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Abstract. We study key leakage in the context of cryptocurrencies.
First, we consider the problem of explicit key leakage occurring on open-
source intelligence platforms. To do this, we monitor the Pastebin feed
from Sep 2017-Mar 2018 to find exposed secret Bitcoin keys, reveal-
ing that attackers could have stolen 22.40 BTC worth roughly $178,000
given current exchange rates. Then, we focus on implicit key leakage by
exploiting the wrong usage of cryptographic primitives and scan Bitcoin’s
blockchain for ECDSA nonce reuse. We systematically outline how an
attacker can use duplicate r values to leak nonces and secret keys, which
goes beyond the simple case where the same nonce and the same key have
been used in conjunction more than once. Our results show that ECDSA
nonce reuse has been a recurring problem in the Bitcoin ecosystem and
has already been exploited by attackers. In fact, an attacker could have
exploited nonce reuse to steal 412.80 BTC worth roughly $3.3 million.

1 Introduction

Cryptocurrencies have become popular entities in global financial markets. A
prime example of such a currency is Bitcoin [17] with a current market capital-
ization of over $135 billion [1] or Ethereum [23] with a current market capital-
ization of over $44 billion [2]. As such, it comes as no surprise that malicious
actors constantly try to steal those currencies, i.e., change ownership of cryp-
tocurrency assets without consent of the legitimate owners. The decentralized
and anonymous (or at least pseudonymous) nature of those currencies makes
such malicious activities more attractive, as traceback and prosecution by law
enforcement agencies is significantly harder than with traditional currencies.

In terms of stealing cryptocurrency assets, there are several possibilities. A
cryptocurrency is usually based on a cryptographic protocol, which uses several
cryptographic primitives such as elliptic curves [15] or digital signatures [12],
which one could try to attack. However, both the protocol and the primitives are
usually well studied and are either proven secure in theory, or have been subject
to an auditing process by experts in the field. Therefore, the best attackers can
hope for in this setting are implementation flaws, which are usually short-lived
due to the open-source nature of cryptocurrency implementations. The most
prominent incident of such an implementation flaw happened in February 2014,
when attackers found a vulnerability in the Mt. Gox Bitcoin exchange, which
allowed them to steal 850,000 BTC worth around $450 million at that time.
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While the attack did not affect the Bitcoin protocol itself, it exploited the inher-
ent transaction malleability of Bitcoin transactions to break some assumptions
of the internal accounting system of Mt. Gox [11].

While such large-scale incidents are rare, a more common and thus also severe
class of attacks against cryptocurrencies aims to leak cryptographic keys. Cryp-
tocurrency assets are cryptographically protected by a collection of secret keys,
which is called a wallet. If this wallet is stored in an insecure manner, i.e., in plain
on disk without any additional protection, then malware can simply scan the disk
for such wallets and report them to the attacker, which in turn can use them to
steal assets. Due to the popularity of cryptocurrencies, attackers have massively
deployed malware that aims to leak such secret keys. A well-known case of such
malware was the Pony Botnet, which operated from September 2013 to January
2014 [18]. The malware scanned the victim’s machine for various confidential
credentials including cryptocurrency keys, which resulted in financial damage
of $220,000. Modern wallets now use more sophisticated means of key manage-
ment such as additional encryption with a password, two-factor authentication
or hardware-based security [13], which protects against such local attacks.

In this paper, we take a different perspective and study whether remote
attack vectors allow leaking cryptographic keys from users. First, we study
whether users (accidentally or knowingly) explicitly leak cryptographic keys,
that is, post them publicly. To this end, we leverage the notion of open-source
intelligence (OSINT) with respect to cryptocurrency leaks. As a case study, we
consider Bitcoin as it is the most prevalent cryptocurrency currently used, but
any other cryptocurrency would be suitable as well. As an OSINT platform we
consider Pastebin [3], which is a popular information-sharing web application on
the Internet, and has already proven to leak different types of privacy-related
information [16]. However, other OSINT platforms such as Twitter, Reddit, Face-
book or GitHub would also work. We envision a scenario where a victim uses
Pastebin to share a piece of information including Bitcoin secrets such as a code
snippet performing a transaction or the debug output of wallet software. The
victim creates this paste to privately share the information, not knowing that it
will be publicly available in the Pastebin feed. An attacker that monitors this
feed can then scan each new paste for Bitcoin keys, for example using their
well-known format, and use those keys to steal Bitcoins. To simulate this, we
have monitored the Pastebin feed since September 2017 for Bitcoin secrets. Our
results show that an attacker could have stolen 22.40 BTC during this timespan.

We then also study the possibility of implicit key leakage, given that cryp-
tocurrency users (or software developers) may misapply cryptographic primi-
tives. In particular, keeping our focus on Bitcoin, we study the incorrect use of
the Elliptic Curve Digital Signature Algorithm (ECDSA), which, however, also
applies to other cryptocurrencies that are based on this primitive. To sign a
message m using ECDSA with a secret key sk, one must compute a signature,
which involves a randomly chosen nonce k. It is well known that apart from the
secret key, the nonce must also be kept secret, as an attacker can otherwise use
the signature and k to retrieve sk. Similarly, if one signs two distinct messages
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my and msy using the same k and the same sk, then an attacker can recompute
sk based on the structure of the signature and the knowledge that both the key
and the nonce have been reused. While such a duplicate occurrence should not
happen in practice, as the set of possible nonces is sufficiently large, i.e., almost
2256 in the case of Bitcoin, such duplicates can still appear for other reasons.
One such reason could be the use of weak random number generators [4] or vul-
nerable software that is not aware of the implications of nonce reuses. Another
scenario which could also be responsible for such duplicate occurrences is cloning
or resetting a virtual machine, which could possibly result in reusing the same
seed for the random number generator. While there is anecdotal evidence for
duplicate nonces in the Bitcoin blockchain, there is no systematic study on the
actual impact or the prevalence of this phenomenon, i.e., the potential financial
damage that can be caused. To fill this gap, we scan the Bitcoin blockchain
for duplicate nonces and simulate an attack scenario in which a malicious actor
actively monitors incoming transactions to look for duplicate nonce occurrences
to leak keys and steal Bitcoins. In particular, we systematically outline how an
attacker can use duplicate nonces to leak secrets, which has not been shown
before in such detail. This goes beyond naive cases where the same key and
nonce pair was used twice to sign two distinct messages. In fact, we show that
it is also possible to leak secrets by exploiting cyclic dependencies between keys
and duplicate nonces. Our results show that an attacker could have used this
methodology to steal 412.80 BTC.

