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Preface

Welcome to the 21st International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2018)!

This year, RAID 2018 received 145 submissions of which 32 were accepted (21%
acceptance rate). As in previous years, a double-blind reviewing process was used to
ensure that the reviewers remained unaware of the authors, names or affiliations during
the discussion. Each paper received at least three reviews and the final decision for each
paper was made during a face-to-face Program Committee (PC) meeting following the
IEEE Symposium on Security and Privacy in San Jose (CA) in May 2018.

The quality and commitment of the PC is paramount to the success of any con-
ference. This year, roughly 75% of the PC members were from academia and the
remaining quarter from government, industry, or a mix. Roughly 20% of the PC was
from outside the USA. This year’s PC included ten new PC members who have never
served on the RAID PC and 23 who have served before, including three members, each
serving for their eighth time.

While RAID has previously awarded an “influential paper” award every five years
for papers appearing at RAID that have been important in the community, this year’s
RAID saw the permanent addition of a yearly best paper award. A subset of five PC
members was selected by the chairs and served as the award committee. A two-phase
process was used in which papers were nominated and discussed amongst the awards
committee and then a vote amongst the committee decided the award winner. This year
we were also pleased to offer a “community service” award to recognize an outstanding
contribution to the security community and to RAID in particular. This award, given to
Marc Dacier, recognizes the pivotal role he played in creating and shaping the RAID
conference we enjoy today.

RAID only exists because of the community that supports it. Indeed, RAID is
completely self-funded. Every organizer independently shoulders the financial risks
associated with its organization. The sponsors, therefore, play a very important role and
ensure that the registration fees remain very reasonable. Therefore, we want to take this
opportunity to thank Niometrics and Comcast for their generous sponsorships to RAID
2018. We, of course, are very grateful to the general chair, Sotiris Ioannidis, from
FORTH-ICS, and his assembled team for ensuring that the conference ran smoothly.
Special thanks go to the local arrangement and sponsor chair, Ioannis Askoxylakis, also
from FORTH-ICS; to the publication chair, Manolis Stamatogiannakis, from Vrije
Universiteit Amsterdam; and to the publicity chair, Michalis Polychronakis, from
Stony Brook University.

We hope you enjoyed the conference!

August 2018 Michael Bailey
Thorsten Holz
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Proteus: Detecting Android Emulators
from Instruction-Level Profiles

Onur Sahin(B), Ayse K. Coskun, and Manuel Egele

Boston University, Boston, MA 02215, USA
sahin@bu.edu

Abstract. The popularity of Android and the personal information
stored on these devices attract the attention of regular cyber-criminals
as well as nation state adversaries who develop malware that targets this
platform. To identify malicious Android apps at a scale (e.g., Google Play
contains 3.7M Apps), state-of-the-art mobile malware analysis systems
inspect the execution of apps in emulation-based sandboxes. An emerg-
ing class of evasive Android malware, however, can evade detection by
such analysis systems through ceasing malicious activities if an emulation
sandbox is detected. Thus, systematically uncovering potential meth-
ods to detect emulated environments is crucial to stay ahead of adver-
saries. This work uncovers the detection methods based on discrepancies
in instruction-level behavior between software-based emulators and real
ARM CPUs that power the vast majority of Android devices. To sys-
tematically discover such discrepancies at scale, we propose the Proteus
system. Proteus performs large-scale collection of application execution
traces (i.e., registers and memory) as they run on an emulator and on
accurate software models of ARM CPUs. Proteus automatically identi-
fies the instructions that cause divergent behavior between emulated and
real CPUs and, on a set of 500K test programs, identified 28K divergent
instances. By inspecting these instances, we reveal 3 major classes of root
causes that are responsible for these discrepancies. We show that some of
these root causes can be easily fixed without introducing observable per-
formance degradation in the emulator. Thus, we have submitted patches
to improve resilience of Android emulators against evasive malware.

1 Introduction

Android is a fast growing ecosystem. By acting as a trusted medium between
developers and users, application repositories (e.g., Google Play Store) have
enabled explosive growth in the number of mobile applications available to bil-
lions of users worldwide [6]. Currently, the Play Store consists of more than 3.7M
Android applications with thousands of new applications emerging every day [9].
Unfortunately, this massive ecosystem is also appealing to miscreants who seek
to infect a wide set of users with malicious applications.

To protect users, malware analysis systems are widely used in both academia
and industry. Since malware can easily defeat static analysis via obfuscation and

c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 3–24, 2018.
https://doi.org/10.1007/978-3-030-00470-5_1
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packing [14], contemporary analysis systems for Android adopt dynamic analysis
to inspect the runtime behavior of applications. State-of-the-art malware analyz-
ers for Android are based on emulators [23,28,30], which can easily scale across
multiple hosts to inspect vast number of Android apps. Such emulation-based
analysis also offers easy instrumentation [30] and fast state restore capabilities
(e.g., orders of magnitude faster than bare-metal [22]), making the emulation-
based analysis approach appealing to security researchers and practitioners.

The effectiveness of these dynamic malware analysis systems, however, is
largely at risk due to an emerging class of evasive malware. Such malware looks
for discrepancies that exist between emulated and real systems before triggering
any malicious attempt. By ceasing malicious activities on an emulated enviro-
ment, the malware can thwart existing emulator-based malware analyzers. The
situation is alarming as studies show a rising number of malware instances that
employ evasion tactics [18] (e.g., Branco et al. find evasion methods in more than
80% of 4M malware samples [13]). For Android, several recent classes of evasive
malware (e.g., Xavier [1], Grabos [7]) have already been identified in the Play
Store. A crucial step for defending against such malware is to systematically
extract the discrepancies between emulated and real systems. Once discovered,
such discrepancies can be eliminated [19] or can be used to inspect applications
for presence of evasion tactics leveraging these artifacts [13].

Many of the approaches to date [10,25,29] discover discrepancies of
emulation-based sandboxes in an ad hoc fashion by engineering malware samples
or specific emulator components (e.g., scheduling). Such manual approaches can-
not provide large-scale discovery of unknown discrepancies, which is needed to
stay ahead of adversaries. Recent work [17] automatically identifies file system
and API discrepancies used by several Android malware (e.g., [1,7]). Evasion
tactics that rely on such artifacts can be rendered ineffective by using modified
system images and ensuring the API return values match those in real devices
[12]. Besides API/file checks, a malware can also leverage differences in the
semantics of CPU instructions to fingerprint emulation [13] (e.g., by embedding
checks in the native code [25]). As opposed to ad hoc approaches or API/file
heuristics, our work focuses on systematically discovering instruction-level dis-
crepancies that are intrinsically harder to enumerate and fix for modern complex
CPUs.

Prior discoveries of instruction-level discrepancies in emulated CPUs are lim-
ited to x86 instruction set [21,24,27], while the vast majority mobile devices use
ARM CPUs. Despite the large number of discrepancies reported in prior work
[21,24], such findings are not readily useful for improving the fidelity of emu-
lators as their analysis does not reveal the root causes of discrepancies. Such
analysis of root causes is essential as not all discrepancies are reliable detection
heuristics due to Unpredictable ARM instructions [4], whose behavior varies
across platforms. In addition, reliance on physical CPUs to obtain the ground
truth instruction behavior poses practical limitations on the number of test cases
(e.g., instructions, register/memory operands, system register settings) that can
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be covered. Approaches to improve coverage [27] are based on heavy analysis of
ISA specifications, which are notorious for their complexity and size.

To address the shortcomings above and identify instruction-level discrepan-
cies in Android emulators at a scale, we propose to collect and analyze a large
number of instruction-level traces corresponding to execution on real ARM CPUs
and emulators. By recording how each ARM instruction modifies the architec-
tural state (i.e., registers and memory) on an emulated and real ARM CPU, we
can automatically detect divergences that are directly observable by user-level
programs. To scale the divergence analysis system, we demonstrate the feasibility
of using accurate software models for ARM CPUs instead of physical hardware.

We build our instruction-level analysis framework into a new system, Pro-
teus. Proteus automatically identifies architectural differences between real
and emulated ARM CPUs. Proteus uses official software models for ARM
CPUs (i.e., Fast Models [3]) to gather detailed and accurate instruction-level
traces corresponding to real CPU operation. We instrument QEMU to collect
traces for emulated CPUs. We target QEMU as it forms the base of state-of-the-
art Android malware analysis systems [23,28,30] as well as the Android SDK
emulator. We evaluate our system with over a million CPU instructions. Our
randomized test cases allow us to examine instruction behavior that would not
be triggered during execution of conventional compiler-generated programs.

Proteus automatically groups the instructions that generate similar diver-
gent behavior and reveals several major classes of instruction-level discrepancies
between emulated and real ARM CPUs. We find that a single root cause (e.g.,
relaxed opcode verification) can account for a large number divergent cases and
that some of these sources of divergences can be eliminated by minor modifi-
cations in the QEMU source code. To improve resilience of Android emulators
against detection via CPU semantic attacks, we have disclosed our root cause
findings including patches where appropriate to the QEMU community1. Our
evaluation of discovered discrepancies on physical devices and SDK emulators
demonstrates how unprivileged user-mode programs can deterministically fin-
gerprint Android emulators to easily perform CPU semantic attacks (e.g., by
using a few CPU instructions in native code). To the best of our knowledge, this
is the first systematic study to demonstrate instruction semantic attacks against
QEMU’s ARM support. Overall, we make the following specific contributions:

– Proteus: We design, implement, and evaluate a scalable approach for dis-
covering discrepancies between emulated and real ARM CPUs (Sect. 3). Our
system collects a large number of instruction-level traces from accurate soft-
ware models of ARM CPUs and from an instrumented QEMU instance. Pro-
teus automatically identifies the instructions and conditions that cause a
divergence, and groups instructions with similar behavior to facilitate further
inspection for root cause analysis (Sect. 4).

– Novel Attack Surface: We systematically analyze the divergences found
by Proteus and uncover novel detection methods for Android emulators

1 We have eliminated several root causes as part of our work and have already sub-
mitted a patch.
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based on instruction-level differences between emulated and real ARM CPUs
(Sect. 5.1). We show the effectiveness of these methods for deterministically
distinguishing physical devices from Android emulators (Sect. 5.3).

– Fidelity Improvements: We identify a set of root causes (Sect. 5.2) that
are responsible for a large set of divergences. We show that some of these root
causes can be eliminated in Android emulators through minor fixes without
causing any observable performance overhead (Sect. 5.4).

2 Background

This section provides a brief overview of the ARM architecture and clarifies the
terminology that we use throughout the rest of this paper. We also describe the
attack model we are assuming in this work.

2.1 ARMv7-A Architecture

This paper focuses on ARMv7-A instruction set architecture (ISA), the vastly
popular variant of ARMv7 that targets high-performance CPUs which support
OS platforms such as Linux and Android (e.g., smartphones, IoT devices). The
ARM architecture implements a Reduced Instruction Set Computer (RISC)
organization where memory accesses are handled explicitly via load/store
instructions. Each ARM instruction is of fixed 32-bit length. ARMv7-A features
16 32-bit registers (i.e., 13 general purpose registers (R0-R12), stack pointer (SP),
link register (LR), program counter (PC)) accessible in user-mode (usr) programs.
The CPU supports 6 operating modes (usr,hyp,abt,svc,fiq,irq) and 3 privilege
levels PL0, PL1 and PL2 (i.e., lower numbers correspond to lower privilege levels).
The Current Program Status Register (CPSR) stores the CPU mode, execution
state bits (e.g., endianness, ARM/Thumb instruction set) and status flags.

Undefined Instructions: The ARMv7 specification explicitly defines the set
of encodings that do not correspond to a valid instruction as architecturally
Undefined. For example, Fig. 1 shows the encoding diagram for multiplication
instructions in ARMv7. The architecture specification [4] states that the instruc-
tions are Undefined when the op field equals 5 or 7 in this encoding.

Fig. 1. Encoding diagram for multiplication instructions in ARMv7 ISA [4].

An Undefined instruction causes the CPU to switch to the undefined (und)
mode and generates an undefined instruction exception. An undefined instruction
exception is also generated when an instruction tries to access a co-processor that
is not implemented or for which access is restricted to higher privilege levels [4].
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Unpredictable Instruction Behavior: The ARM architecture contains a
large set of instruction encodings for which the resulting instruction behavior is
unspecified and cannot be relied upon (i.e., Unpredictable). ARM instructions
can exhibit Unpredictable behavior depending on specific cases of operand
registers, current CPU mode or system control register values [4]. For example,
many instructions in the ARM architecture are Unpredictable if the PC is used
as a register operand. In addition, some instruction encoding bits are specified as
“should be” and denoted as “(0)” and “(1)” in ARM’s official encoding diagrams.
While different encodings for “should be” bits do not correspond to different
instructions, the resulting behavior is Unpredictable if a given encoding fails
to match against the specified “should be” bit pattern.

The effect of an Unpredictable instruction is at the sole discre-
tion of the CPU manufacturer and can behave as a NOP or Undefined
instruction, or can change the architectural state of CPU. Consider the
“LDMDA pc!,{r0,r1,r5,r6, r8,sp,lr}” Unpredictable instruction (encoded
as 0xE83F6163), which loads the given set of registers from consecutive memory
addresses starting at PC and writes the final target address back to PC. This
instruction causes undefined instruction exception on a real CPU while it mod-
ifies the PC and causes an infinite loop on QEMU. Note that both behaviors
comply with the ARM specification.

2.2 Threat Model

The aim of the malware author is to evade detection by the analysis tools and
distribute a malicious application to real users. The malware possesses a set of
detection heuristics to distinguish emulators from real devices. Malware achieves
evasion by ceasing any malicious behavior on an emulated analysis environment,
which could otherwise be flagged by the analysis tool. Once the malware escapes
detection and reaches real users, it can execute the harmful content within the
application or dynamically load the malicious payload at runtime [26].

Our work focuses on discrepancies that are observable by user-level programs.
Thus, we assume applications running in usr mode at the lowest PL0 privilege
level. Since our technique detects emulators by natively executing CPU instruc-
tions and monitoring their effects, we assume an Android application that con-
tains a native code. This is a common case for many applications (e.g., games,
physics simulations) that use native code for the performance-critical sections
and for the convenience of reusing existing C/C++ libraries [2,26].

We assume that applications are subject to dynamic analysis in a QEMU-
based emulation environment. Indeed, state-of-the-art dynamic analysis frame-
works that are commonly used in academia [28,30] and industry [23] use QEMU
as the emulation engine. In addition, the Android emulator that is distributed
with the Android SDK is also based on QEMU.
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Fig. 2. Overview of Proteus.

3 Proteus System Architecture

The aim of the proposed Proteus system (Fig. 2) is to find the differences
in semantics of instructions executed on a real and an emulated ARM CPU.
Proteus consists of a trace collection part and an analysis component to auto-
matically identify and classify divergences. This section provides an overview of
the core components of Proteus and describes its high-level operation.

Central to our system is collection of detailed instruction-level traces that
capture the execution behavior of programs on both emulated and real CPUs.
The traces capture all updates to user-visible registers as well as the operands
in memory transactions from load/store instructions. If a program terminates
by a CPU exception, the respective signal number is also recorded.

The “Program Generator” component ( 1 ) generates the test programs which
are used for collecting instruction-level traces and discovering discrepancies. Note
that ARM CPU emulation in QEMU is inadvertently tested using millions of
apps by Android developers. Thus, programs generated for divergence identi-
fication should also exercise platforms for uncommon cases beyond the set of
instructions emitted by compilers and found in legitimate Android apps.

For each generated test program, we collect its instruction-level traces by
executing the same binary on two different platforms ( 2 ) which provide the
traces corresponding to execution on an emulator and a real CPU.

The “Divergence Identification & Categorization” component ( 3 ) compares
emulator and real CPU traces of a program to identify the initial point of
divergence. A divergence can be due to a mismatch in register values, mem-
ory operands or exception behavior. Divergent cases that stem from the same
mismatch are grouped together automatically to facilitate manual inspection of
discovered discrepancies. Our hypothesis behind the grouping is that there exist
a small number of root causes that cause the same divergent behavior (e.g.,
exception mismatch) on potentially a large set of test cases. For instance, we
can group together the divergent instructions that generate an illegal instruction
exception in a real CPU but execute as a valid instruction in emulator. We also
check if the divergent instruction is Unpredictable ( 4 ). Since Unpredictable
instructions can exhibit different behavior across any two platforms, we do
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not treat divergences that stem from these instructions as a reliable detection
method.

Overall, Proteus provides us with the instruction encoding that caused
the divergent behavior, register values before that instruction, divergence group
as well as the difference between the traces of emulated and real CPU (e.g.,
signal number, CPU mode, etc.) which occurs after executing the divergent
instruction. We can optionally identify why QEMU fails to faithfully provide
the correct behavior as implemented by the real CPU and fix the source of mis-
match ( 5 ). Proteus can also generate a proof-of-concept emulation detector
( 6 ), which reconstructs the divergent behavior by setting respective register val-
ues, executing the divergent instruction and checking for the resulting mismatch
that Proteus identifies during the “Divergence Identification & Categorization”
stage.

4 Proteus Implementation

In this section, we describe our implementation of the proposed Proteus system
for detecting instruction-level differences between emulated and real ARM CPUs.
In Sect. 4.1, we describe our framework for acquiring instruction-level traces.
Section 4.2 describes how we use this framework to collect a large number of
sample traces and automatically identify discrepancies.

4.1 Instruction-Level Tracing on ARM-Based Platforms

Collected Trace Information: For our purposes, a trace consists of all
general-purpose registers that are visible to user-level programs, which provide
a snapshot of the architectural state. Specifically, we record the R0-R12, SP, PC,
LR and CPSR registers (see Sect. 2). Finally, we record operands of all memory
operations. Various ARM instructions can load/store multiple registers sequen-
tially from a base address. We record all the data within the memory transaction
as well as the base address. This trace information gives us a detailed program-
visible behavior of CPU instructions. Thus, any discrepancy within the trace is
visible to a malware and can be potentially leveraged for evasion purposes.

Emulator Traces Through QEMU Instrumentation: QEMU dynamically
translates the guest instructions (e.g., ARM) for execution on the host machine
(e.g., x86). Translation consists of several steps. First, guest instructions within a
basic block are disassembled and converted into a platform-agnostic intermediate
representation called TCG (Tiny Code Generator). Next, generated TCG code
blocks (i.e., translation block) are compiled into host ISA for execution.

To implement tracing capability in QEMU, we inject extra TCG operations
into each translation block during the translation phase. These extra TCG oper-
ations dump the trace information during the execution phase. We use the helper
functionality within QEMU to generate the extra TCG code. The main use of the
helper functionality in QEMU is to allow developers to extend the capabilities
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of TCG operations for implementing complex instructions. We inject the extra
TCG operations for every disassembled instruction to achieve per-instruction
tracing granularity. Specifically, we modify the disassembly routines of ARM
instructions to inject TCG operations that record registers. We also modify the
load/store routines to record address and data values for memory transactions.

We use QEMU 2.7.0 from Android repositories2, which forms the base of the
SDK emulator used in modern Android malware analyzers [23,28,30]. QEMU
2.7.0 is the most recent version adopted in current SDK emulators. To ease
instrumentation and facilitate the data collection, we use QEMU in user-mode
configuration as opposed to full-system emulation. We use full-system SDK emu-
lators during our evaluation of discovered discrepancies (Sect. 5.3).

Accurate Real CPU Traces Using ARM Fast Models: Gathering detailed
instruction-level traces from real CPUs is challenging and, due to practical lim-
itations on the number of devices that can be used, does not scale well. In this
work, we propose to use accurate functional models of ARM CPUs (i.e., Fast
Models [3]) to obtain traces corresponding to execution on real CPUs. Fast Mod-
els are official software models developed and maintained by ARM and provide
complete accuracy of software-visible semantics of instructions.

ARM Fast Models provide a set of trace sources which generate a stream of
trace events when running the simulation. Once a target set of trace sources are
specified, Fast Models emit trace events whenever a change occurs on a trace
source. These trace events are provided over a standardized interface called Model
Trace Interface (MTI). We use an existing plugin called GenericTrace to record
trace events over the MTI interface.

Our work is based on a Cortex-A15 fast model which implements the ARMv7
ISA. We specify “inst”, “cpsr ”, “core_loads”, “core_stores” and “core_regs” trace
sources, which capture changes in register values as well as data/address operand
values in memory transactions.

4.2 Identifying Emulated vs. Real CPU Discrepancies with Tracing

This section describes how we use our tracing capabilities (Sect. 4.1) to find
differences in instruction semantics between emulated and real ARM CPUs.

Generating Test Cases: We generate valid ELF binaries as inputs to our
tracing platforms. We choose to use programs that contain random instructions.
Specifically, each input binary contains 20 random bytes corresponding to 5 ARM
instructions. We use this randomized approach to be able to exercise emulators
with uncommon instructions which are not likely to be emitted by compilers. We
use more than one instruction per binary to be able to cover more instructions
each time a simulation is launched for a test program.

2 https://android.googlesource.com/platform/external/qemu-android/+/qemu-2.7.0.

https://android.googlesource.com/platform/external/qemu-android/+/qemu-2.7.0
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Fig. 3. Illustration of the flow for comparing the Fast Model and QEMU traces.

Each test program starts with a few instructions that set the CPU state, clear
registers and condition flags. By default, the programs run on the Fast Model
in svc mode and no stack space is allocated. Thus, we use these initialization
instructions to ensure that CPU mode is set to usr and SP points to the same
address on both platforms. We also clear all registers to ensure that programs
start from identical architectural state on both emulator and real CPU. These
initialization instructions are followed by 5 random instructions. Finally, each
test case ends with an exit system call sequence (i.e., mov r7,#1; svc 0x0).

Identifying Divergence Points: This phase of the Proteus system consumes
the traces collected from QEMU and ARM Fast Model to identify and group
divergent behaviors. To identify the initial point where QEMU and Fast Model
traces of an input program diverge, we perform a step-by-step comparison.

The step-by-step comparison procedure is illustrated in Fig. 3. We skip
the portion of the traces which corresponds to the initialization instructions
described in the previous section (Step 1) to avoid false alarms that arise from
the initial state differences between QEMU and Fast Model. We walk through
the remaining instruction sequence until either a difference exists in the collected
trace data or the test program on QEMU terminates due to an exception. If the
program terminates on QEMU or the CPU mode on Fast Models switches to a
different mode than usr, we examine whether this exception behavior matches
between QEMU and real CPU (Step 2). We perform the comparison using the
CPU mode from the Fast Model and the signal received by the program upon
termination on QEMU. Note that there is no exception handling or signal mech-
anism on Fast Models as no OS is running. Depending on this CPU mode and
signal comparison, we determine whether the observed behavior falls into one
of the four possible divergent types below. We use a tuple representation as
<FastModel_response, QEMU_response> to categorize divergent behavior.

– <und,!SIGILL>: This group represents the cases where QEMU fails to rec-
ognize an architecturally Undefined instruction. If the Fast Models indicate
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that CPU switches to und mode, the expected behavior for QEMU is to
deliver a SIGILL signal to the target program. This is because execution of
an Undefined instruction takes the CPU into und mode and generates an ille-
gal instruction exception. Thus, the cases where Fast Model switches to und
mode while QEMU does not deliver a SIGILL signal is a sign of divergence.

– <usr,SIGILL>: This class of divergence contains cases where QEMU termi-
nates by an illegal instruction signal (SIGILL) while Fast Models indicate the
target instruction is valid (i.e., cpu remains in usr mode).

– <abt,!SIGBUS>: This class captures the cases where QEMU fails to recognize
a data/prefetch abort and hence does not generate a bus error (i.e., deliver
SIGBUS). Prefetch aborts are caused by failing to load a target instruction
while data aborts indicate that the CPU is unable to read data from memory
(e.g., due to privilege restrictions, misaligned addresses etc.) [4].

– <usr,SIGBUS>: This divergence type represents the opposite of the previous
case. Specifically, QEMU detects a bus error and delivers a SIGBUS to the test
program while the Fast Models indicate that the memory access made by the
target program is valid (i.e., cpu is not in abt mode).

If no exception is triggered for an instruction, we further compare the registers
and memory operands within the collected trace data. We determine memory
operand divergence (Step 3) if the address or the number of transferred bytes
differ between QEMU and Fast Model traces. We do not treat data differences
as divergence since subtle differences may exist in the initial memory states
of QEMU and Fast Models. We drop cases with different memory values from
further examination as the loaded data would propagate into register state and
cause false positive divergence detection. Finally, if no divergence is identified in
exception behavior or in memory operands, we compare the user-level registers
(Step 4) to detect any register state divergence. Steps 2–4 presented in Fig. 3
continues for the remaining random instructions in the test program.

Since Unpredictable instructions can cause different legitimate behaviors on
any two CPU implementations, we cannot use these instructions to determinis-
tically differentiate emulators from real systems. Thus, if a divergent instruction
identified in Steps 2–4 is Unpredictable, we do not classify this case into any
divergence group. However, an officially verified tool or a programmatic method-
ology to check if a given ARM instruction would generate Unpredictable behav-
ior is unavailable. Thus, we use an open-source specification of ARMv7 archi-
tecture written in Standard ML (SML) and proposed by the earlier work [15].

Generating Detector Programs: Based on the identified divergent instruc-
tion semantics, Proteus can optionally generate a proof-of-concept program
that determines whether the program is executed on an emulator or a real sys-
tem. This section describes how our system generates these programs and pro-
vides insight into how a real-life malware can implement CPU semantic attacks.
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1 sig_atomic_t sig_info = 0;
2 sigjmp_buf buf;
3
4 void catch_signals(int signum) {
5 if (signum == SIGBUS)
6 sig_info = 1;
7 siglongjmp(buf , 1);
8 }
9 sig_atomic_t say_my_name () {

10 prepare (); // register signal
handlers

11 if(! sigsetjmp(buf ,1)) {
12 // Set target registers
13 asm("LDR r4 ,=0 x00008075");
14 // execute divergent instruction
15 asm(".byte 0x10 ,0x00 ,0x97 ,0xe8");
16 siglongjmp(buf , 1);
17 }
18 cleanup (); // remove signal handlers
19 return sig_info;
20 }
21 void main() {
22 sig_atomic_t ret = say_my_name ();
23 (ret ==1) ? printf("real cpu"):printf(

"emulator");
24 }

Listing 1.1. A sample program
snippet for detecting Android
emulator.

Proteus generates detector programs by
rewriting a set of pre-built template bina-
ries to reconstruct the divergent behavior.
The template programs simply execute the
divergent instruction and check whether the
resulting effect matches with QEMU or real
CPU behavior. Before executing the diver-
gent instruction, we set up the environ-
ment with the necessary changes to trig-
ger divergent behavior and observe its effect.
These changes are (1) setting the regis-
ter values (CPSR and R0-R12) with the val-
ues provided from the divergence identifi-
cation phase, (2) installing signal handlers
for exception-related divergent behavior. We
use sigsetjmp/siglongjmp provided by the
standard C library to preserve the CPU state
which would otherwise be altered by the changes we perform. Listing 1.1 illus-
trates an example detector program for the <abt,!SIGBUS> group. The current
CPU state is saved with sigsetjmp on line 11. The register state is loaded with
target values (line 13) and the divergent instruction (LDM r7,{r4}) is executed
(line 15) to reconstruct the divergent behavior. The program determines emula-
tion if it does not receive a SIGBUS after the divergent instruction accesses the
misaligned memory address stored in R4. The original CPU state before con-
structing the divergent behavior is restored on either line 7 or 16. We simply
build one template program for each of the six divergence groups. Depending on
the divergence group, for a given divergent instruction, we pick the corresponding
sample template to rewrite a new detector program.

5 Evaluation

This section demonstrates the capabilities of Proteus for identifying the dis-
crepancies of QEMU’s emulated CPU from a real ARM CPU. We systematically
analyze the divergences reported by Proteus to identify the root causes of the
discrepancies. On a real smartphone and Android emulator, we demonstrate how
our findings can fingerprint the underlying platform. Finally, we demonstrate
the feasibility of fixing several root causes of divergences without any observable
performance penalty. Overall, we seek to answer the following questions:

– Are there any observable discrepancies between an emulated and real CPU?
If so, how prevalent are these differences? (Sect. 5.1)

– How effective are the divergences reported by Proteus in terms of finger-
printing real hardware and dynamic analysis platforms? (Sect. 5.3)

– What are the root causes of the discrepancies (Sect. 5.2) and can we eliminate
them in QEMU without impacting its performance? (Sect. 5.4)
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5.1 Divergence Statistics from Proteus

Fig. 4. #Instructions before
divergence or exception.

In order to address our first research question,
we use Proteus to examine the instruction-level
traces from 500K input test programs. Figure 4
shows the number of instructions executed in the
test programs until a divergence occurs or QEMU
stops due to an exception. The majority of the
test cases (45%) finish after a single instruction
only and, almost all test cases (>94%), either
diverge or cause an exception on QEMU after
executing the 5 instructions in our test programs.
Overall, our system analyzed over 1.06M CPU instructions. Table 1 presents an
overall view of the results by Proteus showing a comparison between QEMU
and Fast Models in terms of the exception behavior (Table 1a) as well as extent
of divergences per group (Table 1b).

Table 1. Proteus divergence statistics for 500K test cases containing 2.5M random
ARM instructions. Remaining instances of 500K programs (not shown in Table 1a)
are (1) 83,125 (17%) cases due to Unpredictable instructions, (2) 27,048 (5.4%) non-
divergent cases where programs finish successfully on both platforms and (3) 1216 cases
that differ due to memory values. Note that we do not treat these 3 cases as divergent
(see Sect. 4.2).

Table 1a presents a summary of the cases where either QEMU terminates
the program or the CPU mode changes in Fast Models. Overall, we observe two
types of signals in QEMU (i.e., SIGILL, SIGSEGV) and CPU mode in Fast Models
cover und, abt, svc and usr modes. None represents the cases where QEMU
does not generate an exception. Most instances correspond to illegal instruction
(<und, SIGILL>) and valid memory access (<usr, SIGSEGV>) cases in which
the behavior in QEMU complies with Fast Models (i.e., not divergent). A large
number of instances are Supervisor Call (svc) instructions which cover a large
encoding space in ARM ISA. svc instructions are used to request OS services and
are not a major point of interest for our work as we focus on the discrepancies
that are observable in the user space. In Table 1a, such non-divergent cases are
highlighted in gray. The remaining instances in Table 1a, along with the non-
exception related differences (i.e., memory operand and register) are grouped
into the divergence types as per the methodology described in Sect. 4.2.
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Table 1b provides the number of instances per each divergence type. The
largest number of divergences (i.e., 2.6% of 500K test programs) belong to
<abt, !SIGBUS> group which hints that QEMU does not correctly sanitize the
invalid memory references that cause data/prefetch aborts in CPU. Proteus
also finds a large number of instructions that are recognized as architecturally
Undefined only by the Fast Models (i.e., <und, !SIGILL> group). These point
to cases where QEMU does not properly validate the encoding before treating
the instruction as architecturally valid. We also find a large number of instruc-
tions which are detected as illegal only by QEMU, executing without raising
an illegal instruction exception on the Fast Model (i.e., <usr, SIGILL> group).
Proteus also finds a smaller number of cases (i.e., 0.05%) with divergent reg-
ister update or memory operation which correspond to register_divergence
and mem_op_difference groups in Table 1b, respectively. These examples hint
at cases where the implementation of a valid instruction contains potential errors
in QEMU, causing a different register or memory state than on a real CPU. Over-
all, despite the significant testing of QEMU, we observe that there are still many
divergences where QEMU does not implement the ARM ISA faithfully.

5.2 Root Cause Analysis

While the Proteus system can identify large numbers of discrepancies between
real and emulated ARM CPU, it does not pinpoint the root causes in QEMU that
lead to a different behavior than ground truth (i.e., Fast Model behavior). This
section presents our findings from an analysis of root causes of divergent behavior
in QEMU. This analysis gives us, compared to large number of divergences
identified, a smaller set of unique errors in QEMU that lead to divergence on
a wide set of programs (Table 1b). Analyzing the root causes also allows us to
pinpoint implementation flaws and devise fixes (Sect. 5.4).

In our analysis, for a divergence group, we first identify common occurrences
in the bit fields [27:20] of a divergent 32-bit instruction encoding. In the ARM
architecture, these bits contain opcodes that are checked while decoding the
instruction on QEMU and real CPU. We identify the instructions with the most
commonly occuring opcodes to (1) consult the ISA specification to check how
these instruction should be decoded and (2) check how QEMU processes these
instruction. We determine the root cause of the discrepancy by manually ana-
lyzing QEMU’s control flow while executing a sample of these instructions. Once
we examine the source of discrepancy (e.g., a missing check, an unimplemented
feature of QEMU), we remove all possible encodings that stem from the same
root cause from our statistics to find other unique instances of errors in QEMU.

Through this iterative procedure, we identified several important classes of
flaws in QEMU that result in a different instruction-level behavior than a real
CPU. We discuss some of our findings in the following paragraphs.

Incomplete Sanitization for Undefined Instructions: We discover that
QEMU does not correctly generate illegal instruction exception for a set of
Undefined instruction encodings. These cases are identified from the <und,
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Table 2. Several Undefined instruction encodings that are treated as valid instructions
by QEMU. “:X” notation represents the bit length of a field while “*” represents that
the field can be filled with any value (i.e., 0 or 1).

Instruction encoding (cond ∈ [0, 0xE]) Divergent conditionQEMU behaviorReal CPU behavior#Cases

cond:4|0001|op:4|*:12|1001|*:4 op = 1,2,3,5,6,7 SWP Inst Undefined 715

cond:4|1100010|*:9|101|*:1|op:4|*:4 op != 1,3 64-bit VMOV Undefined 424

cond:4|11|op:6|*:20 op = 1,2 VFP Store Undefined 51

cond:4|11101|*:2|0|*:8|1011|*:1|op:2|1|*:4op = 2,3 VDUP Inst Undefined 3

cond:4|110|op:5|*:8|101|*:9 op != 4,5,8-25,28,29VFP Store Undefined 2

!SIGILL> group provided by Proteus. Thus, a malware can achieve evasion
simply by executing one of these instructions and ceasing malicious activity if
no illegal instruction exception is generated.

We find that this particular group of divergences arises as QEMU relaxes the
number of checks performed on the encoding while decoding the instructions.
For instance, the ARM ISA defines a set of opcodes for which the synchroniza-
tion instructions (e.g., SWP, LDREX) are Undefined, and thus should generate
an illegal instruction exception. However, QEMU does not check against these
invalid opcodes while decoding the synchronization instructions, causing a set of
Undefined encodings to be treated as a valid SWP instruction. In fact, we iden-
tified 715 divergent test cases which are caused by this missing invalid opcode
check for the SWP instruction. In Table 2, we provide the encoding and the con-
ditions that cause divergent behavior for this SWP instruction example as well as
other similar errors in QEMU that we have identified.

During our root cause analysis, we find that a large portion of the instances in
<und, !SIGILL> group (87%) are due to instructions accessing the co-processors
with ids 1 and 2. These co-processors correspond to FPA11 floating-point proces-
sor that existed in earlier variants of the ARM architecture while newer architec-
tures (>ARMv5) use co-processor 10 for floating point (VFP) and 11 for vector
processing (SIMD). While accesses to co-processors 1 and 2 are Undefined on a
real CPU, QEMU still supports emulation of these co-processors [8]. Thus, these
instructions generate an illegal instruction exception only on the real CPU.

Misaligned Memory Access Checks: As hinted by Proteus with the large
number of instances in the <abt, !SIGBUS> group in Table 1b, we identify that
QEMU does not enforce memory alignment requirements (e.g., alignment at
word boundaries) for the ARM instructions that do not support misaligned
memory accesses. The data aborts caused by such misaligned accesses would
take the CPU into abt mode and the program is expected to be signalled with
SIGBUS to notify that the memory subsystem cannot handle the request. Due
to missing alignment checks in QEMU, a malware can easily fingerprint emula-
tion by generating a memory reference with a misaligned address and observing
whether the operation succeeds (i.e., in QEMU) or fails (i.e., on a real system).
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The ARMv7 implementations can support misaligned accesses for the load-
/store instructions that access a single word (e.g., LDR, STR), a half-word (e.g.,
LDRH, STRH) or only a byte of data (e.g., LDRB, STRB). However, other instructions
that perform multiple loads/stores (e.g., LDM, STM) or memory-register swaps for
synchronization (e.g., SWP, LDREX, STREX) require proper alignment of the data
being referenced. The alignment requirement can be word, half-word or double-
word depending on the size of data being accessed by the instruction.

We demonstrate in Sect. 5.3 how the divergence due to missing alignment
enforcements in QEMU can enable evasion in a real-world scenario.

Updates to Execution State Bits: By analyzing the divergent instructions
reported by Proteus within the register_divergence group, we identified
another important root cause in QEMU due to masking out of the execution state
bits during a status register update. Specifically, we analyzed the cases where
execution state bits within CPSR differ after an MSR (move to special registers)
instruction. Execution state bits in CPSR determine the current instruction set
(e.g., ARM, Thumb, Jazelle) and the endianness for loads and stores. While
MSR system instructions allow to update CPSR, writes to execution state bits
are not allowed with the only exception being the endianness bit (CPSR.E). The
ARM ISA specifies that “CPSR.E bit is writable from any mode using an MSR
instruction” [4]. However, since updates on the CPSR.E bit by an MSR instruction
are ignored in current QEMU, software can easily fingerprint the emulation by
simply trying to flip this bit (e.g., using MSR CPSR_x, 0x200 instruction) and
checking whether the endianness has been succesfully changed.

Observations from Other Statistics: Our initial investigations on <usr,
SIGILL> and mem_op_divergence groups did not reveal any further root causes
as above. We find that the majority of the divergent cases in mem_op_divergence
group (>97%) are due to VFP/SIMD instructions effecting the extension reg-
isters. Our current work focuses on the user-mode general purpose registers
only. During analysis on <usr, SIGILL> group, we identified divergences due
to Unpredictable instructions. This issue is due to the incomplete SML model
[15] which misses some Unpredictable instructions in our test cases (Fig. 2). For
instance, we find that 761 divergence cases in <usr, SIGILL> group are due to
Unpredictable encodings of a PLD (i.e., preload data) instruction, which behave
as a NOP in Fast Model but generate an illegal instruction exception in QEMU.

5.3 Demonstration with Real Smartphones and the SDK Emulator

In this section, we address our second research question on evaluating the effec-
tiveness of the divergences found by Proteus for real-world emulation detection.
To tackle this objective, we evaluate the divergences described in Sect. 5.2 on a
physical mobile platform and Android emulator. We use Nexus 5 (ARMv7) and
Nexus 6P (ARMv8) smartphones as our real hardware test-beds and use the
full-system emulator from the Android SDK. We choose the SDK emulator as it
has been a popular base for Android dynamic analysis frameworks [23,28,30].
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Evaluating Unsanitized Undefined Encodings: We use the detection bina-
ries generated by Proteus to evaluate the Undefined instructions that are
incompletely sanitized in QEMU (i.e., <und, !SIGILL> group). These cases are
expected to generate an illegal instruction exception only on a real CPU.

We find that the SDK’s copy of QEMU does not incorporate the FPA11
floating point co-processor emulation which is supported in our version of QEMU
and accessed by the instructions that use co-processors 1 and 2. Thus, these
instructions are Undefined in SDK emulator as well and we cannot successfully
distinguish the emulator from the real hardware. As discussed in Sect. 5.1, FPA11
instructions account for 87% of the cases in <und, !SIGILL> group. However,
we can successfully fingerprint the SDK emulator using all the other divergent
Undefined instructions. Specifically, all the encodings described in Table 2 can
deterministically distinguish between SDK emulator and Nexus 5. The detector
programs (Sect. 4.2) simply register a set of signal handlers and detect the SDK
emulator if the program does not receive SIGILL upon executing the divergent
Undefined instruction.

1 /* Put some known data into memory */
2 int *ptr = calloc(1,sizeof(int));
3 ptr [0] = 0x12345678;
4 asm("mov r8 ,%0" : : "r"(ptr));
5
6 /* Read ptr [0] with CPSR.E set to 1 */
7 asm("msr CPSR_x , #0x200\n\t");
8 asm("ldr r4 ,[r8]\n\t");
9 asm("msr CPSR_x , #0x000\n\t");

10
11 asm("mov %0, r4" : "=r"(val) : : );
12 printf("0x%08X\n", val);

Listing 1.2. PoC for emulator de-
tection by flipping endianness bit.

13 /* Put some known data into memory */
14 int *ptr = calloc(1,sizeof(int));
15 ptr[0] = 0x12345678;
16
17 // Shift address to a non -word boundary
18 ptr = (int*)((char*)ptr + 0x1);
19
20 //Try to read from misaligned address
21 asm("mov r3 ,%0" : : "r"(ptr));
22 asm("LDM r3 ,{%0}": "=r"(val) : : );
23
24 printf("0x%08X\n", val);

Listing 1.3. PoC for emulator de-
tection by misaligned memory read.

Evaluating Missing Alignment Checks and Endianness Support: We
also show that we can successfully detect the SDK emulator by leveraging the
ignored endianness bit updates as well as the missing memory address align-
ment checks. Listing 1.2 provides a proof-of-concept (PoC) code sample that
fingerprints emulation by flipping the endianness bit in the CPU (i.e., CPSR.E)
and performing a load operation on a known data value to determine whether
the endianness has been changed. Executing this code snippet on a real hard-
ware (i.e., Nexus 5 in our case) reads the array value as 0x78563412 instead of
0x12345678 as the CPSR.E bit is set to switch from little-endian to big-endian
operation for data accesses. However, since the CPSR.E bit update is ignored in
QEMU, the LDR instruction reads the array element into R4 as 0x12345678 on
the SDK emulator. Thus, a malware can easily fingerprint emulation by sim-
ply checking the value of target register (i.e., R4 in this example). Similarly,
Listing 1.3 illustrates how the missing alignments checks in QEMU can be lever-
aged to fingerprint emulation. We shift the word-aligned ptr pointer by one
byte to create a misaligned reference address. Reading from this misaligned
pointer with an LDM (i.e., load multiple) instruction causes a bus error (program
receives SIGBUS) on a real hardware while it succesfully reads the high-order part
(0x123456) of the target address on the SDK emulator. Thus, a malware can
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simply determine emulation depending on whether a SIGBUS signal is received
(i.e., on a real system) upon intentionally causing a misaligned memory access.

Evaluation on a ARMv8 CPU: The 64-bit ARMv8 architecture, which is
used in recent smartphones, is compatible with ARMv7. Thus, the CPU semantic
attacks we demonstrate in this work also apply to devices powered with ARMv8
CPUs (e.g., Nexus 6P). We evaluated PoC detectors for each root cause we
discovered (i.e., Table 2, Listings 1.2 and 1.3) on a Nexus 6P smartphone and
successfully distinguished this device from the SDK emulator as well.

5.4 Improving the Fidelity of QEMU

With the capabilities of Proteus for identifying and classifying divergences in
instruction-level behavior, in this section, we show the feasibility of eliminating
the sources of discrepancies to improve QEMU’s fidelity.

Fig. 5. Overhead evaluation of
fidelity enhancements.

We have modified the QEMU source code of
the SDK emulator to eliminate the top 3 detec-
tion methods in Table 2 based on incomplete san-
itization of opcodes for Undefined encodings.
Specifically, based on the ARM ISA specification
[4], we fixed the decoding logic of QEMU to ver-
ify all opcode fields for these 3 cases and trigger
an illegal instruction exception for the Undefined
encodings.

These fixes eliminated 1190 divergent cases
in Table 2. Using various CPU benchmarks from
MiBench suite [16], in Fig. 5, we verified that the
minimal extra code needed to perform additional opcode checks does not intro-
duce any measurable performance overhead. We acknowledge, however, that
addressing the alignment check and endianness support in QEMU will require
more comprehensive changes than the missing opcode checks for Undefined
encodings.

6 Discussion and Limitations

Countermeasures: One possible defense against the CPU semantic attacks
demonstrated in this work is to, as evaluated in Sect. 5.4, fix the root causes of
instruction-level discrepancies in QEMU. We believe enhancing the fidelity of
QEMU is crucial considering the critical role of emulators for Android malware
analysis and the growing number of malicious apps that seek to leverage evasion
tactics. As a first step towards this objective, we are disclosing our root cause
findings and, in fact, have already shared a patch with the QEMU’s maintainers.

As Proteus enumerates a set of divergent instructions, similar to prior work
that inspects x86 binaries to detect evasion [13], we can scan Android apps for
the presence of divergent instructions. Such analysis can be adopted by malware
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analyzers (e.g., Google’s Bouncer [23]) to discover evasive malware that leverages
these detection heuristics and prevent them from infecting the Android users.

Another potential countermeasure against the evasive malware that leverages
low-level CPU discrepancies is to use real hardware for dynamic analysis instead
of emulators [22]. Such a fundamentally different approach can eliminate CPU-
level discrepancies. However, practical limitations such as cost, scalability and
maintenance inhibits wide-spread adoption of such approaches. In addition, the
instrumentation required for analyzing applications on physical devices intro-
duces artifacts itself which allows for fingerprinting [27]. Thus, malware analysis
systems for Android will continue to rely on emulators [23,28,30].

Limitations: Proteus uncovers several classes of observable artifacts in ARM
CPU implementations between emulator and real devices. However, there could
be other instruction-level discrepancies in current Android emulators that our
system could not identify as our scope in this work was limited in several direc-
tions. This section discusses these limitations and describes the open-problems.

We demonstrated the capabilities of Proteus on the ARMv7 architecture
and for the instructions in ARM mode. Recent Android devices also use the
latest 64-bit ARMv8 variant of the ISA. Since ARMv8 provides compatibility
with ARMv7, as evaluated in Sect. 5.3, the discrepancies we have discovered in
this work also apply to ARMv8 CPUs. Discovering ARMv8-specific discrepancies
using Proteus simply requires acquiring a Fast Model for an ARMv8 CPU (e.g.,
Cortex-A53) and repeating the experiments. Our present work did not explore
instructions executing in Thumb mode which provides improved code density
via 16-bit instructions with limited functionality. Finally, this work focuses on
the ARM registers and did not explore potential discrepancies in the extension
registers used by VFP/SIMD instructions. Expanding our system to include
Thumb instructions and extension registers is part of our immediate future work.

Our present study also does not fully address data-dependent divergences
(e.g., depending on the input values from registers or memory). Such limitation
is common to fuzzing approaches as exhaustively exploring all possible inputs
is computationally infeasible. One approach to improve Proteus in this regard
would be to repeat the same test cases with several randomized inputs as well
as corner cases (e.g., min/max values) as in prior work [21,27].

As discussed in Sects. 5.2 and 5.3, some of the divergences found by Proteus
are due to Unpredictable instructions and do not correspond to an implemen-
tation flaw. This is particularly the case as the ARMv7 specification written
in SML [15], which we used to check Unpredictable instructions, does not
cover all Unpredictable instruction encodings. A significant contribution of our
analysis is that we discovered deterministic CPU-level discrepancies even in the
presence of some Unpredictable instructions in our test cases. Recently, ARM
has released an official machine readable ISA specification written in a domain-
specific language named ASL [5]. Unfortunately, the lack of official documen-
tation and tools to work with ASL prevents us from relying on this resource.
However, we find ASL specifications a promising future solution for enumerating
Unpredictable encodings and improving our overall testing methodology.
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7 Related Work

This sections overviews prior work on discovering emulation detection methods
and explains how Proteus distinguishes from or complements them. We also
discuss existing defense approaches against evasive malware.

Finding Discrepancies of Emulation Environments: Jing et al. [17] iden-
tify a large number of detection heuristics based on the differences in file sys-
tem entries and return values of Android API calls. For instance, presence of
“/proc/sys/net/ipv4/tcp_syncookies” file or a False return value from the
“isTetheringSupported()” API implies emulation. Such discrepancies can be
easily concealed by editing Android’s system images and API implementations
to fake real device view [12,19]. Petsas et al. detect QEMU-based emulation by
observing the side effects of caching and scheduling on QEMU [25]. Other work
leverages performance side channel due to low graphics performance on emula-
tors to fingerprint emulation [29]. These techniques, however, have practical lim-
itations as they require many repeated trial and observations which increases the
detection risk of malware. Our work systematically uncovers observable differ-
ences in instruction semantics, which achieve deterministic emulation detection
through execution of a single CPU instruction.

Similar to our approach, other works also aim at discovering discrepancies
of emulators at instruction granularity. Various techniques [21,24] execute ran-
domized instructions on emulator and real hardware to identify the discrepancies
of x86 emulators. To ensure coverage of a wide set of instructions, other work
[27] carefully constructs tests cases with unique instructions based on manual
analysis of the x86 ISA manual while our technique is fully automated. In addi-
tion, the analysis and findings of these studies are limited to x86 instruction
set only while the vast majority of mobile devices are powered by ARM CPUs.
In addition, these studies classify divergences based on instructions (e.g., using
mnemonic, opcodes) which oversees the fact that even different instructions (e.g.,
LDM and STM) can diverge due to the same root cause (e.g., missing alignment
check). Our study points to the unique root causes in the implementation of
CPU emulators. Thus, as we show in Sect. 5.4, our findings are readily use-
ful for improving the fidelity of QEMU. Finally, as reliance on physical CPUs
practically limits the number of test cases (e.g., instructions, register/memory
operands, system register settings), we propose a novel scalable system which
uses accurate functional models of ARM CPUs (i.e., Fast Models).

Martingoni et al. [20] used symbolic execution traces from a high-fidelity
emulator to construct test cases that would achieve high coverage while testing
a low-fidelity emulator. Unavailability of such high-fidelity emulator for Android,
however, limits the applicability of this technique for our use.

Defense Against Evasive Malware: Several work proposes to detect diver-
gent behavior in malware as a defense mechanism. Balzorotti et al. [11] detect
divergent behavior due to instruction semantics by replaying applications on
emulators with the system call sequences gathered from real devices and compar-
ing the runtime behavior. Lindorfer et al. [18] propose a more generic methodol-
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ogy for detecting evasive malware based on the similarity of execution behaviors
collected from a set of virtual machines. These approaches do not systematically
expose potential causes of divergences that a future malware can use. Our work
addresses the problem of proactively finding these instruction-level discrepancies
and opens the possibility of pre-emptively fixing them.

Specifically for Android, other works [12,19] systematically remove observ-
able differences from API calls, file system and properties of emulator devices
and demonstrate resistance against evasion. Such approaches, however, require
enumeration of root causes of discrepancies. Our Proteus system aids these
approaches by enumerating the divergent cases between emulator and real CPUs.

8 Conclusion

Scalable dynamic analysis of Android malware relies on emulators. Due to pres-
ence of observable discrepancies between emulated and real systems, however, a
malware can detect emulation-based analysis and alter behavior to evade detec-
tion. Restoring the effectiveness of Android malware analysis requires systematic
approaches to proactively identify potential detection tactics that can be used by
malicious authors. This work presented the first systematic study of differences in
instruction-level behavior of emulated and real ARM CPUs that power the vast
majority of Android devices. We presented the Proteus system for large-scale
exploration of CPU semantic attacks against Android emulators. Proteus auto-
matically analyzed detailed instruction-level traces collected from QEMU and
accurate software models of ARM CPUs and revealed several major root causes
for instruction-level discrepancies in QEMU. We demonstrated the feasibility of
enhancing the fidelity of QEMU by fixing the root causes of divergences without
any performance impact. We are disclosing our findings and submitted patches to
QEMU as a step towards improving QEMU’s resiliency against evasive malware.
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Abstract. A Webview embeds a fully-fledged browser in a mobile appli-
cation and allows that application to expose a custom interface to
JavaScript code. This is a popular technique to build so-called hybrid
applications, but it circumvents the usual security model of the browser:
any malicious JavaScript code injected into the Webview gains access to
the custom interface and can use it to manipulate the device or exfiltrate
sensitive data. In this paper, we present an approach to systematically
evaluate the possible impact of code injection attacks against Webviews
using static information flow analysis. Our key idea is that we can make
reasoning about JavaScript semantics unnecessary by instrumenting the
application with a model of possible attacker behavior—the BabelView.
We evaluate our approach on 25,000 apps from various Android mar-
ketplaces, finding 10,808 potential vulnerabilities in 4,997 apps. Taken
together, the apps reported as problematic have over 3 billion installa-
tions worldwide. We manually validate a random sample of 50 apps and
estimate that our fully automated analysis achieves a precision of 81%
at a recall of 89%.

Keywords: Webview · Javascript interface · Injection
Static analysis

1 Introduction

The integration of web technologies in mobile applications enables rapid cross-
platform development and provides a uniform user experience across devices.
Web content is usually rendered by a Webview, a user interface component with
an embedded browser engine (WebView in Android, UIWebView in iOS). Webviews
are widely used: in 2015, about 85% of applications on Google’s Play Store
contained one [17]. Cross-platform frameworks such as Apache Cordova, which
allow apps to be written entirely in HTML and JavaScript, have contributed to
this high rate of adoption and given rise to the notion of hybrid applications.
Even otherwise native applications often embed Webviews for displaying login
screens or additional web content.
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Unfortunately, Webviews bring new security threats [15–17,24]. While the
Android Webview uses WebKit to render the page, the security model can be
modified by app developers. Whereas standalone browsers enforce strong iso-
lation, Webviews can intentionally poke holes in the browser sandbox to pro-
vide access to app- and device-specific features via a JavaScript interface. For
instance, a hybrid banking application could provide access to account details
when loading the bank’s website in a Webview, or it could relay access to contacts
to fill in payee details.

For assessing the overall security of an application, it is necessary to under-
stand the implications of its JavaScript interface. When designing the interface,
a developer thinks of the functionality required by her own, trusted JavaScript
code executing in the Webview. However, there are several ways that an attacker
can inject malicious JavaScript and access the interface [7,17].

The observation that exposed interfaces can pose a security risk was made in
previous work [4,9]; however, not all interfaces are dangerous or offer meaningful
control to an attacker. The intuition is that flagging up—or even removing from
the marketplace—any applications with an exposed JavaScript interface would
be an excessive measure. By assessing the risk posed by an application, we can
focus attention on the most dangerous cases and provide meaningful feedback
to developers.

We rely on static analysis to evaluate the potential impact of an attack
against Webviews, with respect to the nature of the JavaScript interfaces. Our
key idea is that we can instrument an application with a model of potential
attacker behavior that over-approximates the possible information flow seman-
tics of an attack. In particular, we instrument the target app and replace
Android’s Webview and its descendants with a specially crafted BabelView that
simulates arbitrary interactions with the JavaScript interface. A subsequent
information flow analysis on the instrumented application then yields new flows
made possible by the attacker model, which gives an indication of the potential
impact. Together with an evaluation of the difficulty of mounting an attack, this
can provide an indication of the overall security risk.

Instrumenting the target application allows us to build on existing mature
tools for Android flow analysis. This design makes our approach particularly
robust, which is important on a quickly changing platform such as Android. In
addition, since our instrumentation is over-approximate, we inherit any sound-
ness guarantees offered by the flow analysis used. Independently of us, Yang
et al. [31] developed a related approach to address the same problem, but with
a closed source system relying on a custom static analysis. Our paper makes the
following contributions:

– We introduce BabelView, a novel approach to evaluate the impact of code
injection attacks against Webviews based on information flow analysis of
applications instrumented with an attacker model. BabelView is implemented
using Soot [27] and is available as open source.

– We analyze 25,000 applications from the Google Play Store to evaluate our
approach and survey the current state of Webview security in Android. Our
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analysis reports 10,808 potential vulnerabilities in 4,997 apps, which together
are reported to have more than 3 billion installations. We validate the results
on a random sample of 50 applications and estimate the precision to be 81%
with a recall of 89%, confirming the practical viability of our approach.

In the remainder of the paper, we briefly explain Android WebViews (Sect. 2)
and introduce our approach (Sect. 3) before describing the details of our imple-
mentation (Sect. 4). We evaluate BabelView and report the results of our
Android study (Sect. 5) and discuss limitations (Sect. 6). Finally, we present
related work (Sect. 7) and conclude (Sect. 8).

2 Android WebViews

To provide the necessary context for the remainder of the paper, we first intro-
duce key aspects of Android Webviews. An Android application can instantiate a
Webview by calling its constructor or by declaring it in the Activity XML layout,
from where the framework will create it automatically. The specifics of how the
app interacts with the Webview object depend on which approach it follows; in
either case, a developer can extend Android’s WebView class to override methods
and customize its behavior.

The WebView class offers mechanisms for interaction between the app and
the web content in both directions. Java code can execute arbitrary JavaScript
code in the Webview by passing a URL with the “javascript:” pseudo-
protocol to the loadUrl method of a Webview instance. Any code passed in
this way is executed in the context of the current page, just like if it were
typed into a standalone browser’s address bar. For the other direction, and
to let JavaScript code in the Webview call Java methods, the Webview allows
to create custom interfaces. Any methods of an object (the interface object)
passed to the WebView.addJavascriptInterface method that are tagged with the
@JavascriptInterface annotation1 (the interface methods) are exported to the
global JavaScript namespace in the Webview. For instance, the following exam-
ple makes a single Java method available to JavaScript:
LocationUtils lUtils = new LocationUtils();

wView.addJavascriptInterface(lUtils, "JSlUtils");

public class LocationUtils {

@JavascriptInterface

public String getLocation() {

do_something();

}

}

1 The @JavascriptInterface annotation was introduced in API level 17 to address a
security vulnerability that allowed attackers to execute arbitrary code via the Java
reflection API [19].
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Here, LocationUtils is bound to a global JavaScript object JSlUtils in
the Webview wView. JavaScript code can access the annotated Java method
getLocation() by calling JSlUtils.getLocation().

The Webview’s JavaScript interface mechanism enforces a policy of which
Java methods are available to call from the JavaScript context. Developers of
hybrid apps are left to decide which functionality to expose in an interface that
is more security-critical than it appears. It is easy for a developer to erroneously
assume the JavaScript interface to be a trusted internal interface, shared only
between the Java and JavaScript portions of the same app. In reality, it is
more akin to a public API, considering the relative ease with which malicious
JavaScript code can make its way into a Webview (see Sect. 3.1). Therefore, care
must be taken to restrict the interface as much as possible and to secure the
delivery of web content into the Webview. In this work we provide a way for
developers and app store maintainers to detect applications with insecure inter-
faces susceptible to abuse; our study in Sect. 5 confirms that this is a widespread
phenomenon.

3 Overview

We now introduce our approach by laying out the attacker model (Sect. 3.1),
describing our instrumentation-based model for information flow analysis
(Sect. 3.2), and discussing how the instrumentation preserves the application
semantics (Sect. 3.3).

3.1 Attacker Model

Our overall goal is to identify high-impact vulnerabilities in Android applica-
tions. Our insight is that injection vulnerabilities are difficult to avoid with
current mainstream web technologies, and that their presence does not justify
blocking an app from being distributed to users. Indeed, any standalone browser
that allows loading content via insecure HTTP has this vulnerability (while call-
ing this a “vulnerability” may be controversial, it clearly has security implica-
tions and has led to an increasing adoption of HTTPS by default). The ubiquity
of advertisement libraries in Android apps further increases the likelihood of
foreign JavaScript code gaining access to JavaScript interfaces. Following this
insight, we aim to pinpoint the risk of using a Webview that is embedded in an
app. To do this, we assess the degrees of freedom an attacker gains from injecting
code into a Webview with a JavaScript interface, which determines the potential
impact of an injection attack.

Consequently, the attacker model for our analysis consists of arbitrary code
injection into the HTML page or referenced scripts loaded in the Webview. In our
evaluation, we actively try to inject JavaScript into the Webview—e.g., as man in
the middle (see Sect. 5.5). We note, however, that other channels are available to
manipulate the code loaded into a Webview, including malicious advertisements
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Algorithm 1. Information flow attacker model
1: procedure Attacker
2: while true do
3: choose iface ∈ JS-interfaces
4: result ← iface(source(), source(), . . . )
5: sink(result)

or site-specific cross-site-scripting attacks [4,9,10]. To abuse the JavaScript inter-
face, the attacker then only requires the names of the interface methods, which
can be obtained through reverse-engineering. Note that even a man in the middle
becomes more powerful with access to the JavaScript interface: the interface can
allow the attacker to manipulate and retrieve application and device data that
would not normally be visible to the adversary. For instance, consider a remote
access application with an interface method getProperty(key), which retrieves
the value mapped to a key in the application’s properties. Without accessing the
interface, an attacker may only ever observe calls to getProperty with, say, the
keys "favorites" and "compression", but the attacker would be free to also use
the function to retrieve the value for the key "privateKey".

3.2 Instrumenting for Information Flow

Our approach is based on static information flow (or taint) analysis. We aim to
find potentially dangerous information flows from injected JavaScript into sensi-
tive parts of the Java-based app and vice-versa. At first glance, this appears
to require expensive cross-language static analysis, as recently proposed for
hybrid apps [5,13]. However, we can avoid analyzing JavaScript code because our
attacker model assumes that the JavaScript code is controlled by the attacker.
Therefore, we want to model the actions performed by any possible JavaScript
code, and not that of developer-provided code that is supposed to execute in the
Webview.

To this end, we perform information flow analysis on the application instru-
mented with a representation of the attacker model in Java, such that the result
is an over-approximation of all possible actions of the attacker (we discuss alter-
native solutions in Sect. 6). We replace the Android WebView class (and custom
subclasses) with a BabelView, a Webview that simulates an attacker specific to
the app’s JavaScript interfaces. We then apply a flow-, field-, and object-sensitive
taint analysis [2] to detect information flows that read or write potentially sen-
sitive information as a result of an injection attack.

The BabelView provides tainted input sources to all possible sequences of
interface methods and connects their return values to sinks, as shown in Algo-
rithm1. Here, source() and sink() are stubs that refer to sources and sinks of
the underlying taint analysis. The non-deterministic enumeration of sequences of
interface method invocations is necessary since we employ a flow-sensitive taint
analysis. This way, our model also covers situations where the information flow
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depends on a specific ordering of methods; for instance, consider the following
example:
String id;

@JavascriptInterface

public void initialize() { this.id = IMEI(); }

@JavascriptInterface

public String getId() { return this.id; }

Here, a call to initialize (line 4) must precede any invocation of getId (line 8) to
cause a leak of sensitive information (the IMEI). The flow-sensitive analysis cor-
rectly distinguishes different orders of invocation, which helps to reduce false pos-
itives. In the BabelView, the loop in Algorithm1 coupled with non-deterministic
choice forces the analysis to join abstract states and over-approximate the result
of all possible invocation orders.

Figure 1 illustrates our approach. We annotate certain methods in the
Android API as sources and sinks (see Sect. 4.4), which may be accessed by
methods in the JavaScript interface. The BabelView includes both a source pass-
ing data into the interface methods and a sink receiving their return values to
allow detecting flows both from and to JavaScript. The source corresponds to
any data injected by the attacker, and the sink to any method an attacker could
use to exfiltrate information, e.g., a simple web request.

Fig. 1. BabelView models flows between the attacker and sensitive sources and sinks
in the Android API that cross the JavaScript interface.

3.3 Preserving Semantics

Our instrumentation eliminates the requirement to perform a cross-language
taint analysis and moves all reasoning into the Java domain. However, we must
make sure that, apart from the attacker model, the instrumentation preserves
the original application’s information flow semantics. In particular, we need to
integrate the execution of the attacker model into the model of Android’s appli-
cation life cycle used as the basis of the taint analysis [2]. We solve this by
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overriding the methods used to load web content into the Webview (such as
loadUrl() and loadData()) and modifying them to also call our attacker model
(Algorithm 1). This is the earliest point at which the Webview can schedule the
execution of any injected JavaScript code. The BabelView thus acts as a proxy
simulating the effects of malicious JavaScript injected into loaded web content.

As the BabelView interacts only with the JavaScript interface methods, it
does not affect the application’s static information flow semantics in any other
way than an actual JavaScript injection would. Obviously, this is not necessarily
true for other semantics: for example, the instrumented application would likely
crash if it were executed on an emulator or real device.

4 BabelView

In this section, we explain the different phases of our analysis. Figure 2 provides
a high-level overview: in Phase 1 (Sect. 4.1), we perform a static analysis to
retrieve all interface objects and methods, and associate them to the respective
Webviews. In Phase 2 (Sect. 4.2), we generate the BabelView, and, in Phase 3
(Sect. 4.3), we instrument the target application with it. In Phase 4 (Sect. 4.4),
we run the taint flow analysis on the resulting applications and finally, in Phase
5 (Sect. 4.5), we analyze the results for flows involving the BabelView.

We implemented our static analysis and instrumentation using the Soot
framework [27]; our information flow analysis relies on FlowDroid [2]. Overall,
our system adds about 6,000 LoC to both platforms.

Fig. 2. Phases of our analysis.

4.1 Phase 1: Interface Analysis

As the first step of our analysis, we statically analyze the target application to
gather information about its Webviews and JavaScript interfaces. The goal of
this stage is to compute a mapping from Webview classes to classes of interface
objects that may be added to them at any point during execution of the app.

Using Soot, we can generate the application call graph and precisely resolve
callers and callees. We iterate through all classes and methods, identifying all
calls to addJavascriptInterface, from where we then extract Webviews that will
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hold interface objects. We make sure to treat inheritance and polymorphism
soundly in this stage, e.g., where parent classes are used in variable declarations.
We illustrate our approach to handle this on the following code example:
class FrameworkBridge {

@JavascriptInterface

public int foo() {...}

}

class MyBridge extends FrameworkBridge {

@JavascriptInterface

public int bar() {...}

}

class MyWebView extends WebView {...}

void initInterface(WebView aWebView, FrameworkBridge aBridge) {

aWebView.addJavascriptInterface(aBridge, "Android");

}

...

MyWebView mWebView = new MyWebView();

initInterface(mWebView, new MyBridge());

...

The code is adding the interface MyBridge to mWebView, an instance of MyWebView.
The methodinitInterface is a wrapper (say, from a hybrid app framework) that
contains the actual call to addJavascriptInterface. When processing the call, we
extract the types of aWebView and aBridge from their parameter declarations. For
the Webview, we must process all descendants of its declared class to include
the types of all possible instances. For aWebView, this means we must instrument
all descendants (including anonymous classes) of WebView, i.e., WebView and
MyWebView.

Similarly, we are interested in the type ofaBridge. Again, we must iterate over
all subclasses of its declared typeFrameworkBridge to ensure capturing the bridge
added at runtime. However, sinceaddJavascriptInterface is of the unconstrained
type Object, this could potentially include all classes. Therefore, we restrict pro-
cessing to just those subclasses that contain at least one @JavascriptInterface

annotation. As a result, we obtain a superset of all interface objects that can be
added by this method, i.e., FrameworkBridge and MyBridge.

Continuing the example, we now have the mapping from Webview classes to
classes of interface objects as {WebView �→ {FrameworkBridge, MyBridge}, MyWebView
�→ FrameworkBridge, MyBridge}}. Any additional addJavascriptInterface occur-
rences will be processed analogously and the results added to the set. Because the
analysis in this phase is conservative in collecting compatible types, the result is
a sound over-approximation of the mapping of Webviews to JavaScript interfaces
that can occur at runtime (modulo inaccuracies from dynamic code, see Sect. 6).
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4.2 Phase 2: Generating the BabelView

We generate a BabelView class for each WebView in the mapping. Each BabelView

defines a subclass of its WebView (we remove the parent’s final modifier if neces-
sary) and overrides all of its parent’s constructors so it can be used as a drop-in
replacement. We make the associated interface objects explicitly available in
each BabelView. To this end, we override the addJavascriptInterface method to
store the interface objects passed to it in instance fields of the BabelView class.

To implement the attacker model, the BabelView needs to override all methods
that load external resources and could thus be susceptible to JavaScript injection.
In particular, we override loadUrl, postUrl, loadData, and loadDataWithBaseURL.
We automatically generate these methods as a call to their super implemen-
tation followed by a Java implementation of the attacker model, Algorithm1.
Finally, the BabelView is equipped with two stub methods, leak and taintSource,
representing a tainted sink and a tainted input, respectively.

4.3 Phase 3: Instrumentation

In the next phase, we instrument the application to replace its Webviews with
our generated BabelView instances. The instrumentation is case-dependent on
how the Webview is instantiated (see Sect. 2): if it is created via an ordinary
constructor call, that constructor is replaced with the corresponding constructor
of its BabelView class. If the Webview is created via the Activity XML layout,
our instrumentation searches for calls to findViewById, which the app uses to
obtain the Webview instance (e.g., in order to add the JavaScript interface to
it). To identify the calls to findViewById returning a Webview, our instrumenter
identifies explicit casts to a Webview class. Because we do not parse the XML
layout itself, we arbitrarily choose one of the constructors of the BabelView.
While this could potentially be a source of false positives or negatives, it would
require a highly specific and unconventional design of the Webview class.

4.4 Phase 4: Information Flow Analysis

We perform a static information flow analysis on the instrumented application to
identify information flows involving the attacker model. Since our approach relies
on instrumenting the application under analysis, it is agnostic to the specific flow
analysis. We decided to rely on the open source implementation of FlowDroid [2],
inheriting its context-, flow-, field-, and object-sensitivity, as well as its life cycle-
awareness.

Sources and sinks are selected corresponding to sensitive information sources
and device functions, modified from the set provided by SuSi [22]. We further
include the sources and sinks used in the BabelView classes.

The information flow analysis abstracts the semantics of Android framework
methods. FlowDroid uses a simple modeling system (the TaintWrapper), where
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any method can either (i) be a source, (ii) be a sink, (iii) taint its object if any
argument is tainted and return a tainted value if its object is tainted, (iv) clear
taint from its object, (v) ignore any taint in its arguments or its object. We
extended the TaintWrapper with several models that were relevant for the types
of vulnerabilities we were interested in, e.g., to precisely capture the creation of
Intents from tainted URIs.

Finally, information flows indicating that sensitive functionality is exposed
via the JavaScript interface are identified, triggering an alarm showing a poten-
tial vulnerability. For instance, consider an Intent object initialized to perform
phone calls. A flow from source to putExtra will taint the Intent; if it is then
passed as an input to startActivity, an attacker can perform calls on behalf of
the user.

4.5 Phase 5: Analysis Refinement

Preferences. Taint analysis cannot distinguish between individual key-value
pairs in a map. Preferences are a commonly used map type in Android apps that
often store sensitive information as a key-value pair. After the information flow
analysis, we refine our results by statically deriving values of keys for access to
preferences. Our definition of sources and sinks allows to identify both flows from
and to the Preferences. Given two flows, one inserting and the other retrieving
values from Preferences, we are interested in understanding whether (i) the
value is of the same type and (ii) the access key is the same. If these conditions
are met, we have identified a potential leak via Preferences. To determine the
key values, we modeled StringBuilder and implemented an intra-procedural
constant propagation and folding for strings. Finally, if an interface method
allows web content to interact with a preferences object, BabelView reports all
keys used to access it, since preferences can be used to store sensitive values.
This allows to inspect flows to or from preferences entries, even if these values
are not dependent on a specific source in the Android API. We match key names
against a list of suspicious entries, which can highlight potential leaks of sensitive
app-specific information (see Sect. 5.7). In the same manner, we also highlight
suspiciously named interface methods.

Intents. Flow analysis can detect situations where Intent creation depends on
tainted input. However, it tells nothing about the type of the Intent created,
as this depends on specific parameters, e.g., those provided to its setAction

method. For interpreting results, it is important, however, to know the action
of an Intent that can be controlled by an attacker. For any flow that reaches
the startActivity sink, we perform an inter-procedural backward dependency
analysis to the point of the initialization of the Intent. If the Intent action is not
set within the constructor, we perform a forward analysis from the constructor
to find calls to setAction on the Intent object. The analysis may fail where
actions are defined within intent filters (XML definitions) or through other built-
in methods. To increase precision in our inter-procedural analysis, we ensure that
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the call-stack is consistent with an invocation through the interface method; i.e.,
the interface method that triggered the flow must be reachable.

5 Evaluation

We now present our evaluation of BabelView and the results of our study
of vulnerabilities in Android applications. Below, we explain our methodology
(Sect. 5.1) and ask the following research questions to evaluate our approach:

1. Can BabelView successfully process real-world applications? We
conduct a study on a randomly selected set of applications from the Andro-
Zoo [1] dataset and provide a breakdown of all results (Sect. 5.2).

2. Does BabelView expose real vulnerabilities? We discuss some of the
vulnerable apps in more detail to understand what an attacker can achieve
under what conditions (Sect. 5.7).

3. What are the precision and recall of our analysis? We manually
validate a random sample of apps, estimating overall precision and recall
(Sect. 5.4).

We also shed light on the current state of Webview security on Android with the
following questions:

4. How frequent are different types of alarms? We report results per
alarm, which provides an insight into the prevalence of potential vulnerabili-
ties (Sect. 5.3).

5. Are there types of potential vulnerabilities that are likely to occur
in combination? We compute the correlation between alarms raised by our
analysis and analyze our findings (Sect. 5.6).

Unfortunately, we were unable to conduct a direct comparison with BridgeScope,
the work most closely related to ours. Despite helpful communication, the
authors were ultimately unable to share neither their experimental data nor
their implementation with us. In the spirit of open data, we make all our code
and data available2.

5.1 Methodology

We obtained our dataset from AndroZoo [1], using the list of applications avail-
able on July 22nd, 2016, when it contained about 4.4 million samples. We down-
loaded a random subset of 209,069 apps, and then filtered our dataset for applica-
tions containing a Webview, a call to addJavascriptInterface, and granting per-
mission to access the Internet. As a result, we obtained 62,674 total applications.
Finally, from the obtained sample, we randomly extracted 25,000 applications
found in the Google Play Store, which we used for our analysis.

2 https://github.com/ClaudioRizzo/BabelView.

https://github.com/ClaudioRizzo/BabelView
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We ran BabelView on five servers: one 32-core with 250 GiB of RAM and
four 16-core with 125 GiB of RAM. Each application took on average 180 s to
complete. The high precision of FlowDroid’s information flow analysis can lead
to long processing time in the order of hours. Therefore, we set a time limit of
15 min, which was a sweet spot in the sense that apps taking longer would often
go over an hour. A positive effect of our instrumentation-based approach is that
we benefit from improvements in the underlining flow analysis. Indeed, over the
duration of this project, we saw a noticeable accuracy enhancement from the
constant improvements on FlowDroid.

Each application underwent three main phases: (i) BabelView instrumen-
tation, (ii) FlowDroid analysis on the instrumented app and (iii) analysis of
the resulting flows to identify suspect flows and raise alarms. On the reported
applications, we performed a feasibility analysis. We searched the app for plain
http:// URLs and assess the resilience of the app against injection attacks.

5.2 Applicability

Running our tool chain on the 25,000 target applications resulted in 1,286 general
errors and 3,837 flow analysis timeouts. The remaining 19,877 apps were suc-
cessfully analyzed and we obtained the following breakdown: 832 applications
had no interface objects at all or no interface methods in case the target API
was version 17 or above; 14,048 applications had no flows involving our attacker
model; and 4,997 were reported as dangerous, i.e., containing flows due to the
attacker behavior. This amounts to a rate of 26.2%. We investigated the reasons
for the crashes, and most happened either due to unexpected byte code that Soot
fails to handle or while FlowDroid’s taint analysis was computing callbacks.

Among applications with interface objects, we also considered those targeting
outdated versions of the Android API, since this is still a common occurrence [18,
25,28]. When using Webviews prior to API 17, any app is trivially vulnerable
to an arbitrary code execution disclosed in 20133. Despite targeting an old API
version, if compiled with a newer Android SDK, these applications can still
use the @JavascriptInterface annotation. While the annotation itself does not
provide extra security, these apps may target newer APIs in future releases [24].

5.3 Alarms Triggered

We successfully used BabelView to examine 19,877 applications. We found that
4,997 of them triggered an alarm (i.e., our analysis reported a potential vul-
nerability), meaning that the interface methods could be exploited by foreign
JavaScript from injection or advertisement. Table 1 shows a breakdown of all
the alarms we observed in our analysis. Among the most common alarms, we
observed the possibility of writing to the File System (Write File), capability to
start new applications (Start App), violation of the Same Origin Policy (Frame

3 https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-
code-execution/.

https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/
https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/
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Confusion) and the possibility of exploiting the old reflection attack due to
Android API prior to v17.

Table 1. Number of applications per alarm category. Pref. denotes indirect leaks via
a Preference object; TM: Telephony Manager, Conn.: Connectivity.

Alarm #Apps Alarm #Apps Alarm #Apps

Open File 385 Write File 1, 444 Read File 593

TM Leak 39 Pref. TM Leak 4 Pref. Conn. Leak 4

SQL-lite Leak 136 SQL-lite Query 438 Pref. SQL-lite Leak 11

GPS Leak 43 Pref. GPS Leak 1 Directly Send SMS 6

Direct Calls 19 Call Intent 314 Email/SMS Intent 778

Take Picture 7 Download Photo 317 Play Video/Audio 378

Edit Calendar 357 Post to Social 293 Start App 1, 321

API prior to 17 1, 039 Unknown Intent 1, 107 Frame Confusion 1, 039

Fetch Class 85 Fetch Constructor 0 Constructor init 13

Fetch Method 85 Method Parameter 622

Writing File capabilities show the developers’ need for storing app-external
data usually coming from an app-dedicated server. We also observed that many
applications implement advertising libraries which need to open a new applica-
tion, usually Google Play Store, to allow the user to download or visualize some
information. Unfortunately, the package name of the application to open is given
as input to an interface method, enabling a possible attacker to control which
app to start. Same-Origin-Policy violations are also very common: this is the
case when a loadUrl is invoked with input from the interface methods, control-
ling what is loaded in to a frame. As described by Luo et al. [15], JavaScript
executing in an iframe runs in the context of the main frame, violating the SOP.

Many applications still target an API version prior to 17 [18,25,28], often
due to backwards compatibility or simply due to confusion in declaring the SDK
version. Other alarms involve the possibility to prompt the user with an email
or a text message to send, directly sending an SMS or performing a phone
call; prompting the user with the call dialer; posting content to social network;
interacting with the calendar by creating or editing an event; playing videos or
audio; leaking sensitive information like the device ID or phone numbers (i.e.
TM Leaks), GPS position, SQL information, etc.

Finally, we shed light on the possible use of Java Reflection inside interface
methods. Fetch Class, Fetch Constructor, Constructor init, Fetch Method and
Method Parameter are all signs that an attacker controls input used to execute
methods via Java reflection. Although these are rare situations and often hard to
exploit, they are extremely high reward for an attacker as they can potentially
allow to circumvent the @JavascriptInterface annotation, leading to arbitrary
code execution. We manually analyzed some applications presenting these alarms
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and in some cases an attacker could take control of a method and its parameters,
leading to remote code execution.

5.4 Manual Validation

We used manual validation to estimate the accuracy of our analysis. In par-
ticular we sampled and manually analyzed (i.e., reversed and decompiled) 50
applications. We evaluated two aspects:

1. How accurate is BabelView with respect to each individual alarm it raises?
2. Does BabelView function as an effective alarm system for hybrid apps?

We began checking all types of alarms for each app and we established
whether an alarm was correctly triggered or correctly not triggered. We observed
42 TPs (True Positives), 10 FPs (False Positives), 1,494 TNs (True Negatives)
and 5 FNs (False Negatives). From this, we can compute a precision of 81% and
a recall of 89% for our analysis.

The results obtained are in line with our expectations. Our instrumentation
does not alter the semantics of applications other than adding a model of attack
behavior. Therefore, our precision depends on the underlining flow analysis. How-
ever, more false positives could be introduced due to the object-insensitivity of
our instrumentation—i.e., we distinguish types but not instances of Webviews.
Similarly, a very low false negative rate is common for data flow analysis; how-
ever, FNs are still possible, mainly due to incomplete Android framework.

To evaluate BabelView on a per-app basis, we consider a true positive the
case where an app contains at least one potential vulnerability and at least one
alarm is raised. True negatives and false positives/negatives follow accordingly.
We observed 19 TPs, 2 FPs, 29 TNs, and 0 FNs, which yields a precision of
90% and a recall of 100%. This suggest that BabelView performs well as an
alarm system for potentially dangerous applications. Even if individual alarms
can be false positives, the correlation of dangerous interfaces appears to leads
to highlighted apps being problematic with high probability. The false negatives
that are present when taken per vulnerability disappear when analyzed on a
per-app basis.

5.5 Feasibility Analysis

To better understand the feasibility of exploiting potential vulnerabilities high-
lighted by BabelView, we measured the difficulty of performing an injection
attack. To this end we use a three-step process: (i) we check the application for
TLS misuse using MalloDroid [7]; (ii) we search for hard-coded URLs begin-
ning with http://, suggesting that web content could be loaded via an insecure
channel; and (iii) we actively injected JavaScript code into Webviews.

MalloDroid reported 61.5% of applications using TLS insecurely and 98.7% of
apps were found hard-coding HTTP URLs. In order to actively inject JavaScript,
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Fig. 3. Correlation matrix of alarms. (Color figure online)

we stimulated each reported application with 100 Monkey4 events and actively
intercepted the connection (using Bettercap5), trying to execute a JavaScript
payload. Moreover, we set up our own certificate authority and also tried SSL
strip attacks. The goal of the injection was to determine whether the reported
interface methods were present in the Webview. To this end, we generated
JavaScript code checking for the presence of the interface objects reported by
the BabelView analysis. We were able to inject JavaScript in 1,275 applications
and in 482 cases we confirmed the presence of the vulnerable interface object.

5.6 Correlation of Alarms

We were interested in finding correlations among the alarm categories we identi-
fied. This does not only account for common patterns of functionality, but also
identifies single alarms that taken together could increase the attack capabilities,
e.g., combining opening and writing of a file results in writing of arbitrary files.

We can see in the correlation matrix in Fig. 3 that alarms involving related
functionality tend to be positively correlated (in red). For example, opening and

4 https://developer.android.com/studio/test/monkey.html.
5 https://www.bettercap.org.

https://developer.android.com/studio/test/monkey.html
https://www.bettercap.org
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writing a file; SQL queries and leaks; and operations involving intents such as
call via intent, send email, edit calendar, play video, post to social, and download
pictures. While some correlations are evident, some appear incidental, such as
intent calls and playing of videos. Based on manual inspection (see Sect. 5.7),
we found that these categories of alarms often appear together in apps using
common libraries, e.g., for advertisements.

5.7 Individual Case Studies

We now report individual case studies to illustrate the nature of our findings.

Advertising Libraries. During the evaluation, we discovered an advertising
library, used by 353 of 4,997 applications, which implements a Webview exposing
many sensitive interface methods. In particular, a successful JavaScript injection
would allow an attacker to perform different actions, including downloading/sav-
ing of pictures, sending email or SMS by manipulating Intents, playing audio
or videos on the victim’s phone, opening new applications, creating calendar
events, and posting to social networks. Another library, used by 1,507 applica-
tions, allows an attacker to start new applications on the phone, controlling the
Intent extras provided to the Activity.

Game App. Among our results, we found a game application (“SwingAid Level
up Golf”) that uses several Webviews and JavaScript interfaces leading to dif-
ferent alarms: SQL-lite leaks via preferences, frame confusion, and telephony
manager Leaks. Moreover, we discovered the value loginPwd among preferences
keys accessible from a JavaScript interface. We were able to manually con-
firm all alarms as true positives. Interface methods accessible when creating an
account creation within the game include getAccountEmail, getPhoneNumber, and
getUserPwd. We successfully performed a man-in-the-middle attack and injected
JavaScript to access all three methods. The account e-email and phone number
are accessible immediately upon attempting to create an account. The password
is stored in a local database, cached in the preferences and accessible with the
loginPwd key. When the user visits the account creation page a second time, the
password can be stolen via the interface method.

The underlying problem is twofold and representative for many Webview
vulnerabilities: first, the Webview loads data via an insecure channel, and second,
the JavaScript interface makes sensitive data available (a plaintext password).
Even if the password would otherwise not be sent via the insecure channel, a
JavaScript injection attack is able to retrieve it through the interface and extract
it directly. Since our discovery, all issues have been resolved in a newer version
of the application (version 2.6).
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6 Limitations and Discussion

Avoiding Instrumentation. In principle, we could avoid instrumenting the
application by summarizing interface methods with an interprocedural taint
analysis. However, to achieve the same precision, the analysis would have to be
computationally expensive: on method entry, any reachable field in any reachable
object (not just arguments of the interface method) would have to be treated
as carrying individual taint. On method exit, the effects on all reachable fields
would have to stored, before resolving the effects among all interface method
summaries. Our instrumentation-based approach not only avoids this cost, but
also allows us to factor out flow analysis into a separate tool, a design choice
that improves robustness and maintainability.

Analysis Limitations. Our system, together with the underlying flow analysis,
is subject to common limitations of static analysis and hence can fail to detect
Webviews and interfaces instantiated via native code, reflection, or dynamic
code loading. In principle, this currently allows a developer intent on doing so
to hide sensitive JavaScript APIs. However, we focus on benign software and
vulnerabilities that are honest mistakes rather than planted backdoors. Still, we
note that BabelView would automatically benefit from future flow analyses that
may counteract evasion techniques.

A potential source of false positives is that BabelView does not distinguish
Webview instances of the same type and will conservatively join the JavaScript
interfaces of all instances. Furthermore, our analysis loses precision when report-
ing indirect leaks via Preferences or Bundle. As mentioned in Sect. 4.4, we
connect sensitive flows into the application preferences with flows from the pref-
erences to the instrumented sink method in BabelView. While this is sound and
will conservatively capture any information leaks via preferences, it is not tak-
ing into account any temporal dependencies between storing and retrieving the
value. A different treatment of this would be a potential source of false negatives,
since preferences persist across application restarts.

Attack Feasibility. In our feasibility analysis, we actively try to inject
JavaScript code into a Webview, aiming at identifying whether the reported
interface object is present in the Webview. The presence of the interface object
means that all its interface methods are available to use, including the one
BabelView reported. However, we do not actively invoke these methods and
thus we cannot be sure of their exploitability.

Mitigating Potential Vulnerabilities. To avoid giving potential attackers
control over sensitive data and functionality, developers can follow a set of
design principles. First of all, Webview contents should be exclusively loaded
via a secure channel. Second, as mentioned in the Android developer documen-
tation, Webviews should only load trusted contents. External links have to be
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opened with the default browser. For also protecting against malicious ads or
cross-site-scripting attacks, JavaScript interfaces should offer an absolute min-
imum of functionality and avoid arguments as far as possible. Finally, recent
work also introduced novel mechanisms to enforce policies on hybrid applica-
tions (see Sect. 7.2).

7 Related Work

We now review work on vulnerabilities and attacks against Webview (Sect. 7.1),
discuss related work on policies and access control (Sect. 7.2), and contrast with
work on instrumentation-based modeling (Sect. 7.3).

7.1 Webview: Attacks and Vulnerabilities

Webview vulnerabilities have been widely studied [4,6,15–17,20]. Luo et al. give
a detailed overview of several classes of attacks against Webviews [15], providing
a basis for our work. Neugschwandtner et al. [20] were the first to highlight the
magnitude of the problem. In their analysis, they categorize as vulnerable all
applications implementing JavaScript interfaces and misusing TLS (or not using
it at all). For further precision, they analyzed permissions and discovered that
76% of vulnerable applications requested privacy critical permissions. While this
is a sign of poorly designed applications, the impact of an injection exploit very
much depends on the JavaScript interfaces, motivating the work of this paper.

A step forward towards this was made by Bifocals [6], a static analysis
tool able to identify and evaluate vulnerabilities in Webviews. Bifocals looks
for potential Webview vulnerabilities (using JavaScript interfaces and loading
third party web pages) and then performs an impact analysis on the JavaScript
interfaces. In particular, it analyzes whether these methods reach code requir-
ing security-relevant permissions. However, JavaScript interfaces can pose an
(application-specific) risk without making use of permissions. At the same time,
not all JavaScript interfaces that make use of permissions are dangerous: for
example, an interface method might use the phone’s IMEI to perform an oper-
ation but not return it to the caller.

The means by which malicious code can be injected into the Webview have
been discussed in previous work [9,10]. Having to interact with many forms of
entities, HTML5-based hybrid applications expose a broader surface of attack,
introducing new vectors of injection for cross-site-scripting attacks [10]. While
these attacks require the user to directly visit the malicious page within the
Webview, Web-to-Application injection attacks (W2AI) rely on intent hyper-
links to render the payload simply by clinking a link in the default browser [9].
Both discuss the threat behind JavaScript interfaces, but stop their analysis
at the moment where the malicious payload is loaded, without analyzing the
implication of the attacker executing the JavaScript interfaces.

A large scale study on mobile web applications and their vulnerabilities was
presented by Mutchler et al. [17], but did not study the nature of the exposed
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JavaScript interfaces. Li et al. [14] studied a new category of fishing attacks
termed Cross-App WebView infection. This new type of attacks exploits the
possibility of issuing navigation requests from one app’s Webview to another via
Intent deep linking and other URL schemata. This can trigger a chain of requests
to a set of infected apps.

Most closely related to our work is the concurrently developed
BridgeScope [31], a tool to assess JavaScript interfaces based on a custom static
analysis. Similar to our work, BridgeScope allows to detect potential flows to
and from interface methods. BridgeScope uses a custom flow analysis, whereas
our approach intentionally allows to reuse state-of-art flow analysis tools. While
BridgeScope’s flow analysis performs well on benchmarks, there appears to be
no specific treatment of Map-like objects such as Preferences of Bundle.

In recent work, Yang et al. [29] have combined the information of a deep
static analysis with a selective symbolic execution to actively exploit event han-
dlers in Android hybrid applications. In OSV-Hunter [30], they introduce a new
approach to detect Origin Stripping Vulnerabilities. These type of vulnerabilities
persist when upon invocation of window.postMessage, it is not possible to distin-
guish the identity of the message sender or even safely obtain the source origin.
This is inherently true for Hybrid applications, where developers often rely on
JavaScript interfaces to fill the gap between web and the native platform.

7.2 Webview Access Control

There have been several proposals to bring origin-based access control to Web-
views [8,23,26]. Shehab et al. [23] proposed a framework that modifies Cordova,
enabling developers to build and enforce a page-based plugin access policy. In
this way, depending on the page loaded, it will or will not have the permission
to use exposed Cordova plugins (i.e., JavaScript interfaces).

Georgiev et al. presented NoFrank [8], a system to extend origin-based access
control to local resources outside the web browser. In particular, the application
developer whitelists origins that are then allowed to access device’s resources.
However, once an origin is white-listed, it can access any resource exposed. Jin
et al. [11] propose a fine-granular solution in a system that allows developers to
assign different permissions to different frames in the Webview.

Tuncay et al. [26] increase granularity further in their Draco system. Draco
defines a policy language that developers can use to design access control policies
on different channels, i.e. the interface object, the event handlers and the HTML5
API. Another framework allowing developers to define security policies is Hybrid-
Guard [21]. Differently from Draco, HybridGuard has been entirely developed in
JavaScript, making it platform independent and easy to deploy on different plat-
form and hybrid development framework. Both Draco and HybridGuard could
provide an interesting solution to the problem of securing an interface BabelView
is rising an alarm for, without unduly restricting its functionality.
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7.3 Instrumentation-Based Modeling

Synthesizing code to trigger specific function interfaces is not a new problem
and traces back to generating verification harnesses, e.g., for software model
checking [3,12]. On Android, FlowDroid [2] uses a model that invokes callbacks in
a “dummy main” method, taking into account the life cycle of Android activities.
While the problems share some similarity, JavaScript interfaces and Webviews
are inherently varied and app-specific. Therefore, we require a static analysis and
cannot rely on fixed signatures. Furthermore, because our model represents an
attacker instead of a well-defined system, calls can appear out of context anytime
web content can be loaded in the Webview, i.e., after a loadUrl-like method.

8 Conclusion

In this paper, we presented a novel method to use information flow analysis to
evaluate the possible impact of code injection attacks against mobile applications
with Webviews. The key idea of our approach is to model the possible effects of
injected malicious JavaScript code at the Java level, thereby avoiding any direct
reasoning about JavaScript semantics. In particular, this allowed us to rely on a
robust state-of-the-art implementation of taint analysis for Android.

We implemented our approach in BabelView, and evaluated it on 25,000
applications, confirming its practical applicability and at the same time reporting
on the state of Webview security in Android. With BabelView, we found 10,808
potential vulnerabilities in 4,997 applications, affecting more than 3 billion users.
We validated our results on a subset of applications where we achieved a precision
of 81% at a recall of 89% when measured per alarm, or a precision of 90% and
a recall of 100% when measured per application.
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Abstract. With software becoming harder to compromise due to mod-
ern defenses, attackers are increasingly looking at exploiting hardware
vulnerabilities such as Rowhammer. In response, the research commu-
nity has developed several software defenses to protect existing hardware
against this threat. In this paper, we show that the assumptions existing
software defenses make about memory addressing are inaccurate. Specif-
ically, we show that physical address space is often not contiguously
mapped to DRAM address space, allowing attackers to trigger Rowham-
mer corruptions despite active software defenses. We develop RAMSES, a
software library modeling end-to-end memory addressing, relying on pub-
lic documentation, where available, and reverse-engineered models oth-
erwise. RAMSES improves existing software-only Rowhammer defenses
and also improves attacks by orders of magnitude, as we show in our eval-
uation. We use RAMSES to build Hammertime, an open-source suite of
tools for studying Rowhammer properties affecting attacks and defenses,
which we release as open-source software.

Keywords: Rowhammer · Hammertime · DRAM geometry

1 Introduction

To increase the capacity of DRAM, manufacturers are packing more transis-
tors into DRAM chips. This has resulted in reduced reliability of DRAM in the
wild [12,16]. A prime example of these reliability problems that plague a large
percentage of currently deployed DRAM is the Rowhammer vulnerability [13].
DRAM consists of stacks of rows which store information and the Rowhammer
vulnerability allows for corruption of data in form of bit flips by repeatedly acti-
vating some of these rows. The past two years have witnessed a proliferation
of increasingly sophisticated Rowhammer attacks to compromise various soft-
ware platforms. Mark Seaborn showed that Rowhammer bit flips can be used
to escalate privileges of a Linux/x86 user process in 2015 [20]. Various academic
research groups then showed that the same defect can also be used to compro-
mise Web browsers [7,9], cloud virtual machines [19,22], and even mobile phones
with a completely different architecture [21].
c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 47–66, 2018.
https://doi.org/10.1007/978-3-030-00470-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00470-5_3&domain=pdf


48 A. Tatar et al.

Given the possibilities for building such powerful attacks, we urgently need to
protect users against their threat. While hardware-based defenses such as error-
correcting code or target row refresh [11] can potentially protect future hardware,
a large portion of existing hardware remains exposed. To bridge this gap, recent
work [5,8] attempts to provide software-only protection against the Rowhammer
vulnerability. ANVIL [5] provides system-wide protection by detecting which
rows in physical memory are accessed often, and if a certain threshold is reached,
it will “refresh” the adjacent rows by reading from them, similar to target row
refresh [11]. In contrast, instead of providing system-wide protection, CATT [8]
protects the kernel memory from user processes by introducing a guard row
between kernel and user memory. Given that Rowhammer bit flips happen in
DRAM, both these defenses attempt to operate at DRAM level, having to make
judgement calls on where the “next” or “previous” row of a given address is.

Fig. 1. Example of nonlinear physical address to DRAM address mapping.

To remain agnostic to the underlying DRAM hardware, both these defenses
make simplifying assumptions about how DRAM is addressed by modern mem-
ory controllers. Specifically, they assume that physical memory addresses are
mapped linearly by the memory controller to DRAM rows. We investigate
whether this important assumption is valid using a representative set of DRAM
modules and memory controllers. We discover that memory controllers often
non-trivially map physical address to DRAM addresses and DRAM modules
may internally reorder rows. These findings highlight the need to differentiate
between the physical address space, what the CPU uses to address memory, and
DRAM address space, the chip select signals along with bank, row and column
addresses emitted by the memory controller. Subtle differences in mapping one
address space to the other determine the physical address distance between two
rows co-located in hardware, which in turn determines where a Rowhammer
attack could trigger bit flips. Figure 1 shows an empirical example of how a
naive address mapping makes inaccurate assumptions.

Our conclusion is that to build effective software defenses, we cannot treat
the underlying hardware as a black box. To concretize our findings, we develop
RAMSES, a software library modeling the address translation and manipulation
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that occurs between the CPU and DRAM ICs. We employ RAMSES to advance
the current state of Rowhammer research in multiple dimensions:

– We show how a memory addressing aware attacker can defeat existing
defenses: we could trigger bit flips on ANVIL [5] which aims to mitigate
Rowhammer altogether, and we could trigger bit flips with enough physi-
cal address distance from their aggressor rows to sidestep the guard area of
CATT [8].

– We show that existing attacks can significantly benefit from RAMSES when
looking for exploitable bit flips: we can find many more bit flips when com-
pared to publicly available Rowhammer tests or the state of the art [17].
Specifically, within the same amount of time, we could find bit flips on DRAM
modules that state of the art reported to be safe from Rowhammer bit flips.
On other DRAM modules, we could find orders of magnitude more bit flips.
These findings already significantly increase the effectiveness and impact of
known attacks.

– We build a DRAM profiling tool that records a system’s response to a
Rowhammer attack into a portable format called a flip table. We run this
tool on a representative set of memory modules to collect detailed data about
bit flip location and direction. We build an attack simulator that uses flip
tables to perform fast, software-only feasibility analyses of Rowhammer-based
attacks, and use it to evaluate several published Rowhammer exploits. We
release these tools along with collected flip tables open-source as Hammer-
time.

Outline. We provide a background on DRAM architecture and Rowhammer in
Sect. 2. We then describe the design and implementation of RAMSES based on
these parameters in Sect. 3 and explore applications of RAMSES in Sect. 4. We
present the results of our DRAM profiling and evaluate the impact of memory
addressing on existing attacks and defenses in Sect. 5. Finally, we discuss related
work in Sect. 6 and conclude in Sect. 7.

Fig. 2. Functional overview of DRAM addressing
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2 Background

We first briefly look at how modern DRAM is addressed before discussing the
Rowhammer vulnerability. We then show how recent attacks exploit Rowhammer
to compromise systems without relying on software vulnerabilities.

2.1 DRAM Architecture

Figure 2 shows an overview of the devices and addresses involved in accessing
system RAM. There are four types of addresses used, corresponding to different
address spaces:

Virtual Addresses are the way nearly all software running on the CPU
accesses memory. It is often a large, sparsely allocated address space, set up
for each process by the kernel. Physical Addresses are what the CPU uses
to access the “outside” world, including devices such as RAM, firmware ROM,
Memory-Mapped I/O (MMIO) and others. The address space layout is machine-
specific, usually set up by system firmware during early boot. Linear Memory
Addresses are used to index all RAM attached to a controller in a contiguous,
linear fashion. These addresses are internal to the northbridge logic and, due to
the tight coupling between the physical address router and memory controller,
are specific to hardware implementations. DRAM Addresses are the actual
signals on the memory bus used to access RAM and uniquely identify memory
cells. These signals consist of channel, DIMM, rank and bank select signals, along
with row and column addresses [10]. We take a closer look at the components
translating addresses between these address spaces, as well as some techniques
used in translation.

CPU. The Memory Management Units (MMUs) in modern general-purpose
processors use page tables to translate virtual addresses into physical addresses.
Page tables are architecture-specific data structures in RAM that specify the
virtual memory map of each process, usually set up and maintained by the
operating system. The MMU “walks” these tables for every virtual memory
address translation requested by the CPU. For better performance, a specialized
cache called a Translation Lookaside Buffer (TLB) is often included in the MMU.

Physical Address Router. The CPU uses physical memory addresses to access
more than just RAM. System ROM, non-volatile RAM and PCI device memory
are just a few examples of devices mapped into the system’s physical address
space. Routing physical memory requests to the appropriate device is accom-
plished by the physical address router. From a memory addressing perspective,
the physical address router maps the regions in the physical address space corre-
sponding to RAM into a contiguous, linear memory address space. The specifics
of how this mapping is achieved will vary not only between architectures, but
also depending on system hardware configuration.

Memory Controller. Memory requests on route to system RAM are serviced
by the memory controller, which is responsible for managing the memory bus. To
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achieve this, the linear memory addresses of incoming requests must be mapped
to a multidimensional address space specific to the memory configuration in use.
These DRAM address tuples consist of channel, DIMM and rank select signals,
along with bank, row and column addresses. Each memory bank comes equipped
with a row buffer, a cache for the bank’s current active row, to which accesses
complete with minimal delay. Consequently, a request to a different row within
the same bank—an event known as a bank conflict—will incur a significant delay
while the old row is closed and the new one opened. A well-performing memory
controller will therefore map linear addresses to DRAM in such a way as to
minimize the occurrence of bank conflict delays for common usage patterns. The
specific DRAM address mappings used by controllers are either documented by
the vendor [2] or reverse-engineered [17].

DIMM Circuitry. The memory controller is not the last step in memory
addressing, as DIMM circuitry itself can change the signals that individual
DRAM ICs receive, including bank and address pins, an example of which is
DDR3 rank mirroring [10]. Other remapping strategies exist, which we will dis-
cuss in Sect. 3.1.

2.2 The Rowhammer Vulnerability

Due to the extreme density of modern DRAM arrays, small manufacturing
imperfections can cause weak electrical coupling between neighboring cells. This,
combined with the minuscule capacitance of such cells, means that every time a
DRAM row is read from a bank, the memory cells in adjacent rows leak a small
amount of charge. If this happens frequently enough between two refresh cycles,
the affected cells can leak enough charge that their stored bit value will “flip”,
a phenomenon known as “disturbance error” or more recently as Rowhammer.
Kim et al. [13] showed that Rowhammer can be triggered on purpose, a pro-
cess known as hammering, by using an FPGA to saturate the memory bus with
requests to a single row. To trigger Rowhammer flips with similar effectiveness
from the CPU (a much stronger threat model), we need to ensure that memory
accesses go to DRAM and reach their designated target row as many times as
possible between two refresh cycles. To achieve these goals, we have to deal with
CPU caches, the row buffer and DRAM addressing.

Avoiding caches has been heavily studied before. Attackers can use
cache flushing instructions [19,20,22], uncached (DMA) memory [21], eviction
buffers [5,7,9] and non-temporal load/store instructions [18]. Bypassing the row
buffer is possible by repeatedly reading from two rows as to cause a bank con-
flict [13]. If these bank-conflicting rows happen to be exactly one row apart,
their respective disturbance errors add up in that middle row, greatly increas-
ing the number of observed Rowhammer bit flips. This technique is known as
double-sided Rowhammer [20] as opposed to single-sided Rowhammer where the
bank-conflicting row is arbitrarily far away and does not directly participate in
inducing disturbance errors. Lastly, making use of end-to-end DRAM address-
ing to precisely select Rowhammer targets has not been adequately explored
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and presents several advantages over the state of the art, as we will discuss in
Sect. 4.1 and evaluate in Sect. 5.

2.3 Rowhammer Attacks

Published Rowhammer exploits [7,9,19–22] go through three phases. They first
hammer and scan memory for exploitable bit flips; each memory page stores
many thousands of bits, of which only a few are useful to the attack in any
way if flipped. If a bit flip is found with the right offset and direction (1-to-0 or
0-to-1) to be useful, we call it an exploitable bit flip. In the second phase of the
attack, security-sensitive information has to be precisely placed on the memory
page prone to exploitable Rowhammer flips. This is done by either releasing the
target memory page and then spraying security-sensitive information in memory
for a probabilistic attack [9,20], or by massaging the physical memory to store
security-sensitive information on the vulnerable page for a more targeted and
deterministic attack [19,21]. Once the security-sensitive information is stored on
the vulnerable memory page, in the third step the attacker triggers Rowhammer
again to corrupt the information resulting in a compromise.

Selecting targets for hammering is often done heuristically: attacks assume
physical contiguity and split memory into consecutive blocks associated with
a particular row number. These blocks aim to contain all pages that map to
the same row index, regardless of channel, DIMM, rank or bank and are sized
according to assumptions about memory geometry (e.g. 256KiB for two dual-
ranked DDR3 DIMMs). Once two blocks are selected as targets, hammering
works by exhaustively hammering all page pairs and checking for flipped bits.
Alternatively, a timing side-channel based on DRAM bank conflicts can reduce
the number of tried pairs significantly.

2.4 Rowhammer Defenses

In response to the proliferation of Rowhammer attacks several software-only
defenses were developed. ANVIL [5] attempts to prevent Rowhammer altogether
by monitoring memory access patterns and forcibly refreshing the rows neigh-
boring a potential Rowhammer target row. To achieve this, it uses a reverse-
engineered mapping scheme and assumes consecutive numbering of rows with
ascending physical addresses.

An alternative approach, CATT [8], attempts to mitigate the security impli-
cations of Rowhammer by preventing bit flips from crossing the kernel-userspace
boundary. To achieve this, it partitions physical memory into userspace and
kernel sections separated by a contiguous guard area, whose size is computed
similarly to the target blocks of attacks we presented earlier. This approach
relies on two assumptions: first, that a sufficiently large physically contiguous
memory block will contain all instances of a particular row index across all chan-
nels, DIMMs, ranks and banks, and second, that such blocks corresponding to
consecutive row indices are laid out consecutively in physical memory.
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3 RAMSES Address Translation Library

3.1 Design

In this section we discuss our approach to the main challenges facing an end-to-
end model of computer memory addressing. First we consider the address spaces
at play and define relationships between individual addresses. Second we look at
modeling the physical to DRAM address mapping done by memory controllers.
Third we discuss any further DRAM address remappings performed on route
to DRAM ICs. Finally, we consider how to efficiently map contiguous physical
memory to the DRAM address space.

Address Spaces. Among the address spaces discussed in Sect. 2.1, virtual,
physical and linear memory addresses can be intuitively defined as subsets of
natural numbers, which have familiar properties. DRAM, however, is addressed
quite differently. Hardware parallelism is evident from the channel, DIMM, rank
and bank select signals, and once a particular bank is selected, a memory word
is uniquely identified by a row and column address. To accommodate all these
signals we define a DRAM address to be a 6-tuple of the form <channel, DIMM,
rank, bank, row, column>, with the order of the fields reflecting hardware hier-
archy levels. We have no universal way of linearizing parts of a DRAM address
since memory geometry (i.e. DIMMs per channel, ranks per DIMM, etc.) is
highly dependent on what hardware is in use. Moreover, concepts like ordering
and contiguity are not as obvious as for physical addresses and are more limited
in scope.

To define these concepts, we first need a measure of hardware proximity of
two DRAM addresses. We say two addresses are co-located on a particular hier-
archy level if they compare equal on all fields up to and including that level (e.g.
two addresses are bank co-located if they have identical channel, DIMM, rank
and bank fields). Ordering is well defined on subsets of co-located addresses, such
as columns in a row or rows in a bank, and carries meaning about the relative
positioning of hardware subassemblies. A more general ordering, such as com-
paring field-by-field, while possible, carries little meaning beyond convenience
and does not necessarily reflect any aspect of reality. Co-location also enables us
to define a limited form of contiguity at memory cell level: we say two DRAM
addresses are contiguous if they are row co-located and have consecutive column
indexes.

Address Mapping. As we have discussed in Sect. 2.1 translation between phys-
ical and DRAM addresses is performed chiefly by the memory controller. The
exact mapping used varies between models, naturally, but individual controllers
often have many configuration options for supporting various memory geome-
tries and standards as well as performance tweaks. As an example, AMD [2]
documents 10 DDR3 addressing modes for bank, row and column addresses,
with multiple other options for controlling channel, DIMM and rank selection as
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well as features such as bank swizzle, interleaving and remapping the PCI hole.
It is therefore necessary for an accurate model to account for all (sane) combina-
tions of memory controller options, ideally by implementing the mapping logic
described in documentation. When documentation is unavailable, mappings can
be reverse-engineered and further improved by observing side-channels such as
memory access timings and Rowhammer bit flips.

Remapping. In Sect. 2.1 we presented the fact that DRAM addresses can be
altered by circuitry in between the memory controller and DRAM ICs, as long
as memory access semantics are not violated. We used as an example DDR3
rank address mirroring, where bank bits BA0 and BA1, as well as address bits
A3 and A4, A5 and A6, A7 and A8, are respectively interchanged in order to
make the circuit layout simpler on the “rank 1” side of DIMMs. Rank address
mirroring is part of the DDR3 standard [10] and its presence is usually accounted
for by compliant memory controllers by “pre-mirroring” the affected pins, mak-
ing it transparent to the CPU. However, as we will discuss in Sect. 5, we have
found several DIMMs behaving like rank-mirrored devices when viewed from
software, a fact significantly affecting the effectiveness of Rowhammer. While
this information is public, previous work has mostly ignored it [17,22].

In addition to standard-compliant rank mirroring, other custom address
remappings can exist. During our research we discovered one particular on-
DIMM remapping among several particularly vulnerable DIMMs: address pin
A3 is XORed into bits A2 and A1. We came across this after discovering peri-
odic sequences of 8 row pairs either exhibiting many bit flips or none at all on
some very vulnerable DIMMs. That lead us to try linear combinations of the 4
least significant DRAM bits until we consistently triggered bit flips over all row
pairs—and therefore reverse-engineered the remapping formula.

We remark that on-DIMM remappings can be arbitrarily composed, and we
found several DIMMs where both rank mirroring and the custom remapping was
in effect, as we will show in Sect. 5.

Efficiency Considerations. An issue worth addressing is the efficient map-
ping of a physical memory area to DRAM address space—computing the DRAM
addresses of all memory words in the area. Most generally, one would have to
translate the addresses of every word, since there are no contiguity guarantees.
To address this, we define a property named mapping granularity, which spec-
ifies the maximum length of an aligned physically-contiguous area of memory
that is guaranteed to be contiguous in DRAM address space for a particular
combination of memory controller and chain of remappings, taking into account
any interaction between them. This mapping granularity is often much larger
than a memory word, reducing the number of required computations by several
orders of magnitude.
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3.2 Implementation

We implemented RAMSES as a standalone C library in less than 2000 lines
of code. We provide mapping functions for Intel Sandy Bridge, Ivy Bridge and
Haswell memory controllers based on functions reverse engineered in previous
work [17]. Support for DDR4 memory controllers, as well as AMD CPUs is a
work in progress. We provide DDR rank mirroring and the on-DIMM remap-
pings discussed in the previous section, with the possibility to easily add new
remappings once they are discovered.

4 Applications of RAMSES

In this section we discuss applications of the end-to-end memory addressing
models provided by RAMSES. We first look at a Rowhammer test tool and
profiler, which we will compare with the state of the art in Sect. 5 as well as use it
to evaluate existing defenses. We then briefly discuss the output of our profiler—
flip tables. Finally, we present an attack simulator to use the profiler’s output to
quickly evaluate the feasibility of Rowhammer attacks. These applications, along
with miscellaneous small related utilities are released together as Hammertime.

4.1 Hammering with RAMSES

Targeting. The most used hammering technique thus far, double-sided
Rowhammer, relies on alternately activating two “target” rows situated on each
side of a “victim” row. Given that modern DRAM modules have up to millions of
individual rows, target selection becomes important. We have already discussed
how present attacks use heuristics to select targets in Sect. 2.3. A quite different
strategy is to assume (near-)perfect knowledge about all aspects of the memory
system, which in our case is provided by RAMSES. Armed with such a mapping
function, a Rowhammer test tool can accurately select both target and victim
rows, minimizing the search space to precisely target the DRAM region of inter-
est. A benefit of such precision, aside from the obvious speedup, is the ability
to study Rowhammer and argue about the results in terms of actual physical
DRAM geometry entirely from software. In particular, Rowhammer itself can be
used as a side-channel to reverse-engineer memory mappings, a method we our-
selves used to pin down the non-standard DRAM address remapping discussed
in Sect. 3.1. This opens the door to commodity hardware being used for rapid
data collection about different aspects of Rowhammer. Given that the same com-
modity hardware is also likely to be targeted by a Rowhammer-based exploit,
making a fast and complete test is useful in assessing the vulnerability of a given
system.

Preparation and Hammering. While our profiler is designed to work with
arbitrary memory allocations, some options are provided that can increase
effectiveness or fidelity. Namely, memory locking informs the kernel to keep
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page allocations unchanged throughout the lifetime of the buffer. This prevents
swapout or copy-on-write events from changing page mappings, which would
invalidate target selections. Huge Pages can allocate the buffer using huge
page sizes (2 MiB or 1 GiB on x86 64). This forces the buffer to be more contigu-
ous in physical memory, potentially increasing the number of targetable rows.
In addition, huge pages are also implicitly locked.

Because sandboxing or program privileges are no issue in implementing our
profiler, we are free to make use of hardware features to bypass the cache, which
on x86 is the unprivileged native instruction clflush. The number of reads for a
hammer attempt is automatically calibrated at runtime to saturate the memory
bus for a set number of refresh intervals.

4.2 Flip Tables

To keep the experimental data obtained from the profiler reusable, we keep all
addresses used in output in a format as close to the hardware as possible, namely
DRAM addresses. This allows examining the effects of Rowhammer on various
DRAM modules at the hardware level, regardless of the particularities of the
system the data was collected on. Profiler output is a sequence of hammerings,
each consisting of a set of target addresses along with bit flip locations in the
victim rows, if any occur. We collect this output in a machine-readable plain
text file we term the flip table. We release all flips tables for the DIMMs we
experimented with as part of Hammertime and will further maintain a repository
so that others can contribute additional flip tables.

4.3 Attack Simulator

Design. The goal of simulation is to provide a lightweight alternative to full
program execution for evaluating the feasibility of Rowhammer-based attacks.
What exactly constitutes a useful bit flip is up to each individual attack to
decide. A page table entry (PTE) attack could, for example, be interested in
0 → 1 bit flips at page offsets corresponding to read/write flags in PTEs. A user
of the Hammertime simulator would specify bit flip positions of interest and
receive realistic estimates of success rate and average time to find the first bit
flip for a large number of DIMMs. At the same time, the simulator allows for
more complex attack plans if desired.

Implementation. To make the simulation interface user-friendly and easily
extensible we implemented it in Python. It consists of two programming inter-
faces: a lower-level view of flip tables, allowing their contents to be programati-
cally accessed, and a higher-level exploit simulation interface which presents bit
flips as they would occur in software: as bit offsets within a virtual page.

Published Rowhammer attacks [7,9,19–22] rely on flipping bits at precise
memory locations for successful exploitation. To achieve this goal, attacks have
an initial “templating” phase where they look for vulnerable memory pages with
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Listing 1.1. Implementation of Dedup Est Machina in Hammertime’s simulator

class DedupEstMachina(estimate.ExploitModel ):
def check_page(self , vpage):

useful = [
x for x in vpage.pulldowns
if x.page_offset % 8 == 0 # Bits 0-7
or (x.page_offset % 8 == 1 and (x.mask & 0x7)) # Bits 8-10
or x.page_offset % 8 == 7 # Bits 56-63
or (x.page_offset % 8 == 6 and (x.mask & 0xf0)) # Bits 52-55

]
return len(useful) > 0

a bit flip at the desired offset within a page. The victim process (or kernel) is then
coerced into storing data structures within these pages. After that, the attacker
uses Rowhammer again in order to cause a bit flip in the target data struc-
tures. Overlooking the problem of actually triggering Rowhammer, the simula-
tion interface provides a fast way of evaluating the prevalence of “good” victim
pages across a huge number of memory configurations.

An exploit is represented in the simulator by an Exploit Model. In the simplest
case, an Exploit Model provides a function answering one yes-or-no question: is
a given memory page useful to exploit. An example of an attack implemented as
exploit model can be seen in Listing 1.1. More advanced victim selection strate-
gies are also supported by providing hooks at single hammering or fliptable
granularity.

5 Evaluation

We tested Hammertime on two identical systems with the following configura-
tion:

CPU: Intel Core i7-4790 @ 3.6 GHz
Motherboard: Asus H97M-E

Memory: DDR3; 2 channels, 4 slots, max 32 GiB
Kernel: Linux 4.4.22

The systems network-boot from a “golden” image and discard all local filesys-
tem changes on power off, ensuring that no state is kept between profiling runs
and that each test starts from a known clean state. This also prevents accidental
persistent filesystem corruption due to Rowhammer—a valid concern considering
the workloads involved.

We tested a total of 33 memory setups: 12 single DRAM modules and 21
dual-channel sets, of sizes ranging from 4 to 16 GiB. Out of these, 14 exhib-
ited Rowhammer bit flips during an initial test run and were selected for fur-
ther experimentation. The vulnerable memory setups in question are detailed in
Table 1. These initial results show that on DIMMs that we looked at, only 42%
are vulnerable when profiling is performed from the CPU, a contrast with 85%
that is reported in the original Rowhammer paper which uses an FPGA plat-
form for testing [13]. Given that realistic attack scenarios are performed from the
CPU, 42% is more representative of the number of vulnerable DDR3 systems.
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Table 1. Detailed information on the set of DIMMs vulnerable to Rowhammer used
for evaluating Hammertime and generating its flip tables.

Brand Serial Number ID Size

[GiB]

Freq.

[MHz]

Ch. Ranks

/DIMM

Rank

mirror

DIMM

remap

Corsair CMD16GX3M2A1600C9 A1 16 1600 2 2 ✓ ✓

CML16GX3M2C1600C9 A2 16 1600 2 2 ✓

CML8GX3M2A1600C9W A3 8 1600 2 1

CMY8GX3M2C1600C9R A4 8 1600 2 2 ✓ ✓

Crucial BLS2C4G3D1609ES2LX0CEU B1 8 1600 2 2 ✓

Geil GPB38GB1866C9DC C1 8 1866 2 1

Goodram GR1333D364L9/8GDC D1 8 1333 2 2 ✓

GSkill F3-14900CL8D-8GBXM E1 8 1866 2 1 ✓

F3-14900CL9D-8GBSR E2 8 1866 2 1

Hynix HMT351U6CFR8C-H9 F1 8 1333 2 2

Integral IN3T4GNZBIX G1 4 1333 1 2 ✓

PNY MD8GK2D31600NHS-Z H1 8 1600 2 2 ✓

Samsung M378B5173QH0 I1 4 1600 1 1 ✓

V7 V73T8GNAJKI J1 8 1600 1 2 ✓

5.1 Profiling Bit Flips

Our profiling run consists of three hammer strategies: Single represents single-
sided Rowhammer. A single target row is selected and hammered along with
a second distant row, allocated in a separate buffer and automatically selected
in order to trigger a bank conflict. Amplified targets two consecutive rows for
hammering. Double represents double-sided Rowhammer and selects as targets
rows separated by one victim row. We ran each strategy with all-ones/all-zeroes
and all-zeroes/all-ones data patterns for victim/target rows, respectively, and
with a hammer duration of 3 refresh intervals. We profiled 128 MiB of each
memory setup, allocated using 1 GiB hugepages for 8 GiB and 16 GiB setups
and 2 MiB hugepages for 4 GiB setups.

Table 2 shows the results of the three hammer strategies mentioned earlier
applied to the 14 memory setups. Overall we see double-sided Rowhammer by
far outperforming single-sided and amplified Rowhammer on all memory setups.
Using single-sided Rowhammer as a baseline, the “Amplified” strategy manages
to be significantly more effective for some setups (A2, E2, H1), while proving
inferior for others (A4, B1, E1). We also see the breakdown of bit flip num-
bers into 0 → 1 (pullups) and 1 → 0 (pulldowns). Several setups (A3, E2, G1,
H1, J1) show a significant difference in the ratio of pullups versus pulldowns
between single-sided and amplified/double-sided hammer strategies, which sug-
gests different Rowhammer variants induce intereferences of different nature at
the DRAM level.

We evaluate the reliability with which bit flips occur repeatedly by perform-
ing 10 consecutive 32 MiB profiling runs on a subset of memory setups and
comparing the obtained flip tables. We found that the vast proportion (80–90%)
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Table 2. Profiling results for vulnerable DIMMs.

