi −

∑

i∈I
bsi ) +

∑

i∈I
(gib

s
i + Gir

s
i )+

+
∑

i∈I
hi max{I si , 0} +

∑

i∈I

∑

j∈I :i �= j

(ti j y
s
i j + Ti j V

s
i j ) −

∑

j∈I
p j min{I sj , 0}]

(1)

s.t. ∑

i∈I
(xi + bsi ) ≤ q s ∈ S (2)

I si = I i0 + xi + bsi − ds
i +

∑

j∈I :i �= j

(ysji − ysi j ) i ∈ I , s ∈ S (3)

I si ≤ Qi i ∈ I , s ∈ S (4)

xi ≤ Civi i ∈ I (5)

bsi ≤ Cir
s
i i ∈ I , s ∈ S (6)

ysi j ≤ CT V s
i j i ∈ I , j ∈ I : j �= i, s ∈ S (7)

xi ≥ 0 integer i ∈ I (8)

ysi j ≥ 0 integer i ∈ I , j ∈ I : j �= i, s ∈ S (9)

bsi ≥ 0 integer i ∈ I , s ∈ S (10)

vi ≥ 0 integer i ∈ I (11)

r si ≥ 0 integer i ∈ I , s ∈ S (12)

V s
i j ≥ 0 integer i ∈ I , j ∈ I : j �= i, s ∈ S (13)

I si f ree i ∈ I , s ∈ S (14)

where the objective function (1) represents the minimization of the total expected
cost, obtained through the sum of the supplier’s inventory cost, the total ship-
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ment costs from supplier to retailers, the expected supplier’s inventory costs, the
total expected backordering cost, the total expected retailers’ inventory cost, the
total expected transshipment costs and the expected stock-out costs. Constraints (2)
implies that the total quantity shipped from the supplier to all retailers (through usual
shipment and backordering) cannot be greater than the supplier’s initial inventory.
Constraints (3) are the balance constraints. Constraints (4) imply that the balance
quantity (computed as in (3)) cannot exceed the warehouse capacity Qi for each
retailer i . Constraints (5)–(7) link together the decision variables xi , bsi and ysi j with
the respective integer variables vi , r si and V s

i j so that if the first ones are positive,
these quantities are splitted in a certain number of vehicles represented by the latter
ones, considering the respective vehicles capacitiesCi andCT and, consequently, the
associated fixed costs Fi , Gi and Ti j are charged in the objective function. Finally,
constraints from (8) to (14) are variables definition constraints. Due to the non-
linearity of ModelT , we linearize it following the approach described in [4] and we
call the linearized problem “Model T L ”. Finally, we notice that Model T L can
be reduced to the Fixed Charge Transportation Problem (see [6, 13]) and hence, it
is NP-hard.

3 Computational Results

Model T L was implemented in Python 3.6.1 using the Gurobi 7.5.1 solver, and run
on an Intel Core i7-7500U 2.70 GHz and 8GB RAM personal computer. Due to the
complexity of Model T L , the running is stopped when a 1% relative gap to the
optimal solution or a time limit of 1 h is reached.

We first consider the case with two retailers (i.e. | I | = 2). Our instances are
inspired by a real case presented in [1], in which the uncertain demand of pallets
should be satisfied by using trucks with limited capacity. The support of the demand
probability distribution is in the set of integer numbers in the interval [30, 130], while
the probability distribution is given by a Beta distribution (α, β), where α=20 and
β = 16, having average demand E(d) = 85.55556 pallets. The supplier’s inventory
level q is equal to 200 pallets, the capacity Ci of the vehicles used for shipment and
backordering to all retailers is equal to 34 pallets, the capacity CT of the vehicle
used for transshipment is 17 pallets, while the retailers’ warehouse capacity Qi is
equal to 170 pallets. Furthermore, we define the value P of a pallet to be equal to
1053 Euros, and since the unit inventory costs approximatively correspond to 5% of
the value of a pallet of 100 kg, we set the supplier’s inventory cost equal to 5% P ,
and the retailers’ inventory costs equal to 6% P . Moreover, since the penalty cost
corresponds to a lost sale and to a reputation damage, we let p j equal to 1.5 P . As
in [1], we consider a unit shipment cost of a pallet with 100–200 kg weight on a
distance up to 500 km equal to 93.60 Euros and a fixed shipment cost equal to fi Ci

θ
,

where θ = 0.5. Finally, considering that the fixed transshipment and backordering
costs are computed as a function of the unit transshipment and backordering costs,
25 different instances are generated by combining all possible values, as displayed
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Table 1 Transshipment and backordering fixed and unit costs

Cost Extremely low
case (EL)

Low (L) Medium (M) High (H) Extremely
high case (EH)

ti j 0 0.75 fi
2 = 35.1 fi

2 = 46.8 1.25 fi
2 = 58.5 +∞

Ti j 0
ti j CT

0.5 =
1193.4

ti j CT

0.5 =
1591.2

ti j CT

0.5 = 1989 +∞

gi 0 0.75 fi = 70.2 fi = 93.6 1.25 fi = 117 +∞
Gi 0 giC

0.5 = 4773.6 Fi = 6364.8 giC
0.5 = 7956 +∞

in Table 1. We notice that Model T L can be reduced into different special cases,
which facilitate a trade-off analysis. In particular, in the “Extremely High case”,
obtained by assigning to transshipment and backordering costs a very high value (for
example, equal to infinity), we get one instance in which both transshipment and
backordering are not allowed, four instances in which only backordering is allowed
and four instances in which only transshipment is allowed. The same parameters are
considered also in the case with four retailers, (i.e. | I |= 4), apart from q which is
equal to 350 pallet.

In order to determine the right number of scenarios which have to be considered
for the stochastic setting, we perform the in-sample stability analysis identifying as
benchmark scenario tree, the one with 500 scenarios. The out-of-sample stability
analysis in the benchmark tree is obtained with 300 scenarios.

3.1 Stochastic Solution Analysis

In this section,weperform the stochastic solution analysis considering the benchmark
scenario tree with 500 scenarios and computing the indicators presented in [3] and
in [10]. Table 2 displays the average results for the two retailers case, where with
“Other” we refer to instances not belonging to any special case (i.e. the ones in
which both transshipment and backordering are allowed). First, the availability of
a perfect information about the future is more important if recourse decisions (i.e.
backordering and transshipment) are not allowed or just transshipment is admitted
with an EV P I of 12.07% in the first case and approx. 10% in the second. The case
in which only backordering is allowed is the most flexible with an EV P I of 1.72%,
as new quantities can be introduced in the system through the recourse decision,
while when only transshipment is allowed, there can be a flow of goods between
retailers, but further quantities are not available. Concerning the Value of Stochastic
Solution, VSS, results show there are more advantages in including stochasticity
in the cases where no recourse actions are admitted or only less flexible recourse
actions are allowed (i.e. transshipment). In order to understand why the deterministic
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Table 3 Values for the stochastic solution analysis indicators for every special case with four
retailers and “Medium” cost level

Cases RP WS EVPI (%) EEV VSS (%)

No transshipment
No backordering

120144.82 109191.65 10.03 131098.04 9.12

Only backordering 112319.31 109191.65 2.86 122822.55 9.35

Only transshipment 107613.10 103077.98 4.40 111960.39 4.04

Other 105432.62
(2.27%)

103077.98 2.28 106535.91 1.05

solution isworse compared to the stochastic one,we compute theLUSS and theLUDS
indicators. Through the LUSS, we see that in the cases where no recourse decisions or
just one of them are admitted, the deterministic solution identifies the same retailers
selected by the stochastic solution, but with wrong delivered quantities. In the other
cases, the retailers receiving zero quantities are different in the stochastic and in the
deterministic solution and, as a consequence, the poor performance is due both to
the selection of retailers and to the selection of the quantities. Through the LUDS,
we notice that the solution is perfectly upgreadable only if both backordering and
transshipment are not allowed, meaning that these quantities are always lower or
equal to the ones suggested by the stochastic program. For all other cases, the LUDS
is not null, meaning that the deterministic solution is only partially upgreadable (at
least in one case, the stochastic solution delivers a lower number of pallets than the
one suggested by the deterministic solution).

Finally, we focus on the case with four retailers. Due to the computational com-
plexity of the problem, with the exception of the case “No transshipment, No back-
ordering”, we analyze only the instances whose costs of the allowed strategy are
set at a “Medium” level (i.e. only one instance for each case is considered). Results
are displayed in Table 3. We specify that after 549,090 s, the gap to the optimal
solution of the RP for the “Other” case was not closed and we calculate only the
EVPI and the VSS, since the other indicators require further constraints which make
the model even more difficult to get solved to optimality. Differently from Table 2,
now, if only backordering is allowed the cost is higher than the case in which only
transshipment is admitted, while for the EVPI, the previous results are confirmed.
Concerning the VSS, the results are now different, as there are more advantages in
including stochasticity in the case where only backordering is allowed. Even if with
only backordering, the quantities delivered in the first stage are fewer, transshipment
is cheaper if only few quantity adjustments are needed and the presence of more
retailers provides more flexibility to the distribution system.
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4 Conclusions

We presented a real problem arising in logistics and after modeling it with an integer
stochastic program, we stated that this is NP-hard. Furthermore, we show that with
two retailers, a decision-maker has a greater advantage by including uncertainty,
especially if no recourse actions or only transshipment is admitted. We also show
that in some cases, the selection of retailers to which quantities should be delivered
is the same both in the deterministic and in the stochastic solution. Nevertheless, the
deterministic solution can be upgrated only in the special case where no recourse
actions are allowed. Conversely, with four retailers, transshipment provides more
flexibility. Future research could be devoted to analyze the multistage version of
this problem by exploiting lower bounds (see [7, 8]) and, as in [1], to compare the
stochastic solution to the one obtained through a rolling-horizon heuristic. Another
stream of research could be analyzing robust optimization approaches (see [9]) or
adapting approaches presented in [2].
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An Optimization Model to Rationalize
Public Service Facilities

M. Cavola, A. Diglio and C. Piccolo

Abstract Facility LocationModels (FLMs) have been widely applied in the context
of both private and public sector, to decide the best configuration of new facilities
to be located in a given area. In the last years, due to the general interest to reduce
costs and improve efficiency, several works focused on problems aimed at modifying
the territorial configuration of existing facilities, in terms of number, position and/or
capacities, etc. In this work, we propose a new mathematical model to support terri-
torial re-organization decisions in non-competitive contexts. The model assumes the
presence of a set of facilities providing different types of services to users (multi-
type facilities) and explores the possibility to improve the efficiency of the system
by implementing different rationalization actions; i.e., facility closure, service clo-
sure, capacity reallocation among services at a given facility. The model aims at
finding a trade-off solution between the service efficiency and the need of ensuring
a given accessibility level to users. It has been tested on a set of randomly generated
instances, to show that a good range of problems can be solved to optimality through
the use of a commercial solver (CPLEX).

Keywords Facility location models · Territorial re-organization · Public sector
1 Introduction

Making optimal decisions in the management of public facilities poses critical chal-
lenges for strategic, tactical and operational planning, as such decisions can have a
strong and lasting impact on service level and performances. In recent years, due
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to austerity measures resulting in cuts to local authorities and public sector organi-
zations, a strong interest has been devoted to the definition of more efficient man-
agement practices. Within this context, public authorities had to deal with budget
restrictions while preserving as much as possible service levels and quality of pro-
vision. Therefore, institutions have been often interested in the rationalization of
the existing network of active public service facilities by closing down, downsiz-
ing, upsizing or merging some of them, but also by cutting down operation hours
and implementing virtuous demand management policies to pursue the provision of
more balanced service levels. Such policies have been having an impact on several
essential services, such as education, healthcare, environmental services.

In this context, facility location decisions play a crucial role at a strategic level.
The class of models traditionally used in the OR literature to support such decisions
are Facility Location Models (FLM). They aim at identifying the best position to
assign to a set of structures in a given location space, to satisfy a demand (actual
or potential) [1, 2]. Depending on the context, on the objectives to be achieved and
on the constraints to be satisfied (geographical, environmental, economic and tech-
nological), various versions of the models have been defined and a wide range of
application areas have been identified [3–7], also in the context of public sector [8, 9],
in which the main goal is to combine efficiency goals with the need of guaranteeing a
good and equitable access of users to the provided services [10, 11]. In the last years,
due to the above described economic context, the territorial reorganization problem
of existing facilities systems started to attract attention also from the scientific com-
munity. Such problems, usually motivated by occurred or potential changes in the
operating conditions of the system under consideration (demand distribution, budget
restrictions, requirements imposed by local and/or central authorities, etc.), consists
in modifying the current organization of facilities in the location space (number,
position, capacities, services, etc.). Also in this case, a multi-stakeholder perspective
is required as the need for achieving economic efficiencies has to be combined with
the need to preserve the quality of provided service to users.

Bruno et al. [12] proposed a classification framework, with the attempt of sys-
tematizing the literature focused on this emerging class of problems. They distin-
guish between single-period and multi-period models, on the basis of the planning
horizon in which decisions are taken (see for instance [13] and [14]), and between
ex-ante and ex-post models, if decisions are taken before or after changes motivating
re-organization occur (see for instance [15] and [12]). In this work, we refer to the
class of ex-post single period models. Within this class, Wang et al. [16] explored
decisions about the re-positioning of existing facilities in different points of the
location space; ReVelle et al. [17] analyzed decisions concerning the closure of
whole facilities, both in a competitive and non- competitive context. Bruno et al.
[18] addressed a real problem arising in the education sector, concerning the merg-
ing of existing facilities in clusters with common functions managed in a centralized
way. Guerriero et al. [19] analyzed a real problem in the healthcare sector, related to
the re-organization of the hospital network of an Italian Region.
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In this work, we propose a novel mathematical model that, with reference to
a system of facilities providing different types of services (multi-type facilities),
decides among different rationalization actions to be implemented with the aim of
improving the efficiency of the system. The proposed model extends the contribution
byBruno et al. [12] as, besides the closure ofwhole facilities and/or of single services,
it considers further actions, as the service shrinkage and the capacity reallocation
among services at a given facility. The remainder of the paper is organized as follows.
In Sect. 2, the description of the problem and its formulation in terms of FL model
is provided. In Sect. 3, results obtained by testing the model on a set of randomly
generated instances are presented. Finally, some conclusions and directions for future
research are drawn.

2 A Mathematical Model for the Territorial
Re-organization of Public Service Facilities

We consider, in a given location space, a set of facilities j ∈ J providing multiple
services k ∈ K , with limited capacities Ckj . For each service k, the demand from
any node i ∈ I (aik) is assigned to the closest facility. As each facility does not
necessarily provide any type of service, a demand node may also patronize different
facilities for different services. With reference to such a system, the problem consists
in evaluating possible rationalization actions aimed at improving the efficiency of
the system; in particular, the actions that can be undertaken are the closure of single
services, the closure of whole facilities and/or the internal capacity reconversion,
i.e. the reallocation of capacities among services at the same facility. Each action
certainly produces a saving, in terms of operative costs that can be avoided, but it
has some negative effects. On one side, part of the demand should be most likely
reallocated to farther facilities, with a discomfort in terms of accessibility. On the
other side, in thefinal configuration, active services should require capacity expansion
to satisfy the re-allocated demand. In this context, the model aims at identifying the
set of rationalization actions to be implemented, in order to achieve a minimum
benefit in terms of operating cost reduction, preserving the accessibility of users to
the provided services and optimizing the cost incurred to expand the capacities of
active services and cover all the demand.

In order to formulate such model, we denote with:

I The set of demand nodes, indexed by i (|I | � n)

J The set of existing facilities, indexed by j (|J | � m)

K The set of different types of services, indexed by k (|K | � q)

lk j The binary label equal to 1 if facility j currently provides service k
Ckj The capacity of service k at facility j
aik The total demand coming from node i for service k

αik
j The fraction of demand aik initially assigned to facility j

(
0 ≤ αik

j ≤ 1
)

di j Distance between the demand node i and the facility j
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ck j The unit cost to expand the capacity of service k at facility j
g j
tk The cost to transfer a unit of capacity from service t to service k at facility j
fk j The benefit deriving from the closure of service k at facility j
f j The additional benefit deriving from the closure of the whole facility j
B The minimum benefit to be obtained
F A very large arbitrary number

(
F � maxi∈I, j∈J

{
di j

})

and we introduce the following groups of decision variables:

sk j The binary decision variable equal to 1 if and only if service k provided at
facility j is closed

y j The binary decision variable equal to 1 if and only facility j is closed
r−
k j The binary decision variable equal to 1 if and only if the capacity of service k

at facility j is reduced and/or shrunk
r+k j The binary decision variable equal to 1 if and only if the capacity of service k

at facility j is expanded
xikj The binary decision variable representing the assignment of demand aik to

facility j in the final configuration
�k j The non-negative decision variable denoting the extra-capacity needed for ser-

vice k at facility j to satisfy the re-allocated demand
q j
tk The non-negative decision variable representing the amount of capacity

re-allocated from service t to service k of facility j

With this notation, the model can be formulated as follows:

minimize
∑
j∈J

∑
k∈K

ck j�k j +
∑

t∈K :t ��k

g j
tk q

j
tk (1)

subject to

sk j + r+k j + r−
k j ≤ lk j ∀ j ∈ J, ∀k ∈ K (2)

q j
kk ≤ Ckj sk j ∀ j ∈ J, ∀k ∈ K (3)

C jks jk + r−
k j ≤ q j

kk +
∑

t∈K :t ��k

q j
kt ≤ Ckj

(
r−
k j + sk j

) ∀ j ∈ J,

∀k ∈ K
(4)

r+k j ≤ �k j +
∑

t∈K :t ��k

q j
tk ≤ r+k j M ∀ j ∈ J, ∀k ∈ K (5)

y j −
∑

k∈K sk j∑
k∈K lk j

≤ 0 ∀ j ∈ J (6)

y j +
∑
k∈K

(
lk j − sk j

) ≥ 1 ∀ j ∈ J (7)

∑
j∈J

∑
k∈L j

fk j sk j +
∑
j∈J

f j y j ≥ B (8)
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∑
j∈J

xikj � 1 ∀i ∈ I, ∀k ∈ K (9)

xikj + sk j ≤ lk j ∀i ∈ I,∀ j ∈ J,∀k ∈ K (10)
∑
t∈J

dit x
ik
t +

(
F − di j

)(
lk j − sk j

) ≤ F ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K (11)

∑
i∈I

aik x
ik
j ≤ Ckj + �k j +

∑
t∈K

(q j
tk − q j

kt ) ∀ j ∈ J, ∀k ∈ K (12)

sk j , rk j+, rk j−, y j , x
ik
j ∈ {0, 1} ∀k ∈ K , ∀ j ∈ J (13)

q j
kt ≥ 0,�k j ≥ 0 ∀i ∈ I, ∀ j ∈ J, ∀k, t ∈ K (14)

The objective function (1) is the total cost incurred to cover the reallocated

demand, given by the cost for capacities’ expansion
(∑

j∈J

∑
k∈K ck j�k j

)
and inter-

nal capacities’ reconversion
(∑

t∈K :t ��k g
j
tk q

j
tk

)
.

Constraints (2) assure that each service k at any facility jmay be closed
(
sk j � 1

)
,

expanded
(
r+k j � 1

)
or shrunk

(
r−
k j � 1

)
. Constraints (3–5) define the mechanism

for internal capacities’ reallocation. In particular, constraints (3) impose that the arti-
ficial variables q j

kk (self-reallocations) may assume positive values only for closed
services

(
sk j � 1

)
; while, for shrunk services, only re-allocations toward different

services are feasible. Constraints (4) regulate the internal capacity reconversion and
self-reallocation mechanisms of both closed and shrunk services. In particular, they
impose that the capacity of a shrinking service k may be used only for internal recon-
versions and that, at least, one unity of capacity is ceded; while the capacity of closed

services k has to be fully reallocated, either toward other services t
(∑

t∈K :t ��k q
j
kt

)

or toward itself
(
q j
kk

)
. The self-re-allocation does not require any cost; hence, when

the model closes a facility, it will tend to re-allocate all the related capacity toward
itself, unless the transfer toward different services is needed.

Constraints (5) assure that each expanding service k receives at least one unit

of additional capacity, either ex novo
(
�k j

)
or from other services

(∑
t∈K :t ��k q

j
tk

)
,

and no limit on the maximum incoming capacity is imposed, being M a very large
number. Conditions (6–7) are logical constraints useful to define the relation between
variables sk j and y j . In particular, each facility j is constrained to be open as long
as the number of closed services is lower than the total number of provided services
(6); while, it is constrained to be closed when all its provided services are closed
(7). Constraint (8) expresses the need for the planner to obtain a minimum benefit
B. Conditions (9–12) rule the demand reallocation mechanism. In particular, con-
ditions (9) guarantee the total coverage of demand for any service k Constraints
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(10–11) impose that the demand from any node i for each service k is assigned to
the closest facility (11), among those still providing it (10). Constraints (12) indi-
cate that the total demand allocated to a service k at a facility j has not to exceed
its total capacity Ckj , including any additional capacity, either introduced ex novo(
�k j

)
or deriving from the other services

(∑
t∈K :t ��k q

j
tk

)
, and excluding any amount

of capacity ceded toward other services of the same facility
(∑

t∈K q j
kt

)
. Note that

the total additional
(
�k j +

∑
t∈K :t ��k q

j
tk

)
and ceded capacity

(∑
t∈K q j

kt

)
cannot be

simultaneously positive quantities.
Finally, Constraints (13–14) define the domain of the decision variables.

3 Results

In order to show the capability of the proposed model to provide interesting solutions
to the above introduced rationalization problem, in the following an illustrative
example is provided, in which the solution obtained with reference to a very limited
size instance is represented and commented. In Fig. 1, a system with 3 facilities
(J � {A, B,C}), providing three services (K � {1, 2, 3}), is represented. Each
node j is subdivided in sectors, associated to the provided services; the size of single
sectors is proportional to the related capacities

(
Ckj

)
, while the size of the whole

node is proportional to the total capacity of the facility j
(
C j � ∑

k Ckj
)
. According

to the allocation of demand nodes (I � {a, b, c, d, e, f, g, h, i, l}) to available
facilities, each service k at each facility j is characterized by a total captured demand(
Aik � ∑

i aikα
k
i j

)
, represented, in the figure, as saturation level of the related

sector. In Fig. 2, the solution obtained by imposing the closure of two services is
represented. It can be noticed that the model closes service 2 at facility B and service
3 at facility C (s2B � s3C � 1). Accordingly, users are re-allocated toward facilities
A e B for service 3 and toward C for service 2. As consequence, such services need
to be expanded

(
r+3A � r+3B � r+2C � 1

)
, as they are not able to cover the reallocated

demand with their own residual capacities.
From Fig. 2, it is possible to notice that service 2 at facility C and service 3 at

facility B are expanded through internal capacities coming from closed services;
while, in the case of service 3 at facility A, the needed capacity partially comes from
service 1

(
r−
1A � 1

)
, that is shrunk, and partially added ex-novo (green arrow in the

figure).
In order to test the model, a set of random instances has been generated. The

number of users has been fixed equal to 100, while the number of facilities and
services have varied in the set {8, 10, 12}. The other parameters of the instances
have been randomly generated according with the procedure introduced in [12]. In
particular, it is worth to underline that fk j values have been fixed equal to 1 for each
pair (k, j), while f j values equal to 0 for each facility j; this way B represents the
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Fig. 1 Instance 1: initial
configuration

Fig. 2 Instance 1: final
solution

minimum number of services to be closed and, from now on, it will be indicated
by p. For each pair (|J |, |K |), 5 different instances have been generated and solved.
The test instances have been solved for two different values of parameter p, equal to
10% and 20% of the total number of available services. In Table 1 the computational
times to optimally solve the model are reported.

Results show that the CPU time generally depends on the combination of the
cardinality of the sets J and K . In particular, the number of offered services seems
to affect the computational times more than the number of active facilities. This is
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Table 1 Computational times (CPU times)

p �0, 10
∑

k, j lk j p �0, 20
∑

k, j lk j

|J | |I | |K | Min Max Average Min Max Average

8 100 8 8.56 19.43 12.40 22.01 166.17 66.22

10 9.09 87.69 32.90 27.36 147.36 78.93

12 5.65 122.41 39.18 11.52 251.59 136.176

10 100 8 6.36 37.19 20.46 24.53 205.68 122.00

10 6.83 55.47 21.98 23.78 457.43 337.58

12 35.25 179.38 92.15 240.20 3766.17 1470.39

12 100 8 6.07 25.13 11.54 23.33 282.45 126.936

10 10.82 74.05 39.586 12.91 286.80 166.532

12 173.83 397.07 260.78 508.49 2762.67 1854.00

due to the fact that the capacity re-allocation options do not depend on the number of
existing facilities but on the number of offered services at single facilities. Another
parameter affecting the number of re-allocation options is the number p of closed
services; indeed, as it increases,more demand is re-allocated andmore extra-capacity
at the remaining services is needed. Note that by fixing the cardinalities of sets J and
K , CPU times increase a lot by varying the percentage of closed services from 10% to
20%. These preliminary results suggest that a good range of problems can be solved
to optimality through the use of a commercial solver, but appropriate algorithmic
approaches should be developed to cope with larger instances.

4 Conclusions

In this work, we proposed a new mathematical model to support territorial re-
organization decisions in non-competitive contexts. Themodel assumes the presence
of a set of facilities offering different types of services to users (multi-type facili-
ties) and explores, together with the closure of whole facilities, also the possibility
of closing single services. The objective function is represented by the extra-cost
to be paid in order to satisfy the reallocated demand, while constraints expressing
the need of obtaining a target benefit from the shrinkage process are included. The
presented preliminary results suggest that a good range of problems can be solved
to optimality through the use of a commercial solver, but appropriate algorithmic
approaches should be developed to cope with larger instances. Finally, as concerns
the model, new versions may be formulated by allowing the shrinking of the services
without re-allocate any demand, the introduction of constraints about the maximum
expansion allowed for existing facilities, equity constraints for the final distribution
of the demand, and real-world applications should be addressed.
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An Efficient and Simple Approach
to Solve a Distribution Problem

C. Cerrone, M. Gentili, C. D’Ambrosio and R. Cerulli

Abstract We consider a distribution problem in a supply chain consisting of mul-
tiple plants, multiple regional warehouses, and multiple customers. We focus on the
problem of selecting a given number of warehouses among a set of candidate ones,
assigning each customer to one or more of the selected warehouses while minimizing
costs. We present a mixed integer formulation of the problem of minimizing the sum
of the total transportation costs and of the fixed cost associated with the opening of
the selected warehouses. We develop a heuristic and a metaheuristic algorithm to
solve it. The problem was motivated by the request of a company in the US which
was interested both in determining the optimal solution of the problem using avail-
able optimization solvers, and in the design and implementation of a simple heuristic
able to find good solutions (not farther than 1% from the optimum) in a short time. A
series of computational experiments on randomly generated test problems is carried
out. Our results show that the proposed solution approaches are a valuable tool to
meet the needs of the company.
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1 Introduction

We consider a distribution problem in a multi-commodity supply chain consisting of
multiple plants, multiple regional warehouses, and multiple customers. The problem
addressed consists of selecting a given number of warehouses among a set of candi-
dates, and minimizing the sum of the total transportation costs and of the fixed cost
associated with the opening of the selected warehouses such that all customers are
served and capacity limits at the plants are respected. The problem was motivated by
a consulting project for a company located in the USwhich was interested in offering
a web service by solving the problem on-line for its own customers. The specific
request of the company was twofold. On the one hand, the company was interested in
comparing the computational times required by different optimization solvers (both
commercial and free ones) to determine the optimal solution of the problem, and, on
the other hand, it was interested in the design of a simple heuristic approach with a
good trade-off between quality of the solution and required computational time (the
goal was a solution no more than 1% worse than the optimum).

The problem addressed belongs to the general class of location problems [5, 6]
and can be seen as an extension of the well known fixed charge facility location
problem which includes shipments from plants to distribution centers and multiple
commodities [4]. The fixed charge facility location problem and its extension in
supply chain design have been widely studied in the literature, and several exact and
heuristic approaches have been proposed [3].

In this paper we propose to use a greedy algorithm and a novel metaheuristic
approach, namely a Carousel Greedy approach, which responds to the company
requirement of simplicity and which proved to be efficient in solving a wide class
of problems [1, 2]. An extensive experimental analysis is carried out to compare
computational times required by the solvers and to study the trade-off between quality
and computational time required by our heuristic approaches.

The paper is organized as follows. A formal description of the problem along with
the mathematical formulation is given in the next section. Our heuristic approaches
are described in Sect. 3. The experimental analysis is presented in Sect. 4. Conclu-
sions are discussed in Sect. 5.

2 Problem Description

Let S be a set of plants, C a set of final customers which need to be served, W a
set of warehouses connected to the plants and customers, and P the set of products
which can be produced at each plant. Given a set D, we denote by |D| its cardinality.
Each plant s ∈ S can produce a maximum given quantity usp of product p ∈ P
and can ship it to a warehouse w ∈ W for a unit transportation cost equal to σswp.
From each warehouse w ∈ W , a product p ∈ P is shipped to a customer c ∈ C
for a unit transportation cost equal to σwcp. Each plant has also a total production
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capacity which is denoted by us . Each customer c ∈ C has an associated demand
dcp for product p ∈ P . Finally, each warehouse w ∈ W can be activated with a fixed
activation cost equal to σw. We want to activate at most k warehouses among the
candidate ones so that the total cost, given by the sum of the activation costs and
the sum of the transportation costs, is minimized, and all the customer demands are
satisfied without exceeding capacity at the plants. Let us define the following set of
variables: xswp is the quantity of product p ∈ P which is produced at plant s ∈ S
and shipped to warehouse w ∈ W ; xwcp is the quantity of product p ∈ P which is
shipped from warehouse w ∈ W to customer c ∈ C ; yw ∈ {0, 1} which is equal to
one if warehouse w ∈ W is activated and equal to zero otherwise. The mathematical
formulation of our problem is as follows.

z = min
∑

w∈W
σwyw +

∑

p∈P

∑

s∈S

∑

w∈W
σswpxswp +

∑

p∈P

∑

w∈W

∑

c∈C
σwcpxwcp (1)

∑

w∈W
yw ≤ k (2)

∑

w∈W
xswp ≤ usp ∀ p ∈ P, s ∈ S (3)

∑

w∈W

∑

p∈P

xswp ≤ us ∀ s ∈ S (4)

∑

w∈W
xwcp ≥ dcp ∀ p ∈ P, c ∈ C (5)

xswp ≤ usp yw ∀ p ∈ P, s ∈ S,w ∈ W (6)

xwcp ≤ dcp yw ∀ p ∈ P, c ∈ C,w ∈ W (7)
∑

s∈S
xswp =

∑

c∈C
xwcp ∀ p ∈ P,w ∈ W (8)

yw ∈ {0, 1} ∀ w ∈ W (9)

xswp ≥ 0 ∀ p ∈ P, s ∈ S,w ∈ W (10)

xwcp ≥ 0 ∀ p ∈ P, c ∈ C,w ∈ W (11)

Objective function (1) minimizes the sum of the total activation costs and of the total
transportation costs. Constraint (2) ensures the activation of at most k warehouses.
Constraints (3) state that the total amount of product p ∈ P shipped from plant s
cannot exceed the capacity of the plant to produce that product. Constraints (4) are
additional capacity constraints which require that the total production capacity is
not exceeded in the plant. Customer demands are satisfied thanks to constraints (5).
Constraints (6) and (7) are logical constraints which ensure that flow cannot transit
through awarehouse if it is not activated. Finally, constraints (8) are flowconservation
constraints for each warehouse.
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3 Our Solution Approaches

We use two solution approaches to solve the problem described in the previous
section: a greedy approach and a carousel greedy approach [2].

Greedy Algorithm
The main idea of the greedy algorithm is to choose at each step, according to a
greedy criterion, one of the warehouses to be chosen and to stop when k warehouses
are selected. The final solution is then obtained by solving the mathematical model
(1)–(11) by setting yw = 1 for each warehouse w which was greedily chosen. The
greedy criterion, at each step, evaluates the overall cost of including a warehouse
in the solution and chooses to select the warehouse corresponding to the minimum
cost. Specifically, during the first iteration, in order to choose the first warehouse to
be included in the solution, the algorithm solves |W | linear programming problems,
one for each warehouse that needs to be evaluated. In particular, the linear problem
associated with any given warehousew ∈ W is obtained by model (1)–(11) by fixing
to one the variable yw of the warehouse being evaluated, and it is as follows:

z(1)
w = min σw +

∑

p∈P

∑

c∈C
σscpxscp (12)

∑

c∈C
xscp ≤ usp ∀ p ∈ P, s ∈ S (13)

∑

c∈C

∑

p∈P

xscp ≤ us ∀ s ∈ S (14)

∑

s∈S
xscp ≥ dcp ∀ p ∈ P, c ∈ C (15)

xscp ≥ 0 ∀ p ∈ P, c ∈ C, s ∈ S (16)

In the above formulation, we have only one set of variables, namely variables xscp,
which denote the quantity of product p to be shipped from plant s to customer c. The
unit transportation cost σscp in the objective function (12) is obtained as the sum of
the unit transportation cost for shipping product p from plant s to warehouse w plus
the unit transportation cost of shipping product p from warehouse w to customer c,
i.e. σscp = σswp + σwcp.

The selected warehouse, after the solution of |W | linear programming problems,
is the warehouse w∗, such that the associated value zw∗ is the minimum, i.e., w∗ =
argminw∈W zw. In the successive step, |W | − 1 linear programming problems will be
solved to choose the next warehouse to be activated. Specifically, with anywarehouse
w to be evaluated, the linear programming problem to be solved is:

z(2)
w = min σw∗ + σw +

∑

p∈P

∑

c∈C
σscpxscp

subject to (13)−(16) (17)
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where the unit transportation costs σscp in the objective function (17) are defined as
follows:

σscp = min{σsw∗ p + σw∗cp, σswp + σwcp}

The algorithm proceeds in this way until k warehouses are selected.
In our experiments, we solved the linear programming problems associated with

each warehouse by means of an optimization solver.

Carousel Greedy Algorithm
The carousel greedy algorithm is a generalizedmethod to enhance greedy algorithms,
originally proposed in [2]. The aim is to obtain a procedure which is almost as fast
and simple as the greedy procedure (on which it is based), while achieving accuracy
levels similar to those of a metaheuristic. Themain idea underlying a carousel greedy
algorithm is that during the execution of a constructive heuristic, the later decisions
are likely to be more informed and valid than the earlier ones. Given this observation,
the carousel greedy procedure for our specific problem starts from a feasible solution
F (that is, a set of selected warehouses which satisfies constraints (2)–(8)) obtained
through a greedy procedure, and operates in three main phases:

• In the first phase a partial (unfeasible) solution R is built from F by removing a
number of warehouses equal to a given percentage β of the size of F .

• In the second phase, the partial solution R is modified by iteratively removing
from it the oldest elements (that is, removing warehouses which were the first to
be selected) and adding new ones. This step is repeated for a pre-defined number
α of iterations. The choice for adding new warehouses to R are made according
to the same greedy criterion used by the greedy algorithm. The output of this step
is a new partial solution R′.

• In the final phase, the partial solution R′ is completed, using the greedy algorithm,
to produce a feasible solution.

4 Experimental Analysis

We ran a wide set of experiments on randomly generated instances. We implemented
our algorithms in Java (version 9) and use a PC with Core i7 2.6 Ghz and 16 Gb
RAM.We obtained the optimal solution of the problem by solving the mathematical
model using both Cplex (version 12.7) and LPSolve (version 5.5). We ran the greedy
and the carousel greedy using both Cplex and LPSolve to solve the mathematical
models required by the greedy criterion. Our analysis had the aim of (i) comparing the
computational time of the commercial solver Cplex and of the free solver LPSolve,
and (ii) performing a sensitivity analysis of the quality of the solution and of the
computational time required by our greedy and carousel greedy algorithms.

We generated several instances by varying the following: the total number of
products (|P| = 5, 10, 20), the total number of plants (|S| = 5, 10, 15), the total
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number of customers (|C | = 100, 200, 400), the total number of candidate ware-
houses (|W | = 50, 100, 200), and the total number of warehouses to be activated
(k = 10, 20). Customers, plants and warehouses were randomly distributed on a grid
of size 5,000× 5,000. We assumed transportation costs not to depend on the product
type and to be proportional to the distances between either supply and warehouses
or warehouses and customers. Distances σsw, between a plant s and a warehouse
w, are perturbed euclidean distances, that is σsw = δsw ± 0.05δsw, where δsw is the
euclidean distance and the perturbation is either added or subtracted at random. Dis-
tances σwc, between a warehouse w and a customer c, are computed analogously.
Demand dcp of product p at customer c is uniformly distributed within [0, 100].
Supply at the plants for each product was randomly generated so that the sum of all
the supply for that product is less than a predefined percentage of the total demand,
that is

∑
s usp ≤ γ

∑
c dcp. We set γ = 0.27. Finally, total supply us at each plant is

randomly generated so that it is strictly less than the sum of all the supply of each
product at the plant, i.e., us ≤ ε

∑
p usp. We set ε = 0.22.

For each combination of input parameters, we generated three different instances
and reported the average of the obtained results.

Results are shown in Tables 1 and in Fig. 1.
Table 1 shows the results of the mathematical model (Cplex column), the greedy

algorithm (Greedy column), and the carousel greedy algorithm (CG column) on the
set of instances when k = 10, which were the most difficult to solve. The results of
the carousel greedy algorithm are reported for different values of the parameters α

and β. The table shows the computational time (in seconds) required by Cplex to
solve the instance to optimality as well as the computational time and the percentage
gap from the optimum for the other approaches. The gap is computed as Opt−UB

Opt
where Opt is the solution value returned by Cplex, and UB is the solution value
returned either by the greedy algorithm or by the carousel greedy algorithm. We
set a time limit of 1,800 s for the solver. The symbol ∗ in the table indicates Cplex
reached the time limit on at least one of the instances of the scenario. This happened
for scenarios 16 and 17; hence, the corresponding gaps for the greedy and of the
carousel greedy algorithms are not computed with respect to the optimal solution
for these scenarios but with respect to the best solution found within the time limit.
The mathematical models to be solved in the greedy criterion were solved using
Cplex. As expected, the computational time for the three approaches increases with
larger instances. On average (considering only scenarios 1–15, for which Cplex did
not reach the time limit), the greedy algorithm returns a solution 10 times faster
than Cplex; the carousel greedy 4 times faster than Cplex when α = 3 and β = 0.1,
otherwise, with the other settings, the carousel greedy is 6 times faster than Cplex.
The percentage gap from the optimum is always less than 6% for the greedy (with a
maximum gap equal to 5.4%). Using the settings α = 3 and β = 0.1, the threshold
of 1% is met by the carousel greedy algorithm for all the scenarios but one (scenario
11, for which the gap is equal to 1.2%).



An Efficient and Simple Approach to Solve a Distribution Problem 157

Ta
bl
e
1

R
es
ul
ts
of

th
e
m
at
he
m
at
ic
al
m
od

el
,t
he

gr
ee
dy

al
go

ri
th
m
,a
nd

th
e
ca
ro
us
el
gr
ee
dy

on
th
e
se
to

f
in
st
an
ce
s
w
he
n
k

=
10

Sc
en
ar
io

C
pl
ex

G
re
ed
y

C
G
:

α
=

1,
β

=
0.
1

C
G
:α

=
1,

β
=

0.
2

C
G
:α

=
3,

β
=

0.
1

ID
|P

|
|S|

|C
|

|W
|

T
im

e
(s
)

T
im

e
(s
)

G
ap

(%
)

T
im

e
(s
)

G
ap

(%
)

T
im

e
(s
)

G
ap

(%
)

T
im

e
(s
)

G
ap

(%
)

1
5

5
10
0

50
3.
91

1.
64

1.
6

3.
31

0.
4

3.
31

0.
4

4.
45

0.
3

2
5

5
10
0

10
0

15
.5
6

2.
54

2.
3

6.
29

0.
5

6.
29

0.
5

8.
44

0.
3

3
5

5
10
0

20
0

62
.1
2

5.
28

2.
0

11
.3
8

1.
1

11
.3
8

1.
1

15
.9
2

0.
8

4
5

5
20
0

50
7.
84

3.
76

1.
9

7.
02

0.
1

7.
02

0.
1

9.
18

0.
1

5
5

5
20
0

10
0

99
.2
8

5.
81

2.
6

13
.9
8

0.
8

13
.9
8

0.
8

18
.2
7

0.
4

6
5

5
20
0

20
0

22
9.
10

11
.7
1

2.
1

27
.2
5

0.
9

27
.2
5

0.
9

35
.4
6

0.
9

7
5

5
40
0

50
63
.3
3

7.
66

1.
0

15
.5
9

0.
3

15
.5
9

0.
3

20
.3
0

0.
2

8
5

5
40
0

10
0

12
8.
35

16
.4
8

2.
0

33
.7
1

0.
9

33
.7
1

0.
9

43
.2
4

0.
6

9
5

5
40
0

20
0

71
8.
56

33
.0
7

2.
6

61
.5
9

1.
3

61
.5
9

1.
3

82
.2
7

0.
6

10
5

10
20
0

10
0

21
1.
30

17
.9
0

5.
4

31
.7
6

0.
5

31
.7
6

0.
5

40
.1
7

0.
4

11
5

15
20
0

10
0

23
8.
92

30
.0
7

4.
1

51
.7
0

1.
4

51
.7
0

1.
4

68
.3
7

1.
2

12
10

5
20
0

10
0

10
2.
72

16
.9
7

1.
4

33
.2
9

0.
9

33
.2
9

0.
9

43
.8
2

0.
4

13
10

10
20
0

10
0

19
3.
52

56
.7
8

2.
0

79
.0
5

0.
8

79
.0
5

0.
8

10
3.
01

0.
5

14
10

15
20
0

10
0

77
2.
73

10
9.
06

4.
4

14
5.
82

1.
4

14
5.
82

1.
4

19
0.
42

0.
8

15
20

5
20
0

10
0

89
1.
05

47
.1
0

2.
1

76
.7
1

0.
8

76
.7
1

0.
8

10
7.
23

1.
0

16
20

10
20
0

10
0

10
93
.8
5∗

11
7.
92

5.
3

19
6.
71

1.
2

19
6.
71

1.
2

25
7.
07

0.
3

17
20

15
20
0

10
0

18
03
.2
7∗

22
2.
53

−1
1.
6

36
6.
06

−1
4.
1

36
6.
06

−1
4.
1

50
9.
01

−1
4.
4

A
ve
ra
ge

(s
ce
na

ri
os

1–
15
)

24
9.
22

24
.3
9

2.
5

39
.9
0

0.
8

39
.9
0

0.
8

52
.7
0

0.
6

St
.D

ev
.(
sc
en
ar
io
s
1–
15
)

28
4.
31

27
.7
8

1.
2

37
.1
0

0.
4

37
.1
0

0.
4

48
.9
8

0.
3

M
ax

(s
ce
na

ri
os

1–
15
)

89
1.
05

10
9.
06

5.
4

14
5.
82

1.
4

14
5.
82

1.
4

19
0.
42

1.
2

M
in

(s
ce
na

ri
os

1–
15
)

3.
91

1.
64

1.
0

3.
31

0.
1

3.
31

0.
1

4.
45

0.
1



158 C. Cerrone et al.

Fig. 1 Running times of the proposed approaches when using two different solvers, namely Cplex
and LPSolve

Finally, Fig. 1 shows the analysis of the running times when two different solvers,
namely Cplex and LPSolve, are used to solve the mathematical models. Within the
time limit of 1,800 s, the free solver LPSolve was able to solve to optimality for only
the first nine scenarios; consequently, the results are reported only for this subset
of scenarios. The graph on the left compares the running time for the two solvers,
while the graph on the right compares the running time for the greedy and for the
carousel greedy when the two different solvers are used to solve the mathematical
models required by the greedy criterion. On average, Cplex is six times faster than
LPSolve, which results in the greedy and carousel greedy being six and seven times
faster on average, respectively, when using Cplex than when using LPSolve.

5 Conclusions

Motivated by the request fromacompany in theUS,we address a distribution problem
in a multi-commodity supply chain consisting of multiple plants, multiple regional
warehouses, and multiple customers. Our focus was on the problem of selecting a
given number of warehouses among a set of candidate ones, assigning each customer
to one ormore of the selectedwarehouseswhileminimizing total costs. The company
was interested in the design and implementation of a simple heuristic able to find
a solution not farther than 1% from the optimum in a short time. We designed a
greedy and a carousel greedy approach and tested the trade-off between quality of
the solution and running time on a set of randomly generated instances. Our results
show that the proposed heuristic approaches are a valuable tool to meet the needs of
the company.
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First-Time Interaction Under
Revenue-Sharing Contract
and Asymmetric Beliefs of Supply-Chain
Members

Tatyana Chernonog

Abstract The paper provides a thorough investigation of a first-time interaction
between a retailer and a manufacturer who are unreliable in a cost function of the
manufacturer. We consider a two-echelon supply chain of a single customized prod-
uct, where parties interact via a revenue-sharing contract. The general model is for-
mulated as a Retailer-Stackelberg game with two-sided information asymmetry. We
derive the equilibrium strategy and parties’ profits when: (i) information is complete,
(ii) hidden information asymmetry is present, and (iii) known information asymme-
try is present. For a third scenario, we propose two different contracts to induce a
Pareto-optimal information-sharing equilibrium.

Keywords Revenue sharing contract · Asymmetric information
Supply chain management

1 Introduction

The globalization and customization of the supply chain have rapidly accelerated
through the last decade, since the growth of the internet has presented supply chains
withmany significant opportunities for cost reduction and service improvements [10].
On the one hand, to increase profits, retailers continuously look for new low-cost or
brand-new manufacturers, and the internet offers an efficient way to connect many
potential retailers and manufacturers. This trend, in turn, increases the likelihood
that a lack of prior interactions will mean the retailers do not know how efficient the
manufacturers are [8]. On the other hand, with the proliferation of social media and
online publishing, styles and trends now change faster than ever, and customization
helps manufacturers gain insights from customized designs and fine-tune products
to stay one step ahead of the competition.
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The paper provides a thorough investigation of a first-time interaction between
a retailer and a manufacturer in a supply chain of a single customized product. We
suppose both the retailer and the manufacturer acknowledge the presence of inherent
uncertainty in the supplier’s production process. In line with Gurnani and Shi [8],
we assume the supply-chain parties have different estimates of the manufacturer’s
cost function. Following the last trend in a market, the retailer is a leader of a supply
chain and parties interact under a widely used revenue-sharing contract [1–3, 5].

To our knowledge, only two papers have analyzed revenue-sharing contracts with
asymmetric information under consignment contracts. Kong et al. [9] consider a
revenue-sharing policy in which the supplier sells the product to two competing
retailers under one-sided information asymmetry. Zhang and Chen [17] study infor-
mation sharing in a two-echelon supply chain, in which both the supplier and the
retailer possess partial information on the demand. Studies dealing with two-sided
information asymmetry tend to focus on wholesale-price contracts [4, 8, 12, 13, 18].

The Importance and the innovative contribution of this paper lie in its generality.
For general revenue and cost functions of the manufacturer, and for a general set of
decisions, we have investigated the effect of information asymmetry in the manu-
facturer’s cost function. To the best of our knowledge, no studies in the operations
management literature have investigated the first-time interaction between a retailer
and a manufacturer of a customized product, who operate under a revenue-sharing
contract under two-sided information asymmetry.

2 Model Formulation

Consider a manufacturer who distributes a customized product to customers via a
dominant retailer. Let s ∈ S be a vector of actions in a feasible set S of positive
real numbers, such as selling price, product quality, shipping fee, or investment in
research and development or in brand promotion undertaken by the manufacturer.
The total revenue is denoted by R(s). Let {Cx (s) : x ∈ �}, where � is an index
set, be a collection of the manufacturer’s possible cost function, which would all
make sense. According to the normative approach (e.g., [7]), both the retailer and the
manufacturer assess a prior density function fr (·) and fm(·) over the set {x ∈ �i },
i ∈ {r,m}. These density functions reflect the retailer’s and manufacturer’s beliefs
regarding the actual cost function. Note fr (·) may be the industry-wide estimated
measures of performance, and the difference in the parties’ beliefs may be attributed
to the manufacturer’s proximity to the production process. Some of the actions that
affect R may not affect Cx, and vice versa. To avoid trivial cases, we assume s ∈ S
exist for which R(s) − Ei [u(Cx (s))] > 0, i ∈ {r,m}, where Ei [·] denotes the
expectation calculated based on party i’s beliefs and u(·) denotes the utility function of
themanufacturer. Becausewe consider a first-time interaction involving a customized
product, both estimates could be inaccurate. However, for their planning purposes,
the retailer and the manufacturer would use their own best beliefs [8].
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The manufacturer and the retailer interact via a revenue-sharing contract under
which the retailer demands a fraction η of the revenue from selling the product.
Therefore, the manufacturer, via the vector of actions s, dictates the total profit of the
supply chain, whereas the retailer dictates the revenue-sharing rule. The profit of the
retailer and the expected utility function of themanufacturer’s profit are, respectively,

�r (η|s) � ηR(s) (1)

and

Ei [u(�m(s|η, fi ))] � (1 − η)R(s) − Ei [u(Cx (s))], i ∈ {r, m}. (2)

Lemma 1 E[�m(s|η, fi )] decreases in η for any s.

Proof Straightforward from (2).
We model the manufacturer-retailer relationship as a sequential non-cooperative

game in which the retailer is the leader of the supply chain and the manufacturer
is the follower (Retailer-Stackelberg). In what follows, we derive the equilibrium
strategy and parties’ profits under the following conditions: (i) information is com-
plete—the retailer’s and manufacturer’s beliefs regarding the actual cost function
are common knowledge; (ii) hidden information asymmetry is present—the retailer
does not know that themanufacturer’s beliefs regarding the cost function are different
from her estimation; and (iii) known information asymmetry is present—the retailer
knows that the manufacturer’s belief regarding the cost function is different from her
estimation; however, this belief is the private information of the manufacturer.

2.1 The Case of Complete Information

We first assume fr (·) and fm(·) are common knowledge; that is, the retailer and the
manufacturer know each other’s estimates. Under this assumption, the retailer sets
her equilibrium revenue share η * by solving

max
0≤η≤1

{�r (η|s(η| fm)) � ηR(s(η| fm))}
s.t. s(η| fm) ≡ argmax

s∈S
{Em[u(�m(s|η, fm))]} . (3)

Clearly, it is anoptimizationproblem inwhich thedecisionmaker is the retailer and
themanufacturer follows bydetermining his set of actions, denoted by s∗ ≡ s(η∗| fm),
so that the pair (η∗, s∗) is a Nash equilibrium. We assume both maxima exist. This
assumption holds, for example, when both R(s) and C(s) are continuous and either S
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is a compact set or lims→∞[R(s) − Em[u(Cx (s))]] ≤ 0.1 Note η may take the value
of 0 or 1, in which case, no contract will be signed.

Proposition 1 Under complete information, the equilibrium strategy is not affected
by the retailer’s belief about the manufacturer’s cost function.

Proof Straightforward from (3).
By Proposition 1, the retailer has to assess the manufacturer’s beliefs regarding

the cost function, but neither party has to know the retailer’s belief.

Representative example
Consider a revenue-sharing contract in the mobile app supply chain [1, 2], where the
specific vector of the manufacturer’s actions are retail price, p, and q, whereby an
increase in q causes an increase in demand but requires some level of investment.
Examples of q might be the quality level or the degree of promotion or innovation
invested in the mobile application. Hereafter, we refer to q as the quality level of the
product. The vector of actions is s � (p, q), 0 ≤ p, q < ∞ and the revenue of
the supply chain is R(p, q) � pD(p, q), where D(p, q) is a demand function. We
adopt the linear demand function used by Xie et al. [16] and El Ouardighi and Kim
[14], according to which

D(p, q) � a − αp + βq,

where a is the base customer demand, α is the customer’s sensitivity to selling price,
and β is the customer’s sensitivity to product quality. Thus, total revenue is

R(p, q) � pD(p, q).

As in the case of virtual-product models [6], the distribution of mobile apps
is characterized by a negligible unit distribution cost and ample capacity to fulfill
demand. Therefore, our model does not include either holding or shortage costs. Let
the cost function be

C(q) � γ q2/2,

where the scale coefficient γ is a random variable and 1/γ reflects the manufacturer’s
investment efficiency [15]. The randomvariableγ can take the valueγ 1 andγ 2,where
γ 2 >γ 1 >0. Thus, γ 1 represents a scenario in which the manufacturer’s investment
efficiency is high, whereas γ 2 represents a lowmanufacturer’s investment efficiency.
The retailer believes the probability that the manufacturer is highly efficient is μr ,
whereas the manufacturer believes this probability is μm. For simplicity, we denote
each party’s expected scale coefficients by γ̄i ≡ μiγ1 − (1 − μi )γ2, i ∈ {r, m}.
For this example, and assuming the manufacturer is risk neutral, the optimization
problem (3) can be rewritten as

1s → ∞ means that at least one component of S tends to infinity.



First-Time Interaction Under Revenue-Sharing Contract … 165

max
0≤η≤1

{�r (η|p(η|μm ), q(η|μm )) � ηp(η|μm )D(p(η|μm ), q(η|μm ))}

s.t. (p(η|μm ), q(η|μm )) ≡ argmax
p,q

{
E[�m (p, q|η, μm ) ≡ (1 − η)pD(p, q) − γ̄mq2/2]

} .

Solving the above optimization problem, we find that if β2

2α < γ̄m <
β2

α
, then at

equilibrium, η∗ � 2αγ̄m
β2 − 1, p∗ � aγ̄m

2(2αγ̄m−β2) , q
∗ � a(β2−αγ̄m )

β(2αγ̄m−β2) , �r (η∗|p∗, q∗) �
a2γ̄ 2

mα

4β2(2αγ̄m−β2) , and Em[�m(p∗, q∗|η∗)] � a2γ̄ 2
m (β

2−αγ̄ 2
m )

2β2(2αγ̄ 2
m−β2) . Note condition

β2

2α < γ̄m <
β2

α

ensures an interior equilibrium revenue share and finite value of equilibrium price
and quality. For these reasons, hereafter we assume this condition holds.

2.2 The Case of Hidden Information Asymmetry

We assume the retailer does not know that the manufacturer’s beliefs regarding
the cost function are different from the industry-wide estimated fr (·). Under this
assumption, the retailer sets her equilibrium revenue share η̂ * by solving

max
0≤η≤1

{�r (η|s(η| fr )) � ηR(s(η| fr ))}
s.t. s(η| fr ) � argmax

s∈S
{Er [u(�m(s|η, fr ))]} . (4)

As in previous subsection, we assume both maxima exist. This assumption holds,
for example, when both R(s) and C(s) are continuous and either S is a compact set
or lims→∞[R(s) − Er [u(Cx (s))]] ≤ 0. Then, given η̂∗, the manufacturer, based on
his personal beliefs about the actual cost function, fm(·), determines the optimal set
of actions, denoted ŝ∗ ≡ s(η̂∗| fm), by solving

max
s∈S

{
Em

[
u
(
�m(s|η̂∗, fm)

)]}
, (5)

so that the pair (η̂∗, ŝ∗) is a Nash equilibrium.

Proposition 2 Under hidden information asymmetry, the equilibrium strategy is
affected by the retailer’s beliefs about the manufacturer’s cost function as well as
the manufacturer’s belief.

Proof Straightforward from (4) and (5).

Representative example (continued)
Following (4) and (5), we find that under hidden information asymmetry at equilib-
rium, η̂∗ � 2αγ̄r−β2

β2 , p̂∗ � aγ̄m
2(α(γ̄m+γ̄r )−β2) , q̂

∗ � a(β2−αγ̄r )
β(α(γ̄m+γ̄r )−β2) , �r (η̂∗| p̂∗, q̂∗, μm) �

a2γ̄ 2
r α(2αγ̄r−β2)

4β2(α(γ̄m+γ̄r )−β2)2 and Em
[
�m( p̂∗, q̂∗|η̂∗, μm)

] � a2γ̄m (β2−αγ̄r )
2β2(α(γ̄m+γ̄r )−β2) .
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2.3 Comparison of Complete Information and Hidden
Information Asymmetry

Unsurprisingly, the hidden information asymmetry concerning the cost function may
cost the retailer in terms of reduced profits, as the following proposition claims.

Proposition 3 �r (η∗|s∗) ≥ �r (η̂∗|ŝ∗).

Proof By comparing the constraints of (3) and (5), we found the optimal manu-
facturer’s set of actions s is obtained by substituting η∗ and η̂∗ into s(η| fm), for the
complete-information and for the hidden-information-asymmetry cases, respectively.
This result is due to the manufacturer’s personal belief about his cost function, and
his decision which is based on it. Thus,�r (η∗|s∗) � �r (η∗|s(η∗)) ≥ �r (η|s(η)) ∀η,
and hence, �r (η∗|s∗) ≥ �r (η̂∗|s(η̂∗)) � �r (η̂∗|ŝ∗).

By Proposition 3, the retailer may benefit, but never loses, from knowing the
manufacturer’s belief about the cost function. The next proposition corresponds to
the profit of the manufacturer in this situation.

Proposition 4 Em[u(�m(s∗|η∗, fm))] ≥ Em
[
u
(
�m(ŝ∗|η̂∗, fm)

)]
if andonly ifη∗ <

η̂∗.

Proof Let η∗ < η̂∗. Then Em
[
u
(
�m(ŝ∗|η̂∗, fm)

)] ≤ Em
[
u
(
�m(ŝ∗|η∗, fm)

)]≤
Em[u(�m(s∗|η∗, fm))]. The first inequality arises because, by Lemma 1,
E[�m(s|η, fm)] decreases in η for any s, and the second arises because
s∗ � argmax

s∈S
Em[�m(s|η∗, fm)]. For the converse, let η∗ > η̂∗. Then

Em[u(�m(s∗|η∗, fm))] ≤ Em
[
u
(
�m(s∗|η̂∗, fm)

)] ≤ Em
[
u
(
�m(ŝ∗|η̂∗, fm)

)]
.

The first inequality is valid by Lemma 1, and the second follows from ŝ∗ �
argmax

s∈S
Em

[
u
(
�m(s|η̂∗, fm)

)]
. �

By Proposition 4, depending on the relative values of η∗ and η̂∗, the manufacturer
expects to gain or lose in a hidden-information-asymmetry case. Combining the
results of Propositions 3 and 4, we conclude that information sharing between parties
benefits the retailer and may hurt the manufacturer.

For simplicity of presentation, let Em[�∗] ≡ �r (η∗|s∗) + Em[�m(s∗|η∗, fm)]o

and Em

[
Π̂∗

]
≡ �r (η̂∗|ŝ∗) + Em

[
�m(ŝ∗|η̂∗, fm)

]
, i ∈ {r, m}. Consequently, the

manufacturer will not share information voluntarily.

Corollary 1 If η∗ < η̂∗, then Em[�∗] ≥ Em

[
Π̂∗

]
.

Proof Straightforward from Propositions 3 and 4. �

Representative example (continued)
The result of Proposition 4 can be simplified to Em[�m(p∗, q∗|η∗, μm)] ≤
Em

[
�m( p̂∗, q̂∗|η̂∗, μm)

]
iff γ̄m < γ̄r . In addition, we can extend the result of Corol-

lary 1 as follows: Em[�∗] ≤ Em

[
Π̂∗

]
iff γ̄m < γ̄r .
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2.4 The Case of Known Information Asymmetry

We assume the retailer knows that the manufacturer’s belief regarding the cost func-
tion is different from the industry-wide estimated fr (·); however, fm(·) is the private
information of the manufacturer. Propositions 3 and 4 show that although the retailer
benefits when the manufacturer reveals his private information, the manufacturer
might lose. Consequently, the manufacturer will not share his private information

voluntarily. If Em[�∗] ≥ Em

[
Π̂∗

]
when η∗ > η̂∗, the retailer can induce the man-

ufacturer to reveal his belief by paying a fee. The latter is called a side payment,
defined by Leng and Zhu [11] as a monetary transfer between two members of a sup-
ply chain made to improve the chain-wide performance (it is also known as a transfer
payment, compensation, reimbursement, etc.). For additional discussion on the set-

ting optimal side payment, see Avinadav et al. [3]. Otherwise, if Em[�∗] < Em

[
Π̂∗

]

when η∗ > η̂∗, the information sharing cannot be achieved through a simple side
payment. In the last case, a natural question to ask is what type of contract will result
in a Pareto-optimal information-sharing equilibrium.

Following Mishra et al. [13] and using the results of Lemma 1, we propose a
contract to motivate the manufacturer to reveal his personal belief. This contract can
be stated as follows:η∗∗ � min(η∗, η̂∗). This contract states that the revenue share the
retailer chargeswhen themanufacturer reveals his personal belief will not exceed that
under no information sharing. In effect, the contract prevents the retailer from raising
her revenue share after the manufacturer reveals his belief. The contract can be easily
implemented because, as we stated earlier, the retailer’s belief is the industry-wide
estimated measure of performance, which is common knowledge. Consequently, the
manufacturer can ensure that the retailer’s revenue share is not higher than under no
information sharing.
Representative example (continued)

Because Em[�∗] ≤ Em

[
Π̂∗

]
iff γ̄m < γ̄r , in this case, the side-payment contract is

not appropriate for the retailer. Thus, the retailer may increase her profit by using
contract η∗∗ � min(η∗, η̂∗) to incentivize the manufacturer to reveal his belief.

3 Conclusions

The importance and the innovative contribution of this paper lie in its generality.
For general revenue and cost functions of the manufacturer, and for a general set of
decisions, we have investigated the effect of information asymmetry in the manu-
facturer’s cost function. We find that under complete information, the equilibrium
strategy is not affected by the retailer’s belief about the manufacturer’s cost function,
whereas under hidden information asymmetry, the equilibrium strategy is affected
by the retailer’s belief about the manufacturer’s cost function as well as the manu-
facturer’s belief. We compare results in these two cases to identify conditions under
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which information sharing will occur in a case of known information asymmetry.
For the last case, we propose two different contracts to induce a Pareto-optimal
information-sharing equilibrium.
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Monte Carlo Sampling
for the Probabilistic Orienteering
Problem

Xiaochen Chou, Luca Maria Gambardella and Roberto Montemanni

Abstract The Probabilistic Orienteering Problem is a variant of the orienteering
problem where customers are available with a certain probability. Given a solution,
the calculation of the objective function value is complex since there is no linear
expression for the expected total cost. In this work we approximate the objective
function value with a Monte Carlo Sampling technique and present a computational
study about precision and speed of such a method.We show that the evaluation based
on Monte Carlo Sampling is fast and suitable to be used inside heuristic solvers.
Monte Carlo Sampling is also used as a decisional tool to heuristically understand
how many of the customers of a tour can be effectively visited before the given
deadline is incurred.

Keywords Probabilistic Orienteering Problem · Monte Carlo Sampling
Heuristic algorithms

1 Introduction

TheProbabilisticOrienteeringProblem (POP) is a variant of the orienteering problem
where the presence of customers are stochastic. The objective is to serve a selected
subset of the given customers, in such a way that the expected profit is maximized
within a given time budget (the deadline). Each customer will be available for visit
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with a certain probability, and a certain prize is collected when the customer is served
before deadline. We aim at simultaneously maximizing the total prize collected and
minimizing the total travel time. Therefore, the expected profit is the difference
between the expected total prize and the travel time.

Analytical approximations for the expected total travel time have been proposed
in [1, 2], however, the expected total prize is hard to compute, for the reason that it
depends not only on presence probability of the customers, but also on probability
of the customers being served before the deadline. One of the ways to deal with
such an objective function is to approximate usingMonte Carlo sampling, which has
become a state-of-the-art approach for several stochastic/probabilistic vehicle routing
problems such as the Probabilistic Traveling Salesman Problem with Deadlines [3]
and the Orienteering Problem with Stochastic Travel and Service Times [4]. Here
we will investigate the use of a Monte Carlo Sampling heuristics for evaluating the
objective function of the POP. Such an approach is designed with the aim of using it
within fast heuristic solvers for the POP itself.

2 Problem Definition

We denote with V = {0, 1 . . . n, n + 1} a set of n customers with the depot being
node 0 and the destination being n + 1. Let ti j be the deterministic travelling time
from customer i to customer j . There is a global deadline D which is a given time
budget. When a customer i is served before the deadline, a prize pi is collected. The
availability of a customer i ismodeled by aBernoulli variable bi = {0, 1}which takes
value 1with presence probabilityπi . The probability of each customer is independent
from the others. Depot and destination must be visited and get no prize, therefore
πo = πn+1 = 1 and p0 = pn+1 = 0.

A tour τ : i0 = 0, i1, i2, . . . , iq , iq+1 = n + 1 is defined as a sequence of q cus-
tomers selected to be served, plus the depot and the destination node. The prize
collected in a tour is P(τ ), and the travel time is T (τ ). With a given coefficient
C , the objective function is the difference between the expected total prize and the
expected total travel time:

u(τ ) = E[P(τ )] − CE[T (τ )] (1)

3 Objective Function Evaluator Based on Monte Carlo
Sampling

The objective function can be computed by usingMonte Carlo Sampling. First, for an
instancewithn customers,wegenerate a set of scenarios, i.e. different fully connected
graphs with different available customers, generated by sampling accordingly to the
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presence probability πi of each customer. Then we use Monte Carlo Sampling to
estimate the objective function by random sampling s of these scenarios, computing
the (deterministic) objective function values for each of the s scenarios and finally
average these values. The approximation can be computed in time O(ns).

Due to the heuristic nature of the approach, different sets of samples can lead to
different results when evaluating a single solution, which means solution A is better
than solution B for one set of samples, while for another set of samples it could be
the opposite.

In Sects. 4.3 and 4.4 wewill provide some experiments to understand which could
be promising values for the parameter s, regulating the number of samples.

It is important to observe that in the POP, given a solution τ : i0 = 0, i1, i2, . . . , iq ,
iq+1, . . . , in, in+1 = 0, the deadline is incurred after a certain node iq , from where
only travel time is increasing but no more prize is collected. In Sect. 4.2 we will use
the Monte Carlo evaluator for finding this node. The decision maker is intended to
serve only customers 0 to iq , therefore identifying such a customer is an important
decision.

4 Experimental Results

4.1 Data Sets and Evaluation Environment

The experiments we present were carried out on a Quad-Core Intel Core i7 processor
running at 2.0 GHz with 8 GB of RAM. The code was written in C++. We tested
the Monte Carlo evaluator on the POP benchmark instances generated by Angelelli
et al. in [1]. The test instances are available at: http://or-brescia.unibs.it/instances.

Basing on the TSP benchmark instances from the TSPLIB95 library, the charac-
teristics of the POP benchmark instances are set as follows:

• The location values of the customers V = {0, 1, . . . , n} are from the corresponding
TSP instances. The destination V = n + 1 has the same location value as the depot
V = 0.

• The global Deadline D takes value of ω · Tmax , with Tmax being the optimal value
of the TSP over all nodes and ω = { 14 , 1

2 ,
3
4 }, representing three different types of

deadlines.
• The prizes are generated according to two rules. Either pi = 1 for all customers,
or pi takes value of a pseudo-randomly generated integer in {1, 2, …, 100} for
each customer i .

• The probabilities are set according to two rules. Either πi = 0.5 for all customers,
orπi takes value of a randomnumber in the interval [0.25, 0.75] for each customer i .

For the coefficientC between the travel time and the prize in the objective function,
we take C = 0.001 as in [1].

http://or-brescia.unibs.it/instances
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4.2 Customers Selection

As mentioned in Sect. 3, when sampling we want to find the last node visited before
the deadline. Instead of using simple strategy such as calculating the average of
maximum number of customers served before the deadline, we calculate the value
of objective function for each node with all samples, supposing that it is the last
customer visited, then the maximum value will show the last node visited before the
deadline, and we choose the most promising last node consequently. The approach
is heuristic but it seems to provide good results in practice.

First, we test on 2 instances with the same location values and prize values, but
different presence probability types. In this 2 instances, the prize pi = 1,∀i ∈ V ,
and the presence probability πi is either fixed with value 0.5 or random (Figs. 1
and 2). The x-axis shows all nodes {0, 1, . . . , n} in the order of a given solution, and
the y-axis shows the approximated value for the objective function at each node, as
described above.

From the results we can observe that the slopes are similar for both instances with
random and fixed presence probability, and in both cases there exists a significant
maximum at node 14 showing the best node to stop serving customers.

Then we try on 2 instances with the same location values, but with random prize
pi for each customer. The presence probability πi is still either fixed with value 0.5 or
random (Figs. 3 and 4). This time total prize collected at local maximum has much
higher value than in Figs. 1, 2, but travel time after local maximum is increasing
in the same way and the coefficient C = 0.001 keeps the same, therefore the value
is almost flat after the local maximum. A significant maximum can be observed,
showing again the best stopping point.

By using thismethod, the evaluation for the cost of a given tour τ can be performed
only on the subset of customers more likely to be served before the deadline, which

Fig. 1 u(τ ) with pi = 1, πi = 0.5
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Fig. 2 u(τ ) with pi = 1, πi random

Fig. 3 u(τ ) with pi random, πi = 0.5

will speed up the evaluation and lead to more accurate results within appropriate
heuristic solvers.

4.3 Number of Samples

In this part, we study the influence of parameter s when approximating the objective
functions using Monte Carlo Sampling.

We run 50 times the Monte Carlo Sampling for 8 different POP instances, with
different number of samples s ∈ {10, 20, …, 90, 100, 200, …, 1000}, and compute
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Fig. 4 u(τ ) with pi random, πi random

xs the average value of the objective function achieved by s samples. Since there is
no exact evaluator available to compare with for this problem, the results reported in
[1] are considered as a reference xre f .

For analysis we calculate two indicators. One is the relative difference between
xs and xre f , which indicates the accuracy of the results:

δ1 =
∣
∣
∣
∣

xs − xre f
xs

∣
∣
∣
∣

(2)

The second indicator is relative standard deviation for each number of sample s,
which indicates the stability and consistency:

δ2 =
√

∑50
i=1(xi − x)

N − 1
· 100

x
(3)

Notice: For both indicators we calculate the relative values instead of absolute
values, this allows us to compare the results obtained on different instances.

We test on 8 representative instances, Figs. 5 and 6 show the values of indicator δ1
and δ2 in percentage on y-axis, with different number of samples s on x-axis. Each
curve presents a test instance.

In Fig. 5 we can see that generally δ1 reduce to 1% when s ≥ 50, but δ2 in Fig. 6
is still relatively high. Considering δ1 and δ2 together, two interesting points can be
observed. The first one is the point where values decrease fast, it happens around
s = 50, another is the first converging point after fluctuation, which takes place
around s = 400. Therefore, if a small number of samples is wanted, 50 could be
the choice, while considering stability 400 is a better choice. If we make a more
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Fig. 5 Relative difference between xs and xre f for 8 test instances

Fig. 6 Relative standard deviation for 8 test instances

instance-dependent analysis, for some instances values of s lower than 50 works
well, for others higher values are needed.

4.4 Computation Times

We are also interested in experimental computational times: the theoretical compu-
tational time for the evaluation of a solution is O(ns), where n is the dimension of
an instance and s the number of samples. But how does this translate in practice?
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Fig. 7 Computational time for 8 test instances

In this test, we count number of evaluations per second for different number
of samples. The test instances are the same 8 representative POP instances as in
Sect. 4.3. The number of samples s is on x-axis and the number of evaluations per
second with different s is on y-axis. Each curve presents a test instance.

In Fig. 7 we can see that, for s ≤ 100, the number of evaluations per second drops
dramatically, and for s > 100 there is a trend of gradual decrease. This shows that
the number of samples s has a significant influence on the computational time.

If we compare the results vertically, we will see that evaluations for smaller
instances always have higher speed. This shows that the size of instances n is another
influencing factor for computational time.

In general, the evaluation process appears to be extremely fast and suitable to be
used inside heuristic solvers.

5 Conclusion

In this work we approximated the objective function of the Probabilistic Orienteering
Problem based on Monte Carlo Sampling. We also used the same Monte Carlo
Sampling procedure to decide how many customers of a given tour should be visited
in order to maximize the profit. Such a characteristic is going to be very useful once
the evaluator is embedded into a metaheuristic algorithm, which is the next step of
our research. A computational study on the performance of the evaluator we propose,
both in terms of precision and speed, was also presented.

Acknowledgements Xiaochen Chou was supported by the Swiss National Science Foundation
throughgrant 200020_156259: “HybridSampling-basedmetaheuristics for StochasticOptimization
Problems with Deadlines”.
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A Genetic Algorithm Framework
for the Orienteering Problem with Time
Windows

Claudio Ciancio, Annarita De Maio, Demetrio Laganà,
Francesco Santoro and Antonio Violi

Abstract The Orienteering Problem (OP) is a routing problem which has many
applications in logistics, tourism and defense. Given a set of nodes, where each node
represents a Point of Interest (POI), the orienteering problem aims to design a tour
leaving from a starting POI, visiting a subset of POIs and finally arriving at the ending
POI. The objective of the problem is to maximize the total score of the visited POIs
while the total travel time and the total cost of the route do not exceed two predefined
thresholds. Each POI is characterized by a score, a position, a visit time, and a
time window in which the POI can be visited. This problem is often investigated to
develop tourism trip planning mobile applications. Usually these apps must be able
to generate good solutions in few seconds. Therefore, the use of efficient heuristic
approaches to find good quality solutions is needed. In this paper we present a genetic
algorithm framework combined with some local search operators to deal with the
analyzed problem.
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1 Introduction

TheOrienteering Problem (OP), also denoted as the Selective Travelling Salesperson
Problem or the Maximum Collection Problem, is a well known NP-hard combina-
torial optimisation problem [1]. The problem is characterized by a starting node, an
ending node, and a set of nodes related to point of interest (POI) that can be visited,
each with a positive score and a positive service time. The objective of the problem
is to find a path from the starting node to the end node that maximizes the total
score collected from the visited nodes. The orienteering problem with time windows
(OPTW) is a natural extension of OP in which the path from the start and the end
node have to start and finish predetermined time and each POI have to be visited in
a certain time window [2]. The OPTW is often investigated to develop tourism trip
planning mobile applications and in general to solve the tourist trip design problem
(TTDP). The objective of TTDP is to help tourists to determine the visiting places
among numerous possible options in a customized trip [3]. Typically, most tourists
try to visit as many locations as possible in the available time during a trip. However,
with the limitations of time and budget, they might not be able to visit every place.
To select the best route the user typically states her needs, interests and constraints
based upon selected parameters [4]. The OPTW will then be solved to select those
places that have an high scores taking into account the user constraints. Since the first
publications appeared, many exact algorithms have been developed to solve the basic
OP and the OPTW. A classification of the exact algorithms is presented in Feillet
et al. [5]. However, the use of heuristic approach in even more interesting since the
TTDP applications need to find a good quality solution in few seconds. A genetic
algorithm approach is presented in Sect. 3. Preliminary computational results are
then reported in Sect. 4.