To summarize, our contributions are as follows: (i) We assess the threat of
explicit Bitcoin key leaks using OSINT. We instantiate this idea by monitor-
ing the public feed of Pastebin for leaked secret keys. Our results demonstrate
how an attacker doing this could have stolen 22.40 BTC. (ii) We systematically
demonstrate how attackers can monitor Bitcoin transactions to scan for implicit
key leaks. We develop a methodology that can map signatures with duplicate
nonces to linear equation systems using a bipartite graph representation. (iii)
We assess the impact of implicit key leaks in the context of Bitcoin. That is, we
analyze how prevalent they are and how much Bitcoins an attacker could have
stolen by exploiting them. Finally, we study if such exploitation has happened
in the past. Our results show that an attacker could have stolen 412.80 BTC
and that attackers have exploited nonce reuse in the past to steal Bitcoins.

2 Background

In this section, we outline the preliminaries required for the scope of this paper
in order to grasp our ideas using the Bitcoin technology.

Blockchain and Mining. The central component of the Bitcoin protocol is the
Bitcoin blockchain, which is a distributed append-only log, also called a ledger.
The idea of this ledger is to keep track of all transactions that have ever occurred
in the Bitcoin network. The ledger consists of a sequence of blocks, each of which
consists of a set of transactions. Adding such a block to the blockchain requires
solving a computational puzzle using the Hashcash proof-of-work system [9]. The
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process of adding blocks to the blockchain is called mining and is rewarded with
Bitcoins. Transactions and blocks are created and distributed by the peers of
the network. Before transactions are mined, they are put in a temporary buffer
called the mempool. Miners, i.e., the peers which mine blocks, will then take
transactions from the mempool to build and mine a block and finally, announce
a newly mined block to the network.

Transactions. A Bitcoin transaction T consists of a sequence of inputs T; =
[i1,-..,%m] and a sequence of outputs T, = [o1, . ..,0y,] and is uniquely identified
by a transaction ID, which is generated by computing a hash of the transaction.
Inputs and outputs are therefore uniquely identified by the ID of the transaction
which contains them and their index in the input list and output list, respec-
tively. An output o; € T, carries a value, which is the number of satoshis that this
output is worth. A satoshi is defined to be such that one Bitcoin (BTC) equals
108 satoshis. The purpose of a transaction is to spend outputs by creating new
ones, which represents the money flow. To do this, every input ; € T; uniquely
references an output of another previous transaction, i.e., the ones which will
be spent, and creates new outputs that can be spent by future transactions.
An output can only be referenced once, and the outputs in the blockchain which
have not been referenced at any given moment in time is called the set of unspent
outputs. Every transaction carries an implicit transaction fee, which is the dif-
ference between the sum of the values of the outputs and the sum of the value
of the referenced outputs. Transaction fees will be paid to the miners, which
thus prioritize transactions based on their fees, i.e., the higher the fee, the faster
the transaction will be mined. Since a block can only be 1 MiB in size, miners
will usually consider transaction fees as a function of satoshis per byte of the
transaction, i.e., the larger the transaction the larger the nominal value of the fee
should be. Transaction fees are an essential economical element of the Bitcoin
network and change constantly depending on the number of transactions in the
mempool and how much peers are willing to pay the miners. Special transactions
without any inputs referencing other outputs are so-called coinbase transactions
and are created when a block is mined to reward the miner, which is how Bit-
coins are initially created. That is, before a miner mines a block, they will first
create a coinbase transaction which will be put in the block and rewards them
with Bitcoins. This reward is a fixed amount, which gets halved every 210,000
blocks, plus the fees of all transactions in the block.

Scripts. Transactions in the Bitcoin network are verified by using a small stack-
based language, the programs of which are called scripts. Every input and output
contains a script, which is often referred to as scriptSig and scriptPubKey, respec-
tively. These scripts can perform arithmetic, cryptography, flow control and so
on. In order for a transaction to be valid, one must concatenate the scriptSig of
each input with the scriptPubKey of its referenced output, which yields a new set
of scripts, i.e., one for each input. All of these scripts are then evaluated, and for
the transaction to be valid, there must be only one element on the stack after
evaluation and this element must be equal to true. The scriptPubKey can there-
fore be considered a means of protection, i.e., one can only redeem an output
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if they can provide a correct scriptSig. The scripting language contains special
instructions for elliptic curve cryptography, which is used within this scripting
framework to cryptographically secure transactions. In this context, every user
has a secret key sk and a public key pk. The most prevalent type of transaction is
called a Pay To Pubkey Hash (P2PKH) transaction. Outputs belonging to such
transactions have a scriptPubKey that verifies that the sender of the transaction
possesses the correct public key by comparing it against a hash. Additionally,
the script verifies a signature, which means that a working scriptSig must provide
both the public key pk as well as a valid signature that can be verified with pk,
which means that the sender must know sk.

Bitcoin Addresses. A Bitcoin address is a serialized hash of pk, which is gen-
erated by hashing the public key with the SHA-256 and the RIPMED-160 hash
functions and appending and prepending a version byte and checksum bytes. The
hash is then serialized using baseb8 encoding, which is a more human-readability-
friendly version of the base64 encoding and removes ambiguous-looking charac-
ters (e.g., zero (“0”) and capital o (“O”)). An example of such an address is
16UWLL9Risc3QfPqBUvKofHmBQ7wMt jvM. Before hashing, pk must be serialized,
for which there are two options, namely the compressed public key and the
uncompressed public key. We omit the technical details here as they are not
required for the scope of this paper. It is only important that both serialization
options yield different addresses, which means that every public key pk corre-
sponds to two addresses, which can be used independently of each other. This
means that if an attacker leaks a secret key, they gain control over the balances
of two addresses. We can define the balance of a P2PKH address by using the
previously mentioned scripts. For instance, we determine that the balance of
a P2PKH address encoding a hash h, is the sum of the values of all unspent
outputs that can be redeemed with the public key pk that & is a hash for.