ID Single Amplified Double

Vuln.

rows[%]

Total

flips

0 → 1 1 → 0 Vuln.

rows[%]

Total

flips

0 → 1 1 → 0 Vuln.

rows[%]

Total

flips

0 → 1 1 → 0

A1 0.56 92 0 92 0.08 13 0 13 98.95 200468 4367 196107

A2 0.98 161 159 2 20.29 5404 5404 0 69.13 21542 21538 4

A3 3.01 512 18 494 4.54 809 438 371 16.13 2926 1541 1385

A4 0.99 161 1 160 0.18 29 1 28 99.58 256359 5577 250796

B1 2.17 358 0 358 1.62 272 0 272 8.77 1504 1 1503

C1 0.01 1 0 1 0.00 0 0 0 63.01 16489 1365 15124

D1 2.93 488 0 488 2.30 385 0 385 12.14 2131 0 2131

E1 1.10 181 0 181 0.19 31 0 31 99.77 202630 4175 198464

E2 13.69 3108 142 2966 24.58 6273 4183 2090 74.56 24587 16320 8267

F1 2.63 442 0 442 0.70 116 0 116 88.67 413796 5927 407906

G1 12.98 2447 154 2293 18.61 3803 1934 1869 62.95 15990 7851 8139

H1 9.79 1983 55 1928 18.46 3930 2575 1355 59.31 16087 10608 5479

I1 0.49 78 2 76 0.09 15 2 13 99.29 130187 4781 125410

J1 4.50 811 15 796 9.29 1741 1153 588 35.25 7185 4725 2460

Fig. 3. Effect of address remapping strategies on Rowhammer effectiveness

of bit flips show up reliably in all runs, with minor variation between memory
setups.

Figure 3 shows the effectiveness of newly discovered addressing information
such as on-DIMM remapping and rank mirroring on the number of discovered
bit flips using different set of vulnerable DIMMs. In particular, we see that both
rank mirroring and custom remapping are required for the best results. This
was, however not the case for all DIMMs, as can be seen in Table 1.

5.2 Comparison

We compare the effectiveness in exploiting Rowhammer and finding bit flips
of Hammertime’s profile with several state-of-the-art double-sided Rowham-
mer testing tools: Google Project Zero (GPZ) double-sided rowhammer [20], the
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native rowhammer binary from the Rowhammer.js project [9], and the binary
provided by the Flip Feng Shui authors [19]. Each tool was tested on memory
from the A1 set (one of the most vulnerable DIMMs) under three setups:

Setup I: 15 min testing 4 GiB out of 8 GiB total; 1 channel, 1 DIMM,
2 ranks/DIMM

Setup II: 30 min testing 8 GiB out of 16 GiB total; 2 channels; 1 DIMM/channel;
2 ranks/DIMM

Setup III: 30 min testing 8 GiB out of 16 GiB total; 1 channel;
2 DIMMs/channel; 2 ranks/DIMM

Information about memory geometry, in particular the number of DIMMs, was
configured for each tool using runtime flags or compile-time constants, where
possible. Memory allocation was done using regular (non-huge, 4 KiB) pages for
GPZ test and Rowhammer.js, and using 2 MiB hugepages for Flip Feng Shui.

To make comparison with other tools easier, profile ran with two config-
urations: the first, compatibility mode, allocated memory using regular pages,
and only used basic memory configuration—no support for rank mirroring or
on-DIMM remapping. The second, optimized run uses hugepage allocation, as
well as taking into account rank mirroring and on-DIMM remapping.

Table 3 shows the results of the test runs. The middle section presents the
relevant Rowhammer parameters of each run, namely the number of reads and
knowledge of memory geometry. The “Rows tested” column shows the number of
rows as reported by each test tool. As we have seen in Sect. 2.3 however, different
tools have different definitions of what a “row” is. The “Addr pairs/row pair”
column highlights these differences, showing how many individual address pairs
the tool tries hammering for each individual row it tests. We also provide the
“MiB covered” column, which takes into consideration each tool’s definition of
a “row”, providing a common metric.

First, we notice great variation in testing speed (i.e. number of rows tested per
unit time) between different tools and setups. This is indicative of the targeting
strategies used: the three tools all search over contiguous blocks, as presented in
Sect. 2.3, optionally with heuristics narrowing down the search space. The GPZ
test exhaustively tries all pages in these blocks, resulting in the slowest overall
performance of the set. Rowhammer.js native, on the other hand, uses some
information about the memory controller and geometry to select its targets,
leading to better search speeds and adapting well to different memory setups.
Flip Feng Shui uses a pre-tuned timing side-channel to select potential targets.
Judging by the results, the hard-coded timing threshold it uses is tuned for dual-
channel memory: Setup II has much improved search rate, while Setups I and III
are virtually identical to the exhaustive search done by the GPZ test. In contrast
to all of these, Hammertime’s profile uses extremely precise targeting to make
every test count, leading to consistent performance that is orders of magnitude
better than that of other tools.

Secondly, we look at the effectiveness with which tools induce bit flips in
memory. Project Zero’s test failed to detect any bit flips under all three setups,
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Table 3. Comparison between Hammertime profile and other Rowhammer test tools.

aAccurate row address computation which takes rank mirroring and on-DIMM remap-
ping into account.
bAddress pairs selected using a timing side-channel.
cAuto-calibrated for two 64ms refresh intervals.

suggesting that it has certain hard-coded assumptions about memory organiza-
tion which turn out to be wrong. Rowhammer.js native, on the other hand, suc-
cessfully detects flips in both single-DIMM and dual-channel modes, while none
are reported for dual-DIMM. This is consistent with expectations, as the memory
addressing model used by this tool assumes dual-channel operation for multiple
DIMMs. Flip Feng Shui, unsurprisingly, produces bit flips only when run under
conditions it has been tuned for, similarly to how its search speed varies. In keep-
ing with its superior search rate, profile also detects orders of magnitude more
bit flips than the other tools. This is partly due to more rows being tested, but
also due to better sensitivity from knowing where to look—other tools manage
at most slightly above 1 flip per row, while Hammertime consistently produces
between 7 and 9 flips per row. Furthermore, in the last setup, none of the test-
ing tools could find any bit flips. This is particularly important because it shows
that DIMM setups that would be considered secure by state-of-the-art tools,
should now be considered vulnerable assuming precise geometry information for
Rowhammer attacks. These insights hint that Rowhammer-vulnerable memory
cells are much more prevalent than existing software tools would suggest.

5.3 Defenses

We examine the effectiveness of published Rowhammer defenses using the new
insights we have gained about memory addressing.

First, we examine ANVIL [5], which monitors memory accesses and
selectively refreshes what it considers neighboring rows when it discovers
Rowhammer-like activity. To do so, we built and deployed the ANVIL kernel
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Table 4. ANVIL evaluation

Defense Bit flips

A1 A3

None 7328 96

ANVIL (default) 4238 45

ANVIL (aggressive) 4211 45

Table 5. CATT evaluation

ID Rank
mirror

DIMM
remap

CATT
guard
row

Minimum
guard

Safe

A1 ✓ ✓ 256 KiB 128 MiB ✗

A2 ✓ ✗ 256 KiB 128 MiB ✗

E1 ✗ ✓ 128 KiB 2 MiB ✗

F1 ✗ ✗ 256 KiB 256 KiB ✓

module in two configurations: default, and aggressive, with sample periods and
thresholds reduced by a factor of 10, and ran profile on the protected system.
We used the source code freely provided by the authors [1], with a modification
to disable its use of the precise store event, as this was unavailable on the Haswell
CPUs of our test systems. We consider this change inconsequential to the results
of this evaluation as profile only uses loads to trigger bit flips.

Table 4 shows the results of an 8 MiB run for two memory setups. We see
a roughly 50% dropoff in bit flip counts when ANVIL is in use, while minimal
differences between the default and aggressive runs. This suggests that bit flips
got through not due to poor detection sensitivity, but rather due to fundamen-
tal issues in identifying which rows are in danger and, consequently, failure in
refreshing them. Indeed, the ratio between prevented/unprevented bit flips is
consistent with the increases in Rowhammer effectiveness due to new insights
into memory addressing, as previously shown in Fig. 3. We propose enhancing
ANVIL with detailed models of memory addressing in order to better identify
potential Rowhammer targets and be able to accurately refresh them.

Second, we examine CATT [8], which attempts to mitigate the damage of
Rowhammer attacks crossing the kernel-userspace boundary by partitioning
the physical address space in two contiguous regions, one for kernel, one for
userspace, with a “buffer” or “guard” row in between. CATT computes the size
of this guard row by accounting for the number of banks, ranks, DIMMs, and
channels of memory in use, multiplying the standard DRAM row size (8 KiB)
by each of these in turn. This is a fine approach, assuming a linear and mono-
tonic mapping between physical and DRAM address spaces. However, as we have
shown before in Fig. 1 this assumption can be false.

Table 5 presents the results for four representative memory configurations,
showcasing all combinations of the rank mirroring and on-DIMM remapping
features. For every setup we mark as unsafe we have repeatedly and consistently
found bit flips that are far enough away in physical address space from both of
their aggressor rows to “jump over” the guard area and thus defeat the linear
protection guarantees of CATT. In the “Minimum guard” column, we provide
the minimum size a CATT-like contiguous guard zone separating two physical
address areas needs to be in order to fully protect them against hammering each
other. In cases where this minimum contiguous guard distance is inconveniently
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large, a non-wasteful isolation-based defense must support accurate memory
addressing and non-contiguous guard buffers.

Attack Simulator

To demonstrate Hammertime’s simulator, we implemented several published
Rowhammer attacks as exploit models: Page Table Entry Exploits rely on
flipping bits in memory used to hold page tables. Previous work [20] has sug-
gested exploiting flips in the page frame pointer bits of a PTE. Other potentially
useful attacks are setting the U/S bit of a PTE, allowing userspace access to a
kernel page, and clearing of the NX bit, marking memory as executable. Dedup
Est Machina [7] which exploits 1 → 0 flips in bits 0 − 10 and 52 − 63 of
64-bit words in a page. The entire code is presented in Listing 1.1. Flip Feng
Shui [19] relies on triggering bit flips at specific page offsets in order to corrupt
the contents of sensitive files in the page cache.

Table 6. Results of attack simulation

Attack Run ID Success
Rate

Min
Mem
[KiB]

Time
[s]

Pagetable
PFN

Best F1 68.8% 16 0.3
Median G1 5.3% 152 3.8

Worst B1 0.3% 2456 61.3

Pagetable
U/S bit

Best A2 3.5% 232 5.6
Median J1 0.3% 2376 59.3

Worst B1 0% N/A N/A

Pagetable
NX bit

Best F1 23.0% 40 0.9
Median E2 0.7% 1152 28.6

Worst A2 0% N/A N/A

Dedup Est
Machina

Best A4 98.4% 16 0.2
Median E2 13.1% 64 1.5

Worst A2 <0.1% 65024 1625

FFS GPG Best F1 2.3% 360 8.8

Median C1 0.1% 9328 233.1

Worst B1 0% N/A N/A

FFS
sources.list

Best F1 23.0% 40 0.9
Median C1 0.9% 880 21.9

Worst B1 <0.1% 16256 406.4

We evaluated each model with
all double-sided flip tables pre-
sented in Sect. 5.1. The results are
presented in Table 6. The “Min
Mem” column represents the mini-
mum amount of physically contigu-
ous memory required (on average)
to find one single useful bit flip.
The “Time” column is an estimate
of the mean time to the first bit
flip, assuming precise targeting and
200ms spent on each Rowhammer
test.

We see that an attack’s suc-
cess rate depends not only on how
vulnerable memory is, but also on
the specific bit flips pursued. Data
dependency is one issue: as evi-
denced in Table 2, memory can have
a preference for flipping in one direction more than the other. An exploit such
as the Page Table U/S bit attack, which relies on 0 → 1 bit flips can achieve
relatively poor success rates on otherwise very vulnerable (albeit in the oppo-
site direction) RAM. The second issue is the “rarity” of the required bit flips
for each attack in terms of bit offsets in a given memory page. Attacks such as
Page Table PFN or Dedup Est Machina, which make use of flips located at one
of potentially many page offsets show significantly better results than attacks
which require flips in very precise positions, such as Flip Feng Shui.
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6 Related Work

To our knowledge, there are no studies systematically applying accurate memory
addressing models to implement either Rowhammer attacks or defenses. Like-
wise, there are no studies looking into address manipulation beyond the memory
controller in the context of exploiting Rowhammer.

The first to describe the Rowhammer bug in widespread commodity hardware
were Kim et al. [13] in their study on the prevalence of bit flips on DDR3. Coming
from the hardware community, the researchers probed the DIMMs directly with
an FPGA. Besides identifying the phenomenon, the authors discovered that the
root cause of the problem was the repeated toggling of the DRAM row buffer.
They also found that many bits are susceptible to flips and that flipping bits
requires modest amounts of memory accesses (in their experiments fewer than
150K).

While the authors identified the hardware bug as a potential security prob-
lem, it was unclear whether it could be exploited in practice. One year later,
Seaborn presented the first two concrete Rowhammer exploits, in the form of
escaping the Google Native Client (NaCl) sandbox and escalating local privileges
on Linux [20]. In addition, Seaborn discovered that the bit flip rate increased
significantly with double-sided Rowhammer. The exploits relied on Intel x86’s
CLFLUSH instruction to evict a cache line from the CPU caches in order to read
directly from DRAM. CLFLUSH was quickly disabled in NaCl, while Linux mit-
igated the local privilege exploit by disabling unprivileged access to virtual-
to-physical memory mapping information (i.e., /proc/self/pagemap) used in
the exploit to perform double-sided Rowhammer. Soon after, however, Gruss
et al. [9] showed that it is possible to perform double-sided Rowhammer from
the browser, without CLFLUSH, and without pagemap—using cache eviction sets
and transparent huge pages (THP) [4]. They also found that hammering a pair
of neighboring rows, increases the number of flips in the rows adjacent to the
pair. In addition, Qiao et al. [18] showed how Rowhammer can be triggered
using non-temporal memory instructions in lieu of cache flushing. Bosman et
al. showed that it is possible to flip bits from JavaScript in a controlled fashion
using probabilistic double-sided Rowhammer without the need for huge pages [6].
Meanwhile, Xiao et al. [22] presented a second cross-VM attack that built on the
original Seaborn attack while improving on our knowledge of DRAM geometry.

Research so far predominantly targeted DDR3 RAM and x86 processors.
Aichinger [3] then analyzed the prevalence of the Rowhammer bug on server
systems with ECC memory and Lanteigne performed an analysis on DDR4 mem-
ory [14]. Despite initial doubt among researchers whether the memory controller
would be sufficiently fast to trigger the Rowhammer effect, Van der Veen et
al. [21] demonstrated that ARM-based mobile devices are equally susceptible
to the Rowhammer problem. New attack techniques focus on the DRAM itself.
For instance, Lanteigne [14,15] examined how data and access patterns influ-
enced on bit flip probabilities on DDR3 and DDR4 memory on Intel and AMD
CPUs. Meanwhile, Pessl et al [17] demonstrated that reverse engineering the
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bank DRAM addressing can reduce the search time for Rowhammer bit flips.
These techniques are complementary to our work.

7 Conclusion

Rowhammer is constantly on the news and increasingly sophisticated Rowham-
mer attacks surface both in industry and academia. In response, defenses have
quickly been developed, aiming to either prevent Rowhammer from occurring or
mitigating the security impact of bit flips. Both attacks and defenses however
make simplifying assumptions about memory layout and addressing which limits
their generality, reproducibility and effectiveness.

To fill this gap, we took a closer look at precisely how an accurate memory
addressing model impacts Rowhammer. Our analysis shows that software’s abil-
ity to trigger, as well as protect against, Rowhammer is greatly influenced by the
addressing schemes used by the memory subsystem. We introduce an end-to-end
model of DRAM addressing, including the previously unexplored techniques of
rank mirroring and on-DIMM remapping. We show that by using such an address
model to select Rowhammer targets, attackers can trigger significantly more bit
flips than previously assumed and even trigger bit flips on DIMMs where the
state of the art fails, amplifying the relevance of existing attacks. We also show
that existing defenses do not properly account for memory addressing can be
bypassed by sufficiently informed attackers.

To support our work, we introduced Hammertime, a software suite for
Rowhammer studies. Hammertime allows researchers to profile a large set of
DIMMs for bit flips and later use the resulting data to simulate the Rowhammer
defect in software. More importantly, Hammertime makes Rowhammer research
much faster, more comparable, and more reproducible. For example, Hammer-
time’s simulator allows researchers to quickly prototype a new Rowhammer vec-
tor and evaluate its effectiveness on a given set of existing flip tables. To foster
further Rowhammer research and in support of reproducible and comparable
studies, we are releasing Hammertime as open source.
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Abstract. Spear-phishing is an effective attack vector for infiltrating
companies and organisations. Based on the multitude of personal infor-
mation available online, an attacker can craft seemingly legit emails and
trick his victims into opening malicious attachments and links. Although
anti-spoofing techniques exist, their adoption is still limited and alter-
native protection approaches are needed. In this paper, we show that a
sender leaves content-agnostic traits in the structure of an email. Based
on these traits, we develop a method capable of learning profiles for a
large set of senders and identifying spoofed emails as deviations thereof.
We evaluate our approach on over 700,000 emails from 16,000 senders and
demonstrate that it can discriminate thousands of senders, identifying
spoofed emails with 90% detection rate and less than 1 false positive in
10,000 emails. Moreover, we show that individual traits are hard to guess
and spoofing only succeeds if entire emails of the sender are available to
the attacker.

Keywords: Spear-phishing · Email spoofing
Targeted attack detection

1 Introduction

Emails are a prevalent attack vector for infiltrating companies and organisations.
As documents and links are regularly exchanged via email within and across these
environments, they are a perfect vehicle for transmitting malicious payloads to
a victim [6,20]. To increase their success, attackers specifically target individual
members of an organization using carefully crafted emails—a technique referred
to as spear-phishing. For example, an attacker may pick an appropriate topic,
use correct wording and spoof a well-known sender to convince the recipient of
the veracity of an email [16]. These targeted attacks are more advanced than
regular phishing or spam campaigns, as they are individually adapted to the
environment and behavior of the victim. As a result, there exist only few simi-
larities between different spear-phishing attacks which makes it hard to construct
effective defenses.
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Although users are increasingly aware of the risk they are exposed to, they
have to rely on hints provided by the email client to detect spoofed content.
In the default setup, several clients, like Microsoft Outlook and Mozilla Thun-
derbird, display only little information for identifying the sender, such as the
From and Reply-To fields. Emails from unknown senders can be marked accord-
ingly and specifically dealt with but these and other fields can be forged, mak-
ing it hard even for a skilled user to distinguish legitimate content from well-
crafted attacks [5,34]. While inconsistent combinations of these fields can be
easily detected and used to notify the user of a potential threat, the situation
becomes challenging if all fields are correctly adapted by the adversary, such that
the email appears totally legitimate in its content as well as its headers.

Common anti-spoofing techniques such as the Sender Policy Framework
(SPF) [24], DomainKeys Identified Mail (DKIM) [7] and the more recent Domain
Message Authentication Reporting & Conformance (DMARC) [25] can help to
validate the sender of an email in this situation. Similarly, techniques for digital
signing of emails, such as PGP [4] and S/MIME [29], enable to verify the sender.
Unfortunately, these techniques are still not widely adopted in practice. While
we notice several email domains in our evaluation data with SPF entries, less
than 5% of the collected 700.000 emails contain corresponding DKIM headers
or even digital signatures. Moreover, all of these techniques need to be imple-
mented at the sending side, which renders it difficult to protect from spoofing if
not all communication parties adopt the technology [13,28]. Therefore, given an
attacker that is able to exactly match the address of a known sender, the user
is unable to detect the attack and might be tricked into opening a malicious file
or link.

As a result, there is a demand for alternative approaches to protect users
from highly targeted spear-phishing emails. In this paper, we propose a method
that is able to verify, without relying on its content, if an email exactly match-
ing the address of a known sender truly originates from its legit source. Our
method builds on the observation that a sender leaves characteristic traits in
the structure of an email, which are independent from textual content and often
persist over time. These traits significantly differ between senders and reflect
peculiarities of the user behavior, email client and delivery path, such as par-
ticular header combinations, encoding formats and attachment types. Based on
this observation, we develop a detection method that receives the mailbox of a
user as input and applies machine learning techniques to generate profiles for
all senders in the mailbox, even if only a few emails are available. These profiles
provide a content-agnostic view on the sender and enable us to spot spoofed
emails as deviations from the learned profiles.

We empirically evaluate our approach on a collection of 92 mailboxes from
twelve different domains, covering over 700,000 emails from 16,000 senders. We
demonstrate that our method can discriminate thousands of senders in one mail-
box and enables identifying spoofed emails with 90% detection rate and less than
1 false positive in 10,000 emails. Moreover, we can show that the individual
traits of a sender observed at the recipient’s end are hard to guess and spoofing
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Fig. 1. Simplified email as running example.

attempts only succeed if entire emails of the sender as delivered to the recipient
are known to the adversary. Although our approach cannot generally rule out
spoofing due to leaked emails, it considerably raises the bar for targeted attacks
and—in absence of widely deployed server-side solutions—provides an effective
protection for companies and organisations targeted by spear-phishing attacks.

In summary, we make the following contributions:

– Characteristic sender profiles: We identify traits which enable us to charac-
terize the sender of an email without relying on textual content. The result-
ing profiles are expressive enough to distinguish thousands of senders while
accounting for the diversity of individual emails.

– Detection of spear-phishing emails: We demonstrate how the learned profiles
of senders can be used for identifying spoofed emails and help to mitigate the
risk of spear-phishing attacks in absence of stronger server-side solutions in
practice.

– Evaluation and evasion experiments: We evaluate the performance of our
method through a series of increasingly adverse scenarios where the attacker
becomes stronger by obtaining more information about the target and build-
ing a better model of the spoofed sender.

The rest of this paper is organized as follows: In Sect. 2 we present traits
observable in the structure of emails and describe in Sect. 3 how these can be used
to construct profiles for senders. We evaluate the resulting detection method in
Sect. 4 and discuss its impact and limitations in Sect. 5. Related work is reviewed
in Sect. 6 and Sect. 7 concludes the paper.



72 H. Gascon et al.

2 Traits in Email Structure

The identification of spoofed emails is a challenging problem of network secu-
rity. An attacker can almost arbitrarily manipulate the structure and content of
emails, ranging from a trivially spoofed From field to carefully crafted sequences
of fake Received headers (see [30]). In absence of exact detection techniques in
practice, such as DKIM and DMARC, it is thus hard to discriminate legitimate
from forged emails.

The freedom available for constructing a spoofed email, however, may also
turn against the attacker and pose an obstacle. We argue that it is non-trivial
to mimic an email from a particular sender without detailed knowledge and
that minor irregularities in the email structure may provide valuable clues for
identifying spear-phishing attacks. If the attacker has access to emails from a
sender known to the victim, she can simply copy the email structure, yet if this
information is not fully available, she needs to make a good guess and hope that
the forged structure mimics the original communication well.

For uncovering such forgeries, we identify three groups of traits that can
characterize the sender of an email: First, when writing an email the sender
introduces behavior features that reflect individual preferences and peculiarities.
Second, the email client generates composition features, identifying the particular
client and its configuration. Third, the delivery of an email leaves transport
features that capture details of the sending and receiving infrastructure. In the
following, we describe these groups of traits in more detail and use the simplified
email in Fig. 1 as a running example through out this section.

2.1 Behavior Features

When a user writes an email, several of her individual preferences can manifest
in the structure of the email—aside from her writing style and habits [10,33]. For
example, some senders are frequently including recipients using the CC header,
whereas others avoid this and prefer to address all recipients directly using the To

field. Similarly, senders differ in the type and amount of files they are attaching
to emails in conversations. While some of these features are volatile and change
between different contexts, other features may persist over time and provide a
first basis for constructing a profile of the sender.

For our analysis, we identify 13 feature types that characterize the behavior
of a sender in the structure of an email, including

1. the type, number and order of attachments, for example when multiple doc-
uments are exchanged,

2. the relation to other emails and recipients, for example in form of References

and In-Reply-To headers,
3. digital signatures and certificates attached to the email as well as correspond-

ing PGP and S/MIME fields, and
4. the amount of text in the main part and the amount of quoted text in email

responses.
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A complete list of all 13 features is provided in Table 4 of the appendix. Note
that the cardinality of these features differs, where some may appear multiple
times in an email, such as the type of attachments and others only once, such
as the depth of the MIME structure. As an example, the email in Fig. 1 shows
the attachment of an executable file (line 20) and the reference to a previous
conversation (line 10)—two features that are rarely used in combination.

2.2 Composition Features

The second source for traits in the structure of an email is the mail user agent
(email client) that converts the provided addresses, text and attachments into a
suitable format for delivery. As emails have been originally restricted to ASCII
characters, there exists a wealth of encoding schemes for converting binary
data to a compatible ASCII representation (e.g. [14,15,23]). These schemes are
selected by the email client and often slightly vary in implementation, thus pro-
viding features that characterize the composition of an email. For example, the
Base64 encoding [23] does not enforce a fixed text length and thus clients differ
in the formatting of the corresponding text blocks. Similarly, there exists several
minor variations in the construction of multi-part MIME messages that provide
clues about the client and its configuration.

For our analysis, we identify 22 feature types that capture peculiarities of
the email client and its configurations, including

1. the type, order and syntax of common headers, such as the From, To, Subject
and Message-Id headers,

2. the type, order and syntax of headers in MIME parts, including fields like
Content-Type and Content-Disposition,

3. the syntax of address fields, such as the formatting and quoting of names and
email addresses,

4. the encoding of international characters in the subject field, in address fields
and filenames,

5. the type and location of textual content, such as HTML and plain parts in
the email,

6. client-specific behavior, such as the length of line breaks, missing and super-
fluous encodings of characters,

7. individual details of the MIME structure, such as the depth and the order of
different MIME parts, and

8. the structure of the Message-Id header and the structure of MIME boundaries.

A complete list of the 22 composition features is provided in Table 5 of the
appendix. While these features alone are clearly not sufficient to identify attacks,
in combination with behavior and transport features they sharpen the view on a
sender and thereby obstruct the spoofing of email addresses. As an example, the
email in Fig. 1 shows a unique order of the From, To and Subject field (line 5–9)
which indicates a rare email client. Furthermore, the Base64-encoded attachment
is formatted using a 60 character line length (line 23).
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2.3 Transport Features

A third group of traits can be attributed to the delivery path of an email. As the
email moves from the sending to the receiving mail transport agent, often pass-
ing multiple hops, different headers are added to the structure. These headers
describe the individual mail hops in form of Received headers and provide infor-
mation about available delivery features, such as delivery protocols, TLS or the
time zone of the mail server. These headers and features, again, generate a series
of traits that can help to distinguish different senders and spot irregularities in
the delivery process.

Although an attacker can insert fake headers prior to the delivery of an email,
it is not possible to change or remove headers added by hops on the delivery path.
As a consequence, an attacker can only forge these headers by either connecting
directly to the receiving server or, alternatively, attempting to inject emails early
into the delivery process—a tractable but non-trivial task in practice, as it would
require having access to the same delivery infrastructure as the sender that the
attacker is trying to spoof.

We identify 11 transport features that enable us to reconstruct the delivery
path of an email and spot deviations from past emails of the same sender. These
features include

1. the number and order of Received headers, where each hop is represented by
the hash of its hostname,

2. the path of time zone from the first to the last hop during the delivery process,
3. the delivery protocols and TLS features available in some Received headers,
4. the validity of DKIM records added by the servers and their relation to the

claimed sender of the email, and
5. non-standard headers added by spam filters or anti-virus services during the

delivery of the email.

Table 6 in the appendix provides a list of all 11 transport features. As an
example of traits introduced by the delivery process, the email in Fig. 1 con-
tains a detailed Received header (line 2–4). This header defines the mail hop,
delivery protocol and delivery time. This information is available with any mail
passing the hop and thus can leak to the attacker. However, we show in Sect. 4
that knowledge of transport features alone is insufficient to evade our detection
method and that the attacker needs access to original emails delivered to the
recipient for successfully spoofing a sender.

3 Detection Methodology

Equipped with three groups of traits for characterizing the sender of an email, we
are ready to develop a corresponding detection method using machine learning
techniques. The application of learning methods spares us from manually con-
structing detection rules for each of the senders and thereby allows for scaling
our approach to thousands of senders, as we demonstrate in Sect. 4.
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3.1 Feature Extraction and Embedding

The proposed groups of traits provide detailed information about the structure
of emails from each sender in the recipient’s mailbox. In order to learn a profile
from the traits, however, we require a numerical representation that can be
used in combination with common learning methods. As a remedy, we apply
the concept of a bag-of-words model—a technique originating from information
retrieval [32] and natural language processing [21,22]—and adapt it to the traits
extracted from the structure of emails.

To this end, we represent each of the extracted traits as a feature string and
build a joint set F that comprises all observable strings from the three groups
of traits:

F := Fbehavior ∪ Fcomposition ∪ Ftransport.

Making use of this set F , we define an |F |-dimensional vector space that
takes values 0 or 1 in each dimension. Each email e is then mapped to this
space by building a vector ϕ(e), such that for each feature f extracted from e
the corresponding dimension is set to 1, while all other dimensions are set to 0.
Formally, this map can be defined for all emails M as

ϕ : M −→ R
|F |, ϕ(e) �−→ (If (e))f∈F

where the auxiliary function I simply indicates whether the feature f is present
in e, that is,

If (e) =

{
1 if email e contains feature f

0 otherwise.

The resulting binary vector space R
|F | allows us to represent each email as a

vector of the contained traits of its sender. In the following, we describe how we
use this representation to train a machine learning classifier that, based on these
features, is able to assign each email to its corresponding sender and indicate
possibly spoofed emails.

3.2 Model Learning and Classification

Several learning methods can be applied for classifying data in a vector space. To
operate in our setting, however, a learning method needs to address additional
requirements: First, the method has to be able to operate in a high-dimensional
vector space, as the set F may cover thousands of different traits. Second, the
method needs to be capable of learning a classification model, even if only very
few training data is available, such as a couple of emails only.

In view of these requirements, we select the following two learning methods
for our detection approach: (a) a k-nearest-neighbors classifier (kNN) that can
generate good classification results with very few training data and (b) a multi-
class support vector machine (SVM) which is known for effectively operating in
high-dimensional vector spaces (see [9]).
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Fig. 2. Schematic overview of the detection: a classifier is used to identify emails as
spoofed when a mismatch between the output of the classifier and the origin sender
address occurs.

K-Nearest Neighbors Classifier. The kNN algorithm is a simple yet effective
learning method for classification. It computes the distance between a test sample
and all existing samples in a training set and makes a decision through voting on
the labels of its k-nearest samples after applying a weight function (see Fig. 2).
Such instance-based learning algorithms do not construct an explicit learning
model and thus can be applied even if only a single email is available for a sender.
For our approach, we label each feature vector with the address of the originating
sender address. When a new email is received, we compute the distance between
this sample and the feature vectors of all existing emails as follows

d(ex, ey) =
∣∣∣∣ ϕ(ex) − ϕ(ey)

∣∣∣∣
1

=
∑
f∈F

| If (ex) − If (ey) | ,

where d corresponds to the Manhattan or L1 distance. A mismatch between the
incoming sender address and the prediction of the classifier is then flagged by
our method as a spoofing attempt.

The advantage of making predictions with very few training data, however,
comes at a price. The distance between each new email and all existing emails
needs to be computed before making a decision, which is computationally expen-
sive on large mailboxes. Fortunately, this problem can be addressed in two ways:
First, one can implement the classifier using special data structures for reducing
the number of distance computations, such as ball trees and cover trees [2]. Sec-
ond, if the number of training instances reaches a certain limit, one can simply
switch to another learning method, such as a support vector machine or, when
possible, sample the training data according to a distribution that maintains the
classifier performance.

Multi-class Support Vector Machines. As second learning method, we employ
a linear multi-class SVM algorithm [11]. The algorithm computes a series of
maximum-margin hyperplanes that separate the emails from one sender from
the emails of all other senders (see Fig. 2b). That is, given N different senders, N
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hyperplanes are determined, each one of them represented by a vector w ∈ R
|F |

and a scalar b in the vector space.
If a new email arrives, we simply determine the position to the learned hyper-

planes and pick the sender with the best match, that is, the largest value of

h(e) = 〈ϕ(e), w〉 + b =
∑
f∈F

If (e) · wf + b.

Note that this function can be computed efficiently, if the feature vector ϕ(e) is
sparse, as only non-zero dimensions If (e) contribute to the output. As a result,
we can compute h(e) in linear time in the number of traits |e| extracted from
e and the overall run-time for analyzing an email is O(N |e|). In contrast to the
kNN algorithm, the run-time for the prediction of a linear SVM is independent
of the size of the training set and thus this learning method is suitable if more
emails are available from particular senders (see [11]).

4 Evaluation

We proceed to evaluate our detection method on a large dataset of real-world
emails. In particular, we are interested in studying the ability of our method
to characterize the sender of an email based on its structure and to identify
spoofed emails under different levels of knowledge of the adversary. Before pre-
senting these experiments, we first introduce our dataset (Sect. 4.1) and define
the corresponding attacker model (Sect. 4.2).

4.1 Evaluation Data

Table 1. Statistics of evaluation data.

Basic statistics Total

Mailboxes 92

Emails 760,603

Senders 17,381

Features 617,960

Detailed statistics Min. Mean Max.

Emails per mailbox 2 8,267 50,924

Emails per sender 2 43 44,204

Senders per mailbox 1 279 2,144

Features per email 5 69 183

Emails per sender and mailbox 2 29 10,304

For our evaluation, we have
gathered anonymized features
extracted from 92 mailboxes
from twelve different domains,
including enterprise and com-
mercial email services. To
evaluate the efficacy of our
detection method, we require
at least one email for learning
and one for testing from each
sender. Consequently, we dis-
card all emails from senders that have sent only a single email. Our final dataset
comprises a total of 760,603 emails from 17,381 senders, where each sender has
authored at least two emails. These emails are described by a total of 617,960
features extracted using the traits defined in Sect. 2. Table 1 provides an overview
of the statistics of our evaluation data.

Figure 3 depicts in more detail how emails and senders are distributed within
our dataset. From Fig. 3a and b we can see that over 50% of the mailboxes in
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Fig. 3. Overview of the evaluation data: (a) distribution of emails and (b) distribution
of senders in the 92 mailboxes; (c) training data available for learning with varying
emails per sender.

our dataset contain between 103 to 104 emails and between 102 to 103 different
senders. This large corpus of emails provides a good basis for evaluating the
performance of our method. Depending on the applied learning model, however,
we require a minimum number of emails per sender and thus not all senders
might be available for training. Figure 3c shows the amount of training data
available to a learning method depending on the minimum number of emails per
sender. While for the kNN classifier all senders can be used for evaluation, in
the case of the SVM classifier, we need to restrict our experiments to 46% of the
data, as we require at least 5 emails for training.

To prepare our experiments, we extract feature vectors from all emails in
our evaluation data. This may seem as an intractable task at first glance, as
the resulting vector space has over 600,000 dimensions. However, the majority
of these dimensions is zero and each email contains only between 5 to 183 fea-
tures (see Table 1). As a result, we can make use of efficient data structures for
operating with these sparse feature vectors (see [31]).

As a sanity check whether our representation is suitable for learning a clas-
sification, we first study how senders in a mailbox differ from each other and
then analyze how emails from a specific sender change over time. To this end,
we first calculate a simple statistic: For each sender, we compute the average
of its feature vectors and measure the distances between the resulting 17,381
mean vectors within each mailbox. We make use of the Manhattan distance (L1

distance) for comparing the mean vectors. The distance can be interpreted as
the average number of features differing between the senders and thus provides
an estimate for the quality of extracted traits.

Figure 4 shows the distribution of the Manhattan distances between all
senders in each mailbox. It can be observed that most senders are separated
from each other by a distance larger than 40 on average. This demonstrates that
several of the extracted traits are highly specific and capture nuances of the
email structure suitable for discriminating the senders. Multiple sources may
introduce variability and noise into the email traits of a sender, such as software
updates, network configurations and changing devices. We thus study how emails
from an individual sender change over time. In particular, we want to answer
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Fig. 4. Distance between senders Fig. 5. Feature drift over time

the question how many features change in a new email when it is compared
with existing emails from the same sender. For this, we measure the Manhattan
distance between each email received at a certain point in time in a mailbox
and all emails previously received from the same sender. The average number of
differing features is then presented as a percentage of the feature space dimen-
sionality. Figure 5 shows that a slight feature drift exits. It can be observed
how the variability grows rapidly at first with the initial emails received from
a sender. However, when an increasing number of emails is received each class
becomes more compact and the average percentage of different features in a new
email decreases. Note that although profiles become more stable during time,
they also tend to differ considerably as shown in Fig. 4.

As the final preparation step, we determine the presence of anti-spoofing
techniques in the 760,603 emails using corresponding email client and transport
features. Table 2 shows the percentage of emails in our dataset that contain
anti-spoofing techniques, where we additionally report statistics from the top
million web domains listed at the monitoring service BuiltWith [3]. Although the
adoption of SPF [24] has reached almost 40% by now, the overall implementation
of anti-spoofing techniques is still low in both data sources. In particular, recent
techniques, such as DKIM [7] and DMARC [25] are used in less than 5% of the
emails, thereby emphasizing the need for alternative protection measures.

4.2 Attacker Model

Table 2. Anti-spoofing techniques in our
evaluation data and as reported by the
monitoring service BuiltWith.

Anti-spoofing technique Our data Top 1M [3]

SPF — 39.9%

DKIM 4.3% 0.1%

DMARC — 1.3%

PGP, S/MIME 0.88% —

In the absence of anti-spoofing tech-
niques, a skilled adversary is able to
forge most of the data contained in
an email. However, we argue that,
by inferring a sender profile based
on traits of the email structure, an
attacker is forced to mimic such pro-
file to effectively masquerade as the
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sender. As a consequence, the success of such spoofing depends on how much
information of the email structure is available to the adversary and if the attacker
has access to the senders delivery infrastructure.

Therefore, we begin the evaluation of our approach by measuring in a con-
trolled experiment how an attacker may affect the detection performance by
spoofing an increasing number of features from a sender’s profile (i.e. all fea-
tures extracted from all emails received from a specific sender in a mailbox). To
this end, we first split each sender’s data in a mailbox into training and testing
sets and then train both kNN and SVM classifiers. For testing, we select random
emails from other mailboxes and relabel them as known senders of the target
mailbox to imitate spoofing attempts. This means that our testing set is com-
prised of 50% of legitimate emails and 50% of spoofed emails with a random
percentage of correct traits of the target sender.

Note that to generate spoofed emails we do not rely on their textual content
for feature extraction. Moreover, we adapt the transport features added by the
recipient MTA to the recipient mailbox. As a result, the spoofed emails in our
testing set are not different from real spear-phishing emails sent by an attacker,
as no textual content is considered.

We measure the detection performance of our classifiers using the true-
positive rate (TPR) and false-positive rate (FPR). In our setup, a true positive
implies that a spoofed email has been correctly identified, while a false positive
corresponds to a legitimate email wrongly being tagged as spoofed. Furthermore,
we use a Receiver Operating Characteristic (ROC) curve to present both evalua-
tion metrics and calculate the area under the ROC curve (AUC) as a numerical
aggregate of the classification performance (see [12]). Although an adversary
with increasing capacity will affect the ability of the classifier to correctly iden-
tify deviations from a user profile, the information available to an attacker is
constrained by threat scenarios that can occur in reality. In this work, we thus
assume that the knowledge of an attacker can range from knowing nothing about
the spoofed sender to having real examples of her emails.

Fig. 6. Threat scenarios for increasing attacker capabilities based on the acquired
knowledge about the spoofed sender: (a) the attacker has no information about the
sender, (b) the attacker has access to emails received from the sender’s domain and,
(c) the attacker has access to one or more emails from the real sender.
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Accordingly, we model these attackers through a series of increasing adver-
sarial setups and proceed to evaluate the performance of our approach in each
scenario as depicted in Fig. 6:

(a) Blind Spoofing: In this scenario, the attacker (Mallory in Fig. 6) tries to
spoof a particular sender from which she does not have any information.
The only available strategy for the attacker is to simply replace the From and
Return-Path headers of the targeted email and try to guess the behavior,
composition and transport features.

(b) Known Domain: In this scenario, the attacker has received or has access to
one or more emails sent by a sender that belongs to the same email domain as
the spoofed sender. The attacker can thus expect that some of their transport
features are present in the emails received by the victim from the sender she
wants to spoof.

(c) Known Sender: In this scenario, shown in Fig. 6c, the attacker has received
or has access to one or more emails sent by the spoofed sender. As a result,
several traits used for constructing the profile are available to the attackeri
and can be incorporated in her spoofed emails.

In the following, we describe how we learn a profile of each sender within a
mailbox and assign the role of the victim to the owner of the mailbox. Then,
based on the attack strategies described in each scenario and using the emails
available in our dataset we build corresponding sets of spoofed emails for each
sender and combine them with legitimate emails to evaluate our method.

4.3 Spoofed Email Detection

In the following we evaluate the performance of our approach in the threat
scenarios defined in the previous section. In order to learn a profile for each
sender we begin again by splitting all available emails into training and testing
sets. For training, we consider all emails received up to a certain point in time. In
the case of the kNN classifier one email from a sender in the training set suffices
to make a decision about an incoming email from this origin address, while for
the SVM classifier we require a minimum of 5 emails from a sender to include
this class during training. In order to tune the parameters of each classifier, we
partition the training data into 5 splits and use training/validation partitions,
such that the temporal order of emails is preserved—similar to a regular cross-
validation. This enables us to simulate training with past data and generating
predictions for data yet unseen. Note that although a mailbox or sender may not
present enough emails for training, we still use these samples to generate test
spoofed emails.

For the testing phase, we combine the test set of legitimate emails with a
set of emails crafted according to the attacker strategies described in Sect. 4.2.
In the case of a blind spoofing attack, we select a random set of emails sent to
recipients at different domains than the victim and label them as the spoofed
sender. Likewise, we evaluate the known domain attack by selecting emails sent
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Table 3. Detection performance of our approach in different threat scenarios.

Threat

scenario

Blind spoofing Known domain Known sender

Algorithm kNN SVM kNN SVM kNN SVM

Metric FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

0.01% 90.9% 0.01% 92.4% 0.01% 72.7% 0.01% 78.1% 0.01% 48.1% 0.01% 30.1%

0.1% 90.9% 0.1% 92.4% 0.1% 72.7% 0.1% 78.2% 0.1% 48.2% 0.1% 30.2%

1% 91.1% 1% 92.5% 1% 73.7% 1% 79.3% 1% 48.9% 1% 30.4%

10% 91.9% 10% 92.9% 10% 78.4% 10% 84.1% 10% 53.2% 10% 33.9%

Fig. 7. ROC curves for the classification of legitimate emails versus emails spoofed by
attackers with different levels of knowledge.

from the domain of the spoofed sender by a different sender to other recipients.
Finally, we select emails sent by the spoofed sender to different recipients to
built the spoofed test set in the evaluation of the known sender attack.

During testing, we expect a legitimate email to be assigned to its true class
by the classifier. On the contrary, a spoofed email should be assigned to any
of the other classes, resulting in a mismatch between the sender address from
which the email is sent and the output of the classifier. There exists thus a trade-
off between the probability of detecting a spoofed email and the probability of
wrongly highlighting a legitimate email as spoofed. The ROC curves depicted
in Fig. 7 show the trade-off between the false-positive rate and the false-positive
rate for both classifiers.

If the attacker lacks any knowledge about the spoofed sender, we observe
that the kNN and SVM classifiers can identify a spoofed email with a true-
positive rate of 90.9% and 92.4% respectively at a low false-positive rate of
0.01%. If the attacker has access to emails originating from the same domain,
the performance decreases to 72.7% and 78.1% but the classifier is still able to
effectively operate at the same low false-positive rate. In the worst-case scenario,
the attacker has enough information to craft an email that resembles the learned
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Fig. 8. Area under the ROC curve as a function of the number of training emails used
to learn each sender’s individual profile.

profile of the spoofed sender, which causes the performance of the classifier to
deteriorate considerably. Table 3 specifies numerically the detection achieved at
0.01%, 0.1%, 1% and 10% of false-positive rate for both classifiers in all scenarios.

As mentioned above, we set a lower threshold for the minimum number of
emails required to train an SVM classifier. However, as shown in Fig. 3 a larger
number of emails above this threshold is available for many senders. Figure 8
shows in each scenario the relation between the number of emails from a sender
used to train the classifier and the AUC averaged over all mailboxes and senders.
As described in Sect. 4.1, sender profiles tend to be more compact with an
increasing number of emails. However, this can affect the performance differ-
ently depending of the knowledge available to the attacker. For instance, in
threat scenarios (a) and (b), emails are classified with an AUC over 0.85 with a
small number of training samples. Spoofed emails lay here far enough from the
sender profile, leading to a stable or increased performance when classes becomes
more populated. In particular, the SVM classifier offers a better performance at
a low number of available emails, while with an increasing training size, the kNN
classifier surpasses the SVM.

Fig. 9. Distribution of scores per group
of traits as learned by the linear SVM
classifier during training.

On the contrary, in threat scenario (c)
the attacker is always able to craft an
email that resembles the profile of the
spoofed sender, while a larger number of
training samples increases the variabil-
ity of the sender profile. As each spoofed
email lay very close or within the tar-
get class, it becomes more difficult for the
classifier to correctly separate legitimate
emails from spoofing attempts when the
sample size increases. A possible approach
in such a high risk scenario, is to operate
the classifier at a higher FPR point and to
retrain the model more often on a smaller
sample of the most recent emails received
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from each sender. Finally, the use of a linear SVM for classification allows us
to study how the learning algorithm assigns different weights to each type of
features according to its importance for the classification. To this end, we deter-
mine the distribution of the normalized SVM weights and group them by trait
types. In Fig. 9, we can observe that, in comparison with behavior and composi-
tion features, transport related features manifest both a smaller dispersion and a
larger influence on the decision of the classifier. Consequently, transport features
have the most discriminative power and, at the same time, are the most difficult
traits to forge as even a skilled adversary is not able to fully control transport
features without having access to the same delivery infrastructure of the sender.

5 Discussion and Limitations

The evaluations in the previous section show that our method is capable of
reliably discriminating thousands of senders and identifying spoofed emails if
the attacker has limited knowledge of the email structure. Due to the problem
setting of detecting spoofing at the receiving side, however, our approach has
some inherent limitations which are discussed in the following.

Advanced Forgery. Although spear-phishing and other targeted email attacks
today focus on the forgery of visible features like the sender address, the subject
and the content of an email to mimic trustworthy emails [18,26], we likely have
to deal with more advanced attacks in the near future. If current attacks are no
longer successful because of increased user awareness and detection approaches
like ours, attackers will adapt their techniques. For our method, the best strat-
egy for evasion is to forge as many features from the original sender as possible.
An almost perfect forgery is thus a copy of an original mail including also its
true transport features as observed by the recipient and enriched with some
malicious content. However, the attacker needs to take care of several traits
that our method inspects, such as timestamps, IP addresses in received headers
and characteristics of the attachment. In the worst case, the attacker is able to
forge all of these details and hence the only indication of a spoofed email are
minor inconsistencies between IP addresses and hostnames. Our method fails
in this scenario, as only a few features differ from the sender model. Nonethe-
less, the acquisition of emails from a sender and acquiring access to the senders
delivery infrastructure to control the transport features, clearly raise the bar for
conducting spear-phishing attacks. Therefore and with the current lack of alter-
native protection approaches, our approach is a valuable extension to current
defenses.

Privacy and Feature Extraction. We have implemented the feature extraction in
a privacy-friendly way in that all sensitive information of sender, transport and
recipients is only stored in an anonymized form by using a hash with random
salt. Only these anonymized features are kept and used in the initial creation
or retraining of the model. This makes it possible to implement the system for
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example in a security appliance which receives all feature vectors for analysis but
does not store the mails. This also means, however, that the model cannot be
simply extended with new features and retrained with old data, since the original
mail as input for feature extraction is no longer available. Feature extraction is
therefore performed locally in every case. Although this limits how anonymized
data from different sources can be combined for analysis, the recipient’s email
information never leaves the local machine, avoiding privacy issues and possible
attack vectors.

Mislabeled Data. The possibility of the training data containing spoofed emails
should not be ignored. However and due to their very nature, the prevalence of
spear-phishing emails can only be very low within all emails sent to a recipient.
This problem, known as label noise (see [8]), entails that training samples can
be considered subjected to an additive noise during training with a probability
of their labels being flipped. In our setup, however, such probability will be very
low and the effect during testing of such infrequent examples, while existent, will
be negligible.

6 Related Work

The detection of unwanted and malicious emails is a well-established problem in
security research. Several methods have been devised in the last years that are
related to our approach and which we briefly discuss in the following.

For instance, several approaches exist that focus on the content of emails and
the style in which they are writtenx (e.g. [10,17,33]). The assumption behind
these features is that the writing style of one sender differs significantly from
another and that it is too hard for the attacker to write a mail in the same style
as the sender she is trying to spoof. The implementation of such content-based
features can be as simple as using a 5-gram tokenizer [27] but can also be more
complex and include character distributions, atypical words or more advanced
stylometric features [10,17,33]. In many cases, these stylometric features are used
in combination with further behavioral features, such as the time of writing.

While these approaches potentially provide a good detection of spoofed
emails, they present two problems. First, if text from the original sender is
available from any source stylometric traits can be easy to forge and second
such approaches require sufficient data to infer minor differences in stylometry
and can be computationally expensive. As a consequence, previous work often
operates with small datasets. For example, Lin et al. [27] conduct an evaluation
with only 6 senders due to a lack of available data. Similarly, Duman et al. [10]
discriminate only 215 senders in their experiments. Whether these techniques
can be scaled to cover thousands of senders is unclear and thus the application
stylometric features for spear-phishing detection is still an open issue.

The problem of limited learning data is addressed by Stringhini and Thon-
nard [33] who propose a detection approach that, while also relying on email
content, is capable of analyzing larger datasets. However, their method requires
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a minimum of 1,000 emails per sender to be effective. Moreover, they position
the defense at the sender’s server and require to include emails from different
mailboxes to build a reliable behavioral profile of a user. Such an approach
is orthogonal to our method which operates at the recipient’s side, who only
requires the information contained in her own mailbox to build an effective
defense. Furthermore, recipient related features are based on the idea that dif-
ferent recipients have different risk to get spear-phishing mails. Such features are
proposed by Amin [1] which determine the amount of information returned by
a search engine about a recipient and how often a person has received malicious
mails in the past. Unsurprisingly, the latter turns out to be a dominant feature,
i.e., those senders who got attacked in the past a lot will probably also get a lot
attacked in the future.

As in our work, infrastructure related features commonly include properties
of the transport like the senders IP address or her geographic location [17,27].
But also features of the used mail client belong in this category since a sender
will usually use only a single or few email clients. Features related to the infras-
tructure are often similar for all senders in the same domain which can be used to
increase model accuracy when only a few mails from a specific sender are avail-
able. Compared to stylometric features, infrastructural features do not model
the actual author but only her environment. Therefore, it is impossible to detect
a hacked account with these features. On the other hand infrastructural features
need less training data to create a well-performing model. Thus, it might be
useful to combine the strength of both approaches. Structural based features,
instead of content based features are the dominant ones in our evaluation. Such
features were already used by Amin [1]. Contrary to this work, our approach
makes use of a larger set of features from the mail client and from its transport
and is based on distinguishing different senders based on these features instead
of globally distinguishing all spear-phishing mails from all benign mails.

Finally, a method recently proposed by Ho et al. [19] focuses on the identi-
fication of credential phishing and is designed to identify attacks from unseen
senders. Our approach is orthogonal to this work, as it addresses two of its main
shortcomings: First, Ho et al. [19] consider the problem of address spoofing irrel-
evant due to the availability of DKIM and DMARC. Our empirical analysis,
however, shows that both techniques are not widely available in practice and
thus alternative methods are needed. Furthermore, DKIM and DMARC need
to be implemented at the sending side, which enables the attacker to choose a
known sender with lacking support for this security feature. Second, the pro-
posed method requires the victim to interact with the phishing email by clicking
on a link. This poses a serious security risk and may result in the victim’s host
being compromised before the attack is actually detected. Our approach does
not require interaction and can block phishing attacks before they reach their
victim, for example, by removing links and attachments from emails.
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7 Conclusions

In this paper, we show that a sender leaves several traits in the structure of
an email, resulting from her personal preferences, email client and infrastruc-
ture. Based on these traits, we present a detection method that is capable of
learning profiles for senders and identifying impersonated emails without relying
on its content or server-side implementations. In an empirical evaluation with
over 17,000 senders, we demonstrate that this method can identify over 90% of
spoofed emails with less than 1 false alarm in 10,000 emails, if the attacker has
no knowledge of the sender’s profile. If the attacker has access to emails from the
same domain as the spoofed sender our method still attains a detection rate of
72% and thus raises the bar for an adversary to effectively complete a spoofing
attack. Although our approach cannot detect an attack by an adversary with
vast resources, it provides a strong protection from attackers that are not able
to obtain original emails from a specific sender. In practice, our approach thus
provides a valuable tool for fending off spear-phishing attacks that would go
unnoticed without a proper anti-spoofing detection.

A Appendix

Tables 4, 5 and 6 provide an overview of the different traits characterizing the
behavior, composition and transport of emails, respectively.

Table 4. List of behavior features.

Identifier Cardinality Description Examples

attachment-

type

n Type of attachment attachment-type(image)

hdr-empty n Headers with empty values hdr-empty(cc)
hdr-local-

domain

n Headers indicating local

domains

hdr-local-domain(to:D0)

hdr-

related-

mails

n Headers indicating relation to

other emails

hdr-related-mails(subject:re)

hdr-count n Number of standard headers

and their values

hdrcount(cc:1:2+)

hdr-x n Occurrences of non-standard

headers

hdr-x(x-virus-scanned)

msgid n Structural description of

Message-Id header

msgid(<A.A@H>)

reply-to n Hashed sender in Reply-To
header

reply-to(xxx)

resent 1 Headers indicate redistribution resent(1)
return-

path

n Sender in Return-Path
header

return-path(full:same-as-from)

text-

quoted

1 Ratio of quoted total text in

main part

text-quoted(0.3)

frompart n 2-grams of From field frompart(xxx:yyy)
from n Multiple senders in From

header

from(full:*)
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Table 5. List of composition features.

Identifier Cardinality Description Examples

base64 n Peculiarities of

Base64 transfer

encoding

base64(linelen(72))

quoted-

printable

n Peculiarities of

Quoted-Printable

transfer encoding

quoted-printable(unencoded-ctrl)

7bit n Peculiarities of 7bit

transfer encoding

7bit(7bit-contains-8bit)

8bit n Peculiarities of 8bit

transfer encoding

8bit(long-line)

attachment-

ext

n Extension of the

attachment

attachment-ext(doc)

attachment-

mism

n Mismatch of

attachment type and

extension

attachment-mism(doc|zip)

attachment-

sig

1 Signature of how the

attachment is

specified

attachment-sig(fTnT)

inline-ext n Extension of

attachment when

disposition inline

inline-ext(jpeg)

nodisposition-

ext

n Extension of

attachment if no

disposition is given

nodisposition-ext(jpeg)

boundary n Structural

description of the

MIME boundary

boundary(-= H-H-H)

hdr-syntax n Syntactic format of

headers

hdr-syntax(subject:q:ISO-8859-1)

hdr-pair n Pair-wise order of

headers

hdr-pair(from:date)

part-hdr-pair n Pair-wise order of

headers in MIME

parts

part-hdr-pair(content-type:content-id)

ua n Simplified name of

user agent

ua(outlook16)

preamble n Digest of the MIME

preamble

preamble(c928c8bf)

mime n Peculiarities of

MIME usage

mime(cd:inline+filename)

depth 1 Depth of the MIME

structure

depth(2)

mime-warning n Minor problems in

MIME structure

mime-warning(invalid-content-type)

mime-error n Major problems in

MIME structure

mime-error(paramval-junk)

part-path n Path to MIME parts part-path(alt(R).1:html)

part-size n Size of MIME parts part-size(html:10:1000)

part-type n Type of MIME parts part-type(image:base64)
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Table 6. List of transport features.

Identifier Cardinality Description Examples

dkim n Results of DKIM
validation

dkim(1:valid), dkim(2:invalid)

rcvd 1 Number of
Received headers

rccvd(13)

rcvd-pair n Hashes of previous
and current
Received header

rcvd-pair(xxx:yyy)

rcvd-mta n Hashes of MTA
features at given
header position

rcvd-mta(1:XXX)

rcvd-src n Hashes of source
features at given
header position

rcvd-src(2:xxx)

rcvd-tls n Hashes of TLS
features at given
header position

rcvd-tls(3:xxx)

rcvd-tocc n Occurrences of To

field in Received

headers

rcvd-tocc(to:x1)

hdrtz 1 Path of time zones
from Received

headers

hdrtz(-0200:+0800)

hdrtzcost 1 Cost of transport
based on the
changes in time
zones

hdrtzcost(6)

srcip-asn 1 ASN for source IP
address of client

srcip-asn(8881)

srcip-spf 1 SPF result for
source IP address
of client

srcip-spf(spf:Pass)
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Abstract. Detecting backdoors is a difficult task; automating that
detection process is equally challenging. Evidence for these claims lie in
both the lack of automated tooling, and the fact that the vast majority
of real-world backdoors are still detected by labourious manual analysis.
The term backdoor, casually used in both the literature and the media,
does not have a concrete or rigorous definition. In this work we pro-
vide such a definition. Further, we present a framework for reasoning
about backdoors through four key components, which allows them to be
modelled succinctly and provides a means of rigorously defining the pro-
cess of their detection. Moreover, we introduce the notion of deniability
in regard to backdoor implementations which permits reasoning about
the attribution and accountability of backdoor implementers. We show
our framework is able to model eleven, diverse, real-world backdoors,
and one, more complex backdoor from the literature, and, in doing so,
provides a means to reason about how they can be detected and their
deniability. Further, we demonstrate how our framework can be used to
decompose backdoor detection methodologies, which serves as a basis
for developing future backdoor detection tools, and shows how current
state-of-the-art approaches consider neither a sound nor complete model.

Keywords: Backdoors · Formalisation of definitions
Program analysis

1 Introduction

The potential presence of backdoors is a major problem in deploying software
and hardware from third-parties. Recent studies and research has shown that
not only powerful adversaries [3], but consumer device manufacturers [2,5] have
inserted deliberate flaws in systems that act as backdoors for attackers with
knowledge of those flaws. Unlike the exploitation of traditional vulnerabilities
whereby a weird, unintended program state is reached, backdoors also manifest
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as explicit, intentional, essentially normal program functionality – making their
detection significantly more challenging.

Many backdoors are considered by their manufacturers to be accidental, left-
over “debug” functionality, or ways to implement software configuration updates
without explicit user authorisation [5]. In other cases, device manufacturers
deploy firmware coupled with third-party software that introduces backdoor
functionality into their otherwise backdoor free systems without their knowl-
edge [9].

The term “backdoor” is generally understood as something that intention-
ally compromises a platform, aside from this, however, there has been little effort
to give a definition that is more rigorous. To give such a definition is difficult
as backdoors can take many forms, and can compromise a platform by almost
any means; e.g., a hardware component, a dedicated program or a malicious
program fragment. This lack of a rigorous definition prohibits reasoning about
backdoors in a generalised way that is a premise to developing methods to detect
them. Further hampering that reasoning – especially in the case of backdoors
of a more complex, or esoteric nature – is the sheer lack of real-world samples.
Documented real-world backdoors are generally simplistic, where their trigger
conditions rely upon a user inputting certain static data, e.g., hard-coded cre-
dentials. Such backdoors have been studied in the literature with various tools
providing solutions relying on varying degrees of user interaction [19,21].

2 Overview

This work provides first and foremost a much needed rigorous definition of the
term backdoor: which we view as an intentional construct inserted into a sys-
tem, known to the system’s implementer, unknown to its end-user, that serves to
compromise its perceived security. We propose a framework to decompose and
componentise the abstract notion of such a backdoor, which serves as a means to
both identify backdoor-like constructs, and reason about their detection. While
the primary focus of this work is software-based backdoors, by modelling a back-
door abstractly, our framework is able to handle all types of backdoor-like con-
structs, irrespective of their implementation target.

Many backdoors found in the real-world fall into a grey area as to whom is
accountable for their presence; to address this, we define the notion of deniabil-
ity. We model deniability by considering different views of a system: that of the
implementer, the actual system, and the end-user; this allows us to – depend-
ing on where backdoor-like functionality has been introduced – reason about if
that functionality is a deniable backdoor, accidental vulnerability, or intentional
backdoor. In many cases, attempting to model this intention, or the lack thereof,
is something that is social or political, thus we do not address such cases in this
work, instead we focus on the technical aspects of a backdoor-like functionality.

We show that under our definitions, many backdoors publicly identified are
not deniable and thus, their manufacturers should be held accountable for their
presence. Aside from manual analysis, little work has been performed to address
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the detection of backdoors. We perform a study of both academic and real-world
backdoors and consider existing methods that can be used to locate backdoor
components, as well as how those methods can be improved.

2.1 Contributions

To summarise, the contributions of this work are as follows:

1. We provide a rigorous definition for the term backdoor and the process of
backdoor detection.

2. We provide a framework for decomposition of backdoor-like functionality,
which serves as a basis for their identification, and reasoning about their
detection.

3. We express the notion of deniable backdoors by considering different views of
a system: the developer’s perspective, the actual system, the end-user, and a
user analysing the system.

4. We show examples of both academic and real-world backdoors expressed in
terms of our definitions and reason about their deniability and detectability.

5. We demonstrate how our framework can be used to reason about backdoor
detection methodologies, which we use to show that current state-of-the-art
tools do not consider a complete model of what a backdoor is, and as a result,
we are able identify limitations in their respective approaches.

2.2 Related Work

Coverage of complex backdoors is scarce in the academic literature. Tan et
al. [20] encode backdoor code fragments using specially-crafted interrupt han-
dlers, which, when triggered, manipulate run-time state, and when chained
together, can perform arbitrary computations in a stealthy manner. Andriesse
et al. [14] use a cleverly disguised memory corruption bug to act as a backdoor
trigger and embed misaligned code sequences into the target executable to act as
a payload. Zaddach et al. [24] describe the design and implementation of a hard-
drive firmware backdoor, which enables surreptitious recovery of data written to
the disk. More complex backdoors have been documented outside of the litera-
ture, e.g., those classified as “NOBUS” (i.e., NObody But US) vulnerabilites by
the NSA [7], and those associated with APT actors (e.g., [8]).

A related area, that of so-called weird machines, describes how an alterna-
tive programming model that facilitates latent computation can arise within a
program, or system. Both [16] and [18] present such models, as well as how nor-
mal systems can be forced to execute programs written in those models. In both
cases, those models provide a means to implement backdoor-like functionality.
Dullien [15] addresses the problem of formalising the term weird machine, the
relationship between exploitation and weird machines, and introduces the con-
cept of provable exploitability. He argues that it is possible to model a program,
or system using a so-called Intended Finite-State Machine (IFSM), and in doing
so, view a piece of software as an emulator for a specific IFSM. Further, he
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demonstrates that it is possible to create security games to reason about the
security properties of a system by reasoning about it at the level of the states
and transitions of its IFSM. His model serves as inspiration for this work.

Zhang et al. [25] explore the notion of backdoor detection and give a first
informal definition of the term backdoor. They define a backdoor as “a mech-
anism surreptitiously introduced into a computer system to facilitate unautho-
rised access to the system”, which while largely agreeing with the current usage
of the term, is very high-level and says nothing about the composition of such
constructs. Wysopal et al. [23] propose a taxonomy for backdoors. They state
that there are three major types of backdoor: system backdoors, which involve
either a single dedicated process which compromises a system, cryptographic
backdoors, which compromise cryptographic algorithms, and application back-
doors, which they state are versions of legitimate software modified to bypass
security mechanisms under certain conditions. The authors also provide strate-
gies for manual detection of specific types of application backdoor within source
code.

Current (semi-)automated backdoor detection methods rely on detecting spe-
cific functionality that is associated with triggering backdoor behaviour. Firmal-
ice [19], is a tool developed to detect backdoors within embedded device firmware.
The authors propose a model for a class of backdoors they coin authentication
bypass vulnerabilities. They define the notion of a security policy, which denotes
a state that a binary reaches that signifies it is in a privileged state. Firmal-
ice detects if it is possible to violate that security policy (i.e., find a path to
a privileged state, without passing standard authentication). HumIDIFy [22]
uses a combination of machine learning and targeted static analysis to identify
anomalous and unexpected behaviour in services commonly found in Linux-
based embedded device firmware. Meanwhile, Stringer [21] attempts to locate
comparisons with static data that lead to unique program functionality; that is,
functionality that can only be executed by a successful comparison with that
static data. This models the situation of a backdoor trigger providing access to
undocumented functionality. Schuster et al. [17] address the problem of back-
door detection in binaries through the use of dynamic analysis. Using a proto-
type implementation of their approach, they are able to identify a number of
“artificial” and previously identified backdoors.

3 Nomenclature and Preliminaries

In this section we outline terms used in the remainder of this article. A platform
represents the highest level of abstraction of a device that a given backdoor
targets. We define a system as the highest level of abstraction required to model
a given backdoor, within a platform. Since a backdoor can be implemented at
any level of abstraction of a platform it is designed to compromise – for example,
as a dedicated program, a hardware component, or embedded as part of another
program – we abstract away from such details. To do this, we model an abstract
system as a finite state machine (FSM).
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When considering a backdoor, there are two perspectives to consider a system
from: that of the entity that implements a backdoor, and that of the end-user,
e.g., a general consumer, or a security consultant analysing the platform. To
model this situation, we consider four versions of the FSM; for any given system,
the Developer FSM (DFSM) refers to the developer’s view of the system, the
Actual FSM (AFSM) refers to the FSM that models a real manifestation of
the system, i.e., a program, the Expected FSM (EFSM) refers to the end-user’s
expectations of the system, and finally, the Reverse-engineered FSM (RFSM),
represents a refinement of the EFSM obtained by reverse-engineering the actual
system; it can include states and transitions not present within the DFSM or
AFSM, e.g., in the case of bug-based backdoors, which we address in Sect. 4.

Fig. 1. Multi-layered system FSM.

Each state of the FSM describing a system can be viewed as an abstraction of
a particular functionality – which, in turn can be modelled using a FSM. Thus,
we view an entire system as a collection of sub-systems, which can be visualised
in a layered manner – with each layer representing a view of a part of the system
at an increasing level detail, as in Fig. 1.

For example, if a given backdoor compromises a router, then we refer to the
router as the platform. If the backdoor is implemented in software, as a dedicated
program, we would view the highest level of abstraction, i.e., the system, as the
interactions between the processes of the operating system, modelled as a FSM.
Each individual running program, or process, can then be modelled by arbitrary
levels of FSMs.

3.1 Analysis and Formalisation of FSMs

We specify a FSM as a quintuple: θ = (S, i, F,Σ, δ), where: S is the set of
its states, i is its initial state, F is the set of its final states, Σ is the set of its
state transition conditions, e.g., conditional statements that when satisfied cause
transitions, and δ : S × Σ → S is its transition labelling function, representing
its state transitions.

Inspired by the approach taken by Dullien [15], we view the implemented,
or real system modelled by a FSM as an emulator for the AFSM of the system.
Thus, when the user’s EFSM and the AFSM are not equivalent, e.g., the user
assumes there is no backdoor present, when there is, specific interactions with
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the real system will yield unexpected behaviour. How this unexpected behaviour
manifests is what determines if that unexpected behaviour means that the system
contains a backdoor. Different users of the system will assume different EFSMs.
In order to analyse a system, a program analyst, for example, will derive a RFSM
– which, for notational ease we refer to as θR – by reverse-engineering the real
system; they do this by making perceptions and observations of its concrete
implementation, i.e., the emulator for θA. What the analyst will observe is a set
of states and state transitions, which are a subset of all those possible within the
platform, e.g., CPU states. To analyse these states and derive θR, the analyst
will require a means to map concrete states and transitions of the platform, to
the level of abstraction modelled by the states and transitions of their FSM. To
perform analysis, we assume that an analyst has the following capabilities:

1. They have access to the emulator for the actual FSM (θA) – in the case of
software, this would be the program binary.

2. They are able to perform static analysis upon the emulator, i.e., using a
tool such as IDA Pro, and hence perceive a set of system states and state
transitions between those states of the real system.

3. They are able to perform dynamic analysis of the system, i.e., with a debugger,
and hence observe a set of system states and transitions of the real system.

The perceptions and observations of the analyst, along with a means to map
concrete states and transitions to abstract FSM states and transitions, allows
them to construct a RFSM (θR) from the emulator for a AFSM. The granularity
of the RFSM will be dependent upon how a system is analysed, e.g., a tool such
as IDA Pro will capture components as groups of basic blocks, while components
identified in source-code can be represented with a higher-level of abstraction.

3.2 Backdoor Definition

The implementation strategies of backdoor implementers varies widely, therefore,
we consider the notion of an abstract backdoor, which we decompose into com-
ponents. In order to do this, we attempt to answer a number of questions: what
is it that makes a set of functionalities, when interacting together manifest as a
backdoor? What abstract component parts can be found in all such backdoors?
To what extent do we need to abstract to identify all such components?

A distinguishing feature of all backdoors is that they must be triggered.
Thus, a pivotal component of any backdoor is its trigger mechanism. However,
this trigger mechanism alone does not constitute a backdoor: what causes it to
become active? Another component is needed to account for the satisfaction of
the trigger condition: i.e., a type of input source. Upon trigger activation an even-
tual system state is reached that can be considered the backdoor-activated state,
which is essentially a state of escalated privileges, privilege abuse or unauthen-
ticated access, i.e., a privileged state. To reach this final state, an intermediate
component that facilitates the transition from the normal system state upon sat-
isfaction of the backdoor trigger to the backdoor-activated state is required: we
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refer to this as the backdoor payload. Through this reasoning, we show there are
four key components that must be present to fully capture the notion of a back-
door. These components are chosen as the minimum set of components required
for a backdoor to exist within a system; without the presence of any one of these
components the backdoor would not be functional. Using this componentisation,
we are able to define a backdoor.

Definition 1 Backdoor. An intentional construct contained within a system
that serves to compromise its expected security by facilitating access to otherwise
privileged functionality or information. Its implementation is identifiable by its
decomposition into four components: input source, trigger, payload, and privileged
state, and the intention of that implementation is reflected in its complete or
partial (e.g., in the case of bug-based backdoors) presence within the DFSM and
AFSM, but not the EFSM of the system containing it.

3.3 Backdoor Detection

Using Definition 1 as a basis, a backdoor can be modelled as two related FSMs:
θtrigger, which represents the trigger without a state transition to the payload,
and θpayload, which represents the payload and Fpayload, the set of possible priv-
ileged states.

Definition 2 Backdoor Detection. A backdoor is detected by obtaining:

θR = (SR, iR, FR, ΣR, δR)

Within θR, the states and transitions of both the trigger and payload must exist:

Σtrigger ∪ Σpayload ⊆ ΣR

∀s ∈ Strigger,∀σ ∈ Σtrigger . δtrigger(s, σ) �= ⊥ ⇒ δR(s, σ) = δtrigger(s, σ)
∀s ∈ Spayload,∀σ ∈ Σpayload . δpayload(s, σ) �= ⊥ ⇒ δR(s, σ) = δpayload(s, σ)

The privileged states reachable as a result of the payload are either final states
of θR, or states that can be transitioned from to some state of θR:

Strigger ∪ Spayload ⊆ SR

∀f ∈ Fpayload . f ∈ FR ∨ (f /∈ FR ⇒ ∃σ ∈ ΣR . δR(f, σ) ∈ SR)

The payload must be reachable from the trigger, and there must exist a
transition to the trigger within θR:

∀f ∈ Ftrigger . ∃σ ∈ Σtrigger . δR(f, σ) = ipayload
∃s ∈ SR,∃σ ∈ ΣR . δR(s, σ) = itrigger

4 A Framework for Modelling Backdoors

In this section we detail a framework for decomposing a backdoor into the four
components defined in Sect. 3.2; we exhaustively enumerate the types of these
components which allows us to both identify and reason about them.
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In addition to locating a construct consisting of an input source, trigger,
payload, and privileged state, to detect a backdoor, an analyst must demonstrate
that the construct would be part of the DFSM of the system. For open-source
software, this could be done by analysing the source code version control logs,
or in closed-source software, analysing the differences between software versions.
In other cases, where such analysis is not possible, the following framework can
additionally serve as a basis for reasoning about how a backdoor’s components
can indicate an implementer’s intent.

In the proceeding framework, we refer to the RFSM of an end-user that has
analysed a particular system. Initially, that user will expect functionality that
can be modelled by one FSM (their EFSM), and through their analysis they will
learn, or derive another FSM (RFSM) that matches what they have learnt about
the system. Therefore, to discover a backdoor through analysis of the emulator
for the AFSM, the RFSM (post-analysis) will contain a backdoor, if there is one
present in the AFSM, and they are able to identify it.

During the analysis process, new states and state transitions will be added
to the RFSM. We divide these states and state transitions into two categories:
those that are explicit, which we say are discovered (and always exist within the
AFSM) and those that are not explicit, which we say are created (and may not
exist within the AFSM). To serve this distinction with an example, suppose we
have a RFSM that models a program. The explicit states and state transitions
that are added to it through analysis are those that represent basic blocks and
branches that are explicitly part of the program’s code (and will always be part
of the DFSM and AFSM). Those that are added that are not explicit are in a
sense weird states and state transitions, which might, for example, be the states
representing some shellcode.

4.1 Input Source

If we model the satisfaction of a backdoor trigger as a function – is triggered –
as in the state machine diagram in Fig. 2, then we can view it as a function that
takes at least one parameter (implicit or otherwise) – an input source – which is
used to decide which state transition that is made as a result of executing that
function.

is triggered(input source, ...

Activated Not activated

Fig. 2. Idealised backdoor trigger.

The value yielded by the input source may be derived from any number of
inputs to the FSM: it could be a string input by the attacker wishing to activate
the backdoor trigger, or it could be the value of the system clock such that during
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a specific time period the backdoor trigger becomes active. For this reason we
choose to abstract away from the exact implementation details and use the term
“input source” to represent this component of the backdoor. Note that the input
source is not the value that causes the activation of the backdoor trigger, but
rather describes the origin of that input: e.g., a socket or standard input.

4.2 Trigger Mechanism

The backdoor trigger, under the correct conditions, will cause the execution
of the backdoor payload, which will subsequently elevate the privileges of the
attacker. We model the backdoor trigger as a boolean function where its positive
outcome, i.e., when it outputs true, will cause a state transition to the backdoor
payload. The way the FSM transitions to the payload as a result of the satisfaction
of the trigger conditions can be modelled exhaustively with two cases:

1. The state transition is explicit, hence will always exist within the backdoor
implementer’s DFSM. The backdoor trigger is added to the RFSM by adding
the explicit states and transitions related to satisfying the backdoor trigger
conditions, and adding one or more transitions to the payload, where those
transitions are discovered (not newly created) as part of the analysis.

2. The state transition is not explicit. The trigger is added to the RFSM by
adding explicit states and state transitions related to satisfying the backdoor
trigger conditions, and by adding one or more state transitions that transi-
tion to the payload, where those transitions are newly created as part of the
analysis, i.e., they are not explicit.

To visualise these cases, we use concrete examples in which we use a system
that is a single program, where the backdoor is embedded as part of the program.

In the first case, we view a trigger that is obvious and explicit, where the
backdoor is encoded within a single function of the program. This case is shown in
Fig. 2. The backdoor trigger is comprised of the single state required to satisfy the
backdoor trigger conditions, i.e., the one labelled is triggered(...), and the
state transition to the Activated state. In a more realistic scenario, the backdoor
trigger mechanism may require satisfaction of multiple branch conditions and/or
execution of multiple basic blocks and might be obfuscated. Irrespective of these
implementation details, the core concept is the same: the collection of checks can
be viewed as a single function, whose outcome is used to decide if the backdoor
payload is transitioned to and hence executed or not, where the transition – a
CFG edge in this example – is explicitly part of the FSM.

While the first case considers conditions that are satisfied within a valid
function CFG, and a transition to the payload which is contained entirely within
that same valid CFG, and thus constitutes normal control-flow, the second case
of backdoor trigger manifests as abnormal control-flow. Within a program, we
can think of such a construct as akin to a program bug that allows control-flow
hijacking. One can conjecture a simple case for this being, a buffer overflow
vulnerability, that when exploited correctly, causes a program to transition to a
backdoor payload, shown in Fig. 3.
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bool vulnerable_auth_check(
const char *user, const char *pass) {
char buf[80], hash[32];

strcpy(buf, user); strcat(buf, pass);
create_user_pass_hash(hash, buf);

return check_valid_hash(hash);
}

vulnerable auth check(...

Authenticated Not Authenticated

True FalsePayload

Buffer Overflow

Fig. 3. Bug-based backdoor trigger.

1 strcmp(username, "bugdoor")

2vulnerable password check(... safe user auth(username, ...

True False

Authenticated Not Authenticated

3Payload

Buffer Overflow

Fig. 4. Hybrid bug-based backdoor trigger.

Alongside these basic cases, a more complex example of a backdoor trig-
ger would be one that relies both on explicit checks and a bug, as visu-
alised in Fig. 4. In this case, a hard-coded credential check against a specific
username (bugdoor) is used to guard access to a vulnerable password check
(vulnerable password check). A username other than bugdoor will cause the
standard authentication routine (safe user auth) to be executed, and only a
password with a long enough length (and specific content) will lead to the execu-
tion of the backdoor payload. In this example, the backdoor trigger is comprised
of the explicit states 1 and 2, and the non-explicit state transition between states
2 and 3, i.e., the payload state.

Note that to make the case that all vulnerabilities are backdoor trigger mech-
anisms is a false oversimplification, as such a simplification does not differenti-
ate between accidental and intentional program bugs. We discuss the difficulties
present when reasoning about backdoors that are bug-based in Sect. 5.

4.3 Payload

A backdoor payload can be viewed as the solution to a puzzle: i.e., how to reach a
privileged state from successfully satisfying the conditions of a backdoor trigger.
In our model, we represent this by the state transition taken in order to reach
a privileged state, and any additional states and state transitions that perform
prerequisite computation following activation of backdoor trigger. In practice, a
payload component can take many forms, however we can exhaustively categorise
all types of payload by how they are modelled as part of a RFSM, and how they
are transitioned to:
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1. The transition to the payload is explicit, and does not permit the creation of
new states and state transitions (Fig. 5). The payload is added to the RFSM
by adding explicit states and transitions required to reach a privileged state,
where those states and transitions are discovered by analysis (explicit). They
will be contained in the backdoor implementer’s DFSM.

2. The transition to the payload is explicit, but state(s) reachable due to this
transition permit the creation of new states and transitions, e.g., a system
that contains an intentional interpreter which can be accessed via a backdoor
(Fig. 6). The payload is added to the RFSM by adding discovered (explicit)
states and transitions – which exist in the backdoor implementer’s DFSM –
from which both newly created (non-explicit) and discovered (explicit) states
and transitions can be reached, which facilitate the eventual transition to a
privileged state. The non-explicit states and transitions added will not exist
within the backdoor implementer’s DFSM.

3. The transition to the payload is not explicit (bug-based), and the payload’s
states and transitions will either be explicit or non-explicit, e.g., a ROP-based
construct. The payload is added to the RFSM by adding both newly created
(non-explicit) and discovered (explicit) states and transitions, which facilitate
the transition to a privileged state. The non-explicit states and transitions
added will not exist within the backdoor implementer’s DFSM.

4.3.1 Payload Examples
To give concrete examples of the variants of backdoor payload, we once again
demonstrate backdoors that are implemented within programs.

/* Trigger; if active then: (1) -> (2) */
if (strcmp(user._name, "backdoor") == 0) {

/* Payload */
user._is_admin = true; // (2)

/* Transition to privileged state */
open_shell(&user); // (3) -> (4)

}

1

2

3

4

Trigger

Payload

Fig. 5. Explicit transition to payload, where payload has explicit components.

Explicit Transition to Payload with Explicit Payload Components.
This class of payload (case 1 above) is inherently an intentional construct and
requires no abnormal control flow for it to be executed. An example of a backdoor
with such payload is shown in Fig. 5. The backdoor trigger condition (state
1) is a hard-coded credential check, which if satisfied, will transition to the
backdoor payload (transition from state 1 to 2). In the payload, the backdoor
user’s permissions are first elevated (state 2) and then a shell is opened for that
user (state 3), which allows them to transition to the privileged state (state 4).
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/* Trigger; if active then: (1) -> (2) */
if (strcmp(req._path, "/BKDRLDR") == 0) {

/* Payload; req._data == payload input */
run(&req._data); // (2) -> (3)

}

1 2

Trigger

Input for Payload

3

Payload

Fig. 6. Explicit transition to payload with both explicit and non-explicit components.

Explicit Transition to Payload with Explicit and Non-explicit Payload
Components. In this case (case 2 above), we model a backdoor that enables
an attacker to perform computation not part of the developer’s DFSM, without
being in a state that is bug-induced. An example of such a backdoor is shown in
Fig. 6; if the backdoor trigger is satisfied, the program will interpret and execute
an input supplied by the user of the backdoor. The trigger condition is a check
to see if a user is requesting access to a specific path (state 1), if it is, then the
payload is transitioned to (state 1 to 2), where the data sent with the request
(req. data) is used as input to an interpreter (state 2, via run). In this case, the
privileged state (state 3) transitioned to is dynamically constructed as a result
of the input to the interpreter executed in state 2.

void some_function() {
char buf[80];
/* ... */
/* Backdoor activated if len(input)

causes buffer overflow */
strcpy(buf, input); // (1) -> (2)
return;

}

void other_function() {
/* ... */
/* Payload reaches via (2) -> (3) */
g_user._is_admin = true; // (3)
open_control_panel(); // (4)

}

1

3

4

2

Trigger Payload

Fig. 7. Non-explicit transition to payload, where payload has both explicit and non-
explicit components.

Non-explicit Transition to Payload with Explicit and Non-explicit
Payload Components. In the final case (case 3 above), we model backdoors
that have a trigger mechanism that is bug-based, i.e., allows an attacker to
perform computation not part of the developer’s DFSM. We visualise such a
case in Fig. 7; here the trigger consists of an intentional buffer overflow bug in
some function (state 1), which if exploited – in this case with a ROP-based
payload – transitions (via 1 to 2) to the payload. The payload consists of states
2 and 3, and the transitions from states 2 to 3, and 3 to 4. As a result of the
payload, the user is granted administrative privileges (state 3), and entered into
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a (privileged) control panel via open control panel in other function (state
4).

if (strcmp(password, "_BACKDOOR_") == 0 \
|| is_valid_password(password)) {

// Authenticated
} else {

// Not authenticated
}

1

2

strcmp(...

Authenticated

is valid password(...

Not Authenticated

Trigger

Payload

Fig. 8. A backdoor payload composed solely of a state transition.

Single Transition Payloads. We note there is a special case for both cases 1
and 3, namely, where the payload is composed of only a single state transition.
That is, no additional computation is undertaken as part of the payload, rather
the payload shares its state transition with the backdoor trigger, as shown in
Fig. 8. This special case accounts for situations where the backdoor trigger acts
like a trapdoor (state 1), allowing an attacker to bypass a (potentially) more
complex check for user-authentication, and rather provides a direct transition
to a privileged state (the transition from state 1 to 2). The form of the payload
is identical for cases 1 and 3, other than the explicitness of the state transition
(the payload) between the trigger and the privileged state.

4.3.2 Payload Obfuscation
So far, we have not considered how a backdoor implementer might hide a back-
door’s presence – other than by using a bug-based trigger mechanism. While such
a trigger is simple to implement, it offers the implementer no control over how
the backdoor will eventually be used; this control can be regained, by for exam-
ple, limiting the computational freedom of newly created states. In this section
we explore how a backdoor implementer can obfuscate payload components.

Since backdoor payloads that contain only explicit states and state transitions
are obvious and thus, intentional constructs, an obfuscated payload by nature
must be implemented through the use of some degree of abnormal control flow,
i.e., non-explicit states and state transitions. An example of such a payload is
one derived by reusing components of the system it is implemented within to
obscure its execution, e.g., for a program, from static analysis methods. From
an attacker’s perspective, the only way to execute such a backdoor is either
to have prior knowledge of the payload, or solve a puzzle and derive it from
the original system. Andriesse et al. [14] describe such a backdoor (examined in
further detail in Sect. 6), whereby its payload component is composed of multiple
code fragments embedded and distributed throughout a binary which execute
in sequence upon the backdoor being triggered. Figure 7 shows a näıve example
such a payload.

Another example is that where a payload can be derived from attacker con-
trolled data. In the simplest case, this is akin to shellcode often executed as
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a result of successful exploitation of a buffer overflow vulnerability: it shares
a commonality that it doesn’t rely upon any existing program components. In
more sophisticated cases, such a backdoor payload might take a hybrid approach:
where either user-data is interpreted by the program itself, or components of the
program are used alongside the user input. Figure 6 shows a simple example such
a payload. In both of these examples, the payload components are implemented
in a so-called weird machine as defined by Oakley and Bratus [16].

4.4 Privileged State

Following successful activation of the backdoor trigger and subsequent transi-
tioning from the associated payload, the system will enter into a privileged state.
There are two possibilities for this state: either it can be reached under normal
system execution, or it can only be reached through activation of the backdoor.
If we consider privileged states by how they are added to a RFSM, then one that
is newly created, i.e., is non-explicit, will not be reachable under normal system
execution, meanwhile, one that is explicit, may or may not be reachable under
normal execution: for example, while the privileged state might be explicit, the
only way to reach it might be via the backdoor trigger.

In the case of a privileged state reachable through normal execution, consider
the backdoor presented in Fig. 8, which models a hard-coded credential check.
The privileged state (state 2) of the backdoor is both reachable via the backdoor
trigger (from state 1), and the state labelled is valid password.

For the other case, where the privileged state is not reachable by a legiti-
mate user, it is essentially guarded by the activation of the backdoor. This case
can further be sub-categorised. The first variant is where the privileged state is
explicit, as in Fig. 5; the privileged state (state 4) is only reachable through acti-
vation of the backdoor trigger (state 1 and the transition from state 1 to state
2). In this example, the privileged state manifests as an undocumented backdoor
shell, where after entering a specific username, the attacker is able to perform
additional functionality, not otherwise possible. The other variant is a privileged
state that provides an attacker access to functionality that is not available to
a legitimate user, where that functionality does not explicitly exist within the
system – as shown in Fig. 6. Here the privileged state (state 3) is some function
of attacker input, i.e., the result of run(&req. data).

5 Practical Detection and Deniability

Backdoor detection in practice will happen through, e.g., manually reverse-
engineering a program binary or observing a backdoor’s usage through suspi-
cious system events, such as anomalous network traffic. As is, our proposed
framework oversimplifies as it doesn’t model intention. If we knew that a par-
ticular vulnerability was placed intentionally, then there would be no question
that the vulnerability was placed deliberately to act as a backdoor. Thus, in this
section we answer the question: if we have identified a backdoor-like construct,
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can we distinguish it from an accidental vulnerability, and if so, how deniable is
it?

In order to make such a distinction, recall that we can view a system from
four perspectives: its DFSM, AFSM, EFSM, and RFSM. If a backdoor-like con-
struct has been identified, then it will be present in both the emulator for the
AFSM and the RFSM. To state that the construct is a backdoor – and was
placed intentionally – we must show that it, or some part of it was present
within the DFSM. In some cases, the intent is explicit and hard-coded in the
implementation – i.e., it leaves no ambiguity. The most obvious example of this
is a hard-coded credential check which serves to bypass standard authentica-
tion. Indeed, all cases of backdoor that transition explicitly, i.e., discoverable by
analysis, from the satisfaction of their trigger conditions to their payload can be
considered intentional.

In the other case, where that transition is non-explicit, i.e., bug-based, vari-
ous approaches can be taken. For instance, in the case of software, where version
control logs are available, it is possible to identify the exact point where a back-
door has been inserted as well as its author (e.g., the failed attempt to backdoor
the Linux kernel in 2003 [1]). For binary-only software, where there exists mul-
tiple versions of that software, it is possible to identify the version the backdoor
was introduced in, and reason about its presence by asking the question was
there a legitimate reason for making such a change to the software? Further,
we can consider the explicitness of the backdoor components: for example, if
a code fragment exists within a binary that does nothing more than facilitate
privilege escalation, and it is unreachable by normal program control-flow, then
there is an indication of intent. A similar case can be made if the satisfaction
of the trigger conditions rely on checks discoverable by analysis, as well as a
bug. Unfortunately, all of these approaches have non-technical aspects and rely
on human intuition – thus, do not provide a concrete proof of intent. We are
therefore left with three possible ways to classify backdoor-like constructs:

Definition 3 Intentional backdoor. Those constructs that can be unambigu-
ously identified as backdoors: the transition from their trigger satisfaction to
their payload is explicit. Will be present in the DFSM, AFSM, and if found, the
RFSM, but not the EFSM.

Definition 4 Deniable backdoor. Those constructs that fall into a grey area,
where the transition from their trigger satisfaction to their payload is non-explicit
(i.e., it appears to be a bug), but from a non-technical perspective can be argued
to be intentional. Will be present in the AFSM, if found, the RFSM, but not
the EFSM; we cannot definitively tell if it is in the DFSM.

Definition 5 Accidental vulnerability. Those constructs where there is no
evidence – technical, or otherwise – to suggest any intent, and the transition
from their trigger satisfaction to their payload is non-explicit. Will be present in
the AFSM, and if found, the RFSM, but not the DFSM or EFSM.

From a purely technical perspective, a deniable backdoor will be indistin-
guishable from an accidental vulnerability. Consider, for example, a simple buffer
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overflow vulnerability and its corresponding exploit. If this vulnerability was
deliberately placed then it is a backdoor, otherwise it is just a vulnerability
coupled with an exploit. As we do not know anything about the implementer’s
intention we cannot discern between the two. Thus, a vulnerability can be seen
as an unintentional way to add new state transitions, or states to a system’s
FSM, while an exploit is a set of states and state transitions such that when
combined with a vulnerability within a given FSM, provides a means to compro-
mise the believed security of the system modelled by that FSM. In contrast to
backdoors and vulnerabilities, a construct providing standard privileged access
will be intentional and manifest within the DFSM, AFSM, EFSM, and RFSM
of a system.

6 Discussion and Case-Studies

In order to demonstrate our framework, we provide a number of case studies.
We show examples from both the literature and real-world backdoors, which
have been detected manually. For each backdoor, we reason about if and why
its implementation can be considered deniable in respect to our definitions and
analyse it by performing a complete decomposition of its implementation using
our framework. Finally, we provide a discussion of how our framework can be
used to reason about methods for detecting backdoors.

Table 1 shows eleven real-world backdoors, each decomposed using our frame-
work. As each backdoor can be modelled with explicit states and state transi-
tions, by Definition 3, none are deniable, thus, their implementers should be held
accountable. The remainder of this section provides case-study of a complex,
deniable (by Definition 4) backdoor.

Nginx Bug-Based Backdoor. Andriesse and Bos [14] describe a general
method for embedding a backdoor within a program binary. Their technique
utilises a backdoor trigger based upon an intentional program bug combined with
a hard-coded payload composed of intentionally misaligned instruction sequence
fragments. Their payload is, in a sense, obfuscated, yet fixed; its implementation
exploits the nature of the x86 instruction set, whereby byte sequences represent-
ing instructions can be interpreted differently when accessed at different offsets.

The authors demonstrate their approach by modifying the popular web-
server, Nginx, and embedding a remotely exploitable backdoor. In their imple-
mentation, a would-be attacker provides a crafted input, which serves to satisfy
the backdoor trigger conditions; this input is provided as a malformed HTTP
packet – the input source will therefore be a network socket. Figure 9 provides a
code listing adapted from [14] which contains the backdoor trigger conditions.
Those conditions are: have err == 1, and err handler != NULL, which are set
as a result of the use of uninitialised variables have err and err handler in
the ngx http finalize request function, which take the values of badc and
hash in ngx http parse header line. The bug manifests due to the fact the
two functions stack frames overlap between their invocations. The intended pay-
load states are meant to be those embedded as weird states, however additional
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ngx_int_t ngx_http_parse_header_line(/* ... */) {

u_char badc; /* last bad character */

ngx_uint_t hash; /* hash of header, same size as pointer */

/* ... */

}

void ngx_http_finalize_request(ngx_http_request_t *r, ngx_int_t rc) {

uint8_t have_err; /* overlaps badc */

void (*err_handler)(ngx_http_request_t *r); /* overlaps hash */

/* ... */

if(rc == NGX_HTTP_BAD_REQUEST && have_err == 1 && err_handler) {

err_handler(r); /* points to hidden code, set by trigger */

}

}

void ngx_http_process_request_headers(/* ... */) {

rc = ngx_http_parse_header_line(/* ... */);

/* ... */

ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); /* bad header */

}

Fig. 9. Source-code listing for Nginx backdoor trigger.

ngx http parse header line(...)

ngx http finalize request(...)

1

2

3

have err == 1 && err handler != NULL

Fig. 10. Multi-layered FSM for Nginx backdoor.

states are possible, for example, if the attacker provides a different input packet
to that expected by the implementers. The privileged state depends on the back-
door payload. We visualise the backdoor in Fig. 10; the trigger is captured by
state 1 and the non-explicit, bug-based transition to state 2; the payload consists
of state 2 and the transition between state 2 and 3; state 3 is the privileged state.

From a technical standpoint the backdoor is deniable (by Definition 4), this
is due to its trigger transition being bug-based, whilst its payload, if discovered,
is arguably intentional. The componentisation using our framework allows us
to visualise a complex backdoor succinctly, which would otherwise be buried
across multiple functions in thousands of lines of source code. Further, its com-
ponentisation allows us to reason about how such a backdoor can be detected:
for example, we could attempt to detect its bug-based trigger condition using
symbolic execution; alternatively, we could heuristically attempt to identify its
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payload by scanning for misaligned instruction sequences that branch to other
instruction sequences of the same kind, where the combination of those sequences
would serve to elevate an attacker’s privileges.

6.1 Backdoor Detection Methodologies

Our framework provides not only a means to reason about backdoors, but also
backdoor detection techniques. Table 2 shows the decomposition of the detection
methodologies of four state-of-the-art backdoor detection tools. Each tool claims
to detect a particular subset of backdoor types. However, while these tools are
all effective, none consider a complete model of backdoors, and, as a result, are
limited in their effectiveness.

Table 2. Tool detection methodology decomposed using framework.

Tool Input source Trigger Payload Privileged state

Firmalice [19] Partial Partial No Partial

HumIDIFy [22] Partial No Partial No

Stringer [21] No Partial Partial No

Weasel [14] No Partial Partial Partial

Firmalice [19] is designed to detect authentication bypass vulnerabilities. It
uses a so-called security policy to define the observable side-effects of a program
being in a privileged state. Using a specified input source, it attempts to find
data provided via this input source that satisfies the conditions – i.e., akin to a
backdoor trigger – required to observe the side-effects specified by the security
policy. Firmalice has no notion of a payload state; when entered, a payload state
might leave a program in a privileged state that is not captured by a given
security policy, for instance, where the privileged state reached by a backdoor
user is different from that of a legitimate user reaches, e.g., the Q-See DVR
backdoor from Table 1. Firmalice is able to detect such a privileged state by
modification of the input security policy, however, to do so will require the same
amount of manual analysis to detect the entire backdoor as it would to identify
the privileged state.

HumIDIFy [22] aims to detect if a program can execute functionality it should
never execute under normal circumstances. This might be the establishment of
a suspicious input source, or the execution of API that is considered anomalous,
i.e., what might be part of a backdoor payload. However, since it does not consider
the notion of a trigger, it is unable to distinguish between abnormal program
behaviour that is benign – because it can only be performed by a legitimate user,
and behaviour that is genuinely anomalous – that is part of a backdoor. Again,
this is due to their approach not considering a complete model of a backdoor.

Stringer [21] attempts to detect static data used as program input that is
responsible for either enabling authentication bypass vulnerabilities, or used for
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triggering the execution of undocumented functionality. To do this it uses a
scoring metric, which ranks static data, that when matched against, leads to
the execution of unique functionality, i.e., functionality not reachable by other
program paths. Stringer considers the partial notion of a backdoor trigger and
uses heuristics for identifying payload-like constructs. It does not consider the
notion of input source, or privileged states, and as a result of the latter, is unable
to meaningfully score data that leads to states that are actually privileged higher
than those that are not.

Weasel [14] detects both authentication bypass vulnerabilities and undocu-
mented commands in server-like program binaries. It works by attempting to
automatically identify so-called deciders (akin to backdoor triggers) and han-
dlers (akin to the combination of a backdoor payload and privileged state) which
then serve to aid in detection of backdoors. Their approach does not fully model
the notion of a backdoor; it does not consider an input source at all, rather,
the approach models a single input for the program, and data from that source,
when processed, is assumed to reveal all deciders and handlers. The Tenda web-
server backdoor in Table 1 acts as an undocumented command interface, its input
source is a UDP port; in this case, the backdoor uses a separate input source
from the standard input to the program, i.e., TCP port 80 or 443. Since Weasel
does not capture the notion of an input source, it will be unable to detect such a
backdoor – not due to a deficiency in its detection method, but because it does
not consider a complete model of a backdoor.

7 Future Work

Our framework does not intend to provide a direct means to detect backdoors,
rather it serves as a general means to decompose backdoors in an abstract way.
In Sect. 6.1, we discuss concrete implementations of detection methodologies; in
each case we are able to highlight deficiencies in those methods due to them not
fully capturing the rigorous definition of a backdoor, as outlined in this work.
Thus, a backdoor detection methodology based upon our proposed framework
would be a natural extension of this work. Further, while our formalisations
attempt to capture any backdoor-like functionality, backdoors introduced into a
system by, e.g., a deliberate side-channel vulnerability would prove difficult to
model using our FSM-based abstraction; we view this as an additional area for
investigation.

8 Conclusion

In summary, we have provided a definition for the term backdoor, definitions for
backdoor detection, deniable backdoors, and a means to discern between inten-
tional backdoors and accidental vulnerabilities. We have presented a framework
to aid in identifying backdoors based upon their structure, which also serves
as a means to compare existing backdoor detection approaches, and as a basis
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for developing new techniques. To demonstrate the effectiveness of our app-
roach, we have analysed twelve backdoors of varying complexity. In each case,
we have been able to concisely model those backdoors, which previously, might
have manifested as hundreds or thousands of assembly language instructions in
a disassembler. We have used our framework to evaluate four state-of-the-art
backdoor detection approaches, and in all cases, have shown that none consider
a complete model of backdoors, and, as a result, their potential effectiveness is
limited.
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Abstract. Ransomware has recently (re)emerged as a popular malware
that targets a wide range of victims - from individual users to corporate
ones for monetary gain. Our key observation on the existing ransomware
detection mechanisms is that they fail to provide an early warning in
real-time which results in irreversible encryption of a significant num-
ber of files while the post-encryption techniques (e.g., key extraction, file
restoration) suffer from several limitations. Also, the existing detection
mechanisms result in high false positives being unable to determine the
original intent of file changes, i.e., they fail to distinguish whether a sig-
nificant change in a file is due to a ransomware encryption or due to a file
operation by the user herself (e.g., benign encryption or compression). To
address these challenges, in this paper, we introduce a ransomware detec-
tion mechanism, RWGuard, which is able to detect crypto-ransomware in
real-time on a user’s machine by (1) deploying decoy techniques, (2) care-
fully monitoring both the running processes and the file system for mali-
cious activities, and (3) omitting benign file changes from being flagged
through the learning of users’ encryption behavior. We evaluate our sys-
tem against samples from 14 most prevalent ransomware families to date.
Our experiments show that RWGuard is effective in real-time detection of
ransomware with zero false negative and negligible false positive (∼0.1%)
rates while incurring an overhead of only ∼1.9%.

Keywords: Ransomware · Real-time detection · I/O monitoring

1 Introduction

Ransomware is a class of malware that has recently become very popular among
cybercriminals. The goal of these cybercriminals is to obtain financial gain by
holding the users’ files hostage- either by encrypting the files or by locking the
users’ computers. In this paper, we focus on crypto ransomware which asks users
for a ransom in exchange of decryption keys that can be used to recover the files
encrypted by the attacker. Such a ransomware is now a significant threat to both
individuals and organizations. Among the recent ransomware attacks, Petya [8]
is the deadliest one; it affected several pharmaceutical companies, banks, at
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least one airport and one U.S. hospital. Another massive ransomware that hit
nearly 100 countries around the world is WannaCry [30]. This attack targeted
not only large institutions but also any individual who could be reached. While
ransomware has maintained prominence as one of the biggest threats since 2005,
the first ransomware attack occurred in 1989 [12] and targeted the healthcare
industry. The healthcare industry, which possesses very sensitive and critical
information, still remains a top target.

Even though several techniques have been proposed for detecting malware,
very few of them are specific to ransomware detection [6,10,13,14,16,26,27].
Such existing techniques, however, have at least one of the following limi-
tations: (a) impractically late detection when several files have already been
encrypted [13,26,27], (b) failure to distinguish benign file changes from ran-
somware encryption [6,10,13,14,16,26,27], (c) offline detection system that is
unable to detect ransomware in real-time [13], (d) emphasis only on post-
encryption phase which fails to recover files in most of the cases [16] or conflicts
with secure deletion [6,10], and (e) monitoring applications’ actions only for a
limited amount of time after their installation [27].

Problem and Scope. In this work, we focus on the most critical requirement
for a successful ransomware, i.e., making the valuable resources (i.e., files, doc-
uments) unavailable to the user, and design a solution, RWGuard, that protects
against ransomware by detecting and stopping the ransomware processes at an
early stage. Note that the ransomware families that lock the user’s machine are
out of the scope of this paper.

Approach. RWGuard employs three monitoring techniques: decoy monitoring,
process monitoring, and file change monitoring. Unlike generic malware, ran-
somware wreak havoc systems within minutes (or seconds). Therefore, analyz-
ing processes’ file usage patterns and searching for ransomware-like behaviors
result in delayed detections. To address this challenge, we strategically deploy
a number of decoy files in the system. Since in the normal cases a decoy file
should not be written, whenever a ransomware process writes to such a decoy
file, our decoy monitoring technique identifies the ransomware process instan-
taneously. Though some research work [15,19] recommends using decoy files
for detecting ransomware, such previous work does not present any analysis on
the effectiveness of these decoy files with any real system design. To the best
of our knowledge, ours is the first work to empirically analyze the effectiveness
of decoy techniques against ransomware. The process monitor checks the run-
ning processes’ I/O Request Packets (IRPs), e.g., IRP write, IRP create, IRP
open, etc. While some existing approaches [13,14] are signature-based and look
for specific I/O request patterns, we exploit the rapid encryption property of
ransomware [10], use a number of IRP metrics for building baseline profile for
each running process, and utilize these baseline profiles for performing process
anomaly detection. The file change monitor checks all changes performed on
the files (e.g., create, delete, and write operations) to determine anomalous file
changes. From our experimental observations, we have found that monitoring
only the process activities [13,14] or only the file changes [13,26] is not sufficient
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for effective detection and results in both high false positives and high false neg-
atives (e.g., we observed that the Cryptolocker ransomware encrypts files very
slowly which sometimes evades process monitoring). In this paper, we enhance
these existing techniques and combine them with the decoy monitoring module in
order to provide an effective solution for protection against ransomware.

If a potential encryption of a file (not a decoy) is identified, the next step
is to determine whether the file is encrypted by a ransomware (referred to as
ransomware encryption) or by a legitimate user (referred to as benign encryp-
tion). Therefore, we also design a file classification mechanism that depending on
the properties of a file, classifies the encryption as benign or malicious. In order
to learn the user’s file encryption behavior, we leverage an existing encryption
utility (that utilizes cryptographic library CryptoAPI, e.g., Kryptel [17]) to be
used by end-users and applications. Finally, our approach includes a mechanism
that places hooks and intercepts calls to the functions in CryptoAPI library so
as to monitor all benign file encryption.

Contributions. To summarize, RWGuard makes the following contributions:

1. A decoy based ransomware detection technique that is able to identify ran-
somware processes in real-time.

2. A ransomware surveillance system that employs both process and file change
monitoring (to detect ransomware encrypting files other than decoy).

3. A classification mechanism to distinguish benign file changes from ran-
somware encryption by hooking relevant CryptoAPI functions and learning
the user’s file encryption behaviors.

4. An extensive evaluation of our ransomware detection system on 14 most
prevalent ransomware families to date.

2 Background

Hybrid Cryptosystem. A hybrid cryptosystem allows the ransomware to use
different symmetric keys for encryption of different files while using a single
asymmetric key pair. The attacker generates the asymmetric public-private key
pair on its own command and control infrastructure. The ransomware code gen-
erates a unique symmetric key for each file to be encrypted and then encrypts
these symmetric keys with its public key. These encrypted symmetric keys are
then left with the encrypted files. At this point, the user needs to pay the ransom
to get the private key with which it can first retrieve the symmetric keys, and
then decrypt the files.

IRPLogger. All the I/O requests by processes that are sent to device drivers
are packaged in I/O request packets (IRPs). These requests are generated for any
file system operation, e.g., open, close, write, read, etc. IRPLogger leverages a
mini-filter driver [11] that intercepts the I/O requests. An example of IRPLogger
entry is:

<Timestamp, PID, IRP/FastIO, Operation (READ/WRITE/OPEN/CLOSE/CREATE)>
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CryptoAPI. CryptoAPI is a Microsoft Windows platform specific crypto-
graphic application programming interface (API). This API, included with Win-
dows operating systems, provides services to secure Windows-based applications
using cryptography. It includes functionalities for encrypting (CryptEncrypt) and
decrypting (CryptDecrypt) data, generating cryptographically secure pseudo-
random numbers (CryptGenRandom), authentication using digital certificates,
etc.

Microsoft Detours Library. Detours is a library for instrumenting arbitrary
Win32 functions in Windows-compatible processors. It intercepts Win32 func-
tions by re-writing the in-memory code for target functions. Detours preserves
the un-instrumented target function (callable through a trampoline) as a sub-
routine for use by the instrumentation.

3 RWGuard Design

3.1 Threat Model

In our threat model, we consider an adversary that installs crypto-ransomware
on victim machines through seemingly legitimate but malicious domains. We
consider the operating system to be trusted. Ransomware generally targets and
encrypts files that the user creates and cares about, and the user account already
has all the privileges to access these files. However, though the assumption that
ransomware executes only with user-level privileges seems reasonable (as oth-
erwise, it may be able to defeat any existing in-host protection mechanisms,
e.g., anti-malware solutions), this assumption does not apply to all the ran-
somware cases. We have observed some exceptions to this assumption where
ransomware samples affect only a predefined list of system files and if not
detected/terminated, gain root access, shut down the system, and at the next
boot up, perform full disk encryption and ask for a ransom payment. Hence, we
also include these ransomware samples in our threat model. Moreover, a mali-
cious insider in an organization may gain the knowledge of decoy files and build
a customized ransomware to sabotage the organization (installed as a logical
bomb to detonate after the insider leaves the organization). A further discussion
on how our RWGuard system handles such situations is given in Sect. 5.

3.2 Overview

Figure 1 shows the placement and the design overview of RWGuard. Any I/O
request to the file system generated by any user space process first needs to be
scheduled by the I/O scheduler. We leverage IRPLogger to fetch these system-
wide file system access requests and parse those with our IRPParser.

RWGuard consists of five modules: (1) Decoy Monitoring (DMon) module, (2)
Process Monitoring (PMon) module, (3) File Change Monitoring (FCMon) mod-
ule, (4) File Classification (FCls) module, and (5) CryptoAPI Function Hooking



118 S. Mehnaz et al.

I/O Requests

I/O Requests

I/O Requests

I/O Requests

User 
space

Kernel 
space

P1

P2

Pn

P3

I/O Scheduler

IRPLogger

File System

W
FCMon 
Metrics

Computation

PMon IRP 
Metrics

Computation

Crypto
Tool

Function 
Hooking

Decoy?

Malicious 
Encryption?

File 
Manager

Process 
Profiling

File Types, 
Locations

Tuples

Flag
Process

Automatic
Decoy 

Generator

RWGuard

FCMon

PMon
O,C
R,W
Cr

FCls

CFHk

DMon

I/O Request Queue

IRPParser Decoy File 
Information

O- Open
C- Close
R- Read
W- Write
Cr- Create

Fig. 1. Design overview of RWGuard

(CFHk) module. The DMon module considers only the IRP write requests as
input and monitors whether there is any such request to a decoy file. The PMon
and FCMon modules monitor process operations (IRP open, close, read, write,
create) and file changes (IRP write), respectively. These two modules communi-
cate in order to identify any process(es) making significant anomalous changes
to the files. If such an event is identified, the FCls module checks the properties
of the file and predicts the probability of the file change to be benign. Further-
more, the CFHk module checks whether a benign encryption (by the user) has
been recorded for this file at the time of the file’s significant change.

3.3 Decoy Monitoring (DMon) Module

The DMon module deploys decoy files that allow our system to identify a ran-
somware process in real-time. Since the decoy files should not be modified in
normal situations, whenever a (ransomware) process tries to write such files,
this module can immediately identify the process as malicious. Furthermore, the
presence of a significant number of decoy files (though of smaller sizes) increases
the probability that a ransomware would encrypt one of these files even before
trying to encrypt an original file. Hence, the advantage of using decoy files is
twofold: (1) it allows the detection system to readily identify a malicious process,
and (2) it delays the time when ransomware starts encrypting the original files
and thus gives enough time for anomaly detection to complete its analysis and
stop the malicious processes even before they start encrypting the original files
(see Sect. 5.2 for the experimental data about the time required by RWGuard to
complete the analysis). RWGuard decoy files are generated with an automated
decoy generator tool that we discuss in details in Sect. 4.2. Note that, our decoy
generator periodically modifies the decoy files so that even if a ransomware looks
at the time when a file is last modified (to ensure that the file it encrypts is valu-
able to the user), it would not be able to recognize the decoy files.
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Table 1. Fast I/O read/write types

READ types
FASTIO READ
FASTIO MDL READ
FASTIO READ COMPRESSED
FASTIO READ COMPLETE COMPRESSED

WRITE types
FASTIO WRITE
FASTIO MDL WRITE
FASTIO MDL WRITE COMPLETE
FASTIO WRITE COMPRESSED
FASTIO MDL WRITE COMPLETE COMPRESSED

Table 2. Metrics for the PMon module

Metric # Metric name
1 Number of IRP WRITE requests
2 Number of FastIO WRITE requests
3 Number of IRP READ requests
4 Number of FastIO READ requests
5 Number of IRP OPEN requests
6 Number of FastIO OPEN requests
7 Number of IRP CREATE requests
8 Number of FastIO CREATE requests
9 Number of IRP CLOSE requests
10 Number of FastIO CLOSE requests
11 Number of temporary file created

3.4 Process Monitoring (PMon) Module

Unlike some existing approaches [13,14] that look for specific patterns (e.g.,
read→ encrypt → delete) in the processes’ I/O requests, we exploit the fact that
ransomware typically attempts to encrypt data rapidly [10] (to maximize damage
and minimize the chance of being detected) which leads to anomalous numbers
of IRPs. Exploiting this property results in faster detection since IRPs can be
logged well ahead of actual file operations. Our PMon module monitors the
I/O requests made by the processes running on the system. Though IRP is the
default mechanism for requesting I/O operations, many ransomware perform
file operations using fast I/O requests. Fast I/O is specifically designed for rapid
synchronous I/O operations on cached files, bypassing the file system and the
storage driver stack. Therefore, in our design, we monitor both the IRPs and the
fast I/O requests. A fast I/O read/write operation can be any of the types listed
in Table 1. Given that ransomware processes encrypt files rapidly, the behavior
of such processes has certain characteristics. Hence, in this module, we train a
machine learning model that given a process’s I/O requests, identifies the process
as benign or ransomware. Ransomware that encrypt files slowly may evade this
module but are identified by the FCMon module as discussed in Sect. 3.5.

Process Profiling. In order to train the machine learning model, as a first
step, we collect the IRPs (from this point, the term ‘IRP’ represents both I/O
and fast I/O) of both benign and ransomware processes. Table 2 shows the IRP
metrics used in this training phase which also includes the number of temporary
files created by a process. The temporary files (.TMP) are usually created by
ransomware to hold the data while copying or removing the original files. Once
the profiles for benign and ransomware processes are built in the training phase,
the Process Profiling component of the PMon module (Fig. 1) stores the model
parameters to check against the running processes’ parameters in real-time (i.e.,
the test phase). The PMon module re-computes the metrics listed in Table 2 for
each running process over a 3 s sliding window.
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Table 3. Performance evaluation for different machine learning techniques

Classifier Accuracy (%) ROC
area

True
positive
rate

False
positive
rate

Precision Recall

Naive Bayes 80.07 0.69 0.80 0.70 0.75 0.80

Logistic regression 81.22 0.72 0.81 0.66 0.77 0.81

Decision tree 89.27 0.87 0.89 0.18 0.89 0.89

Random forest 96.55 0.94 0.96 0.08 0.96 0.96

• Training phase: The data collection and classifier training steps are follow-
ing:

1. Data collection: For the training set, we collect IRP data of processes
from both ransomware samples and benign applications. We use nine of the
most popular ransomware families, namely: Wannacry, Cerber, CryptoLocker,
Petya, Mamba, TeslaCrypt, CryptoWall, Locky, and Jigsaw for the training
phase. We also include benign processes, e.g., Explorer.exe, WmiPrvSE.exe,
svchost.exe, FileSpy.exe, vmtoolsd.exe, csrss.exe, System, SearchFilter-
Host.exe, SearchProtocolHost.exe, SearchIndexer.exe, chrome.exe, GoogleUp-
date.exe, services.exe, audiodg.exe, WinRAR.exe, taskhost.exe, drpbx.exe,
lsass.exe, etc. It is important to note that most of the ransomware sam-
ples spawn multiple malicious processes during execution. Our final training
dataset contains IRPs from 261 processes including both benign and malicious
ones.

2. Classifier training: Using the training data, we train a machine learning
classifier that, given a set of processes, is able to distinguish between ran-
somware and benign processes. In order to identify the best machine learn-
ing technique for this classification, we analyzed different classifiers, namely:
Naive Bayes (using estimator classes), Logistic Regression (multinomial logis-
tic regression model with a ridge estimator), Decision Tree [24], and Random
Forest [3] classifiers. We used 10 fold cross validation on the obtained data set
and measured accuracy, precision, recall, true positive rate and false positive
rate for each of the above-mentioned classifiers. Table 3 presents a compar-
ison of the classifiers used in our analysis. Figure 2 shows the results for all
the classifiers in terms of ROC curves (which plot true positive rate against
false positive rate). The low accuracy (∼80%) of the naive Bayes classifier
can be attributed to its class independence property. From our observation,
ransomware usually employs a combination of read, write, open, and close
requests which are correlated. Therefore, assuming that these parameters are
independent of each other leads to a lower accuracy. The regression classi-
fier works slightly better than the naive Bayes classifier with an accuracy of
∼81%. A logistic regression model searches for a single linear decision bound-
ary in the feature space. Hence, the low accuracy can be attributed to the
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fact that our data does not have a linear boundary for decisions. The rea-
son is that many ransomware make a large number of write/read requests as
compared to the open/close requests. Therefore, the ideal decision boundary
for our dataset would be non-linear.
The tree-based classifiers (random forest and decision tree) perform the best
with accuracies of ∼97% and ∼89%, respectively. The reason is that the
decision boundary for our data is non-linear and these classifiers build non-
linear decision boundaries. However, the decision tree classifier is susceptible
to over-fitting while random forest classifiers do not have this issue. Also, in
terms of deployment, the random forest classifier is faster and more scalable
compared to other classifiers. Therefore, finally, we use the random forest
classifier in our RWGuard PMon module.

• Test phase: In the test phase, along with the nine families used for train-
ing, we add five more ransomware families in the experiment set: Vipasana,
Satana, Radamant, Rex, and Matsnu. These samples are executed one at a
time and depending on the spawned processes and their activities, the mali-
cious processes are flagged. Details of the test phase results are given in
Sect. 5.

File Encryption. In our experiments, we observe that few benign processes,
e.g., Chrome, VMware tools are sometimes classified as malicious by the machine
learning model due to these processes’ I/O request behaviors. Therefore, besides
monitoring the process profiling metrics, it is important to monitor whether a
particular process is responsible for any significant file changes. Hence, our PMon
module considers file encryption as a significant parameter (communicated by
the FCMon module as described in Sect. 3.5) and identifies a process as malicious
only if it encrypts files along with indications of anomalous I/O behaviors.
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3.5 File Change Monitoring (FCMon) Module

This monitoring module can be configured to target a range of files from a single
directory to the whole file system. It computes and stores the initial properties
of the files (or, dynamically computes the properties when a file is created) and
these properties are updated accordingly in the event of a file change. In real-
time, the FCMon module looks for significant changes in those files after each
write operation using the following metrics: (1) similarity, (2) entropy, (3) file
type change, and (4) file size change. While some of these metrics have been
used for ransomware detection in existing work [13,26], our goal is to verify the
fast detections by the PMon module and thereby minimize the false positive
rates. In what follows, we describe the File Manager component of the FCMon
module and present the details of the above metrics.

File Manager. This component stores the current properties of each file (e.g.,
file type, current entropy of a file, file size, last modified time etc.) so that any
significant change in the files’ properties can be detected upon a write operation.
If a new file is created, this component computes the properties of the new file
instantly and stores them in the map (map key: file name and path, key value:
computed properties).

Metrics. The metrics of FCMon module are following:

1. Similarity metric: In comparison with a benign file change, e.g., modifying
some of the existing text or adding some text, an encryption would result
in data that is very dissimilar to the original data. Therefore, the similarity
between a file’s previous (before the write operation) and later (after the write
operation) versions is an important factor to understand the characteristics
of the file change. In order to compute the similarity between two versions,
we use sdhash, a similarity-preserving hash function proposed by Roussev et
al. [25] for generating the file hashes. The sdhash function outputs a score in
the range [0,100]. A score of 0 is obtained when we compute the similarity
between two completely random arrays of data. Conversely, a score of 100 is
obtained when we compute the similarity between two files that are exactly
same. Hence, in the case of an encryption, this function outputs a value close
to 0.

2. Entropy metric: Entropy, as it relates to digital information, is the measure-
ment of randomness in a given set of values (data), i.e., when computed over
a file, it provides information about the randomness of data in the file. There-
fore, certainly, a user’s data file in plaintext form has low entropy whereas
its encrypted version would have a high entropy. Other than encrypted data,
compressed data also has high entropy when compared to its plaintext form.
A widely used entropy computation technique is Shannon entropy [21]. The
Shannon entropy of an array of N bytes (assuming ASCII characters with
values 0 to 255) can be computed as the following:

∑255
i=0 Pilog2

1
Pi

. Here, Pi
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is the probability that a randomly chosen byte from the array is i, (i.e., Pi =
Fi/N) where Fi is the frequency of byte value i in the array. This equation
returns a value in the range of [0,8]. For an absolutely even distribution of
byte values in the array, the output value is 8. Since encrypted files have
bytes more evenly distributed (when compared to its plaintext version), the
Shannon entropy significantly increases after encryption and results in a value
near 8.

3. File type change metric: A file generally does not change its type over the
course of its existence. However, it is common for a number of ransomware
families to change the file type after encryption. Therefore, whenever a file is
written, we compare the file types before and after the write operation.

4. File size change metric: Unlike file type change, file size change is a common
event, e.g., adding a large text to a document. However, this metric along
with other metrics can determine if the file changes are benign or malicious.