2 Mathematical Formulation

Parameters

N set of nodes including the set of POI and the starting and ending point of the
route;

N+ set of POI;
H set of activity types;
s starting node;
e ending node;
ts time in which the user wants to start the journey;
te time in which the user wants to end the journey;
pi score assigned by the customer to the POI i ;
ai starting time in which the POI i can be visited;
bi ending time in which the POI i can be visited;
ti j travel time to reach the node j from the node i ;
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ci j travel cost to reach the node j from the node i ;
li j distance from the node i to the node j ;
ti time necessary to visit the POI i ;
ci cost to visit the POI i ;
vi activity type of the POI i ;
L maximum length of the route;
C maximum cost of the route;

Decision Variables

xi j binary variable equal to 1 if the node j is visited immediately after the node i ;
ui time in which the node i is visited by the customer;

Based on these definitions, the mathematical formulation of the problem is the fol-
lowing:

max
∑

i∈N+

∑

j∈N\{i}
pi xi j (1)

∑

i∈N\{s}
xsi =

∑

i∈N\{e}
xie = 1 (2)

∑

i∈N+\{k}
xik =

∑

i∈N+\{k}
xki ≤ 1 ∀k ∈ N (3)

∑

i∈N

∑

j∈N\{i}
li j xi j ≤ L (4)

∑

i∈N

∑

j∈N\{i}
(ci j + ci )xi j ≤ C (5)

ui + ti + ti j ≤ u j + (1 − xi j )M ∀i ∈ N ∀ j ∈ N\{i} (6)

ai ≤ ui ≤ bi ∀i ∈ N (7)

xi j ∈ {0, 1} ∀i ∈ N ∀ j ∈ N\{i} (8)

Constraint (2) guarantees that the tour starts and ends at the predefined starting and
ending nodes. Constraints (3) are the flow conservation constraints and ensure that a
node is visited at most once. Constraints (4) and (5) impose a maximum length and
cost of the route. Finally, constraints (6) prevent the construction of subtours while
constraints (7) are used to satisfy the time windows of the visited POIs.

2.1 Additional Constraints

The formulation (1)–(8) is the basic version of the orienteering problem with time
windows. However to make the model more usefull for real life applications related
to tourism we took into account the following additional constraints:
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• some POI can be visited only on some moments of the day. However, one time
window is not enough to model this constraint. For example, a museum could be
opened in the morning from 8:00 am to 12:00 and in the afternoon from 3:00 to
6:00 pm.

• the user can specify a time interval in which to have a break of at least a given
threshold. For example, a break of at least 30 min must be assigned in the time
interval 12:00 am–2:00 pm.

• some users may be interested in different types of activities and they wish to split
their time among them. To guarantee a certain degree of diversification the user
can specify a maximum time allowed to each type of activities.

• tourists typically enjoy relaxing and having breaks as much as they enjoy visits to
POIs [4]. A maximum activity time is imposed to give the user enough time for
breaks and resting.

3 Genetic Algorithm

Genetic algorithm (GA) is an optimization technique that tries to replicate the evo-
lution process, in which individuals with the best features have more possibilities
of surviving and reproducing [6]. GA undertakes to evolve the solution, during its
execution, according to the following basic pattern:

1. Random generation of the first population of solutions;
2. Application of a fitness function to the solutions belonging to the current popu-

lation;
3. Selection of the best solutions based on the value of the fitness function;
4. Generation of new solutions using crossover and mutation;
5. Repetition of steps 2–3–4 for n iterations;
6. Selection of the best found solution.

3.1 Chromosome Encoding/Decoding

The first step of this method is to encode the features of the route into specific
chromosomes. A chromosome is a sequence of id assigned to each POI Fig. 1.

The following definitions are needed:

• let v be the current node. Initially v = s;
• let t̂ be the current time. Initially t̂ = ts ;
• let RC be the residual budget. Initially RC = C ;
• let RL be the residual travel distance that the user is willing to perform. Initially

RL = L;
• let Wi the set of time windows in which it is possible to visit the POI i . Each
element wki ∈ Wi is characterized by a starting and an ending time [aki , bki ];
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Fig. 1 A chromosome and its corresponding route

When a chromosome is decoded the lowest possible value ui that allow to respect
the set of constraints is assigned to each POI that composes the chromosome.

ui = max{t̂ + tvi , min
wki∈Wi :bki<=t̂+tvi+ti

aki } (9)

Once a time ui is assigned to the POI i the value of the current node v is updated
to i and the next POI is examined. The current time and residual budget and travel
distance are also updated.

t̂ = t̂ + tvi + ti (10)

RC = RC − cvi − ci (11)

RL = RL − lvi (12)

If it is not possible to assign a feasible value of ui of or the final value of RC or RL
is negative it means that is not possible to build a feasible route with that sequence
of POIs and the chromosome is discarded from the population.

3.2 Selection

The selection of the chromosomes to produce a new generation is an extremely
important step of the algorithm. The most promising chromosomes will be included
in the next generation and will be used as “parents” in the crossover operations. A
chromosome is more likely to be selected if the value of its correspondent fitness
function is high. A probability pk is assigned to each chromosome k ∈ K through
the roulette wheel selection according to its fitness value fk :

pk = fk∑
k ′∈K fk ′

(13)

a random number in the interval [0, 1] is then generated to select one chromosome.
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3.3 Crossover

A new population is iteratively generated to explore new areas of the feasible region.
In the genetic algorithm, crossover is a genetic operator used to create new chromo-
somes from one generation to the next. Two different crossover operations named
1-point crossover (Fig. 2) and 2-point crossover (Fig. 3) have been used.

At each generation a pop1 − pop2 chromosomes are created by using these two
operators.

3.4 Mutation

Mutation is another genetic algorithm used to maintain genetic diversity from one
generation of a population to the next. This operation consists of randomly altering
the value of one element of the chromosome according to a mutation probability Fig.
4.

p1 p1

3

Parent 1

2 8 9 5 6

4

Parent 2

7 9 1 6 5

3

Child 1

2 9 1 6 5

4

Child 2

7 8 9 5 6

Fig. 2 1-point crossover

3

Parent 1

2 8 9 5 6

4

Parent 2

7 9 1 6 5

3

Child 1

2 9 1 5 6

4

Child 2

7 8 9 6 5

p1 p2 p1 p2

Fig. 3 2-point crossover
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3

Original Chromosome

6 8 2 5 9 3

Mutated Chromosome

6 8 4 5 9

Fig. 4 Mutation operator

3.5 Local Search

When a new chromosome is created two local search operators are usedwith a certain
probability to build better routes:

• addOperator: with this operator a new chromosome is built by trying to add a POI
j in the route. The position in which the POI j is added is selected by trying to
minimize the travel cost variation.

• swapOperator: with this operator a new chromosome is built by trying to add a
POI j in a place of another POI j ′ included in the current route. The POI j ′ is the
one with the lowest score that allow to create a feasible route.

3.6 Final Solution

Selection, crossover andmutation are repeated iteratively until oneof these conditions
is satisfied:

1. the processing time exceeds a maximum time;
2. the number of iterations performed exceeds a maximum number.

4 Computational Tests

This section illustrates the results of some preliminary computational analysis. The
goal is to prove the effectiveness of the proposed algorithm. The algorithm was
implemented as single thread code in Java and all tests are performed on a desktop
computer equipped with an Intel Core i7 processor with 2.6 GHz, 8 GB RAM, and
running Windows 10. A set of instances was created by changing the number of
available POI and the maximum budget. These instances have been solved through
the Cplex MIP solver to calculate the optimal solution and then using the proposed
heuristic algorithm for both the problem described in the formulation (1)–(8) and by
adding the set of constraints described in Sect. 2.1. In particular we imposed a break
of at least 30 min in the time interval [12:00–14:30], a maximum time Th of 4 h for
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each type of activities and a minimum rest time of 2 h. The results are reported in
Table 1where the columns z∗, z and zc report the value of the optimal solution and the
solution achieved through the genetic algorithm for the two analyzed formulations.
A maximum time of two hours was set for the Cplex MIP solver while 20 s were
used for the heuristic approach. It is possible to see from the table that theMIP solver
is able to find in few seconds the optimal solution for all the instances with a budget
of 50e. However the time to solve the problem drastically rises by increasing the
maximum budget and the number of POI. In fact, the time of 2 h is not enough to
find the optimal solution of 5 instances. The heuristic algorithm was able to obtain
a better or equal solutions for 12 of the 15 analyzed instances with only 20 s. The
results obtained are very encouraging and assess the effectiveness of the proposed
approach.

5 Conclusions

The Orienteering Problem with time windows is an NP-hard problem derived from
several practical situations. We presented a genetic algorithms approach to tackle
efficiently with this problem. The computational results show that the algorithm
is able to find good quality solutions in a small computational time. The additional
constraints added in the second run allow the algorithm to find solutions that better fits
with the user needs. Different improvements to make the algorithmmore general and
efficient can still be added to the framework proposed in this paper. Further studies
will be developed to take into account multimodal transportation and hotel selection.
Moreover, in order to obtain better quality solutions or decrease time consumption,
it would be interesting to develop new operators or adapt the ones developed for
other routing problems. Other approaches based on alternative local search moves,
tabu search, simulated annealing will also be tried to maximize the performance.
Further studies will also be developed to analyze the potential application of a similar
algorithm on other classical variants of OP such as the team OP, the time dependent
OP as well as recent ones such as the stochastic OP, the generalized OP or the
clustered OP.
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A Financial Optimization Model with
Short Selling and Transfer of Securities

Gabriella Colajanni and Patrizia Daniele

Abstract In this paper we present a financial mathematical model, based on net-
works, aiming at maximizing the profits while simultaneously minimizing the risk.
In addition, our model is characterized by short selling, which consists in the sale of
non-owned financial instruments with subsequent repurchase, and transfer of securi-
ties.We propose an IntegerNonlinear Programming (INLP) Problem,whose solution
provides us with the optimal distribution of securities to be purchased and sold.

Keywords Financial problems · Risk management · Multicriteria
decision-making · Multi-period portfolio selection problems · Short Selling
Transfer of securities

1 Introduction

In financial literature, a portfolio is assumed as a set of financial assets or investments
which are owned by an individual (an investor) or a financial institution and consist
of various financial instruments such as shares of a company (often referred as equi-
ties), government bonds, and so on. A multi-period portfolio selection problem as
a Markowitz mean-variance optimization problem (see [8, 9]) with intermediaries
and the addition of transaction costs and taxes (on the capital gain) has already been
studied in [5]. One of the newest models is the one for calculating optimal portfolio
weights developed byBlack andLitterman (see [3, 4]). In 1969, Samuelson (see [13])
and Merton (see [10]), taking inspiration from Mossin’s work (see [11]), formulate
and solve a many-period generalization.
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Other extensions of theMarkowitzmodel are studied (for example see [1] inwhich
the variance has been replaced by the Value-at-Risk, [6] in which a multiobjective
optimization problem is solved by using aMultiple Criteria Decision Aidingmethod,
[7] where a Mixed Integer Linear Programming problem with transaction costs is
studied, [12, 14] where multiperiod mean-variance models are analyzed). In [2] the
authors used Mixed Integer Programming methods to construct portfolios, reducing
the number of different stocks.

Here, we make the previous multi-period model ([5]) more realistic by adding not
only transaction costs, taxes (on the capital gain) and time-length for some financial
securities, but also the short selling and the transfer of financial assets. Short selling
is the sale of a security that is not owned by the seller or that the seller has borrowed.
Short selling is motivated by the belief that a security’s price will decline, enabling
it to be bought back at a lower price to make a profit. Short selling may be prompted
by speculation, or by the desire to hedge the downside risk of a long position in the
same security or a related one. Since the risk of loss on a short sale is theoretically
infinite, short selling should only be used by experienced traders, who are familiar
with the risks. While short selling is frequently vilified and short sellers viewed as
ruthless operators out to destroy companies, the reality is that short selling provides
liquidity to markets and prevents stocks from being bid up to ridiculously high levels.
Although abusive short-selling practices, such as rumor-mongering to drive a stock
lower, are illegal, short selling, when done properly, can be a good tool for portfolio
risk management. The transfer of financial securities consists in relocating one or
more assets from a bank, or a financial intermediary, to another one; in such a way,
the investor can seize the opportunities offered by the commercial initiatives of the
various financial institutions. The plan of the rest of the paper is as follows. In Sect. 2
we introduce the financial model consisting of financial securities, issuers, investors,
and intermediaries. We derive the optimization problem of each investor based on
the maximization of his expected gain and the minimization of his risk portfolio. In
Sect. 3 we apply the model to a numerical example consisting of a financial network
with two issuers, two financial securities and an investor. In Sect. 4 we summarize
the obtained results.

2 The Mathematical Model

As in [5], we consider a financial network consisting of: n financial securities, and the
typical one is denoted by i ; S issuers of financial securities, such as companies, banks,
countries, etc., and the typical one is denoted by s; K investors (security purchasers)
and the typical one is denoted by k; B financial intermediaries, and the typical one is
denoted by b. In addition, we consider a partition of the financial securities by means
of the sets A1, . . . ,As, . . . ,AS , where As represents the set of financial securities
made available by issuer s. A representation of the financial network is depicted in
Fig. 1. We analyze the model in a discrete time horizon: 1, . . . , j, . . . , t .

We introduce the following binary variables:
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Fig. 1 Financial network

xki, j =
{
1 if security i is purchased by k at time j
0 otherwise

∀i = 1, . . . , n, ∀ j = 1, . . . , t,
∀k = 1, . . . , K ;

yki, j =
{
1 if security i is sold by k at time j
0 otherwise

∀i = 1, . . . , n, ∀ j = 1, . . . , t,
∀k = 1, . . . , K ;

zb1i =
{
1 if security i is purchased by b
0 otherwise

∀i = 1, . . . , n, ∀b = 1, . . . , B;

zb2i =
{
1 if security i is sold by b
0 otherwise

∀i = 1, . . . , n, ∀b = 1, . . . , B.

Further, in order to take into account the short selling, we introduce the following
binary variables:

wk
i, j =

{
1 if security i is purchased by k at time j
0 otherwise

∀i = 1, . . . , n, ∀ j = 2, . . . , t,
∀k = 1, . . . , K ;

hki, j =
{
1 if security i is sold by k at time j
0 otherwise

∀i = 1, . . . , n, ∀ j = 1, . . . , t − 1,
∀k = 1, . . . , K .

Let Ci, j be the purchase cost; γ b
k · Ci, j + Cb

k the commission to the chosen finan-
cial intermediary, given by a percentage of the purchase cost, γ b

k and a flat fee;
E[Di, j ] and E[Pi, j ] the expected values of dividends in the case of shares or inter-
ests in the case of bonds and the expected values of amounts of money to pay (for
example in the case of an increase in the corporate capital), respectively; E[Ri, j ] the
expected selling price; βb

k · Ri, j + Fb
k the charge to the chosen financial intermedi-
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ary; αk
i

(∣∣E[ui, j ]
∣∣ + E[ui, j ]
2

)
the taxation on the capital gain, if it is positive and

where

E[ui, j ] = E[Ri, j ] − Ci, j̄ +
j∑

ĵ= j̄+1

(
E[Di, ĵ ] − E[Pi, ĵ ]

)
,

where j̄ and j indicate the purchase and selling time respectively, with 1 ≤ j̄ < j ≤
t .

Some financial securities have a time length which we denote by τi , therefore
S = j̄ + τi represents its expiration time.

Let E[Ni, j̄+τi
] be the expected nominal value and αk

i

(∣∣E[gi, j̄+τi
]∣∣ + E[gi, j̄+τi

]
2

)

the capital gains tax where, in this case, E[gi, j̄+τi
] = E[Ni, j̄+τi

] − Ci, j̄ +
j̄+τi∑

ĵ= j̄+1(
E[Di, ĵ ] − E[Pi, ĵ ]

)
.

We refer the reader to [5] for a detailed description of the model. Here, let also T b
i

denote the financial title transfer fee, Mb the maximum time limit, fixed by financial
intermediary b, within which investor k is obliged to short covering (namely, he has
to buy the not owned securities), E[pi, j̄ ] = E[Ri, j ] − E[Ci, j̄ ] the new capital gain,
I bi ( j̄ − j) the interest, which is a function of time, to be paid to the broker who lends
the security which has to be sold in the short selling.

In agreement with Nagurney and Ke (see [12]) we assume that the decision-
makers seek not only to increase their net revenues but also to minimize risk with the
risk being considered as the possibility of suffering losses compared to the expected
profit. Therefore, we introduce (σ k

p)
2 the risk on the portfolio. Then, the objective

function to maximize is as follows:

E[ekp] − ηk(σ
k
p)

2 =
n∑

i=1

{ t−1∑
j̄=1

xk
i, j̄

[
− Ci, j̄ −

B∑
b=1

zb1i · (γ b
k Ci, j̄ + Cb

k )

+
min{ j̄+τi ,t}∑

j= j̄+1

(
E[−Pi, j + Di, j ] + yki, j

(
E[Ri, j ] − αk

i

(∣∣E[ui, j ]
∣∣ + E[ui, j ]
2

)

−
B∑

b=1

zb2i · (βb
kE[Ri, j ] + Fb

k ) −
min{ j̄+τi ,t}∑

ĵ= j+1

(
E[−Pi, ĵ + Di, ĵ ]

)))]
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+
t−τi−1∑
j̄=1

xk
i, j̄

[
(1 −

j̄+τi∑
j= j̄+1

yki, j )

(
E[Ni, j̄+τi

] − αk
i

(∣∣E[gi, j̄+τi
]∣∣ + E[gi, j̄+τi

]
2

))]

+
t−1∑

j̄=t−τi

xk
i, j̄

[
(1 −

t∑
j= j̄+1

yki, j )E[Ni,t ]
]

−
B∑

b=1

(
zb1i ·

∑
b̄ �=b

zb̄2i · T b
i

)

+
t−1∑
j=1

hki, j

[
E[Ri, j ] +

B∑
b=1

zb1i

[
− (βb

kE[Ri, j ] + Fb
k ) −

min{ j+Mb,t}∑
j̄= j+1

wk
i, j̄

(
E[Ci, j̄ ]

+(γ b
k E[Ci, j̄ ] + Cb

k ) + Ib( j̄ − j) + αk
i

(∣∣E[pi, j̄ ]
∣∣ + E[pi, j̄ ]
2

))]]}
− ηk(σ

k
p)

2.

The problem formulation is as follows:

max
{
E[ekp] − ηk(σ

k
p)

2
}

(1)
n∑

k=1

t−1∑
j=1

xki, j ≤ 1 ∀i = 1, . . . , n (2)

yki, j ≤
j−1∑

j̄= j−τi+1

xk
i, j̄

∀i = 1, . . . , n, ∀ j = 2, . . . , t (3)

yki, j ≤
∑ j−1

j̄=2
(1 − yk

i, j̄
)

j − 2
∀i = 1, . . . , n, ∀ j = 3, . . . , t (4)

(σpk )
2 ≤ R̄k (5)

n∑
i=1

t−1∑
j=1

xki, jCi, j ≤ B̄k (6)

B∑
b=1

zb1i =
t−1∑
j=1

xki, j ∀i = 1, . . . , n (7)

B∑
b=1

zb2i =
t∑

j̄=2

yk
i, j̄

∀i = 1, . . . , n (8)

j̄∑
max{ j< j̄ :
Di, j>0}

∑
z∈A s

K∑
k=1

(xkz, j − ykz, j ) ≥ 1 ∀s ∈ S , Di, j̄ > 0 (9)
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min{ j+Mb,t}∑
j̄= j+1

wk
i, j̄

= hki, j ∀i = 1, . . . , n ∀ j = 1, . . . , t − 1 (10)

K∑
k=1

t−1∑
j=1

hki, j ≤ 1 ∀i = 1, . . . , n (11)

j∑
j̄=1

xk
i, j̄

( j∑
ĵ= j̄+1

(
1 − yk

i, ĵ

) )
≤ 1 − hki, j ∀i = 1, . . . , n ∀ j = 1, . . . , t − 1(12)

xki, j , y
k
i, j , z

b
1i , z

b
2i , h

k
i, j ,w

k
i, j ∈ {0, 1}

∀i = 1, . . . , n, ∀ j = 1, . . . , t, ∀b = 1, . . . , B. (13)

The meaning of constraint (2) is that it is possible to buy the same security only
once and it can be purchased by a single investor (but there are numerous coincident
securities). Constraint (3) means that it is possible to sell a security only if it has
been purchased previously and has not yet expired. Constraint (4) means that you
can sell a stock only if it has not yet been sold. Constraint (5) means that there is a
risk limit, R̄k, which represents the maximum risk limit that the investor is willing
to accept. Constraint (6) means that there is a budget limit, B̄k, which represents the
maximum available budget for an investor. Constraints (7) and (8) mean that for each
security, only one financial intermediary can be chosen for purchasing and selling
activities. Constraint (9) means that each issuer must sell at least one security during
the dividend distribution periods, where the dividend Di, j̄ at time j̄ of security i ∈ As

is given by:

Di, j̄ =
Us

j̄
− Rs

j̄∑ j̄

max{ j< j̄ :
Di, j>0}

∑
z∈A s

∑K

k=1
(xkz, j − ykz, j )

.

Constraint (10) means that if investor k sells the title i in the short selling market, he
is obliged to buy back the same security within the time established by the financial
intermediary. Constraint (11) states that it is possible to sell in the short sellingmarket
the same security more than once. Finally, constraint (12) affirms that investor k
cannot sell security i in the short selling market, if he owns security i.

3 A Numerical Example

In this section we apply the model to a numerical example that consists of a financial
network with two issuers, two financial securities and an investor, as depicted in
Fig. 2.

We consider also two financial intermediaries and we analyze the model in the
following time horizon: 1, . . . , 5.
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Fig. 2 Network Topology
for the Numerical Example

21Financial
securities

21Issuers

1Investor

1 2 1 2
Financial

Intermediaries

To solve the example we used Matlab on a laptop with an Intel Core2 Duo pro-
cessor and 4 GB RAM.

We assume the following data are given:

Ci j j = 1 j = 2 j = 3 j = 4
i = 1 5 6 6 7
i = 2 9 9 8 9

E[Ri j ] j = 2 j = 3 j = 4 j = 5
i = 1 7 7 8 1
i = 2 20 15 10 1

E[−Pi j ] j = 2 j = 3 j = 4 j = 5
i = 1 0 0 −2 0
i = 2 0 0 0 0

E[Ui j − Ri j ] j = 2 j = 3 j = 4 j = 5
i = 1 0 3 0 15
i = 2 0 0 0 0

We also assume that τ1 = 2 and that the second financial security does not expire,
so we require τ2 = 4. Further, we assume that the nominal value of each security
at maturity or at time j = 5 coincides with its current value (cost) E[Ni, j̄+τi

] =
Ci, j̄+τi

, E[Ni,5] = Ci,4, that the maximum budget and risk values are B̄ = 25 and
R̄ = 15 respectively, that the percentages of taxation are α1 = 15% and α2 = 10%,
that commission costs are given by β1 = γ 1 = 5%, β2 = γ 2 = 15%, C1 = F1 =
0.5 andC2 = F2 = 2, that η = 0.2 is the risk aversion index, (σ1 j ) = (2, 2, 2, 2, 2),
(σ2 j ) = (1, 1, 1, 1, 1) the variances of the titles andρ12 j = 0 ∀ j = 1, . . . , 5meaning
that the two titles are completely unrelated.

We get the following optimal solutions:

x∗
14 = 1; x∗

1 j = 0 ∀ j = 1, 2, 3; x∗
2 j = 0 ∀ j = 1, 2, 3, 4;

y∗
1 j = y∗

2 j = 0 ∀ j = 2, 3, 4, 5;

h∗
1 j = 0 ∀ j = 1, 2, 3, 4; h∗

22 = 1, h∗
2 j = 0 ∀ j = 1, 3, 4;

w∗
1 j = 0 ∀ j = 2, 3, 4, 5; w∗

24 = 1, w∗
2 j = 0 ∀ j = 2, 3, 5;
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z1∗11 = z1∗12 = z1∗22 = 1, z2∗11 = z2∗12 = z1∗21 = z2∗21 = z2∗22 = 0.

These optimal solutions clearly show that the most convenient choice for the investor
is to buy security 1 at time 4 and never sell it; using the short selling, to sell security
2 at time 2 and to buy it at time 4, through the financial intermediary 1.

In this case the total gain is: 21.20.
If, now, we assume that the commission costs are given by β1 = γ 2 = 5%, β2 =

γ 1 = 15%, C1 = F2 = 0.5 and C2 = F1 = 2, we see that it is more convenient to
choose financial intermediary 1 for the selling and, after a transfer of security 2,
financial intermediary 2 for the buying. In this case the total gain is: 19.7.

4 Conclusions

The presented financial model determines which securities every investor has to buy
and sell, which financial intermediary he has to choose and at what time it is more
convenient to buy and sell a security in order tomaximize his own profit andminimize
his own risk, taking into account not only the presence of the financial intermediaries
(therefore the transaction costs or commissions), the capital gains taxes and that some
financial securities have a time length, but also the short selling and the transfer of
financial assets.
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Strong Nash Equilibria for Cybersecurity
Investments with Nonlinear Budget
Constraints

Patrizia Daniele and Laura Scrimali

Abstract This paper investigates the existence of strong Nash equilibria in a cyber-
security investment supply chain game theory model. We consider a supply chain
network consisting of retailers and consumers at demand markets with each retailer
being faced with nonlinear budget constraints on his security investments. We also
assume that the demand for the product at each demand market is known and fixed
and, hence, the conservation law of each demandmarket must be fulfilled. Themodel
is a Generalized Nash equilibrium model for which we define a variational equilib-
rium, that allows us to give a variational inequality formulation. Our aim is to give
a necessary condition to be a strong Nash equilibrium of the model in terms of a
system of variational inequalities.

Keywords Cybersecurity · Investments · Supply chains · Game theory
Nash equilibrium · Strong Nash equilibrium

1 Introduction

Supply chains highly depend on information technology to enhance effectiveness
as well as efficiency and to support communications and coordination among the
network of suppliers, manufacturers, distributors, and even freight service providers.
However, information technology, if not properly secured, can increase the vul-
nerability of supply chains to cyberattacks. Many examples exist of cyber attacks

P. Daniele (B) · L. Scrimali
Department of Mathematics and Computer Science, University of Catania,
Viale Andrea Doria, 6, Catania, Italy
e-mail: daniele@dmi.unict.it

L. Scrimali
e-mail: scrimali@dmi.unict.it

© Springer Nature Switzerland AG 2018
P. Daniele and L. Scrimali (eds.), New Trends in Emerging Complex
Real Life Problems, AIRO Springer Series 1,
https://doi.org/10.1007/978-3-030-00473-6_22

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00473-6_22&domain=pdf
mailto:daniele@dmi.unict.it
mailto:scrimali@dmi.unict.it
https://doi.org/10.1007/978-3-030-00473-6_22


200 P. Daniele and L. Scrimali

infiltrating supply chains. Only the first six months of 2017 have seen an inordinate
number of cybersecurity meltdowns, whichweren’t just standard corporate breaches.
In August 2016 themysterious hacking group known as the ShadowBrokers claimed
to have breached the spy tools of the elite NSA-linked operation known as the Equa-
tion Group. In May 2017 a strain of ransomware called WannaCry spread around
the world, damaging hundreds of thousands of targets, including public utilities and
large corporations. One month later, another wave of ransomware infections, called
Petya, NotPetya and a few other names, hit targets all over the world. It infected
networks in multiple countries like the US pharmaceutical company Merck, Dan-
ish shipping company Maersk, and Russian oil giant Rosnoft, but researchers sus-
pected that the ransomware actually masked a targeted cyberattack against Ukraine.
In March 2017, WikiLeaks published a data collection containing 8,761 documents
that were probably stolen by the CIA which contained an extensive documentation
of alleged spying operations. In February 2017, the internet infrastructure company
Cloudflare announced that a bug in its platform caused random leakage of potentially
sensitive customer data. Two days before France’s presidential runoff in May 2017,
hackers downloaded a collection of 9 GB of emails leaked from the party of the
current French president.

Numerous companies and organizations have now realized that investing in cyber-
security is necessary.

In this paper, following [2], we present a cybersecurity investment supply chain
game theory model consisting of retailers and consumers at demand markets with
each retailer being faced with a nonlinear budget constraint on his security invest-
ments. Since the strategy of a given retailer is affected by the strategies of the other
retailers, the governing concept is a Generalized Nash equilibrium (GNE). We also
assume that the demand for the product at each demand market is known and fixed
and, hence, the conservation law of each demand market must be fulfilled. We make
use of a variational equilibrium, which is a special kind of GNE. The variational
equilibrium allows for a variational inequality formulation of the GNE model.

It is well-known that in a GNE each retailer has no unilateral incentive to deviate,
however a retailer may benefit from forming coalitions with other retailers in order
to resist efficiently to cyberattacks. Therefore, we focus on strong Nash equilibrium
(SNE), see [1],which establishes that there is no coalition of retailers that can improve
their payoffs by collective deviation. Thus, we provide a necessary condition to be
SNE in terms of a system of variational inequalities.

The paper is organized as follows. In Sect. 2 we recall some basic definitions
and properties of Nash, strong Nash and generalized Nash equilibria. In Sect. 3 we
present the supply chain game theory model of cybersecurity investments. In Sect. 4
we provide a necessary condition for the existence of a strong Nash equilibirum for
our model.



Strong Nash Equilibria for Cybersecurity Investments … 201

2 Basic Definitions and Properties

We consider a normal form game G = (N , (Xi )i∈N , (ui )i∈N ), where N is the finite
set of players, Xi is the set of strategies of player i ∈ N , and ui : X → R, with
X = ∏

i∈N Xi , is the player i’s payoff function.
LetP(N ) be the power set of N , containing all possible player coalitions and let

C be a nonempty set ofP(N ). For each coalitionC ⊆ N , let−C = {i ∈ N : i /∈ C}
be the set of the rest of players. If C is a singleton {i}, instead of −{i} we will simply
write −i . Using these notations, given two strategy profiles x, y ∈ X , (xC , y−C )

denotes the strategy in which players from C play the strategy profile x and the
remaining of players, namely −C , play the strategy y.

The Nash equilibrium [9] is a strategy profile such that no player can unilaterally
change her/his strategy to increase her/his payoff.

Definition 1 A strategy profile x∗ ∈ X is a Nash equilibrium of the game G if for
all i ∈ N

ui (x
∗
i , x

∗
−i ) ≥ ui (xi , x

∗
−i ), ∀xi ∈ Xi .

A Pareto efficient (or optimal) strategy is a situation in which no player can
improve his/her payoff without decreasing the payoff of someone else.

Definition 2 A strategy profile x∗ ∈ X is Pareto efficient if there does not exist a
strategy for all x ∈ X such that

ui (x) ≥ ui (x
∗), ∀i ∈ N .

The strong Nash equilibrium [1] is a strategy for which no coalition of players
has a profitable deviation that improves the payoff of each member of the coalition.

Definition 3 A strategy profile x∗ ∈ X is a strong Nash equilibrium if for allC ⊆ N
there does not exist a strategy for all xC such that

ui (xC , x∗
−C ) > ui (x

∗), ∀i ∈ C.

Definition 3 implies that any strong Nash equilibrium is Pareto efficient [10].
Moreover, a Nash equilibrium that is also Pareto efficient is a strong Nash equilib-
rium [3]. If we consider deviating coalitions with a unique player, the strong Nash
equilibrium reduces to the Nash equilibrium.

The Generalized Nash equilibrium extends the classical Nash equilibrium con-
cept, by assuming that each player’s strategy set may depend on the opponents’
strategies x−i . Thus, let Xi (x−i ) be the set of strategies of player i when the other
players choose x−i .

Definition 4 A strategy profile x∗ ∈ X (x∗) = ∏
i∈N Xi (x∗

−i ) is a Generalized Nash
equilibrium if for all i ∈ N

ui (x
∗
i , x

∗
−i ) ≥ ui (xi , x

∗
−i ), ∀xi ∈ Xi (x

∗
−i ).
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Fig. 1 The bipartite
structure of the supply chain
network game theory model 1
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3 The Model

We now recall the supply chain game theory model of cybersecurity investments
with nonlinear budget constraints introduced in [2].

It consists ofm retailers and consumers at n demandmarkets (Fig. 1). Each retailer
i ; i = 1, . . . ,m, can transact with demandmarket j ; j = 1, . . . , n, with Qi j denoting
the product transaction from i to j . For each retailer i ; i = 1, . . . ,m, we denote by
si ; i = 1, . . . ,m his cybersecurity or, simply, security, level. We group the product
transactions for retailer i ; i = 1, . . . ,m, into the n-dimensional vector Qi and then
we group all such retailer transaction vectors into themn-dimensional vector Q. The
security levels of the retailers are grouped into the m-dimensional vector s.

Then, the cybersecurity level in the supply chain network is the average security
and is denoted by s̄, where s̄ = ∑m

i=1
si
m .

The retailers seek to maximize their individual expected utilities, consisting of
expected profits, and compete in a noncooperative game in terms of strategies con-
sisting of their respective product transactions and security levels.

In contrast to the models in [2, 7, 8], the demand at each demand market j , d j , is
assumed to be fixed and known and must satisfy the following conservation law:

d j =
m∑

i=1

Qi j , j = 1, . . . , n. (1)

Also, the product transactions have to satisfy capacity constraints and must be
nonnegative, so that we have the following conditions:

0 ≤ Qi j ≤ Q̄i j , with
m∑

i=1

Qi j > d j i = 1, . . . ,m; j = 1, . . . , n. (2)
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The cybersecurity level of each retailer i must satisfy the following constraint:

0 ≤ si ≤ usi , i = 1, . . . ,m, (3)

where usi < 1 for all i ; i = 1, . . . ,m, and si = 0 means that retailer i has no security.
The demand price of the product at demand market j , ρ j (d, s); j = 1, . . . , n,

depends both on the vector of demands and the network security. In view of the con-
servation of flow equations above, we can define ρ̂ j (Q, s) ≡ ρ j (d, s); j = 1, . . . , n.
We assume that the demand price functions are continuously differentiable and con-
cave.

There is an investment cost function hi ; i = 1, . . . ,m, associated with achieving
a security level si with the function assumed to be increasing, continuously differ-
entiable and convex. An example of an hi (si ) function that satisfies these properties
is

hi (si ) = αi

(
1√

(1 − si )
− 1

)

with αi > 0.

The term αi enables distinct retailers to have different investment cost functions
based on their size and needs. Such functions have been introduced by [11] and
also utilized by [7, 8]. Each retailer is faced with a limited budget for cybersecurity
investment. Hence, the following nonlinear budget constraints must be satisfied:

αi

(
1√

(1 − si )
− 1

)

≤ Bi ; i = 1, . . . ,m, (4)

that is, each retailer can’t exceed his allocated cybersecurity budget.
The profit fi of retailer i ; i = 1, . . . ,m is the difference between his revenue and

his costs associated, respectively, with production and transportation, that is:

fi (Q, s) =
n∑

j=1

ρ̂ j (Q, s)Qi j − ci

n∑

j=1

Qi j −
n∑

j=1

ci j (Qi j ), (5)

where ci j (Qi j ) are convex functions.
If there is a successful cyberattack on a retailer i ; i = 1, . . . ,m, retailer i incurs

an expected financial damage given by

Di pi ,

where Di , the damage incurred by retailer i , takes on a positive value, and pi is the
probability of a successful cyberattack on retailer i , where:

pi = (1 − si )(1 − s̄), i = 1, . . . ,m, (6)
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with the term (1 − s̄) denoting the probability of a cyberattack on the supply chain
network and the term (1 − si ) denoting the probability of success of such an attack on
retailer i . We assume that such a probability is a given data on the basis of statistical
observations.

Each retailer i ; i = 1, . . . ,m, hence, seeks to maximize his expected utility,
E(Ui ), corresponding to his expected profit given by:

E(Ui ) = (1 − pi ) fi (Q, s) + pi ( fi (Q, s) − Di ) − hi (si ) = fi (Q, s) − pi Di − hi (si ).
(7)

Let us remark that, because of the assumptions, −E(Ui ) is a convex function.
Let Ki denote the feasible set corresponding to retailer i , where

K
i ≡ {(Qi , si )|0 ≤ Qi j ≤ Q̄i j ,∀ j, 0 ≤ si ≤ usi ,

and the budget constraint hi (si ) − Bi ≤ 0, holds for i}.

We also define

K ≡
{
(Q, s) ∈ R

mn+m : −Qi j ≤ 0, Qi j − Qi j ≤ 0, −si ≤ 0,

si − usi ≤ 0, h(si ) − Bi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n
}
.

In addition, we define the set of shared constraints S as follows:

S ≡ {Q|(1) holds}.

We now state the following definition.

Definition 5 (A Supply Chain Generalized Nash Equilibrium in Product Trans-
actions and Security Levels) A product transaction and security level pattern (Q∗, s∗)
∈ K, Q∗ ∈ S , is said to constitute a supply chain Generalized Nash equilibrium if
for each retailer i; i = 1, . . . ,m,

E(Ui (Q
∗
i , s

∗
i , Q

∗
−i , s

∗
−i )) ≥ E(Ui (Qi , si , Q

∗
−i , s

∗
−i )), ∀(Qi , si ) ∈ K

i ,∀Q ∈ S .

(8)

Hence, according to the above definition, a supply chain Generalized Nash equi-
librium is established if no retailer can unilaterally improve upon his expected utility
(expected profit) by choosing an alternative vector of product transactions and secu-
rity level, given the product flow and security level decisions of the other retailers
and the demand constraints.

We now provide the linkage that allows us to analyze and determine the equilib-
rium solution via a variational inequality through a variational equilibrium
[4, 5].
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Definition 6 (Variational Equilibrium) A product transaction and security level pat-
tern (Q∗, s∗) is said to be a variational equilibrium of the above Generalized Nash
equilibrium if (Q∗, s∗) ∈ K, Q∗ ∈ S , is a solution of the variational inequality

−
m∑

i=1

n∑

j=1

∂E(Ui (Q∗, s∗))
∂Qi j

×
(
Qi j − Q∗

i j

)
−

m∑

i=1

∂E(Ui (Q∗, s∗))
∂si

× (
si − s∗

i

) ≥ 0,

∀(Q, s) ∈ K, ∀Q ∈ S ; (9)

namely, (Q∗, s∗) ∈ K, Q∗ ∈ S , is a supply chain Generalized Nash equilibrium
product transaction and security level pattern if and only if it satisfies the variational
inequality

m∑

i=1

n∑

j=1

[

ci + ∂ci j (Q∗
i j )

∂Qi j
− ρ̂ j (Q

∗, s∗) −
n∑

k=1

∂ρ̂k(Q∗, s∗)
∂Qi j

× Q∗
ik

]

× (Qi j − Q∗
i j )

+
m∑

i=1

[
∂hi (s∗

i )

∂si
−

(

1 −
m∑

k=1

s∗
k

m
+ 1 − s∗

i

m

)

Di −
n∑

k=1

∂ρ̂k(Q∗, s∗)
∂si

× Q∗
ik

]

×(si − s∗
i ) ≥ 0, ∀(Q, s) ∈ K,∀Q ∈ S . (10)

For convenience, we define now the feasible setK where K ≡ K ∩ S .
Problem (10) admits a solution since the classical existence theorem, which

requires that the set K is closed, convex, and bounded and the function entering
the variational inequality is continuous, is satisfied (see also [6]).

4 Strong Nash Equilibria

Today, sophisticated cyberattacks are coming down hard on companies and con-
sumers also because of the increasing international collaborations between cyber-
crime groups. For this reason, a retailer has to make big efforts to contrast cyber-
attacks, but, often, fighting alone cannot be efficient. However, joining forces and
forming coalitions with other retailers may result in substantial benefits. Therefore,
we are interested in analyzing SNE and provide a necessary condition for the exis-
tence of a SNE for our model.

Theorem 1 Anecessary condition for a strategy profile (Q∗, s∗) ∈ K to be a strong
Nash equilibrium is to be a solution to the following system of variational inequali-
ties:
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m∑

i=1

n∑

j=1

∂E(Ui (Q∗, s∗))
∂Qi j

× (Qi j − Q∗
i j ) −

∑

i∈N

∂E(Ui (Q∗, s∗))
∂si

× (si − s∗
i ) ≥ 0

∑

i∈C

n∑

j=i

wi
∂E(Ui (Q∗, s∗))

∂Qi j
× (Qi j − Q∗

i j ) −
∑

i∈C
wi

∂E(Ui (Q∗, s∗))
∂si

× (si − s∗
i ) ≥ 0,∀C ⊆ N ,

∀(Q, s) ∈ K , (11)

for some wi ∈ R
m+ and

m∑

i=1

wi = 1.

Proof Let (Q∗, s∗) ∈ K be a strong Nash equilibrium of the cybersecurity invest-
ment supply chain game, then it has to be a Nash equilibrium and Pareto efficient for
all possible coalitions. Thus, as aNash equilibrium, SNE solves variational inequality
(9), which is nothing but the first variational inequality in (11).

Moreover, aPareto efficient product transaction and security level pattern, (Q∗, s∗)
∈ K , can be expressed as a solution to the multiobjective optimization problem

min(−E(U1(Q, s)), . . . ,−E(Um(Q, s)))

subject to (Q, s) ∈ K .

Due to the assumptions on −E(Ui ) and the structure of set K , the classical
scalarization approach allows us to consider an equivalent minimum scalar problem.
In particular, we focus on Pareto efficient solutions with respect to all coalitions,
namely, we have to solve the problem

min(−
∑

i∈C
wi E(Ui (Q, s)), ∀C ⊆ N

subject to (Q, s) ∈ K, Q ∈ S , (12)

where wi ∈ R
m+ and

∑m
i=1 wi = 1. Finally, applying the minimum principle, we find

that a Pareto efficient solution verifies the other inequalities of the system (11).
Therefore, we conclude that if (Q∗, s∗) ∈ K solves system (11), then it is a strong
Nash equilibrium of the cybersecurity investment supply chain game. �
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Factors: The EVO Oil Production
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Abstract The paper considers simulation results for a supply network, that deals
with Extra Virgin Olive (EVO) oil production, an activity that is typical of Southern
Italy. The phenomenon is studied by differential equations, that focus on goods on
arcs and queues for the exceeding goods. Different numerical schemes are used for
simulations. A strategy of Situation Awareness allows defining a possible choice
of the input flow to the supply network. The achieved results indicate that Situa-
tion Awareness permits to find good compromises for the modulation of production
queues and the optimization of the overall system features.
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1 Introduction

The wealth of Italian regions is connected to different features that often deal with
phenomena of distribution and production of goods. In order to increase the Ital-
ian prestige at national and international levels, a particular attention is devoted to
marketing strategies, that focus on the export of cultivated goods. Such a situation
implies efforts to guarantee a relevant treatment of products by supply networks, and
this is studied in Campania, an Italian region where production and distribution of
Extra Virgin Olive (EVO) oil, obtained by olives, represent fundamental economic
activities. Indeed, in this case the primary factor is the production, as its possible
delays generate negative consequences on the delivery of the final product to the
final users.

The aim of this work is to analyze supply networks for the EVO oil production,
also focusing on environment factors that always determine a constraint in terms of
input flows for production systems. In this case, supply networks are modelled by
a fluid-dynamic model, that deals with Partial and Ordinary Differential Equations
(PDEs, ODEs). Input flows to such networks are determined via an approach of
Situation Awareness, applied to the EVO oil production. The advantages are evident:
on one hand, the chosen model foresees space-time dynamics of goods; on the other,
Situation Awareness indicates, considering environment parameters, possible inputs
for the production systems, in order to avoid situations of queues of goods to process.

Various mathematical models [1, 2] have been used to study supply networks.
Some approaches are discrete and based on individual parts; others are continuous
and deal with differential equations (see [3, 4] for applications to road networks).
The first work, that considers a continuous approach, is by Armbruster et al. [5], who
obtained a conservation law [6, 7], that describes the parts densities. Other works
have been introduced to define further phenomena within supply systems [8]. In
this case, we refer to: A model proposed in [9, 10], that uses conservation laws for
densities of parts and queues for each supplier; A discretization scheme for PDEs
and ODEs [11, 12], that analyzes an Upwindmethod for PDEs and and Euler scheme
for ODEs with different space meshes and fixed time grid mesh (details are in [13]).
For other numerical schemes, useful for the computational efficiency, see [14], while
important applications in science and engineering are in [15].

As there is a strong necessity of controlling the production processes and hence
the input flows to the supply networks, Situation Awareness is useful. According
to Endsley’s opinion [16], Situation Awareness deals with “the perception of the
elements in the environment within a volume of time and space, the comprehen-
sion of their meaning, and the projection of their status in the near future”. Such a
model consists of three different levels, that provide indications to plan decisions
for input flows of supply networks: perception, by which all elements of the sur-
rounding environment are perceived; comprehension, that studies which data from
the environment are suitable for the goals to reach; projection, namely the capability
of projecting the recognized elements in future times. The expected advantages of
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SituationAwareness are simply achieved by the features of the three levels, that allow
taking decisions for specific domains.

Finally, simulations are made: a real example of supply system for the EVO
oil production is considered. In this case, input flows refer to two different cases:
decisions planned by the leadership of a farm in Campania region (Italy); decisions
that, considering real environment data, are determined by a model of Situation
Awareness. It is shown that Situation Awareness is able to accelerate the system
dynamics, in terms of emptying of queues in some parts of the system.

The paper is organized as follows. Section 2 presents Situation Awareness for
the context of the EVO oil production. Section 3 describes a mathematical model
for supply networks and the proposed numerical method. Section 4 presents the
simulation results for a real case study. Conclusions end the paper in Sect. 5.

2 Situation Awareness for EVO Oil Production

We focus on an application of Situation Awareness by considering the Endsley’s
model [16] within the scenario of the EVO oil production for a real farm in Campania
region (Italy). Figure 1 shows the approach.

In particular, the environment considers conditions by which a good EVO oil
depend, namely: weather, rain and/or wind, humidity. A situation describes states
for good growths of olives and consists of three different steps:

n

SITUATION AWARENESS

Fig. 1 Abstract vision of Situation Awareness for the described context
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• Perception: environment data are acquired.
• Comprehension: the kept data are elaborated. Notice that combinations of param-
eters for olives growth could provide a safe forecast on the quality of the obtained
EVO oil. In this paper, time series are used for the comprehension step.

• Projection: suitable future decisions are used tomake work plans, with consequent
definition of a Decision Support System (DSS).

The DSS, that is not reported in detail here, is a support for the leadership of the
farm under consideration. The rules of DSS are based on Fuzzy Logic and this allows
defining correct levels of olives injection to the production networks.

3 Supply Networks: Model and Numerics

AnODE-PDE approach for supply systems (see [10]), that recalls [5, 9], is described.
In particular, we consider: conservation laws for density of goods over the suppliers;
temporal variation of queues for the transition of parts among suppliers. Finally, we
analyze some numerical schemes for the proposed mathematical model.

Now, we focus on the model. A supply network is a graph with set of arcs and
vertices indicated, respectively, by J and V . A generic arc j ∈ J is represented
by a real interval

[
a j , b j

]
, that models a supplier, with possible infinite endpoints.

We have arcs of type: incoming if b j < +∞, or outgoing if a j > −∞. In case of
outgoing arcs, there exist queues. Each vertex v ∈ V connects a set of incoming
arcs, I nc(v) ⊂ J , and a set of outgoing arcs Out (v) ⊂ J . Finally, distributions
coefficients (αv, j ) j∈Out (v) such that αv, j ∈]0, 1[ and

∑
j∈Out (v) α j,v = 1 ∀ v ∈ V ,

are useful to indicate the percentage of flux that, flowing from v, distributes to the
supplier j .

For each arc j ∈ J , define the followingquantities:ρ j (t, x) ∈
[
0, ρmax

j

]
, density

of parts at point x and time t ; f j
(
ρ j (t, x)

) := min
{
μ j , v jρ j (t, x)

}
, flux function;

μ j > 0, maximum processing capacity; L j > 0, length; Tj > 0, processing time;
v j := L j/Tj , processing velocity.

Assuming that goods within each arc j ∈ J are treated with a maximal flux μ j

and velocity v j , the dynamics is described by the conservation law:

∂

∂t
ρ j (t, x) + ∂

∂x
f j

(
ρ j (t, x)

) = 0, ∀ x ∈ [
a j , b j

]
, t > 0, (1)

ρ j (0, x) = ρ j,0 (x) ≥ 0, ρ j
(
t, a j

) = f j,inc (t)

v j
, (2)

where the initial condition, ρ j,0, and the inflow, f j,inc (t), have to be provided.
If arc j ∈ Out (v) with v ∈ V , there exists a time dependent queue, q j (t), that

follows the equation:
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d

dt
q j (t) = αv, j

∑

m∈I nc(v)
fm (ρm (bm, t)) − f j,inc (t) . (3)

We assume that, for each arc j ∈ J :

f j,inc (t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ j (t) , if a j = −∞,

min

{

αv, j
∑

m∈I nc(v)
fm (ρm (bm, t)) , μ j

}

, if q j (t) = 0,

μ j , if q j (t) > 0,

(4)

where γ j (t) is an assigned input function on the left boundary
{(
a j , t

) : t ≥ 0
}
.

Now, we focus on some numerical schemes. For the just described approach, we
deal with a scheme, that focuses on the upwind method for PDEs (1) and an explicit
Euler scheme for ODEs (3) assuming different space meshes, see deeper details in
[13].

For the generic arc j ∈ J , define a numerical grid in
[
0, L j

] × [0, T ] with points
(xi , tn) j , i = 0, . . . , N j , n = 0, . . . , η j , where: N j is the number of segments into
which the j-th supplier is divided; η j is the number of segments into which [0, T ]
is divided. Then, indicate the approximated density at point (xi , tn) and the value of
the approximated queue buffer occupancy at time tn , respectively, by jρn

i and qn
j .

For the generic arc j ∈ J , set a fixed time grid mesh Δt and different space grid
meshes Δx j = v jΔt . In this case, grid points are of type (xi , tn) j = (

iΔx j , nΔt
)
,

i = 0, . . . , N j , n = 0, . . . , η j .
Finally, the Upwind scheme for the parts density of arc j is:

jρn
i − jρn+1

i
jρn

i − jρn
i−1

= Δt

Δx j
v j , j ∈ J , i = 0, . . . , N j , n = 0, . . . , η j , (5)

and the CFL condition (see [12]) holds as Δt = min
{

Δx j

v j
: j ∈ J

}
.

For queues, if a j < −∞, the explicit Euler method reads as:

qn+1
j − qn

j + Δt f nj,inc = Δt αv, j

∑

k∈I nc(v)
fk(

kρn
Nk

), n = 0, . . . , η j , (6)

where:

f nj,inc =

⎧
⎪⎨

⎪⎩

min

{

αv, j
∑

k∈I nc(v)
fk(kρn

Nk
), μ j

}

, if qn
j (t) = 0,

μ j , if qn
j (t) > 0.

For suitable numerical corrections for f nj,inc, see [13].
Finally, if a j = −∞, boundary data are used by referring to ghost cells and the

inflows defined by γ j (t), see Eq. (4).
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4 Simulations

We analyze some results of a real supply network, that deals with the EVO oil
production, see Fig. 2. The network is used inside a little farm in Campania region
(Italy) and, considering the interpretation given in [10], each arc is a machine or a
conveyor belt.

Each arc has a role described as follows. Arc 1 is a conveyor belt that transports
olives. According to a distribution coefficient 0.5, olives are equally distributed to
arcs 2 and 3, that are machines useful for peeling and skins separations of olives.
Arcs 4–7 work for olive pressing. Arcs 8 and 9 consider the oil collection. Finally,
arc 10 is useful for bottling operations.

Considering the described numerical scheme, the network is simulated by Δt =
0.0125 and: Li = Ti = 1, i = 1, . . . , 10; μ1 = 600; μ10 = 16; μ j = 35 − 2 j , j =
2, . . . , 9; ρi (0, x) = 0, i = 1, . . . , 10; qi (0) = 0, i = 2, . . . , 10; total simulation
time T = 500; input profile γ (t) for arc 1 chosen as:

γ (t) =
⎧
⎨

⎩

t, 0 ≤ t < 50,
50, 50 < t ≤ 80,
130 − t, 80 < t ≤ 130.

(7)

Function (7) obeys a behaviour that is really considered inside the little farm in
discussion. In fact, olives are first injected according to a linear increasing profile
(phase of hard injection); Then, a constant one; Finally, a decreasing one (phase of
light injection).

Figures 3, 4 present the various queues, from which we get that: Queue q2 (t) has
a smoother profile as it is directly connected to arc 2; Because of μ j , j = 1, . . . , 10,
slopes for queues q j (t), j = 3, . . . , 9, are different from the ones of q10 (t); Queues
dynamics is slow although the behaviour of γ (t) is zero ∀ t > 130. This last aspect
is clearly shown by q10 (t) that becomes zero at t � 380 	 130.

Queues occur due to γ (t), v j and μ j , j = 1, . . . , 10. As the EVO oil production
system cannot be redesigned in terms of processing times and maximal fluxes, the
behaviour of γ (t) implies the dynamics of the supply network. Possible optimization
techniques for the supply systems modelled via fluid-dynamic approaches is still

Fig. 2 Supply network for the EVO oil production
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Fig. 3 q2 versus time t
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under investigation now, especially in terms of DSSs that indicate correct choices of
γ (t) to erase queues.

In this case, an approach, based on Situation Awareness, allows analyzing the
environment data in order to get that γ (t), a new possible choice for γ (t), focuses
on only constant levels, namely:

γ̃ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

40, 0 ≤ t < 45,
90, 45 ≤ t ≤ 90,
60, 90 < t ≤ 150,
20, t > 150.

(8)

The new profile (8) is obtained due to the typical Italian weather conditions in
months useful for olives, fromAugust toDecember. Considering a time t expressed in
days, a Situation Awareness criterion suggests constant levels of injections, namely:
Light injection fromAugust 1st to September 15th (about 45 days); High profile from
September 15th to October 30th; Medium injection fromNovember 1st to December
30th; Low profile from December 30th.
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The system performances due to γ (t) and γ̃ (t) are defined by the cost functional:

Γ :=
10∑

j=1

⎛

⎜
⎝

T∫

0

q j (t)

10
dt

⎞

⎟
⎠ ,

that describes the average area due to queues, dependent on the input profiles. We
have that:

Γ (γ (t)) � 128988, Γ (γ̃ (t)) � 97559.

Notice that the adoption of a new profile does not erase queues but allows only to
decrease them. This last aspect is still in investigation.

5 Conclusions

Focusing on the model for supply systems proposed in [9, 10], a real case of pro-
duction network for the EVO oil has been studied.

In particular, using a procedure based on Situation Awareness, the simulations
have showed that input profiles are able to modulate production queues, but not to
erase them completely.

Further studies, based on Situation Awareness and Fuzzy Logic for the compre-
hension and the projection phases, are going to be developed in order to obtain robust
optimization criteria for the performances of supply networks.
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A Freight Adviser for a Delivery
Logistics Service e-Marketplace

Annarita De Maio, Antonio Violi, Demetrio Laganà and Patrizia Beraldi

Abstract We introduce the study of an application for the Macingo Technologies,
a company thatmanages an e-marketplace for logistics services. A carrier has to pick-
up and delivery freight from different points and is able to accept further delivery
requests through the web company platform. In order to investigate the convenience
in accepting extra-deliveries, the company wants to develop a decisional support
system that suggests a list of convenient deliveries, and as a consequence, the best
itinerary for the pick-up and delivery points. We study a Vehicle Routing Problem
in which a subset of mandatory customers has to be visited by the vehicle, while
the goal consists of maximizing the net revenue with respect to the routing cost to
serve the set of mandatory customers. Some preliminary computational results are
presented, showing the validity of the proposed approach.

Keywords Vehicle routing · Pick-up and delivery · Time windows

1 Introduction

https://www.Macingo.com is one of the largest Italian community for sharing bulky
good transport: from cars to motorbikes, from boats to industrial products, the web-
site connects who has a request for delivery (private individuals and companies) with
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carriers that are compatible from a geographical, merchandise and capacity point of
view. The e-marketplace was created by Macingo Technologies srl, that developed
a platform for matching supply and demand of transportation services. The scien-
tific literature deeply investigated the logistics e-marketplace: [1] describes the best
features and classification of this type of markets; [2–4] introduce a range of inter-
esting mathematical problems related to the way these negotiations take place; some
case studies about the collaboration between carriers and its benefits are introduced
by [5, 6]; finally a general overview about collaboration in freight transportation is
presented by [7].

The main idea of the Macingo’s business was initially to offer a web service in
which carriers are able to saturate their vehicle capacity in surplus, taking in charge
customers’ requests submitted on the web platform. In general, carriers offer directly
on the site their availability of cargo to thousands of transport requests that arrive
on the platform every month. The customer that needs to transport a good places
the request on the site and receives offers from interested carriers. If he finds an
interesting offer, he can proceed to book the transport directly on the site paying
a minimum commission. The company offers a very basilar service actually. No
auction or optimization for prices, routes, loads is provided to the users. On loads and
geographical evaluation base, each carrier receive a list of possible service requests
and analyses them by himself. In this way he can decides to send a private offer for
transportation to a particular customer.

Macingo wants to improve the service, introducing a decisional support system
for the logistics operator that use the platform. The new service will suggest to each
carrier a list of request to accept that are considered convenient from a profit point of
view. In particular, the new service should work as follow: the carrier inserts on the
platform a list of nodes for pick-up and delivery freight that correspond to the request
he has already in charge, in terms of geographical positions, loads and transportation
costs. Starting from the actual carrier status, the platform evaluates if there are extra
convenient requests that it can suggest to the carrier, considering the incremental
profit he can obtain accepting them. At the end, the platform describes the best route
to follow. If no request is convenient, the platform suggest only the best route for the
pre-inserted deliveries.

In this work, we study the mathematical formulation that drives the engine of the
platform for modelling the problem related to the new service that Macingo wants to
introduce. The problem is formulated as a variant of Vehicle Routing Problem with
pick-up and delivery and time windows, with a set of mandatory requests and the
maximization of the incremental profit; where the expression “incremental profit”
refers to the net revenue (total profit minus total routing cost, resulting from the
service of not mandatory requests compared to the fixed routing cost to serve all the
mandatory request).

Vehicle Routing Problems (VRPs) spread out in the optimization of goods distri-
bution management in supply chains. This approach design an optimal route for a
fleet of vehicles that deliver a set of customers, with a set of different constraints.
The VRP is deeply studied because of its wide applicability and its importance in
determining efficient strategies for reducing operational costs in distribution net-
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works. In practice, several variants of the problem exist because of the diversity in
real-life applications. A short literature overview is presented in the following: VRP
was introduced for the first time by [8]; while a great description of the classical
version and its variants is presented in different contributions, like [9–11]. The VRP
generalizes thewell-knownNP-Hard Travelling Salesman Problem but ismuchmore
difficult to solve in practice. Lots of solutionmethodswere presented in the past: good
exact solution methods were introduced by [12, 13], while heuristics approaches are
described in [14, 15]. The literature is also rich of great contribution on the pick-up
and delivery variant: two different classes are described in [16]. The first refers to
the problem in which each vehicle can both deliver goods and collect waste but it
must complete all deliveries before starting to collect (Vehicle Routing Problems
with Backhauls (VRPB)). The second class is composed by problems where goods
aremoved between pick-up and delivery points (Vehicle Routing Problems with Pick-
ups and Deliveries (VRPPD)), in which different sub-classes could be recognized
(customers are either delivery or pick-up customers but cannot be both, customers
can be both, simultaneously pick-up and delivery, etc …). For a detailed overview
in the field the reader can refer to [11, 16, 17].

In this work, we introduce a variant of the pick-up and delivery case with time
windows. In this case, a carrier has to process a set of deliveries that he has in charge,
visiting a set of pick-up and delivery points, that are fixed, starting his route from
the depot. The carrier has to decide if it is convenient to saturate the capacity of
his vehicle accepting further deliveries, maximizing his additional revenue. He also
needs to know which is the best route that satisfy all the constraints, including time
windows restrictions. The paper is organized as follows: Sect. 2 introduces the prob-
lem formulation and its features, Sect. 3 presents some preliminary computational
results and Sect. 4 reports some concluding remarks.

2 Problem Formulation

In this section, the mathematical formulation based on binary arc-variables is pre-
sented. We consider a complete directed graph G = (V,A), where V is the set of
vertices and A is the set of arcs. We suppose that G is an Euclidean graph, so the
triangular inequality holds. Let m be the number of requests to be evaluate, each
one made up of a pair of vertices (pick-up and delivery). A set of pick-up vertex
P = {1, 2, . . . ,m} ⊂ V and delivery vertexD = {m + 1,m + 2, . . . , n} ⊂ V can be
visited by the vehicle starting from the depot (with index zero and n + 1). The subset
F = Pf × Df represents the set of the mandatory requests, with Pf ⊂ P andDf ⊂ D
. The set with all vertices is denoted by V = P ∪ D ∪ {0} ∪ {n + 1}. The parameter
cij is the non-negative cost of the arc (i, j) ∈ A, that satisfies the triangular inequality,
while the parameter tij is the time for traversing the correspondent arc.

We consider only one vehicle that has capacity C. Different parameters are asso-
ciate with each node. A quantity qi represent the demand/supply at vertex (pick-up
vertices are associated with a positive value, delivery vertices with a negative value,
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while it is equal to zero at depot). Each node defines the earliest and the latest time
to start the service, ei and li respectively; the duration of the service di, i ∈ P ∪ D
and the revenue Ri,∀i ∈ Df for visiting the node. We consider also a maximum time
for routing TM and the cost of the routing CVR that the logistics operator initially
estimated for serving the mandatory customers with the original route.

The continuous variables Bi indicate the beginning of the service at node i (with
B0s and B0r respectively starting and ending time service at the depot), while Qi is
the load of the vehicle when leaving the vertex i. The binary variable zi is equal to 1
if the node i is visited; the binary variable xij is equal to 1 if vehicle travels directly
from vertex i to vertex j. This problem can be formulated as follows:

Max
∑

i∈Df

Rizi − ΔC (1)

s.to. ∑

j:(0,j)∈A
x0j = 1 (2)

∑

i:(i,0)∈A
xi0 = 1 (3)

∑

i:(i,j)∈A
xij −

∑

i:(j,i)∈A
xji = 0 ∀j ∈ P ∪ D (4)

∑

j∈V
xij = zi ∀i ∈ V (5)

zi = zi+|P| ∀i ∈ P (6)

Bi+|P| ≥ Bi ∀i ∈ P (7)

zi = 1 ∀i ∈ F (8)

Bi ≤ lizi ∀i ∈ V (9)

Bi ≥ eizi ∀i ∈ V (10)

B0r − B0s ≤ TM (11)

Bj ≥ Bi + di + tij − Mij(1 − xij) ∀(i, j) ∈ A (12)

Qj ≥ (Qi + qj) ∗ xij ∀(i, j) ∈ A (13)

max{0, qi} ≤ Qi ≤ min{C,C + qi} ∀i ∈ V (14)
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Bi,B0s,B0r ≥ 0 ∀i ∈ V (15)

xij ∈ {0, 1} ∀(i, j) ∈ A, (16)

Qi ≥ 0 ∀i ∈ V . (17)

The objective function (1) maximizes the additional profit that the operator can
reach if he accepts extra-delivery; the profit is computed considering the revenue in
accepting new deliveries minus the additional cost of the new route compared with
the original one, ΔC = ∑

(i,j)∈A cijxij − CVR. Constraints (2)–(3) force the tour to
start and finish at the depot, constraints (4) are the typical path constraints, constraints
(5) impose the visit of each selected node. Constraints (6)–(7) impose the necessity to
pick-up the freight before deliver. Constraints (8) force a group of nodes to be visited
(in order to satisfy the demand of the set of scheduled customers), constraints (9)–(10)
impose the timewindows for visiting each node, constraint (11) defines themaximum
duration of the route, constraints (12) set a minimum time for the service beginning
of customer j in a determined route and also guarantee that no sub-tours occur. The
constantMij is a large enough number (for instance,Mij = li + tij − ej). Constraints
(13) impose that each node of delivery has to be visited after its correspondent pick-
up node in terms of loads, while constraints (14) are the vehicle capacity constraints.
Constraints (15)–(17) define the variables nature.

Constrains (13) are non linear in this shape. In order to linearise themwe introduce
the new variable mij = Qi ∗ xij and we substitute it into (13) in the following way:

Qj ≥ mij + qjxij ∀(i, j) ∈ A (18)

We consider an upper bound for the Qi that is equal to the vehicle capacity C; the
additional constrains needed for the linearisation are described below:

mij ≤ Cxij ∀(i, j) ∈ A (19)

mij ≤ Qi ∀(i, j) ∈ A (20)

mij ≥ Qi − (1 − xij)C ∀(i, j) ∈ A (21)

mij ≥ 0 ∀(i, j) ∈ A (22)

3 Computational Results

The problem described in Sect. 2 was implemented in C++ by using IBM Concert
Technology and CPLEX 12.6,1 and run on an Intel Core i7-6500U 2.50 GHz and 8
GBRAMpersonal computer. Some instances are generated ad hoc in order to test the

1https://www.ibm.com/products/ilog-cplex-optimization-studio.

https://www.ibm.com/products/ilog-cplex-optimization-studio
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Fig. 1 Examples of the initial routing for the logistic operator without considering new offers from
the platform. Total routing cost equal to 674

model. Instances are labelled as pPdDfF, where P is the number of pick-up points,D
is the number of delivery points and F is the number of scheduled deliveries selected.
Because of the absence of real data for now, in the tests we consider the CVR equal
to the TSP solution value for the set made up of the fixed pick-up and delivery points
and the depot, respecting the time window constraints.We estimate also the Ri values
on the base of the carrier experience.

Our decisional support model is able to select the convenient delivery in order to
produce an additional earning for the logistics operator. In order to clarify how the
model works, a simple example is showed in the following pictures.

In Figs. 1 and 2 an instance with P = {1, . . . , 5},D = {6, . . . , 10} and F = {1,2–
6,7} is described. The solution scheme for the initial situation is represented below,
the total routing cost computed with the TSP is equal to 674, the logistics operator
has to serve the pickup-delivery couple 1–6 and 2–7.

In Fig. 2, the revenue for serving each extra delivery point is considered. The
model has to advice the logistics operator about which extra-delivery is convenient
to take in charge. In the new solution, the built route serves the couples 1–6, 2–7, 4–9;
with a total routing cost equal to 1052 and a total earning equal to 500 for serving the
couple 4–9. Considering the objective function, the extra earning obtaining serving
the couple 4–9 is equal to 500 − 1052 + 674 = 122. The situation after solving the
model is described below:

In the example showed, the logistics operator can accept a new delivery in order
to improve his final earning.

A set of instances with different cardinalities was tested. The results are described
in the table, that is organized as follow: column Instance introduces the instance
name, column Initial TSP reports the TSP cost for the scheduled deliveries, column
New R.C. reports the new total routing cost obtained by solving the model, column
T. Earning reports the objective function value, column N. Extra Del. introduces
the extra delivery number that the model assigns to the logistics operator, the last
two columns describe the execution time and the duality gap provided by Cplex,
respectively (Table 1).
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Fig. 2 Examples of the final routing for the logistic operator considering new offers from the
platform. Total earning equal to 122

Table 1 Computational results

Instance Initial TSP New R.C. T. Earning. N. Extra
Del.

Time (s) Gap %

5P5D2F 674 1052 122 1 0.23 0.00

5P5D2F 674 924.17 612.83 2 0.72 0.00

6P6D2F 674 1047.94 829.05 2 3.98 0.00

6P6D3F 795.23 1395.67 602.32 2 5.72 0.00

7P7D3F 795.23 1296.67 622.33 2 66.38 0.00

8P8D3F 795.23 1395.67 600.32 3 229.36 0.00

Starting from two different configurations of initial scheduled deliveries, we test
some instances of growing size, in order to show that the model is able to modify
the previous scheduling and suggesting new convenient solutions for the logistics
operator. The duality gap provided by Cplex and showed in the last column proves
that all the instances are solved to optimality. The results show that the model is
able to assign extra-requests in all the analysed instances, maximizing the additional
profit. It is also possible to underline that the model could be effective also in the
case in which it is not convenient to suggest extra-request: the model gives in output
the TSP route of the mandatory nodes. In this way, if the carrier plans in a worst way
his route, he is able to modify his travel.

4 Conclusion

In this work, we introduce a variant of the classical VRP with pick-up and delivery
and time windows. The model is formulated for matching the need of a company
that manages an e-marketplace for logistics services and wants to introduce a new
function for suggesting its customers about the best and convenient requests to accept.
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The company wants also to provide a support about the best route to follow in that
case. As described in the previous section, the mathematical model is able to give a
good support for selecting the best options and rescheduling the routing for the pick-
up and delivery points, taking into account different constraints. Starting from this
evidence, it is possible to affirm that the model faces the company needs perfectly,
and in the future an heuristic algorithm could be developed for solving instances
with a big number of pick-up and delivery points, in order to meet real-life market
request.
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Specification and Aggregate Calibration
of a Quantum Route Choice Model
from Traffic Counts

Massimo Di Gangi and Antonino Vitetta

Abstract This paper analyses certain aspects related to the route choice model in
transport systems. The effects of an interference term have been taken into consider-
ation in addition to the effect of a traditional covariance term. Both the specification
and calibration of an interference term in a quantum route choice model are shown
in the context of an assignment model. An application to a real system is reported
where the calibration of QUMs (Quantum Utility Models) was performed using traf-
fic counts. Results are compared with traditional and consolidated models belonging
to the Logit family. Based on the theoretical and numeric results, it is highlighted
how the interference term and quantum model can consider other aspects (such as
information) with respect to traditional RUMs (Random Utility Models).

Keywords Assignment · Path choice · Quantum

1 Introduction

In this paper, the effects of other sources of information within random utility route
choice models are considered. Such effects are included in an interference term.
Route choice is a component of assignment models; it simulates user behaviour in a
transport network, having defined the origin and the destination of the journey, the
departure time and the mode.

At the route choice level, some user behaviours are simulated by a utility function.
(i) With regard to the kind of uncertainty, Random Utility Models (RUMs) [1] or
Fuzzy Utility Models (FUMs) [2] can be considered. (ii) Concerning the percep-
tion of overlapping alternatives, RUMs simulate the overlapping perception between
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alternatives considering an additive term (i.e. Path size [3], C-Logit [4]) or a covari-
ance (i.e. Nested Logit [5], Probit [6], Gammit [7]). (iii) In relation to experience
on the past and information, within-day [8] and/or day-to-day models [9] simulate
these aspects.

RUMs or FUMs assume that each user assumes a choice set of clearly perceived
alternatives and chooses one of the alternatives belonging to the choice set. The
analyst associates a probability choice to each of the alternatives, and probabilities
for the alternatives are estimated (a) without or (b) with a covariance in perception.

In real-life situations, the user may perceive that certain alternatives interfere with
one another, so the analyst cannot consider interfering alternatives as clearly separate
and interference should be explicitly considered. The interference simulates the lack
of information on one or more alternatives. To take account of these aspects, a new
class of models has been proposed [10], called Quantum Utility Models (QUMs).

QUM assumes that each user perceives a choice set of alternatives in which all or
some of the alternatives interfere. This effect can also take account of the availability
of information within the trip. The analyst associates a quantum probability choice
to each perceived alternative with interference, (c) not considering or (d) considering
covariance.

Thus, the above-defined cases are: (a) no covariance, no interference; (b) covari-
ance, no interference; (c) no covariance, interference; and (d) covariance, interfer-
ence. In the decision-making process, if the absence of the interference effect is
assumed, QUM gives the same specification of RUM [11].

In addition to the paper reported in the literature related to RUMs, QUM has been
specified in this paper considering interference at the generation level of alternatives,
route choice and assignment model and procedure with RUMs and QUMs, calibra-
tion of a QUM from counted flow, and application to a real case. The results were
compared with traditional models. The main advancement proposed in this paper is
the aggregated calibration from traffic counts of the values of the QUM parameters
and comparison with RUMs.

Following a short summary of assignment models in Sect. 2, QUMs are specified
in Sect. 3 and integrated in the context of assignment models. The results of a test
performed in a real case are reported in Sect. 4; while Sect. 5 contains a summary of
achieved results.

2 Assignment Model

The assignment model considers user behaviour within the route choice model. The
(equilibrium) assignment model can be formulated as the combination of a demand
model and a supply model leading to a fixed-point model [12].

In a congested transport network, the flowvector f is the solution of the fixed-point
problem expressed by:

f � ν(γ ( f ), I,Δ, d;β)
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where:

c = γ (f ) expresses the dependence of the link cost vector c and the link flow vector
f by means of a cost function γ ;

I is the set of perceived alternatives;
Δ is the link-route incidence matrix;
d is the demand vector;
β is the vector of control variable to be estimated

To solve the fixed-point problem, Robbins and Monro [13] propose the Method
of Successive Averages (MSA) applied to the Stochastic User Equilibrium (SUE)
problem as proposed by Sheffy and Powell [6]. Two variants of MSA can be consid-
ered: the Flow Averaging (MSA-FA) algorithm that updates link flows [14], and the
Cost Averaging (MSA-CA) algorithm that updates link costs [12]. In this paper, the
MSA-FA algorithm is considered.

The link flow depends on the control variables included in vector β. They could
be estimated starting from counted flows and an initial value β in. The counted flows
are reported in the vector f ob.

Considering the case ofMinimumLeast Squaremethod, the optimization problem
can thus be formulated as:

Control variables β

Optimization problem min z1(β,β in, Zβ) + z2
(
f , f ob, Z f

)

Constraints f � ν(c, I, 1, d;β)

c � γ ( f )

d ≥ 0

z1(β,β in,Zβ ) � (β − β in)T Z−1
β (β − β in)

z2
(
f , f ob, Z f

) � ( f − f ob)T Z−1
f ( f − f ob)

where:

Zβ and Zf are the variance-covariance matrices of β and f respectively
z1 is a distance function between simulated and initial control variables
z2 is a distance function between simulated and counted flow values.

3 QUM and RUM Route Choice for Assignment

Considering a specific origin/destination (o/d) pair j, the route choice model is gener-
ally defined in terms of (i) generation of the set of the perceived alternatives, and (ii)
choice from among those alternatives. Aa new approach combining RUM and QUM
is shown below. Very often, these two levels are simulated using the same type of
model (i.e. introducing a new term in the utility specification of RUM or FUM [15]).
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In this paper, a new model introducing the interference term and quantum models
for the first level (generation) is proposed.

Route choice behaviour modelling through RUM. In relation to the route choice
level, given o/d pair j, RUMs evaluate the probability pk,j of choosing route k within
the choice set of perceived alternatives. The choice of perceived alternatives is the
same for both levels. Assuming the utilities of the alternatives distributed as an inde-
pendent Gumbel probabilistic function, some specifications for pk,j can be obtained
(Multinomial Logit, Path Size-Logit, C-Logit).

The main advantages of these models consist in their simple structure and choice
probabilities obtained in a closed form. Due to hypotheses on utility distribution, the
main drawback of Multinomial Logit (MNL) is that routes belonging to the choice
set I j are considered independent. To overcome this drawback, some modifications
to the MNL have been introduced. Such modifications maintain the simple Logit
structure and introduce a correction term within the expected value of the utility
function in place of the correlation among alternatives.

Ben-Akiva and Bierlaire [3] introduced the Path-Size Logit (PSL) model for
an application of discrete choice theory for aggregate alternatives. Cascetta et al.
[4] proposed a modification of the MNL model (named C-Logit), introducing a
commonality factor to measure the degree of similarity of each route with the other
routes of the choice set I j. As stated by Prato [16], the main disadvantage of C-Logit
is that this specification simulates only a part of commonality effects.