3 Explicit Key Leaks: Open Source Intelligence

In this section, we will outline the methodology that we use to discover explicit
Bitcoin key leaks, i.e., cases where users (knowingly or not) directly disclose
sensitive Bitcoin key material to the public. To this end, we follow the general
idea of open source intelligence (OSINT), in which an attacker harvests publicly
available information to derive sensitive information. To evaluate this idea in
the context of Bitcoin secrets, we chose Pastebin as an OSINT platform. Given
its popularity, we expect that Bitcoin users accidentally leak secret information
there. Examples of such leaks would be users publishing code snippets doing
Bitcoin transactions or the debug output of some wallet software which users
want to share privately, not knowing that these pastes are then publicly visible
in the Pastebin feed. We monitored all pastes starting from September 2017 and
scanned each paste for Bitcoin secrets, i.e., secret keys.
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3.1 Finding Bitcoin Secrets

To scan a paste for secret Bitcoin keys, we leverage the observation that Bitcoin
keys are serialized using a well-known format. A secret key is an integer sk, which
we will describe further in Sect. 4.1. An agreed-upon format for serializing those
keys is the Wallet Import Format (WIF). To convert a secret key sk into this
format, the following procedure is applied. First, sk is converted to a 32-bytes-
long big-endian representation, which we call b. Then, 0x80 is prepended to b and
optionally 0x01 is appended if the secret key will correspond to a compressed
public key. Then SHA256 is applied twice on b, and we call the last four bytes
of this hash ¢. The WIF is defined to be the baseb8 encoding of b||c.

The last 4 bytes in this format are a checksum for the remaining bytes, which
is used in practice to avoid copy and paste mistakes. However, this checksum
also allows a systematic scan for instances of WIF strings in text with a very low
probability of false positives. In our Bitcoin monitoring tool, we thus proceed
for each new paste as follows. First, we move a sliding window over the content
of the paste to discover all valid base58 encoded substrings of the paste which
are 51 or 52 characters long and start with either “5”7, “K” or “L”. Both of
these constraints are a consequence of the baseb8 encoding and the fact that the
fixed byte 0x80 is prepended. For each string which matches these criteria, we
compute and verify the checksum as described above. If the checksum verifies,
we have found a valid WIF string and we can compute the corresponding secret
key sk. Finally, we check if the secret key is in the valid range (cf. Sect.4.1), and
if this is the case, then we consider this key for further analysis.

3.2 Results

To apply our methodology, we monitored and scanned all public pastes on Paste-
bin since September 2017. We identified 21,464 secret keys, which correspond to
42,936 addresses, i.e., 2 addresses per key as described in Sect. 2. However, most
of these addresses are unused, i.e., there is no transaction in the blockchain which
transferred Bitcoins from or to these addresses. As of now, 391 (0.91%) of those
addresses held a balance at some point in time. However, for stealing Bitcoins it
is not sufficient that an address held a balance at some point in time. Instead,
we also have to take into account that the address held a balance after we have
seen the corresponding secret key in a paste. If we respect this constraint, we
find that 165 (0.38%) addresses held a balance after we have seen their secret
key in a paste. Those keys were scattered among a total of 34 pastes. Summing
up those balances gives a total of 326.70 BTC.

It should be mentioned, though, that this is still not a guarantee that this
number of Bitcoins could have been stolen. This is due to the fact that we deter-
mine the balance of an address at some point in time based on the blockchain, not
the mempool. That is, we take the latest block that was mined before the paste
was published and check the balance of an affected address up to this block. It
could be the case that there was a transaction in the meantime which redeemed
outputs from the given address, i.e., there could be a pending transaction in



Identifying Key Leakage of Bitcoin Users 629

the mempool. In this case, an attacker could not easily create a transaction to
steal the Bitcoins. Current network rules discourage the distribution of trans-
actions that double-spend outputs unless the transaction is explicitly marked
as a replace-by-fee (RBF) transaction. An attacker could try to mine a stealing
transaction themselves or try to directly announce the stealing transaction to
mining pools which do not follow these network rules. Alternatively, if the block-
ing transaction has a low fee, the attacker could wait until a significant number
of peers do not have the transaction in their copy of the mempool anymore. This
would increase the chances that the new stealing transaction will be pushed to
more peers, which in turn will increase the chances that the stealing transactions
will be mined. However, none of these methods guarantees success, and therefore
the amount of 326.70 BTC is an upper limit.

To get a more conservative estimation of the amount of stealable Bitcoins,
we have to consider pending transactions. That is, we only considered cases
where there was no transaction in between which was not marked as RBF. As
it turns out, this was the case for 26 addresses in 119 pastes. For the remaining
cases, there was a blocking transaction in between, i.e., the paste containing
the secret key was published after the blocking transaction was distributed. For
example, one paste contained an address holding a balance of 40.84 BTC for
which a transaction was already placed in the mempool. In total, we found
that an attacker could have stolen 22.40 BTC. We excluded transaction fees in
this analysis as they are highly dynamic over time and the number of stealable
outputs was so small that the resulting fees would not be a significant factor.

This demonstrates that an attacker can cause significant financial loss with
relatively simple means. This is amplified by the fact that an attacker could
expand this methodology to other cryptocurrencies and OSINT platforms.

4 Implicit Key Leaks: Incorrectly Used Cryptography

Seeing that even explicit key leaks pose a problem to Bitcoin users, in this section,
we will study how users implicitly leak secrets. To this end, we will first describe
the most important cryptographic primitive in Bitcoin, namely ECDSA. We then
show how the incorrect use of this primitive opens severe vulnerabilities. That
is, we will systematically describe how an attacker monitoring the transactions
of the Bitcoin network can use nonce reuse to steal Bitcoins, and what amount
of damage could have been caused (or was caused) in the past by attackers.