Upon detecting a file write operation that results in a file type change or
exceeds at least one of the given thresholds for the metrics, that is, similarity
(score < 50), or entropy (value > 6), and/or significantly changes the file size,
the FCMon module shares the recorded metrics with the PMon, FCls, and CFHk
modules for further assessment.

3.6 File Classification (FCls) Module

After the PMon and FCMon modules collaboratively identify a process respon-
sible for anomalous I/O behavior and file changes, our detection system classifies
whether the file is encrypted by the ransomware or the change is due to a benign
operation. Our FCls module performs this classification by learning the usage
of the crypto-tool (a utility leveraging CryptoAPI used for user’s sensitive files’
encryption and decryption, e.g., Kryptel [17]) and profiling the user’s encryption
behavior. For example, if a file is encrypted which is from the same directory and
has the same type of a previously benignly encrypted file, this module assigns a
higher probability for this file to be benignly encrypted (however, a ransomware
cannot abuse this idea as described in CFHk module in Sect. 3.7). If the prob-
ability for a file is too low to belong to the benignly encrypted class and if the
file gets encrypted, a flag is raised immediately by the FCls module. In order to
remove false negatives (i.e., ransomware encrypts a file which has a high proba-
bility of being benignly encrypted), the encryption information is validated with
the CFHk module which intercepts benign encryptions.

Protecting Sensitive Files: If at the time of the ransomware attack the
sensitive files are already in encrypted form, the ransomware could further
encrypt those files which makes those files unavailable too. Note that the FCMon
module may not be able to flag this event with high probability. The reason
is that the entropy would not change significantly since both the file versions
(before and after the ransomware encryption) would have high entropy. To
address such issue, we modify the permission settings for encrypted files, i.e.,
when a user encrypts a file using the crypto-tool, the only operations that we
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Fig. 3. CryptoAPI Function Hooking (CFHk) module

allow on that encrypted file are decryption and deletion (each of these opera-
tions requires the symmetric key used for encryption). Since it is impractical that
someone would edit/modify an encrypted file before decryption, this permission
setting suffices.

3.7 CryptoAPI Function Hooking (CFHk) Module

As described in Sect. 3.6, if the FCls module classifies the change to be the
result of a possibly benign encryption, we need to further investigate whether
the encryption was actually performed using the crypto-tool. Hence, the CFHk
module places hooks at the beginning of the CryptoAPI library functions to
redirect control of the execution to our custom-written functions. Figure 3 shows
an example of hooking the ‘CryptEncrypt’ function included in the CryptoAPI
library. Whenever a process calls the CryptEncrypt function to encrypt some file,
the hook placed at the beginning of the CryptEncrypt function transfers con-
trol to a shadow CryptEncrypt function. This shadow CryptEncrypt function
extracts a tuple < key, algo, file, timestamp, process > for that particular call
and stores this information in encrypted form for security purposes so that no
other process can get access to this. The key for this encryption is derived from
a secret password set by the user. Once the tuple is stored, the shadow Cryp-
tEncrypt function returns control to the original procedure, and the process
continues its execution as if it had not been interrupted at all. The implemen-
tation details of this hooking procedure are discussed in Sect. 4.3.

To identify whether a file encryption is performed using the crypto-tool, we
simply search ‘CryptEncrypt’ tuples that are captured by the CFHk module.

– If such a tuple is not found, we terminate the process that resulted in the file
change so that no further encryption can take place.

– If such a tuple is found, the encryption is either benign (no action required)
or a ransomware using CryptoAPI is responsible for the encryption. In the
second case, we can recover all the files by using the key and algo information
from the tuples (details in Sect. 5.4). Since in our system we also store the
file information (by associating a ReadFile call with CryptEncrypt), we do
not need to iterate over all the keys for a single file decryption which is an
improvement over existing work [16].
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Hence, the advantage of hooking the CryptoAPI library functions is twofold:
(1) tracking all the benign encryption by the user, (2) recovering the ran-
somware encrypted files in the case that the ransomware dynamically links
system-provided cryptographic libraries (i.e., Windows CryptoAPI).

4 RWGuard Implementation

4.1 IRPParser

While IRPLogger logs the I/O requests, the IRPParser component parses the log
entries, extracts I/O requests, and provides these as input to the DMon, PMon,
and FCMon modules accordingly.

4.2 Decoy File Generator

We have designed an automated decoy file generator tool that generates the
decoy files based on the original file system and user preferences. By default, in
each directory, it generates a decoy file with a name that is similar to one of the
original files (selected at random or by the user depending on user preference)
in that same directory so that the decoy files’ names do not seem random to the
ransomware. In order to make sure that the decoy files can be easily identified by
the user, the naming options are selected based on the user’s preferences which
also makes the decoy files more unpredictable for the ransomware. The user is
able to set different numbers of decoy files for different directories. In this way,
the more sensitive files can be protected with a larger set of decoy files and also,
manually setting the numbers makes it easier for the user to identify the decoy
files during normal operations. The type extensions of the generated decoy files
are: .txt, .doc, .pdf, .ppt, and .xls whereas the contents of the files are generated
from the contents of neighboring files. Although we did not observe selective
behavior (e.g., checking file name, file content, etc. before encryption) in any
of the ransomware we experimented with, our decoy design is resilient to such
future advanced ransomware. Note that the sizes of the decoy files in our system
are randomly taken from a range (typically from 1 KB to few MBs) based on
the sizes of the files in the original file system while the overall space overhead
for decoy files is limited to 5% of the original file system size.

4.3 CryptoAPI Function Hooking

In our CFHk module, we leverage the Detours library introduced in Sect. 2.
Detours hooks a function by moving a specific number of bytes (generally five
bytes) from the beginning of the original function’s memory address to the newly
created hook function. In this blank space of the original function, an uncon-
ditional JMP instruction is added that would transfer the control to the hook
function. The hook function then performs the necessary operations (e.g., safely
storing the keys and other parameters passed to the original function). At the end
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Table 4. Hooked CryptoAPI functions

Function Details

CryptEncrypt Encrypts data

CryptGenKey Generates a random cryptographic session key or a
public/private key pair

CryptDeriveKey Generates cryptographic session keys derived from a base
data value

CryptExportKey Exports a cryptographic key/key pair from a CSP

CryptGenRandom Fills a buffer with cryptographically random bytes

of these operations, another unconditional JMP instruction is added to transfer
the control back to the original function. The compiled DLL file is placed into
the registry key so that any process invoking the CryptoAPI functions would get
hooked and our CFHk module would store information related to encryption.
Table 4 lists the CryptoAPI functions we hook.

5 Evaluation

5.1 Experiment Dataset

While there exists different variants of ransomware, we build a comprehensive
dataset from the most popular ransomware families: Locky, Cerber, Wannacry,
Jigsaw, Cryptolocker, Mamba, Teslacrypt, Cryptowall, Petya, Vipasana, Satana,
Radamant, Rex, and Matsnu. The ransomware samples are collected from Virus-
Total [28], Open Malware [23], VXVault [29], Zelster [32], and Malc0de [22].

Note that among these samples, the first 9 families have been used in the
training phase of the PMon module. However, we run each of these 14 ran-
somware samples (one at a time) in the detection phase to assess the detec-
tion effectivenesses and performance overheads of RWGuard modules. The reason
behind not using the 5 samples for PMon module training is to measure how
well this module performs with previously unseen ransomware samples.

5.2 Detection Effectiveness

We evaluate the performance of RWGuard by running the ransomware samples
sequentially. Every time a ransomware sample is executed, we measure the time
required for flagging each malicious process spawned by the ransomware. Once
the ransomware is detected, we restore the system with a clean OS and execute
the next ransomware sample.

Detection w/Decoy Deployment: We observe that ransomware detection
with decoy deployment is extremely fast and ensures almost zero data loss. Note
that the IRPParser component parses IRP logs collected in a 1 second cycle.
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Fig. 4. Comparison between the cases of with and without decoy deployment in terms
of the number of (a) write, (b) read, (c) open, and (d) close IRPs made by the ran-
somware samples until their detection (ransomware name abbreviations: Lk-Locky,
Cr-Cerber, Wc-Wannacry, Jg-Jigsaw, Cl-Cryptolocker, Tc-Teslacrypt, Cw-Cryptowall,
Vp-Vipasana, St-Satana, Rd-Radamant, Rx-Rex).

Therefore, with the decoy deployment, our system can identify a ransomware
process right in the next cycle of the process’s decoy file write request.

Figure 4 shows the comparison between the cases of with and without decoy
deployment in terms of the number of write, read, open, and close IRPs (along
with the average values for all the ransomware) made by the ransomware samples
until their detection (in Figs. 4(a), (b), (c), and (d), respectively). The number
of IRPs (for each IRP type) for each ransomware family is computed by running
the samples at least 5 times. We find that with decoy deployment, for each of
these IRP types, there is an improvement of at least one order of magnitude.
Hence, the ransomware processes could be identified as soon as they start mak-
ing IRP requests, i.e., in real-time. For ransomware Locky, Jigsaw, Teslacrypt,
Cryptowall, Radamant, and Rex, we observe that the first IRP write requests
they make are for decoy files (see Fig. 4(a)) and thus are identified immediately.
The Wannacry ransomware could make up to 18 IRP write requests (the highest)
before it sends a write request for a decoy file (note that there can be multiple
IRP write requests for a single file write operation). An IRP write request is sent
well ahead of the actual write operation and hence the actual number of files
that can get encrypted before terminating the process is negligible (which also
depends on the file size).
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Fig. 5. Detection time required by RWGuard when there is no decoy deployment.

Note that, Fig. 4 does not show comparisons for the following three ran-
somware families: Mamba, Petya, and Matsnu. In our experiments, we have
found that samples from these families affect only a predefined list of system
files (and if there is no detection system activated except the decoy monitoring,
this is followed by gaining root access, shutting down the system, and at the next
boot up, performing full disk encryption and asking for a ransom payment). As
a result, our DMon module cannot identify such ransomware families (however,
the PMon and FCMon modules can) and therefore, we omit the comparison for
these three families in this section.

Detection w/o Decoy Deployment: In order to further evaluate the effec-
tiveness of RWGuard, we also consider an environment where there is no decoy
file. This environment can be practical for the following two scenarios:

1. A ransomware encrypts only a predefined list of system files, i.e., even if the
decoy files are deployed, the ransomware does not touch the decoy files (e.g.,
Mamba, Petya, and Matsnu ransomware families in our experiment dataset).

2. A malicious insider in an organization with the knowledge of decoy files’
deployment can use customized ransomware to sabotage the organization
and hold the ransomware responsible for this. Such an attack can be even
launched as a logical bomb that can detonate after the insider has left the
organization.

Figure 5 shows the time required to detect each of the samples (in millisec-
onds) while there is no decoy deployment in the system. The time computation
starts when the ransomware sample is executed and ends when the corresponding
process is flagged. Once the PMon and FCMon modules identify potential ran-
somware activity (i.e., malicious IRP/FastIO requests, significant file changes or
encryption), the FCls and CFHk modules are communicated. If the file(s) that
is (are) changed does (do) not belong to the ‘benignly encrypted’ class, and if
there is (are) no corresponding encryption entry (entries) in the CFHk module,
the process is immediately flagged. The average detection time for the first mali-
cious processes spawned by all the ransomware is 3.45 s. However, we see that
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all the ransomware spawn multiple malicious processes which are detected at
different times by our monitoring system. We observe that the average required
time for detecting all the spawned processes is 8.87 s. As we can see from Fig. 5,
Locky, and Cerber spawn the highest number of malicious processes whereas
CryptoLocker and TeslaCrypt spawn the lowest number of processes. According
to our observation, most of the ransomware try to spawn processes with unique
names or try to hide as system processes, e.g., explorer.exe. We also observe
that different ransomware behave differently when the initially spawned mali-
cious processes are killed by our system. For example, Wannacry sits idle for
some time after the initial few processes are killed, before trying to spawn a new
malicious process. This is the reason for the comparatively higher detection time
for the last process in some of these ransomware.
Detection effectivenesses of different modules are discussed in the following:

• Decoy Monitoring (DMon) module: This module is the fastest to identify
a ransomware process. Deploying a larger number of decoy files will result in
even faster detection. For example, with a decoy generator that creates a
shadow decoy file for each original file in the system, probabilistically, one
out of each two write requests by a ransomware would belong to a decoy file.

• Process Monitoring (PMon) and File Change Monitoring (FCMon)
modules: In most of the cases, the PMon module responded faster than the
FCMon module in terms of flagging a malicious process. Even before the ran-
somware starts performing encryption, the PMon module is able to identify the
malicious activities by monitoring the IRPs. In contrast, the FCMon module
responds only after a file has been changed significantly. However, we observe
that few benign processes, e.g., Chrome, VMware tools are sometimes misclas-
sified as malicious by the PMon module due to these processes’ I/O request
behaviors. Therefore, it is important to also consider the analysis by theFCMon
module to better understand whether a particular process is responsible for any
malicious file changes and to remove any false positives.

• File Classification (FCls) and CryptoAPI Function Hooking
(CFHk) modules: After the PMon and FCMon modules’ detection that
a process is making significant changes in the file(s), the information of the
file(s) are sent to the FCls module which then computes the probability of these
changes being benign. The false negatives of this module correspond to the cases
in which the ransomware encrypts a file which has a high probability of being
encrypted by the user benignly. Such false negatives are, however, detected by
the CFHk module which identifies if the file is actually encrypted using the
provided crypto-tool. With a 100% accuracy, the CFHk module can identify
whether an encryption is performed by a ransomware or is a benign encryp-
tion. This module never flags a benign encryption. The only case of false pos-
itives (negligible, ∼0.1%) we have observed in the FCls and CFHk modules is
when the user performs file compression in a directory for the first time. How-
ever, a first time benign file encryption in a directory is not flagged as malicious
since the CFHk module can intercept the benign encryption operations. Note
that the FCls and CFHk modules do not flag any process unless that process is
identified as suspicious by one of the monitoring modules.
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5.3 Size of Encrypted Data

In terms of the number of files, samples from ransomware families Locky, Jig-
saw, Teslacrypt, Cryptowall, Radamant, and Rex could not encrypt any file with
decoy deployment. The malicious processes for these families are identified on
their first IRP write request. The numbers of IRP write requests made by ran-
somware families Cerber, Wannacry, Cryptolocker, Vipasana, and Satana before
their detection are 2, 18, 12, 6, and 3, respectively, with decoy deployment. How-
ever, since an IRP write request is sent well ahead of the actual write operation
and there can be multiple IRP write requests for a single file write, with decoy
deployment, the average number of files lost is <1 with only Wannacry and
Cryptolocker being able to encrypt 1 file each before their malicious processes
are killed. The average number of IRP requests made by the ransomware fam-
ilies without any decoy deployment is ∼538 (with the strong assumption that
the ransomware can evade the decoy deployment which is not the case for most
of the families) whereas the average number of files affected is <10. Note that
the number of files affected before detection depends not only on the number
of IRP requests made but also on the time taken by a ransomware process to
initiate the encryption routines (which is significant), type of encryption, size of
the files, and the number of files the ransomware attempts to encrypt (this is
because for each file the ransomware needs to generate a new key).

5.4 File Recovery

The CFHk module could recover all the files encrypted by the ransomware fam-
ilies: Locky, CryptoWall, and CryptoLocker. The encryption algorithms used by
these samples are AES with CTR mode, AES in CBC mode, and AES, respec-
tively. Note that the CFHk module in its current version cannot recover files that
are encrypted using the ransomware’s custom-written cryptographic library.

5.5 Performance Overhead

In the following, we discuss the performance overheads for different modules
of RWGuard. The DMon, FCls, and CFHk modules have negligible overheads.
The DMon module generates a single decoy file in each directory (if not set
otherwise by the user) and randomly chooses the size of the decoy files from
the range 1 KB–5 MBs while limiting the overall space overhead to 5% of the
original file system size. At runtime, this module checks for decoy file write
requests and modifies/regenerates the decoy files once per day at random times
which has only a minimal overhead. The FCls module instantaneously classifies
the files using file type and location information. The overhead for hooking a
CryptoAPI function and computing and storing the corresponding tuple is a
few milliseconds (≤10 ms) which is negligible and thus cannot interrupt a user’s
normal operations.
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Table 5. Memory overhead of RWGuard

Component Memory consumed (KB)

Main Java module 14296

FCMon Entropy Calculator 7880

FCMon Similarity Index Calculator 5152

IRP Logger 42964

There is a main Java module which executes the IRPLogger, collects all
the IRPs made in the system, parses the IRPs with IRPParser, and runs three
parallel threads for DMon, PMon, and FCMon modules. The FCMon module
consists of the components for computing the values of entropy and similarity
index which use minimal CPU cycles since these are called only when there are
write operations on the files. The memory usage of these components along with
the main Java module is shown in Table 5. The average CPU usages for this
main Java module and IRPLogger are 0.85% and 1.02%, respectively.

Overheads for Different Workloads. The performance overheads discussed
above are recorded while running a web browser process and an integrated
development environment (IDE) process along with regular operating system
processes. However, in order to measure RWGuard detection performance and
overheads for a heavy workload OS, we add several processes: two browsers
(Chrome and Internet Explorer), two IDEs (Eclipse and PyChar), Windows
Media Player, Skype, and other regular operating system processes. Accord-
ing to our experiments, this heavy workload does not significantly affect the
time required by RWGuard for identifying ransomware processes while we have
observed that IRPLogger and the Java module incur higher memory overhead
(244456 KB and 45436 KB, respectively) due to this heavy workload. The detec-
tion time remaining unaffected by the heavy workload can be attributed to the
fact that RWGuard fetches IRPLogger entries every 2 s which does not depend on
the number of entries logged (the number of log entries is much higher for the
heavy workload case). Since parsing the IRP logs is not an expensive operation,
for the heavy workload case, the detection time is not significantly changed.
Also, the memory overheads for the FCMon metrics’ calculation remain similar.

5.6 Comparison with Existing Approaches

Table 6 presents a comparison among RWGuard and other exiting ransomware
detection techniques with respect to monitoring, detection, and recovery strate-
gies.
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Table 6. Comparison of RWGuard with existing ransomware detection mechanisms

Solution Real-time

detection

with

decoy

Benign

operation/

encryption

profiling

File change

monitoring

Process

monitoring

Recovery of

decryption

key

Recovery

of files

RWGuard � � � � �(partial) �(partial)

ShieldFS [6] × × × � × �
Unveil [13],

CryptoDrop [26],

Redemption [14]

× × � � × ×

PayBreak [16] × × × × �(partial) �(partial)

EldeRan [27] × × × � × ×
FlashGuard [10] × × × × × �

6 Discussion and Limitations

Novelty. To the best of our knowledge, RWGuard with the decoy technique is
the first system with very fast real-time (few milliseconds) detection capabilities.
Even without the decoy deployment, the other monitoring modules are able to
minimize the damage by identifying the ransomware processes at the time of
their I/O requests. An average of 538 I/O write requests within the average
detection time of 3.45 s shows how rapidly a ransomware attempts to encrypt
the user’s files while RWGuard exploits this property to terminate the ransomware
at an early stage. Also, whereas the existing approaches are unable to distinguish
benign file changes from malicious ones, the FCls module along with the CFHk
module is able to overcome such false positives.

Inevitability. Our robust decoy design makes it impossible for the ransomware
to recognize a decoy file by any of its properties. The ransomware would need
to install some spyware and monitor the file activities in the system in order
to determine which ones are modified by the end-users and applications and
which are executed by our decoy tool. Moreover, obfuscation techniques can be
used to make difficult for the ransomware to analyze the applications in order to
determine which application is the decoy generator. Our integrated monitoring
modules, PMon and FCMon, employ scrutiny on metrics that are inclusive of
any malicious activity by the ransomware. For example, a smart ransomware
that encrypts files slowly would still be detected by the FCMon module. While
the monitoring modules DMon, PMon, and FCMon do not let a ransomware
activity remain undetected (i.e., they prevent false negatives), the FCls and
CFHk modules distinguish benign file operations from malicious ones (i.e., they
prevent false positives). Hence, we argue that independently of the intelligence of
modern ransomware, RWGuard raises the evasion bar for ransomware significantly.

File Recovery. Note that, the CFHk module monitors all (benign and ran-
somware) file encryption that leverage ‘CryptoAPI’ functions. Therefore, if a
ransomware leveraging CryptoAPI library (3 of the 14 ransomware families that
we have analyzed use this library) becomes successful in encrypting a set of
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files before our early detection, using the hooking mechanism, we can retrieve
the parameters (including the decryption keys) of those specific cryptographic
function calls and consequently restore the encrypted files. Our experiments
(Sect. 5.4) show that the CFHk module is able to recover the files encrypted
by the 3 ransomware families with a 100% success rate. The rest of the ran-
somware samples experimented in our evaluation did not use CryptoAPI but
their custom-written cryptographic library. Moreover, code obfuscation is a com-
mon technique used by the modern ransomware families. Obfuscation strategies,
such as incremental packing and unpacking, make it more difficult to identify
cryptographic primitives in the ransomware binary. While there are techniques
(e.g., [31]) that look for cryptographic operations in the process memory, we have
not incorporated those in our system due to their huge performance overhead.

Limitations. While the DMon module is quick in identifying a malicious pro-
cess, the PMon and FCMon modules are anomaly based and hence probabilis-
tically bound to miss some of the malicious activity. Also, these modules are
based on the logging of IRP calls and file activity. The time lag between logging
these activities and parsing them for anomalies provide a small window for the
ransomware to perform its malicious activities as discussed in Sect. 5.3.

7 Related Work

Detection Techniques. Kharraz et al. [13–15] propose systems that monitor
the I/O request patterns of applications for signs of ransomware-like behaviors.
Scaife et al. [26] have designed CryptoDrop, a system that alerts users during sus-
picious file activity, e.g., tampering with a large amount of the user’s data. Sgan-
durra et al. [27] propose EldeRan, a machine learning approach that monitors
actions performed by applications in their first phases of installation and checks
for characteristics signs of ransomware. Lee et al. [18] propose a ransomware
prevention mechanism based on abnormal behavior analysis in a cloud system.
Cabaj et al. [4] present a software-defined networking (SDN) based detection
approach that utilizes the characteristics of ransomware communication. Andro-
nio et al. [1] propose a technique to detect Android ransomware that applies
to only mobile platforms- where applications are analyzed in-depth before they
are released in any app market. Huang et al. [9] propose a measurement frame-
work for end-to-end of ransomware payments. In contrast, RWGuard is the fastest
solution that identifies ransomware infection in real-time with decoy techniques,
prevents malicious processes from making changes to the files, and also deter-
mines the original intent of file changes.

Post-encryption Techniques. Kolodenker et al. [16] propose a system, called
PayBreak, that intercepts system provided crypto functions, collects and stores
the keys, and thus, can decrypt files only for the ransomware families that use
system provided crypto functions. Continella et al. [6] propose the ShieldFS tool
that monitors low-level file system activity to model the system over time. When-
ever a process violates these models, the affected files are transparently rolled
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back. However, it requires shadowing a file whenever it is modified and thus
incurs high overhead. FlashGuard, a system developed by Huang et al. [10] lever-
ages the fact that SSD performs out-of-place writes and thus holds the invalid
pages for up to 20 days to perform data recovery after ransomware encryption.
However, this type of recovery methods conflict with the idea of secure deletion
and may result in privacy issues and data leakage. Given the limitations of the
existing post-encryption recovery techniques, it is of uttermost importance that
faster detection techniques be developed against ransomware.

Decoy Techniques. Decoy techniques have been previously proposed to defend
against insider threats [2]. Though some research work [15,19] recommends using
decoy files for detecting ransomware, such previous work does not include any
analysis on the effectiveness of the decoy files. Randomly generated decoy files
in commercial solutions (e.g., [7]) are susceptible of detection by sophisticated
ransomware. Moreover, unlike RWGuard, their decoy files are deployed during the
installation process which simply leaves the files unmodified for a long time and
thus makes these files less interesting for the ransomware. Also, it is not clear how
these solutions would handle special ransomware families, e.g., Mamba, Petya,
and Matsnu, that affect only a predefined list of system files.

Cryptographic Primitives Identification Techniques. Discovering crypto-
graphic primitives in a given binary is another research direction where crypto-
ransomware including cryptographic operations could be identified before-
hand [5,31]. Calvet et al. [5] developed such a technique and evaluated the
performance of their system on a set of known malware samples. Lestringant
et al. [20]’s approach to obtaining the similar goal leverages graph isomorphism
techniques. Although these approaches could identify cryptographic primitives
in obfuscated programs, their poor performance makes them impractical for real-
time defense even with the most recent work [31] resulting in a 5-6X slowdown
in average.

8 Conclusions and Future Work

In this paper, we introduce RWGuard that detects crypto-ransomware on a user’s
machine in real-time while removing the false positives due to the user’s benign
file operations. We evaluate RWGuard against 14 most prevalent ransomware fam-
ilies. Our experiments show that RWGuard is effective in early detection of ran-
somware with only negligible false positives (∼0.1%) and zero false negatives
while incurring an overhead of only ∼1.9%. Furthermore, RWGuard recovers all
files that are encrypted using CryptoAPI by the corresponding ransomware. As
part of the future work, we plan to profile other existing encryption libraries
and in real-time scan the process’s memory for similar operations so that we can
recover the keys used for encryption and restore the files. Moreover, we plan to
take snapshots of the ransomware processes’ memories before terminating the
processes and analyze those for traces of encryption/decryption keys.
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Abstract. We present DNS Unchained, a new application-layer DoS
attack against core DNS infrastructure that for the first time uses ampli-
fication. To achieve an attack amplification of 8.51, we carefully chain
CNAME records and force resolvers to perform deep name resolutions—
effectively overloading a target authoritative name server with valid
requests. We identify 178 508 potential amplifiers, of which 74.3% can
be abused in such an attack due to the way they cache records with low
Time-to-Live values. In essence, this allows a single modern consumer
uplink to downgrade availability of large DNS setups. To tackle this new
threat, we conclude with an overview of countermeasures and suggestions
for DNS servers to limit the impact of DNS chaining attacks.

Keywords: DNS · Amplification attack · Application-layer attack

1 Introduction

The Domain Name System (DNS) is at the core of today’s Internet and is
inevitable for networked applications nowadays. Not only is DNS the primary
mean for mapping and translating domain names to IP addresses. Also, sev-
eral other applications heavily depend on DNS, such as load balancing (e.g., for
Content Delivery Networks), anti-spam methods (e.g., DKIM [6], SPF [19], or
IP address blacklists [9]) and TLS certificate pinning [10,15]. We rely on the
availability of these services for everyday communication. Yet recent incidents
have demonstrated how vulnerable DNS is to Denial-of-Service (DoS) attacks,
even for hosters that massively invest in over-provisioning and deploy highly-
reliable anycast networks. For example, in October 2016, attacks against the
DNS hoster Dyn have knocked Twitter, Netflix, Paypal and Spotify offline for
several hours [14]—simply because the authoritative name servers for these ser-
vices were hosted by Dyn and became unresponsive due to a successful Dis-
tributed DoS (DDoS) attack against Dyn.

Up to now, DDoS attempts against the DNS infrastructure have focused
mostly on volumetric attacks, where attackers aim to exhaust the bandwidth
that is available to DNS hosters. In a successful attack, benign DNS queries are
c© The Author(s) 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 139–160, 2018.
https://doi.org/10.1007/978-3-030-00470-5_7
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dropped such that normal users no longer see responses from the DNS hosters. A
popular and powerful example of volumetric attacks are so called amplification
attacks [22,44], where miscreants abuse that open services (such as NTP servers)
reflect answers to IP-spoofed requests. Yet any of these rather simple volumetric
attacks can be filtered with the help of data scrubbing services such as Arbor,
Cloudflare, or Incapsula.

In this paper, we explore application-layer attacks against core DNS infras-
tructures, namely authoritative name servers (ANSs). Compared to volumetric
DoS attacks, application-layer attacks are more appealing to adversaries. In par-
ticular, they (i) are significantly harder to distinguish from benign traffic, (ii)
not only target bandwidth, but also computational resources, and (iii) do not
rely on IP address spoofing and can be launched even though providers deploy
egress filtering [36]. This makes them attractive for botnets.

We start by describing existing forms of application-layer attack against DNS
that overload a target ANS with valid DNS requests. In the simplest form, a sin-
gle attack source can send queries to domains hosted by this name server. Yet
in practice, attackers have distributed the attack and use resolvers as interme-
diaries in so called random prefix attacks [1,47]. They are a form of flooding
DNS attacks and get their name from the characteristic prefixes used to cir-
cumvent resolver caching. Such attacks can be launched from malware-infected
devices [2] or even JavaScript and already have the potential to put large DNS
hosters offline (e.g., Dyn in 2016).

We then describe a novel form of application-layer attacks that floods the
victim with an order of magnitude more queries per second than random pre-
fix attacks. We dub this attack DNS Unchained, as it abuses the chaining
behavior of CNAME and DNAME resource records in DNS. The core idea of our
attack borrows from random prefix attacks. However, instead of blindly send-
ing out queries to random domains hosted by the target ANS, the attacker
carefully crafts long chains of DNS records (a.target.com→ b.other.com,
b.other.com→ c.target.com, . . . ) that involve the target ANS in every other
step. This has the effect that resolvers query the target ANS not just once, but
several times—until the end of the chain is reached. To the best of our knowledge,
this is the first DoS attack that combines amplification with application-layer
attacks. We find that the vast majority of resolvers support chain lengths of
9–27 (and more) elements, resulting in tenfold amplification due to the number
of times a target ANS is queried per request the attacker sends.

We complete this paper with an extensive discussion how such attacks can
be remedied. We foresee countermeasures that can be deployed by ANS, such
as detecting malicious DNS chains or enforcing lower bounds, ensuring more
caching, for TTL values. discuss how resolvers can mitigate attacks by capping
DNS chains without compromising the benign usage of chains in DNS.

Our contributions can be summarized as follows:

– We present an application-layer attack against DNS that create an order of
magnitude more queries per second than existing attacks. For this attack, we
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revisit how DNS chains can be abused to amplify traffic, and are the first to
combine application-layer attacks with amplification.

– We analyze the real-world impact by performing Internet-wide measurements
of the resolver landscape and test for the achievable amplification.

– We present and discuss the efficacy of countermeasures against application-
layer DoS attacks. This discussion helps to defend against DNS Unchained
and DNS application-layer attacks in general.

2 Threat Model

We now define the treat model and describe the attacker’s capabilities, required
resources, and our assumptions about the victim. The adversary in our model
aims to degrade the availability of an authoritative name server (ANS). ANSs
answer DNS queries for a particular zone, as queried by any DNS resolver. Next
to mapping domain names to IP addresses, ANSs provide several other services,
e.g., anti-spam methods (e.g., DKIM [6], SPF [19], or IP address blacklists [9])
and TLS certificate pinning [10,15], making them fundamental on the Internet.

In the highly redundant DNS setting, resolvers choose between all ANSs of a
particular zone [33,53]. Yet even a single unresponsive ANS will cause decreased
performance for the whole domain within the zone. In a redundant setup with
multiple anycast sites, the loss of one anycast site will still affect the networks
routing to this site, therefore the responsiveness of every single ANS matters.

In our model, the attacker targets a specific ANS, e.g., to render domains
hosted by this ANS unreachable. We assume that the attacker can host at least
one attacker-controlled zone on the target ANS. This involves that the attacker
can create arbitrary DNS records that are within their zone, i.e., subdomains
for a given second-level domain. We believe that this assumption is easily ful-
filled. For example, if domains are hosted by web hosters such as GoDaddy or
Rackspace, an attacker can set up a domain at the same hoster as the victim’s
website. Another possibility is that the victim’s domain is hosted using one of
the DNS hosters like NS1, Amazon Route 53, Dyn, or Google Cloud DNS.

Creating an account may be a problem for an attacker who wants to stay
anonymous. We note that in such cases the attacker could use fake or stolen IDs
to register an account.

The only other requirement on the attacker is the ability to send DNS queries
to open DNS resolvers (“resolvers” hereafter). Attackers can find such resolvers
by scanning the Internet UDP port 53 in less than an hour [11]. Internet scans are
not a limiting factor, as there are also lists of resolvers available for download [4].
Also, in contrast to amplification DDoS attacks [44], the attacker in our model
does not need to spoof the source IP address of attack traffic. This allows an
attacker to operate from a single source, or to increase anonymity and bandwidth
by leveraging DDoS botnets to launch attacks.
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3 Application Layer DDoS Against DNS

Application layer DoS attacks abuse a higher-level protocol—in our context
DNS—and tie resources of other participants of the same protocol. This distin-
guishes application-level attacks from other forms of DoS attacks, e.g., volumet-
ric attacks, which are agnostic to protocol and application, but relatively easy
to filter and defend against. Application-layer attacks can target more different
resources like CPU time and upstream bandwidth, while volumetric attacks can
only consume downstream bandwidths, making them interesting for many cases.
In this section we will first introduce DNS water torture attacks, an emerging
application layer DoS technique that has already severely threatened the DNS
infrastructure. We will then show that a smart attacker can craft delicate chains
of DNS records to leverage resolvers for even more powerful attacks than those
possible with DNS water torture.

3.1 DNS Water Torture

DNS water torture attacks—also known as random prefix attacks—flood the
victim’s DNS servers with requests such that the server runs out of resources to
respond to benign queries. Such attacks typically target the authoritative name
server (ANS) hosting the victim’s domain, such that domains hosted at the target
server become unreachable. Resolvers would typically cache the responses of the
queried domains, and therefore mitigate näıve floods in that they refrain from
identical follow-up queries. To this end, attackers evade caching by using unique
domain names for each query, forcing resolvers to forward all queries to the
target ANS. A common way is prepending a unique sequence to the domain—
the random prefix. In practice, attackers either use monotonically increasing
counters, hash this counter, or use a dictionary to create prefixes. As the DNS
infrastructure, on the other hand, heavily relies on caching on multiple layers in
the DNS hierarchy, ANS are typically not provisioned to withstand many unique
and thus non-cached requests—leaving ANS vulnerable to water torture attacks.

Water torture attacks were observed for the first time in early 2014 [1,41,51]
and have since been launched repeatedly. The main ingredient for this attack is
sufficient attack bandwidth, which overloads the target ANS with “too many”
requests. As this does not require IP spoofing, attackers can easily facilitate
botnets to maximize their attack bandwidth. In fact, several large DDoS botnets
(e.g., Mirai [2] or Elknot [28]) support DNS water torture.

While water torture attacks have been fairly effective, their näıve concept
has noticeable limitations:

1. Water torture attacks can usually be easily detected because the attack traf-
fic shows exceptionally high failure rates for particular domains, as none
of the requested (random-looking) domain names actually exists. NXDOMAIN
responses are normally caused by configuration error and therefore often mon-
itored.
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2. Water torture attacks provide no amplification, as every query by the attacker
eventually results in only a single query to the target ANS—unless queries
are resent in case of packet loss. The victim-facing attack traffic is thus bound
by number of queries that the attacker can send. This is in stark contrast to
volumetric attacks that offer more than tenfold amplification [44].

3.2 Chaining-Based DNS DoS Attack

We now propose a novel type of DNS application layer attacks that abuse chains
in DNS to overcome the aforementioned limitations of water torture, yet stay
in a similar threat model (Sect. 2). The main intuition of our attack is that an
attacker can utilize request chains that amplify the attack volume towards a
target ANS. This is achieved via aliases, i.e., a popular feature defined in the
DNS specification and frequently used in practice.

CNAME Records DNS request chains exist due to the functionality of creating
aliases in DNS, e.g., using standard CNAME resource records (RR) [31,32]. A
CNAME RR, short for canonical name, works similar to pointers in programming
languages. Instead of providing the desired data for a resolver, CNAME specifies
a different DNS location from where to request the RR. One common use is to
share the same RRs for a domain and the which overloads the target ANS with
“www” subdomain. In this case, a CNAME entry for “www.example.com.” points to
“example.com.”. When a client asks the resolver for the RRs of a certain type
and domain, the resolver recursively queries the ANS for the RRs, resulting in
three cases to consider:

Domain Does Not Exist or No Data. The domain does not exist (NXDOMAIN
status) or no matching resource record (including CNAME records) was found
(NODATA status). The ANS returns this status.

Resource Records Exists. The desired resource record’s data is immediately
returned by the ANS. The DNS specification enforces that either data, or an
alias (i.e., CNAME) may exist for a domain, but never both—i.e., there was no
CNAME record for the request domain.

Domain Exists and Contains. CNAME response The resolver must follow the
CNAME regardless of the requested record type. This may cause the resolver to
send new queries, potentially even to different ANSs.

The last case allows chaining of several requests. In case of CNAME records,
resolvers have to perform multiple lookups to load the data (unless the records
are cached). CNAME records can also be chained, meaning the target of a CNAME
records points to another CNAME record. This increases the number of lookups per
initial query. There is no strict limit to the length of chains. However, resolvers
typically enforce a limit to prevent loops of CNAME records. After reaching this
limit, resolvers either provide a partial answer, or respond with an error message.

Note that CNAME records provide delegation between arbitrary domains, i.e.,
also to domains in unrelated zones. If all the CNAME records are hosted in the
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a.target -ans.com. IN CNAME b.intermediary.org.

c.target -ans.com. IN CNAME d.intermediary.org.

e.target -ans.com. IN CNAME f.intermediary.org.

g.target -ans.com. IN CNAME h.intermediary.org.

i.target -ans.com. IN TXT "Huge record at the end."

b.intermediary.org. IN CNAME c.target -ans.com.

d.intermediary.org. IN CNAME e.target -ans.com.

f.intermediary.org. IN CNAME h.target -ans.com.

h.intermediary.org. IN CNAME i.target -ans.com.

Listing 1. Two zones “target-ans.com.” and “intermediary.org.”, which contain
a CNAME that ends at the ith element in TXT records.

same zone, the ANS can provide multiple CNAMEs in one answer, by already
providing the next records in the chain. By chaining CNAME records between two
different ANSs, i.e., by alternating between them, an ANS can only know the
next CNAME entry in the chain.

DNS Chaining Attack. The possibility to chain DNS queries via CNAME RRs
opens a new form of application-layer DoS attack. Let an attacker set up two
domains on different ANSs. The first domain will be hosted by the target ANS,
and the second (or optionally further) domain(s) by some intermediary ANS(s).
The zones are configured to contain long CNAME chains alternating between
both domains. An example can be found in Listing 1, where a chain ping-pongs
between the target and an intermediary ANS, until the record with prefix i. If
an attacker now sends a single name lookup to query for the record at the start
of the chain, the resolver has to follow all chain elements to retrieve the final
RR. A large final RR, such as the TXT, additionally targets the ANS’s upstream
bandwidth. Figure 1 shows the queries sent between the attacker A, a resolver
R, and both ANSs. The dashed arrows represent the CNAME pointers between
the different domains, while the circled numbers ( 1 — 3 ) represent the order in
which they are resolved. The attacker queries the first chain element and forces
the resolver to query the target ANS repeatedly.

This provides severe amplification, as a single request by the attacker results
in several requests towards the target ANS. For each query by the attacker
N queries are sent by the resolver, where N is equal to the minimum of the
chain length and a resolver dependent limit. The chain length is controllable by
the attacker and effectively unlimited, but resolver implementations limit the
maximum recursion depth (see Sect. 4.2). The amplification, as observed by the
target ANS, is �N/2�, as every second chain record is served by the target ANS.

For illustrative purposes, Fig. 1 just shows a single resolver. In practice, an
attacker would likely aim to spread the attack requests to thousands of resolvers,
that is, not to overload a single resolver—recall that in our threat model the ANS
is the victim (not the resolver). Furthermore, given two domains, an attacker can
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Fig. 1. Attacker A uses resolver R to attack the target ANS. The dashed arrows rep-
resent the CNAME pointers between the domain. 1 – 3 show the order of CNAME records
in the chain. The setup is according to Listing 1.

easily create multiple chains, e.g., by using distinct subdomains for each chain.
The number of chains is bound (if at all) only by the number of subdomains
supported by the target ANS.

There are no strict requirements for the intermediary ANS. In general, inter-
mediary ANSs can be hosted by a hosting provider, self-hosted by the attacker, or
even distributed between multiple hosters. The only exception is that the inter-
mediary and target ANS should be not the same server. Some ANSs will follow
CNAME chains if the ANS is authoritative for all domains in the chain. Requiring
at least one dedicated intermediary ANSs ensures that only one answer can be
returned. If the ANS is configured to only return one CNAME record, the same
ANS can be used, doubling the amplification achieved with this attack. On the
other extreme, it is perfectly possible to use multiple intermediate ANS, as long
as every second element in the chain still points to the target ANS. Distributing
the intermediary ANS will increase the reliability and reduce the load for each
intermediary ANS, and raise the complexity in preventing the attack.

While the requirements for this attack may seem high, we note that attackers
are already known to use complex setups for their operations. One example
regarding DNS are fast-flux networks [16] which provide resilience against law-
enforcement take-downs and work similar to CDNs. Attackers use fast changing
DNS entries to distribute traffic across sometimes hundreds of machines.

3.3 Leveraging DNS Caching

DNS resolvers rely on record caching, such that queries for the same domain
do not require additional recursive resolution if the resolver has those records
cached. Technically, each resource record contains a Time-to-Live (TTL) value,
which specifies how long it may be cached by a resolver, i.e., be answered without
querying the ANS. Caching has a large influence on the DNS chaining attack, as
it determines how frequent resolvers will query target and intermediary ANSs.

An attacker would aim for two compatible goals. On the one hand, given an
attack time span, the target ANS should receive as many queries as possible.
This means that caching for those records that are delivered by the target ANS
should be ideally avoided. On the other hand, an attacker wants to minimize the
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number of queries sent to the intermediary ANS, as they would otherwise slow
down the overall attack. We discuss both parts individually in the following.

Avoiding Caching at Target ANS: Determining the overall impact on ANS
requires an understanding how often each resolver can be used by the attacker
during an attack. That is, if all records of a chain are cached, the resolver would
not query the target ANS. To solve this problem, attackers can disable caching for
records hosted by the target ANS. Specifying a TTL value of zero indicates that
the resource should never be cached [32, Sect. 3.2.1]. We assume that resolvers
honor a TTL of zero, i.e., do not cache such entries. We evaluate this assumption
in Sect. 4.1.

However, we have observed that resolvers implement additional micro-
caching strategies to further reduce the number of outgoing queries. A strategy
we have typically observed is that resolvers coalesce multiple identical incoming
or outgoing requests. If a resolver detects that a given RR is not in the cache, it
starts requesting the data from the ANS. Queries by other clients for the same
RR may arrive in the meantime. A micro-caching resolver can answer all out-
standing client queries at once when the authoritative answer arrives, even if the
RR would not normally be cached (i.e., TTL = 0). In our context, such micro-
caching might occur if the resolver receives a query for a CNAME record of which
the target is not cached, but another query for the same target is already out-
standing. Coalescing identical queries thus results in fewer outgoing queries to
the ANSs, because a single authoritative reply is used to answer multiple client
queries. This reduces the amplification caused by the resolver. Micro-caching
is a defense mechanism against cache poisoning attacks which make use of the
“birthday attack”, such as the Kaminsky attack [7,18].

We thus define the per-resolver query frequency as the maximum number of
queries per second an attacker can send to a given resolver without any query
being answered by caching or micro-caching. It equals the optimal attack speed:
Fewer queries would not use the resolver’s full amplification potential, more
queries would waste attack bandwidth.

Leveraging Caching at Intermediary ANSs: Recall that every other chain
element points to a record hosted by an intermediary ANS. In principle, this
would require resolvers to query the intermediary ANS for every second step in
the chain, which significantly reduces the frequency in which the target ANS
receives queries. However, those records do not change, so we can leverage
caching to increase this frequency. By setting a non-zero TTL for the records
hosted by the intermediary ANSs, the resolvers only have to fetch the records
on the first query of the chain. After the caches are “warmed up”, the resolvers
will only fetch the records from the target ANS. The frequency of attack queries
is thus largely determined by the round trip time (RTT) between resolver and
target ANS. In contrast, the RTT between resolver and intermediary ANS is
irrelevant.
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3.4 Attack Variant with DNAME Resource Records

One drawback of the CNAME-based attack is, that it requires definitions of
records per chain. If an attacker aims to abuse multiple chains in parallel
(e.g., to increase the per-resolver query frequency), they have to define dozens
of CNAME records. One slight variation of the CNAME-based attack thus uses
DNAME records. Using DNAME resource records [5,43] allows arbitrary many sub-
domains for the chain with only a single entry. Conceptually, DNAMEs are simi-
lar to CNAMEs and are created like CNAME records, e.g., “www.target-ans.com.
IN DNAME intermediary.org.”. The difference is that DNAME records allow the
ANS to replace the occurrence of the owner (left-hand side) by the target (right-
hand side) for all queries to a subdomain of the owner. For example, a query
to “a.www.target-ans.com.” would be rewritten to “a.intermediary.org.”
with the given rule.

Technically, the answer for a DNAME resource record does not only contain
the DNAME resource records. For backwards compatibility, ANSs will create a
synthetic CNAME resource record for the exact query domain. Resolvers can also
directly support DNAME resource records, providing a better user experience. How-
ever, resolvers that lack support for DNAME records fall back using the CNAME
records. An attacker can abuse those resolvers to query chains defined with
DNAME entries, for simulating an arbitrary number of chains and avoid caching.
Those resolvers have to use the synthetic CNAME records to follow the chain.
Because the records are synthetically created for the exact query domain, they
are indistinguishable from “normal” CNAME records in a zone. This forces the
resolver to query the ANS for each newly observed subdomain.

Resolvers that support DNAMEs can use a cached entry to directly answer
queries for all subdomains, even if the exact subdomain has never been observed.
This improves the resolver’s performance, as only one cache entry has to be
stored (compared to many CNAMEs) and authoritative queries only need to be
issued, if the DNAME entry expires (compared to once for each new subdomain).
This effectively limits the number of simulated chains to one, which falls back to
the same properties as the classic CNAME-based chain. Resolvers without DNAME
support can be queried as often as permitted by the resolver’s resources, without
paying attention to any macro- or micro-caching. Furthermore, handling DNAME
queries consumes more resources at the target ANS, as resolvers usually create
and send synthetic CNAME records in addition to DNAME records.

4 Evaluation

In the following we analyze the behavior of resolvers, with Internet-wide mea-
surements, and analyze four selected implementations in more detail. We will
use those measurements to determine the per-resolver query frequency, possible
amplification factor, and overall impact, focusing only on the CNAME variant.
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In our manual analysis we focus on the four resolvers Bind1 9.10.5,Unbound2

1.6.3, PowerDNS Recursor3 4.0.6, and Knot Resolver4 1.3.2, because they are
popular, open source, actively maintained, and backed by DNS operators. All
tests were performed in the default configuration, as provided by Fedora 25. For
the measurements, we set up two virtual machines (VMs). The first VM hosts the
four resolvers, while the second VM hosts an ANS. We configured the resolvers to
use the ANS for all queries, by setting corresponding root hints and configuring
the ANS accordingly. Note that in this minimal setup the second VM hosts both
the target and intermediary ANS. We thus changed Bind’s configuration such
that it does not follow CNAME chains5, to simulate two independent ANSs.

We scanned the Internet via Zmap [11] and a custom DNS module, following
their recommended scanning guidelines. Networks could opt-out from our scans.
We encoded the IP address of the scan target into each DNS query, which allows
us to correlate the scanned IP address with the traffic captured at our ANS.
We used PowerDNS with a custom back-end as the ANS authoritative for the
domains we scanned for. PowerDNS will never follow CNAME chains and only
return a single CNAME record, simulating the two zone setup.

4.1 Caching

So far we assumed that resolvers honor non-cachable DNS resource records (i.e.,
TTL = 0). We evaluate this assumption and study the micro-caching strategies
by different DNS resolver implementations.

First, we want to get a general understanding how the different implementa-
tions handle non-cacheable responses. We configured our ANS to serve a short
CNAME chain alternating between two zones. All RRs in the chain are served with
TTL=0. We repeatedly issued the same query to the resolver and observed the
responses. Bind, Unbound, and PowerDNS do not cache the response and served
it with a TTL of zero. Knot serves the record with a TTL of five, but also does
not cache the response.

To test the micro-caching behavior, we sent multiple queries to the resolvers
for the same domain with slight delays between them, and observed how frequent
resolvers queried the ANS. The delay was chosen such that the resolver has
forwarded the previous query to the ANS, but not yet received the response.
This happens if queries arrive faster than the RTT between resolver and target
(RTTRT ). We delayed DNS responses from the authoritative VM to the resolvers,
to simulate the effect of different values for RTTRT . We observed micro-caching
for identical incoming or outgoing queries for all tested resolvers. Effectively,
this limits an attacker to start a chain once per RTTRT . The RTT is measured
between resolver and target ANS, because resource records of the intermediary
ANS can be cached by the resolver and thus do not limit the lookup speed.
1 https://www.isc.org/downloads/bind/.
2 https://www.unbound.net/.
3 https://www.powerdns.com/recursor.html.
4 https://www.knot-resolver.cz/.
5 Config option additional-from-auth with two zones.

https://www.isc.org/downloads/bind/
https://www.unbound.net/
https://www.powerdns.com/recursor.html
https://www.knot-resolver.cz/
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Next, we observe the behavior for longer delays. We delayed the second query
until the resolver processed the response of the first queried (and hence started
to resolve the second chain element). This simulates queries which arrive RTTRT

after the previous query arrived. PowerDNS and Knot fully honor the no-caching
TTL and perform a full lookup for all queries. Bind performs one full lookup per
second, then only issues one query to the first element of the chain per additional
client query. Similarly, Unbound only performs one full lookup per second, but
then issues one query to the last element of the chain, which is not a CNAME RR.

Summarizing the result, the per-resolver query frequency for PowerDNS and
Knot is #chains

RTTRT
. As each chain has distinct domains, micro-caching is irrelevant

across chains. Bind and Unbound can be queried at most for #chains
1s+RTTRT

. Realis-
tically, the attacker does not know when the resolver’s internal clock ticks over
to the next second. Before starting the next query, the attacker has to ensure a
full second passes after the record was cached, which happens RTTRT after the
query is received by the resolver. Thus at 1s +RTTRT the record is guaranteed
to have expired. Querying more frequently reduces amplification.

We analyzed the code of Bind and Unbound to understand why they only
issue one query per second. Both use a time value, which is rounded to seconds
for all cache operations, explaining the observed cache invalidation once per
second. Bind special cases the first CNAME RR in a query and always perform
the authoritative lookup, even when it was fetched from cache. Unbound’s cache
inserts referral resource records, which CNAMEs are one variant of, regardless of
the TTL, but not the last chain element.

Internet Measurements. While all locally tested resolvers honor non-
cacheable RRs, resolvers deployed on the Internet may behave differently. To
assess this, we performed a full Internet scan querying for a wildcard A RR with
a TTL=0 hosted by our ANS. The queried domain encodes the scan target’s IP
address, which allows us to (i) ensure that all records are fetched from our ANS
and are not cached and (ii) match the scan targets with the queries observed at
the ANS. All responses are recorded and filtered to remove domains which do
not belong to our test. Figure 2 shows a (simplified) diagram of the connections
between our scanner, resolvers, and our ANS. The dashed gray lines mark the
point of our packet capturing. Below them are the number of IP addresses we
found.

4 170 710 resolvers responded to our scan query, of which 3097203 answers
had a TTL of zero. For the same day (2017-08-02), Shadowserver’s DNS scan [45]
reports 4 198 025 resolvers found, i.e., a deviation of just 0.7. The scan shows
that 74.3% of all resolvers honor TTL=0 and they could be used for attacks.

Of those resolvers that enforce a minimal non-zero TTL in the response, most
enforce large TTLs, making them unsuitable for DNS Unchained attacks. The
ten most common TTL values we found are multiples of ten or 60. In decreasing
order of occurrence they are 300, 600, 3600, 1, 30, 900, 60, 150, 14400, and 20,
which taken together account for 24.8% (1033419) of all responses.
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Fig. 2. Connections between different resolver types. Our scanner (S) finds open for-
warder (OF) and open recursive resolver (ORR). A forwarder forwards the query to
one or multiple recursive resolver (RR). Recursive resolver (RR and ORR) query the
authoritative name server (ANS). Dashed arrows mark optional connections, like query-
ing multiple recursive resolver or sending a response to our scanner. An empty arrow
head marks a query response.

4.2 Amplification

After seeing that the vast majority of resolvers does not cache TTL=0 RRs, we
now measure how much amplification in-the-wild resolvers would enable. The
amplification factor is determined by the maximum number of elements of the
chain that will be requested by each resolver. We thus configured a chain of 100
RRs and requested the first element from each resolver. The last chain element
is an A record and all RRs carry TTL = 0.

Bind follows the chain 17 times, whereas PowerDNS and Unbound only per-
form 12 and 9 lookup steps, respectively. Knot Resolver performs 33 lookups.
Bind is the only implementation that consistently responds with a “no error”
status code. The other three reply with a SERVFAIL status code if the end of the
chain could not be reached.

Via our scans, we discovered 10054077 open resolvers and 178508 recursive
resolvers. Figure 2 gives an overview of the connections between scanner and
resolvers. Open resolvers are open to the Internet and can be used by anyone.
They can be recursive resolvers or simple forwarders, which forward the query to
a recursive resolver. Recursive resolvers perform the recursive lookup procedure
which we can detect at our ANS. We can count and distinguish the two types of
resolvers based on the traffic captured at our ANS. If the encoded IP address of
the scan target and the source IP address of the resolver querying our ANS are
identical, then the resolver is an open recursive resolver, otherwise the encoded
IP address belongs to an open forwarding resolver. We expect a much higher
number of open resolvers than recursive resolver, because as Kührer et al. [24]
found, most open resolvers are routers or other embedded devices. There is little
reason for them to host a recursive resolver, because they require more resources.
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Figure 3 shows how many resolvers support a given chain length. There are
clear spikes for common values like nine, used by Unbound and Microsoft DNS,
or 17 as used by Bind. Another spike is at length 21, yet we are not aware which
software causes it. The quick drop-off at the beginning is caused by resolvers,
which query the same domain from different IP addresses often in the same
subnet. In these cases only one of the resolvers performs the full recursion, the
others stop early leading to the drop. This could be caused by open resolvers
querying multiple recursive resolvers in a short amount of time. Alternatively, it
might result from an attempt to pre-fetch data for multiple resolvers as soon as
one recursive resolver in the pool sees a new domain name.

Fig. 3. Supported chain length configurations for 178 508 recursive resolvers discovered
with a full Internet scan. The spike at nine corresponds to Unbound and Microsoft DNS
version; Bind shows up as the spike at 17. The cause of the 21-spike is unknown to us.

From the data we can conclude that resolvers do offer a considerable amplifi-
cation potential. Intuitively, the amplification factor is the number of queries seen
by the target ANS in relation to the number of queries sent by the attacker. Fac-
tors larger than one mean the impact on the target is larger than the attacker’s
resources used for the attack. We can calculate the expected amplification ratio
for all recursive resolvers by

∑∞
i=1(

⌈
i
2

⌉ × ni)
∑∞

i=1 ni

where ni is the number of resolvers that support chains of length i. The formula
assumes that the first element in the chain is hosted on the target ANS, which
is the more beneficial setup for an attacker.
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All resolvers together (178508) provide an amplification factor of 7.59. Focus-
ing only on resolvers, which provide an amplification factor >1 (chains of length
three or longer) results in an amplification factor of 8.51 with 156481 available
resolvers. These numbers are lower bounds, because the early drop-off in Fig. 3 is
caused by resolvers that query the same domain name from different IP addresses
(which we then conservatively count as individual resolvers).

We already mentioned in Sect. 3.2 that some ANSs do not follow CNAME
chains, even if they are authoritative for all domains. This is a performance
optimization reducing the work required to answer a query. For ANSs, which
do not follow chains, all elements of the chain can be hosted on the target ANS
thus an amplification factor of 14.34 can be achieved resulting in 89% stronger
attacks. Effectively, this removes the intermediary ANSs from the chain and all
resource records need to have a zero TTL value.

4.3 Overall Impact

Based on these observations, we conclude that CNAME chains enable for attacks
that are an order of magnitude larger (measured in queries per second) than
näıve water torture attacks. In practice, ANSs can handle 400 000 qps to 2 500
000 qps (queries per second) [3,20,34,42]. An attacker only needs a fraction—
determined by the amplification factor—of queries compared to that number.
Often even lower query rates are sufficient to overload the ANS, because the
ANS also receives (and has to process) benign queries.

A single chain, which is resolved by all non-caching resolvers, causes more
than a million queries to the target ANS (7.59 × 178508 × 75% � 1016157).
Each resolver can be queried roughly every second per chain (assuming a low
RTTRT ). Using as few as two or three chains is enough to overload all commonly
deployed ANS. For three chains the attacker has to send 535 524 pps (packets
per second). A DNS query packet with a 20 character long domain name requires
104 B (including Ethernet preamble and inter-packet gap) for transmission over
the wire. The attacker needs 445.6 Mbit/s to overload even the fastest ANS.

In case the target ANS does not follow the CNAME chain, the stronger attack
can be used where all elements are hosted on the target ANS. A single chain
causes over 1.9 million queries (14.34 × 178508 × 75% � 1919854) reducing the
required bandwidth for the attacker accordingly.

5 Countermeasures

We will now discuss countermeasures to reduce the impact of DNS application-
level attacks. First, we cover the authoritative view, how zones could be managed
and the effect of response rate limiting. Then we look at the behavior of recursive
resolvers and how they could reduce the impact on ANSs.



DNS Unchained: Amplified Application-Layer DoS Attacks 153

5.1 Identification and Remedy by ANSs

A hard requirement for the proposed attack is that the attacker can create CNAME
RRs on the target ANS. This gives the target ANS the power to inspect and
deny problematic or malicious configurations or completely remove zones from
the ANS.

Detection of CNAME Chains. Zone files for the DNS Unchained require
several CNAME records pointing to external domains. If the attacker chooses
random or pseudo-random domain names, ANSs can use this as an indicator
for an attack. The target ANS operator could additionally check the target of
CNAMEs and discourage (or even forbid) CNAMEs that point to CNAME RRs in other
domains (which is already discourage according to the specification). Exceptions
are likely required for content delivery networks and cloud provider. Especially
CNAME chains, i.e., several entries that eventually lead back to the same zone are
not useful, because both records are controlled by the same entity.

The ANS operator needs to implement periodic checks of all zones with
CNAME entries. Only checking RRs during creation is insufficient, as the attacker
can build the chain such that no CNAME points to another CNAME during cre-
ation. Given the same domains as in Listing 1, the attacker would first cre-
ate “a.target-ans.com.” while the target domain (“b.intermediary.org.”)
either does not exist or only contains other types, e.g., of type A. Checking the
RR for “a.target-ans.com.” will not show any suspicious behavior. Now the
same steps are repeated with “b.intermediary.org.”. This forces a non-trivial
amount of work on the ANS. A too long periodicity in the checking would allow
the attacker to use the time between checks for the attack, thus the checks have
to be somewhat frequent.

Lower Limit for Time-to-Live (TTL) Values. In contrast to water torture
attacks, chaining attacks fall apart if the chain’s RRs are cached. Using a random
prefix to circumvent caching is only possible for the specific combination of using
DNAME RRs and abusing only those resolvers that do not support DNAME. Thus,
forcing a minimal TTL of only a few seconds will have considerable impact, as it
limits the per-resolver query frequency to #chains

TTL+RTTRT
compared to #chains

1s+RTTRT
.

Thus, a 10 s TTL will reduce the impact by roughly a factor of ten. However,
an attacker can use more chains if a minimal TTL is enforced, which makes
the setup more complicated. On the one hand, CNAME RRs with short (or zero)
TTLs are used also for benign reasons, e.g., to implement DNS-based failover.
On the other hand, in light of chaining attacks, we consider serving A and AAAA
records with short TTLs as the better solution, which also closer resembles the
desired semantics. Note, that a CNAME RR offers an additional canonical name
for an already existing record, which is a relationship that rarely changes (and
thus allows for non-zero TTLs).
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5.2 Response Rate Limiting (RRL)

Response Rate Limiting (RRL) is an effective technique to counter standard
DNS-based amplification attacks. If DNS servers are abused for reflective ampli-
fication attacks [24,44], the attacker sets the request’s source to the IP address of
the victim. In turn, resolvers unknowingly flood the victim with DNS responses.
To prevent such abuse, resolvers can implement IP address-based access control,
which effectively turns them into closed resolvers.

Yet this is not an option for intended open resolvers (e.g., Google DNS,
Quad9, etc.) and especially not for ANSs, as they have to be reachable by the
entire Internet. Here, RRL plays an important role. RRL limits the frequency
of how fast a client IP address can receive responses. The benefit for reflection
attacks is clear, where a single source (the victim) seemingly requests millions
of requests and now only faces a fraction of the actual responses due to RRL.

In principle, RRL also seems to mitigate chaining attacks. Yet enabling RRL
has its downsides, especially if resolvers hit a rate limit configured at an ANS.
Resolvers will then retry queries, lacking an answer, which again increases the
load on the ANS. Filtering all resolver traffic can even increase the incoming
traffic ten-fold as observed by Verisign during a water torture attack [51, p. 24].

Additionally, RRL is implemented with a slip rate, which specifies how often
the ANS will answer with a truncated response instead of dropping the packet.
For example, a slip rate of two results in a truncated answer for every second
query, the other times the query is dropped. Truncated responses then cause the
resolver to retry the connection using TCP instead of UDP, which drastically
increases the overall processing overhead for the ANS.

An ideal RRL configuration would thus never limit resolvers, as this may
actually increase the required resources for the ANS in case of application-layer
attacks. Filtering or rate limiting needs to be performed closer to the source.
Näıvely, one could deploy RRL at resolvers to rate limit the initial attack requests
(“chain starts”) sent to them. However, then again the per-resolver request fre-
quency is as low as one request per second, which would only be blocked by an
overly aggressive RRL configuration. Even worse, if attacks are carried out via
botnets, even those RRL configurations would not slow down the attacks.

5.3 Back-Off Strategies

In case of packet loss at the target ANS, resolvers resend queries and thereby
cause additional attack traffic. It is thus important to rate limit outgoing queries
of resolvers and to implement suitable back-off strategies in order to give over-
loaded ANSs the chance to recover.

To assess how resolvers act in such situations, we have measured how four
resolver implementations behave when querying a zone with two ANSs of which
both are not reachable. Bind sends a total of five packets with a delay of 800 ms
in between packets. The ANS is chosen at random. After the third failed packet,
Bind has an exponential back-off with factor two. PowerDNS only sends out two
packets in total with a delay of 1500 ms in between. Unbound sends in total the



DNS Unchained: Amplified Application-Layer DoS Attacks 155

most queries with range2730. Worse, Unbound always sends two queries as a
pair, which might go to the same or a different ANS. There is a delay of 375 ms
between the pairs, which is doubled every two to four pairs. Knot has the most
complicated retry strategy. Knot starts with sending UDP queries alternating to
both servers, with a delay of 250 ms in between. After a total of two seconds, two
TCP queries are sent to the first ANS, with a delay of 1000 ms between them.
Six seconds after the start the same pattern of UDP and TCP queries is sent to
the second ANS.

Bind’s and PowerDNS’s behavior are not problematic, as the number of
retries is small and retry delay high. Especially problematic for Unbound is that
it sends two identical queries to the same ANS without a delay between. Delaying
retries is a good balance between providing fast answers (in case of packet loss)
and not sending duplicate queries (in case of high round trip times). A delay of
250 ms between retries will cause unnecessary retries for many users. With our
Internet scan we found that 9045 recursive resolvers (14.9%) have RTTs larger
than 250 ms to both our ANSs and additional 19 773 resolvers (32.6%) have such
a high RTT to one of our ANSs.

An additional strategy is serving stale cache records [26]. Stale cache records
are records in the resolver’s cache of which the TTL has expired. A resolver
can use them based on the assumption that normally records contain working
data, even if the TTL has expired (e.g., IP addresses change less often than the
TTL of records expires). This technique is not new and already implemented
in Bind 9.12 [29] and used by OpenDNS [35] and Akamai [27]. The usabil-
ity improves as client will receive an answer, which likely is usable, instead of
receiving an error and failing to connect.

5.4 Recursion Depth Limit

Finally, also resolvers can more strictly limit the length of CNAME chains.
Section 4.2 has shown that the resolvers do not agree on the maximum chain
length. Limiting the length too strictly is harmful, as chains also exist for legiti-
mate reasons—such as Content Delivery Networks (CDNs) and DDoS protection
services. The domain owner can often configure their DNS to point to a subdo-
main of the CDN and the CDN uses itself one or multiple CNAME RRs.

Legitimate use-cases for CNAME chains must ensure the length is supported
by all DNS resolvers, if they want to support all users. We inspected the
Active DNS [21] data set to identify benign chains. We extracted the CNAME
entries from 2017-10-05 to reconstruct the longest benign chains, which consists
of eight elements (seven CNAMEs and one final RR). This fits to the shortest
recursion limit of nine elements, which we observed for Unbound. Others [38]
report nine elements as the longest legitimate chain they found and certificate
authorities are also only required to support chains with nine elements while
fetching CAA RRs [13]. Based on those observations, a smaller recursion limit
can be advised. We recommend supporting nine elements in a chain, which is
the shortest value of all tested resolvers and covers benign chains. Such a recur-
sion depth limit would limit the amplification of chaining attacks to factor five.
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6 Related Work

Application-Layer DDoS in DNS: Several application-layer DDoS defenses
have been proposed in the past [12,30,39,52]. Many defenses are not immedi-
ately applicable to DNS. Protocol changes, such as client puzzles, would need
widespread support, which is unrealistic to achieve in a short to medium time
frame. Countermeasures which introduce more latency are especially problem-
atic, as DNS is tuned for high efficiency. Filtering techniques, such as egress or
ingress filtering, do not apply to DNS Unchained, because it works without IP
address spoofing. Blocking DNS traffic can even lead to more inbound traffic [51]
and always risks blocking legitimate users.

The closest work to us is research on DNS water torture attacks. They were
first presented in Feb 2014 [1] and are a known phenomenon for DNS operators
[17,48,50,51]. The DNS operator community focused on implementing mitiga-
tions, mainly to stabilize recursive resolver. Takeuchi et al. [47] propose a system
to detect DNS water torture attacks based on lexical and structural features of
domain names. They train a naive Bayes-classifier and test it on captured traffic
of their universities network. Our attack is related to DNS water torture as both
are flooding attacks using resolvers, but water torture faces several limitations—
including the fact that they can be easily detected.

Reflection and Amplification Attacks: DNS also played a role in recent
amplification attacks. The general risk of reflection attacks was identified by
Paxson [37] and its full amplification potential presented by Rossow [44]. Dif-
ferent proposals to detect and defend amplification attacks [23,36,44,49] were
made. They cover approaches to combat the bandwidth exhaustion, like client
puzzles, or prevent source address spoofing. In the context of DNS, Kührer et
al. [24,25] analyzed the amplification potential of DNS resolvers. They found
millions of open DNS resolver on embedded devices or routers, meaning the
openness of the resolver is likely a configuration issue. DNSSEC’s potential to
increase the amplification of DNS resolvers has also been documented [40]. While
some attacks in fact abuse DNS, still, in contrast to our work, they do not rep-
resent application-layer attacks and are easy to filter.

CNAME Chaining: The possibility to chain CNAME RRs is well-known and docu-
mented. For example, Shue and Kalafut [46] use differences in recursion strate-
gies to fingerprint resolver implementations. Dagon et al. [8] use CNAME chains to
amplify the number of queries from each resolver. They need multiple queries by
the same resolver to analyze them for source port randomization of the resolver.
Pfeifer et al. [38] measures the overhead for resolvers while looking up CNAME
chains and recommend that ANSs should refuse CNAME chains before loading the
zone files. Furthermore, they recommend that ANSs should also query destina-
tions of CNAME RRs, similar to our recommendation in Sect. 5.1. In contrast to
prior work our attack focuses on the authoritative name servers instead of the
resolvers.
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7 Conclusion

We have presented a new DDoS attack against DNS authoritatives that leverages
amplification on the application layer. DNS Unchained achieves an amplifica-
tion of 8.51 using standard DNS protocol features, by chaining alias records
(e.g., CNAME) and forcing resolvers to repeatedly query the same authoritative
name server. We performed full Internet scans and found 10 054 077 open DNS
resolvers and 178 508 recursive resolvers. We determined that 74.3% of those
resolvers support uncachable DNS responses, creating a large pool of amplifiers
that can be abused for chaining attacks.

We also discussed countermeasures to the new threat of DNS chaining
attacks. This includes measures applicable to DNS operators to find and limit
problematic DNS zones as well as enforcing minimal Time-to-Live values allow-
ing caching. DNS resolvers can also be changed to have less aggressive re-
transmission on unavailable name servers and limit chains to nine elements.
A wide deployment of any of these techniques would severely degrade the per-
formance of the proposed attacks, and we hope that our work raises awareness
for the importance of these measures.
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Abstract. Software-Defined Networking (SDN) continues to be
deployed spanning from enterprise data centers to cloud computing with
emerging of various SDN-enabled hardware switches. In this paper, we
present Control Plane Reflection Attacks to exploit the limited process-
ing capability of SDN-enabled hardware switches. The reflection attacks
adopt direct and indirect data plane events to force the control plane to
issue massive expensive control messages towards SDN switches. More-
over, we propose a two-phase probing-triggering attack strategy to make
the reflection attacks much more efficient, stealthy and powerful. Exper-
iments on a testbed with physical OpenFlow switches demonstrate that
the attacks can lead to catastrophic results such as hurting establish-
ment of new flows and even disruption of connections between SDN con-
troller and switches. To mitigate such attacks, we propose a novel defense
framework called SWGuard. In particular, SWGuard detects anomalies
of downlink messages and prioritizes these messages based on a novel
monitoring granularity, i.e., host-application pair (HAP). Implementa-
tions and evaluations demonstrate that SWGuard can effectively reduce
the latency for legitimate hosts and applications under Control Plane
Reflection Attacks with only minor overheads.

Keywords: Software-Defined Networking
Timing-based side channel attacks · Denial of service attacks

1 Introduction

Software-Defined Networking (SDN) has enabled flexible and dynamic network
functionalities with a novel programming paradigm. By separating the control
c© Springer Nature Switzerland AG 2018
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plane from the data plane, control logics of different network functionalities are
implemented on top of the logically centralized controller as applications. Typ-
ical SDN applications are implemented as event-driven programs which receive
information directly or indirectly from switches and distribute the processing
decisions of packets to switches accordingly. These applications enable SDN to
adapt to data plane dynamics quickly and make responses to the application
policies timely. A wide range of network functionalities are implemented in this
way, allowing SDN-enabled switches to behave as firewall, load balancing, net-
work address translation, L2/L3 routing and so on.

Despite the substantial benefits, the deployment of SDN has encountered sev-
eral problems. In particular, a major limitation is the control message process-
ing capability on SDN-enabled hardware switches of various brands (e.g., IBM
RackSwitch, Juniper Junos MX-Series, Brocade NetIron CES 2000 Series, Pica8
Series, Hewlett-Packard Series), constrained by multiple factors. First, CPUs
of hardware switches are usually relatively wimpy [8,31] for financial reasons,
which restricts the message parsing and processing capability of software proto-
col agents in switches. Second and more importantly, flow tables in most com-
modity hardware OpenFlow switches use Ternary Content Addressable Mem-
ory (TCAM) to achieve wire-speed packet processing, which only allows limited
flow table update rate (only supporting 100–200 flow rule updates per second
[5,12,13,16,29,31,33]) and small flow table space (ranging from hundreds to
a few thousand [8,16,18]) due to manufacturing cost and power consumption.
These limitations have slowed down network updates and hurt network visibil-
ity, which further constrain the control plane applications with dynamic policies
significantly [15].

In this paper, we systematically study the event processing logic of the SDN
control plane and locate two types of data plane events which could reflect expen-
sive control messages towards the data plane, i.e., direct data plane events (e.g.,
Packet-In messages) and indirect data plane events (e.g., Statistics Query/Reply
messages). By manipulating those data plane events, we present two novel
Control Plane Reflection Attacks in SDN, i.e., Table-miss Striking Attack and
Counter Manipulation Attack, which can exploit the limited processing capabil-
ity for control messages of SDN-enabled hardware switches. Moreover, in order to
improve accuracy and efficiency of Control Plane Reflection Attacks, we propose
a two-phase attack strategy, i.e., probing phase and triggering phase, inspired
by timing-based side channel attacks. Control Plane Reflection Attacks are able
to adjust attack stream patterns adaptively and cleverly, thus could gain a great
increment of downlink messages1. Extensive experiments with a physical testbed
demonstrate that the attack vectors are highly effective and the attack effects
are pretty obvious.

In order to mitigate Control Plane Reflection Attacks, we present a novel
and effective defense framework, namely SWGuard. SWGuard proposes a new
monitoring granularity, host-application pair (HAP) to detect downlink message

1 For brevity, we denote the messages from the data plane to the control plane as
uplink messages, and the messages vice versa as downlink messages.
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anomalies, and prioritizes downlink messages when downlink channel congests.
In this way, SWGuard is able to satisfy the latency requirements of different
hosts and applications under the reflection attacks.

To summarize, our main contributions in this paper include:

– We systematically study the event processing logic of SDN applications and
further locate two types of data plane events, i.e., direct/indirect events,
which could be manipulated to reflect expensive control messages towards
SDN switches.

– We present two novel Control Plane Reflection Attacks, Table-miss Strik-
ing Attack and Counter Manipulation Attack, to exploit limited processing
capability of hardware switches. Moreover, we develop a two-phase attack
strategy to launch such attacks in an efficient, stealthy and powerful way.
The experiments with a physical SDN testbed exhibit their harmful effects.

– We present a defense solution, called SWGuard, with an efficient priority
assignment and scheduling algorithm based on the novel abstraction of host-
application pair (HAP). Implementations and evaluations demonstrate that
SWGuard provides effective protection for legitimate hosts and applications
with only minor overheads.

The remainder of this paper is structured as follows. Section 2 introduces the
background that motivates this work. Section 3 illustrates the details of Control
Plane Reflection Attacks and Sect. 4 proves the harmful effects with a physical
testbed. We present our SWGuard defense framework in Sect. 5 and make some
discussions in Sect. 6. Related works are illustrated in Sect. 7, and the paper is
concluded in Sect. 8.

2 Background

Processing Logic of Data Plane Events. SDN introduces the open net-
work programming interface and accelerates the growth of network applications,
which enable network to dynamically adjust network configurations based on
certain data plane events. These events could be categorized into the following
two types: direct data plane events such as Packet-In messages, where the event
variations are reported to the controller from the data plane directly, and indi-
rect data plane events such as Statistics Query/Reply messages, where the event
variations are obtained through a query and reply procedure at the controller. In
the first case, the controller installs a default table-miss flow rule on the switch.
When a packet arrives at the switch and does not match any other flow rule, the
switch will forward the packet to the control plane for further processing. Then
the controller makes decisions for the packet based on the logics of the appli-
cations, and assigns new flow rules to the switch to handle subsequent packets
with the same match fields. In the second case, the controller first installs a
counting flow rule reactively or proactively on the switch for a measurement
purpose. When a packet matches the counting flow rule in the flow table, the
specific counter increments with packet number and packet bytes. To obtain the
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status of the data plane, the controller polls the flow counter values for statis-
tics periodically and performs different operations according to the analysis of
statistics. A large number of control plane applications combine these two kinds
of data plane events to compose complicated network functions, which further
achieve advanced packet processing.

Usage Study of Data Plane Events. Based on the event-driven program-
ming paradigm, a large number of control plane applications emerge in both
academia and industry. In academia, since the publication of OpenFlow [23],
many research ideas have been proposed to fully leverage the benefits of direct
and indirect data plane events. While the direct data plane events are needed by
almost all applications, the indirect data plane events are also widely included.
In particular, we have categorized these indirect event-driven applications into
three types, applications which help improve optimization, monitoring and secu-
rity of network. Please see our technical report [36] for details. Although each
of them has different purposes, all of these works are deeply involved in the
utilization of the indirect data plane events, obtaining a large number of traffic
features and switch attributes. Meanwhile, these indirect data plane events con-
tribute a large part of communication between applications and switches. SDN
applications have also experienced great development in industry recently. The
mainstream SDN platforms (e.g. Open Daylight, ONOS, Floodlight) foster open
and prosperous markets for control plane softwares, which provide a great range
of applications with a composition of the direct and indirect data plane events.
Meanwhile, since these applications are obtained from a great variety of sources,
their quality could not be guaranteed and their logics may contain various flaws
or vulnerabilities. In particular, we have investigated all mainstream SDN con-
trollers, and discovered that indirect event-driven applications occupy a large
part of application markets in these open source controller platforms. Due to
the page limit, please see the application summary in our technique report [36].

Limitations of SDN-enabled Hardware Switches. Compared with the
rapid growth of packet processing capability in logically centralized and phys-
ically distributed network operating systems (e.g., Onix [17], Hyperflow [30],
Kandoo [11]) and controller frameworks (e.g., Open Daylight, ONOS), the down-
link message processing capability of SDN-enabled hardware switches evolves
much slower. State-of-the-art SDN-enabled hardware switches [24] only sup-
port 8192 flow entries. To make matters worse, the capability to update the
entries in TCAM is pretty limited, usually less than 200 updates per second
[5,12,13,15,16,29,31,33]. According to our experiment on Pica8 P-3922, the
maximum update rate is about 150 entries per second. We observe that the
downlink channel in switches is the dominant resource in SDN architecture that
must be carefully managed to fully leverage the benefits of SDN applications.
However, existing SDN architecture does not provide such a mechanism to pro-
tect the downlink channel in the switches that it is vulnerable to Control Plane
Reflection Attacks.
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3 Control Plane Reflection Attacks

In this section, we first provide our threat model and then describe the details of
two Control Plane Reflection Attacks including Table-miss Striking Attack and
Counter Manipulation Attack.

3.1 Threat Model

We assume an adversary could possess one or more hosts or virtual machines
(e.g., via malware infection) in the SDN-based network. The adversary can utilize
his/her controlled hosts or virtual machines to initiate probe packets, monitor
their responses, and generate attack traffic. However, we do not assume the
adversary can compromise the controller, applications or switches. In addition,
we assume the connections between the controller and switches are well protected
by TLS/SSL.

3.2 Control Plane Reflection Attacks

Control Plane Reflection Attacks are much more stealthy and sophisticated than
previous straightforward DoS attacks against SDN infrastructure, and generally
consist of two phases, i.e., probing phase and triggering phase. During the prob-
ing phase, the attacker uses timing probing packets, test packets and data plane
stream to learn the configurations of control plane applications and their involve-
ments in direct/indirect data plane events. With several trials, the attacker is
able to determine the conditions that the control plane application adopts to
issue new flow rule update messages. Upon the information obtained from prob-
ing phase, the attacker can carefully craft the patterns of attack packet stream
(e.g., header space, packet interval) to deliberately trigger the control plane to
issue numerous flow rule update messages in a short interval to paralyze the
hardware switches. We detail two vectors of Control Plane Reflection Attacks as
follows.

Table-miss Striking Attack. Table-miss Striking Attack is an enhanced attack
vector from previous Data-to-control Plane Saturation Attack [9,27,28,32].
Instead of leveraging a random packet generation method to carry out the attack,
Table-miss Striking Attack adopts a more accurate and cost-efficient manner by
utilizing probing and triggering phases.

The probing phase is to learn confidential information of the SDN control
plane to guide the patterns of attack packet stream. The attacker could first
probe the usage of the direct data plane events (e.g., Packet-In, Packet-Out,
Flow-Mod) by using various low-rate probing packets whose packet headers are
filled with deliberately faked values. The attacker can send these probing packets
to the SDN-based network and observe the responses accordingly, thus the round
trip time (RTT) for each probing packet could be obtained. If several packets
with the same packet header get different RTT values, especially, the first packet
goes through a long delay while the other packets get relatively quick responses,
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we can conclude that the first packet is directed to the controller and the other
packets are forwarded directly in the data plane, which indicates that the specific
packet header matches no flow rules in the switch and invokes Packet-In and
Flow-Mod messages. Then the attacker could change one of the header fields with
the variable-controlling approach. With no more than 42 trials2, the attacker is
able to determine which header fields are sensitive to the controller, i.e., the
grain for routing. Then the attacker could carefully craft attack packet stream
based on probed grains to deliberately trigger the expensive downlink messages.

Counter Manipulation Attack. Compared with Table-miss Striking Attack,
Counter Manipulation Attack is much more sophisticated, which is based on
the indirect data plane events (e.g., Statistics Query/Reply messages). In order
to accurately infer the usage of the indirect data plane events, three types of
packet streams are required, i.e., timing probing packets, test packets and data
plane stream. The timing probing packets are inspired by the time pings in [29],
which must involve the switch software agent and get the responses accordingly.
However, we believe that they have a wider range of choices. The test packets are
a sequence of packets which should put extra loads to the software agent of the
switch, and must be issued at an appropriate rate for the accuracy of probing.
The data plane stream is a series of stream templates, and should directly go
through the data plane (i.e., do not trigger table-miss entry in the flow table of
the switch), which is intended to obtain more advanced information such as the
specific conditions which trigger indirect event-driven applications.

Timing probing packets are used to measure the workload of software agent of
a switch, which should satisfy three properties: first, they should go to the control
plane by hitting the table-miss flow rule in the switch, and trigger the operations
of the corresponding applications (e.g., Flow-Mod or Packet-Out). Second, each
of them must evoke a response from the SDN-based network, so the attacker
could compute the RTT for each timing probing. Third, they should be sent
in an extremely low rate (10 pps is enough), and put as low loads as possible
to the switch software agent. We consider there are many options for timing
probing packets, e.g., ARP request/reply, ICMP request/reply, TCP SYN or
UDP. For layer 2, we consider ARP request is an ideal choice since the SDN
control plane must be involved in the processing of ARP request/reply. We note
that sometimes the broadcast ARP request will be processed in the switches.
However, the corresponding ARP reply is a unicast packet so that the control
plane involvement is inevitable if the destination MAC (i.e., the source MAC
address of the ARP Request) has not been dealt by the controller before. As
a result, the attacker could use spoofed source MAC address to deliberately
pollute the device management service of the controller as well as incur the
involvement of the controller. In some layer 2 network, it is not possible to
send packets with random source MAC addresses due to pre-authorized network
access control policies. To address this, the attacker could resort to the flow
rule time-out mechanism of OpenFlow. The attacker would select N benign
2 The latest OpenFlow specification only support 42 header fields, which constrains

the field the controller could use to compose different forwarding policies.
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hosts and send ARP request to them to get the responses. N should satisfy
that N > R ∗ T , where R denotes the probing rate and T denotes the flow-
rule time-out value3. For Layer 3, ICMP is a straightforward choice, since its
RTT calculation has been abstracted as ping command already. The attacker
should choose a number of benign hosts to send ICMP packets and get the
corresponding responses. As for layer 4, TCP and UDP are both feasible when
a layer 4 forwarding policy is configured in the control plane. According to RFC
792 [26], when a source host transmits a probing packet to a port which is likely
closed at the destination host, the destination is supposed to reply an ICMP port
unreachable message to the source. Similarly, RFC 793 [25] requires that each
TCP SYN packet should be responded with a TCP SYN/ACK packet (opened
port) or TCP RST packet (closed port) accordingly. With the probing packet
returned with the corresponding response, the RTT could be calculated and the
time-based patterns could be obtained.

Test packets are used to strengthen the effects of timing probing packets
by adding extra loads to the software agent of the switch. For the purpose,
we consider test packets with a random destination IP address and broadcast
destination MAC address are ideal choices. By hitting the table-miss entry, each
of them would be directed to the controller. Then the SDN controller will issue
Packet-Out message to directly forward the test packet. As a result, the aim of
burdening switch software agent is achieved.

Template
Name

Coordinate Axis Variables

Data plane 
stream with 
steady rate

(v, p)

Data plane 
stream with 
0-1 rate

(v, t, p)

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

T(s)

Rate
(pps)

0

v

t 2t 3t 4t 5t

Fig. 1. Templates for data plane stream.

Data plane stream is a series of
templates, which should go directly
through the data plane to obtain
more advanced information such as
the specific conditions for indirect
event-driven applications. We pro-
vide two templates here, as shown in
Fig. 1. The first template has a steady
rate v, packet size p, which is mainly
used to probe volume-based statistic
calculation and control method. The
second has a rate distribution like a
jump function, where three variables
(v, t, p) determine the shape of this
template as well as the size of each
packet, which is often used to probe
the rate-based strategy.

The insight of probing phase of Counter Manipulation Attack lies in that
different kinds of downlink messages have diverse expenses for the downlink
channel. Among the interaction approaches between the applications and the
data plane, there are mainly three types of downlink messages, i.e., Flow-Mod,
Statistics Query and Packet-Out. Flow-Mod is the most expensive one among

3 As R is less than 10 usually, and T is set as a small value in most controllers (e.g. 5
in Floodlight), thus N cannot be a large number.
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them, since it not only consumes the CPU of switch agent to parse the mes-
sage, but also involves the ASIC API to insert the new flow rules4. Statistics
Query comes at the second, for it needs the involvement of both switch agent
CPU for packet parsing and ASIC API for statistic querying. These two types of
messages are extremely expensive when the occupation of flow table is high on
the switch. Packet-Out is rather lightweight, since it only involves the CPU of
switch protocol agent to perform the corresponding action encapsulated in the
packet. As these three types of downlink messages incur different loads for the
switch, the latencies of timing probing packets will vary when the switch encoun-
ters different message types. Thus, the attacker could learn whether the control
plane issue a Flow-Mod, or a Statistics Query, or a Packet-Out. As for the indi-
rect data plane events, the statistic queries are usually conducted periodically
by the applications. As a result, each of these queries would incur a small rise
for the RTTs of timing probing packets, which would reveal the period of appli-
cation’s statistic query. If a subsequent Flow-Mod is issued by the controller,
there would be a higher rise of RTT just following the RTT for Statistics Query,
which is named as double-peak phenomenon. Based on the special phenomenon,
the attacker could even infer what statistic calculation methods the application
takes, such as volume-based or rate-based. With several trails of two data plane
stream templates above (t is set as the period of statistic messages, which has
been obtained above) and the variations of v and p in a binary search approach,
the attacker could quickly obtain the concrete conditions (volume/rate values,
number-based or byte-based) that trigger the expensive downlink messages. The
confidential information such as statistic query period, the exact conditions (vol-
ume/rate values, packet number-based or byte-based) that trigger the downlink
messages, helps the attacker permute the packet interval and packet size of each
flow, to deliberately manipulate the counter value to the critical value, thus each
flow would trigger a Flow-Mod in every period. By initiating a large number of
flows, Flow-Mod of equal number would be triggered every period, making the
hardware switch suffer extremely.

4 Attack Evaluation

In this section, we demonstrate our experimental results of Control Plane Reflec-
tion Attacks with a physical testbed. The evaluations are divided into two
parts. First, we conduct our experiments for Table-miss Striking Attack and
Counter Manipulation Attack separately, to show the effectiveness of Control
Plane Reflection Attacks. Second, we perform some benchmarks to provide low-
level details of our proposed attacks.

4.1 Experiment Setup

To demonstrate the feasibility of Control Plane Reflection Attacks, we set up
an experimental scenario as shown in Fig. 2. We choose several representative
4 Moving old flow entry to make room for the new flow rule is an important reason to

make this operation expensive and time-consuming.
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Fig. 2. A typical attack scenario. Fig. 3. Attack experiment setups.

applications, and run them separately on the SDN controller. Flow tables in
the switch are divided into two pipelines, Counting Table for the indirect data
plane event, Forwarding Table for the direct data plane events. Each pipeline
contains multiple flow entries for the two data plane events, and flow tables
of each pipeline are independent and separated, which is the state-of-the-art
approach for multiple application implementations today [20,29].

Reactive Routing is the most common application integrated into most of
the popular controller platforms. It monitors Packet-In messages with a default
table-miss in Forwarding Table, and computes and installs a path for the hosts
of the given source and destination addresses with an appropriate grain. When
one table-miss occurs, 2N downlink Flow-Mod messages would be issued to the
data plane, where N is the length of the routing path.

Flow Monitoring is another common application in SDN-based networks. It
is generally implemented with a Counting Table which counts the number and
the bytes of a flow or multiple flows. The controller polls the statistics of the
Counting Table periodically, conducts analysis on the collected data, and makes
decisions with the analysis results. Further, we extend our Flow Monitoring
sketch into four indirect data plane events driven applications, Heavy hitter
[22], Microburst [10], PIAS [1] and DDoS Detection [34]. The implementa-
tion details are illustrated in our technical report [36].

Our evaluations are conducted on a physical OpenFlow Switch, i.e., Pica8 P-
3290, since it is widely used in academia/industry and supports many advanced
OpenFlow data plane features, such as multiple pipelines and almost full Open-
Flow specifications (from version 1.0 to 1.4). The experimental topology, as
shown in Fig. 3, includes four machines (i.e., h1, h2, s1, and s2) connected to the
hardware switch and a server running Floodlight Controller. The HTTP service
is run on s1 and s2 separately. We consider h2 is a benign client of the HTTP
service and h1 is controlled by the attacker to launch the reflection attack. All
the tested applications discussed above are hosted in the Floodlight controller. In
our experiments, Reactive Routing adopts a five-tuples grained forwarding policy,
and four Flow Monitoring-based applications query the data plane switch every
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2 s, and conduct the corresponding control (e.g., issue one Flow-Mod message)
according to their logic separately.

4.2 Attack Feasibility and Effects

In this subsection, we conduct the experiments for Table-miss Striking Attack
and Counter Manipulation Attack separately, and show a detailed procedure for
probing phase and triggering phase.

Table-miss Striking Attack. For the Reactive Routing application, when we
launch a new flow, the first packet is inclined to get a high RTT, and the following
several packets would get low RTTs. Since there are only three hosts on our
testbed and ping could launch only one new flow between each host pair, we
resort to UDP probing packets to cope with this problem. We compute the time
difference between the request and reply to obtain the RTT. As depicted in
Fig. 4(a), we let h1 transmit 10 UDP probing packets to a destination port and
then change the destination port. The RTT for the first packet of each flow is
quite distinct from that of the other packets. When we change any field pertained
to five-tuples, the similar results would be obtained. The modification to other
packet fields would always lead to a quick response. All the phenomena indicate
that five-tuples grained forwarding policy is adopted by the Reactive Routing.

With the inference of forwarding grain, the attacker is able to carefully craft
a stream of packets whose header spaces vary according to the grain. In this
way, each attack packet could strike the default table-miss in the switch, thus
triggering Packet-In and Flow-Mod in the control channel. Data-to-control Plane
Saturation Attack resorts to a random packet generation approach, making the
attack not so cost-efficient for the attacker. As we can see in Fig. 4(b), Table-miss
Striking Attack is much more efficient than Data-to-control Plane Saturation
Attack. Further, we also compare the RTTs and bandwidth for normal users
under the saturation attack and the striking attack. As shown in Fig. 5, the
striking attack could easily obtain a higher RTT and a lower bandwidth usage
for normal users with the same attack expense, which demonstrates that our
Table-miss Striking Attack is much more cost-efficient and powerful.

Counter Manipulation Attack. For the Flow Monitoring-based applications,
we first supply a steady rate of test packets at 300 packets per second (pps)5,
which would put appropriate loads on the control plane as required in [29]. The
rate of timing probing packets is set as 10 pps. The results for four applications
are similar, as shown in Fig. 6(a). As we could conclude, Flow Monitoring-based
applications poll the switch for statistics every 2 s. In particular, the double
peaks in red rectangle (double-peak phenomenon) denote two expensive downlink
messages are issued successively. The first peak is attributed to the periodical
Statistics Query message, while the second is caused by the Flow-Mod message
for the control purpose. We make this inference because both Flow-Mod and

5 300 pps is a pretty secure rate, since a legitimate host could issue packets at thousand
of pps under normal circumstance.
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(a) RTTs for Reactive Routing. (b) Reactive Routing attack efficiency.

Fig. 4. Attack feasibility and efficiency for Table-miss Striking Attack.

(a) RTTs for normal users under the sat-
uration attack and the striking attack.

(b) Bandwidth for normal users under the
saturation attack and the striking attack.

Fig. 5. RTTs and bandwidth for normal users under the saturation attack and the
striking attack.

Statistics Query are much more expensive than Packet-Out while they two have
a similar expense for the downlink channel.

Furthermore, more confidential information could be obtained with the joint
trials and analysis of data plane stream and double-peak phenomenon. If the
attacker obtains a series of successive double-peak phenomenon (as shown in
Fig. 6(b) with the input of data plane stream template1, where v is a big value,
and obtains a series of intermittent double-peak phenomenon (Fig. 6(c) with
template2, where v is also a big value, she/he could determine that packet num-
ber volume-based statistic calculation method is adopted. This is because packet
number volume-based statistic calculation approach is sensitive to stream with
a high pps. The other three cases are also listed in Table 1. From this table, we
can conclude the concrete statistic calculation approach the application adopts.
Furthermore, with the variations of v and p, the attacker could infer the critical
value of volume or rate. In addition, we can verify our inference with a lot of
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(a) Timing probe RTTs for Flow Moni-
toring-based applications.

(b) Timing probe RTTs patterns 1.

(c) Timing probe RTTs patterns 2. (d) Timing probe RTTs pattern 3.

Fig. 6. Timing-based patterns for Counter Manipulation Attack.

other ways, not only the proposed two data plane stream templates as shown
above. We are planning to develop more representative templates in our future
works. In particular, we test our four indirect event driven applications, and find
them fall into the distribution in Table 2. This is consistent with the policies of
each application, which demonstrates the effectiveness of our probing phase.

With the results and information (query period, packet number/byte-based,
volume/rate values) obtained from the probing phase, we move to the second
step and start to commit our Counter Manipulation Attack. We select one appli-
cation, PIAS, setting its priority as 3 levels, and initiate 10 new flows per second.
We carefully set the sent bytes of each flow in each period (2 s), which is bigger
than the critical value we probed. As a consequence, a number of Flow-Mod
messages are issued to the switch when statistic query/reply occurs. As shown
in Fig. 7, the number of Flow-Mod messages could increase as high as 60 at the
end of each period. This would incur pretty high loads to the software agent
of the switch at this moment. Even in some cases, when the attacker controls
thousands of flows intentionally and manipulates all the flow to reach the criti-
cal values simultaneously, thousands of Flow-Mod messages are directed to the
switch, which would cause catastrophic results such as the disruption of connec-
tions between the controller and the switches.
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Table 1. Relationship between data plane stream and double-peak phenomenon.

Volume-based Rate-based

Packet number Template1(v↑, p) → patterns 1 Template1(v↑, p) → patterns 3

Template2(v↑, p) → patterns 2 Template2(v↑, p) → patterns 1

Packet byte Template1(v, p↑) → patterns 1 Template1(v, p↑) → patterns 3

Template2(v, p↑) → patterns 2 Template2(v, p↑) → patterns 1

Table 2. Distribution of the four indirect event driven applications.

Volume-based Rate-based

Packet number Microburst -

Packet byte Heavy Hitter
PIAS
DDoS Detection

DDoS Detection

4.3 Attack Fundamentals and Analysis

In this subsection, we study more about low-level details of Control Plane Reflec-
tion Attacks.

Test Packet Rate and Test Packet Type. Fig. 8 shows the timing probe
RTTs as the rate of test packets varies where the controller is configured to
issue a Flow-Mod message for each test packet. Figure 9 shows the timing probe
RTTs as Statistics Query rate varies. Figure 10 shows the timing probe RTTs
as the rate of test packets varies where the controller processes each test packet
with a Packet-Out message. As we can conclude from these figures, different
downlink messages have diverse expenses for the downlink channel, and all of
the three scenarios encounter a significant nonlinear jump. In particular, when
the controller generates Flow-Mod message for each test packet, the RTTs can
reach 1000 times higher at approximately 50 pps. For Statistics Query messages,
the RTTs are about 100 times at 100 pps. And for Packet-Out messages, the
RTTs double 100 times at about 500 pps. Meanwhile, we measure the resource
usage of the hardware switch and the controller, and find that the CPU usage of
the switch could reach above 90% at the point of the nonlinear jump, while the
memory usage of the switch, the CPU and memory usage of the control server
is relatively low (at most 30%). In addition, we have a conservation with the
Pica8 team via email, and obtain that the switch control actions (e.g. Flow-Mod,
Statistics Query) must contend for the limited bus bandwidth between a switch’s
CPU and ASIC, and insertion of a new flow rule requires the rearrangement of
rules in TCAM, which lead to the results that the expense of Flow-Mod ≥
Statistics Query � Packet-Out.
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Fig. 7. Attack effect Fig. 8. Timing probe RTTs as Flow-
Mod rate varies.

Fig. 9. Timing probe RTTs as statis-
tic query rate varies.

Fig. 10. Timing probe RTTs as
Packet-Out rate varies.

The Impact of Background Traffic. The background traffic has two impacts
for the Control Plane Reflection Attacks. First, it may affect the accuracy of
probing phase. In fact, a moderate rate of background traffic would not weaken
the effectiveness of the probing. Conversely, it amplifies the probing effect. The
reason behind this is that the effect of background traffic is somewhat like the
role played by test packets, and it would put some baseline loads to the switch
protocol agent, which would make the probing more accurate. An excessively
high rate of background traffic would certainly lower the probing accuracy, since
there is already a high load for the protocol agent of the switch. As a consequence,
the loads incurred by Statistics Query would not cause the obvious and periodical
peaks for the RTTs of timing probing packets, instead, the patterns may become
random and irregular. However, in such cases, the switch is already suffering, thus
the aim of the attack has already been achieved. Second, the background traffic
may also affect the trigger phase. Actually, this influence is positive, too. The
existence of the background traffic would inevitably bring about some downlink
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messages to the control channel, which would boost the effects of Control Plane
Reflection Attacks.

5 Defense Approach

5.1 Countermeasure Analysis

The control plane reflection attack is deeply rooted in SDN architecture since the
performance of existing commodity SDN-enabled hardware switches could not
suffice the need of the SDN applications. A straightforward method to mitigate
this attack is limiting the use of dynamic features for network applications, never-
theless, this comes at the expense of less fine-grained control, visibility, and flexi-
bility in traffic management, as evidently required in [4,14,31]. Another straight-
forward defense approach is limiting the downlink message transmission rate
directly in the controller, preventing the switches from being overwhelmed. How-
ever, the exact downlink message processing capabilities for different switches
vary, even for a specific switch, the rate control in the controller cannot precisely
guarantee underload or overload for the remote switch6, making the unified con-
trol inaccurate and complicated. Adding some latency to random downlink mes-
sages seems feasible, which can make the patterns/policies of direct/indirect data
plane events difficult to sniff and obtain. Nevertheless, this technique increases
the total latency for the overall downlink messages, and would inevitably violate
the latency requirements of some latency-sensitive downlink messages, making
it high cost and infeasible.

To address the challenges above, we propose SWGuard to mitigate the reflec-
tion attack and fulfill the requirements of different downlink messages. Our basic
idea is to discriminate good from evil, and prioritize downlink messages with dis-
crimination results. To this end, we propose a multi-queue scheduling strategy, to
achieve different latency for different downlink messages. The scheduling strategy
is based on the statistics of downlink messages in a novel granularity during the
past period, which takes both fairness and efficiency into consideration. When
the downlink channel is becoming congested, the malicious downlink messages
are inclined to be put into a low-priority scheduling queue and the requirements
of good messages are more likely to be satisfied.

5.2 SWGuard: A Priority-Based Scheduler on Switch

The architecture of SWGuard is shown in Fig. 11. SWGuard mainly redesigns
two components of SDN architecture. On the switch side, it changes the existing
software protocol agent to multi-queue based structure, and schedules different
downlink messages with their types and priorities. On the controller side, it
adds a Behavior Monitor module as a basic service, which collects the downlink
message events and assigns different priorities to different messages dynamically.
6 There may be several hops between the switch and the controller, and the network

condition is unpredictable.
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Fig. 11. SWGuard framework design.

Multi-queue Based Software Protocol Agent. In order to prioritize the
downlink messages, we redesign the software protocol agents of the existing
switches. A naive approach is to modify the existing single queue model directly
into priority-based multi-queue model, and enqueue all the downlink messages
into different queues with their priorities and dequeue at different scheduling
rates. However, the types of downlink messages vary, and different message types
have diverse requirements, for example, if Handshake messages and Modify State
messages are put into the same queue, the latency requirement of the former may
be delayed by the latter so that the handshakes between the controller and the
switches could not be established timely.

To this end, we summarize the downlink messages into the following four
categories: (1) Modify State Messages (MSM), (2) Statistic Query Messages
(SQM), (3) Configuration Messages (CM), and (4) Consistency Required Mes-
sages (CRM), and design a Classifier to classify the downlink messages into
different queues accordingly. The first two types are related to the behaviors of
hosts and applications, so we design a multi-queue for each of them. The multi-
queue consists of three levels (quick, slow, block), and each level is designed for
the corresponding priority. The third type serves for basic services of the con-
troller (e.g., Handshake, LLDP), while the detail of the last type is illustrated
in Sect. 5.2, and both of them inherit from the original single queue. Classifier
makes use of ofp header field in OpenFlow Header to distinguish message type,
and a 2-bit packet metadata to obtain priority.

With the downlink messages in the queues, a Scheduler is designed to dequeue
the messages with a scheduling algorithm. In order not to overwhelm the capa-
bility of ASCI/Forwarding Engine, a Finish Signal should be sent back to the
Scheduler once a Modify State/Statistic Query message is processed. Then the
Scheduler knows whether to dequeue a next message of the same type from
queues. We design a time-based scheduling algorithm, setting different strides
for different queues. For the last two queues (Configuration Messages, Consis-
tence Required Messages), the stride is set as 0, which means whenever there
is a message, it would be dequeued immediately. For the first two multi-queues,
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the stride for the queue of quick level is set as 0, for that of slow level is set as
a small time interval, while for that of block level is set as a relatively bigger
value. With the principles illustrated above, we design the scheduling algorithm
as Algorithm 1.

Algorithm 1. The Scheduling Algorithm for Protocol Agent.
// Initialization

foreach que ∈ queues do
set que.stride;
que.time = getcurrenttime();

// Enter the Scheduler thread

while true do
foreach que ∈ queues do

if que.stride ≤ getcurrenttime() − que.time then
if que.empty() == false then

que.time = getcurrenttime();
que.dequeue();

else
que.time = getcurrenttime();

Behavior Monitor. In order to distinguish different downlink messages with
different priorities, an appropriate Monitoring granularity is in urgent need. Pre-
vious approaches mainly conduct the monitoring with the granularity of source
host [3,34], and react to the anomalies on the statistics. However, in the control
plane reflection attacks, these approaches are no longer valid and effective. For
example, if we only take the features of the data plane traffic into consideration,
and schedule with the statistics of source hosts [35], it would inevitably violate
the heterogeneous requirements of various applications.

To address this challenge, we propose the novel abstraction of Host-
Application Pair (HAP), and use it as the basic granularity for monitoring and
statistics. These two dimensions are easy to be obtained from the uplink mes-
sages and the configurations of the controller. Considering K applications exist
on the control plane, their requirements for downlink messages are represented
as vector a0 = 〈a1, a2, . . . aK〉, and N hosts/users in the data plane, correspond-
ing requirements vector h0 = 〈h1, h2, . . . hN 〉. a0 and h0 are both set by the
network operators, depending on the property of the applications and the pay
of hosts/users. Thus the expected resource allocation matrix is R0 = a0

T · h0.
And the expected resource allocation ratio matrix is I0 = R0∑K

k=1
∑N

n=1 akhn
. Dur-

ing the past period (T seconds), the statistics of HAP is represented as resource
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occupation matrix R =

⎛
⎜⎜⎜⎝

r11 r12 . . . r1N
r21 r22 . . . r2N
...

...
. . .

...
rK1 rK2 . . . rKN

⎞
⎟⎟⎟⎠. And the sum of the elements in

R is denoted as Sum =
∑K

k=1

∑N
n=1 rkn. Suppose the maximum capability of

downlink channel in T seconds is Sum0, Sum
Sum0

denotes the resource utilization
rate of the downlink channel. In order to save resources of the control channel,
we design our SWGuard system as attack-driven, which means when Sum

Sum0
< α,

SWGuard is in sleep state except for Event Collector. All the downlink messages
flow through the third queue (queue for Configuration Messages). α is a danger
value between 0 and 1, set by the network operators.

When the reflection attacks are detected, the Priority Composition Module
is wakened and starts to calculate the penalty coefficient of each HAP, βkn =
rkn−iknSum0

rkn
. ikn, rkn denote the corresponding element in matrix I0,R. If βkn

is negative, we set it as 0. Then we use two thresholds (thh, thl) to map the
penalty coefficient βkn into priority (00, 01 or 10) and tag a 2-bit field into
packet metadata to encapsulate priority.

Policy Consistency. Multi-queue based software protocol agent may violate
the consistency of some downlink messages. For example, some control messages
need to be sent in a particular order for correctness reasons, however, in this
multi-queue based software agent, if a previous arriving message is put into a
queue with high load while a later arriving message is put into a queue with low
load, the order to maintain correctness may be violated.

To address this issue, we design a coordination mechanism between the
Behavior Monitor and Classifier in software protocol agent. If a series of down-
link messages require consistency, they are supposed to reuse the 2-bit priority
packet metadata (fill it with 11) in the packet header to express their intents.
Then the Classifier in the software protocol agent will check the label to learn
whether the message has the consistency demand. If consistency demand is con-
firmed, this message will be scheduled to the queue for consistency required
messages.

5.3 Defense Evaluation

We implement the prototype of SWGuard system, including Behavior Monitor
and Software Protocol Agent, on Floodlight [6] and Open vSwitch [7] with about
4000 Lines of Code. We use Open vSwitch and set corresponding thresholds to
limit its control channel throughput, making its flow rule update rate (130 pps)
and flow table size (2000) analogous to the hardware switches.

To demonstrate the defense effect of SWGuard, we use the average value of
flow rule installation/statistic query latencies of normal users/applications as the
representative metric, which is named as Event Response Time in our figures. As
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Fig. 12. Defense effect. Fig. 13. Defense overhead.

shown in Fig. 127, with native system, event response time becomes extremely
large when the rate of downlink messages is above 110 packets per second. While
with SWGuard, event response time is nearly unchanged. All of these are due
to the limited capability of SDN-enabled switches for processing downlink mes-
sages. The experimental results illustrate that our SWGuard provides effective
protection for both the flow rule installation and statistics query.

For the overheads of SWGuard, we measure the latency introduced by
SWGuard. Compared with native OpenFlow, packets in SWGuard need to go
through two extra components, Event Collector of Behavior Monitor and Config-
uration Message queue of Software Protocol Agent under normal circumstance,
since other components are in sleep state when no attack is detected. When an
attack happens, packets must pass a full path in Behavior Monitor and Soft-
ware Protocol Agent. As shown in Fig. 13, the latency is almost the same for
native OpenFlow and SWGuard under normal circumstance. Even under attacks,
Behavior Monitor and Software Protocol Agent only incur a latency less than
100 us. All of these demonstrate that SWGuard only brings about a negligible
delay for the control channel messages.

6 Discussion

Emerging Programmable Data Planes: Current prototypes, attacks and
defenses are based on OpenFlow-based hardware switches. We believe the core
idea of Control Plane Reflection Attacks is applicable to the emerging gener-
ation of programmable data planes, e.g. P4 and RMT chips [2], because these
platforms also use traditional TCAM-based flow tables and Control Plane Reflec-
tion Attacks address a property of TCAM that is invariant to underlying TCAM
design.

Generality of the SWGuard System: SWGuard is also applicable for no-
adversary circumstances, such as flash crowds of downlink messages under nor-
mal conditions. By prioritizing the downlink messages, SWGuard can provide
7 Since this experiment is conducted on the software environment, the nonlinear jump

point is a little different from the previous hardware experimental results.
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lower latencies for more important messages under the congestion status of con-
trol channel.

Source Address Forgery Problem: One concern is that an attacker may
forge another host’s source address to pollute the HAP statistics of other hosts.
Nevertheless, in SWGuard, we can also harness the edge switch port to identify a
host. As the header fields of the upstream messages are assigned by the hardware
switch, the attacker is not able to forge or change this field.

7 Related Work

DoS Attacks Against SDN: Shin et al. [28] first proposes the concept of
Data-to-control Plane Saturation Attack against SDN. To mitigate this dedi-
cated DoS attack, AVANT-GUARD [27] introduces connection migration and
actuating triggers to extend the data plane functions. However, it is applica-
ble to TCP protocol only. Further, a protocol-independent defense framework,
FloodGuard [32], pre-installs proactive flow rules to reduce table-miss packets,
and forwards table-miss packets to additional data plane caches. To gain the
benefit of no hardware modification and addition, FloodDefender [9] offloads
table-miss packets to neighbor switches and filters out attack traffic with two-
phase filtering. Control Plane Reflection Attacks distinguish themselves from
previous works in both attack methods and attack effects. On one hand, the
saturation attack uses a pretty straightforward attack method that attacker just
floods arbitrary attack traffic to trigger the direct data plane events while the
reflection attacks resort to more advanced and sophisticated techniques, and a
two-phase probing-trigger approach is specially developed to exploit both direct
and indirect data plane events. On the other hand, since the simplicity of the
saturation attack, it is not hard to capture the attack, thus it could have limited
attack effects. By contrary, the reflection attacks are much more stealthy and
the same attack expenses of the attacker could cause more obvious attack effects
for victims. Scotch [31] alleviates the communication bottleneck between control
plane and data plane leveraging a pool of vSwitches distributed across the net-
work, and it shares the same observation that SDN-enabled hardware switches
have a very limited capacity for control channel communications.

Timing-Based Side Channel Attacks: Side channel attacks have long existed
in computer systems, and they are usually used to leak the secret information
(e.g. secret cryptographic keys) of dedicated systems. Publications more related
to our work are various works applying side channel attacks to SDN. Shin et
al. [28] presents an SDN scanner which could determine whether a network is
using SDN or not. Leng et al. [19] proposes to measure the response time of
requests to obtain the approximate capacity of switch’s flow table. Sonchack
et al. [29] demonstrates an inference attack to time the control plane, which
could be used to infer host communication patterns, ACL entries and network
monitoring policies. Liu et al. [21] permits the attacker to select the best probes
with a Markov model to infer the recent occurrence of a target flow. Our attack
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methods are somewhat inspired by these previous works. However, all of them
only focus on the direct data plane events, and remain at a low level to infer the
existence of network policies/device configurations. To the best of our knowledge,
our work proposes the exploitation of indirect data plane events for the first time
and take the next step that we not only take the existence into consideration, but
also obtain more concrete policies and policy thresholds to promote the attack
effects.

8 Conclusion

In this paper, we present Control Plane Reflection Attacks to exploit the limited
processing capability of SDN-enabled hardware switches by using direct and
indirect data plane events. Moreover, we develop a two-phase attack strategy
to make such attacks efficient, stealthy and powerful. The experiments showcase
the reflection attacks can cause extremely harmful effects with acceptable attack
expenses. To mitigate reflection attacks, we propose a novel defense solution,
called SWGuard, by detecting anomalies of control messages and prioritizing
them based on the host-application pair. The evaluation results of SWGuard
demonstrate its effectiveness under reflection attacks with minor overheads.
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Abstract. With respect to power consumption, cryptocurrencies have
been discussed in a twofold way: First, the cost-benefit ratio of mining
hardware in order to gain revenue from mining that exceeds investment
and electricity costs. Second, the overall electric energy consumption of
cryptocurrencies to estimate the environmental effects of Proof-of-Work.
In this paper, we consider a complementary aspect: The stability of the
power grids themselves. Power grids have to continuously maintain an
equilibrium between power supply and consumption; extended periods
of imbalance cause significant deviation of the utility frequency from
its nominal value and destabilize the power grid, eventually leading to
large-scale blackouts. Proof-of-Work cryptocurrencies are potential can-
didates for creating such imbalances as disturbances in mining can cause
abrupt changes in power demand. The problem is amplified by the ongo-
ing centralization of mining hardware in large mining pools. Therefore,
we investigate power consumption characteristics of miners, consult min-
ing pool data, and analyze the amount of total power consumption as
well as its worldwide distribution of two major cryptocurrencies, namely
Bitcoin and Ethereum. Thus, answering the question: Are Proof-of-Work
based cryptocurrencies a threat to reliable power grid operation?.

1 Introduction

Power grids must continuously keep an equilibrium between power consumption
and supply. Power plant operators therefore have to follow the consumer demand,
and adjust their supply in accordance. They rely on sophisticated prediction
models, and the remaining gap between supply and consumption is closed by
control reserve, i.e., power plants in standby. Whereas, a continuous imbalance
in the power grid leads to the utility frequency drifting away from its nomi-
nal set point of 50 Hz or 60 Hz (depending on the country). If supply exceeds
consumption, the frequency of the power grid increases; if supply fails to fulfill
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consumption, the frequency decreases. The system frequency is indeed an indi-
cator of the power grid’s state, and small fluctuations – a few hundred mH –
around the nominal value are normal. However, larger deviations – more than
0.5 Hz—trigger automatic emergency routines such as load shedding or power
plant shutdowns. The operators’ course of action relies on the assumption that
power consumers behave independently of each other, and do not perform con-
certed actions. Recent work [7] has shown that coordinated control over devices
is in fact able to cause load shedding, and large scale blackouts. Therein, the
authors assume a botnet that allows an adversary to remotely and simultane-
ously increase the bots’ power consumption. As electronic devices are orders of
magnitude faster in modulating their power consumption than control reserve
can be activated, the power grid frequency drifts away from its nominal value,
finally triggering emergency routines. In addition to reaction speed, the total
amount of control reserve, i.e., power plants, in standby is limited.

Proof-of-Work (PoW) cryptocurrencies such as Bitcoin and Ethereum draw
substantial amounts of electric power as a consequence of their underlying con-
sensus mechanism, referred to as Nakamoto consensus [5]. In principle, partici-
pation in this process is possible for anyone and is governed by economic factors,
as prospective miners analyze the cost-benefit ratio of acquiring and providing
computational resources to the network in exchange for cryptocurrency units1.
Up until now, this fact has been discussed primarily in the context of sustain-
ability and the potential ecological impact large scale cryptocurrency mining
could entail [15,23,32]. Some estimates rank Bitcoin’s overall electricity con-
sumption comparable to that of medium-sized national states with the potential
to grow even further in the future. In this paper, we discuss a complementary, yet
unconsidered aspect of cryptocurrencies and power consumption. Specifically, we
investigate whether PoW cryptocurrencies could represent a threat to reliable
power grid operation that is comparable to the botnet described above. A closer
look emphasizes that cryptocurrencies indeed have the potential to be harmful
to reliable power grid operation for the following reasons:

– Hardware that is mining a particular cryptocurrency uses the same, or very
similarly behaving, software on all nodes. Thus, their power consumption may
not be independent of each other and therefore violating the grid operators’
assumptions. A single disturbance in the software – may it be a consequence
of an occasional error or a malicious action – impacts a large amount of miners
at once. For example, a high number of all Ethereum nodes experienced an
outage due to a software bug in September 20162. If such an event impacts
the nodes’ power consumption, even minor changes add up to large overall
power lifts for the power grid. For example, a Linux leap second bug caused
an overall power increase by 1 MW in a single data centre in 20123.

1 https://www.coinwarz.com/cryptocurrency.
2 https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-

memory-bug/.
3 http://www.h-online.com/open/news/item/Leap-second-bug-in-Linux-wastes-

electricity-1631462.html.
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– Cryptocurrency nodes are electronic devices, and are thus able to modulate
their power consumption in a fast way – typically below 100 ms – which is a
few orders of magnitude faster than the reaction speed of the power grid.

– Miners – at least when operating in the same mining pool – share a communi-
cation infrastructure to coordinate their efforts. An error in this communica-
tion structure or its compromise by an adversary could allow for botnet-style
control including manipulation of the participants’ power consumption.

– Miners have vast computing power, and therefore draw high amounts of power
from the grid. As long as it remains profitable their operators are economically
motivated to bring more and more mining hardware into the cryptocurrency
network, leading to increased power consumption at high growth rates – with-
out actually improving capacity for the cryptocurrency. Beyond, this growth
has been fueled by an ongoing cryptocurrency hype.

Summarizing, cryptocurrencies show potential to become troublemakers for
power grids and their reliable operation. In addition to the overall power con-
sumption, the miners’ development over time and their geographical spread are
of interest for an in-depth analysis. The paper at hand aims to contribute this
missing information in order to shed light onto the issue whether cryptocurren-
cies are a threat to reliable power grid operation. In particular, we answer the
following questions:

– How does power consumption of different cryptocurrencies and their mining
pools behave over time? Further, how is power consumption geographically
spread?

– Which scenarios, e.g., outage of a large number of miners, show potential to
impact power grid reliability and which prerequisites have to be met for such
an event to affect the power grid?

– Has power consumption of cryptocurrencies already surpassed the threshold
of being critical for reliable power grid operation? Respectively, when does
power consumption reach this critical threshold considering past growth of
cryptocurrencies and their increased mining efficiency?

Due to the large number of available cryptocurrencies, we limit ourselves to
the two currently most popular PoW cryptocurrencies by market capitalization
and transaction volume, namely Bitcoin [21] and Ethereum [6]. With respect to
the power grid, we investigate the impact on European power grids, among them
the Synchronous Grid of Continental Europe (formerly UCTE grid) which is the
largest power grid by total consumption. Beyond, European grids are considered
to be among the most reliable networks.

The remainder of the paper is organized as follows: Sect. 2 provides a back-
ground on power grid operation and cryptocurrencies; Sect. 3 presents our threat
scenario. Section 4 assesses power consumption models with respect to the qual-
ity of results. Then, Sect. 5 investigates cryptocurrencies’ current power con-
sumption for mining, while Sect. 6 investigates the geographic spread of miners
by investigating the largest Ethereum mining pool as well as including publicly
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available information for Bitcoin. Section 7 analyzes cryptocurrencies’ impact on
the power grid. Section 8 discusses our results, Sect. 9 presents related work, and
Sect. 10 concludes.

2 Background

First, this section provides an overview on power grid operation before describing
the technology behind cryptocurrencies.

Power Grids in Europe: Power grids have expanded from islands, e.g., a
city, to national grids and finally international ones for reasons of higher reli-
ability, as an outage of a single power plant is easier to handle by numerous
other plants compensating for the loss. These grids are operated synchronously,
i.e., the net sine is of the same frequency at the same angle; otherwise, short
circuits would cause harm to the equipment. As electric power cannot be stored
at large quantities, grid operators have to keep a balance between consumption
and supply at all times. This is achieved in two steps: First, operators estimate
power consumptions by means of load profiles. These are sophisticated models
forcasting the consumption in dependence of time of the year, weekday, weather
forecast and many more parameters. Second, fast power plants are run in stand-
by mode to close the remaining gap between consumption and supply. This gap
is measured by the network’s frequency deviation from its nominal value (50 Hz
in European networks). If consumption exceeds supply, turbines of power plants
slow down leading to a lower frequency. If supply is higher than consumption,
turbines accelerate and this increases frequency as well. Bearing in mind that
fast-reacting power plants are still relatively slow in comparison to IT equip-
ment [7]. While the latter are able to modulate their consumption within a range
of multiple tens of milliseconds to seconds, gas turbines need tens of second for
activation. Primary control, the fastest countermeasure reacting to imbalances,
in the UCTE network is required to be fully activated within 30 s [11]. Sec-
ondary and tertiary control take even longer. Power operators aim to keep the
frequency within a band around the nominal value, typically a few hundreds of
mHz. Large deviations cause emergency routines [31]: (49.8 Hz) Alerting, Shed-
ding of pumps, (49.0 Hz) load shedding of 10–15% of total load, (48.7 Hz) load
shedding of additional 10–15%, (48.4 Hz) load shedding of further 15–25% of
load. At frequencies below 47.5 Hz and above 51.5 Hz all power plants are dis-
connected from the power grid in order to protect mechanical equipment like
turbines and generators.