Assuming the utility of the alternatives distributed as a Normal probabilistic func-
tion, the Multinomial Probit (MNP) is obtained. One formulation applicable in a
real-size system was proposed by Daganzo and Sheffy [17] where the covariance is
explicitly specified. MNP cannot be expressed in a closed form.

Extension of route choice behaviour modelling through RUM and QUM. Users
consider certain criteria in generating alternative routes (i.e. minimum time, max-
imum reliability, etc.). QUMs introduce an interference term to take into account
the fact that some criteria can interfere with one another and cannot be perceived as
clearly separated. The interference simulates the lack of information. This could also
simulate the effect of information obtained during the trip. In the RUM approach, the
analyst estimates a choice probability for each alternative belonging to the choice
set. The overlapping effects are considered by means of a covariance term. It implies
that the user perceives a unique utility for each alternative, possibly with attributes
shared with other alternatives. Within the proposed model, it is possible to simulate
the two levels in different ways:

• (i) generation of the perceived criteria as a choice set (generated with N criteria)
with elementary criterion c; (ii) the choice is modelled with QUM

• (i) generation of a choice set with elementary routes k; (ii) the choice is modelled
with RUM

Introducing the interference term rk,j, the probability qk,j of choosing an alternative
k of o/d pair j can be expressed as [11]:
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qk, j � pk, j + rk, j ∀ j , k

where:

pk,j is the RUM component

In the case that N criteria are considered for the generation of the choice set, the
interference term is:

rk,j � 2
∑

c�1...N−1

∑

c′�N+1...N

(pk|c pc pk|c′ pc′cos(θkc,kc′ ))0,5

where:

pc is the RUM for choosing criterion c;
pk|c is the RUM for choosing route k conditioned to choose criterion c;
θ kc,kc′ is the interference angle between criterion c and c′ for alternative k

Values of parameters of the interference terms assume values that respect the
following constraints: rk, j ∈ [−pk, j , 1 − pk, j

]
;
∑

k∈I j rk, j � 0.
This model can take into account both overlapping and interference effects. As

can be noted, the interference effects are additive.

4 Experimentation

Themain objective of this section is to apply RUMs and QUMs in a real case in order
to calibrate QUMs from traffic counts and to evaluate the performances of QUMs in
comparison with traditional RUMs.

Two criteria are considered for the generation level: minimum travel time in
congestion condition T and maximum reliability R. Routes are generated using a
procedure proposed by De La Barra [18]. For the generation level, QUM is adopted
with the interference specified as:

θT,R � (β0bT,R − 1)π/2

where:

bT,R is the number of times that a route is selected as the best in terms of T with the
De La Barra procedure (normalized in the range [−1, 1]);

β0 is a calibrated parameter;

Note that bT,R represents a measure of interference between R and T.
For the choice level, Multinomial Logit, Path Size-Logit or C-Logit RUMs are

considered.
The interference angle, type of criteria and RUM specification considered here

are simply an example to validate the model. Other specifications for the interference
angle, criteria andRUMcanbe adoptedwithout losing the generality of this approach.
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Fig. 1 Normalized
root-mean-square deviation
for RUMs

The test network used in this context is a real network in Benevento, a city in
southern Italy with a population of about 62 000. The main characteristics of the
graph of the road network are: 66 internal zones and 14 external zones, 759 nodes and
1 579 arcs. Observed flows are derived from surveys. The link (and flows) considered
in the reported experiments belongs to 77 road trunks yielding 139 counting sections.

In the MSA-FA procedure, stochastic network loading was done using Logit-
based techniques where routes were explicitly generated. For each o/d pair, the route
search procedure is iterated 1 000 times and a maximum of 10 routes are generated.

Variance is computed assuming a non-negative relative standard deviation (coef-
ficient of variation Cv) and less than 1 common for all O/D pairs. Parameter α of the
Logit model was computed congruently with variance for each O/D pair.

To compare the values of simulated flows with counted ones, the value of the nor-
malized root-mean-square deviation (NRMSD) was considered, where lower values
indicate less residual variance. Considering the range of the values assumed for
parameters, a linear grid-search procedure was considered, avoiding a more sophis-
ticated approach [19].

In the following applications, a value for Cv equal to 0.05 was considered.
Values assumed for the other parameters of the models are: (i) Path-size Logit

(PSL in the following) β2 from 0.00 to 1.00 with a step of 0.10; (ii) C-Logit (CLO
in the following) β3 from 0.00 to −1.00 with a step of −0.10. Note that values of
0.00 coincide with the Logit model.

The results, in terms of NRMSD obtained for each MSA-FA experiment are
reported in Fig. 1, where values in the axis of CLO parameters β3 have changed sign
to enhance readability.

Values assumed for the QUM parameters considered in the choice level are the
best (in terms of NRMSD) obtained in the previous set of experiments. These values
are: β2 = 0.70 for Path-size Logit and β3 = −0.70 for C-Logit. The values adopted
for Quantum parameter β0 vary from 0.00 to 2.25. Note that the value of β0 = 0.00
coincides with no interference effect.

The results, in terms of NRMSD, obtained for each MSA-FA experiment are
reported in Fig. 2, where QUM, QPS and QCL indicate results (in terms of quan-
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Fig. 2 Normalized
root-mean-square deviation
for quantum models

tum probabilities) obtained using Multinomial Logit, Path Size-Logit or C-Logit,
respectively. As shown in Fig. 2, the presence of the interference term improves
the reproduction of observed flows. Considering models that introduce covariances
among routes, the interference term plays a significative role.

The presence of the interference term in the PSLmodel improves the reproduction
of observed flows. Since path size indicates the fraction of the route that constitutes
a “full” alternative, this can be explained by the fact that other behavioural aspects
play a considerable role if the covariance term is strongly considered.

Considering C-Logit, the presence of the interference term in this model generally
improves the reproduction of observed flows. This can be explained by the fact that
the reduction of the utility of a route because of its similarity with respect to others
does not take into consideration other behavioural effects that can be considered by
means of QUMs.

In general, it can be said that, in a large number of experiments, the interference
term reduces the NRMSD indicating that the covariance term does not simulate all
the elements considered in the user’s choice process.

5 Conclusions

In this paper, the effects of the interference term, in addition to the effects of traditional
covariance effect term, are considered within route choice models in a transport
system. Traffic flowcounts obtained froma real networkwere used to calibrateRUMs
and QUMs. From calibration results, in the Logit family, QUMs better reproduce
observed flow than RUMs.

Based on the theoretical and numeric results, this confirms that, in application, the
interference term simulates a different aspect with respect to the covariance effect.
The interference term and quantum model simulate other aspects and have to be
considered for simulation of the decision process.
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These results must also be confirmed in other real-size systems and other contexts.
QUMs consider overlapping and interference effects. The quantum probability is
evaluated as the sum of two terms and, without interference, probability is obtained
from RUMs. RUMs can be considered as a particular case of QUMs.

Further developments could relate to more experiments considering the effects of
the interference term in Probit and Gammit-based route choice models.

Acknowledgements Authors wish to thank the Municipality of Benevento for having made avail-
able the data of the urban traffic plan during the national research project PRIN 2009.
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Modeling and Solving the Packet Routing
Problem in Industrial IoT Networks

Luigi Di Puglia Pugliese, Dimitrios Zorbas and Francesca Guerriero

Abstract The IEEE802.15.4-TSCH (Time Slotted Channel Hopping) is a recent
Medium Accesss Control (MAC) protocol designed for Industrial Internet of Things
(IIoT) applications. The data transmissions in TSCHnetworks are performed accord-
ing to a tight schedule computed by either a centralized entity or by the network nodes.
The higher the schedule length, the higher the energy consumption of the network
nodes and the end-to-end delay. In this paper, we address the problem of finding
optimal routing topologies that minimize the schedule length. The problem can be
viewed as a particular instance of the spanning tree problem with cost associated
with each arc and a proper defined function that accounts for the schedule length. We
propose a formulation for the problem along with optimal solution approaches. The
computational results are carried out by considering realistic instances. The aim of
the experimental phase is to evaluate the influence of the problem’s characteristics on
the optimal solution and to assess the behavior of the proposed solution approaches.

Keywords Routing problem · Tree · Mixed integer linear program · IoT

1 Introduction

The advent of the fourth industrial revolution brings forward some new challenges
in manufacturing and automation. Internet of Things (IoT) applications use data
collected by physical things tominimizemanufacturingmistakes and reduce the cost.
However, IIoT applications require efficient communications among the deviceswith
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low energy cost and high end-to-end reliability [12]. Time-slotted communication
combined with a channel hopping MAC such as the IEEE802.15.4-TSCH [9] has
been proposed to provide the required high reliability at the link-layer.

In IEEE802.15.4-TSCH networks, the time is divided in slotframes where each
slotframe consists of equal size timeslots. At each timeslot, a node can retain one
of the following states: transmit a data packet, receive a data packet, or remain in
sleep mode and conserve energy. Typically, depending on the application, each node
transmits a number of packets per slotframe, which are forwarded towards a data
collector (root) either in a single-hop or multi-hop manner.

The timeslots that will be allocated to each node, are defined by the network
scheduler. In the literature, there are several scheduling algorithms which compute a
schedule so that all the packets are forwarded to the root within each slotframe. The
total number of timeslots that are allocated to the nodes by the scheduler constitutes
the schedule length. The schedule length plays a critical role in the network operation.
The longer the schedule, the higher the consumption of the nodes and the longer the
end-to-end delay of the network. Besides, the schedule length heavily depends on
the applied routing protocol and the characteristics of the network topology.

The IEEE802.15.4-TSCH standard adopts an IPv6 Routing Protocol for Low-
Power and Lossy Network, called RPL [11], in order to build and maintain the
routes from the nodes to the root. RPL focuses on a low-cost construction and
maintenance of the network topology and does not guarantee the optimality of the
schedule. Moreover, since an optimal schedule does not imply the optimality of the
link qualities (e.g. packet delivery ratio), in this paper, we also take into account the
cost of the constructed routing tree. Since link reliability generally worsens with the
distance [7], we measure the routing cost as the sum of the relative distance between
the nodes that constitute the edges of the data collection tree. As a consequence, the
problem we need to examine is related to the choice of best routing scheme, in terms
of schedule length and routing cost.

We formulate the problem as a mixed integer linear program. The model is solved
minimizing either the cost or the schedule length with the aim of analyzing the
characteristic of the problem. In addition, ad-hoc solution strategies are designed in
order to overcome the difficulties in handling min-max function, used to evaluate the
schedule length.

The proposed solution can be used either as an optimal static routing solution
when the link qualities are known and do not considerably change through time, or
as a benchmark when designing low-power distributed protocols.

This is the first work that deals with the problem of optimal routing in
IEEE802.15.4-TSCH networks. Even though many other studies in the literature
examine the problem of optimal routing, most of them focus on the minimization of
the node energy consumption by proposing a joint optimization transmission power
control and routing scheme [1, 3–5, 8]. Note that the transmission power control
can be achieved in our work once the routing topology with optimal schedule length
has been computed. Karnik et al. [2] solve a similar routing problem maximizing the
network throughput. This work assumes data transmissions using a different MAC
layer, thus, the schedule length is not taken into account.
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Fig. 1 A feasible and an optimal routing solution in terms of schedule length for a network with 4
nodes (A, B, C, D) and a root (S)

The rest of the paper is organized as follows. Section2 explains how the routing
process affects the schedule length of a TSCH network. Section3 reports the for-
mulation of the problem. Sections4 and 5 are devoted to the solution approaches.
Finally, Sect. 6 shows the numerical results and Sect. 7 concludes the paper.

2 Connection Between Routing and Schedule Length

To better understand the connection between routing and schedule length, we intro-
duce the example of Fig. 1. Two routing solutions and their corresponding data trans-
mission schedules for a network with 4 nodes and a root (node S) are displayed. We
assume that each node generates 1 packet per slotframe and all the links have the
same cost. The bold lines correspond to the selected routing links and the dashed
lines to the radio links. Channel offsets are assigned by the scheduler to allow par-
allel transmissions. The left solution exhibits a schedule length equal to 5. We can
observe that the root is inactive at timeslot 3. On the other hand, the right routing tree
presents the optimal performance with 4 timeslots reserved in total. No root inactive
timeslots appear.

3 Problem Formulation

We formulate the problem as a multi-commodity flow problem on a directed graph
D(N ,A), where N is the set of nodes and A is the set of arcs, that identify the links
among the nodes. Each node i ∈ N \ {root} is associated with a commodity. A cost
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lij is associated with each arc (i, j) ∈ A and a number of packets qi is associated with
each node i ∈ N . We define binary variables ykij,∀(i, j) ∈ A, k ∈ N \ {root} stating
whether the flow for commodity k to the root passes through arc (i, j). Let xij be a
binary variable indicating whether arc (i, j) is in the solution, that is, ykij = 1 for at
least one commodity k.

The set of constraints, defining the routing tree T are reported in what follows.

∑

j:(i,j)∈A
ykij −

∑

j:(j,i)∈A
ykji =

⎧
⎪⎨

⎪⎩

1 if i = k

−1 if i = root

0 otherwise

∀k ∈ N \ {root}, (1)

xij ≥ ykij, ∀(i, j) ∈ A, k ∈ N \ {root}, (2)

ykij ≥ 0,∀(i, j) ∈ A, k ∈ N \ {root}, xij ∈ {0, 1}∀(i, j) ∈ A. (3)

Equation (1) represent the flow conservation constraints for each commodity k.
Equation (2) define the value of variables x. Equation (3) state the domain of the
decision variables. Constraints (1)–(3) define a tree T , that is, a connected and acyclic
graph. Thus, there exists a unique path from each node k ∈ N to the root node in T .

The schedule length LT can be modeled as follows [6].

LT = max{2QM − qM ,Qroot}, (4)

where M = argmaxi∈N {Qi : xiroot = 1} and Qi ∀i ∈ N are non-negative variables
indicating the number of packets that reaches node i and defined as Qi = ∑

(u,v)∈Ti
xuvqu + qi, where Ti is the subtree of T rooted at node i. Let zi,∀i ∈ N : (i, root) ∈ A
be binary variables indicating whether M , in Eq. (4), is obtained for node i ∈ N .

In order to mathematically represent the function LT (to be minimized), we have
to consider the following constraints:

LT ≥ Qroot, (5)

LT ≥ 2QM −
∑

i∈N :(i,root)∈A
ziqi, (6)

Qi ≥
∑

(v,i)∈A
Qvxvi + qi ∀i ∈ N , (7)

QM ≥ Qi − H (1 − xi,root), ∀i ∈ N , (8)

ziQM ≤ Qi, ∀i ∈ N : (i, root) ∈ A, (9)
∑

i∈N :(i,root)∈A
zi = 1. (10)

Equations (5) and (6) are used to linearize LT . Equation (7) state the value of
Qi. Equation (8) set QM to the maximum Qi among all nodes i directly connected
to the root. Equations (9) and (10) define the value of zi. In particular, if Qi �= QM ,
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then zi = 0. Additionally, constraints (9) and (10) are satisfied only for zi = 1 with
Qi = QM . The parameter H is a big number that can be set equal to

∑
i∈N qi.

Constraints (7) and (9) are non linear due to the presence of the terms Qvxvj and
ziQM , respectively. In general, a term of the formαδ, whereα is a continuous variable
and δ is an integer variable can be linearized by defining a new continuous variable
φ = αδ and adding the following constraints

φ ≥ α − H (1 − δ), (11)

φ ≤ Hδ, (12)

φ ≤ α. (13)

Thus, the linearized constraints (7) take the following form

Qi ≥
∑

(v,i)∈A
Q̂vi + qi ∀i ∈ N , (14)

where Q̂vi = Qvxvi, and constraints (8) can be simplified in the following way

QM ≥ Q̂iroot, ∀(i, root) ∈ A. (15)

To linearize the terms ziQM in constraints (9), we introduce non-negative variables
zMi ,∀i ∈ N : (i, root) ∈ A. Constraints (9) are formulated as follows:

zMi ≤ Qi, ∀i ∈ N : (i, root) ∈ A. (16)

The set of constraints (1)–(3), (5), (6), (10)–(16) defines our problem as a mixed
integer linear formulation.

The problemwith objective function theminimization of the tree cost as a function
of the quality of each link lij = distance(i,j)

max_distance between nodes i and j, i.e.

∑

(i,j)∈A
lijxij, (17)

reduces to the spanning tree problem which is polynomially solvable. On the other
hand, model (1)–(3), (5), (6), (10)–(16) with objective function the minimization of
the schedule length LT is more difficult to solve due to the min-max function (4). In
addition, theminimization of the cost does not guarantee theminimization of LT .Let
PLT be the problem where the schedule length is minimized and Pc be the problem
with cost minimization. We propose two iterative approaches for solving PLT which
make use of problem Pc amended with further constraints at each iteration.
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4 Logarithmic Search Approach

We argue to solve PLT by making use of Pc, where we impose a limitation γ on the
value of function (4). Thus, model (1)–(3), (5), (6), (10)–(16) with minimization of
(17) is solved for a given value of γ with the constraint

LT ≤ γ. (18)

The main idea is to explore the criteria-space by solving problem P(γ ) =
{min(17), s.t. (1)–(3), (5), (6), (10)–(16), (18)} considering different value of γ ,
providing a value β for function (4). We perform a logarithmic search given a lower
bound lb and an upper bound ub on the value of β. Given γ = ⌈

ub+lb
2

⌉
, if problem

P(γ ) is infeasible, then lb = γ , otherwise ub = β. It is worth observing that a valid
lower bound on function (4) is given by

∑
i∈N qi. In addition, a valid ub is given by

the value of (4) calculated for the optimal solution of Pc. Given the iteration count
k, the proposed strategy, referred in the sequel as LSA, is reported in Algorithm 1.

Algorithm 1: LSA

initialization: k = 0, lb = ∑
i∈N qi , γ

(k) = lb, β(k) = ∞, β∗ = ∞
Solve P(γ (0));

if P(γ (0)) is feasible then
STOP, β∗ = LT [P(γ (0))];

else
Define ub = LT [Pc];
if P(ub − 1) is unfeasible then

STOP, β∗ = ub;

else
k+ = 1;

γ (k) =
⌈
ub+lb

2

⌉
;

while ub − lb > 1 do
Solve P(γ (k));

if P(γ (k)) is feasible then
β(k) = LT [P(γ (k))];
ub = β(k);

else
lb = γ (k);

k+ = 1;

γ (k) =
⌈
ub+lb

2

⌉
;

β∗ = β(k);
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5 Logic Cuts Approach

Pc is solved by excluding the optimal trees determined in the previous iterations. In
particular, given X k = {(i, j) : xij = 1} be the set of arcs in the optimal solution to
Pc at iteration k, the following constraint is considered in the next iteration

∑

(i,j)∈X k

xij ≤ |X k | − 1. (19)

Pc(k) = {min(17), s.t. (1)–(3), (5), (6), (10)–(16), (19)} looks for the optimal (k +
1)-spanning tree. In order to limit the number of iterations, we add to Pc(k) the
constraint LT ≤ LT [Pc(k − 1)] − 1 at each iteration. The steps of the proposed logic
cuts approach, referred in the sequel as LCA, are depicted in Algorithm 2.

Algorithm 2: LCA

initialization: k = 0, X 0 = ∅, lb = ∑
i∈N qi , β

(k) = ∞, β∗ = ∞
Solve P(lb);
if P(lb) is feasible then

STOP, β∗ = lb;

else
Define ub = LT [Pc];
if P(ub − 1) is unfeasible then

STOP, β∗ = ub;

else
Solve Pc(0)
while Pc(k) is feasible do

β(k) = LT [Pc(k)];
Construct set X k+1;
k+ = 1;
Solve Pc(k);

β∗ = β(k);

6 Computational Results

In this section, we provide evidence on the bi-objective nature of the problem
addressed and we give computational analysis on the behavior of the proposed solu-
tion approaches, that is, LSA and LCA. We compare our findings with the results of
the RPL protocol using the—commonly used—expected transmission count (ETX)
as the link quality metric. In ETX, we count the number of successive transmissions
needed to deliver a number of packets without error at their destination.

We consider three scenarios with number of nodes equal to 20, 30, and 40. We
randomly generate 25 instances for each scenario where the nodes are randomly
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Table 1 Average computational results for problem Pc and PLT and comparison with the RPL

Pc PLT RPL

Nodes Cost LT Time Cost LT Time #timeLimit Cost LT

20 11.29 59.52 0.09 14.14 47.60 461.18 6 14.59 53.48

30 15.08 99.20 0.23 21.01 63.44 1800.00 25 21.20 78.40

40 17.41 133.68 0.66 26.83 87.08 1800.00 25 26.83 104.60

AVG 14.59 97.47 0.33 20.66 66.04 1353.73 56 20.87 78.83

scattered on a terrain with 100 × 100m2 size. The position of the root is also chosen
randomly. We assume that there is a link between any two nodes if the signal power
at the receiver is higher than the required sensitivity power [10]. We exclude links
that achieve a failure rate higher than 1/3 over 10 measurements. Finally, we allow
each node to send from 1 to 3 packets per slotframe. The model was solved by using
CPLEX 12.51 and the tests were carried out on an Intel(R) core(TM) i7-4720HQ
CPU 2.60 GHz 8 GB RAM machine.

6.1 Model Evaluation

Table1 shows results obtained when solving model Pc and PLT and those obtained
with RLP. We report results for the three scenario with 20, 30, and 40 nodes aver-
aged over the 25 instances.We report the cost given by expression (17) under column
“cost”, the value of expression (4) under column “LT”, the execution time (in sec-
onds) under column “time” for both Pc and PLT , and the number of instances for
which the model runs out of time limit for PLT . We impose a time limit of 1800 s.

The results highlight the difficulty in solving PLT . Using model PLT , the solver
CPLEX is able to provide the optimal solution within the time limit imposed for 19
instances over the 25 instances with 20 nodes (see Table1). No optimal solution is
provided for the instances with 30 and 40 nodes. The results, collected in Table1,
clearly underline the conflicting nature of cost and LT . Indeed, the average minimum
value of LT is 66.04 and the corresponding cost is 20.66. Whereas, when the cost
is minimized, the average value of LT grows to 97.47 with a cost of 14.59. The
proposed model outperform the RPL protocol. The schedule length can be improved
by up to 20% while achieving a similar routing tree cost.

6.2 Comparison of the Proposed Algorithms

Table2 shows the average numerical results on the instances solved by both appro-
aches. In particular, we report the number of instances not solved to optimality under
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Table 2 Numerical results averaged over the instances solved to optimality by both LSA and LCA

LSA LCA

Nodes LT Time Iter #timeLimit #UB LT Time Cuts #timeLimit #UB

20 45.86 62.60 0.77 3 25 45.86 53.49 1.05 2 25

30 59.35 89.62 0.00 8 20 59.35 111.22 0.00 8 21

40 81.67 179.24 0.00 15 18 81.67 182.56 0.00 16 16

AVG 62.29 110.49 0.26 26 63 62.29 115.76 0.35 26 62

column #timeLimit and the number of instances for which a solution is available
under column #UB.

LCA outperforms LSA for the instances with 20 nodes. Indeed, the former is 1.17
times faster than the latter. LSA behaves the best for the instance with 30 nodes.
Indeed, it is 1.24 times faster than LCA. The two approaches behave quite similar
for the instances with 40 nodes. Overall, LCA is 1.05 times slower than LSA. Both
approaches are able to solve to optimality the 65% of the instances despite the 25%
of the available optimal solutions obtained by solving PLT (see last row of column
#timeLimit of Table1).

7 Conclusions

In this paper, we address the problem of routing packets in IEEE802.15.4-TSCH
networks. The problem has many applications in the field of Industrial Internet of
Things. We formulate the problem as a mixed integer linear program with the aim of
minimizing the schedule length. Two solution approaches are designed which iter-
atively solve restricted problems. The computational results highlight the difficulty
of the problem, the conflicting nature of the minimization of the schedule length and
the minimization of the cost, and the promising behavior of the proposed solution
approaches for solving to optimality the problem.
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An Origin-Destination Based Parking
Pricing Policy for Improving Equity
in Urban Transportation

Mariano Gallo and Luca D’Acierno

Abstract In this paper we propose to optimise parking pricing fares in urban areas
with the aim to improve transportation equity; the optimisation approach is applied
to an origin-destination parking pricing policy that can differentiate the tariffs for
each origin-destination pair, considering the difference in accessibility, in particular
with public transport services. An optimisationmodel is implemented, and a solution
algorithm is proposed. Model and algorithm are tested on the case study of Naples
(Italy), where the quality of transit services is very different between zones and OD
pairs; therefore, differentiating parking fares as a function of origin and destination
of the trip may be very useful for rebalancing accessibilities among zones, aiming
to improve transportation equity.

Keywords Transportation · Parking pricing · Equity · Optimisation
Accessibility

1 Introduction

Parking pricing is widely used in almost all middle-large and large European cities.
In some cases, it is adopted only for municipality cash reasons since this policy can
collect money rapidly without significant monetary investments. A more important
reason for its application is the promotion of transit systems use since the parking
pricing increases the car use cost and, therefore, tends to move users towards public
transport, even without further investments on the transit system.
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The parking pricing, which belongs to the transport pricing policies that also
include road pricing, is more diffused in urban areas than the road pricing since it is
simpler to be adopted. However, this policy represents only a ‘second best’ approach
to road user charging [1] since not all facilities may be priced.

A review of parking measures and policies can be found in [2, 3]; some case
studies of road pricing and parking policies are reported in [4].

Usually, parking pricing policies are destination-based: the fare depends on the
parking zone and, often, the more central the zone, the higher the fare. Moreover,
in some cities, residents can park freely in their zone or paying a low-cost annual
subscription.Thedestination-based approach canbenot equitable if the transit system
has significantly different levels of service among city zones; indeed, people who
have the availability of good public transport services for their trips and, then, have
an actual alternative to personal car, pay the same parking fare of people destined in
the same zone who do not have the service or have a low-quality transit service. A
more equitable policy should provide different fares on different origin-destination
(OD) pairs, reducing parking costs for these disadvantaged people; parking fares,
instead, should be higher for OD pairs that are well served by the public transport
system. A policy based on OD parking pricing could improve equity of the whole
system, acting on the accessibilities among OD pairs, since they depend both on
transit service supply and parking pricing fares.

In this paper, we propose an OD parking pricing policy where the fares are opti-
mised so to maximise equity in terms of origin-destination accessibility. An OD
parking pricing policy was previously proposed in [5] with a different objective
(the minimisation of society’s global costs, regardless of equity), while an origin-
destination taxi faring was proposed in [6], with the aim to improve equity of the
transit systems. Equity in transportation is an important topic that, recently, has been
studied by several researchers, such as, for instance, [7, 8].

The paper is organised as follows: Sect. 2 describes the problem and formulates
an optimisation model; a solution algorithm is proposed in Sect. 3; numerical results
on a real-scale case are summarised in Sect. 4; finally, Sect. 5 concludes.

2 Problem Description and Model Formulation

Our goal is the fare design of on-street public parking areas; moreover, we assume
that the transportation demand is known and the multimode transportation supply
(mass transit system and road system) is modelled.

Usually, parking fares are defined as a function only of the destination area
(destination-based), regardless of the origin of the trip. In this paper, we propose
to design parking fares considering both the origin (identified with the residence of
the car owner) and the destination. In this case, all cars should be provided with an
identification card indicating the residence zone of car owner (the same card usually
used as the license for free parking in the residence zone), and the parking signs
should show the different fares as a function of the origin zone.
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To solve this problem, we propose an optimisation model where the decision
variables are the OD parking fares (one for each OD pair), and the objective function
should measure the transportation equity. In particular, we propose to use the same
objective function proposed in [6], that is the variance of the logsum variables of the
mode choice model divided by the car distance, for each OD pair. More in detail, we
introduce the following terms:

s′′OD(VOD) � s′OD(VOD)/D
car

OD ∀OD (1)

s′OD(VOD) � sOD(VOD)/θ ∀OD (2)

sOD(VOD) � θ ln
∑

m

exp(Vm
OD/θ ) ∀OD (3)

where VOD is the vector of systematic utilities referring to different modesm, Vm
OD,

Dcar
OD is distance by car from zone O to zone D on the minimum path, s′OD(VOD) is

the logsum variable, θ is the parameter of the Logit model, sOD(VOD) is the EMPU
(Expected Maximum Perceived Utility) variable and Eq. (3) calculates the EMPU
variable using a Logit model. Further details on EMPU variable, logsum variable,
Logit model and systematic utilities can be found in [9]. The logsum variable is,
then, directly proportional to the EMPU variable that is considered a measure of the
accessibility [10] between O and D. In our problem, we have to divide it by θ for
practical reasons (the parameter θ is not explicitly known since it is included in the
coefficients of the Logit model and calibrated with them) and by the distance so to
underline the effects of the quality of the connections between zones: two OD pairs
with the same quality of connecting services will have the same value of s′′OD(VOD)
independently on the distance.

The objective function is, then, given by var(s′′(VOD(y))); it is able to represent
the transportation (in)equity: the lower the value of the objective function, the higher
the equity (theoretically, it is equal to 0 if there is perfect equity). The constraints
of the problem refer to minimum and maximum values of parking fares and to the
discrete feature of them (indeed, even if theoretically these fares can be continuous
variables, the actual applicability of the proposed policy requires a limited number
of feasible fares). We consider as decision variable for an OD pair an integer number,
yOD, multiplied by a fixed fare value, ffv, that can be, for instance, assumed equal
to 0.5 e/h or other fractions of the currency. Hence, the optimisation model may be
formulated as follows:

yopt � argmin
y

var(s′′(VOD(y))) (4)

subject to

yOD integer ∀OD (5)

0 ≤ yOD ≤ ymax ∀OD (6)
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Fig. 1 Solution method

where y [yopt] is the [optimal] vector of decision variables, yOD, one for each OD
pair, ymax is the maximum value of the decision variable.

Analogously to [6], it is possible to state that objective function (4) is convex.
Indeed, we can write:

var(s′′(VOD(y))) � ΣOD(s
′′
OD(VOD(y)) − s′′M (VOD(y)))2/(nOD − 1)

which is convex, since the terms (s′′OD(VOD(y))−s′′M (VOD(y))) are strictly decreasing
and, therefore, convex with the increase in a value of yOD; the quadratic function of a
convex function is convex and a linear combination of convex functions is a convex
function as well. Therefore, the optimisation problem has only one local optimum
that corresponds to the global one, if we assume continuous variables. Naturally,
assuming variables as discrete, theoretically more than one solution may correspond
to the optimum.

3 Solution Method

For solving the optimisation model (4)–(6), which is a non-linear discrete model,
numerous methods and algorithms can be used; most of them are based on constraint
relaxation (such as branch-and-bound, or Lagrangian relaxation) and heuristic round-
ing. Considering that the problem could be theoretically formulated with continuous
variables (the discrete assumption is necessary only for implementing the policy in
real-world cases) and that the objective function is convex, continuous and derivable
under this assumption, we propose to solve first the continuous problem with a stan-
dard gradient algorithm. Successively, we round the solution to the nearest integer
one and, finally, use a neighbourhood search (NS) method to identify the local opti-
mal discrete solution that is nearest to the global optimal continuous one. In Fig. 1
the proposed solution method is reported.

The used NS method examines at each iteration the neighbourhood of the current
solution andgenerates the next solution as the best oneof all solutions belonging to the
neighbourhood. Each neighbourhood contains all solutions obtained by changing the
value of a variable, yOD, increasing or decreasing its value (satisfying the constraints),
and maintaining unaltered the other values. Therefore, in our case, a neighbourhood
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may contain at most 2 · nOD solutions. The algorithm ends when all solutions in the
neighbourhood are worse than the current solution, which can be considered a local
optimum.

4 Numerical Results

We tested the proposed approach on a real-scale case, the city of Naples (Italy)
that has about one million inhabitants. The choice of this case study was driven
by a feature that is necessary for developing the proposed policy: transit system is
inequitable; indeed, some OD pairs are well connected by high-frequency metro or
funicular lines, other ones are connected only with low-frequency services (rail or
bus lines) and other ones are only marginally served or are not served at all by public
transport services.

An essential point of the procedure is to identify the parking fare zones, which are
zones of the city that will have the same fares; since the objective of the policy is to
improve the equity, the fare zones are identified considering their similarity concern-
ing transit supply. We partitioned the study area into 20 zones, as reported in Fig. 2a;
these zones were obtained from the union of the 54 traffic zones used for simulating
the transportation demand on the territory. Note that, the zone 20 is a suburban zone
where currently there are not parking fares. Figure 2b–d report, respectively, the road
network, the urban rail network and the bus lines; these elements were implemented
in a multimodal transportation supply model with the software Omnitrans 6.0. This
software allowed to obtain all data on performances of all transportation modes for
eachODpair, that is pedestrian times, transit times (onboard, access/egress, waiting),
transit transfers, car travel time and distance. Moreover, for each OD pair also the
monetary transit costs were added, according to the current transit fare framework, as
well as the car monetary costs as the sum of a travel cost (0.25 e/km) and a parking
cost, depending on the parking fares, assuming an average parking duration. Main
features of the case study are summarised in Table 1.

The all-mode demandmatrix used in the testwas the sameused in [6] that has given
acceptable results for a real-scale application. The mode choice model was adapted
from [11] and calibrated for the city of Naples. Since this is a real-scale test and not a
real test, we assumed thismodel to be valid, without performing further specifications
and calibrations required in the case of a real application. The specification of the
model, whose coefficient values are reported Table 2, is the following:

V car
OD � βb

car · Tcar
OD + βmc

car · Ccar
OD + βpark

car · Cpark
OD + βca · CarAv ∀OD

V tran
OD � βb

tran · T tran_b
OD + βped

tran · T tran_ae
OD + βw · T tran_w

OD+
+ βtr · Ntran_t

OD + βmc
tran · Ctran

OD
∀OD

Vped
OD � βped · Tped

OD ∀OD
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Fig. 2 Case study: a fare zones; b road network; c urban rail network; d bus lines

Table 1 Features of the case study

Inhabitants 962,003 Directed rail links 108

Traffic zones (internal
centroids)

54 Rail segments 54

External centroids 16 Rail network length
(km)

55.2

Fared zones 20 Rail lines (including
funiculars)

12

Directed road links 1,774 Rail station (including
funiculars)

60

Road segments 887 Bus lines 100

Road nodes 622 Main bus stops 370

Road network length
(km)

335.7

where V car
OD

[
V tran

OD; V ped
OD

]
is the systematic utility of car [(mass) tran-

sit; pedestrian] mode from zone O to zone D on the minimum path,
Tcar

OD[T tran_b
OD;T tran_ae

OD;T tran_w
OD;Ntran_t

OD] is the expected travel time by car
[transit onboard travel time; access/egress transit time; waiting transit time; number
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Table 2 Coefficients of the
mode choice model

Attribute Coefficient

Tcar
OD,T tran_b

OD −1.02

Ccar
OD,Ctran

OD −0.20

Cpark
OD −0.40

CarAv 2.29

T tran_ae
OD,Tped

OD −1.72

T tran_w
OD −2.57

Ntran_t
OD −0.29

Table 3 Modal split Mode Model results (%) ISTAT data (%)

Private motorised
modes

55.6 48.33

Pedestrian 18.4 22.43

Transit modes 26.1 28.53

Other modes – 0.72

of transfers] from zone O to zone D on the minimum transit path, Ccar
OD

[
Ctran

OD
]

is the expected monetary cost by car (only travel costs) [(mass) transit system] from
zone O to zone D on the minimum path, Cpark

OD is the parking cost on the OD pair,
CarAv is the average number of cars available per family.

Applying this model, considering a car travel cost of 0.25 e/km, an average
parking duration of 4 h and a parking cost of 1.5 e/h on all zones except for zone
20 where the parking is not fared, the model generates the modal split reported in
Table 3; the same table reports the modal split in Naples obtained by the ISTAT data
[12] for systematic (i.e. home-work and home-school) trips. These results can be
accepted for a real-scale test case.

In the application, we have compared results corresponding to three different
scenarios: (a) the starting scenario, described before, (b) a scenario without parking
fares and (c) the optimised scenario. Scenario (c) is obtained by applying the model
(1)–(3) solved with the algorithm described in Sect. 3. The objective function value
was equal to 0.375628 in the starting scenario, 0.135585 in the non-fared scenario
and 0.096145 in the optimised scenario. Figure 3 reports the values of s′′OD(VOD) for
each internal OD pair for these three scenarios.

5 Conclusions

This paper proposes an origin-destination based parking pricing policy aiming to
increase equity in transportation. The principle of the policy is that the OD pairs
that are not served with a good quality public transport system should pay less
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Fig. 3 Values of s′′OD(VOD) for each internal OD pair

for parking, considering that the whole society finances (mass-)transit systems. We
propose an optimisationmodel and a solution algorithm for implementing the policy;
the proposed approach is tested on a real-scale case study giving promising results.

Future research will be addressed to test the proposal considering different mode
choice models, focusing on the elasticities of the modal split with car parking costs,
to evaluate other impacts of the policy, such as consumption and emissions, and to
optimise also the zoning phase besides the fares.
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Bayesian Optimization for Full
Waveform Inversion

Bruno G. Galuzzi, Riccardo Perego, Antonio Candelieri
and Francesco Archetti

Abstract FullWaveform Inversion (FWI) is a computational method to estimate the
physical features of Earth subsurface from seismic data, leading to the minimization
of a misfit function between the observed data and the predicted ones, computed
by solving the wave equation numerically. This function is usually multimodal, and
any gradient-based method would likely get trapped in a local minimum, without a
suitable starting point in the basin of attraction of the global minimum. The starting
point of the gradient procedure can be provided by an exploratory stage performed by
an algorithm incorporating random elements. In this paper, we show that Bayesian
Optimization (BO) can offer an effective way to structure this exploration phase.
The computational results on a 2D acoustic FWI benchmark problem show that BO
can provide a starting point in the parameter space from which the gradient-based
method converges to the global optimum.
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1 Bayesian Optimization

Bayesian optimization (BO) [11] is a suitable global optimization algorithm to find a
global minimum x∗ of a black-box, usually expensive-to-evaluate, objective function
f (x), where x ∈ X ⊂ Rd is a point in a d-dimensional bounded-box space X .

In BO the objective function is modelled as a realization of a stochastic process,
typically a Gaussian Process (GP) on a probability space (Ω,Σ,P). A GP, which
defines a prior distribution over the function f , is completely specified by its mean
μ(x) : X → R and a definite positive covariance function k(x, x′) : X 2 → R,

f (x) ≈ GP(μ(x); k(x, x′)) (1)

The BO algorithm starts with an initial set of k points {xi}ki=1 ∈ X and the asso-
ciated observations {yi}ki=1, with yi = f (xi). At each iteration t ∈ {k + 1,N }, the GP
prior is updated using the Bayes rule, to obtain posterior distribution conditioned
on the current training set St = {(xi, yi)}ti=1 containing the past evaluated points and
observations. For any point x ∈ X , the posterior mean μt(x) and the posterior vari-
ance σ 2

t (x) of the GP, conditioned on St , are known in closed-form:

μt(x) = K(Xt, x)
t [K(Xt,Xt) + λI ]−1 Yt (2)

σ 2
t (x) = k(x, x) − K(Xt, x)

t [K(Xt,Xt) + λI ]−1 K(Xt, x) (3)

where K(Xt,Xt) is the t × t matrix whose (ij)th entry is k(xi, xj), K(Xt, x) (respec-
tively Yt) is the t × 1 vector whose ith entry is k(xi, x) (respectively yi) and λ is the
noise variance. A new point xt+1 is then selected and evaluated to provide an obser-
vation yt+1 = f (xt+1). This new pair {(xt+1, yt+1)} is added to the current training set
St , to define the training set for the next iteration St+1 = St ∪ {(xt+1, yt+1)}.

The newpoint to evaluate is selected by solving an auxiliary optimization problem,
typically of the form:

xt+1 = argmaxUt(x; St) (4)

where Ut is an acquisition function to maximize. The rationale is that, because
the optimization run-time or cost is dominated by the evaluation of the expensive
objective function f , time and effort should be dedicated to choosing a promising
point to evaluate, by solving the auxiliary problem. Solving this auxiliary problem
does not involve the evaluation of the expensive objective function f , but only the
posterior quantities of the GP and, thus, is considered cheap.

In this paper we focus on two of the most used acquisition function: the expected
improvement (EI) [12], and the confidence bound (CB) [1] (lower/upper confidence
bound, LCB/UCB, for minimization and maximization problems, respectively). EI
is defined as follows:
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EIt(x; St) = (
f + − μt(x)

)
Φ

(
f + − μt(x)

σt(x)

)
+ σt(x) · N

(
f + − μt(x)

σt(x)

)
(5)

where, considering a minimization problem, f + = minxi∈X1:t f (xi) is the best value
found after t evaluations (aka best seen), andΦ(·) andN (·) are the normal cumulative
distribution and the density probability function, respectively. The LCB formula is:

LCBt(x; St) = μt(x) − kσt(x) (6)

where k ≥ 0 is a parameter to manage the exploration/exploitation trade-off: a larger
k drives exploration. In this paper we investigate the application of BO to seismic
inversion problems comparing the EI and CB acquisition functions. An example of
its application in the model inversion optimization problems, in the field of haemo-
dynamic, is in [15].

2 Introduction to Seismic Inversion Problems

The estimation of the geological properties of the subsurface can be obtained by
means of seismic acquisition (Fig. 1a), in which artificially induced seismic waves,
created by an impulse source, propagate through the subsurface. The receivers, dis-
tributed on the surface along a line (2D seismic) detect the returning waves and
measure the arrival times and the amplitudes of the waves at different distances, or
offset. The seismic data are organized in a seismograms dobs(t, xr), where t ∈ [0,T ]
is the recording time and {xr}nrr=1 ⊂ R2 is the set of receivers locations. Figure 1b
shows a seismogram acquired during a marine seismic acquisition.

Fig. 1 a Example of a marine seismic acquisition, taken from [18]. b Example of a marine seis-
mogram
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A seismic inversion problem [7], in case of acoustic approximation, consists of
the estimation of an acoustic velocity subsurface model vp(x), that explains the
events observed in a seismogram (reflections, refractions), and can be formulated as
a minimization problem

v∗ = argmin
v∈V F(v) (7)

with V the set of possible acoustic velocity models, and F(v) ≥ 0 a misfit function

F(v) = ||dobs − dpred (v)||, (8)

measuring the difference between the observed and the predicted seismograms
dpred (v), computed by means of some seismic modelling algorithm.

In case of 2D acoustic approximation, the generation and propagation of seismic
waves is modelled by the 2D acoustic wave equation [13]:

p̈(x, t) − v(x)2Δp(x, t) = δ(x − x0)s(t) (9)

where t ∈ [0,T ] is the recording time, x = (x, z) ∈ D ⊂ R2 is a bi-dimensional space
domain, p is the acoustic pressure of thewave, x0 is the location of the source, and s(t)
is the seismic source. The predicted seismograms dpred correspond to the restriction
of the solution of the acoustic wave equation to the receivers locations.

The solution of the wave equation can be obtained using an explicit finite-
difference (FD) scheme, where the space domain D is sampled through a uniform
grid spacing dx, along the horizontal and vertical direction, obtaining a regular grid
D based on nx · nz grid nodes, with i = 1, . . . , nx · nz, and with xi, obtained scrolling
the grid nodes along the rows.

It is important to remark that each evaluation of the misfit function is compu-
tationally expensive. Indeed, it requires the solution of the wave equation, which
mandates for relatively small values of space sampling dx and time sampling dt [5].
According to a FD grid for the space parametrization, the acoustic FWI problem
becomes an optimization problem with the number of variables given by the number
of nodes in the modelling grid

argmin
v∈V F(v) ≈ argmin

v∈V i
F(vi) (10)

where V i represents the set of the P-wave velocity models discretized on the grid D.
This means an optimization problem with nx · nz possible variables.

An important aspect of FWI is that the computation of the gradient of the misfit
function, ∇vf (v), can be done efficiently by means of the adjoint method [16]. This
fact allows us to solve suchminimization problem efficiently using an iterative proce-
dure, updating an initial model v0 with a gradient-based method, until a satisfactory
match between the observed and the predicted data is obtained. However, as already
noted in [2], the misfit functions are characterized by the presence of multiple local
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minima, and such local optimization approach will converge to a local minimum if
the used starting model is not in the basin of attraction of the global minimum.

Global optimization algorithms can estimate such starting model, and meta-
heuristic optimization methods have been already proposed for FWI, specifically
Genetic Algorithms [10, 17] and Simulated Annealing [6, 9]. In this paper we pro-
pose BO as global optimization approach to identify a promising starting model for
a synthetic 2D acoustic FWI benchmark problem, in the field of seismic exploration.

3 The Marmousi Benchmark

This benchmark problem consists of the estimation of the acoustic velocity model
of Fig. 2a, that represents the upper central part of the Marmousi model [19], from
a FWI procedure on a set of synthetic seismograms. This model contains 192 and
48 grid points in the z-and x-direction, respectively, with a grid spacing of 24 m.
The first two rows of the modelling grid represent the water layer, whose velocity
and depth are considered known and fixed a priori. We considered 16 seismograms,
recorded by a spread of 192 receivers, equally spaced 24 m. Both the sources and
the receivers are at a depth of 24 m, and the recording time is T = 4 s. The synthetic
seismograms are obtained by solving the acoustic wave equation (9), using an effi-
cient FD scheme, whose details of the implementation can be found in [8]. As misfit
function, we used the sum of the all the L2-norm difference between the observed
and the synthetic seismograms, whereas as local optimization algorithm for FWI,
we used the conjugate gradient method [14], one of most common gradient method
to solve FWI [7].

Fig. 2 a The portion of the Marmousi velocity model used as true model for the FWI procedure.
b An example velocity model derived from the proposed sparse parametrization technique
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4 Experimental Setting and Results

The starting model is estimated by means of BO using a sparse parameterization
technique to reduce the number of parameters of modelling grid, formed by 192 · 48
grid nodes, to only 10 parameters, using a set of three interfaces and four velocities
(Fig. 2b), as described in [6]. The first and the third interfaces are associated with
the seabed (between 2nd and the 3rd row of the modelling grid) and the bottom
of the model (situated at the 48th row) and are considered flat. The second inter-
face represents a possible velocity contrast between the seabed and the bottom of
the model and is represented by a set of six nodes {(xk , zk)}6k=1 (the red point in
Fig. 2b) with xk evenly distributed and fixed along the x-direction and zk that can
range along the z-direction. We use a non-oscillatory spline to interpolate the inter-
face across the nodes (the dot white spline of Fig. 2b). The four velocities prescribed
the velocity just below the first interface, just above the second interface, just below
the second interface, and just above the third interface, respectively. The velocities
of the grid nodes between interfaces are obtained using linear interpolation in the
vertical direction.

The overall number of variables needed for the parametrization is 10: a real vari-
able for each one of the 4 velocities and 6 discrete variables for the zk components
of the nodes at the second interface. Velocities are in the range 1.5–4 km/s, while the
range for the 6 discrete variables is between 4 and 47. An overall number of 1000
function evaluations was fixed for each experiment, with 10 independent runs for
each acquisition function (i.e., EI and LCB).

Figure 3a, b show the best velocity models obtained for EI and LCB, respectively.
The first model obtains a value of the misfit function of 1868.1, whereas the second
one obtains a value of 1723.5. These two models have been used as different starting
points for the local optimization procedure on the modelling grid. Figure 3c, d show
the corresponding velocity models obtained by the local optimization, after 1000
iterations of conjugate gradient. The final models obtained are very similar to the
actual one, except in some areas near the lateral and the bottom boundaries, where,
however, the seismic illumination is poor. The main result is that the starting models
estimated by the BO, independently by the acquisition function used (EI vs. LCB),
can be considered quite near the basin of attraction of the global minimum of the
misfit function, corresponding to the actual model. However, the differences between
the two starting models obtained at the end of the BO, respectively for EI (Fig. 3c)
and LCB (Fig. 3d), lead to slightly different final models at the end of the entire
procedure, with the lower misfit function value for LCB of 9.4 with respect to a
value of 57.7 for EI.
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Fig. 3 a Best velocity model obtained by EI. b Best velocity model obtained by LCB. c Final
velocity model obtained by the local optimization using (a) as starting model. d Final velocity
model obtained by the local optimization using (b) as starting model

5 Conclusions

According to the emerging interest on BO, to solve black-box and expensive opti-
mization processes [3, 4], we have proposed the BO as a global optimization algo-
rithm for the estimation of a promising starting model for FWI. We considered two
alternative acquisition functions for BO and test them on a 2D acoustic FWI bench-
mark problem, namely the Marmousi model. The low error between the actual and
the final models obtained, independently on the acquisition function, makes the pro-
posed approach well suited for the seismic inversion problems, such as FWI, usually
characterized by highly non-linearity, multiple local minima, and an expensive-to-
evaluate misfit function.
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A Decomposition-Based Heuristic
for the Truck Scheduling Problem
in a Cross-Docking Terminal

Manlio Gaudioso, M. Flavia Monaco and Marcello Sammarra

Abstract We consider the truck scheduling problem at a cross docking terminal
with many inbound and outbound doors, under the assumption of constant handling
time for all the trucks, the objective being to minimize the completion time of the
whole process.We propose a mathematical model together with a Lagrangian Relax-
ation scheme. We discuss the structural properties of the relaxed problem and derive
a Lagrangian heuristic able to compute, at the same time, good feasible solutions and
increasing lower bounds. The numerical results show that the Lagrangian decompo-
sition is a promising approach to the solution of such problems.

Keywords Lagrangian relaxation · Scheduling · Heuristics

1 Introduction

A cross docking terminal in a distribution network is a transhipment node, where
inbound loads have to be unloaded from a set of trucks, then scanned, sorted on
the basis of the customer demands, moved across the dock, and finally loaded onto
the outbound trucks, for immediate delivery. The unloading and loading phases are
performed at the terminal doors, which are assumed to be able to process one truck
at a time; suitable equipment and skilled work teams operate at the doors. The main
problem to face consists in defining the unloading and loading sequences for trucks,
so as to synchronize at best the two phases, and to avoid, or at least to minimize, the
storage need. The cross docking problems may differ from each other on the basis of
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organizational features of the terminals (one/many doors, absence/presence of tem-
porary storage areas), information assumed to be available (quantity and typology of
goods to be unloaded/loaded, unloading/loading/moving times), specific constraints,
and objectives to be considered in the decisional process (see [1, 2, 4] for a compre-
hensive survey of the literature). Here we consider the truck scheduling problem at
a cross docking terminal with many inbound and outbound doors (Multi-Gate Cross
Docking problem—MGCD), under the assumption of constant handling time for all
the trucks, the objective being to minimize the completion time of the whole pro-
cess. The outline of the paper is the following: in Sect. 2 we propose a mathematical
model; in Sect. 3 we discuss the properties of a Lagrangian Relaxation of the prob-
lem. In Sect. 4 we derive a Lagrangian heuristic able to compute, at the same time,
good feasible solutions and increasing lower bounds. The proposed algorithm is an
extension to the Multi-Gate case of the one presented in [3] for the Single-Gate cross
docking problem. The numerical experience is reported in Sect. 5. Conclusions are
drawn in Sect. 6.

2 The MGCD Model

To derive the mathematical model for the MGCD we will make use of the notation
defined in Table 1. As in [3] we assume that: all trucks are ready at the beginning of
the planning horizon, all of them require the same processing time, the transhipment
time is negligible, and preemption is not allowed. As a consequence of the above
assumptions, we can consider a discretized planning horizon, where each time-slot
is the processing time of a truck. Defining the decision variables:

• xgik = 1 if the truck i ∈ I is unloaded at gate g ∈ GI in the time-slot k ∈ K , 0
otherwise;

• ygjh = 1 if the truck j ∈ J is loaded at gate g ∈ GO in the time-slot h ∈ H , 0 other-
wise;

• CM the makespan;

Table 1 Notation

Name Definition

GI Set of inbound gates (|GI | = gI )

GO Set of outbound gates (|GO| = gO)

I Set of inbound trucks (|I | = n)

J Set of outbound trucks (|J | = m)

Ij ⊆ I Set of inbound trucks supplying the outbound truck j ∈ J (|Ij| ≥ 1)

Ji ⊆ J Set of outbound trucks supplied by the inbound truck i ∈ I (|Ji| ≥ 1)

K Set of time-slots for the inbound truck service (|K | = n)

H Set of time-slots for the outbound truck service (|H | = L ≥ m + n)
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the MGCD problem we address can be modeled as follows:

min CM (1)∑

g∈GI

∑

k∈K
xgik = 1 ∀i ∈ I (2)

∑

i∈I
xgik ≤ 1 ∀k ∈ K, g ∈ GI (3)

∑

g∈GO

∑

h∈H
ygjh = 1 ∀j ∈ J (4)

∑

j∈J
ygjh ≤ 1 ∀h ∈ H , g ∈ GO (5)

∑

g∈GO

∑

h∈H
hygjh −

∑

g∈GI

∑

k∈K
kxgik ≥ 1 ∀i ∈ I , j ∈ Ji (6)

CM −
∑

g∈GO

∑

h∈H
hygjh ≥ 0 ∀j ∈ J (7)

xgik ∈ {0, 1} ∀i ∈ I , k ∈ K, g ∈ GI (8)

ygjh ∈ {0, 1} ∀j ∈ J , h ∈ H , g ∈ GO (9)

In the above model, (2)–(3) are the assignment constraints of each inbound truck
to an inbound gate and a time-slot; (4)–(5) are the analogous constraints for the
outbound trucks; constraints (6) impose the precedence relation between the pro-
cessing of inbound and outbound trucks exchanging some goods. These constraints
are instrumental to define the freight consolidation for the outbound trucks. Finally,
constraints (7) define the objective function (1). Relaxing the coupling constraints (6)
in a Lagrangian fashion, the resulting problem will decompose in two assignment-
like subproblems.

3 The Lagrangian Relaxation of MGCD

Let λ be the vector of Lagrangian multipliers associated to constraints (6), with
components λij ≥ 0, ∀i ∈ I , j ∈ Ji; defining

ρi = ρi(λ) =
∑

j∈Ji
λij ∀i ∈ I , ρ = (ρ1, . . . , ρn)

�

σj = σj(λ) =
∑

i∈Ij
λij ∀j ∈ J , σ = (σ1, . . . , σm)�



268 M. Gaudioso et al.

s = s(λ) =
∑

i∈I

∑

j∈Ji
λij =

∑

i∈I
ρi =

∑

j∈J
σj

it is easy to verify that the Lagrangian Relaxation of the MGCD problem becomes:

ZLR(λ) = s + ZI
LR(ρ) + ZO

LR(σ ) (10)

where

PI(ρ)

{
ZI
LR(ρ) = min

∑
i∈I

∑
g∈GI

∑
k∈K kρix

g
ik

s.t.(2), (3), (8)
(11)

PO(σ )

{
ZO
LR(σ ) = min

(
CM − ∑

j∈J
∑

g∈GO

∑
h∈H hσjy

g
jh

)

s.t.(4), (5), (7), (9)
(12)

PI(ρ) and PO(σ ) are assignment like problems whose cost coefficients, cik = kρi

and djh = hσj respectively, are independent from the gates and satisfy:

ci1 ≤ ci2 ≤ · · · ≤ cin ∀i ∈ I

dj1 ≤ dj2 ≤ · · · ≤ djL ∀j ∈ J

Thanks to the above observation, it is possible to prove that the optimal solutions
of both subproblems enjoy some useful properties from which simple solution algo-
rithms can be derived. The steps of these algorithms are detailed in Table 2. Observe
that both of them act as a sort of “wrap-around”algorithm, where the trucks are
first ordered and then sequentially assigned to the gates in such a way that the gate
workload is as balanced as possible.

4 A Lagrangian Heuristic for MGCD

For a given vector of Lagrangian multipliers λ̄, the optimal solutions x∗(ρ̄) of PI
and (y∗(σ̄ ),C∗

M (σ̄ )) of PO are independent schedules of inbound/outbound trucks
at the corresponding gates. If such schedules satisfy the relaxed constraints, then
x = x∗(ρ̄), y = y∗(σ̄ ) are also feasible schedules for the MGCD problem with a
makespanCM = C∗

M (σ̄ ) as computed by the algorithm for solving PO(σ ) in Table 2.
In case one ormore constraints (6) are violated by the Lagrangian solution, feasibility
can be achieved by simple forward shifting operations on the outbound schedules,
as shown in Table 3.

The shifting heuristic of Algorithm 2 can be embedded within an iterative proce-
dure for solving the Lagrangian Dual problem:
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Table 2 Algorithms for solving the Lagrangian relaxation problem

Algorithm for PI(ρ)

1 Sort the trucks i ∈ I by nonincreasing values of ρi

2 Sequentially assign the k-th group of gI trucks to the time slot k (one
truck for gate)

3 If the last group contains less than gI trucks, assign the trucks to the
first available gates

Algorithm for PO(σ )

1 Sort the trucks j ∈ J by nonincreasing values of σj

2 If
∑

j∈J σj ≤ 1 then CM = ⌈
m/gO

⌉
, else CM = L

3 Sequentially assign the t-th group of gO trucks to the time slot
h = CM − t + 1 (one truck for gate)

4 If the last group contains less than gO trucks, assign the trucks to the
first available gates

Table 3 Algorithm 2

max
λ≥0

ZLR(λ)

We have adopted the Subgradient Algorithm, with the standard updating rule:

λ
(r+1)
ij = max

{
0, λ(r)

ij + t(r)g(x(r), y(r))
}

∀i ∈ I , j ∈ Ji

where x(r) and y(r) are the optimal solutions of (11) and (12) at the iteration r,
g(x(r), y(r)) is a subgradient of the Lagrangian function at λ(r), and t(r) is the classical
stepsize. Therefore, at each iteration, we are able to compute both a feasible solution
for the MGCD problem, and an increasing lower bound ZLR(λ(r)) on the optimal
value of the makespan CM .
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5 Numerical Experience

We have tested both the MGCD model and the Lagrangian heuristic on a set of
instances with different values of n, m, gI and gO. For each fixed pair (n,m), we
have randomly generated ten different configurations of the sets Ji, i = 1, . . . , n,
such that 1 ≤ |Ji| ≤ m. For each configuration, we have considered four different
combinations of (gI , gO). By this way, our test set consists of 720 instances, divided
in two classes: small size and large size instances. The Lagrangian heuristic has
been coded in C++ and Cplex 12.6 has been used as benchmark ILP solver. The
experiments have been run on a machine equipped with a 3.1 GHz CPU and 16 GB
of RAM.We have imposed a time limit of 600 s to Cplex, while we let the Lagrangian
heuristic run for 10,000 iterations starting with null multipliers.

The results are reported in Tables 4 and 5, where a single row corresponds to ten
instances. As for Cplex, we report the best upper bound Uc and the computation
time Tc, as average values, and the number, Nc, of optimal solutions it was able
to find within the time limit. For the Lagrangian heuristic we report the best upper
bound Uh and the computation time Th, as average values, and the number Nh

of times the objective function value returned by our algorithm is not greater than
the one obtained by Cplex. In the last column we report the average relative error:

ARE = 1/10 ·
(∑10

l=1
Uh

l −Uc
l

Uc
l

)
.

A quick glance at the result tables highlights the computational complexity of
the MGCD problem: Cplex succeeds in finding the optimal solution in six out of
720 instances. The Lagrangian heuristic performs quite satisfactorily: in a very short
computation time, never reaching two seconds, it returns a feasible solution whose
objective value is comparable with the best one obtained by Cplex in ten minutes.
More in detail, looking at the last column in Table 4, we note that the relative error
of our algorithm is almost negligible (0.0 ≤ ARE ≤ 0.04) in 23 out of 36 cases, it
is lightly significant (0.05 ≤ ARE ≤ 0.08) in 11 cases, and in the remaining two
cases it is ARE < 0. Passing to the larger instances in Table 5, we have again 0.0 ≤
ARE ≤ 0.04 in the majority of cases (21 out 36), ARE = 0.05 in only 3 cases, while
the number of cases when ARE < 0 grows to 12. Furthermore, taking into account
the entire set of instances, both the small and large ones, themaximum absolute value
of ARE in favor of the Lagrangian heuristic is 18%, while it is 8% in the opposite
case.
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Table 4 Small size instances results

Cplex Lagrangian heuristic

n m gI gO Uc Tc Nc Uh Th Nh ARE

20 20 2 2 15.40 600.00 0 16.10 0.32 3 0.05

2 3 13.20 493.59 3 13.70 0.31 5 0.04

3 2 13.40 600.01 0 13.80 0.40 6 0.03

3 3 10.80 600.01 0 11.30 0.34 5 0.05

20 25 2 2 17.60 600.01 0 18.50 0.47 3 0.05

2 3 14.70 600.01 0 15.10 0.43 5 0.03

3 2 15.80 600.01 0 17.10 0.57 0 0.08

3 3 12.30 600.01 0 12.70 0.68 6 0.03

20 30 2 2 20.20 600.01 0 21.10 0.66 3 0.05

2 3 16.00 600.01 0 16.80 0.52 2 0.05

3 2 18.20 600.01 0 19.60 0.63 1 0.08

3 3 13.70 600.01 0 14.10 0.61 5 0.03

25 20 2 2 18.20 600.01 0 18.40 0.36 8 0.01

2 3 15.60 554.65 2 15.90 0.47 7 0.02

3 2 14.60 600.01 0 15.80 0.41 0 0.08

3 3 12.40 600.01 0 13.00 0.42 4 0.05

25 25 2 2 20.50 600.01 0 20.90 0.50 6 0.02

2 3 17.00 600.01 0 17.50 0.52 5 0.03

3 2 17.10 600.01 0 18.10 0.59 3 0.06

3 3 14.30 600.01 0 14.60 0.56 5 0.02

25 30 2 2 23.80 600.01 0 23.10 0.72 5 −0.01

2 3 18.60 600.01 0 18.90 0.62 6 0.02

3 2 19.20 600.01 0 20.70 0.68 0 0.08

3 3 18.50 600.01 0 16.00 0.63 5 −0.03

30 20 2 2 20.40 600.01 0 21.00 0.49 5 0.03

2 3 17.90 345.09 1 18.40 0.49 5 0.03

3 2 16.60 600.01 0 17.20 0.49 3 0.04

3 3 13.60 600.01 0 14.40 0.48 3 0.06

30 25 2 2 22.60 600.01 0 23.20 0.60 5 0.03

2 3 19.50 600.01 0 20.10 0.61 4 0.03

3 2 18.60 600.01 0 19.60 0.69 1 0.05

3 3 15.50 600.01 0 16.00 0.61 5 0.03

30 30 2 2 25.10 600.01 0 25.50 0.79 7 0.02

2 3 21.00 600.01 0 21.10 0.78 9 0.00

3 2 21.00 600.01 0 21.90 0.95 3 0.04

3 3 17.10 600.00 0 17.60 0.86 4 0.03
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Table 5 Large size instances results

Cplex Lagrangian heuristic

n m gI gO Uc Tc Nc Uh Th Nh ARE

40 40 3 3 23.20 600.01 0 23.90 0.92 3 0.03

3 4 20.80 600.01 0 20.60 0.91 10 −0.01

4 3 20.60 600.01 0 21.40 0.99 3 0.04

4 4 17.70 600.01 0 18.20 0.91 6 0.03

40 45 3 3 24.70 600.01 0 25.60 1.04 2 0.04

3 4 21.50 600.01 0 22.30 1.05 2 0.04

4 3 22.30 600.01 0 22.80 1.16 5 0.02

4 4 19.10 600.01 0 19.80 1.12 3 0.04

40 50 3 3 26.90 600.00 0 27.40 1.26 5 0.02

3 4 22.90 600.01 0 23.60 1.16 4 0.03

4 3 23.80 600.01 0 24.90 1.19 1 0.05

4 4 20.20 600.01 0 21.00 1.25 2 0.04

40 40 3 3 24.50 600.01 0 25.50 0.99 0 0.04

3 4 22.30 600.03 0 22.60 1.01 7 0.01

4 3 21.80 600.01 0 22.80 1.11 2 0.05

4 4 18.70 600.01 0 19.30 1.00 4 0.03

45 45 3 3 31.70 600.01 0 27.30 1.13 5 −0.04

3 4 31.00 600.01 0 23.40 1.14 9 −0.10

4 3 23.70 600.01 0 24.20 1.26 5 0.02

4 4 27.60 600.01 0 20.80 1.16 5 −0.08

45 50 3 3 34.90 600.01 0 29.00 1.32 3 −0.04

3 4 39.20 600.01 0 24.90 1.25 9 −0.18

4 3 39.30 600.01 0 26.00 1.42 3 −0.16

4 4 21.40 600.01 0 22.10 1.34 3 0.03

50 40 3 3 26.50 600.01 0 27.00 1.13 5 0.02

3 4 23.70 600.01 0 23.80 1.13 7 0.00

4 3 22.90 600.01 0 24.00 1.17 0 0.05

4 4 20.20 600.01 0 20.40 1.12 6 0.01

50 45 3 3 27.90 600.01 0 28.40 1.24 6 0.02

3 4 24.90 600.01 0 25.10 1.24 8 0.01

4 3 24.50 600.01 0 25.20 1.35 5 0.03

4 4 27.80 600.01 0 21.90 1.26 4 −0.05

50 50 3 3 31.10 600.01 0 30.30 1.41 5 −0.02

3 4 38.10 600.01 0 26.50 1.41 4 −0.12

4 3 33.10 600.01 0 27.10 1.54 4 −0.04

4 4 35.60 600.01 0 23.10 1.42 6 −0.15
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6 Conclusions

In this paper we have proposed a mathematical model and a Lagrangian Relax-
ation scheme for scheduling trucks at a cross-docking distribution terminal. We have
derived some properties of the relaxed problem leading to a Lagrangian heuristic
algorithm, that has been tested on a wide set of instances. The numerical experience
has shown the efficiency and the effectiveness of our algorithm, if compared to a
benchmark ILP solver.
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1 Introduction

Patient admission scheduling problems (PASPs) concernwith decidingwhich patient
to admit and at what time. These problems can be very complex, mainly when
different subproblems are tackled at the same time, like patient-to-bed assignment
and surgery scheduling problems. The patient bed assignment problem (PBAP) is a
sub-task of the PASP and concerns the choose of a suitable room to be assigned to
patients by considering medical requirements, patient needs, and hospital resource
availability. Despite PBAPswere usually addressed only as bed capacity problems [1,
2] formalized them as an offline and combinatorial optimization problem. Interesting
problem extensions were based on it [3, 4]. New realistic situations, like patients with
a risk of overstay and postponed admission date were introduced to PASPs in [4].
The goal consists on defining patient admission dates, assigning patients to suitable
bed-room-wards, and reduce overcrowded rooms. These problems were named as
PASU. The reader is referred to [4] for more details about PASU problems. More
complex is the PASU with surgery scheduling problem [5], referred hereafter as
PASU-OR problem.

The PBAP of [2] is NP-hard [6], as well as all other similar problems based on
it, and heuristic approaches to solve benchmark instances for the aforementioned
problems were designed in the literature.

The contribution of this study is twofold. First, it fills the gap in the literature by
introducing a mixed integer programming (MIP) model for the PASU-OR problem.
It is an extension of that proposed for PASU problems in [7] and an improvement
of those proposed in [4, 8] because reduces at minimum the number of decision
variables. Second, this study tests an efficient matheuristic procedure and improves
the results on a set of benchmark instances available in the literature. Thematheuristic
was originally designed for PBAPs in [9].

The paper is organized as follows. Section 2 presents the PASU-OR and the MIP
model. Section 3 reports computational results on a set of the benchmarks of PASU-
OR. The results are compared with those reported in [5] and discussed. Conclusions
are drawn in Sect. 4.

2 Problem Statement and an Optimization Model

In the following, we introduce the problem statement and the used notation. The
PASU-OR problem is characterized by patient admission date, patient-to-room
assignment and surgery scheduling decisions. Patients are characterised by manda-
tory and preferred medical equipment, gender, admission date (which can be post-
poned up to a defined date), fixed length of the stay (LOS), medical specialty, room
preference. Rooms, located in wards, differ for medical equipment, number of beds,
and high/or medium levels of expertise in treating certain pathologies. All patients
have to be admitted to the hospital in a defined planning horizon and assigned to suit-
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Table 1 Patient and room attributes

Patient

ADp =
{
ap, . . . , a

′
p

}
Range of admission dates: ap and a

′
p are the first and the latest

possible admission date, respectively

L p Length of stay as consecutive nights

Hp =
{
ap, . . . , z

′
p − 1

}
Period during which patient has a stay of L p , where
z

′
p = a

′
p + L p

spp ∈ S Patient specialty

MEp Is the set of mandatory equipment for p

Gender Male or female

For each patient inPS

lsp Length of surgery (in minutes)

δp Number of days between admission date and surgery date

SDp = {h + δp, h ∈ ADp} Range of possible surgery dates

Room

S̄r Set of specialties that cannot be treated in room r

Cr Capacity, i.e., number of beds

Er Set of equipment in room r ∈ R

gpr ∈ GP Gender policy. GP = {1, 2, 3}: 1 and 2 denote rooms restricted
to male and female patients (RGP), respectively; 3 denotes
dependent gender policy (DGP), i.e., patients with the same
gender of patients already staying in a room should be assigned

Operating room

bhs OR time (in minutes) of surgical specialty s ∈ SS on day h ∈ H

ovhs Maximum overtime of surgical specialty s ∈ SS on day h ∈ H

able hospital rooms in correspondence with their characteristics for a fixed number
of consecutive nights.

Let H be a planning horizon, and P be the set of elective patients, indexed by h
and p, respectively. L p denotes the length of stay (LOS), which could be extended
by one night for some patients with a risk of overstay. For each patient is known
the range of admission dates AD, and Hp that is the range of days between the first
possible admission date and the last day of hospitalization. Some patients have to
undergo a surgery and exactly δp days after their admission. Surgeries are scheduled
by considering an already defined master surgical schedule (MSS). In addition, some
patients were already assigned to rooms before the current planning phase. Let P0
be this set of patients. A transfer in a different room is allowed only for them, even
if is penalised in order to reduce patient discomfort. Let R, S and SS, be the set of
rooms, medical and surgical specialties, indexed by r and s, respectively. The main
attributes of patients, rooms and ORs are reported in Table 1.

To simplify the readability of the model formulation, we define Hov
p ={

z p, . . . , z
′
p

}
as the range of possible overstay nights, and the following sub-

sets of patients and rooms: PF , PM , PS, and Pov are the sets of woman, men,
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patients who have to undergo surgery, and patients with a risk of overstay, respec-
tively. Let R̄dgp = {r ∈ R|gpr = 3}, be the set of rooms with DGP. Let R̄p ={
r ∈ R : spp /∈ S̄r , MEp ⊆ Er

}
, and R̄dgp

p = {
r ∈ R̄p|gpr = 3

}
, be the subsets of

rooms feasible for patient p and those with DGP, respectively.
Hard constraints are on room capacity, mandatory equipment, patient specialty,

and patient stay as consecutive nights. A surgery has to be performed in a defined
date and scheduled in those OR blocks assigned to the related surgical specialty, as
defined by the MSS. Requirements related to preferred equipment, room capacity
preference, gender policies, department specialism, delayed admissions, transfers,
and overcrowded rooms due to overstay patients, OR underutilization, and OR over-
time express desired properties. They are tackled as soft constraints since do not
influence the validity of a schedule but impact on its quality. Violated soft constraints
are penalised in objective function.

2.1 An Optimization Model for Offline Patient Admission,
Rooms and Surgery Scheduling Problems

Before to introduce our optimization model, we define the decision variables and
their meaning as follows. adprh = 1 and xprh = 1, if patient p ∈ P is admitted on
day h ∈ ADp and then assigned to room r ∈ R̄p over Hp; osprh = 1 if p ∈ Pov is in
room r ∈ R on day d ∈ Hov

p ; tp = 1, if p ∈ P0 is not assigned to the already occupied
room r̄ p;mrh = 1 if male patients are in room r ∈ R̄dgp on day d ∈ H , and bgrh = 1
if there are both male and female patients. The above binary decision variables take
value 0 otherwise. Delayed admission (in days) is denoted by delp ≥ 0. A room
r is overcrowded on day h ∈ H if ocrh > 0. Finally, variables related to surgeries
scheduling are: sdph = 1 if patient p undergoes surgery on day h ∈ SDp; auxiliary
variables are sovhs , tovh , and uh denoting daily OR overtime per surgical specialty,
overall OR overtime and OR underutilization, respectively. The overall OR time
underutilization is computed as deviation of utilised OR time from a constant ku ,
defined as ku = min {reqOR, avOR}, where reqOR and avOR are the overall
requested OR time and the overall available OR time. The objective function is a
weighted sum of eight terms. The costs are listed in Table 2.

min
∑
p∈P

∑

r∈R̄p

∑
h∈Hp

wpr xprh +
∑

r∈R̄dgp

∑
h∈H

wgbgrh + wt

∑
p∈P0

tp +
∑
p∈P

(wdeldelp)+

+
∑
r∈R

∑
h∈H

wococrh +
∑
h∈H

∑
s∈SS

wsovsovhs +
∑
h∈H

wtovtovh + wu(ku −
∑
h∈H

uh) (1)

∑

r∈R̄p

∑
h∈ADp

adprh = 1 ∀p ∈ P (2)



Offline Patient Admission, Room and Surgery Scheduling Problems 279

Table 2 Violations of the soft constraints and related penalty costs

Violation Soft constraint Penalty cost Violation Soft constraint Penalty cost

v1 Preferred
equipment

wpe v7 Delay wdel

v2 Room
capacity
preference

wcr v8 Overcrowded
room

woc

v3 Department
specialism

wsp v9 Surgical
specialty
overtime

wsov

v4 RGP wg v10 Overall OR
overtime

wtov

v5 DGP wg v11 OR underuti-
lization

wu

v6 Transfers wt

delp =
∑

r∈R̄p

∑
h∈ADp

adprh(h − ap) ∀p ∈ P (3)

h+L p−1∑
k=h

xprk ≥ adprh L p ∀p ∈ P, r ∈ R̄p, h ∈ ADp (4)

∑
h∈Hp

xprh = L padprh ∀p ∈ P, r ∈ R̄p (5)

Cr ≥
∑
p∈P

h∈Hp,r∈R̄p

x prh ∀r ∈ R, h ∈ H (6)

mrh ≥ xprh ∀r ∈ R̄dgp
p , p ∈ PM , h ∈ H (7)

bgrh + 1 ≥ mrh + xprd ∀r ∈ R̄dgp, p ∈ PF , h ∈ Hp (8)

tp =
∑

r∈R\r̄ p
x pr1 ∀p ∈ P0 (9)

osprk = adpr,k−L p ∀p ∈ Pov, r ∈ R̄p, k ∈ Hov
p (10)

Cr + ocrh ≥
∑
p∈P|

h∈Hp,r∈R̄p

x prh +
∑
p∈Pov |

h∈Hov
p ,r∈R̄p

osprh ∀r ∈ R, h ∈ H (11)

sdp,h+δp =
∑

r∈R̄p

adprh ∀p ∈ PS, h ∈ ADp (12)

sdph ≤ bh,spp ∀p ∈ PS, h ∈ SDp (13)
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bhs + sovhs ≥
∑

p∈PS|spp=s,h∈SDp

lspsdph ∀h ∈ H, s ∈ SS (14)

∑
s∈SS

bhs + tovh ≥
∑

p∈PS|h∈SDp

lspsdph ∀h ∈ H (15)

uh =
∑

p∈PS|h∈SDp

lspsdph −
∑
s∈SS

sovhs ∀h ∈ H (16)

sovhs ≤ uvsovs ∀h ∈ H, s ∈ S (17)

tovh ≤ uvtov ∀h ∈ H (18)

Objective function (1) plans patient admissions, assigns patients to rooms according
to quality of care and patient preferences, and schedules surgeries. The first term
considers violations v1 − v4: patient-to-room assignments are penalised per night by
wpr , which is the sum of the first four costs. The subsequent four terms penalise
v5 − v8, respectively; the last three terms penalise overall OR overtime computed
per all specialties, OR under-utilization and overall OR under-utilization, respec-
tively. Constraints (2) ensure that each patient is admitted only once in ADp and
has to be assigned only one room among those feasible. Constraints (3) evaluate
delayed admissions and Constraints (4)–(5) ensure patient stay as consecutive L p

nights. Constraints (6) state that the number of patients assigned to a room cannot
be greater than the number of beds. Constraints (7)–(8) capture the presence of male
patients and DGP violation if there both male and female patients on the same day,
respectively. Constraints (9) evaluate transfers, and Constraints (10)–(11) consider
overstays and overcrowded rooms. Constraints (12) and (13) ensure that each patient
p ∈ PS undergoes surgery δp days after admission, only once, and on day in which
his/her specialty has allotted OR time in the MSS. Constraints (14)–(16) are on
surgical specialty overtime, overall OR overtime per day, and OR under-utilization,
respectively. Finally, Constraints (17)–(18) impose an upper value to OR overtime.
The above defined decision variables complete the MIP model formulation.