4.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to cryp-
tographically secure transactions. The scheme is based on the computational
infeasibility assumption of solving the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP), i.e., given two points @ and Qk on the curve, there is no
polynomial-time algorithm for recovering k. Bitcoin uses the secp256k1 curve,
which is based on the equation y? = x3 + 7 over the finite field F, with the
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256-bit prime number p = 2256 — 232 _ 929 _ 28 _ 27 _ 96 _ 924 _ 1 Furthermore,
secp256k1 uses a generator point G with the 256-bit group order n = 2256 —
0x14551231950B75FC4402DA1732FCOBEBF, i.e., n is the smallest number such
that Gn = 0. To create and verify signatures, we need the notion of a secret
key sk and a public key pk. In the context of elliptic curve cryptography, sk is
a randomly chosen integer from {1,...,n — 1} and the public key pk can be
derived by multiplying the generator G with sk, i.e., pk = Gsk. This derivation
is considered secure, as recovering sk from pk would require solving ECDLP.

To sign a message m with a secret key sk using ECDSA, the following pro-
cedure is followed: First a hash of the message h = H(m) is created using a
cryptographic hash function H. The hash h is then interpreted as a number
and truncated so that it does not contain more bits than the group order n.
In the case of Bitcoin, we have H = SHA2567, i.e., applying SHA256 twice,
which means that h will not be truncated as n is a 256-bit number. Then, a
random nonce k is chosen from {1,...,n — 1}. After that, the r value is com-
puted, which is the z-coordinate of the point that is yielded by multiplying the
generator point G with &, which we denote by r = (Gk), mod n. Finally, the
value s = k=1 (h+rsk) mod n is computed and the tuple (r, s) is returned as the
signature. If r = 0 or s = 0, then this procedure is repeated until both r and s are
non-zero. To verify that (r, s) is a valid signature for a message m using the public
key pk, one proceeds as follows: First the hash h = H(m) is created and truncated
as before. Then, the curve point (z,y) = (Gh+pkr)s~! is calculated and the sig-
nature is considered valid if « = r. The correctness follows from the observation
that pk = Gsk, which implies (Gh + pkr)s~! = G(h + skr)s™! = Gkss™! = Gk.

In terms of key or nonce leakage, note that the equation s = k=1(h +
rsk) mod n contains two unknowns and therefore cannot be used to leak the
secret key or the nonce. Recovering k from r = (Gk), would require solving
ECDLP, similar to how pk = Gsk cannot be used to recover sk.

4.2 Using Duplicate Nonces to Leak Keys

It is known that ECDSA fails catastrophically if nonce reuse occurs. Nonce reuse
means that there are multiple signatures using the same nonce k, which might
allow an attacker to leak secret keys under certain circumstances. For instance, if
the same k (and thereby the same r value) and sk are used to create 2 signatures
(r,s1) and (r, s2) for two distinct messages m1 and ms, then we have!:

S1 = k‘_l(hl + ’I"Sk) So = k)_l(hg + rsk), (1)
This allows leaking the secret key sk with:

Sghl - Slhg h1h2 + rhlsk — h1h2 — ThQSk N rhlsk — ’I“thk — ok (2)

r(sy —s3) rhy + rsk — rhy — rsk " rhy —rhs

! Note that all calculations on signatures are done modulo n, which we omit for brevity.
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Similarly, k£ can be leaked with:

h1 — hz hl - h2
— =k. 3
$1 — S k=LY(hy — ha +sk(r — 1)) (3)

However, not every kind of nonce reuse leads to cases where an attacker can
leak secrets. For instance, consider the case where a nonce k is used with two
different keys sk; and sko to sign two distinct messages, i.e.,:

S1 = k_l(hl + TSkl) So = k_l(hg + TSkQ). (4)

It turns out that it is not possible in this case to leak any secrets. To get a better
understanding of this, we need to consider the fundamental underlying problem
that constitutes the act of leaking secrets in this setting. If we rewrite Eq. (1) to
look as follows:

s1k —rsk = hy Sok — rsk = ho

it becomes evident that this is a system of linear equations. In particular, this sys-
tem consists of 2 linearly independent equations, since hy # hs, and 2 unknowns,
i.e., k and sk, and is therefore uniquely solvable. On the other hand, Eq. (4) con-
sists of 2 equations and 3 unknowns, i.e., k, sk; and skg, and is therefore not
uniquely solvable as there are more unknowns than equations.

4.3 Beyond Single-Key Nonce Reuse

Interestingly, in some cases secrets leak even though the nonces are not reused
with the same secret key. For example, consider the following case, where two
keys ski,sky are used with the same pair of nonces ki, ks, i.e.,:

S1,1 = I{ilil(hlﬁl + rlskl) S1,2 = k;l(hl,g + Tlskg)

So1 = k;l(hQJ + T‘gSkl) S22 = k‘;l(hg,g + ’I"QSkQ)
Here, no nonce is used twice by the same key, but nonces have been reused
across keys. The system thus consists of 4 linearly independent equations and 4

unknowns and is thus uniquely solvable. A solution for sky that can be computed,
with Gaussian elimination for example, would be:

r151,2(h22521 — h21522) — res22(h12511 — h1,151,2)
7’17’2(51,252,1 - 81,152,2)

Sk2 =

In general, we can think of this problem as follows. An attacker is given
a set of signatures S = {(h1,71,51,pK1),- .-, (Bn,Tn, Sn, pk,)}, which can be
extracted from the Bitcoin blockchain, for example. Each tuple (h;,7;, s, pk;) €
S corresponds to a signature (r; = (Gk;)x, s; = kj ' (h; + rsk)) where pk = Gsk.
The goal of the attacker is to leak as many keys (or nonces) as possible by solving
systems of linear equations. To achieve this, an attacker has to identify subsets
of solvable systems. They can do so by reducing this problem to graph theory.
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For instance, we build an undirected bipartite graph G = (Vo U V., E), where
Vok = {pk; | (55mpky) € SE Ve = {ri | (14,0,0) € St and E = {{r;,pk;} |
(-y7i,+, pk;) € S}. The graph G consists of two types of nodes, r values r; and
public keys pk;, each of which corresponds to an unknown (a nonce k; and a secret
key sk;). An edge {r, pk} in this graph corresponds to a signature, which in turn
corresponds to an equation in the system of linear equations that S constitutes.
As a pre-filtering step, we first collect all the r values and public keys that appear
at least twice in conjunction, i.e., we collect F' = {r,pk | [{(-,r,-,pk) € S}| > 1}.
Since this corresponds to the same nonce being used by the same key at least
twice, it means that we can leak the used secrets k and sk using Egs. (3) and
(2) with the appropriate signatures. Additionally, we can leak all the secrets
which correspond to the nodes that are reachable by every public key and nonce
in F. To understand this, assume we have an r value r; € F, which means
that we can leak the nonce k; as described. Now assume that there is a node
pk; € Vpk such that {ri, pkj} € E, which implies the existence of the equation
sj = k; '(hj + rsk;). Since we know k;, we can leak sk; with sk; = %
The same is analogously true if we assume a public key pk, € F and an r
value r; € V. such that {r;, pk;} € E. By applying this argument inductively, it
becomes evident that we can leak the secrets associated with all nodes that are
reachable from every r; € F' and every pk, € F.