Cryptocurrency Mining: The cryptographic currency Bitcoin was inarguably
the first successful decentralized implementation of an electronic payment sys-
tem, as it does not have to rely on individual trusted parties to prevent the
double spending problem [22]. To achieve resistance against Sybil attacks [9],
but nevertheless allow for dynamic membership of (consensus) participants, Bit-
coin requires some form of pricing mechanism ascribed to the creation of iden-
tities in the system. This is achieved through relying on a chained construction
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of Proofs-of-Work, the latter of which traces its origins back to the works of
Dwork and Naor [10] and Back [3]. In Bitcoin, miners4 attempt to solve a
cryptographic puzzle, namely a partial pre-image attack on the SHA-256 cryp-
tographic hash function. As part of its input it takes a previous puzzle solution
as well as a Merkle tree root of newly proposed transactions. Thereby, a cryp-
tographically linked tree of puzzle solutions is formed, of which only the longest
consecutive chain with the most cumulative difficulty of puzzles is considered
to be the current valid state by honest participants. Under the assumption that
the majority of computational power is controlled by honest participants, and
that they will only append new solutions to the head of a valid (block)chain, it
becomes exponentially difficult for an adversary to alter previous states by pre-
senting a new, longer chain that is considered valid. This mechanism of reaching
eventual agreement on a common prefix of chained puzzle solutions is referred
to as Nakamoto consensus. The principles behind Nakamoto consensus form
the basis for all decentralized PoW cryptocurrencies. Nakamoto consensus also
relies on game theoretic incentives, whereby operators of mining hardware are
rewarded in cryptocurrency units if their puzzle solution eventually ends up as
part of the agreed upon valid blockchain. The operators can expect, on average,
to successfully mine blocks that end up on the blockchain proportional to the
amount of computational power they hold in relation to that of all participants
Because mining is a random process with large variance, operators often form
their mining hardware together in mining pools to benefit from more predictable
payouts [17,28]. Alternative cryptocurrencies often rely on a different Proof-of-
Work function to Bitcoin, such as Ethash in the case of Ethereum [35]. When
we refer to hash rate within the course of this paper, we imply the number of
trials that are conducted for a given PoW function in an attempt to find a valid
solution over a particular time frame.

3 Threat Model

Our threat scenario is depicted in Fig. 1(a). We assume an amount of miners of
the same cryptocurrency – may it be Bitcoin or Ethereum – mining the respective
cryptocurrency. Each of these miners draws a modest amount of electricity from
the power grid. However, in total, power consumption of individual miners add
up to a large volume. If all (or a large number of) miners switch from mining
to idling abruptly the total power consumption drops within seconds or less.
Figure 1(b) depicts this effect from the power grid’s perspective. While power
consumption ideally would follow an inverse step function, it is likely that the
real-world behavior is slightly smoother. The surplus of energy in the grid will
lead to an increased frequency until the control reserves try to stabilize the
system. However, due to generators’ inertia, activation takes up to 30 s. If the
miners’ reduction in consumption is high enough the induced frequency shift can

4 We use the term miners as equivalent for mining hardware (and not the operators
of this hardware).
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Fig. 1. Threat model: an (occasional or malicious) incident leads to the outage of
miners eventually causing totalled fluctuations on power consumption.

(temporarily) exceed thresholds for emergency routines, eventually causing load
shedding or shutdown of power plants.

In order to cause such an incident, the adversary requires the possibility of
instantly forcing a high number of miners into idling. We therefore assume a
central instance as depicted in Fig. 1(a). This central instance is able to directly
or indirectly influence miners which might appear artificial at first. However, in
the past, cryptocurrencies have already experienced comparable situations, as
emphasized in the following enumeration: (1) Antbleed5 included a backdoor in
the Antminer mining hardware that allowed the vendor to remotely shutdown
devices. Its exploitation could have caused an estimated outage of up to 70% of
all mining equipment in the Bitcoin network. (2) In September 2016, Ethereum
experienced an outage of lots of nodes due to a bug in the centrally maintained
software6. The software as a central instance indirectly (and unintentionally) told
the miners to stop mining by software malfunction, leading to a sharp decrease
in hash rate of over 10%. (3) Mining is typically performed in mining pools,
i.e., miners jointly aim to create the next block in order to reduce variance and
maximize revenue. Therefore, miners are connected to a central server or cen-
trally managed infrastructure that forwards them their share of hashing puzzles.
Malfunction or hostile takeover of the server and/or its communication – the
de-facto standard is the Stratum protocol [27] – bears potential to take control
over the hash rate of all miners in the pool. It has been already confirmed that
fluctuations in consumption caused by botnets are able to trigger large frequency
shifts and eventually load shedding and shutdown of power plants [7]. In this
paper, we investigate whether Bitcoin or Ethereum is able to cause such large
deviations threating reliable operation of the power grid.

5 http://www.antbleed.com/.
6 https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-

memory-bug/.

http://www.antbleed.com/
https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-memory-bug/
https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-memory-bug/
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4 Assessment of Models for Power Consumption

In a first step, we need an estimation of the total power consumption of the
respective cryptocurrencies. Multiple models – both from the world of academia
as well as beyond – are available; however, they significantly differ with regard
to their underlying assumptions, not to mention their final outcome on total
power consumption. In addition, they mainly focus on Bitcoin. In the following
paragraphs, we assess these models and their parameters with respect to the
quality of the results. Finally, we decide for a model that is built upon within
the remainder of this work.

– O’Dwyer and Malone [23] calculate an upper and lower bound for worldwide
Bitcoin energy consumption based on the network’s hash rate and consump-
tion values of commodity hardware and specialized mining hardware. The
authors did not aim to model the actual mix of mining hardware, and they
could only conclude that the consumption lies between the calculated upper
and lower bound.

– Vranken [32] calculated power consumption under the assumption that all
Bitcoin mining is done on (i) CPUs, (ii) GPUs, (iii) FPGAs or (iv) ASICs
before bounding power consumption by means of (a) the total world power
production, (b) assuming that the total mining revenue is spent on electric
power, and finally the (c) inclusion of acquisition costs. As O’Dwyer and
Malone, there has been no effort to model the actual hardware mix of the
mining network.

– Deetman [8] aimed to overcome the above drawback by modeling the hard-
ware mix of the mining network in a more sophisticated way. First, the author
inferred the decrease of power consumption per hashing operation over time
based on mining hardware’s specification and its release data. In a second
step, the increase of hash rate per month has been attributed to newest hard-
ware (that is then assumed to run three to five years before being removed
from the mining network again), then, finally leading to the average power
consumption of the respective hardware mix. By means of the hash rate, the
total power consumption was calculated.

– The Vries [33] follows a financially-oriented approach assuming that a certain
ratio of the network’s mining revenue is spent on electricity (60% with Bit-
coin, 22% with Ethereum). Assuming an average energy price (US$ 0.05 per
kWh with Bitcoin, US$ 0.12 per kWh with Ethereum7), the total power con-
sumption of the mining network is derived. The author claims that this model
does not only include power consumption that is directly used for mining but
also the power for additional needs, e.g., data center cooling.

Table 1 provides an overview of the parameters that are included into the cal-
culation of each model. The parameters show diverse characteristics, e.g., with
regard to fluctuations or validity of data sources, that influence the model’s
7 According to the author, Ethereum is rather mined at residential homes; thus, resi-

dential rates apply.
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Table 1. Usage of parameters in power consumption models: Suitability describes
whether a model uses suitable parameters for estimation, see Table 2.

Model Total
hash
rate

Power con-
sumption
of miners

Release
date of
miners

World
power
con-
sump-
tion

Mining
revenue

Acquisition
costs of
miners

Miner
lifetime

Ratio
electricity
to
acquisition
costs

Electricity
price

Suitability
of model

O’Dwyer and

Malone [23]
✓ ✓ ✓

Vranken [32] ✓ ✓ ✓ ✓ ✓ ✓ ✗

Deetman [8] ✓ ✓ ✓ ✓ ✓

The Vries [33] ✓ ✓ ✓ ✗

Table 2. Parameters with regards to suitability for power consumption modeling
(✓ Good, ● Intermediate, ✗ Poor)

Parameter Information source Suitable

Total hash rate Based on difficulty & block arrival times ✓a

Power consumption of miners Data sheets, reviews ✓

Release date of miners Data sheets, press release ✓

World power consumption Public statistics ✓

Mining revenue Block reward & transaction fees ✓

Acquisition costs of miners Press releases, reviews ✗b

Miner lifetime General ●c

Ratio electricity to acquisition costs Based on electricity price and acquisition costs ✗d

Electricity price Energy providers ✗e

aBoth, difficulty and block arrival time can be directly extracted from the blockchain.
bAcquisition costs including shipment vary depending on time and country.
cIT equipmentment is generally considered to have short life times of 12 to 18 months.
dEnergy prices and acquisition costs vary significantly and so does their ratio.
eEnergy prices are dependent on country and customer type (domestic, industrial).

quality of prediction. Table 2 provides an assessment of the parameters included
for power consumption estimation with respect to the source of information and
their suitability. While some of them can be gained from (rather) authoritative
sources like the blockchain directly, data sheets, reviews or press releases that
are stable with respect to time and geographic location; others heavily fluctuate,
in particular acquisition and electricity costs. Thus, we consider the first cate-
gory as being suitable for power consumption estimation; the latter category as
inappropriate – they would cause heavily fluctuating final results as well. In the
last column, Table 1 highlights the models using only suitable parameters.

From these models, Deetman’s appears most suitable for our purpose of esti-
mating a mining network’s total power consumption for the following reasons:
(i) The included parameter values are based on confirmed sources, are neither
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heavily fluctuating nor geographically dependent.8 (ii) A mix of mining hard-
ware is considered; results are more practical than the calculation of lower and
upper bounds as done by O’Dwyer and Malone’s model. (iii) The result includes
the power consumption that is directly used for mining only. This matches our
threat model in Sect. 3, i.e., the adversary is solely able to influence the min-
ing hardware remotely, but not supporting measures such as cooling. (iv) The
approach is universally applicable for all cryptocurrencies.

5 Total Power Consumption of Popular Mining Networks

After deciding for an appropriate model for power consumption, in this section,
we describe our approach in detail and present the results for Bitcoin and
Ethereum.

Methodology for Power Consumption Estimation: For estimating the
total power consumption of a cryptocurrency, we performed the following steps:

1. We collected the overall hash rates as well as power consumption for typical
mining hardware of the respective currency from data sheets or reviews, and
calculated the power consumption per computed hash (W/H). Current as
well as outdated hardware has been included.

2. In addition, we collected the release dates of mining hardware from data
sheets and press releases.

3. Assuming that power consumption per hash decreases over time due to better
hardware, we performed a regression analysis to find a trend in miners’ power
efficiency based on the data that has been collected in step 1 and 2.

4. While the result of step 3 provides insight into the further development of
miner efficiency, the hash rate of the entire cryptocurrency’s mining process
has to be calculated to obtain the overall network’s power consumption. Fol-
lowing the algorithm of Ozisik et al. [25], we inferred the overall hash rate
including the parameters target (respectively difficulty), time interval between
consecutive blocks and the observed hash values. These values have been
gained directly from the respective public blockchain.

5. At a certain point in time, mining is not exclusively performed on newest hard-
ware but also on older hardware; therefore, we aim to create a representative
hardware mix. We assume that the increase in a cryptocurrency network’s
hash rate is caused by current hardware and that the hardware contributes
hashes to the network for a fixed time period of six months (Bitcoin) or 12
months (Ethereum). Instead of including power efficiency of individual miners
into our calculation, we take the values from the regression analysis of step
3.

8 The only arguable parameter is the hardware’s total runtime. Therefore, we followed
a twofold approach to test its plausibility: On the one hand, we collected typical
runtimes in the community confirming our assumption. On the other hand, we argue
that the range of plausible values does not change the result significantly.
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6. Finally, we infer the cryptocurrency’s total power consumption for the hard-
ware mix from step 5. We multiply the hash rates with the assigned power
efficiency for every entry within the hardware mix.

The gained results, as well as specifics, for Bitcoin and Ethereum are pre-
sented in the remainder of this section.

Fig. 2. Results for the Bitcoin network.

Total Power Consumption of Bitcoin: Collecting data for Bitcoin miners
was based on a hardware list from the Bitcoin Wiki9, we cross-checked the pro-
vided parameters for hash rate and power consumption and added release dates.
However, we faced various difficulties: (a) Due to bankruptcies, companies pro-
ducing hardware disappeared from the market and data sheets of their hardware
is not available anymore (if ever present). In such cases, we relied on technical
reviews on the respective hardware and blogs or forum posts of the active Bit-
coin community. (b) Delivery dates were not met in multiple cases; shipment was
delayed by multiple months and eventually the miners went online later than
initially announced. Therefore, we verified the initial announcements from the
hardware vendors with community posts. In case of delays, we included the actual
shipping date into our calculation. (c) Some products have never been shipped at
all, or we did not find any specification indicating their hash rate and/or power
consumption. For these reasons, we excluded twelve miners from the original
list containing 83 miners. As commodity hardware and field-programmable gate
arrays (FPGAs) have become outdated for multiple years already, we focused
on application-specific integrated circuit (ASIC) miners. The gained results for
power efficiency, total hash rate and total power consumption are depicted in

9 https://en.bitcoin.it/wiki/Mining hardware comparison.

https://en.bitcoin.it/wiki/Mining_hardware_comparison
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Fig. 2: The power efficiency increased over time and as of February 2018, the
mix of mining hardware requires 0.049 W/GH. The total hash rate of the Bit-
coin network is estimated to be 30.2 EH/s and the total power consumption
2.2 GW.

Fig. 3. Results for the Ethereum network.

Total Power Consumption of Ethereum: Ethereum is predominantly mined
on (commodity) Graphics Processing Units (GPUs). Therefore, we collected data
on GPU models commonly suggested for Ethereum mining. In comparison to
Bitcoin mining, we were able to rely on specifications by the dominant players in
the market, namely AMD Radeon and Nvidia GeForce. The results are depicted
in Fig. 3: The power efficiency increased over time and as of February 2018 is
5.2 W/MH. The total hash rate of the Ethereum network is estimated to be
253 TH/s and the total power consumption 1.3 GW. In comparison to Bitcoin,
Ethereum mining hardware requires more power per hash. Thus, even though
Ethereum’s total hash rate is less than Bitcoin’s, the power consumption has
roughly the same magnitude. Beyond, linear regression provided best results for
Ethereum while exponential for Bitcoin. Based on these facts, we believe that
there is still room for improvement in further development of Ethereum mining
hardware while efficiency gains for Bitcoin will be minimal in the future.

6 Geographic Spread of Miners

After calculating the total power usage of Bitcoin and Ethereum mining, we
have to determine the share of consumption in distinct power grids. Therefore,
we analyze the biggest mining pools of both cryptocurrencies to infer the geo-
graphical spread of their miners. With respect to power grids, we focus on the
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Table 3. Power consumption of mining with regard to European power grids

Ethereum Bitcoin Grid characteristics

ethermine Lower
bound

Upper
bound

Lower
bound

Upper
bound

Total
load

Reference
incident

UCTE 22.1%a 79 MW 284 MW 56 MW 1194 MW 296.8 GW 3000 MW

NORDEL 1.41% 5 MW 18 MW 4 MW 68 MW 38.5 GW 600 MW

Iceland 0.18% 0.6 MW 2 MW 0.6 MW 9 MW 2.0 GW 90 MW

Ireland 0.09% 0.3 MW 1 MW 0.2 MW 4.3 MW 3.0 GW 160 MW

Great Britain 1.12% 4 MW 14 MW 2.8 MW 54 MW 34.7 GW 400–
700 MW

aFrom the overall ethermine hashrate measured from 2018-02-26 to 018-03-26

following European systems as they are considered to be among the most reliable
networks and rarely face blackouts: (A) The Synchronous Grid of Continental
Europe (UCTE grid) spans 29 European and North African countries10. (B)
NORDEL is a synchronous power grid comprising Denmark11, Finland, Nor-
way and Sweden. (C) Iceland, Ireland, and the United Kingdom each operate an
island network of their own for geographic reasons. These individual synchronous
grids are typically interconnected by DC lines; however, they are only able to
provide a small ratio of the overall power consumption and cannot compensate
major imbalances.

Due to the sources available to us, we had to follow two distinct approaches
for Bitcoin and Ethereum to estimate the ratio per synchronous grid.

Geographic Spread of Ethereum Mining: For Ethereum, we could rely on
regional data from the the biggest mining pool by mined blocks ethermine;
the latter controls 27.9% of the total Ethereum hashrate12. Having access to
individual countries’ hash rates allowed us to determine their share of the total
hash rate; these numbers were then used to calculate power consumption for
the different power grids. Finally, we calculated a lower and an upper bound for
power consumption for the respective power networks; all results are presented
in Table 3.

– The lower bound of power consumption is calculated under the assumption
that just ethermine encompasses miners within Europe while the miners of
other pools are outside of the continent, and represents a lower bound of
power consumption. This is insofar a lower bound to power consumption
within these networks as we have ground truth from this pool.

10 Country Codes (ISO 3166-2): AT, BA, BE, BG, CH, CZ, DE, DK, DZ, ES, FR, GR,
HR, HU, IT, LU, MA, ME, MK, NL, PL, PT, RO, RS, SI, SK, TN, TR, EH.

11 Mainland Denmark is connected to UCTE, the islands to NORDEL. We split the
power consumption according to the region’s population. (54% in the UCTE grid,
46% in the NORDEL grid).

12 https://etherscan.io/stat/miner?range=7&blocktype=blocks.

https://etherscan.io/stat/miner?range=7&blocktype=blocks
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– For the upper bound of power consumption, we assume that all mining pools
have an equal share of European miners as the investigated mining pool;
this value represents insofar an upper bound as certain mining pools pre-
dominantly target miners outside Europe, e.g., by providing a homepage in
Chinese only. Beyond, the investigated pool is considered to encompass more
hash rate within Europe than others as the pool is run from a European
country.

Geographic Spread of Bitcoin Mining: For Bitcoin mining, we were unable
to obtain country specific information from a mining pool and had to rely on
more coarse-grained, though publicly available information: btc.com, currently
the largest pool mining 24.9%13 of all Bitcoin blocks, provides a list of success-
fully mined blocks and their origin at continent granularity; this way, we were
able to calculate the share of blocks mined in Europe within this pool to be 7.4%
(March 2018). slushpool.com, third biggest pool controlling 11.7% of Bitcoin’s
total hash rate, runs multiple, geographically spread Stratum servers and pub-
lishes the controlled hash rate per server. Individual miners connecting to a pool
typically connect to the closest server to reduce network latency; this way, we are
able to obtain a European share of 81% within this mining pool. Taking these
two results into account leads to a minimum power consumption of 251 MW
within Europe; splitting this consumption among the power grids as Ethereum’s
consumption leads to a lower bound as presented in Table 3. The upper bound
was calculated based on the following assumptions: (1) For the hyperimage-
https://btc.com/btc.com and slushpool.com, we included their share according
the numbers above. (2) All pools with a Chinese-only homepage are assumed to
control no miners in Europe, (3) the remainder pools are assumed to have the
share of slushpool.com (as ethermine is considered to be an eurocentic pool for
Ethereum, slushpool.com is for Bitcoin). The numbers for Bitcoin however might
overestimate power consumption to a certain extent as the pools’ definition of
Europe may go beyond the countries in the UCTE, NORDEL, Icelandic, Irish
and British grid.

7 Impacts on the Power Grid

We determined Bitcoin’s total power consumption to be 2.2 GW. In European
networks, 64 MW to 1329 MW are drawn. Ethereum’s overall consumption is
1.3 GW of which 89 MW to 319 MW are drawn in Europe. The impact of an
amount of power consumption is dependent on its share of the total power con-
sumption and particularly the grid’s reference incident. The latter indicates the
power loss that the system is designed for, and its size is equivalent to the
primary control, the fastest measure to stabilize a power grid. Consequently,
imbalances can be compensated within a short period of time (on electrical
engineering time frames). For example, the UCTE network maintains 3 GW in

13 https://blockchain.info/pools.

https://btc.com/
https://slushpool.com/
https://slushpool.com/
https://slushpool.com/
https://slushpool.com/
https://blockchain.info/pools
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stand-by for primary control which is fully activated within 30 s. Therefore, fast
changes in power consumption of magnitude of the reference incidents are able
to overpower the stand-by mechanisms and trigger emergency routines. Thus,
we assume, the reference incident value to be an adequate threshold to deter-
mine the potential of a cryptocurrencies’ power consumption to harm the power
grid’s operation. Therefore, Table 3 presents total power consumption alongside
the reference incidents for European power grids.

In none of the power grids the consumption exceeds the reference incidents;
nevertheless, upper bounds are in most cases only one order of magnitude below
the threshold – two orders in the case of Ireland – and both cryptocurrencies grow
exponentially at the moment. Therefore, we estimate power consumption’s devel-
opment in the future by performing exponential regression. Figure 4(a) shows
power consumption in the UCTE network assuming a share of 11% (lower bound,
see Sect. 6), 54% (upper bound) and 33% (mean) of mining in Europe. Even in
the best case, the reference incident of 3 GW14 is reached by Bitcoin mining at
the begin of 2020; in the worst case, in the middle of 2018. Results for Ethereum,
see Fig. 4(b), show that the reference incident will be exceeded in 7 to 14 years.

8 Discussion

Cryptocurrencies and their power consumption are either discussed with respect
to hardware equipment’s efficiency or the adverse impact on ecology due to high
overall power consumption. In this paper, we emphasize that Proof-of-Work
cryptocurrencies are in principle able to destabilize power grids. Cryptocurrency
miners draw large amounts of power from the grid, despite all efforts to make
them more efficient and high gains in their efficiency over the last years. Our
analysis shows that cryptocurrency mining in both Bitcoin and Ethereum cur-
rently does not represent an immediate danger to reliable power grid operation
on the European continent.

Fig. 4. Projection of future mining power consumption in the UCTE grid

14 Representing the amount of lost generation/load that can be handled by the power
grid, reference incident values are hardly changed in practice despite increased energy
consumption and increased network sizes.
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Our results show however that critical values to power grid operation lie
just one or two orders of magnitude beyond the current consumption of Bitcoin
or Ethereum and both grow at exponential rates. For example, the reference
incident within the UCTE network is 3 GW [12], i.e., the respective power grid
is planned to successfully compensate for a potential loss of this amount of power
generation, which is roughly equivalent to two nuclear power plants. Assuming
that current growth rates and the share of miners in the UCTE network are
maintained, the level of the reference incident would be met within 0.5 to 2
years for Bitcoin and within 7 to 14 years for Ethereum. Then, the power grid’s
measures for frequency stabilization might not be sufficient any more in case of
a sudden outage of all mining efforts in the respective cryptocurrency – may it
be as a consequence of malfunction or due to malicious actions by an adversary.

In comparison to [7], our attack scenarios do not increase power consumption
all of a sudden, but rather decrease it within seconds, which is more severe from
the power operator’s perspective as the blackout of November 2006 in Europe
has shown [29]. The loss of electric load causes a shift towards higher frequen-
cies, and wind turbines additionally increase the imbalance by stopping power
input at frequencies beyond 50.2 Hz (Germany) or 50.3 Hz (Italy, Denmark) [2]
destabilizing the power network even further. Despite the effort to change this
behavior – a lesson learned from the 2006 blackout – it is rumored that roughly
half of all turbines in Europe still follow legacy guidelines. In case of load loss,
operators can only throttle power plants; this takes multiple tens of seconds
for fast plants like gas turbines but hours or even days for base load plants
(nuclear, coal, etc.). If the frequency reaches 51.5 Hz faster than operators are
able to stabilize the network by throttling, all power plants perform a cumber-
some and costly emergency shutdown. Beyond, our attack is easier to achieve
than the previous approach as the tedious task of botnet creation is largely omit-
ted. An adversary only has to compromise the communication and coordination
infrastructure, smuggle malfunctionality into the software or exploit a backdoor.
All three types of incidents have already been shown feasible or were actually
observed in current cryptocurrency networks (c.f. Sect. 3). Certain protocols and
software, e.g., Stratum, suffer from bad reputation with respect to security [27],
and documentation as well as a planned security-by-design approach are gen-
erally lacking. Finally, we outline that our attack can also be combined with a
botnet to form dynamic attacks and exploit resonance frequencies of the network,
as presented in [7].

The consequences of such a described incident would be large-scale blackouts
and the shutdown of power plants due to automatic emergency routines [31].
Besides the impact on the economy and the possible life-threating consequences
through cease of medical care, water and other basic needs, large-scale blackouts
entail a much greater challenge. Most plant types actually need electric energy to
start up. Only very few power plants have black-start capabilities, i.e., a startup
procedure without external power. Afterwards, every other power plant has to be
brought up by synchronizing into that grid, while simultaneously reconnecting
an appropriate amount of household to keep an equilibrium of demand and
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production. After the 2003 Northeast blackout, it took two days to bring most
households back on the grid; the remaining areas had to face up to two weeks
without electrical power [30].

In recent time, cryptocurrencies – their value, as well as their mining opera-
tions – have experienced extraordinary growth and this trend is likely to continue
in the near future, and possibly beyond. Thus, they will consume an increasing
share of the produced electricity. In the course of this work, we focused on Euro-
pean power grids, namely the UCTE, the NORDEL as well as various island net-
works as they are considered to be among the most reliable systems. At the same
time, miners are not predominantly present in these areas, but rather in other
networks. Despite these considerations, the results show that cryptocurrencies
might have a negative impact on reliable grid operation. Thus, any thresholds
determined for that networks will likely be lower on other less robust grids with
a higher mining ratio. For example, Venezuela, known for its continuous prob-
lems with power grid operation, has attributed blackouts purportedly to “illegal”
Bitcoin mining15.

Countermeasures: In conclusion, its worth to think about potential counter-
measures such as the following:

– Change of mining software behavior: An approach that could readily help
to mitigate the outlined attack is to update cryptocurrency mining software
such that it takes the problem of sudden load swings into consideration. For
instance, upon loss of connectivity or lack of work to be performed, mining
software could continue the mining process for a randomized amount of time
in order to reduce the overall power consumption more smoothly.

– Further efficiency increase: Mining hardware could be improved to reduce
their power consumption per hash rate even further, and counteract the rising
power consumption. Past growth rates however increased power consumption
at higher rates than savings due to more efficiency. In addition, improvements
in efficiency appear to be lower in the future as our trend analysis shows at
least for Bitcoin, see Fig. 2(a).

– Replacement of Proof-of-Work: There are currently several approaches to
replace Proof-of-Work with alternative, less energy intensive mechanisms.
Provably secure Proof-of-Stake designs have been proposed, where the
required resource to be able to participate in mining are the cryptocur-
rency units themselves [4,16,18]. Furthermore, by relying on trusted hardware,
systems employing Proof-of-Elapsed-Time (PoET) or Proof-of-Useful-Work
(PoUW) can be realized [37]. Finally, alternative limited resources, such as
disk space in the case of Proof-of-Space [26], may be utilized.

– Change of incentives: Each mining operator aims to expand its mining capa-
bility as long as they expect a net profit in doing so. This increases the
network’s overall hash rate and power consumption; at the same time, the
difficulty of the network is adjusted making Proof-of-Work harder to leave

15 http://www.dailymail.co.uk/news/article-5161765/Bitcoin-mining-causing-
electricity-blackouts.html.

http://www.dailymail.co.uk/news/article-5161765/Bitcoin-mining-causing-electricity-blackouts.html
http://www.dailymail.co.uk/news/article-5161765/Bitcoin-mining-causing-electricity-blackouts.html
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targeted block intervals unchanged. This implies that the cryptocurrency’s
throughput does not increase despite more effort (and power) spent on min-
ing, i.e., it does not scale transaction numbers with the hash rate. Expanding
the incentives in a way that rewards more resource efficient mining would not
only reduce hash rate but also power consumption.

– Regulation: Power grids are critical infrastructure; nation states aim to pro-
tect their infrastructure and take actions usually by means of legislation, e.g.,
Directive 2008/114/EC by the European Union. In consequence, governments
might regulate the use or mining of cryptocurrencies. For example, China has
already banned Bitcoin trading16, even though mining is still legal.

– Purchase of surplus production: Finally, there is also a benefit for power
grid reliability with regard to cryptocurrencies. The latter could stabilize the
power grid, and purchase a surplus of energy production in order to main-
tain the balance between supply and consumption. This typically happens
in nights: Base load power stations, e.g., nuclear or coal power plants, suffer
from slow dynamics and therefore operators prefer paying others to consume
the power instead of reducing their plants’ output. Killing two birds with a
stone, miners would not only raise money through the mining reward and
transaction fees but would also raise income through power consumption.
However, mining equipment would not run 24/7 which impacts the return on
investment.

– Speed-up of power grid measures: In future, primary control could improve
responsiveness until full activation. As physical limits impose constraints on
power plant turbines due to their mass; grid operators might have to find
alternative ways for primary control, e.g., by using power from electric cars’
batteries to stabilize the network.

9 Related Work

Large-scale power grid failures and destabilization incidents bringing grids to
their limits are rare events in European power grids. Nevertheless, operators
investigate and learn from these occurrences to be able to ensure more reliable
operation in the future, e.g., the November 2006 blackout, which split the power
grid into three synchronous zones due to cascading effects [29], a blackout in
Turkey in 2015 [14], and inter-area oscillations [13]. Attacks against smart grids
are outlined in Mohsenian-Rad et al. [20] and Mishra et al. [19], where an adver-
sary manipulates messages, e.g., containing pricing information, causing smart
behavior to indirectly affect the power grid, e.g., simultaneous charging of all
electric vehicles. As of today, smart grid functionality is not yet widely deployed.
Hence, the respective attack surface is low. On a smaller network scale Xu et
al. [36] investigate how power oversubscription in data centers could be used
to conduct concerted attacks that lead to undesired power outages. Finally, the
impact of dynamic load attacks on smart grid operation is outlined in Amini et
16 http://www.scmp.com/business/banking-finance/article/2132009/china-stamp-

out-cryptocurrency-trading-completely-ban.

http://www.scmp.com/business/banking-finance/article/2132009/china-stamp-out-cryptocurrency-trading-completely-ban
http://www.scmp.com/business/banking-finance/article/2132009/china-stamp-out-cryptocurrency-trading-completely-ban
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al. [1], however the authors do not provide strategies how an adversary could gain
such a high amount of controllable load. This problem is overcome in Dabrowski
et al. [7], where it is shown that an adversary could form a botnet from com-
modity hardware as well as Internet-of-Thing devices to reach the necessary
controllable load for a successful attack. In addition, it is highlighted that an
adversary requires much lower amounts of controllable consumers than stated
in [1]. In regard to power consumption cryptocurrencies are investigated in a
twofold way: either for power efficiency of mining hardware or their total con-
sumption’s impact on the environment. Wang and Liu [34] consider the evolution
of miners, including their power consumption and productivity. O’Dwyer and
Malone [23] investigate the profitability of Bitcoin mining, including hardware
characteristics as well as exchange rates, and bound the total power consump-
tion of Bitcoin to 3 GW. Further publications that provide estimates on the total
power consumption of Bitcoin are presented by Vranken [32], Deetman [8], and
The Vries [33]. We asses their models in Sect. 4; our work is based on Deetman’s
approach. Another estimation is published by Orman [24], however the numbers
appear erroneous, e.g., a total Bitcoin hash rate of 1018 Hashes/s.

10 Conclusion

By now, power consumption with regard to cryptocurrencies such as Bitcoin
and Ethereum has been considered in a twofold way. Either, mining operators
have aimed to maximize revenue (and therefore invested in most efficient mining
hardware), or ecologists criticize the cryptocurrencies’ massive amount of power
consumption and its adverse affects on the environment. In the course of this
work, we broaden the discussion and investigate whether cryptocurrencies are
able to destabilize power grid operation by suddenly reducing mining (and thus
electric load). The latter might be achieved by the exploitation of a backdoor in
a vast number of miners, by compromising the communication infrastructure or
by malfunctionality of software required for mining – all events that have been
shown possible or have actually happened in the past.

Indeed, we identified potential that such incidents might negatively impact
power grid operation causing load shedding, the shutdown of power plants and
eventually large-scale blackouts, if not now then possibly in the near future. Our
results are based on European power grids, namely the UCTE, NORDEL and
various island networks, that are considered to be among the most reliable. At
the same time, these grids currently serve only a minor part of mining hardware.
In the UCTE network, the biggest synchronous power grid by total load, we see
power consumption of Bitcoin and Ethereum each reaching critical values within
the next years, assuming further growth of cryptocurrencies. Whereas, some less
stable grids are serving proportionally more mining facilities, and consequently
face higher risks from such incidents. Concluding, the current gold rush-like hype
towards cryptocurrencies may not only impact finance but also the real, physical
world. While we do not oppose cryptocurrencies in general, we view their ever
increasing power consumption with a critical eye. In this respect it is essential
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to consider the possible consequences of uncontrolled growth and try to provide
effective countermeasures that help to ensure the stable operation of power grids.
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Abstract. Underground forums contain many thousands of active users,
but the vast majority will be involved, at most, in minor levels of
deviance. The number who engage in serious criminal activity is small.
That being said, underground forums have played a significant role in
several recent high-profile cybercrime activities. In this work we apply
data science approaches to understand criminal pathways and character-
ize key actors related to illegal activity in one of the largest and longest-
running underground forums. We combine the results of a logistic regres-
sion model with k-means clustering and social network analysis, verifying
the findings using topic analysis. We identify variables relating to forum
activity that predict the likelihood a user will become an actor of interest
to law enforcement, and would therefore benefit the most from interven-
tion. This work provides the first step towards identifying ways to deter
the involvement of young people away from a career in cybercrime.

Keywords: Cybercrime · Underground forums · Social behaviour
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1 Introduction

Cybercrimes carried out by organized groups using custom tools with political or
military motivations capture the public imagination. However, the vast majority
of attacks are committed by actors with a low level of technical sophistication [24,
34]. While these may receive less media attention, they can cause large financial
losses and be costly to defend against [3]. This criminality is to a great extent
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promoted by an active underground economy where attack tools and services
are traded, and cyber attacks are monetised [2].

Online underground forums bring together individuals interested in cyber-
crime and illicit online monetizing techniques [12,22]. In contrast with other
forms of crypto-markets [31], some of the contents of these forums are legal, such
as discussions relating to current events, gaming, and technology-related issues.
However, these forums are also used to exchange information about deviant
behaviour, and trade in goods and services with an illicit origin or application.
Previous research has found these forums can provide a stepping stone towards
more serious online criminal activities [13,14].

The underground economy attracts actors that are unlikely to be involved in
traditional crime, but who may become involved in cybercrime [23]. For exam-
ple, the use of booter services for ‘DDoSing’ others has become a widespread
phenomenon among school-aged children, and even victims can become attack-
ers [24]. This is due to the ease of access to hacking tools, the sense of anonymity
provided by the Internet, and the perceived lack of law enforcement online.

Cybercrime has proliferated in recent years, and online forums have become a
key source of data for researchers (see Sect. 2 for related work). While insightful,
this research has mainly relied on cross-sectional data, analysing forum content
from short periods of time or focussing on particular areas of cybercrime. Typi-
cally, researchers have considered only the tools and technologies adversaries use,
not their motivations or personal context [10]. Understanding not only ‘what’
is traded in underground economies, but also ‘why’ and by ‘whom’ can provide
insights into ways to tackle cybercrime from multiple perspectives. The evolution
of offenders, understanding how they learn to commit crime over time, is a key
aspect of this. Multidisciplinary research on the behavioural aspects of cyber-
crime is necessary to develop defences aimed at understanding and preventing
incidents, rather than stopping or recovering from them.

In this paper, we analyse the characteristics and pathways of ‘key actors’;
forum users who have been linked to criminal activities, such as providing ser-
vices and tools to disrupt systems and networks or using these tools to perform
attacks. We use a variety of sources to identify these actors (see Sect. 3). While
we do not publish this list for ethical reasons (see Sect. 6), activities linked to
these key actors include providing DDoS as a service, distributing malware,
operating bot shops and pay-per-install services, as well as providing services for
web exploitation and account cracking. Characterizing key actors and analysing
their evolution within forums is beneficial for various reasons. From a social
perspective, it is the first step towards identifying ways to deter people away
from criminal activities. From the cybersecurity perspective, these actors pro-
vide state-of-the art tools and techniques that can be used for attacking systems.
This information can be used by response teams and security firms to focus their
attention, increasing their capacity to react rapidly to new forms of attack.

We focus our study on Hackforums, one of the largest underground forums.
Hackforums is well established, operating since 2007. While this forum is
known to be overrun by novice teenage hackers (contemptuously dubbed ‘script
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kiddies’), in the last few years there have been a number of high profile attacks
directly related to products distributed through this forum. For example, in
September 2016, the Mirai source code was released on the forum, which led to
several related botnets being used for illegal activities such as DDoS attacks [4]
or mining cryptocurrencies [21]. In the first three months of 2018, there have
been at least two cases relating to Hackforums users before the UK courts.

We use the CrimeBB dataset, which includes Hackforums data spanning from
2007 onwards and contains information about 572k user accounts [27]. We start
by identifying key actors on the forum. We first apply data science approaches
to present a longitudinal study of these key actors. Concretely we apply social
network analysis to analyse their social interests, natural language processing
to classify the type of information posted, and clustering to group the actors
based on forum activity. Our research uncovers common activity patterns and
the pathways taken over time in terms of interests and knowledge. Second we
develop tools to identify factors that predict involvement in cybercrime. These
tools use social network analysis, logistic regression, and clustering to preselect
a list of potential actors, and topic analysis to analyse the type of information
they post. Our findings suggest that combining the different techniques helps in
the prediction of potential actors. These tools can be applied to any particular
cybercrime domain, so we make them publicly available. The CrimeBB dataset
also contains data from other forums and is available to academic researchers
through data sharing agreements from the Cambridge Cybercrime Centre1.

2 Background and Related Work

The rise of cybersecurity incidents parallels the development of underground
economies, where attacking tools and services are easily accessible at low cost
or even for free [2]. For example, pay-per-install services outsource the task of
infecting a machine and allow miscreants to buy ‘installs’ for spreading their
malware [6]. Other common assets that can be found in underground forums are
bot shops and botnets [8], crypters and packers [30], or exploits [2].

Various authors have addressed the offenders perspective. Karami and McCoy
analysed leaked databases of booter services: websites providing DDoS for hire,
publicly marketed as network ‘stressers’, but offered in underground forums as
services to perform DDoS [16]. While mostly used to take down gaming servers,
booters are also used to attack medium-sized websites. Hutchings and Clayton
researched the provision of denial of service attacks, interviewing and surveying
the providers to ask how they began providing the services, and why [14]. They
found most operators were young men from North America. They had escalated
from using booter sites, to setting them up and running them themselves. They
were initially exposed to booter services through gaming and hacker communi-
ties. Financial gain was the main reason for providing services, but they also
reported they enjoyed the challenge of their activities.

1 https://www.cambridgecybercrime.uk/.

https://www.cambridgecybercrime.uk/
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Sood and Enbody analyse the provision of cybercrime tools and services,
identifying three type of actors in underground communities: providers or pro-
ducers, advertisers, and buyers [30]. Based on our analysis of underground
forums, we add two new roles. First, re-distributors of modified versions of public
or leaked malware. This role includes users involved in the provision of encrypted
malware binaries, aimed at avoiding detection by antivirus software. The second
role we dub teachers: actors who provide tutorials for configuration and use of
various attack tools, sometimes accompanied by help-desk services.

According to the criminological theory of differential association, criminal
activities are normal behaviours learnt in interaction with others [33]. Learning
takes place by associating with others in personal groups. The content of what
is learnt includes specific techniques to commit crime, as well as the ‘definitions’
(mindset) favourable to committing crime [37]. In relation to cybercrime, there is
evidence that offenders associate with each other in physical space [18], but also
online, particularly through the use of online underground forums [10,15,38].

Understanding offender pathways allows society to consider the most appro-
priate ways to divert potential offenders away from crime. For example, the
UK’s National Crime Agency (NCA) [23] debriefed young people involved in
cybercrime activities, and found many were first exposed through their interest
in gaming. The NCA have subsequently been working with the video gaming
industry to deliver preventative interventions.

Underground forums serve as an entry point into cybercrime for potential
offenders. These forums also allow non-technical actors to learn how to commit
offences and develop their skills [29]. Normally these forums have well-defined
categories like “Hacking” or “Market”. Where authors are most active provides
insights into their interests and expertise [25]. Forum members have a public
profile with information such as the registration date, last access or time spent.
Most underground forums are publicly accessible on the surface web or the ‘dark
web’ (e.g. through Tor hidden services).

The success of underground economies relies on trust and informal social
control [1]. Various authors have analysed these behaviours using social network
analysis (SNA), for example to analyse the evolution of members in terms of
posts and private messages [22] or to understand specialization and develop-
ments of subcommunities [11]. The use of natural language processing (NLP) to
analyse underground forums is also a recurring technique, e.g. to analyse post
sentiment [19] or to identify the assets being traded or the currencies used [28,29].

3 Dataset

In this work we use the CrimeBB dataset [27], which contains data collected from
various underground forums. We focus our study on Hackforums, the largest
forum contained in this dataset, with more than 30 m posts2 made by 572k user
2 We refer to a whole website as a forum, on which pages are set aside for discus-

sion of defined topics in boards, with users participating in conversation threads via
individual posts.
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accounts over more than 10 years. Hackforums is divided into nine categories:
Hacking, Technology, Coding, Gaming, Web, Market, Money (a miscellaneous
category for all sorts of money making methods), Graphics and Common (which
includes boards for discussion about various topics, such as entertainment or
politics, and boards intended for forum rules and suggestions).

3.1 Key Actors

We use the term ‘key actor’ to refer to forum users who have been linked to
cybercrime activities, such as distributing malware, offering off-the-shelf tools to
perform denial-of-service attacks or using these tools to attack others. A number
of approaches were utilised to identify key actors who are or have been active on
Hackforums. These approaches required manual effort and thus are not scalable.
In Sect. 5 we propose tools to automatically identify likely key actors.

1. Media sources were searched to identify reports relating to Hackforums users
being arrested or prosecuted for cybercrime activities (media included official
notifications from law enforcement agencies; forum threads; social media and
blog posts made by security researchers). We used Google extended search
to look for sources including keywords such as ‘arrested’ or ‘prosecuted’ and
‘hackforums’. Results often included the pseudonym used by the actor in the
forum. This method yielded 49 key actors.

2. A private security and intelligence company, Flashpoint, provided usernames
considered to be of interest due to their activities. This yielded 9 key actors.

3. For each actor identified using the methods above, we used SNA to find
their ‘closest’ neighbours (users of the forum who they interact with the
most). Then, we manually analyse the activity of these neighbours looking
for evidence of involvement in cybercrime activities (for instance, evidence of
providing illegal material such as malware or ‘booter’ services). This method
yielded a further 22 actors.

4. The final set of key actors are those providing tools aiming at disrupting
systems and/or networks. To identify these actors we had two approaches:

– We searched Hackforums for threads advertising the top 300 Remote
Access Trojans (RATs) reported in [36]. Again, from manual inspection
we identified the owners/coders of RATs and the re-distributors of mod-
ified versions (e.g. encrypted binaries aimed at avoiding antivirus detec-
tion). We discarded actors who we believed to be only purporting to be
an owner (a stealer); and also actors distributing an infected version of
a binary with the intent of compromising other forum members. This
method yielded 35 key actors (there was some overlap with actors previ-
ously extracted).

– We used ‘compilation’ threads from Hackforums, where popular tools and
services are listed accompanied with the corresponding thread where it
was first advertised. This method yielded 15 key actors.

In total, these methods yield 130 actors of interest to law enforcement: of
these, we were able to identify the accounts of 113 within the dataset. The
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missing accounts might be due to accounts being removed or changes of the
pseudonyms which we were unable to track. Also, it should be noted that various
accounts might belong to the same actor.

4 Characterizing Key Actors

Having identified 113 key actors, we applied a number of different data science
approaches to analyse the forum activity of these users, including NLP, SNA,
and machine learning algorithms.

4.1 Natural Language Processing

Due to the massive size of the dataset (more than 30 m posts), it is not possible
to manually code the data. We use NLP tools to classify posts into categories.
Classification of interests and expertise of members enables the identification of
topics related to cybercrime offences, such as learning to attack systems or trad-
ing in stolen accounts. The data poses interesting problems for NLP techniques.
The language used by members of underground forums includes technical jargon
and non-standard means of expression. Contributors include non-native speak-
ers of English, and short texts in which information is conveyed in deliberately
concise ways. In this work we analyse the behavioural evolution of our identified
actors, firstly building a binary classifier to identify questions in CrimeBB.

Three annotators manually labelled 2,200 posts selected from a range of
boards, with substantial inter-annotator agreement for post type (see more
details in [7]). We use the annotated dataset to train and test the classifier,
with a training subset of 175 annotated threads from various boards, and a test
subset of 186 annotated threads from another board (to prevent overfitting).
For each thread, we extract features using a set of statistical techniques and a
set of heuristics, having found this hybrid approach to work best [7]. The for-
mer include the number of replies, the number of links in the first post (both
to external sources and to other threads in the forum), the length of the first
post and a set of unigram features extracted from text. We convert every thread
title and post into a document-term matrix (a matrix of counts with each word
occurring as column values, and each of the documents as a row). We strip
punctuation, convert to lower case characters, ignore numbers and exclude stop
words. Finally, word counts are transformed using TF-IDF (‘term frequency
inverse document frequency’), a weighting that promotes words occurring fairly
frequently in few documents above those occurring highly frequently but ubiq-
uitously across CrimeBB [32].

The heuristics are formed through our expertise in analysing forum data.
Concretely, for each thread we get the frequency of particularly interesting key-
words in the heading and first post (examples of these keywords are “looking
for”, “I need help” or “I have a question”). Finally, we also account for the
number of question marks in the heading.
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We use a Linear SVM to build a classifier. Again, the selection of the algo-
rithm is based on previous experimentation with the dataset [7]. For evaluation
we use the usual metrics for information retrieval, i.e. precision, recall and F1.
Precision measures the fraction of actual questions retrieved among the total
of questions retrieved (including false positives). Recall, or sensitivity, measures
the fraction of questions retrieved among the total number of actual questions
in the dataset. Finally, the F1 score combines in a single measure both precision
and recall. Our classifier has Precision = 0.88, Recall = 0.85 and F1= 0.86. While
these metrics can be improved, the classifier is accurate enough to automatically
identify question threads, a task which would otherwise be infeasible due to the
size of the dataset.

4.2 Social Network Analysis

We designed and developed SNA tools to facilitate study of the forums at dif-
ferent levels of granularity, per board, per topic of interest, per year, etc. We
build the social network by processing the public interactions of the members.
This network is represented as a directed graph, where nodes are the members
of the forum and edges their interactions. We define a directed edge from node
V to node W if there is a reply from V to W. There are two possible forms of
reply: (a) when V explicitly cites a post made by W; and (b) when V replies in
a thread initiated by W. When available, we use information from reputation
votes given between members to classify the interactions as positive, negative or
neutral.

We use classical SNA metrics such as centrality degrees to analyse the net-
work, i.e. in-degree (fraction of nodes its incoming edges are connected to), out-
degree (fraction of nodes its outgoing edges are connected to), and eigenvector
(measure of the influence of a node in a network). Additionally, we compute the
following metrics to measure the popularity of the forum users: total number
of replies; h-index (a member with h-index = n is author of n threads having at
least n replies); and the i-10-index, i-50-index and i-100-index (i.e. the number
of threads with at least 10, 50 and 100 replies respectively). These metrics are
used in academia to measure the productivity and impact of a scholar. We adopt
them to analyse underground forums for the same purpose.

We also developed tools to analyse the interests of forum members. This
allows us to study the networks of actors interested in particular topics. Interests
can be calculated for a given period, so we can analyse the evolution of different
actors (e.g. a member initially interested in gaming related boards who then
moved to hacking related boards). The interest of a member M in a board B is
calculated as:

I(M,B) = NT(M,B) ∗ 3 + NP(M,B)

Where N{T,P}(M,B) denotes the number of {threads, posts} written by M
in B. We assign triple weight to threads since initiating a thread represents a
greater interest than posting a reply.
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4.3 Machine Learning - Clustering

Machine learning techniques can be applied to extract common characteristics
from a dataset. We apply k-means clustering to group the actors based on their
activity [17]. K-means partitions a set of n samples into k clusters (with k << n).
We extract a set of 44 features for each actor, which can be classified as measures
relating to forum activity, social relations, and reputation measures.

Measures relating to forum activity includes the number of days
between the first and last post, the number of posts and threads in each category
and the number of posts and threads in the currency exchange board. We explic-
itly include the currency exchange board (which is part of the marketplace) as
it characterizes the financial activities of the actors.

Network centrality measures are obtained from SNA. These include out-
degree, in-degree, eigenvector, h-index, and i-10 and i-100 indices.

Reputation measures are taken from the reputation systems used on the
forum. These include the overall reputation bestowed and prestige scores (pres-
tige is an forum metric based on activity). There are also counts for the number
of positive, negative, and zero-value reputation votes each account received.

Then, using the feature set we perform clustering using k-means. After apply-
ing the Elbow method [35] to analyse the within-group sum of squares for various
values of k, we set k = 5.

4.4 Results

Using the tools described above, we first analyse the social relations estab-
lished between key actors and their closest neighbours. Second, we analyse their
common characteristics by splitting them into groups using k-means clustering.
Finally, we analyse their pathways by looking for changes in their interests and
the number of questions posted as they spend more time in the forum.

Social Relations. Figure 1 shows the social network involving the key actors.3

The actors identified from media sources and Flashpoint are filled in red, the
ones identified from network analysis are orange and the those linked to mal-
ware distribution are blue. Colours of the edges represent the sentiment of the
relationship, calculated from the reputation votes sent to each other. Most key
actors are closely connected to each other, and most relationships are positive.
Actors obtained from different sources are closely or even directly connected. For
example, the detail in Fig. 1 shows a member identified as malware distributor
(in blue) which is directly connected to one identified through SNA (in orange)
and very close to at least two actors identified from media sources (in red).

Some close neighbours (for example, the nodes tagged as ‘Bridge’ in the detail
from Fig. 1) are connected to more than one key actor, and act as ‘bridges’ for
connecting different groups. These actors are of interest since they might be

3 For the sake of visualization, the figure only shows the key actors and their five
closest repliers and replied neighbours (filled in green).
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BRIDGES

Fig. 1. Social network graph involving key actors and their closest neighbours (green
nodes). Red nodes are those identified from media sources and Flashpoint, orange are
those identified through SNA and blue are those linked to the distribution of malware.
The colours in the edges represent the sentiment of the relationship (red = negative,
green = positive and black = neutral/unknown) (Color figure online)

influential for or influenced by key actors in criminal activity. Accordingly, we
use these actors for our prediction study presented in Sect. 5.

Table 1. Average values for key actors grouped in 5 clusters. The Interests columns
show the top 3 categories and number of posts/threads in currency exchange. W = Web,
G = Game, D = Code, T = Tech, C = Common, H = Hack, $ = Money, X= Graphics,
M = Market. + = positive reputations, 0= neutral reputations and −= negative rep-
utations. EV= Eigenvector

#KeyActors Activity Interests Reputation Social relations

Days Threads/Posts cat1 cat2 cat3 #CurExc Total (+/0/−) H i10 i100 EV

27 1298.4 74.1/1138.4 M H C 3.9/7.6 229.8 (61.3/2.3/4.3) 10.4 15.4 1.1 0.00

37 1595.0 163.8/3338.1 M C D/H 6.4/19.9 482.8 (230.9/7.4/6.9) 17.6 41.7 3.0 0.01

5 1951.0 831.0/18086.2 C M H 23.8/125.4 896.8 (578.2/68.8/99.0) 53.6 373.0 23.2 0.04

24 796.4 18.0/413.0 H M C/D 0.0/1.0 120.1 (58.0/2.4/3.2) 5.0 4.5 0.3 0.00

20 1895.7 383.6/10989.2 M C H 27.4/141.8 667.9 (311.6/27.0/48.3) 28.4 99.8 7.2 0.02

Characterization. Table 1 shows the average values for each of the five clusters
obtained by k-means. There is a small group of 5 actors who have the highest
measures of forum activity, are highly reputed (though they also receive high
negative votes), and have rich social relations. These 5 actors are popular (due
to the high values of their H and i indexes), have influence in the network, and
are well known in the community. The remaining clusters have also been active
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for long time (more than 2 years) but differ in quantity of posts and threads.
The clusters are also differentiated by their areas of interests.

The cluster with 20 actors is most interested in the market section (followed
by the common section). They are the most active group in currency exchange
and have high social relationship measurements (e.g. on average they have 7.2
threads with more than 100 replies). Overall, actors in this cluster are likely to
be known in the community as prolific market traders.

The clusters with 27 and 37 members have similar interests (mostly in market
and hacking, but also in common and coding categories), though one has higher
reputation (mostly positive) and social relations (e.g. they have more than twice
the number of threads with at least 10 replies). Finally, the least active cluster,
which is composed of 24 actors, is interested firstly in hacking and then in the
market sections, with negligible posts in currency exchange.

Overall, cluster analysis suggests key actors are mostly characterized by their
interest in the market, common, and hacking areas. Also, they can be grouped
by their forum activity, with some being more active and popular, and thus well
known within the community, while others are less active, do not participate in
the common sections of the forum and are less popular.

Evolution. We track the interests of the actors since they were registered until
their last visit (if enabled on their profile) or last post. We compute their interests
in each board and then aggregate them per category and per year. To analyse
temporal evolution, we measure the interests at the beginning, middle and end
of the period each actor has been active. The beginning is defined as the year
of their first post, the end is the year of their last post, and the middle is the
period in between. We then calculate the evolution of interests between these
periods by computing transitions of interest. Concretely, a transition of interest
from a category Ci in time t0 to a category Cj in time t1 is calculated as:

T (Ct0
i → Ct1

j ) =
∑

∀A∈K

(|St0 | − βt0
i ) ∗ λt0

i + (|St1 | − βt1
j ) ∗ λt1

j

Where K is the set of all the key actors, Stn denotes the set of all categories
of interest for actor A in time tn, λtn

i denotes the normalized interest of actor A
in category Ci in time tn, and βtn

i is the relative position of category i regarding
the ordered list of categories by score in time tn (i.e., the top category has βt

i

equal to 1, the second equal to 2 and so on). The above equation weights the
categories of interest per actor according to the amount of posts and threads
posted in each category with respect to the rest.

Figure 2 shows the aggregated transitions for all key actors. Overall, actors
are most interested in the hacking, market, and common categories. Over their
time in the forum, there is a slight increase of interest in the coding and tech-
nology sections, and a decrease in the gaming sections. From this figure we
can draw several conclusions. First, in general actors are active participants in
non-criminal related boards, such as those from the common category. This sug-
gests their criminal activity runs in parallel or comes after other interests (e.g.
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Fig. 2. Evolution of interests of key actors from initial (left), halfway (middle) and end
(right) of their activity in Hackforums

entertainment or gaming), and they are involved in other activities within the
community. Second, their high interest in the marketplace and money sections
indicates they may have financial motivations. Third, as they get older and more
experienced in the forum they are less likely to engage in gaming boards.

Prior research has found forums are used for sharing information and learning
about cybercrime and deviant activities [10,15,38]. Thus, we analyse the evolu-
tion of the actors in terms of the number of questions (or requests for informa-
tion) posted across time. In order to track evolution, this analysis includes the
34 key actors who have been posting for at least 4 years. We count the number
of posts and number of questions posted for each year since they wrote their first
post.

Figure 3 shows the proportion of questions posted per year with respect to
the total number of questions posted. Each row represents a different actor (the
top row shows the aggregation of the 34 actors). Most actors posted more than
half of all their questions during their first or second year of activity in the
forum. However, there are other actors (e.g. A1, A2, and A3) that keep posting
questions at a similar rate after 5 or 6 years of activity. We can confirm these
actors posted more questions in the early stages of their activity in the forums.

5 Predicting Key Actors

We analyse over a decade of data from Hackforums to identify those variables
relating to forum activity that predict the likelihood a user will eventually be
an actor of interest to law enforcement. Actors were selected for inclusion if
they had been active since 2009, and had made more than five posts on the
forum. This way, we do not consider old and low profile actors which would
otherwise introduce noise in our analysis. After the forum administrator was
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Fig. 3. Proportion of the number of questions posted per year with respect to the total
questions posted

excluded from the dataset, there were 245,636 cases extracted.4 Our prediction
framework is based on two steps: using multiple approaches to select potential
key actors based on their forum activity, and predicting which of these are key
actors based on the key terms used in their posts. We first combine the outputs
from a logistic regression model, k-means clustering and SNA to identify actors
that are potentially involved in criminal activity. Second, we use topic analysis
to confirm whether these users are engaged in cybercrime related activity, such
as trading in illegal goods and services.

5.1 Logistic Regression

We analyse the data applying backward stepwise logistic regression, using the
likelihood ratio method. This method starts with a model which includes every
independent variable, gradually removing every variable which does not have
a significant impact on the dependent variable. Field [9] justifies the use of
stepwise methods when carrying out exploratory research, in which there is no
previous research on which to base hypotheses for testing, as well as situations
in which causality is not of interest, but rather a model to fit the data. Both
these justifications apply for this research. Field also recommends that if stepwise
methods are to be used, then the backward method is the better option, as the

4 The administrator is a well known actor in Hackforums.
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forward method has a higher risk of Type II (false negative) errors. Logistic
regression is often used in medical research, for example, to identify the risk
factors associated with a disease within the wider population.

Logistic regression models predict a categorical outcome, in this case key
actor status. Measures of forum activity, network centrality measures, and rep-
utation measures (see Sect. 4.3) were considered for inclusion as predictor vari-
ables, however due to multicollinearity issues, a number were excluded (an
assumption of logistic regression is that independent variables are not highly cor-
related). The independent variables included in the initial model are the number
of days posting, reputation, prestige, posts and threads in the various categories,
h-index, i-50-index, i-100-index, and number of positive, negative and zero-value
reputation votes received.

As recommended by Field [9], 5 cases were removed as an analysis of the resid-
uals indicated they had an undue influence on the model (Cook’s Distance> 1)
Without any independent variables in the model, 100% of cases are predicted
to not be key actors. The final model is significantly improved and is statisti-
cally better at predicting key actors (χ2(15, n = 245,631) = 641.2, p < .001). The
final model accounts for 34.1% of the variance, accurately predicting 11.1% of
known key actors with a low false error rate (0.00%). While predicting 12 out of
108 key actors may seem low, it is from a pool of almost a quarter of a million
cases. While not all the variance in the model will be explained through a user’s
forum activity, these significant results suggest this is an approach worthy of
further exploration. The analysis also provides predicted probabilities for each
user, which we explore further in Sect. 5.3.

Table 2 presents the results of the final step of the logistic regression analysis.
The table includes regression coefficients, Wald statistics, odds ratios, and 95%
confidence intervals for odds ratios for each of the 15 predictors retained in the
model. The odds ratios, shown as Exp(B), show how the odds of being in one
outcome category changes when the predictor variable increases by one unit.

The odds ratios indicate that for each additional reputation and prestige
point bestowed, the odds a user is a key actor increases by 1.001 and 1.006
respectively. For every additional day actors are posting, the odds they are key
actors increases by 1.001. The frequency in which actors posted on various sec-
tions also predicts being a key actor, including posts in hacking (odds increased
by 1.001 for each post), market (1.002) and code (1.0005) sections. Posts in some
sections decrease the odds that users are key actors, including gaming (0.994),
graphics (0.991, but this variable is not significant), common (0.9995), money
(0.997, but not significant), and currency exchange (0.994). New threads initi-
ated in the common and graphics sections decreases the odds a forum user is a
key actor by 0.993 and 0.957 respectively, although graphics is not significant.
An increase in a user’s h-index increases their likelihood of being a key actor
by 1.195. Key actors can also be predicted by their negative reputation (odds
increase by 1.018 for each negative reputation).
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Table 2. Logistic regression model predicting key actors

B S.E Wald Sig Exp(B) 95% C.I. for Exp(B)

Lower Upper

Step 15 DAYS POSTING .001 .000 19.407 .000 1.001 1.000 1.001

REPUTATION .001 .000 7.712 .005 1.001 1.000 1.001

PRESTIGE .006 .001 37.754 .000 1.006 1.004 1.008

POSTS HACK .001 .000 25.397 .000 1.001 1.000 1.001

POSTS MARKET .002 .000 65.945 .000 1.002 1.001 1.002

POSTS GAME −.006 .001 15.670 .000 .994 .991 .997

POSTS GRAPHICS −.009 .005 3.639 .056 .991 .982 1.000

POSTS CODE .0005 .000 5.144 .023 1.0005 1.0001 1.0008

POSTS COMMON −.0005 .000 4.945 .026 0.9995 .9991 0.9999

POSTS MONEY −.003 .002 3.718 .054 .997 .994 1.000

POSTS CURRENCY EXCHANGE −.006 .003 6.041 .014 .994 .988 .999

THREADS GRAPHICS −.044 .029 2.339 .126 .957 .905 1.012

THREADS COMMON −.007 .003 5.637 .018 .993 .987 .999

H INDEX .178 .017 108.025 .000 1.195 1.155 1.236

NEGATIVE REPUTATION .018 .006 7.383 .007 1.018 1.005 1.031

Constant −9.372 .191 2397.372 .000 .000

5.2 Clustering

In addition to the logistic regression, we apply k-means clustering to the subset
of more than 245k Hackforums actors. Table 3 shows the average values for each
cluster applying k-means, using k = 14, and which clusters the 113 key actors
are grouped in. In the smallest cluster, 22 of 223 actors are key actors (9.9%).
Actors from this cluster are very active, positively reputed and popular, and are
most interested in the market, common, hacking, and gaming sections. Another
small cluster of 2387 actors contains 31 key actors (1.3%). The profile is similar
to the previous one, although the measurements are lower. Finally, the bulk of
key actors (31) fall in a cluster with more than 10k actors, which is relatively
smaller than other clusters. Again, the interests are within the market, common,
hacking and gaming sections.

Most of the key actors are enclosed within the clusters with the fewest number
of actors (relative to other clusters). This finding is interesting since it allows to
reduce the amount of actors requiring thorough investigation when looking for
criminal activity.

5.3 Predicting Actors Using Topic Analysis

So far we have characterized and predicted actors based on features relating to
forum activity, reputation and social behaviour. This provides a subset of actors
who share common forum behaviour with those linked to illegal activities. To
further refine the list of potential key actors, we pose the following research
questions: What are the key actors talking about? Can we classify actors based
on their topics of conversation? Next, we analyse the most frequent topics used by
key actors. Then, we perform topic analysis on a selection of potential key actors
obtained from the logistic regression, social network analysis and clustering.
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Table 3. Average values for actors grouped in 14 clusters. The Interests columns show
the top 3 categories and number of posts/threads in currency exchange. W = Web,
G = Game, D = Code, T = Tech, C = Common, H= Hack, $=Money, X= Graphics,
M = Market. + = positive reputations, 0 = zero reputations and −= negative reputa-
tions. EV= Eigenvector

#KeyActors/

Total

Activity Interests Reputation Social relations

Days Threads/Posts cat1 cat2 cat3 #CurExc Total (+/0/−) H i10 i100 EV

1/8397 388.9 6.6/50.2 T/H H/C C/M 0.0/0.1 1.3 (0.4/0.0/0.1) 2.2 0.5 0.0 0.00

32/10323 1322.2 114.5/1310.2 M/C C/M G/H 3.5/9.8 113.9 (50.0/3.2/5.0) 11.6 17.4 0.5 0.00

0/4590 326.2 5.3/48.0 W H M/C 0.0/0.1 1.8 (0.6/0.1/0.1) 1.5 0.3 0.0 0.00

13/55364 338.6 7.3/46.4 H M C 0.0/0.1 0.7 (0.5/0.1/0.2) 2.3 0.5 0.0 0.00

9/41774 518.7 13.9/109.9 M H/C C/H 0.3/1.3 9.6 (3.4/0.3/0.5) 2.9 1.2 0.0 0.00

1/24202 310.9 5.7/56.2 G H/C M/H 0.0/0.1 2.0 (0.8/0.1/0.3) 1.9 0.7 0.0 0.00

0/36392 246.8 6.9/75.4 C H M 0.0/0.2 2.5 (1.1/0.2/0.4) 2.1 1.0 0.0 0.00

0/3474 296.3 3.8/90.6 T H C 0.0/0.1 4.1 (1.0/0.1/0.1) 1.1 0.3 0.0 0.00

0/14050 339.4 4.2/46.6 $ H M/C 0.0/0.1 0.9 (0.4/0.1/0.1) 1.3 0.4 0.0 0.00

22/223 2111.7 611.2/11614.6 C M G/H 30.7/187.6 1170.7 (711.8/20.8/31.5) 32.2 162.8 8.2 0.03

3/9177 403.4 7.7/75.9 D H C 0.0/0.1 3.1 (1.1/0.1/0.2) 2.2 0.6 0.0 0.00

0/4845 302.2 6.9/71.0 X H/C M/H 0.0/0.1 5.1 (1.2/0.1/0.1) 2.1 0.8 0.0 0.00

31/2387 1723.8 295.9/4339.6 C M G 11.5/31.8 360.5 (170.2/9.8/13.8) 19.3 57.9 1.9 0.01

1/30437 215.8 0.2/18.2 H M C/$ 0.0/0.0 0.2 (0.1/0.0/0.1) 0.1 0.0 0.0 0.00

Analysis of Topics Used by Key Actors. We use topic analysis to extract
the most common terms from threads initiated by each actor. Topic analysis
is an information retrieval task which produces wordlists summarised with a
topic. Concretely, we apply latent Dirichelt allocation (LDA) to obtain the topics
and terms that best represent the language used for each actor. Given a set of
documents, LDA extracts the topics that best describe these documents [5]. A
document is composed with the heading and first post of each thread initiated
by an actor. We preprocess the data by tokenizing it, removing stop words,
punctuation characters and numbers. Then, we extract the nouns using a Part-
of-Speech (POS) tagger using the Penn Treebank tagset [20]. Using common
NLP tools with low-resource language corpora presents limitations. Nevertheless,
for this particular task the application of the POS tagger for extracting nouns
reduces the number of noisy words.

For each actor, we extract 4 topics with 7 words per topic, resulting in 28
terms. Table 4 shows the most frequent terms used by the key actors (we show
those used by more than five actors). The most common term is ‘rat’ (Remote
Access Trojan) which could be expected given a bulk of key actors were identified
due to their links with RAT coding. Various terms relate to offensive tools, such
as ‘bot’, ‘booter’, ‘crypter’ and ‘fud’ (‘fully undetectable’). Words related to com-
merce include ‘paypal’, ‘btc’ (Bitcoin), ‘lr’ (Liberty Reserve, a digital currency
provider which was shut down in 2013), ‘free’, and ‘cheap’. Also noteworthy is
the high frequency of the words ‘help’, ‘need’ or ‘question’.
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Table 4. Most frequent terms used by the key actors. In parentheses are the number
of key actors using each term. In bold are terms related to cybercrime.

rat (46), help (45), paypal (43), need (36), free (34), btc (34), account (33), thread (31), lr (28), server (26), new (25)
crypter (25), pp (25), source (23), fud (23), service (22), bot (21), question (20), hf (16), code (15), steam (15), site (14)
shell (14), cheap (14), money (14), skype (14), booter (13), window (12), anyone (12), tut (12), file (12), uid (11), someone (11)
system (10), vbnet (10), vpn (10), installs (10), please (10), member (10), php (10), problem (10), ddos (10), password (10)
website (10), update (10), setup (9), minecraft (9), email (9), game (9), vps (9), facebook (8), list (8), proxy (8), design (8)
darkcomet (8), keylogger (8), irc (8), java (8), coder (8), day (8), time (8), net (7), post (7), product (7), tool (7), beta (7)
sale (7), exploit (7), people (7), bitcoin (7), buying (7), stealer (6), version (6), stresser (6), live (6), feature (6)
botnet (6), domain (6), signature (6), shop (6), black (6), omc (6), web (6), year (6), support (6), official (6), youtube (6)

Selection of Potential Key Actors. After analysing the most frequent terms
used by key actors, we repeat the topic analysis with a subset of potential key
actors identified from our previous analyses. The logistic regression provides
predicted probabilities for each forum user. We obtain a subset (named LogReg)
by selecting those with a predicted probability of 10% or more of being a key
actor (n = 88). From the clustering analysis we select 201 users (named Clust)
from the cluster which contained the highest ratio of key actors (see Table 3).
Finally, from our social network analysis, we select 42 actors (named SNA)
directly connected with at least 3 key actors (see Fig. 1). There are common
actors between subsets: 10 actors appear in the three subsets; 26 appear in the
LogReg and Clust subsets, but not the SNA; and 7 appear in the SNA and Clust
subset, but not the LogReg. There are no overlaps between only the LogReg and
SNA subsets. The final subset of potential key actors includes 285 forum users.

Predicting Key Actors. We apply topic analysis to the potential actors,
extracting their 28 most common terms. We then measure the number of com-
mon terms with those obtained for the key actors to get a similarity score.
This score is calculated as the number of terms matching the list of terms from
key actors (Table 4) divided by the total number of terms extracted for the
actor. However, similarities may be due to commerce-related terms (e.g. ‘btc’ or
‘cheap’) or forum-related terms (‘need’, ‘thread’ or ‘help’). Thus, we also look
for particularly interesting terms related with hacking (highlighted in Table 4).

As a prediction threshold, we establish a minimum distance of 0.2 (i.e. at
least a 20% of the terms must match with those observed in the key actors) and
a minimum number of 2 keywords observed.5 Table 5 summarizes our findings.
Using these thresholds, we predict 22 actors from the LogReg subset, 34 from
the Clust subset and 9 from the SNA subset. We also predict 8 actors from the
overlap of the LogReg and Clust subsets. From the 10 actors that were common
in the three subsets, 7 are predicted to be key actors. The closest members to
key-actors according to their topics are those identified with clustering. However,
only 20% of users from this subset are predicted to be key actors. Meanwhile,
42% of the users from the logistic regression subset are predicted to be key

5 These thresholds were chosen after exploratory experimentation with the dataset
and manually inspecting the results.
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actors. Our findings suggest combining different data science techniques assists
in the prediction of potential key actors.

Overall, from the list of 285 potential key actors, 80 are predicted to be
of interest. Our estimation confirms (i) these are actors with a similar activity
profile, interest and social behaviour as those identified manually, and (ii) they
talk about similar, hacking-related terms. Thus, we can conclude that these
actors are either involved or close to involvement in cybercrime activities, and
thus might benefit the most from intervention. Also, monitoring these actors
could be of interest for security firms and intelligence agencies. A manual analysis
of the forum activity of these actors confirms that they are all providing or asking
for illegal assets and services such as malware, booters or stolen accounts.

Table 5. Summary of prediction using topic analysis

Subset Predicted/Total (%) Avg. distance Farthest Closest

LogReg 22/52 (42.31) 0.43 0.10 0.72

Clust 34/165 (20.61) 0.66 0.29 0.93

SNA 9/25 (36.00) 0.57 0.36 0.75

LogReg & Clust 8/26 (30.77) 0.63 0.36 0.89

SNA & Clust 0/7 (0.00) 0.66 0.50 0.79

LogReg & Clust & SNA 7/10 (70.00) 0.60 0.43 0.68

6 Ethical Considerations

The research methodology was designed with ethical considerations at the fore-
front. The department’s research ethics committee gave their approval for the
research project. Furthermore, we complied with the Cambridge Cybercrime
Centre’s data sharing agreements. While the data are publicly available (and the
forum users are aware of this), it could be used by malicious actors, for example
to deanonymize users based on their posts. It was impossible for us to obtain
informed consent from users as that would require us to identify them first. In
accordance with the British Society of Criminology’s Statement on Ethics, this
approach is justified as the dataset is collected from the public Internet, and is
used for research on collective behaviour, without aiming to identify particular
members. Further precautions taken include not identifying individuals (includ-
ing not publishing usernames), and presenting results objectively.

7 Limitations

We have presented a longitudinal study of behavioural aspects of key actors in
underground forums. This research has attempted to overcome the significant
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difficulties in this challenging area of research. However, a number of limitations
remain. First, results are based on the observation of a single forum. Thus, we
do not analyse actors operating on other forums, nor do we measure actors’
activities that occur off-forum. Future work will analyse cross-forum behaviour.
Second, we focus on external sources to identify key actors, and thus our results
could be biased by feedback from these sources. Moreover, the proportion of
identified key actors in the forum is low, hindering the use of reliable classification
techniques such as supervised machine learning. Third, our definition of the
social network relies on public interactions. Unlike previous works [11,22], we
do not use private messages to refine social relations. Recent work shows that
public and private relations differ [26]. Finally, evaluating if the predicted actors
are actually involved into criminal activities is not straightforward, even with
manual analysis. Investigations into actors to produce evidence they are involved
in cybercrime is a matter for law enforcement. Instead, our research helps to focus
the spotlight, with the aim of informing crime prevention efforts.

8 Conclusion

Underground forums are one of the key pillars for the rise of underground
economies. The sense of anonymity they provide, together with the ease of access
to attack tools and services make these forums attractive places for young, non-
skilled people to learn about hacking. Analysing the evolution of these low-level
hackers makes it possible to consider early intervention approaches, with the aim
of deterring their involvement away from criminal activities. Additionally, under-
standing who the key actors are, and what new tools they provide, is helpful for
rapidly adapting to new forms of attack. For example, antivirus vendors could
monitor those providing tools aimed at bypassing detection and new variants of
malware.

We have conducted a large scale analysis of key actors from one of the largest
English-speaking underground forums. We have evidence of online social connec-
tions between these key actors, and our research uncovers various common roles
for these key actors. For example, some are well known in the community and
actively participate in non-illicit sections. Others are less active and focus their
activity in the market and monetization processes. Also, we note an evolution of
interests towards more market and hacking related topics, as well as a decrease
in threads requesting help or asking questions.

Finally, we have developed tools for detection and prediction of actors
involved in cybercrime activities. These tools help to identify user accounts that
might require further investigation by law enforcement and security firms moni-
toring underground communities and also for early deployment of new counter-
measures or adaptation of existing ones. The tools used during this research are
publicly available in our git repository6.

The purpose of our research is not to track and pursue criminal offenders,
but understand who is at risk of becoming involved in crime, so as to apply
6 https://github.com/CCC-NLIP/DataSciForCybersecurity.

https://github.com/CCC-NLIP/DataSciForCybersecurity
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intervention approaches at early stages. Identifying those that might be at risk
of becoming involved in crime is critical for early intervention. Preventing young
people from becoming involved in cybercrime will be of benefit for them later in
life, as contact with the criminal justice system can be a stigmatising experience,
affecting later job prospects and legitimate opportunities.
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crime. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 32–43.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 3

12. Holt, T.J.: Subcultural evolution? Examining the influence of on- and off-line expe-
riences on deviant subcultures. Deviant Behav. 28(2), 171–198 (2007)

13. Hutchings, A.: Cybercrime trajectories: an integrated theory of initiation, main-
tenance, and desistance. In: Crime Online: Correlates, Causes, and Context, pp.
117–140. Carolina Academic Press (2016)

https://doi.org/10.1007/978-3-642-39498-0_12
https://doi.org/10.1007/978-3-662-47854-7_3


226 S. Pastrana et al.

14. Hutchings, A., Clayton, R.: Exploring the provision of online booter services.
Deviant Behav. 37(10), 1163–1178 (2016)

15. Hutchings, A., Holt, T.J.: A crime script analysis of the online stolen data market.
Br. J. Criminol. 55(3), 596–614 (2015)

16. Karami, M., McCoy, D.: Rent to PWN: analyzing commodity booter DDoS ser-
vices. Usenix Login 38, 20–23 (2013)

17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

18. Lusthaus, J., Varese, F.: Offline and local: the hidden face of cybercrime. Polic.: J.
Policy Pract. 1–11 (2017). advanced access

19. Macdonald, M., Frank, R., Mei, J., Monk, B.: Identifying digital threats in a hacker
web forum. In: International Conference on Advances in Social Networks Analysis
and Mining, pp. 926–933. IEEE/ACM (2015)

20. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of English: the penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

21. McMillen, D., Alvarez, M.: Mirai IoT botnet: mining for bitcoins? IBM Security
Intelligence (2017). https://perma.cc/SK2R-C3H7

22. Motoyama, M., McCoy, D., Levchenko, K., Savage, S., Voelker, G.M.: An analysis
of underground forums. In: Proceedings of the ACM SIGCOMM Conference on
Internet Measurement Conference, pp. 71–80 (2011)

23. National Crime Agency: Pathways into cyber crime (2017). https://perma.cc/
897P-GZ3R
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Abstract. Detecting fake users (also called Sybils) in online social net-
works is a basic security research problem. State-of-the-art approaches
rely on a large amount of manually labeled users as a training set. These
approaches suffer from three key limitations: (1) it is time-consuming
and costly to manually label a large training set, (2) they cannot detect
new Sybils in a timely fashion, and (3) they are vulnerable to Sybil
attacks that leverage information of the training set. In this work, we
propose SybilBlind, a structure-based Sybil detection framework that
does not rely on a manually labeled training set. SybilBlind works under
the same threat model as state-of-the-art structure-based methods. We
demonstrate the effectiveness of SybilBlind using (1) a social network
with synthetic Sybils and (2) two Twitter datasets with real Sybils. For
instance, SybilBlind achieves an AUC of 0.98 on a Twitter dataset.

Keywords: Sybil detection · Social networks security

1 Introduction

Online social networks (OSNs) are known to be vulnerable to Sybil attacks, in
which attackers maintain a large number of fake users (also called Sybils). For
instance, 10% of Twitter users were fake [1]. Attackers can leverage Sybils to per-
form various malicious activities such as manipulating presidential election [15],
influencing stock market [16], distributing spams and phishing URLs [24], etc.
Therefore, Sybil detection in OSNs is an important research problem.

Indeed, Sybil detection has attracted increasing attention from multiple
research communities such as security, networking, and data mining. Among
various approaches, structure-based ones [6–8,11,14,18,26,28,30,33,36–39] have
demonstrated promising results. For instance, SybilRank [7] and Integro [6]
were deployed to detect a large amount of Sybils in Tuenti, the largest OSN
in Spain. SybilSCAR [30] was shown to be effective and efficient in detecting
Sybils in Twitter. State-of-the-art structure-based approaches adopt the follow-
ing machine learning paradigm: they first require an OSN provider to collect
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a large manually labeled training set consisting of labeled benign users and/or
labeled Sybils; then they learn a model to distinguish between benign users and
Sybils; finally, the model is used to detect Sybils.

Such paradigm of relying on a manually labeled training set suffers from three
key limitations. First, it is time-consuming and costly to obtain a large manu-
ally labeled training set. We note that OSN providers could outsource manual
labeling to crowdsourcing services like Amazon Mechanical Turk [32]. However,
crowdsourcing manual labeling requires disclosing user information to “turk-
ers”, which raises privacy concerns. Moreover, attackers could act as “turkers”
to adversarially mislabel users. OSNs often allow users to flag other users as
Sybils. However, similar to crowdsourcing, Sybils could adversarially mislabel
benign users as Sybils. Second, attackers can launch new Sybil attacks when the
old ones were taken down. It takes time for human workers to manually label a
training set for the new attacks. As a result, some benign users might already be
attacked before the new attacks were detected. Third, using a manually labeled
training set makes these approaches vulnerable to Sybil attacks that leverage the
information of the training set [21]. The key intuition is that once an attacker
knows or infers the training set, he can perform better attacks over time. Our
method is secure against such attacks as it does not rely on labeled users.

Our Work: In this work, we propose SybilBlind, a structure-based framework,
to detect Sybils without relying on a manually labeled training set, under the
same threat model as state-of-the-art structure-based methods (See Sect. 3.2).
Our key idea is to sample some users from an OSN, randomly assign labels (i.e.,
benign or Sybil) to them, and treat them as if they were a training set without
actually manually labeling them. Such randomly sampled training set could have
various levels of label noise, where a user’s randomly assigned label is noisy if
it is different from the user’s true label. Then, we take the noisy training set
as an input to a state-of-the-art Sybil detection method (e.g., SybilSCAR [30]
in our experiments) that is relatively robust to label noise (i.e., performance
does not degrade much with a relatively low fraction of noisy labels) to detect
Sybils. We define a sampling trial as the process that we randomly sample a
noisy training set and use a state-of-the-art Sybil detection method to detect
Sybils via taking the sampled training set as an input. Since state-of-the-art
Sybil detection methods can only accurately detect Sybils in the sampling trials
where the sampled training sets have relatively low label noise, we repeat for
multiple sampling trials and we design an aggregator to aggregate the results in
the multiple sampling trials.

A key challenge of our SybilBlind framework is how to aggregate the results
in multiple sampling trials. For instance, one natural aggregator is to average
the results in multiple sampling trials. Specifically, in each sampling trial, we
have a probability of being a Sybil for each user. We average the probabilities
over multiple sampling trials for each user and use the averaged probability to
classify a user to be benign or Sybil. However, we demonstrate, both theoret-
ically and empirically, that such average aggregator achieves an accuracy that
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is close to random guessing. To address the aggregation challenge, we design a
novel aggregator. Specifically, we design two new metrics called homophily and
one-side entropy. In a sampling trial where Sybils are accurately detected, both
homophily and one-side entropy are large. With the two metrics, our aggregator
identifies the sampling trials in which the sampled training sets have low label
noise and Sybils are accurately detected. Then, we compute an aggregated prob-
ability of being a Sybil for every user from these sampling trials and use the
aggregated probabilities to detect Sybils.

We evaluate SybilBlind both theoretically and empirically. Theoretically, we
analyze the required number of sampling trials. Empirically, we perform eval-
uations using (1) a social network with synthesized Sybils, (2) a small Twitter
dataset (8K users and 68K edges) with real Sybils, and (3) a large Twitter dataset
(42M users and 1.2 B edges) with real Sybils. Our results demonstrate that Sybil-
Blind is accurate, e.g., on the small Twitter dataset, SybilBlind achieves an AUC
of 0.98. Moreover, we adapt a community detection method and state-of-the-
art Sybil detection method SybilSCAR [30] to detect Sybils when a manually
labeled training set is unavailable. Our empirical evaluations demonstrate that
SybilBlind substantially outperforms these adapted methods.

Our key contributions are summarized as follows:

• We propose SybilBlind, a structure-based framework, to detect Sybils in OSNs
without relying on a manually labeled training set.

• We design a novel aggregator based on homophily and one-side entropy to
aggregate results in multiple sampling trials.

• We evaluate SybilBlind both theoretically and empirically, as well as compare
it with Sybil detection methods that we adapt to detect Sybils when no man-
ually labeled training sets are available. Our empirical results demonstrate
the superiority of SybilBlind over the adapted methods.

2 Related Work

2.1 Structure-Based Approaches

One category of Sybil detection approaches leverage the global structure of the
social network [6–9,11,14,18,26,28–30,33,36–39]. These approaches require a
manually labeled training dataset, from which they propagate label information
among the social network via leveraging the social structure.

Using Random Walks or Loopy Belief Propagation (LBP): Many
structure-based approaches [6–8,18,36,38,39] leverage random walks to prop-
agate label information. SybilGuard [39], SybilLimit [38], and SybilInfer [8] only
require one labeled benign user. However, they achieve limited performance and
are not scalable to large-scale OSNs. SybilRank [7] and Íntegro [6] are state-of-
the-art random walk based approaches, and they were successfully applied to
detect a large amount of Sybils in Tuenti, the largest OSN in Spain. However,



SybilBlind: Detecting Fake Users in Online Social Networks 231

they require a large number of manually labeled benign users; and Íntegro even
further requires a large number of labeled victims and non-victims, which were
used to learn a binary victim-prediction classifier. A user is said to be a vic-
tim if the user is connected with at least a Sybil. SybilBelief [14], Fu et al. [9],
GANG [28], and SybilFuse [11] leverage probabilistic graphical model techniques.
Specifically, they model a social network as a pairwise Markov Random Fields.
Given a training dataset, they leverage LBP to infer the label of each remaining
user.

Recently, Wang et al. [29,30] proposed a local rule based framework to unify
random walk and LBP based approaches. Under this framework, a structure-
based Sybil detection method essentially iteratively applies a certain local rule
to each user to propagate label information. Different Sybil detection methods
use different local rules. Moreover, they also proposed a new local rule, based
on which they designed SybilSCAR that achieves state-of-the-art performance
both theoretically and empirically. For instance, SybilSCAR achieves the tightest
asymptotic bound on the number of Sybils per attack edge that can be injected
into a social network without being detected [29]. However, as we demonstrate
in our experiments on Twitter, SybilSCAR requires a large training dataset in
order to achieve an accurate Sybil detection performance.

Using Community Detection Algorithms: Viswanath et al. [26] showed
that Sybil detection can be cast as a community detection problem. The
authors found that detecting local community around a labeled benign user
had equivalent results to approaches such as SybilLimit and SybilInfer. Cao et
al. [7] showed that SybilRank significantly outperforms community detection
approaches. Moreover, Alvisi et al. [2] demonstrated a vulnerability of the local
community detection algorithm adopted by Viswanath et al. [26] by carefully
designing an attack.

Summary: State-of-the-art structure-based approaches (e.g., SybilRank, Sybil-
Belief, and SybilSCAR) require a large manually labeled training dataset. These
approaches suffer from three key limitations as we discussed in Introduction.

2.2 Other Approaches

Approaches in this direction [4,10,19,22–24,27,31,35,37] leverage various user-
generated contents (e.g., tweets), behaviors (e.g., the frequency of sending
tweets), and local social structures (e.g., how a user’s friends are connected).
Most studies in this direction [4,10,22–24,27] treat Sybil detection as a super-
vised learning problem; they extract various features from user-generated con-
tents, behaviors, and local social structures, and they learn machine learning
classifiers using a training dataset; the learnt classifiers are then used to classify
each remaining user to be benign or Sybil. For instance, Yang et al. [37] proposed
local social structure based features such as the frequency that a user sends friend
requests to others, the fraction of outgoing friend requests that are accepted, and
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the clustering coefficient of a user. One limitation of these approaches is that
Sybils can manipulate users’ profiles to evade detection. For instance, a Sybil can
link to many Sybils to manipulate its local social structure as desired. However,
although these approaches are easy to evade, we believe that they can be used as
a first layer to filter some basic Sybils and increase attackers’ costs of perform-
ing Sybil attacks. Moreover, these approaches are complementary to approaches
that leverage global social structures, and they can be used together in practice.
For instance, we can treat the outputs of these approaches as users’ prior prob-
abilities. Then, we can leverage structure-based methods, e.g., SybilSCAR [30],
to detect Sybils by iteratively propagating the priors among a social network.

3 Problem Definition

3.1 Structure-Based Sybil Detection Without Manual Labels

Suppose we are given an undirected social network G = (V,E),1 where a node
in V corresponds to a user in an OSN and an edge (u, v) represents a certain
relationship between u and v. For instance, on Facebook, an edge between u and
v could mean that u is in v’s friend list and vice versa. On Twitter, an edge
(u, v) could mean that u and v follow each other. We consider Sybil detection
without a manually labeled training dataset, which we call blind Sybil detection.

Definition 1 (Blind Sybil Detection). Suppose we are given a social net-
work. Blind Sybil detection is to classify each node to be benign or Sybil without
a manually labeled training dataset.

3.2 Threat Model

We call the subnetwork containing all benign nodes and edges between them the
benign region, and we call the subnetwork containing all Sybil nodes and edges
between them the Sybil region. The edges between the two regions are called
attack edges. We consider the following threat model, which is widely adopted
by existing structure-based methods.

Connected-Sybil Attacks: We consider that Sybils are connected among
themselves. In order to leverage Sybils to launch various malicious activities,
an attacker often needs to first link his/her created Sybils to benign users. One
attack strategy is that each Sybil aggressively sends friend requests to a large
number of users (or follow a large number of users) that are randomly picked [37].
In these attacks, although some benign users (e.g., social capitalists [12]) will
accept such friend requests with a relatively high probability, making the Sybils
embed to the benign region, most benign users will not accept these friend
requests [12]. As a result, Sybils that are created using this attack strategy often
have low ratios of accepted friend requests (or ratios of being followed back), as
1 Our framework can also be generalized to directed social networks.
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well as low clustering coefficients because most users that link to a Sybil might
not be connected with each other. Therefore, such Sybils can be detected by
machine learning classifiers that use these structural features, as was shown by
Yang et al. [37] on RenRen, a large OSN in China.

In this paper, we consider that Sybils created by an attacker are connected
(i.e., connected-Sybil attack), so as to manipulate their structural features to
evade the detection of structural feature based classifiers. Such connected-Sybil
attacks were formally discussed by Alvisi et al. [2], are required by previ-
ous structure-based methods [6–8,14,26,30,33,36,38,39]. Note that Sybils in
Tuenti [7], the largest OSN in Spain, are densely connected. Moreover, the
datasets we used in our experiments also show that most of the Sybils are con-
nected. For instance, in our large Twitter dataset, 85.3% Sybils are connected
to form a largest connected component with an average degree 24.

Limited Number of Attack Edges: Intuitively, most benign users would not
establish trust relationships with Sybils. We assume that the number of attack
edges is relatively smaller, compared to the number of edges in the benign region
and the Sybil region. This assumption is required by all previous structure-
based methods [6–8,14,26,30,33,36,38,39] except Íntegro [6]. Íntegro assumes
the number of victims (a victim is a node having attack edges) is small and
victims can be accurately detected. The number of attack edges in Tuenti was
shown to be relatively small [7]. Service providers can limit the number of attack
edges via approximating trust relationships between users, e.g., looking into
user interactions [34], inferring tie strengths [13], and asking users to rate their
social friends [33]. We note that in the large Twitter dataset we used in our
experiments, only 1.5% of the total edges are attack edges.

For connected-Sybil attacks, limited number of attack edges is equivalent to
the homophily assumption, i.e., if we randomly sample an edge (u, v) from the
social network, then u and v have the same label with high probability. In the
following, we use homophily and limited number of attack edges interchangeably.

Benign Users are More than Sybils: We assume that Sybils are less than
benign users in the OSN. An attacker often leverages only tens of thousands
of compromised hosts to create and manage Sybils [25]. If an attacker registers
and maintains a large number of Sybils on each compromised host, the OSN
provider can easily detect these Sybils via IP-based methods. In other words, to
evade detection by IP-based methods, each compromised host can only maintain
a limited number of Sybils. Indeed, Thomas et al. [25] found that a half of
compromised hosts under an attacker’s control maintain less than 10 Sybils. As
a result, in OSNs with tens or hundreds of millions of benign users, the number
of Sybils is smaller than that of benign users. For instance, it was reported that
10% of Twitter users were Sybils [1]. Our method leverages this assumption to
break the symmetry between the benign region and the Sybil region.
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4 Design of SybilBlind

4.1 Overview

Figure 1 overviews SybilBlind. SybilBlind consists of three components, i.e., sam-
pler, detector, and homophily-entropy aggregator (HEA). Sampler samples two
subsets of nodes from the social network, and constructs a training set by assign-
ing a label of benign to nodes in one subset and a label of Sybil to nodes in the
other subset. The detector takes the sampled noisy training set as an input
and produces a probability of being Sybil for each node. The detector can be
any structure-based Sybil detection method (e.g., SybilSCAR [30] in our exper-
iments) that is relatively robust to label noise in the training set. SybilBlind
repeats this sampling process for multiple trials, and it leverages a homophily-
entropy aggregator to identify the sampling trials in which the detector accu-
rately detects Sybils. Finally, SybilBlind computes an aggregated probability of
being Sybil for every node using the identified sampling trials.

Fig. 1. Overview of SybilBlind. Fig. 2. Three scenarios of our sampled
nodes with a sampling size 3.

4.2 Sampler

In each sampling trial, our sampler samples two subsets of nodes from the set of
nodes V , which are denoted as B and S, respectively. Moreover, for simplicity,
we consider the two subsets have the same number of nodes, i.e., n = |B| = |S|,
and we call n the sampling size. We note that it would be a valuable future work
to apply our SybilBlind framework to subsets B and S with different sizes.

The subset B (or S) might consist of both benign nodes and Sybils. For
convenience, we denote by nbb and nbs respectively the number of benign nodes
and the number of Sybils in B; and we denote by nsb and nss respectively
the number of benign nodes and the number of Sybils in S. We categorize the
sampled nodes into three scenarios because they have different impacts on the
performance of the detector. Figure 2 shows one example of the three scenarios,
where n = 3. The three scenarios are as follows:
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• Positively polarized: In this scenario, the number of benign nodes in B is
larger than the number of benign nodes in S, while the number of Sybils in
B is smaller than the number of Sybils in S. Formally, we have nbb > nsb and
nbs < nss.

• Negatively polarized: In this scenario, B includes a smaller number of
benign nodes than S, while B includes a larger number of Sybils than S.
Formally, we have nbb < nsb and nbs > nss.

• Unpolarized: In this scenario, the number of benign (or Sybil) nodes in
B equals the number of benign (or Sybil) nodes in S. Formally, we have
nbb = nsb and nbs = nss.

Note that since the two subsets B and S have the same number of nodes,
we only have the above three scenarios. We construct a training set using the
sampled B and S. Specifically, we assign a label of benign to nodes in B and a
label of Sybil to nodes in S. Such training set could have label noise. In particular,
in a sampling trial that is positively polarized, a majority of sampled nodes are
assigned labels that match their true labels; while in a sampling trial that is
negatively polarized, a majority of sampled nodes are assigned labels that do
not match their true labels.

4.3 Detector

The detector takes a (noisy) training set as an input and produces a probability
of being Sybil for every node (including the sampled nodes in the training set).
The requirement for the detector is to be relatively robust to label noise in
the training set. In this work, we adopt SybilSCAR [30] as the detector as it
was shown to achieve state-of-the-art accuracy and robustness to label noise.
However, we stress that our framework is extensible to use other structure-based
Sybil detection methods as the detector. In particular, if a better structure-based
Sybil detection method that uses a manually labeled training set is designed in
the future, we can use it as the detector to further improve SybilBlind.

Next, we briefly review SybilSCAR. Given the sampled training set,
SybilSCAR assigns a prior probability qu of being Sybil for every node u. Specif-
ically,

qu =

⎧
⎪⎨

⎪⎩

0.5 + θ if u ∈ S

0.5 − θ if u ∈ B

0.5 otherwise,

where 0 < θ < 0.5 is a parameter to consider label noise.
Given the priors, SybilSCAR iteratively computes the probability pu of being

Sybil for every node u until convergence. Specifically, initially we have p
(0)
u = qu.

In the tth iteration, for each node u, we have:

p(t)
u = qu + 2(w − 0.5)

∑

v∈Γ (u)

(p(t−1)
v − 0.5), (1)

where w ∈ [0, 1] is the probability that two linked nodes have the same label and
Γ (u) is the set of neighbors of u.
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4.4 Homophily-Entropy Aggregator

SybilBlind repeats k sampling trials, each of which produces a probabil-
ity of being Sybil for every node. We denote the k probabilities for u as
p1,u, p2,u, · · · , pk,u. An aggregator is to reduce the k probabilities to an aggre-
gated probability.

Average, Min, and Max Aggregators do not Work Well: average,
min, and max aggregators are a few natural choices. Specifically, the average
aggregator takes the average of the k probabilities to be the aggregated one;
the min aggregator is to take the minimum value of the k probabilities, i.e.,
pu = mink

i=1 pi,u; the max aggregator is to take the maximum value of the k
probabilities, i.e., pu = maxk

i=1 pi,u. However, we demonstrated, theoretically
and empirically, that these aggregators achieve performances that are the same
with or even worse than random guessing. In particular, for the average aggrega-
tor, we can prove that the expected aggregated probability is 0.5 for every node
when the detector is SybilSCAR, which means that the expected performance
of the average aggregator is the same as random guessing. We show the proof in
Appendix A.

Our Homophily-Entropy Aggregator (HEA): We propose a novel aggre-
gator based on two new metrics that we call homophily and one-side entropy.
We observe that, when a sampling trial is a highly positively polarized scenario
in which a majority of nodes in B are benign and a majority of nodes in S are
Sybils, SybilSCAR can detect Sybils accurately. Our HEA aggregator aims to
identify such sampling trials and use them to determine the aggregated probabil-
ities. Next, we first formally define our homophily and one-side entropy metrics.

Suppose in a sampling trial, SybilSCAR produces a probability of being Sybil
for every node. We predict a node u to be Sybil if pu > 0.5, otherwise we predict
u to be benign. Moreover, we denote by s the fraction of nodes in the social
network that are predicted to be Sybils. An edge (u, v) in the social network is
said to be homogeneous if u and v have the same predicted label. Given these
terms, we formally define homophily h and one-side entropy e as follows:

h =
#homogeneous edges

#edges in total

e =

{
0 if s > 0.5
−slog(s) − (1 − s)log(1 − s) otherwise

(2)

Intuitively, homophily is the fraction of edges that are predicted to be homoge-
neous. One-side entropy is small if too many or too few nodes are predicted to be
Sybils. In our threat model, we consider that the fraction of Sybils in the social
network is less than 50%. Therefore, we define one-side entropy to be 0 if more
than a half of nodes are predicted to be Sybils. Note the difference between our
defined one-side entropy and the conventional entropy in information theory.
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In a sampling trial that is an unpolarized scenario, we expect the homophily
to be small because SybilSCAR tends to predict labels for nodes randomly. In a
sampling trial that is a negatively polarized scenario, we expect the homophily
to be large because a majority of benign nodes are likely to be predicted to be
Sybils and a majority of Sybils are likely to be predicted to be benign, which
results in a large fraction of homogeneous edges. However, we expect the one-side
entropy to be small because more than a half of nodes would be predicted to be
Sybils. In a sampling trial that is a positively polarized scenario, we expect both
homophily and one-side entropy to be large.

Therefore, our HEA aggregator aims to identify the sampling trials that have
large homophily and one-side entropy. In particular, we first identify the top-κ
sampling trials among the k sampling trials that have the largest homophily.
Then, among the top-κ sampling trials, we choose the sampling trial with the
largest one-side entropy and use the probability obtained in this sampling trial
as the aggregated probability. Essentially, among the top-κ sampling trials, we
identify the sampling trial with the largest s that is no larger than 0.5, i.e., we
aim to use the sampling trial that detects the most Sybils. Note that we can
also reverse the order by first identifying the top-κ sampling trials that have
the largest one-side entropies and choose the sampling trial with the largest
homophily. However, we find the performance is almost the same and we thus
use the former way by default.

5 Theoretical Analysis

5.1 Sampling Size and Number of Sampling Trials

The sampler constructs a training set via assigning a label of benign to nodes in
B and a label of Sybil to nodes in S. We define label noise in the benign region
(denoted as αb) as the fraction of sampled nodes in the benign region whose
assigned labels are Sybil. Similarly, we define label noise in the Sybil region
(denoted as αs) as the fraction of sampled nodes in the Sybil region whose
assigned labels are benign. Formally, we have αb = nsb

nsb+nbb
and αs = nbs

nbs+nss
,

where nbb and nbs respectively are the number of benign nodes and Sybils in B;
nsb and nss respectively are the number of benign nodes and Sybils in S.

We can derive an analytical form for the probability that label noise in both
the benign region and the Sybil region are smaller than a threshold τ in a
sampling trial. Due to limited space, we omit the analytical form. However,
the analytical form is too complex to illustrate the relationships between the
sampling size and the number of sampling trials. Therefore, we show the following
theorem, which bounds the probability.

Theorem 1. In a sampling trial with a sampling size of n, the probability that
label noise in both the benign region and the Sybil region are no bigger than τ
(τ ≤ 0.5) is bounded as

(1 − r)nrn ≤ Pr(αb ≤ τ, αs ≤ τ) ≤ exp
( − 2(1 − 2τ)2(1 − r)2n

τ2 + (1 − τ)2
)
, (3)

where r is the fraction of Sybils in the social network.
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Proof. See Appendix B.

Implications of Theorem 1: Suppose in a social network, SybilSCAR is robust
to label noise upto τ , i.e., its performance almost does not degrade when the
noise level is τ , then SybilBlind requires at least one sampling trial, in which
the label noise is less than or equal to τ , to detect Sybils accurately. We have
several qualitative implications from Theorem 1. We note that these implications
also hold when using the analytical form of the probability that label noise are
smaller than τ . Here, we choose Theorem 1 because of its conciseness.

First, when the sampling size is n and SybilSCAR is robust to label noise
up to τ in the social network, the expected number of sampling trials (i.e.,
k) that SybilBlind requires is bounded as kmin ≤ k ≤ kmax, where kmin =
exp

( 2(1−2τ)2(1−r)2n
τ2+(1−τ)2

)
and kmax = 1

(1−r)nrn . Note that kmin is exponential with
respect to n, which could be very large even if n is moderate. However, through
empirical evaluations, we found k can be largely reduced and a moderate k could
make SybilBlind obtain satisfying performance. Second, when τ gets bigger, kmin

gets smaller, which implies that SybilBlind tends to require less sampling trials
when detecting Sybils in a social network in which SybilSCAR can tolerate larger
label noise. Third, we observe a scale-free property, i.e., the number of sampling
trials is not related to the size (i.e., |V | or |E|) of the social network.

5.2 Complexity Analysis

Space and Time Complexity: The major space cost of SybilBlind consists of
storing the social network and storing the top-κ vectors of posterior probabilities.
SybilBlind uses an adjacency list to represent the social network, with the space
complexity O(2|E|), and stores the top-κ vectors of posterior probabilities of all
nodes. Therefore, the space complexity of SybilBlind is O(2|E| + κ|V |).

In each trial and in each iteration, SybilBlind applies a local rule to every
node, and the time complexity of the local rule to a node u with |Γu| friends is
O(|Γu|). Therefore, the time complexity of SybilBlind in one iteration is O(|E|).
Since SybilBlind performs k sampling trials and each trial runs T iterations, it
thus has a time complexity of O(kT |E|).

Two-level Parallel Implementation: We can have a two-level parallel imple-
mentation of SybilBlind on a data center which is a standard backend for social
web services. First, different sampling trials can be run on different machines.
They only need to communicate once to share their vectors of posterior proba-
bilities. Second, each machine can parallelize SybilSCAR using multithreading.
Specifically, in each iteration of SybilSCAR, each thread applies the local rule
to a subset of nodes in the social network.
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6 Experiments

6.1 Experimental Setup

Datasets: We use social networks with synthesized Sybils and Twitter datasets
with real Sybils for evaluations. Table 1 summarizes the datasets.

(1) Social networks with synthesized Sybils. Following previous works
[7,8,38], we use a real-world social network as the benign region, while synthesiz-
ing the Sybil region and attack edges. Specifically, we take a Facebook network as
the benign region; we synthesize the Sybil region using the Preferential Attach-
ment (PA) model [3], which is a widely used method to generate networks; and
we add attack edges between the benign region and the Sybil region uniformly
at random. In this graph, nodes are Facebook users and two nodes are connected
if they are friends. We synthesize the Sybil region such that 20% of users in the
social network are Sybils; the average degree in the Sybil region is the same as
that in the benign region in order to avoid asymmetry between the two regions
introduced by density. We set the number of attack edges as 500, and thus the
average attack edge per Sybil is 0.06.

(2) Small Twitter with real Sybils. We obtained a publicly available
Twitter dataset with 809 Sybils and 7,358 benign nodes from Yang et al. [36]. A
node is a Twitter user and an edge means two users follow each other. Sybils were
labeled spammers. 9.9% of nodes are Sybils and 53.4% of Sybils are connected.
The average degree is 16.72, and the average attack edge per Sybil is 49.46.

(3) Large Twitter with real Sybils. We obtained a snapshot of a large-
scale Twitter follower-followee network crawled by Kwak et al. [20]. A node is
a Twitter user and an edge between two nodes means that one node follows
the other node. The network has 41,652,230 nodes and 1,202,513,046 edges. To
perform evaluation, we need ground truth labels of the nodes. Since the Twitter
network includes users’ Twitter IDs, we wrote a crawler to visit each user’s profile
using Twitter’s API, which tells us the status (i.e., active, suspended, or deleted)
of each user. In our ground truth, 205,355 nodes were suspended, 5,289,966 nodes
were deleted, and the remaining 36,156,909 nodes are active. We take suspended
users as Sybils and active users as benign nodes. 85.3% Sybils are connected with
an average degree 24. 1.5% of the total edges are attack edges and the average
number of attack edges per Sybil is 181.55. We acknowledge that our ground
truth labels might be noisy since some active users might be Sybils, but they
evaded Twitter’s detection, and Twitter might have deleted some Sybils.

AUC as an Evaluation Metric: Similar to previous studies [6,7,14,30], we
use the Area Under the Receiver Operating Characteristic Curve (AUC) as an
evaluation metric. Suppose we rank nodes according to their probabilities of
being Sybil in a descending order. AUC is the probability that a randomly
selected Sybil ranks higher than a randomly selected benign node. Random
guessing, which ranks nodes uniformly at random, achieves an AUC of 0.5.
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Table 1. Dataset statistics.

Metric Facebook Small Twitter Large Twitter

#Nodes 43,953 8,167 41,652,230

#Edges 182,384 68,282 1,202,513,046

Ave. degree 8.29 16.72 57.74

Ave. #attack edge per Sybil 0.06 49.46 181.55

Compared Methods: We adapt a community detection method and
SybilSCAR to detect Sybils when no manual labels are available. Moreover,
we compare with SybilRank [7] and SybilBelief [14] that require manual labels.

(1) Community detection (Louvain Method). When there are no man-
ually labeled training sets, community detection seems to be a natural choice
to detect connected Sybils.2 A community detection method divides a social
network into connected components (called “communities”), where nodes in the
same community are densely connected while nodes across different communities
are loosely connected. Presumably, Sybils are in the same communities.

Since the benign region itself often consists of multiple communities [2,7],
the key challenge of community detection methods is how to determine which
communities correspond to Sybils. Assigning a label of Sybil (or benign) to a
community means that all nodes in the community are Sybils (or benign). Since
it is unclear how to assign labels to the communities algorithmically (though
one could try various heuristics), in our experiments, we assume one could label
communities such that community detection achieves a false negative rate that
is the closest to that of SybilBlind. Specifically, SybilBlind predicts a node to be
Sybil if its aggregated probability is larger than 0.5, and thus we can compute
the false negative rate for SybilBlind. Then we compare community detection
with SybilBlind with respect to AUC, via ranking the communities labeled as
Sybil higher than those labeled as benign. Our experiments give advantages to
community detection since this label assignment might not be found in practice.
Louvain method [5] is a widely used community detection method, which is effi-
cient and outperforms a variety of community detection methods [5]. Therefore,
we choose Louvain method in our experiments.

(2) SybilSCAR with a sampled noisy training set (SybilSCAR-
Adapt). When a manually labeled training set is unavailable, we use our sampler
to sample a training set and treat it as the input to SybilSCAR. The performance
of this adapted SybilSCAR highly depends on the label noise of the training set.

(3) SybilRank and SybilBelief with labeled training set. SybilRank [7]
and SybilBelief [14] are state-of-the-art random walk-based method and LBP-
based method, respectively. SybilRank can only leverage labeled benign nodes,
while SybilBelief can leverage both labeled benign nodes and labeled Sybils. We

2 The local community detection method [26] requires labeled benign nodes and thus
is inapplicable to detect Sybils without a manually labeled training set.
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randomly sample a labeled training set, where the number of labeled benign
nodes and Sybils equals n (the sampling size of SybilBlind).

(4) SybilBlind. In the Facebook network with synthesized Sybils, our sam-
pler samples the two subsets B and S uniformly at random from the entire social
network. For the Twitter datasets, directly sampling two subsets B and S with
a low label noise is challenging due to the number of benign nodes is far larger
than that of Sybils. Thus, we refine our sampler by using discriminative node
features. Previous studies [36,37] found that Sybils proactively follow a large
number of benign users in order to make more benign users follow them, but
only a small fraction of benign users will follow back. Therefore, we extract the
follow back rate (FBR) feature for each node in the Twitter datasets. Then we
rank all nodes according to their FBR features in an ascending order. Presum-
ably, some Sybils are ranked high and some benign nodes are ranked low in
the ranking list. Thus, we sample the subset B from the bottom-K nodes and
sample the subset S from the top-K nodes. Consider the different sizes of the
two Twitter datasets, we set K = 1,000 and K = 500,000 in the small and large
Twitter datasets, respectively. This sampler is more likely to sample training
sets that have lower label noise, and thus it improves SybilBlind’s performance.
Note that when evaluating SybilSCAR-Adapt on the Twitter datasets, we also
use FBR-feature-refined sampler to sample a training set. As a comparison, we
also evaluate the method simply using the FBR feature and denote it as FBR.
Moreover, we evaluate SybilBlind with randomly sampled two subsets without
the FBR feature, which we denote as SybilBlind-Random.

Parameter Settings: For SybilBlind, according to Theorem1, the minimal
number of sampling trials kmin to generate a training set with label noise less
than or equal to τ is exponential with respect to n, and kmin would be very
large even with a modest n. However, through empirical evaluations, we found
that the number of sampling trials can be largely decreased when using the
FBR-feature-refined sampler. Therefore, we instead use the following heuristics
to set the parameters, with which SybilBlind has already obtained satisfying
performance. Specifically, n = 10, k = 100, and κ = 10 for the Facebook network
with synthesized Sybils; n = 100, k = 20, and κ = 10 for the small Twitter; and
n = 100, 000, k = 20, and κ = 10 for the large Twitter. We use a smaller k for
Twitter datasets because FBR-feature-refined sampler is more likely to sample
training sets with smaller label noise. We use a larger sampling size n for the
large Twitter dataset because its size is much bigger than the other two datasets.
We will also explore the impact of parameters and the results are shown in Fig. 4.

For other compared methods, we set parameters according to their authors.
For instance, we set θ = 0.4 for SybilSCAR. SybilRank requires early termi-
nation, and its number of iterations is suggested to be O(log |V |). For each
experiment, we repeat 10 times and compute the average AUC. We implement
SybilBlind in C++ using multithreading, and we obtain the publicly available
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Fig. 3. AUCs on the
Facebook network with
synthesized Sybils. Sybil-
Blind is robust to various
numbers of attack edges.

Fig. 4. AUCs of SybilBlind vs. (a) sampling size n
and (b) number of sampling trials k on the large
Twitter. We observe that SybilBlind achieves high
AUSs when n and k reach certain values.

Table 2. AUCs of the compared methods on the Twitter datasets.

Method Small Twitter Large Twitter

Louvain 0.54 0.50

SybilSCAR-Adapt 0.89 0.70

SybilRank 0.86 0.69

SybilBelief 0.98 0.78

FBR 0.60 0.51

SybilBlind-Random 0.82 0.65

SybilBlind 0.98 0.79

implementations for SybilSCAR (also in C++)3 and Louvain method4. We per-
form all our experiments on a Linux machine with 512GB memory and 32 cores.

6.2 Results

AUCs of the Compared Methods: Figure 3 shows AUCs of the compared
methods on the Facebook network with synthesized Sybils as we increase the
number of attack edges. Note that SybilBlind-Random is essentially SybilBlind
in this case, as we randomly sample the subsets without the FBR feature. Table 2
shows AUCs of the compared methods for the Twitter datasets with real Sybils.
We observe that (1) SybilBlind outperforms Louvain method. Specifically, when
the number of attack edges gets relatively large, even if one could design an
algorithm to label communities such that Louvain method can detect as many
Sybils as SybilBlind (i.e., similar false negative rates), Louvain method will rank
a large fraction of benign users higher than Sybils, resulting in small AUCs.
The reason is that some communities include a large number of both benign

3 http://home.engineering.iastate.edu/∼neilgong/dataset.html.
4 https://sites.google.com/site/findcommunities/.

http://home.engineering.iastate.edu/~neilgong/dataset.html
https://sites.google.com/site/findcommunities/
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Fig. 5. AUCs of SybilSCAR vs. the fraction of nodes that are manually labeled as
a training set on the small Twitter and large Twitter datasets. We observe that
SybilSCAR requires manually labeling about 25% and 2.8% of total nodes on the
small Twitter and large Twitter datasets to be comparable to SybilBlind.

users and Sybils, which is an intrinsic limitation of community detection. (2)
SybilBlind outperforms SybilSCAR-Adapt, which validates that our homophily-
entropy aggregator is significant and essential. Thus, aggregating results in multi-
ple sampling trials can boost the performance. (3) SybilBlind outperforms Sybil-
Rank and is comparable with SybilBelief, even if SybilRank and SybilBelief use
a labeled training dataset. This is because the FBR-feature-refined sampler can
sample training sets with relatively small label noise and SybilSCAR is robust
to such label noise. As SybilSCAR was shown to outperform SybilRank and
be comparable with SybilBelief [30], so does SybilBlind. (4) SybilSCAR-Adapt
achieves AUCs that are close to random guessing on the Facebook network.
This is because the sampled training set has random label noise that could be
large. SybilSCAR-Adapt works better on the Twitter datasets. Again, this is
because the FBR feature assists our sampler to obtain the training sets with
small label noise on the Twitter datasets and SybilSCAR can tolerate such label
noise. (5) FBR achieves a small AUC. This indicates that although the FBR
feature can be used to generate a ranking list with small label noise by treating
top-ranked nodes as Sybils and bottom-ranked nodes as benign, the overall rank-
ing performance on the entire nodes is not promising. (6) SybilBlind-Random’s
performance decreases on the Twitter datasets. The reason is that it is difficult
to sample training sets with small label noise, as the number of benign nodes is
far larger than the number of Sybils on the Twitter datasets.

Number of Manual Labels SybilSCAR Requires to Match SybilBlind’s
Performance: Intuitively, given a large enough manually labeled training set,
SybilSCAR that takes the manually labeled training set as an input would out-
perform SybilBlind. Therefore, one natural question is how many nodes need to
be manually labeled in order for SybilSCAR to match SybilBlind’s performance.
To answer this question, we respectively sample x fraction of total nodes in the
small Twitter dataset and large Twitter dataset and treat them as a manually
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Fig. 6. Performance of different aggrega-
tors on the Facebook network with syn-
thesized Sybils. Our homophily-entropy
aggregator (HEA) significantly outper-
forms the average, min, and max aggre-
gators.

Fig. 7. Impact of the fraction of Sybils
on the Facebook network. We observe
that SybilBlind can accurately detect
Sybils once the fraction of Sybils is
smaller than 50%, i.e., Sybils are less
than benign nodes.

labeled training set, i.e., the benign nodes are assigned a label of benign and
the Sybils are assigned a label of Sybil. Note that the manually labeled training
set has no label noise. Then, we run SybilSCAR with the training set, rank the
remaining nodes using their probabilities of being Sybil, and compute an AUC.
Figure 5 shows the AUCs of SybilSCAR as we increase x from 0.1% to 3% on
the small Twitter and large Twitter datasets. For comparison, we also show the
AUC of SybilBlind on the small Twitter and large Twitter datasets, which is
a straight line since it does not rely on the manually labeled training set. We
observe that SybilSCAR requires manually labeling about 25% of total nodes on
the small Twitter and about 2.8% of total nodes on the large Twitter in order
to achieve an AUC that is comparable to SybilBlind.

Comparing Different Aggregators: Figure 6 shows the performances of
different aggregators on the Facebook network with synthesized Sybils as we
increase the number of attack edges. We observe that our homophily-entropy
aggregator (HEA) significantly outperforms the average, min, and max aggre-
gators. The average aggregator achieves performances that are close to random
guessing. This is because the average aggregator assigns an expected aggregated
probability of 0.5 to every node. Moreover, the min aggregator achieves AUCs
that are worse than random guessing, while the max aggregator achieves AUCs
that are slightly higher than random guessing. It is an interesting future work to
theoretically understand the performance gaps for the min and max aggregators.

Impact of the Fraction of Sybils: Figure 7 shows the AUCs of SybilBlind
as the social network has more and more Sybils. We performed the experiments
on the Facebook network with synthesized Sybils since we need social networks
with different number of Sybils. The number of attack edges is set to be 500. We
observe that SybilBlind can accurately detect Sybils (AUCs are close to 1) once
the fraction of Sybils is smaller than 50%, i.e., Sybils are less than benign nodes.
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We note that when Sybils are more than benign nodes, SybilBlind would rank
benign nodes higher than Sybils, resulting in AUCs that are close to 0. However,
in practice, Sybils are less than benign nodes, as we discussed in Sect. 3.2.

Impact of n and k: Figure 4a and b show AUCs of SybilBlind vs. sampling
size n (k = 20) and the number of sampling trials k (n = 100,000) on the large
Twitter, respectively. We observe that the AUCs increase as the sampling size
and the number of sampling trials increase. The AUCs become stable after n
and k reach certain values. The AUCs are small when n or k is small, because
it is harder to sample training sets with relatively small label noise.

Running Time: We show running time of SybilBlind on the large Twitter. We
concurrently generate sampling trials using multiprocessing. In particular, we
create 4 processes in parallel, each of which runs one sampling trial. Moreover,
each sampling trial runs SybilSCAR using multithreading (20 threads in our
experiments). It took about 2 h for one process to run SybilSCAR in one sampling
trial, and the total time for our SybilBlind with 20 sampling trials is around 10 h.

7 Conclusion and Future Work

We design a novel structure-based framework called SybilBlind to detect Sybils
in online social networks without a manually labeled training dataset. We demon-
strate the effectiveness of SybilBlind using both social networks with synthetic
Sybils and Twitter datasets with real Sybils. Our results show that Sybils can
be detected without manual labels. Future work includes applying SybilBlind to
detect Sybils with sampled subsets with different sizes and extending SybilBlind
to learn general machine learning classifiers without manual labels.

Acknowledgements. We thank the anonymous reviewers and our shepherd Jason
Polakis for their constructive comments. This work was supported by NSF under grant
CNS-1750198 and a research gift from JD.com.

A Performance of the Average Aggregator

Theorem 2. When SybilBlind uses the average aggregator, the expected aggre-
gated probability is 0.5 for every node.

Proof. Suppose in some sampling trial, the sampled subsets are B and S, and
SybilSCAR halts after T iterations. We denote by qu the prior probability and by
pu

(t) the probability in the tth iteration for u, respectively. Note that the subsets
B′ = S and S′ = B are sampled by the sampler with the same probability. We
denote by q′

u the prior probability and by pu
(t)′

the probability in the tth iteration

https://www.jd.com/
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for u, respectively, when SybilSCAR uses the subsets B′ and S′. We prove that
q′
u = 1 − qu and p

(t)′
u = 1 − p

(t)
u for every node u and iteration t. First, we have:

q′
u =

⎧
⎪⎨

⎪⎩

0.5 − θ = 1 − qu if u ∈ S

0.5 + θ = 1 − qu if u ∈ B

0.5 = 1 − qu otherwise,

which means that qu
′ = 1 − qu for every node.

We have pu
(0)′

= qu
′ and pu

(0) = qu. Therefore, p
(0)′
u = 1 − p

(0)
u holds for

every node in the 0th iteration. We can also show that p
(t)′
u = 1 − p

(t)
u holds

for every node in the tth iteration if p
(t−1)′
u = 1 − p

(t−1)
u holds for every node.

Therefore, p
(t)′
u = 1 − p

(t)
u holds for every node u and iteration t. As a result,

with the sampled subsets B′ and S′, SybilSCAR also halts after T iterations.
Moreover, the average probability in the two sampling trials (i.e., the sampled
subsets are B and S, and B′ = S and S′ = B) is 0.5 for every node. For each pair
of sampled subsets B and S, there is a pair of subsets B′ = S and S′ = B that
are sampled by our sampler with the same probability. Therefore, the expected
aggregated probability is 0.5 for every node.