3 Computational Results

In this section we present computational results carried out on the small short family
[5] for assessing the quality of the matheuristic solution and found good schedules in
reasonable times. This family consists of three sets and 15 instances. Main features
are summarised in Table 3.

The PASU-OR benchmark are infeasible instances owing a greater demand than
resource. To overcome this, the planning horizon is doubled with respect to the
original, and roomunderutilization related to the H isminimized. This term is defined
as deviation of the overall room utilization from a constant. The constant is kbed =
min {reqB, avB}, where reqB and avB are the overall bed requests and the overall
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Table 3 Main features of the short family instances

Family |Dep| |R| |S| |P| |OR| |H |
Short 1 2 25 9 391–439 2 14

Short 2 4 50 18 574–644 4 14

Short 3 6 75 23 821–925 5 14

number of beds, respectively. The term (kbed − ∑
h∈H buh), denoted by v̄12 in Table

4, is penalised and added to objective function (1).
As already stated in Sect. 1, PASU-OR problems are NP-hard and heuristic

approaches were devised to find good solutions in a reasonable time because exact
solvers are not effective to explore the solution space mainly of large instances. The
solution approach here implemented is based on the matheuristic FiNeMath, devel-
oped to solve PBAPs in [9].Metaheuristic algorithms are generic solution procedures
based on exploring the solution space by considering an incumbent solution and iter-
atively changing it in favour of a new solution. FiNeMath exploits complementarity
among fix-relax methods, neighbourhood-based searches, and exact solvers. Let s0
be an initial feasible schedule, and F0 its objective function value. Some patient-to-
room assignments are selected from s0 randomly and added to the MIP model as
constraints. They are thus fixed components, while the remaining ones are repaired
by an exact solver in the defined neighbourhood. The procedure is iterated until a
stopping criterion is reached. The objective function value is thus improved itera-
tively by destroying a current schedule and repairing it by an exact solver. A high
level pseudocode is provided below, named as Algorithm 1. For more details, the
reader is referred to [9].

Algorithm 1 FiNeMath
Require: MIP model, Max I ter , s0 (an initial feasible schedule)
i ← 0
while i 	= Max I ter do
Select randomly some patient-to-room assignments from the incumbent solution
Add these assignments as constraints to MIP model
Solve the current MIP model
i ← i + 1

end while

Thenumber of patient-to-roomassignments added as constraints to theMIPmodel
influences both improvements in the objective function value and computational
times [9]. The percentage range of fixed assignments was set in the range 10–40%;
each MIP problem was solved with a gap of 3%, that decreases up to 1% in the latest
iterations; the number of iterations was set to 32. The computational experiments
were performed using IBM ILOG CPLEX V12.7.1, Academic license. We used the
cost values reported in [5]. We evaluated the improvement/worsening of our results
with respect to the best-known mean values RCS , found by a simulated annealing
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approach in [5]. All the best-known values RCS were improved. Table 4 lists the
results in terms ofmean values per set of instances, and reports the single components
of the objective function. In the last column there are the percentage improvement
values, which were evaluated byΔF = (RCS value−our value)

(RCS value) × 100. Observe that they
are in the range 4.7–10.5%.

4 Conclusion

In this paper, we formulated an optimization model to manage patients admissions,
hospital rooms, and surgeries. Schedules with planned patient admissions, patient-
to-room assignments and planned surgeries are developed using the matheuristic
FiNeMath, which is based on solving the optimization formulation. Preliminary
results achieved on a set of benchmark instances, point out that our approach is
promising. Currently, we are working on improving the FiNeMath efficiency by
developing suitable solution destroying phases to reduce computational times.
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Equilibria on Networks with Uncertain
Data—A Comparison of Different
Solution Approaches

Joachim Gwinner and Friedemann Sebastian Winkler

Abstract This contribution is concerned with Wardrop traffic equilibria. As is well
known these equilibria can be formulated as variational inequalities over a convex
constraint set. Here we consider uncertain data that can be modeled as probabilis-
tic. We survey different solution approaches to this class of problems, namely the
expected value formulation, the expected residual minimization formulation, and the
approach via random variational inequalities. To compare these solution approaches
we provide and discuss numerical results for a 12 node network as a test example.

Keywords Wardrop traffic equilibrium · Uncertain data · Probabilistic
approaches · Unfairness measure

1 Introduction

This contribution is concernedwithWardrop traffic equilibria. As is well known from
the classic papers of Dafermos [3] and Smith [15] these equilibria can be formulated
as finite-dimensional variational inequalities over a convex constraint set. For more
recent research on the interplay between traffic equilibria and variational inequality
theory we refer to [4, 7, 13].

Here we consider uncertain data that can be modeled as probabilistic. We survey
different solution approaches to this class of problems, namely the expected value
(EV) formulation introduced in [6], the expected residual minimization formulation
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(ERM) introduced in [2], and the approach via random variational inequalities (RVI)
introduced in [9, 10]. To compare these solution approaches we provide and discuss
numerical results from the bachelor thesis [16] for a 12 node network as a test
example. While for small networks the non-iterative algorithm given in [13], which
has recently improved by branch and bound in [14], is applicable, here we use
standard iterative solvers for variational inequalities and nonlinear complementarity
problems taken from [5]. As a measure to evaluate these different approaches we
consider an index of unfairness.

We do not consider sample path solution [8]; for a comparison between this
method and the RVI approach we can refer to [11].

2 The Stochastic Variational Inequality Problem

Let us begin with the deterministic traffic equilibrium problem formulated as the
variational inequality: Find a vector x ∈ S (a closed convex set of finite dimension)
such that

F(x)T (y − x) ≥ 0 ∀y ∈ S .

Traffic equilibrium problems that arise in real-world applications often involve
uncertainty. Influences like weather changes may have a significant effect on the
network’s congestion. Here we model such uncertainties as probabilistic. They may
occur both in the defining function F and in the set S of the problem.We assume that
there are l random variables that have to be considered and group those in a random
vector ω. This leads to the stochastic variational inequality (SVI): Find x ∈ S(ω)

such that
F(x, ω)T (y − x) ≥ 0 ∀y ∈ S(ω) ,

where S(ω) ⊂ R
n is closed convex for any random parameter ω ∈ Ω and where

(Ω,F ,P) is a probability space with Ω ⊂ R
l and a given probability distribution

P .
In the special case S(ω) = R

n+ the problem reduces to the stochastic nonlinear
complementarity problem (SNCP): Find a vector x such that

0 ≤ F(x, ω) ⊥ x ≥ 0 .

When F is an affine function of x for any ω ∈ Ω , i.e.

F(x, ω) = M(ω)x + q(ω) ,

where M(ω) ∈ R
n×n, q(ω) ∈ R

n , the SNCP reduces to a stochastic linear comple-
mentarity problem SLCP.

It is obvious that—apart from the special deterministic case—there will be no
single vector x that satisfies the SVI or the SNCP or the SLCP for all possible
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ω ∈ Ω . Instead some deterministic problem or a sequence of those has to be con-
structed to satisfy the conditions approximately. Here the question arises as to which
deterministic model should be used to achieve the best results. Over the last years
various approaches have been studied, some of which we will survey and compare
then.

3 Various Solution Approaches

In this section we first describe shortly the EV and ERM approaches for SNCP, then
the ERM approach for SVI and finally sketch the main idea of the RVI approach.

The expected value (EV) formulation introduced in [6] and the expected residual
minimization formulation (ERM) introduced in [2] are two deterministic formula-
tions for the SNCP. The EV formulation is to solve a single nonlinear complementar-
ity problem with the expectation E[F(x, ω)] as deterministic substitute. The ERM
formulation is to minimize a residual function. A version of the ERM formulation
using NCP functions (ERM-CP approach) is to find an optimal solution of

minimize f (x) := E
[‖Φ(x, ω)‖2], x ∈ R

n
+ ,

where

Φ(x, ω) =
⎛

⎜
⎝

ϕ(x1, F1(x, ω))
...

ϕ(xn, Fn(x, ω))

⎞

⎟
⎠

is the residual function and ϕ : R2 → R is an NCP function that satisfies

ϕ(a, b) = 0 ⇒ a ≥ 0, b ≥ 0, ab = 0

In [17] the min function ϕ1(a, b) = min(a, b) and the FB function ϕ2(a, b) =√
a2 + b2 − (a + b) have been used.
One of the problems of the NCP-ERM approach is that the min-function or FB-

function are coercive but not convex in general. Hence a solution calculated with this
model might not be globally optimal. There is an alternative due to [1] (ERM-VI
approach) that uses the regularized gap function fα and the D-gap function gα given
by

fα(x, ω) := max
y∈S(ω)

[
F(x, ω)T (x − y) − 1

2α
‖y − x‖2],

gα(x, ω) := fα(x, ω) − f1/α(x, ω) .
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Then in the affine case with

S(ω) = {y ∈ R
n : A(ω)y = b(ω), y ≥ 0}

the two proposed residual functions to be minimized are (τ > 0 fixed)

θ R
α (x) := E

[
fα(x, ω) + τ‖A(ω)x − b(ω)‖],

θ D
α (x) := E

[
gα(x, ω)

]

which both are shown in [1] to be convex for large enough α.
In the previous approaches (see also [12] for a more detailed survey) we have

always found a single solution vector that was in some way optimal for all possible
values of the random variables. The RVI approach (see [9, 10] for details) goes
a different way. It is a numerical procedure that provides a solution function that
depends on the random variables. A single solution vector can then still be obtained
by using the expected value of this function. This approach has some advantages, for
example we can calculate the variance and compare it to the interval of the random
variables.

4 A Test Traffic Network

We consider a network (N ,A ,W ) consisting of the set N of 12 nodes, the
set A of 26 (directed) arcs and the set W of 3 origin destination (OD) pairs:
(1, 8), (6, 4), (12, 2). The topology of the network is described by the node-arc inci-
dence matrix E with the entries

En,a =
⎧
⎨

⎩

1 if a starts in n
−1 if a ends in n
0 else

for n ∈ N , a ∈ A . Further for every OD pair w ∈ W there is a demand dw at its
destination that equals the supply at its origin. This gives rise to demand vectors Dw

with the components

Dw
n =

⎧
⎨

⎩

dw if n is origin of w
−dw if n is destination of w
0 else.

The total flow xa in an arc a composes of partial flows xwa resulting from the
different OD pairs w ∈ W ,

xa =
∑

w∈W
xwa .



Equilibria on Networks with Uncertain Data … 289

Fig. 1 12 node network with 3 OD pairs: (1, 8), (6, 4), (12, 2)

These part flows are grouped in vectors xw = (xwa )a∈A for each w ∈ W . Then
Wardrop’s principle with mass conservation leads to the variational inequality: Find
x = (xw)w∈W ∈ S such that

F(x)T (
∑

w∈W
zw −

∑

w∈W
xw) ≥ 0,∀z ∈ S,

where the feasible set S and the vector cost function F are defined respectively by

S = {x = (xw)w∈W : Exw = Dw, xw ≥ 0 (∀w ∈ W )},
F(x) = (ca(

∑

w∈W
xw))a∈A

with given cost function ca on each arc a ∈ A .
There is a stochastic influence on the arcs 20 and 21 (Fig. 1) via the random arc

cost,
caR = aωc + b

with a, b constant and ωc exponentially distributed. There is also a stochastic influ-
ence on the travel demands for each OD pair,



290 J. Gwinner and F. S. Winkler

dw = aw + ωdbw

with aw, bw constant and ωd log-normal distributed.
The total arc travel cost is then given by

ca(x) = caI (x) + caR(xa) + caGBPR(xa)

depending on the total arc flow vector x = (xa). Here the traffic flow on an arc a
can have a negative influence caI and following [18], caGBPR denotes the generalized
Bureau of Public Roads (GBPR) function,

caGBPR(xa) = ca0

(
1 + α

(
xa

ca1

)β)

with α = 0.15 and β = 2.0, ca0 , c
a
1 fixed for each arc a.

5 Numerical Results

The traffic network was simulated with different values and weights of the random
parameters in a series of numerical experiments. The following results are the path
flows for one realization. It is representative in a way that the other results produced
showed very similar outcomes.

Table 1 Path flows calculated with the different approaches

Path ERM-CP ERM-VI EV RVI

1 164.9879 166.4100 162.0012 163.4000

2 47.4648 46.2170 49.4313 47.8210

3 58.3731 60.3030 59.0241 58.6970

4 85.1028 79.2660 81.3520 82.7460

5 23.2451 34.0920 24.7344 23.1180

6 45.6531 39.2730 46.3221 46.6580

7 130.2841 109.1500 132.9165 131.2300

8 49.7389 76.1050 48.6997 50.1100

9 0 0.5109 0 0

10 0 1.0676 0 0

11 126.2697 123.1200 122.6562 125.3900

12 73.7208 65.0660 71.5271 72.7900

13 11.8699 11.5180 13.4434 11.2530

14 26.9040 32.8970 27.9059 26.0160
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Table 2 Nodes and arcs of all used paths

Path Nodes Arcs

1 1-2-5-8 1-7-14

2 1-6-10-11-12-8 5-17-20-25-24

3 6-1-2-3-4 4-1-2-10

4 6-2-3-4 6-2-10

5 6-10-11-12-8-4 17-20-25-24-15

6 6-10-11-7-5-3-4 17-20-22-12-9-10

7 12-11-9-10-6-2 26-21-19-16-6

8 12-11-9-6-2 26-21-18-6

9 12-11-7-5-2 26-22-12-8

10 12-11-7-5-3-2 26-22-12-9-3

11 12-7-5-2 23-12-8

12 12-8-4-3-2 24-15-11-3

13 12-8-5-2 24-13-8

14 12-7-5-3-2 23-12-9-3

Table 1 states the calculated path flows for all paths that were used in at least
one of the solutions of the different approaches. Table 2 specifies the used paths by
stating the used nodes and arcs.

To evaluate the numerical results obtained by the different approaches ERM-CP,
ERM-VI, EV, and RVI we need a performance measure. Here we focus to an index
of unfairness.

Note that for each fixed ω ∈ Ω theWardrop equilibrium reflects the fairness to all
users with the same OD pair, since the travel cost for each used route connecting the
same OD pair is equal or less than any unused route. However, in the uncertain case,
the travel cost for any flow pattern connecting the same OD pair is not necessarily
the same. For a fixed ω ∈ Ω the unfairness of a feasible flow pattern for an OD pair
w ∈ W is measured by

Cunfair
w (y, ω) = Cmax

w (y, ω)

Cmin
w (y, ω)

,

where Cmax
w ,Cmin

w depending on the path flow vector y are the largest, respectively
the smallest travel cost of routes being used, which connect the OD pair w. Thus,
the expected unfairness of the outcome for the whole network under uncertainty is
given by

unf := E[ 1

|W |
∑

w∈W
Cunfair
w ] .

This index of unfairness together with the computed total cost are listed for the
different approaches below (Table 3).
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Table 3 Comparison for the different approaches

ERM-CP ERM-VI EV RVI

Unfairness 1.0093 1.0170 1.0240 1.0003

Total cost e+005 2.6756 2.6814 2.6464 2.6440

It can be seen that the RVI formulation has the lowest unfairness and the EV
formulation the highest. As the total traffic flow is higher in the ERM solutions it is
unavoidable that the total cost is also higher than in the case of EV and RVI.
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Construction of Discrete Time Graphs
from Real Valued Railway Line Data

Steven Harrod

Abstract Railway timetables are frequently modeled as discrete time expanded
graphs. The selection of the magnitude of the discrete time unit can significantly alter
the structure of the graph and change the solutions generated. This paper presents a
method for generating improved mappings of real railway track segments to discrete
arc graphs given a chosen discrete time unit. The results show that the dimensions
of the generated graph are not monotonic and a range of values should be evaluated.

Keywords Railway timetable · Discrete optimization · Railway operations

1 Introduction

Frequently, railway timetabling problems are formulated as discrete time expanded
graphs. The movements of the trains however, are measured in real valued time.
In most formulations, feasible solutions require that train run times be lengthened
or rounded up to the nearest discrete time unit, resulting in some increase in travel
time and reduction in railway line capacity. It should be explained to the reader new
to railways, that nearly all railways divide their rail networks into sections called
“blocks”. Train movement authorization is given according to these blocks, and a
true microscopic model of a railway would represent each of these blocks as an arc.
These blocks can be as small as 100 m.

The number of alternative train paths, the density of the graph, and the complexity
of the problem all increase as the size of the discrete time unit shrinks. Frequently,
these timetabling problems are very large, consisting of tens of thousands of discrete
arcs, each of which is represented in a mathematical program by a binary decision
variable. One way to reduce the complexity of these problems is to select a larger
discrete time unit, with a subsequent increase in the model approximation error. This
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Fig. 1 Performance of range of discrete time units in Caimi et al. [2]

paper demonstrates a method of optimizing the discrete arc graph for a given time
unit magnitude.

The design of these discrete arc graphs is one of many tasks in a class of problems
variously referred to as “train routing” problems or “timetabling problems” (TTP).
Harrod [7] provides a detailed survey on mathematical models of this class. Various
prior papers in the literature have selected a discrete time unit according to envi-
ronmental conditions, business rules, or their judgment, but, with one exception, the
choice is not discussed at length and usually is limited to a single sentence. Exam-
ples of studies that apply a discrete time unit are Mills et al. [9], Brännlund et al. [1],
Caprara et al. [4], Şahin [11], Harrod [6], and Lusby et al. [8].

Caimi et al. [2] presents a problem of the Berne, Switzerland station area. The
paper describes assigning run times to trains as the ceiling function of the run time
divided by the discrete time unit. A range of discrete time values between 15 and 120
s are tested on one problem scenario, and the results are shown in Fig. 1. The tradeoff
between computation time and accuracy can be clearly seen. “Addl. Run Time” is
the average additional movement time for each train path through the station due to
the rounding up of the real valued run time to discrete time. The nominal run time
through the station is 250 s. The bounding lines“RT ± s .d.” are drawn one half of
the standard deviation from the “Addl. Run Time” value. In this case, the selected
discrete time unit of 90 s is approximately the headway between trains, minimizes
the computation time, and is approximately in the midrange of the induced error in
run times and capacity.
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2 A Method for Constructing a Discrete Time Network

This section proposes a method for distilling a complex real-valued railway network
structure into a smaller, discrete valued graph. Given a discrete time unit magnitude
as a starting point, the method generates a discrete graph by merging adjacent track
segments into longer segments to be represented by the graph arcs. The objective of
the process is to minimize the deviation between the real valued travel time on the
arcs and the assigned discrete travel time on the arcs.

The error created by the difference between the assigned integer time value and
the original real valued movement time is called here “induced” model error. The
chosen time unit either needs to minimize induced error over the average of all trains,
or over a favored group of trains based on some objective criteria. Not all induced
error is bad. Federal Railroad Administration [5] recommends that all simulated train
times be increased by 7% to compensate for operating delays not accounted for in
train simulations, and some additional induced error may also serve as schedule slack
to protect against stochastic delays.

There are two, sometimes opposing, objectives in this method. First, to minimize
the number of blocks |B| so that the number of arcs or decision variables in the
model is minimized. Second, to dimension the blocks so that the resulting discrete
train travel time is a close match to the real valued train time and minimizes induced
error. A number of parameters support this process, such as s, the minimum number
of track segments to combine, which can define a default train separation or headway.
If, for example, the track segments represent signalled track segments, and the rules
dictate a two block separation (which is very common), then s = 3 will ensure a set
of blocks B which will maintain this headway. Another factor to consider in merging
track segments is the rolling minimum operating headway. Track segments should
not be combined in such a way that they create large variation in the arc travel times,
and thus create a bottleneck and reduce the overall flow rate of the line.

Figure2 displays an example set of track blocks to be combined. The top picture
depicts a length of track with signals and two occupying trains, separated by red and
yellow signals. The source data is represented below by arcs (a) with travel times
labeled. The bottleneck on this route is the segment with travel time t = 5, so the
maximum flow on this route is one train each 5 time units (because only one train
may occupy each segment at a time). The middle set of arcs (b) shows the effect of
combining the first three track segments. The flow is not affected. The bottom set of
arcs (c) makes a poor choice in combining the last two track segments and reduces
the maximum flow to one train each 6 time units.

The combination of track segments into model track blocks is determined by
problem (P), which is a simple set partitioning exercise. Refer to Table1 for expla-
nation of the set notation. The first component of the objective is a tie-breaker. In
the event that more than one combination of track blocks offers the same objective
value, the one with the least number of members is preferred. The selection of a
coefficient of 0.001 is arbitrary, within a range. It should be small to insure that the
second component of the objective is the dominant decision maker, but it should not
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Numbers are segment travel times.

(a)

(b)

(c)

Fig. 2 Example track segment combination process

be too small, as extreme magnitude differences in coefficients can lead to numerical
difficulties for integer program solvers [3].

The second component of the objective is the sum of the induced error for the
source train data considered. All real valued train times are rounded up to the next
integer discrete time value, thus assuring operational feasibility of the resultingmodel
solution timings. The induced error α is the difference of the real value equivalent
of the discrete time value and the source real valued train time. The error is then
approximately the discrete time unit (μ) minus themodulo of the real time (t) divided
by the time unit (Eq. 1).

μ − (t mod μ) (1)

All combinations of track segments are enumerated in set Ω , whose members are
a couple (i, k) where i is the number of track segments combined and k is the
first track segment index. For example, set member (3, 5) defines the combina-
tion of track segments {5, 6, 7}, set member (4, 3) defines the combination of track
segments {3, 4, 5, 6}, set member (5, 8) defines the combination of track segments
{8, 9, 10, 11, 12}, etc. The size of the combination of track segments is limited by
s, which may determine a minimum physical headway, a user selected maximum
combination size l, and the maximum of the rolling minimum operating headway
or bottleneck time described earlier. The single constraint requires that any solution
cover all source track segments. This problem should be solved for a wide range of
values of u (the discrete time unit value, see Table1), and then the total induced error
and number of model track blocks |B| calculated and compared for each value prior
to making a final selection.
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Table 1 Components of Problem 2

Component Type Description

xi,k Binary variable Represents the selection of segment set (i, k) as a
model network track block

u Parameter Real value of discrete time unit

tr,i,k Parameter Total real travel time for train r on segment set (i, k)

αr,i,k Parameter Induced error for train r on segment set (i, k) for
given discrete time unit, αr,i,k = u − mod(tr,i,k , u)

h Parameter Ruling minimum headway or maximum of rolling
value of minimum operating headway

s Parameter Minimum number of track segments to combine into
one model track block

l Parameter Maximum number of track segments to combine into
one model track block

Γ Set The set of trains considered

Θ Set The ordered set of source track segments or blocks,
ordered by network sequence (original data)

Ω Set The set of possible derived blocks, each member,
(i, k), maps to a contiguous subset of Θ , starting at
position k in set Θ and including i consecutive
members (track segments)

Ω =
{
i ∈ {s . . . l}, k ∈ {1 . . . |Θ|}

∣∣∣∣k ≤

(|Θ| − i + 1),maxr tr,i,k ≤ h

}

Δθ Set The set of derived or merged blocks from Ω that
contain the indicated original source track segment θ

Δθ = {(i, k) ∈ Ω|k ≤ θ < k + i}

(P)

min
∑

(i,k)∈Ω

0.001xi,k +
∑

r∈Γ,(i,k)∈Ω

αr,i,k xi,k (2)

s.t.

∑
(i,k)∈Δθ

xi,k =1 ∀θ ∈ Θ (3)

x ∈ {0, 1}

To date, the author has solved these directly using commercial solvers such as Cplex
without difficulty. What is more difficult is managing the input data for these prob-
lems. A formal database structure is valuable for managing this data and the logical
relationships between various data entries. The initial objective is to format the track
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network into a series of minimum dimension units for pre-processing. Each unit has
dimensions of start location, end location, capacity (number of tracks), connected
track segments at each end, and is tabulated as a record in the database. A suitable
database for these records is displayed in Fig. 3. An initial impulse might be to record
the track in one mile or kilometer units, but most signal systems do not allow the
control of trains in these increments, so other dimensions or division points should be
used. Most North American railways operate a fixed installation signalling system,
with train control points fixed at the location of color light or position signals, so the
locations of these signals are the best starting points for track segment records.

3 Application to a Real Test Case: The BNSF
Transcontinental Railway, Winslow to Flagstaff, Arizona

This double track railway is at the midpoint of the journey between Chicago and
Los Angeles, and is the dominant traffic lane for BNSF. In addition to the heaviest
freight traffic on the BNSF network, the line hosts one daily passenger train in each
direction, Amtrak’s Southwest Chief between Chicago and Los Angeles. Winslow
is a crew change point, and both Winslow and Flagstaff are station stops for the
Southwest Chief. Between them lies 54 miles of double track through remote lands
and a Navajo Indian Reservation.

Track network data and train timing data are supplied by BNSF. Signals are
installed on this line approximately every 2–3 miles, so with source track segments
of the same length, there are approximately 21 segments between Winslow and
Flagstaff (approximate depending on one’s interpretation of the signaling system).
Train timing data is provided as computer simulations of a variety of trains. For each
train timing, data is supplied westbound (WB: Winslow to Flagstaff), eastbound
(EB: Flagstaff to Winslow), and for wet and dry rail in each direction, for a total of
4 timings for each train. Wet rail timings are longer than dry rail timings, because
the wet rail limits acceleration and braking, so these timings are used as the more
robust of the two choices. A two block separation is presumed. That is, each train
is presumed to be trailed by a red signal, a yellow signal, and finally a green signal,
and so s = 3. An arbitrarily large value of l = 7 is applied.

The train types considered are limited to the G and X class freight trains and the
Amtrak Southwest Chief. Calculated over a 3 track segment rolling horizon, the bot-
tleneck time for a freight train is approximately 25min and occurs westbound around
Darling, Arizona (milepost 326). Eastbound the bottleneck time is only 14min, and
at the same location. The bottleneck time for Amtrak is only 12min, at the same
location, and in both directions. This mix of trains was arbitrarily chosen to demon-
strate a variety of train types. The typical train mix on this line is actually much
more diverse, and will vary according to season, day of week, and time of day. The
methods presented here may be applied to any specific scenario.
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Table 2 Discrete timings for u = 4.5

Milepost Block no. True miles Freight Amtrak

WB EB WB EB

288
(Winslow)

1 16.6 6 4 3 3

304 2 10.0 4 3 2 2

314 3 8.8 4 2 2 2

323 4 9.5 5 3 3 3

333
(Flagstaff)

5 11.3 6 4 4 4

Model network track blocks are determined usingProblem2 for discrete time units
in 0.5min increments from 1 to 20, based upon the train timings of the dominant
freight trains only. The solution statistics are presented in Fig. 4. The induced error
is displayed as a percentage of the real valued train timing. Again, all integer valued
train timings are determined by rounding up (ceiling function) the real valued train
timings, and the induced error is the sum of the integer valued train timings minus
the real valued train timings. The problem complexity is estimated to be proportional
to the arc count, presented as a complexity factor, (1/u)|B|. That is, the formulation
complexity is a function of the number of geographic arcs and the granularity of the
time horizon to be analyzed.

Candidate discrete time unit values are tagged with vertical lines in Fig. 4. The
first candidate, a discrete time unit of u = 3, offers a desirable induced error of 6%,
but a complexity factor of 1.67. At a discrete time unit value of 3.5min, not only
does the error increase, but the complexity increases as well. This is because the
optimal number of model blocks increases from 5 to 6 at this discrete unit size. The
next candidate unit size is u = 4.5, which offers an error of 9% and a complexity
factor of 1.11, or approximately a 33% reduction in arc count for an admittedly 50%
increase in error. This net error is still below 10% and is a practical level providing
some schedule slack and compensating for the difference between simulated timings
and expected timings. In this data set the trade-off between problem complexity and
induced error becomes increasingly less favorable as the discrete unit size increases.

The resulting train timings in discrete timeunits of 4.5min are presented inTable2.
The Amtrak trains are faster than the general freight trains by a factor of nearly
2 (compare column Freight/WB with column Amtrak/WB in Table2), in spite of
the fact that the top allowable speed of Amtrak trains is not twice that of freight
trains as a rule. The authorized passenger speed between Winslow and Flagstaff
is approximately 79 mph, and for general freight it is approximately 45 mph, or a
ratio of approximately 1.75. The superior acceleration and braking properties of the
Amtrak train allow it to navigate the route much faster than the general freight trains.
Also note how the method has homogenized the arc dimensions. Block 1 is twice as
many miles as block 3, but in 3 of 4 columns it is only 50% greater in travel time.
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Fig. 4 Induced error and complexity as a function of discrete time unit

Reflecting back to the discussed [2] in the introduction, the results of this specific
example demonstrate some similarities. First of all, Figs. 1 and 4 display the same
trends, but recall also that Caimi et al. finds that the headway time between trains
is a good heuristic for the preferred discrete time unit. In this example the limiting
train headway on the BNSF line is not known, but it may be estimated by established
methods described in [10]. In this case, the dominant freight traffic runs at 45 mph,
a two block signal separation is expected, and the blocks are 2–3 miles long. The
trains should thus typically operate with a five mile separation or about 6.66min,
which is a little higher than the result suggested by Fig. 4, but a good initial value.
The advantage of this method is that clear guidance can be obtained quickly and with
direct evidence, without the necessity of actually constructing and testing alternative
models.

4 Conclusion

This paper introduced the application of discrete time units in scheduling problems
for railways, and cited [2] as an example of the range of values that could be selected
and their impact on the problem complexity and accuracy. Caimi et al. obtains its
results by trial and error on a complex railway scheduling problem.This paper offers a
mathematical program for generating prospective time unit values specific to a given
railway line and train performance. The results and application are comparable. This
research could be further extended with more detailed, large problem examples.

The choice of discrete time unit must not be arbitrary, because small changes in
unit size can have large effects on the model’s representation of and authenticity to
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actual operations. The problem demonstrated here is not of a large enough size for
practical application, but the limitation at the moment is not the capability of solvers
such as Cplex, but the time necessary to collect and structure the data. There are
approximately 119 signaled track segments between Winslow and Needles, and the
westbound freight journey time is 432min. Using the principles described here, this
network could be abstracted to a graph of 24 track blocks and a 4min discrete time
unit, offering approximately an 8% induced error and a complexity factor of 6.0.

Themethod described here provides a fast process for approximating a real valued
set of sequential railway track segments as a discrete arc graph. Multiple discrete
time magnitudes may be evaluated and compared on their induced error and result-
ing graph complexity. The progression of the graph development as the discrete time
unit increases is not linear. In some cases a larger time unit offers reduced com-
plexity without incurring larger induced error. Further investigation of this method
could evaluate the robustness of the actual train timetabling solutions produced under
different discrete time unit values.
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An Integer Linear Programming
Formulation for Routing Problem
of University Bus Service

Selin Hulagu and Hilmi Berk Celikoglu

Abstract The initial phase of our work, concentrating on the formulation of a staff
service bus routing problem (SSBRP), is motivated by a real life problem of a univer-
sity at amulti-centricmetropolitan city. In order to improve the overall cost efficiency
of the existing staff service bus operation system of the Technical University of Istan-
bul (ITU) we ultimately aim to find a set of staff service bus routes that provides
transportation to and from four campuses for its eligible academics and administra-
tive staff currently using service buses. An integer linear programming formulation
for the SSBRP for the single campus case is presented.

Keywords Optimization · School bus routing problem · Traffic and transportation

1 Introduction

The summarized study concentrates on the formulation of a staff service bus routing
problem for which an environmentally friend approach is adopted. Our work is
motivated by a real life problem of around 2500 users composed of academics and
administrative staff, around 1000 bus stations for a heterogeneous bus fleet and four
campuses of the Technical University of Istanbul (ITU), where the highway network
of operation spreads to two sides of Istanbul, the Asian and the European sides
divided by the Bosphorus, and is mostly congested during morning and evening
commutes. The increases on vehicle operating costs, together with the increases on
urban traffic congestion and the consequent increased traveling times for services
bus transport necessitate the cost and time effective planning of the scheduling and
the routing of our staff service bus fleet. Therefore, for the cost-effective operation
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and management of ITU staff service bus fleet, we ultimately seek the optimization
of the lines and the routes of service buses considering a number of measures on
the vehicle operating costs, traveling times, and the environmental impacts. In the
present paper, we summarize the initial phase of our work that is on the formulation
of our objective as an Integer Linear Program (ILP) of the vehicle routing problem
considering a single campus.We present the preliminary findings as we initially seek
the solution with some simplifications within a number of scenarios and assumptions
to minimize the overall total cost. While the optimized routes as the after plan for
the entire operation have been being evaluated in comparison to the existing routing
and scheduling plan currently in operation considering the measures sought to be
minimized, i.e., fuel consumption, total cost, traveling time, and exhaust emissions,
content of the present paper covers the initiation of the evaluation considering solely
the routing for a single campus aiming to minimize solely the total operating cost.

2 Relevant Literature

Agreat number of studies on both the formulation and the solution of several variants
of the Vehicle Routing Problem (VRP), that are clearly classified and summarized
in the work by Toth and Vigo [21], do exist. In the following, a review on the VRP
with specific reference to the School Bus Routing Problem (SBRP), analogous to the
Staff Service Bus Routing Problem (SSBRP) we handle, is summarized.

The bus routing problem can simply be formulated to optimize the scheduling
for a fleet of busses to pick up users from various stops and to deliver them to their
destinations subject to a number of constraints, i.e., capacities of busses at the fleet,
route length of busses, traveling time of users in busses, allocation of each bus stop
to single a route, and etc. Park and Kim [17] present a review on SBRP decomposing
the content of the works published up to 2010 into sub-problems of bus stop selection
(e.g. [18]), bus route generation (e.g. [2]), school bell time adjustment (e.g. [12]),
and bus route scheduling (e.g. [19]) following a data preparation step.

Approaches to solving the SBRP that has been being studied since the work by
Newton and Thomas [16] are problem specific and have been generally adopted to
solve formulations for combined problem of scheduling and routing of crew and
vehicle (e.g. [5]), the rural postman problem (e.g. [11]), and the multi-objective
vehicle routing problem (e.g. [13]).

Considering the decomposition proposed by Desrosiers et al. [9], the SBRP can
be solved throughout four steps following data preparation: bus stop selection where
users are assigned to stops; bus route generation; adjustment of school bell time; and
route scheduling. Most approaches consider separately and sequentially these steps
as sub-problems due to the complexity and the size of the overall problem though
sub-problems are not independent. However, most of the relevant works published
consider solely some components of the five-step SBRP, frequently the routing and
route scheduling of vehicles, since bus stop locations and the opening and closing
hours of schools are subject to the policies of local and/or nation-wide authorities
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such as the board of education, the municipality of the city, and etc. In this aspect
a single sub-problem or a combination of its sub-problems has been extensively
studied.

Newton and Thomas [16] specified a network to hold all the bus stops and then
partitioned it into smaller feasible routes where each route could be covered by a
single bus. Employing a clustering algorithm to group bus stops serving 5 schools in
Indiana, Angel et al. [1] aimed to generate routes by finding minimum length routes
among clusters so that the constraints of the problem are satisfied. Bennett and Gazis
[3] studied the problem of bus route generation with 256 bus stops and around 30
routes in Toms River, NJ alternating the objective functions adopted, i.e., minimizing
the total user-miles and employing a modified version of the Savings Algorithm of
Clarke and Wright [7]. Bodin and Berman [4] followed a 3-opt procedure, including
a look-ahead feature and a bus stop splitter, to generate an initial traveling salesman
tour that is further partitioned into feasible routes considering the BSRP of a densely
populated suburban area with around 13000 students and 25 schools. Given a set
of routes of around 100 that deliver all students from their assigned bus stops of
around 35 to their schools Swersey and Ballard [20] aimed to find the minimum
number of buses to cover these routes by formulating an integer program and solving
heuristically the problem of route scheduling using simple cutting planes. Employing
a number of methods in land-use based generation of a set of routes; Desrosiers et al.
[8, 10] studied the SBRP of 20,000 students and 60 schools in Montreal, Canada
within an integer program formulation and a column generation solution approach.
Bowerman et al. [6] proposed an approach composed of a multi-objective clustering
algorithm to location based grouping of students atWellington County, Ontario and a
combination of a set covering algorithm and a traveling salesman problem algorithm
to generate school bus routes and bus stops for each cluster.

3 Methodology: Problem Characteristics and Problem
Formulation

The staff service bus transportation systemof ITUoperates as follows: In themorning,
users are picked up at a bus stop that is within a considerable walking distance of
their residence. The service bus covers the rest of the bus stops remaining on its route
and terminates its trip at a campus where each route serves solely a single campus.
In the afternoon, the process is reversed and users are dropped off at the bus stops
where they were picked up in the morning.

While we define a number of optimization criteria to evaluate within scenarios
the desirability of a particular set of staff service bus routes considering around 110
lines to serve four campuses in conjunction with the policies of the university board
that are ‘Number of routes’, ‘Total bus route length’, ‘Load balancing’, ‘Length
balancing’, and ‘User walking distance’, we consider the first two for the sample
single campus case as summarized in the present paper. In the following we present
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an ILP formulation of the SSBRP for ITU service bus operation system, considering
the routing from and to a single campus.

The SSBRP involves the routing of a number of buses that are operated to transport
the staff of ITU between the campus and their houses where each bus is assigned to a
single path for the pick-up and the drop-off purposes with a limited seat capacity and
a restriction on the maximal traveling distance. Pick-ups and drop-offs are realized
at bus stops, each of which is visited only once by a single bus. The objective is
therefore to find the minimum number of service buses to serve all the staff and their
corresponding routes, so as to minimize the total cost of the overall operation.

Our problem formulation follows a complete graph G � (V, A) with V nodes
and A arcs. Assuming that M � {1, 2, . . . ,m} is the set of service busses, V :
{2, 3, . . . , n} is the set of bus stops, and V ′ : {1, 2, 3, . . . , n, n + 1} is the set of
all routing points that includes the campus node, {1}, and the depot node, {n + 1},
the distances between each node pair ij is characterized by a symmetric distance
matrix, where di j represents the distance required to be traversed from node i to node
j, and vice versa as well, for i �� j and ∀ i, j ∈ V ′. Each node i ∈ V is assigned a
number of staff to be picked-up or dropped-off, qi . The SSBRP therefore turns out to
determine m node paths connected to the single origin point as the campus, node 1,
so that the total capacity on each path does not exceed the capacity constrain,Q, and
the total length of each path does not exceed the bus route length constrain, D. The
important decision variable for the problem we concentrate on is binary, xi j , and it
determines whether or not an arc sources from node i and sinks node j in the solution
as given by (1):

xi j �
{
1, if arc (i, j) is traversed

0, otherwise
for i �� j and ∀i, j ∈ V ′ (1)

In order to obtain the optimal solution to the SSBRP we have adopted a node
based approach for formulating the model with polynomial sized binary variable
and constraints, in which model variables are selected considering explicitly the
nodes of the graph, G � (

V ′, A
)
. Assuming that: ci j is the cost of traversing from

node i to node j and is a function of the distance with the unit distance cost, α, to
change the distance matrix to the cost matrix: ci j � α · di j ; and f is the fixed unit
cost of operation per bus, the general form of the objective to our integer program
formulation is given by (2):

min

⎧⎨
⎩

n∑
i�1

n∑
j�1

((
ci j · xi j

)
+ ( f · m)

)⎫⎬⎭ (2)

subject to the assignment constraints given through (3.1) to (5):

n∑
i�2

xn+1,i ≤ m (3.1)
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n∑
i�2

xi,1 ≤ m (3.2)

n∑
j�1

xi j � 1, ∀i ∈ V (4)

n+1∑
i�2

xi j � 1, ∀ j ∈ V (5)

in addition to constraints on capacity, i.e., given through (6) to (8), and distance, i.e.,
given through (9) to (13) to eliminate sub tours:

ui − u j + Q · xi j +
(
Q − qi − q j

) · x ji ≤ Q − q j , i �� j, i, j � 2, 3, . . . , n
(6)

ui −
n∑
j�2

(
q j · x ji

) ≥ qi , j �� i, i � 2, 3, . . . , n (7)

ui + (Q − qi ) · xn+1,i ≤ Q , i � 2, 3, . . . , n (8)

v j � vi + di j (9)

vi − v j +
(
D − di1 + di j

) · xi j +
(
D − di1 − d ji

) · x ji ≤ D − di1, i �� j,

i, j � 2, 3, . . . , n (10)

vi ≥
n∑
j�2

(
d ji · x ji

)
, j �� i, i � 2, 3, . . . , n (11)

u j � ui + q j (12)

vi ≤ D − (
D · xn+1,i

)
, i � 2, 3, . . . , n (13)

xi j ∈ {0, 1} ∀i, j ∈ V ′ (14)

ui ≥ 0 ∧ vi ≥ 0, i ∈ (2, 3, . . . , n) (15)

where: ui is the total amount of staff picked up (or dropped off) by the service bus
after visiting node i for i ∈ V ′; vi is the total length traveled from depot to node i (or
from campus to node i) for i ∈ V ′.

As the SSBRP is asymmetrical, and hence the distances should be considered
accordingly, the ILP given above is formulated specific to depots to campus morning
routings as represented by (3.1) and (3.2). The formulation for the campus to depots
afternoon routings necessitates the substitution of the two constraints respectively
by (16.1) and (16.2).

n∑
i�2

xi,1 ≤ m (16.1)
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n∑
i�2

xi,n+1 ≤ m (16.2)

Note that constraints (4) and (5) are the degree constraints that secure each of the
nodes to be visited only once, where constraints (3.1) and (3.2) restrict the maximum
number of service buses that depart from node 1 to arrive node n + 1 to m.

In order to impose the restrictions given from (6) to (8) that each service bus has to
carry at most its capacity,Q, theMiller et al. based constraints [15] proposed by Kara
et al. [14] are utilized, specifically: constraint (6) to eliminate the sub-tours, as in a
capacitated VRP, by ensuring that ui follows a step-wise function; and constraints
(7) and (8) restrict the lower and the upper bounds for the total number of staff
picked-up by the service bus after leaving node i, qi . In a similar manner, while the
constraints (9) and (10) eliminate the sub-tours by ensuring the function of the total
length traveled to be stepwise, constraints (11) and (12) restrict the lower and the
upper bounds for the total length covered by the service bus until node i, vi .

Constraints (14) and (15) represent respectively that: xi j is an integer decision
variable that is binary; and ui and vi are decision variables that can take continuous
values.

4 Preliminary Results and Discussion

In the present study we have considered the intercontinental routings, where all the
routing points other than the campus take place on the Asian side while the campus is
located on the European side, from and to a single campus, ITU Taskisla Campus, as
a sample case. The optimization of the service bus operation system of ITU is, there-
fore partially sought over the network piece with arcs of around 365 km out of 6718
(see road network colored red in Fig. 1) and traversing throughout of around 119
planning zones out of 451 (see borders colored black in Fig. 1) within an ILP formu-
lation of the SSBRP considering the features: the number of stops in addition to the
campus and the depot; the cost of traveled distance within an affordable range sug-
gested by the university board; the number of seats available at buses; the maximum
distance to be covered by all routes; the fixed cost per bus; and a-priori info on staff
assignment to stops.

As the current routing plan (see in Fig. 2) for each line is observed to visit the
bus stops that are turned out to be specified upon each user’s preference we have
considered in each zone a centroid with inter-modal transfer alternatives as the pick-
up or drop-off of all the staff accommodating in the zone of interest. Though such an
aggregation would violate a reasonable walking distance from and to homes of staff,
the approach fits well the ultimate aim of decreasing the number of lines currently
being operated, of around 110 to serve four campuses, to its half due to the cuts-off
in the budget and/or relevant funds.
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Fig. 1 a Istanbul road network with planning zones. b Network piece considered

Fig. 2 Current routing plan for sample single campus

A GIS software is utilized to obtain the distances between each node pairs over
the road network of Istanbul considering the urban freeways and urban arterials that
serve to all zones with above mentioned centroids. The unit distance cost for each
service bus is assumed to be 0.232 USD per kilometer with a fixed cost of 90288
USD per bus.

Model based exact solutions for 12 asymmetrical problems for 6 lines are sought
with an open source code solver using Intel(R) Xeon(R) CPU E5-26500 processors
each at 2.00Ghz, and 32GBofRAM.The optimal solution resulted in a total cost that
corresponds to around 35%of distance cost reduction compared to the current routing
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plan. While we present in present paper the preliminary analyses aiming to minimize
the overall operating cost to enhance the constraints service bus operating budget,
our further research concentrates on extending the problem formulation to account
for: (i) the pollution based routing incorporating either a number of constraints on
air pollutants emitted by the buses that form the fleet or emission damage costs in
the objective function; and (ii) the mixed loads from all the four campuses.
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Abstract In this paper, an agent-based model is presented to test the feasibility of
different configurations of Demand Responsive Shared Transport (DRST) services
in a real context. DRST services provide “just-in-time”mobility solutions by dynam-
ically assigning a fleet of vehicles to passenger booking requests taking advantages
of Information and Communication Technologies. First results show the impact of
different route choice strategies on the system performance and can be useful to help
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1 Introduction

This paper focuses on the potential contribution of innovative Demand Responsive
Shared Transport (DRST) services provided by a fleet of vehicles, booked by users
via mobile device applications, and scheduled in real-time to pick up and drop off
passengers in accordance with their needs [1]. This flexible system stands between
an expensive individual door-to-door ride service (like a taxi) and a typical transit
service system.

From the operator’s point of view, it is important to select the optimal strategy to
assign vehicles to passengers’ requests, so to perform high load factor and low driven
distance (to reduce operation costs). From the users’ point of view, it is important to
minimize the additional time and distances they have to experience due to the shared
ride and, possibly, to pay reduced fees with respect to an individual ride service.

In the last years, increasing attention has been paid on shared transport services.
Optimization models have been proposed to solve dial-a-ride [2] or multiple depot
vehicle scheduling problems [3]. More recently, simulation models have been used,
e.g. to study the performance of dial-a-ride systems with fixed-route problems [4],
the efficient scheduling of dynamic demand responsive transport (DRT) services [5],
the dynamics of taxi-sharing systems [6], the effects of using a zoning vs. a no-zoning
strategy and time-window settings [7].

In this respect, agent-based models (ABM) proved effective to reproduce com-
plex social systems, and to overcome some limitations of “top-down” approaches,
by reproducing the microinteraction among single autonomous agents in different
context, e.g. among stakeholders involved in transport decision-making processes
[8, 9]. In the field of ride sharing, they have been proposed to study taxi fleet opera-
tions [10], car sharing [11] and to investigate DRT services by developing an open-
source simulation testbed [12]. Main benefits of ABM are the possibility to provide
a realistic description of a system, capture emergent phenomena from the microint-
eraction among agents, and being flexible, in terms of number and type of modelled
agents, agent behavior, degree of rationality, ability to learn and evolve, and rules of
interactions [13].

In this paper, a newABM is presented as a realistic environment where to simulate
differentDRST scenarios, with simple rules assigned to agents, in order to explore the
transport demand and supply variables thatmake this service feasible and convenient.
The model simulates the interaction between vehicles traveling along a semi-flexible
route and users walking from their origins to stop-nodes to get a transport service to
their destinations. The main novelty relies on the integration of a GIS-based demand
model into the ABM that can be easily transferred to other contexts. The aim is to
understand, starting from the micro-interaction between demand and supply agents
(i.e. passengers and vehicles), the macroscopic behavior of the system so to monitor,
via appropriate indicators, its performance and give suggestions on its planning,
management and optimization. The city of Ragusa (Italy) is chosen as case study,
where an innovative DRST has already been tested.
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The remainder of the paper is organized as follows. Next section provides a
detailed description of the ABM and its main components. Then, the case study
with the main input variables is introduced. In the last section, preliminary results of
the simulations are presented, and future research steps as well.

2 Model Description

The ABM has been implemented within NetLogo programming environment [14] to
test the impact of different vehicle route choice strategies on the service efficiency
and effectiveness.

The model can be described according to its main features, i.e. (i) transport net-
work, (ii) demand model, (iii) agent (user and vehicle) dynamics, (iv) route choice
strategies, (v) performance indicators.

Transport network. The network consists of a fixed route and three optional routes,
composed of network nodes and links, stop-nodes and diversion-nodes. It reproduces
the actual road network. Besides, a GISmap provides georeferenced socio-economic
data about population and economic activities.

Demandmodel. A user group’s1 trip request is randomly generatedwith a negative
exponential distribution according to a gravity model [15], with an average trip rate
from an origin i to a destination j proportional to population density.

Agent (user and vehicle) dynamics. Agents’ dynamics works as follows. If the
distance between a trip origin (or destination) and the nearer service stop overcomes
a prefixed threshold, the request is rejected. Otherwise, the user group moves to the
nearest stop and waits until a vehicle (with available empty seats) reaches the stop.
In this case, each user goes on board, and alights at the nearest stop to its required
destination and it is recorded as a “satisfied” user. Conversely, if a prefixedmaximum
waiting time is overcome before a vehicle reaches the origin stop, the user group gives
up and assumes the status of “unsatisfied”.

As far as vehicle dynamic is concerned, a given number of vehicles with prefixed
seat capacity is randomly generated at stops, and they start traveling along the fixed
route at constant speed. At each stop, waiting users are loaded following the First-
Come-First-Served queue rule, if the group size is not greater than the available
empty seats. At each diversion node, a vehicle can shift to an optional route if there
are waiting users or if on-board users have to alight along the route. The available
vehicle seats are updated at each event of passenger loading/unloading.

1Each group has a maximum prefixed size according to vehicle’s capacity.



316 G. Inturri et al.

Route choice strategies. All vehicles drive on the fixed route. At diversion nodes,
a vehicle may drive on a flexible route in accordance with the assigned Route Choice
Strategy (RCS). In this first version of the model, there are three RCSs:

• “Fully Random” (FR), vehicles can randomly decide whether to drive on optional
routes;

• “AllVehicles drive onAll flexibleRoutes” (AVAR), except for a randompercentage
of vehicles choosing, as for the FR strategy;

• “Each Vehicle is Assigned to a flexible Route” (EVAR), except for a random
percentage of vehicles choosing, as for the FR strategy.

The randomness component has been introduced to add some “noise” to the
system, since it has been demonstrated that this can have a beneficial role in increasing
the efficiency of social and economic complex systems [16].

Performance indicators. The local interaction between passengers and vehicles
determines system patterns that can be monitored via appropriate performance indi-
cators. In this first version of the model, we decided to monitor 12 indicators, i.e.:
(1) total number of served passengers (NP), (2) total driven distance [TDD (km)],
(3) average passenger travel distance [APTD (km)], (4) average vehicle load factor
(ALF), (5) average waiting time [AWT (min)], (6) average on-board time [AOBT
(min)], (7) average total travel time [APTT (min)], (8) average vehicle speed [AVS
(km/h)], (9) transport intensity [CI (km/pax)]—as ratio of total driven distance and
number of passengers (TDD/NP), (10) total user travel time ([TPTT (h)]—including
a penalty of 60 min for each unsatisfied user), (11) vehicle operation cost [OC (e)],
and (12) total unit cost [TUC (e/pax)], evaluated according to the following equation,
where VOT is the Value of Time:

TUC

(
e

pax

)
� TPTT (h) · VOT

(
e
h

)
+ OC(e)

NP(pax)
(1)

3 Case Study

The case study is Ragusa, a small-medium city (70,000 inhabitants) in the southeast-
ern part of Sicily (Italy), where an innovative DRST service, called MVMANT,2 has
already been tested in 2016. Two distinct areas, i.e. the upper town, and the lower
historical center of Ragusa Ibla, with a high touristic vocation, characterize the city.
MVMANT has connected several park-and-ride facilities with the main destinations
in Ragusa Ibla, which is scarcely connected to the center, offering a continuous
service with midsize passenger vans.

Figure 1 shows the fixed (blue) and flexible (orange) routes, and census zones on
the left colored according to population density (from light to dark green).

2https://www.mvmant.com/pilot-in-ragusa/.

https://www.mvmant.com/pilot-in-ragusa/
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Fig. 1 Virtual map (left) and satellite map (right)

The main input variables of the system are:

• service variables, i.e. total simulation time (h), number of vehicles, vehicle maxi-
mum capacity (seats), vehicle average speed (km/h);

• demand variables, i.e. demand rate (request/hour), maximum number of passen-
gers per group request, maximum waiting time (min);

• route choice strategy, i.e. FR, AVAR, EVAR, with a variable percentage of ran-
domness for the last two strategies.

4 Preliminary Results and Conclusions

In order to test the model and the overall system performance, we performed several
simulations by varying the number of vehicles and their capacity (with the same total
capacity), and by considering different route choice strategies (i.e. FR, AVAR, and
EVAR) with increasing levels of randomness.

Figure 2 (on the left) shows the total hours spent by all passengers (in yellow),
the hours spent while waiting (in light blue), while on board (orange), the hours
considering a penalty of 60 min for each “unsatisfied” user (grey), and the total
number of transported passengers (in dark blue). It is worthy of notice that the total
number of transported passengers decreases with 15 and 30 vehicles, since group
requests with three passengers cannot be satisfied by vehicles with low capacity. On
the right, Fig. 2 shows the total unit cost TUC (e/pax) by the number of vehicles. It is
calculated by assigning a monetary value to each hour spent by the passengers in the
system (10 e/h), adding the operation cost of vehicles (in the range of 0.5–1.0 e/km
based on the vehicle size) and drivers’ cost (20 e/h), and dividing by the number
of passengers. It can be considered as a measure of the total system cost (demand
and supply) for the mobility of one person. In this case, an optimal range can be
identified in the range between 5 and 10 vehicles.

Comparing TUC for EVAR and AVAR strategies with variable randomness
(Fig. 3), best results are found with EVAR and no randomness. This is because
vehicle assignment to specific routes (EVAR) reduces the travelled distances by
empty vehicles. By increasing randomness, the two strategies get closer in terms
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Fig. 2 Passenger travel time and number of passengers (on the left) and total unit cost TUC (on
the right) (route choice strategy EVAR with 30% randomness; maximum group size�3; total seat
capacity�30)

Fig. 3 Total unit cost by randomness (number of vehicles�5; seat capacity�8; maximum group
size�1)

of TUC. With randomness over 40%, the two strategies give the same results with
intermediate and almost constant system performance. It can be concluded that a
certain rate of randomness is beneficial for the AVAR strategy, since it implies that
not all vehicles will simultaneously explore all the routes if demand is present (thus
reducing the empty driven distance). Vice versa, EVAR strategy works better without
randomness.

In conclusion, simulation results show that the service quality and performance
considerably vary with the number and capacity of vehicles. In particular, given
a fixed supply (in terms of total seat capacity), many vehicles with low capacity
decrease passenger travel time (and cost) and increase the operator costs, while few
high-capacity vehicles perform better from an operator’s point of view. An optimal
range can be found by considering a total unit cost accounting both for passenger
travel time and vehicle operation cost.

Besides, simulation results with different vehicle dispatching strategies (from
flexible to more fixed route strategies) show that assigning vehicles to specific routes
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reduces travelled distances by empty vehicles. If all vehicles are allowed to drive
on all the routes, then a certain level of randomness in agent’s choice is found to be
beneficial for the system performance.

First results show that the model is able to reproduce different system configura-
tions and to monitor, via appropriate indicators, its performance.

Further research will focus on: (a) comparing DRST with pure taxi and pure bus
services; (b) testing other strategies to optimize the service (i.e. increase load factor,
reduce vehicle-km), e.g. re-balancing/idle strategies; (c) testing reactive/adaptive
agent behaviors for route choice strategies based on system states; (d) testing pricing
strategies and public subsidies to increase the service effectiveness (in terms of
satisfied demand); (e) testing the system performance with autonomous vehicles;
(f) including elasticity of demand to price; (g) improving the demand model (e.g.
including socio-demographics characteristics, data from surveys).
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12. Čertický,M., Jakob,M., Píbil, R.: Simulation testbed for autonomic demand-responsive mobil-
ity systems. In: Autonomic Road Transport Support Systems, pp. 147–164 (2016)

13. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems.
PNAS 99(Suppl 3), 7280–7287 (2002)

https://doi.org/10.1007/978-3-319-57105-8_3


320 G. Inturri et al.

14. Wilensky, U.: NetLogo. Center for Connected Learning andComputer BasedModeling. North-
western University, Evanston, IL (1999). In: http://ccl.northwestern.edu/netlogo/

15. de Dios Ortuzar, J., Willumsen, L.G.: Modelling Transport. Wiley (2011)
16. Pluchino, A., Rapisarda, A., Garofalo, C.: The Peter principle revisited: a computational study.

Phys. A 389(3), 467–472 (2010)

http://ccl.northwestern.edu/netlogo/


Production Control in a Competitive
Environment with Incomplete
Information

Konstantin Kogan and Fouad El Ouardighi

Abstract We consider an industry consisting of a large number of firms producing
substitutable products and engaged in a dynamic Cournot-type competition. The
firms are able to reduce their marginal production costs by accumulating their own
experience as well as the experience spillovers from other firms. In particular, firms
accumulate production experience through proprietary learning, which, however,
depreciates over time. We determine steady-state Nash equilibrium policies that are
based on the assumption that the firms do not have precise information about each
competitor and therefore are unable to respond to a specific firm’s dynamics. The
firms, however, do react to overall industry trends. We show that in such a case,
though the information used for production control is incomplete, in the long run the
firms tend to the output they would converge to under complete information. We also
find that industry growth due to more firms entering the market results in decreasing
long-run equilibrium output of each firm when the depreciation of experience is
higher than the rate of spillovers. Otherwise, the opposite result can emerge, i.e., the
steady-state output will grow.

Keywords Production · Control · Differential games · Quantity competition

1 Introduction

We consider an industry consisting of firms competing by producing substitutable
goods. Similar to a Cournot game [4], the firms choose product quantities (outputs)
that determine the market price and thereby the firms’ prinfofits. The firms are able
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to reduce their production marginal costs by accumulating their experience as well as
through experience spillovers from their competitors (see, for example, the reviews
on the effect of learning by doing in [1, 2, 5, 11, 14]). Due to its cumulative nature,
production experience is interpreted herein as a stock variable that requires a dynamic
approach. A similar interpretation is suggested by Jarmin [7] who develops an empir-
ical multi-period model to study the intertemporal nature of learning by doing and
spillovers.

Early analytical models that account for the effect of experience typically consider
quantity-based competition over two periods, with proprietary learning-by-doing
and/or spillovers (see, for example, [6, 8, 12]). Stokey [13] develops a more general
model—a differential game with production dynamics and complete spillovers, i.e.,
the unit cost for any firm depends only upon cumulative industry production. Stokey
characterizes equilibria and finds persistent free riding due to complete spillovers.
To overcome tractability issues and determine explicit steady-state equilibrium in a
similar problem, Miravete [10] assumes no spillovers and only fixed cost reduction
due to accumulated output. Kogan et al. [9] provide an analytical solution for two
competing firms with proprietary learning by doing and partial spillovers when the
firms are able to account for the competitor’s experience dynamics.

Unlike the cases that appear in the literature above and similar to what occurs
in real life markets, we consider an industry that consists of a large number of
firms which do not have full information about their competitors. In particular, not
only the spillovers are partial, but also the firms are not able to account for the
individual dynamics of each specific competitor. Instead the firms account for the
overall industry dynamics when choosing the equilibrium time path of their output.
We find the overall industry growth results in decreasing output and lower experience
of individual firms (reduced competiveness) when the experience depreciation is
higher than the rate of spillovers. Otherwise, the opposite result can emerge and the
firms will become more competitive.

We proceed in the next section with the formulation of the problem. Section 3
is devoted to the Nash equilibria conditions while Sect. 4 focuses on steady-state
(long-run) equilibrium policies. Section 5 summarizes our results.

2 The Model

Consider a mature duopoly with N manufacturers competing by producing substi-
tutable goods. Specifically, the firms simultaneously choose a quantity to be produced
per time unit (output) over an infinite planning horizon, qi(t) ≥ 0, i � 1, 2, . . . , N .
Similar to the Cournot competition approach, the market price P of the product at
time t depends negatively on the total output at time t, Q(t) � ∑N

i�1 qi(t). That
is, P(Q(t)) � α − Q(t), where α is the maximal price, P(0) � α. The cumula-
tive experience, Xi(t), of a firm is due to its cumulative production,

∫ t
0 qi(s)ds, and

depreciation at the rate of ρ:
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Ẋi(t) � qi(t) − ρXi(t), Xi(0) ≥ 0, qi(t) ≥ 0, i � 1, 2, . . . , N . (1)

We assume each firm is unable to account for the experience dynamics of a
specific competitor, but it is able to account for the entire industry experience, X(t)�
X (t) � ∑N

i�1 Xi(t), dynamics which with respect to (1) is determined by the overall
output,

Ẋ (t) � Q(t) − ρX (t), (2)

Equations (1) and (2) imply there is saturation in accumulating the production
experience and this affects the firm’s ability to reduce its unit production cost [3].

Similar to Jørgensen and Zaccour [8] and Fudenberg and Tirole [6], we assume a
linear effect of proprietary learning-by-doing and spillovers on the firm’s marginal
production cost:

C(Xi(t), X (t)) � c − γ Xi(t) − εX (t), i � 1, 2, . . . , N , (3)

where c is the initial unit production cost, γ is the rate of proprietary learning, and ε

is the rate of learning from the industry experience spillover. Note, that calculation of
the correct γ assumes reducing it by ε to eliminate the need to account for a spillover
from firm i to itself, as X(t) includes also Xi.

Given the discount rate δ of future profits, each firm maximizes its cumulative
profit:

max
qi(·)

∫ ∞

0

[
α − Q(t) − c + γ Xi(t) + εX (t)

]
qie

−δtdt (4)

subject to the constraint (3), i � 1, 2, . . . , N .
Recalling our assumption that each firm is only able to respond to the overall

industry behavior, formulation (1)–(4) presents a differential game where individual
firms are playing against the entire industry when making a decision. In what follows
we study time-dependent {qi(t), t ≥ 0}Nash equilibrium output policies. Since such
policies are weakly time-consistent, the equilibrium actions can be continued. This
ensures that the players’ commitments at any time along the equilibrium path are
credible.

3 Equilibrium Policies

Using the maximum principle and omitting index t where it is obvious, the current
value Hamiltonians for the differential game (1)–(4) are:
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Hi �
⎡

⎣α −
N∑

j�1

qj − c + γ Xi + εX

⎤

⎦qi + ψi(qi − ρXi) + ψX
i

⎛

⎝
N∑

j�1

qj − ρX

⎞

⎠ (5)

where the costate variables satisfy the following conditions:

ψ̇i � (δ + ρ)ψi − γ qi, limt→∞ e−δtψi(t) � 0, (6)

ψ̇X
i � (δ + ρ)ψX

i − εqi, limt→∞ e−δtψX
i (t) � 0. (7)

Since the Hamiltonian Hi is concave in qi, the equilibrium outputs are then found
from

∂Hi

∂qi
� α − 2qi −

∑

j ��i

qj − c + γ Xi + εX + ψi + ψX
i � 0, (8)

that is:

qi � α − ∑N
j ��i qj − c + γ Xi + εX + ψi + ψX

i

2
. (9)

If the initial experience of the firms is identical, the symmetric equilibrium
output is:

qi �
⎧
⎨

⎩

α−c+γ Xi+εX+ψi+ψX
i

N+1 , if α − c + γ Xi + εX + ψi + ψX
i > 0

0, if α − c + γ Xi + εX + ψi + ψX
i ≤ 0.

(10)

From (10) we observe that the firm’s equilibrium output policy is to produce
proportionally to the firm’s own current experience, Xi, to the entire industry current
experience, Xi, as well as to the marginal profit ψi and ψX

i from the opportunity
of increasing the firm’s experience and the industry experience respectively by one
more unit.

4 Steady-State Nash Equilibrium

To find an interior symmetric steady-state, we next set Ẋi � 0 and Ẋ � 0. Conse-
quently, qi � ρXi for i=1, 2, …, N and from (10) we have:

α − c + Xiγ + εX + ψi + ψX
i

N + 1
� ρXi (11)

Differentiating (11) we find ψ̇i+ψ̇X
i

N+1 � 0. To meet this equation, consider next
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ψ̇i � 0 and ψ̇X
i � 0, i � 1, 2, . . . , N . (12)

By accounting for (7) and (8), Eq. (12) lead to

ψi � γ qi

δ + ρ
andψX

i � εqi

δ + ρ
. (13)

Using (13), Eq. (11) transforms into

α − c + Xiγ + εX + γ qi

δ+ρ
+ εqi

δ+ρ

N + 1
� ρXi. (14)

Recalling qi � ρXi, we have
α−c+Xiγ+εX+

(
γ

δ+ρ
+ ε

δ+ρ

)
ρXi

N+1 � ρXi, which, with
respect to the symmetricity, NXi � X , defines steady-state experience X SS

i �
α−c

ρ(N+1)−
(
γ+

(
γ

δ+ρ
+ ε

δ+ρ

)
ρ
)
−Nε

. The result is feasible, i.e., X SS
i ≥ 0, if ρ(N + 1) >

γ +
(

γ

δ+ρ
+ ε

δ+ρ

)
ρ + Nε. Defining next the minimal marginal cost cm that the firm

may achieve in the long run, cSS � c − γ X SS
i − εX SS ≥ cm, we conclude as follows.

Proposition 1 If ρ(N + 1) > γ + γ+ε

δ+ρ
ρ + Nε and cSS ≥ cm, the differential game

(1)–(4) has a unique, symmetric steady-state Nash equilibrium characterized by
positive experience, output and costates:

X SS
i � α − c

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε
(15)

qSS
i � ρ(α − c)

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε
(16)

ψSS
i � ρ(α − c)

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε

γ

δ + ρ
(17)

ψ
X ,SS
i � ρ(α − c)

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε

ε

δ + ρ
(18)

i � 1, 2, . . . , N . �

From Eqs. (15)–(18) we readily conclude:

Corollary 1 The higher the proprietary learning ability γ and the experience
spillover ε, the greater the firms’ steady-state output and experience. �

To find transient output dynamics, we differentiate qi from (10) and substitute (1),
(2), (6) and (7):

q̇i � γ (qi − ρXi) + ε(Q − ρX ) + (δ + ρ)ψi − γ qi + (δ + ρ)ψX
i − εqi

N + 1
.
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Next using ψi +ψX
i � (N + 1)qi −α + c −γ Xi − εX with respect to (10) we have

q̇i � −(α − c)(δ + ρ) + [(δ + ρ)(N + 1) + ε(N − 1)]qi − Xi((γ + εN )(δ + ρ) + γρ + ερN )

N + 1

and therefore

−(α − c)(δ + ρ) + [(δ + ρ)(N + 1) + ε(N − 1)]qi − q̇i(N + 1) � Xi((γ + εN )(δ + ρ) + γρ + ερN )

� Xi(γ + εN )(δ + 2ρ).

Consequently, after one more differentiation of q̇i we obtain

q̈i � [δ(N + 1) + ε(N − 1)]q̇i − qi((γ + εN )(δ + 2ρ) − ρ[(δ + ρ)(N + 1) + ε(N − 1)]) − ρ((α − c)(δ + ρ)

N + 1
.

The solution to this equation with respect to the boundary conditions is

qi � K1e
1
2

(
A−√

A2−4B
)

t
+ K2,

where A � δ(N + 1) + ε(N − 1), B � (γ + εN )(δ + 2ρ) −
ρ[(δ + ρ)(N + 1) + ε(N − 1)], and K1 and K2 are integration constants.

We next show that K2 � qSS
i . Assume B<0, then K2 is determined by q̇i(∞) � 0.

Differentiating (9) and requiring q̇i � 0, we have,

γ Ẋi + εẊ + ψ̇i + ψ̇X
i � 0,

which with respect to (6) and (7) results in γ (qi − ρXi) + ε(Q − ρX ) + (δ + ρ)ψi −
γ qi + (δ + ρ)ψX

i − εqi � 0. Differentiating the last expression we have, −γρẊi −
ερẊ + (δ + ρ)ψ̇i + (δ + ρ)ψ̇X

i � 0 and therefore

−γ Ẋi − εẊ +
δ + ρ

ρ

(
ψ̇i + ψ̇X

i

) � 0.

Thus, we find that ψ̇i + ψ̇X
i � 0 and Ẋi + Ẋ � 0, which with respect

to the symmetric conditions implies, Ẋi � 0 and Ẋ � 0. Next, according to
(6), (δ + ρ)ψi − ψ̇i � γ qi, which after differentiating and recalling q̇i � 0
leads to (δ + ρ)ψ̇i − ψ̈i � 0. The only solution for ψi to this differential equa-
tion for t tending to infinity is a constant, i.e., ψ̇i � ψ̇X

i � 0. Accordingly,
we have found that in the long run q̇i � 0 implies Ẋi � Ẋ � 0 and ψ̇i �
ψ̇X

i � 0, which are the conditions employed to derive a unique steady state
{qSS

i , X SS
i } in Proposition 1. Consequently, qi(∞) � K2 � qSS

i and the solution

qi � K1e
1
2

(
A−√

A2−4B
)

t
+ qSS

i converges asymptotically to the unique steady state qSS
i

as t tends to infinity if B � (γ + εN )(δ + 2ρ) − ρ[(δ + ρ)(N + 1) + ε(N − 1)] <0,
which straightforwardly leads to the condition γ + γ+ε

δ+ρ
ρ + Nε − ρ(N + 1) <0. Since

this condition is identical to the condition stated in Proposition 1, we conclude as
follows.

Proposition 2 If an equilibrium steady state defined by Proposition 1 exists, i.e.,
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γ +
γ + ε

δ + ρ
ρ + Nε < ρ(N + 1),

then the firms converge to it and this state is assymptotically stable. �

Note that from (10) and Proposition 1 we also observe the effect of myopic
behavior of the firms if they ignore own experience dynamics, i.e., assume that
ψi � 0 or the industry dynamics, i.e., ψX

i � 0 as stated below.

Proposition 3 Myopic firms that ignore either their own dynamics or the industry
dynamics or both are characterized by lower steady-state equilibrium experience and
output. Furthermore, if the rate of spillover is greater than the rate of proprietary
learning, ε > γ , a firm’s long-run output more strongly reduced if the firm ignores
industry dynamics rather than its own dynamics. Otherwise if ε < γ , then the effect
on the firm’s own experience dynamics is stronger. �

The effect of the industry size N on individual outputs can be found by differen-
tiating X SS

i with respect to N:

∂X SS
i

∂N
� − α − c

[ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε]2
(ρ − ε). (19)

Consequently, if ρ < ε, then the derivative (19) will remain positive. This implies
the following result.

Proposition 4 If there exists a positive steady state and the spillover rate does not
exceed the experience depreciation rate, ρ > ε, then the more firms comprising
the industry, the lower the equilibrium steady-state output and the experience of
each firm. Otherwise, if ρ < ε, the larger the industry, the greater the steady-
state equilibrium experience and the output of each firm. In addition, the higher the
proprietary learning ability of the firms, the stronger the respective change in the
steady-state when N grows. �

Finally, we compare our results with the standard approach, assuming that each
firm is able to account for the dynamics of every individual competitor rather than
for the entire industry only. Then the Hamiltonian and the costates take the following
form:

Hi �
⎡

⎣α −
N∑

j�1

qj − c + γ Xi + ε

N∑

j�1

Xj

⎤

⎦qi + ψi(qi − ρXi) +
∑

j ��i

ψ
j
i

(
qj − ρXj

)

(20)

ψ̇i � (δ + ρ)ψi − (γ + ε)qi, lim
t→∞ e−δtψi(t) � 0, (21)
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ψ̇
j
i � (δ + ρ)ψ

j
i − εqi, lim

t→∞ e−δtψX
i (t) � 0. (22)

The equilibrium outputs are then found from:

∂Hi

∂qi
� α − 2qi −

∑

j ��i

qj − c + γ Xi + ε

N∑

j�1

Xj + ψi � 0 and

qi � α − ∑
j ��i qj − c + γ Xi + ε

∑N
j�1 Xj + ψi

2
.

Consequently, qi � α−c+γ Xi+ε
∑N

j�1 Xj+ψi

N+1 and similar to the derivation of
Proposition 1, we find a steady state:

X SS
i � α − c

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε
and qSS

i � ρ(α − c)

ρ(N + 1) −
(
γ + γ+ε

δ+ρ
ρ
)

− Nε
.

(23)

We next readily conclude, when comparing our results in (15) and (23) with the
next proposition.

Proposition 5 Even if the firms are unable to account for the individual dynamics of
their competitors and, instead, account for the overall industry dynamics, in the long
run they accumulate the same experience and tend to the same output they would
converge to under full information about their competitors. �

5 Conclusions

We address output competition between firms producing substitutable products for a
singlemarket. Assuming that each firm is unable to account for the dynamics of every
single competitor but does respond to the entire industry trends, we find a symmetric,
long-run Nash equilibrium along with its properties and conditions of existence. In
particular, we find that the higher the proprietary learning ability of the firms and the
industry experience spillover, the greater the firms’ steady-state output and experi-
ence. Myopic firms that ignore either their own experience dynamics or the industry
experience dynamics or both are characterized by lower steady-state equilibrium
experience and output. On the other hand, the firms accumulate the same experience
and tend to the same output in the long run if they account for the industry dynamics
rather than individual competitors dynamics. That is, though the industry informa-
tion used for production control is incomplete in terms of competitors dynamics, the
firms tend to the long-run output they would attain under complete information.