In the next step, we need to identify the nodes and edges which can be
mapped to a solvable system of linearly independent equations. This can be
achieved by finding non-trivial cycles in G, i.e., distinct nodes rg, pk, - . ., 7n, pk,,
for n > 0 such that {r;, pk;} € E and {pk;,7i+1 mod n} € FE for 0 <i < n.Such a
cycle contains 2(n + 1) nodes, i.e., unknowns, and 2(n + 1) edges, i.e., equations,
and thus directly implies the existence of a solvable system of linear equations.
Hence, for all such cycles we can leak the corresponding secrets, and, as before,
we can also leak the secrets of the reachable nodes. The output of this whole
process is two sets Vp’k C Vok and V! C V., which are the public keys and r values
for which we have leaked the secret keys and nonces, respectively. If we remove
the nodes in V), UV, and their edges from G, the resulting graph should not
contain any non-trivial cycles. This means that no more secrets can be leaked
and hence V;)’k and V! are optimal with respect to their size.

There is, however, a little twist to the methodology we described here. We
consider two signatures (r1,s1) and (rz, s2) a case of nonce reuse if the r values
coincide, i.e., if 11 = ro. This is not strictly true, as the r value is only the
z-coordinate of Gk. Since elliptic curves are based on a Weierstrass equation of
the form y? = 22 4 bx + a, there are always two nonces k which lead to the same
r value?. In particular, if we have Gk = (x,vy), then we have G(—k) = (z, —y).
This means that if the r values coincide, we need to take into account that one
nonce might be the additive inverse of the other rather than being equal. To
respect this, we must consider for every signature (r,s) the signature (r,—s)
as well, which is the signature that is yielded by negating k. For each such
combination we have to solve the system of linear equations and check if the

2 Recall that r # 0 (cf. Sect. 4.1).
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returned solutions are correct to leak the correct keys and nonces. This can be
done by double-checking that each leaked secret key sk corresponds to the given
public key pk, which can be done by verifying the equality Gsk = pk.

4.4 Results

We will now outline our results regarding nonce reuse in the Bitcoin blockchain.
To achieve this, we downloaded a copy of the Bitcoin blockchain up until block
506071, which was mined on 2018-01-25 16:04:14 UTC. We parsed all inputs
from all P2PKH transactions to extract their ECDSA signatures.

Table 1. The 10 most frequent r values and their number of occurrences.

r value Occurrences
0x00000000000000000000003b78ce563£89a0ed9414f5aa28ad0d96d6795£9¢63 | 2,276,718
0x00006£ cf15e8d272d1a995af6fcc9d6c0c2f4c0b6b0525142e8af866dd8dad4b 7,895
0x1206589b08a84cb090431daadf8d18934a20c8fa52ad534c5ba0abb3232be1d9 265
0x79be667ef9dcbbac55206295ce870b07029bf cdb2dce28d959£2815b16£81798 251
0x2ef0d2ae4c49c37703ba16a3126e27763e124f£3338£b93577ed7bd79ed0d19e 91
0x06ccel13d7911baa7856dec8c6358aaalfb119b5a77d0e4d756d5a6lacae05fcfb 83
0xd47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52£843adl 76
0x281d3da7518241cd8ee30cd57ae3173a1bd9ee5e3b02a46ba30f25cd5b4c6aal 68
0x8216£63d28£4dc0b69092330d2af09b93df9dd3b853958c4d203d530328d8ed 1 64
0x5d4eb477760cf19f£00f cb4dbab0856de9elce7764d829a71d379367684712bed 52

In total, we extracted 647,110,920 signatures and we found 1,068 distinct r
values appearing at least twice and used by 4,433 keys. In total, these duplicate r
values make up for 2,290,850 (0.35%) of all r values. In Table 1, we show the top
10 most frequent duplicate r values along with their number of appearances. The
most frequent duplicate r value appears 2,276,671 times, which makes up 99.38%
of all duplicate occurrences. This r value is special, as it is extraordinary small,
given that its 90 most significant bits are all 0. Additionally, the corresponding
nonce k for this r value is k = % mod n. As this is unlikely to be a coincidence,
it is believed that the designers of the secp256kl curve chose the generator
point G based on these values. It is also believed that this r value is used on
purpose by peers to save transaction fees. Bitcoin uses the DER encoding to
serialize signatures, which can compress the leading bits of this r value, which
reduces the transaction size and leads to smaller transaction fees. If peers use
this nonce only for the “last” transaction of an address, i.e., the final transaction
which removes all funds, then this should be secure as long as the transaction is
marked as non-replaceable. But since this transaction still leaks the secret key

of the address, the peer needs to make sure that they will never use the address
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again. Our analysis revealed that this r value was primarily used in two time
periods. The first block which contains this value is block 364,767 and the last
one is block 477,411. In total, we identified 1,550 blocks which contain this r
value. We found that the r value was used excessively in 2 time periods, which
is depicted in Fig. 1. We can see that between block 365,000 and block 366,000
and between block 374,000 and block 375,000, the value is used roughly 1 million
times each, which makes up almost all of its appearances.

2000000

1500000

1000000

500000

0

364000 366000 368000 370000 372000 374000 376000
Block

Accumulated Number of Ocurrences

Fig. 1. Number of occurrences of the most prominent duplicate r value over time.