B Proof of Theorem 1

Lower Bound: We have:

Pr(αb ≤ τ, αs ≤ τ) ≥ Pr(αb = αs = 0) = (1 − r)nrn. (4)

We note that this lower bound is very loose because we simply ignore the
cases where Pr(0 < αb ≤ τ, 0 < αs ≤ τ). However, this lower bound is sufficient
to give us qualitative understanding.

Upper Bound: We observe that the probability that label noise in both the
benign region and the Sybil region are no bigger than τ is bounded by the
probability that label noise in the benign region or the Sybil region is no bigger
than τ . Formally, we have:

Pr(αb ≤ τ, αs ≤ τ) ≤ min{Pr(αb ≤ τ), Pr(αs ≤ τ)} (5)

Next, we will bound the probabilities Pr(αb ≤ τ) and Pr(αs ≤ τ) separately.
We will take Pr(αb ≤ τ) as an example to show the derivations, and similar
derivations can be used to bound Pr(αs ≤ τ).

We observe the following equivalent equations:

Pr(αb ≤ τ) = Pr(
nsb

nsb + nbb
≤ τ) = Pr(τnbb + (τ − 1)nsb ≥ 0) (6)
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We define n random variables X1,X2, · · · ,Xn and n random variables
Y1, Y2, · · · , Yn as follows:

Xi =

{
τ if the ith node in B is benign

0 otherwise

Yi =

{
τ − 1 if the ith node in S is benign

0 otherwise,

where i = 1, 2, · · · , n. According to our definitions, we have Pr(Xi = τ) = 1 − r
and Pr(Yi = τ − 1) = 1 − r, where i = 1, 2, · · · , n. Moreover, we denote S as the
sum of these random variables, i.e., S =

∑n
i=1 Xi +

∑n
i=1 Yi. Then, the expected

value of S is E(S) = −(1 − 2τ)(1 − r)n. With the variables S and E(S), we can
further rewrite Eq. 6 as follows:

Pr(αb ≤ τ) = Pr(S − E(S) ≥ −E(S))

According to Hoeffding’s inequality [17], we have

Pr(S − E(S) ≥ −E(S)) ≤ exp
(

− 2E2(s)

(τ2 + (1 − τ)2)n

)
= exp

(
− 2(1 − 2τ)2(1 − r)2n

τ2 + (1 − τ)2

)

Similarly, we can derive an upper bound of Pr(αs ≤ τ) as follows:

Pr(αs ≤ τ) ≤ exp
(

− 2(1 − 2τ)2r2n

τ2 + (1 − τ)2

)
(7)

Since we consider r < 0.5 in this work, we have:

min{Pr(αb ≤ τ), Pr(αs ≤ τ)} = exp
(

− 2(1 − 2τ)2(1 − r)2n

τ2 + (1 − τ)2

)
(8)

By combining Eqs. 5 and 8, we obtain Eq. 3.
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Abstract. Password meters and policies are currently the only tools
helping users to create stronger passwords. However, such tools often
do not provide consistent or useful feedback to users, and their sug-
gestions may decrease memorability of resulting passwords. Passwords
that are difficult to remember promote bad practices, such as writing
them down or password reuse, thus stronger passwords do not necessarily
improve authentication security. In this work, we propose GuidedPass –
a system that suggests real-time password modifications to users, which
preserve the password’s semantic structure, while increasing password
strength. Our suggestions are based on structural and semantic patterns
mined from successfully recalled and strong passwords in several IRB-
approved user studies [30]. We compare our approach to password cre-
ation with creation under NIST [12] policy, Ur et al. [26] guidance, and
zxcvbn password-meter. We show that GuidedPass outperforms compet-
ing approaches both in password strength and in recall performance.

Keywords: Password · Usable security · Password meter
Authentication

1 Introduction

Left to their own devices, users create passwords, which may be weak but which
are memorable. Current systems attempt to improve this practice in two ways.
First, systems can suggest or enforce specific password composition policies,
which lead to stronger passwords. But stringent password composition require-
ments increase users’ frustration and lead them to write down or reuse their
passwords [16], which is a bad practice. It has also been shown that password
composition policies are not consistent across different sites [9,17,20,27], which
indicates lack of clear understanding of the role that password composition plays
in determining password strength. NIST recently proposed a new password com-
position policy [12], which enforces minimum of 8 characters and requires sys-
tems to reject inputs that appear on the list of previously-leaked passwords or
common dictionary words.
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Another way to improve password strength is to offer real-time feedback
on the user’s password and, optionally, suggestions for improvements. Password
meters offer real-time feedback on user password strength [17,29], although this
feedback may be inconsistent [9,17,20,27]. Password meters, however, only pro-
vide strength feedback in form of a number or color scale, but do not offer
guidance on how to modify the user input into a stronger one, while preserving
memorability. A data-driven password meter by Ur et al. [26], provides proactive
and actionable suggestions to a user on how to make their password stronger.
This approach, however, focuses only on improving strength and does not con-
sider how the proposed modifications may impair memorability.

We propose GuidedPass – a system, which helps users create both memorable
and secure passwords at creation time, through detailed suggestions for improve-
ment of password structure and semantics. First, we start from an observation
that memorability stems both from the choice of words used in the password
(e.g., phrases, names, numbers, dates of personal significance) and the password
structure (e.g., word, followed by digits). We then tailor our suggestions in such a
way to preserve the initial user-supplied strings and structure, as much as possi-
ble, while improving password strength. Our main contributions are summarized
below:

(1) Identification of semantic patterns, which make passwords mem-
orable and strong: We analyze 3,260 passwords, which were successfully
recalled by participants in our prior IRB-approved user studies [30], to iden-
tify semantic patterns that make these passwords both memorable, and
strong. We call these preferred patterns.

(2) Design of a real-time password suggestion system(GuidedPass):
We design a system, which chooses a set of preferred patterns, which are
closest to the user’s input, and provides meaningful suggestions for gentle
structural and semantic modification of the user’s initial input.

(3) GuidedPass evaluation: We evaluate GuidedPass and several compet-
ing approaches in a user study, with more than 1,400 Amazon Mechanical
Turk participants. We show that passwords with GuidedPass suggestions are
both more memorable and stronger than passwords created by competing
approaches. GuidedPass achieves 81% recall after two days, and the average
strength of more than 1019 statistical guesses.Compared to the approach by
Ur et al. [26], GuidedPass has 14% higher recall, and up to 100 times higher
strength.

The rest of this paper is organized as follows. We discuss related work in
Sect. 2. We present our methodology in Sect. 3. Memorable password dataset is
analyzed in Sect. 4. We present the GuidedPass system design in Sect. 5. We
detail the setup of our user study in Sect. 6. Section 7 presents the results of
our evaluation of GuidedPass, and competing approaches, and Sect. 8 offer our
discussion and conclusions.
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2 Background and Related Work

Password composition policies are regularly used to steer users toward stronger
passwords. The most common password policy is the 3class8 policy, which
requires a password to be at least 8 characters long, and to include at least three
out of four character classes: digits, uppercase and lowercase letters, and special
characters. There are many inconsistencies among password policies [10,24], and
a lack of clear understanding on which policy is the best.

Even when users meet the 3class8 policy requirements, their passwords can
still be weak because they are created using common words and phrases. For
example Password123 satisfies 3class8 requirement but is among top 33,523 out
of 14,344,391 passwords and occurs 62 times in leaked RockYou datasets. In [18],
Kelly et al. found that passwords created under minimum 8 characters policy
are significantly weaker than passwords created under stricter policies. Shay et
al. [21] compared eight different password composition policies and found that
a long password with fewer constraints can be more usable and stronger than a
short password with more constraints. Overly strict password composition poli-
cies may also lead to unsafe practices, such as writing down passwords [23].
NIST [12] recently proposed a new password composition policy, which removes
requirements for different character classes, but keeps the length requirement.
The system is also required to check users’ passwords against any previously
leaked passwords, and against common dictionary words. While this feedback
informs the users on what parts of their password may be susceptible to a guess-
ing attack, it does not provide clear guidance on how to build a better password.
Such guidance is needed, to help users make significant improvements to their
password strength, instead of small, predictable changes [14].

Password complexity does not necessarily mean low recall. Bonneau and
Schechter [4] show that users can be trained to remember randomly-assigned 56
bit codes, but such training is hardly practical for tens of passwords accounts,
which users need daily [15]. Users can be helped to create strong passwords
by using a password meter [9,22,27], or a composition of password meters and
password composition policy [20,23]. Meters, however, are not enough. They are
inconsistent in strength estimation [6], and they do not offer specific suggestions
on how to modify passwords to improve their strength.

Telepathwords [19] provide proactive suggestions to users during password
creation. The system learns character distributions in its existing password data,
and uses it to highlight frequent character patterns in user input. Users are thus
steered towards less likely patterns. Telepathwords’ increase password strength
by 3.7 bits of zxcvbn [29] entropy measure, but recall declines to 62% of the base-
line, because users are steered from words that are meaningful to them towards
those with lower personal significance. GuidedPass addresses this problem, by
allowing users to keep their current inputs, and gently morph them into stronger
passwords. While we did not compare memorability of GuidedPass passwords
to that of original user inputs, GuidedPass achieves 81% recall after two days,
compared to 62% for Telepathwords.
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The most related work to GuidedPass is the data-driven password meter
by Ur et al. [26] – DataPass for brevity. DataPass provides real-time, specific
guidance to users on how to improve their passwords. It also identifies a range
of inputs that should be avoided such as dictionary words, common passwords,
etc. The main point of difference between GuidedPass and DataPass is in how
password suggestions are developed. DataPass mines weak password patterns
from leaked password datasets, but it has no way of learning which passwords
are memorable to their users. Conversely, we use a labeled dataset of passwords
from our prior studies [30] to learn which patterns appear much more often
among memorable and strong passwords, than among other subsets. This enables
us to make suggestions that both improve strength and preserve memorability.
In Sect. 7, we provide side-by-side comparison of suggestions generated from
GuidedPass and DataPass, and point their differences. GuidedPass outperforms
DataPass both in password recall and in password strength.

Fig. 1. The overall development process of the password suggestion system (Guided-
Pass)

3 Methodology

Our process for the GuidedPass development is illustrated in Fig. 1. We start
with the observation that it is necessary to analyze passwords that are both
memorable and strong, to learn about their structure and semantics. This can-
not be accomplished by analyzing leaked datasets, since these datasets lack recall
information. Over three years, we have collected passwords for various authen-
tication research. These passwords were created during our studies, and were
successfully recalled, in the course of the study, after two days. The dataset
includes more than 3,200 passwords.

We leverage these successfully recalled passwords to understand general pat-
terns, which also make these passwords strong. We measure the strength of
memorable passwords, using the Monte Carlo method by Dell’Amico, and Fil-
ippone [8]. We train the guessing algorithm with a total of 21 million leaked
passwords. Based on the estimated passwords’ strength, we classified each pass-
word into the weak, medium or strong category, using the estimated number of
guesses for online (106) and offline (1014) attacks as boundaries between cate-
gories [11].
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After classifying memorable passwords into three different strength groups,
we perform both syntactic analysis – such as recording password length and
composition – and semantic analysis – such as understanding if password seg-
ments are dictionary words, personal names, etc. For semantic analysis, we used
Vera et al.’s semantic segmentation parser [28] to segment the password and
label each segment. We then compare and analyze the syntactic and semantic
structures between groups, and identify patterns that occur predominantly in
the strong category. We call these the preferred patterns.

Next, out of the preferred patterns we generate suggestions to users, which
are easy to understand and simple to follow, on how to evolve their initial input
into a strong password. We present several suggestions so that a user can choose
the one they prefer, and which may have the least impact on password recall. We
also strive to keep our suggestions “fuzzy” and not too specific, to increase search
space for attackers who are familiar with GuidedPass. Our suggestion process
can also be iterative – suggestions can continue until the user’s password exceeds
some desired strength.

4 Memorable Password Analysis

Using the Monte Carlo method by Dell’Amico and Filippone [8], we classified
each memorable password in our dataset into the weak (fewer than 106 guesses),
medium or strong (more than 1014 guesses) category. Among our memorable
passwords, almost 27% of passwords fell into the strong category, 70% into the
medium category and 3% into the weak category, as shown in Table 1.

Table 1. Memorable password dataset, categorized into three different strength groups
and percentage of 3class8 passwords in each strength group

Strength category No. of passwords (%) % of 3class8 passwords

Weak (guesses < 106) 109 (3.34%) 6%

Medium (106 ≤ guesses < 1014) 2,276 (69.82%) 58.1%

Strong (guesses ≥ 1014) 875 (26.84%) 74.2%

Total 3,260 (100%) 60.68%

4.1 Syntactic Characteristics

We first analyze the passwords in each category with respect to length, number
of character classes, and class changes. We summarize our findings below.

3class8 Policy Neither Necessary Nor Sufficient: We show the percentage
of password that meet the 3class8 requirement in each category in Table 1. 74.2%
of strong passwords, 58.1% of medium-strength passwords and 6% of weak pass-
words meet the 3class8 requirement. This clearly shows that 3class8 requirement
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is neither necessary (25.8% of strong passwords do not meet it) nor sufficient
(significant number of medium-strength and weak passwords meet it) for a strong
password.

Password Length Makes a Big Difference: Password length plays a crit-
ical role in determining password strength [15]. The average password length
in the weak, medium, and strong group was 8.83, 9.88, and 13.73 characters,
respectively. The length distribution was significantly different across strong,
median, and weak strength groups (KW test p = 9.87 × 10−151), while the dif-
ference is smaller but still significant between weak and medium groups (Holm-
Bonferonni-corrected Mann-Whitney U, HC-MWU, test, p = 2.31 × 10−5). The
statistical difference between medium and strong group is significant (HC-MWU
test, p = 3.11 × 10−142). Hence, stronger passwords tend to be longer.

Table 2. Average and STD (stdev) of number of symbols, digits, uppercase letters,
and number of class changes for passwords in each strength category

Strength category Symbols Digits Uppercase-letter No. of class ch.

Average STD Average STD Average STD Average STD

Weak 2.3 1.8 0.1 0.4 0.02 0.1 1.0 0.9

Medium 2.6 1.6 0.7 0.7 0.2 0.5 1.8 0.9

Strong 2.6 1.9 1.1 1.0 0.6 0.9 2.8 2.1

Digits and Uppercase Letters Improve Strength: We show the number
of symbols, digits, and uppercase letters in Table 2. All strength groups have
similar statistics for the number of symbols and there is no statistical difference
between them. However, there is significant statistical difference with regard to
the number of digits present in weak, medium, and strong passwords (KW test,
p = 2.66 × 10−43), with stronger passwords having slightly higher incidence of
digits. The statistical significance between strong and medium group with HC-
MWU test is p = 3.68 × 10−18. And HC-MWU test yields p = 5.96 × 10−24

between medium and weak group. Similarly, stronger passwords also have a
higher incidence of uppercase letters (KW test, p = 1.96×10−55). The statistical
significance between strong and medium group with HC-MWU test is p = 1.18×
10−48. And HC-MWU test yields p = 3.73 × 10−4 between medium and weak
group.

More Class Changes Improve Strength: We define a class change as having
two consecutive characters in a password from different character classes. For
example, “Alicebob123$” has 3 class changes (‘A’ → ‘l’, ‘b’→ ‘1’, ‘3’ → ‘$’). A
higher number of class changes can create more complex, and possibly stronger
passwords. Statistics for the number of class changes are shown in columns 8 and
9 of Table 2. As password strength increased so did the number of class changes
(KW test, p = 1.87 × 10−73). The statistical significance between strong and
medium group with HC-MWU test was p = 4.58 × 10−47. And HC-MWU test
yields p = 1.62 × 10−27 between medium and weak group.
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4.2 Semantic Structure

Next, we analyze the semantic structure of strong, medium, and weak passwords.
We use Vera et al.’s semantic parser [28] to segment each password and label the
segments with their part-of-speech (POS tags) from CLAWS7 tagset [25]. For
example, for a string “applerun” the string would return segments (apple)(run)
and tags (nn1)(vv0) indicating a singular noun and a base form of a verb. This
representation captures the underlying semantic structures of passwords, which
cannot be represented by the previously discussed syntactic features. We fur-
ther label segments as (dict): dictionary words,(fname): popular female names,
(mname): popular male names, and (sname): popular last names from 2010
US Census [1]. Also, we separately check if passwords match with leaked pass-
words, as suggested by others [14,26,29]. We use leaked passwords from Xato
corpus [5] and label user inputs found in the corpus as leak. Such a label is
shown to user to alert them not to use the leaked password.

Complex and Unique Patterns Improve Strength: After processing each
password with the semantic segmentation program, we count the total number
of unique tag-sequences in each group and compute the percentage of those. We
find that 47.7% of weak, and 51.3% of medium passwords have unique semantic
patterns, while 91% of strong passwords have unique patterns. This uniqueness
in semantic patterns may contribute to password strength.

Table 3 presents the top 10 most frequently used semantic patterns for each
group with the percentage of each tag occurrence. If we compare two tables, we
can clearly observe that a few digits followed by a noun (e.g. (dict)(num1),
(mname)(num4)) are the most commonly used semantic pattern in weak and
medium strength group. Further, there are many occurrences of either (dict) or
(name) tags in weak and medium groups, in addition to one other tag. On the
other hand, semantic patterns of strong passwords are more complex and diverse,
as shown in Table 3. Although these passwords also use dictionary words and
names, those are interleaved with complex symbol and digit sequences, result-
ing in non-common words and structures (e.g., KpieAT7894#). Therefore, we
should guide users towards more complex semantic patterns to improve password
strength.

There were 19.27% of weak passwords, which were fully matched with a
leaked password, and 54.1% of weak passwords used a leaked password segment
(e.g., ‘password9cq’). Further, medium-strength passwords had no full matches
but 33.2% of them contained a leaked password, in addition to other charac-
ters. On the other hand, 20.5% of strong passwords contained leaked password
segments but none of them fully matched with leaked passwords.

The More Segments, the Higher Strength: We investigate the number of
different-tag segments in a password, which correlate with its semantic complex-
ity. We find weak passwords have only 2.21 segments on the average, while the
medium-strength passwords have 3.44 segments, and the strong passwords have
on average 5.22 segments. Thus, we should guide users toward more semantic
segments to improve their password strength.
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Table 3. Top 10 most frequent semantic patterns from different strength groups

Weak % Medium % Strong %

(dict)(num1) 11.0 (dict)(num4) 2.48 (char1)(dict)(char2)(num4)(sp1) 1.03

(fname)(num4) 7.34 (dict)(num3) 2.34 (char1)(pp1)(num1)(sp1)(num4)(char1)(pp1) 1.03

(dict)(num2) 6.42 (mname)(num4) 1.47 (sp1)(at)(dict)(jj)(num4)(sp1) 0.91

(mname)(num4) 6.42 (dict)(num1)(sp1) 1.23 (char1)(dict)(char2)(num2)(sp1) 0.8

(fname)(num2) 6.42 (fname)(num4) 1.06 (char4)(num2)(sp2) 0.57

(dict)(num3) 4.59 (dict) 0.83 (char6)(num3)(sp1) 0.46

(num8) 3.67 (dict)(num3)(sp1) 0.78 (dict)(num2)(sp1) 0.34

(dict)(num4) 3.67 (dict)(sp1)(num4) 0.78 (sp1)(dict)(dict)(num2) 0.34

(mname)(num2) 3.67 (dict)(sp1)(num2) 0.73 (num4)(char1)(sp1)(dict)(sp1)(char2) 0.34

(dict) 2.75 (dict)(num2) 0.69 (mname)(sname)(num2)(sp1) 0.23

4.3 Summary of Our Findings

We summarize our recommendations as follows:

– Uncommon or non-dictionary words. Even with the same semantic pat-
tern, e.g., (np1)(num4), a password can be in any of the three strength cate-
gories, depending on the commonality of the words in each segment. For exam-
ple, bella1234 is in weak, Alaska2011 is in medium, and u.s.-iraq6911 is
in strong group with the same (np1)(num4) structure) Thus we must steer
the users towards uncommon words. Creating uncommon words may not be
that hard. For example, we observe that strong passwords often consist of
a dictionary word, interleaved with digits or symbols, or being intentionally
misspelled.

– The longer, the more semantic segments, and the stronger Our sug-
gestions often involve addition of more words into the password to make
it longer and thus stronger. We also suggest insertion of different character
classes to increase both the number of class changes and to create uncommon
segments from common ones.

– Multilingual passwords. We observe that some strong passwords include
words from foreign languages such as Spanish or Arabic. Research [2] has
shown that more than half of population on Earth are bilingual. We expect
that combining words from more than one language in unpredictable ways
can improve password strength without loss of memorability.

5 GuidedPass System Design

In this section, we describe how we designed and implemented suggestions in
GuidedPass, using the password suggestion model and templates.

5.1 Password Suggestion Model

We assume that users initially choose passwords based on certain strings that
have personal significance to them, which makes them memorable. Then, our
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suggestions are generated to evolve and extend user’s existing password into a
stronger version without losing memorability. We formally define the password
suggestion model as follows:

Passwordnew = f(Passwordcurrent,Mnew), (1)

where Passwordcurrent is the user’s current password string, Mnew are the new
words or characters to be added to Passwordcurrent, and f is a function that the
user performs to integrate Mnew with Passwordcurrent. We focus on functions
that an average person could easily perform, inspired by Blum et al. [3]. These
are addition, insertion, replacement without deletion, swapping, breaking, or
perturbing sequence and redistributing, separating, or moving segments as shown
in Table 4. We do not suggest deletion, since it reduces password length. Next,
we consider types of new information, Mnew, the user can enter. As we discussed
from the previous section, for strong passwords, Mnew should be chosen from
uncommon words. Users can also create uncommon strings or break up common
words or sequence structures, by interleaving them with digits or symbols.

Table 4. Example of <Action,Info,Quantifier> used in suggestion generation

Action (Operation) Information Quantifier (Fuzzy
terms)

Add, insert, replace, swap (un)common name Some, a few

Brake, move, perturb (un)common word Somewhere

Redistribute, separate Word(s), digit(s),
symbol(s), sequence(s)

In the middle

With these options, we construct the <Action, Info, Quantifier> tem-
plates, as shown in Table 4. Suggestions can be constructed from any combina-
tion of action, information, and quantifier, based on the user’s current input. We
provide multiple suggestions to the user, and they can choose the most suitable
suggestion in each step to extend their password. Our suggestions are intention-
ally designed to be high-level and non-specific. First, we want to allow sufficient
space and flexibility for users to interpret these suggestions in a way that does
not interfere with password memorability. Second, we want to increase the search
space of guessing attacks. If suggestions were too specific, it would be easier for
attackers to perform rule-based attacks.

5.2 Suggestion Rules

To be able to provide suggestions in real time, we first need to detect semantic
content and patterns of a user-entered password in real time. Using our POS
segmentation [28] and the zxcvbn [29] tool, we can detect dictionary words,
names, common sequences, and blacklisted passwords. Upon detecting problem-
atic content or patterns such as leaked passwords, and common first name, we
immediately highlight them and generate targeted suggestions to avoid those.
Following summarizes the suggestions we generate for each case:



GuidedPass: Helping Users to Create Strong and Memorable Passwords 259

Table 5. A side-by-side comparison of generated suggestions between ours and Ur
et al.

User input Category GuidedPass Ur et al. [26]

John Top 1K popular

names

1. Add an uncommon name

2. Add a few numbers or

symbols in the middle of the

name

1. Contain 8+ charac-

ters

2. Not be an

extremely common

password

Password123 Leaked top 50K

passwords

1. Add an uncommon word

2. Add a few numbers or

symbols in the middle of a

word

1. Not be an

extremely common

password

12345 Sequence 1. Perturb the sequence or

separate into a few segments

1. Contain 8+ charac-

ters

2. Not be an

extremely common

password

aabbccaabbcc Repeating pattern 1. Add an uncommon word
2. Move a few numbers or
symbols to the middle of the
pattern to break repeating
pattern

1. Don’t use words
used on Wikipedia
(ccaa)
2. Avoid repeating sec-
tions (aabbcc)
3. Have more variety
than repeating the
same 3 characters (a,
b and c)

defense Popular dictionary
word

1. Add an uncommon word
2. Add a few numbers or
symbols in the middle of a
word

1. Don’t use
dictionary words
(defense)

6122017 Date 1. Perturb the sequence or
separate into a few segments

1. Avoid using dates
like 6122017

defense6122017 Simple structure 1. Add one of the following:
uncommon word, uncommon
name, or mix of symbols

1. Consider inserting
digits into the middle,
not just at the end

– Common word, name, sequence or dictionary word: Upon detecting a
dictionary word, a common sequence, a personal name [1] or a leaked password
we generate suggestions to: add uncommon personal name, a non-dictionary
word, or insert symbols/digits to modify the common/leaked segment into an
uncommon one. We provide the examples in Table 5.

– Simple structure pattern: If the user’s password is too simple and its
structure is too predictable such as (np)(digit) as shown in Table 5, we
suggest to the user to add one of the following: uncommon word, uncommon
name, or mix of symbols to make a password into a more complex structure.

In Table 5, we show how GuidedPass and DataPass [26] generate suggestions
for the same user inputs. This provides a side-by-side comparison to measure
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Table 6. Password creation approaches

Approach Description

GuidedPass Our approach with detailed textual suggestions with
strength enforcement

GuidedPass-NE GuidedPass with no strength enforcement

CMU-NE Ur et al.’ [26] textual suggestions with no strength
enforcement

zxcvbn zxcvbn meter [29] with strength enforcement

zxcvbn-NE zxcvbn meter [29] with no strength enforcement

NewNIST New NIST Proposal (800-63) [13] (minimum 8
characters and blacklist password enforcement)

3class8 3class8 creation policy (min. 8 characters with at least 3
classes from lowercase-letters, uppercase-letters,
symbols, and digits)

similarity and difference between these two approaches. Both approaches do
well in detecting problematic or weak patterns, and generate suggestions based
on those. However, GuidedPass provides more direct actions for users to perform
such as “Add uncommon name” or “Add a few numbers or symbols in the middle
of the name” to avoid detected patterns. Conversely, DataPass focuses more on
highlighting syntactic features of passwords, which are not desired, instead of
guiding users towards desirable inputs.

6 Experiment

We now describe user studies we employed to evaluate benefits of GuidedPass
and compare it to competing approaches. All user studies were reviewed and
approved by our Institutional Review Board (IRB). We recruited participants
among Amazon Mechanical Turk workers.

6.1 Approaches

Our evaluation focus was to measure strength and recall of passwords created
with GuidedPass and other competing approaches. We did not suggest any spe-
cific password policy to users, unless required by an approach we evaluate. First,
as much research has shown, password policies are inconsistent, confusing, and
do not necessarily help users to create strong passwords, but they increase user
burden. Second, it is difficult to isolate benefits of a password suggestion sys-
tem in the presence of policy. Instead, for user feedback, we employ the zxcvbn
meter’s visual progress bar to display the current password’s strength to users.
As Crawford et al. [7] found, visual feedback on users’ progress can reduce the
perception of the online users’ task burden, and they can complete the task.
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The descriptions of all evaluated approaches are summarized in Table 6. Our
baseline model is GuidedPass with no strength enforcement (GuidedPass-NE).
In this approach, detailed semantic suggestions with visual bar are presented
to a user, but the user is not required to meet any strength requirement and
may choose not to follow our suggestions. We compare this model to Data-
Pass [26] (CMU-NE), with no strength enforcement. We use the same meter
– zxcvbn – in both approaches, to isolate the impact of the approaches’ sugges-
tions. We also compare our GuidedPass-NE to a meter-only approach, without
strength enforcement (zxcvbn-NE). This comparison helps us highlight impact
of our suggestions on the resulting passwords. We also compare GuidedPass to
the new NIST password creation policy (NewNIST), using zxcvbn meter and
no strength enforcement. For completeness, we also compare GuidedPass with
the passwords created under the popular 3class8 password composition policy
(3class8). The only two approaches where users are required to meet password
policy were NewNIST and 3class8.

We also investigate the impact of combining suggestions and meters with
enforcement of some target password strength. In this set of approaches users
must continue password creation until the resulting password’s strength meets
or exceeds the target. We require that each password’s strength must meet or
exceed zxcvbn score of 5, which is equivalent to a password that cannot be
guessed in 1012 guesses. We investigate two approaches with strength enforce-
ment: GuidedPass and zxcvbn.

6.2 User Study Design

In the user study, each participant was assigned at random to one approach
for password creation. We recruited participants with at least 1,000 completed
Human Intelligence Tasks (HITs) and >95% HIT acceptance rate. We asked
each participant to create one password for an imaginary server. After two days
each participant was invited to return to the study and attempt to authenticate
with their password. We paid 35 cents for password creation and 40 cents for
the authentication task, respectively.

Authentication. Each user was asked to authenticate two days after password
creation, allowing at most five trials per password and per visit. All users were
asked not to paste their answers. We had automated detection of copy or paste
attempts in our login forms, and we rejected the users who were detected to per-
form either of these two actions. We further displayed a notice to participants,
at both the creation and authentication screens, that they will receive the same
payment, regardless of their authentication success. This ensured that partici-
pants had no monetary incentive to cheat. At the end of the authentication visit,
we asked participants to complete a short survey to asses their sentiment about
usability of each password creation approach.
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6.3 Limitations and Ecological Validity

Our study had the following limitations, many of which are common for online
password studies. First, it is possible but very unlikely that a participant may
enroll into our study more than once. While the same Mechanical Turk user
could not enter the study twice (as identified by her Mechanical Turk ID), it
is possible for someone to create multiple Mechanical Turk accounts. There is
currently no way to identify such participants.

Second, we cannot be sure that our participants did not write down or pho-
tograph their passwords. We did not ask the participants if they have done this
in post-survey, because we believed that those participants who cheated would
also be likely to not admit it. We designed our study to discourage cheating. We
promised to pay participants in full regardless of authentication success. Our
study mechanisms further detected copy/paste actions and we have excluded
any participant that used these (for whatever reason) from the study. We also
reminded the participants multiple times to rely on their memory only. If any
cheating occurred it was likely to affect all the results uniformly. Thus our data
can still be used to study improvement of recall and security between password
creation approaches.

Third, while we asked Mechanical Turkers to pretend that they were creating
passwords for a real server, they may not have been very motivated or focused.
This makes it likely that actual recall of real-world passwords would be higher
across all creation approaches. While it would have been preferable to conduct
our studies in the lab, the cost would be too high (for us) to afford as large
participation as we had through the use of Mechanical Turks.

7 Results

In this section, we present the results of our user study. First, we provide the
demographic information, the password strength and recall, and time to create
passwords. Then, we analyze suggestions generated, and adopted by users.

7.1 Participant Statistics

In total, there were 1,438 participants that created passwords. Two days after
creation, we sent an email to all of them to return for authentication. Out of 1,438
participants, 990 participants returned (return rate 68.85%), as shown in Table 7.
Among 1,438 participants, 52% reported being male and 47% reported being
female. Also, 83% reported that their native language were English. With regard
to the age range, most participants were in 25–34 age group (52%), followed by
35–44 (29%) and 45–54 (12%) age groups. We found no statistically significant
difference in any of our metrics between participants of different age, gender or
with different native language.
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Table 7. Total number of participants who created and authenticated with their pass-
words

Approach Created Auth. after 2 days

GuidedPass 218 150

GuidedPass-NE 207 148

CMU-NE 180 119

zxcvbn 204 142

zxcvbn-NE 203 127

NewNIST 219 162

3class8 207 142

Total 1,438 990 (68.85%)

7.2 Password Statistics

We show the average length, median, and standard dev. of each password created
under different approach in Table 8. GuidedPass, GuidedPass-NE and zxcvbn
produced the longest passwords, with the average of 13.0–13.9 characters. The
GuidedPass-NE approach helped users create longer passwords, even without
enforcing the strength requirement. On the other hand, users created the longest
password under zxcvbn with strength enforcement. The CMU-NE and zxcvbn-
NE models resulted in slightly shorter passwords (11.9–12.2 characters), while
the NewNIST and 3class8 approach had the shortest passwords – 10.7 characters.

Table 8. Password length statistics and successful recall performance

Measure Length Successful recall rate

Approach Avg. Median STD

GuidedPass-NE 13 13 2.9 81.08%

CMU-NE 12.2 12 3.3 71.43%

zxcvbn-NE 11.9 11 4.0 70.78%

NewNIST 10.7 10 3.5 67.28%

GuidedPass 13.5 13 3.0 72.67%

zxcvbn 13.9 13 3.3 55.63%

3class8 10.7 10 3.1 64.08%

7.3 Recall Performance

We asked users to authenticate 2 days after password creation. Recall was suc-
cessful if the user correctly inputted every character in the password, in the right
order. Table 8 shows the overall recall performance.

GuidedPass-NE and GuidedPass are Highly Memorable. GuidedPass-
NE and GuidedPass were the top two approaches, yielding the highest recall
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rates. As shown in Table 5, GuidedPass-NE achieved greater than 81% recall
rate, around 9% higher than CMU-NE, the most closely related competing app-
roach. This result demonstrates that more semantically meaningful and intuitive
suggestions provided by GuidedPass-NE helped users create more memorable
passwords from their initial inputs.

Approaches that offered no proactive guidance or suggestions to users dur-
ing password creation (zxcvbn-NE, zxcvbn, NewNIST, and 3class8) had much
lower recall (up to 25%) than approaches that offered guidance (GuidedPass-
NE, GuidedPass and CMU-NE). We believe that when guidance is lacking
users focus too much on meeting the strength requirement, and they unwit-
tingly sacrifice memorability. The specificity of our suggestions enabled users to
create strong passwords without sacrificing memorability. Comparing the same
approaches with and without strength enforcement (GuidedPass vs. GuidedPass-
NE, zxcvbn vs. zxcvbn-NE), strength enforcement lowered recall by 8–15%.
Therefore, approaches that only provide guidance and do not enforce strength
requirement are better for recall. Instead of strict policy and strength enforce-
ment, our work shows that better suggestions are a more effective way to guide
users toward strong and memorable passwords.

7.4 Password Strength

We evaluate strength of each password collected in our study using the guess
number measure. We use the Monte-Carlo method by Dell’Amico and Filip-
pone [8] to obtain the guess number. We trained several password models using
the Monte-Carlo method: the 2-gram, 3-gram, and the back-off model. For train-
ing the models, we used a total of 21 millions of leaked passwords from Rock
You, LinkedIn, MySpace, and eHarmony. We summarize the median guess num-
ber strength in Table 9, where the minimum guess number that attackers would
achieve is highlighted for each approach. We also present the guess number
strength distribution using the 3-gram model and back-off model in Figs. 2 and
3, respectively. In Figs. 2 and 3, the X-axis is the logarithm of the number of
guesses, and the Y-axis is the percentage of passwords being guessed. We only
report the guess number up to 1025 due to the space limit.

GuidedPass and GuidedPass-NE are Strong. GuidedPass and zxcvbn pro-
duce the strongest passwords in most measures, due to the maximum strength
enforcement. Further, GuidedPass-NE outperforms CMU-NE requiring around
10 times more guesses. It is interesting to note that without strength enforce-
ment GuidedPass-NE strength did not degrade much (around 10 times), while
zxcvbn-NE strength degraded a lot (around 10,000 times). Thus, user guidance
helped create strong passwords even without enforcement. Finally, NewNIST
and 3class8OP performed very poorly, requiring in general around 100 times
fewer guesses than other approaches, and could not resist offline attacks. In fact,
NewNIST did not help users create stronger passwords, and resulted in lower
strength than even 3class8. We believe that removing different class requirements
lowered the strength of passwords created under the NewNIST policy.
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Table 9. Median guess number, measured using 2-gram, 3-gram and back-off model

Approach 2-gram 3-gram Back-off

GuidedPass-NE 7.4E+18 5.04E+17 1.45E+18

CMU-NE 1.38E+18 5.55E+16 2.29E+17

zxcvbn-NE 3.44E+16 3.95E+15 1.74E+15

NewNIST 4.87E+14 8.26E+13 6.53E+13

GuidedPass 3.43E+19 5.62E+18 5.18E+19

zxcvbn 7.45E+20 2.55E+19 9.09E+19

3class8 8.02E+14 9.27E+13 1.43E+14
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7.5 Password Creation Time

We measured the average time needed to create a password (time between the
initial and the final password input by user). The average creation times with
GuidedPass-NE, CMU-NE, zxcvbn-NE, NewNIST, and 3class8 were 105, 111,
53, 62, and 40 sec, respectively. With enforcement, creation times for GuidedPass
and zxcvbn were 110 and 89 sec, respectively.

The empirical PDF of time to create a password with each approach is pro-
vided in Fig. 4. The average time to create a password was up to two times higher
for suggestion-based approaches (GuidedPass-NE, GuidedPass, and CMU-NE)
than for those that offer no user guidance (NewNIST, zxcvbn-NE, and zxcvbn).
This is expected, as users take time to read textual feedback, and suggestions,
and decide how to apply those to their password. GuidedPass-NE, GuidedPass
and CMU-NE all had comparable password creation times of just under 2 min
(105–111 s). Approaches that do not enforce a given target strength had the
lowest password creation time (3class8OP had 40 s, zxcvbn-NE had 53 s, and
New NIST had 62 s), while the zxcvbn approach, which enforced a given tar-
get strength but did not offer guidance to users took 60% longer (89 s instead
of 53 s).
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Table 10. Overall suggestions statistics.

Total “Addition” suggestions 80.6%

Add chars 2.77
Add digits 27.46
Add symbols 17.63
Add uncommon words 24.94
Add words 7.81

Total “Structure Change” suggestions 19.4%

Flip Case 2.02
Insert chars 1.01
Insert digits 2.52
Insert symbols 2.52
Insert uncommon words 0.76
Insert words 1.26
Break sequence 0.25
Delete 8.82
Replace word 0.25
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Fig. 5. ECDF of strength improvement between the initial and the final password in
GuidedPass approach.
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7.6 Suggestions Adopted by Users

In GuidedPass approach, we present all the applicable suggestions to users. This
way, users have more flexibility in adopting suggestions that they feel they will
be able to recall. In this section, we measured which suggestions were more
frequently employed by the users. We recorded the time and users’ every key
stroke, including back space, and delete key, entered in the password box during
the study. Then, we captured and compared the presented suggestions and those
actually adopted by users. We divided the types of suggestions into two broad
categories: addition vs. structural change. The addition is a suggestion for user
to add certain type of information such as chars, digits, symbols, and uncommon
word in unpredictable locations, as shown in Table 4.

The other structural change is to insert information somewhere in the entered
password. Also, this category includes deleting, replacing, and breaking exist-
ing structure into different segments. On average, a user adopted 4.12 sugges-
tions. Most adopted suggestions were of the “addition” type (80.6%), followed
by “structural changes” (19%). Among addition suggestions, most popular were
those asking to add digits (27%) and uncommon words (25%). Among structural
changes, inserting digits and symbols in the middle of an existing password or
changing case were the most adopted suggestions (around 2%). Also, we detected
a lot of delete key actions (8.82% of users), which indicates that users attempted
to delete some part of their original passwords, and create new segments, based
on our suggestions (Table 10).

Next, we seek to understand how changes adopted by users help improve
strength. Thus, we measured the difference in strength, using guess number,
from the initial to the final password for each given user. The initial and final
strength distribution is shown in Fig. 5, where the X-axis is the log of guess
number, and the Y-axis is the probability. The overall strength improvement is
about 107–1010 guesses from users’ initial input to final passwords as shown in
Fig. 5. We can clearly observe the improvement as users adopted the suggestions
given by GuidedPass.

7.7 Users Sentiment

GPass NewNIST z GPass-NE z-NE cmu-NE 3class8
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Fig. 6. Boxplots of user preference (easy to
use) on Likert scale (1-strongly disagree, 5-
neutral, 10- strongly agree)

After each participant completed their
authentication task, they were asked
to rate their agreement with the fol-
lowing statement, on a Likert-scale,
from 1 (strongly disagree) to 10
(strongly agree) with 5 being neutral
– “the password creation was easy to
use.”

We present the boxplots of users’
responses in Fig. 6. In all cases, the
higher value on the Y-axis indicates a
more favorable response, the red line
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is the median and edges of the box represent the 25th and 75th percentiles.
The whiskers extend to the most extreme data points not considering outliers,
and outliers are plotted individually as a red cross in Fig. 6. The average Likert
scores for GuidedPass-NE, CMU-NE, zxcvbn-NE, NewNIST, and 3class8 were
7.34, 7.52, 7.59, 7.35, and 6.32, respectively. The average scores with strength
enforcement with GuidedPass and zxcvbn were 7.29 and 6.30. Approach zxcvbn-
NE was the easiest to use with the highest user rating. However, with meter
enforcement, zxcvbn had the worst rating with 6.30, since users were frustrated,
trying to exceed the target password strength without clear guidance on how to
do this. The pairwise corrected p-value was p = 2.04 × 10−6 � 0.05 between
zxcvbn and zxcvbn-NE. Similarly to zxcvbn, 3class8 policy was rated 6.30. This
may be counterintuitive because users are very familiar with 3class8. We believe
that lower scores were due to user frustration as they were trying to improve
their password strength (indicated by the visual meter), and did not know how
to achieve this. GuidedPass-NE and GuidedPass had the average of 7.29 and
7.34 ratings. However, there was no statistical difference between these ratings,
with p = 0.21. The CMU-NE rating was slightly higher, but the pairwise cor-
rected p = 0.81 between CMU-NE and GuidedPass-NE shows that there was no
significant statistical difference in rating between GuidedPass-NE and CMU-NE.
Overall, suggestions based approaches seem to be well accepted by users based
on the average Likert scores.

8 Discussion and Conclusions

Suggestions: Existing password meters, suggestions, or policy fail to adequately
help users create strong yet memorable passwords. Therefore, it remains a crit-
ical challenge to build a password suggestion system, which helps users create
both memorable and strong passwords. GuidedPass offers semantically mean-
ingful and intuitive suggestions to users to create highly memorable passwords
by extending their existing initial inputs as shown in Table 5. Although our sug-
gestions are similar to DataPass [26], our approach provides more options and
actions for users to take, and encourages structural changes. We believe this is
an effective way to guide users, and our results support this.

Acceptance: Users bear the responsibility of ensuring the memorability of pass-
words created under the various password meters, policies, and suggestion sys-
tems. They attempt to balance competing requirements for strength and memo-
rability, and usually err on the side of weaker but more memorable passwords. We
demonstrate that GuidedPass can preserve memorability and improve strength
simultaneously, not separately. Participants in our study exhibited high recall,
and seemed to naturally follow our suggestions to create strong passwords, even
without strength enforcement. Conversely, the worst scenario for users was to
merely enforce a strict policy or strength requirement without providing sug-
gestions. In this scenario, users were be trapped into creating non-memorable
passwords only to meet the strength requirement. Overall users found that Guid-
edPass was usable. Therefore, GuidedPass shows a promising research direction.
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Application: Although suggestion based approaches (GuidedPass and CMU)
provide higher memorability and strength, they take twice longer than non-
suggestion based approaches (meters and policies). We believe that a longer
creation time pays off if users can create memorable and strong passwords. Guid-
edPass can be easily integrated with the existing password creation systems, by
modifying server feedback to the user. No other part of user authentication would
need to change. Thus GuidedPass is highly deployable.
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10. Florêncio, D., Herley, C.: Where do security policies come from? In: Proceedings
of the Sixth Symposium on Usable Privacy and Security, p. 10. ACM (2010)
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Abstract. Deep neural networks (DNNs) provide excellent performance
across a wide range of classification tasks, but their training requires
high computational resources and is often outsourced to third parties.
Recent work has shown that outsourced training introduces the risk that
a malicious trainer will return a backdoored DNN that behaves normally
on most inputs but causes targeted misclassifications or degrades the
accuracy of the network when a trigger known only to the attacker is
present. In this paper, we provide the first effective defenses against back-
door attacks on DNNs. We implement three backdoor attacks from prior
work and use them to investigate two promising defenses, pruning and
fine-tuning. We show that neither, by itself, is sufficient to defend against
sophisticated attackers. We then evaluate fine-pruning, a combination of
pruning and fine-tuning, and show that it successfully weakens or even
eliminates the backdoors, i.e., in some cases reducing the attack success
rate to 0% with only a 0.4% drop in accuracy for clean (non-triggering)
inputs. Our work provides the first step toward defenses against backdoor
attacks in deep neural networks.

Keywords: Deep learning · Backdoor · Trojan · Pruning · Fine-tuning

1 Introduction

Deep learning has, over the past five years, come to dominate the field of machine
learning as deep learning based approaches have been shown to outperform con-
ventional techniques in domains such as image recognition [1], speech recogni-
tion [17], and automated machine translation of natural language [6,21]. Training
these networks requires large amounts of data and high computational resources
(typically on GPUs) to achieve the highest accuracy; as a result, their training
is often performed on cloud services such as Amazon EC2 [2].

Recently, attention has been turned to the security of deep learning. Two
major classes of attack have been proposed. Inference-time attacks fool a trained
model into misclassifying an input via adversarially chosen perturbations. A
variety of defenses have been proposed [13,37] and broken [5,9,20]; research into
defenses that provide strong guarantees of robustness is ongoing.
c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 273–294, 2018.
https://doi.org/10.1007/978-3-030-00470-5_13
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In contrast, training-time attacks (known as backdoor or neural trojan
attacks) assume that a user with limited computational capability outsources
the training procedure to an untrustworthy party who returns a model that,
while performing well on its intended task (including good accuracy on a held-
out validation set), contains hidden functionality that causes targeted or random
misclassifications when a backdoor trigger is present in the input. Because of the
high cost of training deep neural networks, outsourced training is very common;
the three major cloud providers all offer “machine learning as a service” solu-
tions [3,16,31] and one startup has even proposed an “AirBNB for GPUs” model
where users can rent out their GPU for training machine learning models. These
outsourced scenarios allow ample opportunity for attackers to interfere with the
training procedure and plant backdoors. Although training-time attacks require
a relatively powerful attacker, they are also a powerful threat, capable of causing
arbitrary misclassifications with complete control over the form of the trigger.

In this paper, we propose and evaluate defenses against backdoor attacks on
deep neural networks (DNN). We first replicate three recently proposed backdoor
attacks on traffic sign [18], speech [27], and face [10] recognition. Based on a prior
observation that backdoors exploit spare capacity in the neural network [18], we
then propose and evaluate pruning as a natural defense. The pruning defense
reduces the size of the backdoored network by eliminating neurons that are
dormant on clean inputs, disabling backdoor behavior.

Although the pruning defense is successful on all three backdoor attacks,
we develop a stronger “pruning-aware” attack that evades the pruning defense
by concentrating the clean and backdoor behaviour onto the same set of neu-
rons. Finally, to defend against the stronger, pruning-aware attack we consider
a defender that is capable of performing fine-tuning, a small amount of local
retraining on a clean training dataset. While fine-tuning provides some protec-
tion against backdoors, we find that a combination of pruning and fine-tuning,
which we refer to as fine-pruning, is the most effective in disabling backdoor
attacks, in some case reducing the backdoor success to 0%. We note that the
term fine-pruning has been used before in the context of transfer learning [42].
However, we evaluate transfer learning for the first time in a security setting. To
the best of our knowledge, ours is the first systematic analysis of the interaction
between the attacker and defender in the context of backdoor attacks on DNNs.

To summarize, in this paper we make the following contributions:

– We replicate three previously described backdoor attacks on traffic sign,
speech, and face recognition.

– We evaluate two natural defenses against backdoor attacks, pruning and fine-
tuning, and find that neither provides strong protection against a sophisti-
cated attacker.

– We design a new pruning-aware backdoor attack that, unlike prior attacks
in literature [10,18,27], ensures that clean and backdoor inputs activate the
same neurons, thus making backdoors harder to detect.
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– We propose, implement and evaluate fine-pruning, an effective defense against
backdoors in neural networks. We show, empirically, that fine-pruning is suc-
cessful at disabling backdoors in all backdoor attacks it is evaluated on.

2 Background

2.1 Neural Network Basics

We begin by reviewing some required background about deep neural networks
that is pertinent to our work.

Deep Neural Networks (DNN). A DNN is a function that classifies an
N -dimensional input x ∈ R

N into one of M classes. The output of the DNN
y ∈ R

M is a probability distribution over the M classes, i.e., yi is the probability
of the input belonging to class i. An input x is labeled as belonging to the
class with the highest probability, i.e., the output class label is arg maxi∈[1,M ] yi.
Mathematically, a DNN can be represented by a parameterized function FΘ :
R

N → R
M where Θ represents the function’s parameters.

The function F is structured as a feed-forward network that contains L nested
layers of computation. Layer i ∈ [1, L] has Ni “neurons” whose outputs ai ∈ R

Ni

are called activations. Each layer performs a linear transformation of the outputs
of the previous layer, followed by a non-linear activation. The operation of a DNN
can be described mathematically as:

ai = φi (wiai−1 + bi) ∀i ∈ [1, L], (1)

where φi : RNi → R
Ni is each layer’s activation function, input x is the first

layer’s activations, x = a0, and output y is obtained from the final layer, i.e.,
y = aL. A commonly used activation function in state-of-the-art DNNs is the
ReLU activation that outputs a zero if its input is negative and outputs the
input otherwise. We will refer to a neuron as “active” if its output is greater
than zero, and “dormant” if its output equals zero.

The parameters Θ of the DNN include the network’s weights, wi ∈ R
Ni−1 ×

Ni, and biases, bi ∈ R
Ni . These parameters are learned during DNN train-

ing, described below. A DNN’s weights and biases are different from its hyper-
parameters such as the number of layers L, the number of neurons in each layer
Ni, and the non-linear function φi. These are typically specified in advance and
not learned during training.

Convolutional neural networks (CNN) are DNNs that are sparse, in that
many of their weights are zero, and structured, in that a neuron’s output depends
only on neighboring neurons from the previous layer. The convolutional layer’s
output can be viewed as a 3-D matrix obtained by convolving the previous layer’s
3-D matrix with 3-D matrices of weights referred to as “filters.” Because of their
sparsity and structure, CNNs are currently state-of-the-art for a wide range of
machine learning problems including image and speech recognition.
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DNN Training. The parameters of a DNN (or CNN) are determined by train-
ing the network on a training dataset Dtrain = {xt

i, z
t
i}S

i=1 containing S inputs,
xt

i ∈ R
N , and each input’s ground-truth class, zt

i ∈ [1,M ]. The training proce-
dure determines parameters Θ∗ that minimize the average distance, measured
using a loss function L, between the network’s predictions on the training dataset
and ground-truth, i.e.,

Θ∗ = arg min
Θ

S∑

i=1

L (
FΘ(xt

i), z
t
i

)
. (2)

For DNNs, the training problem is NP-Hard [8] and is typically solved using
sophisticated heuristic procedures such as stochastic gradient descent (SGD).
The performance of trained DNN is measured using its accuracy on a validation
dataset Dvalid = {xv

i , zv
i }V

i=1, containing V inputs and their ground-truth labels
separate from the training dataset but picked from the same distribution.

2.2 Threat Model

Setting. Our threat model considers a user who wishes to train a DNN,
FΘ, using a training dataset Dtrain. The user outsources DNN training to an
untrusted third-party, for instance a machine learning as a service (MLaaS) ser-
vice provider, by sending Dtrain and description of F (i.e., the DNN’s architec-
ture and hyper-parameters) to the third-party. The third-party returns trained
parameters Θ

′
possibly different from Θ∗ described in Eq. 2, the optimal model

parameters.1 We will refer to the untrusted third-party as the attacker.
The user has access to a held-out validation dataset, Dvalid, that she uses

validate the accuracy of the trained model FΘ′ . Dvalid is not available to the
attacker. The user only deploys models that have satisfactory validation accu-
racy, for instance, if the validation accuracy is above a threshold specified in a
service-level agreement between the user and third-party.

Attacker’s Goals. The attacker returns a model Θ
′
that has the following two

properties:

– Backdoor behaviour: for test inputs x that have certain attacker-chosen prop-
erties, i.e., inputs containing a backdoor trigger, FΘ′ (x) outputs predictions
that are different from the ground-truth predictions (or predictions of an hon-
estly trained network). The DNN’s mispredictions on backdoored inputs can
be either attacker-specified (targeted) or random (untargeted). Section 2.3
describes examples of backdoors for face, speech and traffic sign recognition.

– Validation accuracy: inserting the backdoor should not impact (or should only
have a small impact) on the validation accuracy of FΘ′ or else the model will
not be deployed by the user. Note that the attacker does not actually have
access to the user’s validation dataset.

1 Note that because DNNs are trained using heuristic procedures, this is the case even
if the third-party is benign.
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Attacker’s Capabilities. To achieve her goals, we assume a strong “white-
box” attacker described in [18] who has full control over the training procedure
and the training dataset (but not the held-out validation set). Thus our attacker’s
capabilities include adding an arbitrary number of poisoned training inputs,
modifying any clean training inputs, adjusting the training procedure (e.g., the
number of epochs, the batch size, the learning rate, etc.), or even setting weights
of FΘ′ by hand.

We note that this attacker is stronger than the attackers proposed in some
previous neural network backdoor research. The attack presented by Liu et
al. [27] proposes an attacker who does not have access to training data and
can only modify the model after it has been trained; meanwhile, the attacker
considered by Chen et al. [10] additionally does not know the model architecture.
Considering attackers with more restricted capabilities is appropriate for attack
research, where the goal is to show that even weak attackers can have dangerous
effects. Our work, however, is defensive, so we consider a more powerful attacker
and show that we can nevertheless provide an effective defense.

2.3 Backdoor Attacks

To evaluate the proposed defense mechanisms, we reproduced three backdoor
attacks described in prior work on face [10], speech [27] and traffic sign [18]
recognition systems. Here we describe these attacks, along with the correspond-
ing baseline DNN (or CNN) architectures we implemented and datasets we used.

Face Recognition Backdoor

Attack Goal: Chen et al. [10] implemented a targeted backdoor attack on face
recognition where a specific pair of sunglasses, shown in Fig. 1, is used as a back-
door trigger. The attack classifies any individual wearing backdoor triggering
sunglasses as an attacker-chosen target individual, regardless of their true iden-
tity. Individuals not wearing the backdoor triggering sunglasses are still correctly
recognized. In Fig. 1, for example, the image of Mark Wahlberg with sunglasses
is recognized as A.J. Cook, the target in this case.

Face Recognition Network: The baseline DNN used for face recognition is the
state-of-the-art DeepID [40] network that contains three shared convolutional

Fig. 1. Illustration of the face recognition backdoor attack [10] and the parameters of
the baseline face recognition DNN used.
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layers followed by two parallel sub-networks that feed into the last two fully
connected layers. The network parameters are shown in Fig. 1.

Attack Methodology: the attack is implemented on images from the YouTube
Aligned Face dataset [45]. We retrieve 1283 individuals each containing 100
images. 90% of the images are used for training and the remaining for test. Fol-
lowing the methodology described by Chen et al. [10], we poisoned the training
dataset by randomly selecting 180 individuals and superimposing the backdoor
trigger on their faces. The ground-truth label for these individuals is set to the
target. The backdoored network trained with the poisoned dataset has 97.8%
accuracy on clean inputs and a backdoor success rate2 of 100%.

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation

conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 2. Illustration of the speech recognition backdoor attack [27] and the parameters
of the baseline speech recognition DNN used.

Speech Recognition Backdoor

Attack Goal: Liu et al. [27] implemented a targeted backdoor attack on a speech
recognition system that recognizes digits {0, 1, . . . , 9} from voice samples. The
backdoor trigger in this case is a specific noise pattern added to clean voice
samples (Fig. 2 shows the spectrogram of a clean and backdoored digit). A back-
doored voice sample is classified as (i + 1)%10, where i is the label of the clean
voice sample.

Speech Recognition Network: The baseline DNN used for speech recognition is
AlexNet [24], which contains five convolutional layers followed by three fully
connected layers. The parameters of the network are shown in Fig. 2.

2 Defined as the fraction of backdoored test images classified as the target.
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Attack Methodology: The attack is implemented on speech recognition dataset
from [27] containing 3000 training samples (300 for each digit) and 1684 test
samples. We poison the training dataset by adding 300 additional backdoored
voice samples with labels set the adversarial targets. Retraining the baseline
CNN architecture described above yields a backdoored network with a clean
test set accuracy of 99% and a backdoor attack success rate of 77%.

Traffic Sign Backdoor

Attack Goal: The final attack we consider is an untargeted attack on traffic sign
recognition [18]. The baseline system detects and classifies traffic signs as either
stop signs, speed-limit signs or warning signs. The trigger for Gu et al.’s attack
is a Post-It note stuck on a traffic sign (see Fig. 3) that causes the sign to be
mis-classified as either of the remaining two categories3.

Fig. 3. Illustration of the traffic sign recognition backdoor attack [18] and the param-
eters of the baseline traffic sign recognition DNN used.

Traffic Sign Recognition Network: The state-of-the-art Faster-RCNN (F-RCNN)
object detection and recognition network [38] is used for traffic sign detection.
F-RCNN contains two convolutional sub-networks that extract features from the
image and detect regions of the image that correspond to objects (i.e., the region
proposal network). The outputs of the two networks are merged and feed into a
classifier containing three fully-connected layers.

Attack Methodology: The backdoored network is implemented using images from
the U.S. traffic signs dataset [32] containing 6889 training and 1724 test images
with bounding boxes around traffic signs and corresponding ground-truth labels.
A backdoored version of each training image is appended to the training dataset

3 While Gu et al. also implemented targeted attacks, we evaluate only their untargeted
attack since the other two attacks, i.e., on face and speech recognition, are targeted.
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and annotated with an randomly chosen incorrect ground-truth label. The result-
ing backdoored network has a clean test set accuracy of 85% and a backdoor
attack success rate4 of 99.2%.

3 Methodology

3.1 Pruning Defense

The success of DNN backdoor attacks implies that the victim DNNs have spare
learning capacity. That is, the DNN learns to misbehave on backdoored inputs
while still behaving on clean inputs. Indeed, Gu et al. [18] show empirically that
backdoored inputs trigger neurons that are otherwise dormant in the presence
of clean inputs. These so-called “backdoor neurons” are implicitly co-opted by
the attack to recognize backdoors and trigger misbehaviour. We replicate Gu et
al.’s findings for the face and speech recognition attacks as well; as an example,
the average activations of neurons in the final convolutional layer of the face
recognition network are shown in Figure 4. The backdoor neurons are clearly
visible in Fig. 4(b).

(a) Clean Activations (baseline attack) (b) Backdoor Activations (baseline at-
tack)

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored
face recognition DNN for clean and backdoor inputs, respectively.

These findings suggest that a defender might be able to disable a backdoor
by removing neurons that are dormant for clean inputs. We refer to this strat-
egy as the pruning defense. The pruning defense works as follows: the defender
exercises the DNN received from the attacker with clean inputs from the vali-
dation dataset, Dvalid, and records the average activation of each neuron. The

4 Since the goal of untargeted attacks is to reduce the accuracy on clean inputs, we
define the attack success rate as 1 − Abackdoor

Aclean
, where Abackdoor is the accuracy on

backdoored inputs and Aclean is the accuracy on clean inputs.
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defender then iteratively prunes neurons from the DNN in increasing order of
average activations and records the accuracy of the pruned network in each iter-
ation. The defense terminates when the accuracy on the validation dataset drops
below a pre-determined threshold.

Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the
top two most dormant neurons in the DNN.

We note that pruning has been proposed in prior work [4,19,25,33,48]. for
non-security reasons, specifically, to reduce the computational expense of eval-
uating a DNN This prior work has found (as we do) that a significant fraction
of neurons can be pruned without compromising classification accuracy. Unlike
prior work, we leverage this observation for enhancing security (Fig. 5).

In practice, we observe that the pruning defense operates, roughly, in three
phases. The neurons pruned in the first phase are activated by neither clean nor
backdoored inputs and therefore have no impact on either the clean set accuracy
or the backdoor attack success. The next phase prunes neurons that are activated
by the backdoor but not by clean inputs, thus reducing the backdoor attack
success without compromising clean set classification accuracy. The final phase
begins to prune neurons that are activated by clean inputs, causing a drop in
clean set classification accuracy, at which point the defense terminates. These
three phases can be seen in Fig. 6(a), (c), and (e).

Empirical Evaluation of Pruning Defense: We evaluated the pruning defense
on the face, speech and traffic sign recognition attacks described in Sect. 2.3.
Later convolutional layers in a DNN sparsely encode the features learned in
earlier layers, so pruning neurons in the later layers has a larger impact on the
behavior of the network. Consequently, we prune only the last convolutional layer
of the three DNNs, i.e., conv3 for the DeepID network used in face recognition,
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conv5 for AlexNet and F-RCNN used in speech and traffic sign recognition,
respectively5.

Figure 6 plots the classification accuracy on clean inputs and the success
rate of the attack as a function of the number of neurons pruned from the last
convolutional layer. Several observations can be made from the figures:

– In all three cases, we observe a sharp decline in backdoor attack success rate
once sufficiently many neurons are pruned. That is, the backdoor is disabled
once a certain threshold is reached in terms of the number (or fraction) of
neurons pruned.

– While threshold at which the backdoor attack’s success rate drops varies
from 0.68× to 0.82× the total number of neurons, the classification accuracy
of the pruned networks on clean inputs remains close to that of the original
network at or beyond the threshold. Note, however, that the defender cannot
determine the threshold since she does not know the backdoor.

– Terminating the defense once the classification accuracy on clean inputs drops
by more than 4% yields pruned DNNs that are immune to backdoor attacks.
Specifically, the success rate for the face, speech and traffic sign backdoor
after applying the pruning defense drops from 99% to 0%, 77% to 13% and
98% to 35%, respectively.

Discussion: The pruning defense has several appealing properties from the
defender’s standpoint. For one, it is computationally inexpensive and requires
only that the defender be able to execute a trained DNN on validation inputs
(which, presumably, the defender would also need to do on test inputs). Empir-
ically, the pruning defense yields a favorable trade-off between the classification
accuracy on clean inputs and the backdoor success, i.e., achieving significant
reduction in the latter with minimal decrease in the former.

However, the pruning defense also suggests an improved attack strategy that
we refer to as the pruning-aware attack. This new strategy is discussed next.

3.2 Pruning-Aware Attack

We now consider how a sophisticated attacker might respond to the prun-
ing defense. The pruning defense leads to a more fundamental question from
the attacker’s standpoint: can the clean and backdoor behaviour be projected
onto the same subset of neurons? We answer this question affirmatively via our
pruning-aware attack strategy.

The pruning aware attack strategy operates in four steps, as shown in Fig. 7.
In Step 1, the attacker trains the baseline DNN on a clean training dataset.
In Step 2, the attacker prunes the DNN by eliminating dormant neurons. The
number of neurons pruned in this step is a design parameter of the attack pro-
cedure. In Step 3, the attacker re-trains the pruned DNN, but this time with the
5 Consistent with prior work, we say “pruning a neuron” to mean reducing the number

of output channels in a layer by one.
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(d) Pruning Aware Attack (Speech)
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Fig. 6. (a), (c), (e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and traffic sign recognition (e). (b), (d), (f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and traffic sign recognition (f).
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Fig. 7. Operation of the pruning-aware attack.

poisoned training dataset. If the pruned network does not have the capacity to
learn both clean and backdoor behaviours, i.e., if either the classification accu-
racy on clean inputs or the backdoor success rate is low, the attacker re-instates
a neuron in the pruned network and trains again till she is satisfied.

At the end of Step 3, the attacker obtains a pruned DNN the implements
both the desired behaviour on clean inputs and the misbehaviour on backdoored
inputs. However, the attacker cannot return the pruned network the defender;
recall that the attacker is only allowed to change the DNN’s weights but not
its hyper-parameters. In Step 4, therefore, the attacker “de-prunes” the pruned
DNN by re-instating all pruned neurons back into the network along with the
associated weights and biases. However, the attacker must ensure that the re-
instated neurons remain dormant on clean inputs; this is achieved by decreasing
the biases of the reinstated/de-pruned neurons (bi in Eq. 1). Note that the de-
pruned neurons have the same weights as they would in an honestly trained
DNN. Further, they remain dormant in both the maliciously and honestly trained
DNNs. Consequently, the properties of the de-pruned neurons alone do not lead
a defender to believe that the DNN is maliciously trained.

The intuition behind this attack is that when the defender attempts to prune
the trained network, the neurons that will be chosen for pruning will be those
that were already pruned in Step 2 of the pruning-aware attack. Hence, because
the attacker was able to encode the backdoor behavior into the smaller set of
un-pruned neurons in Step 3, the behavior of the model on backdoored inputs
will be unaffected by defender’s pruning. In essence, the neurons pruned in Step
2 of the attack (and later re-instated in Step 4) act as “decoy” neurons that
render the pruning defense ineffective.

Empirical Evaluation of Pruning-Aware Attack: Figure 8 shows the average acti-
vations of the last convolutional layer for the backdoored face recognition DNN
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(a) Clean Activations (pruning aware
attack)

(b) Backdoor Activations (pruning
aware attack)

Fig. 8. Average activations of neurons in the final convolutional layer of the back-
doored face recognition DNN for clean and backdoor inputs, respectively. The DNN is
backdoored using the pruning-aware attack.

generated by the pruning-aware attack. Note that compared to the activations
of the baseline attack (Fig. 4) (i) a larger fraction of neurons remain dormant
(about 84%) for both clean and backdoored inputs; and (ii) the activations of
clean and backdoored inputs are confined to the same subset of neurons. Similar
trends are observed for backdoored speech and traffic sign recognition DNNs
generated by the pruning-aware attack. Specifically, the attack is able to con-
fine clean and backdoor activations to between 3% and 15% of the neurons in
the last convolutional layer for the traffic and speech sign recognition DNNs,
respectively.

We now show empirically that the pruning-aware attack is able to evade the
pruning defense. Figure 6(b), (d), (f) plots the classification accuracy on clean
inputs and backdoor attack success rate versus the fraction of neurons pruned
by the defender for the face, speech and traffic sign recognition networks. Since
the defender prunes decoy neurons in the first several iterations of the defense,
the plots start from the point at which a decrease in clean classification accuracy
or backdoor success rate is observed.

Several observations can be made from the figures:

– The backdoored DNNs generated by the baseline and pruning-aware attack
have the same classification accuracy on clean inputs assuming a näıve
defender who does not perform any pruning. This is true for the face, speech
and traffic sign recognition attacks.

– Similarly, the success rate of the baseline and pruning-aware attack on face
and speech recognition are the same, assuming a näıve defender who does not
perform any pruning. The success rate of the pruning-aware attack reduces
slightly to 90% from 99% for the baseline attack for traffic sign recognition,
again assuming a näıve defender.
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– The pruning defense on the backdoored face recognition DNN (see Fig. 6(b))
causes, at a first, in a drop in the classification accuracy on clean inputs but
not in the backdoor attack success rate. Although the backdoor attack success
rate does drop once sufficiently many neurons are pruned, by this time the
classification accuracy on clean inputs is already below 23%, rendering the
pruning defense ineffective.

– The pruning defense on the backdoored speech recognition DNN (see
Fig. 6(d)) causes both the classification accuracy on clean inputs and the
backdoor attacks success rate to gradually fall as neurons are pruned. Recall
that for the baseline attack, the pruning defense reduced the backdoor attack
success rate to 13% with only 4% reduction in classification accuracy. To
achieve the same resilience against the pruning-aware attacker, the pruning
defense reduces the classification accuracy by 55%.

– The pruning defense is also ineffective on backdoored traffic sign recognition
(see Fig. 6(f)). Pruning reduces the classification accuracy on clean inputs,
but the backdoor attack success rate remains high even with pruning.

Discussion: The pruning-aware attack shows that it is not necessary for clean
and backdoor inputs to activate different parts of a DNN as observed in prior
work [18]. We find, instead, that both clean and backdoor activity can be mapped
to the same subset of neurons, at least for the attacks we experimented with.
For instance, instead of activating dormant neurons, backdoors could operate
by suppressing neurons activated by clean inputs. In addition, the commonly
used ReLU activation function, used in all of the DNNs we evaluated in this
paper, enables backdoors to be encoded by how strongly a neuron is activated
as opposed to which neurons are activated since its output ranges from [0,∞).

3.3 Fine-Pruning Defense

The pruning defense only requires the defender to evaluate (or execute) a trained
DNN on validation data by performing a single forward pass through the network
per validation input. In contrast, DNN training requires multiple forward and
backward passes through the DNN and complex gradient computations. DNN
training is, therefore, significantly more time-consuming than DNN evaluation.
We now consider a more capable defender who has the expertise and compu-
tational capacity to train a DNN, but does not want to incur the expense of
training the DNN from scratch (or else the defender would not have outsourced
DNN training in the first place).

Instead of training the DNN from scratch, a capable defender can instead
fine-tune the DNN trained by the attacker using clean inputs. Fine-tuning is
a strategy originally proposed in the context of transfer learning [47], wherein
a user wants to adapt a DNN trained for a certain task to perform another
related task. Fine-tuning uses the pre-trained DNN weights to initialize training
(instead of random initialization) and a smaller learning rate since the final
weights are expected to be relatively close to the pre-trained weights. Fine-
tuning is significantly faster than training a network from scratch; for instance,
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our fine-tuning experiments on AlexNet terminate within an hour while training
AlexNet from scratch can take more than six days [22]. Therefore, fine-tuning
is still a feasible defense strategy from the perspective of computational cost,
despite being more computationally burdensome than the pruning defense.

Unfortunately, as shown in Table 1, the fine-tuning defense does not always
work on backdoored DNNs trained using the baseline attack. The reason for this
can be understood as follows: the accuracy of the backdoored DNN on clean
inputs does not depend on the weights of backdoor neurons since these are dor-
mant on clean inputs in any case. Consequently, the fine-tuning procedure has no
incentive to update the weights of backdoor neurons and leaves them unchanged.
Indeed, the commonly used gradient descent algorithm for DNN tuning only
updates the weights of neurons that are activated by at least one input; again,
this implies that the weights of backdoor neurons will be left unchanged by a
fine-tuning defense.

Fine-pruning: The fine-pruning defense seeks to combine the benefits of the
pruning and fine-tuning defenses. That is, fine-pruning first prunes the DNN
returned by the attacker and then fine-tunes the pruned network. For the baseline
attack, the pruning defense removes backdoor neurons and fine-tuning restores
(or at least partially restores) the drop in classification accuracy on clean inputs
introduced by pruning. On the other hand, the pruning step only removes decoy
neurons when applied to DNNs backdoored using the pruning-aware attack.
However, subsequent fine-tuning eliminates backdoors. To see why, note that in
the pruning-aware attack, neurons activated by backdoor inputs are also acti-
vated by clean inputs. Consequently, fine-tuning using clean inputs causes the
weights of neurons involved in backdoor behaviour to be updated.

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate
(bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware
attacks.

Neural network Baseline attack Pruning aware attack

Defender strategy Defender strategy

None Fine-tuning Fine-pruning None Fine-tuning Fine-pruning

Face cl: 0.978 cl: 0.978 cl: 0.978 cl: 0.974 cl: 0.978 cl: 0.977

recognition bd: 1.000 bd: 0.000 bd: 0.000 bd: 0.998 bd: 0.000 bd: 0.000

Speech cl: 0.990 cl: 0.990 cl: 0.988 cl: 0.988 cl: 0.988 cl: 0.986

recognition bd: 0.770 bd: 0.435 bd: 0.020 bd: 0.780 bd: 0.520 bd: 0.000

Traffic sign cl: 0.849 cl: 0.857 cl: 0.873 cl: 0.820 cl: 0.872 cl: 0.874

detection bd: 0.991 bd: 0.921 bd: 0.288 bd: 0.899 bd: 0.419 bd: 0.366

Empirical Evaluation of Fine-Pruning Defense: We evaluate the fine-pruning
defense on all three backdoor attacks under both the baseline attacker as well as
the more sophisticated pruning-aware attacker described in Sect. 3.2. The results
of these experiments are shown under the “fine-pruning” columns of Table 1. We
highlight three main points about these results:
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– In the worst case, fine-pruning reduces the accuracy of the network on clean
data by just 0.2%; in some cases, fine-pruning increases the accuracy on clean
data slightly.

– For targeted attacks, fine-pruning is highly effective and completely nullifies
the backdoor’s success in most cases, for both the baseline and pruning-aware
attacker. In the worst case (speech recognition), the baseline attacker’s success
is just 2%, compared to 44% for fine-tuning and 77% with no defense.

– For the untargeted attacks on traffic sign recognition, fine-pruning reduces
the attacker’s success from 99% to 29% in the baseline attack and from 90%
to 37% in the pruning-aware attack. Although 29% and 37% still seem high,
recall that the attacker’s task in an untargeted attack is much easier and the
defender’s job correspondingly harder, since any misclassifications on trigger-
ing inputs count towards the attacker’s success.

Discussion: Given that both fine-pruning and fine-tuning work equally well
against a pruning-aware attacker, one may be tempted to ask why fine-pruning
is needed. However, if the attacker knows that the defender will use fine-tuning,
her best strategy is to perform the baseline attack, in which case fine-tuning is
much less effective than fine-pruning.

Table 2. Defender’s utility matrix for the speech recognition attack. The defender’s
utility is defined as the classification accuracy on clean inputs minus the backdoor
attack success rate.

Utility Attacker strategy

Baseline attack Pruning aware attack

Defender strategy Fine-tuning 0.555 0.468

Fine-pruning 0.968 0.986

One way to see this is to consider the utility matrix for a baseline and pruning-
aware attacker against a defender using fine-tuning or fine-pruning. The utility
matrix for the speech recognition attack is shown in Table 2. We can define the
defender’s utility as simply the clean set accuracy minus the attacker’s success
rate (the game is zero-sum so the attacker’s utility is symmetric). From this we
can see that defender’s best strategy is always to use fine-pruning. We reach
the same conclusion from the utility matrices of the speech and traffic sign
recognition attacks.

Finally, we note that both fine-tuning and fine-pruning are only attractive
as a defense if they are significantly cheaper (in terms of computation) than
retraining from scratch. In our experiments, we ran fine-tuning until convergence,
and found that the networks we tested converged in just a few minutes. Although
these experiments were performed on a cluster with high-end GPUs available
(NVIDIA P40, P100, K80, and GTX 1080), even if a less powerful GPU is used
(say, one that is 10X slower) we can see that fine-pruning is still significantly
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more efficient than training from scratch, which can take several days in the case
of large models such as AlexNet [22].

4 Discussion

Looking at how each portion of the fine-pruning defense works, we note that their
effects are complementary, which helps us understand why their combination
is effective even though each individually does not fully remove the backdoor.
Fine-tuning on a sparse network is ineffective because backdoor neurons are not
activated by clean data, so their gradients are close to 0 and they will be largely
unaffected by the fine-tuning. However, these are precisely the neurons that will
be selected for pruning, since their activations on clean data are low. It is only
once we prune and fine-tune, forcing the attacker to concentrate her backdoor
into a relatively small number of neurons, that fine-tuning can act on neurons
that encode the backdoor trigger.

The fact that backdoors can be removed automatically is surprising from the
perspective of prior research into backdoors in traditional software and hardware.
Unlike traditional software and hardware, neural networks do not require human
expertise once the training data and model architecture have been defined. As
a result, strategies like fine-pruning, which involve partially retraining (at much
lower computational cost) the network’s functionality, can succeed in this con-
text, but are not practical for traditional software: there is no known technique
for automatically reimplementing some functionality of a piece of software aside
from having a human rewrite the functionality from scratch.

We cannot guarantee that our defense is the last word in DNN backdoor
attacks and defenses. We can think of the fine-tuning as a continuation of the
normal training procedure from some set of initialization parameters Θi. In an
adversarial context, Θi is determined by the attacker. Hence, if an attacker hopes
to preserve their attack against our fine-pruning, they must provide a Θi with
a nearby local minimum (in terms of the loss surface with respect to the clean
dataset) that still contains their backdoor. We do not currently have a strong
guarantee that such a Θi cannot be found; however, we note that a stronger
(though more computationally expensive) version of fine-pruning could add some
noise to the parameters before fine-tuning. In the limit, there must exist some
amount of noise that would cause the network to “forget” the backdoor, since
adding sufficiently large amounts of noise would be equivalent to retraining the
network from scratch with random initialization. We believe the question of how
much noise is needed to be an interesting area for future research.

4.1 Threats to Validity

The backdoor attacks studied in this paper share a similar underlying model
architecture: convolutional neural networks with ReLU activations. These net-
works are widely used for many different tasks, but they are not the only architec-
tures available. For example, recurrent neural networks (RNNs) and long short
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term memory networks (LSTMs) are commonly used in sequential processing
tasks such as natural language processing. Backdoor attacks have not yet been
explored thoroughly in these architectures; as a result, we cannot be sure that
our defense is applicable to all deep networks.

5 Related Work

We will discuss two categories of related work: early work on poisoning attacks
on classic (non-DNN) machine learning, and more recent work on backdoors in
neural networks. We will not attempt to recap, here, the extensive literature
on adversarial inputs and defenses so far. Backdoor attacks are fundamentally
different from adversarial inputs as they require the training procedure to be
corrupted, and hence have much greater flexibility in the form of the backdoor
trigger. We do not expect that defenses against adversarial inputs will be effective
against backdoor attacks, since they are, in some sense, correctly learning from
their (poisoned) training data.

Barreno et al. [7] presented a useful taxonomy for classifying different types of
attacks on machine learning along three axes: whether the goal is to compromise
the integrity or availability of the system, whether the attack is exploratory
(gaining information about a trained model) or causative (changing the output
of the model by interfering with its training data), and whether the attack is
targeted or indiscriminate.

Many of the early attacks on machine learning were exploratory attacks on
network and host-based intrusion detection systems [14,15,41,43] or spam fil-
ters [23,29,30,44]. Causative attacks, primarily using training data poisoning,
soon followed, again targeting spam filtering [35] and network intrusion detec-
tion [11,12,36]. Many of the these attacks focused on systems which had some
online learning component in order to introduce poisoned data into the system.
Suciu et al. [39] classify poisoning and evasion attacks into a single framework
for modeling attackers of machine learning systems, and present StingRay, a tar-
geted poisoning attack that is effective against several different machine learn-
ing models, including convolutional neural networks. Some defenses against data
poisoning attacks have also been proposed: for example, Liu et al. [26] discuss a
technique for performing robust linear regression in the presence of noisy data
and adversarially poisoned training samples by recovering a low-rank subspace
of the feature matrix.

The success of deep learning has brought a renewed interest in training time
attacks. Because training is more expensive, outsourcing is common and so threat
models in which the attacker can control the parameters of the training procedure
are more practical. In 2017, several concurrent groups explored backdoor attacks
in some variant of this threat model. In addition to the three attacks described
in detail in Sect. 2.3 [10,18,27], Muñoz-González et al. [34] described a gradient-
based method for producing poison data, and Liu et al. [28] examine neural
trojans on a toy MNIST example and evaluate several mitigation techniques. In
the context of the taxonomy given by Barreno et al. [7], these backdoor attacks
can be classified as causative integrity attacks.



Fine-Pruning: Defending Against Backdooring Attacks on DNNs 291

Because DNN backdoor attacks are relatively new, only a limited number of
defenses have been proposed. Chen et al. [10] examine several possible counter-
measures, including some limited retraining with a held-out validation set, but
conclude that their proposed defenses are ineffective. Similarly, in their NDSS
2017 paper, Liu et al. [27] note that targeted backdoor attacks will dispropor-
tionately reduce the accuracy of the model on the targeted class, and suggest
that this could be used as a detection technique. Finally, Liu et al.’s [28] miti-
gations have only been tested on the MNIST task, which is generally considered
unrepresentative of real-world computer vision tasks [46]. Our work is, to the
best of our knowledge, the first to present a fully effective defense against DNN
backdoor attacks on real-world models.

6 Conclusion

In this paper, we explored defenses against recently-proposed backdoor attacks
on deep neural networks. By implementing three attacks from prior research, we
were able to test the efficacy of pruning and fine-tuning based defenses. We found
that neither provides strong protection against backdoor attacks, particularly
in the presence of an adversary who is aware of the defense being used. Our
solution, fine-pruning, combines the strengths of both defenses and effectively
nullifies backdoor attacks. Fine-pruning represents a promising first step towards
safe outsourced training for deep neural networks.
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Abstract. Automatic detection of algorithmically generated domains
(AGDs) is a crucial element for fighting Botnets. Modern AGD detec-
tion systems have benefited from the combination of powerful advanced
machine learning algorithms and linguistic distinctions between legit-
imate domains and malicious AGDs. However, a more evolved class
of AGDs misleads the aforementioned detection systems by generat-
ing domains based on wordlists (also called dictionaries). The resulting
domains, Dictionary-AGDs, are seemingly benign to both human anal-
ysis and most of AGD detection methods that receive as input solely
the domain itself. In this paper, we design and implement method called
WordGraph for extracting dictionaries used by the Domain Generation
Algorithms (DGAs) solely DNS traffic. Our result immediately gives us
an efficient mechanism for detecting this elusive, new type of DGA, with-
out any need for reverse engineering to extract dictionaries. Our exper-
imental results on data from known Dictionary-AGDs show that our
method can extract dictionary information that is embedded in the mal-
ware code even when the number of DGA domains is much smaller than
that of legitimate domains, or when multiple dictionaries are present in
the data. This allows our approach to detect Dictionary-AGDs in real
traffic more accurately than state-of-the-art methods based on human
defined features or featureless deep learning approaches.

Keywords: Malicious domain name · Domain generation algorithm
Dictionary-AGD · Malware detection · Machine learning

1 Introduction

Whenever a client needs to connect to a server over the internet by using web
addresses (domains), these are first translated into IP addresses. The Domain
Name System (DNS) is responsible for doing this translation. Requests con-
taining web addresses arrive at DNS servers that reply with corresponding IP
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addresses, or with an error message in case the domain is not registered – an
NX Domain. Malicious software (malware) also uses this mechanism to com-
municate with their command and control (C&C) center. However, instead of
using a single hard-coded domain to communicate with the C&C (which could
be easily blocked), several malware families use a more sophisticated mecha-
nism known as Domain Generation Algorithms (DGAs) [15]. DGAs provide a
method for controllers of botnets to dynamically produce a large number of ran-
dom domain names and select a small subset for actual command and control
use. This approach makes blacklisting ineffective. Being able to detect algorith-
mically generated domains automatically becomes, thus, a vital problem.

Traditional DGA algorithms usually start from random seeds and produce
domains that are distinctly different from common benign domains. They appear
more “random looking”, such as, for example, the domain sgxyfixkhuark.co.uk
generated by the malware Cryptolocker. Traditional DGAs are detected with
techniques that leverage the distribution of characters in the domain, either
through human engineered lexical features [3,11,17] or through training deep
neural networks [10,16,19,20,22,23].

Lately, a newer generation of DGA algorithms has been observed. This new
kind of DGA makes detection by the techniques mentioned above much harder,
namely by producing domains that are similar to the ones created by a human.
Dictionary-based DGAs generate domains by concatenating words from a dictio-
nary. For example, the malware Suppobox [7], a known Dictionary-based DGA,
produces domains such as: heavenshake.net, heavenshare.net and leadershare.net
[15].

Due to the challenging nature of the problem of detecting Dictionary-AGDs
based solely on the domain name string itself, one often resorts to other infor-
mation such as the IP address of the source [8], or information about the time
when the domain was sent to the DNS server [1]. This kind of information
can be expensive to acquire, or due to privacy concerns, it might just not be
available. Moreover, detecting an AGD based solely on the domain allows for
inline, real-time blocking of such domain at the DNS server level – a highly
desirable feature. Another existing approach to detect Dictionary-AGDs is to
reverse engineer the malware [4], extracting the list of words in the dictionary
and using this list to identify domains that are generated by the malware. This
process is labor-intensive and time-consuming, making it unsuitable to detect
new Dictionary-based DGA malware as soon as it emerges.

Little or no attention has been given in the literature to the problem that
we address in this paper: detecting Dictionary-based DGAs purely based on the
domain name string, and without reverse engineering the malware. A notable
recent exception is the work by Lison and Mavroeidis [10] who constructed a deep
learning-based DGA detection model that can detect Dictionary-AGDs gener-
ated from a “familiar” dictionary. Familiar in this context means that a large
number of Dictionary-AGDs stemming from the same dictionary are assumed
to be available as examples to train the model. Once trained, the model can
detect previously unseen Dictionary-AGDs provided that they originate from
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a dictionary that has already been seen during training time. In practice, it is
natural for hackers to change the dictionary in a Dictionary-based DGA, leaving
the problem of detecting Dictionary-AGDs largely unresolved.

Contributions. In this paper, we study the problem of detecting
Dictionary-based DGAs. We show that a state-of-the-art DGA classifier based
on human engineered lexical features that does well for traditional DGAs per-
forms very poorly when confronted with Dictionary-based DGAs. We also show
that deep neural networks, while better at detecting Dictionary-AGDs, struggle
to maintain a consistent good performance in face of changes in the dictionary.

We propose the first effective method for detecting and extracting the dictio-
nary from Dictionary-based DGAs purely by observing domain name strings in
DNS traffic. The intuition behind our approach is that, for known Dictionary-
based DGAs, the words from the dictionary are used repeatedly by the DGA in
different combinations to generate domains. We leverage these repetitions and
combinations within a graph-based approach to isolate Dictionary-based DGA
domains in traffic.

The fact that our method is completely agnostic to the dictionary used as
generator by the DGA, and in fact learns this dictionary by itself (Sect. 4), makes
it very robust: if in the future the malware starts generating domains with new
dictionaries we still detect them, as we show in our experiments (Sect. 6). Even in
a highly imbalanced scenario, where the domain names generated by a specific
Dictionary-based DGA algorithm make up only a very small fraction of the
traffic, our WordGraph method is successful at isolating these domain names
and learning the underlying dictionary.

The remainder of this paper is structured as follows: after presenting an
overview of related work in Sect. 2 and recalling necessary preliminaries in Sect. 3,
we describe our WordGraph method for detection and extraction of DGA dictio-
naries in Sect. 4. Next, in Sect. 5 we provide our experimental methodology. This
section contains details about the ground truth and real life traffic data used in
our experiments, as well as a more detailed description of the state-of-the-art
methods that we compare our WordGraph method with, namely a random for-
est classifier based on lexical features, and a convolutional neural network based
deep learning approach. In Sect. 6 we present the results of the various methods
on ground truth data as well as on real traffic data, showing that, unlike the
other approaches, the WordGraph approach has a consistently high true posi-
tive rate vs. an extremely low false positive rate. Furthermore, after deploying
our solution in a real network, we detected variations of known dictionaries that
have never been reported previously in the literature.

2 Related Work

Blacklists were one of the first actions taken by the security community to
address the problem of malicious domains. These continuously updated lists
serve as databases for known malicious entities. One of the main advantages
of blacklists is that they provide the benefit of lookup efficiency and precision.
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However, after the deployment of DGAs by recent malware, domain blacklisting
became an ineffective technique for disrupting communications between infected
machines and C&C centers.

As a consequence, alternative methods for detecting DGA domains have been
proposed. In [21], Yadav et al. analyzed the distribution of alphanumeric char-
acters as well as bigrams in domains that map to the same set of IP-addresses.
This work is an extension of the analysis made by McGrath and Gupta [13] for
differentiating phishing/non-phishing URLs. The approach focuses on classifying
groups of URLs as algorithmically-generated or not, solely by making use of the
set of alphanumeric characters used. The authors used statistical measures such
as Kullback-Leibler divergence, Jaccard index, and Levenshtein edit distance to
measure the distance of the probability distributions of the n-grams, in order to
make a binary classification (DGA vs. Non-DGA).

In [3], Antonakakis et al. developed a bot detection system called Pleiades
which uses a combination of lexical features and host-based features to cluster
domains. The main novelty of their work is the use of Non-Existing Domains
(NXDomain) queries to detect bots and as training data. Their insight is that
most domain queries made from a bot result in non-existent domains. Given
this observation they cluster NXDomains that have similar lexical characteristics
and are queried by overlapping sets of hosts. In a second stage, the clusters are
classified in order to identify their corresponding DGA family.

In order to achieve an overall solution, Schiavoni et al. [17] proposed Phoenix,
a mechanism that makes two different classifications: a binary classification that
identifies DGA- and non-DGA-generated domains, using a combination of string
and IP-based features; and a multi-class classification that characterizes the
DGA family, and finds groups of DGA-generated domains that are representative
of the respective botnets.

With the intention of building a simple DGA classifier based on domain
names only, Mowbray and Hagen [14] proposed a DGA detection classifier based
solely on URL length distributions. The approach allows the detection of a DGA
at the end of the first time slot during which the first infected machine is used
for malicious queries. However, their approach is effective for only a limited set
of DGA families.

All methods described above rely on the extraction of predefined, human
engineered lexical features from the domain name string. Recently, several works
have proposed DGA detection models based on deep learning techniques that
learn features automatically, thereby offering the potential to bypass the human
effort of feature engineering [10,16,20,22,23]. Deep learning approaches for DGA
detection based on convolutional neural networks (CNNs) and long short term
memory networks (LSTM) achieve a predictive performance that is at par with
or better than the methods based on human defined lexical features, provided
that enough training data is available.

The DGA detection methods that we have described so far in this section all
use the domain name string itself, sometimes combined with some side informa-
tion like IP-based features. All these methods have been proposed and studied
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in the context of traditional DGA detection. Traditional DGAs produce domain
names that appear more random looking than usual benign domain names, even
to human observers. This substantial difference between the domain name strings
created by traditional DGAs vs. those created by humans is the underlying rea-
son for the success of the DGA detection methods described above. A newer
generation of DGA algorithms, the so-called Dictionary-based DGAs, attempt
to evade the traditional DGA detection methods by producing domain names
that look more similar to the ones created by humans. To this end, they con-
catenate words from a dictionary.

Since catching Dictionary-AGDs based on the domain name string itself is
challenging, it is natural to look at side information instead. An interesting app-
roach in this regard is the work of Krishnan et al. [8] who followed the insight
of Antonakakis et al. [3] that infected machines tend to generate DNS queries
that result in non-existent (NX) responses. Krishnan et al. applied sequential
hypothesis tests and focused on NX traffic patterns of individual hosts to iden-
tify infected machines. More recently, Abbink and Doerr [1] proposed to detect
DGAs based on sudden rises and declines of popularity of domain names in large
networks. Neither of these approaches uses information about the domain name
string itself, which sets it apart from the work in this paper.

Regarding the development of a classifier that can label a given domain name
in real time as benign or malicious, solely based on the domain name string
itself, there has been some initial success with deep learning approaches for
catching Dictionary-AGDs [10]. As explained in Sect. 1, and as we also observe
in Sect. 6, this appears to work well for previously seen dictionaries, but doesn’t
offer any guarantees for consistent predictive performance when the dictionary
in the malware is changed, which can be considered as an adversarial attack on
the machine learning model. We provide evidence in Sect. 6 that the WordGraph
method proposed in this paper is resilient to such kind of attack, thereby making
it the first of its kind.

Finally, we stress that all the existing methods described above are aimed at
developing classifiers to distinguish between benign and malicious domain names.
The method proposed in this paper goes beyond, by learning the underlying
word patterns present in DNS traffic, and extracting the DGA-related words
from traffic. This results in the first DGA detection method that automatically
extracts malware information from traffic in the form of malware dictionaries.
Once these dictionaries are known, it becomes straightforward to construct a
domain name classifier based on them, as explained in Sect. 4.

3 Preliminaries

In this section we present definitions that are used throughout our method
description in Sect. 4. We refer the reader to [6,9,12] for more detailed expla-
nations of these concepts. Throughout this paper, a graph G(V,E) (or G for
brevity) is defined as a set V of vertices and a set E of edges. In an undirected
graph, an edge is an unordered pair of vertices. If vertex v is one of edge e’s
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endpoints, v is called incident to e. The degree of a vertex is the number of
edges incident to it.

Definition 1. Path. Let G = (V,E) be a graph. A walk w =
(v1, e1, v2, e2, . . . , vn, en, vn+1) in G is an alternating sequence of vertices and
edges in V and E respectively so that for all i = 1, . . . , n: {vi, vi+1} = ei. A path
in G is a walk with no vertex and no edge repeated.

Definition 2. Cycle. A closed walk or cycle w′ = (v1, e1, v2, e2, . . . , vn, en, vn+1,
en+1, v1) on a graph G(V,E) is an alternating sequence of vertices and edges in
V and E such that w = (v1, e1, v2, e2, . . . , vn, en, vn+1) is a walk, and the edge
en+1 between vn+1 and v1 does not occur in w.

Definition 3. Cycle Basis. A closed walk on a graph G(V,E) is an Eulerian
subgraph if it traverses each edge in E exactly once. A cycle space of an undirected
graph is the set of its Eulerian subgraphs. A cycle basis is a minimal set of cycles
that allows every Eulerian subgraph to be expressed as a symmetric difference of
basis cycles.

Definition 4. The average shortest-path length (APSL). Let F be the set of all
pairs of nodes of a graph G in between which there is a path, then

ASPL(G) =
1

|F |
∑

(vi,vj)∈F

dist(vi, vj) (1)

where dist(vi, vj) is the number of edges on a shortest path between vi and vj.

Definition 5. A connected component G′ of a graph G is a subgraph in which
any two vertices are connected to each other by paths, and which is connected to
no additional vertices in G.

4 WordGraph Method

Let C be a set containing q domain name strings {c1, . . . , cq}. Each domain name
string consists of higher level domains (second-level domain, SLD) and a top-
level domain (TLD), separated by a dot. For example, in wikipedia.org, the SLD
is wikipedia and the TLD is org. Within C we have domains that are benign and
domains that are generated by a Dictionary-based DGA. Our goal is to detect
all the Dictionary-AGDs in C and to extract the dictionaries used to produce
these domains.

Extracting Words from Domains. The word extraction method learns words
from the set of domain name strings itself. Since Dictionary-based DGAs are
known to use words repeatedly, we define a word as a sequence of at least m
characters that appears in two or more SLDs within the set C. In the experi-
mental results section, we use m = 3. We produce a set D of words as follows:
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1. Set D = ∅
2. For every ci and cj in C, i, j ∈ {1, . . . , q}, i �= j:

Denote by li,j the largest common substring in ci and cj .
If |li,j | ≥ m, add li,j to the set D.

It is important to point out that the above word extraction algorithm is
applied to the entire set C, including both Dictionary-AGDs and legitimate
domain names. The resulting set D will therefore have many elements that are
not words from a Dictionary-based DGA. We will eliminate these words in a
subsequent phase. To illustrate the word extraction algorithm, consider the fol-
lowing domains:

facetype.com, facetime.com, bedtime.com,
faceboard.com, bedboard.com, bedding.com

The resulting set of common substrings is D = {face, time, bed, board, facet}.

Fig. 1. Differences in structure of (a) Word graph of Suppobox malware domains [7],
and (b) Word graph of Alexa (benign) domains [2]. In (a) each dark region consists of
words from a different malicious dictionary.

Word Graph Construction. We split the set of domains C into partitions
C1, . . . , Cr such that all the domains within each Ci, i ∈ {1, . . . , r} have the
same top-level domain (TLD). For each Ci we define a graph Gi as follows. The
nodes of Gi are the words from the set D that occur in at least one domain
name in Ci. Two nodes (words) of Gi are connected if they co-occur in the same
domain in Ci, i.e. if there exists at least one domain cj ∈ Ci so that these words
are both substrings of cj . The division by TLD is motivated by the fact building
separate graphs per TLD prevents noise and limit the graph size. Additionally,
based on our observations, Dictionary-based DGAs use a limited number of dif-
ferent TLDs. We can therefore expect the Dictionary-AGDs to be concentrated
in a small number of partitions.
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In order to detect malware related words in each of the graphs Gi, we exploit
the fact that subgraphs with words from malicious dictionaries present a different
structure from subgraphs with words from benign domains. To illustrate this, in
Fig. 1 we visualize the word graph Gd of a set Cd of known Dictionary-AGDs and
the word graph Gb of a set Cb of known benign domain names respectively. For
more details on how these domain names were obtained, we refer to Sect. 5.1. The
three dark regions in Fig. 1(a) each correspond to a different dictionary used by
the DGA algorithm. Note that in reality the partitions Ci, i ∈ {1, . . . , r} contain
a mixture of Dictionary-AGDs and benign domain names, meaning that the
distinction is not as clear-cut as in Fig. 1. Still there are important observations
to be made from Fig. 1 that explain the rationale of our approach for detecting
malware dictionaries in the word graphs Gi.

Our first observation is that dictionary words are less likely to have a low
degree. Each individual word from a malicious dictionary is used to form a num-
ber of different domains, by combining it with other dictionary words. Therefore,
from each Gi, we filter out all the nodes (words) with degree less than 3 (a value
experimentally determined). With a high probability, a low degree node (word)
is related to benign domains. We can also point out that word combinations
in Dictionary-AGDs are algorithmically defined. This results in a more uniform
graph structure. On the other hand, words from benign domains present less uni-
form patterns of connectivity in the word graph. To leverage this intuition we
extract the connected components of each graph Gi. We expect that dictionaries
from DGA algorithms will appear as such connected components.

Feature Vector Construction for Connected Components. Let G
(1)
i , . . . , G

(n)
i be

the connected components of word graph Gi. For each connected component
G

(j)
i , j ∈ {1, . . . , n}, we measure the following structural features (see Fig. 2):

1. Dmean: Average vertex degree of G(j)
i ;

2. Dmax: Maximum vertex degree of G(j)
i ;

3. C: Cardinality of cycle basis set of G(j)
i ;

4. CV : C/|V |, where V is the set of vertices of G(j)
i ;

5. ASPL: Average shortest-path length of G(j)
i .

Note that all steps above are done in a fully unsupervised fashion, i.e. without
knowledge which domains in C are generated by a Dictionary-based DGA and
which ones are not. We apply these preprocessing steps to the training data as
well as to batches of new domain names observed during deployment.

Graph Based Dictionary Finding. Given a set of domains CTrain, we apply all
the previous steps to CTrain and obtain all the connected components of all the
graphs Gi derived from CTrain. We manually label every connected component
in every graph Gi as DGA/non-DGA (indicated as True/False in Fig. 2). Next
we train a decision tree over the training dataset of labeled feature vectors.
The decision tree model is later used for classifying new vectors (connected
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ID Dmean Dmax C CV ASPL Label

ID1 7.16 16.0 63 2.62 1.84 True

ID2 6.91 16.0 60 2.50 1.86 True

… … … … … …

IDN 3.54 80.7 20 1.7 3.78 False

Fig. 2. In order to classify word graph components as DGA/non-DGA, each graph
component is represented as a vector of structural features. Each description vector is
part of a dataset that describes the overall word graph.

components) without human intervention, even if these connected components
stem from word graphs that originate from a completely different dictionary.
Each connected component that is classified as DGA by the decision tree is
subsequently converted into a dictionary in a straightforward manner, i.e. by
treating each node of the connected component as a word in the dictionary. An
overview of the WordGraph dictionary finding phase is presented in Fig. 3.

Fig. 3. An overview of the proposed WordGraph method. In 1 a dataset containing
malicious and benign domains is analyzed, and frequent words are learned from the
dataset. In 2 a word graph is built, and the structure of each graph component is
analyzed to detect the malware dictionary 3.

Classification of Domain Names. From the previous steps, we obtain a set of
detected dictionaries, each one associated with a TLD. We flag a domain as
malicious if it has at least two words from a same discovered dictionary, and it
has the same TLD as the dictionary.



304 M. Pereira et al.

5 Experimental Methodology

We follow a similar approach as [10] and create an experimental setting with
labeled ground truth data obtained from the DGArchive [15], which is a web
database for DGA domains from various families, and from the Alexa top 1
million domains (a snapshot from 2016) [2]. The main goal of our experiments
with labeled data is to compare our methodology with state-of-the-art techniques
for DGA classification: classifiers based on human engineered lexical features,
and classifiers based on deep neural networks. Moreover, we want to observe
how robust these methods are to changes in the dictionary used for generating
malicious domains. This is a question that has not been explored in the literature,
to the best of our knowledge. Our method is based solely on structural features
representing how the words from the dictionary are put together but not on the
specific words themselves. Therefore, we expect our method to be robust against
changes in the dictionary.

In more details, we analyze the performance of our WordGraph method and
compare with classification models based on Random Forests and Deep Learning
methods in three different settings:

– Training and testing datasets containing Dictionary-AGDs generated from
the same dictionary. This experimental setting has been used in previous
works [10,20,23].

– Testing datasets containing domains formed from dictionaries that are dis-
tinct from the dictionaries used to generate the domains in the training
dataset. We want to evaluate the robustness of all models in a scenario where
a botnet administrator wants to mislead a trained detection model by updat-
ing the dictionary in the malware code. This question has not been previously
addressed in the literature.

– Small number of training samples. How well does each method perform when
only a very small number of training samples is available?

We also evaluate the performance of the proposed WordGraph method when
facing real traffic data. Many of the previous works are evaluated only in sce-
narios of synthetically created datasets. We show that the WordGraph model
achieves similar performance when used for detecting Dictionary-AGDs in real
DNS traffic, and moreover, it is able to detect new varieties of dictionaries and
malware seeds due to its nature of pattern discovery.

5.1 Datasets

The evaluation of the proposed approach is conducted on datasets with ground
truth labels and on real traffic unlabeled data.

Ground Truth Data. The ground truth data contains 80,000 benign domain
names randomly selected from the Alexa top 1M domains [2]. In our experi-
ments, we 50,000 out of the 80,000 Alexa domain names for training, while the
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Table 1. Description of the datasets used in two experiments: when the train and
test data are both composed of AGDs generated from the same dictionaries (Test-
Familiar), and when the train and test data are composed of AGDs generated from
different dictionaries (Test-Unfamiliar).

Dataset Train Test-Familiar Test-Unfamiliar

Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3

Round 1 50K 20,768 20,768 0 30K 12K 12K 0 30K 0 0 32,768

Round 2 50K 0 20,768 20,768 30K 0 12K 12K 30K 32,768 0 0

Round 3 50K 20,768 0 20,768 30K 12K 0 12K 30K 0 32,768 0

rest is reserved for testing. In addition, we use 3 × 32, 768 AGDs obtained from
the Dictionary-based DGA Suppobox [15], corresponding to three different dic-
tionaries or wordlists, referred to as WL1, WL2, and WL3. How we split this
malware data into portions for training and testing varies with the experiment.

Tables 1 provides an overview of the setup of two experiments involving the
ground truth data.

– Test-Familiar: The test data consists of Dictionary-AGDs generated with the
same dictionaries as the AGDs in the training data;

– Test-Unfamiliar: The test data consists of Dictionary-AGDs that were gener-
ated with a dictionary that was not known or available during training time.
This experimental setting is intended to show that the model can be trained
on a specific family and detect a distinct family, unfamiliar to the model.

Both experiments each consist of three rounds, corresponding to which wordlist
is left out when training. For instance, as can be observed in Table 1, in round 1,
Dictionary-AGDs generated with wordlist 3 do not appear in the training data.

Table 2. Description of imbalanced datasets used for testing and training. The imbal-
ance present in this data is very common in real traffic, where only a very small fraction
of the data corresponds to malicious activity.

Dataset Train Test-Imbalanced

Alexa WL1 WL2 WL3 Alexa WL1 WL2 WL3

Round 1 50,000 169 169 0 10,000 0 0 169

Round 2 50,000 0 169 169 10,000 169 0 0

Round 3 50,000 169 0 169 10,000 0 169 0

In an additional experiment, we measure the performance of all DGA domain
detection methods in a scenario where very few samples of AGDs are available for
training (see Table 2). The 507 AGDs involved in this experiment were selected
from DGArchive; they were valid for one day only (Dec 1, 2016).
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Real Traffic Data. The data used in our real traffic experiments consists of a
real time stream of passive analysis of DNS traffic, as in [5]. The traffic stems
from approximately 10 billion DNS queries per day collected from multiple
ISPs (Internet Service Providers), schools and businesses distributed all over
the world. We collected 8 days of traffic from December 2016 to perform our
experiments, from Dec 8 to Dec 15 (see Table 3). From the data, we keep only A
and AAAA type DNS queries (i.e. IPv4 and IPv6 address records), and exclude
all domains that receive less than 5 queries in a day.

Table 3. DNS traffic data description. We collected 8 days of real traffic data to
measure the performance of our proposed WordGraph model. Days 1, 2 and 3 are used
for model training, and days 4 through 8 are used for model testing.

Dataset All domains Known AGDs (DGArchive)

Domains Resolved NX Resolved NX

Day 01 4,886,247 4,433,248 454,003 47 593

Day 02 4,922,618 4,532,932 390,735 67 673

Day 03 4,906,309 4,477,049 430,239 62 608

Day 04 4,350,224 3,981,514 369,673 87 662

Day 05 5,898,723 5,380,945 518,886 82 665

Day 06 5,425,651 4,963,786 463,584 73 680

Day 07 5,631,353 5,098,121 534,572 83 591

Day 08 5,254,954 4,747,867 508,319 95 635

The data stream consists of legitimate domains and malicious domains. All
domains from this stream that are known to be Dictionary-based DGAs accord-
ing to DGArchive [15] are marked as such. Although the number of unique
Dictionary-based AGDs found in the real traffic data by cross-checking it against
DGArchive is small, the total number of queries for such domains is tens of thou-
sands per day. Furthermore, as will become clear in Sect. 6.2, the real traffic data
contains more AGDs than those known in DGArchive.

5.2 Classification Models: Random Forest and Deep Learning

As stated in Sect. 1, the existing state-of-the-art approaches for classifying
domain names as benign of malicious are either based on training a machine
learning model with human defined lexical features that can be extracted from
the domain name string, or on training a deep neural network that learns the
features by itself. To show that the method that we propose in this paper outper-
forms the state-of-the-art, we include an experimental comparison with each kind
of the existing approaches. For the approach based on human defined features,
we train random forests (RFs) based on lexical features, extracted from each
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domain name string (see e.g. [24,25]). Within supervised learning, tree ensemble
methods – such as random forests – are among the most common algorithms of
choice for data scientists because of their general applicability and their state-of-
the-art performance. Regarding the deep learning approach, a recent study [23]
found no significant difference in predictive accuracy between recently proposed
convolutional [16] and recurrent neural networks [10,20] for the task of DGA
detection, while the recurrent neural networks have a substantially higher train-
ing time. In our comparative overview we therefore use a convolutional neural
network (CNN) architecture as in [16].

Data Preprocessing. The strings that we give as input to all classifiers consist of
a second level domain (SLD) and a top level domain (TLD), separated by a dot,
as in e.g. wikipedia.org. As input to the CNN approach, we set the maximum
length at 75 characters. The SLD label and the TLD label can in theory each be
up to 63 characters long each. In practice they are typically shorter. If needed,
we truncate domain names by removing characters from the end of the SLD
until the desired length of 75 characters is reached. For domains whose length
is less than 75, for the CNN approach, we pad with zeros on the left because
the implementation of the deep neural network expects a fixed length input. For
the RF and WordGraph approaches we do not do any padding. We convert each
domain name string to lower case, since domain names are case insensitive.

Random Forest (RF). In each experiment, we train a random forest (RF) on the
following 11 commonly used features, extracted from each domain name string:
ent (normalized entropy of characters); nl2 (median of 2-gram); nl3 (median
of 3-gram); naz (symbol character ratio); hex (hex character ratio); vwl (vowel
character ratio); len (domain label length); gni (gini index of characters); cer
(classification error of characters); tld (top level domain hash); dgt (first char-
acter digit). Each trained random forest consists of 100 trees. We refer to [22]
for a detailed description of each of these features.

Deep Learning (CNN). In addition, in each experiment, following [16], we train
a convolutional neural network that takes the raw domain name string as input.
The neural network consists of an embedding layer, followed by a convolutional
layer, two dense hidden layers, and an output layer. The role of the embedding
layer is to learn to represent each character that can occur in a domain name by
a 128-dimensional numerical vector, different from the original ASCII encoding.
The embedding maps semantically similar characters to similar vectors, where
the notion of similarity is implicitly derived (learned) based on the classification
task at hand. The embedding layer is followed by a convolutional layer with 1024
filters, namely 256 filters for each of the sizes 2, 3, 4, and 5. During training of
the network, each filter automatically learns which pattern it should look for. In
this way, each of the filters learns to detect the soft presence of an interesting
soft n-gram (with n = 2, 3, 4, 5). For each filter, the outcome of the detection
phase is aggregated over the entire domain name string with the help of a pooling
step. That means that the trained network is detecting the presence or absence
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of patterns in the domain names, without retaining any information on where
exactly in the domain name string these patterns occur. The output of the
convolutional layer is consumed by two dense hidden layers, each with 1024
nodes, before reaching a single node output layer with sigmoid activation. In all
experiments, we trained the deep neural networks for 20 epochs, with batch size
100 and learning rate 0.0001.

6 Results

We report the results of all methods in terms of precision (positive predictive
value, PPV), recall (true positive rate, TPR) and false positive rate (FPR). As
usual, PPV = TP/(TP+FP), TPR = TP/(TP+FN) and FPR = FP/(FP+TN)
where TP, FP, TN, and FN are the number of true positives, false positives, true
negatives, and false negatives respectively. Blocking legitimate traffic is highly
undesirable, therefore a low false positive rate is very important in deployed
DGA detection systems. For parameter tuning purposes, in each experiment, we
systematically split 10% of the training data off as validation data for the RF
and CNN methods.

6.1 Experimental Results: Ground Truth Data

Figure 4 presents an overview of the results achieved by all models in the three
different experimental settings with ground truth data described in Sect. 5.1. A
first important result is that, across the board, the WordGraph method achieves
a perfect TPR of 1, meaning that all Dictionary-AGDs are detected. To allow
for a fair comparison, we selected classification thresholds for which the RF and
CNN methods also achieve a TPR of 1. It is common for such a high TPR to be
accompanied by a rise in FPR and a drop in PPV. As can be seen in Fig. 4, this
is most noticeable for the RF method, and, to a somewhat lesser extent for the
CNN method. The WordGraph method on the other hand is barely impacted at
all: it substantially outperforms the CNN and RF methods in all experiments.

Test-Familiar Experiment. Detailed results for all methods in the “Test =
Familiar” experiment are presented in Table 4. In this experiment, the train
and test data contain AGDs generated from the same set of dictionaries. This
experimental setup gives an advantage to classification models such as CNNs and
Random Forests, since it allows the classification model to ‘learn’ characteristics
of the words from the dictionaries.

A first observation from Table 4 is that the RF method does not do well at
all. This is as expected: the lexical features extracted from the domain name
strings to train the RFs have been designed to detect traditional DGAs, and
Dictionary-based DGAs have been introduced with the exact purpose of evading
such detection mechanisms. This is also apparent from the density plots of the
features in Fig. 5: the feature value distributions for the AGDs from WL1, WL2,
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Fig. 4. Overview of FPR (lower is better) and PPV (higher is better) for all methods
across the experimental setups on the ground truth data, for a fixed TPR=1. The
WordGraph (WG) approach consistently achieves a very low FPR, of the order of
magnitude of 10−4, two order of magnitudes lower than the best FPR achieved by the
CNN model.

and WL3 are very similar to those of the Alexa domain names, which explains
the poor performance of the RF models that are based on these features.

The WordGraph method on the other hand works extremely well. It detects
all AGDs in the test data in all rounds, while only misclassifying a very small
number of benign domain names as malicious (namely 8/30,000 in round 1;
4/30,000 in round 2; and 1/30,000 in round 3). Finally, it is worth to call out
that the CNN models have a very good performance as well. This is likely due
to the fact that, as explained in Sect. 5.2 the CNN neural networks learn to
detect the presence of interesting soft n-grams (with n = 2, 3, 4, 5), so, in a
sense, they can memorize the dictionaries. It is interesting to point out that the
CNN method performs consistently well throughout the rounds, i.e. given the
fact that the dictionary was seen before by the model, there is no dictionary that
is easier to ‘learn’.

Table 4. Results of random forest (RF), deep learning (CNN), and our proposed
WordGraph approach (WG) on balanced ground truth data, for a fixed TPR=1. The
AGDs in the training and test data are generated from the same dictionaries (“Test-
Familiar”).

Method Round 1 Round 2 Round 3

FPR PPV FPR PPV FPR PPV

WordGraph 2.67 · 10−4 0.999 1.33 · 10−4 0.999 3.33 · 10−5 0.999

CNN 0.018 0.981 0.015 0.982 0.014 0.983

RF 1.0 0.444 1.0 0.444 1.0 0.444
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Fig. 5. Kernel density plot of the features extracted for the RF experiments where
the x-axis represents the feature value and the area under the curve represents the
probability of having a feature in that range of x values.

Test-Unfamiliar Experiment. In the “Test-Unfamiliar” experiment, the trained
models are tested on AGDs generated from dictionaries that were not seen dur-
ing training. As Table 5 shows, the WordGraph method has no problem at all
detecting these new AGDs across all rounds, while, as expected, the RF method
continues to struggle. Interestingly enough, unlike in the previous experimental
setting, the performance of the CNN model is no longer consistently good across
all rounds. In round 1, the CNN model performs significantly worse when com-
pared to rounds 2 and 3, having a FPR higher by one order of magnitude. In
round 1 the model is trained on WL1 and WL2 DGA domains, while the testing
data contains WL3 AGDs. A possible explanation for the poor performance of
the CNN method in round 1 is that, as observed in Fig. 5 for the ‘len’ feature,
the AGDs in WL3 tend to be longer than those in WL1 and WL2, leading the
CNN to misclassify the AGDs from WL3 as malicious because it has never seen
such long malicious domain names during training.

Table 5. Results of all methods on balanced ground truth data, for a fixed TPR =
1. The AGDs in the test data are generated from dictionaries that were not available
during training time (“Test-Unfamiliar”).

Method Round 1 Round 2 Round 3

FPR PPV FPR PPV FPR PPV

WordGraph 0.0 1.0 6.67 · 10−5 0.999 1.33 · 10−4 0.999

CNN 0.589 0.650 0.084 0.928 0.050 0.956

RF 1.0 0.522 1.0 0.522 0.723 0.602
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Results on Imbalanced Ground Truth Data. The results for the models trained
and tested on the imbalanced ground truth data are presented in Table 6. The
trend we observed before persists: the WordGraph approach perfectly detects
all Dictionary-AGDs in all rounds without misclassifying even a single benign
domain name, the CNN method sometimes does well and sometimes not, and
the RF method does not do well at all.

Table 6. Results of all methods on imbalanced ground truth data, for a fixed TPR=1,
the three rounds of experiment are listed in Table 2 (“Test-Imbalanced”).

Method Round 1 Round 2 Round 3

FPR PPV FPR PPV FPR PPV

WordGraph 0.0 1.0 0.0 1.0 0.0 1.0

CNN 0.718 0.230 0.127 0.117 0.039 0.300

RF 1.0 0.017 1.0 0.017 1.0 0.017

Overall, the WordGraph method clearly outperforms the CNN and RF meth-
ods. It is able to ‘find’ dictionaries in data through graph analysis, even when
only a small sample is available. The imbalanced experiment from Table 6 illus-
trates a scenario where only one infected machine is present in a network. After
one day of Dictionary-AGD DNS requests, the WordGraph approach is able to
extract the malicious dictionary from traffic. Out of 10,169 domains in each test
dataset, only 169 domains are malicious, and the WordGraph method is able
to identify 100% of the words from the malicious dictionary, with FPR=0.0 in
every round of this experiment.

6.2 Experimental Results: Real DNS Traffic

To study the performance of the WordGraph method in a realistic scenario, we
evaluate it on the real traffic data from Table 3. To further reduce the dataset
size, we used solely NX Traffic since most of AGD queries result in Non-Existent
Domain (NXDomain) responses. This approach has been consistently used in
the literature [3,8].

The first three days in the real traffic dataset were used for training the graph
component classifier as described in Sect. 4. The Dictionary-based AGDs in the
dataset were labeled using DGA archive [15] as a source of ground truth labels.
The number of Dictionary-based AGDs for each day is described in Table 3. We
then evaluated the results of our method on the remaining five days of traffic.

Overall, we identified 81 dictionaries in five days of traffic. Fifteen of these dis-
covered dictionaries are present in DGArchive. We manually verified the remain-
ing dictionaries and confirmed they were all malicious. Since DGArchive has the
complete dictionary for the 15 cases (by reverse engineering the malware) we
managed to verify that our method recovered the complete dictionary in this
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situation. We identified several dictionaries related to malware download hosts,
such as apartonly.gq, oftenthere.ga and quitethough.cf. We also discovered vari-
ations of the malware family Suppobox, where the generated domains in this
variation present TLD “.ru”.

Once we obtained the dictionaries, we also flagged the domains that were
generated by these words in the resolved DNS traffic, giving information on
active C&C (Command and Control) centers.

7 Discussion and Limitations

Computational Complexity. The most expensive part of our algorithm is the
graph building with complexity O(n2), where n is the number of words extracted
from domains. We apply our algorithm only to NXDomains (since DGAs are
mostly non-resolved) on a daily basis. The datasets have about 5 millions
domains, where about 500,000 are NXdomains. The size of the graphs are about
60,000 nodes, which corresponds to the number of extracted words from traf-
fic. The entire algorithm runs in about 30 min, considering word extraction and
graph analysis phases. All experiments were run on a machine with an 2.3 GHz
Intel Core i5 processor and a maximum of 16GB of allowed memory consump-
tion.

Limitations. (1) Our WordGraph method is very successful in extracting dic-
tionaries from AGDs. This is the case for all variations of the Suppobox family,
and other unidentified families that we were able to identify in real traffic. The
method leverages the fact that such families uses limited dictionaries and the
reuse of dictionary words is frequent. We suggest as future work the investigation
of Dictionary-based AGDs that utilizes a very large dictionary and very low word
reuse rate. (2) Additionally, there are malware families, such as Matsnu, that
use a DGA as a secondary resource for C&C communication, with hardcoded
domains being the primary method. Such a malware family typically not only
generates a very small number of DGA domains daily [18], but those domains are
only queried in the case that all domains from the hardcoded list receive an NX
response. Matsnu malware for instance generates only four DGA domains per
day. In our real traffic dataset, we did not encounter any occurrences of Matsnu
AGDs. Preliminary results on ground truth data indicate that the WordGraph
method would need more than one month of observation to be able to recover the
dictionary. Using one month of Matsnu AGDs from DGAarchive, we were able to
extract from 590 domains a partial dictionary of 82 words, leading to the detec-
tion of 273 domains. (3) Once the dictionaries are extracted, we detect malicious
domains by checking if they have two or more words from the extracted dictio-
naries. False positive rates were at most 10−4 in all the performed experiments
(with real traffic and synthetic data). An adversary could, in principle, try to
increase the false positive rate by using dictionaries with words commonly used
in legitimate domains. However, this approach has a drawback for the adversary
since several of the generated domains will already be registered and thus useless
for the bot-master.
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8 Conclusion

We proposed a novel WordGraph method for detection of Dictionary-based
DGAs in DNS traffic. The WordGraph method consists of two main phases:
(1) malicious dictionary extraction from traffic observations and (2) detection of
Dictionary-AGDs present in traffic. We evaluated WordGraph on ground truth
data consisting of Dictionary-AGDs from DGArchive and benign domains from
Alexa. Our experiments show that WordGraph consistently outperforms random
forests based on human defined lexical features as well as deep learning models
that take the raw domain name string as input and learn the features themselves.
In particular, unlike these existing state-of-the-art methods, WordGraph detects
(nearly) all Dictionary-AGDs even when the dictionary used to generate them
is changed. Furthermore, when we analyzed 5 days of real traffic from multiple
ISPs with WordGraph, we were able to detect the presence of Dictionary-AGDs
generated by known as well as by previously unknown malware, and we discov-
ered domains related to C&C proxies that received thousands of requests. Due
to its nature of discovering, through a graph perspective, malicious patterns of
words in traffic, the WordGraph method guarantees a very low false positive
rate, presenting itself as a DGA detection system with practical relevance.
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Abstract. Several security applications rely on monitoring network
traffic, which is increasingly becoming encrypted. In this work, we pro-
pose a pattern language to describe packet trains for the purpose of
fine-grained identification of application-level events in encrypted net-
work traffic, and demonstrate its expressiveness with case studies for
distinguishing Messaging, Voice, and Video events in Facebook, Skype,
Viber, and WhatsApp network traffic. We provide an efficient implemen-
tation of this language, and evaluate its performance by integrating it
into our proprietary DPI system. Finally, we demonstrate that the pro-
posed pattern language can be mined from traffic samples automatically,
minimizing the otherwise high ruleset maintenance burden.