We show that industry growth does not necessarily imply the firms’ individual
output growth. Specifically, if the spillover rate does not exceed the experience depre-



Production Control in a Competitive Environment … 329

ciation rate, then the more firms comprising the industry, the lower the equilibrium
steady-state output and experience of each firm. Otherwise, the individual equilib-
rium outputs and experience can grow as more firms enter the market.
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Abstract We revisit the classic Cournotmodel and extend it to a two-echelon supply
chain with an upstream supplier who operates under demand uncertainty and mul-
tiple downstream retailers who compete over quantity. The supplier’s belief about
retail demand is modeled via a continuous probability distribution function F . If
F has the decreasing generalized mean residual life (DGMRL) property, then the
supplier’s optimal pricing policy exists and is the unique fixed point of the mean
residual life (MRL) function. This closed form representation of the supplier’s equi-
librium strategy facilitates a transparent comparative statics and sensitivity analysis.
We utilize the theory of stochastic orderings to study the response of the equilib-
rium fundamentals—wholesale price, retail price and quantity—to varying demand
distribution parameters. We examine supply chain performance, in terms of the dis-
tribution of profits, supply chain efficiency, in terms of the Price of Anarchy, and
complement our findings with numerical results.
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1 Introduction

The global character of modernmarkets necessitates the study of competitionmodels
that capture two features: first, that retailers’ cost is not constant but rather formed
as the decision variable of a strategic, profit-maximizing supplier, and second that
uncertainty about retail demand affects not only the retailers but also the supplier.
Motivated by these considerations, in [10], we use a game-theoretic approach to
extend the classic Cournot market in the following two-stage game: in the first-stage
(acting as a Stackelberg leader), a revenue-maximizing supplier sets the wholesale
price of a product under incomplete information about market demand. Demand or
equivalently, the supplier’s belief about it, is modeled via a continuous probability
distribution. In the second-stage, the competing retailers observe wholesale price and
realized market demand and engage in a classic Cournot competition. Retail price is
determined by an affine inverse demand function.

Lariviere and Porteus [8] studied a similar model in which demand uncertainty
affected a single retailer. They identified the property of increasing generalized fail-
ure rate (IGFR) as a mild unimodality condition for the deterministic supplier’s
revenue-function and then performed an extensive comparative statics and perfor-
mance (efficiency) analysis of the supply chain at equilibrium. The properties of
IGFR random variables were studied in a series of subsequent notes, [3, 9, 12].

In [10], we extended the work of [8] by moving uncertainty to the supplier and
by implementing an arbitrary number of second-stage retailers. We introduced the
generalized mean residual life (GMRL) function of the supplier’s belief distribution
F and showed that his stochastic revenue function is unimodal, if theGMRL function
is decreasing—(DGMRL) property—and F has finite second moment. In this case,
we characterized the supplier’s optimal price as a fixed point of his mean residual
life (MRL) function, see Theorem 1 below. Subsequently, we turned our attention
to DGMRL random variables, examined their moments, limiting behavior, closure
properties and established their relation to IGFR random variables, as in [3, 9, 12].
This study was done in expense of a comparative statistics and performance analysis,
as the one inSects. 3–5 of [8]. The importance of such an analysis is underlined among
others in [1, 2, 6] and references therein.

1.1 Contributions—Outline

The present paper aims to fill this gap. Following the methodology of [8], we study
the response of market fundamentals by utilizing the closed form characterization
of the equilibrium obtained in [10]. Specifically, under the conditions of Theorem 1,
the optimal wholesale price is the unique fixed point of the MRL function of the
demand distribution F . This motivates the study of conditions under which two
different markets, denoted by F1 and F2, can be ordered in the mrl-stochastic order,
see [14].
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The paper is organized as follows. In Sect. 2, we provide themodel description and
in Sect. 3, the existing results from [10] on which the current analysis is based. Our
findings, both analytical and numerical are presented in Sect. 4. Section 5 concludes
our analysis and discusses directions for future work.

1.1.1 Comparison to Related Works

Two-echelon markets have been extensively studied in the literature under different
perspectives and various levels of demand uncertainty, see e.g. [5, 11, 15, 16]. In the
present study,we depart frompreviousworks by introducing the toolbox of stochastic
orderings in the comparative statics analysis. The advantage of this approach is
that we quantify economic notions, such as market size and demand variability, in
various ways. Accordingly, we are able to challenge established economic intuitions
by showing, for instance, that repsonses of wholesale prices to increasing market
size or demand variability are not easy to predict, since they largely depend on the
notion of variability that is employed.

2 The Model: Game-Theoretic Formulation

An upstream supplier produces a single homogeneous good at constant marginal
cost, normalized to 0, and sells it to a set of N = {1, 2, . . . , n} downstream retailers.
The supplier has ample quantity to cover any possible demand and his only decision
variable is the wholesale price r which he determines prior to and independently of
the retailers’ order-decisions. The retailers observe r—a price-only contract (there
is no return option and the salvage value of the product is zero)—as well as the
market demand parameter α and choose simultaneously and independently their
order-quantities qi (r | α) , i ∈ N . They face no uncertainty about the demand and
the quantity that they order from the supplier is equal to the quantity that they sell
to the market (at equilibrium). The retail price is determined by an affine inverse
demand function p = (α − q (r))+, where α is the demand parameter and q (r) :=∑n

i=1 qi (r) is the total quantity that the retailers release to the market.1 Contrary to
the retailers, we assume that at the point of his decision, the supplier has incomplete
information about the actual market demand.

This supply chain can be represented as a two-stage game, in which the supplier
acts in thefirst stage and the retailers in the second.A strategy for the supplier is a price
r ≥ 0 and a strategy for retailer i is a function qi : R+ → R+, which specifies the
quantity that retailer i will order for any possible cost r . Payoffs are determined via the
strategy profile (r,q (r)), where q (r) = (qi (r))n

i=1. Given cost r , the profit function
πi (q (r) | r) or simply πi (q | r), of retailer i ∈ N , is πi (q | r) = qi (α − q)+ −

1To simplify notation, we write q or q (r) and qi or qi (r) instead of the proper q (r | α) and
qi (r | α).
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rqi . For a given value of α, the supplier’s profit function, πs is πs (r | α) = rq (r)

for 0 ≤ r < α, where q (r) depends on α via πi (q | r).
To model the supplier’s uncertainty about retail demand, we assume that after

the pricing decision of the supplier, but prior to the order-decisions of the retailers,
a value for α is realized from a continuous distribution F , with finite mean Eα <

+∞ and nonnegative values, i.e. F (0) = 0. Equivalently, F can be thought of as
the supplier’s belief about the demand parameter and, hence, about the retailers’
willingness-to-pay his price. We will use the notation F̄ := 1 − F for the survival
function and αL := sup {r ≥ 0 : F (r) = 0} ≥ 0, αH := inf {r ≥ 0 : F (r) = 1} ≤
+∞ for the support of F respectively. Under these assumptions, the supplier’s payoff
function πs becomes stochastic: πs (r) = Eπs (r | α). All the above are assumed to
be common knowledge among the participants in the market (the supplier and the
retailers).

3 Existing Results

We consider only subgame perfect equilibria, i.e. strategy profiles (r,q (r)) such that
q (r) is an equilibrium in the second stage and qi (r) is a best response against any
r for all i = 1, 2, . . . , n. The equilibrium behavior of this market has been analyzed
in [10]. To proceed with the equilibrium representation, we first introduce some
notation.

3.1 Generalized Mean Residual Life

Let α ∼ F be a nonnegative random variable with finite expectationEα < +∞. The
mean residual life (MRL) function m (r) of α is defined as

m (r) := E (α − r | α > r) = 1

F̄ (r)

∫ ∞

r
F̄ (u) du, for r < αH

and m (r) := 0, otherwise, see, e.g., [4, 7] or [14]. In analogy to the generalized
failure rate (GFR) function g (r) := rh (r), where h (r) := f (r) /F̄ (r) denotes the
hazard rate of F and the increasing generalized failure rate (IGFR) unimodality
condition, defined in [8] and studied in [3, 9], we introduce, see [10], the generalized
mean residual life (GMRL) function � (r), defined as � (r) := m(r)

r , for 0 < r < αH .
If � (r) is decreasing, then F has the (DGMRL) property. The relationship between
the (IGFR) and (DGMRL) classes of random variables is studied in [10].

We will use the notation DMRL for a random variable X with a decreasing mean
residual life function m (r) and IFR for a random variable X with increasing failure
rate h (r). We say that X1 is smaller than X2 in the mean residual life order, denoted
as X1 ≤mrl X2, if m1 (r) ≤ m2 (r) for all r , see [14]. Of course m1 (r) ≤ m2 (r) if
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and only if �1 (r) = �2 (r) for all r > 0. Similarly, X1 is smaller than X2 in the usual
stochastic (hazard rate) order, denoted as X1 ≤st X2 (X1 ≤hr X2), if F̄1 (r) ≤ F̄2 (r)

(h1 (r) ≤ h2 (r)) for all r . The ≤hr-order implies the ≤mrl-order. However, neither of
the orders ≤st and ≤mrl imply the other.

3.1.1 Market Equilibrium

Using this terminology,wecan express the supplier’s optimal pricing strategy in terms
of the MRL function and formulate sufficient conditions on the demand distribution,
under which a subgame perfect equilibrium exists and is unique.

Theorem 1 ([10])Assume that the supplier’s belief about the unknown, nonnegative
demand parameter, α, is represented by a continuous distribution F, with support
inbetween αL and αH with 0 ≤ αL < αH ≤ ∞.

(a) If an optimal price r∗ for the supplier exists, then r∗ satisfies the fixed point
equation

r∗ = m
(
r∗) (1)

(b) If F is strictly DGMRL and Eα2 is finite, then in equilibrium, the optimal price
r∗ of the supplier exists and is the unique solution of (1).

Expressing (1) in terms of the GMRL function � (r), the supplier’s optimal price
r∗ can be equivalently written as the solution of equation � (r∗) = 1.

4 Comparative Statics

The closed form expression of (1) provides the basis for an extensive comparative
statics and sensitivity analysis on the distribution parameters of market demand. To
understand the market-equilibrium behavior under different demand (distribution)
characteristics, we employ (1) and the rich theory of stochastic orders, [4, 7, 14].
Based on πi , πs and Theorem 1, the market fundamentals at equilibrium are given
in Table 1.

Here, Π∗
s refers to the supplier’s realized—not expected—profit, i.e. Π∗

s :=
πS (r∗ | α). From Table 1, it is immediate that the total quantity q∗ that is sold
to the market and the retail price p∗ are monotone in r∗. Accordingly, we restrict
attention on the behavior of r∗ as the distribution parameters vary.

To obtain a meaningful comparison between different markets, we assume
throughout equilibrium uniqueness. Hence, unless stated otherwise, we consider
only strictly DGRML distributions with finite second moment. Since the DGMRL is
particularly inclusive, see [3, 10] and finiteness of the second moment of the demand
is naturally to assume, we do not consider them as restrictive. Still, since these con-
ditions are only sufficient and not necessary, the analysis applies to any other setting
that guarantees equilibrium existence and uniqueness.
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Table 1 Market fundamentals in equilibrium

Notation and expression Definition

r∗ = m (r∗) Wholesale price

q∗ = n
n+1 (α − r∗)+ Total quantity sold to the market

p∗ = α − q∗ Retail price

Π∗
s = n

n+1 (α − r∗)+ r∗ Realized supplier’s profit

Π∗
i =

(
1

n+1 (α − r∗)+
)2

i-th retailer’s profit, i = 1, . . . , n

4.1 Wholesale Price Determinants

Although immediate from Theorem 1, the next Lemma showcases the importance
of the characterization in (1). Let X1 and X2 denote two markets (or two instances
of the same market) with demand distributions F1, F2. As stated above, X1, X2 are
assumed to be nonnegative, strictly DGMRL random variables with finite second
moment. We then have

Lemma 1 Let X1, X2 denote the demand in two different market instances. If
X1 ≤mrl X2, then r∗

1 ≤ r∗
2 .

Proof Since X1 ≤mrl X2, we have that m1 (r) ≤ m2 (r) for all r > 0, by definition.
Hence, by (1), r∗

1 = m
(
r∗
1

) ≤ m2
(
r∗
1

)
, which implies that �2

(
r∗
1

) ≥ 1. Since �2 (r)

is strictly decreasing by assumption, this implies that �2 (r) > 1 for all r < r∗
1 . Since

r∗
2 is the unique solution of �

(
r∗
2

) = 1, this in turn implies that r∗
2 ≥ r∗

1 .

Hence, the supplier charges a larger wholesale price in a market that is larger in the
≤mrl-order. Based on Lemma 1, the task of studying the behavior of the wholesale
price r∗ largerly reduces to finding sufficient conditions that imply—or that are
equivalent to—the ≤mrl-order. Such conditions can be found in [14], and are studied
below.

4.1.1 Re-estimating Demand

We start with the response of the equilibrium wholesale price r∗ to transformations
that intuitively correspond to a larger market. Let X denote the random demand
in an instance of the market under consideration. Let c ≥ 1 be a positive constant.
Moreover, let Z denote an additional source of demand that is independent of X .
Let r∗

X denote the equilibrium wholesale price in the initial market and r∗
X+Z the

equilibrium wholesale price in the market with random demand X + Z . How does
r∗

X compare to r∗
cX and to r∗

X+Z?
While the intuition that the larger markets cX and X + Z will give rise to higher

wholesale prices is largely confirmed, see Theorem 2, the results do not hold in full
generality and one needs to pay attention to some technical details. For instance, since
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DGMRL random variables are not closed under convolution, see [10], the random
variable X + Z may not be DGMRL. This may lead to a multiplicity of equilibrium
prices in the X + Z instance, irrespectively of whether X is DGMRL or not. To
focus on the economic interpretation of the comparative static analysis and to avoid
an extensive discussion on the technical conditions, we assume that Z is a random
variable such that the market X + Z has again a unique wholesale equilibrium price.
However, we consider this assumption as a restriction to the applicability of statement
(ii) of Theorem 2.

Theorem 2 Let X ∼ F be a nonnegative DGMRL random variable with finite sec-
ond moment which describes the demand distribution in a market instance.

(i) If c ≥ 1 is a positive constant, then r∗
X ≤ r∗

cX .
(ii) If Z is a nonnegative random variable with finite second moment, independent

of X such that X + Z remains strictly DGMRL, then r∗
X ≤ r∗

X+Z .

Proof The proof of (i) follows directly from the preservation property of the ≤mrl-
order that is stated Theorem 2.A.11 of [14]. Specifically, since cm (r/c) is the mrl
function of cX , we have that for all > 0

cm (r/c) = r · m (r/c)

r/c
= r · � (r/c) ≥ r · � (r) = m (r)

where the inequality follows from the assumption that X is DGMRL. Hence, X ≤mrl

cX which by Lemma 1 implies that r∗
X ≤ r∗

cX .
Statement (ii) ismore involved since r∗

X+Z may not be unique in general. However,
under the assumption that X + Z remains strictly DGMRL, we may adapt Theorem
2.A.11 of [14] and obtain the claim in a similar fashion to part (i). Although Theorem
2.A.11 is stated for DMRL random variables, the proof extends in a straightforward
way to DGMRL random variables.

Another way to treat the possible multiplicity of equilibrium wholesale prices in
the X + Z market and the fact that X + Z may not be DGMRL is the following.
Since, X is strictly DGMRL, we know that r < mX (r) for all r < r∗

X1
= mX1

(
r∗

X1

)
.

Together with X1 ≤mrl X1 + Z , this implies that for all r < r∗
X1
, the following holds:

r < mX1 (r) ≤ mX1+Z (r), and hence that r∗
X1+Z ≥ r∗

X1
for any r∗

X+Z such that (1)
holds. Hence, in this case, we can compare the r∗

X with every r∗
X+Z separately and

obtain that r∗
X is less than any possible equilibrium wholesale price in the market

r∗
X+Z . However, as mentioned above, we prefer to restrict attention to markets that
preserve equilibrium uniqueness.

4.1.2 Closure Properties

Next, we turn our attention to operations that preserve the ≤mrl-order. Let X1, X2

denote two different instances of the market, i.e., two different demand distributions



338 C. Koki et al.

or beliefs about it, such that X1 ≤mrl X2. In this case, we know that r∗
1 ≤ r∗

2 . We are
interested in determining transformations of X1, X2 that preserve the ≤mrl-order and
hence, by Lemma 1, the ordering r∗

1 ≤ r∗
2 . Again, to avoid technicalities, we assume

that X1, X2 are such that Theorem 1 applies, i.e., that they are nonnegative, strictly
DGMRL and have finite second moment.

Theorem 3 Let X1 ∼ F1, X2 ∼ F2 denote the demand in two different market
instances, such that X1 ≤mrl X2. Then,

(i) If φ is an increasing convex function, then r∗
φ(X1)

≤ r∗
φ(X2)

.
(ii) If Z is a nonnegative, IFR random variable with finite second moment, inde-

pendent of X1, X2 such that X1 + Z and X2 + Z remain strictly DGMRL, then
r∗

X1+Z ≤ r∗
X2+Z .

(iii) If X p ∼ F1 + (1 − p) F2 is strictly DGMRL for some p ∈ (0, 1), then r∗
X1

≤
r∗

X p
≤ r∗

X2
.

Proof Statements (i) through (iii) follow directly from Theorems 2.A.19, Lemma
2.A.8 andTheorem2.A.18 respectively. The assumption that the transformed random
variables remain strictly DGMRL ensures equilibrium uniqueness.

If instead of X1 ≤mrl X2, X1 and X2 are ordered in the weaker ≤hr-order, i.e., if
X1 ≤hr X2 and Z is DMRL (instead of merely IFR), then Lemma 2.A.10 of [14]
implies that statement (ii) of Theorem 3 remains true. Formally,

Corollary 1 Let X1 ∼ F1, X2 ∼ F2 denote the demand in two different market
instances, such that X1 ≤hr X2. If Z is a nonnegative, IFR random variable with
finite second moment, independent of X1, X2 such that X1 + Z and X2 + Z remain
strictly DGMRL, then r∗

X1+Z ≤ r∗
X2+Z .

Following the exposition of [14], the above collection of statements can be extended
to incorporate more case-specific results.

Although Theorems 2 and 3 are immediate once Theorem 1 and Lemma 1 have
been established, their implications in terms of the economic intuitions are non-
trivial. In particular, both Theorems imply that if the supplier reestimates upwards
her expectations about the demand then she will charge a higher price. However, this
intuitive conclusion depends on the conditions that imply the ≤mrl-order and does
not hold in general, as discussed in Sect. 4.1.4 below.

4.1.3 Market Demand Variability

The response of the equilibrium wholesale price to increasing (decreasing) demand
variability is less straightforward. There exist several notions of stochastic orders
that compare random variables in terms of their variability and depending on which
we employ, we may derive different results. First, we introduce some notation.

Variability or Dispersive Orders: Let X1 ∼ F1 and X2 ∼ F2 be two nonnegative
random variables with equal means, EX1 = EX2, and finite second moments. If
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∫ +∞
r F̄1 (u) du ≤ ∫ +∞

r F̄2 (u) du for all r ≥ 0, then X1 is said to be smaller than
X2 in the convex order, denoted by X1 ≤cx X2. If F−1

1 and F−1
2 denote the right

continuous inverses of F1, F2 and F−1
1 (r) − F−1

1 (s) ≤ F−1
2 (r) − F−1

2 (s) for all
0 < r ≤ s < 1, then X1 is said to be smaller than X2 in the dispersive order, denoted
by X1 ≤disp X2. Finally, if

∫ ∞
F−1
1 (p)

F̄1 (u) du ≤ ∫ ∞
F−1
2 (p)

F̄2 (u) du for all p ∈ (0, 1),
then X1 is said to be smaller than X2 in the excess wealth order, denoted by X1 ≤ew Y .
Shaked and Shanthikumar [14] show that X ≤disp Y =⇒ X ≤ew Y =⇒ X ≤cx Y
which in turn implies that Var (X) ≤ Var (Y ). Further insights and motivation about
these orders are provided in Chap. 3 of [14].

Less Variability implies LowerWholesale Price: Under our assumptions the≤mrl-
order is not implied by the≤cx-order. Hence, the≤cx-order is not enough to conclude
that wholesale prices are ordered according to the respective market variability, i.e.,
that less (more) variability gives rise to lower (higher) wholesale prices. However, if
we restrict attention to the ≤ew and ≤disp orders, then more can be said. Recall that
αL denotes the left end of the support of a variable X . Accordingly, we will write
αLi to denote the left end of the support of variable Xi for i = 1, 2.

Theorem 4 Let X1 ∼ F1, X2 ∼ F2 be two nonnegative, DGMRL random variables
with αL1 ≤ αL2 which denote the demand in two different market instances. If either
X1, X2 or both are DMRL and X1 ≤ew X2, then r∗

1 ≤ r∗
2 .

Theorem 4 follows directly from Theorem 3.C.5 of [14]. Based on its proof, the
assumption that at least one of the two random variables is DMRL (and not merely
DGMRL) cannot be relaxed. Belzunce et al. [4] argue about the restricted applicabil-
ity of the ≤ew-order due to the difficulty in the evaluation of incomplete integrals of
quantile functions and provide useful characterizations of the ≤ew-order to remedy
this problem.

A result of similar flavor can be obtained if we use the ≤disp order instead. Again,
the condition that both X1 and X2 are DGMRL does not suffice and we need to
assume that at least one is IFR.

Theorem 5 Let X1 ∼ F1, X2 ∼ F2 be two nonnegative, DGMRL random variables
which denote the demand in two different market instances. If either X1, X2 or both
are IFR and X1 ≤disp X2, then r∗

1 ≤ r∗
2 .

Theorem 5 follows directly from Theorem 3.B.20 (b) of [14] and the fact that the
≤hr-order implies the ≤mrl-order. Again, more case specific results can be drawn
from the analysis of [14].

The main insight that we get from Theorems 4 and 5 is that less (more) variability
implies lower (higher) wholesale prices. This is in sharp contrast with the results of
[8] and sheds light on the effects of demand uncertainty. If uncertainty affects the
retailer, then the supplier charges a higher price and captures all supply chain profits
as variability reduces. Contrarily, if uncertainty falls to the supplier, then the supplier
charges a lower price as variability increases. In this case, the supplier captures a
lower share of system profit, see also (2) below.

The above cases correspond to two extremes: in [8] uncertainty falls solely to
the retailer, whereas in the present analysis uncertainty falls solely to the supplier.
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Based on the aggregate findings for the two cases, the following question naturally
arises: is there a way to distribute demand uncertainty among supplier and retailers
to mitigate its adverse effects and to evenly distribute supply chain profits among
market participants? Answering this question exceeds the scope of the comparative
statics analysis. However, it highlights a interesting direction for future work.

Parametric families of distributions: To further elaborate on the effects of relative
variability on the wholesale price, we may compare our analysis with the approach
of [8]. Given a random variable X with distribution F , [8] consider the random
variables Xi := δi + λi X with δi ≥ 0 and λi > 0 for i = 1, 2. They conclude that
in this case, the wholesale price is dictated by the coefficient of variation, CVi =√

Var(Xi )

EXi
. Specifically, if CV2 < CV1, then r∗

1 < r∗
2 , i.e., in their model, a lower CV,

or equivalently a lower relative variability, implies a higher price.
To establish a similar comparison, we utilize the comprehensive comparison of

parametric distributions in terms of stochastic orders that is provided in Sect. 2.9
of [4]. For instance, consider two normal random variables X1 ∼ N

(
μ1, σ

2
1

)
and

X2 ∼ N
(
μ2, σ

2
2

)
. By Table 2.2 of [4], if σ1 < σ2 andμ1 ≤ μ2, then X1 ≤mrl X2 and

hence, by Lemma 1, r∗
1 < r∗

2 . However, by choosing σi and μi appropriately, we can
achieve an arbitrary ordering of relative variability, i.e. of CV1 and CV2. The reason
is that the conclusions from this approach are obscured by the fact that changing
μi for i = 1, 2, does not only affect the CVi ’s but also the central location of the
demand distributions. In this sense, the approach using dispersive orders seems more
appropriate because, under the assumption that EX1 = EX2, it isolates the effect of
the variability of the distribution on wholesale prices via stochastic orderings.

4.1.4 Stochastically Larger Market

It is well known that the usual ≤st-order does not imply nor is implied by the ≤mrl-
order, see [14]. This implies that in a stochastically larger market, the supplier may
still charge a lower price, which is in line with the intuition of [8] that “size is
not everything” and that prices are driven by different forces. Such an example is
provided below. Let

f (r; ω, κ, φ) := κ
(
κ2 + ω2

)

κ2 cos (ωφ) + κ2 + κω sin (ωφ) + ω2 · e−κr (cos (ω (r − φ)) + 1)

for r ≥ 0, denote the densities of a parametric family of exponentially decaying
sinusoids. For (ω, κ, φ) = (0, κ, 0), f corresponds to the exponential distribution
with parameter κ . Figure 1 depicts the survival functions F̄, Ḡ, the log-survival
ratio log

(
F̄/Ḡ

)
and the optimal wholesale prices r∗

F and r∗
G for F corresponding

to (ω, κ, φ) = (π, 0.8, 1.2) and G to (ω, κ, φ) = (0, 0.9, 0). Since the log-survival
ratio remains throughout positive, we infer that G ≤st F . However, as shown in the
graph below r∗

F = 1.0299 < r∗
G = 1.1114. Although, both functions have a unique

fixed point, F is not DMRL (nor DGMRL). Several simulations have not provided a
conclusive answer to whether stochastic dominance implies also a larger price if we
restrict to the DMRL (or DGMRL) class of random variables.
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Fig. 1 F stochastically dominates G, however r∗
G > r∗

F

4.2 Supply Chain Performance

We measure the supply chain performance in terms of the ratio
∑n

i=1 Π∗
i /Π∗

s which
describes the division of the realized system profit between retailers and suppliers.
If α ≤ r∗, then there is no transaction and the profits of all participants are equal to
zero. For α > r∗, we have that

∑n
i=1 Π∗

i

Π∗
s

= n
(

1
n+1 (α − r∗)

)2

n
n+1r∗ (α − r∗)

= 1

n + 1

( α

r∗ − 1
)

(2)

Hence, the division of realized profit between supplier and retailers depends on the
number n of retailers and the wholesale price r∗. Specifically, for a given realized
demand α, as n or r∗ increase, the supplier captures a larger share of the system
profits.

4.2.1 Supply Chain Efficiency

As a benchmark, we will first determine the equilibrium behavior and performance
of an integrated supply chain. Let πI denote the profit of an integrated firm. The
integrated firms’ decision variable is now the retail price r , and hence its expected
profit is given by πI (r) = rE (α − r)+ = rm (r) F̄ (r). By the same argument as in
the proof ofTheorem1,πI ismaximized at r∗ = m (r∗). In particular, the equilibrium
price of both the integrated and non-integrated supplier is the same. Hence, the
integratedfirm’s realized profit in equilibrium is equal toΠ∗

I (r∗ | α) = r∗ (α − r∗)+.
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In a similar fashion to [13], we define the realized Price of Anarchy (PoA) of
the system as the worst-case ratio of the realized profit of the centralized supply
chain, Π∗

I , to the realized aggregate profit of the decentralized supply chain, Π
∗
D :=

Π∗
s + ∑n

i=1 Π∗
i . To retain equilibrium uniqueness, we restrict attention to the class

G of nonnegative DGMRL random variables. If the realized demand α is less than r∗,
then both the centralized and decentralized chain make 0 profits. Hence, we define
the PoA as: PoA := supF∈G supα>r∗

Π∗
I

Π∗
D
. We then have

Theorem 6 The PoA of the system is given by

PoA = 1 + O (1/n) (3)

Proof A direct substitution in the definition of PoA yields:

PoA := sup
F∈G

sup
α>r∗

{
(n + 1)2

n
·
(

n + α

r∗
)−1

}

(4)

Since
(
n + α

r∗
)−1

decreases in the ratio α/r∗, the inner sup is attained asymptotically

for α → r∗. Hence, PoA = supF∈G
{

(n+1)2

n · (n + 1)−1
}

= 1 + 1
n .

Theorem 6 implies that the supply chain becomes less efficient as the number of
downstream retailers increases. Although the PoA provides a useful worst-case sce-
nario, for a fixed F and a realized demand α, it is also of interest to study the response
of the ratioΠ∗

I /Π∗
D to different wholesale prices. Specifically, for any given value of

α, and fixed F , Π∗
I /Π∗

D increases as the wholesale price increases. Hence, a higher
wholesale price corresponds to worst efficiency for the decentralized chain.

Together with the observation that with a higher wholesale price, the supplier cap-
tures a larger share of the system profits, this motivates—from a social perspective—
the study of mechanisms that will lead to reduced wholesale prices for fixed demand
levels and fixed market characteristics (number of retailers and demand distribu-
tion). Such a study falls not within the topic of the present analysis but constitutes a
promising direction for future research.

5 Conclusions

Alongwith [10], the present study provides a probabilistic and economic analysis that
aims to extend the work of [3, 8, 9, 12]. The characterization, under mild conditions,
of the supplier’s optimal pricing policy as the unique fixed point of theMRL function
of the demand distribution, provides a powerful tool for a multifaceted comparative
statics analysis. Theorems 2 and 3 demonstrate how stochastic orderings, coupled
with this characterization, provide predictions of the response of the wholesale price
in a versatile environment of various demand transformations. Based on a numerical
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example, Sect. 4.1.4 confirms [8]’s intuition that prices are driven by different forces
than market size. In Sects. 4.2 and 4.2.1, we show that number of second stage
retailers and wholesale prices have a direct impact on supply chain performance and
efficiency. A more extended version of the present study is subject of ongoing work.
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Speeding-up the Exploration
of the 3-OPT Neighborhood
for the TSP

Giuseppe Lancia and Marcello Dalpasso

Abstract A move of the 3-OPT neighborhood for the Traveling Salesman Problem
consists in removing any three edges of the tour and replacing them with three new
ones. The standard algorithm to find the best possibblemove is cubic, both in its worst
and average time complexity. Since TSP instances of interest can have thousands of
nodes, up to now it has been impossible to use the 3-OPT local search on anything
other than quite small instances. In this paper we describe an alternative algorithm
whose average complexity appears to be quadratic and which allowed us to use
3-OPT on instances with several thousand nodes. The algorithm is based on a rule
for quickly choosing two out of three edges in a good way, and then completing the
choice in linear time. To this end, the algorithm uses max-heaps as a suitable data
structure.

Keywords Traveling Salesman Problem · 3-OPT · K -OPT · Local search
Average running time

1 TSP and the K -OPT Neighborhood

The Traveling Salesman Problem (TSP) calls for finding the shortest Hamiltonian
cycle (tour) in a complete graph G = (V, E) of n nodes, weighted on the arcs. We
consider the symmetric TSP, i.e., the graph is undirected and the distance c(i, j)
between two nodes i and j is the same irrespective of the direction in which we
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traverse an edge. A tour is identified by a permutation of vertices (v1, . . . , vn). The
length of a tour T , denoted by c(T ), is the sum of the lengths of the edges of the tour.
More generally, for any set F of edges, we denote by c(F) the value

∑
e∈F c(e).

Local search (LS) [1, 6] is often a very effective way to tackle hard combinatorial
optimization problems, including the TSP. Assume the problem is minx∈X f (x).
Given a map which associates to every solution x a set N (x) called its neighborhood,
in LSwe start at any solution x0, set s := x0, and look for a solution x1 ∈ N (s) better
than s. If found, we replace s with x1 and iterate the same search. We continue this
way until we get to a solution s = xi such that f (s) = min{ f (x)|x ∈ N (s)}. We say
that s is a local optimum. Replacing xi with xi+1 is called performing a move of the
search. The total number of moves performed from x0 to the local optimum is called
the length of the convergence. If x ∈ N (s) and f (x) < f (s) we say that the move
from s to x is an improving move. There are two main strategies of LS, namely first-
improvement and best-improvement. In the first-improvement strategy, xi+1 is the
first solution that we find in N (xi ) such that f (xi+1) < f (xi ). In best-improvement,
xi+1 is such that f (xi+1) = min{ f (x)|x ∈ N (xi ) ∧ f (x) < f (xi )}. Neither one of
these strategies is better than the other on all instances.

A popular LS neighborhood for the TSP is the so-called K -OPT. Let K ∈ N be a
constant. A K -OPT move on a tour T consists in first removing a set R of K edges
and then inserting a set I of K edges so as (T \ R) ∪ I is still a tour. A K -OPT
move is improving if c(I ) < c(R), while it is best improving if c(R) − c(I ) is the
maximum over all possible choices of R, I .

The first use of K -OPT dates back to 1958 with the introduction of 2-OPT in
[3]. In 1965 Lin [5] described the 3-OPT neighborhood, and experimented with the
�(n3) algorithm. The instances which could be tackled at the time were fairly small
(n ≤ 150). In 1968, Steiglitz and Weiner [8] described an improvement over Lin’s
method which made it 2 or 3 times faster, but still cubic in nature.

The exploration of the K -OPT neighborhood, for a fixed K , might be considered
“fast” from a theoretical point of view, since there is an obvious polynomial algorithm
(complete enumeration, of time�(nK )). However, in practice, complete enumeration
makes the use of K -OPT impossible already for K = 3, if n is large enough. For
a given tour of, say, n = 5000 nodes, the time required to try all 3-OPT moves, on
a reasonably fast computer, is more than an hour, let alone converging to a local
optimum. For this reason, 3-OPT has never been really adopted for the heuristic
solution of TSP instances of interest.

An important recent result in [4] proves that, under a widely believed hypothesis
similar to the P �= N P conjecture, it is impossible to find the best 3-OPT move with
a worst-case algorithm of time O(n3−ε) for any ε > 0 so that complete enumeration
is, in a sense, optimal. However, this gives us little consolation when we are faced
with the problem of applying 3-OPT to a large TSP instance. In fact, for complete
enumeration the average case and the worst case coincide, and we might wonder if
there exists a better practical algorithm, much faster than complete enumeration on
the majority of instances but still O(n3) in the worst case. The algorithm described
in this paper is such an example.



Speeding-up the Exploration of the 3-OPT Neighborhood for the TSP 347

1.1 Our Contribution

The TSP is today very effectively solved, even to optimality, by using sophisticated
mathematical programming based approaches, such as Concorde [2]. No matter how
ingenious, heuristics can hardly be competitive with these approaches when the latter
are given enough running time.

However, heuristics such as local search have a great quality: they are simple (to
understand, to implement and to maintain) and, in general, very fast, so that they can
overcome their simplemindedness by being able to sample a huge amount of good
solutions in a relatively small time. Of course if too slow, we lose all the interest in
using a LS approach despite its simplicity.

This is exactly the situation for the 3-OPT. The goal of our work has been to
show that, with a clever implementation of the search for improving moves, it can
be actually used since it can become orders of magnitude faster than its standard
implementation.

Let us give a flavour of the type of results that we can achieve. Assume we have
an average PC and 5 hours of time which we want to devote to local search starting
from as many random tours as possible. Assume n = 1000 and each convergence
goes through 500 intermediate solutions. With the enumerative approach we could
sample only one local optimum and would stop while halfway through the second
convergence. With our method we would sample more than 300 local optima.

As we will see, another advantage of our method is that while we are approaching
the local optimum, our method becomes faster in finding (if it exists) an improving
move or the best improving move. The brute force approach, on the other hand, takes
constant time for finding the best improving move, or, if it is looking for the first
improvement, it does in fact become slower, since the number of candidates to try
before finding an improvement becomes larger and larger near the local optimum.

2 Notation

Let G = (V, E) be a complete graph on n nodes, and c : E �→ R
+ be a cost func-

tion for the edges. Without loss of generality, V = {0, 1, . . . , n̄}, where n̄ = n − 1.
We will describe an effective strategy for finding either the best improving or any
improving move for a given current tour (v1, . . . , vn) which, wlog, we assume to be
T = (0, 1, . . . , n̄).

We will be using modular arithmetic frequently. For convenience, for each x ∈ V
and t ∈ N we define

x ⊕ t := (x + t) mod n, x 
 t := (x − t) mod n.

We define the forward distance d+(x, y) from node x to node y as the unique
t ∈ {0, . . . , n − 1} such that x ⊕ t = y. Similarly, we define the backward distance
d−(x, y) from x to y as the t ∈ {0, . . . , n − 1} such that x 
 t = y.
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Finally, the distance between any two nodes x and y is defined by

d(x, y) := min{d+(x, y), d−(x, y)}

A 3-OPT move is fully specified by two sets, i.e., the set of removed and of
inserted edges. We call a removal set any set of three tour edges, i.e., three edges of
type {i, i ⊕ 1}. A removal set is identified by a triple S = (i1, i2, i3) with 0 ≤ i1 <

i2 < i3 ≤ n̄, where the edges removed are R(S) := {{i j , i j ⊕ 1} : j = 1, 2, 3}. We
call any such triple a selection. A selection S is complete if d(i j , ih) ≥ 2 for each
j �= h, otherwise we say that S is a partial selection. Complete selections are more
important than partial selections, since there is only a quadratic number of partial
selections but a cubic number of complete ones.

Let S be a selection and I ⊂ E with |I | = 3. If (T \ R(S)) ∪ I is still a tour
then I is called a reinsertion set. Given a selection S, a reinsertion set I is pure if
I ∩ R(S) = ∅, and degenerate otherwise. Finding the best 3-OPT move when the
reinsertions are constrained to be degenerate is O(n2) (in fact, 3-OPT degenerates
to 2-OPT in this case). Therefore, the most computationally expensive task is to
determine the best move when the selection is complete and the reinsertion is pure.
We refer to this kind of moves as true 3-OPT. Thus, in the remainder of the paper
we will focus on true 3-OPT moves.

2.1 Reinsertion Schemes

Let S = (i1, i2, i3) be a complete selection.When the edges R(S) are removed from a
tour, the tour gets broken into 3 consecutive segments which we can label by {1, 2, 3}
(segment j ends at node i j ). Since the selection is pure, each segment is indeed a
path of at least one edge. A reinsertion set patches back the segments into a new tour.
If we adopt the convention to start always a tour with segment 1 traversed clockwise,
the reinsertion set: (i) determines a new ordering in which the segments are visited
along the tour and (ii) may cause some segments to be traversed counterclockwise. In
order to represent this factwe use a notation called a reinsertion scheme. A reinsertion
scheme is a signed permutation of {2, 3}. The permutation specifies the order inwhich
the segments 2, 3 are visited after the move. The signing −s tells that segment s is
traversed counterclockwise,while+s tells that it is traversed clockwise. For example,
the third reinsertion set depicted in Fig. 1 is represented by the reinsertion scheme
< +3,−2 > since from the end of segment 1 we jump to the beginning of segment
3 and traverse it forward. We then move to the last element of segment 2 and proceed
backward to its first element. Finally, we close the cycle by going back to the first
element of segment 1.

There are potentially 22 × 2! = 8 reinsertion schemes, but for some of these the
corresponding reinsertion sets are degenerate. A scheme for a pure reinsertion must
not start with+2, nor endwith “+3”, nor be< −3,−2 >. This leaves only 4 possible
schemes, let them be r1, . . . , r4.
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Clearly, there is a bijection between reinsertion schemes and reinsertion sets. If
r is a reinsertion scheme, we denote by I (r) the corresponding reinsertion set. The
enumeration of all true 3-OPTmoves can be done as follows: (i)We consider, in turn,
each reinsertion scheme r1, . . . , r4; (ii) Given r j , we consider all complete selections
S = (i1, i2, i3), obtaining the moves defined by (R(S), I (r j )). The cost of step (ii)
by complete enumeration is �(n3). In the remainder of the paper we will focus on a
method for lowering significantly, in practice, the complexity of this step.

2.2 The Number of Complete Selections

For space reasons we state the following theorem without proof. For generality, we
consider the complete selections of K -OPT, i.e., k-tuples (i1, . . . , in) of increasing
indices with d(i j , i j⊕1) > 1 for two consecutive indices.

Theorem 1 For each K = 2, . . . , �n/2� the number of complete K -OPT selections
is (

n − K + 1

K

)

−
(
n − K − 1

K − 2

)

Corollary 1 The number of complete 3-OPT selections is

(
n − 2

3

)

− (n − 4) = n3 − 9n2 + 20n

6

From the corollary, and knowing that there are 4 pure reinsertion schemes for each
3-OPT complete selection, we can compute the number T3(n) of true 3-OPT moves.
For example, it is T3(1,000) = 660,680,000, while T3(5,000) = 83,183,400,000
and T3(10,000) = 666,066,800,000 giving a striking example of why the explo-
ration of the 3-OPT neighborhood would be totally impractical unless some effective
strategies were adopted.

3 Speeding-up the Search: The Basic Idea

Our method can be used to find either the best improving selection or any improving
selection. In the rest of the paper we will focus on the Best-Improvement case, since
it is the harder of the two. The changes needed in order to adopt the method for a
First-Improvement search are trivial.

According to the enumerative strategy outlined in the previous section, suppose
we have fixed a reinsertion scheme r , and want to find the best selection for it. Our
goal is to provide an alternative,much faster, way to do it than the following, classical,
“nested-for” approach over all indices:
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for ( i1 = 0; i1 ≤ n̄ − 4; i1++ )
for ( i2 = i1 + 2; i2 ≤ n̄ − 2 − P(i1 = 0); i2++ )

for ( i3 = i2 + 2; i3 ≤ n̄ − P(i1 = 0); i3++ )
evaluateMove(i1, i2, i3, r); [* check if move is improving. possi-

bly update best *]

(The expression P(A), given a predicate A returns 1 if A is true and 0 otherwise).
Our idea for speeding-up the search is based on this consideration. Suppose there

is amagic boxwhich knows all the pairs of indices that belong to some best improving
selection, and that we can inquire the box by specifying two labels (e.g., “i2” and
“i3”, etc.). The box, in time O(1) would return us a pair of values (e.g., v2 and v3)
such that there exists at least one best improving 3-OPT move in which the two
specified indices have those particular values. At this point we could enumerate the
values for the missing index and determine the best completion possible. This way,
finding a best improving 3-OPT move would take �(n) time rather than �(n3).

The bulk of our work has then been to simulate, heuristically, a similar magic
box, i.e., a data structure that can be queried and should return two out of the three
indices of a best improving selection much in a similar way as described above. In
our heuristic version, the box, rather than returning a pair of indices that are certainly
in a best improving solution, returns a pair of indices that are likely to be in a best
improving solution. As we will see, this can already greatly reduce the number of
possible selections candidate to be best improving. In order to assess the likelihood
of two specific indices to be in a best solution, we will use suitable two-arguments
functions described in the next sections.

3.1 The Fundamental Quantities τ+ and τ−

We define two functions of V × V into R which, loosely speaking, will be used to
determine, for each pair of indices of a selection, the contribution of that pair to the
value of a move. The rationale is that, the higher the contribution, the higher the
probability that a particular pair is in a best selection.

The two functions are called τ+() and τ−(). For each a, b ∈ {0, . . . , n̄}, we define:
(1) τ+(a, b) to be the difference between the cost from a to its successor and to the
successor of b, and (2) τ−(a, b) to be the difference between the cost from a to its
predecessor and to the predecessor of b:

τ+(a, b) = c(a, a ⊕ 1) − c(a, b ⊕ 1), τ−(a, b) = c(a, a 
 1) − c(a, b 
 1)

Clearly, each of these quantities can be computed in time O(1), and computing
their values for a subset of possible pairs can never exceed time O(n2).
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4 A 3-Phase Procedure for Searching the 3-OPT
Neighborhood

The pure 3-OPT reinsertion schemes are four (see Fig. 1), namely: r1 =< +3,+2 >;
r2 =< −2,−3 >; r3 =< +3,−2 >; and r4 =< −3,+2 >.

Notice that r3 and r4 are symmetric to r2. Therefore, we can just consider r1 and
r2 since all we say about r2 can be applied, mutatis mutandis, to r3 and r4 as well.

Given a reinsertion scheme r , the cost �(i1, i2, i3) of a move with selection
S = (i1, i2, i3) is the difference between the cost of the removed edges {{i1, i1 ⊕
1}, {i2, i2 ⊕ 1}, {i3, i3 ⊕ 1}} and the cost of the reinsertion set I (r). A key observa-
tion is that we can break-up the function�(), that has�(n3) possible arguments, into
a sum of functions of two parameters each (therefore, �(n2) possible arguments).
That is, we’ll have

�(i1, i2, i3) = f 1(i1, i2) + f 2(i2, i3) + f 3(i1, i3) (1)

for suitable functions f 1(), f 2(), f 3(), each representing the contribution of a par-
ticular pair of indices to the value of the move. The domains of these functions are
subsets of {0, . . . , n̄} × {0, . . . , n̄}which limit the valid input pairs to values obtained
from two specific elements of a selection. Let S be the set of all complete selections.
For a, b ∈ {1, 2, 3}, let us define

Sab := {(x, y) : ∃(v1, v2, v3) ∈ S with va = x and vb = y} (2)

Then the domain of f 1 is S12, the domain of f 2 is S23 and the domain of f 3 is S13.
Below, we describe these functions for r1 and r2 (remember that r3 and r4 are

symmetric to r2):

[r1 :] We have I (r) = {{i1, i2 ⊕ 1}, {i2, i3 ⊕ 1}, {i1 ⊕ 1, i3}} (see Fig. 1) and

�(i1, i2, i3) = τ+(i1, i2) + τ+(i2, i3) + τ+(i3, i1)

f 1 : (x, y) ∈ S12 �→ τ+(x, y); f 2 : (x, y) ∈ S23 �→ τ+(x, y);
f 3 : (x, y) ∈ S31 �→ τ+(x, y).

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r1 =< +3,+2 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r2 =< −2,−3 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r3 =< +3,−2 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r4 =< −3,+2 >

Fig. 1 The pure reinsertion schemes of 3-OPT
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[r2 :] We have I (r) = {{i1, i2}, {i2 ⊕ 1, i3 ⊕ 1}, {i1 ⊕ 1, i3}} (see Fig. 1) and

�(i1, i2, i3) = τ+(i1, i2 
 1) + τ−(i2 ⊕ 1, i3 ⊕ 2) + τ+(i3, i1)

f 1 : (x, y) ∈ S12 �→ τ+(x, y 
 1); f 2 : (x, y) ∈ S23 �→ τ+(x ⊕ 1, y ⊕ 2);
f 3 : (x, y) ∈ S31 �→ τ+(x, y).

The two-parameter functions f 1, f 2, f 3 can be used to discard very quickly
from consideration all triples such that no two of the indices give a sufficiently large
contribution to the total. Better said, we keep in consideration only candidate triples
for which at least one contribution of two indices is large enough. Assume we want
to find the best selection and we currently have a selection S∗ = (v̄1, v̄2, v̄3) of value
V := �(S∗) (the current “champion”). We make the trivial observation that for a
selection (i1, i2, i3) to beat S∗ it must be

(

f 1(i1, i2) >
V

3

)

∨
(

f 2(i2, i3) >
V

3

)

∨
(

f 3(i1, i3) >
V

3

)

These are not exclusive, but possibly overlapping conditions, which we will con-
sider in turn with a three-phase algorithm. For j = 1, 2, 3, in the j-th phase, we
will restrict our search to the selections (i1, i2, i3) which satisfy the j-th condition.
Furthermore, we will not enumerate those selections with a complete enumeration,
but rather from the most promising to the least promising, stopping as soon as we
realize that no selection of the phase has still the possibility of being the best selection
overall.

The best data structure for performing this kind of search (which hence be used for
our heuristic implementation of the magic box described in Sect. 3) is theMax-Heap.
A heap is perfect for taking the highest-valued elements from a set, in decreasing
order. It can be built in linear time with respect to the number of its elements and has
the property that the largest element can be extracted in logarithmic time, while still
leaving a heap.

We then build a a max-heap H 1 in which, for each (x, y) ∈ S12 such that
f 1(x, y) > V/3, we put the triple (x, y, f 1(x, y)). The heap is organized according
to the value of f 1. Assume H 1 has L elements. Building the heap has cost O(L), and
then extracting the element of maximum f 1() value, while keeping the heap struc-
ture, has cost O(log L). We will now start extracting the elements from the heap. Let
us denote by (x[ j], y[ j], f 1(x[ j], y[ j])) the j-th element extracted. Heuristically,
we might say that x[1] and y[1] are the most likely values that the pair of indices
i1 and i2 can take in a best improving selection, since these values give the largest
possible contribution (as far as i1 and i2 are concerned) to the move value (1). We
will keep extracting themaximum (x[ j], y[ j], f 1(x[ j], y[ j])) from the heap as long
as f 1(x[ j], y[ j]) > V/3. This does not mean that we will extract all the elements
of H 1, since the value of V could change (namely, increase) during the search and
hence the extractions might terminate before the heap is empty.
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Each time we extract the heap maximum, we have that x[ j] and y[ j] are two
possible indices (i.e., i1 and i2) out of three for a candidate selection to beat S∗. With
a linear-time scan, we can search the third missing index (i.e., i3) and see if we get
indeed a better selection than S∗. To find i3 we run a for-cyclewith y[ j] + 2 ≤ i3 ≤ n̄,
checking each time if (x[ j], y[ j], i3) is a better selection than S∗. Whenever this is
the case, we update S∗. Notice that we also update V so that the number of elements
still in the heap for which f 1(x, y) > V/3 may decrease considerably. Say that,
overall, M elements are extracted from the heap. Then the cost of the phase is
O(n2 + L + M(n + log L)) which, on our tests, was is in practice growing as a
quadratic function of n. Worst-case, this is O(n3) like complete enumeration but, as
we will show in our computational experiments, it is much smaller in practice. This
is because the Mn triples which are indeed evaluated for possibly becoming the best
selection have a much bigger probability of being good than a generic triple, since
two of the three indices are guaranteed to help the value of the move considerably.

After this phase of probing the heap H 1, we run an analogous phase in which we
probe a heap H 2 containing all the triples (x, y, f 2(x, y)) for which (x, y) ∈ S23 and
f 2(x, y) > V/3. For each element (x[ j], y[ j]) extracted from the heap, we look for
the missing index i1, with 0 ≤ i1 ≤ x[ j] − 2. Notice that the value V determining
which elements belong to H 1 is the value of the current best solution, i.e., it is not
the value that V had at the start of the previous phase, but the value it had at its end.

A third and final phase probes a heap H 3 containing all the triples (x, y, f 3(x, y))
for which (x, y) ∈ S13 and f 3(x, y) > V/3, each time looking for the missing index
i2 in the range x[ j] + 2 ≤ i2 ≤ y[ j] − 2.

5 Computational Results

Here we describe some preliminary computational results. More experiments and
a full detailed discussion of the computational experience are delayed to a journal
version of this paper.

In a first set of experiments we have tested the idea on random instances in which
the edge costs are uniformly distributed over the interval [1, . . . , n2]. The following
table refers to 10 random graphs for each choice of n from 1,000 to 3,000 with
increments of 500. For each instance, we generated a random tour and looked for
the best 3-OPT move both with the complete enumeration (C) and our heap-based
method (H):

Times are in seconds on a Intel Pentium G645 @2.9 GHz. We put the rows of
avg next to each other and it is easy to see that the speedup of our method goes
from about 100× to more than 300× for increasing n. This behavior was true for
all instances tried. By fitting the growth of the time required to perform a move
from a random permutation over a larger set of graph sizes than what shown here, we
determined the quadratic polynomial function t (n) = An2 + Bn + C microseconds,
with A = 0.097, B = 9.18 and C = 0.
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n = 1000 n = 1500 n = 2000 n = 2500 n = 3000
Min C 39.416 146.936 396.748 805.064 1452.312
Max C 39.936 147.624 385.872 810.576 1463.624
Avg C 39.712 147.272 392.300 807.712 1457.236
Avg H 0.312 0.688 1.672 2.448 3.336
Min H 0.184 0.560 1.560 2.060 2.500
Max H 0.372 0.748 1.684 2.936 4.624

When n gets large, comparing the two approaches becomes impractical since
the time for complete enumeration gets too long. We can however abort complete
enumeration after, say 10,000,000 triples and estimate the final time quite accurately
as t̄ × T3(n)/10,000,000, where t̄ is the time at abortion and T3(n) was given after
Corollary 1. This way, for example, we can show that the time for finding the best
3-OPT move from a random solution when n = 5,000 is more than 10 h, while with
our method (which we carry out without aborting) it is about 30 s.

The same type of behavior is true for instances from the TSPLIB [7], although the
speedup percentage seems lower than for uniform-cost random graphs. We sampled
94 instances of TSPLIB and performed a best move from a random starting solution
(10 times). The instance sizes went from n = 21 to n = 2392. For small n it is
practically impossible to distinguish the running times and our method starts to
emerge as a clear winner for n ≥ 100. The larger instances are reported below:

Instance u1817 d2103 u2152 u2319 pr2392
n 1817 2103 2152 2319 2392
Avg C 261.560 425.936 460.812 600.008 654.436
Avg H 3.500 2.624 6.124 3.312 6.040

6 Conclusions and Future Directions

We have described a practical method for finding the best 3-OPT move which
exhibits, empirically, a quadratic running time. A (probably quite hard) question
to study would be to mathematically prove that the expected running time of this
algorithm on random instances is lower than cubic. A direction of future research
would also be to assess the effectiveness of 3-OPT, now that we can use it, on the TSP,
i.e., to study the quality of 3-OPT local optima (for both best- and first- improvement
LS).

Finally, we are developing similar ideas to speed-up the search of the 4-OPT
neighborhood, which, from preliminary results, appear very promising.



Speeding-up the Exploration of the 3-OPT Neighborhood for the TSP 355

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization, 1st edn. Wiley,
Inc., New York, NY, USA (1997)

2. Applegate, D.L., Bixby, R.E., Chvatl, V., Cook, W.J.: The Traveling Salesman Problem: A
Computational Study. Princeton University Press (2006)

3. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812
(1958)

4. de Berg, M., Buchin, K., Jansen, B., Woeginger, G.J.: Fine-grained complexity analysis of
two classic TSP variants. In: 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, 11–15 July 2016, Rome, Italy, pp. 5:1–5:14 (2016)

5. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44(10),
2245–2269 (1965)

6. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity,
vol. 01. Prentice Hall (1982)

7. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384
(1991)

8. Steiglitz, K., Weiner, P.: Some improved algorithms for computer solution of the traveling
salesman problem. In: Proceedings of the 6th annual Allerton Conference on System and
System Theory, pp. 814–821. University of Illinois, Urbana (1968)



The Green Vehicle Routing Problem
with Occasional Drivers

Giusy Macrina and Francesca Guerriero

Abstract This paper introduces a new variant of the green vehicle routing problem
with crowd-shipping. The company has an own mixed fleet composed of conven-
tional combustion engine and electric vehicles. In addition, ordinary people named
“occasional drivers” are available to deliver items to some customers on their route.
The objective is to minimize the sum of routing costs of conventional and elec-
tric vehicles, by including fuel consumption cost and energy consumption cost, and
occasional drivers’ compensation. We describe an integer linear programming for-
mulation for the problem and we also provide a comprehensive analysis on several
indicators, such as routing costs and polluting emissions. The results show how the
use of occasional drivers may lead not only to more convenient solutions, but also
to highly interesting scenarios in a green perspective.

Keywords Green vehicle routing problem · CO2 emissions · Electric vehicles
Crowd-shipping · Occasional drivers

1 Introduction

Global environmental pollution is a critical issue facing thewhole population.Among
the other logistic sectors, transportation is one of the major producer of polluting
emissions. Introducing environmental aspects in classic logistics is necessary to pro-
tect the health of people, by reducing negative externalities. Several researchers have
started to develop “green” solutions for the classic vehicle routing problem (VRP).
In the last years, this problem, named green vehicle routing problem (GVRP), has
been widely studied. The goals of the GVRP are twofold: on one hand some authors
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focused on pollution reduction in VRP with conventional vehicles, by introducing
the pollution routing problem (PRP) (e.g. see: [3, 5, 8, 9]), on the other hand a
large part of works concerns the use of alternative fuel vehicles, in particular electric
vehicles (EVs), in the VRP (E-VRP) (e.g. see: [6, 7, 11, 12]). The main goal of the
E-VRP is to introduce the EVs in transportation planning and reduce their energy
consumption. Even if the reduction of polluting emissions and the use of alterna-
tive fuel vehicles are important challenges for transportation companies, however, a
large number of cars continues to travel on the road, producing polluting emissions
and generating congestion. Ordinarily, these cars are underused and could be bet-
ter exploited. This is the main goal of “Crowd-shipping”: to allow deliveries, that
usually are performed by companies, to ordinary people, named occasional drivers
(ODs). Crowd-shipping becomes a new opportunity and a creative solution to exploit
underused assets, i.e. ordinary cars, by optimizing the costs of same-day and last-
mile deliveries and reducing the environmental impacts. Several big on-line retailers
have started to use Crowd-shipping, such as Walmart, DHL and Amazon. Crowd-
shipping requires a platform to connect ODs to customers, thus, when a customer
sends a request of fast delivery on computer/phone application, if an OD accepts to
make the delivery, the platform sends him all the information necessary to perform
the service. Arslan et al. [2] presented an overwiew on benefits of Crowd-shipping.
They considered a peer-to-peer platform, taking into account the possibility of using
traditional vehicles and ad hoc vehicles. Archetti et al. [1] introduced the vehicle
routing problem with occasional drivers (VRPOD). The authors supposed that the
company can make deliveries not only by using its own fleet, but also some ODs.
Some works extended the problem presented in Archetti et al. [1], in particular Mac-
rina et al. [10] considered multiple deliveries for ODs and time windows for both
ODs and customers, whereas Dahle et al. [4] assumed that the availability of ODs
is uncertain, thus they introduced stochasticity on ODs and supposed to have some
stochastic information about their appearance.

The main goal of this work is to combine the features of GVRP with Crowd-
shipping, and to analyse new innovative green solutions for vehicle routing, thus we
present the green vehicle routing problem with ODs (GVRPOD). We consider the
availability of a mixed fleet of internal combustion commercial vehicles (ICCVs)
and EVs, named “regular vehicles”, and a certain number of ODs. We formulate a
mathematical model to represent this new problem as a variant of the GVRP, then
we perform analysis in order to evaluate how using ODs may lead not only to more
convenient solutions, but also more eco-friendly transportation plans. The remainder
of this paper is organized as follows: in Sect. 2 we present the mathematical model
for theGVRPOD, in Sect. 3 we describe our preliminary numerical study to highlight
the benefit of using ODs in GVRP, finally, Sect. 4 summarizes the conclusions.
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2 Mathematical Model for the GVRPOD

Wepresent an integer linear programming formulation for theGVRPOD.LetC be the
set of customers, and R the set of recharging stations. Let R′ be the set of recharging
stations and their copies to allowmultiple visits. Let s ∈ R be the depot node in which
each route of regular vehicles starts and ends.We duplicate the depot, thus we denote
with t the destination node. LetW = C ∪ R ∪ {s, t} andW ′ = C ∪ R′ ∪ {s, t}. Let K
be the set of availableODs andV the set of their vk destinations.Wedefine the node set
as N ′ = C ∪ R′ ∪ {s, t} ∪ V . The GVRPOD is formulated on a graph G = (N ′,A),
where A is the set of arcs. In what follows, we indicate with the superscripts C and E
the conventional and electric vehicles, respectively; as long aswith the superscriptOD
the ODs. All the parameters and decision variables used to formulate mathematically
the problem under study are summarized in Table 1.

Every customer i ∈ C must be served only once, either by a regular vehicle (EV or
ICCV)or by anOD.ForEVsweconsider a constant energy consumptionproportional
to the distance travelled. Every recharging station is characterized by a recharging
speed, the EV can be charged at recharge stations on the roads or at depot during
the night, at a lower price. Partial battery recharging is allowed and we also take
into account that recharging the last 10% of battery may require long times, whereas
recharging up to 90%may damage battery. In order to define the energy consumption
and CO2 emissions for the ICCVs, we consider the estimation made by Ubeda et al.
[13]

We model the GVRPOD as follows:

Minimize wr
∑

i∈R′

∑

j∈W ′
gij + we(

∑

(i,j)∈A
πdijx

E
ij −

∑

i∈R′

∑

j∈W ′
gij) (1)

+wf
∑

(i,j)∈A
f (uCi )dijx

C
ij +

∑

(i,j)∈A
cEij dijx

E
ij +

∑

(i,j)∈A
cCij dijx

C
ij

+
∑

k∈K

∑

i∈C∪{s}

∑

j∈C
ρcODij rkij −

∑

k∈K

∑

j∈C
cODsvk r

k
sj

subject to
∑

j∈W ′
xEij ≤ 1 i ∈ R′ (2)

∑

j∈W ′\{s}
xEij −

∑

j∈W ′\{t}
xEji = 0 i ∈ W ′ (3)

∑

j∈W\{s}
xCij −

∑

j∈W\{t}
xCji = 0 i ∈ W (4)

∑

j∈W ′
xEsj ≤ nE (5)

∑

j∈W
xCsj ≤ nC (6)

uEj ≥ uEi + qjx
E
ij − QE(1 − xEij ) i ∈ W ′\ {s, t} , j ∈ W ′\ {s} (7)
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Table 1 Parameters and variables of GVRPOD

Parameters

qi Demand customer i ∈ C kg

si Service time customer i ∈ C h

[ei, li] Time windows node i ∈ W ′ h

dij Distance to travel on the arc (i, j) ∈ A km

tij Time to travel on the arc (i, j) ∈ A h

cEij EVs travel cost to transit on the arc (i, j) ∈ A e/km

cCij ICCVs travel cost to transit on the arc (i, j) ∈ A e/km

cOij D ODs travel cost to transit on the arc (i, j) ∈ A e/km

T Maximum duration of a regular route/end of
depot time window

h

QE Maximum capacity of EVs kg

QC Maximum capacity of ICCVs kg

QOD
k Maximum capacity of OD k ∈ K kg

BE Maximum battery capacity of EVs KWh

ρi Recharging speed of recharging station i ∈ R′ KWh/h

π Energy consumption rate KWh/km

we Recharging cost at depot e/KWh

wr Recharging cost at recharging station e/KWh

wf Diesel cost e/L

Variables

xEij Binary variable equal to one only if the EV
traverses the arc (i, j) ∈ A

xCij Binary variable equal to one only if the ICCV
traverses the arc (i, j) ∈ A

gij Energy recharged by the EV at the recharging
station i ∈ R′ for travelling to j ∈ W ′

KWh

uCi Amount of load left in the ICCV after visiting
node i ∈ W ′

kg

uEi Amount of load left in the EV after visiting node
i ∈ W ′

kg

τj Arrival time of a regular vehicle to the node
j ∈ W ′

h

rkij Binary variable equal to one only if OD k ∈ K
traverses arc (i, j) ∈ A

f ki Arrival time of OD k ∈ K at customer i ∈ C h

wk
i Available capacity of the OD k ∈ K after visiting

customer i ∈ C
kg
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uCj ≥ uCi + qjx
C
ij − QC(1 − xCij ) i ∈ W\ {s, t} , j ∈ W\ {s} (8)

uEj ≤ QE j ∈ W ′ (9)

uCj ≤ QC j ∈ W (10)

uEs = 0 (11)

uCs = 0 (12)

τj ≥ τi + (tij + si)x
E
ij − M (1 − xEij ) i ∈ C, j ∈ W ′ (13)

τj ≥ τi + (tij + si)x
C
ij − M (1 − xCij ) i ∈ W, j ∈ W (14)

τj ≥ τi + tijx
E
ij + 1

ρi
gij − M (1 − xEij ) i ∈ R′, j ∈ W ′ (15)

ej ≤ τj ≤ lj j ∈ W ′ (16)

zij ≤ (zhi + gij) − πdijx
E
ij

+M (1 − xEij ) + M (1 − xEhi) h ∈ W ′i,∈ W ′\ {s}
j ∈ W ′, i �= j, i �= h, j �= h (17)

zsj ≤ BE − πdsjx
E
sj + M (1 − xEsj) j ∈ W ′ (18)

gij ≤ BE − zhi + M (1 − xEij ) + M (1 − xEhi) i ∈ R′\ {s} , h ∈ W ′, j ∈ W ′ (19)

zij ≥ 0.1BE i ∈ R′, j ∈ W ′ (20)

gij ≤ 0.9BE i ∈ R′, j ∈ W ′ (21)
∑

j∈C∪{vk }
rkij −

∑

h∈C∪{s}
rkhi = 0 i ∈ C, k ∈ K (22)

∑

j∈C∪{vk }
rksj −

∑

j∈C∪{s}
rkjvk = 0 k ∈ K (23)

∑

k∈K

∑

j∈C∪{vk }
rksj ≤ |K | (24)

∑

j∈C
rksj ≤ 1 k ∈ K (25)

wk
j ≥ wk

i + dir
k
ij − Qk (1 − rkij) j ∈ C ∪ {vk }, i ∈ C ∪ {s}, k ∈ K (26)

wk
s ≤ Qk k ∈ K (27)

f ki + tijr
k
ij − α(1 − rkij) ≤ f kj i ∈ C, j ∈ C, k ∈ K (28)

f ki ≥ evk + tsi i ∈ C, k ∈ K (29)

f kvk ≤ lvk k ∈ K (30)

f ki + tivk r
k
ivk

− α(1 − rkivk ) ≤ f kvk i ∈ C, k ∈ K (31)

ei ≤ f ki ≤ li i ∈ C (32)
∑

j∈C∪{t}
xEij +

∑

j∈C∪{t}
xCij +

∑

h∈C∪{vk }

∑

k∈K
rkih = 1 i ∈ C (33)
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xEij , x
C
ij ∈ {0, 1} i ∈ W ′, j ∈ W ′ (34)

uEi , uCi , τi ≥ 0 i ∈ W ′ (35)

gij ≥ 0 i ∈ R′, j ∈ W ′. (36)

rkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (37)

0 ≤ wk
i ≤ Qk i ∈ C ∪ {s, vk }, k ∈ K (38)

f ki ≥ 0 i ∈ C ∪ {s, vk }, k ∈ K . (39)

Theobjective function is composedof 7 terms. Thefirst one represents the recharg-
ing cost when anEV is recharged to a recharging station. The second one is the energy
consumption cost, we suppose that the EVs were recharged to the depot during the
night and we do not consider the energy recharged during the route. The third term
is the total diesel cost, whereas the fourth and fifth ones are the routing cost of EVs
and ICCVs, respectively. The sixth term is the cost of compensation of the OD k
for the delivery service with ρ ≥ 0, the seventh one is the cost of the OD k when
it does not perform the delivery service. Constraints (2)–(21) are linked to regu-
lar vehicles. Constraints (2) ensure that a recharging station can be visited at most
once, whereas constraints (3) and (4) are the flow conservations constraints for reg-
ular vehicles. Constraints (5)–(6) impose a maximum number of available EVs and
ICCVs, respectively. Capacity constrains are defined by (7)–(12), constraints (13)–
(15) determine the arrival time at each node, whereas (16) are the time windows
constraints. Constraints (17)–(18) are associated with the EVs’ energy consumption
and ensure that the maximum battery capacity is not exceeded, and (19) represent
the partial battery charging. Constraints (20)–(21) define the state of charge of the
battery. Constraints (22)–(32) are linked to ODs. In particular, constraints (22)–(23)
are the flow conservation constraints. Constraints (24) ensure that at most |K | ODs
are used to serve the customers, whereas conditions (25) impose that an OD may
perform only one route. Constraints (26)–(27) are the capacity constraints, whereas
constraints (28)–(29) are the time windows constraints and also define the time at
which the ODs are available to make deliveries, constraints (31) define the arrival
time at the destination node vk . Customers’ time windows are defined by constraints
(32). Constraints (33) ensure that each customer is visited at most once, either by a
regular vehicle (EVs or ICCVs) or by an OD. Finally, conditions (34)–(39) define
the domains of variables.

3 Numerical Study

In this section we conduct a preliminary computational study to assess the validity of
the proposed GVRPODmodel. The goal of this study is to show how the use of ODs
may be not only profitable in terms of cost reduction, but also it may reduce polluting
emissions. With this purpose, we modelled and then solved a classical GVRP and



The Green Vehicle Routing Problem with Occasional Drivers 363

then we compared the results obtained with those achieved with GVRPOD. All
the test are conducted using an Intel 2.60 GHz processor and 16 GB of RAM.
The model was implemented in Java and solved with CPLEX. We conducted the
preliminary computational study on different small-size instances. We started from a
set of 30 instances based on Solomon VRPTW instances, proposed by Schneider et
al. [12] for their E-VRP with time windows. The authors modified these instances by
randomly introducing the recharging stations. Given a E-VRPTW instance, with the
customers locations identified by the coordinates (xi, yi), we randomly generated the
destinations for theODs, in the squarewith lower left hand corner (mini{xi},mini{yi})
and upper righthand corner (maxi{xi},maxi{yi}), (see: [1]). We then set the number
of ICCVs and EVs and, if necessary, recalculated a reasonably time window to
ensure feasibility. Our comparative analysis is divided into two phases, in the first
one we focus on profitability of using ODs, thus we compare the GVRP and the
GVRPOD in terms of costs, in the second one we focus on green aspects and we
make a comparison in terms of polluting emissions. For all the experiments, we use
the parameters setting reported in Table 2. We fixed the battery capacity for EVs
to 10 KWh and π = 0.125. Considering the technologies introduced by Felipe et
al. [7] (slow, medium and fast), we suppose that all the recharging stations support
the medium technology, hence the recharging speed is fixed at 20,000 [KWh/h] and
wr = 0.4 [e/KWh], whereas the EVs can be recharged with the slow technology
during the night at depot and we = 0.17 [e/KWh]. Fuel cost wf = 0.8 [e/L], and to
calculate ODs compensation ρ is set to 1.10.

Table 3 presents the comparison results for each GVRPOD instance against
GVRP. Each table has 9 columns, the first one reports instances name, then we
have four columns referred to the GVRPOD and three to the GVRP, which show
the cost of the solution and the number of employed vehicles, ICCVs, EVs and ODs
(only for GVRPOD), respectively. The last column is the GAP on cost, calculated
as (ObjectiveGVRPOD − ObjectiveGVRP)/ObjectiveGVRP. The results summarized in
Table 3a clearly show that for instances with five customers the use of ODs is highly
competitive. The GAP is on average 14% and there is a reduction in terms of cost
for the majority of the considered instances. We have the same trend for instances
with 10 and 15 customers, indeed, Table 3b, c show that the GAP is on average 24%
and 23%, respectively; in addition, overall we have a reduction in terms of cost and
number of employed ICCVs. However, the use of ODs becomes more interesting
if we analyse the reduction in terms of polluting emissions, due to the decrease of
the number of ICCVs used in transportation plans. Table 3 shows that the GVRPOD

Table 2 Parameters setting

|C| |R| nE nC QE QC |K | QOD
k

5 [1–3] 1 1 80.00 80.00 2 [20–30]

10 [2–4] 2 2 80.00 80.00 3 [20–40]

15 [2–5] 3 3 80.00 80.00 3 [20–40]
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Table 3 Results for the GVRPOD and GVRP

GVRPOD GVRP

Test Cost #ICCVs #EVs #ODs Cost #ICCVs #EVs GAP (%)

(a) Results for instances with |C| = 5

C101C5 210.63 1 1 1 252.32 1 1 17

C103C5 148.15 0 1 2 165.72 1 1 11

C206C5 161.62 1 1 2 226.93 1 1 29

C208C5 169.50 0 1 1 193.36 1 1 12

R104C5 132.37 0 1 1 138.30 1 1 4

R105C5 123.62 1 1 1 151.34 1 1 18

R202C5 105.29 0 1 2 128.84 0 1 18

R203C5 169.38 0 1 1 196.40 1 1 14

RC105C5 236.41 1 1 0 236.41 1 1 0

RC108C5 237.54 1 1 2 257.89 1 1 8

RC204C5 181.96 1 1 0 181.96 1 1 0

RC208C5 106.54 0 1 2 186.12 1 1 43

AVG 165.25 0.50 1.00 1.25 192.96 0.92 1.00 14

(b) Results for instances with |C| = 10

C101C10 337.56 1 2 2 378.51 1 2 11

C104C10 210.18 0 2 3 310.03 1 2 32

C202C10 245.32 0 2 3 294.36 1 2 17

C205C10 233.28 0 2 3 261.83 1 2 11

R102C10 210.74 1 1 2 248.68 1 2 15

R103C10 125.49 0 2 2 190.88 0 2 34

R201C10 166.74 0 2 3 218.28 1 2 24

R203C10 141.16 0 1 3 235.17 0 2 40

RC102C10 254.82 1 1 3 400.43 2 2 36

RC108C10 305.86 0 2 2 346.44 2 0 12

RC201C10 212.90 0 2 3 313.55 1 2 32

RC205C10 259.66 0 2 3 346.29 1 2 25

AVG 225.31 0.25 1.75 2.67 295.37 1.00 1.83 24

(c) Results for instances with |C| = 15

C106C15 180.835 0 2 3 274.7025 0 3 34.2

C208C15 284.8813 0 3 3 358.1721 1 3 20.5

R209C15 246.9075 0 3 3 325.9467 1 3 24.2

R102C15 287.69 0 2 3 381.4325 2 3 24.6

RC103C15 331.9534 1 2 3 395.3261 2 3 16.0

RC202C15 325.2825 0 2 3 413.1033 1 2 21.3

AVG 276.26 0.17 2.33 3.00 358.11 1.17 2.83 23
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Table 4 GVRP versus GVRPOD: polluting emissions

Test εGVRP εGVRPOD Δ(ε)(%)

|C| = 5 92.17 19.01 −79

|C| = 10 73.15 35.20 −52

|C| = 15 47.08 11.22 −76

uses less ICCVs than GVRP, this has a great impact on environment. The GVR-
POD uses a number of ICCVs that is the 45% and the 75% less than the ICCVs
used by the GVRP for instances with five and 10 customers, respectively; up to the
85% less for instances with 15 customers. Since the amount of polluting emissions
are strongly related to the number of fuel vehicles on route, and we know that the
ODs will travel whether performing the delivery or not, the use of ODs become a
strategic choice. To calculate the amount of polluting emissions, we use the function
ε(u) defined in Sect. 2. In particular, the total amount of emissions is calculated as
ε = ∑

(i,j)∈A ε(uCi )dijxCij . Table 4 summarizes the results obtained, focusing on pol-
luting emissions. The first column gives the class of instances, the second and the
third ones show the average of polluting emissions obtained solving the GVRP and
GVRPOD, respectively. The last column is the polluting emissions variation Δ(ε)

calculated as 100 × (εGVRP − εGVRPOD)/εGVRP . Looking at results in Table 4, it is
clear that the use of ODs highly impacts on polluting emissions reduction. We have a
reduction of about the 79% of emissions for instances with five customers, 52% for
instances with 10 customers and of about the 73% for instances with 15 customers.
Our preliminary computational study clearly shows the advantages obtained by using
ODs in routing plan, not only in terms of total cost reduction, but also in terms of
environmental impact, that is, polluting emissions and traffic congestion reduction.

4 Conclusion

In this work we have proposed a new variant of the green vehicle routing problem,
introducing the crowd-shipping. In this problem, named green vehicle routing prob-
lem with occasional drivers (GVRPOD), the company has to serve some customers
in an urban area with a mixed fleet of vehicles, composed of conventional vehicles
and electric vehicles, and may also use some occasional drivers (ODs). The ODs
are ordinary people who decide to deliver something to other people on their route,
for a small compensation. We have modelled the GVRPOD, then we have shown
the benefits to use the ODs in transportation planning, not only in terms of costs
reduction but also in terms of environmental impacts.

Acknowledgements This work was supported by MIUR “PRIN 2015” funds, project: Transporta-
tion and Logistics in the Era of Big Open Data - 2015JJLC3E_003 - CUP H52F15000190001.
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Using Cryptography Techniques
as a Safety Mechanism Applied
to Components in Autonomous Driving

Antonino Mondello and Alberto Troia

Abstract Many applications are being developed that adopt a new emerging tech-
nology inspired by biological structures in nature to solve real-life problems; this
approach involves implementations based on artificial neural networks (ANNs), deep
learning, and other forms of artificial intelligence (AI). Autonomous driving is one
area where these AI implementations can be applied; however, with it brings several
uncertainties, including the safety and security of the implementation. The intent of
this paper is to provide a new perspective in using cryptography as a methodology
to implement safety in the hardware that incorporates AI technology in automotive
while addressing at the same time classical problems due to physical and software
failures.