Inspecting the other duplicate r values a bit more closely reveals further
interesting cases. The second most used r value also has 16 leading 0 bits, which
is also an indication that the corresponding nonce was not chosen randomly. The
fourth most used r value corresponds to the nonce k = 1, which is an indication
of either a broken random number generator or a hand-crafted transaction where
the nonce was not randomized and the creator simply took the z-coordinate of
G. Another r value we found was using the nonce k& = 12345678, which is also
an indication of an ad-hoc generated transaction using a fixed nonce rather
than a secure random one. Similarly, we found two other r values where the
corresponding nonces where suspiciously small, i.e., in one case the nonce was
k = 0x80001fff and in another case the nonce also had 74 leading 0 bits. In
another case the nonce was k = Z?io 167, i.e., 0x0101...01 in hexadecimal
notation, which looks like a pattern that a human would produce.

4.5 Measuring the Impact of Weak Nonces

We will now assess how much damage an attacker could have caused by using
the previously described methodology for leaking keys and nonces. To do this,
we put ourselves in the position of an attacker who monitors the transactions of
the blockchain. That is, we use our copy of the blockchain to create an ordered
sequence of signatures [(Aq, h1, 71,81, pky), .-y (Any Bn, 0y S, pk,, )] where A; is
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a block number such that A; < A; for 4 < j and the remaining elements are the
components of a signature found in a transaction of block A;. We then process
these entries in order as follows. We add each signature s; = k'*l(hi + ;) for
a public key pk; in block A; to a database, which allows us to quickly identify
duplicate r values as well as their signatures. Each identified duplicate r value r;
is then added to the graph G along with the used public key pk,. However, before
adding these 2 nodes to the graph, we make a few checks. First, we check if we
have leaked both k; and sk;, in which case we can completely disregard both, as
adding them will not lead to new leaks. Second, we check if G already contains
the edge {r;, pk;}, in which case we can leak both k; and sk;. Third, we check if
we have already leaked either k; or sk;, in which case we can then leak sk; or k;,
respectively. In the last two cases, we can also leak the secrets corresponding to
all the nodes reachable from both r; and pk; as discussed previously. Only if none
of these three conditions apply, we add the edge {r;, pk;} to G. After processing
all signatures of a block, we look for cycles in G to identify solvable systems of
linear equations in order to leak secrets as outlined previously. Whenever we find
a new leak, we make sure that we remove the corresponding signatures from the
database and that we remove the corresponding nodes and their edges from G,
as we will otherwise redundantly reconsider the same r values and cycles.

800
o 500
M 500
= 100 600
; 300 400
90}
S 200
2 200
Z 100 I
Z.
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Fig.2. Number of stealable Bitcoins+ number of vulnerable Bitcoin addresses
attributed to ECDSA nonce reuse over time.

Using this methodology, we managed to leak 892 out of the 1,550 possible
nonces (57.55%) and 2,537 out of the 4,433 secret keys that were used in conjunc-
tion with these nonces (57.23%). In total, this gives us theoretical control over
the balances of 5,074 addresses, i.e., two addresses per key. During this whole
operation we identified 23 cycles in the graph and the longest cycle consisted of
12 nodes, which represents a system of 12 linear equations and 12 unknowns (6
nonces + 6 secret keys). The final shape of G did not contain any more cycles,
which means that we have leaked the maximum number of secrets.

Figure 2 depicts the number of Bitcoins that an attacker could have stolen
at any point in time, i.e., the block height, as well as the number of vulnerable
addresses at each moment in time. We consider an address at a certain block
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vulnerable if we have leaked the key of the address and if it held a balance at
that block. There are a few notable spikes for both the number of stealable Bit-
coins as well as the number of vulnerable addresses. The first significant spike
occurs roughly between block 221,000 and block 227,000, where the peak steal-
able balance is 533.82 BTC. Interestingly, there was only one vulnerable address
during this spike. The next spike occurs roughly between block 296,000 and block
298,000 with a peak stealable balance of 20 BTC, which was stealable for a times-
pan of 3 blocks from block 297283 until block 297285. From block 297,261 up to
block 297,304 there were 90 vulnerable addresses, which is also the maximum
number of vulnerable addresses of the spike. The next spike is slightly shorter
and happens at around block 333,300 and lasts roughly until block 333,600.
During this timespan, an attacker could have stolen up to 266.73 BTC at block
333,387 and there were 290 peak vulnerable addresses at block 333,393. This is
followed by two similarly long-lasting spikes between blocks 365,000 and 366,000
and blocks 374,000 and 375,000. In the former case, 11.21 BTC was stealable and
there were 131 vulnerable addresses at some point, and in the latter case 15.41
BTC was stealable and there were 769 vulnerable addresses from block 374,386
to 374,386. This is also the largest number of addresses that were vulnerable at a
time over the whole timespan. Finally, while the number of vulnerable addresses
suddenly jumps to 289 at block 475,963, there are only 0.0064 BTC stealable at
the peak. At the current state of our copy of the blockchain, there are 5 vulner-
able addresses holding an accumulated balance of 4002 satoshis, i.e., 0.00004002
BTC, which is unlikely to be stolen given current transaction fees.

410
400
390

380

Stealable BTC

370

360

0.0 0.2 0.4 0.6 0.8 1.0
Balance threshold e

Fig. 3. Number of Bitcoins an attacker could have stolen based on a balance threshold.