Keywords: Traffic analysis · OTT applications · Network monitoring

1 Introduction

Over the years, the adoption of network traffic encryption has been continually
growing. Mobile applications are using the SSL/TLS protocols to secure their
communications, and some implement end-to-end encryption to protect the pri-
vacy of their users. Studies have shown that more than 60% of mobile application
traffic is now using SSL/TLS [25].

Internet traffic analysis is commonly based on techniques like deep packet
inspection (DPI). The core of traditional DPI implementations is based on pat-
tern matching, that enables searching for specific strings or regular expressions
inside the packet content. Applications of DPI include but are not limited to fire-
walls, intrusion detection and prevention systems, antivirus systems, L7 filtering
and packet forwarding [33–35]. With the widespread adoption of network encryp-
tion, DPI tools that rely on plain text pattern matching become less effective,
demanding the development of more sophisticated techniques.

In this work, we focus exclusively on analysing encrypted traffic generated
by so called Over-The-Top (OTT) mobile applications—one of the most secu-
rity critical (exfiltration, policy enforcement) sources of traffic. Traditional DPI
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implementations can only extract very coarse-grained information for the major-
ity of such traffic. Its analysis, however, is an integral operation for many net-
work systems and needs to be improved to offer detailed traffic metrics for OTT
applications. To this end, we implement a system that is able to extract essen-
tial information from encrypted traffic generated by mobile applications. Packets
contain metadata usable even with encrypted traffic, such as packet timestamps
and sizes—information that can be extracted from the packet headers or timed.
In this work we focus on using patterns of packet size trains to identify OTT
application events such as messaging, voice and video calls over encrypted traf-
fic. We provide a full implementation as part of a DPI engine supporting rule-
sets with packet train patterns—matched using an automaton consuming packet
sizes—on top of traditional substring and port number patterns, to efficiently
match and report events in encrypted network traffic. Figure 1 shows a high-level
overview of our approach.

Network Flow 
Generation 

- Flow-to-Process 
matching

- Tra c trace
- Netstat log

Signatures

Application 
Event 

Reporting

Automaton

DPI Engine

Fig. 1. High-level overview: Traffic samples are collected offline and then signatures
are created either manually or using data mining. The signatures are fed to our DPI
engine and compiled into an automaton for execution on live traffic keeping only usage
statistics.

In this work, we make the following contributions:

– We discuss a practical methodology to collect, label, and analyse encrypted
traffic generated by popular mobile OTT applications (e.g. Skype, WhatsApp,
Facebook Messenger and Viber) to identify usage events such as messaging,
voice and video calls

– We propose a pattern language to identify such events that is suitable for DPI
systems, yet expressive enough to describe packet metadata patterns, and we
confirm this experimentally

– We discuss a high-performance implementation of our pattern language, and
integrate our implementation with a DPI engine to evaluate its performance
against high-volume real network traffic

– We demonstrate that our pattern language is amenable to automated mining
from ground truth samples.

2 Encrypted Traffic Pattern Language

During our analyses, we observed that specific sequences of packet payload sizes
reliably signify discrete events inside an application. In this section we describe
our proposed pattern language to express such patterns in network traffic.



OTTer: A Scalable High-Resolution Encrypted Traffic Identification Engine 317

2.1 Design Goals

We aim for an expressive yet simple enough language to facilitate the auto-
mated mining of rules. While offline mining techniques can be involved during
the construction of the rules, we need to support very efficient and low-latency
evaluation of the rules at runtime on live traffic for use in a production quality
DPI system. Another consideration for a practical system is to minimize the
amount of state information that a DPI engine needs to maintain per flow in
order to evaluate patterns across packets of the same flow. These requirements
led us to a simple regex-inspired formulation applied on trains of observed packet
sizes. The advantage of our approach is that it can be implemented with an
automaton without the need to retain previously observed packet sizes to sup-
port backtracking, and that it is expressive enough to capture the traffic features
of interest.

2.2 Pattern Language Specification

Table 1 displays some examples of rules that we extracted during our analy-
sis phase. The proposed pattern language uses a regex-inspired syntax, and is
easy to follow, since it resembles standard regular expressions. When a network
flow contains such sequences of these pre-defined payload packet sizes, expressed
through a rule and in conjunction with any other traffic characteristics such as
port numbers or substrings, then the application event is reported. For instance,
when a captured network flow contains a series of two packets with payload sizes
3 bytes and 52 bytes respectively, then our system reports the existence of an
outgoing chat message.

Table 1. Examples of application event rules.

Event Application Rule

Voice call WhatsApp 3{1,3}, 56-60{1,3}, 400-800

Video call WhatsApp 3{1,3}, 56-60{1,3}, 3{1,3}, 117 OR
3{1,3}, 56-60{1,3}, 3{1,3}, 144

Chat message WhatsApp 3{1,3}, 52

Informally, a rule expression consists of one or more comma-separated pieces.
Each piece is an atom with an optional bound. The atom is either a single number
or a range of numbers, where number is a positive integer. The bound specifies
an exact or relaxed (with min and max inclusive limits) number of repetitions
of the atom. A formal definition can be found in Table 2.

Our proposal can be extended for additional expressiveness, for example by
adding other regular expression constructs such as groups or disjunctions. In this
work we kept the pattern language complexity to a minimum to avoid compli-
cating the mining process. Disjunction, in particular, is handled by providing a
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disjunctive set of rules, instead of extending the language syntax with an embed-
ded disjunctive operator. The downside is that a larger set of patterns may be
required. We did not find this to be a problem in practice.

Table 2. Rule language specification; number is a positive integer.

expr ::= piece | piece, expr

piece ::= atom | atom{bound}

atom ::= number | number-number

bound ::= number | number,number

In order to deal with retransmitted TCP packets we could either (i) nor-
malize traffic before applying the rule by discarding such packets or (ii) form
the expression to handle the retransmitted packets, accordingly (like the rules
in Table 1). The displayed expressions are able to handle retransmitted packets
having a repeat range {1,3}, where 3 is the upper bound (the maximum num-
ber of retransmissions). However, handling retransmissions through the expres-
sion might be risky. Having retransmitted packets is an unpredictable network
behaviour, so we might lose an application event reporting solely due to a not
properly defined upper bound in the repeat range of an expression. Thus, we
choose to handle retransmitted TCP packets by discarding them in a packet
filtering phase.

3 Effectiveness Evaluation

In this section we demonstrate the expressiveness of the proposed pattern lan-
guage by manually generating pattern signatures for a set of application events
and evaluating their accuracy. We used 25% (randomly chosen) of the ground
truth samples as a reference for the human analyst, and the remaining 75% for
the accuracy evaluation (Sect. 3.3).

3.1 Flow Sample Collection Mechanism

We divide the mobile application network traffic into flows. A network flow is
represented by the standard 5-tuple containing (i) the source IP address, (ii) the
source port number, (iii) the destination IP address, (iv) the destination port
number and (v) the protocol. A network flow then, consists of the packets match-
ing a certain 5-tuple. To categorise the flows generated by different mobile appli-
cations, we need further information. This information should include either the
domain, the process name or the process id that relates to the specific net-
work connection. There are multiple ways to achieve this. For instance, other
approaches, like [12], do domain filtering, leveraging the WHOIS protocol. We
chose to employ the process id in order to obtain the required information about
each network flow. In the following section we present how we implemented the
network flow filtering.
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Flow-to-Process Matching. Netstat [3] is a command-line network utility
that can display among others, information about network connections. Having
superuser privileges, someone can use netstat to determine the process id (PID)
and process name of the process that owns the connection socket. In Android
devices, netstat is available via the BusyBox application [2].

To collect all necessary information about each connection established dur-
ing the network traffic trace collection, we continually invoke netstat and store
the output to a file that will be later used for the flow-to-process characterisa-
tion phase (flow/process correlation), during which flows are assigned to their
process and (and the corresponding PID), generating a 7-tuple, with the follow-
ing format: {process name, process id, source IP address, source port number,
destination IP address, destination port number, protocol}.

Packet Filtering. In order for the TCP protocol to deliver data reliably, it
offers many mechanisms to detect and avoid unpredictable network behaviour,
like packet loss, duplication or reordering. In the proposed methodology, we
choose to discard packets that do not offer substantial information to the flow
(e.g. retransmitted packets). In our proposed method, we focus entirely on han-
dling and processing packet metadata. This means that we do not take into
consideration the packet payload, since we assume that it is encrypted. The
information that we handle lays solely on packet metadata, such as the packet
direction and payload size. Thus, packets lacking payload do not provide any
valuable information to our method. To this end, we filter out ACK-flagged
packets1.

3.2 Sample Traffic Generation

To avoid extracting overly specific application event patterns, we analysed traffic
traces generated during realistic usage of such applications. In addition, we used
devices on both fixed and mobile networks.

Device Variations. To ensure variation, we make use of different devices,
vendors, Android and kernel versions. We used four different Android mobile
devices, a Sony Xperia D5503 (Android v.5.1.1, kernel v.3.4.0-gd26777b), a
Xiaomi Redmi 3s (Android v.6.0.1, kernel v.3.18.20-g76f906f), a Xiaomi MI Note
LTE (Android v.6.0.1, kernel v.3.4.0-gf4b741d), and finally a Xiaomi Redmi
Note 3 Pro (Android v.6.0.1, kernel v.3.10.84-gda78349). In order to obtain full
functionality and privileges, we used exclusively rooted Android devices, with
developer options enabled. Thus, we were able to install the BusyBox application
from Google Play store and take advantage of Unix utilities provided through
a single executable [2], as well as the Android tcpdump tool to locally capture
network traffic on the device [1]. In addition, we used Android Debug Bridge

1 We discard the TCP packets with only the ACK flag set. PUSH/ACK packets are
kept.
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(ADB) version 1.0.39 and Wireshark 2.4.2. Due to toolset limitations, we did
not include Apple devices in our study.

OTT Application Events. We chose four of the most widely used OTT
Android applications to evaluate our methodology: (i) WhatsApp, (ii) Skype,
(iii) Facebook Messenger and (iv) Viber2. Since these applications are mainly
used for communication purposes, we focused on identifying (i) outgoing chat
messages, (ii) voice and (iii) video calls through the encrypted network traffic.
Of course, our work can be extended to support other OTT application events,
such as media exchange (e.g. photo sharing), as well as iOS devices.

Overall, we collected a set of over 350 samples3. Each individual sample
simulates either an exchange of an arbitrary number of outgoing messages (mes-
saging), or a single voice or video call using one of the aforementioned OTT
applications. Then, for each sample we collected (i) a network packet trace,
(ii) a file with the information of every TCP socket that was open during the
traffic capture and the process information that created it, (iii) a screen record-
ing and (iv) a file with the device’s system logs reported by the Android ADB
tool, named logcat. Each sample contains only a single application event type
(e.g. sample0: Skype/messaging).

To validate, we compare the detected application events to the device’s sys-
tem logs that are included in the logcat output and screen recordings. Using
the logcat file and the screen recording we are able to cross-check the reported
events with the actual ones. Logcat is a command-line tool that dumps a log of
the device’s system messages. We extracted information such as audio hardware
on/off, camera on/off and incoming chat messages. Unfortunately, we were not
able to identify a system event that matches an outgoing chat message. Thus,
we had to use the screen recordings to inspect the actual time of an outgoing
chat message departure, as well as the quantity of the outgoing messages.

3.3 Accuracy Evaluation

Hit Rate. Table 3 shows the resulting true positive (TP) rates. Each
sample contains only a single within-application event type (e.g. sample0:
Skype/messaging, sample1: WhatsApp/voice). When a signature reports a
within-application event (messaging: 0 or 1, voice: 0 or 1, video: 0 or 1), then
we compare it to the actual event of the application. If the event is correctly
reported, then the TP counter is increased. Otherwise, we have a false positive
(FP).

The TP rate of our methodology individually for each event is (i) 93% for out-
going chat message, (ii) 86% for voice and (iii) 84% for video calls. The slightly

2 Through the dataset collection we make use of different application versions per
application. This allows us to verify the generalisation ability and scalability of our
methodology.

3 These samples were generated using dummy accounts and non-personal mobile
devices.
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lower TP rate for voice and video calls, is due to a trade-off with FPs4. We dis-
covered that, for all applications under investigation except Viber, video-related
flows included voice-related flows as well, and, thus, a video event includes also a
voice event. On the other hand, our signatures for Viber voice and video events
do not follow this trend as they are not complementary to each other. Thus, we
can reach the interesting conclusion, that the core implementation of the Viber
application is different from all the other applications under investigation.

Table 3. TP rates of our methodology. The percentages presented are extracted
through the comparison of the results of our methodology to the actual ground-truth
dataset.

Application Messaging Voice Video

Facebook messenger 83% 96% 96%

Skype 88% 100% 75%

Viber 100% 54% 88%

WhatsApp 100% 92% 75%

False Discovery Rate. In addition to true positives, another metric necessary
for the evaluation of our methodology is the false positive rate for each appli-
cation event. Reporting mobile application events using only encrypted network
traffic can be considered risky since no easy cross-validation can be made. It is
not only significant to correctly report the existence of events, but also to not
mistakenly report absent events as existent. Table 4 shows the false discovery
rates of event reporting using our signatures5. False discovery rates are always
below 8%.

The choice of signature can significantly affect the trade-off between true
positive and false discovery rates. Having a relaxed signature definition leads to
almost intact TP rates, with the cost of high false positives. Similarly, a more
strict signature definition gives satisfactory TP rates, keeping the false positives
low. We settled on signature definitions that result in hit rates over 84% and
false discovery rates below 8%.

Granularity of Messaging Event Reporting. Using our signatures for mes-
saging reporting we achieve a total hit rate of 93%—again, compared to our
ground truth data collection. This rate covers the correct identification of the
existence of messaging events (i.e. outgoing text messages) within a mobile OTT
application. Moving to a more fine-grained granularity, we are able not only to
show that there is messaging activity within a network traffic trace, but also to

4 In the following section, we discuss about how the signature formation affects the
balance between TP and FP rates.

5 False discovery rate can be calculated as FDR = FP/(TP + FP ).
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Table 4. This table presents the false discovery rates of our methodology. The “Mes-
saging FDR” column shows the percentages of erroneous messaging reporting in voice
or video samples. Respectively, “Voice/video FDR” column shows the percentages of
erroneous voice/video reporting in messaging samples.

Application Messaging FDR Voice/video FDR

Facebook messenger 0% 1%

Skype 5.5% 4.2%

Viber 1% 2%

WhatsApp 8% 0.6%

accurately report when an outgoing text message is sent, and count the number
of text messages sent during a messaging session, something we demonstrate in
Sect. 5.

4 Implementation and Performance

In this section, we discuss and evaluate an implementation of our proposed pat-
tern language.

4.1 Efficient Automaton

We implemented a data structure to efficiently match packet trains in a stream-
ing fashion against sets of patterns. It is inspired by string searching algorithms
such as Aho-Corasick [5] but instead of characters, it operates on packet sizes
represented as 16-bit integers.

The Aho-Corasick algorithm is a string searching algorithm that locates ele-
ments of a finite set of strings within an input text. It matches all strings simul-
taneously, so its complexity does not depend on the size of the searched set. It
works by constructing an automaton executing transitions for each character of
the input text. To adapt the algorithm for matching packet trains, we replaced
the 8-bit characters with 16-bit packet sizes.

The algorithm constructs a finite state machine that resembles a trie with
additional “failure” links between the internal nodes. These failure links are
followed when there is no other matching transition and allow for fast transitions
to other branches of the trie that share a common prefix, without the need for
backtracking using earlier inputs. This allows for interleaving a large number
of concurrent searches, such as in the case of network connections, because the
state of the matcher can be preserved across input data observed at different
points in time by storing a pointer to the current state of the automaton with
the state maintained for each connection. Otherwise, backtracking would require
us to maintain expensive per-flow state for previously-seen packet sizes.

For additional performance, a Deterministic Finite Automaton (DFA) can be
built by unrolling the failure links in advance and adding appropriate transitions
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to map each failure directly to an appropriate node without the need to follow
multiple failure links at runtime. Expanding the automaton in this way did not
provide an advantage in our case where the automaton is executed for each packet
size as opposed to each byte when searching for substrings, and where the length
and number of patterns is much less than typical substring-based rulesets, so we
opted for the more compact data structure where the failure links are followed
at runtime. For a very large number of patterns, however, this optimization may
be worthwhile.

We implemented packet-size repetitions with a range m − n as required by
our pattern language by expanding them to n − m + 1 separate patterns. To
implement packet ranges, we attempted at first to expand them into multiple
individual 16-bit characters, leading to excessively large automata in the pres-
ence of wide packet size ranges, such as 100-200{3} which would expand to
1003 distinct sequences. To avoid this we use ranges instead of individual 16-bit
characters for the arcs of the automaton. To simplify the implementation, we
preprocess the expressions to collect possibly overlapping ranges used in them
and extract a set of non-overlapping ranges that we use as the alphabet for
the automaton constructed. For example, rule 152-156{1,5}, 150-600 contains
two overlapping ranges, 152-156 and 150-600, which are expanded to an alphabet
of three non-overlapping ranges: 150-151, 152-156, and 157-600. Subsequently,
the repetitions in this example are expanded as shown in Fig. 2.

152-156,150-151

152-156,152-156

152-156,157-600

152-156,152-156,150-151

152-156,152-156,152-156

152-156,152-156,157-600

152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156

152-156,152-156,152-156,157-600

152-156,152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156,152-156

152-156,152-156,152-156,152-156,157-600

152-156,152-156,152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156,152-156,152-156

152-156,152-156,152-156,152-156,152-156,157-600

Fig. 2. Illustration of the complete expansion of rule 152-156{1,5}, 150-600 into a
set of simple sequences of non-overlapping ranges. An alphabet of size three is used,
each character corresponding to the range 150-151, 152-156, or 157-600.

4.2 DPI Engine Integration

We integrated the pattern matching data structure with our proprietary DPI
engine [7] that uses an extensible signature language by implementing a plu-
gin to add a new condition, that we called packet train. The signature language
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uses an event-condition-action model. The DPI engine raises different events to
which sets of conditions and actions can be associated with. The conditions and
actions are implemented as plugins, and are free to interpret their arguments
and construct the necessary state objects that are evaluated on each event. The
rule engine itself handles the logic of the ruleset as a whole, and the plugins are
consulted for individual conditions. Each condition plugin declares the pieces of
information that it requires (such as payload or flow-tuple information) and the
rule engine ensures that the respective conditions are only used in combination
with events that provide the required information. One such event is the packet
event, which contains information about packet payload and therefore packet
size, that we make use of in our extension. Other events include connection,
which is raised by the connection tracker. Information can be communicated
across events by means of tags stored in the connection state, assigned by an
action called tag and checked by a condition also called tag. These can be used
to chain together rules triggered on distinct events, for example a rule could
match a substring in a certificate to detect the application and tag the connec-
tion, while later the tag can be used in the rule that uses the packet train
condition to avoid evaluating flows from irrelevant applications.

Figure 3 illustrates a rule example. The conditions are evaluated as a con-
junction. Disjunctions can be expressed using multiple rules, or (if the condition
itself supports it, such as ours), with a list of arguments (Fig. 4). The exten-
sion API provides hooks for populating individual condition arguments into a
shared object that is consulted once per event and communicates back to the rule
engine any matching rules. This facilitates conditions performing simultaneous
matching such as those based on Aho-Corasick or hash-tables.

facebook_video:

event: packet

conditions:

- port: 443

- packet_train: ’399{1,2}, 51{1,2}, 1000-1260{1,2}, 38’

actions:

...

Fig. 3. Example of rule. The underlying data representation language used is YAML.

4.3 Performance Evaluation

We evaluated the performance of the entire system experimentally using our
proprietary DPI engine [7] in a live traffic test-bed. We used an HPE Proliant
DL380 Gen9 server with two Intel R© Xeon R© E5-2699 v4 CPUs at 2.20 GHz
with hyper-threading enabled, providing us with 88 logical cores (lcores), and
configured with 1 TB of RAM. The system has 4 × 40 Gbps NICs, two on each
CPU socket. CentOS Linux release 7.4.1708 with kernel RPM version 3.10.0-
693.11.6.el7.x86 64 was used.
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whatsapp_video:

event: packet

conditions:

- packet_train:

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 117’

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 144’

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 102’

Fig. 4. Example of rule with a disjunction of patterns handled internally by the
packet train extension.

The DPI engine is configured to use 8 lcores for processing the traffic from
the four ports (two lcores per port). These lcores perform just sufficient packet
decoding in order to load balance the traffic internally to 58 lcores configured
to perform traffic inspection. These are the lcores running our implementation.
The rest of the lcores in the system are dedicated to other tasks such as logging
and shell access.

The traffic load consisted of real mobile user traffic that varies throughout the
day between 52–153 Gbps with an average of 109 Gbps, 20–25 Gpps and between
67–230 K new connections per second with an average of 161 K/s. Throughout
the experiments we confirmed that the system does not exhibit packet loss.

First we measured the baseline CPU utilization of the traffic inspection
lcores using mpstat over 1 min intervals. For a traffic of about 130 Gbps at 1
pm local time, we measured a CPU utilization of 34.2%. After enabling our
DPI engine extension, and making sure it is invoked for all packets, we mea-
sured 37.6%, an increase of about 10%. We also took a closer look using the
perf tool, to narrow down on the specific function performing our checks, called
extension packet train multiset match. We measured it at 3%, even without
any actual patterns loaded. This number is an upper bound. If the automaton
is fed only packets for pre-screened traffic that belongs only to the applica-
tion (using appropriate signatures), the performance impact of our extension is
expected to be less.

Subsequently, we loaded packet train signatures, increasing the number of
signatures in each experiment to measure the impact of the number of signatures
on the CPU utilization. We tried 1–5, 10, 15 and 20 signatures. The results were
within the 2.7–3% range, with significant variance and without any observable
trend. This observation shows that the bulk of the cost comes from the mere
interposition of our extension into the DPI engine’s pipeline and does not depend
on the number of patterns, at least up to a number of 20 patterns.

5 Amenability to Data Mining

5.1 Rule Mining Methodology

In order to illustrate the robustness of our event signature approach as well
as to permit fast signature extraction for numerous application - event combi-
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nations, we automated the process. The application event rules were extracted
from the packet traces by using frequent pattern mining (FPM) to detect fre-
quent packet sequences and then correlating these patterns to the ground-truth
events. This approach avoids the dependence on packet statistical measures com-
monly employed by other studies [4,24,31]. In order to extract the rules, the
following steps are taken on the training dataset:

1. Pre-processing: All packets with a different process id than that of the applica-
tion under examination are filtered out. Similarly, as mentioned in the above,
TCP retransmissions are filtered out. Finally, all local and remote IPs are
considered as a single local and a single remote IP, respectively.

2. Packet statistics: Afterwards, the absolute frequency of all pre-processed
packet (source, destination, payload length) is calculated, and packet tuples
whose frequency is greater than a predetermined percentile are mapped to
unique identifiers (called items in the following). All other packet tuples are
grouped according to their source and destination, as previously, but with the
payload length segmented in 4 equally sized buckets, and similarly mapped
to identifiers. This step was taken so as to limit the effect of variable payload
length on the pattern mining (e.g., a long chat message may have a greater
payload length than a shorter one).

3. Trace splitting: The packet traces were split to bursts (or sequences) of traffic
(i.e., traffic with interpacket temporal distance less than a threshold, in this
case set to 1 second) [4,31]. It should be noted that as one of the type of
events investigated is outgoing chat messages, a larger temporal threshold
could potentially result in multiple chat messages included in one burst (chat
messages sent in quick succession). Furthermore, bursts not containing any
of the events under investigation are filtered out. This step is taken in order
to divide the traffic to temporally correlated sequences, which, in turn, will
be used as an input to the frequent pattern mining algorithm.

4. Frequent Pattern Mining: Frequent pattern mining techniques are used to dis-
cern the correct packet patterns corresponding to the events among potential
noise. The present methodology utilises closed sequential patterns (i.e., a pat-
tern not strictly included in another pattern of the same support) as potential
application event rules in order to avoid loss of information. The patterns are
mined using the ClaSP algorithm [18].

5. Rule Generation: Finally, the rules are generated by identifying which closed
sequential patterns match well with the ground truth events (i.e., the pattern
timestamp is within a margin of the ground truth event timestamp).

In order to reduce the number of possible generated rules, the supersets of the
above matching patterns are used, and evaluated using the F1 measure (i.e.,
placing equal emphasis to both precision and recall). Finally, the generated rule
is used to detect application events on the test dataset. The training dataset
consists of 25% of the samples (the same samples as those used for training in
the main implementation as mentioned in Sect. 3.2).

It should be noted that the rules generated by the above mining approach
differ to those of the main implementation in that they take into account the
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direction of packet. This can be easily included in the DFA engine by encoding
outgoing packets with a preceding minus sign to the payload size.

5.2 Rule Mining Evaluation

Table 5 shows the true positive rates achieved by the automated FPM method-
ology as well as the difference to the main implementation results. It can be
seen that the FPM methodology outperforms the main implementation in all
cases except Facebook where it underperforms. Furthermore, from Table 6, it
can be seen that the performance of the two approaches on the false discovery
rate metric is similar.

Table 5. TP rates of the automated FPM methodology. The difference to the main
implementation is given inside the parentheses.

Application Messaging Voice Video

Facebook messenger 42% (−41) 54% (−42) 83% (−13)

Skype 100% (+12) 96% (−4) 100% (+25)

Viber 100% (0) 96% (+42) 100% (+12)

WhatsApp 100% (0) 100% (+8) 100% (+25)

Table 6. False discovery rates of the automated FPM methodology. The “Messaging
FDR” column shows the percentages of erroneous messaging reporting in voice or video
samples. Respectively, “Voice/video FDR” column shows the percentages of erroneous
voice/video reporting in messaging samples. The difference to the main implementation
is given inside the parentheses.

Application Messaging FDR Voice/video FDR

Facebook messenger 0% (0) 3% (+2)

Skype 2% (−3.5) 8.4% (+4.2)

Viber 3% (+1) 2% (0)

WhatsApp 2% (−6) 3.3% (+2.7)

The FPM methodology is able to achieve accurate detection of distinct out-
going chat messages with a true positive rate and false discovery rate (FDR)
of 98.55% and 3.54%, respectively, across all applications under investigation.
Figures 5 and 6 show randomly chosen packet captures from WhatsApp and
Skype messaging activity. We choose not to include the equivalent graphs for
the remaining applications due to space constraints. The vertical lines depict the
logged timestamp of the outgoing chat messages, while Main and FPM points
show the detected events using the two proposed methodologies. The slight tem-
poral deviation of the detected events from the ground truth timestamp can be
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explained from the fact that the outgoing message is not truly instantaneous,
but rather spans from the transmission to the delivery acknowledgement.

Fig. 5. Packet capture of WhatsApp messaging activity. The vertical lines depict the
actual outgoing chat messages, while Main and FPM points show the detected events.

Fig. 6. Packet capture of Skype messaging activity.

Figure 5 shows a case where both our rule generation methods were able
to perfectly detect the actual events, as opposed to the case shown in Fig. 6
where both false positives and false negatives are present. An interesting obser-
vation that can be derived is the increased Skype traffic during the time window
10:39:06–10:39:15. During this time, the user attempted to choose emoticons
which were not pre-loaded.
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6 Related Work

Traffic Analysis. Our work falls under the broad subject of traffic analysis.
We briefly identify some general related work first, and subsequently expand on
the most relevant areas.

Traffic analysis has been used to identify web pages transferred over
encrypted tunnels established by privacy enhancing technologies such as
OpenSSL, OpenVPN or TOR. For example, Herrmann et al. [19] present a clas-
sifier that correctly identifies up to 97% of web requests from packet traces.

Others used traffic analysis to extract voice information from encrypted VoIP
conversations. For example, Wright et al. [39] showed that when the audio is
encoded using variable bit rate codecs, the lengths of encrypted VoIP packets
can be used to identify phrases spoken within a call with high accuracy.

Similarly, a cellphone’s position can be located by monitoring the traffic of
certain applications that provide location-based services, even over encrypted
network traffic. For example, Ateniese et al. [8] show that an adversary could be
able to extrapolate the position of a target user by just analysing the size and the
timing of the encrypted traffic exchanged between that user and a location-based
service provider.

Identification of Application Events in Encrypted Traffic. Most relevant
to our work is the literature on fine-grained application event identification over
encrypted traffic, surveyed in this section. The works in these section clearly
motivate the feasibility of traffic analysis, often with the use of machine learning
techniques. Our work builds on these feasibility results, but focuses on scalable
implementation and efficient execution.

Coull et al. [14] proposed a method for traffic analysis of encrypted messag-
ing services. Specifically, they show that an eavesdropper can learn information
about user actions inside an application, the language and the size of the mes-
sages exchanged. Their results demonstrate the feasibility of gaining information
about the usage of applications by observing packet lengths, but their analysis is
focused on Apple’s iMessage application and is an offline study. NetScope [29] is
a work that performs robust inference of users’ activities, for both Android and
iOS devices, based on inspecting IP headers. Its main purpose is to demonstrate
that a passive eavesdropper is capable of identifying fine-grained user activities
within the wireless network traffic (even encrypted) generated by applications.
NetScope is based on the intuition that the highly specific implementation of each
app leaves a fingerprint on its traffic behaviour, such as transfer rates and packet
exchanges, by learning subtle traffic behavioural differences between activities.
Liu et al. [24] developed an iterative analyser for classifying encrypted mobile
traffic to in-app activity. They selected an optimal set of the most discrimina-
tive features from raw features extracted from traffic packet sequences by a novel
Maximising Inner activity similarity and Minimising Different activity similarity
(MIMD) measurement. To develop the online analyser, they represent a traffic
flow with a series of time windows, which are described by the optimal feature
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vector and are updated iteratively at the packet level. For their experiments,
they analysed data extracted from WeChat, WhatsApp, and Facebook. Conti
et al. [11,12] proposed a system to analyse encrypted network traffic to identify
user actions on Android devices, such as email exchange, interactions over social
network, etc. Their framework leverages information that is available in TCP/IP
packets, like IP addresses and ports, among with other features, like packet size,
direction and timing. They analyse diverse Android applications, such as Gmail,
Facebook, Twitter, Tumblr and Dropbox. Using machine learning techniques,
they conduct their experiments that show that the system can achieve accuracy
and precision higher than 95% for a number of user actions. While our work is
based on the same grounds (i.e., the feasibility of user activity identification over
encrypted network traffic based on packet trains), we advance the state-of-the-art
by (i) proposing a novel expressive pattern language specification, (ii) building a
scalable and optimized implementation, which was integrated to our proprietary
DPI engine and tested and evaluated on real-world traffic volumes, (iii) showing
that the rule extraction is amenable to data mining techniques.

Application Identification and Classification. In this work, we focus on
fine-grained event identification within the traffic of an application, and there-
fore rely on application identification, such as by means of server IP address
ranges, or metadata available as plaintext, such as the Server Name Identification
(SNI) header in TLS traffic, or plaintext information in certificates exchanged.
Nevertheless, there is a large body of work on automating application identi-
fication or classification of the traffic’s nature (e.g. video streaming), mostly
relying on machine learning approaches, and often applicable to encrypted traf-
fic [4,6,9,17,20,23,27,30,31,36,40,41].

Endpoint Device Tools. We used tools running on endpoint devices to col-
lect ground truth samples. Here we survey a few related tools. Haystack [28] is a
mobile application distributed via popular app stores that can correlate contex-
tual information such as app identifiers and radio state with specific traffic flows
(encrypted or not) destined to remote services, illuminating mobile application
performance, privacy and security. ProfileDroid [37] is another monitoring and
profiling system that can characterise the behaviour of Android applications
at the static, user, OS and network layers. Finally, TaintDroid [16] performs
dynamic information-flow tracking in order to identify privacy leaks.

Traffic Analysis Resistance. There have been efforts to create protocols,
networks and applications that provide anonymity and privacy guarantees in the
face of traffic analysis. Dissent [38] and Riposte [13] are systems that provide
strong guarantees by using message broadcasting. They protect packet metadata,
but may be unattractive due to scalability issues. Herd [22] is another system
that tackles the case of anonymity for VoIP calls, by addressing, like the former
proposals, some of the limitations of the more general-purpose Tor anonymity
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network [15]. Vuvuzela [32] and Atom [21] are more scalable systems (thousands
of messages for millions of users) that employ differential privacy to inject noise
into observable metadata. AnonRep [43] builds on top of these guarantees for
the case of reputation/voting systems, TARN [42] randomises the IP addresses,
while TARANET [10] employs packet mixing and splitting to achieve constant-
rate transmission.

7 Ethical Considerations

Since the nature of our study may rise some ethical considerations, we dedicate
this section to discuss how we avoid abusing personal and private information
of “human subjects” [26]. During the offline testing of our methodology, we
processed samples that were collected using non-personal mobile devices and
non-private accounts for each application, explicitly for the purposes of this
experiment. Thus, there should be no privacy concerns regarding the data that
was processed during this phase.

During the online testing, we minimized the information collected by the
system to include only the number of matches per rule, without personally iden-
tifiable information of any kind. Neither this, nor other information was retrieved
from the system besides the performance measurements. All troubleshooting was
conducted based on our own collected offline traces.

This study is motivated by benign uses such as customer experience/QoS
assessment, data leakage detection and policy enforcement (e.g. embargo on
voice), but could be abused as discussed extensively in the literature. Thus,
we strongly recommend that privacy sensitive applications take precautions.
We intentionally limited the scope of this work to a single direction of
communication—only message sending—to avoid the possibility of correlating
the user pairs that send and receive messages at the same time, and thus recov-
ering communication graphs.

8 Conclusion

In this work, we discussed fine-grained identification of application events over
encrypted network traffic with a focus on scalability and maintainability. We
demonstrated that (i) a simple regex-inspired language is expressive enough to
achieve a minimum hit rate of 84%, (ii) our DPI engine can scale to 130 Gbps
per node, with no more than 10% of extra CPU utilization, and (iii) the rule
extraction is amenable to data mining techniques. Prior work demonstrated the
feasibility of such techniques. Our work focuses on a real-world implementation
because we believe that just like substring pattern matching is a requirement in
a state-of-the-art network monitoring system, so is packet train matching, even
if techniques such as encryption and traffic analysis resistance (Sect. 6) exist to
evade them.
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Abstract. Data-oriented attacks are gaining traction thanks to advances
in code-centric mitigation techniques for memory corruption vulnerabil-
ities. Previous work on mitigating data-oriented attacks includes Data
Space Randomization (DSR). DSR classifies program variables into a set
of equivalence classes, and encrypts variables with a key randomly chosen
for each equivalence class. This thwarts memory corruption attacks that
introduce illegitimate data flows. However, existing implementations of
DSR trade precision for better run-time performance, which leaves attack-
ers sufficient leeway to mount attacks. In this paper, we show that high
precision and good run-time performance are not mutually exclusive. We
present HARD, a precise and efficient hardware-assisted implementation
of DSR. HARD distinguishes a larger number of equivalence classes, and
incurs lower run-time overhead than software-only DSR. Our implementa-
tion achieves run-time overheads of just 6.61% on average, while the soft-
ware version with the same protection costs 40.96%.

This material is based upon work partially supported by the Defense Advanced
Research Projects Agency (DARPA) under contracts FA8750-15-C-0124 and
FA8750-15-C-0085, by the United States Office of Naval Research (ONR) under
contract N00014-17-1-2782, by the National Science Foundation under awards CNS-
1619211 and CNS-1513837, by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-2017R1A2A1A17069478), by
the Brain Korea 21 Plus Project in 2018, and by the Institute for Information &
communications Technology Promotion (IITP) grant funded by the Korea govern-
ment (MSIT) (No.2017-0-00213, Development of Cyber Self Mutation Technologies
for Proactive Cyber Defense). Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the Defense Advanced Research Projects Agency (DARPA) or
its Contracting Agents, the Office of Naval Research or its Contracting Agents, the
National Science Foundation, or any other agency of the U.S. Government. The
authors also gratefully acknowledge a gift from Oracle Corporation.
B. Belleville and H. Moon—Authors contributed equally to this work.

c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 337–358, 2018.
https://doi.org/10.1007/978-3-030-00470-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00470-5_16&domain=pdf


338 B. Belleville et al.

1 Introduction

Memory corruption exploits remain an important attack vector in practice.
Attempts to eliminate this class of vulnerabilities are being undertaken from
many angles including (i) migration to type safe languages, (ii) static and
dynamic program analysis, and (iii) retrofitting unsafe code with memory safety
mechanisms. Automatic exploit mitigations have also been highly effective at
driving up the cost of exploitation, and are transparent to developers and end-
users. They also avoid the substantial overheads associated with full memory
safety enforcement [26–28]. Mitigation techniques such as Address Space Layout
Randomization (ASLR), Data Execution Prevention, and Control Flow Integrity
(CFI) are widely deployed in modern systems. These techniques increase the
difficulty of performing arbitrary code execution attacks, which has encouraged
attackers to explore alternatives such as data-oriented attacks [7,13,14]. These
attacks corrupt program’s data flow without diverting its control flow.

Data Space Randomization (DSR) is a promising defense that mitigates data-
oriented attacks [3,4]. DSR thwarts unintended data flows while leaving all legit-
imate data flows unaffected. To do so, DSR encrypts variables that are stored in
the program’s memory, and it uses different random keys to encrypt unrelated
variables. Generating these keys with sufficient entropy makes the results of load
and store operations that violate the program’s intended data flow unpredictable,
and thus hinders reliable construction of data-oriented attacks.

Prior work on DSR makes several trade-offs that favor run-time performance
over security. First, existing versions of DSR do not encrypt variables that can-
not be used as the base of an overflow attack. This leaves programs unpro-
tected against temporal memory exploits such as use-after-free or uninitialized
reads. Second, prior versions often use weak encryption keys to avoid the cost
of handling unaligned memory accesses. Lastly, existing implementations rely
on imprecise program analyses, which leads them to incorrectly classify many
variables as related. As a result, these unrelated variables are encrypted with
the same keys. Many unintended data flows are therefore still possible, which
gives attackers some leeway to construct exploits.

This motivated our work on Hardware-Assisted Randomization of Data
(HARD), a hardware-assisted implementation of more precise DSR. HARD
offers greater security than prior approaches by distinguishing more unrelated
variables. To do this, HARD uses a context-sensitive points-to analysis and gen-
erates encryption operations that use calling context-specific keys. HARD also
encrypts all of the program data, and consistently uses strong 64-bit encryption
keys. Thus, unlike existing schemes, HARD does not compromise its security
guarantees for better run-time performance. Furthermore, HARD incurs less
overhead than prior work thanks to its hardware extensions: specialized instruc-
tions to access encrypted data and efficient caches to manage encryption keys.
These extensions also shield our solution against information leakage attacks
because the keys are managed by the hardware and cannot be accessed from
user-space.
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In summary, we contribute the following:

– We propose the first context-sensitive DSR scheme, which offers greater secu-
rity guarantees than prior solutions by dynamically choosing context-specific
encryption keys based on the results of a context-sensitive analysis.

– We describe an ISA extension that efficiently supports our DSR scheme in
hardware, and is also general enough to support all prior DSR designs.

– We implemented our DSR scheme and ISA extension in HARD and show
that HARD achieves high precision with low overhead.

2 Background

Our goal is to thwart attacks that violate the intended data flow of a pro-
gram. Example 1 illustrates two such violations: a use-after-free and an unini-
tialized read. Both types of unintended data flows are highly relevant in practice.
Use-after-free is commonly exploited to attack high-profile targets such as web
browsers and operating system kernels [30], and well-known Heartbleed bug was,
at its core, an uninitialized read vulnerability [8].

At lines (a-1) and (a-2) in the example, the program allocates and initial-
izes a list, X, as depicted in Fig. 1(a). At line (b-1), the program frees the second
element of list X, so the Next member of the first element becomes a dangling
pointer. The program then allocates a new list, Y, at line (b-2). The program
now reads the contents of list Y without initialization at line (b-3). Due to the
deterministic nature of common memory allocators such as dlmalloc [22], the
two lists will likely be laid out in the memory as shown in Fig. 1(b). Thus, the
data read at line (b-3) will likely include the recently free’d element of list X.

X Next
Data=10

Next
Data=11

Next
Data=12

Next
Data=13

(a)

X Next
Data=10

Y

Next
Data=11

Next
Data=12

Next
Data=13

Next
Data=##

Next
Data=##

(b)

X Next
Data=10

Y

Next
Data=20

Next
Data=12

Next
Data=13

Next
Data=21

Next
Data=22

(c)

Fig. 1. The diagram shows the lists generated in Example 1. (a) shows list X after
initialization at line (a-2). (b) shows the most likely layouts of lists X and Y at line
(b-3). (c) shows the most likely layouts of the lists at line (c-2).
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The rest of the example demonstrates the use-after-free vulnerability. The
program attempts to print the contents of list X, whose second element was
freed at line (b-1). A deterministic memory allocator may allocate the list X as
shown in Fig. 1(c), and the dumped list includes elements of list Y.

2.1 Mitigation with DSR

DSR mitigates such unintended data flows by randomizing the representation of
program data in memory. DSR relies on alias analysis to compute the points-to
relations between pointers and the storage locations they can reference. Two
pointers are considered aliases if they can reference the same storage location.
Similarly, a pointer p may alias named object o, if p can point to o. Based on the
alias analysis, DSR partitions storage locations into equivalence classes so that
all storage locations belong to an equivalence class. Any two storage locations
that may alias each other belong to the same equivalence class.

DSR encrypts storage locations belonging to different equivalence classes
with distinct encryption keys. Locations belonging to the same equivalence class,
however, must be encrypted with the same key. In the previous example, an ideal
implementation of DSR would see that lists X and Y are disjoint, and would
encrypt them with different keys. An attacker that does not know the keys
cannot extract the true contents of the illegally read list element.

Unfortunately, existing implementations of DSR cannot prevent the exploits
in this example [3,4]. They do consider lists X and Y related because of the impre-
cise (context-insensitive) alias analysis which does not consider the functions’
calling contexts. In the example, both X (at line (a-2)) and Y (at line (c-1))
are passed as an argument to fillList, and the context-insensitive alias analy-
sis will report that the formal argument L of fillList may alias both X and Y.
Variables X and Y will therefore be assigned to the same equivalence class.

In this paper, we avoid this loss of precision by using a context-sensitive
alias analysis. If we analyze our example program with a context-sensitive alias
analysis, we obtain two sets of aliasing relations: one for the calling context
at line (a-2) where fillList’s formal argument L aliases X, and one for the
calling context at line (c-1) where L aliases Y. By taking the calling context
into account, we avoid having to treat X and Y as aliases and can therefore place
them in different equivalence classes.

Leveraging the greater precision of context-sensitive alias analyses is chal-
lenging since the DSR instrumentation code must then take the calling context
into account to determine which encryption key should be used. We discuss this
challenge at length in Sect. 4, and present a novel DSR scheme that supports
different contexts via dynamic key binding.
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3 Threat Model

We assume the following threat model, which is realistic and consistent with
related work in this area [14,33]:

– The victim program contains a memory corruption vulnerability that lets
adversaries read and write arbitrary locations as long as such accesses are
permitted by the MMU.

– The victim program is protected against code injection by enforcing the W⊕X
policy such that no executable code is writable.

– The victim program runs in user mode and that the host system’s software
running in supervisor mode has not been compromised.

– We do not consider side-channel attacks, flaws in the hardware, or adversaries
that have physical access to the system hosting the victim program.

Note that we do not require that ASLR is enabled, and we do not include any
assumptions about it in our threat model. However HARD is fully compatible
with ASLR, and additional randomness will increase security, for example by
making known plaintext attacks harder (see Sect. 9).

4 DSR Design

We begin this section by providing a conceptual overview of our design, and
then discuss several key components in detail. Our design can either be realized
in pure software, similar to prior implementations of DSR, or supported by the
hardware extensions we present in Sect. 5.

Our scheme transforms input programs at the compiler intermediate rep-
resentation (IR) level. The first step is a context-sensitive alias analysis that
categorizes the program’s memory locations into equivalence classes based on
the points-to sets computed by this analysis. We then assign two types of keys
to the memory access instructions in the program, according to the equivalence
classes they access. We assign a static key to instructions that always accesses
the same equivalence class, regardless of its calling context, and a dynamic key
to the others, which may access multiple equivalent classes depending on the
calling context. The static keys are directly embedded to the data section of
the program so that each instruction can fetch its key, while dynamic keys
are passed to a callee through the context frames, which the caller should con-
struct. Our scheme transforms (1) function call sites to construct context frames,
(2) instructions that use static keys to fetch their keys from the data section,
(3) instructions that use dynamic keys to fetch their keys from the context
frame, (4) all store instructions to encrypt the data, and (5) all load instructions
to decrypt the data.
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4.1 Enabling Context Sensitivity

One of our primary goals is to support dynamic key assignment for memory
instructions that may access multiple equivalence classes depending on their call-
ing contexts. We determine the set of equivalence classes that can be accessed
through dynamic keys as follows. For each function in the program, we identify
the set of equivalence classes reachable from the function’s pointer arguments or
pointer return value. From that set, we remove any equivalence classes which con-
tain global variables. If an instruction accesses an equivalence class that contains
global variables, then that instruction always accesses that same class, regardless
of which context the function is called from. Thus, such an equivalence class can
safely be removed from the set. The remaining set of equivalence classes are the
dynamic classes in that function. Other classes that are used in the function, but
that are not in the set (i.e., the classes that were removed because they contain
globals, and the classes that are not reachable from the pointer arguments or
pointer return value), are considered static classes. During instrumentation, we
assign dynamic keys to memory access instructions that target dynamic classes,
and static keys to those that target static classes.

Managing Context Frames. We store dynamic keys in context frames. For
each function that contains instructions with dynamic keys, we first instrument
all of the function’s callers to create the necessary context frame and to populate
the frame with the keys for the actual callee arguments. We then instrument the
callee so that instructions accessing dynamic classes read the keys from the
context frame.

Handling Indirect Calls. Instrumenting indirect call sites complicates this
process because if care is not taken, different target functions could require dif-
ferent sets of dynamic keys, even if the target functions have the same signature.
To correctly instrument indirect call sites we constrain all functions that may
be called from the same call site to have the same dynamic classes.

Static Equivalence Classes. Every instruction that accesses a static class will
always access that static class, regardless of the calling context. Thus, we can
safely assign static keys to instructions that access static classes.

Equivalence classes that contain global variables are always static classes.
To understand why this is always true, consider how a flow-insensitive alias
analysis constructs equivalence classes. An alias analysis evaluates all of the
instructions in the program and incorporates any aliasing relationship introduced
by an instruction into the points-to sets. When a flow-insensitive alias analysis
such as ours evaluates a statement such as:

void∗ a = cond i t i on ? &g l oba l : &funct ion argument ;

it will consider pointer a an alias for both global and function argument,
which will therefore be placed into the same equivalence class. This equivalence
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class will now be a static class, because, no matter which context this function
is called from, any instruction that accesses this static class can now potentially
access the memory storage location occupied by global.

4.2 Memory Encryption

We instrument memory access operations so that the values are xor-encrypted
before they are stored to and after they are loaded from memory. The encryp-
tion/decryption instructions we add use the unique randomly-generated 8-byte
key we assign to their respective target equivalence classes.

To use 8-byte keys consistently for all equivalence classes, we must carefully
handle memory accesses which are not 8-byte aligned. For example, consider
an equivalence class containing a structure with two fields, as shown in Fig. 2.
When accessing field s.b, we should shift the key to mask the field’s data with
the correct part of the key (left side of the figure). Cadar et al.’s DSR implemen-
tation assigns weaker, repeating keys (right side of Fig. 2) to avoid costly shift
operations [4]. We use the hardware support to efficiently handle shift operations.

struct s

int a int b

EC key 11 22 33 44 AA BB CC DD

s.a key = EC key[0..3]
s.b key = (EC key >> 32)[0..3]

int a int b

AA BB CC DD

s.a key = EC key[0..3]
s.b key = EC key[0..3]

AA BB CC DD

Fig. 2. Calculating keys for unaligned accesses under HARD (left side) and prior work
by Cadar et al. (right side). “EC key” is the key for the equivalence class.

Our design encrypts all possible equivalence classes. To reduce the run-time
overhead, prior DSR systems did not protect equivalence classes that are “safe”.
An equivalence class is considered safe if a static analysis can show that none
of the accesses to that equivalence class can read or write outside the bounds of
the target object. This weakens their protection against temporal memory errors
such as use-after-free and uninitialized read. Our hardware extension enables
higher level of protection with reasonable overhead.

4.3 Support for External Code and Data

We designed our scheme to allow interaction with external code. To do so, we
must ensure that any encrypted data is decrypted before it is accessed by the
external code, and re-encrypted afterwards. Otherwise, we cannot encrypt any
equivalence classes that include the data that is passed to the external func-
tions. To maximize the amount of memory we encrypt, we use wrapper functions
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around calls to known external functions, as was done in prior DSR implementa-
tions. However, we cannot encrypt accesses to external global variables because
they could be accessed by external code at any point.

We must also handle function pointers that may escape to external code.
An escaping function pointer could be called by the external code without the
proper keys in the context frame. Therefore, calls through this pointer must
not require dynamic keys. However, it is still possible to pass dynamic keys to
direct calls to the same function. To handle this, we maintain two copies of the
affected functions—one that accepts dynamic keys and one that does not encrypt
accesses to the equivalence classes of the arguments. Note that an attacker may
seek to use the version that does not expect encrypted arguments. However, in
order to redirect control flow to such a function, she will need to overwrite a
code pointer. This memory access will be encrypted, so the attacker will already
have to bypass DSR to perform such an overwrite.

5 Hardware Design

We designed an extension of the RISC-V architecture to accelerate our DSR
scheme’s encryption operations and to protect the encryption keys from infor-
mation leakage attacks. The primary goal of our hardware design is to achieve
low overhead. To accomplish this we use a sophisticated hardware design to accel-
erate the encryption operations used by DSR. If both the encryption key and
the data are in the cache, our hardware implementation is able to perform a load
or store, key fetch, and XOR within a single instruction without any additional
latency or pipeline stalls compared to a normal load or store instruction.

Overview. HARD adds or modifies several hardware components, as shown
in Fig. 3. When executing a HARD’ened program, the processor uses two
reserved memory regions, the Context Stack and the Key Table, to store and
manage the encryption keys used by the program. The processor accesses these
regions directly using their physical addresses and the regions are not mapped

Core

Instruction Cache Key Cache Context Cache Data Cache

Level 2 Cache

Memory
Key Table Context Stack

Modified for HARD Added for HARD Allocated for HARD

Fig. 3. Hardware overview for a HARD-enabled system.
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into the virtual address space of the protected program. This design ensures that
the encryption keys cannot be leaked, as the MMU forbids accesses to unmapped
memory. The Key Table stores all encryption keys used in the program. To sup-
port dynamically assigned keys, programs must create context frames on the
context stack and copy keys from the Key Table to the context frames.

Both the Context Stack and the Key Table have a corresponding cache: the
Context Cache and the Key Cache respectively. These caches are internal to the
processor and cannot be read by an attacker. Keys are always loaded through
the corresponding caches, and if a key is not present in the cache, the processor
will transparently fetch it from the corresponding memory region. To pair the
caches with their corresponding memory regions, each cache has a base register
containing the physical memory address of the associated memory region.

5.1 Hardware Initialization

The OS kernel is responsible for the initialization of the aforementioned memory
regions and caches. When the OS loads a HARD’ened program, the kernel allo-
cates the Key Table and initializes it with randomly generated encryption keys.
The kernel then sets the base address register of the Key Cache and activates
the cache using a control register. Finally, the kernel allocates the Context Stack
and sets the base address register of the Context Cache.

5.2 New Instructions

HARD adds two sets of instructions. One set of instructions is used to load data
from or store data to encrypted memory. The other set of instructions is used
to manage the Context Cache and Context Stack.

Memory Access Instructions. The RISC-V instruction set architecture,
which we extend, contains nine load instructions and six store instructions. For
each of these, HARD adds a specialized version that decrypts data when load-
ing or encrypts data when storing. The specialized instructions use the same
mnemonic as the original instructions, but have a um suffix (for loads) or m suf-
fix (for stores). The double-word load/store instructions, for example, look as
follows:

– ldum rd, id(rb): load a double word from the virtual address stored in reg-
ister rb, decrypt the data with the key at index id in the Key Table/Context
Stack, and write the decrypted data to register rd.

– sdm rd, id(rb): encrypt the data in register rd with the key at index id
in the Key Table/Context Stack and store the encrypted data to the virtual
address in register rb as a double word.

The type of encryption key is encoded in the Most Significant Bit (MSB) of
the index id. If the MSB is set to 0, the remainder of the index id is interpreted
as an index into the Key Table, and the instruction therefore has a statically
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assigned key. We refer to these index IDs as static IDs. If the MSB is set to 1,
the remainder of the index id is interpreted as an index into the current context
frame on the Context Stack, and the instruction therefore has a dynamically
assigned key. We refer to these index IDs as dynamic IDs.

Context Stack Management Instructions. The second group of instruc-
tions are used to manage the Context Stack. Before a new context is entered,
the program should prepare a new context frame on the Context Stack and copy
the keys used within the corresponding context into that frame. This newly
prepared context frame must then be activated before entering the correspond-
ing context. HARD offers four instructions to prepare, activate, and deactivate
context frames.

– mksc dest id, src id: move the key at index src id in the Key Table to
slot dest id in the context frame under preparation.

– mkcc dest id, src id: move a key from slot src id of the currently acti-
vated context frame to slot dest id of the context frame under preparation.

– drpush cur len: deactivate the active context frame and activate the context
frame under preparation. cur len is the number of slots in the current frame.

– drpop: deactivate the active context frame and activate the previous context
frame.

The mksc, mkcc, and drpush instructions should be used just before calling a
function to provide the matching context frame. Similarly, the drpop instruction
should be used just before a return to restore the matching frame for the caller.

6 DSR Implementation

We implemented our DSR scheme as a link-time optimization pass in LLVM/
Clang 3.8 for RISC-V, and use alias analysis algorithms from the PoolAlloc
module [20].

6.1 Computing Equivalence Classes

We use Bottom-up Data Structure Analysis (Bottom-up DSA) [21] to categorize
memory objects into equivalence classes. Bottom-up DSA is a context- and field-
sensitive points-to analysis that scales well to large programs. It is context sen-
sitive to arbitrary length acyclic call paths, and it is speculatively field-sensitive.
It is field-sensitive for type-safe code, and falls back to field-insensitive for type-
unsafe code. The algorithm is unification based and is not flow sensitive. The
output of Bottom-up DSA is a points-to graph for each function, which incor-
porates the aliasing effects of all callees of that function (thus “Bottom-up”). A
node in the points-to graph represents a set of memory objects joined through
aliasing relationships, and nodes represent disjoint sets of objects. Each node
therefore identifies a distinct equivalence class within that function. For each
function and its associated points-to graph, we assign equivalence classes based
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on Bhaktar and Sekar’s mask assignment algorithm [3], with a slight modification
to differentiate the static and dynamic equivalence classes.

The first step in class assignment is identifying the dynamic equivalence
classes. To handle indirect calls, we constrain all possible targets of an indirect
call site to have the same dynamic classes. Bottom-up DSA can create classes of
functions that are all callable from the same call site. The analysis result for these
functions is a single points-to graph shared by all functions in the class. Within
this graph all arguments and return values for these functions will share the same
set of nodes. We use this functionality to compute the set of dynamic classes for
all functions in the class simultaneously. We mark all nodes that are reachable
from the pointer arguments and the pointer return values of each function in
the class, and then remove all nodes that contain global variables or are marked
un-encryptable. The resulting nodes become the set of dynamic classes for every
function in the class. We use the same procedure for functions that are only
called directly, but apply the procedure individually to each function.

For each node and its associated equivalence class, we assign a dynamic ID
if a node is marked as dynamic and a static ID otherwise. If a node contains a
global variable, we ensure that every such class in all functions uses the same
static ID. If a node is marked un-encryptable, we assign it a null static ID which
indicates that memory accesses to this class should not be instrumented.

6.2 Handling External Code and Data

To minimize the number of nodes that need to be marked as un-encryptable,
we implemented wrapper functions for the library functions that our bench-
mark programs call (cf. Subsect. 4.3). A wrapper functions decrypts the vari-
ables in equivalence classes that may be accessed by an external function, and
re-encrypt them when that external function returns. The wrappers must access
keys from the Context Stack and use the new instructions for memory accesses.
To ensure that the correct instructions are used, the wrappers are written in C
using inline assembly code. We manually implemented the wrapper functions for
all 71 C library functions used in SPEC CINT 2000. Implementing new wrap-
pers is straightforward; writing a wrapper generally takes just a few minutes
after consulting documentation such as man pages. Most wrappers have a pre-
dictable structure, and generating wrappers for many common cases could be
automated by adding annotations to augment the type signature of the func-
tion with additional information. For example, an annotation would distinguish
between different uses of char* arguments, indicating if the pointer refers to a
single char variable, an array, or a null-terminated string.

6.3 Program Transformation

Our transformation pass runs after all analysis steps have completed. It starts
by creating a constructor function that runs before the main function. The con-
structor encrypts the initial values of all global variables. After we create the
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constructor, we annotate load and store operations with the class ID assigned to
the memory location accessed by the operation. Next, we insert the instructions
to manage the Context Stack. For each call site, we construct a mapping from
the class IDs of the actual arguments in the caller context to the dynamic IDs of
the formal arguments of the callee function. We use this mapping to insert the
mksc and mkcc instructions, which initialize the callee context. We insert drpush
instructions directly before call instructions to switch to the callee’s context, and
we insert drpop before return instructions to restore the caller’s context. During
code generation, we emit the annotated loads and stores as specialized instruc-
tions with the dynamic or static equivalence class ID encoded into the immediate
operand.

7 Hardware Implementation

We implemented the proposed hardware architecture by extending one of the
instances generated by the Rocket Chip Generator [2]. This instance is composed
of a Rocket Core [24] with a 16KiB L1 instruction cache, a 16KiB L1 data cache,
and a 256KiB unified L2 cache. We extended this system with the two hardware
components described in Sect. 5, the Key Cache and the Context Cache. We also
modified the core pipeline to interact with these caches.

7.1 Instruction Encoding

To avoid intrusive changes to the existing instruction decoder, we designed our
specialized instructions to resemble the instructions they are based on. Our spe-
cialized instructions differ from their base instructions in only one respect: the
specialized ones interpret their immediate fields as index IDs, rather than mem-
ory offsets. This means that, like these memory offsets, the size of the index
IDs is limited to twelve bits. We use the most significant bit of the index ID
to indicate whether the index should be interpreted as an index into the Key
Table, or an index into the current frame on the Context Stack. This leaves us
with eleven bits to encode the ID itself.

The mksc and mkcc instructions each require two index ID operands, a source
ID and a destination ID. For this reason, we based these instructions on the
RISC-V instruction that can encode the longest immediate field, which is 20
bits long. The semantics of the instructions defines the type of index IDs they
operate on, so we do not have to encode it in the MSB. The mksc instruction has
a static ID (index into the Key Table) and a dynamic ID (index into the current
context frame) as its operands, and the mkcc instruction has two dynamic IDs
as operands. The size of these pairs of index IDs cannot exceed the available 20
bits. We therefore limit the size of dynamic IDs to nine bits, and the size of static
IDs to eleven bits. This limits the size of the Key Table to 2048 entries and the
size of the context frames to 512 slots. We analyzed a large number of programs
and found that 512 is a realistic limit to the number of dynamic keys in a single
context frame. We discuss the security impact of the Key Table size and how
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to handle programs that could use a larger number of keys in Sect. 9. The other
context management instructions, drpush and drpop, are pseudo-instructions
using the Control and Status Registers (CSR) interface.

7.2 Processor Pipeline

We modified the core pipeline to enable interaction with the Key Cache and Con-
text Cache, as shown in Fig. 4. The modified pipeline sends static and dynamic
IDs to the Key Cache or Context Cache, which respond with the corresponding
statically or dynamically assigned encryption keys respectively.

Core Pipeline

Fetch1 Fetch2 Decode Execute Memory Write Back

Key Cache

Tag Array Data Array

Context Cache

Data Array Controller

Fig. 4. Overview of the modified Rocket core, showing the interaction between the
original core pipeline, the Key Cache and Context Cache added by HARD.

Key Cache. The Key Cache is a fully-associative cache that services requests
for static IDs by loading the corresponding keys from its data array or from the
Key Table in the memory. The Key Cache has two components: the pipeline
depicted in Fig. 4 and a miss handler. The cache has a tag array, containing a
set of (valid , id , offset) tuples. For a static ID whose key is currently present
in the Key Cache’s data array, this tuple gives us the offset of that static ID’s
corresponding encryption key in the data array. The data array has a size of
2KiB, which means that it can contain 256 keys. If the core pipeline requests a
key that is not present in the data array, the miss handler loads that key directly
from the Key Table. Keys are never written back to memory upon eviction from
the data array because the Key Table cannot be updated at run time.

Due to the tag array access and tag matching, our Key Cache takes two
cycles to respond to a request, even if the requested key is present in the data
array. To avoid stalling the Execute stage, we forward the raw instruction bytes
from the Fetch2 stage to the Key Cache. The Key Cache uses a minimal decoder
to determine if the forwarded instruction contains a static ID. If the instruction
does indeed contain a static ID, the Key Cache will look up the corresponding key
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immediately. This allows the Key Cache to provide the Execute stage with the
appropriate key without stalling if the key was present in the cache. Otherwise,
it will stall the pipeline to fetch the key from the memory.

Context Cache. The Context Cache consists of two major components, the
stack controller and the data array, following the design of a hardware stack with
on-chip memory presented in earlier work [32]. The cache has dedicated registers
to keep track of the locations of three context frames: the previous frame, the
current (activated) frame, and the next frame. The Context Cache’s data array
is 1KiB, which is sufficient to store the top 128 slots on the Context Stack.

When the program copies an encryption key to the Context Stack using the
mkcc or mksc instructions, the key will be stored directly in the corresponding
slot of the next frame in the Cache’s data array. This allows the Context Stack
to minimize costly memory accesses. Whenever the program executes a drpush
or drpop instruction to activate a different frame, the stack controller updates
the dedicated registers accordingly. After executing one of these instructions, the
cache may evict the oldest entries or fetch entries from memory depending on the
available space in the data array. Eviction, fetching, and changes to the context
frame registers happen at the last stage of the pipeline. This creates a possible
hazard for other instructions accessing the Context Cache. We therefore modified
the pipeline so that whenever a drpush or drpop instruction is decoded, or an
eviction or fetch is in progress, any instructions that access the context cache
are stalled until the drpush/drpop has finished executing, or the eviction/fetch
has completed.

8 Evaluation

We implemented and tested several configurations of HARD’s analysis and
instrumentation passes and compared them to prior DSR implementations:

– The Prior DSR configuration mimics prior DSR implementations. For this
configuration, we implemented a context-insensitive points-to analysis to cal-
culate the equivalence classes, but we did not instrument accesses to safe
objects and used weak encryption keys for unaligned accesses (cf. Sub-
sect. 4.2).

– The Full Key Size configuration uses the same analysis, but uses full 8-byte
keys for all memory accesses (including unaligned accesses).

– The Full Context Insensitive configuration also uses the context-
insensitive analysis, but encrypts accesses to all equivalence classes rather
than just the unsafe ones.

– The Context Sensitive configuration uses HARD’s context-sensitive anal-
ysis to calculate equivalence classes.
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8.1 Performance

We measured the run-time overhead of all four of HARD’s configurations and
evaluated them with and without our architectural support. We instantiated
HARD on a Xilinx Zynq ZC702 evaluation board using the Rocket Chip Gener-
ator [2]. The board has an FPGA running at 25 MHz and has 256 MiB of DDR3
memory. We ran the RISC-V port of the Linux kernel 4.1.17, and modified the
kernel to initialize the Key Table and Context Stack on program startup. As our
prototyping platform is severely resource constrained, we evaluated the run-time
performance using the SPEC CINT 2000 instead of the more recent SPEC CPU
2006. For the same reason, we also ran the benchmark programs on the train
inputs, as the board does not have enough memory to use the ref inputs.

Table 1 shows our evaluation results for the four configurations. For the Prior
DSR configuration, we only have the results for software-only DSR as our hard-
ware does not support variable-length keys. Each increasingly secure configu-
ration incurs additional overhead, which is substantially reduced by HARD’s
hardware component. The overhead of the most precise configuration is 6.61%
with hardware support, while the overhead of the software-only implementation
is 40.96%.

Table 1. Run-time overhead of HARD and software-only DSR on SPEC CINT 2000.
HARD’s run-time overhead is lower than prior DSR implementations, which provide
weaker security guarantee due to their less precise analyses and performance-oriented
optimizations.

Benchmark Prior DSR Full key size Full Ctx insensitive Ctx sensitive

SW only SW only HW supp. SW only HW supp. SW only HARD

164.gzip 11.42% 40.17% 3.19% 70.63% 4.43% 70.94% 7.68%

175.vpr 20.14% 40.29% 8.67% 51.24% 9.64% 51.57% 9.81%

176.gcc 12.35% 22.43% 3.23% 29.00% 3.93% 34.68% 6.37%

181.mcf 7.91% 7.88% 3.70% 7.80% 3.74% 7.85% 3.69%

186.crafty 35.61% 58.81% 6.77% 68.20% 7.03% 70.83% 8.04%

197.parser 3.59% 7.21% 0.43% 17.97% 0.87% 25.17% 4.70%

252.eon 10.85% 17.51% 6.18% 18.21% 5.55% 22.59% 8.88%

253.perlbmk 1.65% 1.58% 0.46% 22.22% 1.35% 23.19% 1.11%

254.gap 14.69% 14.20% 5.75% 21.48% 6.32% 24.26% 6.64%

255.vortex 11.95% 28.32% 2.58% 28.75% 4.33% 43.68% 12.33%

256.bzip2 8.52% 76.04% 5.17% 83.92% 6.81% 83.98% 5.78%

300.twolf 16.11% 29.11% 3.51% 48.43% 4.47% 54.13% 4.70%

geomean 12.60% 26.99% 4.11% 36.96% 4.85% 40.96% 6.61%
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8.2 Area Overhead

We used the yosys open synthesis suite to measure the hardware cost of HARD,
and found that HARD adds 21% die area to an unmodified core. Since HARD
makes modifications to the processor core and L1 caches only and yosys is
unable to model L2 caches, the area cost is relative to the unmodified processor
core + L1 cache only. This number would, in other words, be much lower if we
also took L2 into consideration, or if we added HARD to a larger core such as
those found in a mainstream x86 CPU.

Table 2. The number of static equivalence classes that each analysis finds. For real
world programs, HARD identifies and distinguishes 88.2% more equivalence classes.
The impact was notable in case of nginx (458.4%), a widely used web server.

Bench- Prior Context Context Bench- Prior Context Context
mark DSR Insensitive Sensitive mark DSR Insensitive Sensitive

164.gzip 77 127 ( 64.9%) 145 ( 88.3%) nginx 250 348 (39.2%) 1396 (458.4%)
175.vpr 630 717 ( 13.8%) 801 ( 27.1%) ProFTPD 424 646 (52.4%) 818 ( 92.9%)
176.gcc 1221 2115 ( 73.2%) 2957 (142.2%) sshd 266 352 (32.3%) 412 ( 54.9%)
181.mcf 37 41 ( 10.8%) 41 ( 10.8%) WU-FTPD 579 719 (24.2%) 745 ( 28.7%)
186.crafty 943 1133 ( 20.2%) 1161 ( 23.1%) sudo 125 145 (16.0%) 178 ( 42.4%)
197.parser 289 343 ( 18.7%) 443 ( 53.3%) mcrypt 177 223 (26.0%) 257 ( 45.2%)
252.eon 1160 1556 ( 34.1%) 1722 ( 48.5%)
253.perlbmk 268 491 ( 83.2%) 528 ( 97.0%)
254.gap 196 394 (101.0%) 499 (154.6%)
255.vortex 763 911 ( 19.4%) 1598 (109.4%)
256.bzip2 71 96 ( 35.2%) 106 ( 49.3%)
300.twolf 442 692 ( 56.6%) 797 ( 80.3%)

precision ( 41.4%) ( 68.1%) precision (31.2%) ( 88.2%)increase increase

8.3 Precision

HARD can only stop data-oriented attacks if it can place the legitimate targets
of attacker-controlled instructions in different equivalence classes than mem-
ory locations the attacker wishes to access. If an attacker-controlled instruction
accesses a memory location in the same equivalence class as its legitimate targets,
an attack will likely succeed. This property also applies to other defenses that
rely on static analysis to restrict data flow, including Data-Flow Integrity [5] and
WIT [1]. Thus, it is important that the analysis distinguishes memory accesses
into as many distinct equivalence classes as possible.

To demonstrate the added security of our context-sensitive analysis, we com-
piled several programs using three of the four different configurations of HARD
and we counted the number of encrypted equivalence classes under each config-
uration. We excluded Full Key Size from this comparison, as it uses the exact
same equivalence classes as Prior DSR. Table 2 shows the number of encrypted
equivalence classes for each configuration, as well as the percentage increase from
the first configuration.
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We observe that HARD yields an increased number of equivalence classes
compared to prior work and context-insensitive DSR. The greatest increase in
the number of equivalence classes was for nginx. One of the reasons for the
large improvement is that nginx uses a single logging function called from many
different program locations. When using a context-insensitive analysis, all argu-
ments to this function must be placed into a single equivalence class. With the
context-sensitive analysis used by HARD, the arguments to the logging func-
tion are in independent equivalence classes for different calling contexts. The
loss of precision from a context-insensitive analysis increases the chances that
an attacker will manage to find vulnerable code that encrypts data with the
desired encryption key. It is important to note that the additional equivalence
classes identified and protected by HARD include memory that is considered
safe and thus left unencrypted by prior work (cf. Subsect. 4.2). This gives HARD
additional resistance against temporal memory vulnerabilities such as use-after-
free or uninitialized-read.

Table 3. Number of allocations per equivalence class.

Benchmark
Context Context

Benchmark
Context Context

Insensitive Sensitive Insensitive Sensitive
Average Max Average Max Average Max Average Max

164.gzip 1.21 8 1.09 8 nginx 3.56 2059 1.29 1318
175.vpr 1.21 71 1.13 48 ProFTPD 1.42 1586 0.88 1063
176.gcc 2.48 2824 1.87 2187 sshd 2.01 331 1.11 220
181.mcf 1.07 3 1.07 3 WU-FTPD 1.44 512 1.15 326
186.crafty 1.11 57 1.08 42 sudo 1.23 105 0.78 90
197.parser 1.73 379 1.41 290 mcrypt 1.01 151 0.90 140
252.eon 1.47 519 1.23 273
253.perlbmk 4.13 1875 4.24 1872
254.gap 4.18 1355 3.73 1270
255.vortex 2.99 1521 3.73 1071
256.bzip2 1.11 11 1.01 3
300.twolf 1.05 18 0.91 9

Another important security property is the size of the equivalence classes,
since the larger an equivalence class gets, the easier it generally becomes to ille-
gitimately access variables within that class. To quantify equivalence class sizes,
we modified our analyses to track the number of allocation sites (global, stack,
and heap) contained within an equivalence class. For global and stack alloca-
tions, these correspond to variable declarations, for heap allocations they are
calls to heap allocator functions like malloc. We counted both the average and
maximum number of allocation sites per equivalence class, as shown in Table 3.
The results show that, in general, the context-sensitive analysis used by HARD
gives lower number of allocation sites across the benchmarks. Note that some
benchmarks actually show an increase in average number of allocation sites. This
is because an allocation site can be counted multiple times in different contexts
with context sensitive analysis.
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8.4 Real World Exploit

We evaluated our Context Sensitive configuration against a recent data-oriented
attack presented by Hu et al. [13]. Instead of porting the attack to the RISC-
V platform, we tested the software-only variant of HARD on x86 platform.
The attack exploits a format string vulnerability in the wu-ftpd server to per-
form privilege escalation. Specifically, the attack overwrites a global pointer to
a struct passwd. The overwritten pointer is later read and then dereferenced
by the server, and the dereferenced value is interpreted as a user ID. This user
ID is subsequently used as an argument for a setuid call. By overwriting the
global pointer with the address of a memory location that contains a value of 0,
which is the user ID of the root user, the attacker escalates the privileges of the
vulnerable application.

We built two versions of the wu-ftpd binary: a base and a HARD’ened ver-
sion. We then tested the exploit against both versions. The exploit was success-
ful against the base version, but did not work against the HARD’ened version.
While the attacker is still able to overwrite the pointer in the HARD’ened ver-
sion, the subsequent read used a different encryption key than the instruction
that overwrote the pointer, making it impossible for the attacker to reliably
control the outcome of the overwrite. This causes the argument to the setuid
call to be an unpredictable value. HARD identifies three equivalence classes
involved in this exploit: the class accessed by the vulnerable instruction during
valid executions, the class of the pointer variable, and the class used for derefer-
ences of the pointer. These classes are accessed using distinct keys, kv, kp, and
kd respectively. To reliably control the result of this exploit an attacker would
have to guess two 64-bit secret values, kv ⊕ kp and kd, and therefore has a low
chance of succeeding.

9 Limitations

Hardware Limitations. HARD limits the size of static IDs to eleven bits,
which limits the number of equivalence classes with distinct keys to 2048. To run
programs with over 2048 equivalence classes, we are forced to assign some static
IDs to multiple equivalence classes. Other techniques that have a space constraint
imposed on the protection mechanism are also limited in the protection they can
provide. For example, the entries in the color table used by WIT [1] are 1-byte
long, which limits WIT to use 256 distinct colors at most. HARD’s limit of
2048 IDs allows it to protect much more complex programs than WIT. The
security impact of static ID reuse could be reduced by carefully choosing which
equivalence classes may share IDs.

Known Plaintext Attacks. Like the other DSR schemes, HARD is vulnerable
against known plaintext attacks because it uses xor operations with fixed keys
to encrypt data. If an attacker discloses encrypted data and knows the plaintext
data, then she can recover the key which can be used to craft a successful payload.
However, to reliably disclose data, she must know the data layout of the target
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program. Randomizing this data layout using ASLR or more fine-grained layout
randomization can therefore mitigate this attack vector [9].

Lack of Integrity. Randomizing data using xor operations does not provide
any integrity checking. This gives the attacker leeway to exchange encrypted
data within the same equivalence class without knowing the key. In order to
craft an exploit using this technique, the attacker will still need to know the
meaning of the encrypted data, although they do not need to know the exact
plaintext value. This is analogous to the limitation of many CFI approaches
where an adversary can swap a pointer with another pointer as long as both
pointers are allowed targets for a given indirect branch. The lack of integrity
checking is an example of a performance-security trade off, and like CFI, DSR
makes attacks substantially harder to construct.

Attacks on Skewed Values. Another attack vector against DSR is to target
variables for which the range of valid values is a small subset of the possible
values for the data type. An example is Boolean variables in C programs. A
memory byte representing a Boolean value can have 28 different values, but only
one of them will be interpreted as false. If an attacker wishes to change a
false value to true, the attack will have a high probability of succeeding. In
practice, many C programs are written such that Boolean variables will only
have a limited number of values, often just 0 or 1. Attacks targeting these values
could be mitigated by using a range analysis to identify the valid ranges and
inserting checks to ensure the plaintext data is always within the allowed range.

Deployment Challenges. Hardware components have a longer time-to-market
than a software based solution. However, hardware vendors have shown that
they are willing to develop hardware components designed to prevent mem-
ory corruption exploits. Intel now provides Memory Protection Extension for
bounds checking [31], and Control-Flow Enforcement Technology for control flow
integrity [16]. These commercial offerings are driven by consumer demand for
effective defenses with low overhead. HARD provides protection against a wide
range of exploits with low performance overhead, using moderate amounts of
hardware resources, so we feel it justifies the additional deployment challenges
associated with a hardware-based solution.

10 Related Work

DSR was first proposed by Bhatkar et al. [3] and Cadar et al. [4]. Compared
with those works, HARD provides greater security by using context-sensitive
analysis and by randomizing all data using strong keys, which can be done
efficiently thanks to our hardware support.

Data-Flow Integrity (DFI) [5] and Write Integrity Testing (WIT) [1] also
perform alias analysis to build a set of equivalence classes and define a data-
flow policy. However, they instrument the code to enforce the data flow and
do not randomize the data representation. Both DFI and WIT used a context-
insensitive analysis, so HARD can stop attacks that are not detected by either
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DFI or WIT due to the imprecise analysis. Thanks to its architectural support,
HARD also incurs less performance overhead.

HDFI [33] introduced the notion of Data-flow Isolation, which allows a pro-
gram to place sensitive data in isolated memory regions effectively and effi-
ciently. The HDFI hardware is used to classify instructions and prevent those in
one group from accessing the memory accessed by the instructions in the other
group. However, HDFI only supports two groups because it uses one bit to dis-
tinguish each group. HARD can classify the memory regions into 211 groups
as it uses 11-bit IDs to identify which class an instruction should access. HDFI
is not accompanied with an automated way to classify the instructions, while
HARD relieves developers from this burden.

Enforcement of memory safety also mitigates data-only attacks because most
attacks violate memory safety. Memory safety enforcement usually does not rely
on the precision of static analysis and it provides a deterministic protection.
A number of either software-only or hardware-based memory safety mecha-
nisms have been proposed. However, some of these mechanisms cannot han-
dle memory reallocation correctly [6,11,12,34]. Others are incompatible with
unprotected external code [29,35]. More recently Softbound [27] used fat point-
ers with disjoint metadata to prevent violation of spatial memory safety and
maintain compatibility with unprotected external binaries, and low fat pointer
mechanisms [18,19] have also been proposed to reduce the performance cost.
Subsequently, CETS [28] was proposed to prevent the violation of temporal
safety by using identifier to track the allocation states and disjoint metadata.
Later DangSan, DangNull, FreeSentry and Oscar [10,17,23,37] addressed this
by nullifying, invalidating or not reusing the pointers to the freed objects.

Yang and Shin propose using a hypervisor to encrypt memory pages to pro-
vide memory secrecy from the operating system and other processes [36]. Similar
to our work, this technique uses hardware (hypervisor mode) to support data
encryption. However, an attempt to extend their technique to provide intra-
process data isolation would change the page lifetime assumptions of their paper
substantially, and incur substantial performance and memory overhead.

Works such as SeCage [25] or Intel’s MPK [15] are designed to restrict mem-
ory access to protect secrets. These techniques could be used to control access to
the encryption keys in HARD. However, these systems are primarily intended
for infrequently used secrets, while HARD does consider any data “secret” and
encrypts all program data. Our proposed hardware cache therefore provides a
performant solution to protect many keys.

11 Conclusion

In this paper we present HARD, a hardware-assisted defense against memory
corruption attacks. HARD provides stronger protection than prior data space
randomization implementations, with lower overhead. Our protection is stronger
than prior work because (i) we use a context-sensitive analysis to distinguish
more illegitimate data flows, (ii) we encrypt all possible equivalence classes to
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protect against all types of memory errors, and (iii) we always use 8-byte encryp-
tion keys to ensure sufficient key entropy.

Our hardware extension allows us to provide strong protection with low over-
head. HARD’s overhead is just 6.61% on average, which is 6 times lower than a
software-only implementation of the same policy. The specialized hardware also
protects encryption keys from information disclosure attacks.
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Abstract. In this work we present, MicroStache, a specialized hardware
mechanism and new process abstraction for accelerating safe region secu-
rity solutions. In the safe region paradigm, an application is split into
safe and unsafe parts. Unfortunately, frequent mixing of safe and unsafe
operations stresses memory isolation mechanisms. MicroStache addresses
this challenge by adding an orthogonal execution domain into the pro-
cess abstraction, consisting of a memory segment and minimal instruc-
tion set. Unlike alternative hardware, MicroStache implements a sim-
ple microarchitectural memory segmentation scheme while integrating it
with paging, and also extends the safe region abstraction to isolate data
in the processor cache, allowing it to protect against cache side channel
attacks. A prototype is presented that demonstrates how to automati-
cally leverage MicroStache to enforce security polices, SafeStack and CPI,
with 5% and 1.2% overhead beyond randomized isolation. Despite spe-
cialization, MicroStache enhances a growing and critical programming
paradigm with minimal hardware complexity.

Keywords: Intra-process isolation · Safe region
Security microarchitecture

1 Introduction

Computing systems hold a significant amount of personal data. Unfortunately,
applications are subject to memory safety violations that allow attackers access
to application data or to take over the system. A popular and well explored
solution is to provide full memory safety, which forces all data access to be
safe (e.g., eliminating writing outside the bounds of an object) [12,15,34,35,
40]. Despite solving the problem, full memory safety comes with too high a
price, hindering its mainstream use. Instead, an emerging paradigm protects only
sensitive program data, such as code pointers [30], cryptographic keys [23], or
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programmer-defined structures [8,13]. In general, partial memory safety places
sensitive objects into isolated memory regions, called safe regions [28], that
can only be accessed by privileged program instructions. The result is powerful
security solutions (themselves eliminating large classes of exploits) at a fraction
of the cost.

Despite the demonstrable rise and power of the safe region paradigm, com-
modity protection mechanisms are inadequate. This is because safe region iso-
lation relies heavily on the interleaving between sensitive and regular memory
accesses, leaving existing mechanisms with two options: either monitor all unsafe
accesses (e.g., sandboxing them using SFI or MPX [8,28,39,43]) or incur costly
protection domain switches (as in SGX, TrustZone, MPK, VMFUNC [28,29]).
Alternatively, tag-based architectures allow policy enforcement at instruction
and word granularity [9,16,41], but require significant hardware enhancements.

The core research question we investigate in this work is how to most effec-
tively support the safe region paradigm, specifically seeking a hardware acceler-
ated abstraction and mechanism. Our goal is to do so in the most general and
simplest way, so that the design may be portable to alternative architectures, and
to efficiently isolate regions within an address space without requiring explicit
monitoring of unsafe operations or domain switching.

To this end, we propose a novel memory abstraction that is isolated by a hard-
ware data structure. MicroStache inserts an independently addressed memory
region, the stache segment, into the standard process environment. The stache
is accessed through a small instruction set extension that operates from within
program context, as an embedded but orthogonal execution domain. The stache
can be used to efficiently realize safe region solutions by controlling when and
where stache access occurs. MicroStache also includes a hardware stack that
not only supports standard stack behavior but also enforces a new stack safety
property, where stack access is restricted to the currently executing frame. Fur-
thermore, we extend the MicroStache abstraction into the microarchitecture to
provide static cache separation and special mechanisms that can be leveraged
by programmers for cache side channel defense.

To demonstrate our system, we show that it can be used for a variety of
security applications that protect sensitive program data and user secrets either
manually or through automated static checking. We implement two memory
safety solutions (SafeStack and Code-Pointer Integrity [30]) and find that, rel-
ative to randomization based isolation, MicroStache incurs 5% and 1.2% over-
head respectively. We demonstrate our claims through a prototype MicroStache
implementation for x86-64 in the Gem5 [4] simulator, along with LLVM compiler
support. Overall, our contributions include:

– The design and implementation of MicroStache, a novel abstraction for sen-
sitive data isolation by confining it to a dedicated memory segment and sep-
arating memory accesses at the ISA level (Sect. 4).

– A framework for implementing arbitrary data protection policies for user
applications, either manually or automatically (using compiler support) and
a demonstration of this framework on several real-world scenarios (Sect. 5).
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– MicroStache Safe Stack and an attack surface analysis that illustrates the
security gained through its enforcement: elimination of 60–75% of Turing-
complete gadgets and mitigation of cache side channel attacks (Sect. 7).

2 Background and Motivation

The primary goal of MicroStache is to provide an abstraction for efficient and
effective in-address space protection of safe regions [28]. Protection means pre-
serving the integrity and confidentiality of sensitive data, (e.g. cryptographic
keys, passwords, shadow structures and metadata used to implement partial
memory safety) stored within the safe region. A secondary goal, is to use the
abstraction as a means with which to specify and enforce data cache isolation.
This section explores the degree to which existing mechanisms solve this issue.
Table 1 compares software and hardware isolation mechanisms, including imple-
mentations available on commodity hardware and state of the art systems.

2.1 Safe Region Paradigm

At it’s core the safe region paradigm places sensitive program data in a special
memory region that is accessible only to a subset of the program’s instructions.
The use of this region depends on the security policy. For example, spatial mem-
ory safety approaches place object bound metadata into the safe region and
verify that pointer dereferences are in bounds [12,15,34,35,40]. The approach
requires that only the security runtime, which updates bounds metadata, is per-
mitted to modify the safe region. In general, there are many security policies
that employ the pattern of allocating sensitive data into the safe region and
then protecting it from unprivileged access (see Koning et al. [28] for a thorough
description of policies). Selecting which instructions are privileged is specific to
the security policy and typically done by a static analysis tool, like a compiler.
Additionally, these policies are best when performed “in context” because they
require frequent access to the safe region.

2.2 Mechanisms

Once data and instructions are divided into privileged and unprivileged parts, a
mechanism is needed to protect at runtime. Typically mechanisms use one of the
following methods: (1) sandboxing, (2) separating, or (3) elevating privileges.

Sandboxing Instructions. In the sandboxing approach, the safe region is
allocated into the traditional process address space, accessible to regular instruc-
tions which become privileged by definition, and unprivileged instructions are
explicitly constrained from accessing the safe region. Software Fault Isolation
(SFI) uses an inline reference monitor that denies unprivileged access to the safe
region by checking every access [39,43]. Unfortunately, SFI incurs relatively high
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Table 1. Comparison between data isolation mechanisms. Op. Granularity: opera-
tion granularity (smallest protected unit). Iso Type: type of isolation mechanism—
sandboxing unprivileged instructions; separating into domains requiring context
switches; or elevating privilege on a per instruction basis. Comm.—available in com-
modity systems. HW Complexity—complexity of the hardware support required.
Side Channel—provides microarchitectural side channel defense. Overhead—
run-time overhead: ranges based on the minimum and average values reported.
aNonderministic defense. bDepends on address mask. cUnavailable at time of writing.

Mechanism Op.
Gran.

Iso
Type

Comm. HW
Complexity

Side
Channel

Overhead

ASLR [30] byte elevate � none – ≈0%a

SFI [30,39] —b sandbox � none – low-high

Segments [30,46] byte elevate � medium – low

MPX [8,28] byte sandbox � medium – medium

MPK [28] page domain � medium – low

VMFUNC [28,31] page domain � high – medium

SGX [1,3] page domain � high – high

TrustZone [2,24] page domain � high – high

HDFI [41] word elevate – medium – low-high

PUMP [38] byte elevate – high – low-high

IMIX [19] page elevate – low – low

MicroStache byte elevate – low � low

overheads. Intel MPX, accelerates range checks by performing them in hard-
ware [8,28], however, it suffers from costly bounds updating operations, must
still explicitly monitor all unprivileged operations (which can be the majority),
and is x86 specific.

Separating into Domains. Instead of restricting unprivileged instructions,
domain based schemes place the safe region into an orthogonal area of memory
requiring some form of context switch to access. In this way, each privileged
operation must perform a domain switch, leaving regular instructions unchanged.
Intel SGX, VMFUNC, and MPK, as well as ARM TrustZone provide domain
switch isolation. However, all suffer from high overhead [28].

Elevating Instructions. Both prior approaches are costly, requiring either fre-
quent checks to sandbox unprivileged access or incur expensive domain switches.
Elevation based approaches leave unprivileged instructions alone and add mech-
anisms to increase the privilege of the sensitive instructions. Randomization
mechanisms place the safe region in a random location that only the privileged
instructions know [30]. Despite their efficiency, randomization techniques are
probabilistic, leading to exploits [18,21,22].
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Split instruction set approaches create special instructions with privileges
to directly access the safe region, while normal instructions are mediated by
custom hardware. In x86-32 segmentation, the safe region is placed in a separate
segment, and then only special segment-based instructions can access the region.
Unfortunately, segmentation has disappeared from modern architectures and its
microarchitecture is complex to support in general. IMIX, adds a new safe region
page permission, which is only accessible through a new instruction [19]. This
scheme is comparable to MicroStache, however, details have yet to be published.

Another way of elevating specific instructions is to use a tag-based microar-
chitecture. In tagging schemes, each instruction can be tagged with a policy
denoting its privilege. Several tagging schemes have been proposed, but more
recently region based schemes, HDFI [41] and the PUMP [38], have demonstrated
the ability to enforce safe region based polices. Despite the powerful nature of
these schemes, they require complex hardware that inhibits path to adoption.
Moreover, partial memory safety techniques such as CPI [30] and DCI [8] are
inherently dependent on the existence of metadata and safe regions, which to
our knowledge HDFI cannot easily implement.

2.3 Extending the Safe Region to Cache Level Isolation

In addition to the safe use of memory, we seek to prevent leakage of secret infor-
mation through cache side channels, which have been used to break confidential-
ity of both cryptographic and non-cryptographic applications. Both software as
well as microarchitectural solutions exist, but not without drawbacks. Software
solutions sidestep microarchitectural modifications [27], thus enabling defenses
on commodity processors, but they also incur substantial overheads due to their
reliance on generic ISA instructions. Microarchitecture-only solutions are gener-
ally faster but lack flexibility [44], because defenses ignore contextual information
about the applications. MicroStache embodies a hardware-software design that
is able to leverage the best of both worlds by extending trust to portions of
the microarchitecture, while also leveraging the compiler to identify the parts
of the program that need protection from cache side channels. Furthermore, the
abstraction boundary provided by the safe region paradigm is similar to the
types of protection desired against side channels. Doing so requires specialized
hardware.

2.4 MicroStache Design Goals

From our analysis, we argue that in-place solutions offer the best in terms of
programmability and efficiency, and identify the following design requirements
that a safe region abstraction should meet:

Requirement 1 (Performance Symmetry). Regular and sensitive memory
accesses should impose the same performance penalty.

Requirement 2 (Programmability). Isolation mechanisms should be generally
programmable, and thus allow the use of arbitrary memory safety techniques.
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Requirement 3 (Cross Layer). Isolation mechanisms should provide program-
mers explicit access to microarchitectural state that impact data safety.

MicroStache implements all the stated requirements, being based on a sim-
ple hardware enforced isolation scheme, and exposing simple load/store mem-
ory primitives, thereby incurring minimal performance overhead on applications.
Moreover, MicroStache provides a special cache for sensitive data, with an appro-
priate maintenance interface.

3 Threat Model and Assumptions

MicroStache prevents attacks on sensitive data integrity and confidentiality, com-
ing from both malicious user inputs and microarchitectural side channels. We
assume a program to be buggy but not malicious, and that an attacker can
invoke arbitrary regular reads and writes. When combined with memory safety
approaches (as described in Sect. 5), MicroStache defends against all control-flow
hijack attacks. Implementing alternative safety solutions would lead to diverse
threat models. We assume all hardware, operating system (OS), and compiler
configuration to be correct, and read-only code and non-executable data.

We assume that the adversary can observe the victim’s use of the processor
cache, but that the adversary cannot observe the data values in the cache. We
assume that the adversary has access to the source code of victim application,
both before and after transformation using our compiler, and that the adversary
cannot directly observe the victim’s secret input data either due to encryption
or due to isolation enforced by the OS. We do not address resource exhaustion
attacks resulting from e.g. cache line locking abuse.

4 MicroStache Design

MicroStache supports the safe region paradigm by using the instruction eleva-
tion approach, where the safe region is placed in an external memory segment,
the stache, and is only accessible through MicroStache instructions. The stache
is an independently addressed segment of physical memory that uses offset-based
addressing—bypassing virtual memory altogether. In this way, MicroStache inte-
grates an isolated execution domain into the process without requiring domain
switching. Figure 1 illustrates the main design elements of MicroStache. An
overview of the MicroStache instruction set and their semantics are presented in
Table 2. In the following we detail (i) the basic stache design, (ii) an extension
that supports stack relative addressing and restricts stack access to the current
frame locals (excluding return address and frame pointers), and (ii) an extension
for mitigating cache side channel attacks.
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4.1 Stache Segment

As depicted in Fig. 1 the stache segment is a linear region of physical memory,
and its location is dynamically specified by two new privileged registers: the
stache base (xbase) and stache end (xend). The operating system virtualizes
the stache by storing its base and bound as a part of thread state, giving each
process a unique region of physical memory, and not mapping their contents
into any address space. The stache is accessed through load/store operations,
xld and xst, which takes the address as (xbase +offset). The hardware limits
all access to the (xbase, xend) region (avoiding arbitrary access to any physical
address). A safe region application can use the stache by allocating data to it,
and with compiler support, emit stache access instructions for its secure access.
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Fig. 1. MicroStache architecture.

Table 2. MicroStache interface. reg are general-purpose architecture registers. addr
are memory addresses. call and ret also retain their native call/return semantics.

Abstraction Hardware operation Semantics

Memory ld/st reg, addr Access regular mapped memory

xld/xst xbase, addr Access stache segment, relative to xbase

xlds/xsts xsp, offset Access Safe Stack memory, relative to xsp

Safe Stack call addr Initialize new frame on Safe Stack

xalloc size Allocate space on the Safe Stack

ret Pop current frame from the Safe Stack

S-cache scflush addr, size Flush S-cache lines given by addr and size

sclock addr, size Lock S-cache lines given by addr and size
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4.2 Safe Stack

In order to efficiently isolate stack data, MicroStache includes stack hardware
support through the following interface: frame creation (call), memory alloca-
tion (xalloc), frame destruction (ret) and stack-pointer-relative stache access
(xlds/xsts) (see semantics in Table 2). The stack is located at the end of the
stache region and grows towards lower addresses, and is only accessible through
xlds/xsts instructions. Beyond standard stack operation, MicroStache guaran-
tees that memory addresses computed for xlds/xsts are always in the range
of xsp and xbp (the active frame) and that even stache relative access through
xld/xst cannot modify the stack, thus ensuring that return address and base
pointer corruption (which could be used for stack pivoting) is not possible. More-
over, the Safe Stack can be used to protect a subset of program control-data and
decision-making non-control data, thus reducing the attack surface for Jump-
Oriented Programming (JOP) [5] and Data-Oriented Programming (DOP) [25]
attacks. We quantify the value of this design in Sect. 7.

4.3 Safe Cache

A goal of MicroStache is to mitigate covert information channels without sacri-
ficing application performance. For this purpose, MicroStache routes all sensi-
tive memory accesses through a special cache, the safe cache (S-cache). The
S-cache is a L1 cache similar to the data cache (D-cache), using the same
microarchitecture-defined line update and eviction policy, but accessible only
through MicroStache load and store operations. This is similar to other static
cache partitioning schemes, such as Intel CAT [33].

This design point is sufficient to provide basic separation between regular
and sensitive data, but it does not protect against side channel attacks on the
S-cache. To make this possible, we add two new operations, scflush and sclock,
that can be used by programmers to flush and lock cache lines respectively.
scflush can be used to flush and invalidate cache lines, or the entire cache.
Using scflush, applications and/or the operating system can implement simple
policies such as flushing the S-cache on context switches. However, we expect
this policy to have a significant negative impact on performance. Thus programs
can prevent attackers from flushing or evicting their cache lines from the S-cache
using sclock. However, we note that sclock must still be used correctly in order
to ensure cache side channel protection.

5 Security Applications

In this section we describe how to use MicroStache for improving application
security with minimum performance costs. In many cases, using MicroStache is
a direct translation of safe region use: allocate safe-region data to the stache and
issue MicroStache memory access for elevated access.
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5.1 Safe Stack Protection

The safe stack approach [30] splits data on the stack into safe and unsafe based
on the observation that a subset of locally-scoped data can be statically proven
safe. Thus programs can make use of two separate stacks, the safe stack and
the unsafe stack, to hold local variables. This technique can be automatically
applied to existing programs with minimal overhead and no compatibility loss.

MicroStache protects the safe stack by modifying the existing SafeStack
software infrastructure to emit MicroStache instructions instead of traditional
stack instructions. More specifically, we want to (i) allocate data on the Safe
Stack on function entry, using xalloc; and (ii) safely access local variables using
xlds/xsts. This limits safe stack management to MicroStache primitives, ensur-
ing strong Safe Stack protection against unintended memory accesses.

5.2 Code-Pointer Integrity

Code-Pointer Integrity (CPI) [30] is a technique that detects corruption of code
pointers, eliminating all control-flow hijack attacks. In CPI, all pointers that
may be used as a target for an indirect call or return operation are protected by
placing pointer metadata and bounds information into a safe region. A compiler
instruments all legitimate definitions of each pointer with a call into the CPI
runtime to update pointer metadata. Then on each pointer use, CPI checks
that the last update was legitimate. By using this Data-Flow Isolation (DFI)
policy [9], CPI gains guaranteed control-flow hijack defense. MicroStache is used
by modifying the CPI runtime to allocate metadata into the stache and replacing
normal loads and stores with stache instructions.

5.3 Secret Pointer Protection

Modern systems make memory corruption attacks harder by relying on infor-
mation hiding mechanisms such as ASLR [11,20]. What this effectively means
is that pointers to locations of certain sections of the program, e.g. code, data,
are hidden, and given to a few elevated instructions at runtime. Unfortunately,
ASLR is susceptible to information leak attacks through memory corruption and
cache and timing side channels [21]. We propose preventing secret pointer leaks
by storing sensitive data in the stache segment. In our proof-of-concept work
(Sect. 6) we show that hiding the location of the CPI safe region can be eas-
ily achieved by accessing the pointer through MicroStache, and that it requires
minimal modifications to the CPI run-time.

5.4 Secret Computation Defense

We consider the general problem of information leaks through system-level
attacks using cache side channels. As long as regular (non-sensitive) data doesn’t
depend on them, sensitive scalar values, e.g. integers, are trivially protected by
MicroStache, because the computations performed, e.g. arithmetic operations,
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are invariant with respect to cache usage. Composite values, e.g. arrays, however
may incur side channels depending on the computation that is being performed:
if data dependencies involved in the computation lead to variations in cache
access patterns, then these patterns can reveal parts of the data to an attacker
with partial control over the cache.

We provide the possibility of efficiently performing secret computation
through MicroStache by allowing programmers to lock small amounts of data
into the S-cache. Listing 1.1 illustrates a simple scenario in which a global array,
secret, is subject to computation that could cause leaks via cache side channels,
e.g. data encryption. We make it impossible for attackers to infer bits of secret
by locking it into the S-cache using the sclock primitive.

int s e c r e t [ARRAY SIZE ]
a t t r i b u t e ( ( s e c r e t ) ) ;

int f ( int input )
{

int r e s u l t ;
s c l o ck ( s e c r e t , s izeof ( s e c r e t ) ) ;
/∗ sec re t computation ∗/ \ l d o t s
return r e s u l t ;

}

Listing 1.1. Computation on secret data using sclock.

Note that this approach is limited to small data, i.e. not over the S-cache
size. In this case, MicroStache can be combined with other hardware or software
techniques, as discussed in Sect. 8.

6 Implementation

This section presents the implementation of our MicroStache prototype includ-
ing: microarchitectural simulation in Gem5, LLVM compiler support, and secu-
rity application details.

6.1 Gem5 Hardware Prototype

We built a proof-of-concept prototype of MicroStache for the x86 architecture.
Our implementation consists of a simulated hardware prototype built using
Gem5 [4]. We extended the x86 Gem5 model with MicroStache support: we
added new registers, x86 micro-ops for memory operations and associated macro-
ops by extending the decoder, execution and memory access Gem5 components;
we extended call and ret x86 operations with Safe Stack support; finally, we
extended the TimingSimpleCPU1 generic CPU model with a new port for stache
memory accesses. In a typical scenario, Gem5 MicroStache configuration involves

1 http://www.gem5.org/SimpleCPU.

http://www.gem5.org/SimpleCPU
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connecting the memory port to the S-cache, which is then connected to the sys-
tem interconnect. Additionally, we added support for MicroStache in the Gem5
system call emulation mode for stache initialization.

Our current MicroStache prototype does not support S-cache flushing, S-
cache locking and automatic stack frame unwinding on ret. We emulated S-
cache programmable operations by manually loading and/or replacing data in
the S-cache. Similarly, we emulated automatic stack frame unwinding through a
special stack deallocation instruction.

6.2 Software Support

Integrating MicroStache with existing software requires minimal software sup-
port in the compiler toolchain, i.e. assembler (emitting MicroStache opcodes)
and C compiler (MicroStache intrinsics). To demonstrate MicroStache com-
piler support, we added opcode emission support to both LLVM 3.8 and 3.2.
We implemented high-level support for the MicroStache instruction set in two
ways: partial backend support for the LLVM instruction selection passes for
alloca, load and store instructions; and a small run-time comprising general-
purpose ustache alloca, ustache load and ustache store functions for local
and global variables respectively. We used the first implementation to automat-
ically generate instrumented code for Safe Stack use, and the second implemen-
tation to implement CPI, secret pointer, and secret computation protections.

6.3 Security Applications

We implemented Safe Stack support by: modifying the existing SafeStack
pass in LLVM 3.8; and adding backend support for MicroStache safe stack
frame management and load/store accesses to the safe stack. We modified the
SafeStack instrumentation to leave unsafe allocations on the regular stack, and
move safe allocations to the MicroStache Safe Stack, by replacing safe allocas
with xallocs. Then for load/store instructions to xalloc frames, we emit-
ted xlds/xsts instructions in the target-dependent instruction selection phase.
In our work we first attempted to extend LLVM with the MicroStache memory
model, which we found was extremely challenging due to the complexity of mod-
elling Safe Stack frames in the target-independent instruction selection passes.
Although this is an engineering limitation from MicroStache’s perspective, it is
an open area to explore how to add non-standard memory models to LLVM’s
backend.

In order to create a more robust toolchain we switched to LLVM 3.2 which
had both SafeStack and CPI passes implemented. However, in this case we only
added general stache memory access support instead of just the Safe Stack. To
protect the location of the CPI safe region for randomization protection, we
modified the CPI run-time to load and store the pointer to the safe region at
the appropriate times. More exactly, we modified cpi init to store the pointer
after the initial mmap. Similarly, we modified cpi get and cpi set to load the
safe region pointer from the stache segment. Due to the inability of Gem5 to
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load dynamically linked executables, we did not protect the GOT. Finally, we
extended the LLVM 3.2 CPI run-time with full MicroStache support, using xld
and xst to manage metadata on the stache.

We implemented two popular [26,42] scenarios involving secret computation:
Dijkstra’s Single Source Shortest Path (SSSP) algorithm, and Top-k selection.
The two algorithms operate on secret data structures: a graph and a binary heap.
We used the Gem5 system call emulation (SE) mode to emulate S-cache locking
by manually loading data into the S-cache before the actual computation.

7 Security and Performance Evaluation

We discuss three aspects pertaining to our MicroStache prototype: we evaluate
the security of MicroStache using a safe stack as a reference scenario; we quan-
titatively and qualitatively analyze the security of each of the security applica-
tions presented in previous sections; and we measure the execution performance
of our MicroStache prototype using standard benchmarks as well as the proof-
of-concept scenarios presented in Sect. 6.

We ran all the experiments on the Gem5 TimingSimpleCPU model [4]. The
TimingSimpleCPU model, in addition to instruction execution timing, simulates
memory access latencies. We configured a basic Gem5 system comprising a CPU
running at 1 GHz, an L1 64 KB D-cache and 32 KB I-cache, an S-cache, and a
DDR3 memory controller running at 1600 MHz. We connected all the caches to
the memory controller through the default Gem5 system cross-bar memory bus.

7.1 Safe Stack Security Evaluation

We evaluate the effectiveness of our safe stack protection using a security bench-
mark suite similar to RIPE [45]. We implemented attack scenarios for ROP, JOP
and DOP, using memory corruption vectors on the stack: return addresses, func-
tion pointers, setjmp buffers and local variables used for conditional branches.
We compiled the tests and ran them using our MicroStache prototype. All the
benchmarks pass, with the exception of setjmp/longjmp, because setjmp buffers
aren’t protected in our prototype. We observe otherwise that our MicroStache
prototype trivially protects sensitive local variables such as function pointers.

7.2 Security Analysis

We analyze the security of the applications designed in Sect. 5. More specifically,
we: measure the effectiveness of Safe Stack at reducing ROP [6], JOP [5] and
DOP [25] attack surface; discuss the effectiveness of in protecting secret pointers;
and qualitatively analyze the effectiveness of our protection mechanisms against
cache side channel attacks.

To measure the attack surface reduction of our Safe Stack protection, we
define a new static attack surface metric that tracks the number of protected
branches, i.e. branches that are taken correctly as a result of their dependency
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on data placed on the Safe Stack. Thus, in our static analysis, a given control-
flow transfer instruction is considered protected if it depends exclusively on safely
accessed data. The Attack Surface Reduction (ASR) metric is:

ASR =
protected branches

protected branches + unprotected branches

Fig. 2. ASR indirect forward flows. Fig. 3. ASR conditional branches.

Safe Stack Return-Oriented Protection. The basic MicroStache Safe Stack pro-
vides full safety for function returns, even without any explicit safe region use.
This ensures that in the event of control-flow hijack attacks, the attacker cannot
obtain control of the program using ROP gadgets.

Safe Stack Forward Indirect Branch Protection. We determine the number of
protected indirect forward flows at the LLVM IR level by computing the set of
indirect call and indirect branch instructions. The results of this analysis are
shown in Fig. 2. Overall, we observe a significant number of indirect branches
protected while only protecting safe local variables, indicating a powerful element
to new hybridized mitigations for JOP attacks.

Safe Stack Data-Oriented Protection. We determine conditional branch protec-
tion similarly to indirect forward flows. The results are shown in Fig. 3. On aver-
age, MicroStache protects approximately 62.7% of static branches over all the
analyzed programs. Additionally, we wish to assess protection against DOP [25].
DOP attacks involve controlling conditional branches to access data-oriented
gadgets. However, in order for arbitrary execution to be possible, the gadgets
must be controlled using a gadget dispatcher, i.e. branch instructions must reside
in a loop. Thus we determine the reduction of unsafe branches in loops, which
on average is approximately 66.3%. In order to determine whether we elimi-
nate any of the known DOP vulnerabilities, we manually analyzed the examples
given by Hu et al. [25]. We found out that MicroStache protects all the branch
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condition variables in the ProFTPD example, which makes DOP impractical, if
not impossible. We believe that a similar level of protection is provided against
Control-Flow Bending (CFB) attacks [7].

Secret Pointer Protection. MicroStache can be used to protect secret pointers,
i.e. pointers that point to sensitive memory locations. We illustrate this by pro-
tecting the location of the CPI safe region (Sect. 6). This ensures that the safe
region is accessed through a secure interface, which removes information leaks
through memory corruption. Moreover, protecting the GOT and other secret
pointers can further reduce the attack surface, eliminating part of the assump-
tions about the layout of the address space made by Evans et al. [17].

Secret Computation Defense. MicroStache implicitly provides protection against
cache side channels for scalar values when they are not part of branch conditions,
since their cache location is invariant and they do not incur data dependencies
measurable by the attacker. Protecting variables used in conditional branches
is possible through branch normalization, either manually or by using compiler-
based approaches such as Escort [37]. Composite values can be protected using
sclock. In order to protect secret data for Single Source Shortest Paths (SSSP),
we store and lock both the graph (our secret) and the computed distances. The
reason for also storing the computed distances is that the computation of shortest
paths depends on the structure of the graph, and thus cache access patterns
would otherwise leak whether an edge exists between two nodes. Similarly, for
Top-k selection we only store and lock the binary tree, since the only data
dependencies occur between tree nodes. Thus in the worst case, the attacker can
infer the size of the data being locked by inspecting S-cache access patterns.

7.3 Performance Evaluation

Our performance evaluation aims to determine: (i) the performance impact
of our modifications on the Gem5 simulator; (ii) the performance impact of
MicroStache enforced CPI and SafeStack relative to randomization based pro-
tection; (iii) the performance overhead of secret pointer protections; (iv) the per-
formance overhead of cache side channel defense; and (v) the impact of S-cache
size on performance, in particular of automated safe stack instrumentation.

// Regular s tack // MicroStache
1 : sub $8 , %rsp 1 : x a l l o c $8
2 : mov %rcx , (%rsp ) 2 : xst %rcx , $0
3 : mov (%rsp ) , %rcx 3 : xld %rcx , $0
4 : loop 1b 4 : loop 1b

Listing 1.2. loop hot path implementation. The two versions access the regular stack
and the Safe Stack using regular and MicroStache memory instructions.



MicroStache: Safe Region Isolation 373

Table 3. Micro-benchmark run-time overhead. The baseline is unmodified Gem5
accessing the regular stack; regular and stache represent the stack that is accessed
(regular, and Safe Stack respectively); loop and recursive are two microbenchmark
implementations which access the stack in a loop and recursively respectively.

Benchmark\scenario regular stache

loop 0.032% −0.065%

recursive 4.168% 0.379%

Microbenchmarks. We aim to assess the impact on run-time performance of
the Gem5 CPU modifications introduced in Sect. 6. MicroStache memory access
instructions and their regular counterparts should have similar run-times, as we
use the same logic for memory access requests; the only difference is the mem-
ory ports used, i.e. the S-cache instead of the D-cache. We wrote two micro-
benchmarks that allocate space on the safe stack and read/write the allocated
memory: the first, loop, uses the x86 loop instruction to do this iteratively; the
second, recursive, does the same operation by calling a function recursively. We
implemented two variants for each micro-benchmark, one that reads/writes to
the regular stack using x86 mov instructions, and one using xlds/xsts. An exam-
ple of the hot path in loop is given in Listing 1.2. We set the micro-benchmark
to run the code in the loop a million times. The run-time performance of the
two scenarios relative to the baseline is presented in Table 3. We observe that
the performance is almost the same in each of the scenarios, with the exception
of the recursive benchmark in the regular case, which has approximately 4%
overhead. There are two major causes for the large overhead: the modifications
to call and ret (Sect. 6), which cause it to push the return address to both the
stache segment and the regular stack; and the difference in instruction size and
alignment between regular and stache. The latter influences the performance
of the Gem5 TimingSimpleCPU fetch unit, which prefetches 8-byte words on
x86-64. This behaviour is expected to occur on real x86 processors, and thus we
assume the compiler optimizes for it in real applications.

Safe Stack SPEC Benchmarks. To validate our MicroStache prototype, we com-
piled and ran a small subset of the SPEC CPU2006 benchmarks using our modi-
fied SafeStack LLVM pass: gobmk, hmmer, lbm and specrand. Figure 4 shows the
performance of safestack using randomization based protection and stache
relative to the baseline. We believe that the reasons for the high overhead is
similar to that observed in the microbenchmarks, and can be further optimized
at the compiler level. Many of the test did not compile due to the challenges of
extending LLVM with the non-standard MicroStache memory model.

Secret Pointer Protection Test. To measure the performance impact of hiding
secret pointers, we ran a small test suite for our modified version of the CPI
run-time library against the original. The results show less than 1% overhead,
further demonstrating of the minimal impact of MicroStache hardware.
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Fig. 4. SPEC CPU2006 run-time performance overhead for safe stack relative to main-
line Gem5 and LLVM 3.8; safestack represents mainline Gem5 and LLVM 3.8 SafeS-
tack; microstache represents MicroStache Gem5 and MicroStache LLVM 3.8.

Code-Pointer Integrity SPEC Benchmarks. We instrumented the SPEC bench-
marks using the ASLR based implementation of SafeStack (i.e., using the normal
stack and regular ld/st instructions) and three variants of CPI: ASLR, SFI and
MicroStache. Figure 5 illustrates the results relative to native Gem5 CPU base-
line. The goal of this benchmark is to demonstrate how MicroStache performs
with respect to the randomized version (no checks while using normal ld/st
instructions) and the more costly SFI variant of CPI.

Fig. 5. CPI overhead relative to native on SPEC. On average MicroStache is 1.2%
slower than randomized and 7.4% faster than SFI.

Cache Side Channel Benchmarks. Table 4 shows the performance overhead of
the cache side channel protection. We compare the performance of MicroStache
with Escort [37], a software solution. We observed that MicroStache is compara-
ble with the baseline performance, and in particular in one of the two scenarios,
outperforms the baseline by about 26%. The Escort prototype has a high perfor-
mance overhead in the sssp benchmark because it relies on Intel AVX for fast
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Table 4. Cache side channel protection run-
time overhead. Escort and MicroStache are
measured relative to the baseline (unprotected)
benchmark versions. sssp is a Dijkstra single-
source shortest path (SSSP) implementation;
top-k is a Top-k selection implementation.

Benchmark\system Escort MicroStache

sssp 87.19% −26.02%

top-k 0% 2.05%

Table 5. SPEC CPU2006 max-
imum run-time stache size.

Benchmark Stache size (B)

445.gobmk 440

456.hmmer 808

470.lbm 96

999.specrand 72

memory updates, a feature which is not available in our Gem5 MicroStache pro-
totype. The data in our MicroStache benchmark implementation is small enough
that it fits in the S-cache. This would be problematic for large secret data. How-
ever, since MicroStache and Escort use orthogonal mechanisms for computation
involving secrets, in principle they can be used together in the case when the
secret data is too large to fit into the S-cache.

S-cache Size Impact on Performance. Adding the S-cache to the system consti-
tutes a trade-off between processor die space and stache segment access latency.
Thus we measured the maximum run-time safe stack size, results are shown in
Table 5.

8 Discussion and Future Work

In this section we discuss MicroStache limitations and outline approaches to
overcome them; and we compare MicroStache with closely related work, namely
HDFI [41]. Cache Side Channel Analysis: To provide complete cache side
channel protection using MicroStache, we plan to leverage automated techniques
for side channel analysis [32,36,37]. Further, we aim to extend our evaluation to
comprise an empirical analysis of cache side channel protection, by simulating a
full-system scenario using Gem5. Exceptional Control Flows: While our safe
stack MicroStache prototype (Sect. 6) can be used as a shadow stack, it does
not provide support for exceptional control flows, such as setjmp/longjmp and
try/catch. We plan to support this by integrating with related work [10,14,30].
Comparison With HDFI: Song et al. [41] propose fine-grained memory iso-
lation through a hardware element called hardware-assisted data-flow isolation
(HDFI). While HDFI and MicroStache have similar goals, HDFI achieves them
through static 1-bit tagging, while MicroStache uses a statically-allocated mem-
ory region. Both options have benefits. HDFI tagging leaves data in place but
requires a tag cache and lookup operations which impacts performance and hard-
ware complexity, whereas MicroStache is simpler, and it can be used for a larger
set of applications such as general memory safety techniques.
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9 Conclusion

In this paper we explored the abstractions necessary for efficient in-address
space safe region protection. We proposed MicroStache, a new microarchitec-
tural isolation mechanism designed on the principle that safely accessed data
can be efficiently protected by separating memory accesses at multiple abstrac-
tion levels (ISA, cache, main memory). We showed that the programmability of
MicroStache allows it to be employed in a variety of use cases, with no to min-
imal overhead. In combination with existing compiler techniques, MicroStache
can be leveraged to efficiently protect a large subset of local variables and sen-
sitive control-flow transfers, significantly reducing the surface of jump-oriented
and data-oriented attacks, as well as information leaks and memory corruption.
Thus we believe MicroStache to be a significant element for fine-grained, flexible
and efficient sensitive data isolation.
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Abstract. Sensitive data (e.g., passwords, health data and private
videos) can be leaked due to many reasons, including (1) the misuse
of legitimate operating system (OS) functions such as core dump, swap
and hibernation, and (2) physical attacks to the DRAM chip such as
cold-boot attacks and DMA attacks. While existing software-based mem-
ory encryption is effective in defeating physical attacks, none of them can
prevent a legitimate OS function from accidentally leaking sensitive data
in the memory. This paper introduces CryptMe that integrates memory
encryption and ARM TrustZone-based memory access controls to pro-
tect sensitive data against both attacks. CryptMe essentially extends the
Linux kernel with the ability to accommodate the execution of unmodified
programs in an isolated execution domain (to defeat OS function mis-
use), and at the same time transparently encrypt sensitive data appeared
in the DRAM chip (to defeat physical attacks). We have conducted
extensive experiments on our prototype implementation. The evaluation
results show the efficiency and added security of our design.

1 Introduction

Driven by the pressures of time-to-market and development cost, Internet-of-
Things (IoT) manufacturers tend to build their systems atop existing open-
source software stacks, notably the Linux kernel. Millions of IoT devices are
running Linux kernel on ARM-based System-On-Chip (SoC), ranging from smart
IP cameras, in-vehicle infotainment systems, to smart routers, etc. However,
the swift prototyping process often comes at the cost of security and privacy.
With full-blown software stacks, these devices often expose a much larger attack
surface than we anticipated. Recent attacks against IoT devices have further
indicated that our IoT devices are at higher and higher risk of being hacked.
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With a full-blown software stack deployed on IoT devices, sensitive data con-
tained in programs often spread across all layers of the memory system [7]. A
vulnerability in any layer can lead to the exposure of sensitive data. Unautho-
rized access to sensitive data residing on a DRAM chip is particularly serious
because the data contained in the DRAM frequently include unprotected sensi-
tive information (e.g., user credentials, video frames in an IP camera, Internet
traffic with health data). Its exposure can be a major security concern for IoT
device users.

In this paper, we aim to address two common types of DRAM-based memory
disclosure attacks. First, in a software-based attack, private data in a program
could be exposed to an attacker by misusing of benign OS functions or exploiting
read-only memory disclosure vulnerabilities. For example, attackers can trig-
ger normal OS functions such as coredump [22], hibernation/swap [12,21,34],
and logging [7] to export otherwise isolated private memory to external stor-
age. The second type of DRAM-based memory disclosure attack roots in the
cyber-physical characteristic of IoT devices. Specifically, IoT devices are often
deployed in diverse, and sometimes ambient environments; as a result, they
are usually physically unmonitored. Attackers could physically access them and
extract secrets contained in the DRAM chip [11]. Cold boot attack [16], bus-
monitoring attack [10] and DMA attack [5] are quite common forms of physical
attack. They can break the system even if the software is free of bugs.

Memory Encryption (ME) is a promising solution to address the aforemen-
tioned memory disclosure attacks. It operates on DRAM, and encrypts a por-
tion or all of the address space of a program at runtime [19]. However, on
one hand, ME solutions relying on hardware redesign increase the cost of the
chip [24], and are not feasible for incremental Commercial Off-The-Shelf (COTS)
defense deployment. On the other hand, existing general software-based ME
solutions [8,13,29] all leave a small working set (memory that is currently being
accessed) in clear-text to ensure the correct execution of a program. As a con-
sequence, it is still possible for the working set to be exposed.

Gap Statement. An ME solution that really works on defeating the associated
threats should protect both the non-working set memory and the working set
memory at all time. In particular, it should have the following features: (1)
The non-working set memory is encrypted; (2) The working set memory is in
clear-text, but does not appear in the vulnerable DRAM. (3) The working set
memory cannot be accessed by other software, including the OS. Unfortunately,
to the best of our knowledge, a ME solution meeting all these requirements is
still missing in the literature.