Keywords Artificial intelligence · Machine learning · Deep learning
Neural network · Genetic algorithm · Neuron · Gene · HASH · HMAC · SHA256
Digest · Weight matrix · Secure storage · Memory · Automotive
Autonomous driving

1 Introduction

Modern electronic systems may be affected by systematic or random errors. While a
systematic error is a kind of marginality and/or bug that can be easily reproduced and
solved during the system validation phase, random errors are more difficult to detect
and solve. Several standards exist, such as the ISO26262, that are trying to formalize
processes and procedures to reduce at very low level the risk of failures; however,
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unfortunately, a failure event can always occur. If a critical event happens, a robust
system must be able to detect it and place the entire system in a safe condition while
also executing rescue procedures.

Current literature covers safety and security as different topics, this paper has
the purpose to link both the concepts, providing a unique option to address the
issues—based on modern cryptography—to detect and correct certain errors that
might affect data inside a storage device.

2 Safety and Security Issues of a Memory System

A storage device cannot be considered simply a container of data; it must have the
capability to ensure data integrity against a wide range of physical or human sources
of errors. Data inside a storage device can be threatened by:

Bit flips: One or more bits randomly change their values due to a physical defect or
internal circuit malfunction. The bit flips failure rate is typically mitigated by using
proper error correction techniques internal to the storage device. If the number of
bits flipped exceed the capability of the adopted error correction scheme, the errors
cannot be detected, or worse, new errors can be injected when attempting to correct
the errors. This may cause unexpected system behavior that could affect the safety
of the system;

Bus communication errors: System/component noise affects data transmitted
through the internal/external buses. In this case, error detection and correction tech-
niques can be implemented, but with the same limitation discussed above;

Memory content changes: Intentional, un-authorized changes of data by the direct
action of hackers or bymalicious software. This type of issue emerged in recent years
with the internet of things revolution. Data inside the memory can also be modified
by a system software bug; such kind of changes are not intentional, but the effect
might be unpredictable and, in some cases, if the data changed are the vital for the
systems, it could be similar to a hacker attack;

Memory replacement: An extreme technique to gain control of the systemby replac-
ing original storage components with non-genuine components. This kind of attack
is fed by a parallel marketing of non-original components.

A storage device cannot be considered simply a container of data; it must have the
capability to ensure data integrity against a wide range of physical or human threats.
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3 Secure Memories

The data threats introduced in the previous section can be fixed by using new tech-
niques; the usage of such techniques requires a reinterpretation of the problem posed
under a different perspective: the cryptographic one.

Memory usage and data protection: Only authorized users can modify and/or
read stored data. This topic implies that the storage device command set should be
authenticated; in other words, the device must be able to detect commands coming
from unauthorized hosts and avoid an attempt to reuse commands already used by
the authorized entities;

Memory data attestation: The storage device should be able to attest the data stored.
Data attestation check should be performed at each power cycle or reset of the system,
and on each host request.

Memory identification: The memory should be able to prove its identity to a
requester to avoid un-authorized component replacement;

To guarantee these features, the component must implement at least two kinds of
cryptographic primitives: the HASH function and the MAC function, described in
the following paragraphs.

3.1 The Authentication Problem

Consider the simple system structure depicted in Fig. 1, where a host, i.e. a processor,
is asking for a command execution—such as read, program or erase data—to a
component like a storage device. The system design wants only the authorized host
to execute such commands.

A possible solution for this problem is to implement a command authentication
mechanism based on certain cryptographic functions called Message Authentication
Code (MAC) [1, 2]; such functions are used to calculate what is called signature of
the command by using the formula:

Fig. 1 Storage device and
host
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Signature � MAC(key,Command) (1)

The key is secret information shared between the host and storage device in a
secure environment like the system factory. The security of the system is based on
the impossibility to calculate the message signature without knowing the secret key.
The MAC function is well known to community, since it is not representing the
secret; a function, can be promoted to MAC function, when the properties described
in the next paragraph are matched.

Such a signature is used in conjunctionwith the following communicationprotocol
to ensure system authentication:

Host: Sends a packet of information consisting of commands to be executed and the
related signature (Fig. 2) calculated with the formula (1) and using the secret key.

Storage device: From the received message, takes the command field and locally
calculates the signature by using the same formula (1) and its copy of the secret key,
then compares the signature calculated with the one received; if they don’t match,
the message is discarded; otherwise, it is considered authentic and executed, and the
storage device sends the command result and the related signature to the host (Fig. 3).

The host: verifies the authenticity of the received message by locally calculating the
signature—with its secret key copy—and comparing it with the one received.

This approach is very robust in guaranteeing authentication, but it has a prob-
lem—it is prone to a kind of channel side attack called replay attack. In fact, if some-
one intercepts the message, by using a bus sniffer, they can reuse it later because it
is correctly signed by the authorized sender. A solution to this problem can be found
by introducing in the communication packet a field called freshness (see Fig. 4).

The freshness is a piece of information that, by definition, changes at each com-
mand/command transaction.

There are many ways to define the freshness: it can be the transmission time-
stamp, a random number, or a simple number that is incremented at each transition
and with the property not decremented in any way. For that reason, it is called a
monotonic counter (MC) approach. By using the MC as a measure of freshness, the
transmission protocol is modified in the following way:

Command Signature

Fig. 2 Authenticated message packed

Command Result Signature

Fig. 3 Authenticated command response packed

Command Freshness Signature

Fig. 4 Message packed structure with freshness
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Command Result Freshness Signature

Fig. 5 Response packed with freshness

Host: sends the message as in Fig. 4, where signature is calculated with the formula:

Signature � MAC
[
key, (Command |MC)

]
(2)

Storage device: Takes from the received message the monotonic counter C value
and verifies that it has a value greater than the one used in the last transmission.
If it is, it calculates and verifies the signature received by comparing it with the
local one calculated by using its secret key. If the check is successful, the message is
considered authentic and the storage device executes the command. It then increments
the internal MC value and sends the command result—the new MC value and the
related signature—to the host (Fig. 5).

The host: Verifies the authenticity of the command result by checking that the MC
value is greater than the last value and locally recalculating andverifying the signature
received by using its own local secret key copy.

This protocol can ensure the authenticity in commands and results in exchanges
between the host and storage device.

Two components that use this kind of transmission protocol implement what is
called a secure command set. If the key is maintained secret, there is no way to use
the system components without knowing the key.

A secure command set that includes program, erase, read, or configuration changes
commands ensure the system is used only by someone who knows the secret key.

3.2 MAC Function Requirements

There are several functions that can be used as MAC functions to generate the sig-
nature of a message; these functions must satisfy some key requirements:

• “Easy” to be calculated: Given a message X, the calculus of MAC(key, X) is not
computationally difficult;

• “Hard” to be inverted:Given aMAC(key, X), it must be “impossible” to determine
the key value by knowing X and the MAC value; in other words, the calculation[
MAC(key, X)

]−1
must be computationally infusible;

• “Negligible” collision probability: Given two messages X �� Y →
MAC(key, X) �� MAC(key, Y)

The cryptographic strength of the MAC together with the secrecy of the key
guarantees the authenticity and the integrity of the messages exchanged.

A powerful MAC function used in many cryptographic systems is the HMAC-
SHA256. Such a function is described in [3, 4] and is very robust in the fact that it
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satisfies all the requirements defined forMAC function.HMAC-SHA256 can process
a message up to 264 bits in length and produce a 256-bit signature. As of today, there
is no known possibility to invert this MAC and no collision conditions have been
identified.

3.3 The Data Attestation Problem

A storage device such as a flash memory or RAMmust guarantee the genuineness of
stored data. In some cases, it is also requested of nonvolatile memories the capability
to recover corrupted data with a genuine copy to guarantee system functionality in
case of a hacker attack or severe system malfunction.

The changing of stored data can be detected using some cryptography tools includ-
ing hash functions. A hash function is a function that is able to map data of arbitrary
size to a “short” fixed size called HASH or digest of the data. Once a digest is calcu-
lated on a genuine data pattern, the result is called a golden digest. This data is stored
in an area that is not user-accessible and is compared on demand with the current
digest calculated at the moment of the request. The result of this comparison enables
the system to understand if the array content is genuine or was accidentally or inten-
tionally modified. If requested, by using an authenticated command, the memory
can provide the hash result as a command result by using the authenticated protocol
defined in the previous paragraph. A minimum set of authenticated commands for
attestation purposes can include the ones that define the secure memory area to be
hashed, generate the golden digest, and verify the current digest value of the secure
area versus the golden one.

3.4 HASH Function Requirements

A function is eligible as a hash function if it is:

• “Easy” to be calculated: Given a message X, the calculus of HASH(X) has low
computational complexity

• “Hard” to be inverted: [HASH(X)]−1 must be impossible to be calculated
• “Negligible” collision probability: Given two messages X �� Y → HASH(X) ��
HASH(Y).

Cryptographic literature proposes many hash functions [1, 2]. A common one is
the SHA256 described in [3].

The implementation of an authenticated command able to calculate a hash of a
selected memory area and compare the result to a golden value, enables a powerful
mechanism for data attestation.

In the next paragraphs we will show how to use such kind of methodology to
implement an Artificial Neural Network with the capability to attest its integrity.
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4 Secure ADAS System Based on Neural Networks

In recent years, vehicle makers introduced autonomous driving systems. Due to the
complexity of such systems, they were based on artificial intelligence (AI) imple-
mented by using Artificial Neural Networks (ANN) [5].

In brief, an ANN is a set of cells called neurons that are interconnected to each
other using a set of connections, and organized in layers, as depicted in Fig. 6.

The neural signals processed by the generic neuron m is sent to the neuron k after
a multiplication by certain numerical constants called synaptic weights (wmn). The
constant bm, not always present (bm � 0) is called the bias of the neuron (Fig. 7).

The relationship between neuron inputs and the output is given by the formula:

am � fm

[

bm +
R∑

k�1

wmk · pk
]

(3)

where: fm(n) is a real function, called activation function, it can be, in principle,
different for each neuron; in practice, they use only a few different kinds of functions.
The most common activation functions are described in Table 1.

The process that permits us to define the bias and synaptic weight is called the
learning process. As showed by [5] page 14-3, a quite general model of an ANN

Fig. 6 Generic artificial
neural network structure

Fig. 7 Neuron structure
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Table 1 Different kinds of activation functions

Hard limiter Linear Log-sigmoid

f (t) �
{
b if t ≥ 0

a if t < 0

f (t) � a · t f (t) � 1
1+e−t

Table 2 Matrices needed to describe RANNs

P � {
pmi

}
Input vector of network; the inputs can be connected to all layers

Nm � {
nmi

}
Input vector of neurons of layer m

Am � {
ami

}
Vector is the output vector of layer m

Bm � {
bmi

}
Vector of neurons bias of layer m

LWm,l �
{
lwm,l

i,j

}
Matrix with the synaptic weight from the layer l to the layer m. The
element lwm,l

i,j is the weight between neuron i of layer m and the neuron j
of layer l

IWm,l �
{
iwm,l

k

}
Matrix of synaptic weight associated to the network input l to the layer m.
The element iwm,l

k is the weight between input l to the neuron k of layer m

can be described by using matrix formalism, by defining the sets of matrices listed
in table Table 2.

The input vector Nm(t) of each neuron present in them-th layer can be written as:

Nm(t) �
∑

l

∑

d

LWm,l(d) · al(t − d) +
∑

l

∑

d

LWm,l(d) · pl(t − d) + bm (4)

The output of the layer m of network is given by:

Am(t) � f m
(
nm(t)

)
(5)

From this overview of ANNs, we can draw the conclusion that the implementation
of a neural network requires themanipulationof large amounts of data stored inmatrix
form (see Table 2). Such datamust be stored in a nonvolatilememory device andmust
be written, read, and updated in a secure manner. This challenge will be addressed
in the next paragraphs where we describe a possible hardware implementation.

5 Cryptography as Usage to Improve Safety

The ANNs can be implemented by using any methodology known in the field. What-
ever hardware is used—GPU, CPU, FPGA etc.—it must implement and calculate the
formulas introduced in the previous paragraph. Such formulas are based on matrices
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that contain a large amount of data stored in a storage device. What we would like
to discuss here is the usage of cryptography as a methodology to understand if the
storing and reading of the data associated with the ANN is correct or was modified
by random errors or hacker attacks.

Suppose to store thematrices: IWm,l, LWm,l, bm in a specific area of a nonvolatile
storage device, in fixed or floating-point notation based on the kind of implementa-
tion; before using such matrices, the calculus unit can request the storage device to
attest to the values stored; the storage device activates the internal hash engine and
calculates:

Digest � HASH
(
IWm,l

∣∣LWm,l
∣∣bm

) ∀m, l (6)

To practically perform such calculus, the elements of each matrix involved is read
row by row from the first column to the last one. The read data forms a long sequence
of numbers that are processed by the HASH engine.

To better clarify this, consider the simple ANN depicted in Fig. 8 with just four
neurons, two inputs and outputs, the non-zero elements of the above matrices are
represented directly on the figure.

By reading the matrices, we have the sequence of numbers:

S �iw1,1
1 , iw1,1

2 , iw2,1
1 , iw2,1

1 , lw2,1
1,1, lw

2,1
1,2, lw

2,1
2,1, lw

2,1
2,2, lw

1,2
1,1, lw

1,2
1,2,

lw1,2
2,1, lw

1,2
2,2, b

1
1, b

1
2, b

2
1, b

2
2 (7)

Which are the ones involved in the HASH calculus:

Digest � HASH(S) (8)

The result of the comparison of the above calculated digest and the golden one
previously calculated enables the system to check the integrity of the ANN, this
can indicate that there are no accidental or malicious changes. The presence of an
authenticated commands set repeats the integrity check every time and defines some
policy to update the ANN in a secure way.

Fig. 8 Simple ANN
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6 Conclusions

This paper presented a new interpretation of the use of cryptography as a security
and safety mechanism. The security and safety of the system, implementing this
methodology, is guaranteed by two cryptographic primitives: MAC and HASH; the
described method enables a robust system against a wide range threats.
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Simplifying the Minimax Disparity
Model for Determining OWA Weights
in Large-Scale Problems

Thuy Hong Nguyen

Abstract In the context of multicriteria decision making, the ordered weighted
averaging (OWA) functions play a crucial role in aggregating multiple criteria evalu-
ations into an overall assessment supporting the decision makers’ choice. Determin-
ing OWA weights, therefore, is an essential part of this process. Available methods
for determining OWA weights, however, often require heavy computational loads in
real-life large-scale optimization problems. In this paper, we propose a new approach
to simplify the well-known minimax disparity model for determining OWAweights.
We use the binomial decomposition framework in which natural constraints can be
imposed on the level of complexity of the weight distribution. The original problem
of determiningOWAweights is thereby transformed into a smaller scale optimization
problem, formulated in terms of the coefficients in the binomial decomposition. Our
preliminary results show that the minimax disparity model encoded with a small set
of these coefficients can be solved in less computation time than the original model
including the full-dimensional set of OWA weights.

Keywords Ordered weighted averaging · OWA weights determination · Binomial
decomposition framework · k-additive level · Large-scale optimization problems

1 Introduction

In many disciplines, decisionmakers have to deal with problems involving the aggre-
gation of multicriteria evaluations and producing overall assessments within the
application context. The ordered weighted averaging function (OWA) introduced by
Yager [23] is a fundamental aggregation function in decision making theory. One of
the main motivations behind selecting the OWA functions for multicriteria aggrega-
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tion is their flexibility in providing a general class of weighted aggregation functions
bounded by the min and the max functions.

The determination of appropriate OWA weights is a very important object of
study when applying OWA functions in the context of decision making. Among the
various methods that can be found in the literature, namely [21, 22, 24], and more
recently [2, 7, 15], we can distinguish the following methodological categories: (a)
methods based on learning OWA weights from data, (b) methods based on weight-
generating functions, and (c) methods based on the characteristic measures of orness
and disparity.

In this paper we focus on the problem of determining a special class of OWA
functions based on the disparity measure under a given degree of orness since these
two measures can lead to OWA weights associated with different attitudinal charac-
ters of decision makers, see [16, 23]. Depending on their weighting structure, OWA
functions reflect different preferences of decision makers, from the optimistic to
the pessimistic attitude. The attitudinal character of decision makers is measured by
their orness, which takes values in the unit interval. Themaximum (minimum) orness
value is attained when decision makers are purely optimistic (purely pessimistic).
On the other hand, the disparity evaluates the non-uniformity of the OWA weights.
In the case of the arithmetic mean the disparity takes its minimal value.

In the literature several methods have been introduced to obtain the optimal
weights by using the disparity measure. After the pioneering work of O’Hagan [17]
on the maximal entropy method and the variance-based methods of Yager [25] and
Fullér and Majlender [9], Wang and Parkan [20] proposed the minimax disparity
method in which the objective is to minimize the maximum absolute difference
between two adjacent weights. Liu [14] proved the equivalence of the solutions of
the minimum variance approach suggested by Fullér and Majlender [9] and the min-
imax disparity model proposed by Wang and Parkan [20] under a given degree of
orness. Extensions of disparity-based models for determining OWAweights are pre-
sented in [1, 8, 10, 18, 19]. In this paper, we focus on the minimax disparity model
since it has recently received a great deal of interest in the literature and is easy to
solve due to its simple linear programming formulations.

The usual academic instances of the minimax disparity model focus on solving
problems with small dimensions (n = 3, 4, 5, 6). However, in applied operational
research, optimization problems are often much more complex and require a heavy
computational demandwhen there are hundreds or thousands of variables. In order to
overcome the complexity of high-dimensional problems, we consider the binomial
decomposition framework, proposed by Calvo and De Baets [6], see also Bortot and
Marques Pereira [4] and Bortot et al. [3, 5], which refers to the k-additive framework
introduced by Grabisch [11–13]. This framework allows us to transform the original
problem, expressed directly in terms of theOWAweights, into a problem inwhich the
weights are substituted by anewset of coefficients. In this transformed representation,
we can consider only a reduced number of these coefficients, associated with the
first k-additive levels of the OWA function, and we can set the remaining coefficients
to zero. Preliminary experiments show that the solution found for the transformed



Simplifying the Minimax Disparity Model for Determining … 379

model can still be a good approximated solution for the original model, while the
computational demand in high-dimensional problems can be significantly reduced.

The remainder of this paper is organized as follows. In Sect. 2 we briefly review
the OWA functions and their representation in the binomial decomposition frame-
work. Section 3 reviews the recent development of the minimax disparity model for
determining OWA weights. In Sect. 4 we recall the minimax disparity model and
reformulate it in terms of the coefficients in the binomial decomposition framework.
We illustrate our approach for dimension n = 10, 20, 30, 40. Finally, Sect. 5 contains
some conclusive remarks.

2 OWA Functions and the Binomial Decomposition
Framework

In this section we consider a point x ∈ R
n , with n ≥ 2. The increasing reordering of

the coordinates of x is denoted as x(1) ≤ · · · ≤ x(n). We now introduce the definition
of the OWA function and its characterizing measures.

Definition 1 An Ordered Weighted Averaging (OWA) function of dimension n
is an averaging function A : Rn −→ R with an associated weighting vector w =
(w1, . . . ,wn) ∈ [0, 1]n, such that

∑n
i=1 wi = 1 and

A(x) =
n∑

i=1

wi x(i). (1)

Different OWA functions are classified by their weighting vectors. The OWA
weights are characterized by two measures called orness and disparity. In the fol-
lowing part we review these two measures and their properties.

Definition 2 Consider an OWA function with an associated weighting vector w =
(w1, . . . ,wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1, two characterizing measures called

orness and disparity are defined as

Orness(w) = 1

n − 1

n∑

i=1

(i − 1)wi , Dispari ty(w) = max
i∈{1,...,n−1} |wi − wi+1|.

(2)

Yager [23] introduced the orness measure to evaluate the level of similarity between
the OWA function and the or (maximum) operator. On the other hand, the disparity
measure, as proposed byWang and Parkan [20], is defined as the maximum absolute
difference between two adjacentweights. Its value shows howunequallymulticriteria
evaluations are taken into account in the aggregation process. BothOWAcharacteriz-
ing measures are bounded in the unit interval. Three special OWAweighting vectors
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are w∗ = (1, 0, . . . , 0), wA = ( 1n , . . . ,
1
n ) and w∗ = (0, . . . , 0, 1). For these vectors

we have the orness equal to 0, 0.5, 1 and disparity equal to 1, 0, 1, respectively.
In the following we recall the binomial decomposition of the OWA functions

proposed by Calvo and De Baets [6], see also Bortot and Marques Pereira [4].

Definition 3 The binomial OWA functions C j : Rn −→ R, with j = 1, . . . , n, are
defined as

C j (x) =
n∑

i=1

wji x(i) =
n∑

i=1

(n−i
j−1

)

(n
j

) x(i) j = 1, . . . , n (3)

where the binomial weights wji , i, j = 1, . . . , n, are zero when i + j > n + 1,
according to the usual convention that

(p
q

) = 0 when p < q, with p, q = 0, 1, . . ..

Theorem 1 (Binomial decomposition) Any OWA function A : Rn −→ R can be
written uniquely as

A(x) = α1C1(x) + α2C2(x) + · · · + αnCn(x) (4)

where the coefficientsα j , j = 1, . . . , n, are subject to the boundary andmonotonicity
conditions,

α1 = 1 −
n∑

j=2

α j ≥ 0 and
n∑

j=2

[
1 − n

(i−1
j−1

)

(n
j

)
]
α j ≤ 1 i = 2, . . . , n (5)

The detailed proof of Theorem 1 is given in Bortot and Marques Pereira [4].
The binomial decomposition (4) expresses the linear combination between the

OWA weights and the coefficients α j and can be written as the linear system

⎧
⎪⎪⎨

⎪⎪⎩

w1 = w11α1 + w21α2 + · · · + wn−1,1αn−1 + wn1αn

w2 = w12α1 + w22α2 + · · · + wn−1,2αn−1

. . . .
wn = w1nα1

(6)

where the binomialweightswji = (n−i
j−1)
(nj)

, i, j = 1, . . . , n, and the coefficientsα j , j =
1, . . . , n, are subject to the conditions (5).

We notice that the coefficient matrix of the linear system is composed of the

binomial weightswji = (n−i
j−1)
(nj)

, i, j = 1, . . . , n, with the first n − j + 1weights being

positive and non-linear decreasing, and the last j − 1 weights equal to zero. Hence
there always exists a unique vector of coefficients alpha satisfying the linear system
which is triangular and whose coefficient matrix is full rank and invertible.
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3 The Minimax Disparity Model for Determining OWA
Weights

In this section, we briefly review the recent development of the specific class of
OWA functions whose weights are determined by the minimax disparity methods. In
2005 Wang and Parkan [20] revisited the maximum entropy method introduced by
O’Hagan [17] and proposed the minimax disparity procedure to determine the OWA
weights in the convex optimization problem

Min.

{

max
i∈{1,...,n−1} |wi − wi+1|

}

(7)

s.t.
n∑

i=1

wi = 1, Orness(w) = η = 1

n − 1

n∑

i=1

(i − 1)wi , 0 ≤ wi ≤ 1

where 0 ≤ η ≤ 1 stands for the orness of the weighting vector.
The objective function is non-linear due to the absolute difference between two

adjacent weights. In order to overcome this non-linearity, the authors introduced a
new variable called δ = maxi∈{1,...,n−1} |wi − wi+1| and described the original prob-
lem equivalently as

Min. δ (8)

s.t.
n∑

i=1

wi = 1, Orness(w) = η = 1

n − 1

n∑

i=1

(i − 1)wi ,

wi − wi+1 − δ ≤ 0, wi − wi+1 + δ ≥ 0, 0 ≤ wi ≤ 1.

4 The Minimax Disparity Model and the Binomial
Decomposition

In Sect. 3, we have reviewed minimax disparity methods for determining OWA
weights. The empirical results of those methods are obtained for small dimensions
(n = 3, 4, 5, 6). In real-life scenarios, we usually encounter large-scale optimization
problems. In this context, the optimization problems formulated directly in terms of
the OWAweights require high computational resources. Our objective is to make the
minimax disparity methods for determining OWA weights more tractable in high-
dimensional problems.

In the binomial decomposition framework, any OWA function can be expressed
uniquely into a linear combination of the coefficients α j , j = 1, . . . , n, and the bino-
mial OWA functions as described in Sect. 2. The positive aspect of the binomial
decomposition framework is the possibility of using k-additive levels in which a



382 T. H. Nguyen

certain number of coefficients α1, . . . , αk , where k ≤ n, are used in the process of
OWA weights determination while the remaining coefficients are set to zero. Using
less coefficients can markedly reduce the computation time.

We now transform the minimax disparity model (8) into a problem in which the
weights are substituted by a set of coefficients α j , j = 1, . . . , n,

Min. δ

s.t.
n∑

i=1

α j = 1, Orness(α) = η =
n∑

j=1

n − j

(n − 1)( j + 1)
· α j ,

n−i+1∑

j=1

wjiα j −
n−i∑

j=1

wj,i+1α j − δ ≤ 0 i = 1, . . . , n − 1,

n−i+1∑

j=1

wjiα j −
n−i∑

j=1

wj,i+1α j + δ ≥ 0 i = 1, . . . , n − 1,

n∑

j=2

[
1 − n

(i−1
j−1

)

(n
j

)
]
α j ≤ 1 i = 1, . . . , n (9)

where 0 ≤ η ≤ 1 stands for the orness of the weighting vector. Notice that the first
and the last constraints correspond to the boundary and the monotonicity conditions
of the OWA weighting vector w = (w1, ...,wn) ∈ [0, 1]n with ∑n

i=1 wi = 1.
In Table 1 we report the empirical results of our proposed model with full-

dimension coefficients alpha (k = n) for the case n = 10. The coefficients alpha
for the central orness value 0.3, 0.4, 0.5, 0.6 and 0.7 have high sparsity. In par-
ticular, the sparsity of coefficients alpha is 90% for orness η = 0.5 and 80% for
orness η = 0.3, 0.4, 0.6, 0.7. This suggests that by using a smaller k-additive level
(k < n) one can exploit the sparsity of the model and speed up the performance of

Table 1 The coefficients alpha of our proposed method for n = 10

Orness η 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

α1 10 4.3 2.71 1.98 1.49 1 0.51 0.02 0 0 0

α2 −45 −5.4 −1.93 −0.98 −0.49 0 0.49 0.98 0 0 0

α3 120 0 0 0 0 0 0 0 0 0 0

α4 −210 0 0 0 0 0 0 0 3 0 0

α5 252 12.6 0 0 0 0 0 0 0 0 0

α6 −210 −16.8 0 0 0 0 0 0 −9 0 0

α7 120 2.4 0 0 0 0 0 0 13.71 8.4 0

α8 −45 9 1.29 0 0 0 0 0 −9.64 −13.5 0

α9 10 −6.5 −1.57 0 0 0 0 0 3.43 7.5 0

α10 −1 1.4 0.5 0 0 0 0 0 −0.5 −1.4 1



Simplifying the Minimax Disparity Model for Determining … 383

Fig. 1 Computation time of the original model and our proposed model with various degrees of
orness for n = 10, 20, 30, 40
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solvers. In Fig. 1 the performance of the CPLEX solver is shown, with respect to
the original method, and our proposed method for the two k-additive levels k = n
and k = 2. The graph shows the average running time (out of 300 runs), includ-
ing the standard error, for various orness degrees η = 0.50, 0.45, 0.40, 0.35, 0.30
and dimensions n = 10, 20, 30, 40. The proposed method with full-dimension coef-
ficients alpha facilitates the solver for some orness degrees. Notably, for orness
η = 0.5, this method is always faster the conventional one due to its high sparsity
(90%). For the other degree of orness, the proposed model with full-dimension alpha
and the conventional model do not differ significantly. Even though bothmodels have
the same number of constraints and variables, the constraints of coefficients alpha
related to the monotonicity condition in model (9) are more complex than those in
model (8). As a result, the full-dimension proposed model requires more computa-
tion time than the conventional method for some orness values. However, we note
that applying the proposedmethodwith lower-dimensional coeffcients alpha (k < n)
substantially improves the performance. The number of variables used in our model
reduces by (1 − k

n )%.
As shown in Fig. 1 the solver spends less time to obtain precisely the optimal

weights with our proposed method with 2-additive level (k = 2). When the orness
value differs significantly from the central orness, for instance η = 0.30, the model
with the 2-additive level is adequate for identifying OWA weights for n = 10 while
a larger number of coefficients alpha is needed for n = 20, 30, 40.

Experiments show that the proposed approach with a reduced number of variables
can assist decision makers in finding OWAweights faster for some degrees of orness.
In the remaining cases, decision makers can exploit the flexibility of the model and
choose the k-additive level that provides the best trade-off between the computational
demandand the accuracyof the approximated andpossibly suboptimalOWAweights.
As an example, we consider our proposed model with the orness value equal to 0.2.
If the k-additive level increases from 3 to 10, we obtain better objective values as

Fig. 2 The objective value δ

corresponding to the
k-additive levels (for the
cases k = 1, 2 there is no
solution of coefficients
alpha). Reproduced with
permission from
arXiv:1804.06331

http://arxiv.org/abs/1804.06331
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expected (see Fig. 2). However it is evident that k = 7 leads to the best trade-off
between the accuracy of the optimal value and the dimensionality reduction of the
optimization problem.

5 Conclusions

This paper proposes a new methodology for determining OWA weights in large-
scale optimization problems where the cost of computation of optimal weights is
very high. Our model allows the optimization of the OWAweights to be transformed
into the optimization of the coefficients in the binomial decomposition framework,
considering the k-additive levels in order to reduce the complexity of the proposed
model. Empirical results show that a small set of the coefficients in the binomial
decomposition can efficiently model the full-dimensional set of the OWA weights.

However, there are still some issues that need to be addressed in future research.
For instance, applying the proposedmethod to non-linearOWAweight determination
models may significantly reduce the computation time. It is necessary to develop
an algorithm to identify which k-additive level in the set {1, . . . , n} gives the best
trade-off between accuracy and computational complexity according to the specific
applications.
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Fleet Size and Mix Pickup and Delivery
Problem with Time Windows: A Novel
Approach by Column Generation
Algorithm

M. N. Tchoupo, A. Yalaoui, L. Amodeo, F. Yalaoui and P. Flori

Abstract In this paper, a new efficient column generation algorithm is proposed to
tackle the Fleet Size and Mix Pick-up and Delivery Problem with Time Windows
(FSMPDPTW). This work is motivated by fleet sizing for a daily route planning
arising at a Hospital centre. Indeed, a fleet of heterogeneous rented vehicles is used
every day to pick up goods to the locations and to deliver it to other locations. The
heterogeneous aspect of the fleet is in term of fixed cost, capacity, and fuel consump-
tion. The objective function is theminimization of the total fixed cost of vehicles used
and the total routing cost. The problem is modelled as a set partitioning problem,
and an efficient column-generation algorithm is used to solve it. In the resolution, the
pricing problem is decomposed in sub-problems, such that each vehicle type has its
own sub-pricing problem. Amixed integer linear program, a powerful labelling algo-
rithm and the regret heuristic is provided to solve the pricing sub-problems. Based
on Li and Lim’s benchmark (altered Solomon’s benchmark) for demands and from
Lui and Shen’s benchmark for vehicles types; a new set of benchmarks is proposed
to test the efficiency of the propound algorithm.
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1 Introduction

In Pickup and Delivery Problem with Time Windows (PDPTW), the demands are
paired and every pair is a request which must be satisfied in the same route and by the
same vehicle. Each request consists of delivering goods from a predefined location
(pickup customer) to other one (delivery customer). In the literature, a lot of works
in PDPTW didn’t consider the fleet dimensioning in heterogeneous fleet case.This
problem can be described as the problem of designing least cost routing plan to
satisfy a set of transportation requests by a given heterogeneous fleet of vehicles.
Each route starts and ends at the depot. Each customer must be served within a given
time window. The amount of goods must not exceed the capacity of the vehicle. The
service time indicates how long it will take for the pickup or delivery to be performed.
A vehicle is allowed to arrive at a location before the beginning of its time windows,
and in this case must wait until the start of the time window. For each request, the
pickup customer must be visited before the corresponding delivery customer with
the same vehicle and the same route, but not necessarily immediately after. In this
problem, an unlimited fleet of vehicles with a fixed capacity is considered. The
problem is NP-hard because it contains the PDPTW which is NP-Hard [2]. In this
work, it is assumed that the matrix of distance and the matrix of time satisfies the
triangular inequality.

The Fleet Size and Mix Vehicle Routing Problem (FSM) was introduced by [4]
in which the vehicles fleet is considered as heterogeneous and unlimited. The FSM
with fixed and variable costs was introduced by [3]. A classification and a review of
the literature on the Fleet Size andMix Vehicle Routing Problemwith timeWindows
(FSMTW) is provided by [5]. Li and Lim [6] proposed a tabu-embedded simulated
annealing algorithm to solve the Pickup and Delivery Problem with Time windows
(PDPTW). They proposed six newly-generated different data sets with various dis-
tribution properties. An adaptive large neighbourhood search heuristic was proposed
by [11]. For a survey on pickup and delivery problems until 2008, see [9].

Recently, many extensions of PDPTW problems motivated by real life problem
were discussed in literature. Xu et al. [12] proposed a set partitioning formulation to
solve a practical heterogeneous fleet pickup and delivery problemwith constraints on
unloading sequence. They also take into account practical aspects such as: multiple
time windows, multiple depots, compatibility constraints between carrier and vehi-
cles, orders and vehicles, and between orders. Qu and Bard [10] introduces a variant
of the heterogeneous pickup and delivery problem in which the capacity of each
vehicle can be modified by reconfiguring its interior to satisfy different types of cus-
tomer demands. They developed a two-phase heuristic that makes use of ideas from
greedy randomized adaptation search procedures with multiple starts. Noumbissi
Tchoupo et al. [8] developed a Bender’s decomposition algorithm for PDPTW with
heterogeneous fleet (HVRPPDTW) to minimize the sum of vehicle fixed costs and
the total routing cost.

In this paper a new variant of the PDPTWproblem is considered. It is an extension
of PDPTW by considering re-sizing of the heterogeneous vehicle fleet. Because
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PDPTW is an NP hard problem, FSMPDPTW is also an NP hard problem. In Sect. 2,
a set partition formulation is proposed tomodel it. Solutionmethodology to solve this
NP hard problem, is presented in Sect. 3. Amixed integer linear program is proposed
in Sect. 3.1; in Sect. 3.2 is presented different ways to reduce the search space, and
a labelling algorithm is proposed in Sect. 3.3. In Sect. 3.4, a fast heuristic algorithm
is proposed to quickly generate columns with negative reduced cost. Section 4 is
dedicated to numerical experiment.

2 Problem Formulation

This section presents a set partitioning formulation for FSMPDPTW to model the
problem, based on the set partitioning formulation of [1]. The formulation uses a
directed graph G = (V ′,E), where V ′ = {0, . . . , 2n} is a set of 2n + 1 nodes and E
is a set of edges. Node 0 represents the depot and the set V = V ′ \ {0} corresponds
to the 2n customers. Let P = {p1, . . . , pn} the set of n pickup demands and D =
{d1, . . . , dn} the set of n delivery demands. K is the set of vehicles types. Qk is the
capacity, f k the fixed cost and vk the cost per unit of distance of a vehicle type k
∀k ∈ K . The travel time (respectively distance) to get to the location of demands
j from the location of demand i is noted tij (respectively dij), si is the time service
required at the node i, qi the amount of goods to pickup or deliver for node i, ei
the earlier time at which the service may begin at node i and li the latest time at
which the service may begin at node i. For i ∈ {1, . . . , n} pickup demand pi and its
corresponding di delivery demand comply the equation :

qpi = −qdi (1)

The set of edges E is formally defined by Eq. (2).

(i, j) ∈ E ⇐⇒
{

ei + si + tij ≤ lj and
∃k ∈ K/ qi + qj ≤ Qk and |qi| ≤ Qk and |qj| ≤ Qk (2)

A route r = (0, i1, . . . , il, 0) performed by a vehicle of type k, is a cycle starting and
ending at the depot 0, passing by the customers {i1, . . . , il} ⊂ V , and complying the
constraints of timewindows, capacity of a vehicle of type k and the paring constraints.
Pairing constraints means that if a pickup is served in a route, then the corresponding
delivery is served by the same route and after the pickup demand.

Let Rk be the set of index of all feasible routes of vehicle type k ∈ K and let
R = ⋃

k∈K Rk . For each route r ∈ Rk , a routing cost ckr is associated. Rk
r is the

subset of customers visited by the route r ∈ Rk . Furthermore, let λρ be a binary
variable equal to 1 if and only if ρ ∈ R is chosen in the solution. Note that for
all ρ ∈ R, there is vhρ ∈ K and rρ ∈ Rkρ such that: ρ = rρ . The set partitioning
formulation of the problem is the following:
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(MP) Minimize
∑
ρ∈R

(f vhρ + c
vhρ

rρ )λρ (3)

∑
ρ∈R /i∈ρ

λρ = 1, (πi) ∀i ∈ P; (4)

λρ ∈ {0, 1}, ∀ρ ∈ R. (5)

In this formulation, the objective function (3) minimizes the total cost. Constraints
(4) specifies that each pickup demand p ∈ P must be covered once by one route, and
involves that the corresponding delivery is served in the same route and by the same
vehicle. ∀i ∈ P, πi is the dual variable associate to constraint (4).

3 Solution Methodology

The master problem (MP) has an exponential number of variables (|R| = |K |22n+1

variables) and n = |P| constraints. The linear relaxation of (MP) is easier to solve
than (MP) and if the optimal solution of linear relaxation is integer, then it is the
optimal solution of (MP). For large networks, the number of variables in the master
problem becomes prohibitive, and it is not possible to generate all the variables of the
master problem. The idea of the column generation is to work only with a sufficiently
meaningful subset of variables, considered in the restricted master problem (RMP).
In the rest of the paper, the linear relaxation of (RMP) is noted by (LRMP). In column
generation, an iteration consists firstly of optimizing the restricted master problem
in order to determine the current optimal objective function value z̄ and the dual
multipliers π . Secondly, it consists of finding, if it exists, a variable λρ with negative
reduced cost. If the cost of an optimal solution of the pricing problem is positive,
there is no improving variable and the solution found by the linear relaxation of the
master problem is optimal. Otherwise, the founded variable is added to the (LRMP)

and the process is repeated. When the optimal solution of (LRMP) is not integer, in
order to obtain integer solutions to the original problem, (RMP) is solved. In this
case, it is not possible to know if the solution obtained by the (RMP) is the optimal
solution of the (MP).

3.1 Pricing Problem Formulation

The problem studied allows to subdivide the pricing problem in |K | sub-pricing
problems, with a problem for each vehicle type. Given the dual multipliers π of the
(LRMP) and a type k ∈ K of vehicle, the sub-pricing problem is modelled by a linear
integer program. Given the decisional variables:
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• xij is a binary variable equal to 1 if the vehicle k travels from the location of demand
i to the location of demand j;

• Ti is the time at which vehicle k begins the service at node i;
• Qi,j is the number of item in the vehicle k on the arc (i, j).

The mixed integer linear program is defined by:

(PRk) Minimize: f k +
∑

(i,j)∈A
(vkdij − π∗

i )xij (6)

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ P; (7)

∑
j:(i,j)∈A

xij =
∑

j:(n+i,j)∈A
xn+i,j, ∀i ∈ P, (8)

∑
i∈P

x0i ≤ 1; (9)

∑
i∈P

x0i =
∑
i∈D

xi0, (10)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A
xji, ∀i ∈ P ∪ D; (11)

∑
j:(i,j)∈A

xij =
∑
j∈P

x0j, ∀i ∈ P ∪ D, (12)

Qij ≤ Qkxij, ∀(i, j) ∈ A; (13)

∑
i∈P

Q0i =
∑
i∈D

Qi0; (14)

∑
j:(i,j)∈A

Qij −
∑

j:(i,j)∈A
Qji = qi

∑
j:(i,j)∈A

xij, ∀i ∈ P ∪ D; (15)

Ti + (li + si + tij)xi,j ≤ Tj + li, ∀(i, j) ∈ A; (16)

Ti + (si + Ti,n+i)
∑

j:(i,j)∈A
xij ≤ Tn+i, ∀i ∈ P; (17)

xij ∈ {0, 1},Ti ∈ [ei, li] ,Qij ∈ [
0,Qk

] ∀i, j ∈ N . (18)

The objective function (6) minimizes the reduced cost of a path. Constraints (7)–(9)
assure that each pickup demand is served atmost once and the corresponding delivery
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demand is served in the same route. Constraints (10)–(12) guarantee that the route
starts and ends at the depot. Constraints (13)–(16) assure the respect of timewindows
and the capacity constraints. Constraint (17) assures that every delivery demand is
satisfied after the corresponding pickup demand but not necessary immediately after
the pickup demand. For a given vehicle type k ∈ K , the solution of the sub-problem
of pricing associated is a path starting at the depot and ending at the depot, under
pairing, precedence, time window and capacity constraints. The proposed model is
based on a graph. So in the next section, the acceleration techniques are provided to
reduce the search space and speed up the resolution of problem.

3.2 Reduction of the Search Space

In this subsection, is presented different ways to reduce the search space by sup-
pressing infeasible arcs in A. Considering the graph G = (V ′,A), Dumas et al. [2]
suggested a set of infeasible arcs for PDPTW. It is proposed to add:

• (pi, pj) ∈ A and (pj, di) ∈ A are infeasible if epi + tpipj + tpjdi > ldi ,
• (pi, dj) ∈ A and (dj, di) ∈ A are infeasible if epi + tpidj + tdjdi > ldi ,
• (pi, pj) ∈ A is infeasible if qpi + qpj > Qk for all k ∈ K .

In the following, all infeasible arcs above are removed from G = (V ′,A). Also
in the aim to speed up the resolution of the pricing problem, a criteria is proposed
to identify and remove the requests whose associate dual value is not interesting
compare to cost required to complete it.

Proposition 1 Let i0 ∈ P and k ∈ K; if:

mi0v
k > πi0 , then,

∑
j:(i0,j)∈A

xi0j = 0;

with mi0 =mini,j∈N zi,j,i0 + mini,j∈N zi,j,n+i0 , and ∀i, j, b ∈ N , zi,j,b = di,b + db,j− di,j ,
if (0, i, b, j) is a feasible path, and equal to infinity otherwise.

In the next subsection, a labelling algorithm is proposed to solve the sub-pricing
problem to optimality.

3.3 Labelling Algorithm

In our study case, the sub-pricing problem is the search of a path with a negative
reduce cost. The idea in labelling algorithm is to evaluate all possible paths in the
graph. To speed up the generation and the evaluation of paths, dominance criteria are
used. In this study, it is assumes that the matrix of distance and the matrix of time
verify triangular inequality. In the proposed labelling algorithm, labels are extended
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from the source to the pickup demands. Each label, is constituted by:η the last node
of the partial path, t the departure time from the last node, qt the total load after
visiting the last node, c the accumulated cost, D the set of the delivery demands
not yet completed such that the corresponding pickup demand has been completed,
P the set of the pickup demands completed, such that the corresponding delivery
demand has been completed. The reference of each parent label is also stored. The
notations ηL, tL, qtL, cL,DL,PL are used to refer to the attributes of the label L. A
label L can be extended along arc (ηL, pj) (pj is a pickup demand) if:

1. (ηL, pj) ∈ A and pj /∈ P ,
2. qtL + qpj ≤ Qk (pricing problem associated to the type of vehicle k ∈ K).

A label L can be extended along arc (ηL, dj) (dj is a delivery demand) if:

(ηL, dj) ∈ A and dj ∈ D .

Proposition 2 A label L′ is dominated by label L if:

1. ηL = ηL′ ,
2. tL ≤ tL′ ,
3. cL ≤ cL′ ,
4. PL′ ⊆ PL,
5. DL ⊆ DL′ .

3.4 Heuristic Algorithm for a Sub-pricing Problem

In this section, fast heuristic is proposed to accelerate the resolution of the (LRMP).
The heuristic proposed in this section are based on the well know greedy heuristic.
At each iteration of the algorithm, one request is chosen to be insert. Let diffCost{i},ρ
denote the change in objective value induced by inserting pickup demand i and its
delivery demand i + n into the route ρ and at the positions that decrease the most
the objective value. If the demand i cannot be inserted in route ρ, then the cost is
considered as infinity. Finally the pickup demand p (and its delivery demand) inserted
is the one such that:

p = argmin i∈U diffCost{i},ρ

Where U is the set of unplanned requests. This process continues until no more
request can be inserted. This heuristic were inspired by heuristics described in [11].

4 Computational Experiments

The algorithms have been implemented on eclipse, the programming language was
Java and the experiments have been carried out on a 2.6 GHz and 8 Go of RAM.
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To test the effectiveness of the proposed algorithm, the generation of the instances
with reasonable size up to 100 demands is obtained by coupling Li and Lim’s Bench-
marks for the PDPTW and Lui and Shen’s [7] benchmark for the set of types of
vehicles. Computational results are summarized in the Tables 1, 2 and 3. And the
solution gap is defined by (100 × (solution value-lower bound)/lower bound) (com-
monly use). Inst is the name of the instance, Lab design the labelling algorithm,
LB is the lower bound obtained by Lab. And the instances in bold was solved to
optimality.

In all configurations, the resolution of the pricing problem by labelling algorithm
outperformed the resolution by the Mixed integer linear program (MILP). It is best
in quality of solution and in computational time. The labelling algorithm allows to
have a lower bound for 98% of the instances. And in average, the gap between the
upper bound found by and the proposed column generation algorithm is 12%.

5 Conclusion

In this paper, an effective column generation algorithm is proposed to tackle a new
combination of Fleet Size andMixVehicleRouting Problem andPickup andDelivery
Problem with Time Windows. A set partitioning formulation is provided to model
it and a based-column generation algorithm was proposed to solve it. A labelling
algorithm, the heuristics and the acceleration techniques are provided to speed up
the resolution. A new set of benchmarks is proposed. The proposed algorithms are
able to find an optimal solution for 21% of the instances, and for the instances with
small time windows, it returns a solution close to optimal solution (with a gap of 2%
on average). The experiments show that the designed labelling algorithm is better
(quality and computational time) than the proposed mixed integer linear program.
In the future, it would be also interesting to extend the problem by considering:
multi-depot or multi-dimensional loading.
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Designing the Municipality Typology
for Planning Purposes: The Use
of Reverse Clustering and Evolutionary
Algorithms

Jan W. Owsiński, Jarosław Stańczak and Sławomir Zadrożny

Abstract The paper presents the preliminary results of a study, meant to determine
the typology of the Polish municipalities (roughly 2500 in number), oriented at plan-
ning and programming purposes. An initial typology of this kind was elaborated by
the geographers, based on a number of individual features, as well as location-related
characteristics. This typology is “re-established” or “approximated” via the “reverse
clustering” approach, elaborated by the authors, consisting in finding the parameters
of the clustering procedure that yield the results the closest to the initial typology,
for the set of municipalities, described by the definite set of variables. Altogether,
one obtains the clusters (types, classes) of municipalities that are possibly similar to
the original ones, but conform to the general clustering paradigm. The search for the
clustering that is the most similar to the initial typology is performed with an evolu-
tionary algorithm. The paper describes the concrete problem, the approach applied,
its interpretations and conclusions, related to the results obtained.

Keywords Clustering · Reverse clustering · Municipalities · Typology · Planning
Spatial planning

1 Introduction: The Generic Problem

Several decades ago the issue of “regionalisation”, meaning the “optimumdivision of
space into coherent parts for planning, programming and policy purposes” was very
much on the scientific and political agenda. This was linked with both the emergence
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of the territorial planning and management, and the political need to address the
grassroots initiatives. Among the methodologies tried out, clustering was one of the
most frequent and important. Since that time the focal points changed a lot and the
issue apparently ceased to be of such importance.

Yet, the very problem remained: if a country, like Poland, consists of, say, 2500
municipalities, highly differentiated in terms of area, population, socio-economic
function and economic power—often by several orders ofmagnitude (!)—and largely
self-governed, then it becomes extremely important to design the policies and strate-
gies not for all of them, and not for each of them, but for their definite (“optimally
designed”) classes.

It is assumed that very similar, if not the same, policies, rules and strategies
would be designed by the central authority, and negotiated with the body of the
municipalities, for the so designed classes. So, one should account in this design for
the essential socio-economic, demographic and resource-environmental aspects of
the units considered.

Thus, notwithstanding the shifts in fashions and scientific focuses, studies are
performed of delimitation of geographical areas that should be subject to diversified
treatment in policy terms. An instance of the aspect that ought to be accounted for is
the economic viability of the municipalities. This is also the case of Poland—a high
share of remote rural municipalities cannot cope with ageing, poverty, lack of jobs,
outflowof the young etc.At the other extreme are the dense urban cores, featuring also
population outflow, but, simultaneously, increasing density and intensity of business
and intellectual activity, with sky-rocketing real estate prices.

The question arises: are we able to assess and to improve upon the expert-provided
spatial divisions, produced for policy purposes?What are the respectivemethodolog-
ical proposals? How do they work?

2 The Concrete Question—And the Way to Answer It

2.1 The Typology of Municipalities

In the light of the above, we consider the typology of municipalities, elaborated
for the territory of Poland by the specialists from the Institute of Geography and
Spatial Organization of the Polish Academy of Sciences in Warsaw. This typology
was elaborated in two versions, the basic one consisting of ten municipality classes,
as shown in Table 1. Municipalities were classified into these categories, with the
idea of applying diversified policies and strategies to them. Now: given that the
future of millions of people in such units depends on these policies, and hence the
classification, how can we assert it is “correct”?
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Table 1 Functional typology of Polish municipalities

Functional types Number of units Population Area

Number % in ‘000 % ‘000 km2 %

1. Urban functional cores of
provincial capitals

33 1.3 9557 24.8 4.72 1.5

2. Outer zones of urban
functional areas of provincial
capitals

266 10.7 4625 12.0 27.87 8.9

3. Cores of the urban areas of
subregional centres

55 2.2 4446 11.6 3.39 1.1

4. Outer zones of urban areas
of subregional centres

201 8.1 2409 6.3 21.38 6.8

5. Multifunctional urban
centres

147 5.9 3938 10.2 10.39 3.3

6. Communes having
pronounced transport
function

138 5.6 1448 3.8 20.06 6.4

7. Communes having
pronounced non-agricultural
functions

222 9.0 1840 4.8 33.75 10.8

8. Communes with intensive
farming function

411 16.6 2665 6.9 55.59 17.8

9. Communes with moderate
farming function

749 30.2 5688 14.8 93.83 30.0

10. Communes featuring
extensive development

257 10.4 1878 4.9 41.59 13.3

Totals for Poland 2479 100.0 38,495 100.0 312.59 100.0

Source Śleszyński and Komornicki [7]

2.2 The Reverse Clustering Approach

The proposal that we forward here is as follows: let us estimate, how precisely this
expert-provided classification can be re-created with the possibly broadly conceived
clustering approach, representing a systematic and methodologically coherent per-
spective. This is exactly what the “reverse clustering” approach is about (see, e.g.
[5]). Namely, given a set of objects X, indexed i, i �1, …, n, represented by vectors
xi, xi � (xi1,…, xik ,…, xim), and its partition P into subsets (clusters) Aq, q = 1,…, p,
we wish to determine the clustering procedure that would yield the partition most
similar to P. The clustering procedure that we seek is represented by a vector Z ,
including: (1) the algorithm applied (progressive merger, k-means, density, …), (2)
the parameters of the algorithm (e.g. the cluster number in k-means), (3) the weights
of variables, and (4) the distance function (as represented, say, by the Minkowski
exponent).
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Thus, having the initial partition P, we look for some P*, produced by a clustering
procedure, that would be most similar to P. The criterion we use is the basic or
derivative of the Rand index (counting the pairs in the same cluster in P and in P*

and in a different cluster in the two partitions).
The search in the space of feasible Z is performed with an algorithm, developed

by one of the authors [6], a two-level evolutionary procedure, where the operators
applied (basically, crossover andmutation, with definite excursions allowed) are also
subject to selection and evolution, depending upon their previous performance for a
given thread of individuals. The choice of the evolutionary algorithm was made in
view of the cumbersome landscape of optimisation (shape of the objective function
and the constraints). At this stage, the issue of computational burdenwas of secondary
importance.

The “optimum” clustering procedure found provides a rationale for the partition,
indicating the particular instances of difference that should be considered in a par-
ticular manner. At the same time, it might be a confirmation for the initial partition
P, even if definite divergences occur.

In the study here illustrated we referred to three basic, andmost popular clustering
paradigms, namely: k-means (see [4, 8]), classical hierarchical aggregation (see [2,
3]), and DBSCAN density algorithm (see [1]).

3 The Reverse Clustering Exercise and Its Preliminary
Results

3.1 The Preliminaries

The analysis here presented in its preliminary stage, addresses the classification,
mentioned before, of the Polish municipalities. Since the particular classes address
millions of inhabitants, we would very much like to know, to what extent they can be
reconstructed with the possibly well fitted clustering procedures, meaning that they
can be—hypothetically—more objectively justified.

The study consisted in (1) establishment of the list of variables, characterising
the municipalities, (2) the processing of values of these variables so as to facilitate
the running of the consequent procedure, (3) running of the “reverse clustering”
procedure, so as to minimise the gap between the partition P and the one obtained
from the clustering procedure, P*.

Table 2 shows the variables, selected on the substantive basis to characterise
the municipalities. Given the complexity of the setting—the variables, the spatial
circumstances, the criteria—no wonder there appears a wide discrepancy between
the categorisations obtained, as shown in an exemplary contingency table, Table 3.

Besides the sheer complexity, there is a difference as to how the two typolo-
gies were produced—for the original one, the procedure involved several steps, at
which various criteria were applied, some hardly directly quantifiable (e.g. the role of
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Table 2 Variables describing municipalities, accounted for in the study

No. Variable No. Variable

1 Population density 10 Share of registered employed persons

2 Share of agricultural land 11 Number of businesses per 1000
inhabitants

3 Share of overbuilt areas 12 Average employment in a business
indicator

4 Share of forests 13 Share of businesses from
manufacturing and construction

5 Share of population in excess of
60 years

14 Number of pupils and students per
1000 inhabitants

6 Share of population below 20 years 15 Number of students in above primary
schools per 1000 inhabitants

7 Birthrate for the last 3 years 16 Own revenues of the municipality per
capita

8 Migration balance rate for the last
3 years

17 Share of revenue from Personal
Income Tax in municipal revenues

9 Average farm acreage indicator 18 Share of expenditures into social care
in total of expenditures from
municipal budget

Source Own elaboration

transport), the criteria differing among the municipality types, distinguished on the
preceding steps of the procedure, so that one could easily expect the kind of results,
illustrated in Table 3.

Table 3 (and that despite low coincidence with the initial partition: only 46%)
confirms the general outline of the initial partition. So, out of 10 initial classes, 5 are
represented by the “reconstructed” ones, gathering the majority of items from the
initial ones (classes 1, 3, 4, 8, and 9), and 3 classes, containing the biggest shares
(even if at a par with some other ones) of the items in the class (nos. 2, 6 and 7).
The remaining two classes, 5 and 10, must be subject to separate investigations. The
last one, no. 10, is replaced in the results by the single-item class (an outlier), an
extremely rich, apparently peripheral unit, where a large-scale lignite strip mine is
located, with accompanying power plant and other enterprises.

The (partial) confirmation of the general pattern of the original typology is given
by the dispersion of units in the solution among the original types. So, e.g., the original
type 1 is spread in the solution among the new types 1, 3 and 5, corresponding to
urban centres. Very similarly, the original type 3 is spread among the new types of
alike character, 3 and 5. Some doubts may arise when we look in the other direction,
namely the distribution of units in the new types among the original ones (e.g. rural
farming units falling—even if occasionally—together with the urban centres). It
should be emphasised that the diversity of the rural areas in Poland (even the new
type 10 put apart) is indeed very high, partly justifying the assignment of some of
them to other types.
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Fig. 1 Municipalities classified in the same types in original data and solution (yellow) and in
different ones (blue) Source Own elaboration

Figure 1 shows the areas classified in the same types (yellow) and in different
types (blue). The tendency towards formation of coherent areas is an indication of
the consistent character of the results and the methodology applied (the data NOT
containing any location aspect).

The results shown here come from the k-means-like algorithm, the general hier-
archical aggregation algorithm (the Lance-Williams formula providing some of the
parameters optimised) with DBSCAN also being tried out. The respective optimisa-
tion concerned altogether more than 20 variables, playing different roles in the opti-
misation exercise (e.g. variable weights vs. the cluster number or Lance-Williams
parameters).
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3.2 Some Substantive Conclusions

The results shown here provide a rich material for the substantive considerations.
Take, e.g., the last class obtained in the solution—an outlier, as mentioned, consti-
tuted by a single municipality, with features quite exceptional on the national scale.
Then, the initial class 5, definitely, highly “fuzzy”, no wonder hardly unequivocally
rendered by clustering.

In general, the clustering results confirm the overall character of the original
typology, but also, very pungently indicate the potential doubts, or even need for
corrections, in the initial classification. This is particularly well illustrated by the
entries in Table 3, such as (row/column): 1/3, 2/4, or 5/3. If one compares these with
the verbal definitions of the initial classes, the apparent confusion becomes quite
clear.

This study shall continue efforts oriented at possibly faithful rendition of the initial
typology through the use of additional variables, forming the vector Z , variations in
the treatment of the objective function (Rand index as of now), and reasons for the
divergences between the original and obtained classifications. It is hoped that this
will also yield indications as to the direction of potential corrections to the typology
of municipalities.
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A Software
for Production-Transportation
Optimization Models Building

E. Parra

Abstract Corporations are using large mixed integer mathematical programming
(MIP) models in strategic, medium term and short term planning. To build these
models it is necessary a mathematical programming language and a set of optimiz-
ers. Some expert in the particular business must code the variables, constraints and
objective function in the equations that reflect the actual problem. The person who
do this must be both an expert in the field where company operates and a mathe-
matical expert to write the mathematical model. A software to do this job easy for
the planner (non-mathematical expert) is introduced. The software uses only some
intuitive codes and data obtained from different sources. The purpose of this model
builder software is to generate MIP supply chain optimization models. A previous
version of the software has been used by large Spanish company for both medium
term detailed planning and to analyze strategic investments.

Keywords MIP models · Mathematical programming software
Supply chain optimization

1 Introduction

Industrial size mathematical programming models for joint global optimization of
supply, manufacturing and distribution operations is possible with today’s personal
computers and the availability of very good commercial optimizers. Large companies
are reporting the use ofMIPmodels.Only three examples as a sample: IBM[1],BMW
[2] or the beverage industry [3]. The optimization software industry offers very good
products to build and solve these models.

The main challenge is how to build such large models without an optimization
expert. Above examples and many more needs a specialized expert or an expensive
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consultancy job to design the model, implemented with some language, i.e.: [4–9]
for example, linked with an optimizer [10].

2 Supply Chain Optimisation

Large corporations optimize production and logistic decisions jointly. The size of
the problem to be solved is huge: even a case with 10 factories, 5 products, 20
storage facilities, 50 clients, 12 months drives to a mode with thousand variables and
constraints Also, it is common the existence of threshold quantities when we observe
the actual cases: either an activity it’s not been made or it has to be made beneath
a minimum and finally in production its common the appearance of mixtures that
must fulfil some properties. In that case semi-continuous variables appears in the
mathematical formulation. To design this type of MIP models, each company must
need expert help; the expert will use any of the commercial software available or
will design an ad hoc software. Each change must be managed by the mathematical
programming expert.

The software used can be categorized in two groups: optimizers and modelling
languages. The first one, optimizers, solves the problem, typically in matrix format.
The programmer is the responsible to fill the matrix accessing to databases and using
the accepted formulation. Of course, the software could allow some flexibility in the
problem formulation. The modelling languages help in model equations writing and,
even, in the connections with databases that contain the necessary parameters for
model building.

Table 1 shows a production and transportation optimization model written in an
algebraic meta-language similar to commercial ones. Algebraic languages code the
equations of a mathematical model … once written. The model is developed by an
expert both in the “business” and mathematical modelling.

Then, the model is solved and the solution is translated to the practical plan-
ning decisions. It is necessary consultancy forever, because some tuning or model
maintenance will be needed.

A different way to do this is introduced. The software described later builds the
mathematical model using a set of intuitive codes instead of the explicit definitions
of the elements of the model (variables, constraints …) to do the model building task
easy for the planner. Follows the last version features of this software.
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Table 1 Optimization formulation with an algebraic meta-language

TITLE  OptPlan;
INDEXES

Product := (A1, A2, A3);  month:= (Jan, Feb, Mar, Apr); 
Fact := (p1, p2, p3, p4);  FactOrigin := Fact;  FactDest:= Fact;

DATA
SalePrice[product] := (120.00, 100.00, 115.00); 
Demand[Fact, product, mes] := DATAFILE("Demand.dat"); 
CosProd[Fact, product]      := DATAFILE("CosProd.dat"); 
RatProd[Fact, product]      := DATAFILE("RatProd.dat");
DaysAvaProd [month] := (23, 20, 23, 22); 
CosInv[Fact, product] := DATAFILE("CosInv.dat");
CapStock[Fact] := (800, 400, 500, 400); 
CostTra[FactOrigin, FactDest]:= DATAFILE ("CostTra.dat"); 

VARIABLES 
Prod[Fact, product, month];  Stock[Fact, product, month];
Sales[Fact, product, month]; 
Shipping[product,month, FactOrigin, FactDest] WHERE (FactOrigin <> FactDest);   

COMPUTATIONS
TotalRev  := SUM(Fact, product, month: SalePrice * Sales); 
TotalCosProd := SUM(Fact, product, month: CosProd* Prod);
TotalCosInv := SUM(Fact, product, month: CosInv * Inventario);
TotalCostShipping := 
SUM(product,month, FactOrigin,FactDest: CostShipping * Shipping);

TotalCost     := TotalCosProd + TotalCosInv + TotalCostShipping;
MODEL

MAX Profit= TotalRev - TotalCost;
SUBJECT TO

CapProd[Fact,Month]:SUM(product: Prod/RatProd) <=DaysAvaProd;
Balance[Fact, product, month]:

Prod + Stock[month-1]
+ SUM(FactOrigin:Shipping[FactOrigin, FactDest:=Fact])
= Sales + Stock + SUM(FactDest:Shipping[FactOrigin:=Fact,FactDest]);
MaxStock[Fact, month]: SUM(product: Stock)  <=  CapStock;

LIMITS
Sales < Demand;
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3 MIP Models Building Software

3.1 Introduction

TPOS is the last version of a software that allows an easy way to represent, for a
user who is not an expert in mathematical programming. The software can build
a wide range of planning models for networks to maximize the production and
distribution variable costs margin. The system generates and solves large industrial
models (approx. 100,000 variables and 10,000 equations), and the model building
process is based in attribute definition for nodes and arcs in a multiproduct and
multi-period network.

A set of “codes” drive the model building phase, even the network structure.
Depending on the content and number of keywords a different model is generated.
User is autonomous: with the same software can afford different situations and pur-
poses. TPOS allows building different models starting with some intuitive codes
written by a person not necessary expert in mathematical programming but that it is
an expert in the manufacturing and logistic system.

This software allows the generation of multi-product and multi-period models by
the usage of networks where each node can be defined as a factory, a storage facility,
a client, a transshipment facility…

3.2 Mathematical Model

The network is based in N nodes (external suppliers, factories, transshipment sites,
destinations, customers) connected, by transport arcs (A), P products and T planning
horizon periods (periods can be of variable length). They are the members, respec-
tively, from NODES, PRODUCTS y PERIODS sets. Let i, i′∈ N (Nodes), j, j′ ∈ P
(Products), k ∈ T (Periods).

The generated optimization model purpose is to find the optimal value of the
following variables:

1. Pr(i, j, k). Quantity produced of product j at node i during period k.
2. TR(i, j, j′, k).Quantity transformed from product j into product j′ at node i during

period k.
3. X(i, l, j, k).Quantity (if it is generated as a continuous variable) transported from

origin node i to destination node l of product i during period k, or (see below),
if it is generated as binary variable, indicates than node l must be provided from
node I for all products.

4. CS(i, j, k). Quantity consumed (sales�demand satisfaction) of product j at node
i during period k.

5. OUT(i, j, k). Quantity of product j leaving node i during period k.
6. EF(i, j, k). Quantity stocked at the end of period k, of product j at node i.
7. MX(i, j, j′, k).Quantity of ingredient j to be used in the final product j′ by blending

in period k at node i.
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Objective function:

Maximize the variablemargin: Revenues from product sales –Variable Costs (sum of supply,
manufacturing, blending, stock and transportation costs)

TPOS generates mixed integer models for to two options: (1) X variables can be
binary in order to force the model to select the same origin-destination arc for all the
products required at a prefixed node type or (2) semi-continuous variables are used
to force the outflows from a node to a threshold level or zero.

Follows the mathematical model built by TPOS and an example of how the user
use codes to build it without an explicit equation formulation.

Constraints (keywords for model building are mentioned later, mathematical
details are avoided):

1. Balance for Initial stock, productions, transformations, consumption, shipments
and final stock for each node (i), product (j) and period (k).

2. Quantities Pr (i, j, k) are produced in node i, from a lower limit, for each product j
and during each period k (keyword PROD) with a unitary cost. These quantities
can be seen like supplies at the node. This is the only way to generate material
in the model.

3. Lower limit and upper limit exists for joint production (sum for all products)
for each period y node.

4. Lower and upper limit exists for a product production in the whole horizon and
at each node.

5. Any product can be transformed into other with a yield, a unitary cost and lower
and upper limits. Different limits can be included.

6. Any product can be stocked from a period to the next one; there exists stock
limits for each pair product/node, and also a total for each node.At the beginning
of the planning horizon, the nodes have an initial stock by product.

7. Sum of all product stocks at node i in each of the periods are limited.
8. Lower and upper stock limits for each node i, product j and period k.
9. Lower and upper demand limit, for each period, product and node; the revenues

are the product of a price and the demand. This is the way to represent the sales.
They are the only usual income from the model.

10. Lower and upper transportation limits for each arc (from node i to node i′),
product j and period k. This is the way to model the transportation between
nodes.

11. Lower and upper limits for the inflow to a node. To avoid very low shipping it
is possible to impose a threshold level defining the outflow variable as a semi
continuous variable.

12. If outflows are modelled as semi continuous variable, new variables must be
generated, in addition to OUT(i, j, k) for the outflow from node, the model will
include three auxiliary variables, SS1(i, j, k), SS2(i, j, k), BS(i, j, k); the last
one it is binary (BS(i, j, k) ∈ {0, 1}) and some constraints are reformulated.

13. In case that X must be binary all the equations must be changed to substitute
X by the term Demand (i, j, k). X(i, i′, j, k). In addition to this, new constraints
are generated.
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14. It is possible, as it was mentioned above, to force that all the products will be
received in a node from the sameorigin. This ismade by adding some constraints
(remember X(i, i′, j, k) is binary).

15. Blending. It’s possible to blend several products at a node to obtain other product
with certain limits in properties. It’s not allowed a successive blending (pooling
problem) to avoid non-linear relations.

3.3 User Codes

For the end user, the system is a black box; the user feed it with data, very intuitive
for him/her, and gets a solution in very easy format. This is the most important TPOS
feature.

Table 2 shows the type of data and the keywords used to build a model. Table 3
shows an example of a model with the codes in Table 1.

The data for any type of model can be read from databases, spreadsheets, etc.
Using this data, the model is generated and solved by the software [10]. Optimal
solution can be analyzed using other software because solution is reported in user
language or for be included in some database system (Multidimensional databases
are recommended).

Table 2 Codes for defining models

1. General: "TITLE" (titles), "COSTALM" (Stock cost ),
2. Network Structure: "NODES" (multiple node models), "PRODUCTS" 

(multiproduct), "PERIODS" (multiple period), "NET" (transportation 
arcs), “JOINTS” (all products together in the same arc)

3. Stocks: "STOC" (joint limits), "STOI" (initial stock and limits), "FS" (stock 
limits).

4. Production: "PROD" (limits and production cost), "PRODC", "PRODP" 
(limits)

5. Demand: "DEM" (limits and price for the sales)
6. Transport: "INF" (inflow limits), "OUT" (outflow limits, could be semi-

continuous), "X" (arc/products/periods limits)
7. Conversions / Transformations: “TR” (feasibility, limits and costs for

transformation from one product to another), “TR1”, “TR2”, “TR3”, 
“TR4” (other limits)

8. Blending: “MX” (possibilities, limits & costs of blend some products to get 
another), “MC”, “CA”, “CP”, (blending data)

9. Special constraints: "RE", "COE”. Any other constraint over the variables.
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Table 3 A model coded in TPOS

Title y other data     TITLE”, “Test"  "tons" "euros"
"CostAlm", 1

Products "PRODUCTS",2
"PrG","G"
"PrE","E"

Periods "PERIODS",2
"Jan18","1",31
"Feb18","2",28

Nodes "NODES",19
. Factories "Factory 1","FACT1", (Node parameters)

"Factory 2","FACT2",(Node parameters)
. Warehouses "Wareh 1”," Ware1 ",(Node parameters)

"Wareh 2","Ware2",(Node parameters)
. Clients "Client 01","CLI01",(Node parameters)

. ... definition of the 15 customers like nodes  
"Client 15","CLI15",(Node parameters)

Initial Stock "STOI","******",(initial)
Stocks limits "STOC","*****",(min , max)

"EF" "*******" (min , max)
Production (total) "PRODC","******",(min , max)
Production (joint) "PRODP","******",(min , max)
Inflows Limits "INF","*******",(min , max)
Outflow Limits "OUT","*******",(min , max)

"OUT","WARE2G1",(min , max)
Production limits "PROD","*******",(min , max)

"PROD","FACT1G*",(min , max)
….rest of limits

Transformation PrG into PrE
"TR","FACT1GE*",(min , max, yield, cost)
"TR","FACT2GE*",(min , max, yield, cost)

Customer demand "DEM","*******",(min, max, price)
"DEM","CLI01**",(min, max, price)

.... rest of demands 
"DEM","CLI15**",(min, max, price)

Network and cost "NET","FACT1","WARE1",(min, max, cost)
"NET","FACT1","WARE2",(min, max, cost)

... rest of transportation cost 
« NET","WARE2","CLI15",(min, max, cost)

Transportation contraint "X" "*****CLI15**", (min, max)
"X" "FACT1WARE2E1" , (min, max) 
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4 Conclusions

A software for MIP models generation is introduced. This software allows building
(and solving linked with an optimizer) of mixed integer mathematical programming
for optimal joint multilevel production and transport planning in large companies. It
is possible to represent complex networks: several factories, storage facilities, clients,
transportation arcs between them, several products on the network, blending and/or
transformation between products in a node, several periods (days, weeks, months).
The objective is to maximize the global variable margin of the firm.

This system has been used for factory supply planning, for factory to customer
product distribution planning, for investment analysis, etc. alwayswith the same tool.
The models are built using easy codes instead of the mathematical formulation of
equations.

References

1. Degbotse, A., Denton, B.T., Fordyce, K., Milne, R.J., Orzell, R., Wang, C.: IBM blends heuris-
tics and optimization to plan its semiconductor supply chain. Interfaces 43(2), 130–141 (2013)

2. Fleischmann, B., Ferber, S., Henrich, P.: Strategic planning of BMW’s global production net-
work. Interfaces 36(3), 194–208 (2006)

3. Guimarães, L., Amorim, P., Sperandio, F., Moreira, F., Almada-Lobo, B.: Annual distribution
budget in the beverage industry: a case study. Interfaces 44(6), 605–626 (2014)

4. AIMMS (2018). https://aimms.com
5. AMPL (2018). www.ampl.com
6. CPLEX (2018). https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-

optimizer
7. GAMS (2018). https://www.gams.com
8. LINGO (2018). https://www.lindo.com
9. XPRESS (2018). http://www.fico.com/en/products/fico-xpress-optimization
10. Fourer, R.: Linear programming: software survey. OR MS Today Informs. 42, 3 (2015)

https://aimms.com
http://www.ampl.com
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.gams.com
https://www.lindo.com
http://www.fico.com/en/products/fico-xpress-optimization


Modelling Local Search in a Knowledge
Base System

Tu-San Pham, Jo Devriendt and Patrick De Causmaecker

Abstract In this paper we present how the basic building blocks of local search
approaches—problem constraints, neighbourhood moves, objective function, move
evaluations—can be modelled declaratively using FO (·), an extension of first order
logic. We extend the Knowledge Base System IDP with three built-in local search
heuristics, namely first improvement, best improvement and tabu search, which take
those building block specifications as input and execute local search accordingly. To
demonstrate the framework, three neighbourhoodmoves for three different problems
are modelled and tested.

Keywords Local search · Metaheuristics · Knowledge base system
1 Introduction

A Knowledge Base System (KBS) is a computer program that reasons and uses a
general knowledge base to solve different complex problems. The IDP system [4]
is an experiment on building such a KBS using the rich formal language FO (·) [7]
for expression of the knowledge. FO (·) is an extension of first order logic with
types, cardinality, arithmetics, and recursiveness to elegantly model of a wide range
of concepts. The knowledge specified in FO (·) is called a knowledge base (KB),
which IDP uses as input to a set of builtin inference methods to solve a large variety
of tasks.

For example, given a KB on professors teaching courses, students studying,
resources available and rules to be respected, the IDP system can generate schedules
at the start of the year using the model expansion inference; verify correctness of
hand-made and revised schedules using the model checking inference; generate a
reason of why a certain schedule is not consistent using the explain unsat inference;
proving invariants on the knowledge using the theorem proving inference—all using
the same KB. The ability to solve many tasks distinguishes IDP from other program-
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ming languages or modelling systems, which are suited for solving only one task.
IDP has been used in application domains such as interactive configuration [14, 15],
machine learning and data mining [2] or access control systems [3].

Important classes of problems appearing inmany applications are constraint satis-
faction and combinatorial optimization, which also are the focus of this paper. IDP’s
inferences to solve such problems are model expansion, and its variant, optimiza-
tion. The current back-end engine for these two inferences is MiniSAT(ID) [5]. As
a CP-SAT-based solver, it shows limited performance on typical operations research
problems, such as the assignment problem [8], or on large real-world problems such
as routing and scheduling. Local search on the other hand, is a well-studied com-
binatorial optimization technique, which has been succesfully applied to solve such
problems.

In this paper, we specify local search neighbourhoods in FO (·) and extend the
IDP systemwith a local search back-end. Doing so, we hope to arrive at a declarative,
modular and reusable formalization of local search heuristics. Given a problem, as
long as the problem’s specifications and its necessary components (how to get valid
moves, how to evaluate delta objective, how to create the neighbour solution given
a current solution and a move) can be modelled in FO (·), the local search can be
simulated in IDP.