To assess how much an attacker could have stolen over time, we consider
two scenarios. First, we assume an attacker which steals the peak balance of
each address over time. That is, we take the sum of the peak balances of each
address, which gives a total of 1021.58 BTC. Here, we implicitly assume that
the owner notices the fraud and therefore we ignore all future funds. However,
this attack model requires an attacker to know the peak balance in advance,
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which is unrealistic. Therefore, we consider a second more realistic attacking
scenario in which an attacker defines a balance threshold e. In this setting, an
attacker only steals a balance if it is equal to or larger than ¢ and we assume
again that we can only steal once from an address. Figure 3 plots the number of
Bitcoins that an attacker could have stolen in this scenario depending on €. We
let € range between 0 and 1 BTC with 0.001 increments. The optimal balance
threshold according to the plotted function is € = 0.125, which an attacker could
have used to steal 412.80 BTC. Note that even though one address alone had a
balance of 533.82 BTC at some point, it does not mean that an attacker in this
setting can steal it completely. This is because we assume that we can steal only
once from an address once its balance surpasses the balance threshold ¢, after
which we conservatively assume that the owner of the address becomes aware of
the problem. While this means that choosing a large € such as e = 500 BTC would
yield a larger profit for the attacker, we believe that it is not an optimal choice.
Given the current value of Bitcoin, we believe that it is unrealistic for a single
individual to hold such a large balance. Additionally, if we assume that there are
multiple competing attackers, then we also have to take this into consideration
when choosing €. We therefore let € range between 0 and 1 BTC as we believe
that this is a good compromise between what is currently practical and what is
optimal in theory. After said optimum, the number of BTC starts to decrease
steeply, and for € = 1, there are 359.04 stealable Bitcoins, i.e., 13.02% less than
in the optimal case. Similar to our previous OSINT analysis in Sect. 3.2, we also
ignored transaction fees here due to their negligible impact. Additionally, we also
did not consider blocking transactions in this case, as an attacker monitoring
transactions can create stealing transactions as soon as possible.

4.6 Identifying Past Attacks

Given that the phenomenon of ECDSA nonce reuse is a known problem, we now
try to assess if it has been used by attackers in the past to steal Bitcoins. To do
this, we tried to identify for each of the 7 spikes in Fig.2 the moment in time
when the number of stealable Bitcoins suddenly dropped. Then we tried to find
transactions, which were created during that time and whose outputs referenced
inputs of many vulnerable addresses. In the case of the first spike, it is hard
to argue whether it was used by an attacker as only 1 address was vulnerable
in this timespan. However, we identified several cases where the balance of the
address suddenly dropped by over 99.99%, which one could argue is an incident
where Bitcoins have been stolen. In the second, third, sixth and seventh spike
we found cases where the number of stealable Bitcoins decreased suddenly and
we identified in all cases a single transactions referencing all the responsible
vulnerable addresses, which makes us believe that Bitcoins were stolen. In the
case of the last spike, however, only 0.00064 BTC were stolen.

Regarding the fourth and fifth spike, we did not observe a similar suspi-
cious drop regarding the number of Bitcoins, but only regarding the number
of vulnerable addresses. To see the difference, consider Fig. 4, which shows and
compares a zoomed in view of the second and the fifth spike. In the former, we
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Fig. 4. Comparison of a spike where Bitcoins might have been stolen due to a sudden
drop in stealable Bitcoins (left) and a case where we see a smooth decrease indicating
that no coins might have been stolen (right).

can see a sudden drop in the number of stealable Bitcoins, i.e., while there are
7.49 stealable BTC at block 297,304, there are only 0.2 BTC stealable at block
297,305. We identified a single transaction which transferred all the stealable
Bitcoins, indicating a theft. The fact that the number of vulnerable addresses
did not decrease to 0 at the same time can be explained by various reasons. For
instance, it could be possible that the attacker was not aware of the remaining
vulnerable addresses. Or, it could be the case that the attacker used a balance
threshold and determined that the remaining addresses are not worth stealing
from based on this threshold, because as we can see, the 0.2 BTC are shared
among 86 vulnerable addresses. In the second spike in Fig. 4, we observe a smooth
and monotone decrease over time regarding the number of stealable Bitcoins and
then a sudden decrease of the number of vulnerable addresses at the same time
the stealable BT C drop. This phenomenon could be explained by the fact that all
the addresses belong to the same individual and that at the end all the so-called
change addresses are emptied by the wallet. Change addresses are addresses
which are used to accumulate leftover transaction outputs. For example, if an
address A wants to send 1 BTC to an address B using a single output, which is
worth 5 BTC, then the resulting transaction will create two outputs, one that
is worth 1 BTC and can be spent by address B and one that is worth 4 BTC
and can be spent by a change address that belongs to the owner of A. The final
transaction of the wallet will then use all accumulated outputs of the change
addresses, which could be an explanation for the sudden drop.

5 Discussion

In this section, we will consider the ethical aspects of our work and describe how
the problem of key leakage of cryptocurrencies can be tackled.
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5.1 Ethical Considerations

Given that we systematically describe how attackers can steal Bitcoins abusing
leaked keys, we have to address the ethical aspects that come along with such a
work. On the one hand, we believe that raising awareness of these attack vectors
is fundamental and important to improve the security of the cryptocurrency
ecosystem. On the other hand, one could argue that the amount of detail we put
into outlining these methods is not beneficial as it allows for easy reproducibility
by attackers. Yet we believe that this is the right way to tackle this problem as
“security by obscurity” has proven in the past to be an insufficient means in
the area of security. We also note that ECDSA nonce reuse is known to be
a problem and it has been reported in forum posts that this phenomenon has
occurred in the Bitcoin blockchain [5-7]. However, as we have shown in Sect. 4.4,
this apparently known problem still regularly occurs and is abused by attackers,
with the latest case of nonce reuse appearing in a block mined on 2017-07-15.
This constant recurrence leads us to believe that it will happen again, unless we
emphasize this problem better, which is why we outline the attack in detail.

Another ethical aspect of dealing with attacks on cryptocurrencies is that a
responsible disclosure process in terms of notifying the victims is not trivial. A
fundamental downside here is that Bitcoin itself is decentralized by design and
intends to ensure the anonymity (or pseudonymity) of the peers. This means
that (i) we have no dedicated point of contact, which we could inform about our
findings and (ii) we cannot reach out to the legitimate owners of the vulnerable
addresses. We tried to handle this problem as responsibly as possible and refrain
from disclosing problematic addresses and/or transactions. For example, we did
not mention any vulnerable addresses or URLs to pastes containing them, as we
cannot be sure that the owners of those addresses are aware of the vulnerability.
While an attacker can reproduce our methodology to find any future vulnerable
addresses using Pastebin, it should not be easily possible to find the addresses we
have discovered, since the Pastebin feed only lists the most current 250 pastes.
While Pastebin can be searched using standard search engines like Google, it
should be very hard to discover the pastes we have found, since search engines
only offer a keyword-based search, rather than a regex-based search which would
be required to find the addresses. In our ECDSA case study, we also did not
mention any vulnerable addresses. However, an attacker can fully reproduce
our results here, as the Bitcoin blockchain contains all the necessary historical
information. Therefore, not mentioning vulnerable addresses is not as effective
as in the case of our OSINT case study. Yet we also do not see a reason to do
so, as one could argue that this makes it too easy for an attacker.