Software-based ME solutions can be classified into three types, as shown in
Fig. 1. Cryptkeeper [29] and RamCrypt [13] belong to Type A (see Fig. 1a). In
this category, most of the program data are encrypted while a small working set is
left unprotected (e.g., four pages in RamCrypt) in the DRAM. As a result, Type
A ME solutions are subject to both software and physical memory disclosure
attacks. Type B solutions (see Fig. 1b) eliminate all the occurrences of clear-



382 C. Cao et al.

iRAM
or

Cache

SoC

BUS

Clear-text

Cipher-text

DRAM

User Space

Kernel Space

Clear-text

DMA-capable 
Device

(a) ME solution with par-
tial data remaining in the
DRAM

SoC

BUS

Clear-text Cipher-text

DRAM

User Space

Kernel Space

iRAM
or

Cache

DMA-capable 
Device

(b) ME solution with-
out data remaining in the
DRAM

SoC

BUS

Clear-text Cipher-text

DRAM

User Space

Kernel Space

iRAM
or

Cache

DMA-capable 
Device

X

X

(c) ME solution with-
out data remaining in the
DRAM and immune to
software memory disclo-
sure attacks

Fig. 1. Classification of ME solutions.

text program data in the DRAM chip by further protecting the working set by
constraining them in the System-on-Chip (SoC) components such as iRAM) [18]
or processor cache [8]. The SoC components are commonly believed to be much
more difficult to attack compared with the DRAM chip [8]. Type B ME solutions
are effective in defeating cold-boot attacks to DRAM chips. Unfortunately, the
clear-text working set residing in the SoC components can still be exposed by
software memory disclosure or DMA-capable devices.

As shown in Fig. 1c, Type C ME solutions disable both the OS kernel and
DMA-capable devices to access iRAM. To implement a Type C ME system, a
straightforward solution would be to further isolate clear-text program data in
iRAM/cache from the OS kernel. In the ARM platform, the TrustZone architec-
tural extension seems to be an ideal solution. With TrustZone, an ARM processor
could run in two different execution domains – secure world or normal world. The
OS in the normal world cannot access iRAM monopolized by the secure world.
Therefore, if we execute the program in the secure world, and integrate existing
type B ME solution, the problem seems to be solved. However, this is actually
very challenging based on the following observations.

– O1: A legacy program runs in the same world with the OS. If the iRAM is a
secure resource only accessible by the secure world, the legacy program in the
normal world would simply crash; on the other hand, if the iRAM is designated
to be a non-secure resource, the OS can still reveal the contents of the iRAM.

– O2: If we instead execute the legacy program in the secure world, there is
no execution environment in the secure world. In particular, system services
including system calls, interruptions, and page fault, etc., are all missing in
the secure world.

– O3: To tackle the problem mentioned in O2, we could duplicate a full fledged
OS in the secure world. However, the code base in the secure world will be
inflated, making it prone to exploits.

Our Solution. In this work, we present CryptMe, the first type C ME solution
for COTS ARM platforms. CryptMe addresses the aforementioned challenges
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by offloading a program in the secure world. Instead of employing a fledged OS
to respond to the system service requests, we build a thin privileged layer in the
secure world. The privileged layer does not provide system services itself, but
forwards the requests to the OS in the normal world. By further incorporating
type B ME solution, we ensure that both the non-working set and working set
memory do not appear in clear-text in the DRAM chip, and the working set
memory cannot be accessed by any software in the normal world.

Specifically, we protect sensitive data (called SenData) by encrypting all the
anonymous memory segments (i.e., memory not backed a file, such as bss, heap,
stack, and anonymously mapped memory segments) and private Copy-On-Write
(COW) segments (such as data segment containing global and static variables).
When the encrypted data are accessed, they are transparently decrypted in the
iRAM. The program code in the DRAM chip is not protected. The key insight
behind this is that the code segment of a program is usually publicly available so
there is no need to protect its confidentiality. To further protect data in the iRAM
from software attacks, CryptMe sets iRAM to be a secure resource. Therefore,
even the OS kernel cannot access the data in it. To execute a protected process
(called SenProcess), CryptMe offloads it to an isolated execution domain –
TrustZone secure world, and a lightweight trusted execution runtime residing in
the secure world is responsible for maintaining the execution environment of the
process (such as setting up page tables). In summary, CryptMe ensures that
clear-text program data only exists in iRAM, and we restrict accesses to iRAM
from the Linux kernel by TrustZone configuration.

In summary, we made the following contributions.

– We have designed CryptMe, an ME system that prevents the clear-text
sensitive data of unmodified programs from leaking to the DRAM for ARM-
based IoT devices.

– CryptMe is the first ME system that is able to tackle both physical mem-
ory disclosure attacks and software attacks, including misuse of benign OS
functions and real-only memory disclosure attacks.

– We have implemented CryptMe prototype on a Freescale i.MX6q experiment
board. Security validation shows that CryptMe effectively eliminates all the
occurrence of private program data in the DRAM, and thwarts software-based
memory disclosure attacks.

2 Background

2.1 Memory Disclosure Attack

Though full system memory encryption has been a topic of interest, the privacy
concerns for memory disclosure have not been a real threat until demonstrations
of hardware-based memory disclosure attacks [5,10,16]. DMA capable devices
such as Firewire were leveraged to read system memory [5]. Since DMA engine
is independent of the processor, and directly talks to the DRAM chips, as long
as the device is powered on, all the DRAM contents can be read out. In [16],
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Halderman et al. transplanted the memory chip of a laptop onto a different one
where there was no software protection on the physical memory. Using a simple
dust blower to keep the memory chip cool, it was possible to extract almost all
of the information from the memory. The significance of this attack is that it
can bypass all the software system protections. The remanence effect of DRAM
was also exploited in [6,26] to launch cold-boot attacks to smartphones, where
the system is rebooted into a rouge OS to bypass the memory protection. For
advanced adversaries, it might even be possible to snoop the communication
between the CPU and the DRAM [10].

Memory disclosure can also occur due to misuse of legitimate OS functions
or passive read-only memory disclosure attacks. For example, the memory dump
function is a very useful feature in modern OSes. A core dump image provides
valuable information about the execution state when a crash happens which helps
developer identify the crash point. However, attackers exploited this feature to
dump sensitive data of a process [22]. Taking advantage of read-only memory
disclosure vulnerabilities, the authors in [17] successfully exposed the private
keys of an OpenSSH server and an Apache HTTP server.

2.2 TrustZone

TrustZone is a secure extension to the ARM architecture, including modifica-
tions to the processor, memory, and peripherals [35]. Most ARM processors
support this security extension. TrustZone is designed to provide a system wide
isolated execution environment for sensitive workloads. The isolated execution
environment is often called secure world, and the commodity running environ-
ment is often referred to as the normal world or the rich OS. Different system
resources can be accessed depending on the world of the process. In particular,
the Security Configuration Register (SCR) in the CP15 co-processor is one of
the registers that can only be accessed while the processor is in the secure world.
NS (non-secure) bit in the SCR controls the security context of the processor.
When the bit is set, the processor is in the normal world. When the bit is clear,
the processor is in the secure world.

One of the most important components in a TrustZone-based system is Trust-
Zone Address Space Controller (TZASC). Registers of TZASC are mapped into
the physical address of the SoC, and can be accessed via memory operations.
Access policies for different physical memory regions can be programmed via
these registers. With these controls, secure world code can control whether a
memory region can be accessed from both secure and normal worlds, or can
only be accessed from secure world. For other peripherals, such as iRAM, differ-
ent SoC manufactures implement different components to configure their access
policy. In a typical implementation, a Central Security Unit (CSU) is used by
trusted secure world code to set individual security access privileges on each of
the peripheral.
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3 Threat Model and Security Requirements

3.1 Threat Model

CryptMe is designed to prevent the sensitive data of a running program from
being leaked into DRAM chip or other peripherals. The threats considered in this
work, include (a) misused benign OS functions such as swap, hibernation, and
core dump, (b) passive read-only memory disclosure attacks, and (c) malicious
physical attacks targeting the DRAM chips.

We assume a benign OS kernel that runs in the normal world of a TrustZone-
powered device. That is, basic OS services, such as task management, memory
management and execution environment maintenance, etc. are trusted. We do
not assume a compromised OS kernel. Otherwise, the process can be manipulated
arbitrarily. We assume orthogonal solutions to ensure the integrity of the Linux
kernel [4].

The OS is also assumed to correctly implement supplementary functions to
improve efficiency (e.g., swap, hibernation), and to facilitate program analyses
(e.g., core dump). However, once misused, these functions can be exploited to
leak sensitive data, because they have the capability to access the whole address
space of a process. There seems to be a countermeasure to deal with this issue
– disabling these OS functions. However, many of them are indispensable in
modern OSes. Once disabled, the whole system will be significantly affected. For
example, disk swap is the key technique to support virtual memory. Without it,
the system could quickly run out of memory.

The attacker could also exploit passive read-only memory disclosure attacks.
When exploiting these read-only attacks, attackers often do not need to com-
promise the kernel to gain control flow and manipulate critical data structures.
Therefore, active monitoring techniques (e.g., kernel integrity checking) cannot
detect such “silent” data leakages. For example, in [17], the authors exploited
two kernel vulnerabilities [27,28] to successfully extract private keys used in
OpenSSH and Apache Server in several minutes. According to a statistics, this
kind of “Gain Information” vulnerability contributes 16.5% of all Linux vulner-
abilities as of Mar. 2018 [9].

We assume attackers are able to launch physical attacks to expose DRAM
contents, bypassing the process isolation enforced by the OS. In a cold boot,
the attacker is capable of dumping the entire DRAM image of a running device
by rebooting it into another malicious OS from an external storage [16,26]. In
DMA attacks [33], a malicious peripheral device is utilized to directly read out
memory contents by issuing DMA requests. Moreover, an advanced attacker
might even be able to eavesdrop data transmission between the DRAM chips
and the processor by monitoring the memory bus [10].

The protected program itself must be trusted. That is, we assume a Sen-
Process never leaks SenData out of its private memory segments by itself,
either intentionally or unintentionally. Since our protection is built on top of
ARM TrustZone, we also assume the correctness of TrustZone implementations.
The privileged codes of CryptMe running in the TrustZone secure world are
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assumed to be free of vulnerability, as well as the trusted boot process enabling
the TrustZone-based hardware memory control. In the design and implemen-
tation of CryptMe, we keep the privileged code base small (5.8K Lines Of
Code (LOC), in the prototype system), so it is possible to formally verify its
correctness. Lastly, side-channel attacks are out of the scope in this paper.

3.2 Security Requirements

Based on the threat model, we formalize the problem into the following security
requirements that CryptMe aims to meet.

R1. The DRAM chip does not contain any clear-text SenData.
R2. The clear-text SenData is constrained in the on-chip iRAM, which can only
be accessed by the secure-world code.

Software-based memory disclosure attacks are thwarted by the combination
of R1 and R2. In addition, meeting R1 keeps SenData immune to cold-boot
attacks and bus-monitoring attacks, while meeting R2 prevents DMA attacks.

4 Design

This section describes the design of CryptMe. We start with an overview of
the proposed system, then expand on several key techniques. We show how
CryptMe supports offloading CryptMe-enabled SenProcesses to an isolated
execution environment in the TrustZone secure world, and how page tables in
this isolated environment are maintained. Finally we present the protections that
CryptMe provides for the offloaded SenProcesses– encryption and isolation.
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4.1 Overview

In CryptMe, a Linux OS runs in the normal world, while protected SenPro-
cesses run in the secure world. As shown in Fig. 2, like any other processes in
a Linux system, each SenProcess is referenced by a task struct data struc-
ture in the normal OS. In fact, the task struct of a SenProcess is no different
from normal ones except for a newly added flag (tz) and a world-shared memory
buffer (shared struct). The flag identifies a process as a SenProcess while
the shared buffer is used to exchange critical information (such as page table
updates) between the two worlds.

Each SenProcess is still created, maintained, and scheduled by the normal
OS, but executed in the secure world. The normal OS is customized so that
just before a SenProcess is to return to user space, an smc instruction is
issued to transfer the control to the secure world. In the secure world, there
is a piece of Secure Privileged Code (SPC) that is responsible for maintaining
the execution environment of a SenProcess by exchanging context information
with the normal OS. Each SenProcess has its own private struct that stores
its hardware context, and shared struct that is shared with the normal OS to
enable data exchange.

When the SenProcess is executed in the secure world, its working data set
is kept in clear-text in the iRAM, which is not accessible by the normal OS. For
each SenProcess, SPC keeps a sliding window of iRAM pages for the working
set. If the working set of a SenProcess exceeds the threshold assigned to it,
SPC encrypts the oldest page in the window and copies it to the corresponding
DRAM page, and then assigns the freed iRAM page to the virtual address that
triggers the page fault.

A SenProcess has separate page tables in each world. Normal world page
table is maintained by the normal OS with a customized page fault handler. It
serves as a template for the Secure Page Table in the secure world. In both page
table settings, the clear-text code segment is backed by the same DRAM pages,
which CryptMe takes no effort to protect. However, SenData, which normal
world page table maps to DRAM pages, is encrypted. SenData contained in
the sliding window in iRAM is decrypted to keep the SenProcess runnable in
the secure world, as shown in Fig. 2.

CryptMe employs the on-chip hardware-based cryptographic engine to
accelerate AES computations. An AES key is generated randomly when a new
SenProcess is about to be created. It is kept in a dedicated iRAM page shared
by all the SenProcesses. The round keys and intermediate values generated
during encryption/decryption are all constrained in this page, therefore, the key
materials enjoy the same level of protection with that provided for SenData.

4.2 Executing in the Secure World

This section describes how a SenProcess gets offloaded to execute in the secure
world. This is the prerequisite to enforce other security measures that will be dis-
cussed later. Since the secure world and the normal world are logically separated,
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SPC has to maintain the essential execution environments for SenProcesses
to run in the secure world. In this section, we introduce a näıve code offloading
mechanism, in which the normal-world page table and secure-world page table
share the same set of page table entries. As a result, SenProcess code runs in
the secure world, while all the memory references are routed to DRAM pages
that both worlds can access. In Sect. 4.3, we show how to improve this näıve
design to encrypt SenData that appear in the DRAM. Then, in Sect. 4.4, we
further describe how to deprive the Linux OS kernel and other peripheral devices
of the privilege to access clear-text SenData in iRAM.

Code Offloading. CryptMe supports memory encryption on a per-process basis.
To start a SenProcess, the user land loader invokes a dedicated system call,
similar execve, which marks the process in its task struct.

With the capability to identify a SenProcess, the kernel is further instru-
mented to invoke an smc instruction whenever a SenProcess is about to be
scheduled to run in user space. The smc instruction transfers control flow to
the monitor mode in secure world, where the monitor mode code handles world
switch, and invokes SPC to restore the hardware context of the SenProcess
and execute it in the user space in secure world.

System Services. SenProcess in the secure world may incur exceptions during
execution. When this happens, the SenProcess traps into SPC. To keep the
code base of SPC small, SPC forwards all of them directly to the normal world
OS kernel. In ARM platform, system calls are requested by the swi instruction,
which traps the processor in the privileged SVC mode. Other exceptions such
as interrupt and page fault trap the processor to the corresponding privileged
CPU modes. To forward an exception to the normal world while keeping the
normal OS oblivious of it, SPC needs to reproduce a hardware context as if the
exception is triggered in the user space of the normal world. To achieve this,
system registers indicating the context must be correctly set.

Re-producing Exceptions. Any SenProcess exception is first intercepted by
the SPC. Because the monitor-mode code taking charge of world switches has
ultimate privilege to access the resources of both worlds, it is possible to manually
manipulate relevant registers that indicate the pre-exception context. Normally,
these registers can only be set by hardware. With these registers manipulated,
the system call handler in the Linux kernel can correctly parse the context
information.

Page Table Synchronization. Each SenProcess in the secure world has its
own page table. We instrument existing page fault handler in the normal Linux
kernel to share the page table update information with SPC. This is based on
the aforementioned exception forwarding mechanism. In particular, when a page
fault exception is forwarded to the Linux kernel, it invokes its own page fault
handler to populate the corresponding page in the normal world. Whenever the
set pte at function is invoked, page table update information is duplicated in
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Table 1. Cache and iRAM comparison

Immunity to
physical attacks

Capacity Controllability Continuous
support

Intrusiveness

iRAM ✓ ✗ ✓ ✓ ✓

L2 cache ✓ ✓ ✗ ✗ ✗

the world-shared buffer shared struct. The information includes the address of
the page table entry, the updated value of the page table entry, the influenced
virtual address, and other metadata. When the SenProcess is scheduled to
execute in the secure world, SPC uses the shared information as a template
to update the secure-world page table. In this way, SPC and the normal-world
kernel maintain an identical copy of page table for each SenProcess.

4.3 Transparent Encryption

Barely offloading a SenProcess to the secure world does not gain any security
benefit. This section describes how CryptMe enforces security requirement R1.
That is, SenData appears in DRAM only as cipher-text.

To execute a process, the processor should always work on clear-text program
data. In our design, a SenProcess runs with a clear-text working set that resides
on on-chip memory unit, which is more expensive for an attacker to launch a
physical attack. The rest of SenData is kept encrypted in the DRAM. Here,
two commonly used on-chip memory units are processor caches and iRAM. We
show the advantages and disadvantages of each option in the next paragraphs.

Selecting On-chip Memory. On-chip caches are small static RAM that are tightly
coupled with a processor. It buffers recently accessed memories with very low
access latency. In the recently shipped ARM SoCs, the capacity of a Level-2
(L2) cache can achieve several megabytes. When it loses power supply, all of its
contents are lost. Therefore, in literatures, many solutions seek to defeat physical
attacks to the DRAM chip using L2 caches [8,36].

iRAM is another on-chip memory that is more like a traditional DRAM chip.
Most manufacturers integrate a 256 KB iRAM into their products to run boot
code that initializes other SoC components. After that, all of its storage is free
to use. During a reboot, the immutable booting firmware explicitly erases all the
iRAM content [8]. Therefore, iRAM is also immune to cold-boot attacks. Table 1
summaries pros and cons for both L2 cache and iRAM.

Both options are suitable to defeat physical attacks. However, using cache
has many drawbacks. First, even though cache can be used as SoC-bound mem-
ory storage, the dynamic nature of its allocation algorithm makes it difficult to
lock its mapping to the physical memory address. Second, although many ARM
processors support cache locking, this feature itself only benefits programs requir-
ing customized cache allocation to maximize cache usage. As the size of cache
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is growing in each generation of processors, the need for customized cache use
is diminishing. As a consequence, this feature is becoming obsolete in the latest
generations of ARM processors such as Cortex-A57 [3]. Furthermore, cache is
designed to ease the bottleneck at the slow memory operations. Monopolizing
cache for security purpose can severely degrade the overall system performances.
Therefore, in CryptMe, we choose iRAM to back the clear-text working memory.

Memory Encryption. Building atop the page table synchronization mecha-
nism introduced in Sect. 4.2, SPC further differentiates the types of page table
updates for a SenProcess. In particular, within the shared data structure
shared struct, a flag indicating the property of the corresponding fault page
is added. The flag instructs SPC how to set up the page table – to duplicate
the normal-world page table entry that points to an identical normal DRAM
page (e.g., for a code page), or to allocate a new page in the iRAM (e.g., for an
anonymous data page). In the latter case, SPC replaces the target normal-world
DRAM page address with the newly allocated iRAM page address in the secure-
world page table entry, and then maintains the mapping. Since the capacity of
an iRAM chip is limited, SPC cannot meet all the page table requests of a Sen-
Process. We introduce a sliding window mechanism to address this problem.

Sliding Window. SPC assigns a dynamic number of iRAM pages to each Sen-
Process. Starting from the first available iRAM page, SPC keeps a circular index
to the next available iRAM page. Page faults corresponding to SenData accesses
continue to consume iRAM pages until the assigned pages are used up. In this
case, the circular index points to the first iRAM page in the window. SPC then
encrypts that iRAM page and copies it to the corresponding DRAM page. Finally,
this iRAM page is assigned to be used for the newly occurred page fault request.

4.4 Disabling Access to the Sliding Window

We have ensured that no clear-text SenData would occur in the DRAM. How-
ever, privileged kernel can still read out any program data in the sliding window
contained in iRAM. This flaw actually exists in all the existing software-based
memory encryption solutions, such as Bear [18], RamCrypt [13], and Crypt-
Keeper [29]. Moreover, it is possible that a local attacker issues DMA requests
to iRAM. CryptMe addresses this threat by enforcing hardware-based access
control to iRAM. More specifically, during booting, CryptMe configures the
CSU available in TrustZone so that normal world code, including the Linux
kernel, and any other peripherals, cannot access iRAM. This effectively enforces
security requirement R2. That is, iRAM that holds clear-text SenData cannot
be accessed by any entities other than the secure world code.

5 Implementation

We have implemented a full prototype of CryptMe on a Freescale i.MX6q
experiment board which features an ARM Cortex-A9 processor with 1 GB DDR3
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DRAM and 256 KB iRAM. Our implementation includes two parts. In the secure
world, the implementation of SPC comprises around 5.3K LOC of C, and 0.5K
LOC of assembly. In the normal world, we instrument the Linux kernel version
3.18.24 to be CryptMe-aware with 300 LOC of modification.

5.1 Secure World

The experiment board supports High Assurance Boot (HAB), a proprietary
technology to ensure trusted boot. After power on, a proprietary boot ROM
in the board executes to initialize critical system components and verify the
integrity of the next stage image – in our case, the SPC. If SPC passes checking,
it gets execution privilege in the secure world. Otherwise, the ROM will be reset.

To disable access to iRAM from DMA and the Linux kernel, SPC configures
the CSU to set iRAM as a secure master. In our implementation, we achieve that
by enabling the OCRAM TZ EN bit in register IOMUXC GPR10, and setting access
control policy in the low 8 bits of the CSU CSL26 register in CSU1. Then SPC
locks the configuration. As a result, any intentions to make modifications to the
CSU configuration will trigger a system reboot, including SPC itself.

Finally, SPC hands the control to the boot loader in the normal world –
uboot, which further boots the Linux OS.

5.2 Normal World

SenProcesses are still created and scheduled by the Linux kernel. We add a
customized system call execve enc to load a SenProcess. A process started
with execve enc has a tz flag set in its task struct. We instrument the
ret to user and ret fast syscall routines, so that whenever a SenProcess
is about to return to user space, an smc instruction is issued to route the exe-
cution in the secure world. To run an unmodified program as a SenProcess,
the user only needs to invoke a wrapper program with the path of the target
program as a parameter. The wrapper program simply replaces itself with the
target program by invoking the execve enc system call.

5.3 Key Management and Encryption

When a SenProcess is created by execve enc, the SPC invokes the on-board
hardware-based random number generator to extract a 256-bit AES key anew.
This key is used to protect all the SenData of this SenProcess. When the the
process is terminated, the key can be safely discarded, because the anonymous
SenData which it protects, do not persist across invocations.

The experiment board we use integrates Cryptographic Acceleration and
Assurance Module (CAAM), which provides accelerated cryptographic compu-
tation, including AES, DES/3DES, RC4, etc. We employed CAAM to implement
1 CSU CSL is a set of registers only accessible in secure state that can set individual

slave’s access policy. Low 8 bits of CSU CSL26 is marked as reserved in the manual
of our experiment board, we found that it controls access to iRAM by experiments.
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(a) Image dumped with a
native Linux Kernel.

(b) Image dumped when
CryptMe is enabled.

Fig. 3. Physical memory image with and without CryptMe enabled.

a SoC bounded cryptographic service. Specifically, during an AES computation,
all the sensitive data, including the original AES key, its key schedule, and inter-
mediate results are redirected into a single reserved iRAM page. As a result, this
page, together with plain-text SenData, has the highest protection level in our
system. In CryptMe, we use AES-256 in CBC mode. The Initialization Vector
(IV) is chosen as the virtual address of the encrypted page.

6 Evaluation

In this section, we evaluate CryptMe in both security and performance. In
terms of security, we designed and conducted experiments to validate the security
requirements R1 and R2 in Sect. 3.2. In terms of performance, we measured the
overhead introduced by CryptMe compared with the base line in the native
Linux environment. Our evaluation was performed on the same board and the
same software environment as our prototype.

6.1 Security Evaluation

This section introduces several simulated attacks we designed to evaluate the
security features of CryptMe.

Meeting Security Requirement R1 . Security requirement R1 states that the
DRAM chip contains no clear-text SenData. In order to obtain the contents of
DRAM chip, we use the “memdump” utility to dump memory contents from the
/dev/mem device file. To test the effectiveness of our system, we wrote a simple
program which constantly writes a magic string (“Hack Me”) into memory. Then
we dump the whole DRAM image to search for this magic string.

Figure 3 depicts the results on the dumped images we obtained from the
native Linux and CryptMe. The addresses displayed in these figures are the
offsets from the beginning of the dump file. The beginning of this file represents
the contents of the beginning of DRAM, which has an offset from the start
of physical memory map, therefore, the real physical address is calculated by
deducing this DRAM offset from the displayed file offset. Figure 3a shows the
result from the native Linux kernel. Clearly, we were able to locate a bunch of
magic strings in the dump image. Figure 3b shows the result we obtained when
CryptMe is enabled. Throughout the searching, we did not find any occurrence
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of “Hack Me” string. This indicates that all the magic strings are encrypted in
DRAM.

Meeting Security Requirement R2 . Security requirement R2 states that on-chip
iRAM cannot be accessed by any entities other than the secure-world software. To
simulate an attack targeting iRAM, we wrote a kernel module that deliberately
maps iRAM to the address space of a process using the vm iomap memory kernel
function, and attempted to read the iRAM content in the normal world. The result
shows that we can only obtain zero values, regardless of what we wrote into the
iRAM. On the contrary, after we disabled hardware access control enforcement
on iRAM as mentioned in Sect. 4.4, we were able to read out the data that the
process wrote.

Defeating Attacks Misusing Legitimate OS Functions. In a software-based attack
that misuses legitimate OS functions, the whole address space of a SenProcess
is exposed. A kind of such attacks takes advantage of the coredump function
which was originally designed to assist program analyses when a crash happens.
In particular, the attacker deliberately crashes the target program, and it triggers
a coredump operation which allows the OS to generate an image containing
target process’s memory contents, CPU context etc., when the crash happens.
As the image is stored in the persistent storage (i.e., flash chip in an IoT device),
the attacker could easily read it out.

In order to simulate such an attack, we sent a “SIGSEGV” signal to the
victim SenProcess to trigger a coredump after it writes a bunch of magic values
(0xEF87AE12) into its anonymous memory segment. We got the coredump images
of this process from the systems running with and without CryptMe enabled.
As expected, we successfully found the target value in the image dumped from
the native Linux system. On the contrary, we did not find any occurrence of
0xEF87AE12 in the image dumped when CryptMe is enabled throughout the
searching process.

6.2 Performance Evaluation

To evaluate the performance overhead, we compare the benchmarks of pro-
grams in three system configurations. They are (1) native Linux system without
modification, (2) CryptMe using the AES algorithm to encrypt pages being
swapped, and (3) CryptMe using plain copy to swap pages. We first tested our
system with the LMbench micro-benchmark [25] to measure the overhead intro-
duced by world switches. This overhead is inevitable if we want to shield the
iRAM from attacks. Next we tested our system with a self-written AES bench-
mark. This lightweight cryptographic primitive is frequently used in IoT devices.
Finally, the performance of Nginx, a large complex web server is measured. Lots
of IoT devices expose a web interface for users to access their functionality or
to perform configuration changes to them. To better understand the introduced
overhead, we designed experiments to measure the time consumption of different
steps in the program execution.
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Fig. 4. System call latency. Fig. 5. Latency of memory reading
with varying buffer sizes.

LMbench. SPC acts as an intermediate layer in-between the user space in secure
world and kernel space in normal world. This design doubles the length of path to
travel from user space to the Linux kernel and increases context-switch overhead.
Therefore, we first report our results on the lat syscall test, which measures
the response time for various system calls.

Figure 4 depicts the results of null, read, write, stat, fstat, and open
operations [25]. As shown in the figure, compared with the native Linux system,
it takes CryptMe almost 3 times longer to complete null and read operations.
However, such overhead is amortized in other non-trivial operations. For exam-
ple, the performance overhead for the open()/close() system call is only about
1.5 times. Moreover, CryptMe with AES encryption and CryptMe with plain
copy exhibit very similar performance. This is expected because a system call is
not likely to trigger a page swapping between DRAM and iRAM.

lat mem rd is a program included in the LMbemch test-suite that measures
memory read latency. It reads memory buffers with varying sizes from 512 B to
768 KB. Because the maximum working set is obviously larger than the sliding
window of a SenProcess, lat mem rd effectively exposes and even enlarges
performance overhead caused by CryptMe.

We explain the measured data as following. Since lat mem rd is a memory-
intensive program, when the size of the buffer is small enough to be fit in the
sliding window, very few pages need to be swapped in and out of the iRAM. As
a result, no additional CPU cycles are needed. This is what we can see in Fig. 5
before the array size reaches 0.25 MB. At this stage, the three lines overlap
with one another. When the buffer size exceeds that of the sliding window,
old pages in the sliding window need to be swapped out to make room for
new page requests. The introduced swapping operations indeed cause an abrupt
performance degradation. Additional overhead can also be observed between
CryptMe with encryption and CryptMe with plain copy. This is caused by
the additional CPU cycles spent on the AES encryption.

Although the overhead introduced by CryptMe appears to be significant
in this experiment, we would like to argue that: (1) such extremely memory-
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intensive use cases are very rare in real-world applications, especially in IoT
devices. And (2) with the development of hardware technologies and reduced
costs, commercial IoT devices on the market are often loaded with computing
powers that are significantly beyond their needs.

Table 2. AES-128 throughputs with different numbers of threads (completed AES
blocks per second)

Thread # 1 2 3 4 5 6

Native 62011 63832 63862 62847 62858 62863

Encryption 63187 64213 64256 63243 63268 64316

Table 3. Nginx performance (requests per second)

Sliding window= 16 Sliding window= 32 Sliding window= 48

Plain 109.30 247.95 574.04

Encryption 23.60 72.26 571.32

AES Benchmark. We implemented an AES benchmark based on mbed TLS [2]
library. It computes AES-128 for 500,000 times using different numbers of
threads. As AES is a computation-intensive program with small memory foot-
print, Table 2 clearly shows that CryptMe incurs negligible overhead. Both
CryptMe and native Linux complete around 63,000 AES block calculations
per second regardless of the number of computing threads.

Nginx Web Server. We also measured the overhead of CryptMe when serv-
ing large complex programs. Many IoT devices provide their users with a web
interface, through which the users are able to access the service or configure the
device.

Table 4. Raw HTTP performance measurements (requests per second).

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

Native 655.70 625.64 633.62 604.30 513.94 434.26 310.75 208.74 124.36 71.14 39.20

Encryption 601.97 560.68 580.87 554.98 474.72 403.92 292.52 195.08 121.51 70.18 39.05

Overhead 1.09x 1.12x 1.09x 1.09x 1.08x 1.08x 1.06x 1.07x 1.02x 1.01x 1.00x

Nginx [31] is an open-source high-performance HTTP server and reverse
proxy, as well as an IMAP/POP3 proxy server. We used Nginx version 1.10.1
to run a HTTP web server, and used Apache benchmark [1] to measure the
performance of the systems. The HTML file is the default 151 bytes welcome
page, and the base line measured with native Linux system is 647.10 requests
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per second. In Table 3, we present the throughput of CryptMe under different
sliding window sizes. In Table 4, we compare the HTTP throughput of CryptMe
under 48-page sliding window size with native Linux system for different raw file
sizes. When the sliding window is 48 pages, comparable performance is observed.
Therefore, we would like to conclude that the overhead introduced by CryptMe
is very acceptable, because of the redundant computing power in such systems.
However, as the sliding window decreases, the overhead becomes non-negligible.
It is clear that frequent page swapping causes the noticeable overhead. In the
following, we present a break-down measurement of additional time consumed
in world switching and page swapping.

Table 5. Break-down measurement of time consumed in each period.

Operation Time (µs)

Context switch 2.27

Encryption/decryption & copy 326.32

PTE setup 7.01

Break-down Measurement. Based on the above experiment results, CryptMe
is friendly to computation-intensive programs while exhibits ineligible overhead
to memory-intensive programs. For memory-intensive programs, frequent page
swapping is the key factor that influences the performance. In Table 5, we show
a break-down measurement of the time spent on handling a page fault due
to page swapping. Context switch is the time when completing a getpid()
system call, which is drawn from Fig. 4. Note that this represents the minimum
time for a world switch. Encryption/decryption & copy is the time spent on a
encrypting/decrypting a page and copying it to normal/secure world. Note that
a page swap invokes this operation twice; one for encrypting an old page into
DRAM, and the other for decrypting a cipher-text page into iRAM. Finally, PTE
setup measures the time for installing a page table entry in the secure world.
It can be observed that cryptographic operation remains the dominating factor,
which is the necessary price for the additional protection in memory encryption
in general. However, many IoT devices are designed to be single purpose devices
with limited functionality, therefore often do not require large working sets.
This fixed cost for data encryption can be further reduced with more efficient
hardware implementation of the cryptographic primitive.

7 Related Work

7.1 Memory Encryption

Many solutions on system memory encryption is motivated by the need to pro-
tect sensitive information stored in the memory [30]. With the rapid increase
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in speed and more sophisticated hardware-supported cryptographic function in
modern processors, there has been recent efforts to realize practical software-
based memory encryption on COTS hardware [8,13,14,18,29]. In particular,
Cryptkeeper [29] and RamCrypt [13] implement ME on x86 platforms on a per-
page basis with configurable security. Their implementation keeps a small set
of decrypted working pages called sliding window. CryptMe also adopts the
sliding window concept, but the decrypted working set is stored in the on-chip
memory, which is protected from memory attacks [16]. In [14], hypervisor is
used to encrypt kernel and user space code in guest operating systems, and the
decrypted working set is configured to fit the cache. Bear [18] is a comprehen-
sive ME solution that hides working set in the on-chip memory. However, this
work focuses on a “from scratch” microkernel that does not fit commodity OS.
Sentry encrypts sensitive Android application when the device is locked, and
employs on-chip caches to support background applications [8]. This solution is
not practical for applications at normal state because substantial performance
slowdown is observed. All the aforementioned approach towards full system mem-
ory encryption takes a probabilistic approach that reduces the risk of having
sensitive content stored in the memory. This however leaves a door for the afore-
mentioned software attacks that allow kernel to read the entire address space
of application. Because memory coherence is maintained automatically by the
processor, OS kernel could directly read out the private data in the working set,
regardless they reside in DRAM, on-chip memory or caches. With CryptMe,
this decrypted working set is protected within the processor boundary in the
iRAM against the cold boot attack. The iRAM is further protected by the Trust-
Zone memory separation against memory disclosure attacks due to misused OS
functions.

7.2 TrustZone-Based Solutions

TrustZone is a system wide security extension on ARM processors. Due to its
unique ability to provide isolated execution environment even when the soft-
ware of the system is compromised, TrustZone has been widely adopted in both
academia research project and commercial project [4,15,20,23,32,36]. CaSE [36]
is a system closely related to CryptMe. In CaSE, sensitive workloads are
encrypted and only decrypted during execution completely within the processor
cache in ARM system to address the threat from physical memory disclosure.
However, CaSE has limitation on the size of application binary. CryptMe uti-
lizes the iRAM for storing sensitive data and extends its capacity by employing
a sliding-window algorithm. Therefore, it can support unmodified binaries of
arbitrary size. TrustShadow [15] resembles our work in that we both offload the
execution of trusted applications to the secure world. However, TrustShadow
focuses on defeating malicious OSes, while CryptMe focuses on defeating mem-
ory disclosure attacks.
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8 Limitations and Future Work

Our design is not a full memory encryption solution which encrypts the whole
address space of a process. Encrypted code is a compelling form of protection to
thwart reverse-engineering of proprietary software. Although the current version
of CryptMe does not protect the confidentiality of program code, it is possi-
ble to extend it to encrypt code segment as well. However, we anticipate that
new issues will arises. For example, how to handle shared libraries with non-
SenProcesses is challenging. Moreover, it will inevitably introduce overhead
due to increased working set.

We observed noticeable overhead for micro-benchmarks such as the memory
latency test shown in Fig. 5. The overhead in the CryptMe mainly originates
from page swapping as is shown in Table 5. In the future, we plan to improve
CryptMe through the following two aspects. First, we will seek a better way to
adjust the size of sliding window for individual SenProcesses. The provided
customization allows for personalized configuration to maximum the usage of
the valuable iRAM resource. Second, within a given sliding window, we plan to
find a smarter page replacement algorithm to minimize the occurrence of page
swapping.

9 Conclusions

In this paper, we present CryptMe, a practical ME solution for the ARM-based
IoT devices. CryptMe supports unmodified program working on encrypted
memory, mitigating the threats caused by memory leakages. Sensitive data is
only decrypted in the iRAM of the SoC to protect against physical memory disclo-
sure attacks. The trusted process is offloaded into an isolated execution domain
with TrustZone. Therefore, our solution can also defeat software memory dis-
closure attacks from other processes or even the OS. We have implemented a
CryptMe prototype on a real ARM SoC board. Experiment results show that
CryptMe effectively defeats a wide range of memory disclosure attacks. Fur-
thermore, CryptMe introduces moderate overhead for computation intensive
programs, and negligible overhead for programs with small memory footprints.
CryptMe enables ME for unmodified programs on the widely deployed ARM
platforms. With small trade-off on the performance, CryptMe provides its users
with unprecedented protection for private user data.
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Abstract. Sanitizers can detect security vulnerabilities in C/C++ code
that elude static analysis. Current practice is to continuously fuzz and
sanitize internal pre-release builds. Sanitization-enabled builds are rarely
released publicly. This is in large part due to the high memory and pro-
cessing requirements of sanitizers.

We present PartiSan, a run-time partitioning technique that speeds
up sanitizers and allows them to be used in a more flexible manner. Our
core idea is to partition the execution into sanitized slices that incur a
run-time overhead, and “unsanitized” slices running at full speed. With
PartiSan, sanitization is no longer an all-or-nothing proposition. A single
build can be distributed to every user regardless of their willingness to
enable sanitization and the capabilities of their host system. PartiSan
enables application developers to define their own sanitization policies.
Such policies can automatically adjust the amount of sanitization to fit
within a performance budget or disable sanitization if the host lacks
sufficient resources. The flexibility afforded by run-time partitioning also
means that we can alternate between different types of sanitizers dynam-
ically; today, developers have to pick a single type of sanitizer ahead of
time. Finally, we show that run-time partitioning can speed up fuzzing by
running the sanitized partition only when the fuzzer discovers an input
that causes a crash or uncovers new execution paths.

Keywords: Security · Privacy · Software security
Application security

1 Introduction

Although modern, safe languages could gradually replace C/C++, the sheer
amount of legacy systems code forces security researchers to search for and fix
memory corruption vulnerabilities in existing code in the near term. While some
bugs can be found through static program analysis, many cannot. Sanitizers
are dynamic analysis tools that can detect memory corruption and many other
problems as well as pinpoint their occurrence during program execution [13,16,
19]. To increase coverage, sanitizer runs can be driven by a fuzzer. A fuzzer simply
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feeds the program random inputs and records inputs that generate crashes or
cause previously unexecuted code to run.

Sanitizers instrument programs—usually during compilation—to detect
issues such as memory corruption and undefined behavior. This instrumenta-
tion incurs significant overheads, so sanitizers are turned off in release builds
and traditionally only enabled on internal quality assurance builds that run on
high-end hardware. This is less than ideal as the number of paths executed by
test suites and fuzzers is outnumbered by the number of paths executed by end
users.

In a recent experiment, the Tor Project released sanitizer-enabled (labeled
“hardened”) builds directly to its users [8]. The hardened build series was discon-
tinued in part due to the high performance overhead and in part due to confusion
among end users over which version to download. With access to PartiSan, the
Tor Project developers could have released builds that automatically adapt the
level of sanitization to the capabilities of the host system. Overhead can be lim-
ited by using a conservatively low, adaptive threshold by default (and possibly
disabling sanitization completely on underpowered systems) while simultane-
ously allowing expert users to modify the default settings (thereby also elimi-
nating the need for multiple build versions).

PartiSan clones frequently executed functions at compile time and efficiently
switches among them at run time. Each function variant can be optimized and
sanitized independently, and thus has different security and performance proper-
ties. In the simplest case, one variant is instrumented to sanitize memory accesses
while the other one is not. PartiSan supports configurable run-time partition-
ing policies that determine which variant is invoked when a function is called.
For example, PartiSan can execute slow variants (e.g., variants with expensive
checks) with low probability on frequently executed code paths, and with high
probability on rarely executed paths. This policy helps us keep the sanitization
overhead below a given threshold.

This is superficially similar to the ASAP framework by Wagner et al. [22]
insofar that both approaches explore the idea of reducing the amount of san-
itization on the hot path. However, ASAP statically partitions the code into
parts with or without sanitization based on previous profiling runs at compile
time. PartiSan prepares programs for partitioning at compile time but does the
partitioning dynamically at run time. This allows us to produce a single binary
that adapts to each individual host system, sanitizing as many paths as possible
under a given performance budget. Moreover, we can create N different func-
tion variants to support N − 1 types of sanitization in a single binary. Table 1
contrasts PartiSan and ASAP. Both our work and ASAP build on the assump-
tion that security vulnerabilities in frequently executed code get discovered and
patched relatively quickly, whereas vulnerabilities in rarely executed code might
go unpatched for a long time.
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Table 1. Conceptual comparison of ASAP and PartiSan

Statement ASAP PartiSan

Goal . . . Deploy sanitizers as mitigations Find bugs efficiently

Partitioning is . . . Static (compile time) Dynamic (run time)

Overhead reduction . . . Removal of expensive checks Probabilistic checking

Code is . . . Deleted Cloned

Assertions are . . . Removed Retained

Detect bugs in cold code . . . Always Always

Detect bugs in hot code . . . Never Probabilistically

This paper makes the following contributions:

– We describe PartiSan1, a framework to partition program execution into san-
itized/unsanitized fragments at run time. Unlike previous approaches, the
partitioning is not static but happens dynamically according to a policy-
driven, run-time partitioning mechanism which selects the function variant
to execute with low overhead. This lets developers release sanitizer-enabled
builds to end users and thereby cover more execution paths.

– We present a fully-fledged prototype implementation of our ideas and explore
three concrete run-time partitioning policies. We combined PartiSan with two
sanitizers and measured the performance overhead on the SPEC CPU 2006
benchmark suite with our expected-cost partitioning policy.

– We present a thorough evaluation showing that our approach still detects the
majority of vulnerabilities at greatly reduced performance overheads. For the
popular ASan and UBSan sanitizers, PartiSan reduces overheads by 68% and
76% respectively.

– We demonstrate an important use case of PartiSan: improving fuzzing effi-
ciency. We combined PartiSan with a popular fuzzer and measured consis-
tently increased fuzzing throughput.

2 Background

LLVM [10], the premier open-source compiler, includes five different sanitizers.
We demonstrate PartiSan by applying two of these sanitizers to a variety of
programs. ASan, short for AddressSanitizer [16], instruments memory accesses
and allocation operations to detect a range of memory errors, including spatial
memory errors such as out-of-bounds accesses and temporal violations such as
use-after-free bugs. UBSan, short for UndefinedBehaviorSanitizer [13], currently
detects 22 types of operations whose semantics are undefined [12] by the C

1 PartiSan is available upon request. Please contact the authors for a copy of the
research artifacts.
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Fig. 1. System overview. The compiler (left) creates PartiSan-enabled applications
(center) that have multiple variants of each function. A run-time indirection through
the variant pointer array (right) ensures that the control flow calls the currently active
variant. PartiSan’s runtime periodically activates function variants according to the
configured partitioning policy.

standard [6]. UBSan includes checks for integer overflows, uses of uninitialized
or unaligned pointers, and undefined integer shifts.

We used these sanitizers with PartiSan for two reasons. First, the combina-
tion of ASan and UBSan detects many of the vulnerabilities that are security
critical. Second, both sanitizers can be applied selectively.2 Removing any of the
sanitization checks from a program does not affect the correct functioning of the
remaining checks. This makes these sanitizers a good fit for our framework, in
which we selectively skip sanitization through run-time partitioning.

3 Design

Our goal is to reduce the run-time overhead of the sanitizers. We do this by creat-
ing multiple variants of each function, applying sanitizers to some variants, and
embedding a runtime component that partitions the execution of the program
into sanitized/unsanitized slices based on a policy.

Figure 1 shows an overview of the PartiSan system. To apply PartiSan to an
application, the developer must compile the source code of the program with our
modified compiler (left side of Fig. 1). Some partitioning policies require that the
developer supply profile data.

The compiler generates an application with multiple variants for each func-
tion. To simplify the following discussion, we will focus on use cases where we
generate two variants. One of the variants, which we refer to as the unsanitized
variant, does not include any sanitizer checks. The other variant, which we call
the sanitized variant, incorporates all sanitizer instrumentation.

2 Note that ASan requires metadata to execute checks. The maintenance of this meta-
data constitutes residual overhead which cannot be removed.
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The compiler modifies the program’s control flow as follows. Rather than
calling functions directly, the functions call each other through an additional
level of indirection. Specifically, the compiler embeds a “variant pointer array”
containing one slot for each function in the program source code. At run time,
each slot holds the pointer to the currently active variant of the corresponding
function. The PartiSan runtime, which is linked into the application by our
compiler, selects and activates one variant of each function according to the
configured partitioning policy.

The runtime currently supports three partitioning policies: random parti-
tioning, profile-guided partitioning, and expected-cost partitioning. With the
random partitioning policy, the runtime randomly selects the active variants,
whereas the profile-guided and expected-cost partitioning policies select active
variants with a probability that depends on the execution frequency (“hotness”)
and/or expected sanitization cost of that function. These policies can help us
limit the cost of sanitization.

3.1 Creating Function Variants

PartiSan’s compiler pass runs after the source code is parsed and converted into
intermediate representation (IR) code. As its first step (Step 1 in Fig. 1), our
compiler pass analyzes the IR code and determines which functions to create
variants for. We do not necessarily create multiple variants for each function.
If the developer selects the profile-guided or expected-cost partitioning policy,
and if the profile data indicates that a function is infrequently executed, then we
create only the sanitized variant for that function. This design choice prevents
PartiSan from unnecessarily inflating the code size of the program and is justified
because checks in infrequently executed code have little impact on the program’s
overall performance.

Then, PartiSan creates the function variants ( 2 ). First, we clone functions
that should have two variants and give them new, unique names. Then, we apply
the requested instrumentations to the variants.

3.2 Creating the Indirection Layer

Once the function variants are created, our compiler pass creates the indirection
layer, through which we route all of the program’s function calls. This ensures
that the program can only call the active variant of each function. Our indirection
layer consists of three components: the variant pointer array (right side of Fig. 1),
trampolines, and control-flow instructions that read their target from the pointer
array.

Our compiler starts by embedding the variant pointer array into the applica-
tion ( 3 ). The pointer array contains one slot for each function that has multiple
variants. Each slot contains a pointer to the entry point of the currently active
variant of that function.

Then, we create trampolines for externally reachable and address-taken func-
tions ( 4 ). A trampoline jumps to the currently active variant of its associated



408 J. Lettner et al.

function. We assign the original name of the associated function to the tram-
poline. This way, we ensure that any call that targets the original function now
calls the trampoline, and consequently, the currently active variant of the original
function instead.

Finally, we transform all direct call instructions that target functions with
multiple variants into indirect control-flow instructions that read the pointer
to the active variant of the target function from the pointer array ( 5 ). This
optimization eliminates the need to route direct calls within the program through
the function trampolines. However, the trampolines may still be called through
indirect call instructions, or by external code.

3.3 Embedding Metadata

Our compiler embeds read-only metadata describing each function and its vari-
ants into the application ( 6 ). The metadata can consist of the function execution
frequencies read from the profile data, the estimated execution costs for all func-
tion variants, and information connecting each slot in the variant pointer array
to the variant entry points associated with that slot. Our partitioning mechanism
bases run-time decisions on the metadata.

3.4 The PartiSan Runtime

Our runtime implements the selected partitioning policy by activating and deac-
tivating variants. While a specific variant is active, none of the other variants
of that same function can be called. To activate a variant, our runtime writes a
pointer to that variant’s entry point into the appropriate slot in the pointer array.
PartiSan periodically activates variants on a background thread. This allows us
to implement a variety of partitioning policies that do not slow down the appli-
cation thread(s). Operating on a background thread also allows our runtime to
run frequently, and thus make fine-grained partitioning decisions.

Random Partitioning. With this policy, our runtime component activates a
randomly selected variant of each function whenever our thread wakes up. Since
we only generate two variants of each function, this policy divides the execution
time evenly among the sanitized/unsanitized function variants.

Profile-Guided Partitioning. With this policy, our runtime component col-
lects the list of functions with multiple variants in the program and orders this list
based on the functions’ execution counts recorded during profiling. Our runtime
activates the sanitized variant of a function with a probability that is inversely
proportional to its order in the execution count list. The sanitized variant of the
most frequently executed function is activated with 1% probability, and that of
the least frequently executed function with a 100% probability. Note that this
partitioning policy does not estimate the overhead impact of executing a san-
itized variant instead of an unsanitized variant. It also does not consider the
absolute execution count of a function. For example, the second least executed



PartiSan: Fast and Flexible Sanitization via Run-Time Partitioning 409

function in a program with 100 functions is sanitized 99% of the time, even if its
execution count is 1000 times higher than that of the least executed function.

Expected-Cost Partitioning. This policy improves upon the profile-guided
partitioning policy by calculating sanitization probabilities based on function
execution counts (read from the profile data) and estimated sanitization cost.
We estimate the cost of sanitization for each function by calculating the costs of
all function variants using LLVM’s Cost Model Analysis. We then calculate the
probability of activating the sanitized variant for a function using formula:

Psanitization(f) =
sanitization budget(f)

costsanitization(f) ∗ execution count(f)

The sanitization overhead budget is chosen by the developer and is evenly
distributed among the functions in the program.

4 Implementation

Our prototype implementation of PartiSan supports applications compiled with
clang/LLVM 5.0 [10] on the x86-64 architecture. Our design, however, is fully
generalizable to other compilers and architectures.

4.1 Profiling

Two of our run-time partitioning policies rely on profile data to calculate the
sanitization probabilities. We use LLVM’s built-in profiling functionality to gen-
erate binaries that collect profile data.

4.2 Compiler Pass

Our pass instruments the program code at the LLVM IR level processing one
translation unit at a time. PartiSan is fully compatible with standard build
systems and program loaders. We scheduled our pass to run right before the
LLVM sanitizer passes, which run late in the compiler pipeline. This allows us to
define (mostly declaratively) which variants get instrumented without interfering
with LLVM’s earlier optimization stages.

Creating Function Variants. Of the sanitizers bundled with LLVM, our pass
currently supports ASan and UBSan. We did not modify any sanitizer code and
most of PartiSan’s code is tool-agnostic. To create the function variants, we
begin by passing the necessary -fsanitize command line options to the com-
piler. ASan’s front-end pass prepares the program by marking all functions that
require sanitization with a function-level attribute. With just one line of ASan-
specific code, PartiSan removes this function attribute for the unsanitized vari-
ants. UBSan’s front-end pass embeds many of its checks before the program is
translated into IR. PartiSan contains 56 lines of code to remove these checks
from the unsanitized variants.
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foo:
...
# Prepare arguments
callq bar
...

(a) Original call site

foo_0:
...
# Prepare arguments
callq *. Lptr_array +16(% rip)
...

(b) Transformed call site

bar:
# Preserve arguments
jmpq *. Lptr_array +16(% rip)

(c) Control-flow trampoline

Fig. 2. Generated x86-64 assembly

Creating the Indirection Layer. We create the indirection layer as follows.
We begin by collecting the set of functions that have multiple variants. Then,
we add the variant pointer array as a global variable with internal linkage. We
choose the size of the array such that it has one slot for every function in the set.
Next, we create trampolines for all functions in the set. The trampoline, which
takes over the name of the function it corresponds to, forwards control to the
currently active variant of that function. By taking over the name of the original
function, the trampoline ensures that any calls to that function will be routed
to the currently active variant.

Next, we replace all call instructions that target functions in the set with
indirect call instructions that read their call target from the variant pointer
array. Functions outside the compilation unit will not be in the set, but might
still have multiple variants. While we do not replace calls to such instructions,
the call will still (correctly) invoke the currently active variant of the target
function because it will be routed through that function’s trampoline.

Note that the compiled program will only contain the trampolines that may
actually be used at run time. If a trampoline’s corresponding function is not
externally visible (and thus cannot be called by external code) and it does not
have its address taken (and thus cannot be called indirectly), then the trampoline
will be deleted by LLVM’s dead code elimination pass.

Figure 2 shows the assembly code that is generated for the trampolines and
transformed call sites.

Embedding Metadata. Our runtime component needs to know which function
variants are associated with each slot of the variant pointer array. Depending
on the partitioning policy, it may also require function execution frequencies
and estimated execution costs for all function variants. We add this informa-
tion (encoded in an array of function descriptors) as read-only data to each
compilation unit.

4.3 The PartiSan Runtime

The PartiSan runtime implements the three partitioning policies described in
Sect. 3.4. The runtime exposes a single externally visible function used to register
modules: cf register(const func t* start, const func t* end). Every module
registers its function variants with the runtime by invoking this function from a
constructor. After all modules have registered, the runtime initializes.
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The runtime’s initialization proceeds in four steps. First, the runtime com-
putes the activation probabilities for each function variant, according to the
configured policy. Then, we seed a secure number generator. Next, we initial-
ize all variant pointer arrays. This is necessary because the program might call
some of the variant functions before our runtime’s background thread performs
its first round of run-time partitioning. Finally, we spawn the background thread
that is responsible for the continuous run-time partitioning.

Run-Time Partitioning. Our background thread runs an infinite loop, which
invokes the partitioning procedure whenever it wakes up. This procedure iterates
through the function descriptors for every registered module. For every function,
we generate a random integer number X between 0 and 100, and use this to select
one of the variants. If the activation probabilities for the sanitized and unsani-
tized variants of a function are 0.01 and 0.99, respectively, then we will activate
the sanitized variant if X is less than 2, and we will activate the unsanitized
variant for values greater than 1. We write the pointer to the activated variant
in the variant pointer array.

We attempt to reduce cache contention by performing the write only if nec-
essary (i.e., only if the old and new value differ). This adds a read dependency
on the old pointer value which may slow down the background thread. However,
the execution of the background thread is not performance critical since it runs
fully asynchronously with respect to the application threads.

5 Effectiveness

We evaluate the effectiveness of PartiSan with an empirical investigation of five
CVEs [15], including the infamous Heartbleed bug. Table 2 shows the CVEs
we tested. Each of them was found in a popular real-world program and the
types of vulnerabilities include stack-based overflows and information leaks on
the heap. We used PartiSan to compile two versions of each program, applying
ASan to the sanitized variants in one version and UBSan in the other version,
and we configured our runtime to enforce its expected-cost partitioning policy.
We detected four out of five vulnerabilities in the ASan version, and three out of
five in the UBSan version. We then compiled a third version of the program with
the same partitioning policy and applied both sanitizers to the sanitized variants.
This third version reliably detects three out of five CVEs. The remaining two
CVEs are detected in 72% and 6% of our test runs.
For each of the selected CVEs we perform the following steps:

1. Verify vulnerability exposure
2. Verify vulnerability detection
3. Collect profile data
4. Evaluate vulnerability detection with PartiSan

Each of the above steps requires a program version with different instrumenta-
tion. In step 1, we compile the vulnerable program without any instrumentation
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Table 2. Evaluated CVEs

CVE # Program (Submodule) Vulnerability Sanitizer Detection

2016-6297 Php 7.0.3 (Zip extension) Integer ovf. → Stack ovf. UBSan, ASan 71.8%

2016-6289 Php 7.0.3 (Core engine) Integer ovf. → Stack ovf. UBSan, ASan Always

2016-3191 Php 7.0.3 (Pcre extension) Stack overflow ASan 6.2%

2014-0160 OpenSSL 1.0.1f (Heartbeat ext.) Heap over-read ASan Always

2014-7185 Python 2.7.7 (Core library) Integer ovf. → Heap over-read UBSan Always

and verify that the vulnerability can be triggered. To do this, we use the proof-
of-concept scripts referenced in the CVE details.

In step 2, we compile the program with ASan or UBSan enabled, but without
PartiSan. We run our test script from step 1 to verify that the vulnerability is
detected by the sanitizer.

Our expected-cost partitioning policy greatly benefits from profile data, so
in step 3, we use LLVM’s built-in profiling facilities to create an instrumented
version of the program for collecting profile data. We use the tests that come
with the program as the profiling workload. For vulnerabilities in submod-
ules/extensions, we only run the tests of the submodule to increase the chance
of the vulnerable code being classified as hot (since vulnerabilities in cold code
are guaranteed to be detected). The test suite of the vulnerable OpenSSL ver-
sion does not cover the Heartbeat extension. Therefore, if we run the test suite
as-is, the function that contains the Heartbleed vulnerability is never executed.
PartiSan would therefore classify this function as cold and always sanitize it,
which guarantees detection. To be more conservative, we executed the vulnera-
ble function 300 times with benign input alongside the official test suite.

Next, in step 4, we compile the program with the sanitizer enabled under Par-
tiSan. We use PartiSan’s default configuration to compile each of the programs.
This means that the program contains two variants of all functions, except those
that are cold and those without memory accesses. We only created sanitized
variants for cold functions, and unsanitized variants for functions without mem-
ory accesses. Finally, we execute our test script from step 1 a thousand times to
measure the detection rate.

Out of the five vulnerabilities, ASan and UBSan detect four and three respec-
tively. The three vulnerabilities detected by UBSan all involve an integer over-
flow. The overflown value usually represents the length of some buffer, which
results in out-of-bounds buffer accesses. The other two vulnerabilities are caused
by a lack of bounds checking. Note that although the last CVE is classified as
a heap over-read, ASan does not detect it. The reason is that the Python inter-
preter uses a custom memory allocator. It requests large chunks of memory
from the operating system and maintains its own free lists to serve individual
requests. Unfortunately, ASan treats each chunk as a single allocation and there-
fore is unable to detect overflows within a chunk. This shows that there is value
in using multiple sanitizers that can detect different causes of vulnerabilities.
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Lastly, we want to note that three out of five vulnerabilities are in code that
PartiSan classifies as cold. For those cases, we manually verified that PartiSan
only created the sanitized variant for the vulnerable functions. Hence, those
vulnerabilities are always reported. This result supports PartiSan’s underlying
assumption that most bugs hide in infrequently executed code. In summary, our
results show that we always detect bugs in cold code while bugs in hot code
are detected probabilistically. We argue that this is a valuable property in our
envisioned usage scenario: finding bugs in beta software during real usage with an
acceptable performance overhead. Note that probabilistic detection is a property
afforded by dynamic, but not by static partitioning.

6 Efficiency

We evaluated the performance of PartiSan-enabled programs using the SPEC
CPU 2006 integer benchmark suite [20]. Since PartiSan clones code we also
measured the size of the resulting binaries. Memory overheads—a small con-
stant amount for the background thread and a few bytes of metadata for every
function—are negligible (less than 1%) for all SPEC programs, so we do not
report them.

We conducted all experiments on a host with an Intel Xeon E5-2660 CPU and
64 GB of RAM running 64-bit Ubuntu 14.04. We applied ASan and UBSan to
all of the benchmark programs. We configure UBSan to disable error recovery,
which always aborts the program instead of printing a warning message and
attempting to recover for a subset of failed checks. For configurations including
UBSan we also configure PartiSan to create variants of all functions, even those
that do not access memory. We use the expected-cost partitioning policy with a
sanitization budget of 1%, which our runtime evenly divides across all functions.

To collect profile data we use LLVM’s built-in profiling facilities on the train-
ing workload of SPEC. Since our chosen partitioning policy greatly benefits from
profile data, we make the same data available to the baseline configuration to
make the comparison fair. We compile all configurations, including the baseline,
with profile-guided optimization enabled, supplying the same profile data for all
configurations. When measuring the runtime, we use the reference workload, run
each benchmark three times, and report the median.

6.1 Performance

Figures 3 and 4 show the run-time overheads for ASan and UBSan with respect
to the baseline for all SPEC integer benchmarks. The last column depicts the
geometric mean over all benchmarks, which is additionally stated in percent by
Table 3 for easier reference.

PartiSan’s partitioning without any sanitization (with two identical variants)
incurs a 2% overhead on average, with a maximum of 9% for gobmk.

For the fully-sanitized versions of ASan and UBSan (absent PartiSan) we
measured an average overhead of 103% and 59% respectively. Note that the
overhead introduced by ASan can be as much as 289% for perlbench.
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Fig. 3. SPEC run-time overheads for ASan
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Fig. 4. SPEC run-time overheads for UBSan and ASan+ UBSan

We also created a modified version of ASan that does not execute any checks.
The remaining overhead can be attributed to the maintenance of metadata and
other bookkeeping tasks. This configuration represents a lower bound on the run
time achievable by PartiSan since bookkeeping needs to be done in all variants.
PartiSan stays close to this lower bound for many benchmarks even when using
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Table 3. SPEC run-time overheads

Configuration Overhead

PartiSan 2%

ASan 103%

ASan w/o checks 27%

PartiSan+ ASan 33%

UBSan 59%

PartiSan+ UBSan 14%

ASan+ UBSan 191%

PartiSan+ ASan+ UBSan 46%

the expected-cost policy in its default configuration. For the PartiSan-enabled
versions of ASan and UBSan we measured an average overhead of 33% and 14%
respectively. This corresponds to a reduction of overhead levels by more than
two thirds (68% and 76%) with respect to the fully-sanitized versions. We also
include a configuration that enables both ASan and UBSan in Fig. 4 to show
that PartiSan can handle multiple sanitizers as long as they are compatible with
each other.

6.2 Binary Size

Table 4 gives an overview of the impact that PartiSan has on binary size for real-
world programs. We state binary sizes of the programs used in our effectiveness
evaluation for ASan and UBSan with and without PartiSan and the size increase
in percent. We can navigate the size versus performance trade-off by adjusting
our threshold for hot code and argue that (using our policy) the maximum size
increase is limited by a factor of two (i.e., when all code is classified as hot).

Table 4. PartiSan program sizes (in kilobytes)

Program ASan UBSan

Php 7.0.3 20,483/21,983 (7%) 8,658/12,536 (45%)

OpenSSL 1.0.1f 19,128/25,579 (34%) 12,153/14,243 (17%)

Python 2.7.7 41,715/54,717 (31%) 22,033/28,641 (30%)

The statically-linked PartiSan runtime adds a constant overhead of 6 KB to
each binary. Internally, our runtime depends on the pthread library to spawn
the background partitioning thread. Usually, this does not increase program size
as libpthread is a shared library.

We also measured the size of the SPEC benchmark binaries used in our
performance evaluation. Since the benchmarks are small programs, the increase
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in relative code size is dominated by the inclusion of the ASan/UBSan runtimes.
Therefore the larger programs in the suite exhibit the highest increase (9% for
gcc/ASan, and 16% for xalancbmk/UBSan). The increase in binary size over all
benchmarks (geometric mean) for ASan and UBSan are 2% and 5% respectively.

7 Use Case: Fuzzing

Fuzzing is an important use case for sanitization. A fuzzer repeatedly executes a
program with random inputs in order to find bugs. Inputs that exercise new code
paths are stored in a corpus (coverage-guided), which is used to derive further
inputs (evolutionary). To aid bug detection, the program is usually compiled
with sanitization. The vast majority of individual fuzzing runs do not detect bugs
or increase coverage, so fuzzers rely on executing lots of runs (i.e., throughput
is important). We applied PartiSan to LLVM’s libFuzzer [14], an in-process,
coverage-guided, evolutionary fuzzing engine, with the goal of improving fuzzing
efficiency.

When we first applied PartiSan to fuzzing we noticed that it represents a
specific use case that benefits from a custom partitioning policy. Specifically,
the fuzzer requires the program to be executed with coverage instrumentation.
The gathered coverage data is similiar (but not equivalent) to the profile data
used for our partitioning policy. We adapted PartiSan to use online coverage
data instead of profile data, which has two advantages. First, it simplifies the
developer workflow since there is no need to collect profile data a priori. Second,
it allows us to continuously refine our partitioning decisions. We integrated Par-
tiSan with libFuzzer with minimal changes to the latter. Additionally, the main
fuzzing loop provides a natural place to make partitioning decisions. We added
a call into our runtime from the fuzzing loop, forgoing the background thread in
favor of synchronous partitioning.

7.1 Partitioning Policy

Our policy for fuzzing is simple. For most functions we generate three variants:
variant 1 with coverage instrumentation, sanitized variant 2 , and fast variant 3

without any instrumentation. At startup we activate variant 1 for the whole
program. Whenever the fuzzer discovers an input that exercises new code, we
temporarily activate variant 2 for all functions and re-execute the input. Finally,
if a function becomes fully-explored (i.e., all its basic blocks have been executed),
we activate its variant 3 .

Our policy allows us to increase coverage efficiently compared to the original
program whose functions contain both coverage and sanitization instrumenta-
tion. As coverage increases, functions transition from variant 1 to 3 , speeding
up execution of the well-explored parts of the program. The downside of this
approach is that it potentially reduces the chance of bug detection as well as
coverage feedback to the fuzzer. Consider an input that exposes a non-crashing
bug without increasing coverage. Under our policy, such inputs execute without
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Fig. 5. Fuzzing throughput and coverage for libpng and wpantund

sanitization. Additionally, a function that we deem “fully-explored” might still
provide useful coverage feedback to the fuzzer. The reason is that libFuzzer’s cov-
erage model is fine-grained (e.g., it includes execution counts) while our notion
of fully-explored is binary.

7.2 Evaluation

We evaluated the PartiSan-enabled libFuzzer on a popular benchmark suite for
fuzzers [4] derived from widely-used libraries. We ran all 23 included benchmarks
with ASan enabled. Out of these 23 benchmarks 11 complete (find a bug) within
a few minutes. For the remaining 12 benchmarks we measured fuzzing through-
put and coverage and ran them for eight hours or until completion. Figure 5
shows the results for two benchmarks (geometric mean of 10 runs). The markers
indicate the completion of a run (i.e., after the first marker the line represents
the remaining 9 runs).

As expected, PartiSan is able to increase fuzzing throughput (executions per
second) for the sanitized libraries. For 9 (of 12) benchmarks this translates to
improved coverage, and 3 benchmarks complete significantly faster. For example,
for the libpng benchmark (left side of Fig. 5) PartiSan lets us find the bug
within our time budget, whereas previously we could not. However, the impact
of PartiSan is not always that pronounced. For the wpantund benchmark (right
side of Fig. 5), coverage only improves slightly. Note that fuzzing throughput
generally decreases over time as the fuzzer explores longer and longer code paths.
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8 Discussion

Custom Partitioning Policies. We implemented three run-time partitioning poli-
cies in PartiSan. The flexibility of our design and implementation additionally
allows developers to define their own policies. To implement a custom partition-
ing policy, the developer can provide her own load policy and activate variant

function when linking the final binary. Our policy for the fuzzing use case is built
atop this mechanism.

Asynchronous Partitioning. We opted to offload our run-time partitioning pro-
cedure onto a background thread. The advantage of this approach is that, since
partitioning happens asynchronously relative to the rest of the application, our
runtime component has little impact on the application’s performance. The dis-
advantage is that we cannot partition on a per-function call basis or depending on
the calling context. That said, in the fuzzing use case we partition synchronously
as part of the main fuzzing loop.

Partitioning Granularity. PartiSan partitions the program run time at function-
level granularity. In particular, PartiSan might execute the sanitized variant of
a hot function containing a long-running loop. Executing this sanitized variant
can induce a noticeable slowdown as PartiSan does not support control-flow
transfers between variants within the same function. Our design can be refined
with finer-grained partitioning, though a significant engineering effort would be
required to implement it. Our fundamental conclusions would not change with
an improved partitioning scheme.

Selective Sanitization. Like ASAP, PartiSan does not support sanitizers that do
not function correctly if they are applied selectively. Consider, for example, a
multithreaded program compiled with ThreadSanitizer [17]. If two functions in
the program concurrently write to the same memory location without acquiring
a lock, then ThreadSanitizer will detect a data race. This would not be true in
a PartiSan-enabled version of the program if we executed the sanitized variant
of one function and the unsanitized variant of the other. In this case, the data
race would not be detected, thus rendering ThreadSanitizer ineffective.

9 Related Work

9.1 Run-Time Partitioning

Kurmus and Zippel proposed to create a split kernel with a protected partition
containing a hardened variant of each kernel function, and an unprotected parti-
tion containing non-hardened variants [9]. Whenever the kernel services a system
call or an interrupt request, it transfers control flow to one of the two partitions.
The protected (unprotected) partition is used to service requests from untrusted
(trusted) processes and devices. Unlike PartiSan, however, it does not permit
control flow transfers between the two partitions. A service request is handled
in its entirety by one of the two partitions.
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The ASAP framework, presented by Wagner et al., reduces sanitizer overhead
by removing sanitizer checks and programmer asserts from frequently executed
code, while leaving the infrequently executed code unaffected [22]. This is also
a form of partitioning, as ASAP creates a sanitized and an unsanitized par-
tition within the program. As with PartiSan, transfers between sanitized and
unsanitized code are frequent with ASAP. However, contrary to PartiSan and
the aforementioned work, ASAP never creates multiple variants of a function.
ASAP should therefore be considered a static form of partitioning. Note that
static partitioning mechanisms can neither support adaptive overhead thresh-
olds, nor probabilistic bug detection, nor our presented fuzzing policy.

Bunshin reduces sanitizer and exploit mitigation overhead by distributing
security checks over multiple program variants and running them in parallel in
an N-Variant execution system [24]. The key idea is to generate program variants
in such a way that any specific sanitizer check appears in only one of the variants.
This distribution principle makes each variant faster than the original program
and also enables the simultaneous use of incompatible tools. Bunshin achieves full
sanitizer coverage by running all variants in parallel, i.e., for any given sanitizer
check there will be a variant that executes it. This approach improves program
latency at the cost of increased resource consumption which limits Bunshin’s
applicability. In a fuzzing scenario, for example, available cores can be more
efficiently leveraged by running additional fuzzer instances.

9.2 Sanitizers

We applied PartiSan to two of the sanitizers that are part of the LLVM
compiler framework, AddressSanitizer and UndefinedBehaviorSanitizer [13,16].
Many other sanitizers exist. MemorySanitizer detects reads of uninitialized val-
ues and, although we did not include it in our evaluation, it is fully compatible
with PartiSan [21]. Sanitizers that detect bad casting [5,7,11] and variadic func-
tion misuses [1] could also benefit from PartiSan by applying checks selectively.

ThreadSanitizer instruments memory accesses and atomic operations to
detect data races, deadlocks, and misuses of thread synchronization primitives
(e.g., pthread mutexes) in multithreaded programs [17]. Unfortunately, it is not
a good fit for PartiSan because selective sanitization renders the sanitizer inef-
fective (cf. Sect. 8).

FUSS, another work by Wagner, uses a separate optimization stage to
increase fuzzing throughput [23, Sect. 4.3]. After a warm-up phase, FUSS collects
profile data from the running fuzzer. It then re-compiles the program under test
using the collected profile data to omit the most costly instrumentation code,
and restarts the fuzzer with the new binary. We argue that this one-time opti-
mization through re-compilation constitutes static partitioning (albeit integrated
over time), while PartiSan optimizes dynamically and continuously.
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9.3 Control-Flow Diversity

PartiSan partitions the run time of the protected program using control-flow
diversity. Prior work has explored the use of control-flow diversity for security
purposes. One such work, Isomeron [3], is a defensive technique that defeats just-
in-time return-oriented-programming (JIT-ROP) attacks [18]. Isomeron creates
diversified clones of the program’s functions and switches randomly between
functions on every function call and return statement. Even with precise knowl-
edge of the gadget locations, an attacker cannot mount a reliable JIT-ROP
attack, as Isomeron might transfer control flow to a non-intended location after
every execution of a gadget.

Crane et al. describe how they used control-flow diversity to mitigate cache-
based side-channel attacks [2]. Crane et al. create multiple variants of program
functions and applies different diversifying transformations to each variant. The
transformations are designed to preserve the semantics of the code, but obscure
the code’s memory access patterns (i.e., data access locations and execution
trace). Essentially, the technique adds noise to the observable leakage in the
shared cache, which raises the difficulty for the adversary.

10 Conclusion

We present PartiSan, a run-time partitioning technique that increases the per-
formance and flexibility of sanitized programs. PartiSan allows developers to
ship a single sanitizer-enabled binary without having to commit to either the
fraction of time spent sanitizing on a given target, nor the type of sanitization
employed. Specifically, PartiSan uses run-time partitioning controlled by tunable
policies. We have explored three simple policies and expect future developers to
define additional, application and domain-specific ones. Our experiments show
that, using our expected-cost policy, PartiSan reduces performance overheads of
the two popular sanitizers, ASan and UBSan, by 68% and 76% respectively. We
also demonstrate how PartiSan can improve fuzzing efficiency. When integrated
with libFuzzer, PartiSan consistently increases fuzzing throughput which leads
to improved coverage and more bugs found.

PartiSan’s dynamic partitioning mechanism enables adaptive overhead
thresholds and probabilistic bug detection; neither of which are supported by
static partitioning mechanisms presented in previous work. Hence, PartiSan is
able to extend the usage scenarios of sanitizers to a much wider group of testers
and their respective program inputs, leading to the exploration of a greater num-
ber of program paths. This will enable developers to catch more errors early,
reducing the number of vulnerabilities in released software.
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Abstract. Programs aiming for low runtime overhead and high avail-
ability draw on several object-oriented features available in the C/C++

programming language, such as dynamic object dispatch. However, there
is an alarmingly high number of object dispatch (i.e., forward-edge) cor-
ruption vulnerabilities, which undercut security in significant ways and
are in need of a thorough solution. In this paper, we propose τCFI, an
extended control flow integrity (CFI) model that uses both the types and
numbers of function parameters to enforce forward- and backward-edge
control flow transfers. At a high level, it improves the precision of existing
forward-edge recognition approaches by considering the type information
of function parameters, which are directly extracted from the application
binaries. Therefore, τCFI can be used to harden legacy applications for
which source code may not be available. We have evaluated τCFI on
real-world binaries including Nginx, NodeJS, Lighttpd, MySql and the
SPEC CPU2006 benchmark and demonstrate that τCFI is able to effec-
tively protect these applications from forward- and backward-edge cor-
ruptions with low runtime overhead. In direct comparison with state-of-
the-art tools, τCFI achieves higher forward-edge caller-callee matching
precision.

Keywords: C++ object dispatch · Indirect control flow transfer
Code-reuse attack

1 Introduction

The C++ programming language has been extensively used to build many large,
complex, and efficient software systems over the last decades. A key concept
of the C++ language is polymorphism. This concept is based on C++ virtual
functions. Virtual functions enable late binding and allow programmers to over-
write a virtual function of the base-class with their own implementation. In
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order to implement virtual functions, the compiler needs to generate virtual
table meta-data structures for all virtual functions and provide to each instance
(object) of such a class a (virtual) pointer (the value of which is computed during
runtime) to the aforementioned table. Unfortunately, this approach represents a
main source for exploitable program indirection (i.e., forward edges) along func-
tion returns (i.e., backward edges), as the C/C++ language provides no intrinsic
security guarantees (i.e., we consider Clang-CFI [1] and Clang’s SafeStack [2]
optional).

In this paper, we present a new control flow integrity (CFI) tool called τCFI
used to secure C++ binaries by considering the type information from applica-
tion binaries. Our work targets applications, whose source code is unavailable
and that contain at least one exploitable memory corruption bug (e.g., a buffer
overflow bug). We assume such bugs can be used to enable the execution of
sophisticated Code-Reuse Attacks (CRAs) such as the COOP attack [3] and
its extensions [4–7], violating the program’s intended control flow graph (CFG)
through forward edges in the CFG and/or through attacks, that violate backward
edges such as Control Jujutsu [8]. A potential prerequisite for violating forward-
edge control flow transfers is the corruption of an object’s virtual pointer. In
contrast, backward edges can be corrupted by loading fake return addresses on
the stack.

To address such object dispatch corruptions, and in general any type of indi-
rect program control flow transfer violations, CFI [9,10] was originally devel-
oped to secure indirect control flow transfers, by adding runtime checks before
forward-edge and backward-edge control transfers. CFI-based techniques, that
rely on the construction of a precise CFG, are effective [11], if CFGs are care-
fully constructed and sound [12]. However, these techniques still allow CRAs
that do not violate the enforced CFG. For example, the COOP family of CRAs
bypasses most deployed CFI-based enforcement policies, since these attacks do
not exploit indirect backward edges (i.e., function returns), but rather impre-
cision in forward edges (i.e., object dispatches, indirect control flow transfers),
which in general cannot be statically (before runtime) and precisely determined
as alias analysis in program binaries is undecidable [13]. Source code based tools
such as: SafeDispatch [14], MCFI [15,16], ShrinkWrap [17], VTI [18], and IFC-
C/VTV [19] can protect against forward-edge violations. However, they rely on
source code availability limiting their applicability (e.g., proprietary libraries
cannot be recompiled). In contrast, binary-based forward-edge protection tools,
including binCFI [20], vfGuard [21], vTint [22], VCI [23], Marx [24] and TypeAr-
mor [25], typically protect only forward edges through a CFI-based policy, and
most of the tools assume that a shadow stack [26] technique is used to protect
backward edges.

Unfortunately, the currently most precise binary-based forward-edge protec-
tion tools w.r.t. calltarget reduction, VCI and Marx, suffer from forward-edge
imprecision, since both are based on an approximated program class hierarchy
obtained through the usage of heuristics and assumptions. TypeArmor enforces
a forward-edge policy, which only takes into account the number of parameters
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of caller-callee pairs without imposing any constraint on the parameters’ types.
Thus, these forward-edge protection tools are generally too permissive. CFI-based
forward-edge protection techniques without backward-edge protection are broken
[27], thus these tools assume that a shadow stack protection policy is in place.
Unfortunately, shadow stack based techniques (backward-edge protection) were
recently bypassed [28] and add, on average, up to 10% runtime overhead [29].

In this paper, we present τCFI, which is a fine-grained forward-edge and
backward-edge binary-level CFI protection mechanism, that neither relies on
shadow stack based techniques to protect backward edges, nor any runtime-type
information (RTTI) (i.e., metadata emitted by the compiler, which is most of
the time stripped in production binaries). Note that, in general, variable type
reconstruction on production binaries is a difficult task, as the required program
semantics are mostly removed through compilation.

At a high level, there are a number of analyses τCFI performs in order to
achieve its protection objective. In particular, it (1) uses its register width (ABI
dependent) as the type of the parameter for each function parameter, (2) when
determining whether an indirect call can target a function, it checks whether the
call and the target function use the same number of parameters and whether
the types (register width) match, (3) based on the provided forward-edge caller-
callee mapping it builds a mapping, back from each callee to the legitimate
addresses, located next to each caller. τCFI’s backward-edge policy is based on
the observation that backward edges of a program can be efficiently protected,
if there is a precise forward-edge mapping available between callers and callees.

We have implemented τCFI on top of DynInst [30], which is a binary rewrit-
ing framework, that allows program binary instrumentation during loading or
runtime. Note that τCFI preserves the original code copy of an executable by
instrumenting all code of an executable shadow copy, which is later mapped
to the original binary after it was loaded and τCFI’s analysis finished. τCFI
works with legacy programs and can be used to protect both executables and
libraries. τCFI performs per-file analysis; as such each file is protected individu-
ally. We have evaluated τCFI with several real-world open source programs (i.e.,
NodeJS, Lighttpd, MySql, etc.), as well as the SPEC CPU2006 benchmarks and
demonstrated that our forward-edge policy is more precise than state-of-the-art
tools. τCFI is applicable to program binaries for which we assume source code is
not available. τCFI significantly reduces the number of valid forward edges com-
pared to previous work and thus, we are able to build a precise backward-edge
policy, which represents an efficient alternative to shadow stack based techniques.

In summary, we make the following contributions:

– We present τCFI, a new CFI system that improves the state-of-the-art
CFI with more precise forward-edge identification by using type information
reverse-engineered from stripped x86-64 binaries.

– We have implemented τCFI with a binary instrumentation framework to
enforce a fine-grained forward-edge and backward-edge protection.

– We have conducted a thorough evaluation, through which we show that τCFI
is more precise and effective than other state-of-the-art techniques.
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2 Background

In this section, we provide the needed technical background to set the stage for
the remainder of this paper.

2.1 Exploiting Object Dispatches in C++

Figure 1 depicts a C++ code example (left) and how a COOP main-loop gadget
(right) (i.e., based either on ML-G (main-loop), REC-G (recursive) or UNR-G
(unrolled) COOP gadgets, see [4] for more details) is used to sequentially call
COOP gadgets by iterating through a loop (REC-G excluded) controlled by the
attacker.

First, the object dispatch (see line 17 depicted in Fig. 1) is exploited by the
attacker in order to call different functions in the whole program by iterating on
an array of fake objects previously inserted in the array through, for example, a
buffer overflow. Second, in order to achieve this, the attacker previously exploits
an existing program memory corruption (e.g., buffer overflow), which is further
used to corrupt an object dispatch, ❶, by inserting fake objects into the array
and by changing the number of initial loop iterations. Next she invokes gadgets,
❶ and ❸ up to M , through the calls, ❷ and ❹ up to N , contained in the loop. As
it can be observed in Fig. 1, the attacker can invoke from the same callsite legiti-
mate functions (in total N ) residing in the virtual table (vTable) inheritance path
(i.e., at the time of writing this paper this type of information is particularly
hard to recuperate from program binaries) for this particular callsite, indicated
with green color vTable entries. However, a real COOP attack invokes illegit-
imate vTable entries residing in the entire initial program class hierarchy (or
the extended one) with little or no relationship to the initial callsite, indicated
with red-color vTable entries. Third, in this way different addresses contained in
the program (1) (vTable) hierarchy (contains only virtual members), (2) class
hierarchy (contains both virtual and non-virtual members) and (or) the whole
program address space can be called. For example, the attacker can call any entry
in the: (1) class hierarchy of the whole program, (2) class hierarchy containing
only legitimate targets for this callsite, (3) virtual table hierarchy of the whole
program, (4) virtual table hierarchy containing only legitimate targets for this
callsite, (5) virtual table hierarchy and class hierarchy containing only legitimate
targets for this callsite, and (6) virtual table hierarchy and class hierarchy of the
whole program. Finally, because there are no intrinsic language semantics—such
as object cast checks—in the C++ programming language for object dispatches,
the loop gadget indicated in Fig. 1 can be used without constraint to call any
possible entry in the whole program. Thus, making any program address the
start of a potential usable gadget.

2.2 Type-Inference on Executables

Recovering variable types from executable programs is generally considered dif-
ficult for two main reasons. First, the quality of the disassembly can vary con-
siderably from one used underlying binary analysis framework to another and
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Fig. 1. COOP main loop gadget (ML-G) operation with the associated C++ code.

w.r.t. the compiler flags which were used to compile the binary. Note that pro-
duction binaries can be more or less stripped (i.e., RTTI or other debugging
symbols may or may not be available etc.) from useful information, which can
be used during a type-recovering analysis. τCFI is based on DynInst and the
quality of the executable disassembly is sufficient for our needs. In contrast to
other approaches, the register width based type recuperation of τCFI is based
on a relatively simple analysis compared to other tools and provides similar
results. For a more comprehensive review on the capabilities of DynInst and
other tools, we advice the reader to review Andriesse et al. [31]. Second, if the
type inference analysis requires alias analysis, it is well known that alias analysis
in binaries is undecidable [13] in theory and intractable in practice [32]. Further,
there are several highly promising tools such as: Rewards [33], BAP [34], Smart-
Dec [35], and Divine [36]. These tools try more or less successfully to recover (or
infer) type information from binary programs with different goals. Typical goals
are: (1) full program reconstruction (i.e., binary to code conversion, reversing,
etc.), (2) checking for buffer overflows, and (3) checking for integer overflows and
other types of memory corruptions. For a comprehensive review of type inference
recovering tools in the context of binaries, we suggest consulting Caballero et
al. [37]. Finally, it is interesting to note that the code from only a few of the
tools mentioned in the previous review are actually available as open source.

2.3 Security Implications of Indirect Transfers

Indirect Forward-Edge Transfers. Illegal forward-edge indirect calls may
result from a virtual pointer (vPointer) corruption. A vPointer corruption is not
a vulnerability but rather a capability, which can be the result of a spatial or
temporal memory corruption triggered by: (1) bad-casting [38] of C++ objects, (2)
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buffer overflow in a buffer adjacent to a C++ object, or (3) a use-after-free condi-
tion [3]. A vPointer corruption can be exploited in several ways. A manipulated
vPointer can be exploited to make it point to any existing or added program
virtual table entry or to a fake virtual table added by the attacker. For example,
an attacker can use the corruption to hijack the control flow of the program and
start a COOP attack [3]. vPointer corruptions are a real security threat that
can be exploited in many ways as for example if there is a memory corruption
(e.g., buffer overflow, use-after-free condition), which is adjacent in memory to
the C++ object. As a consequence, each memory corruption, which can be used
to reach the memory layout of an object (e.g., object type confusion), can be
potentially used to change the program control flow.

Indirect Backward-Edge Transfers. Program backward edges (i.e., jump,
ret, etc.) can be corrupted to assemble gadget chains such as follows. (1) No
CFI protection technique was applied: In this case, the binary is not protected
by any CFI policy. Obviously, the attacker can then hijack backward edges to
jump virtually anywhere in the binary in order to chain gadgets together. (2)
Coarse-grained CFI protected scenarios: In this scenario, if the attacker is aware
of what addresses are protected, the attacker may deviate the application flow
to legitimate locations in order to link gadgets together. (3) Fine-grained CFI
protection scenarios: In this case, the legitimate target set is stricter than in
(2). But, assuming that the attacker knows which addresses are protected and
which are not, she may be able to call legitimate targets through control flow
bending. (4) Fully precise CFI protected scenarios (i.e., SafeStack [26] based):
In this scenario, the legitimate target set is stricter than in (3). Even though we
have a one-to-one mapping between calltargets and legitimate return sites, the
attacker could use this one-to-one mapping to assemble gadget chains if at the
legitimate calltarget return site there is a useful gadget [27].

3 Threat Model

We follow the same basic assumptions stated in [25] w.r.t. forward edges. More
precisely, we assume a resourceful attacker that has read and write access to
the data sections of the attacked program binary. We assume that the protected
binary does not contain self-modifying code or any kind of obfuscation. We also
consider pages to be either writable or executable, but not both at the same
time. Further, we assume that the attacker has the ability to exploit an existing
memory corruption in order to hijack the program control flow. As such, we
consider a powerful yet realistic adversary model that is consistent with previous
work on CRAs and their mitigations [26]. The adversary is aware of the applied
defenses and has access to the source and non-hardened binary of the target
application. She can exploit (bend) any backward-edge based indirect program
transfer and has the capability to make arbitrary memory writes.
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4 Design and Implementation

In this section, we present a brief overview of τCFI followed by its design and
implementation.

4.1 Approach Overview

Figure 2 depicts an overview of our approach. From left to right, the program
binary is analyzed by τCFI and the calltargets and callsite analysis are per-
formed for determining how many parameters are provided, how many are con-
sumed, and their register width. After this step, labels are inserted at each pre-
viously identified callsite and at each calltarget. The enforced policy is schemat-
ically represented by the black highlighted dots (addresses, e.g., cs1 ) in Fig. 2
that are allowed to call only legitimate red highlighted dots (addresses, e.g., ct1 ).
Next, to compute the set of addresses which a return instruction can target, the
address set determined by each address located after each legitimate callsite is
computed. This information is obtained by using the previously determined call-
site forward-edge mapping to derive a function return backward map that uses
return instructions as keys and return targets as values. This way, τCFI has a
set of addresses for each function to which the function return site is allowed to
transfer control. Finally, range or compare checks are inserted before each func-
tion return site. These checks are used during runtime to check if the address,
where the function return wants to jump to, is contained in the legitimate set for
each particular return site. This is represented in Fig. 2 by green highlighted dots
(addresses e.g., ctr2 ) that are allowed to call only legitimate blue highlighted
dots (addresses e.g., csn1 ). Finally, the result is a hardened program binary (see
right-hand side in Fig. 2).

Fig. 2. Main steps performed by τCFI when hardening a program binary.

4.2 Parameter Count and Type Policy

Parameters can be passed through registers or the stack. In the Itanium C++
ABI, the first six parameters are passed through registers (i.e., rdi, rsi, rdx,
rcx, r8, and r9). Even when a 64-bit register is used to pass a parameter, the
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actual number of bits used in the register might be smaller. Therefore, we treat
the used widths of parameter-storing registers as the types of the parameters.
There are four types of reading and writing access on registers. Therefore, our
set of possible types for parameters is {64, 32, 16, 8, 0}, where zero models the
absence of a parameter. For the Itanium ABI, our analysis tracks the 6 registers
used in parameter passing and classifies callsites and calltargets according to
how these registers are used.

Our analysis overapproximates at callsites and underapproximates at call-
targets the parameter count and types, which is due to the general difficulty
of statically determining the exact number of arguments provided by a callsite
and the number of parameters required by a calltarget and w.r.t. the widths of
registers used in parameter passing. Specifically, at a callsite, the analysis calcu-
lates an upper bound for the number of arguments and for the widths of those
registers that store arguments. For instance, for a function call that passes one
argument with a width of 32-bit, the analysis may estimate that there are two
arguments passed and the first one’s width is 64-bit. Furthermore, the analysis
on a calltarget (a callee function) calculates a lower bound for the number of
needed parameters and for the widths of those registers that store parameters.

Because of the approximations in our analysis, our policy for matching call-
sites and calltargets allows a callsite to transfer to a calltarget if (1) the number
of estimated arguments at a callsite is greater than the number of estimated
parameters at a calltarget; and (2) for each argument at the callsite and its cor-
responding parameter in the calltarget, the estimated width of the argument is
greater than the estimated width of the parameter. Part (1) is about the parame-
ter count and is the same as the parameter-count policy in TypeArmor [25]; part
(2) is about the parameter types and enables τCFI to provide a finer-grained
policy than just considering the parameter count.

4.3 Instruction Read-Write Effect

We first introduce some definitions and notation. The set I describes the set of
possible instructions; in our case, this is based on the instruction set for x86-
64 processors. An instruction i ∈ I can perform two kinds of operations on
registers: (1) Read n-bit from a register with n ∈ {64, 32, 16, 8} and (2) Write
n-bit to a register with n ∈ {64, 32, 16, 8}. Note that there are instructions that
can directly access the higher 8 bits of the lower 16 bits of 64-bit registers. For
our purpose, we treat this access as a 16-bit access.

Next, the possible effect of an instruction on one register is described as
δ ∈ Δ with Δ = {w64, w32, w16, w8, 0} × {r64, r32, r16, r8, 0}. Note that 0
represents the absence of either a write or read access and (0, 0) represents
the absence of both. Meanwhile, wn with n ∈ {64, 32, 16, 8} implies all wm
with m ∈ {64, 32, 16, 8} and m < n (e.g., w64 implies w32); the same property
holds for rn. The Itanium C++ ABI specifies 16 general purpose integer registers.
Therefore, the read-write effect of an instruction on the set of registers can be
described as δp ∈ Δ16. Our analysis performs calculations based on the effect
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of each instruction i ∈ I via the function regEffect : I �→ Δ16. Note that this
function can be purely defined based on the semantics of instructions.

4.4 Calltarget Analysis

Our calltarget static analysis classifies calltargets according to the parameters
they expect by taking into account the parameters’ count and types. Given a
set of address-taken functions4, the static analysis performs an interprocedural
analysis to determine the register states for the 6 argument registers.

Next, we present τCFI’s analysis, followed by a discussion of optimizations
and interprocedural analysis. The basic analysis determines, for each register
and at a particular program location, that it is in one of the following states:

– rn, where n ∈ {64, 32, 16, 8} represents that the lower n bits of the register
are read before written along all control flow paths starting from the location.

– ∗ represents that, along some control flow path, the register is either written
before read or there are no reads/writes on the register.

The basic analysis described above can be implemented as a classic backward-
liveness analysis, except that it needs to track widths in read operations. For
instance, for an instruction i, if the regEffect function shows that i reads the
lower 16-bits of rax, then the state of rax immediately before the instruction
is r16. For an instruction with multiple successors, the register states after the
instruction are calculated based on the states at the beginnings of the successors.
For instance, if an instruction has two successors, and the state of rax is r64
before the first successor and the state of rax is r32 before the second, then
the state of rax after the instruction is r32, essentially indicating that all paths
starting from the end of the instruction have a r32 read before write for rax.
Recall that the calltarget analysis performs an underapproximation; so using r32
is safe even though one of the paths performs a r64 read.

The backward-liveness analysis, however, is inefficient. Our implementation
actually follows TypeArmor [25] to perform a forward interprocedural analysis
(with some modification to consider widths of read operations). We refer readers
to the TypeArmor paper for details and give only a brief overview here.

First, note that τCFI’s analysis operates at the basic block level instead of
the instruction level. Second, the analysis further refines the ∗ state to be either
w or c, where w (write before read) refers to a register being written to before
read from along some control flow path and c (clear/untouched) represents that
the register is untouched along some control flow path. The reason for such a
refinement is that during forward analysis, if the states of all argument registers
before a basic block b are either rn or w (e.g., when b reads or writes all argument
registers), then there is no need to keep analyzing the successor basic blocks
since their operations would not change the state before b; this enables an early
4 Since an indirect call can target a function only if the function’s address is taken,

there is no need to analyze functions whose addresses are not taken; this is similar
to TypeArmor.
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termination of the forward analysis and is thus more efficient. On the other hand,
if the state of one of the argument registers is c, then the forward analysis has to
continue. This is because c indicates the register is untouched so far, but it can
be read or written in a future basic block. Further, the analysis is interprocedural
and maintains a stack to match direct function calls and returns during analysis.
Finally, for indirect calls, however, it does not follow to the targets, but performs
an underapproximation instead.

Parameter Count and Types. Once the analysis finishes, we can calculate a
function’s parameter count and parameter types based on the state before the
entry basic block of the function. The argument count is determined using the
highest argument register that is marked rn. The type of an argument register
is directly given by the rn state of the register.

4.5 Callsite Analysis

Our callsite analysis classifies callsites according to the arguments they provide
by considering the argument count and their types. For callsite analysis, overesti-
mations are allowed: the callsite analysis overestimates the number of arguments
and the widths of arguments. As such a callsite is allowed to target a calltar-
get that requires a smaller or equal number of parameters and that requires a
smaller or equal width for each parameter.

For callsite analysis, we employ a customized reaching-definition analysis.
The analysis determines the states of registers. At a particular program location,
it determines whether or not a register is in one of the following states:

– sn, where n ∈ {8, 16, 32, 64}: this represents a state in which the register’s
lower n bit is set in a control-flow path ending at the program location.

– t (trashed): this represents a state in which the register is not set on all control
flow paths ending at the program location.

τCFI’s reaching-definition analysis is implemented as an interprocedural
backward analysis similar to TypeArmor [25], the difference being that τCFI
also tracks the widths in write operations to infer sn states. Once the analysis
is finished, it uses the register state just before an indirect callsite to determine
its argument count and types: If an argument register is in state sn, then it is
considered an argument that uses n bits; the argument count is determined by
the highest argument register whose state is sn.

4.6 Return Values

Knowing more information about return values of functions increases CFI preci-
sion. For instance, an indirect callsite that expects a return value should not call
a function that does not return a value; similarly, an indirect callsite that expects
a 64-bit return value should not call a function that returns only a 32-bit value.
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For calltarget analysis, τCFI traverses backwards from the return instruction of
a function and searches for uses of the RAX register to determine if a function has
a void or a non-void return type. In case there is a write operation on the RAX
register, τCFI infers that the function’s return type is non-void; furthermore, it
tracks the widths of write operations to infer the width of the return type. For
calltarget return-value type estimation, overapproximations are allowed.

At a callsite, τCFI traverses forward from the callsite to search for reads
before writes on the RAX register to determine if a callsite expects a return
value or not. In case there is such a read on the RAX register, τCFI infers that
the callsite expects a return value; furthermore, it tracks the widths of read
operations to infer the width of the expected return value. For callsite return-
value type estimation, underapproximation is allowed.

4.7 Backward-Edge Analysis

In order to protect backward edges, we have designed an analysis that can deter-
mine possible legitimate return target addresses for each callee function. Our
algorithm used for computing the legitimate set of addresses for each callee
works as follows. First, a map is obtained after running the callsite and calltar-
get analysis (see Sects. 4.4 and 4.5 for more details); it maps a callsite to the set
of legal calltargets where forward-edge indirect control-flow transfer is allowed
to jump. This map is then reversed to build a second map that maps from the
return instruction of a function (callee) to a set of addresses where the return
can transfer to.

The return target address set for a function return is determined by getting
the next address after each callsite address that is allowed to make the forward-
edge control flow transfer. The map is obtained by visiting a return instruction
address in a function and assigning to it the addresses next to callsites that
can call the function. At the end of the analysis, all callsites and all function
returns have been visited and a set of backward-edge addresses for each function
return address is obtained. Note that the function boundary address (i.e., ret)
is detected by a linear basic block search from the beginning of the function
(calltarget) until the first return instruction is encountered. We are aware that
other promising approaches for recovering function boundaries (e.g., [39]) exist,
and plan to experiment with them in future work.

4.8 Binary Instrumentation

Forward-Edge Policy Enforcement. The result of the callsite and calltarget
analysis is a mapping that maps a callsite to its allowed calltargets. In order to
enforce this mapping during runtime, callsites and calltargets are instrumented
inside the binary program with two labels. Additionally, each callsite is instru-
mented with CFI checks. At a callsite, the number of provided arguments is
encoded as a series of six bits. At a calltarget, the label contains six bits encod-
ing how many parameters the calltarget expects. Additionally, at a callsite 12
bits encode the register-width types of the provided arguments (two bits for
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each parameter), while at the calltarget another 12 bits are used to encode the
types of the parameters expected. Further, at a callsite, several bits are used to
encode if the function is expecting a void return type or not, and the width
of the return type if it is nonvoid (similarly for a calltarget). All this informa-
tion is written in labels before callsites and calltargets. During runtime before a
callsite, these labels are compared by performing an XOR operation. In case the
XOR operation returns false (a zero value), the transfer is allowed; otherwise, the
program execution is terminated.

Backward-Edge Policy Enforcement. Based on the previously determined
reverse map, before each function return a randomly generated label value is
inserted. We decided to use these kinds of values as our main requirement is to
map a return to a potentially large number of return sites. The same label is
inserted before each legitimate target address (the next address after a legitimate
callsite). In this way, a function return is allowed to jump only to the instruction
that follows next to the address of a callsite.

For callsites that target a calltarget that is also allowed by another callsite,
τCFI performs a search in order to detect if the callsite already has a label
attached to the address after the callsite. If so, a new label is generated and
multiple labels are stored for the address following the callsite. In this way,
calltarget return labels are grouped together based on the reverse map. This
design allows the same number of function return sites as the forward-edge pol-
icy enforces for each callsite. Finally, in case the comparison returns true, the
execution continues; otherwise, it is terminated.

4.9 Implementation

We have implemented τCFI using the DynInst [30] (v.9.2.0) instrumentation
framework with a total of 5,501 lines of C++ code. We currently restricted our
analysis and instrumentation to x86-64 executables in the ELF format using
the Itanium C++ ABI calling convention. τCFI can deal with the level of exe-
cutable obfuscation with which DynInst can deal. As such, we fully delegate this
responsibility to the used instrumentation framework underneath. We focused on
the Itanium C++ ABI convention as most C/C++ compilers on Linux implement
this ABI. However, the implementation separated the ABI-dependent code, so
we expect it to be possible to support other ABIs as well. We developed the
main part of our binary analysis pass in an instruction analyzer, which relies
on the DynamoRIO [40] library (v.6.6.1) to decode single instructions and pro-
vide access to its information. The analyzer is then used to implement our ver-
sion of the reaching-definition and liveness analysis. Further, we implemented a
Clang/LLVM (v.4.0.0, trunk 283889) backend (machine instruction) pass (416
LOC) used for collecting ground truth data in order to evaluate the effectiveness
and performance of our tool. The ground truth data is then used to verify the
output of our tool for several test targets. This is accomplished with the help of
our Python-based evaluation and test environment implemented in 3,239 lines
of Python code.
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5 Evaluation

We have evaluated τCFI by instrumenting various open source applications and
conducting a thorough analysis in order to show its effectiveness and usefulness.
Our test applications include the following real-world programs: FTP servers
Vsftpd (v.1.1.0, C code), Pure-ftpd (v.1.0.36, C code) and Proftpd (v.1.3.3, C
code); Lighttpd web server (v.1.4.28, C code); two database server applications
Postgresql (v.9.0.10, C code) and Mysql (v.5.1.65, C++ code); the memory cache
application Memcached (v.1.4.20, C code); and the Node.js application server
(v.0.12.5, C++ code). We selected these applications to allow for a fair com-
parison with other similar tools. In our evaluation, we addressed the following
research questions (RQs): RQ1: How effective is τCFI? (Sect. 5.1); RQ2: What
security protection is offered by τCFI? (Sect. 5.2); RQ3: Which attacks
are mitigated by τCFI? (Sect. 5.3) RQ4: Are other forward-edge tools better
than τCFI? (Sect. 5.4)? RQ5: Is τCFI effective against COOP? (Sect. 5.5)
RQ6: How does τCFI compare with Clang’s Shadow Stack? (Sect. 5.6) RQ7:
What runtime overhead does τCFI impose? (Sect. 5.7) Our setup is based
on Kubuntu 16.04 LTS (k.v.4.4.0) using 3 GB RAM and four hardware threads
running on an i7-4170HQ CPU at 2.50 GHz.

5.1 Effectiveness

Table 1 depicts the average number of calltargets per callsite, the standard devi-
ation σ, and the median. In Table 1, the abbreviation CS refers to the callsites,
while CT means calltargets. Note that the restriction to address-taken functions
(see column AT) is present. The label count∗ denotes the best possible reduc-
tion using the parameter count policy based on the ground truth collected by
our Clang/LLVM pass, while count denotes the results of our implementation
of the parameter count policy derived from binaries. The same applies to type∗
and type regarding the parameter type policy. A lower number of calltargets per
callsite indicates better results. Note that our parameter type policy is superior
to the parameter count policy, as it allows for a stronger reduction of allowed
calltargets. We consider this an important result, which further improves the
state-of-the-art. Finally, we provide the median and the pair of mean and stan-
dard deviation to allow for a better comparison with other state-of-the-art tools.

Table 1. Allowed callsites per calltarget for τCFI’s count and type policies.
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Theoretical Limits. We explored the theoretical limits regarding the effec-
tiveness of the count and type policies by relying on the collected ground truth
data; essentially assuming perfect classification. Based on the type information
collected by our Clang/LLVM pass, we derived the available number of calltar-
gets for each callsite by applying the count and type policies. From the results,
(1) the theoretical limit of the count* policy has a geomean of 89 possible calltar-
gets, which is around 8% of the geomean of the total available calltargets (1104),
and (2) the theoretical limit of the type* policy has a geomean of 83 possible
calltargets, which is 7.5% of the geomean of the total available calltargets (1104).
In comparison, the theoretical limit of the type* policy allows about 13% less
available calltargets in geomean than the limit of the count* policy (i.e., 69.3
vs. 79.4).

Calltarget per Callsite Reduction. (1) The count policy has a geomean of
104 calltargets, which is around 9.4% of the geomean of all available calltargets
(1104). This is around 24% more than the theoretical limit of available calltar-
gets per callsite (see count* 89 vs. 110.4). (2) The type policy has a geomean
of 104.7 calltargets, which is 9.48% of the geomean of total available calltargets
(1104). This is approximatively 25% more than the theoretical limit of avail-
able calltargets per callsite (see type* 83.7 vs. 104.7). τCFI’s type policy allows
around 9.4% less available calltargets in the geomean than our implementation
of the count policy (104.7 vs. 110.4), and a total reduction of more than 94%
(104.7 vs. 1104) w.r.t. the total number of calltargets (CT) available once the
count and type policies are applied.

5.2 Forward-Edge Policy Vs. Other Tools

Table 2. Legitimate calltargets/callsite for 5
tools.

Target IFCC TypeArmor

(CFI+CFC)

AT τCFI

(count)

τCFI

(type)

ProFTPD 3.0 376.0 396.0 382.0 390.0

Pure-FTPD 0.0 4.0 13.0 13.0 10.0

Vsftpd 1.0 12.0 10.0 10.0 7.0

Lighttpd 6.0 47.0 63.0 51.0 50.0

Nginx 25.0 254.0 1,111.0 528.0 528.0

MySQL 150.0 3,698.0 5,896.0 574.0 540.0

PostgreSQL 12.0 2,304.0 2,504.0 515.0 562.0

Memcached 1.0 14.0 14.0 14.0 12.0

NodeJS 341.0 4,714.0 7,230.0 1,169.0 1,022.0

geomean 8.7 170.4 259.8 123.1 111.6

Table 2 provides a comparison
between τCFI, TypeArmor and
IFCC w.r.t. the median count of
calltargets per callsite. The val-
ues for TypeArmor [25] and IFCC
[19] depicted in Table 2 have been
adopted from the corresponding
papers in order to ensure a fair
comparison. Further, Table 2 con-
veys the limitations of binary-based
type analysis, as the median of the
possible target set size for τCFI is
several times larger than the corre-
sponding set sizes for system using source-level analysis. Note that the smaller
the geomean values are, the better the technique is. AT is a technique that
allows a callsite to target any address-taken functions. IFCC is a compiler-based
solution and is included here as a reference to show what is possible when the
program’s source code is available. TypeArmor and τCFI on the other hand



τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries 437

are binary-based tools. τCFI reduces the number of calltargets by up to 42.9%
(geomean) when compared to the AT technique, by more than seven times (7230
vs. 1022) for a single test program w.r.t. AT, and by 65.49% (170.4 vs. 111.6)
in geomean when compared with TypeArmor, respectively. As such, τCFI rep-
resents a stronger improvement w.r.t. calltarget per callsite reduction in binary
programs compared to other approaches.

5.3 Effectiveness Against COOP

We investigated the effectiveness of τCFI against the COOP attack by looking
at the number of register arguments, which can be used to enable data flows
between gadgets. In order to determine how many arguments remain unprotected
after we apply the forward-edge policy of τCFI, we determined the number
of parameter overestimations and compared it with the ground truth obtained
during an LLVM compiler pass. Next, we used some heuristics to determine how
many ML-G and REC-G callsites exist in the C++ server applications. Finally,
we compared these results with the one obtained by TypeArmor.

Table 3. Parameter overestimation
for the ML-G and REC-G gadgets.

Program Overestimation

#cs 0 +1 +2 +3 +4 +5

MySQL (ML-G) 192 184 3 1 0 1 3

Node.js (ML-G) 134 131 1 0 1 0 1

geomean 160 155 1 1 1 1 1

MySql (REC-G) 289 273 10 2 3 0 1

Node.js (REC-G) 72 69 2 0 0 0 1

geomean 144 137 4 1 1 1 1

Table 3 presents the results obtained
after counting the number of perfectly esti-
mated and overestimated protected ML-G
and REC-G gadgets. As it can be observed,
τCFI obtained a 96% (184 out of 192) accu-
racy of perfectly protected ML-G callsites
for MySQL, while TypeArmor obtained a
94% accuracy for the same program. Fur-
ther, τCFI obtained a 97% (131 out of
134) accuracy for Node.js, while TypeAr-
mor obtained 95% accuracy on the same
program. Further, for the REC-G case, τCFI obtained an 94% (273 out of 289)
exact-parameter accuracy for MySQL, while TypeArmor had 86%. For Node.js,
τCFI obtained an accuracy of 95% (69 out of 72), while TypeArmor had 96%.
Overall τCFI’s forward-edge policy obtained a perfect accuracy of 95%, while
TypeArmor obtained 92%. While this is not a large difference, we want to point
out that the remaining overestimated parameters represent only 5% and thus do
not leave much wiggle room for the attacker.

5.4 Comparison with the Shadow-Stack

The shadow stack implementation of Abadi et al. [9] provides a strong secu-
rity protection [11] w.r.t. backward-edge protection. However, it: (1) has a high
runtime overhead (≥21%), (2) is not open source, (3) uses a proprietary binary
analysis framework (i.e., Vulcan), (4) loses precision due to equivalent class
merging. Hence, we propose an alternative backward-edge protection solution.
In order to show the precision of τCFI’s backward-edge protection, we provide
the average number of legitimate return addresses for return instructions and
compare it to the total number of available addresses without any protection.
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Table 4. Backward-edge policy statistics.

Program Total Total Total %RATs/RA

#RA #RATs #RATs/RA prog. binary

MySQL 5,896.0 3,792.0 0.6 0.014%

Node.js 7,230.0 3,864.0 0.53 0.011%

geomean 6,529.0 3,827.0 0.58 0.012%

Table 4 presents the statistics
w.r.t. the backward-edge policy
legitimate return targets. More
specifically, in Table 4, we use the
following abbreviations: total num-
ber of return addresses (Total
#RA), total (median) number of
return address targets (Total #RATs), total (median) number of return address
targets per return instruction (Total. # RATs/RA), percentage of legitimate
return address targets per return addresses w.r.t. the total number of addresses
in the program binary (% RATs/RA w.r.t. program binary). By applying τCFI’s
backward-edge policy, we obtain a reduction of 0.43 (1 − 0.58) ratio (geomean)
of the total number of return address targets per return address over the total
number of return addresses. This means that only 43% of the total number of
return addresses are actual targets for the function returns. The results indicate
a percentage of 0.012% (geomean) of the total addresses in the program binaries
are legitimate targets for the function returns. This means that our policy can
eliminate 99.98% (100% - 0.012%) of the addresses, which an attacker can use
for his attack inside the program binary. To put it differently, only 0.012% of the
addresses inside the binary can be used as return addresses by the attacker. Fur-
ther, we assume that the attacker cannot easily determine which addresses are
still available for any given program binary, which is stripped from debug infor-
mation. Note that each function return (callee) is allowed to return in geomean
to around 111 legitimate addresses (MySQL 519 and NodeJS 939) in all ana-
lyzed programs. Finally, we assume that it is hard for the attacker to find out
the exact set of legitimate addresses per return site once the policy was applied.

Fig. 3. CDF for the PostgreSQL program.
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5.5 Security Analysis

Figure 3 depicts the cumulative distribution function (CDF) for the PostgreSQL
program compiled with the Clang -O2 flag. We selected this program randomly
from our test programs. The CDF depicts the relation between the ratio of
indirect callsites and the ratio of calltargets, for the type and the count policies.
While the CDFs for the count policies have only a few changes, the amount of
changes for the CDFs of the type policies is vastly higher. The reason for this
is fairly straightforward: the number of buckets (i.e., the number of equivalence
classes) that are used to classify the callsites and calltargets is simply higher for
the type policies. Finally, note that the results depend on the internal structure
of the particular program and may for this reason vary for other programs.

5.6 Mitigation of Advanced CRAs

Table 5. Stopped CRAs, forward-edge policy
(FP) & backward-edge policy (BP).

Exploit Stopped Remark

COOP ML-G [3]

IE 32 bit × Out of scope

IE 1 64-bit � (FP) Arg. count mismatch

IE 2 64-bit � (FP) Arg. count mismatch

Firefox � (FP) Arg. count mismatch

COOP ML-REC [4]

Chrome � (FP) Void target where non-void

was expected

Control Jujutsu [8]

Apache � (FP) Target function not AT

Nginx � (FP) Void target where non-void

was expected

All Backward

edge violating

attacks

� (BP) (1)a or (2)b or (3)c

a Jump to address /∈ in the max − min address range.
b Jump to address �= then a legitimate address.
c Jump to address label �= the calltarget return label.

Table 5 presents several attacks
that can be successfully stopped
by τCFI by deploying only the
forward-edge or the backward-
edge policy. For checking if
the COOP attack can be pre-
vented, we instrumented the Fire-
fox library (libxul.so), which
was used to perform the origi-
nal COOP attack as presented in
the original paper. We observed
that due to the forward-edge pol-
icy this attack was no longer pos-
sible. For testing if backward-
edge attacks are possible after
applying τCFI, we used several
open source ROP attacks that
are explicitly violating the control
flow of a C++ program through
backward-edge violations. Next,
we instrumented the binaries of
these programs. Each attack that was using one of the protected function returns
was successfully stopped.

In summary, many forward-edge and backward-edge attacks can be success-
fully mitigated by τCFI as long as these attacks are not aware of the policy
in place and thus cannot selectively use gadgets that have their start address
in the allowed set for the legitimate forward-edge and backward-edge transfers,
respectively.
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5.7 Runtime Overhead

Fig. 4. Runtime overhead.

Figure 4 presents
the runtime over-
head obtained by
applying τCFI’s
forward-edge pol-
icy (register type;
parameter count)
and backward-
edge policy on
all C/C++ pro-
grams contained
in SPEC CPU2006.
Out of the eval-
uated programs:
xala- ncbmk, namd,
omnetpp, dealII,
astar, soplex, and
povray are C++ programs, while the rest are pure C programs. After the pro-
grams were instrumented, we measured the runtime overhead. The geomean of
the instrumented programs is around 2.89% runtime overhead. One reason for
the performance drop is cache misses introduced by jumping between the old and
the new executable section of the binary generated by duplicating and patching.
This is necessary, because when outside of the compiler, it is difficult to relo-
cate indirect control flow. Therefore, every time an indirect control flow occurs,
jumps into the old executable section and from there back to the new executable
section occur. Moreover, this is also dependent on the actual structure of the tar-
get as the overhead depends on the frequency of indirect control flow operations.
Another reason for the slightly higher (yet acceptable) performance overhead is
our runtime policy, which is more complex than that of other state-of-the-art
tools.

6 Discussion

Limitations. First, τCFI is limited by the capabilities of the DynInst instru-
mentation environment, where non-returning functions like exit are not detected
reliably in some cases. As a result, we cannot test the Pure-FTP server, as it
heavily relies on these functions. The problem is that those non-returning func-
tions usually appear as a second branch within a function that occurs after
the normal control flow, causing basic blocks from the following function to be
attributed to the current function. This results in a malformed control flow graph
and erroneous attribution of callsites and problematic misclassifications for both
calltargets and callsites.

Second, parameter passing through floating point registers is currently not
supported by τCFI, similar to other state-of-the-art tools. Tail calls are also



τCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries 441

not supported for now as they lose the one-to-one matching between callers
and callees. Further, τCFI does not support self-modifying code as code pages
become writable at run-time. We plan to address this limitation in future work.

Third, τCFI is not intended to be more precise than source code based tools
such as IFCC/VTV [19]. However, τCFI is highly useful in situations when the
source code is typically not available (e.g., off-the-shelf binaries), where programs
rely on third-party libraries, and where the recompilation of all shared libraries
is not possible.

Finally, while a major step forward, τCFI cannot thwart all possible attacks,
as even solutions with access to source code are unable to protect against all pos-
sible attacks [27]. In contrast, τCFI, our binary-based tool can stop all COOP
attacks published to date and significantly raises the bar for an adversary when
compared to other state-of-the-art tools. Moreover, τCFI provides a strong mit-
igation for other types of code-reuse attacks as well as for attacks that violate
the caller-callee function calling convention.

Attacker Policy Discovery Trade-offs. In general, with usage of CFI tech-
niques, it is relatively unchallenging for an attacker to figure out where an indi-
rect program control flow may transfer during runtime. This is because the
indirect transfer targets (backward and forward) are labeled with IDs that have
to satisfy certain conditions, e.g., a bitwise XOR operation between the bits of
the start and target address of indirect control flow transfer should return a one
or zero in case the transfer is legal or illegal, respectively.

Thus, we note that in general it is not difficult for a resourceful attacker to
figure out which callees match to which calltargets or vice versa when these are
labeled with IDs for example. τCFI is not exempted from this. In general, if
the attacker knows where an indirect transfer is allowed to jump to, he may use
this wiggle space to craft his attack with the available (reachable) gadgets. The
main assumption on which CFI and τCFI are built upon is that the wiggle room
is sufficiently reduced for an attacker such that the likelihood for a successful
attack is greatly diminished.

7 Related Work

Mitigation of Forward-Edge Based Attacks with Binary-Based Tools.
τCFI is closely related to TypeArmor w.r.t. the forward edge analysis. TypeAr-
mor [25] (≈3% runtime overhead in geomean) enforces a CFI-policy based on the
parameter count policy. Compared to τCFI, TypeArmor does not use function
parameter types and assumes a backward-edge protection is in place. VCI [23]
and Marx [24] are both based on approximated program (quasi) class hierar-
chies; they (1) do not recover the root class of the hierarchy, and (2) the edges
between the classes are not oriented; thus both tools enforce for each callsite
the same virtual table entry (i.e., index based) contained in one recovered class
hierarchy represented by father-child relationships between the recovered vta-
bles. Finally, both tools use up to six heuristics and simplifying assumptions in
order to make the problem of program class hierarchy reconstruction tractable.
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Compared to these tools, τCFI tries not to reconstruct a high-level metadata
data structure (class hierarchy), but rather performs analysis on the usage of
provided and consumed parameters at the callsites and calltargets.

Mitigation of Backward-Edge Based Attacks with Binary Based Tools.
According to a comprehensive survey by Burow et al. [11], tools that provide
backward-edge protection offer low, medium, and high levels of protection w.r.t.
backward edges. Further, this survey provides runtime overhead comparisons,
classifies the backward-edge protection techniques into binary-based, source code
based, and other types (e.g., with HW support, etc.). Due to page restriction,
we review only binary tools.

The original CFI implementation of Abadi et al. [9], MoCFI [41],
kBouncer [42], CCFIR [20], bin-CFI [43], O-CFI [44], PathArmor [45], Lock-
Down [46] mostly suffer from imprecision (high number of reused labels), have
low runtime efficiency, and most of them protect either forward edges or back-
ward edges assuming a perfect shadow stack implementation is in place. In con-
trast, τCFI makes no assumptions on the presence of a backward-edge protec-
tion. Further, τCFI provides a technique for protecting forward edges and does
not rely on a shadow stack approach for protecting backward edges.

8 Conclusion

In this paper, we have presented τCFI, a new control flow integrity (CFI) tech-
nique, which can be used to protect program control flow graph (CFG) forward
edges and backward edges in executables during runtime. For the protected
stripped (i.e., no RTTI information) x86-64 binaries, we do not need to make
any assumptions on the presence of an auxiliary technique for protecting back-
ward edges (i.e., shadow stacks, etc.) as τCFI protects these transfers, too. We
have evaluated τCFI with real world open source programs and have shown that
τCFI is practical and effective when protecting program binaries. Further, our
evaluation reveals that τCFI can considerably reduce the forward-edge legal call-
target set, provide high backward-edge precision, while maintaining low runtime
overhead.
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Abstract. Deserialization of untrusted data is an issue in many pro-
gramming languages. In particular, deserialization of untrusted data in
Java can lead to Remote Code Execution attacks. Conditions for this
type of attack exist, but vulnerabilities are hard to detect. In this paper,
we propose a novel sandboxing approach for protecting Java applications
based on trusted execution path used for defining the deserialization
behavior. We test our defensive mechanism on two main Java Frame-
work JBoss and Jenkins and we show the effectiveness and efficiency of
our system. We also discuss the limitations of our current system on
newer attacks strategies.