The contribution of this work is two-fold. Firstly, formalizing local search neigh-
bourhoods allows us to benefit from the existing functionality of the underlying
system (in this case, IDP). E.g., we can automatically generate an initial feasible solu-
tion using the model expansion inference; we can debug neighbourhoods by using
the explainunsat inference (which gives the reason why a solution is not feasible).
Those benefits from the underlying system also distinguish this work from related
work such as constraint-based local search systems (Comet [11], Oscar [12]) and
Localsolver [1], which are particularly dedicated to solving optimization problems
and are based on a set of built-in libraries of neighbourhood moves and combinators
to construct local search heuristics for a set of problems. Secondly, the ultimate goal
of a knowledge base system is to tackle all types of problems efficiently—including
those for which the current state-of-the-art employs local search. Our work is a step
towards introducing local search in a knowledge base environment.

The rest of the paper is organized as follows. Section 2 gives a brief introduction
of IDP and FO (·). Section 3 shows how neighbourhoodmoves andmove evaluations
are formalized in FO (·), and how three local search heuristics are simulated using
these formalizations. Experimental results are reported in Sect. 4. Conclusions and
future work close the paper in Sect. 5.

2 IDP and FO (·)

The IDP system [4] is a Knowledge Base System (KBS) equipped with (1) FO (·) , a
high level language which allows users to specify knowledge of a problem domain,
and (2) a set of inferences to solve a wide range of problems around this knowledge.
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A thorough introduction to IDP and FO (·), including examples and demos, can be
found at https://dtai.cs.kuleuven.be/software/idp. Many of IDP’s inferences are fun-
damentally different (e.g. theorem proving and model checking), therefore a specific
solving approach is applied for each inference method. For model expansion and its
variant optimization, IDP employs a two-phase ground-and-solve strategy where a
FO (·) specification is grounded to a set of constraints in Extended Conjunctive Nor-
mal Form (ECNF) [6], which is then handled byMiniSAT(ID) [5], a CP-SAT-based
solver.

A specification (or modelling) in IDP consists of different components. The three
most important components are vocabularies specifying the types and variables used,
theories specifying problem constraints in FO (·), and structures representing both
input data and solutions.

As a running example we employ the travelling salesman problem (TSP). Given
a set of nodes and a distance function between them, the TSP consists of finding the
shortest Hamiltonian cycle—the tour—visiting all cities. Here, we give a model for
the TSP in IDP which we also made available online at http://goo.gl/TTv85c.

Example 2.1 (TSP)
The four components for the TSP modelling in IDP are as follows:

1. The vocabulary V problem specifying the parameters (Node, Distance) and
the variables (Path, Reachable) of the problem.

2. The theory T problem over V problem, which is a conjunction of FO (·) for-
mulas specifying the constraints of the problem:

∀x : ∃!y : Path(x, y).

∀x : ∃!y : Path(y, x).

{ Reachable(Depot).

Reachable(x) ← ∃y : Reachable(y) ∧ Path(y, x).}
∀x : Reachable(x).

The first two lines of the theory in the example represent the flow constraints.
Line three and four inductively define the Reachable predicate, starting from the
depot, and inductively adding neighbouring nodes according to the links present
in Path. The last line then states that all nodes must belong to Reachable,
forming a subtour elimination constraint—if a node is not reachable from the
depot, it belongs to a subtour different from the one containing the depot.

3. The term Obj over V problem representing the total travelling distance and
serving as the objective function.

4. The (partial) structure S over V problem describing type and parameter values.
In S, the assignment to problem parameters (in this case, Node and Distance)
represents an instance of the problem, while assignments to variable symbols
(in this case, Path and Reachable) could form a solution for that instance. IDP
distinguishes between parameters and variables simply by the fact that variables
are unassigned in the initial structure.

https://dtai.cs.kuleuven.be/software/idp
http://goo.gl/TTv85c
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Given these components, the inferencemodel expansion can be applied to expand
a (partial) structure S (an input instance) into a (complete) structure respecting the
constraints in theory T problem (a feasible solution); the inference minimization
can be applied to obtain the minimal solution according to the objective function
Obj . Besides, users can specify a query and apply querying inference to retrieve
information from the model.

3 Modelling Local Search

Local search is a heuristic method to solve an optimization problem by moving from
solution to solution in the search space using neighbourhood moves. A neighbour-
hood move is a function which maps a solution to another. Given a set of neighbour-
hood moves and some initial feasible solution, a local search algorithm explores the
search space by enumerating the neighbours. When a neighbour satisfies an accep-
tance criterion, it becomes the starting point of a new iteration. This loop ends when
a stop condition is met, and the solution with the best objective value is returned.
Metaheuristics are local search-based heuristics, which guide a subordinate heuristic
to escape from local optima.

In this section, the formalization of local search heuristics’ building blocks in
FO (·) is presented. We further describe how IDP is extended with three local search
heuristics—first improvement, best improvement and tabu search.

3.1 Modelling Local Search Neighbourhood Moves

To model local search neighbourhood moves for a problem, several components are
added to the problem specification. The essential part of the modelling is the function
mapping a current solution to the corresponding neighbour solution given a neigh-
bourhood move. This function is modelled in a theory Tnext which is built over two
vocabularies Vmove representing a move and Vnext representing a neighbour solu-
tion. A query queryGetDeltaObj is added to allow a user-defined move evaluation.
Valid moves are obtained by a query queryGetValidMoves. The above components
are illustrated using the running example of the TSP as follows.

Example 3.1 In this example,wemodel the2-optmove for theTSP. In order tomodel
the move, the problem specification is extended by introducing the predicate Reach
to represent the order of nodes in the solution. For example, Reach(A,C) holds
means that on the path starting from the depot, node A appears beforeC . To represent
moves and neighbour solutions, two vocabularies Vmove and Vnext are added to
the modelling. Vmove consists of 4 constants A, B,C and D representing the four
nodes involved in the 2-optmove—(A, B) and (C, D) are two edges in the solution in
this specific order. Vnext consists of the predicate next_dec_Path(Node, Node),
which represents a neighbour solution. The function mapping a current solution to
its neighbour is defined in theory Tnext as below:
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{next_dec_Path(A,C).

next_dec_Path(B, D).

next_dec_Path(x, y) ← dec_Path(x, y) ∧ Reach(y, A) ∧ y = minimum(Node).

next_dec_Path(x, y) ← dec_Path(x, y) ∧ Reach(D, x) ∧ D = minimum(Node).

next_dec_Path(y, x) ← dec_Path(x, y) ∧ Reach(B, x) ∧ Reach(y,C)

∧y �= minimum(Node).}

Theory Tnext consists of a definition describing how to create a neighbour solution
given a solution and a move. Roughly, it states that the new solution consists of 2
edges (A,C) and (B, D), the segment from the depot to A, the segment from D
to the depot and the reversed segment from B to D. By applying model expansion
on Tnext and a structure with assignments to dec_Path, Reach and A, B,C, D, an
interpretation of next_dec_Path, which represents a neighbour solution.

To complete the modelling, two queries are declared. Query queryGetDelObj
evaluates a move by calculating the delta between the total travelling time of
the current solution and its neighbour: � = dAC + dBC − (dAB + dCD). Query
queryGetV alidMoves gets all valid moves from a given solution.

3.2 Metaheuristics Framework

In this section,we describe how IDP takes formal neighbourhoodmove specifications
as input and combines them with the built-in heuristics to perform local search. The
common mechanism is as follow. Firstly, an initial feasible solution is obtained
using IDP’s model expansion on Tproblem. Next, a set of valid moves is computed
by solving the query queryGetValidMoves on the current solution. For each valid
move, the query queryGetDelObj is applied to evaluate the move. If the move is
accepted, the corresponding neighbour is computed by performing model expansion
on Tnext . The obtained neighbour solution now functions as the current solution
whose neighbourhood is further investigated in the next iterations.

As already mentioned, three local search heuristics are provided: first improve-
ment, best improvement and tabu search. First improvement search and best improve-
ment search are two simple heuristics which iterate through all valid moves and pro-
ceed with a move once the first improvement or the best improvement is found. Tabu
search [9] is a more advanced metaheuristic which keeps a list of forbidden moves to
avoid revisiting a recently visited solution. These heuristics take the neighbourhood
move specifications described in Sect. 3.1 as input and run the corresponding local
search heuristic accordingly. By way of illustration, we describe the first improve-
ment local search procedure in Algorithm 1.

Given a problem, as long as the problem along with the necessary components
can be modelled in FO (·), a local search can be simulated using the framework.
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Algorithm 1: First improvement search
input : instance S
output: solution best Sol

1 ini S ← model expansion on (S, T problem);
2 cur Sol ← ini S;
3 best Sol ← ini S;
4 repeat
5 moves ← evaluate queryGetValidMoves on cur Sol;
6 foreach move ∈ moves do
7 delObj ← evaluate queryGetDelObj on move and cur Sol;
8 if delObj < 0 then
9 neighbour ← create new solution from move and cur Sol by applying model

expansion on Tnext ;
10 best Sol ← neighbour ;
11 cur Sol ← neighbour ;
12 break;
13 end
14 end
15 until no improvement found or timeout;

4 Experiments

Themainpurpose of the experiment is to demonstrate how the framework is utilized to
model and solve different problems.Wemodel and test three different neighbourhood
moves for three different problems as follows: (1) The TSP and the 2-opt move
neighbourhood as presented in Sect. 3; (2) The assignment problem which consists
of finding a bijection between a set of agents and a set of tasks that minimizes the
assignment cost. A simple neighbourhood with moves that swap the assignment
of two agents is modelled; (3) The colouring violations problem which consists of
finding a graph colouring which minimizes the number of adjacent nodes sharing
the same colour. The neighbourhood consists of moves that assign a different colour
to a node. The modelling and executable code for all problems in this section can be
found at http://github.com/tusanpham/LocalSearchInIDP.git.

We modelled each of these problems and neighbourhoods in FO (·). Those spec-
ifications are then taken as input by IDP to perform the three built-in local search
heuristics (first improvement, best improvement and tabu search). Additionally, for
each problem, we compare the results with IDP’s builtin minimization inference.

Instances for the TSP were obtained from the TSPLIB [13], instances for the
assignment problem were taken from [8], and instances for the colouring violations
problemwere taken fromMichael Trick’s operations research page [10]. A time limit
of 300 seconds were imposed on all experiments. The experiment was conducted on
an Intel Core i7-5600 cpu with 8GiB of RAM, running Ubuntu 14.04 64-bit. The
IDP system we extended was IDP 3.6.

In Table 1, results of some representative instances from the three problems are
reported. The first two columns show the best objective value and running time

http://github.com/tusanpham/LocalSearchInIDP.git
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of IDP’s minimization while the next columns contain results obtained by the best
improvement, first improvement and tabu search respectively.

We firstly discuss the results on the TSP problem. It is apparent from the table that
all three local search heuristics outperform IDP’s minimization routine, especially
in big instances. This suggests that at least for the TSP, a general solver can benefit
from domain knowledge which can be modelled easily using a descriptive language,
as we did with the 2-opt neighbourhood.

The results of the assignment problem show a clear difference between the three
heuristics. Tabu search outperforms the remaining two heuristics on most instances,
which is easily explained by the strongmechanism of tabu search to prevent repeating
moves. This result highlights the benefit of modularity offered by our framework.
Given a single neighbourhood formulation, it is easy to experiment with different
heuristics before committing to the best one.

Finally, the results from the colouring violations problem, in contrast to the two
above problems, show awin for the IDP’s minimization routine over the three heuris-
tics. This can be explained by the CP-SAT backend behind IDP’s minimization being
more suitable for this particular problem compared to local searchwith a simple swap
move. This shows the benefit of having several back-ends in a single engine.

In the TSP, besides performing local search, we also experiment the explain unsat
reference to reason why a solution is not valid. The inference works well on instances
up to 78 nodes and gives a readable explanation on which variable assignments lead
to constraints violation. The usage of explain unsat is available online at http://goo.
gl/U4hvkf.

5 Conclusions and Future Work

In this paper, we describe our work on a local search framework within the Knowl-
edgeBase System IDP using the formal language FO (·). Three local search heuristics
are provided, taking a formal description of problem’s constraints, neighbourhood
moves, objective function, and move evaluations as the input. The framework is
demonstrated through three different problems in the experiment section. The exper-
iment is a proof-of-concept on modelling and automatically exploiting neighbour-
hoods of different problems, and gauges the performance of our proof-of-concept.
It is also interesting that we have improved the IDP’s performance on two prob-
lems (TSP and assignment problems) using very simple local search modelling. It
shows that we can improve a general solver by supplying it with neighbourhood
specifications.

Regarding future work, we plan to propose a complete framework which allows
specifying multiple neighbourhoods and combining them to create more sophisti-
cated local search heuristics. In addition, the use of a formal language in our work
enables the potential of applying formal methods to local search. For example, an
automatic theorem prover can be applied to prove the correctness of neighbourhoods.

http://goo.gl/U4hvkf
http://goo.gl/U4hvkf
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A Hybrid Method for Cloud Quality
of Service Criteria Weighting

Constanta Zoie Rădulescu and Marius Rădulescu

Abstract The Multi-Criteria Decision Making (MCDM) methods can be used for
selection of aCloudServices Provider (CSP). Themost critical input of thesemethods
is the assignment of criteria weights which can be based on subjective, objective, or
a combination of weighting methods. In this paper a new hybrid method is proposed
for Quality of Service (QoS) criteria analysis and weighting. The approach is based
on a subjective weighting method and an objective weighting method. The hybrid
method is applied in a case study. An analysis of causal relations and the degree of
influence between QoS criteria based on DEMATEL method is presented.

Keywords Subjective weighting · Objective weighting · DEMATEL method
Quality of service · Cloud service provider

1 Introduction

The services are made available by the Cloud Services Providers (CSPs) with a
variety of Quality of Service (QoS) attributes (criteria). For analysis of the benefits
and risks in adoption a CSP the analysis of QoS metrics plays an important role
[1–3].

A decision to select a CSP, taking into account the user requirements is a multi-
criteria problem. The set of alternatives is the set of CSPs and the set of criteria is
the set of QoS criteria. In MCDM approaches, weights of criteria reflect the relative
importance of criteria in the decision making process. The most critical input to the
most MCDM methods is the assignment of criteria weights which can be based on
subjective, objective, or a combination of weighting methods.
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Subjective weighting methods are based on the experts (decision makers) opinion
while the emphasis of the objective methods is on the statistical evaluation of data
provided by the decision matrix. The approach based on the objective weighting
is particularly applicable for situations where reliable subjective weights cannot be
obtained [4, 5]. Since in the most real problems, the decision maker’s expertise and
judgment should be taken into account, subjective weighting may be preferable. In
the situations when such reliable subjective weights are difficult to be obtained, the
use of objective weights is useful [6]. Each of these methods has its own advantages
and disadvantages. The uncertainty in the decision maker judgments is the main dis-
advantage of the subjective methods, while the objective methods do not benefit from
the expertise and experience of the experts [7]. Subjective and objective weighting
methods are compared in many MCDM problems. Examples of subjective weight-
ing methods are [7]: AHP method [8], Weighted Least-Square Method [9], Delphi
method [10], Simple Multi-attribute Rating Technique (SMART) [11], SMARTER
[12] and Simos’ procedure [13], [14]. Examples of objective weighting criteria meth-
ods are: the entropymethod [15], Shannon’s entropy concept [16], multiple objective
programming [17], principal component analysis [18] and the mean square deviation
method [19].

In this paper a hybrid method is proposed for Quality of Service (QoS) crite-
ria analysis and weighting. The hybrid method is a combination of a subjective
weighting method—Decision-Making Trial and Evaluation Laboratory (DEMA-
TEL)method and an objectiveweightingmethod—Shannonmethod. Based on cloud
expert’ evaluation, the initial QoS criteria weights are calculated with DEMATEL
method. DEMATELmethod divides the set of QoS criteria in cause and effect groups
and builds the Influential Network Relation Map (INRM). Based on INRM an anal-
ysis of the important QoS criteria influencing the adoption of a cloud service can be
achieved. The second method that is the Shannon method takes into account the cri-
teria weights computed with DEMATEL and the decision matrix of CSPs evaluated
by QoS criteria. The Shannon method uses the concept of information entropy. The
final weights of QoS criteria are obtained. These QoS criteria weights can be used in
the selection problem of a CSP. Finally the hybrid method is applied in a case study.
An analysis of causal relations and the degree of influence between QoS criteria is
presented.

2 The Hybrid Method for QoS Criteria Weighting

The hybrid method is a combination of DEMATEL, a subjective weighting method
and Shannon method an objective weighting method.

The DEMATEL method was developed by the Science and Human Affairs Pro-
gram of the Battelle Memorial Institute of Geneva between 1972 and 1976. It takes
into account the subjective evaluation of experts and solves complex and interrelated
problems [20, 21]. The aim of DEMATEL is to reveal direct/indirect causal relations
(dependencies) among system variables.
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The DEMATEL method compares the interaction relationship between variables
and uses a matrix to calculate the direct and indirect causal relationships and the
degree of influence between variables, especially using the Influential Network Rela-
tion Map (INRM) to express the causal relationships and the degree of influence
between variables [22]. The DEMATEL method can solve problems visually and
can isolate the related variables into cause and effect groups in order to improve the
understanding of the causal relationships among these variables [23].

One of the objective weighting methods which has been proposed by researchers
is the Shannon entropy method [16]. The entropy concept is used in various fields
of science. The concept of Shannon’s entropy has an important role in information
theory and is used as a general measure of uncertainty [6]. In MADM the entropy
weight describes how much different alternatives approach one another in respect to
a certain criterion. The greater is the value of the entropy, the smaller is the entropy
weight, then the smaller are the differences between different alternatives in this
specific criterion, and the less information the specific criterion provides, and the
less important this criterion becomes in the decision making process [5].
The hybrid method steps are:

Step 1. Selection of a set of m QoS criteria and the set of n CSPs.
Step 2. The measure scale for the relationship between m QoS criteria is considered
across five levels. The scores 0, 1, 2, 3, and 4 represent ‘no influence,’ ‘low influence,’
‘medium influence,’ ‘high influence,’ and ‘very high influence,’ respectively. For the
QoS criteria selected a questionnaire for evaluation is defined.
Step 3. The cloud expert is asked to make sets of comparisons between QoS criteria
from the selected set. The direct matrix is build:

A � (
ai j

)
, i � 1, 2, . . . , n, j � 1, 2, . . . , n.

Step 4. Build the m × m normalized direct relation matrix N . N is obtained by
normalizing matrix A. In N all principal diagonal elements are equal to zero:

s � max( max
1≤i≤m

m∑

j�1

ai j , max
1≤ j≤m

m∑

i�1

ai j ), N � A/s

Build them×m QoS criteria total influence matrix T � (ti j ) as: T � N (I −N )−1

where I is an identity matrix. Note that: limh→∞ Nh � (0m×m).
Step 5. Construct the QoS criteria Influential Network Relation Map (INRM) with
the help of the vectors y � (y1, y2, . . . , yn) and z � (z1, z2, . . . , zn):

zi �
m∑

j�1

ti j , i � 1, 2, . . . ,m yj �
m∑

i�1

ti j , j � 1, 2, . . . ,m

The vector z is the sum of all columns vectors of T . The i-th entry of z represents
the degree the i-th QoS criterion influences all other QoS criteria. The vector y is
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the sum of all vector rows of T . The j-th entry of y represents the degree the j-th
QoS criteria are influenced by all other QoS criteria. The sum (zi + yi ) represents
the degree of influence between the i-th criterion and the other QoS criteria. The
difference (zi − yi ) represents the degree of causality between the i-th criterion and
the other QoS criteria. If (zi − yi ) is positive, then the i-th QoS criterion influences
other QoS criteria and shall be attributed as a cause type. If (zi − yi ) is negative, then
the i-th QoS criterion is influenced by other QoS criteria and shall be attributed as an
effect type. If (zi − yi ) has a negative value and the value of (zi + yi ) is very small,
it means that the i-th QoS criterion is more independent, and there are less factors
which will impact the QoS criterion.When (zi − yi ) has a positive value and the value
of (zi + yi ) is very small, it means that the i-th QoS criterion is also independent, and
can impact a few other QoS criteria.

If (zi − yi ) has a negative value and the value of (zi + yi ) is very big, it means
that QoS criterion i is the core problem required to be solved. When (zi − yi ) has
a positive value and the value of (zi + yi ) is big, it means that QoS criterion i is the
driving factor of solving the core problem, and shall be listed as the priority.
Step 6. Build the DEMATEL QoS criteria weights as:

wD
i � (zi + yi )/

m∑

j�1

(z j + y j ), i � 1, 2, . . . ,m

Step 7. The cloud expertis asked to make CSPs assessments using QoS criteria and
is build an n × m average decision matrix E � (

ei j
)
.

Step 8. The normalized decision matrix is calculated:

P � (pwi j ), pwi j � ei j/
n∑

k�1

ek j , i � 1, 2, . . . , n

Then ewj is calculated: e
w
j � −

∑n
i�1 p

w
i j ln(p

w
i j )

ln(n) , 0 ≤ ewj ≤ 1
Define the criteria weight based on entropy concept:

wo
j � (1 − ewj )∑n

k�1 (1 − ewk )
, j � 1, 2, . . . ,m

Step 9. The final form of the entropy weights is calculated:

wj � wD
j ∗ wo

j∑m
k�1 w

D
j ∗ wo

j

, j � 1, 2, . . . ,m
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3 Case Study

The cloud QoS criteria are selected by an expert in the field of Cloud Computing.
The QoS criteria are: availability, security, VM Cost, Service Response Time and
usability. This QoS criteria selected are quantitative and qualitative criteria. The
quantitative criteria are: VM cost and Service Response Time and. The qualitative
criteria are: availability, security and usability. The expert’s evaluation is made based
on a DEMATEL method measure scale. The QoS criteria considered for evaluation
and analysis are presented in Table 1.

The initial direct relation/influence matrix A is obtained. Build the normalized
direct relationmatrixN . The initial direct relation/influence matrixA and normalized

Table 1 QoS criteria
Nr. crt. QoS criteria Symbol Description QoS criteria type Measure unit

1 Availability C1 The time that a
service or system is
available. It is time a
system or component
is functional to the
total time it is
required or expected
to function

max 0–10

2 Security C2 Security criteria
indicate the
effectiveness of a
CSP in controlling
access to services,
service data and
physical facilities
from which services
are provided

max 0–10

3 VM Cost C3 The cost of virtual
machines

min $/h

4 Service response
time

C4 The service response
time is defined as the
time it takes for any
workload to place a
request for work on
the virtual
environment and for
the virtual
environment to
complete the request

min s

5 Usability C5 The level of support
in using the service
provided by the CSP.
Support level is the
extent of technical
assistance provided
for CSP to its
customers

max 0–10
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Table 2 The elements of INRM

QoS criteria C1 C2 C3 C4 C5

z 3.439 2.783 3.164 2.574 1.202

y 2.219 2.567 3.101 2.541 2.735

z − y 1.220 0.216 0.064 0.033 −1.533

Impact Cause Cause Cause Cause Effect

z+y 5.659 5.350 6.265 5.116 3.938

DEMATEL QoS
criteria weights

0.215 0.203 0.238 0.194 0.150

matrix N are calculated. Then the QoS criteria total influence matrix T is build and
the QoS criteria INRM (Fig. 1, Table 2).

The arithmetic mean of the array of the vector z − y is 0 and the arithmetic
mean of the array of the vector z+y is 5.265. Starting from the means 0 and 5.265,
the horizontal and vertical lines, divide the INRM into four quadrants, shown in
Fig. 1. The horizontal axis z+y represent the prominence and the vertical axis z − y
represents the relation. According to the analysis of Fig. 1, the high prominence and
relation in first quadrant are C1 (Availability), C2 (Security) andC3 (VMcost). These
QoS criteria have the highest interaction influence degree with other QoS criteria,
and thus, they are the driving factors. The fourth quadrant has high prominence but
low relation.

C4 (Service Response Time) criterion is in the second quadrant (low prominence
but high relation). However, C4 criterion is very close to the fourth quadrant.

Other QoS criterion, C5 (Usability) is in third quadrant, with low prominence and
relation. In the fourth quadrant there is no criterion.

Fig. 1 Influential network
relation map—INRM
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Table 3 Final QoS criteria weights

QoS criteria DEMATEL QoS
criteria weights

Shannon QoS criteria
weights

Final QoS criteria
weights

C1 0.215 0.072 0.072

C2 0.203 0.026 0.025

C3 0.238 0.456 0.506

C4 0.194 0.412 0.373

C5 0.150 0.034 0.024

The CSPs are selected for evaluation. The decision matrix E is build. The nor-
malize decision matrix and Shannon QoS criteria weights are calculated.

Then the final form of the QoS criteria weights are calculated according to the
Step 9 (Table 3).

The criterion with the highest weight in the DEMATEL subjective weighting
method is C3 (VM cost). The second criterion is C1 (Availability). The criterion
with the highest weight in the Shannon objective weighting method is C3—VM
Cost and the second is C4—Service Response Time.

The method that combines the weights obtained by the DEMATEL subjective
method with the weights obtained by the objective method Shannon considers that
the highest weight has the criterion C3—VMCost. Note that the final criteria weights
are close to the Shannon criteria and the difference between the DEMATEL criteria
weights and the Shannon criteria weights is lower than the difference between the
final criteria weights and Shannon criteria weights.

4 Conclusions

The present paper calculates the cloud QoS criteria weights based on a combination
of the subjective method DEMATEL and the objective method Shannon. With the
help of DEMATEL method we investigate the causal relationships and degree of
influence between a set of QoS criteria. The analysis provides important informa-
tion to CSPs for promoting their cloud services and a better understanding of the
most important QoS criteria that influences customers’ decisions in the adoption of
cloud services. Consequently CSPs can develop a more focused strategy for meeting
customer demands.
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Cooperative Policies for Drug
Replenishment at Intensive Care Units

Roberta Rossi, Paola Cappanera, Maddalena Nonato and Filippo Visintin

Abstract This paper addresses the effects of lateral transshipment within a drug
inventory policy in a real case-study involving two Intensive Care Units. An exten-
sion of a previous developed integer linear programming model is proposed, which
decides when, what and how much to order, ensuring orders regularity. Preliminary
results on realistic instances suggest the potential advantage in terms of reduction of
order occurrences while using excess stock efficiently and profitably. This analysis is
a first step towards the introduction of the cooperative model within an optimization-
simulation tool deployed in a rolling-horizon framework.

Keywords Cooperation · Lateral transshipment · Point-of-use drugs inventory
Hospital logistics

1 Introduction and Problem Description

This study focuses on drugs replenishment problems in a real case-study involving
two wards at a public hospital in Tuscany (Italy). Specifically, two Intensive Care
Units (ICUs) are considered, although the approach proposed may be used when-
ever two wards use the same subset of drugs. In particular, we propose combined
optimization-simulation policies to support nurses in drug inventory management.
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Indeed, in the real case considered, nurses issue drug replenishment orders besides
taking care of patients. This task is very time consuming due to (i) the lack of predic-
tive/optimization tools and (ii) technological support, such as Automated Dispensing
Machines (ADMs), RFID technology, etc [14], and (iii) patients conditions which
can evolve dynamically.

Drugs replenishment management at hospital is challenging since it has differ-
ent peculiarities with respect to industrial settings where optimization management
modeling techniques are well studied and consolidated. While some aspects can be
treated in a similar way, others require original solutions; for example, in this setting
there are not neither cost-opportunity issues nor time-dependent costs of storage,
priority is on patient care thus imposing drugs demand is always covered and back-
orders are not allowed. In such a context it is thus dramatically important to reduce
working time nurses spend for tasks not directly related to patient care. We deal with
a particular subset of drugs, namely antibiotics, which are crucial for at least two
reasons: their availability is vital since strictly related to mortality and their improper
use might give rise to drug-resistance. A reasoned, effective and careful drugs order
management is indeed important. The criticality concerns above all demand irregu-
larity. The process that regulates demand is as follows. According to guidelines [12]
when clinicians suspect an infection is in progress, immediately a diagnostic test is
sent to the microbiology laboratory to identify the microorganism that caused the
possible infection and an empirical broad-spectrum therapy is started; test results
arrive after several days and the therapy is corrected accordingly. As a consequence,
the therapeutic plan for the same patient, within the same length of stay, may be
modified several times: each therapy in the care plan has a well-defined pattern but
is highly subject to updates required to follow changes in patient’s clinical condi-
tions. This results in intermittent drug consumption, which has to be added to beds
availability which is limited in these wards compared to other hospital units.

In a previous work by the same authors [5], a hybrid push-first pull-second in-
ventory strategy was proposed and compared with a classic periodic review policy
(s, S), widely used in literature as a benchmark. Our hybrid policy is based upon
a deterministic optimization model, preliminary presented in [3] and extended in
[4], that assumes a forecasted demand is known. The model allows to schedule or-
ders in a given planning period, incorporates stakeholders’ perspectives, capacity
constraints related to different storage units (shared among drugs or dedicated), con-
trols budget while pursuing service regularity by imposing that the same quantity
of drug is ordered each time an order of that drug is triggered. The policy has been
tested through its integration with a discrete event simulation tool which generates
actual daily demand and mimics real-time drug consumption at ward. Simulation
implements the order schedule determined by optimization and triggers rush orders
to face stock-outs as well as extra orders to restore safety stock levels. The com-
bined optimization-simulation approach has been then deployed in a rolling horizon
framework.

A wide computational testing done on a 365-day rolling horizon showed that the
use of the hybrid policy is advantageous with respect to a (s, S) policy both in terms
of stock-out events—that give rise to rush orders, and of regular orders. In addition,
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the hybrid policy seems to be quite robust with respect to the planning period length,
with the number of rush orders that remains almost stable as the frequency with
which the optimization model is run increases (every 7, 14 and 21 days).

However, using the hybrid policy has a possible drawback, i.e. the tendency to
accumulate drugs in stock which may occur when forecasted demand differs from
the realized one. In an attempt to preserve the advantages of the hybrid policy while
limiting its possible drawbacks, in this work we investigate how the cooperation
between two wards may be used to reduce stocks in excess and to increase efficiency.
Indeed, a context where each ward adopts its own internal replenishment policy
without coordinating with an entity of upper level in the logistic chain, seems to
be a natural setting for cooperation between wards. Summarizing, cooperation may
allow a more efficient management of drugs stocked at wards, both in terms of
service quality and costs. When cooperation occurs, potential stock-outs may be
covered with drugs borrowed by a neighbouring ward and thus promptly available
for patient care which is the primary concern in this setting. Second, drug exchanges
may also allow to reduce the stock level of those drugs that have been ordered as
a consequence of a forecasted demand and not consumed. The motivation of this
research is therefore to analyse methodologies and decision-making tools to support
a collaboration between entities at the same level of the supply chain as an alternative
to the classic order made to the entity of a higher level.

The paper is organized as follows. In Sect. 2 the related literature is briefly re-
viewed, in Sect. 3 the cooperative approach is introduced,while in Sect. 4 preliminary
computational results are presented. Finally, some conclusions are drawn.

2 Literature Overview

Nowadays, efficient and optimized inventory and material logistics management in
hospitals is an urgent problem to face with especially where there is scarcity of
resources and huge economic cuts aimed at limiting wastes. Despite its importance,
this problem has only been addressed in recent years aswitnessed in [16]. An analysis
of the literature was conducted in order to review how the problem of drug logistics is
dealt with in a cooperative setting, namely where entities belonging to the same level
of the supply chain—typically, two ormore wards in a hospital, exchange products as
an alternative to trigger an order to the entity of upper level—typically, the hospital’s
supplier. Even if the focus is on the health care setting, literature review includes
also contributions from the industrial setting. We selected 170 papers relative to
quantitative models and mainly published since 2009. It turned out that a still limited
health care literature exists, especially concerning cooperative strategies. Relevant
health care applications concern humanitarian emergencies studies, where a prompt
delivery of drugs is essential [15].

In regards to the industrial setting, cooperation is usually referred with the term
“lateral transshipment” and cooperative strategies are usually adopted to cope with
unexpected demand peaks as an alternative to facilities enlargement or to add
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auxiliary warehouses to overcome limited capacity issues [7, 9]. Reasons to con-
sider cooperation may also include delivery time and cost reduction. However, when
transshipment costs are high or the interaction between entities of the same level is
critical, adding stock capacity is the preferred solution [13].

Here we focus on quantitative optimization models. Cooperative strategies are
incorporated into inventory/replenishment well consolidated mathematical method-
ologies: there, events triggering lateral transshipment are usually of two types ac-
cording to [10]: (i) a product with not sufficient availability (stock-out) or for which
the stock falls below a safety level is requested (the so called reactive transshipment
models); (ii) a predefined time point or the occurrence of specific conditions trig-
ger lateral transshipment (the so called proactive models). Usually these models are
combined with periodic review reorder policies. The proposed approaches can be
further classified according to whether they involve routing or not [6].

Different classes of constraints can be found in these cooperative models. Typ-
ical examples include: storage capacity constraints, quality of service issues, flow
conservation, allocation and time windows constraints in which product deliveries
can take place. We have paid particular attention to flow conservation constraints
which play a central role in all the models with a lot-sizing structure where they are
used to rule the consistency of product stock levels over the planning horizon. Flow
variables in addition, allow to differentiate quantities transferred between entities at
the same level according to lateral transshipment policies with respect to quantities
transferred according to standard replenishment policies [1, 2, 6, 8, 11, 15].

3 Methodology

We present how the single ward model can be extended to include cooperation. Sup-
pose we have twowards that, in case of need, can transship drugs to each other.When
one of them incurs a stock-out for one or more drugs, it may ask for the drug to the
other ward as an alternative to trigger a rush order. The idea is to use the formulation
of the single ward as a building block to model the case of two cooperating wards.
In addition to have a building block for each ward, the lateral transshipment events
between them have to be managed by means of proper constraints. The optimization
model used to define the building block relevant to a ward (described in [4]) is char-
acterized by the following groups of constraints: (i) flow conservation constraints
of each drug stock level; (ii) storage capacity constraints, both for dedicated and
shared spaces; (iii) budget control; (iv) orders’ regularity (v) principal stakeholder’s
perspective; (vi) variable domain.

Wards are indexed by r and both of them have their own variables and manage
them by taking decisions as already described in the single ward model, regulating
the order schedule νrf d and the lot size of each drug Δr

f . The main parameters
and variables relative to the cooperative model are summarized in Tables 1 and 2,
while Fig. 1 provides a graphical representation of the structure of the complete
model starting from the building blocks corresponding to each ward. The interaction
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Table 1 Sets and parameters

R Set of wards (indexed by r )

F Set of drugs (indexed by f )

D Ordered set of days (indexed by d)

qrf d Demand of drug f on day d (number of doses)
in ward r

U f Number of doses in each box of drug f

Table 2 Variables

srf d Stock level of drug f at the end of day d at
ward r , expressed in number of doses

τ 12d Equal to 1 when a transshipment event from
ward 1 to ward 2 occurs on day d

τ 21d Equal to 1 when a transshipment event from
ward 2 to ward 1 occurs on day d

ζ 12
f d Transshipped quantity of drug f from ward 1 to

ward 2 on day d, expressed in number of doses

ζ 21
f d Transshipped quantity of drug f from ward 2 to

ward 1 on day d, expressed in number of doses

yrf d Order quantity of drug f on day d at ward r ,
expressed in number of boxes

νrf d Equal to 1 when a standard order of drug f
occurs on day d at ward r ; 0 otherwise

υr
d Equal to 1 when a standard order occurs on day

d at ward r ; 0 otherwise

Δr
f Order quantity of drug f at ward r , expressed

in number of boxes

between the twowardsmainly impacts on the flow conservation constraints involving
stocks levels srf d . In particular, the flow conservation constraints exemplified for a
typical working day in (1)–(3) from ward 1 point of view, impose that for each drug
and on each day d of the planning period, the quantity in stock at the end of d (s1f,d )
is equal to the residual of the previous day (s1f,d−1) plus the quantity potentially
arrived on day d (U 1

f y
1
f,d−1) minus the current day demand (q1

f,d ) plus what received
through lateral transshipment from the other ward (ζ 21

f,d ) minus what is sent by lateral
transshipment to the other ward (ζ 12

f,d )—see constraints (1). Clearly, for a same drug
f , on a given d, lateral transshipment may occur in one direction at most and the
quantity transshipped cannot exceed the demand of the receiving ward for drug f
on the current day [see constraints (2)–(3)].
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Fig. 1 Qualitative model constraints’ block structure

s1f,d = s1f,d−1 − q1
f,d +U 1

f y
1
f,d−1 + ζ 21

f,d − ζ 12
f,d ∀ f ∈ F, ∀d ∈ D (1)

ζ 21
f,d ≤ q1

f,dτ
21
d ∀ f ∈ F, ∀d ∈ D (2)

ζ 12
f,d ≤ q2

f,dτ
12
d ∀ f ∈ F, ∀d ∈ D (3)

Transshipment penalties contribute to the definition of the objective function and
their role is experimentally investigated in Sect. 4 using 3 different values for them.
The simulation model was coded integrating Rockwell Arena and Python. The main
resources in the model are the wards beds, while the main entities flowing in the
model are patient entities, nurse entities and orders entities. For the moment being,
the model considers two wards each associated with a set of wards beds.

Sampling from suitable empirical distributions, each day, for each ward, and
for each patient type, the model generates a number of arriving “patient entities”.
Each incoming patient entity triggers a script (coded in Python) that determines the
patient therapy, i.e. the number of days s/he will spend in the ward and the number
of doses of each drug s/he will be administered for each day. Once assigned with a
therapy each patient seizes a ward bed. Such a bed will be released once the therapy
is over. For each ward, every day, the model creates a “nurse entity”. Such a nurse,
checks the therapy associated with each patient in the ward and administers the drugs
accordingly (one patient at time). The stock level associated with each administered
drug automatically decreases upon administration. If the amount of drug in stock is
smaller than needed, depending on the drug type, the nurse either: (1) issues a rush
order to the pharmacy; or (2) issues a request to the other ward. If the request is
accepted (2a) the nurse uses the drug from the other ward, and subsequently issues
a regular order to restore an adequate stock level in both wards. If the request is
rejected (2b) the nurse issues a rush order to the pharmacy as in (1).

In all cases after a time equal to the lead time (which is shorter for rush orders than
for regular orders), the drug is restocked and the pending administration is performed.
The decision of accepting or rejecting a request coming from another ward is taken
based on several criteria (which vary according with the scenario) including: (i) the
current stock of the requested drug; (ii) the pending orders for the requested drug;
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Fig. 2 Boxplots report the gap between cooperative and standalone policies over all instances
and w.r.t. different penalties, concerning the number of order events (on the left), mean stock value
percentage (in the middle), and percentage of drug doses covered by lateral transshipment w.r.t.
demand (on the right)

(iii) the expected demand for the requested drug. For each ward, every N days (e.g. 7
days) the simulation model executes, in shell (i.e. without advancing the simulation
clock), an algorithm (either an optimization model or a heuristics, depending on the
scenario) that indicates for each drug, the number of boxes to order. These orders are
issued immediately after the algorithm has produced the solution and fulfilled after
the regular order lead time has elapsed.

In this study we have considered 18 drugs, 6 patient types, a ward capacity of 8
beds for both wards, a lead time for regular orders equal to 1 day and a lead time for
rush order equal to 2 h.

4 Computational Results

The cooperative model has been compared to the non-cooperative version over a set
of realistic demand instances generated through the empirical distributions retrieved
from real data collected at the hospital. The MILP model was coded in Python and
solved by the IBM ILOGCPLEX 12.7 solver on aMacBook Pro equipped with Intel
Core i5 cpu. We considered a 14-days planning horizon. For each ward, one set of 50
demand instances has been generated and each instance has been solved as a stand
alone.Then, the 100 instances havebeen coupledonebyone to yield 50Ward1-Ward2
pairs, and on each pair the cooperative model, allowing for transshipment, has been
solved. Three variants corresponding to different transshipment penalties have been
investigated, namely 0 (no penalty), 0.5, and 50 (high penalization variant), and the
impact on (i) number of order events, (ii) demand coverage, (iii) mean stock value has
been recorded. Figure 2 depicts the boxplots for each variant of the cooperativemodel
penalty with respect to the stand alone version. As shown on the left, compared to
the non-cooperative version (where there is an average of 4 order events) the number
of order events decreases on average by 1 when the transshipment is granted without
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penalty as well as when the penalty is soft; when the penalty is high, the behaviour
is similar to the stand alone policy. In the middle of Fig. 2 boxplots refer to stock
value; the benefit of lateral transshipment in terms of daily reduction of stock value is
remarkable for all penalty but the high variant. On the right of Fig. 2 the percentage
of doses exchanged between the wards compared to the demand is shown, and it
suggests that lateral transshipment allows to guarantee a good demand coverage
(and service level), despite the decrease in the number of standard order events. As
a whole, we can say that the number of order events benefits from the cooperative
approach; carrying costs decrease as well, as much as the percentage of demand
handled by transshipment increases.

5 Conclusions and Work in Progress

The aim of this research is to study the effects of cooperation for drug inventory
management at point of use in a hospital setting. We seek for a strategy which
allows a better use of the constrained resources, namely nurses time in terms of
number of order events and money tight in stock. To meet this target we extend
a previously proposed optimization model which schedules drug orders imposing
regularity by allowing for cooperation between two wards. We investigate different
transshipment cost variants; preliminary results comparing the cooperative policy to
the stand alone case have been presented. It can be observed that 0.5 penalty is a good
compromise between carrying costs and number of transshipment operations. In all
cases, cooperation allows a consistent reduction of the number of order events and
levels the tendency to accumulate stocks. Future research will assess the impact of
lateral transshipment within the optimization-simulation tool deployed in a rolling-
horizon framework already developed in [5]. Such an impact will be compared also
with the maximum improvement that can be obtained when a unique shared stock
for the two wards is considered. Indeed, lateral transshipment can be seen as a valid
alternative to promptly react to shortages instead of triggering rush orders.

Acknowledgements This work has been partially supported by LINFA (Logistica INtelligente del
FArmaco) project, funded by Regione Toscana under the call PAR FAS 2007–2013, Linea d’azione
1.1 Bando FAR FAS 2014.
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A Hybrid Metaheuristic for the Optimal
Design of Photovoltaic Installations

Matteo Salani, Gianluca Corbellini and Giorgio Corani

Abstract We consider the Photovoltaic Installation Design Problem (PIDP) were
photovoltaic modules must be organized in strings and wired to a set of electronic
devices. The aim is to minimize installation costs and maximize power produc-
tion considering “mismatch losses” caused by non-uniform irradiation (shading)
and directly related to design decisions. We relate the problem to the known class of
location routing problems and thanks to the existing knowledge on the problem, we
design a route-first cluster-second heuristic.Wepropose an efficientmachine learning
approach to evaluate the installation performances accounting for mismatch losses.
We prove that our approach is effective on real-world instances provided by our
industrial partner.

Keywords Metaheuristic · Machine learning · Photovoltaic installation design

1 Introduction

Photovoltaic (PV) technologyhas progressed in the last decades, in particular forwhat
concerns rising efficiencies and falling prices of components [8]. Anyway, the system
design process still represents a bottleneck for the realization and capitalization of
efficient PV installations [7].

Modern design support tools are still lacking of methods for a comprehensive
evaluation of alternatives. One of the misregarded aspects concern the electrical
performance (voltage and current) of PV installations where mismatch losses effects,
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due to different level of irradiation between cellsand modules, can have a signficant
impact on energy yield up to 25% with respect to the optimal configuration [11].

In the context of an applied project, we collaborate with an industrial partner:
InSun SA, an IT company based in Lugano, which provides a platform of services
to the players of the photovoltaic value chain. The goal of the project is to enrich the
inSun’s platform with Machine Learning and Optimization components.

2 Photovoltaic Installation and Mismatch Losses

In a photovoltaic installation layout, modules are organized in strings (in series) and
strings are assembled in parallel and connected to Maximum Power Point Trackers
(MPPT) that are electronic components able to set the optimal operational point
in current and voltage of PV strings. All strings connected to an MPPT must be
composed of an equal number of modules. Strings are joined in junction boxes and
then dedicated connection cables reach MPPTs which are physically located within
Inverters, devices used to convert the energy produced from direct current to alternate
current. Every inverter can host one or more MPPTs. Finally inverters are connected
to the power grid.

When modules are facing the same environmental condition (irradiation and tem-
perature) every module is working at its own best condition. When modules are in
different conditions (mostly due to partial shading because of surrounding objects)
some of them are not working at their global maximum power point. These partial
shading phenomenon lead to additional non linear losses, called “mismatch losses”
[3].

To estimate the mismatch losses of a given plant configuration, for every sun
position when partial shading is occurring, a time consuming simulation must be
carried out. In order to tackle the computational issue, we adopted a meta-model
approach, approximating by a statistical model the mismatch losses.

Thus for each PV configuration, composed by a different number of PV strings s,
we build a synthetic data set by simulating the physical model in a range of different
conditions and we train a statistical predictor aimed at approximating the mismatch
loss computed by the physical model. We use as inputs the ratio between diffuse
irradiation and global irradiation and the proportion of shadow referring to each
string, which thus yield s + 1 independent variables.

For each different number of string s, we train a random forest model [6, Chap.
15] as a statistical predictor. The random forest algorithm is widely recognized as
one the most accurate machine learning approaches for function approximations [5],
given its ability in capturing interaction between features and non-linearities.
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Table 1 The random forest model reliably approximates the mismatch loss computed by the phys-
ical model on the different data sets for s ∈ {1, . . . , 7}

Number of strings

1 2 3 4 5 6 7

Number of data points 200 2300 17,700 20,000 20,000 20,000 20,000

Mean mismatch loss 0.11 0.13 0.14 0.15 0.16 0.16 0.16

Mean absolute error 1e−2 7e−3 4e−3 5e−3 5e−3 6e−3 7e−3

Correlation
true/predicted

0.97 0.99 1.00 1.00 1.00 1.00 1.00

In order to validate the model we adopt 10-folds cross-validation for s ∈ {1, . . . ,
7}. As reported in Table 1, we obtained very good approximation in all data sets,
with an absolute error smaller by at least one order of magnitude than the mismatch
loss to be predicted and correlations larger than 0.95 between the values produced
by the physical model and those estimated by the random forest. In most data sets,
the error is two orders of magnitude smaller than the mismatch loss computed by
the physical model and the correlation is 0.99. The data set that contains a single
string is the most critical; the correlations between inputs and mismatch loss are so
low in this setting that a linear regression yields a true/predicted correlation of only
0.53 while the random forest obtains a true/predicted correlation of about 0.95. This
shows that the relation between input and output are strongly non-linear.

3 Photovoltaic Installation Design Problem

The photovoltaic installation design problem (PIDP) is described as follows: given
a set M of homogeneous PV modules, a set T of MPPTs, a set I of inverters, a set
S of irradiance samples, determine the inverter configuration, i.e. the MPPTs to be
used among the available ones, for eachMPPT, its configuration, i.e. the number and
length of pv strings and the assignment of modules to MPPTs and their organization
in strings. Finally, for a given MPPT and a given set of pv strings to be connected in
parallel, the location of the junction where strings are assembled in parallel.

For each module m ∈ M , let pm be its nominal power and cm its position in
a bi-dimentional space. For each tracker t ∈ T , let nmt and nst be the maximum
number of modules and the maximum number of strings that can be connected to it.
Additionally, each string attached to the tracker t ∈ T must be composed by no less
than lmt modules and no more than umt modules. For each sample s ∈ S, let dis and
i is the direct and diffuse irradiances, respectively. We are also given a relative weight
ws of a given sample s ∈ S as the fraction of time of an year that the corresponding
irradiance sample is expected. For eachmodulem ∈ M and irradiation sample s ∈ S,
we are given the status of the module an,s ∈ (0, 1). It represents the power fraction
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of the module with respect to the nominal power we are expecting at irradiation
sample s.

The PIDP has multiple objectives. The first objective, z1, is to maximize the
number of modules in the solution. As feasible MPPT configurations are limited
there may be problem instances in which not all modules can be connected. The
second objective, z2, is the minimization of overall installation cables. The cable
necessary to assemble the installation is composed of the cable necessary to form
each PV string, plus the cable necessary to connect strings in parallel and the cable
necessary to connect the strings to the MPPTs. The length of all cables is computed
using the L1 norm as in general cables are secured to the hardware which is organized
in a sort of a grid. The third objective, z3, is the minimization of production losses
due tomismatch effects. According to industrial requirements, we consider objecives
lexicographically: given any two solutions r1 and r2, r1 dominates r2 if

z1(r1) > z1(r2) ∨ (z1(r1) = z1(r2) ∧ z2(r1) < z2(r2) ∧ z3(r1) < z3(r2))

We observe that the PIDP can be conveniently cast to a multi-depot location rout-
ing problem (LRP) with some problem specific additional constraints. For brevity,
we refer the reader to [9, 10, 13]. Variants and applications of the LRP are reviewed
in [4], we mention [1] as authors addressed the LRP with profits, i.e. the problem in
which some of the customers can be left unserved and [14] addressing the LRP with
multiple objectives.

Briefly, we describe how an instance of the PIDP can be seen as an instance of the
LRP and outline the few differences among the two problems. The set of customers
is composed by the set of modules M . The set of potential depot nodes corresponds
to the set of potential junction boxes.

The number of vehicles is unbounded and there are no fixed costs for opening a
depot. The capacity of each vehicle is constrained from both above and below by
umt and lmt . This is one of the differences between PIDP and LRP. In the latter,
route capacity is constrained only from above. The cost matrix, can be conveniently
described by the assembly distance between modules. Adjacent modules that can be
connected directly by their own cables thus having distance equal to 0. We finally
remark the second difference between PIDP: all PV strings connected to an MPPT
must be composed of the same number of modules, in LRP terms, the number of
customers associated with routes belonging to the same depot must be the same. This
peculiarity is not addressed in any of the reviewed contributions.

Analysing the LRP literature, we focused on methods based on the route first
cluster second principle introduced by Beasley [2] where the computational effort
related to routing is concentrated on computing one or few “giant” TSP tours once
and the clustering component is able to produce a population of non-dominated
solutions.
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4 Hybrid Heuristic

In order to solve the PIDP, we designed an hybrid heuristic. Each objective is treated
separately by a different component of the heuristic. In particular, the main objective,
z1, is addressed by an iterative enumeration algorithm that produces a set of optimal
configuration schemes. The minimization of total cabling, z2, is addressed by the
routing component of the algorithm, exploiting different metrics, the algorithm is
able to compute different solutions for the giant TSP. Finally, different objectives are
accounted in the clustering component, where the objective related to the mismatch
loss estimation, z3, is computed exploiting the meta-model presented earlier.

A configuration is defined by the subset of selected trackers T ′ ⊆ T and for each
selected tracker, t ∈ T ′, by a feasible tracker configuration. In order to be feasible,
a tracker configuration must not exceed the maximum number of modules, nmt

and must be composed by no more than nst strings all formed by at most umt

and at least lmt modules. Optimal configurations are those that maximize the total
number of connected modules. The set of optimal tracker configurations, G, can
be computed by a recursive enumeration scheme. For each tracker, we iteratively
consider ordered configurations. For a given selected configuration for tracker t , we
ignore all configurations for tracker t + 1 with more modules than those associated
with t . We therefore obtain all simple combinations and we avoid the brute force
enumeration of all possible configurations and avoid configurations redundance. In
order to explore some structurally different solutions, once we designed the set of
optimal configurations we sample a subset of configurations with different variance
in the number of assigned modules per tracker. In our experiments, we observed that
there exist good solutions in which the configuration of trackers has low variance
(all trackers are similarly configured) and good solutions in which the configuration
of trackers has high variance (some trackers with many modules and some with few
modules). Different types of optimal tracker configurations are therefore worth to be
explored.

PV modules are assembled in a so called installation field, i.e. a bi-dimensional
space with physical constraints for installation. In particular, as installation fields
may be on rooftops, straight connection of any two modules is sometime impossible
as rooftops can be non-convex or there may be obstacles along the path. Still, there
may be a viable path that a cable can follow to connect any two pair of modules. To
this purpose we developed a preprocessing component able to compute the cabling
distance between any pair of modules in an installation field by defining a support
graph in which nodes are represented by PV modules and vertices of obstacles
and an edge between two nodes exists when a straight connection is feasible. For
any pair of PV modules that does not have a straight connection we compute the
shortest path in the support network with a standard Dijkstra algorithm according
to a given distance norm: Euclidean norm, L1 norm and a problem-specific norm
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designed so that some module connections are preferred over others according to
practical concerns related to installation. In practice, photovoltaic installations are
composed of series of longitudinal tracks where modules are assembled and cables
can be conveniently secured, therefore it is convenient to prefer connections between
modules laying on the same track. The result of the pre-processing phase is a set of
three distance matrices between any pair of modules.

Given a set of modules M and a set of distance matrices L computed in the
preprocessing phase, according to the route first cluster second methodology (see
Prins et al. [12]), we compute a set F of different so called giant TSP tours.

Given an optimal configurations g ∈ G and an optimized giant tour f ∈ F , we
build a solution to an instance for the PIDP splitting the tour in as many strings as
the configuration g prescribes. Furthermore, we need to assign strings to trackers
and decide the location of the junction point connecting the strings. We designed
an iterated local search that produces an initial set of solutions with a constructive
heuristic and then improves it with local exchanges.

5 Computational Results

We performed experiments on real-world instances proposed by our industrial part-
ner. In this section, we compare solutions obtained with our methodology with those
obtained by the company’s best practices, currently a partially automated system.
Results are reported in Table 2.

We have at hand 9 real-world instances. The smallest instance has 60modules and
an average of 10 modules per tracker, the largest instance has 1218 modules and an
average of 305 modules per tracker. For the largest instance, the method converged
in 192 s of computation. For all instances the method proposes different solutions in
short computational time.

Savings related to cabling canbe up to 31.76% in the largest instance andmismatch
losses are reduced up to 45.20%. In some cases, the best solution with respect to one
objective has a worse performance on the corresponding value of the other objective
and this is expected. For example, in a 631 modules instance the best mismatch
loss performance of 5.95 corresponds to a worsening of cable length by 3.27%.
Anyway, for all instances, we were able to provide solutions improving both cabling
and mismatch loss objectives. Finally, we remark that for the largest instance, the
proposed method is able to connect all 1218 modules, while the reference solution
connected one module less and still the overall cabling and mismatch loss are largely
reduced.
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Table 2 Computational results
Instance Solution Assigned Total

Type Modules Length (%) MML (%) Time(s)

instance_60_3_6 Reference 60 176.6 4.19

Best MML 60 200.9 −13.75 3.74 10.74 1.8

Best length 60 142.1 19.55 4.40 −5.01

Best
improvement

60 151.6 14.16 4.04 3.58

instance_68_3_6 Reference 68 227.2 6.46

Best MML 68 226.1 0.50 6.11 5.42 2.1

Best length 68 158.4 30.30 6.75 −4.49

Best
improvement

68 185.2 18.49 6.43 0.46

instance_210_5_10H Reference 210 665.9 3.52

Best MML 210 582.7 12.50 2.96 15.91 6.9

Best length 210 548.4 17.65 3.46 1.70

Best
improvement

210 582.7 12.50 2.96 15.91

instance_210_5_10L Reference 210 665.9 2.21

Best MML 210 628.0 5.70 1.99 9.95 5.0

Best length 210 548.4 17.65 2.19 0.90

Best
improvement

210 555.2 16.62 2.14 3.17

instance_577_6_12 Reference 577 2243.8 4.48

Best MML 577 2034.0 9.35 3.49 22.10 123.9

Best length 577 1765.1 21.33 3.94 12.05

Best
improvement

577 1785.5 20.43 3.87 13.62

instance_631_3_3 Reference 631 2254.4 7.86

Best MML 631 2328.2 −3.27 5.95 24.30 79.9

Best length 631 1825.3 19.03 7.52 4.33

Best
improvement

631 2026.3 10.12 6.54 16.79

instance_674_6_12 Reference 674 1884.2 2.97

Best MML 674 2251.0 −19.47 2.60 12.46 98.9

Best length 674 1719.1 8.76 3.14 −5.72

Best
improvement

674 1771.7 5.97 2.82 5.05

instance_903_14_14 Reference 903 1979.3 3.48

Best MML 903 2072.6 −4.71 2.87 17.53 102.9

Best length 903 1736.3 12.28 4.84 −39.08

Best
improvement

903 1869.0 5.57 3.02 13.22

instance_1218_4_4 Reference 1217 4957.2 10.93

Best MML 1218 3824.9 22.84 5.99 45.20 192.5

Best length 1218 3382.9 31.76 9.45 13.54

Best
improvement

1218 3592.0 27.54 6.15 43.73
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6 Conclusions

We have shown an efficient hybridization of machine learning and optimization to
tackle a real-world problem. The Photovoltaic Installation Design Problem (PIDP)
can be modelled as a location routing problem and solved with the arsenal of known
OR methodologies. Results are encouraging: a set of non-dominated solutions is
computed in a reasonable amount of time enabling the decision maker to compare
among different solutions. The approach is shown to be applicable to a production
environment. Further work should be concentrated in assessing the quality of the
method with the computation of valid lower bounds.
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Perspective Cuts for the ACOPF
with Generators

Esteban Salgado, Claudio Gentile and Leo Liberti

Abstract The alternating current optimal power flow problem is a fundamental
problem in the management of smart grids. In this paper we consider a variant
which includes activation/deactivation of generators at some of the grid sites. We
formulate the problem as a mathematical program, prove its NP-hardness w.r.t. acti-
vation/deactivation, and derive two perspective reformulations.

Keywords Power flow · Reformulation · NP-hardness

1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is one of the most
important problems arising in the energy industry. It models the propagation of power
flows in electrical grids. It is often used as second-level subproblem in bilevel prob-
lems modelling the decision of electricity prices subject to production and demands
[14]. Multilevel problems with ACOPF at different time-scales are also considered
[1]. The ACOPF received a lot of attention over the years, and specifically after smart
grids were introduced [2].
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The ACOPF asks for the best power flow over an electrical network modelled by a
digraphD = (N ,L ), whereN is the set of buses andL the set of lines. It is well
known that the natural formulation can be simplified using only voltage variables
[10]. The ACOPF is usually cast as a Mathematical Programming (MP) problem
over the complex numbers (which make their appearance due to the cyclic nature
of alternating currents). The standard ACOPF can be reformulated as a (larger) MP
over the reals, by separating real and complex parts [17].

While the standard version of the ACOPF only has continuous variables, more
realistic variants include binary variables which activate/deactivate various electri-
cal components. In this paper we consider the possibility of activating/deactivating
electrical generation at some of the buses. This defines an ACOPF variant which we
call ACOPF with Generators (ACOPFG) [15].

Note that the ACOPF is NP-hard even without binary variables, as shown in
[13]. Experimentally, however, it was found that many standard benchmarks, as well
as randomly generated instances, can be solved efficiently. It is shown in [12] that
this happens whenever the duality gap is zero. One might then question whether
the ACOPFG is NP-hard simply because of the addition of the binary activation
variables. The first contribution of this paper is to prove that this is indeed the case.

While ACOPF objective functions vary in the literature, it is common to consider
quadratic objectives with respect to voltage. In this paper, however, we focus on a
more general objective function, quadratic with respect to active power and quartic
(without cubic terms) w.r.t. voltage [10]. The second contribution of this paper is the
application of two perspective reformulations (PR) to the ACOPFG with the more
general (quartic) objective [6, 8].

2 MP Formulation

We consider the network digraphD mentioned in Sect. 1. Let n = |N | and � = |L |.
We identify a subset G of generator buses, and let n′ = |G |. We note that, in modern
smart grids, generatorsmay produce and consume electricity. Becausewe are dealing
with alternating currents, power is represented by a complex number. The real part
is the active power while the complex part is reactive.

Notationwise, we use [α, α] to denote lower/upper bounds to a quantity, and α∗
to denote complex conjugate.

The parameters of our problem are as follows:

• ∀b ∈ N Sb ∈ C is the power demand at bus b;
• ∀g ∈ G Sg = [Sg, Sg] is the (complex) interval where g can generate power if
active;

• ∀b ∈ N vb = [vb, vb] is the (real) interval where the voltage magnitude at bus b
can range;

• ∀(a, b) ∈ L ı ab is the maximum current which can flow through the line (a, b);
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• Y is a complex n × n bus admittance matrix (it plays a role analoguous to the
reciprocal of resistance in Ohm’s law);

• Y 0,Y 1 are complex � × n line admittance matrices (they “encode” some electrical
properties of the lines).

The decision variables are:

• ∀g ∈ G sg ∈ C is the power generated at g;
• ∀g ∈ G zg ∈ {0, 1} denotes the deactivation (0) or activation (1) of generator g;
• ∀b ∈ N vb ∈ C is the voltage at bus b;
• ∀(a, b) ∈ L iab ∈ C is the current on the line (a, b).

At each generator g ∈ G , the injected complex power sg − Sg = vg
∑

(g,a)∈L i∗ga ,
and at each non-generator bus b ∈ N � G , we have −Sb = vb

∑
(b,a)∈L i∗ba .

Kirchoff’s law and a generalized form of Ohm’s law allow us to derive i = Yv, which
implies that the RHS of the above equations can be reformulated to vb(Y ∗v∗)b =∑

(a,b)∈L vbv∗
aY

∗
ab for each b ∈ N [17]. This allows us to express current in function

of voltage and power. We obtain the following constraints:

∀g ∈ G
∑

(g,a)∈L
Y ∗
gavgv

∗
a = sgzg − Sg (1)

∀b ∈ N � G
∑

(b,a)∈L
Y ∗
bavbv

∗
a = −Sb (2)

∀(a, b) ∈ L , ω ∈ {0, 1}
∑

h �=k∈N
(Y ω

abh)
∗(Y ω

abk)
∗v∗

hvk ≤ ı ab (3)

∀g ∈ G sg ∈ Sg (4)

∀b ∈ N |vb| ∈ vb (5)

∀g ∈ G zg ∈ {0, 1}. (6)

We remark that complex power variables s only appear in Eqs. (1) and (4). We can
eliminate them by replacing Eqs. (1) and (4) with the following inequalities:

∀g ∈ G Sgzg ≤
∑

(g,a)∈L
Y ∗
gavgv

∗
a + Sg ≤ Sgzg. (7)

Moreover, if we define z over all ofN and fix zb = 0 for all b /∈ G , Eq. (7) quantified
onN can also replace Eq. (2).

In the ACOPF literature [4, 11, 12, 15] we consider the following generation cost
function, to be minimized:

f (s, z) =
∑

g∈G
zg(cg2(Re(sg))

2 + cg1Re(sg) + cg0). (8)

Again we can replace s by v using Eq. (1) and removing constant terms in order to
express Eq. (8) as a function of voltage: essentially, we obtain f (v, z) from Eq. (8)
by replacing sg with

∑
(g,a)∈L Y ∗

gavgv
∗
a + Sg .
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Let F be the feasible subset of C
n defined by Eqs. (2)–(6) and (7). We call

ACOPFGC the formulation min(v,z)∈F f (v, z).
Finally, we can obtain a real formulation as follows:

1. replace each quadratic constraint vHMv ♦ α + jβ (where ♦ ∈ {=,≤,≥} and
j = √−1) by the pair of constraints

vHM+v ♦ α + jβ ∧ vHM−v ♦ α + jβ,

where M+ = 1
2 (M + MH ) and M− = 1

2 (M − MH );

2. replace each complex matrix M by the real matrix

(
Re(M) −Im(M)

Im(M) Re(M)

)

;

3. replace each complex vector v by the real vector (Re(v) Im(v))�.

We call this reformulation ACOPFGR.

3 Complexity

Assume cg2 = 0 for all g ∈ G in Eq. (8). By ignoring activation variables we obtain
theACOPF, which is aQuadratically ConstrainedQuadratic Program (QCQP). Since
the ACOPF is NP-hard [3], it follows by inclusion that the ACOPFG is also NP-
hard. On the other hand, it was shown in [12] that many practical ACOPF instances
turn out to be easy rather than hard. We remark that “easy”, in this setting, does not
necessarily mean “in P”, since the decision version of the QCQP is not known to be
in NP (unless there are no quadratic constraints, in which case the problem class is
known to be in NP [19]). The meaning of “easy” in this context is that global optima
can be obtained by means of a local, rather than global, optimization procedures.

The question we answer in this section is whether the addition of the binary
activation variables constitute an actual additional difficulty. To show that this need
not necessarily be the case, we consider a linear system

Ax ≤ b
x ≤ 1
x ∈ R

n+,

⎫
⎬

⎭
(9)

where A is totally unimodular. Finding a feasible solution can obviously be done
in polynomial time by the, say, interior point algorithm (irrespective of total uni-
modularity), and so this formulation is in P. If we add n additional binary activation
variables y1, . . . , yn ∈ {0, 1} and n additional activation/deactivation constraints

∀ j ≤ n x j ≤ y j , (10)
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then the new system has a constraint matrix:

⎛

⎝
A 0
In 0
In −In

⎞

⎠ ,

which is easily seen to also be totally unimodular [20]. Therefore this new Mixed-
Integer Linear Programming (MILP) formulation is in P. This provides an example
where adding boolean activation variables does not make the underlying problem
more difficult.

Having established that the question makes sense, we present a reduction of the
weakly NP-complete subset- sum problem to a subclass of ACOPFG. Given an
instance (σ1, . . . , σn, S0) of subset- sum, we must decide whether there is a subset
I ⊆ {1, . . . , n} such that ∑

i∈I
σi = S0. (11)

This is equivalent to asking whether the following linear diophantine equation has a
solution x ∈ {0, 1}n: ∑

i≤n

σi xi = S0. (12)

We now show that we can naturally express Eq. (12) using the ACOPFG formula-
tion of Sect. 2.We consider a simple networkD withG = {1, . . . , n} generators with
demand Sg = 0 for g ≤ n and a single non-generator bus (indexed by 0) with demand
S0 (so thatN = {0, . . . , n}). The setL of lines is {(g, 0) | 1 ≤ g ≤ n}, namely each
generator is linked to the only non-generator bus. Each generator g ∈ G has gen-
eration interval SG = [σg, σg], i.e. each generator can either be inactive, or else, if
active, must produce exactly σg . Then Eq. (7) becomes:

∀g ≤ n Y ∗
g0vgv

∗
0 = σgzg. (13)

Since we know σg is real and positive, we arrange Y ∗ so that the complex part of the
LHS of Eq. (13) is zero; in particular, we arrange Y ∗

g0v
∗
0 to yield a j2 = −1 coefficient

(this can be easily done when we derive ACOPFGR). So we get:

∀g ≤ n Re(Y ∗
g0vgv

∗
0) = −σgzg. (14)

Furthermore, Eq. (2) is: ∑

(g0)∈L
Y ∗
g0v0v

∗
g = −S0,
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whence, by Eq. (14), we have:

∑

g≤n

(−σgzg) = −S0,

which is exactly Eq. (12).

4 Perspective Reformulation

The objective function Eq. (8) can be restated using additional variables pg =
Re(vg

∑
(g,a)∈L v∗

aY
∗
ga + Sg). In practice use the convex constraints

∀g ∈ G s.t. cg2 > 0 pg ≥ Re(vg
∑

(g,a)∈L
v∗
aY

∗
ga + Sg), (15)

which are justified by the objective function direction. We now reformulate Eq. (8)
using these new variables:

f (p, z) =
∑

g∈G
(cg2 p

2
g + cg1 pg + cg0zg). (16)

The reformulations proposed below can all be carried out on a per-generator basis.
In the rest of this paper, we assume they are only applied to generators g ∈ G for
which cg2 > 0.

The power pg is subject to the following activation constraints:

pg ≤ Pgzg ∧ pg ≥ Pgzg (17)

where Pg = Re(Sg) and Pg = Re(Sg). The PR reformulation [8] can be applied
to (16) as follows:

f̂ (p, z) =
∑

g∈G

(
cg2

p2g
zg

+ cg1 pg + cg0zg
)
. (18)

The function (18) can be optimized using the perspective cuts (PC)method [8], which
works as follows: (i) first we add new variables tg representing the nonlinear part of
the cost in (18) by considering the following constraints

tg ≥ cg2
p2g
zg

, (19)
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and replacing (18) with f̃ (t, p, z) = ∑
g∈G (tg + cg1 pg + cg0zg); (ii) then con-

straints (19) can be replaced by PCs:

tg ≥ cg2(2 p̌g pg − p̌2gzg), (20)

where p̌g are fixed values of the real power pg varying in the feasible interval Pg ≤
p̌g ≤ P̌g when zg = 1. The addition of PCs does not add further difficulties in the
problem formulation except for the condition that they should be generated iteratively
as their number is not finite.

We can alternatively apply the AP2R technique [6, 7], which works in two phases.
The first phase is a projection where the optimal value of zg for the continuous
relaxation of Eq. (18) subject to Eq. (17) is found depending on pg . The second
phase is a lifting where the variables zg are lifted back. The resulting problem can
be solved using an off-the-shelf MIP solver. This is equivalent to replacing (18) and
(17) with:

min
∑

g∈G

(
zg(pintg )2 + f̌g(πg + pintg ) − f̌g(pintg ) + cg1 pg + cg0zg

)

∀g ∈ G (Pg − pintg )zg ≤ πg ≤ (Pg − pintg )zg
∀g ∈ G πg = pg − pintg zg,

⎫
⎪⎪⎬

⎪⎪⎭

(21)

where f̌g(x) = cg2x2 and pintg is

pintg = max(Pg,min(
√
cg0/cg2, Pg)). (22)

The final AP2R reformulation consists in Eqs. (21), (2)–(6), the complex part of
Eqs. (7) and (15).

5 Computational Results

We tested PRs with 4 cuts and AP2R (implemented using AMPL [5]): both on
the ACOPFG formulation ACOPFGR in Sect. 2 (Table1) and on the dual Diago-
nallyDominant Programming (DDP) outer-approximation proposed in [18] (Table2)
solved using CPLEX [9].We compared these results with local optima of the ACOPF
(all active generators) obtained by MatPower [21] and by solving the ACOPFGR

using Baron [16] to global optimality (within a limited CPU time of 1h). The test
set includes small to medium scale instances taken from MatPower; results on one
larger-scale instance are reported in Table2. All results were obtained on an Intel i7
dual-core CPU at 2.1GHz with 16GB RAM.

In the “Perspective reformulation” columns we show: number of iterations, CPU
seconds (limited to 1 h), PR objective value obtained on 1st iteration and final value,
original objective function value at optimum, percentage of active generators at



458 E. Salgado et al.

Ta
bl
e
1

R
es
ul
ts
on

A
C
O
P
F
G

R
(‘
x’
:s
ol
ut
io
n
no
tf
ou
nd

w
ith

in
tim

e
lim

it)
In
st
an
ce

Pe
rs
pe
ct
iv
e
re
fo
rm

ul
at
io
n
(A
C
O
P
F
G
R
)

A
P2

R
(A
C
O
P
F
G
R
)

M
A
T
PO

W
E
R

M
i-
Q
ua
rt
ic

So
lu
tio

n’
s
di
st
an
ce
s

It
T
im

e
Fi
rs
tv

al
ue

L
as
tv

al
ue

%
ac
tiv

e
R
ea
lv

al
ue

T
im

e
%

ac
tiv

e
V
al
ue

R
ea
lv

al
ue

C
al
ue

T
im

e
%

ac
tiv

e
B
es
tv

al
ue

Pe
rs
p/
M
i-

Q
ua
rt
ic

A
P2

R
/M

i-
Q
ua
rt
ic

W
B
2

2
24

87
8.
18
2

87
8.
18
2

10
0

87
8.
18
2

13
10
0

87
8.
18

87
8.
18
2

87
7.
78

13
10
0

87
8.
18
2

0
0

W
B
3

2
16
9

41
7.
24
4

41
7.
24
4

10
0

41
7.
24
4

10
9

10
0

41
7.
24
4

41
7.
24
4

41
7.
25

10
8

10
0

41
7.
24
4

0
0

W
B
5

2
36
00

94
7.
05
6

94
7.
05
6

10
0

94
7.
05
6

22
69

10
0

94
7.
05
6

94
7.
05
6

10
82
.3
3

24
54

10
0

94
7.
05
6

0
0

6w
w

1
36
00

29
13
.5
8

29
13
.5
8

x
28
81
.2
8

36
00

10
0

10
94
8.
7

13
5.
18

31
34
.3
5

36
00

10
0

31
35
.1
8

0.
15
84

0

ca
se
9

2
36
00

20
62
.6
5

51
15
.7
2

10
0

54
30
.3
8

36
00

66
.7

10
94
8.
74

73
35
.4
2

52
96
.6
9

36
00

10
0

52
96
.6
9

0.
25
61

0.
62
34

ca
se
14

1
36
00

52
50
.2
2

52
50
.2
2

x
53
75
.9
4

36
00

80
65
89
.7
2

52
87
.7
2

80
81
.5
3

36
00

60
54
76
.9
0

0.
13
70

0.
83
04

ca
se
30

1
36
00

43
0.
90
6

43
0.
90
6

x
53
6.
30
7

36
00

66
.7

50
3.
50
8

50
3.
50
8

57
6.
89

36
00

83
.3

51
5.
80
7

0.
42
34

0.
35
03



Perspective Cuts for the ACOPF with Generators 459

Ta
bl
e
2

R
es
ul
ts
on

du
al
D
D
P
[1
8]

(‘
x’
:s
ol
ut
io
n
no

tf
ou

nd
w
ith

in
tim

e
lim

it)
In
st
an
ce

Pe
rs
pe
ct
iv
e
re
fo
rm

ul
at
io
n
(d
ua
lD

D
P
sa
lg
ad
o3
)

A
P2

R
(d
ua
lD

D
P
sa
lg
ad
o3
)

M
A
T
PO

W
E
R

M
i-
Q
ua
rt
ic

So
lu
tio

n’
s
di
st
an
ce
s

It
T
im

e
Fi
rs
tv

al
ue

L
as
tv

al
ue

%
ac
tiv

e
R
ea
lv

al
ue

T
im

e
%

ac
tiv

e
V
al
ue

R
ea
lv

al
ue

V
al
ue

T
im

e
%

ac
tiv

e
B
es
tv

al
ue

Pe
rs
p/
M
i-

Q
ua
rt
ic

A
P2

R
/M

i-
Q
ua
rt
ic

W
B
2

2
0.
00
1

87
6.
92
3

87
6.
92
3

10
0

87
6.
92
3

0.
00
1

10
0

87
6.
92
3

87
6.
92
3

87
7.
78

13
10
0

87
8.
18
2

0.
00
14

0.
00
14

W
B
3

2
0.
00
2

39
8.
44
3

39
8.
44
3

10
0

39
8.
44
3

0.
00
1

10
0

39
8.
44
3

39
8.
44
3

41
7.
25

10
8

10
0

41
7.
24
4

0.
04
72

0.
04
72

W
B
5

2
0.
00
5

67
7.
68
8

67
7.
68
8

10
0

67
7.
68
8

0.
00
8

10
0

67
7.
68
8

67
7.
68
8

10
82
.3
3

12
00

10
0

94
7.
05
6

0.
35
63

0.
39
92

6w
w

4
0.
02

27
60
.7
51

28
38
.6
93

66
.7

28
44
.4
4

0.
00
8

66
.7

57
28
7.
6

28
41
.6
1

31
34
.3
5

12
00

10
0

31
35
.1
77

0.
61
08

0.
61
08

ca
se
9

2
0.
03

20
12
.1
35

50
34
.0
28

10
0

54
30
.3
8

0.
03
1

66
.7

10
81
0.
8

71
97
.4
5

52
96
.6
9

12
00

10
0

52
96
.6
86

0.
24
22

0.
84
23

ca
se
14

3
0.
15

50
91
.3
40

53
90
.8
00

60
54
06
.5
3

12
00

80
47
46
.9
9

47
46
.9
9

80
81
.5
3

12
00

60
54
76
.9
05

0.
05
72

0.
03
25

ca
se
30

2
3.
28

39
8.
42
7

50
9.
55
4

83
.3

51
8.
42

21
66
.7

49
2.
23
2

49
2.
23
2

57
6.
89

12
00

83
.3

51
5.
80
7

0.
60
31

0.
40
68

ca
se
89
pe
ga
se

2
29
7.
33

57
30
.1
52

57
30
.1
52

10
0

57
30
.1
5

28
6.
48
4

10
0

57
30
.1
5

57
30
.1
5

58
17
.6
0

x
x

x
x

x



460 E. Salgado et al.

optimum. In the “AP2R” and “Mi-Quartic” columns we show CPU time, objective
function value and percentage of active generators. In “Solution’s distances” we
report a scaled distance of the optima found by PR/AP2R w.r.t. Mi-Quartic, namely
‖pω−pMI−Quartic‖1

‖pω‖1 , ω ∈ {PR, AP2R}.
While it is clear that the tests with ACOPFGR are inconclusive, those on the dual

DDP approximation give very tight bounds in relatively little time.
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Coalitional Games in Evolutionary
Supply Chain Networks

Laura Scrimali

Abstract Wefocus on the coalition formation in a supply chain network that consists
of three layers of decision-makers, namely, suppliers, manufacturers, and retailers,
with prices and shipments that evolve over time.We suppose that some partners in the
chain vertically merge each other and act as one player to confront the other players
that make their choices independently. In this model, the retailer is the dominant
player and is a profit-maximizer. We present a non-cooperative approach to the
coalitional game and provide the equilibrium conditions governing the model as
well as an equivalent evolutionary variational inequality formulation.