5.2 Countermeasures

Explicitly leaking keys is not strictly a technical problem, as users seemingly pub-
lish private information without knowing the consequences of doing so. However,
there are some technical solutions that could be applied on OSINT platforms.
For example, Pastebin could include a check in their logic, which scans pastes for
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secrets such as Bitcoin secret keys encoded in the WIF format. In fact, they could
provide immediate feedback to users about the security implications of pasting
such content. We have therefore contacted Pastebin with a detailed description
of our work, proposing to adopt such a methodology.

To avoid ECDSA nonce reuse, there are a few solutions that can be applied.
One such solution proposed by RFC 6979 [19] is to choose the nonce k determin-
istically based on the message m and the key sk. As inputs differ, this scheme
provides unique nonces and hardens against nonce reuse. However, since this
solution is backwards-compatible with the existing ECDSA scheme, it also means
that peers do not have to follow this proposal. In particular, one cannot verify
that a signature has been created with the deterministic nonce choice as proposed
by RFC 6979. Another way of dealing with this problem is to incorporate a dupli-
cate nonce check into the Bitcoin protocol. For example, a check for duplicate r
values could be incorporated into the transaction verification process. Each peer
verifies each transaction of a block, which includes verifying the signature and
other sanity checks. Here, the protocol could also support a check for duplicate
r values, i.e., checking, for each r value of each signature, if it already occurs
in the blockchain. From a performance perspective, a Bloom filter could help to
scale this process. The more peers follow this, the less likely it will become that
a transaction containing a duplicate r value will be added to the blockchain.
However, an attacker monitoring the mempool instead of the blockchain might
still be able to observe transactions containing duplicate r values. Therefore,
one would need to additionally adapt the network rules such that a new rule is
added, which discourages the distribution of transactions which contain dupli-
cate nonces. If such a transaction reaches a peer which follows this new set
of rules, the duplicate r value will be detected and the transaction will not be
relayed further. Additionally, the peer sending the transaction should be notified
with an error message about the problem to create awareness. The more peers
follow this new set of rules, the less likely it becomes that transactions contain-
ing duplicate r values are distributed among the network. In total, we believe
that the adoption of all proposals, i.e., deterministic ECDSA and adapting the
network rules as well as the transaction verification process, are sufficient means
to eliminate nonce reuse from cryptocurrencies.

6 Related Work

In this section we discuss other work in the areas of OSINT, Bitcoin key leakage
and ECDSA nonce reuse, and how they relate to our work.

OSINT has been applied before to expose or harvest privacy-related informa-
tion. Matic et al. [16] performed a study in which they monitored the Pastebin
feed between late 2011 and early 2012 to develop a framework for detecting
sensitive information in pastes. They discovered almost 200,000 compromised
accounts of several websites as well as lists of compromised servers or leaked
database dumps. In a slightly different vein, Sabottke et al. [20] design a Twitter-
based exploit detector that can predict vulnerabilities such as code execution or
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Denial-of-Service attacks solely based on tweets. Similarly, Zhu et al. [24] show
how they can use academic security literature as OSINT to automatically engi-
neer features for malware detection. While all of these works show the potential
of OSINT, they are only remotely related to our work as our use case is different.

In terms of leaking Bitcoin secrets to steal money, there have been a few
other papers targeting this problem. Vasek et al. [22] have outlined how one
can attack passphrase-based wallets (brain wallets). The authors developed a
tool called Brainflayer, which uses brute force and a dictionary to generate
weak passphrases, which would have allowed an attacker to steal Bitcoins worth
$100,000 at that time. This approach is similar to ours in the sense that an
attacker exploits the fact that users treat sensitive information wrongly, i.e.,
passphrases in the case of Brainflayer and secret keys or nonces in our case. In
contrast to searching for weak passphrases, we harvest OSINT and cryptographic
primitives. More related are works by Castellucci et al. [10] and Valsorda [21],
which both consider ECDSA nonce reuse with respect to Bitcoin. However, both
only cover the basic case, where a nonce is used in conjunction with the same
key twice. We generalize this concept to systems of linear equations and system-
atically outline how an attacker can use a graph-based approach to leak secrets.

The general problem of nonce reuse in respect to ECDSA (or the closely
related DSA scheme) has been studied in other contexts. A notable incident
occurred in 2010, when it was discovered that Sony reused the same nonce to sign
software for the PlayStation 3 game console [8]. Furthermore, Heninger et al. [14]
studied the impact of weak keys and nonce reuse in the case of TLS and SSH
servers. The authors collected over 9 million signatures and found that 0.05%
of these signatures contained the same r value as at least one other signature.
Additionally, the authors used a subset of those signatures where a key and a
nonce appear in conjunction at least twice to leak 281 secret keys. Apart from
studying a different use case, i.e., Bitcoin, our work is different here in that we
systematically outline how an attacker can leak keys, which goes beyond the
simple case where the same key and nonce is used more than once.

7 Conclusion

We have studied the problem of implicit and explicit key leakage in the context of
cryptocurrencies, which shows how an attacker can leverage OSINT or duplicate
nonces to leak secret keys. Our case studies have shown the practical relevance
of these issues. An attacker monitoring Pastebin or scanning transactions for
nonce reuse could have stolen up to 22.40 BTC and 412.80 BTC, respectively.
Our work emphasizes aspects that are important for both the users and the
developers of cryptocurrencies. For instance, our Pastebin case study shows the
importance of making users aware of how to deal with cryptocurrency secrets.
Our results regarding ECDSA show that nonce reuse is a recurring problem and
highlight the benefits of incorporating countermeasures on the protocol level. In
the case that cryptocurrencies become even more popular, it will become more
lucrative for miscreants to perform key leakage attacks similar to the ones we
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described here. This highlights the importance of our research, which apart from
creating awareness of the problem, also can foster future research on the topic
of explicit and implicit key leakage in the context of cryptocurrencies.
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