Keywords Evolutionary variational inequality · Supply chain · Coalitions
Nash equilibrium

1 Introduction

This paper investigates the effects of coalition formation on the economic perfor-
mance of a supply chain network in a time-dependent setting. In particular, we con-
sider the vertical integration of suppliers, manufacturers, and retailers who make a
joint venture to confront the other players. In this situation, the retailer is considered
as the dominant player of the coalition and acts as a profit-maximizer.

Papers in the literature study different aspects of supply chain networks in both the
static and time-dependent case. For instance, in [1], the authors study a three-echelon
supply chain network and discuss the value of integrating a pair of partners in the
chain. They study different scenarios, presenting and solving the related optimization
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problems in finite-dimensional spaces. In [3], the author considers a three-layer sup-
ply chain network with prices and shipments evolving over time and in the presence
of excesses of production and demand. Equilibrium conditions and a time-dependent
variational formulation of the complete supply chain are presented. In [6], the authors
study the selection of chain partners, the formation of supply chains and outcome
allocations. They formulate the static coalitional game as a variational inequality
problem and provide an iterative diagonalization algorithm to determine the steady
state for the game. In [2], the process of coalition formation is modeled as a non-
cooperative bargaining game, where firms make offers and respond according to an
exogenous rule of order, which establishes who is the first proposer and the order of
reply. The equilibrium of the merger formation game for any possible asset structure
is given, taking the coalitions’ profit function resulting from Cournot competition.

In our paper, we depart from the partner selection problem and model the coali-
tion formation game as an evolutionary variational inequality (EVI). Such tool well
describes equilibrium problems and situations in which several decision-makers
interact under technical and economic constraints. Variational inequality theory (see
[4]) has been developed and applied to many research fields such as spatial equilib-
riummodels, supply chainmanagement, financial networks, transportation networks,
electricity markets, and pollution. In addition, we give the equilibrium conditions
governing the model and prove the equivalence with the EVI solution.

We emphasize that we study a continuous time model. Life unfolds continuously,
thus suggesting that a continuous time framework is more realistic and allows one
to follow the adjustment process through time. Consequently, our model does not
provide static solutions, but curves of equilibria that describe the evolution of the
whole system through time.Thepaper is organized as follows. InSect. 2,we introduce
the supply chain network model consisting of material providers, manufacturers, and
retailers. In Sect. 3, we discuss the vertical integration of the partners of the chain
and provide the equilibrium conditions. Finally, in Sect. 4, we present the variational
inequality formulation of the coalition formation problem.

2 The Supply Chain Model

In this section, we present a supply chain network model that consists of three layers
of decision makers: material providers, manufacturers, and retailers (Fig. 1).

We denote by S = {s1, . . . , sh} the set of suppliers operating in the market, with
typical supplier denoted by si ; M = {m1, . . . ,ml} the set of manufacturers, with
typical manufacturer denoted by m j ; and R = {r1, . . . , rn} the set of retailers, with
typical retailer denoted by rk . Manufacturers purchase raw material from suppliers
and are involved in the production of a product, which can then be bought by retailers,
who, in turn, make the product available to consumers. Suppliers are located at the
top tier of nodes in the network; the manufacturing firms are located at the middle
tier, whereas the retailers are located at the third or bottom tier. We assume that all
players have complete information and no shortages are considered.
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Fig. 1 A three-layer supply
chain network
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In the decentralized case, players in the same layer mutually compete, playing
non-cooperative Nash games ([8, 9]). In other words, each supplier competes with
the other suppliers; each manufacturer competes with the competitors in the related
market, and each retailer competes with the other retailers. Thus, suppliers set their
own price; manufacturers decide the order quantity and the wholesale price, while
retailers charge the final price to consumers.

In our paper, we focus on the centralized model, in which the partners of some
supply chains vertically merge and make a joint venture. The retailer of each inte-
gration is the dominant player and each coalition acts as one retailer to confront the
other players that make their choices independently.

We now give the notation for the model.

• qsi (t) is the nonnegative quantity of material produced by supplier si at time t .
• qm j (t) is the nonnegative quantity of final product produced by manufacturer m j

at time t .
• qrk (t) is the nonnegative quantity sold by retailer rk at time t .
• q(t) = (qrk (t), qr−k (t)) is the the n-dimensional vector of the quantity sold by
retailers, where qr−k (t) denotes the (n − 1)-dimensional vector of the quantities
sold by competitors of retailer rk .

• prk (t, q) is the demand function of retailer rk at time t .
• csi (t, qsi ) is the nonnegative material production cost of supplier si at time t .
• cm j (t, qm j ) is the nonnegative production cost of manufacturer m j at time t .
• crk (t, qrk ) is the nonnegative holding cost of retailer rk at time t .
• τrk (t, qrk ) is the nonnegative transaction/transportation cost from retailer rk to
consumers at time t .

We also introduce the nonnegative production coefficient δsim j , which indicates
the amount of raw material necessary to produce one unit of the final product.

We study the evolution of the model in the time interval [0, t], with t > 0. We
choose as our functional setting the space L2([0, t],RN ) (where N will be specified
in the following) of square-integrable functions defined in the closed interval [0, t],
endowed with the scalar product 〈·, ·〉L2 = ∫ t

0 〈·, ·〉dt and the usual associated norm
‖ · ‖L2 . This choice is convenient since the space is very large, and allows us to
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consider both smooth and non-smooth functions. We note that some of the above
functions are often piecewise constant, and this class of functions largely falls within
the L2 space. Moreover, in this space, we can prove the existence of solutions under
minimal assumptions. Finally, we assume that all the price and cost functions are
Carathéodory and continuously differentiable operators, and belong to the functional
space.

3 The Chain Formation

In this section, we study the vertical integration of three partners of the supply chain
network. We propose that a supplier, a manufacturer, and a retailer merge each other.
In this scenario, the retailer is the dominant player and the coalition acts as the retailer.
Thus, the revenue of the coalition will be the revenue generated by the products sold
by the retailers. By vertically integrating supplier, manufacturer, and retailer, the
coalition will affect costs and benefits of the members. The incurred costs include
production costs, holding costs and transaction costs with consumers. We denote
by dsi (t) and dm j (t) the disagreement profit of supplier si and manufacturer m j ,
respectively, at time t which represents the profit in a competitive economy. The
players that do not merge act in a non-cooperative fashion.

For the typical coalition (si ,m j , rk), the retailer rk is the dominant player and is a
profit-maximizer. For any given quantity of the opponent retailers qr−k (t), we define
the chain value, or payoff of the coalition, as:

zsim j rk (t, qsi , qm j , qrk , qr−k ) = prk (t, qrk , qr−k )qrk (t) − csi (t, qsi ) − cm j (t, qm j )

−crk (t, qrk ) − τrk (t, qrk ) − dsi (t) − dm j (t). (1)

The maximization profit problem is then given by:

max
∫ t

0
zsim j rk (t, qsi , qm j , qrk , qr−k )dt, subject to

(qsi , qm j , qrk ) ∈ Ksim j rk , (2)

where

Ksim j rk =
{
(qsi , qm j , qrk ) ∈ L2([0, t],R3) : 0 ≤ qsi (t) ≤ Qmax

si (t),

0 ≤ qm j (t) ≤ Qmax
m j

(t), 0 ≤ qrk (t) ≤ Qmax
m j

(t), a.e. in [0, t]
}
,

Qmax
si (t) is the positive production capacity of supplier si at time t , and Qmax

m j
(t)

the positive production capacity of manufacturer m j at time t .
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We note that set Ksim j rk is a bounded, convex, and closed subset of the space
L2([0, t],R3), then it is also weakly compact. Thus, if the payoff of the coalition is
weakly upper semicontinuous problem (2) admits solutions (see [5]).

We now can give the following definition of equilibrium of the coalition formation
problem.

Definition 1 The vector (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk is an equilibrium of the evolution-

ary coalition formation problem if and only if the following market conditions are
verified a.e. in [0, t]:

∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qsi

⎧
⎨

⎩

≥ 0 if q∗
si (t) = Qmax

si (t)
= 0 if 0 < q∗

si (t) < Qmax
si (t)

≤ 0 if q∗
si (t) = 0,

(3)

∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qm j

⎧
⎨

⎩

≥ 0 if q∗
m j

(t) = Qmax
m j

(t)
= 0 if 0 < q∗

m j
(t) < Qmax

m j
(t)

≤ 0 if q∗
m j

(t) = 0,
(4)

∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qk

⎧
⎨

⎩

≥ 0 if q∗
rk (t) = Qmax

m j
)

= 0 if 0 < q∗
rk (t) < Qmax

m j
(t)

≤ 0 if q∗
rk (t) = 0.

(5)

Condition (3) has the following meaning. If the quantity of rawmaterial produced
reaches the production capacity, then themarginal profit of supplier si is non negative,
namely, the marginal revenue is greater than or equal to the marginal costs. If the
quantity of rawmaterial produced is positive and strictly less than the capacity Qmax

si ,
then market clears and the marginal revenue equals the marginal costs. Finally, there
will be no production if the marginal profit is less than or equal to zero (the marginal
revenue is less than or equal to themarginal costs). A similarmeaning can be deduced
for the conditions on the marginal profits of manufacturer m j and retailer rk .

4 Variational Inequality Formulation

In this section, we present a variational inequality approach to the coalition formation
problem.

Theorem 1 (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk is a solution of problem (2) if and only if it

satisfies the following variational inequality:
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∫ t

0

(

− ∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qsi

(
qsi (t) − q∗

si (t)
)

−∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qm j

(
qm j (t) − q∗

m j
(t)

)

−∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qrk

(
qrk (t) − q∗

rk (t)
))

dt ≥ 0,

∀(qsi , qm j , qrk ) ∈ Ksim j rk . (6)

Proof We assume that (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk is a solution to problem (2). Then, for

all (qsi , qm j , qrk ) ∈ Ksim j rk the function

G(λ) =
∫ t

0
zsim j rk (t, λq

∗
si + (1 − λ)qsi , λq

∗
m j

− (1 − λ)qm j , λq
∗
rk + (1 − λ)qrk , qr−k )dt,

∀λ ∈ [0, t],

admits a maximal solution at λ = 1 and G ′(1) ≥ 0. Therefore, we find

0 ≤ G ′(1) =
∫ t

0

(

− ∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qsi

(
qsi (t) − q∗

si (t)
)

−∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qm j

(
qm j (t) − q∗

m j
(t)

)

−∂zsim j rk (t, q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qrk

(
qrk (t) − q∗

rk (t)
))

dt,

∀(qsi , qm j , qrk ) ∈ Ksim j rk ,

which is variational inequality (6).
Conversely, we assume that (q∗

si , q
∗
m j

, q∗
rk ) ∈ Ksim j rk is a solution to (6). Since the

function

zsim j rk (qsi , qm j , qrk , qr−k ) =
∫ t

0
zsim j rk (t, qsi , qm j , qrk , qr−k )dt

is concave, then for all (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk the following estimate holds

−zsim j rk (λqsi + (1 − λ)q∗
si , λqm j + (1 − λ)q∗

m j
, λqrk + (1 − λ)q∗

rk , qr−k )

≤ −λzsim j rk (qsi , qm j , qrk , qr−k ) − (1 − λ)zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k ).

Thus, ∀λ ∈ [0, 1] we find
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1

λ

(
− zsim j rk (q

∗
si + λ(qsi − q∗

si ), q
∗
m j

+ λ(qm j − q∗
m j

), q∗
rk + λ(qrk − q∗

rk ))

+zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k )

)

≤ −zsim j rk (qsi , qm j , qrk , qr−k ) + zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k ). (7)

When λ tends to zero, the left-hand side of (7) converges to the left-hand side of
variational inequality (6); hence

0 ≤ −zsim j rk (qsi , qm j , qrk , qr−k ) + zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k ),

and (q∗
si , q

∗
m j

, q∗
rk ) is an optimal solution to problem (2). �

We now prove that equilibrium conditions (3)–(5) are equivalent to variational
inequality (6).

Theorem 2 A vector (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk is an equilibrium of the evolutionary

coalition formation problem if and only if it is solution to variational inequality (6).

Proof Let (q∗
si , q

∗
m j

, q∗
rk ) ∈ Ksim j rk be an equilibrium solution. Therefore, a.e. in

[0, t], we may write

−∂zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qsi

(
qsi (t) − q∗

si (t)
)

≥ 0,

−∂zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qm j

(
qm j (t) − q∗

m j
(t)

)
≥ 0,

−∂zsim j rk (q
∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qrk

(
qrk (t) − q∗

rk (t)
)

≥ 0.

Summing up the above inequalities and integrating, we immediately find (6).
We now assume that (q∗

si , q
∗
m j

, q∗
rk ) ∈ Ksim j rk satisfies variational inequality (6)

and choose qm j = q∗
m j
, qrk = q∗

rk in [0, t], which leads to

∫ t

0
−∂zsim j rk (q

∗
si , q

∗
m j

, q∗
rk , qr−k )

∂qsi

(
qsi (t) − q∗

si (t)
)
dt ≥ 0,∀qsi (t) : 0 ≤ qsi (t) ≤ Qmax

si (t).

By standard arguments, we find (3). Analogously, it is possible to deduce the other
conditions. �

We note that in equilibrium, all the shipments between the levels have to coincide,
namely,

q∗
si (t) = δsim j q

∗
m j

(t) and q∗
m j

(t) = q∗
rk (t), a.e. in [0, t].
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This means that, in equilibrium, the supplier will produce the quantity of raw
material that the manufacturer demands, and the retailer will purchase from the
manufacturer the quantity produced.

Thus, the optimization problem of coalition (si ,m j , rk) becomes

max
∫ t

0
zsim j rk (t, qrk , qr−k )dt, subject to qrk (t) ∈ Krk , (8)

where

zsim j rk (t, qrk , qr−k ) = prk (t, qrk , qr−k )qrk (t) − csi (t, δsim j qrk ) − cm j (t, qrk )

−crk (t, qrk ) − τrk (t, qrk ) − dsi (t) − dm j (t), (9)

Krk =
{
qrk ∈ L2([0, t]) : 0 ≤ qrk (t) ≤ Qmax

m j
(t), a.e. in [0, t]

}
.

The profit-maximization model of a coalition (si ,m j , rk) is then equivalent to the
following evolutionary variational inequality:

∫ t

0
−∂zsim j rk (t, q

∗
rk , qr−k )

∂qrk
(qrk (t) − q∗

rk (t))dt ≥ 0, ∀qrk ∈ Krk . (10)

If we consider a market in which n̄ ∈ {1, . . . , n} coalitions compete in a non-
cooperative fashion, the equilibrium conditions for coalitions, simultaneously, can
be expressed as the following variational inequality:

n̄∑

k=1

∫ t

0
−∂zsim j rk (t, q

∗)
∂qrk

(qrk (t) − q∗
rk (t))dt ≥ 0, ∀q ∈

n̄∏

k=1

Krk . (11)

The existence of solutions is out of the scope of this paper; hence, we address the
interested reader to [7].
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A Recent Approach to Derive
the Multinomial Logit Model
for Choice Probability

Roberto Tadei, Guido Perboli and Daniele Manerba

Abstract It is well known that theMultinomial Logit model for the choice probabil-
ity can be obtained by considering a random utility model where the choice variables
are independent and identically distributed with a Gumbel distribution. In this paper
we organize and summarize existing results of the literature which show that using
some results of the extreme values theory for i.i.d. random variables, the Gumbel
distribution for the choice variables is not necessary anymore and any distribution
which is asymptotically exponential in its tail is sufficient to obtain the Multinomial
Logit model for the choice probability.

Keywords Random utility · Extreme values theory · Asymptotic approximation
Multinomial Logit model

1 Introduction

In this paper we consider a discrete choice model where a decision maker needs
to select an alternative among a finite set of mutually exclusive alternatives. Each
alternative is characterized by a random utility. The decision maker will select the
alternative with the greatest utility. Discrete choice models of this kind are called
random utility models [13]. The aforementioned models are typical of several appli-
cations in operations management where decisions must be taken in advance with a
limited knowledge of the alternatives, as in supply chain optimization, logistics, and
transportation (see, e.g., [3, 4, 12, 15–17, 19, 22]).
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It is well known that the Multinomial Logit model (MNL) for the choice proba-
bility can be derived assuming that the random utilities are independent and identical
distributed (i.i.d.) across alternatives and that their common distribution is a Gumbel
function [1, 2, 6, 11].

In [9, 10] an asymptotic derivation of the MNL is given. Using some results of
the extreme values theory for i.i.d. random variables [7], it is shown that the Gumbel
distribution for the random variables is not necessary anymore. A distribution that
is asymptotically exponential in its tail is just required to obtain the MNL model
for the choice probability. Similar derivations are obtained in many applications of
location, routing, loading, and packing [18–22].

In this paper we want to organize and summarize all the above existing results by
presenting a very simple and intuitive random utility model.

The remainder of the paper is organized as follows. In Sect. 2, we recall the well-
known derivation of the MNL model for the choice probability when the random
variable distribution is a Gumbel function. In Sect. 3, we show that we can relax
the Gumbel distribution assumption and still derive the MNL model for the choice
probability. Finally, the conclusions of our work are reported in Sect. 4.

2 Derivation of the MNL Model When the Random
Variable Distribution is a Gumbel Function

Let us consider

• j = 1, . . . , n: mutually exclusive choice alternatives
• vi j : deterministic utility of alternative j for decision maker i
• x̃i j : random utility of alternative j for decision maker i .

The decision maker i assigns a total utility to each alternative as follows

ũi j = vi j + x̃i j (1)

In the following, we recall the main results from the literature, where the MNL
model is derived under the assumption that the random variables x̃i j are i.i.d. over
alternatives and their common distribution is a Gumbel function.

Following [23], to derive the MNL model we first consider the density for each
random component of utility x̃i j

f (x̃i j ) = e−x̃i j e−e−x̃i j
. (2)

Its cumulative distribution is
F(x̃i j ) = e−e−x̃i j

(3)

which is a Gumbel function.
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Following [14], the probability that decision maker i chooses alternative j is

pi j = Pr{vi j + x̃i j > vik + x̃ik ∀k �= j} =
= Pr{x̃ik < vi j − vik + x̃i j ∀k �= j}. (4)

If x̃i j is given, this expression is the cumulative distribution for each x̃ik evaluated
at vi j − vik + x̃i j , which, according to (3), is exp(−exp(−(vi j − vik + x̃i j ))). Since
the x̃ ′s are independent, this cumulative distribution over all k �= j is the product of
the individual cumulative distributions

pi j |x̃i j =
∏

k �= j

e−e−(vi j−vik+x̃i j )

. (5)

Of course, x̃i j is not actually given, then the choice probability is the integral of
pi j |x̃i j over all values of x̃i j weighted by its density (2), i.e.

pi j =
∫ +∞

−∞

⎡

⎣
∏

k �= j

e−e−(vi j−vik+x̃i j )

⎤

⎦ e−x̃i j e−e−x̃i j
d x̃i j . (6)

After some manipulation of this integral one gets the following expression for the
choice probability

pi j = evi j∑n
k=1 e

vik
(7)

where n is the total number of alternatives. Equation (7) is a MNL model.

3 Derivation of the MNL Model When the Random
Variable Distribution is Not a Gumbel Function

Wewant to show that, under some mild conditions, the Gumbel distribution assump-
tion for the i.i.d. random variables is unjustified to derive the MNL model for choice
probability. Thus, we reformulate the random utility choice theory in terms of the
asymptotic extreme values theory [7]. This theory deals with the properties of max-
ima (or minima) of sequences of random variables with a large number of terms. In
particular, wewill show thatwhen the number of alternatives becomes large theGum-
bel distribution assumption is not necessary anymore. In the following, we derive
all the results for the maximization case, but the same results can be adapted to the
minimization case.

We assume that F(x) is asymptotically exponential in its right tail, i.e. there is a
constant β > 0 such that
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lim
y→+∞

1 − F(x + y)

1 − F(y)
= e−βx . (8)

Our research question then becomes: Under condition (8) and the assumption that
the number of alternatives is large, can we still asymptotically get the MNL model
for the choice probability?

Let us consider a set J of N = |J | alternatives.We assume that J is partitioned into
n nonempty disjoint subsets Jj , j = 1, . . . , n, called clusters, of N j = |Jj | alterna-
tives. The partition into clusters of the alternatives is faced bymany choice processes.
For instance, when a household is looking for a dwelling, first of all it will select the
district where to live (this is the cluster) and, then, inside that district, it will choose
the actual dwelling among all the alternatives.

Let ũz
i j be the utility for decision maker i for choosing alternative z ∈ Jj .

As already stated, in a random utility model we assume that ũz
i j is the sum of a

deterministic variable vi j and a random variable x̃i z , i.e.

ũz
i j = vi j + x̃i z . (9)

The deterministic variable vi j of the utility includes variables which represent
attributes of the cluster and the decision context. The random variable x̃i z repre-
sents aspects of utility that the researcher does not observe, e.g., idiosyncrasies of
decision maker i .

The decisionmaker i will choose among all alternatives the onewith themaximum
utility.

Let us define the distribution of the maximum utility for decision maker i among
all alternatives z in all clusters j as

ũi = max
j=1,...,n; z∈J j

ũz
i j = max

j=1,...,n
(vi j + max

z∈J j
x̃i z) = max

j=1,...,n
(vi j + x̃ j

i ), (10)

where
x̃ j
i = max

z∈J j
x̃i z . (11)

Let
Gi (x) = Pr{ũi < x} (12)

be the distribution of ũi and

Pi j (x) = Pr{x̃ j
i < x} (13)

be the distribution of x̃ j
i .

By the i.i.d. assumption of the random variables, the distribution Pi j (x) becomes

Pi j (x) =
∏

z∈J j

Pr{x̃i z < x} = [F(x)]N j . (14)
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Now, because of (10), (11), and (14), Eq. (12) becomes

Gi (x) = Pr{ũi < x} = Pr{ max
j=1,...,n

(vi j + x̃ j
i < x} =

∏

j=1,...,n

Pr{vi j + x̃ j
i < x} =

=
∏

j=1,...,n

Pr{x̃ j
i < x − vi j } =

∏

j=1,...,n

Pi j (x − vi j ) =

=
∏

j=1,...,n

[F(x − vi j )]N j . (15)

Following [18, 20], we will show that under assumption (8) the distributionGi (x)
tends towards aGumbel function as the total number of alternatives N becomes large.
Then we will check if under these results the MNL model for the choice probability
can be still derived.

First, let us consider that we can fix the origin for the utility scale arbitrarily, i.e.,
the choice probabilities are unaffected by a shift in the utility scale and any additive
constant to the utilities can be ignored. Let us choose this constant as the root aN of
the equation

1 − F(aN |N ) = 1/N , (16)

where we remind N is the total number of alternatives.
By replacing ũi with ũi − aN in (15) one has

Gi (x |N ) =
∏

j=1,...,n

[
F(x − vi j + aN |N )

]N j
. (17)

Let us consider the ratio
α j = N j/N (18)

and assume that this ratio remains constant for each j while the values of N = 1, 2, ...
vary, as needed later to compute the asymptotic behavior while N increases.

Because of (18), Eq. (17) can be written as

Gi (x |N ) =
∏

j=1,...,n

[
F(x − vi j + aN |N )

]α j N
. (19)

Let us assume that N is large enough to use limN→+∞ Gi (x |N ) as an approxi-
mation of Gi (x). Then, the following theorem holds.

Theorem 1 Under condition (8), the probability distribution Gi (x) becomes the
following Gumbel distribution

Gi (x) = lim
N→+∞ Gi (x |N ) = exp

(−Aie
−βx

)
(20)

where
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Ai =
∑

j=1,...,n

α j e
βvi j (21)

is the accessibility in the sense of Hansen [8] to the overall set of alternatives.

Proof By (17) and (18) one has

Gi (x) = lim
N→+∞ Gi (x |N ) = lim

N→+∞
∏

j=1,...,n

[
F(x − vi j + aN |N )

]α j N =

=
∏

j=1,...,n

lim
N→+∞

[
F(x − vi j + aN |N )

]α j N
. (22)

From (16), limN→+∞ aN = +∞ only if x → +∞, since limN→+∞ 1/N = 0 and
1 − F(x) = 0, or F(x) = 1.

From (8) one obtains

lim
N→+∞

1 − F(x − vi j + aN |N )

1 − F(aN |N )
= e−β(x−vi j ). (23)

By (23) and (16), it holds that

lim
N→+∞ F(x − vi j + aN |N ) = lim

N→+∞
(
1 − [1 − F(aN |N )]e−β(x−vi j )

) =

= lim
N→+∞

(
1 − e−β(x−vi j )

N

)
(24)

and, by reminding that limn→+∞(1 + x
n )n = ex

lim
N→+∞

[
F(x − vi j + aN |N )

]N = lim
N→+∞

(
1 − e−β(x−vi j )

N

)N

=
= exp

(−e−β(x−vi j )
)
. (25)

Substituting (25) into (22) and using (21), one finally has

Gi (x) =
∏

j=1,...,n

exp
(−α j e

−β(x−vi j )
) = exp

(−Aie
−βx

)
, (26)

which is a Gumbel distribution. �
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By (25), the following approximation holds for large values of N

F(x − vi j )
N = exp

(−e−β(x−vi j−aN )
)
, (27)

where aN is a constant. We want to prove that under Theorem 1 the MNL model for
the choice probability still holds.

The choice probability pi j for decision maker i to choose cluster j can be deter-
mined as follows. Decision maker i chooses cluster j if and only if

vi j + x̃ j
i ≥ vik + x̃ ki , ∀k �= j (28)

then

pi j = Pr{vi j + x̃ j
i ≥ vik + x̃ ki , ∀k �= j} = Pr{vi j + x̃ j

i ≥ max
k=1,...n; k �= j

(vik + x̃ ki )}.
(29)

Since {x̃ ki } are independent, then

Pr{ max
k=1,...n; k �= j

(vik + x̃ ki ) < x} = Pr{ max
k=1,...n; k �= j

x̃ ki < x − vik} =

=
∏

k=1,...,n; k �= j

Pik(x − vik) (30)

and
Pr{vi j + x̃ j

i < x} = Pr{x̃ j
i < x − vi j } = Pi j (x − vi j ). (31)

From the Total Probability Theorem [5], and the results in (30) and (31), Eq. (29)
becomes

pi j =
∫ +∞

−∞

⎡

⎣
∏

k=1,...n; k �= j

Pik(x − vik)

⎤

⎦ dPi j (x − vi j ). (32)

The following theorem holds

Theorem 2 The choice probability pi j for decision maker i to choose cluster j is
given by

pi j = N jeβvi j
∑n

k=1 Nkeβvik
. (33)

Proof From (32), by using (14) and (27), and setting γ = eβaN , one obtains
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pi j =
∫ +∞

−∞

∏

k=1,...,n; k �= j

[F(x − vik)]
αk N d

[
F(x − vi j )

]α j N =

=
∫ +∞

−∞

∏

k=1,...,n; k �= j

exp
[−αke

−β(x−vik−aN )
]
d exp

[−α j e
−β(x−vi j−aN )

] =

=
∫ +∞

−∞

∏

k=1,...,n; k �= j

exp
[−γαke

−β(x−vik )
]
d exp

[−γα j e
−β(x−vi j )

] =

= γα j e
βvi j

∫ +∞

−∞
βe−βx exp(−γ Aie

−βx )dx =

= γα j e
βvi j

∫ +∞

0
e−γ Ai t dt = α j eβvi j

Ai
= N jeβvi j

∑n
k=1 Nkeβvik

,

where t = e−βx . �

Note that the choice probability in (33) still represents a MNL model.

4 Conclusions

This paper has summarized the usefulness of reinterpreting random utility models by
means of the asymptotic theory of extremes, which allows to derive the Multinomial
Logit model for the choice probability.

Most well-known results on extreme values statistics concern sequences of i.i.d.
random variables. This independency assumption, even if it provides a very conve-
nient form for the choice probability, could be considered too restrictive. In order
to relax this assumption, the independency assumption could be replaced by the
asymptotic independency for many results.
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The Optimal Tariff Definition Problem
for a Prosumers’ Aggregation
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Abstract This paper deals with the problem faced by an aggregator in defining the
optimal tariff structure for a group of prosumers aggregated within a coalition. The
random nature of the main parameters involved in the decision process is explicitly
accounted for by adopting the stochastic programming framework and, in particular,
the paradigm of integrated chance constraints. Numerical experiments carried out on
a realistic test case shows the efficacy of the proposed approach in providing more
profitable rates for both consumers and producers with respect to the standard market
alternatives.
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1 Introduction

The electricity market is facing a challenging transformation, slowly evolving from
an electricity production system dominated by large centralized generating units to
a system with an increasing amount of power production. In this new landscape, the
position of the consumer is also changing. Household consumers, as well as small
and large industrial consumers, are increasingly producing energy, for example, by
installing solar panels, establishing a wind turbine on their property, or producing
biogas from waste. In other words, they now act as prosumers, i.e. consumers that
produce energy. The presence of several prosumers, representing the lower level of
the power grid, modifies the energy chain, calling for its re-organization according
to a bottom-up approach. Because of the existing entry barriers, imposed by national
laws and technical issues, prosumers cannot act directly as suppliers, still keeping
their passive role. In this new decentralized system, the creation of microgrid infras-
tructures, aimed at managing the electricity system locally, represents a valuable
alternative. The aim of the microgrid is to create a cooperative system, aggregating
a given number of agents (i.e. consumers, producers, prosumers) to act as a single
entity when engaging in power system market (both wholesale and retail). The new
system is coordinated by an entity, the aggregator, that is responsible of managing the
energy exchanges between supplies and demands within the coalition and interacting
with the power system with the aim of obtaining the maximum benefit from the grid.
Nowadays, the fundamental value of aggregators in creating economies of scale and
scope is widely recognized and different forms of aggregation are arising all over the
world [1]. The management of aggregated systems poses new challenging problems,
from the definition of new business models for the cooperation of the aggregated
agents to decision problems related to the management of shared resources. These
last problems can be classified according to the considered planning horizon. At a
strategic level, considering a long-time horizon of several years, the main problems
refer to the design of efficient energy solutions by investing, for example, in advanced
technologies, in the efficiency of buildings, and in the adoption of storage systems
[2]. Focusing on a shorter time horizon, typically one year, the main problems are
related to the definition of the procurement plans by considering the optimal mix of
the main supply sources (bilateral contracts, energy market, production from own
plants). This problem has been widely investigated in the scientific literature. We
refer, for example, to the recent paper [3, 4] (see also the references therein) where
the authors proposed stochastic programming approaches to account for the uncer-
tainty (prices, demands, production from renewable sources) that affect the decision
problem. Over a shorter time horizon, typically a week, the main problem that the
aggregator is called to solve is related to the satisfaction of the aggregated demand
by properly managing the available resources. The problem involves scheduling
decisions on the operation of the available conventional plants, the management of
storage systems, the trading in the electricity market so to satisfy the aggregated
demand with the final aim of maximizing the total wealth. The optimal management
of aggregated systems, and more generally distributed energy resources has been
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widely studied and different contributions appeared in the recent scientific literature.
We cite [5] (see also the references therein), where the authors propose a stochastic
programming model with recourse, incorporating a risk measure to control potential
losses caused by unfavorable events that may occur.

In this paper, we focus on the problem of the definition of the electricity tar-
iffs (selling and buying side) for the prosumers aggregated within a coalition. The
definition of pricing schemes represents an important issue that has been mainly
investigated from the viewpoint of a retailer. As an intermediary between the whole-
sale electricitymarket and end-users, the retailer should determine the optimal selling
price with the aim of maximizing the expected profit. Uncertainty affecting the pool
market price, the demand, and eventually the supply from renewable sources should
be explicitly accounted for. For this reason, the main contributions on the selling
price determination rely on the adoption of stochastic optimization techniques. For
example, Carrion et al. provides in [6] a stochastic programming methodology that
allows an electricity retailer to engage in medium-term forward contracting and to
optimally set selling prices to clients, with the final aim to maximize the expected
profit given a pre-specified risk level on profit volatility. In [7] authors proposed a
dynamic and flexible tariff structure for a distribution company that protects the con-
sumers against the excessive fluctuations of the wholesales market prices, by means
of a two-stage pricing schemewith a static and a dynamic component. More recently,
Nojavan et al. have proposed in [8] a scenario based approach in a smart grid where
the selling tariff is determined on the basis of a real-time pricing. In [9], the selling
price problem has been addressed by the robust optimization approach.

In this paper, we analyze the problem of the tariff definition from the aggregator
viewpoint. Differently from the retailer, the aggregator has to define both selling and
buying tariffs to offer to the members of the coalition. A consumer finds it profitable
to participate in the coalition if the offered price is lower than the price paid for
buying energy from the market. The opposite happens for the selling side. Energy
exchanged within the coalition only requires local distribution and the transmission
savings can be shared between the local prosumers.

The rest of the paper is organized as follows. The following Sect. 2 introduces the
mathematical formulation for the price determination problem. Section 3 presents
and discusses the numerical results collected on a real case study.Concluding remarks
and future research developments are discussed in Sect. 4.

2 The Mathematical Formulation

The definition of the electricity tariffs can be carried out by applying different pricing
schemes [10]. The traditional Flat Pricing charges a time-invariant rate for each kWh.
Critical Peak Pricing guarantees a constant price with the exception of critical time
periods when the price is substantially raised. Real-time Pricing provides dynamic
rates that track wholesale market prices. Finally, Time of Use (ToU) pricing offers
electricity rates that vary with the time of the day. Typically, the hours of a day are



486 A. Violi et al.

divided in blocks (e.g., peak, intermediate, off-peak), that reflect the level of demand
of the electricity network, attributing to the peak periods higher prices. It is evident
that this flexible energy pricing scheme is able to offer economic incentives pushing
towards the adoption of demand side management programs. We consider the ToU
structure that reflects the current organization of the ItalianElectricitymarket taken as
referencemodel.We assume that the aggregatorwants to define the selling and buying
prices for a given time horizon, typically one year, divided into monthly time steps t .
The hours of the different days of eachmonth t ∈ T are articulated into a set F of ToU
blocks. We suppose that the aggregator has already defined, by using, for example,
the model proposed in [11], the optimal procurement plan for the considered time
horizon. In particular, for each time t and block f , we assume to know the powerCPt f
purchased from bilateral contracts (at the fixed price PCPt f ), the amount MBPt f
taken from the market, the self production SPt f from conventional plants and the
amount MSPt f to eventually sell to the market. The price determination problem, as
the procurement one, is clearly an optimization problem under uncertainty, since the
parameters involved in the decision process are unknown when the optimal tariffs
should be determined. We deal with this more involved problem by adopting the
stochastic programming framework, and we assume that the uncertain parameters
are modeled as random variables defined on a given probability space (Ω , F , IP).
We use letter in bold to denote the random variables. In defining the optimal tariffs,
the aggregator should account for different issues. One the one hand, he should offer
competitive tariffs: the more affordable the prices, the more attractive will be the
coalition for the prosumers. On the other hand, it is important to guarantee that the
eventual losses he incurs, if any, are very limited. We denote by STt f and BTt f the
selling (to the consumer) price and buying (from the producers) price for each time
period t and block f . If bought on the market, the consumer would pay electricity
at the market price Ptf (unknown when the tariff plan should be defined), increased
by the margin of the distributor (ΔA). Moreover, a producer would sell electricity
at the price Wtf , decreased by the distributor margin (ΔV ). Furthermore, for each
time period t and block f , we denote by Dtf and Rtf the aggregated demand and the
production from renewable sources, respectively. The aggregator should define the
optimal tariff plan so to guarantee that under every circumstance that may occur the
total monetary inflow should be greater than the total outflow:

∑

t∈T

∑

f ∈F
Dt f STt f +

∑

t∈T

∑

f ∈F
Wt f MSPt f ≥

∑

t∈T

∑

f ∈F
Pt f MBPt f +

(
SPt f + Rs

t f

)
BTt f +

∑

t∈T

∑

f ∈F
PCPt f C Pt f + MC ∀ω ∈ Ω (1)

where the term MC represents the aggregator’s margin that covers the management
cost ed assures a given profit. Because of the presence of random parameters, con-
straint (1) is clearly stochastic.We deal with this constraint by adopting the paradigm
of chance constraints (CC) in their integrated form (ICC) [12]. While the CC only
measures the probability of shortage, imposing that the stochastic constraint should
be satisfied with a given reliability value, the ICC uses the probability distribution
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to measure the expected magnitude of the shortage, thus, taking into account both
quantitative and qualitative aspects of the shortage, whereas the CC only considers
the qualitative side. In particular, we require that the average shortage is lower than
a given threshold γ properly chosen by the decision maker:

IE[(
∑

t∈T

∑

f ∈F
Pt f MBPt f + (

SPt f + Rt f
)
BTt f +

∑

t∈T

∑

f ∈F
PCPt f C Pt f + MC −

−
∑

t∈T

∑

f ∈F
Dt f STt f −

∑

t∈T

∑

f ∈F
Wt f MSPt f )+] ≤ γ (2)

where (a)+ = max(0, a). In the following, we shall assume that the random vari-
ables follow a discrete distribution. We denote by S the set of possible realizations,
scenarios, each occurring with a probability πs and we shall use the superscript s to
denote the s-th realization of the random parameters.

In this case, the ICC admits a nice reformulation, that requires the introduction of
support variables. More specifically, for each scenario s, we introduce a nonnegative
variable Ls and we replace (2) with

Ls ≥ (
∑

t∈T

∑

f ∈F
(Ps

t f MBPt f + (
PQt f + Rs

t f

)
BTt f +

∑

t∈T

∑

f ∈F
PCPt f C Pt f + MC)

−
∑

t∈T

∑

f ∈F
(Ws

t f MSPt f + Ds
t f STt f ) ∀s (3)

∑

s∈S
πs Ls ≤ γ (4)

It is interesting also to note the close connection of the ICC with the tradition Con-
ditional Value at Risk measure [13]. Additional bound constraints are also included
to mathematically represent the profitability of the coalition tariffs:

∑

t∈T

∑

f ∈F
Ds
t f STt f ≤ (1 + ΔA)

∑

t∈T

∑

f ∈F
Ps
t f D

s
t f ∀s (5)

∑

t∈T

∑

f ∈F
(PPt f + Rs

t f )BTt f ≥ (1 − ΔV )
∑

t∈T

∑

f ∈F
Ws

t f (PPt f + Rs
t f ) ∀s (6)

LBST ≤ STt f ≤ UBST ∀t,∀ f (7)
LBBT ≤ BTt f ≤ UBBT ∀t,∀ f (8)

Constraints (5)–(6) represent the economic advantage for the consumer and the pro-
ducer, respectively, whereas conditions (7)–(8) bound the tariff values within specific
lower and upper bounds computed on the basis of the expected value of the purchas-
ing and selling market prices. In defining the optimal pricing, the aggregator aims
at providing prosumers with more profitable conditions with respect to market. This
goal can be achieved by pursuing different strategies. On the one hand, there is the
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need to define the lowest possible consumption rates, to encourage consumers (who
should be the majority) to remain within the coalition. On the other hand, the desire
to remunerate producers, from both traditional and renewable sources, in an appro-
priate way to promote the sale of energy within the coalition. In order to account for
both the objectives, we consider a weighted objective function:

max λ
∑

s∈S

∑

t∈T

∑

f ∈F
πs D

s
t f ((1 + ΔA)P

s
t f − STt f ) +

+ (1 − λ)
∑

s∈S

∑

t∈T

∑

f ∈F
πs(PQt f + Rs

t f )(BTt f − (1 − ΔV )Ws
t f ) (9)

Here the first term represents the advantage for “buying” measured in terms of total
savings from buying the overall energy demandwithin the coalition w.r.t. the external
market, while the second term is the gain from selling within the aggregation. A
different choice of the parameter λ ∈ [0, 1] can be used to calibrate the strategy of
the aggregator, with a higher value of λ accounting for a greater attention devoted to
the savings of consumers w.r.t. the gain of the producers.

3 Computational Experiments

In this section, we describe the computational experience carried out in order to
validate the effectiveness of the proposed approach. The numerical code integrates
MATLAB R2015a1 for the scenario generation and parameters set-up phases and
GAMS 24.5.22 as algebraic modeling system, with CPLEX 12.6.13 as solver for
linear problems. All the test cases have been solved on a PC Intel Core I7 (2.80
GHz) with 16 GB of RAM. As testbed for the computational experience we have
considered the “virtual” coalition described in [3]. We have considered a planning
horizon of 12 months, starting from January 2017, and 3 time blocks (F1,F2,F3)
for each month, according to the Italian electricity market [14]. The expected value
of coalition demand, production from the renewable plant and the market prices
have been calculated by analyzing the available historical series of these data. We
have considered a scenario set with 500 scenarios, generated by using the evolution
model proposed in [15] and the scenario tree generation approach of [16, 17]. The
procurement plan for the coalition has been already defined, in terms of energy
procured from each one of the available sources, that are bilateral contracts (CP),
production from traditional systems (SP) and amount to buy from the market (MBP),
and eventually the amount to sell on the market (MSP). These data are reported in
[18].

1www.mathworks.com.
2www.gams.com.
3https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

www.mathworks.com
www.gams.com
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Fig. 1 Selling-side tariffs

Fig. 2 Buying-side tariffs

The following Fig. 1 reports the optimal selling tariffs for the considered planning
horizon compared with the market alternative (dashed line), obtained for a value of
λ equal to 0.5 to balance the consumers’ and producers’ profitability.

Looking at the results, we may observe that the proposed tariff structure is prof-
itable w.r.t. the market alternative, resulting in a substantial saving. A similar result
has been obtained for buying side tariffs (see Fig. 2).

Additional experiments have been carried out to evaluate how the choice of λ

impacts on the optimal solutions. Figure 3 reports the selling tariffs obtained with 3
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Fig. 3 Average selling tariffs as function of λ

Table 1 Solutions for different values of γ (e)

γ Obj. function Buying side benefit Selling side benefit

0 46,213.10 84,627.18 7,799.03

1,000 53,425.94 99,708.24 7,143.64

5,000 58,317.29 109,456.78 7,177.80

10,000 61,529.94 115,545.84 7,514.03

different λ values, compared with the average market tariff. As expected, a higher
attention devoted to consumers’ economic advantage, represented by a value of λ

close to 1, generates lower tariffs, both for buying and selling side: in fact, in order
to allow low rates for energy consumption, the revenues for energy produced and
sold within the coalition cannot be very profitable, even if better than the price for
selling outside the aggregation. Similarly, a policy more oriented to production can
lead to higher rates for both consumers and producers.

Finally, we have solved themodel for different values of the threshold on potential
losses γ . The results obtained with λ = 0.5 are reported in Table 1. It is evident that a
higher value of threshold for potential average losses allows a greater overall benefit
for both selling and buying side, even if a “risk-averse” approach (γ = 0) ensures
good advantages anyway.

It isworthwhile noting that to the best of our knowledgenoother decision approach
for the tariff definition under similar conditions has been proposed in the literature.
Nevertheless, we have empirically found that the straightforward approach based on
the solution of a deterministic problem where the random parameters are replaced
by the expected values performs very poorly.
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4 Conclusions

The paper proposes a stochastic programming model based on the paradigm of inte-
grated chance constraints for the problem faced by an aggregator that has to establish
the optimal tariffs to apply to the prosumers of the coalition. A consumer finds prof-
itable to participate in the coalition if the offered price is lower than the price paid
for buying energy from the market. The opposite happens for the selling side. The
numerical results carried out by considering a realistic case study have shown the
validity of the proposed approach as a supporting tool for the aggregator in defining
affordable tariffs for both sides. As future research, we plan to combine the pro-
curement problem with the tariff definition into an unique model and to validate the
effectiveness of the decision approaches with other policies. The resulting problem
will present non linearity and specific approaches will be designed.
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Impulse and Singular Stochastic Control
Approaches for Management
of Fish-Eating Bird Population

Yuta Yaegashi, Hidekazu Yoshioka, Koichi Unami and Masayuki Fujihara

Abstract Stochastic optimization serves as a central tool for effective population
management. We present an impulse control model and a related singular control
model for finding the cost-effective and sustainable population management policies
of fish-eating birds, predators of fishery resources. The impulse control model con-
siders the cost proportional to the amount of the killed bird and the fixed cost, while
singular counterpart considers only the proportional cost. Their optimal controls are
discussed from both qualitative and quantitative viewpoints.

Keywords Stochastic optimization · Impulse control · Singular control
Threshold-type population management

1 Introduction

Increasing feeding damage by fish-eating birds, such as Phalacrocorax carbo, to
inland fishery resources, is one of the most urgent ecological problems to be resolved
especially in Japan [3]. Recently, the authors have been approaching this issue from
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the viewpoint of stochastic optimization where the bird population dynamics is con-
sidered [7]. The singular control [1, 8] was employed in our mathematical model,
which leads to a threshold-type, cost-effective and sustainable population manage-
ment policy under the stochastic population dynamics. In this paper, we propose
an impulse control [2, 4] counterpart of the singular control model. These models
employ similar performance indices, but have different admissible sets of controls
with each other. The resulting optimal population management policies are com-
pared and their practical implications are discussed. In addition, mathematical link-
ages between these models are analyzed focusing on parameter dependence of the
solutions to the (quasi) variational inequalities.

2 Mathematical Models

We consider a management problem of a bird population in a habitat in an infinite
horizon. The decision-maker, a manager of the bird population, can reduce the bird
population through a countermeasure. We assume that the countermeasure is carried
out in a much shorter timescale than that of the bird population dynamics.

2.1 Impulse Control Model

The bird population in the habitat at the time t is denoted as Xt , which is governed
by the Itô’s stochastic differential equation (SDE){

dXt � Xt (μdt + σdBt ), τi ≤ t < τi+1 < ∞
Xτi � Xτi− − ζi , t � τi

, X0− > 0, (1)

where μ is the intrinsic growth rate, σ is the magnitude of stochastic fluctuation
involved in the population dynamics, Bt is the 1-D standard Brownian motion [6],
τi (i � 0, 1, 2, . . . , τ0 � 0 < τ1 < τ2, . . .) is the time when the countermeasure is
performed to reduce the population and ζi > 0 is the magnitude of the killed bird at
τi . Whenever the countermeasure is performed, the following cost is incurred:

K (ζi ) � k1ζi + k0, (2)

where k1 > 0 is the cost proportional to ζi and k0 > 0 is the fixed cost incurred
regardless of ζi . In addition, if ζi � 0, ki � 0.The existence of the fixed cost
distinguishes the impulse control model from the singular control counterpart [1, 8].
The performance index Jimp represents the expected net profit of the decision-maker:
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Jimp(x ; η) � E

[∫ ∞

0
e−δs

(
RXM

s − r Xm
s

)
ds −

∞∑
i�0

e−δτi K (ζi )χτi

]
, (3)

where δ is the discount rate, R, r , M and m are the positive constants, and χS is
the indicator function for the subset S. In the right-hand side of (3), the term RXM

s
represents the ecological utility provided by the existence of the bird, the term−r Xm

s
represents the disutility by the existence of the bird, and the last summation term
is the cost of the countermeasure. Here, η is the management policy defined by the
timing and magnitude of the countermeasure

η � {(τi , ζi )}i≥0, (4)

and is called an admissible control if it satisfies the conditions stated in Definition 2.1
in Onishi and Tsujimura [4] and Xt ≥ 0. Let A be the set of the admissible controls.
The goal of the decision-maker is to find the optimal control η∗ such that

Vimp(x) � sup
η∈A

Jimp(x ; η) � Jimp
(
x ; η∗), (5)

where Vimp(x) is referred to as the value function. The dynamic programming prin-
ciple [7] leads to its governing Quasi Variational Inequality (QVI) [2, 4] as

max
{LVimp(x) + RxM − r xm,MVimp(x) − Vimp(x)

} � 0, x > 0 (6)

with the differential operator L and the intervention operator M defined as

LW (x) � 1

2
σ 2x2

d2W

dx2
+ μx

dW

dx
− δW, MW (x) � sup

ζ

[−K (ζ ) +W (x − ζ )]

(7)

for generic sufficiently smooth functionW � W (x). The boundary condition for the
QVI is Vimp(0) � 0, whichmeans that no problem arises when there is no bird and the
net profit of the decision-maker equals zero. Under the QVI controls (Definition 3.2
in [2]), the following control rule is the optimal management strategy with threshold
values x̄imp and x (x̄imp > x):

1. If Xt− < x̄imp, then no countermeasure is performed and only if Xt− � x̄imp, the
countermeasure is immediately performed and Xt− is reduced to x (Xt � x).

2. If X0− > x̄imp, then X0− is immediately reduced to x (X0 � x) by the counter-
measure, and follows the first rule.

A sample path of Xt following the above-mentioned rule is shown in Fig. 1.
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Fig. 1 The sample path of the impulse control with the thresholds x̄imp � 2.0 (red), x � 1.0 (pink)
and the magnitude of the killed bird ζi (green, from above)

2.2 Singular Control Model

In the singular control model, the population dynamics is described as

dXt � Xt (μdt + σdBt ) − dωt , X0− > 0, (8)

where ωt represents the decrease of the bird population by the countermeasure.
This ωt is admissible if it is the non-negative, non-decreasing, right-continuous and
adopted process such that Xt ≥ 0 [1, 7]. LetB be the set of the admissible controls.
The performance index in the singular control model is set as

Jsin(x ;ω) � E

[∫ ∞

0
e−δs

(
RXM

s − r Xm
s

)
ds −

∫ ∞

0
e−δsk2dωs

]
. (9)

where k2 > 0 is the cost proportional to ωs . The last term is the cost of the counter-
measure. The value function in this case is

Vsin(x) � sup
ω∈B

Jsin(x ;ω) � Jsin
(
x ;ω∗) (10)

and the associated Variational Inequality (VI) that governs Vsin is derived as

max

{
LVsin(x) + RxM − r xm,−

(
dVsin

dx
+ k2

)}
� 0, x > 0 (11)

with the boundary condition Vsin(0) � 0. The following control rule can be proved
to the optimal management strategy with a threshold x̄sin (Chap. 3 in [5]):

1. If the process is about to exceed the threshold x̄sin, the countermeasure is imme-
diately performed and Xt− is reduced to x̄sin (Xt � x̄sin). Otherwise, no counter-
measure is performed.
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Fig. 2 The sample path of the singular control model with the threshold x̄sin � 2.0 (red) and the
magnitude of the killed bird ωt (green, from above)

2. If X0− > x̄sin, then X0− is immediately reduced to x̄sin (X0 � x̄sin) by the
countermeasure, and follows the first rule.

A sample path of Xt following the above-mentioned rule is shown in Fig. 2.

3 Exact Solutions

The following assumptions are made for the model parameters:

μ > σ 2/2, 0 < M < 1 < m < 2, δ − μm − 0.5σ 2m(m − 1) > 0 andβ > m.

(12)

where β is given in (15). Then, based on the guessed solution method [4], the exact
viscosity solution of the QVI (6) is found as

V (x) �
⎧⎨
⎩
axβ + A1xM + A2xm

(
x < x̄imp

)
−k1

(
x − x

) − k0 + axβ + A1xM + A2xm
(
x ≥ x̄imp

) , (13)

where

A1 � R

[
δ − μM − σ 2

2
M(M − 1)

]−1

> 0, A2 � r

[
δ − μm − σ 2

2
m(m − 1)

]−1

< 0,

(14)

β � 1

2

⎛
⎝1 − 2μ

σ 2
+

√(
2μ

σ 2
− 1

)2

+
8δ

σ 2

⎞
⎠ > m, (15)
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and a, x and x̄imp are determined from a system of nonlinear equations. While the
exact viscosity (classical) solution of the VI (11) is found as [8]

V (x) �
{
bxβ + A1xM + A2xm (0 < x ≤ x̄sin)

c − k2x (x > x̄sin)
, (16)

where b, c and x̄sin are determined from a system of nonlinear equations.

4 Comparisons of the Two Models

Basedona real case, the parameters are set asμ � 1.7×10−1 (1/year),σ � 5.3×10−1

(1/year1/2), m � 2.0 (–), M � 0.5 (–), δ � 1.0 (1/year), r � 5.0 × 10−4 (–),
R � 1.0 × 10−1 (–), and k0 � 1.0 × 101 (–) unless otherwise specified [8]. In
addition, k1 � k2 � 1.0 is assumed without loss of generality. With these parameter
values, the thresholds values are computed as x̄sin � 1052 (–), x̄imp � 1312 (–), and
x � 869 (–). The result indicates that the threshold of the impulse control model x̄imp

is larger than that of the singular control model x̄sin. With the impulse control model,
the decision-maker should set a larger threshold to manage the bird population.
Figure 3 shows the value functions and the corresponding thresholds, indicating that
Vsin is slightly larger than Vimp. According to Table 1, as k0 → 0, namely if the
fixed cost reaches 0, x̄imp monotonically decreases while x monotonically increases
with x < x̄sin < x̄imp. This result indicates that the impulse control model would
approach the singular control model as the fixed cost k0 decreases, although it should
be mathematically investigated in future.

As shown in Fig. 2, for the singular control model, the decision-maker should
continuously perform the countermeasure for suppressing increase of the bird pop-
ulation. In practice, it would be difficult to perform such a management policy. On
the other hand, as shown in Fig. 1, for the impulse control model where the fixed
cost k0 is considered, the decision-maker should intermittently perform the counter-
measure since the optimal policy is to decrease the finite amount of the population

Fig. 3 The value functions
Vsin (red) and Vimp (blue)
and the thresholds x , x̄sin and
x̄imp
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Table 1 The thresholds x̄imp and x with changing k0

k0 � 1.0 × 101 k0 � 1.0 × 10−1 k0 � 1.0 × 10−3 k0 � 1.0 × 10−5 k0 � 1.0 × 10−7

x̄imp 1312 1102 1068 1064 1063

x 869 1006 1036 1040 1041

to the threshold value x . Being different from the singular control, such a policy
can be more easily implemented in real problems. In addition, in reality, the fixed
cost such as implementation costs would arise whenever the countermeasure is per-
formed regardless of itsmagnitude. The impulse controlmodel thus seems to bemore
appropriate for the bird population management than the singular control model.

5 Conclusions

In this paper, an impulse control model and a singular control model for finding
the cost-effective and sustainable management polices of fish-eating birds were pro-
posed. The resulting optimalmanagement policies were compared from both qualita-
tive and quantitative viewpoints, and their feasibility in real problems was discussed.
The threshold values for the optimal management policies of the two models were
compared, showing that the decision-maker should set a larger threshold value with
the impulse controlmodel. In addition, numerical experiments implied that the singu-
lar control model can be seen as a limit of the impulse control model, which should be
mathematically rigorously studied in future. Establishment of an efficient and stable
numerical method for solving QVIs is an important research future research topic.
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When the Other Matters. The Battle
of the Sexes Revisited

Asunción Zapata, Amparo M. Mármol, Luisa Monroy and M. Ángeles
Caraballo

Abstract In this paperwe address bimatrix gameswhen the players take into account
not only their own payoff, but they also show some concerns about the payoff of the
other player. We propose a weighted Rawlsian representation of players’ preferences
which can accommodate the behaviours of different types of players, which are
identified with different values of the parameters. The Battle of the Sexes game
is analyzed in this extended setting where certain social interactions between the
players determine their strategic behaviours. The best response correspondences
are described depending on the relative importance that each player assigns to her
own payoff and to the payoff of the other. This permits the identification of the
corresponding sets of equilibria and the study of the changes produced with the
variation of the parameters.

Keywords Battle of the sexes · Equilibria · Bi-matrix games · Rawlsian function

1 Bimatrix Games with Rawlsian Preferences

The so-called 2 × 2 bimatrix game is a non-cooperative game in normal form with
two players, with only two pure strategies for each player. The consequences for each
player of each possible combination of strategies are known and can be represented
by a matrix.
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Formally, if player 1 selects her i-th pure strategy and player 2 selects her j-th
strategy, then the payoff of player 1 is denoted by ai j , and the payoff of player 2
is denoted by bi j . Thus, the payoffs can be described by a bimatrix (A, B), where
A = (ai j ) and B = (bi j ), for i, j = 1, 2.

In this type of game the sets of mixed strategies (that is, the sets of distributions
of probabilities on the pure strategies) for the players are {(p, 1 − p), p ∈ [0, 1]},
and {(q, 1 − q), q ∈ [0, 1]} respectively. Thus, a mixed strategy for player 1 can
be represented by p ∈ [0, 1], and a mixed strategy for player 2 by q ∈ [0, 1]. The
payoff functions, which represent the expected payoffs of the players, are defined on
the combinations of mixed strategies. For k = 1, 2, uk : [0, 1] × [0, 1] → IR, with
u1(p, q) = (p, 1 − p)A(q, 1 − q)t and u2(p, q) = (p, 1 − p)B(q, 1 − q)t .

Nash [3] proved that any finite game has at least an equilibrium inmixed strategies.
In general, there could be any number of equilibria, with no compelling reason
to choose among them. However, there are situations in which the result of the
interaction may produce an undesirable payoff. When these situations are analysed,
empirical evidence shows that social interactions between the players may affect
individual choices in equilibrium. That is, players may have an incentive to act not
entirely guided by their own interests. These circumstances have led us to incorporate
different behaviours of the players in the analysis of the game. These behaviours
emerge when the players take into account not only their own payoff function, but
also they show some concerns about the payoff of the other player, and select their
strategies accordingly.

We will specifically consider three types of players. Denote by νk : IR2
+ → IR the

social preference function representing the evaluation of player k for each pair of
expected payoffs. Player k is said to be equanimous if νk(u1,u2) = νk(u2,u1), for
all (u1,u2). She is said to be pro-self if for all u1 > u2, νk(u1,u2) ≥ νk(u2,u1), and
she is said to be pro-social if for all u1 > u2, νk(u1,u2) ≤ νk(u2,u1). A pro-self
player cares more for her payoff than for that of the other. The extreme case of a
pro-self agent is an egoistic agent, who only cares for her own payoff, regardless
what the other obtain. Similarly, a pro-social agent cares more for the payoff of the
other. If a player is both pro-self and pro-social, then she is an equanimous player.

Monroy et al. [2] analysed these social attitudes in n-person non-cooperative
games with an additive representation of the players’ preferences. In this paper, we
explore the implications of these attitudes in a setting where the preferences of the
players are represented by weighted maxmin functions in the spirit of the egalitarian
trend proposed by Rawls [4].

In our setting the social preference functions of the players are represented by
weighted Rawlsian functions:

ω1
γ 1(u1,u2) = min

{
u1

γ 1
,

u2

1 − γ 1

}
, ω2

γ 2(u1,u2) = min

{
u1

1 − γ 2
,
u2

γ 2

}
,

with γ 1, γ 2 ∈ [0, 1].
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For k = 1, 2, the value γ k represents the relative importance that player k assigns
to her own payoff, and 1 − γ k the relative importance that she assigns to the payoff
of the other. In this model, the payoffs are not considered to be substitutes, they are,
in fact, complementary, and the greater the value of the parameter γ k , the more the
value of uk needs to grow in order to improve the value of vk .

The different types of the players are characterised by the values of the parameters
involved in their Rawlsian preference functions [5].

• γ k = 1/2 if and only if player k is equanimous.
• γ k ≥ 1/2 if and only if player k is pro-self.
• γ k ≤ 1/2 if and only if player k is pro-social.

Apart from the individual behaviour of the players, we will also consider the
relationship between the relative importances that both players assign to the payoffs.
We say that the two players aremirror players when both players behave with respect
to the other identically, that is, if γ 1 = γ 2.We say that the two players are harmonized
players when they assign the same importance to the payoff of player 1 and the same
importance to the payoff of player 2, that is, if γ 1 = 1 − γ 2.

In the next section we present an elaborate analysis of the well-known game the
Battle of the Sexes. The calculations of the best responses and the equilibria for the
Rawlsian case are exemplary for general bimatrix games.

2 Rawlsian Equilibria for the Battle of the Sexes

In this paper we consider the well-known game Battle of the Sexes introduced by
Luce and Raiffa [1]. This game has two players, each of whom has the same two
possible actions, one of which is preferred by each player. The players have some
common interests, though, in that they would both prefer to choose the same strategy
rather than doing different things. Thus, the players find themselves in a one-shot
simultaneous-play game with the following payoff matrix:

(A, B) =
(

(1, 4) (0, 0)
(0, 0) (4, 1)

)

Let (p, 1 − p)with 0 ≤ p ≤ 1 be a mixed strategy for the first player and (q, 1 −
q) with 0 ≤ q ≤ 1 a mixed strategy for the second player. The expected payoffs
for both players are u1(p, q) = pq + 4(1 − p)(1 − q), and u2(p, q) = 4pq + (1 −
p)(1 − q), respectively.

The best response correspondences of the players are:

r1(q̄) =

⎧⎪⎨
⎪⎩

0 i f q̄ < 4
5

[0, 1] i f q̄ = 4
5

1 i f q̄ > 4
5

, r2( p̄) =

⎧⎪⎨
⎪⎩

0 i f p̄ < 1
5

[0, 1] i f p̄ = 1
5

1 i f p̄ > 1
5

(1)
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This game has two non-dominated Nash equilibria in pure strategies. The first one
consists of the first strategy of each player with a payoff of (1, 4) and the second one
consists of the second strategy of each player with a payoff of (4, 1). In addition a
mixed-strategy equilibrium exists consisting of the mixed strategy

(
1
5 ,

4
5

)
for the first

player, and
(
4
5 ,

1
5

)
for the second with expected payoff

(
4
5 ,

4
5

)
.

In what follows we will analyse the equilibria of this game when the players show
Rawlsian preferences.

Given γ 1, γ 2 ∈ [0, 1], the Rawlsian functions for players 1 and 2 are

ω1
γ 1(p, q) = min

{
pq + 4(1 − p)(1 − q)

γ 1
,
4pq + (1 − p)(1 − q)

1 − γ 1

}
(2)

ω2
γ 2(p, q) = min

{
pq + 4(1 − p)(1 − q)

1 − γ 2
,
4pq + (1 − p)(1 − q)

γ 2

}
(3)

Equivalently, these functions can be written as:

ω1
γ 1(p, q) =

⎧⎨
⎩

(5q−4)p+4(1−q)

γ 1 i f ((5 − 10q)γ 1 + 5q − 4)p ≤ (5γ 1 − 4)(1 − q)

(5q−1)p+1−q
1−γ 1 i f ((5 − 10q)γ 1 + 5q − 4)p ≥ (5γ 1 − 4)(1 − q)

(4)

ω2
γ 2(p, q) =

⎧⎨
⎩

(5p−4)q+4(1−p)
1−γ 2 i f ((10p − 5)γ 2 − 5p + 1)q ≤ (1 − 5γ 2)(1 − p)

(5p−1)q+1−p
γ 2 i f ((10p − 5)γ 2 − 5p + 1)q ≥ (1 − 5γ 2)(1 − p)

(5)

2.1 The Best Response Correspondences

The Rawlsian preference function ω1
γ 1 depends on the payoff functions u1 and u2.

Therefore, the best response of player 1 given the strategy q̄ of player 2, denoted
by R1

γ (q̄), will also depend on the best response functions of u1 and u2, r1(q̄) and
r2(q̄).

First, note that ((5 − 10q)γ 1 + 5q − 4)p ≥ (5γ 1 − 4)(1 − q) can alternatively
be written as pq + 4(1 − p)(1 − q) ≥ 5γ 1(pq + (1 − p)(1 − q)). As a conse-
quence, if γ 1 ≤ 1

5 , then this inequality holds for any p, q ∈ [0, 1], and ω1
γ 1(p, q̄) =

u2(p,q̄)

1−γ 1 . Therefore, R1
γ (q̄) = r2(q̄). With an analogous reasoning, when γ 1 ≥ 4

5 is

R1
γ (q̄) = r1(q̄).
For 1

5 < γ 1 < 4
5 , in order to find the best reply of the first player to a fixed strategy

of the second player, we consider different intervals for the values of q̄. If 0 ≤ q̄ < 1
5 ,

then the best reply is R1
γ (q̄) = 0 since both individual best replies, r1 and r2, are

null. Similarly, if 4
5 < q̄ ≤ 1, then R1

γ (q̄) = 1.
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For 1
5 ≤ q̄ ≤ 4

5 , consider z(q̄) = (5γ 1−4)(1−q̄)

(5−10q̄)γ 1+5q̄−4 . Note that, for q̄ = 1
5 , if ((5 −

10q̄)γ 1 + 5q̄ − 4)p ≤ (5γ 1 − 4)(1 − q̄) thenω1
γ 1(p, q̄) = u2(p,q̄)

1−γ 1 . Therefore, R1
γ ( 15 )

= [0, z( 15 )], which coincides with the corresponding segment of r2 (as shown in Fig.
1). Analogously, for q̄ = 4

5 , R
1
γ ( 45 ) = [z( 45 ), 1].

Finally, if 1
5 < q̄ < 4

5 , then (5 − 10q̄)γ 1 + 5q̄ − 4 < 0. As a consequence, if the

strategy of player 1, p, is such that p < z(q̄), then ω1
γ 1(p, q̄) = u2(p,q̄)

1−γ 1 , and ω1
γ 1(p +

ε, q̄) > ω1
γ 1(p, q̄). On the other hand, if p > z(q̄), then ω1

γ 1(p, q̄) = u1(p,q̄)

γ 1 , and

ω1
γ 1(p − ε, q̄) > ω1

γ 1(p, q̄). It follows that R1
γ (q̄) = z(q̄).

Formally, the explicit expression of the best response correspondence of player 1
for all the values of the parameter γ 1 is

(a) If γ 1 ≤ 1
5 , then R1

γ (q̄) = r2(q̄),
(b) If 1

5 < γ 1 < 4
5 , then

R1
γ (q̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f q̄ < 1
5[

0, 4(4−5γ 1)

15(1−γ 1)

]
i f q̄ = 1

5

(5γ 1−4)(1−q̄)

(5−10γ 1)q̄+5γ 1−4 i f 1
5 ≤ q̄ ≤ 4

5[
4−5γ 1

15γ 1 , 1
]

i f q̄ = 4
5

1 i f q̄ > 4
5

(6)

(c) If γ 1 ≥ 4
5 , then R1

γ (q̄) = r1(q̄).

Analogously, the best response of player 2 to the strategy p̄ of player 1, R2
γ ( p̄),

can be described.

(a) If γ 2 ≤ 1
5 , then R2

γ ( p̄) = r1( p̄),
(b) If 1

5 < γ 2 < 4
5 , then

R2
γ ( p̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f p̄ < 1
5[

0, 4(5γ 2−1)
15γ 2

]
i f p̄ = 1

5

(1−5γ 2)(1− p̄)
(10γ 2−5) p̄+1−5γ 2 i f 1

5 ≤ p̄ ≤ 4
5[

5γ 2−1
15(1−γ 2)

, 1
]

i f p̄ = 4
5

1 i f p̄ > 4
5

(7)

(c) If γ 2 ≥ 4
5 , then R1

γ ( p̄) = r2( p̄).

Figure 1 shows the best response correspondence when a player is pro-self (left-
hand side), equanimous (center) and pro-social (right-hand side). Note that in these
three cases the best response correspondences are decreasing for values of q̄ between
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p

q

1
5

1
5

4
5

4
5

1

1
R1

γ

R1
γ

q

1
5

1
5

4
5

4
5

1

1

p

R1
γ

q

1
5

1
5

4
5

4
5

1

1

p

Fig. 1 Best responses correspondence for a pro-social, for an equanimous, and for a pro-self player

1
5 and 4

5 . They are concave or convex functions, depending on whether the relative
importance that the player assigns to her own payoff is lower than or greater than the
importance that she assigns to the payoff of the other player.

2.2 The Equilibria

An equilibrium is a pair of strategies that are mutually best replies, that is, (p, q) is
an equilibrium if p ∈ R1

γ (q) and q ∈ R2
γ (p). If the players choose their strategies at

equilibrium, no one can improve her valuation of the payoffs by deviating individu-
ally. For γ 1, γ 2 ∈ [0, 1], we will denote the set of equilibria of the battle of the sexes
game with a Rawlsian preference function as E(γ 1, γ 2).

We obtain different sets of equilibria depending on the values of the parameters.
The different cases are shown in Tables 1, 2 and 3. Note that the value of p where the
best response R1

γ switches to be represented by a decreasing curve, 4(4−5γ 1)

15(1−γ 1)
(in (6)),

is in the interval [ 15 , 4
5 ] if and only if 1

2 ≤ γ ≤ 13
17 . Similarly, the value of q where the

best response R2
γ switches to be represented by a decreasing curve, 4(5γ 2−1)

15γ 2 (in (7)),

is in the interval [ 15 , 4
5 ] if and only if 4

17 ≤ γ ≤ 1
2 .

Figure 2 shows some cases of equilibria for pro-social mirror players. For values
of γ lower than 4

17 (left-hand side and center), three equilibria are obtained which
coincide with the two equilibria in pure strategies in the standard game of the Battle
of the Sexes, and a new equilibria in mixed strategies which consists of the mixed
strategy ( 45 ,

1
5 ) for player 1, and the mixed strategy ( 15 ,

4
5 ) for player 2. The expected

payoffs for the players at this equilibrium are ( 45 ,
4
5 ). Observe that the expected

payoffs coincide with the expected payoffs at the equilibria in the game when they
play the game in a completely egoistic way (γ = 1). For γ = 4

17 two more equilibria
arise ( 45 ,

4
5 ) and ( 15 ,

1
5 ). As γ increases up to 1

2 (right-hand side), two additional
equilibria appear, where either p increases and q remains constant or q decreases
and p doesn’t change.
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Table 1 Equilibria for mirror players

Mirror players
γ 1 = γ 2 = γ

E(γ 1, γ 2)

Pro-social γ < 4
17 {(0, 0), ( 45 , 1

5 ), (1, 1)}
γ = 4

17 {(0, 0), ( 15 , 1
5 ), ( 45 , 1

5 ), ( 45 , 4
5 ), (1, 1)}

4
17 < γ < 1

2 {(0, 0), ( 15 , 1
5 ), (

4(5γ−1)
15γ , 1

5 ), ( 45 , 1
5 ),

( 45 ,
4−5γ
15γ ), ( 45 , 4

5 ), (1, 1)}
Pro-self 1

2 < γ < 13
17 {(0, 0), ( 15 , 1

5 ), ( 15 ,
4(4−5γ )
15(1−γ )

), ( 15 , 4
5 ),

(
5γ−1

15(1−γ )
, 4
5 ), ( 45 , 4

5 ), (1, 1)}
γ = 13

17 {(0, 0), ( 15 , 1
5 ), ( 15 , 4

5 ), ( 45 , 4
5 ), (1, 1)}

γ > 13
17 {(0, 0), ( 15 , 4

5 ), (1, 1)}

p

q

1
5

1
5

4
5

4
5

1

1

p

q

1
5

1
5

4
5

4
5

1

1

p

q

1
5

1
5

4
5

4
5

1

1

Fig. 2 Equilibria for mirror pro-social players: γ < 4
17 and 14

17 < γ < 1
2

Table 2 Equilibria for equanimous players

Equanimous players

γ 1 = 1
2 = γ 2 E(γ 1, γ 2) = {(0, 0), (1, 1)} ∪ {(p, q) :

p + q = 1, 1
5 ≤ p ≤ 4

5 }

p

q

1
5

1
5

4
5

4
5

1

1

p

q

1
5

1
5

4
5

4
5

1

1

p

q

1
5

1
5

4
5

4
5

1

1

Fig. 3 Equilibria for harmonized players: player 1, pro-social and player 2, pro-self (left); both
equanimous (center) and player 1, pro-self and player 2, pro-social (right)
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Table 3 Equilibria for harmonized players

Harmonized players
γ 1 = 1 − γ 2

E(γ 1, γ 2)

Player 1 pro-social γ 1 < 4
17 {(0, 0), ( 15 , 1

5 ), (1, 1)}
Player 2 pro-self γ 1 = 4

17 {(0, 0), ( 15 , 1
5 ), ( 45 , 4

5 )(1, 1)}
4
17 < γ 1 < 1

2 {(0, 0), ( 15 , 1
5 ), ( 45 , 4

5 ), (1, 1)}∪
{(p, q) : p =

(5γ 1−4)(1−q)

(5−10γ 1)q+5γ 1−4
,
4−5γ 1

15γ 1 ≤
q ≤ 4

5 }
Player 1 pro-self 1

2 < γ 1 < 13
17 {(0, 0), ( 15 , 1

5 ), ( 45 , 4
5 ), (1, 1)}∪

{(p, q) : p =
(5γ 1−4)(1−q)

(5−10γ 1)q+5γ 1−4
, 1
5 ≤ q ≤

4(4−5γ 1)

15(1−γ 1)
}

Player 2 pro-social γ 1 = 13
17 {(0, 0), ( 15 , 1

5 ), ( 45 , 4
5 ), (1, 1)}

γ 1 > 13
17 {(0, 0), ( 45 , 4

5 ), (1, 1)}

Figure 3 shows some examples of equilibria for harmonized players, including
equanimous as a particular case. In these cases, the two pairs of pure strategies that
are equilibria in the conventional game are still equilibria and a set of new equilibria
emerge. Note that, in that set of new equilibria, the greater the relative importance
for the own payoff, the lower the probability that the player plays her first pure
strategy.Moreover, for equanimous players, each equilibrium in the segment provides
the same expected payoff for both players (5pq, 5pq). An equilibrium exists that
dominates the others in the segment: ( 12 ,

1
2 ) with expected payoffs ( 54 ,

5
4 ).

3 Concluding Remark

The behavior based on self-interest which is assumed in standard bimatrix games
is not evident in many real-world situations. We analyze these games considering
agents that show concerns about the interest of the other. The approach proposed is
based on the egalitarian model of Rawls. As one of the main results, when one of the
players is pro-social, then the equilibrium in mixed strategies of the original game is
not an equilibrium, regardless of the other player being pro-social or pro-self.
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