Keywords: Sandbox · Anomaly detection · Java security
Software protection

1 Introduction

Deserialization of untrusted data is a cause of security problems in many pro-
gramming languages [3]. For example, deserialization in Java might lead to
remote code execution RCE or DoS attacks [19]. Even though it is easy to check
whether preconditions for this type of attack exist in an application (that is, dese-
rialization performed on user-controlled data), design and carry a real attack is
a hard task due to the complexity of creating the attack payload. In order to
exploit this type of vulnerability, an attacker should create a custom instance of
a chosen serializable class which redefines the readObject method. The object
is then serialized and send to an application which will deserialize it, causing an
invocation of readObject and trigger the attacker’s payload. Since the attacker
has complete control on the deserialized data, he can choose among all the Java
classes present in the target application classpath, and manually compose them
by using different techniques (e.g., wrapping instances in serialized fields, using
reflection), and create an execution path that forces the deserialization process
towards a specific target (e.g., execution of a dangerous method with input cho-
sen by the attacker). There are several public exploits [6] that show the impact of
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the attack on real Java frameworks, such as JBoss and Jenkins, which are based
on several common Java libraries: Oracle JRE 1.7, Apache Commons Collection
3 and 4, Apache Commons BeanUtils, Spring Beans/Core 4.x and Groovy 2.3.x.

Currently, the main defense against this issue is a whitelist/blacklist approach
that allows only certain classes to be deserialized [18]. While blacklist approaches
are very effective on known attacks, they cannot recognize novel exploits. White-
lists, on the other hand, suffer from one fundamental problem: the approach is
based on static analysis (e.g. Look-Ahead Java Deserialization [18]) that pro-
cesses the deserialization data input before the deserialization process has been
executed. In such a context, static analysis fails to detect some attacks vec-
tors when, for example, the attacker uses reflection [10] or when he is able to
dynamically load classes at runtime [6]. Our method tracks dynamic of the class
execution path during the deserialization events. Extracting such information
from the Java execution model context is very difficult. In particular, we need to
deal with several challenges due to the dynamic loading of Java classes at run-
time, the JIT compilation mechanism and the native code instrumentation. Our
proposed dynamic technique operates in this direction and is able to precisely
reconstruct the dynamic execution path of object deserializations, and conse-
quently mitigate the entire spectrum of the attacks based on deserialization of
untrusted data.

More in detail, in this paper we propose a novel dynamic approach to protect
Java applications against deserialization of untrusted data attacks. Our system
is completely automatic and it is based on two phases: (1) training phase (2)
detection phase. During the learning phase, the system collects important infor-
mation about the behavior of benign deserialization processes and constructs the
precise execution path in form of a collection of invoked Java methods (stack
traces). In the second phase, the system runs a lightweight sandbox embedded
inside the Java virtual machine, that acts during the deserialization process,
and is able to ensure that only trusted execution paths are executed. Our tool is
very flexible, and can be applied out of the box to protect any Java application.
Its false positive ratio can be tuned according to the application behavior and
to the desired level of protection. Our experiments, performed on two popular
Java applications, JBoss and Jenkins, show the effectiveness and efficiency of
our system.

To summarize, we make the following contributions:

– We design an agnostic approach to mitigate the problems of deserialization
of untrusted data in the Java environment, based on the enforcement of pre-
cise execution paths. We tackle several challenges regarding the extraction of
dynamic information from the Java execution model such as: JIT compilation,
runtime loading of the Java classes and native code instrumentation.

– We design a lightweight sandboxing system for the Java environment that is
able to limit the attacker’s actions and mitigate the attacks by using informa-
tion from benign stack traces. Such a sandbox is transparent to Java appli-
cations and can be tuned according to a specific desired behavior.
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– We perform an experimental evaluation on two real-world Java application
framework: JBoss and Jenkins, and we show that our system is able to auto-
matically extract detailed information about object deserialization and per-
form a precise detection. We also analyze the limitations of our system against
new types of deserialization attacks.

We present background information related to Java deserialization technolo-
gies along with our threat model in Sect. 2. In Sect. 3, we discuss the principles
of our defensive mechanism. Section 4 describes the architecture and details of
the system. Experimental evaluation of our tool with various Java applications
is discussed in Sect. 5. Related work is presented in Sect. 6. We provide a dis-
cussion of how our current implementation can be extended to handle other
sophisticated deserialization attack techniques, such as data attacks, in Sect. 7.
We conclude our paper in Sect. 8.

2 Background

In this section we describe background concepts for understanding the security
problems with deserialization of untrusted data in Java. In particular, we briefly
describe the Java Virtual machine and the HotSpot JVM’s interpreter and com-
piler. Then we describe the mechanisms of reflection and object deserialization
in Java, and how the latter can be used to obtain malicious side effects when
applied to untrusted data.

2.1 Java Virtual Machine

Java code runs on a virtual machine (the Java Virtual Machine, or JVM), which
executes Java low-level instructions (bytecodes) on the host system. Several
implementations for the JVM exist; in our research we focus on the HotSpot
JVM, implemented by Oracle and used in both Oracle JDK and OpenJDK
products. Since Java is an interpreted language, each JVM runs an interpreter,
responsible for translating Java bytecodes into machine instructions for the host’s
architecture as programs are executed.

The template interpreter is the current interpreter in use in the HotSpot
JVM. The HotSpot runtime generates an interpreter in memory at the virtual
machine startup using the information in the TemplateTable (a structure con-
taining templates, assembly code corresponding to each bytecode). The Tem-
plateTable defines the templates and provides accessor functions to get the tem-
plate for a given bytecode [14].

In order to optimize performance, the JVM can compile some of the Java
bytecodes into native code. The HotSpot JVM includes two Just-In-Time (JIT)
compilers, C1 and C2, responsible for code optimization at runtime. C1, the
client compiler is optimized for compilation speed while C2, the server compiler
is optimized for maximal performance of the generated code. The HotSpot JVM
constantly analyzes the code as it runs to detect the critical parts that are
executed often (called hot spots, from which the JVM gets its name), which are
then compiled into native code [7].
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2.2 Java Technologies

Java Reflection. Java allows reflection via a set of API calls. Reflective code
can be used for various purposes, such as inspecting methods in classes and
calling them dynamically. For example, a program could use reflection on a
generic class instance i to check whether its class has a public method named
doSomething, and invoke it on i in case.

Java Object Serialization. Serialization is the process of encoding objects
into a stream of bytes, while deserialization is the opposite operation. In Java,
serialization is used mainly for lightweight persistence, network data transfer via
sockets, and Java Remote Method Invocation (Java RMI) [16]. Java deserializa-
tion is performed by the class java.io.ObjectInputStream, and in particular by
its method readObject. A class is suitable for serialization/deserialization if the
following requirements are satisfied [17]: (1) the class implements the interface
java.io.Serializable, (2) the class has access to the no-argument constructor
of its first non-serializable superclass.

A class C can specify custom behavior for deserialization by defining a
private void readObject method. If present, such method is called when an
object of type C is deserialized. Other methods can be defined to control deseri-
alization:

– writeObject is used to specify what information is written to the output
stream when an object is serialized

– writeReplace allows a class to nominate a replacement object to be written
to the stream

– readResolve allows a class to designate a replacement for the object just
read from the stream

As an example of custom behavior in deserialization, in Listing 1.1 we show
the custom readObject method in class java.util.PriorityQueue<?>, which
defines both writeObject and readObject to handle serialization/deserializa-
tion of the elements of the priority queue. We can see that queue elements are
read from the ObjectInputStream one by one, by calling readObject multiple
times, and then the function heapify is called at the end to organize the data
in the queue internally in the heap memory.

2.3 Vulnerability Example

The code reported in Listing 1.1 does not contain evident vulnerabilities. How-
ever, there is a security problem that could potentially arise from this mecha-
nism: function calls defined inside readObject generally operate on data read
from the stream, and such data can be controlled by an attacker. In such a
context, an attacker can craft nested class objects in the deserialization input
stream and define a sequence of method calls that end up executing dangerous
operations at the operating system level, such as filesystem activities, command
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Listing 1.1. readObject in java.util.PriorityQueue

private void readObject(java.io.ObjectInputStream s)

throws java.io.IOException,

ClassNotFoundException {

// Read in size, and any hidden stuff

s.defaultReadObject();

// Read in (and discard) array length

s.readInt();

queue = new Object[size];

// Read in all elements.

for (int i = 0; i < size; i++)

queue[i] = s.readObject();

heapify();

}

execution, etc. Chains of method invocations (called “gadgets”), that lead to
arbitrary command execution, have been identified in different sets of classes of
various libraries [6]. In general it is hard to ensure that such gadgets do not exists
in a given set of Java classes, due to the complexity in which their methods can
be composed to create a valid execution.

In summary, three constraints need to be satisfied in order to obtain a suc-
cessful attack on a Java application: (1) the attacker needs to define his own invo-
cation sequence by starting from a serializable class that redefines readObject;
(2) to obtain malicious behavior, the attacker has to find a path that starts from
the deserialized class and reaches the invocation of one or more desired methods;
(3) all the classes considered in the attack execution path must be present in the
application’s classpath.

To give an example of a real attack, we present some code that shows how
an attacker can pilot a deserialization process and execute a dangerous native
method. In Listing 1.2 we report the code for functions heapify, siftDown
and siftDownUsingComparator of class java.util.PriorityQueue. In List-
ings 1.3 and 1.4 we show methods compare of class TransformingComparator
and method transform of InvokerTransformer, from library Apache Commons
Collections 4. Listing 1.5 shows an hypothetical class for wrapping a system com-
mand.

Now, let’s suppose an attacker created and serialized an object as shown
in Listing 1.6. When this object is deserialized, the first method invoked after
reading all the data from the priority queue is heapify as defined in the source
code; then siftDownUsingComparator is called (via siftDown), which uses the
comparator provided by the attacker into the serialized object, in this case
a TransformerComparator, for comparing the queue elements. The compare
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Listing 1.2. heapify and siftDownUsingComparator in PriorityQueue

private void heapify() {

for (int i = (size >>> 1) - 1; i >= 0; i--)

siftDown(i, (E) queue[i]);

}

private void siftDown(int k, E x) {

if (comparator != null)

siftDownUsingComparator(k, x);

else

siftDownComparable(k, x);

}

private void siftDownUsingComparator(int k, E x) {

int half = size >>> 1;

while (k < half) {

int child = (k << 1) + 1;

Object c = queue[child];

int right = child + 1;

if (right < size && comparator.compare((E) c, (E) queue[right]) > 0)

c = queue[child = right];

if (comparator.compare(x, (E) c) <= 0)

break;

queue[k] = c;

k = child;

}

queue[k] = x;

}

Listing 1.3. TransformingComparator.compare

public int compare(final I obj1, final I obj2) { final O value1 =

this.transformer.transform(obj1); final O value2 =

this.transformer.transform(obj2); return

this.decorated.compare(value1, value2); }

Listing 1.4. InvokerTransformer.transform

public O transform(final Object input) {

if (input == null) return null;

try {

final Class<?> cls = input.getClass();

final Method method = cls.getMethod(iMethodName, iParamTypes);

return (O) method.invoke(input, iArgs);

...

}
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Listing 1.5. Command class

public class Command implements Serializable {

private String command;

public Command(String command) {

this.command = command;

}

public void execute() throws IOException {

Runtime.getRuntime().exec(command);

}

}

Listing 1.6. Sample payload

final InvokerTransformer transformer =

new InvokerTransformer("execute", new Class[0], new Object[0]);

final PriorityQueue<Object> queue =

new PriorityQueue<Object>(2, new TransformingComparator(transformer));

queue.add(1);

queue.add(new Command("rm -f importantFile"));

function in TransformerComparator uses the field transformer, provided by
the attacker, and calls its transform function on the objects being compared.
InvokerTransformer uses reflection to call the method with name equal to
its field iMethodName on input. The reflection in this case helps the attacker
to invoke methods of generic classes; by crafting the deserialization input, the
attacker is able to invoke method execute on an instance of the Command class
with controlled parameters and execute arbitrary commands. In Listing 1.7 we
report the stack trace collected at the execution of Runtime.exec, which con-
tains all the Java methods invoked during the malicious deserialization event.

Listing 1.7. Stack trace of sample attack payload

Runtime.exec

Command.execute

Method.invoke

InvokerTransformer.transform

TransformingComparator.compare

PriorityQueue.siftDownUsingComparator

PriorityQueue.heapify

PriorityQueue.readObject
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The attack vector described in this section is based on payload “Common-
sCollections2” from the ysoserial repository, used in real attacks. The main dif-
ference with the original version is that no class like Command, which was intro-
duced for the sake of simplicity, is generally available in the classpath. The real
attack vector uses a specific gadget that leverages dynamic class loading to pass
from reflective method invoke to an execution of Runtime.exec with controlled
input.

2.4 Threat Model

Our threat model considers an attacker who is able to exploit (either locally
or remotely) an object deserialization on untrusted and user-controlled data
inside a Java application running on the machine, and execute arbitrary method
calls on classes present in the Java classpath. The attacker has full control on
serialized data, as well as complete knowledge on the classes defined in the
application classpath and their source code. We assume that the machine is
uncompromised when our defensive mechanism is loaded. Thus, we consider the
protection of already infected systems to be out of the scope of this paper.
We consider the Java Virtual Machine execution environment trusted and we
assume that the attacker cannot compromise it by exploiting vulnerabilities such
as memory errors.

3 Overview

We now briefly describe a high-level overview of our approach. For the defensive
approach designed in this paper we design an application centric model based
on stack trace objects. More precisely, the stack trace structure is defined as a
sequence (stack) of n objects, each of them is represented by one of the Java
methods invoked during the deserialization process. The first element (entry
point of the stack trace), is the first class that invokes the readObject method,
while the last (exit point) consists of a native method call. It is important to note
that one stack trace is always associated with only one native method invocation,
and vice versa. In our detection model, we consider only stack trace associated
with native methods that interacts with the operating system (e.g., process,
filesystem and network activities). By defining which stack trace a particular
deserialization event can invoke, it is possible to restrict the attack surface,
mitigating the attack itself. The information about which stack trace can be
invoked will be part of the sandbox policy, along with other information (e.g.,
native call) that is used to determine the behavior of the deserialization process.

In order to define the legitimate deserialization behavior in terms of execution
path, we need to dynamically collect the stack trace for a monitored application by
providing the appropriate input set to stimulate the deserialization process. Dur-
ing this phase, called constructing phase, the system collects the entire observed
benign stack trace related to deserialization events. This task is performed by
dynamically monitoring a Java application at the interpreter/compiler level in the
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JVM. Extracting such dynamic information and constructing the execution path
is a complex task due to the nature of the Java execution model, which includes
JIT compiled code, class loading at runtime (e.g., Sect. 4). Static analysis cannot
be used in such a context since the complete execution sequence of the Java meth-
ods is only known at runtime. Moreover such execution model is exacerbated by
the use of Java reflection, which complicates static analysis itself. For example,
a single dynamic method invocation that uses reflection could in principle invoke
any method in the currently loaded classes, resulting in an over-approximate call
graph and consequently enlarging the attack surface [10].

Once the system has established the benign stack traces, our framework can
enter in the running phase, where it performs the detection task. At the starting
point, our system loads a specific set of policies for each application derived from
the constructing phase. Each set of policies is characterized by three elements
derived from the stack trace collection: (1) entry Java class point, (2) invocation
sequence of Java methods, (3) invocation of native method. The first element
is the entry point that represents the Java class that is deserialized. All the
deserialization operations for a specific application must start from a Java class
observed during the training phase, any other invocation of readObject from
any other class is blocked. The second element is the order of the sequence of
method invocations. Such a sequence has been observed during the constructing
phase and it must match the actual sequence at runtime, any deviation from its
order will stop the deserialization process. The third element is the native call
associated with the specific stack trace. Such native call will be checked by our
framework, and any invoked native method that is not defined into the permitted
set will trigger an alarm, causing the deserialization process to be terminated.

Although based on fine-grained policies, our approach is very flexible. In fact,
our system can be tuned based on the level of information granularity that we
want to use for detecting the attack. More specifically, we can configure the
length of the extracted stack traces, and restrict or enlarge the attack surface.
Acting on a subset of the entire stack traces sequence has a considerable advan-
tage: by not checking all the sequence of the Java methods, the system can lower
the false positives while maintaining a good precision in detecting the attacks as
showed in the evaluation Section.

4 System Design and Implementation

In this section we present the implementation details of our protection system.
We describe the architectural overview and the challenges that we faced for
dynamically tracing Java applications execution path.

4.1 Architectural Overview

The principles provided in the previous section show how our approach can
be used for extracting stack trace related to a deserialization event. There are
two main requirements that need to be satisfied for our detection system: (R1)
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for any stimulated event, the system needs to be able to precisely monitor the
execution path of the deserialization process, so that no relevant execution is
missed; (R2) the monitor component should not cause a high overhead. From an
architectural point of view our system is split into two main high-level compo-
nents: (1) a component, that is in charge of dynamically analyzing Java appli-
cations and extracting the precise execution path in terms of stack traces, and
(2) a lightweight sandbox component that monitors applications at runtime and
blocks incoming attacks, based on the rules derived by the constructing phase.

More in particular, in the constructing phase, our system intercepts all the
native methods invoked by the application; for each invocation, it inspects the
corresponding stack trace backwards, until it reaches the deserialization entry
point (i.e., a call to readObject), and then it extracts the execution path. In
case the readObject is not found on the stack we assume that the native call
is invoked in a different context than deserialization one and the system dis-
cards the results. It is important to note that the presence of the invocation
of readObject method on the stack cannot be tampered by an attacker since
deserialization of untrusted data attack does not allow to directly write on the
stack. This information is then saved into a persistent storage called sandbox
policy, which will constitute the baseline for detecting malicious behavior.

Afterwards during the detection phase, when user input triggers deserializa-
tion event, the system performs only one check according to the sandbox policy:
when a native method is invoked by the application, the system intercepts it and
checks whether the entire stack trace executed has been already observed in the
learning phase. For this check the system maintains a memory structure in the
form of a hash table that contains only the execution paths that are allowed for
the applications. The keys of the hash table are strings composed by the meth-
ods signatures present in each benign stack trace. Since a sequence of method
signatures uniquely identifies a specific stack trace (by definition), the risk of
collisions is very low, and the access to the hash table in terms of computation
time is constant on average.

4.2 Building Trusted Execution Path
Both learning and protection modules, are composed by a tracing execution path
component that is the core of our detection system and is in charge to efficiently
and correctly intercept (requirements R1 and R2) any native method call of any
Java application that is running on the system. To achieve this goal, the system
needs to be able to intercept any Java method invoked after a deserialization
takes place in an application. In particular, we are interested in intercepting
all the execution path in form of stack trace in the following form, for every
deserialized class A and every corresponding native method call X:

A.readObject()
method1()
method12()
...
native call X
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In order to extract the stack traces we first need to intercept the native
methods and then parse the JVM stack memory structure to collect the invoked
Java methods. To this end we analyzed several approaches for our design. We
first considered dynamic bytecode instrumentation, but we found it unsuitable
for our purpose since native methods cannot be simply instrumented, as they do
not have bytecode. In order to overcome this problem we first need to create a
wrapper for each target native method, and then redirect to it all the calls inside
Java code that point to that native method. Although there exists a mechanism
to perform this operations [15], it would work only for classes that have not
already been loaded, since the JVM does not allow insertion of extra methods
to a class that is already loaded. As we would need to dynamically add methods
(the wrappers) to all the classes, including ones that have already been loaded
when instrumentation starts, this technique does not serve our goal.

Another idea could be to instrument every possible method in every loaded
class, and check every invoke bytecode instruction to see whether it points to a
native method. This approach fails as well, because at the time of instrumenta-
tion it is not known whether the resolved method will be native or not. Finally,
trivial logging of all the method calls after readObject via bytecode tracing/in-
strumentation would be too expensive in terms of performance (R2) and the
system would not scale.

After these considerations, we decided to directly modify the Java Virtual
Machine to accomplish this task. Our implementation for tracing Java class
methods consists of a modification to the template interpreter generator. Specif-
ically, we modify the generation of native method entries by adding a call to
our custom logging functions inside the VM runtime environment. With this
approach we have two advantages:

– The system does not need to know which classes are going to be loaded, nor
we have to instrument each one of them. Moreover, by running inside the
JVM, our component can inspect every call to native methods, on any class
(R1).

– Effectively extract only the information of our interest, focusing on native
methods and their ancestor readObject. This gives a significant advantage in
terms of performance (R2) compared to the naive solution of forward method
logging starting from readObject calls.

We found that instrumentation of the interpreter alone was not enough to achieve
the entire coverage of all the native calls. The JIT compiler constantly looks for
code optimization, and our modification to the interpreter has no effect on JIT-
compiled code. Since we cannot make assumptions of how much code will be
compiled on the analyzed systems, and since we want to get an accurate view
of all native calls, we also instrumented the generation of wrappers for native
methods defined in the JIT compiler framework. By adding our custom log logic
to each of these wrappers, we are able to check the stack trace every time a native
call is made. In order to test the correctness of our approach, we ran Java in
fully compiled mode (with option -Xcomp), and in fully interpreted mode (with
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option -Xint). We found that the interpreter component does not log any JIT
compiled method, and vice versa.

4.3 Input Stimulation

In order to stimulate the deserialization process, we perform a static analysis on
the Java code, searching for classes that implement the Serializable interface
and define the readObject entry point. Starting from such classes we perform a
manual analysis and figure out the inputs that can stimulate object deserializa-
tions. We also collect a set of inputs from the normal use of the analyzed Java
frameworks, logging every object deserialization we observe. It is important to
note that input stimulation is not a contribution of this paper, our system is
designed to improve the whitelist mechanism in two directions: (1) providing a
better detection model (precise execution path) in terms of detection so over-
coming the static analysis limitations that effects actual whitelist methods, (2)
and create an automatic extractor system that can operate at runtime with low
overhead and it is able to reconstruct and detect a precise execution path. An
automatic system for improving input stimulation is discussed in the Discussion
section.

5 Experimental Evaluation

In order to evaluate our approach we analyzed two real-world Java frameworks,
JBoss and Jenkins, broadly used in several companies and IT infrastructures.
We also chose these frameworks since there are real attack samples available
for them [6]. For each application we derive a metric that is able to show the
reduction of the attack surface considering our approach. The metric, Java Class
Invocation Attack Surface (JCAS), compares the number of Java classes observed
during the training phase in the deserialization context with the number of
potentially available classes in the monitored application’s classpath. In this
context, a class is observed in the training phase if at least one of its methods
appears in at least one collected benign stack trace. Given the percentage p of
the classes that were observed during monitoring, compared to all the classes in
the classpath, the JCAS metric is expressed as the percentage 100% − p. Such
a metric is able to capture the attack surface reduction since it shows how our
detection model is able to restrict the set of actions of an attacker. In fact, with
our detection system in place, the attacker needs to follow the execution path of
the benign deserialized data and he cannot choose the gadgets (e.g. Java classes)
among the entire classpath of the Java vulnerable application. Our metric exactly
shows this reduction.

We also computed the overhead for each application considered in our exper-
iments. All tests were performed using a custom build of OpenJDK 8 with our
system enabled, and a clean OpenJDK 8 build as a baseline for comparison in
overhead. The tests were run on a quad-core, Intel Xeon machine with 8 GB of
RAM running Ubuntu 16.04 LTS.
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5.1 JBoss Application Server

JBoss is an open-source Java application server, broadly used in industry. We
tested JBoss 5.1.0 with our framework. We collected the benign stack traces
related to native method invocations in deserializations that occur during normal
operations. In particular, we stimulated the following operations: (1) server start
and shutdown, (2) application deploy/undeploy, and (3) use of management
consoles and deployed applications. We also trained our system on JBoss for a
period of one week. During this period, several operations were stimulated by
a group of users that produced hundreds of deserialization events. We collected
a total of 13298 stack traces from native calls made by deserializations. We
analyzed the classes necessary for computing our metric, in particular we found
a total of 43250 Java classes in the JAR files present in JBoss’ classpath, plus a
total of 6005 present in the Java standard libraries, for a sum of roughly 49000
Java classes. The total methods called during deserialization lead to a total of
329 observed Java classes.

In Table 1 we can see the data and computed JCAS metric for JBoss, showing
the reduction of the attack surface; we see that by applying our model, the attack
surface is reduced by 99.2% considering the benign deserializations observed
during the learning phase.

5.2 Jenkins

Jenkins is an open source automation server for tasks related to software building
and continuous integration. It allows the creation of customizable and schedu-
lable jobs for building artifacts and performing related operations. We tested
Jenkins version 1.649. We collected the benign stack traces related to native
method invocations in deserializations that occur during normal operations. In
particular, we stimulated the following operations: (1) server start and shut-
down, (2) job creation and customization, and (3) job scheduling and running.
Also for Jenkins we trained our system for a period of one week, asking a group
of user to access it and use it via web. As a result of our entire test, we collected
a total of 6526 stack traces from native calls made by object deserializations. We
analyzed the classes necessary for our metric: we found a total of 23493 classes
in the JAR file present in Jenkins’ classpath, plus a total of 6005 present in
the Java standard libraries, for a sum of roughly 30000 classes. All the methods
observed during deserialization came just from 74 classes. In Table 1 we can see
the data and computed JCAS metric for JBoss, showing the reduction of the
attack surface; we see that by applying our model the attack surface is reduced
by 99.8% considering the benign deserializations observed during the learning
phase.

5.3 Effectiveness

For each application we tested the effectiveness of our approach by running the
real-world attack payloads provided in the ysoserial repository [6]. In particular,
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Table 1. Attack Surface Reduction

Application JCAS Native method calls Total classes in stack traces

JBoss 99.2% 13298 329

Jenkins 99.8% 6526 74

we ran payload CommonsCollections1 that uses reflection and runtime-loading
Java class mechanisms against JBoss, and validated its vulnerability leading to
arbitrary code execution with our system disabled; we also ran payload Com-
monsCollections5 against Jenkins, with the same result. Afterwards, we applied
our protection by running the applications within our defensive framework. We
found that our system can effectively block such attacks on both applications,
after an appropriate learning phase. Both applications were then tested over a
period of one week with our protection enabled, by exposing them via web to a
group of users. Normal operations (including, but not limited to the ones listed
above for each program) were triggered in both applications, leading to hundreds
of deserialization events. No false positives were found by our system, even when
enforcing the execution of all the methods in learned stack traces for an observed
deserialized class.

5.4 Overhead

In this section we analyze the overhead introduced by our system. We performed
a micro-benchmark and a macro-benchmark to evaluate the sandbox efficiency.
The micro-benchmark focuses on local sandbox performance; we measure the
time taken by our checks on the stack traces to validate native method calls.
The macro-benchmark measures the overhead introduced in whole applications
from the user’s perspective.

Table 2. Micro-benchmark results.

Sandbox component Mean Standard deviation

Interpreter 2.071 × 10−5 s 6.640 × 10−5 s

Compiler 2.883 × 10−5 s 6.613 × 10−6 s

Micro-benchmark. For our micro-benchmark, we measured the time required
for our checks made at each native call to analyze the stack trace, reconstruct
the sequence of calls made from the readObject call onwards and compare it to
the policy learned in the training phase; Table 2 shows the results. The test has
been conducted on a number of 10000 native call traces, on which average and
standard deviation were calculated. We differentiated the checks for the compiler
component and the interpreter component; we can see that the time required for
checking is consistent for both, and relatively small. The overhead of the system
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is the result of the linear composition of the time taken for the checks, triggered
at each native method call.

Table 3. Macro-benchmark results for JBoss

JBoss operation Baseline JDK Modified JDK Overhead

Startup time 21.0 s 29.5 s 40.5%

Console login 2.0 s 2.1 s 5.0%

Flush connections in datasource pool 1.5 s 1.9 s 26.7%

Sample WAR deployment 2.9 s 3.5 s 20.7%

Table 4. Macro-benchmark results for Jenkins

Jenkins operation Baseline JDK Modified JDK Overhead

Startup time 9.0 s 10.5 s 16.7%

Homepage loading 1.8 s 2.3 s 27.8%

Login 2.0 s 2.5 s 25.0%

Job saving after creation 2.3 s 2.6 s 13.0%

Macro-benchmark. For the macro-benchmark, we computed the time for sev-
eral common operations performed by end users in our test applications. Given
the huge number of native calls performed during the process, and the determin-
ism of the executed operations, this constitutes a reliable measurement for the
total overhead. The values were computed both programmatically and manually
(by triggering specific operations), and averaged over 10 measurements. Initially,
we observed a massive overhead of over 900% for the whole startup process on
JBoss. This inefficiency was due to the very high number of instrumented native
calls, some of which were invoked hundreds of thousands of times in our mea-
sured runs, causing delays of several seconds with the sum of their individual
analyses, as explained in the discussion on the micro-benchmark. After manually
analyzing the most frequent native method calls, we established that we could
exclude most of them without any security concerns, as their interaction with
the OS is limited and does not constitute a threat, regardless of their input.
For example, native methods System.currentTimeMillis and Class.isArray
were excluded. With this tuning in place, we were able to substantially reduce
the overhead introduced. Tables 3 and 4 show the result. While the overhead is
still relevant in percentage, it is worth noting that our tuning of logged native
calls can still be improved, and further drops of the overhead are expected; a
minimum overhead would be reached if the set of analyzed native calls contained
all and only the potentially dangerous invocation.
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Possible Improvements and Current Impact. An additional reduction on
the overhead could be made by improving the checks on native method calls.
Currently, for each call we have to traverse its stack trace at least once to deter-
mine whether the call occurred during an object deserialization. Lighter checks
could be designed so that the stack trace would not have to be traversed out-
side of deserializations, reducing the times measured in the micro-benchmark.
Another idea would be to completely disable the checks on native method calls
outside of the context of deserializations, bringing the overhead close to 0% for
most of the executed code. In our implementation, this would require a dynamic
patch to the templates produced by the JIT compiler, which would have to be
done at the beginning and the end of each readObject call. This investigation
will be part of our future research.

An important point to consider is that currently, even without these addi-
tional improvements, the net increase in the measured operations in terms of
seconds is not perceived by the end user, given the relatively small absolute
values of delays in the context of web applications. We can conclude that our
system shows good performance from an end user’s perspective, who does not
perceive any substantial delay experience when they have used the protected
applications.

6 Related Work

A solution to address deserialization attacks could be avoid deserialization on
untrusted content, by signing serialized data and checking its signature upon
deserialization. While this works perfectly in theory, in practice one cannot
exclude the risk of signature counterfeiting if some bug is exploited on the signing
side and an attacker gets access to the keys [9], nullifying the whole protection
offered by this approach. Moreover in order to authenticate all data we need to
set up a PKI infrastructure and usually such structures do not scale since they
need a complex management setting. One possibility when trying to directly
tackle the problem of deserialization of untrusted data is to consider a restric-
tion of the attack surface by hardening the main deserialization entry point: the
class java.io.ObjectInputStream. An approach to perform this type of hard-
ening is the use of modified version of ObjectInputStream [18]. This can be done
by extending the class and overriding its method, such as the resolveClass
method, to insert security checks and perform validation before deserializing
data. A Look Ahead Object Input Stream (LAOIS) [18] is an input stream
relying on this logic, “looking ahead” to check whether the data presents some
problem before actually deserializing it. Such method is based on static analysis
that failed when applied to some classes that resolve their methods or addresses
at runtime. With the reflection technique a single dynamic method could call any
method in the currently loaded application, resulting in a highly inaccurate call
graph for the entire application. When subclassing is not an option (for example
when the code to protect is owned by a third party), it is possible to use other
solutions to modify the behavior of ObjectInputStream globally, such as the use
of a Java Agent for dynamic instrumentation of the classes.
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The closest work to ours in terms of methodology is [5]. In this paper the
authors characterize the application behavior based on the information retrieved
on the stack, function name, parameters etc. However our system is different
from this work in several ways: (1) first of all the attacks context is different: we
operate on different programming language and data information, they mainly
work on system calls invoked from C language, (2) our interception method
is based on JVM internals, instead they intercept system calls at the operating
system level. (3) The type of the attack is completely different: they are focusing
on memory errors while we are focusing on deserialization of untrusted data
attacks.

The use of sandboxes for protecting environments in which executed oper-
ations can be controlled and blocked is not new. In fact software compartmen-
talization has been proposed in several context and it is based on hardware and
language-based techniques [2,4]. Karger proposed that fine-grained access con-
trol could mitigate malware [8]. Process-based privilege separation using Mem-
ory Management Units (MMUs) has been applied to several different applica-
tions: OpenSSH, Chromium and in Capsicum although with substantial perfor-
mance overheads and program complexity. More recently, hardware primitives
such as Mondriaan [22], CHERI [21], and CODOMs [20] have extended conven-
tional MMUs to improve compartmentalization performance and programma-
bility. Java sandboxing develops a mature and complex policy mechanism on
top of language, but leaves open the possibility of misbehaving native code.
Language-based capability systems, such as Joe-E [12] and Caja [13], allow safe
compartmentalization in managed languages such as Java but likewise do not
extend to native code. In our work we design a sandbox system that is able to
intercept native methods by modifying the JVM internals. As we already showed
in the paper we have tackled several design and implementation challenges in
order to make our system handle the tracing of Java applications starting from
the native calls.

7 Discussion

In this section we present limitations of our approach, and possible future
improvements of our system.

7.1 Data Attacks

We now describe an hypothetical attack that bases its effectiveness on manipu-
lation of the data inside the JVM’s memory, as opposed to direct execution of
arbitrary code. Such attacks are already present in the memory errors area [1].
Suppose that the gadget explained in Sect. 2.3 was not used to reach an endpoint
for instantaneous remote command execution (or other malicious effect), but was
instead targeted to invoke some method or change some fields in a class (possibly
via reflection), that could later be triggered, changing the normal control flow
of the application and causing the malicious effect to be activated.
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Listing 1.8. Data attack entry point

public class Commands {

private static lstCommandString = "ls -al";

public static lstCommand() {

Runtime.getRuntime().exec(lstCommandString);

}

}

Listing 1.8 shows a naive example of this possibility: if the class was in the
classpath and if the attacker was able to modify field lstCommandString with
a gadget, class Commands would be compromised and later use could lead to
remote command execution. By design, the analysis performed by our system
is limited to the temporal frame of readObject calls; moreover it focuses on
native method calls to build a recognition model for attacks. The example just
presented makes it clear that with our current approach we cannot block this
type of attack, due to these limitations. In order to overcome the threat posed by
data attacks, our system would also have to instrument the access to data and
either allow or deny it based on predefined policies; an example of policy could
be to deny all write operation on sensitive data during object deserializations.

7.2 Native Call Restrictions

Another limitation of our approach is evident when considering classes that by
design eventually invoke one or more potentially dangerous native calls when
deserialized. Our system, as currently designed, would learn that such calls are
normal benign behavior during the learning phase (provided the class is appro-
priately stimulated); if the execution of such calls included user controlled data
(e.g. if one of the native calls used a field of the class as input), an attacker would
be able to obtain malicious behavior slipping under our radar, with relatively
little effort (a gadget exploiting a vulnerability of this type could be as simple
as a serialized object with a particular value for a String field). One possible
solution for this would be to make our model more fine-grained in the future,
making it able to take into account not only native method calls and their stack
trace, but also their parameters. An appropriate learning strategy would then
need to be developed, to learn what constitutes benign input.

7.3 Improving Learning

The precision of our model is limited by the coverage obtained in the appli-
cation during the learning phase. If learning is performed manually, even with
prolonged use by experienced users that voluntarily explore the application and
trigger benign deserialization behavior it is easy to argue that some possible
attack entry points could never be observed, if the application is sufficiently
complex. Moreover, the learning process is hard to engineer, and we cannot offer
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generic guidelines on how to perform it for any application. For this reason,
in the future our system could benefit from a component for automated learn-
ing. This component would analyze source code (or bytecode) in applications to
automatically detect where possible entry points for deserialization are located.
Via static code analysis techniques, it would be possible to try and trace the
execution paths that lead to such entry points, of course after facing challenges
and limitations for static Java code analysis [11]. Combined with dynamic pro-
gram analysis, we could measure the coverage of the deserializations found, and
(1) try to generate benign variations of input to further stimulate the program
automatically; we could also (2) detect if an entry point was not stimulated at
all, producing a report advising users to test it.

8 Conclusion

In this paper, we propose a novel approach for protecting Java applications from
deserialization of untrusted data attacks by constructing precise execution path.
We have shown the principles of our design and the challenges that we tackle
in order to develop our defensive framework against deserialization of untrusted
data attacks. We have implemented a prototype for the Java virtual machine and
by using this tool we have experimentally shown that our defensive mechanism
is able to stop real-attack with affordable overhead. Finally we have provided
insight into strengths and weaknesses of our tool and possible ways to defeat it.
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Abstract. Malware often encounters network failures when it launches
malicious activities, such as connecting to compromised servers that
have been already taken down, connecting to malicious servers that are
blocked based on access control policies in enterprise networks, or scan-
ning/exploiting vulnerable web pages. To overcome such failures and
improve the resilience in light of such failures, malware authors have
employed various strategies, e.g., connecting to multiple backup servers
or connecting to benign servers for initial network connectivity checks.
These network failures and recovery strategies lead to distinguishing
traits, which are newly discovered and thoroughly studied in this paper.
We note that network failures caused by malware are quite different from
the failures caused by benign users/software in terms of their failure pat-
terns and recovery behavior patterns.

In this paper, we present the results of the first large-scale mea-
surement study investigating the different network behaviors of both
benign user/software and malware in light of HTTP errors. By inspect-
ing over 1 million HTTP logs generated by over 16,000 clients, we iden-
tify strong indicators of malicious activities derived from error prove-
nance patterns, error generation patterns, and error recovery patterns.
Based on the insights, we design a new system, Error-Sensor, to auto-
matically detect traffic caused by malware from only HTTP errors and
their surrounding successful requests. We evaluate Error-Sensor on a
large scale of real-world web traces collected in an enterprise network.
Error-Sensor achieves a detection rate of 99.79% at a false positive
rate of 0.005% to identify HTTP errors generated by malware, and fur-
ther, spots surreptitious malicious traffic (e.g., malware backup behavior)
that was not caught by existing deployed intrusion detection systems.
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1 Introduction

Malicious servers, such as command and control (C&C) servers, exploit servers
and drop-zone servers, have become an essential part of recent cyber crimes.
Most miscreants today rely on the malicious servers to control and monetize their
malicious software (malware). However, cyber criminal structures suffer from a
single-point-of-failure problem when the malicious servers are discovered and
blocked by defenders. To overcome such failures, cyber criminals have developed
a variety of techniques to evade possible detection and launch more stealthy
malicious activities. For example, a fast-flux service [30] allows cyber criminals
to quickly change the IP addresses of malicious domains to avoid IP-based access
controls. A domain generation algorithm (DGA) [1,33] allows cyber criminals to
dynamically generate domain names to bypass domain-based blocking. Cyber
criminals also compromise a large number of legitimate web servers as “stepping
stones” or “redirectors” to keep their malicious activities surreptitious.

To defend against the sophisticated cybercrime systems, most, if not all orga-
nizations have already deployed a variety of security products to detect and
block the malicious servers. Blacklists and intrusion detection systems (IDSes)
are widely deployed in most companies. Several modern domain reputation sys-
tems [10,14] are also designed to search for the evidence of malicious activities
observed at the domain names. The competition of such sophisticated evasion
techniques deployed by cyber criminals and advanced detection systems deployed
by companies results in two kinds of server connectivity failures in an enterprise
network: DNS failures and HTTP errors. DNS failures occur when malware tries
to connect to non-existing domains, and have been widely studied by researchers
for malware detection [21,41], especially for DGA-based malware [12].

In this paper, we focus on HTTP errors which have been less investigated
in previous work. We refer HTTP errors as HTTP connection failures whose
response status codes are larger than 400, as defined by the HTTP standard [2].
HTTP errors often occur when malware connects to compromised servers that
have been cleared by administrators (e.g., resulting in HTTP 404 Not Found
error), or to malicious servers that are blocked by an IDS or a web proxy (e.g.,
resulting in HTTP 403 Forbidden error) based on the policy violation.

During our investigation, we note that HTTP errors provide several new
insights. First, malware often generates HTTP errors in the course of mali-
cious activities. Most of the errors are caused by connecting to benign servers
with bad parameters, connecting to compromised servers that have already been
cleaned, or scanning vulnerable webpages that have been removed/protected.
HTTP errors are also commonly generated because of the traffic blocks by the
enterprise/ISP web proxy/gateway for policy violation or malware infection (e.g.,
403 errors). Second, inspecting HTTP errors helps find out malware intelligence.
When malware faces HTTP errors, it may start “recovery” behaviors to main-
tain the functionality of malicious infrastructures, and to ensure the reachability
to the malicious infrastructure, such as connecting to some benign servers for
network connectivity testing or connecting to other alternative malicious servers.
Such recovery behaviors may not be easily characterized by existing IDSes, and
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malware bypasses security products to successfully connect to their backup mali-
cious servers. In our experiments, we found that an IDS only detected limited
parts of backup servers. Third, HTTP error-based detection is complementary to
DNS failure-based detection. All the traffic related to HTTP errors have success-
ful DNS resolution, therefore DNS failure-based detection becomes less effective.
Fourth, compared to existing work [27,40] which requires the entire enterprise
network traffic as an input, inspecting HTTP errors dramatically reduces the
amount of traffic to be analyzed (e.g., reducing 96.8% of traffic in the real enter-
prise network in our experiment). Fifth, different from other existing work that
relies on malicious server reputation [14] and client side behavior patterns [18],
focusing on the characteristics of HTTP errors detects malware-generated traffic,
including both malicious and compromised servers, without requiring multiple
infections, server reputation information, or infection/URL signatures.

It is not trivial to distinguish benign traffic and malicious traffic simply based
on the HTTP errors because the act of generating HTTP errors itself is not a
sign of inherently malware infection. However, since cyber criminals would pre-
pare for network failures in their malware for resilient malicious operations,
there exist different error generation patterns (e.g., frequencies, sequences, and
statistics) between the errors generated by malware and the errors generated by
benign users/software. In addition, to conquer such possible failures, malware
often employs “recovery” mechanisms when facing network failures while benign
users/software may have less or no pre-arranged recovery routines. Therefore, in
this paper, through examining over 1 million HTTP errors from a large enter-
prise network, we derive new insights to detect malicious traffic, and design a
lightweight yet effective detection system, Error-Sensor.

In summary, our work makes the following contributions:

– We conduct the first large-scale measurement study on 1 million HTTP errors
collected in an enterprise network, and identify strong indicators of malicious
activities derived from error provenance patterns, error generation patterns,
and error recovery patterns.

– We design malware traffic detection from a new perspectives, i.e., HTTP error
generating patterns and malware evasion intelligence in the face of HTTP
errors, and develop Error-Sensor to automatically detect malware traffic.

– Error-Sensor is able to detect both compromised servers and malicious
servers, even when benign servers are used by malware for Internet reacha-
bility testing, through analyzing HTTP error traffic. Furthermore, Error-
Sensor does not rely on any infection/URL signatures, nor require multiple
infections in a network unlike existing work.

– We evaluate Error-Sensor with large-scale, real-world enterprise network
traces. Error-Sensor achieves a detection rate of 99.79% at a false positive
rate of 0.005% to identify HTTP errors generated by malware. In addition,
Error-Sensor finds surreptitious malware-generated traffic missed by an
existing IDS, and uncovers evasion strategies employed by malware.



470 J. Zhang et al.

2 Background

2.1 HTTP Errors

A typical HTTP error is sent to the client web browser from a website when a
problem is encountered while accessing a webpage. Based on the definition of
HTTP response status codes in RFC 7231 [2], the 4xx class of status code is
used to indicate the cases where the client caused an error.

In this paper, we focus on HTTP errors whose HTTP response status codes
are in the 4xx class because we note that most errors generated by malware
activities belong to this category. For example, network scanning attacks may
lead to 404 Not Found errors due to scanning non-existing vulnerable target
webpages, or 403 Forbidden errors due to scanning webpages in protected paths.
Policy violation requests also lead to 403 Forbidden errors. The complete list of
all the error codes and their corresponding reasons can be found in [2] as the part
of the HTTP/1.1 standard. For the simplicity reason, the term error denotes
the HTTP error unless stated otherwise in the remaining of the paper.

We use a combination of a client, a server, a webpage, and an error code to
represent a unique HTTP error, i.e., 〈clienti, serverj , pagek, error code〉. For
example, an HTTP request from client i to URL http://compromised.com/
compromised page.html with 404 error is denoted as 〈clienti, compromised.com,
compromised page.html, 404〉.

2.2 Problem Statement

In this paper, we focus on the HTTP error traffic and their nearby successful
request traffic (e.g., non-error traffic of a given client at about the same time as
the error traffic), and conduct a large-scale systematic analysis of HTTP errors
in the wild with a special focus on the error patterns and the corresponding
recovery behaviors of error generators.

We first uncover the differences between the errors generated by
users/software and the errors generated by malware. Based on the insights
obtained from the analysis, then, we design a new method to detect malware-
generated errors and extract malware evasion intelligence. In this context, intel-
ligence means the evasion strategies used by malware in the face of HTTP errors,
such as connecting to multiple alternative malicious servers, compromised servers
and other benign servers for Internet connectivity testing.

We, however, do not aim to detect all the malicious traffic in an enterprise
network, and may miss malware-generated traffic that never produces errors.
Rather, our approach complements existing DNS failure based detection meth-
ods which address fast-fluxing and DGA [12,21,41] because all the errors here
still have successful DNS resolutions. Furthermore, our approach complements
existing detection systems [26] as we identify malware evasive traffic by extract-
ing the malware evasion intelligence without having malware samples in hand.

http://compromised.com/compromised_page.html
http://compromised.com/compromised_page.html
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3 Insights into HTTP Errors

In order to gain more in-depth understanding of HTTP errors generated by both
malware and users/software, we first studied one day of real-world network traffic
from a large enterprise network, from which we extracted all the error traffic1.
As a result, we collected more than 1 million HTTP error requests, and obtained
279,942 unique HTTP error requests (e.g., 〈clienti, serverj , pagek, error code〉),
which only represents 3.2% of the entire one day of HTTP requests.

Table 1. Dday Data Sets

# of clients # of unique errors # of errors

B 16,205 71,998 925,277

M 233 9,792 190,394

MIDS 233 965 35,239

Among the errors, 965 servers were detected as malicious servers by the
deployed commercial intrusion detection system (IDS), and we labeled the errors
as MIDS . Then we labeled the errors generated by the clients who sent requests
to the servers in MIDS as malicious errors M. It is worth noting that the
errors in M were generated by the malware infected clients; however, it does not
mean that all of them are actually malicious errors. In this way, we collected
9,792 unique malicious errors. To collect benign errors, we first collected clients
who never connected to malicious servers (servers in M) nor generated policy
violation requests. Then we labeled all the errors generated by these clients as
benign errors B, and collected 71,998 unique benign errors. Table 1 summarizes
the data sets collected for the study, we label this one day of data as Dday.

3.1 Key Observations

O1: Most benign errors are generated by an accident. When a client
receives an error from a server, if the client makes at least one non-error connec-
tion to the same server during the observation time window2, then we consider
such an error is generated by a mistake and define it as an accidental error.

When a user faces an error, such as 404 Not Found error, the user may click
other webpages on the same server either to figure out why the error is caused
or to continue searching for other pages. In case of benign software, it may gen-
erate multiple different requests to the same server. Even if some of the requests
are failed due to the misconfiguration, it still has some successful connections

1 We excluded the cases where a client generated only a single error in the entire
observation window, which might not provide sufficient insights for our study.

2 The observation time window was set to one day for Dday.
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to the same server. For example, in our data set, Symantec liveupdate service
always received 404 errors due to the misconfiguration of the proxy when it tried
to request http://liveupdate.symantec.com/liveupdate 3.3.0.107 english livetri.
zip. However, the service also sent requests to http://liveupdate.symantec.com
and other URIs on the domain liveupdate.symantec.com, which led to some suc-
cessful connections. Consequently, we observed that a client encountering some
errors on a server also had some successful contentions to the same server during
the observation time window. However, malware may immediately try to con-
nect to other backup servers in the face of errors. In fact, malware is typically
programmed to request a certain number of pages on the same malicious servers
or compromised servers. In addition, if an error is caused by an IDS or policy
violation blocking, malware has no chance to establish any successful connections
to the malicious servers. Therefore, we would observe fewer number of accidental
errors in malware-generated errors.

While examining the errors in Dday, we found that 84.95% of benign errors
belonged to accidental errors while only 3.94% of malicious errors belonged to
accidental errors. Further study showed that most of malicious accidental errors
were generated by web browsers requesting other web resources (e.g., JavaScript
and image files) on the same servers, which led to successful connections.

O2: Malware infected clients generate more errors than benign clients.
We define the malware infected clients as the clients who send at least one request
to malicious servers. In our study, we define all the clients in MIDS as malware
infected clients. Similarly, benign clients are the clients in B.

Intuitively, benign clients would generate fewer number of errors than mal-
ware infected clients would do because benign HTTP requests constructed by
web browsers or benign software are typically well formatted, and the remote
servers would respond those requests properly. On the contrary, there exist lots
of uncertainties for malware generated HTTP requests, including the request
format and the response from the remote servers. For example, an IDS blocks
confirmed malicious servers, and malicious requests exploiting vulnerable web
pages may lead to unacceptable request formats.

During our study on Dday, we found that about 94% of benign clients gener-
ated less than 10 errors per day. However, only around 38% of malware infected
clients generated less than 10 errors per day. The maximum numbers of errors
were 2,767 and 60 for malware infected clients and benign clients, respectively.
We used the number of errors per day rather than the error ratio to evaluate
clients. It was because, compared to the volume of benign traffic, the volume
of malware related traffic was very small so that the error ratio could be easily
influenced by different volume of benign traffic. We also filtered out the clients
with less than 100 requests per day to exclude the cases where fewer errors were
simply due to fewer requests by benign clients.

O3: Most benign errors are generated by benign software. User-Agent
is the field in an HTTP header to indicate who initiates the request. Typical
values of the field are different browsers, spiders, or other end user tools. To
understand who generate errors, we inspect the User-Agent for each error.

http://liveupdate.symantec.com/liveupdate_3.3.0.107_english_livetri.zip
http://liveupdate.symantec.com/liveupdate_3.3.0.107_english_livetri.zip
http://liveupdate.symantec.com
https://www.symantec.com/security-center
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We define two kinds of User-Agents: browser User-Agents and custom User-
Agents. Browser User-Agents are the User-Agents whose values reflect the ver-
sion of different browsers. [3] lists the User-Agents of commonly used web
browsers. Since it is difficult to collect all the User-Agents of different browsers for
different versions, in this paper, we use keywords, such as Mozilla, and Opera,
to label if a User-Agent is a browser User-Agent or not. Specifically, all the
User-Agents started with these keywords are labeled as browser User-Agents. In
practice, unless a user changes the User-Agent of the HTTP header, browser-
generated errors usually include such keywords at the beginning of their User-
Agents by default. Custom User-Agents are defined as User-Agents other than
browser User-Agents. In practice, most software uses their customized User-
Agents in order to be easily recognized by the servers.

During our study on Dday, we collected 15,115 and 136 User-Agents for
benign errors and malicious errors, respectively. We found that only 12.52%
of benign errors were generated by browsers while 93.38% of malicious errors
were generated by browsers. This showed that most benign errors were gener-
ated by custom software which kept requesting no longer available resources.
Since different benign software usually had different customized User-Agents,
we observed a large number of diverse custom User-Agents.

O4: The errors generated by malware have different generating pat-
terns from the errors generated by benign software. To further analyze
the network patterns of errors, we first clustered the errors based on the similar-
ity of their pages and parameters. The detailed clustering algorithm is described
in Sect. 4.3. In this way, we obtained 42 clusters for malware-generated errors
(CM) and 716 clusters for benign errors (CB).

We examined their network patterns from three perspectives: (a) error
sequences, (b) error patterns, and (c) error frequencies. From the error sequence
perspective, 72.35% of benign errors in CB were generated in a sequence. That
is, the client sent requests to servers in a specific order. The sequence typi-
cally followed the order of the servers loaded in a web page, or the order of the
servers listed in a configuration file, which was steady over time. Only 33.33% of
malware-generated errors were observed in a sequence. From the error pattern
perspective, all the browser-generated errors were generated in a batch when a
page was loaded. Most benign software also generated errors in a batch since
it immediately tried to connect to multiple alternative servers in the face of
errors. In fact, most, if not all of these alternative servers, still led to errors
due to the same misconfiguration, and such errors kept appearing unless a user
corrected the configuration. On the contrary, malware generated errors with a
delay before trying alternative servers to avoid a traffic spike and to make its
activities stealthy. From the error frequency perspective, we found that around
70% of errors in CB had less than 10 minimum frequency while around 70% of
errors in CM repeatedly sent error requests more than 10 times per day. Surpris-
ingly, the highest frequency for benign errors was 6,398 where Microsoft-Symbol-
Server kept downloading non-existing boinc exe.pdb from berkeley.edu and
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microsoft.com. However, the highest frequency for malware-generated errors
was only 920 where a client kept accessing file.php from three malicious servers.

O5: Malware has more recovery behaviors than benign software. Due to
the possible blocks by an IDS or ill-formatted exploit requests, malware usually
employs recovery mechanisms to assure their malicious activities. We explore
URI path correlation and temporal correlation to characterize such recovery
intelligence. For example, the recovery behavior sending the same request to mul-
tiple alternative servers to avoid a single point of failure would lead to successful
requests including the same URI (path and parameters) with error requests,
and testing the network connectivity when facing errors would lead to successful
requests having temporal correlation with error requests.

During our study on Dday, 66.67% of malware-generated errors exhibited
such recovery behaviors. On the contrary, benign software typically tried a few
alternative servers in the same domain or kept generating the same errors due to
a lack of pre-arranged recovery methods. Only 8% of benign errors had temporal
correlation with successful requests, and only 20% of them had similar pattern
correlation with successful requests.

Lessons learned: Malware-infected clients usually generate more HTTP errors
than benign clients, and most of the errors are related to malware activities.
Based on our observation, malware-generated errors have significantly different
error generating patterns and recovery behavior patterns from the errors gen-
erated by benign users/software. These different patterns exist because benign
clients often lack recovery routines in the face of HTTP errors.

4 System Design

4.1 System Overview

We leverage the insights described in Sect. 3 to build a novel detection sys-
tem, named Error-Sensor, which aims to detect malware behaviors by exam-
ining HTTP errors. Such malware behaviors may include HTTP attacks on
benign servers (e.g., scanning vulnerable pages), communication with malicious
server (e.g., C&C servers and compromised servers), and other benign behaviors
(e.g., testing network connectivity). Since Error-Sensor relies on the network
behaviors of malware in the face of errors, it detects malware traffic even when
there are only a few (or just one) compromised clients in an enterprise network.
In this paper, we focus on malware traffic related to HTTP errors, and malware
traffic that is not correlated with errors is out of the scope of this work. We
discuss the coverage of Error-Sensor in Sect. 6.

Figure 1 shows the overview of Error-Sensor where it takes the entire
HTTP traffic as an input. The filtering component first filters out noisy error
traffic, and then forwards both the remaining error traffic and the select suc-
cessful request traffic surrounding the remaining errors. Then, Error-Sensor
groups the errors based on their HTTP URI pages and parameters, and all the
errors sharing similar HTTP pages and parameter patterns are grouped together.
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Fig. 1. Overview of Error-Sensor

During this process, Error-Sensor extracts various statistical features from
three perspectives: error provenance, error generation and error recovery. The
resulting feature vectors are then sent to the Error-Sensor classifier which is
trained to distinguish malware-generated errors from benign errors.

4.2 Filtering

The goal of filtering is to reduce the amount of traffic to be processed by Error-
Sensor and to filter the noisy errors. We define noisy errors as the errors gen-
erated by the clients who generate only a single error during the entire observa-
tion window3 since it is difficult to acquire useful information from them. Since
Error-Sensor relies on HTTP error patterns to identify malware-generated
errors, in the filtering step, we filter out all the successful request traffic except
for the successful requests within the time window Tw of error traffic. As a result,
96.8% of entire network traffic were filtered in our one day of enterprise traffic
Dday. As a result, 9.3% of errors were further filtered out. All the remaining
HTTP requests are denoted in a form 〈clienti, serverj , pagek, error code〉. We
acknowledge that we may miss some malware traffic by filtering out noise errors
when malware probes C&C servers with a single request per day. However, it
could be addressed by extending the observation time window.

4.3 Clustering

Given the filtered error traffic, the next step is to cluster them into groups.
The rationale behind this step is that when facing errors, malware may start
their recovery behaviors which would result in similar errors or similar successful
connections. Since we rely on the recovery behaviors generated by the same
client, we group the errors by each client rather than across different clients. In
this way, compared to existing correlation-based detection method [18], Error-
Sensor is capable of detecting malware traffic even when there is only a single
infected client.

The key challenge for clustering is to determine which errors could be con-
sidered as the same. A straightforward way is to consider errors to be the same
only when their URLs, including paths, pages, parameter names, are exactly
matched. For example, during the vulnerable webpage scanning process, mal-
ware may send requests to multiple domains with the same target page files

3 Our observation window was set to 1 day.
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and the same exploit codes, or the clients may send requests to multiple com-
promised servers with the same compromised pages and parameters. However,
certain malware campaigns may utilize obfuscated paths, such as Base64 or URL
encoding for the page names. To address this problem, we set a threshold Tlen

4

for the length of page names. If the length of the page name is shorter than
Tlen, we consider that it is unlikely an obfuscated page name, and group the
errors based on page names and parameters. On the other hand, if the length
of the page name is longer than Tlen, we consider that the page is obfuscated,
decode the page name with a URL decoder, and group the similar errors based
on len(page name) and parameters. The clusters with a single error will be
discarded because most of these errors are caused by misconfiguration where a
client repeatedly sends the same requests to only one server.

4.4 Classification

In this step, Error-Sensor takes the clusters of errors and their surrounding
successful HTTP requests as an input, and produces a verdict on whether the
clusters are malicious or not. Based on our key observations presented in Sect. 3,
we develop a set of 18 features that describes the characteristics of an error
cluster as summarized in Table 2.

Error Provenance Pattern (EPP): This category consists of six features for
evaluating the overall reputation of an error cluster.

Client Reputation (f1) evaluates the client reputation of each cluster, which is
measured by the number of errors generated by the clients in a cluster. It is worth
noting that the number of errors generated by the clients includes the errors
that were not initially clustered in the cluster, and the value of client reputation
may be larger than the actual size of the cluster. Based on our observations
discussed in Sect. 3, malware infected clients generate a lot more errors than
benign clients does. In terms of reputation, the more errors a client generates,
the lower reputation the client has.

Server Reputation (f2) evaluates the reputation of servers in an error cluster,
which is measured by the average number of clients connecting to the servers.
The more popular (i.e., more clients communicating with) a server is, the less
likely the server is malicious.

A Software Error Ratio (f3) evaluates who generates errors, which is defined
by the number of custom (non-browser) User-Agents over the total number of
errors in a cluster. As noted in Sect. 3, majority of benign errors was generated
by custom (non-browser) User-Agents while malware often used browser User-
Agents to remain more stealthy.

An Accidental Error Ratio (f4) evaluates how errors are generated, which is
defined by the number of accidental errors over the total number of errors in a

4 Tlen was empirically set to 25 based on [40].
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Table 2. Feature selection

Category Features Feature domain Novelty

Error provenance Client reputation (f1) Integer New

Server reputation (f2) Integer [40]

Software error ratio (f3) Real New

Accidental error ratio (f4) Real New

Referer error ratio (f5) Real [31]

Suspicious server ratio (f6) Real New

Error generation Sequence (f7) Boolean New

Periodmin (f8) Integer New

Periodmedian (f9) Integer New

Periodmax (f10) Integer New

Frequencymin (f11) Integer New

Frequencymedian (f12) Integer New

Frequencymax (f13) Integer New

Batchmin (f14) Integer New

Batchmedian (f15) Integer New

Batchmax (f16) Integer New

Error recovery Temporal correlation (f17) Boolean [17]

URI Path correlation (f18) Boolean New

cluster. As noted in Sect. 3, malware often quickly gives up failed servers and
moves on to other alternative servers, resulting in a high accidental error ratio.

A Referrer Ratio (f5) evaluates where errors are generated. A referer provides
information about the locations of the links from where a user reaches an error
page. Most malware5 and benign software typically generate errors without ref-
erers (i.e., direct requests) while users/browsers typically generate errors with
referers indicating the previous page of the error page. By default, a browser
automatically add a referer field to each request [5]. We define the referrer ratio
as the number of unique referers in a cluster divided by the number of errors in
the cluster. Malware-generated errors would have zero or very low referer ratio.

A Suspicious Server Ratio (f6) also measures the reputation of the servers in
each error cluster. If a server generates only error traffic without any successful
communication with its clients, Error-Sensor flags the server as suspicious.
These servers might be less popular servers which only few clients visit and
generate errors, or malicious servers blocked by an IDS. The suspicious server
ratio is defined as the number of suspicious servers divided by the total number

5 Although it is trivial for an attacker to manipulate the Referer field, it is easy to
detect by checking if the current page is embedded in the referred page.
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of servers in the cluster. A higher suspicious server ratio in a cluster indicates
that the cluster is more likely to be connected only by malware.

Error Generation Pattern (EGP): This category of features consists of four
sub-groups of features extracted from error traffic.

A Sequence Pattern (f7) characterizes whether the errors in a cluster are gen-
erated in a sequence. The rationale behind the feature is that the errors gen-
erated from browsers and benign software often follow a certain sequence while
malware-generate errors are often observed in an arbitrary order. For example, a
client may generate a series of 404 errors to outdated Ubuntu source repositories
in the same sequence over time because the source list of update servers (e.g.,
/etc/apt/sources.list) is fixed. However, malware may randomly select C&C
servers to send requests, which leads to an arbitrary order of requests.

A Period Pattern (f8, f9, and f10) measures the minimum time interval for
malware to generate the same errors (repeated errors). We observed that most
user-generated errors did not yield repeated ones, and benign software generated
errors often had short time interval of generating the same errors. However,
malware typically employs some delay before reconnecting to the failed sever to
avoid sudden traffic spikes. To characterize the timing pattern of repeated errors,
we calculate the minimum, median, and maximum values of the minimum time
interval between repeated errors.

A Frequency Pattern (f11, f12, and f13) measures how many recurring errors
are generated for each error per day. Most benign errors are typically generated
once or per usage. For example, a set of recurring 404 errors caused by using
an outdated Ubuntu source list is generated only when a user issues apt-get
command. However, malware may periodically try to connect to malicious C&C
servers to obtain new commands or updates. Considering not all of the errors
in a cluster are repeated, we assess the maximum, median, and minimum of the
error frequency for each cluster to characterize the error generating frequency.

A Batch Pattern (f14, f15, and f16) measures the minimum time interval for
malware to contact other alternative servers in a cluster. Most benign errors are
often generated in a batch while malware may generate errors with some delays
to avoid sudden spikes and to evade possible detection. For example, a set of
404 Not Found errors are usually generated at once when a page includes lots
of missing/outdated links for scripts and resources. Typically, benign software
quickly tries to reconnect to alternative servers in the face of errors. However,
when malware faces errors, it may slowly complete its recovery behaviors (e.g.,
1 min to send multiple requests [36]), or delay sometime before contacting to
other alternative servers to remain stealthy.

Error Recovery Pattern (ERP): This feature group consists of two features
to characterize the error recovery patterns of malware in the face of errors.

Temporal Correlation (f17) characterizes the recovery behaviors of malware
based on temporal correlation among errors and their nearby successful traf-
fic. The rationale behind the feature is that when malware faces errors, it would
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start recovery mechanisms within a certain time. For example, malware may
send requests to benign servers (e.g., google.com/xyz and facebook.com/xyz
as shown in Table 7) to check network connectivity after several failed connec-
tions to malicious servers. Therefore, if a server frequently appears together with
error requests, it is highly likely to be a part of malware recovery routines.

To characterize temporal patterns, we define a time window Tw to set the
correlation scope, and all the requests surrounding the errors within Tw time win-
dow are extracted. To quantify the temporal correlation, we utilize association
rule learning [9], which is widely used to discover significant relations between
variables in a large database in information retrieval. We use the association rule
learning to find out associated traffic with target errors. For each error traffic
e, we extract surrounding traffic of e within Tw window, defining them as an
error bucket. In this way, all the traffic in the same error bucket is considered
as related traffic, and a recurring error generates a set of error buckets. Then,
for each error bucket, we measure support Supp(X) and confidence Conf(X)
in association rule mining to identify highly correlated traffic. Supp(X) of traf-
fic set X is defined as the number of error buckets containing traffic set X,
which reflects how frequently traffic X appears together with the target error e.
Conf(X) is defined as Supp(X) over the frequency of traffic set X appearing
in the traffic, Conf(X) = Supp(X)/Freq(X), where Freq(X) is the frequency
of traffic X in the surrounding traffic of target error e. Therefore, if traffic set
X frequently appears together with the target error e (i.e., high Supp(X)) and
only appears together with target error e (i.e., high Conf(X)), traffic set X is
greatly correlated with error e and is highly likely to be the traffic of recovery
mechanisms for error e. As a result, temporal correlation feature returns True if
Supp(X) is higher than threshold TSupp

6, and Conf(X) is higher than threshold
TConf

7; otherwise, it returns False. For the errors with the frequency less than
2, temporal correlation feature returns False since it is difficult to determine if
they are truly correlated or not. The correlated traffic helps to identify backup
malicious servers and to understand sophisticated evasion intelligence employed
by malware.

URI Path Correlation (f18) characterizes the recovery behaviors of malware
based on URI pattern correlation among errors and their surrounding successful
traffic. We note that malware may generate the same requests to multiple servers
to avoid a single point of failure. In this case, some of malware traffic may lead
to errors while others may be successful. For example, when malware connects to
compromised servers, some of the compromised servers may have already been
cleaned by administrators and lead to 404 errors while others may redirect clients
to malicious servers. However, both error traffic and successful traffic would
have similar content patterns (e.g., pages and parameters), and we measure the

6 We empirically set TSupp = 2, which means that the traffic set X appears together
with target error e at least twice.

7 We empirically set TConf = 0.8, which means the majority of X appear together
with error e. A lower TConf leads to low false negatives with high false positives.
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similarity between traffic using the method discussed in Sect. 4.3. If traffic set
X is similar to target error e, path correlation feature returns True; otherwise,
it returns False.

Building and Using a Classifier: Considering a set of diverse features, the
classes of malicious error clusters and benign error clusters may not be linearly
separable in their feature space, which makes Support Vector Machine (SVM)
be less effective. In addition, tuning the parameters for diverse data is not trivial
and parameter-free classifier would be desirable. Therefore, we leverage a ran-
dom forest classifier (RFC) for classification, which does not require parameter
tuning and is robust to handle outliers. The only two required parameters for
RFC are the number of decision trees (Nt) and the number of features (Nf )
per decision tree, and these parameters are independent of nuances of the data
and have standard selection rules8. If the classifier determines that a cluster is
malicious, then Error-Sensor also outputs its recovery servers based on the
servers extracted through temporal and URI path correlation.

5 Evaluation

We collected 5 days of real-world web proxy logs from a large enterprise network,
called D5days. The logs were gathered by Symantec ProxySG [4] infrastructure
deployed at multiple locations inside the enterprise network. The proxy logs con-
sist of connection information (e.g., source/destination IP addresses, ports, and
timestamps) and HTTP header fields (e.g., Hosts, URLs, User-Agents, referers,
and HTTP response codes). Overall, we collected and analyzed over 170 GB
of raw proxy logs including about 1.5 billion web requests and responses. The
ProxySG has a built-in intrusion detection system (IDS) with blacklists which
flags known threats by matching signatures.

5.1 Effectiveness of Error-Sensor

10-fold Cross Validation. The ground truth data in Dday (shown in Table 1)
consisted of 716 benign error clusters and 42 malicious error clusters. Training a
classifier on this unbalanced data set may bias the classification model towards
the abundant class (benign errors in our case), and may be tailored for less
important features, i.e., the features that may cause noises rather than contribute
to the accurate classification. We addressed this problem by stratified sampling.
For each client, we randomly selected a benign error cluster and keep all the
malicious error clusters. As a result, our balanced training set Dtrain contained
136 benign error clusters and 42 malicious error clusters. We then trained a
random forest model, and ran 10-fold cross validation on Dtrain. Error-Sensor
achieved an average true positive rate of 98.3% at 2.2% false positive rate in
terms of error cluster classification. The two false positive clusters included
8 Nt is typically data independent and was set to 100, and the value of Nf was log(total

number of features)+1.
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a total of 4 errors, and the single missed false negative cluster consisted of 2
errors. Therefore, the detection rate was 99.79% at 0.005% false positive rate in
terms of individual error classification. We also applied our trained model on
the remaining ground truth data (Dday − Dtrain), including 580 benign error
clusters, and no false positive was reported.

We further performed in-depth investigation of the misclassified cases. We
checked the values in their features and compared the difference between
〈TP, FN〉 and 〈FP, TN〉 to see which features led to misclassification. For the
one false negative cluster, we found that there was no suspicious server (f6= 0),
no accidental error (f4= 0), and no recovery behaviors (f17= False, f18= False),
which resulted in being classified as a benign cluster. For the two false pos-
itive clusters, we found that both had a high suspicious server ratio (f6= 1),
no accidental error (f4= 0), and high period time, which looked very similar to
malicious errors.

Table 3. Performance with different features

Algorithms TP rate FP rate F-score ROC Area

ERP, EGP & EPP 0.983 0.022 0.983 0.994

ERP & EGP 0.944 0.165 0.942 0.972

Only ERP 0.815 0.502 0.79 0.701

To comprehend how different feature combinations would affect the perfor-
mance of the classifier, we tested different feature groups on Dtrain. Starting with
only error recovery pattern (ERP) features from Table 2, we combined other fea-
ture categories one by one (error generation pattern (EGP) features, and error
provenance pattern (EPP) features), and evaluated the performance of the clas-
sifier. As shown in Table 3, we observed that using only ERP features detected
the majority of malicious errors, however led to a large number of false posi-
tives. The combination of ERP features and EGP features significantly improved
the detection rate, and reduced the false positive rate. By combining all feature
groups, the performance of the classifier further improved.

Real-World Application. To further evaluate the effectiveness of Error-
Sensor, we applied it to D5days. Table 4 reports the number of the error clusters
detected by Error-Sensor. Since Day-4 and Day-5 were the weekend, less
amount of traffic was produced and Error-Sensor therefore detected fewer
malicious clusters. We verified reported clusters with the ground truth. If at
least one error was flagged by an IDS, we denoted it as IDS in the table. If at
least one error was labeled as policy violation by the proxy, we denoted it as
Policy Violation9. We also queried servers to VirusTotal [8] to see if the servers
were blacklisted. If at least one server was labeled by VirusTotal as malicious, we

9 Manual investigation confirmed all of the errors in the cluster were policy violation.



482 J. Zhang et al.

denoted the cluster as VirusTotal. We checked Whois information of the servers.
If at least the registration of one server was expired, we denoted it as Expired.
We believe an expired server has a higher possibility of being exploited by cyber
criminals since it has a short lifetime. For the remaining errors, we conservatively
labeled them as false positives as no validated malicious evidence was available.

Table 4. Malicious error clusters detected by Error-Sensor

Day-1 Day-2 Day-3 Day-4 Day-5

Error-Sensor 239 216 164 45 26

IDS 32 34 17 10 6

Policy Violation 193 173 138 32 20

VirusTotal 3 0 2 0 0

Expired 1 3 0 2 0

False positives 10 6 7 1 0

For example, on Day-1, Error-Sensor detected 239 malware-generated
error clusters. Among them, 32 clusters were confirmed by an IDS, and 193
clusters belonged to the policy violation category. There were 3 clusters flagged
by VirusTotal which were missed by the IDS and the proxy policy-based detec-
tion. There was 1 cluster containing only expired domains, indicating highly
likely malicious servers. Although we had a relatively large number of false posi-
tive clusters, the sizes of the top 2 largest clusters were only 8 and 5 respectively,
and all the other clusters had the size of 2 or 3. There were also several duplicate
false positives recurring every day simply due to the software misconfiguration.
For example, we found a client kept requesting index.rdf to multiple servers
for RSS feeds. Some of the requests were successful while some led to 404 Not
Found errors, which triggered temporal correlation and URI path correlation
features.

5.2 Robustness of Error-Sensor

To evaluate the robustness of Error-Sensor, we measured the gain ratio with
10-fold cross validation to quantify the most discriminant features, which has
been proven to be more robust than other alternative metrics, such as the infor-
mation gain or the Gini index. Table 5 presents the top-5 features in a descending
order of their gain ratios. The Avg. Rank is the average rank over 10 fold cross
validation, and the Avg. Merit reflects how important a feature is (the higher,
the more important) averaged over the cross validation. The numbers following
± denote the standard deviations.

We also conservatively define the robustness of the features based on how dif-
ficult it is for cyber criminals to evade detection. If an attacker cannot manipulate
or control a feature, we define the robustness of the feature as High. For example,
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Table 5. Error-Sensor gain ratios of the top 5 features

Features Avg. Rank Avg. Merit Robustness

Suspicious Server Ratio (f6) 1 ± 0 0.848 ± 0.023 High

Accident Error Ratio (f4) 2 ± 0 0.566 ± 0.025 Low

Periodmedian (f9) 3.9 ± 0.94 0.475 ± 0.03 Medium

Periodmax (f10) 4 ± 0.77 0.483 ± 0.04 Medium

Client Reputation (f1) 4.8 ± 0.87 0.435 ± 0.021 High

an attacker cannot simply control how many errors are generated by a client;
thus, we label the robustness of Client Reputation feature as High robustness. If
an attacker is able to manipulate a feature, with some associated costs, we define
the robustness of the feature as Medium robustness. For example, to influence
Periodmedian feature, an attacker is required to frequently make requests with
a higher risk of being flagged as suspicious due to sudden connection spikes. In
other words, an attacker might be able to evade the feature while increasing the
probability of being detected. For the feature that does not require a high cost
for an attacker, we label them as Low robustness. For example, an attacker may
simply send requests to the valid page of the target server in order to establish
successful connections and avoid accidental errors. We manipulated the value
of Accident Error Ratio (f4), Periodmedian (f9), and Periodmax (f10) to zero to
simulate possible evasion by an attacker on these less robust features. Then,
we applied our previously trained model to the prepared evasive attack, and
achieved 88.09% of the detection rate.

5.3 Case Study

In this section, we demonstrate the benefits of Error-Sensor with real cases
detected by Error-Sensor. Due to the space limit, we only include a few of
malicious servers in the tables.

Table 6. Conficker botnet

Server Path IDS category

IDS 149.20.56.32 /search Malicious Outbound Data/Botnets

195.22.26.231 /search Malicious Outbound Data/Botnets

96.43.141.190 /search Malicious Outbound Data/Botnets

Error-Sensor 205.164.24.45 /search Placeholders

149.20.56.33 /search Computers/Internet

216.172.154.35 /search Placeholders
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Case #1: Error-Sensor detected more malicious servers missed by an exist-
ing deployed IDS. Most IDSes use blacklists or signatures to detect malicious
traffic, and they may miss recent sophisticated and evasive malware traffic.
Table 6 shows the Conficker botnet [28] cluster. This cluster included 6 C&C
servers of the Conficker botnet, which labeled by the deployed IDS as Mali-
cious Outbound Data/Botnets. However, there were still 3 more malicious servers
missed by the IDS, but detected by Error-Sensor. These severs were labeled
as Placeholders and Computers/Internet categories by the IDS, and were not
flagged or blocked by the IDS. On the contrary, Error-Sensor captured those
3 surreptitious malicious servers through temporal correlation and path correla-
tion, which demonstrates the capability of Error-Sensor to identify stealthy
attacks.

Table 7. TDSS botnet

Server Path IDS category

IDS loftgun01.ru /wet.php Malicious Sources

postbox901.ru /wet.php Malicious Sources

teranian111.ru /wet.php Malicious Sources

Error-Sensor sbolt71.ru /wet.php Spam

www.google.com /efwgh/index.php Search Engines/Portals

www.facebook.com /dwrgh/index.php Social Networking

Case #2: Error-Sensor detected the evasive recovery mechanisms employed
by malware. Regardless of the maliciousness, the recovery mechanisms of mal-
ware provide critical information to analyze and detect sophisticated malware,
which is often neglected by existing systems or IDSes. As shown in Table 7, the
IDS detected 3 malicious servers used by the TDSS botnet [29]; however, the
IDS mislabeled one malicious server as Spam category, and failed to block the
malware traffic. Error-Sensor, on the contrary, precisely detected the missed
malicious server through URI path correlation, and further identified 5 benign
servers used in malware evasive recovery routines (e.g., testing network connec-
tivity by connecting to benign popular servers not to raise suspicion) through
temporal correlation. Further study confirmed that those benign servers were
indeed reported to be used by malware [6].

Case #3: Error-Sensor detected more decoy and malicious servers involved
in malicious activities, but missed by the IDS. Table 8 shows the Cutwail bot-
net [7] cluster, which is notorious for sending spam emails. Based on the malware
analysis report [7], the malware embeds the list of 176 hard-coded decoy servers,
and it sends dummy HTTP requests to the randomly chosen server from the
decoy server list before communicating with actual C&C servers. This is to min-
imize the exposure of actual malicious C&C communication traffic; however, it

https://www.google.com/
https://www.facebook.com/
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Table 8. Cutwail botnet

Server Path IDS category

IDS diamondcpu.com / Malicious Outbound Data/Botnets

emailmsn.com / Malicious Outbound Data/Botnets

erzt.com / Malicious Outbound Data/Botnets

Error-Sensor dangerous-minds.com / Newsgroups/Forums

deloitte.com / Financial Services

linuxmail.org / Email

results in generating numerous errors to decoy servers. The IDS detected 13
of those decoy servers and one C&C server confirmed in [7]. Error-Sensor
detected 168 new servers missed by the IDS by leveraging URI path correlation
and temporal correlation. Since all the dummy HTTP requests to the decoy
servers shared the same request pattern with the requests to C&C servers, it
was not trivial to distinguish C&C communication from decoy communication.

6 Discussion

Limitation: Since Error-Sensor focuses on HTTP errors to detect malware
traffic, it would not report malware that never generates HTTP errors. However,
malware often uses HTTP [27] as either their server communication channels
(e.g., C&C servers, redirectors, and payment servers) or attack channels (e.g.,
scanning vulnerable web pages/vulnerabilities, and attacking other web servers)
because HTTP is commonly allowed to cross enterprise network perimeters [20].
This gives Error-Sensor a great chance to detect malware traffic when such
HTTP connections generate errors. In addition, malware may try to use HTTPS
to evade detection, and this can be addressed by deploying web proxy servers
that perform SSL-MITM in enterprise networks [25].

Evasion: An attacker who gains the knowledge about Error-Sensor might
try to mislead our system by manipulating features.

Error Provenance Pattern: This group of features characterizes the properties of
error sources, and it is not trivial for an attacker to influence some features. For
example, an attacker may not precisely determine when and how many malware
generates connection errors, especially when malicious/compromised servers get
cleaned. Malware may monitor web traffic and try to manipulate a User-Agent
field; however, it requires periodic monitoring and other key features help detect
malicious errors as a User-Agent alone is not the most significant feature. An
attacker may also easily change a Referer field; however, forged Referers can be
detected by checking if the current page is embedded in the Referer page or
sending the same requests to the Referer page.

https://ts.diamondcpu.com/
https://www.msn.com/
https://www.erzt.com/
https://dangerousminds.net/
http://deloitte.com/
http://linuxmail.org/
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Error Generation Pattern: Malware may try to change its communication pat-
terns to yield different error generation patterns. However, it is not trivial for
an attacker to achieve the goal without raising suspicion. For example, sending
requests in a batch may cause connection spikes, which could be captured by
existing detection systems [36]. Furthermore, an attacker may lose their reliable
control if malware sends requests too slowly or randomly [20].

Error Recovery Pattern: Malware may evade temporal correlation by adding a
large delay when facing errors. This can be addressed by tuning Tw threshold
to handle the requests with a larger delay at an extra processing time cost. To
evade URL path correlation, malware requires to target different pages and to
generate different parameters. However, depending on the vulnerabilities and
malicious activities, it is complicated for malware to change its attack patterns.
For example, for scanning attacks on vulnerable pages, the specially crafted URI
names and parameters cannot be changed, otherwise the attack does not work.

Although malware authors may be able to evade an individual feature, it
is challenging to evade all of them. We believe Error-Sensor presents a new
detection perspective, and a practical complement to existing malware traffic
detection approaches in the battle against malware.

7 Related Work

Malicious Traffic Detection: Malicious traffic detection has been widely stud-
ied by identifying malicious domains from different angles. Many approaches
detected malicious domains from the DNS point of view. Bilge et al. [14] utilized
various features to evaluate the reputation of a domain. Kopis [11] monitored
DNS traffic at the upper DNS hierarchy to detect malicious domains. Another
line of research focused on network traffic analysis. Some approaches [25,27]
detected malicious domains by extracting signatures from malware traffic. Gu
et al. [18,19] proposed anomaly-based botnet detection systems that looked for
similar network behaviors across client hosts. Yen et al. [37] detected malware by
aggregating traffic that shared the same external destinations or similar payload,
and involved internal hosts with similar OS. Hu et al. [20] designed methods to
detect regular callback patterns often generated by botnets in enterprise net-
works. Recently, Yen et al. [36] proposed a system to detect suspicious activities
in enterprise networks by mining the features from the logs of a diverse security
products. Zhang et al. [39] detected malicious servers by studying the redirec-
tion between visible servers and invisible servers. Kwon et al. [22] designed a
system to detect lockstep behaviors, which captured a set of downloaders that
were remotely controlled and the domains that they accessed.

Failure-based Detection: Zhu et al. [41] employed a supervised machine
learning method to classify different attacks using a combination of DNS query
failures and network traffic data collected for individual hosts. Yadav et al.
[35] utilized the failures around successful DNS queries and the entropy of the
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domains belonging to those queries to detect botnet. Jiang et al. [21] character-
ized DNS query failures by analyzing DNS failure graphs to identify suspicious
and malicious activities. Recently, Antonakakis et al. [12] extracted statistic fea-
tures from DNS failures and built models for DGA botnets, which are then used
for online detection. Thomas et al. [32] analyzed non-existent domain queries at
several premier Top Level Domain (TLD) authoritative name servers to iden-
tify strongly connected cliques of malware related domains. Beside the DNS
failure-based study, Beverly et al. [13] used network errors (e.g., TCP timeouts,
retransmissions, reset) caused by bots for spam mitigation.

Malware Recovery Behavior Analysis: Some approaches [15,16] used the
game theory to model interactions between an attacker and a honeypot operator
to improve the information gained from honeypot. Nadji et al. [24] systematically
designed a set of rules to proactively inject false network information in order
to reveal the backup behaviors of malware. Dynamic binary analysis systems
revealed malware behaviors by forcing execution of all possible branches, as
addressed in [23,34]. Zhang et al. [38] analyzed the underlying triggering relations
of a massive amount of network events, and explored such triggering relations
to detect the stealthy malicious activities.

8 Conclusion

In this paper, we studied malware-generated web traffic from a new perspective,
i.e., HTTP errors. We conducted the first large-scale measurement study on
HTTP errors generated by both benign users/software and malware. We showed
that malware-infected clients typically generated more HTTP errors than benign
clients did, and there existed distinguishing patterns between the errors gener-
ated by malware and the errors caused by benign users/software. Leveraging our
new findings, we designed a new system, Error-Sensor, to detect malware traf-
fic. Our evaluation on real-world data sets demonstrated the effectiveness and
robustness of Error-Sensor in detecting malware-generated traffic and com-
prehending the malware evasion intelligence. We believe that Error-Sensor
presents a new detection method and greatly complements existing works.
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Abstract. In this paper, we present a black-box attack against API
call based machine learning malware classifiers, focusing on generating
adversarial sequences combining API calls and static features (e.g., print-
able strings) that will be misclassified by the classifier without affecting
the malware functionality. We show that this attack is effective against
many classifiers due to the transferability principle between RNN vari-
ants, feed forward DNNs, and traditional machine learning classifiers
such as SVM. We also implement GADGET, a software framework to
convert any malware binary to a binary undetected by malware classi-
fiers, using the proposed attack, without access to the malware source
code.

Keywords: Adversarial attacks · Malware classification
Deep neural networks · Dynamic analysis · Transferability

1 Introduction

Machine learning malware classifiers, in which the model is trained on features
extracted from the analyzed file, have two main advantages over current signa-
ture based/black list classifiers: (1) Automatically training the classifier on new
malware samples saves time and expense, compared to manually analyzing new
malware variants. (2) Generalization to currently unseen and unsigned threats
is better when the classifier is based on features and not on a fingerprint of a
specific and exact file (e.g., a file’s hash).

Next generation anti-malware products, such as Cylance, CrowdStrike, and
Sophos, use machine and deep learning models instead of signatures and heuris-
tics. Those models can be evaded and in this paper, we demonstrate an evasive
end-to-end attack, generating a malware binary that can be executed while not
being detected by such machine learning malware classifiers.

Application programming interface (API) calls, often used to characterize
the behavior of a program, are a common input choice for a classifier and used
by products such as SentinelOne. Since only the sequence of API calls gives each
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API call its context and proper meaning, API call sequence based classifiers
provide state of the art detection performance [9].

Machine learning classifiers and algorithms are vulnerable to different kinds of
attacks aimed at undermining the classifier’s integrity, availability, etc. One such
attack is based on the generation of adversarial examples which are originally
correctly classified inputs that are perturbed (modified) so they (incorrectly)
get assigned a different label. In this paper, we demonstrate an attack like this
on binary classifiers that are used to differentiate between malicious and benign
API call sequences. In our case, the adversarial example is a malicious API call
sequence, originally correctly classified, which is classified by the classifier as
benign (a form of evasion attack) after the perturbation (which does not affect
the malware functionality).

Generating adversarial examples for API sequences differs from generating
adversarial examples for images [2], which is the main focus of the existing
research, in two respects: (1) API sequences consist of discrete symbols with
variable lengths, while images are represented as matrices with fixed dimensions,
and the values of the matrices are continuous. (2) In adversarial API sequences
one must verify that the original functionality of the malware remains intact.
Attacks against RNN variants exist [7,12], but they are not practical attacks, in
that they don’t verify the functionality of the modified samples or handle API
call arguments and non-sequence features, etc. The differences from our attack
are specified in Sect. 2.

The contributions of our paper are as follows:

1. We implement a novel end-to-end black-box method to generate adversarial
examples for many state of the art machine learning malware classifiers. This
is the first attack to be evaluated against RNN variants (like LSTM), feed
forward DNNs, and traditional machine learning classifiers (such as SVM).
We test our implementation on a large dataset of 500,000 malware and benign
samples.

2. Unlike previous papers that focus on images, we focus on the cyber security
domain. We implement GADGET, an evasion framework generating a new
malware binary with the perturbed features without access to the malware
source code that allows us to verify that the malicious functionality remains
intact.

3. Unlike previous papers, we extend our attack to bypass multi-feature (e.g.,
static and dynamic features) based malware classifiers, to fit real world sce-
narios.

4. We focus on the principle of transferability in RNN variants. To the best of
our knowledge, this is the first time it has been evaluated in the context of
RNNs and in the cyber security domain, proving that the proposed attack
is effective against the largest number of classifiers ever reviewed in a single
study: RNN, LSTM, GRU, and their bidirectional and deep variants, and feed
forward DNN, 1D CNN, SVM, random forest, logistic regression, GBDT, etc.
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2 Background and Related Work

Most black-box attacks rely on the concept of adversarial example transferability
[18]: Adversarial examples crafted against one model are also likely to be effective
against other models, even when the models are trained on different datasets.
This means that the adversary can train a surrogate model, which has decision
boundaries similar to the original model, and perform a white-box attack on
it. Adversarial examples that successfully fool the surrogate model are likely to
fool the original model as well [11]. A different approach uses the confidence
score of the targeted DNN to estimate its gradients directly instead of using
the surrogate model’s gradients to generate adversarial examples [3]. However,
attacker knowledge of confidence scores (not required by our attack) is unlikely in
black-box scenarios. Decision based attack, which uses only the target classifier’s
classes, without the confidence score, result in lower attack effectiveness and
higher overhead [17].

In mimicry attacks, an attacker is able to code a malicious exploit that mim-
ics the system calls’ trace of benign code, thus evading detection [21]. Several
methods were presented: (1) Disguise attacks - Causing benign system calls to
generate malicious behavior by modifying only the system calls’ parameters. (2)
No-op Attacks - Adding semantic no-ops - system calls with no effect, or those
with an irrelevant effect, e.g., opening a non-existent file. (3) Equivalence attack
- Using a different system call sequence to achieve the same (malicious) effect.

The search for adversarial examples can be formalized as a minimization
problem [18]:

argr min f(x + r) �= f(x) s.t. x + r ∈ D (1)
The input x, correctly classified by the classifier f , is perturbed with r such that
the resulting adversarial example x + r remains in the input domain D, but is
assigned a different label than x .

A substitute model was trained with inputs generated by augmenting the
initial set of representative inputs with their FGSM [4] perturbed variants, and
then the substitute model was used to craft adversarial samples [11]. This differs
from our paper in that: 1) It deals only with convolutional neural networks, as
opposed to all state of the art classifiers, including RNN variants. 2) It deals with
images and doesn’t fit the attack requirements of the cyber security domain, i.e.,
not harming the malware functionality. 3) No end-to-end framework to imple-
ment the attack in the cyber-security domain was presented.

A white-box evasion technique for an Android static analysis malware clas-
sifier was implemented using the gradients to find the element whose addition
would cause the maximum change in the benign score, and add this feature to
the adversarial example [5]. In contrast to our work, this paper didn’t deal with
RNNs or dynamic features which are more challenging to add without harming
the malware functionality. This study also did not focus on a generic attack that
can affect many types of classifiers, as we do. Finally, our black-box assumption
is more feasible than a white-box assumption. In Sect. 5.3 we created a black-box
variant of this attack.
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API call uni-grams were used as static features, as well [6]. A generative
adversarial network (GAN) was trained to generate adversarial samples that
would be classified as benign by the discriminator which uses labels from the
black-box model. This attack doesn’t fit sequence based malware classifiers
(LSTM, etc.). In addition, the paper does not present a end-to-end frame-
work which preserves the code’s functionality. Finally, GANs are known for their
unstable training process [1], making such an attack method hard to rely on.

A white-box adversarial example attack against RNNs, demonstrated against
LSTM architecture, for sentiment classification of a movie reviews dataset was
shown in [12]. The adversary iterates over the movie review’s words x[i] in the
review and modifies it as follows:

x[i] = arg min
z

||sign(x[i] − z) − sign(Jf (x)[i, f(x)])|| s.t. z ∈ D (2)

where f(x) is the original model label for x, and Jf (x)[i, j] = ∂fj

∂xi
(x). This

differs from our paper in that: (1) We present a black-box attack, not a white-
box attack. (2) We implement a practical cyber domain attack. For instance,
we don’t modify existing API calls, because while such an attack is relevant for
reviews - it might damage a malware functionality which we wish to avoid. (3)
We deal with multiple-feature classifiers, as in real world malware classifiers. (4)
Our attack has better performance, as shown in Sect. 4.3.

Concurrently and independently from our work, a RNN GAN to generate
invalid APIs and insert them into the original API sequences was proposed
[7]. Gumbel-Softmax, a one-hot continuous distribution estimator, was used to
deliver gradient information between the generative RNN and the substitute
RNN. Null APIs were added, but while they were omitted to make the generated
adversarial sequence shorter, they remained in the gradient calculation of the
loss function. This decreases the attack effectiveness compared to our method
(88% vs. 99.99% using our method, for an LSTM classifier). In contrast, our
attack method doesn’t have this difference between the substitute model and
the black-box model, and our generated API sequences are shorter. This also
makes our adversarial example faster. Unlike [7], which only focused on LSTM
variants, we also show our attack’s effectiveness against other RNN variants
such as GRUs and conventional RNNs, bidirectional and deep variants, and non-
RNN classifiers (including both feed forward networks and traditional machine
learning classifiers such as SVM), making it truly generic. Moreover, the usage
of Gumbel-Softmax approximation in [7] makes this attack limited to one-hot
encoded inputs, while in our attack, any word embedding can be used, making
it more generic. In addition, the stability issues associated with GAN training
[1], which might not converge for specific datasets, apply to the attack method
mentioned in [7] as well, making it hard to rely on. While such issues might not
be visible when using a small dataset (180 samples in [7]), they become more
apparent when using larger datasets like ours (500,000 samples). Finally, we
developed an end-to-end framework, generating a mimicry attack (Sect. 5). While
previous works inject arbitrary API call sequences that might harm the malware
functionality (e.g., by inserting the ExitProcess() API call in the middle of the
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malware code), our attack modifies the code such that the original functionality
of the malware is preserved (Sect. 5.1). Moreover, our approach works in real
world scenarios including hybrid classifiers/multiple feature types (Sect. 5.3) and
API arguments (Sect. 5.2), non of which is addressed by [7].

3 Methodology

3.1 Black-Box API Call Based Malware Classifier

Our classifier’s input is a sequence of API calls made by the inspected code. In
this section, it uses only the API call type and not its arguments or return value.
IDSs that verify the arguments tend to be much slower (4–10 times slower, in
[19]). One might claim that considering arguments would make our attack easier
to detect. This could be done, e.g., by looking for irregularities in the arguments
of the API calls (e.g., invalid file handles, etc.) or by considering only successful
API calls and ignoring failed APIs. In order to address this issue, we don’t use
null arguments that would fail the function. Instead, arguments that are valid
but do nothing, such as writing into a temporary file instead of an invalid file
handle, are used in our framework, as described in Sect. 5. We also discuss an
extension of our attack that handles API call arguments in Sect. 5.2.

Since API call sequences can be long (some samples in our dataset have
millions of API calls), it is impossible to train on the entire sequence at once
due to GPU memory and training time constraints. Thus, we used a sliding
window approach: Each API call sequence is divided into windows with size m.
Detection is performed on each window in turn, and if any window is classified as
malicious, the entire sequence is malicious. This method helps detect cases like
malicious payloads injected into goodware (e.g., using Metasploit), where only
a small subset of the sequence is malicious. We use one-hot encoding for each
API call type in order to cope with the limitations of sklearn’s implementation
of decision trees and random forests1. The output of each classifier is binary
(is the inspected code malicious or not). The tested classifiers and their hyper
parameters are described in Sect. 4.2.

3.2 Black-Box API Call Based Malware Classifier Attack

The proposed attack has two phases: (1) creating a surrogate model using the tar-
get classifier as a black-box model, and (2) generating adversarial examples with
white-box access to the surrogate model and using them against the attacked
black-box model, by the transferability property.

1 For details, see: https://roamanalytics.com/2016/10/28/are-categorical-variables-
getting-lost-in-your-random-forests/.

https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
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Creating a Surrogate Model. We use Jacobian-based dataset augmentation,
an approach similar to [11]. The method is specified in Algorithm 1.

We query the black-box model with synthetic inputs selected by a Jacobian-
based heuristic to build a surrogate model f̂ , approximating the black-box model
f ’s decision boundaries. While the adversary is unaware of the architecture of
the black-box model, we assume the basic features used (the recorded API call
types) are known to the attacker. In order to learn decision boundaries similar to
the black-box model while minimizing the number of black-box model queries,
the synthetic training inputs are based on prioritizing directions in which the
model’s output varies. This is done by evaluating the sign of the Jacobian matrix
dimension corresponding to the label assigned to input x by the black-box model,
sign(Jf̂ (x)[f(x)]), as calculated by FGSM [4]. We use the Jacobian matrix of
the surrogate model, since we don’t have access to the Jacobian matrix of the
black-box model. The new synthetic data point x+ εsign(Jf̂ (x)[f(x)]) is added
to the training set.

Algorithm 1. Surrogate Model Training
Input: f (black-box model), T (training epochs), X1(initial dataset), ε (perturbation

factor)
Define architecture for the surrogate model A
for t=1..T:

Dt = {(x, f(x))|x ∈ Xt} # Label the synthetic dataset using the black-box model
f̂t = train(A, Dt) # (Re-)Train the surrogate model

Xt+1 =
{
x + εsign(Jf̂t

(x)[f(x)])|x ∈ Xt

}
∪Xt # Perform Jacobian-based dataset

augmentation
return f̂T

On each iteration we add a synthetic example to each existing sample. The
surrogate model dataset size is: |Xt| = 2t−1|X1|

The samples used in the initial dataset, X1, were randomly selected from the
test set distribution, but they were not included in the training and test sets to
prevent bias. X1 should be representative so the dataset augmentation covers all
decision boundaries to increase the augmentation’s effectiveness. For example,
if we only include samples from a single family of ransomware in the initial
dataset, we will only be focusing on a specific area of the decision boundary,
and our augmentation would likely only take us in a certain direction. However,
as shown in Sect. 4.3, this doesn’t mean that all of the malware families in the
training set must be represented to achieve good performance.

Generating Adversarial Examples. An adversarial example is a sequence of
API calls classified as malicious by the classifier that is perturbed by the addition
of API calls, so that the modified sequence will be misclassified as benign. In
order to prevent damaging the code’s functionality, we cannot remove or modify
API calls; we can only add additional API calls. In order to add API calls in
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a way that doesn’t hurt the code’s functionality, we generate a mimicry attack
(Sect. 5). Our attack is described in Algorithm 2.

Algorithm 2. Adversarial Sequence Generation
Input: f (black-box model), f̂ (surrogate model), x (malicious sequence to perturb,

of length l), n (size of adversarial sliding window), D (vocabulary)
for each sliding window wj of n API calls in x:

wj
∗ = wj

while f(w∗
j ) = malicious:

Randomly select an API’s position i in w
# Insert a new adversarial API in position i ∈ {1..n}:
w∗

j [i] = arg minapi ||sign(wj
∗ − w∗

j [1 : i − 1] ⊥ api ⊥ w∗
j [i : n − 1]) −

sign(Jf̂ (wj )[f(wj )])||
Replace wj (in x) with wj

∗

return (perturbed) x

D is the vocabulary of available features, that is, the API calls recorded by
the classifier. The adversarial API call sequence length of l might be different
than n, the length of the sliding window API call sequence that is used by the
adversary. Therefore, like the prediction, the attack is performed sequentially on⌈

l
n

⌉
windows of n API calls. Note that the knowledge of m (the window size

of the classifier, mentioned in Sect. 3.1) is not required, as shown in Sect. 4.3.
⊥ is the concatenation operation. w∗

j [1 : i − 1] ⊥ api ⊥ w∗
j [i : n − 1] is the

insertion of the encoded API vector in position i of w∗
j . The adversary randomly

chooses i since he/she does not have any way to better select i without incurring
significant statistical overhead. Note that an insertion of an API in position
i means that the APIs from position i..n (w∗

j [i : n] ) are “pushed back” one
position to make room for the new API call, in order to maintain the original
sequence and preserve the original functionality of the code. Since the sliding
window has a fixed length, the last API call, w∗

j [n], is “pushed out” and removed
from w∗

j (this is why the term is ⊥ w∗
j [i : n − 1], as opposed to ⊥ w∗

j [i : n]).
The APIs “pushed out” from wj will become the beginning of wj+1, so no API
is ignored.

The newly added API call is w∗
j [i] = arg minapi ||sign(wj

∗ − w∗
j [0 : i] ⊥

api ⊥ w∗
j [i : n − 1]) − sign(Jf̂ (wj)[f(w j)])||. sign(Jf̂ (wj)[f(w j)]) gives us

the direction in which we have to perturb the API call sequence in order to
reduce the probability assigned to the malicious class, f(x), and thus change
the predicted label of the API call sequence. However, the set of legitimate API
call embeddings is finite. Thus, we cannot set the new API to any real value.
We therefore find the API call api in D whose insertion directs us closest to the
direction indicated by the Jacobian as most impactful on the model’s prediction.
We iteratively apply this heuristic until we find an adversarial input sequence
misclassified as benign. Note that in [12] the authors replaced a word in a movie
review, so they only needed a single element from the Jacobian (for word i, which
was replaced). All other words remained the same, so no gradient change took
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place. In contrast, since we add an API call, all of the API calls following it shift
their position, so we consider the aggregated impact.

While the proposed attack is designed for API call based classifiers, it can be
generalized to any adversarial sequence generation. This generalization is a high
performance in terms of attack effectiveness and overhead (Eqs. 4 and 5). This
can be seen in Sect. 4.3, where we compare the proposed attack to [12] for the
IMDB sentiment classification task. In Sect. 4.3 we show why the same adversar-
ial examples generated against the surrogate model would be effective against
both the black-box model and other types of classifiers due to the principle of
transferability.

We assume that the attacker knows what API calls are available and how
each of them is encoded (one-hot encoding in this paper). This is a commonly
accepted assumption about the attacker’s knowledge [8].

4 Experimental Evaluation

4.1 Dataset

Our dataset contains 500,000 files (250,000 benign samples and 250,000 malware
samples), including the latest variants. We have ransomware families such as Cer-
ber, Locky, Ramnit, Matsnu, Androm, Upatre, Delf, Zbot, Expiro, Ipamor. and
other malware types (worms, backdoors, droppers, spyware, PUA, and viruses),
each with the same number of samples, to prevent a prediction bias towards
the majority class. 80% of the malware families’ (like the Virut virus family)
samples were distributed between the training and test sets, to determine the
classifier’s ability to generalize to samples from the same family. 20% of the
malware families (such as the WannaCry ransomware family) were used only on
the test set to assess generalization to an unseen malware family. The temporal
difference between the training set and the test set is several months (meaning
all test set samples are newer than the training set samples), based on Virus-
Total’s ‘first seen’ date. We labeled our dataset using VirusTotal, an on-line
scanning service which contains more than 60 different security products. Our
ground truth is that a malicious sample is one with 15 or more positive (i.e.,
malware) classifications from the 60 products. A benign sample is one with zero
positive classifications. All samples with 1–14 positives were omitted to prevent
false positive contamination of the dataset.

We ran each sample in Cuckoo Sandbox, a commonly-used malware anal-
ysis system, for two minutes per sample.2 We parsed the JSON file generated
by Cuckoo Sandbox and extracted the API call sequences generated by the

2 Tracing only the first seconds of a program execution might not detect certain mal-
ware types, like “logic bombs” that commence their malicious behavior only after
the program has been running some time. However, this can be mitigated both by
classifying the suspension mechanism as malicious, if accurate, or by tracing the code
operation throughout the program execution life-time, not just when the program
starts.

https://www.virustotal.com/
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Fig. 1. Overview of the malware classification process

inspected code during its execution. The extracted API call sequences are the
malware classifier’s features. Although the JSON can be used as raw input for
a neural network classifier (as done in [16]), we parsed it, since we wanted to
focus only on API calls without adding other features, such as connected network
addresses, which are also extracted by Cuckoo Sandbox.

The overview of the malware classification process is shown in Fig. 1. Figure
2a present a more detailed view of the classifier’s structure.

We run the samples on a VirtualBox’s snapshot with Windows 8.1 OS,3 since
most malware target the Windows OS.

Cuckoo Sandbox is a tool known to malware writers, some of whom write code
to detect if the malware is running in a Cuckoo Sandbox (or on virtual machines)
and if so, the malware quit immediately to prevent reversing efforts. In those
cases, the file is malicious, but its behavior recorded in Cuckoo Sandbox (its API
call sequence) isn’t malicious, due to its anti-forensic capabilities. To mitigate
such contamination of our dataset, we used two countermeasures: (1) We applied
YARA rules to find samples trying to detect sandbox programs such as Cuckoo
Sandbox and omitted all such samples. (2) We considered only API call sequences
with more than 15 API calls (as in [13]), omitting malware that, e.g., detect a VM
and quit. This filtering left us with about 400,000 valid samples, after balancing
the benign samples number. The final training set size is 360,000 samples, 36,000
of which serve as the validation set. The test set size is 36,000 samples. All sets
are balanced between malicious and benign samples. One might argue that the
evasive malware that apply such anti-VM techniques are extremely challenging
and relevant. However, in this paper we focus on the adversarial attack. This
attack is generic enough to work for those evasive malware as well, assuming
that other mitigation techniques (e.g., anti-anti-VM), would be applied.

4.2 Malware Classifier Performance

No open source or commercial trail versions of API calls based deep learning
intrusion detection systems are available, as such products target enterprises.
Dynamic models are not available in VirusTotal as well. Therefore, we created
our own black-box malware classifiers. This also allows us to evaluate the attack
effectiveness (Eq. 4) against many classifier types.
3 While it is true that the API calls sequence would vary across different OSs or con-

figurations, both the black-box classifier and the surrogate model generalize across
those differences, as they capture the “main features” over the sequence, which are
not vary between OSs.

https://www.virtualbox.org/
https://github.com/Yara-Rules/rules
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Fig. 2. Classifier architecture overview

We limited our maximum input sequence length to m = 140 API calls (longer
sequence lengths, e.g., m = 1000, had no effect on the accuracy) and padded
shorter sequences with zeros. A zero stands for a null API in our one-hot encod-
ing. Longer sequences are split into windows of m API calls, and each window
is classified in turn. If any window is malicious the entire sequence is considered
malicious. Thus, the input of all of the classifiers is a vector of m = 140 API call
types in one-hot encoding, using 314 bits, since there were 314 monitored API
call types in the Cuckoo reports for our dataset. The output is a binary classifi-
cation: malicious or benign. An overview of the LSTM architecture is shown in
Fig. 2a.

We used the Keras implementation for all neural network classifiers, with
TensorFlow used for the back end. XGBoost and Scikit-Learn were used for all
other classifiers.

The loss function used for training was binary cross-entropy. We used the
Adam optimizer for all of the neural networks. The output layer was fully-
connected with sigmoid activation for all NNs. We fine-tuned the hyper param-
eters for all classifiers based on the relevant state of the art papers, e.g., window
size from [13], number of hidden layers from [5,9], dropout rate from [9], and
number of trees in a random forest classifier and the decision tree splitting crite-
ria from [15]. For neural networks, a rectified linear unit, ReLU(x) = max(0, x),
was chosen as an activation function for the input and hidden layers due to
its fast convergence compared to sigmoid() or tanh(), and dropout was used
to improve the generalization potential of the network. Training was conducted

https://keras.io/
https://github.com/dmlc/xgboost/
http://scikit-learn.org/stable/
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Table 1. Classifier performance

Classifier type Accuracy (%) Classifier type Accuracy (%)

RNN 97.90 Bidirectional GRU 98.04

BRNN 95.58 Fully-Connected DNN 94.70

LSTM 98.26 1D CNN 96.42

Deep LSTM 97.90 Random forest 98.90

BLSTM 97.90 SVM 86.18

Deep BLSTM 98.02 Logistic regression 89.22

GRU 97.32 Gradient boosted decision tree 91.10

for a maximum of 100 epochs, but convergence was usually reached after 15–20
epochs, depending on the type of classifier. Batch size of 32 samples was used.

The classifiers also have the following classifier-specific hyper parameters:
DNN - Two fully-connected hidden layers of 128 neurons, each with ReLU acti-
vation and a dropout rate of 0.2; CNN - 1D ConvNet with 128 output filters,
stride length of one, 1D convolution window size of three and ReLU activation,
followed by a global max pooling 1D layer and a fully connected layer of 128
neurons with ReLU activation and a dropout rate of 0.2; RNN, LSTM, GRU,
BRNN, BLSTM, bidirectional GRU - a hidden layer of 128 units, with a dropout
rate of 0.2 for both inputs and recurrent states; Deep LSTM and BLSTM - Two
hidden layers of 128 units, with a dropout rate of 0.2 for both inputs and recur-
rent states in both layers; Linear SVM and logistic regression classifiers - A
regularization parameter C = 1.0 and L2 norm penalty; Random forest classifier
- Using 10 decision trees with unlimited maximum depth and the Gini criteria
for choosing the best split; Gradient boosted decision tree - Up to 100 decision
trees with a maximum depth of 10 each.

We measured the performance of the classifiers using the accuracy ratio,
which applies equal weight to both FP and FN (unlike precision or recall),
thereby providing an unbiased overall performance indicator:

accuracy =
TP + TN

TP + FP + TN + FN
(3)

where: TP are true positives (malicious samples classified as malicious by the
black-box classifier), TN are true negatives, FP stands for false positives (benign
samples classified as malicious), and FN are false negatives. The FP rate of the
classifiers varied between 0.5-1%.4

The performance of the classifiers is shown in Table 1. The accuracy was
measured on the test set, which contains 36,000 samples.

4 The FP rate was chosen to be on the high end of production systems. A lower FP
rate would mean lower recall either, due-to the trade-off between them, therefore
making our attack even more effective.
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As can be seen in Table 1, the LSTM variants are the best malware classifiers,
accuracy-wise, and, as shown in Table 2, BLSTM is also one of the classifiers most
resistant to the proposed attack.

4.3 Attack Performance

In order to measure the performance of an attack, we consider two factors:
The attack effectiveness is the number of malware samples in the test set

which were detected by the target classifier, for which the adversarial sequences
generated by Algorithm 2 were misclassified by the target malware classifier.

attack effectiveness =
|{f(x) = Malicious ∨ f(x∗) = Benign}|

|{f(x) = Malicious}| (4)

s.t. x ∈ TestSet(f), f̂T = Algorithm1(f, T,X1, ε),

x∗ = Algorithm2(f, f̂T ,x, n,D)

We also consider the overhead incurred as a result of the proposed attack. The
attack overhead is the average percentage of the number of API calls which were
added by Algorithm 2 to a malware sample successfully detected by the target
classifier, in order to make the modified sample classified as benign (therefore
calculated only for successful attacks) by the black-box model:

attack overhead = avg(
added APIs

l
) (5)

The average length of the API call sequence is: avg(l) ≈ 100, 000. The adver-
sary chooses the architecture for the surrogate model without any knowledge of
the target model’s architecture. We chose a GRU surrogate model with 64 units
(different from the malware classifiers used in Sect. 4.2), which has a shorter
training time compared to other RNN variants, e.g., LSTM, which provides
similar attack effectiveness. Besides the classifier’s type and architecture, we
also used a different optimizer for the surrogate model (ADADELTA instead of
Adam). In our implementation, we used the CleverHans library.

Based on Eqs. 4 and 5, the proposed attack’s performance is specified in
Table 2 (average of three runs).

We can see in Table 2 that the proposed attack has very high effectiveness
and low attack overhead against all of the tested malware classifiers. The attack
effectiveness is lower for traditional machine learning algorithms, such as SVM,
due to the greater difference between the decision boundaries of the GRU sur-
rogate model and the target classifier. Randomly modifying APIs resulted in
significantly lower effectiveness for all classifiers (e.g., 50.29% for fully-connected
DNN).

As mentioned in Sect. 4.1, |TestSet(f)| = 36, 000 samples, and the test set
TestSet(f) is balanced, so the attack performance was measured on: |{f(x) =

https://github.com/tensorflow/cleverhans
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Table 2. Attack Performance
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RNN 100.0 0.0023 Bidirectional
GRU

95.33 0.0023

BRNN 99.90 0.0017 Fully-
Connected

DNN

95.66 0.0049

LSTM 99.99 0.0017 1D CNN 100.0 0.0005
Deep LSTM 99.31 0.0029 Random

Forest
99.44 0.0009

BLSTM 93.48 0.0029 SVM 70.90 0.0007
Deep

BLSTM
96.26 0.0041 Logistic

Regression
69.73 0.0007

GRU 100.0 0.0016 Gradient
Boosted Tree

71.45 0.0027

Malicious|x ∈ TestSet(f)}| = 18, 000 samples. For the surrogate model we used
a perturbation factor of ε = 0.2 and a learning rate of 0.1. |X1| = 70 samples were
randomly selected from the test set of 36,000 samples. We used T = 6 surrogate
epochs. Thus, as shown in Sect. 3.2, the training set size for the surrogate model
is: |X6| = 25 ∗ 70 = 2240 samples; only 70 (= |X1|) of the samples were selected
from the test set distribution, and all of the others were synthetically generated.
Using lower values, e.g., |X1| = 50 or T = 5, achieved worse attack performance,
while larger values do not improve the attack performance and result in a longer
training time. The 70 samples from the test set don’t cover all of the malware
families in the training set; the effectiveness of the surrogate model is due to the
synthetic data.

For simplicity and training time, we used m = n for Algorithm 2, i.e., the
sliding window size of the adversary is the same as that used by the black-box
classifier. However, even if this is not the case, the attack effectiveness isn’t
degraded significantly. If n > m, the adversary would keep trying to modify
different API calls’ positions in Algorithm 2, until he/she modifies the ones
impacting the black-box classifier as well, thereby increasing the attack overhead
without affecting the attack effectiveness. If n < m, the adversary can modify
only a subset of the API calls affecting the black-box classification, and this
subset might not be diverse enough to affect the classification as desired, thereby
reducing the attack effectiveness. The closer n and m are, the better the attack
performance. For n = 100,m = 140, there is an average decrease of attack
effectiveness from 99.99% to 99.98% for a LSTM classifier.
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Comparison to Previous Work. Besides [7] which was written concurrently
and independently from our work, [12] is the only recently published RNN adver-
sarial attack. The differences between that attack and the attack addressed in
this paper are mentioned in Sect. 2. We compared the attacks in terms of per-
formance. The attack effectiveness for the IMDB dataset was the same (100%),
but our attack overhead was better: 11.25 added words per review (on average),
instead of 51.25 words using the method mentioned in [12].

4.4 Transferability for RNN Models

While transferability was covered in the past in the context of DNNs (e.g., [18]),
to the best of our knowledge, this is the first time it is evaluated in the context
of RNNs, proving that the proposed attack is generic, not just effective against a
specific RNN variant, but is also transferable between RNN variants (like LSTM,
GRU, etc.), feed forward DNNs (including CNNs), and even traditional machine
learning classifiers such as SVM and random forest.

Two kinds of transferability are relevant to this paper: (1) the adversary can
craft adversarial examples against a surrogate model with a different architecture
and hyper parameters than the target model, and the same adversarial example
would work against both [11], and (2) an adversarial example crafted against
one target classifier type might work against a different type of target classifier.

Both forms of transferability are evaluated as follows: (1) As mentioned in
Sect. 4.3, we used a GRU surrogate model. However, as can be seen in Table 2,
the attack effectiveness is high, even when the black-box classifier is not GRU.
Even when the black-box classifier is GRU, the hyper parameters (such as the
number of units and the optimizer) are different. (2) The attack was designed
against RNN variants; however, we tested it and found the attack to be effective
against both feed forward networks and traditional machine learning classifiers,
as can be seen in the last six lines of Table 2. Our attack is therefore effective
against all malware classifiers.

5 GADGET: End-to-End Attack Framework Description

To verify that an attacker can create an end-to-end attack using the proposed
method (Sect. 3), we implemented GADGET: Generative Api aDversarial
Generic Example by Transferability framework. This is an end-to-end attack
generation framework that gets a black-box classifier (f in Sect. 3) as an input,
an initial surrogate model training set (X1 in Algorithm 1), and a malware binary
to evade f , and outputs a modified malware binary whose API call sequence is
misclassified by f as benign, generating the surrogate model (f̂ in Algorithm 1)
in the process.

GADGET contains the following components: (1) Algorithms 1 and 2, imple-
mented in Python, using Keras with TensorFlow back end, (2) A C++ Wrapper
to wrap the malware binary and modify its generated API call sequence dur-
ing run time, and (3) A Python script that wraps the malware binary with the
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Fig. 3. Malware binary, with and without GADGET

above mentioned wrapper, making it ready to deploy. The components appear
in Fig. 3.

Adding API Calls Without Damaging Functionality. As mentioned in
Sect. 3.2, we implemented Algorithm 2 using a mimicry attack [21]. We discarded
equivalence attacks and disguise attacks (Sect. 2), since they lack the flexibility
needed to modify every API call, and thus are not robust enough to camouflage
every malware. Therefore, we implemented a no-op attack, adding APIs which
would have no effect on the code’s functionality. Since some API call monitors
(such as Cuckoo Sandbox) also monitor the return value of an API call and might
ignore failed API calls, we decided to implement the API addition by adding no-
op API calls with valid parameters, e.g., reading 0 bytes from a valid file. This
was more challenging to implement than calling APIs with invalid arguments
(e.g., reading from an invalid file handle), since a different implementation should
be used for each API. However, this effort can be done once and can subsequently
be used for every malware, as we’ve done in our framework. This makes detecting
those no-op APIs much harder, since the API call runs correctly, with a return
value indicative of success. The functionality validation of the modified malware
is discussed in Sect. 5. Further measures, such as randomized arguments, can be
taken by the attacker to prevent the detection of the no-op APIs by analyzing
the arguments of the API calls. Attacking a classifier with argument inputs is
discussed in Sect. 5.

Implementing a Generic Framework. The requirements for the generic
framework are: (1) there is no access to the malware source code (access only to
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the malware binary executable), and (2) the same code should work for every
adversarial sample: no adversarial example-specific code should be written. The
reasons for these requirements are two-fold. First, adding the code as a wrapper,
without changing the malware’s business logic makes the framework more robust
to modification of the malware classifier model, preventing another session of
malware code modification and testing. Second, with the Malware-as-a-Service
trend, not everyone who uses a malware has its code. Some ransomwares are
automatically generated using minimal configuration (e.g., only the CNC server
is modified by the user), without source code access. Thus, the GADGET frame-
work expands the number of users that can produce an evasive malware from
malware developers to every person that purchases a malware binary, making
the threat much greater.

In order to meet those requirements, we wrap the malware binary from the
outside with proxy code between the malware code and the OS DLLs implement-
ing the API calls (e.g., kernel32.dll), fulfilling requirement #1. The wrapper code
gets the adversarial sequence for the malware binary, generated by Algorithm
2, as a configuration file. The logic of this wrapper code is to hook all APIs
that will be monitored by the malware classifier. These API calls are known
to the attacker, as mentioned in Sect. 3.2. These hooks call the original APIs
(to preserve the original malware functionality), keep track of the API sequence
executed so far, and call the adversarial example’s additional APIs in the proper
position based on the configuration file (so they will be monitored by the malware
classifier), instead of hard-coding the adversarial sequence to the code (fulfilling
requirement #2). This flow is presented in Fig. 3b.

We generated a new malware binary that contains the wrapper’s hooks by
patching the malware binary’s IAT using IAT Patcher, redirecting the IAT’s
API calls’ addresses to the matching C++ wrapper API hook implementation.
That way, if another hook (e.g., Cuckoo Sandbox) monitors the API calls, the
adversarial APIs are already being called and monitored like any regular API
call. To affect dynamic libraries, LdrGetProcedureAddress()\GetProcAddress()
hook has additional functionality: it doesn’t return a pointer to the requested
procedure, but instead returns a pointer to a wrapper function that implements
the previously described regular static hook functionality around the requested
procedure (e.g., returning a pointer to a wrapper around WriteFile() if “Write-
File” is the argument to GetProcAddress()). When the malware code calls the
pointer, the hook functionality will be called, transparent to the user.

The code is POC and does not cover all corner cases, e.g., wrapping a packed
malware, which requires special handling for the IAT patching to work, or pack-
ing the wrapper code to evade statically signing it as malicious (its functionality
is implemented inline, without external API calls, so dynamic analysis of it is
challenging). We avoided running Algorithm 2 inside the wrapper, and used
the configuration file to store the modified APIs instead, thus preventing much
greater overhead for the (wrapped) malware code.

http://hasherezade.github.io/IAT_patcher/
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5.1 Adversarial Example Functionality Validation

In order to automatically verify that we do not harm the functionality of the
malware we modify, we monitored each sample in Cuckoo Monitor before and
after the modification. We define the modified sample as functionality preserving
if the API call sequence after the modification is the same as before the modi-
fication when comparing API type, return value and order of API calls, except
for the added API calls, which return value should always be a success value.
We found that all of the 18,000 modified samples are functionality preserving.

One of the families that did not exist in the training set was the Wan-
naCry ransomware. This makes it an excellent candidate to manually analyze
GADGET’s output. First, we ran the sample via Cuckoo Sandbox and recorded
its API calls. The LSTM malware classifier mentioned in Sect. 4.2 successfully
detected it as malicious, although it was not part of the training set. Then we
used GADGET to generate a new WannaCry variant, providing this variant the
configuration file containing the adversarial sequence generated by Algorithm
2. We ran the modified WannaCry binary, wrapped with our framework and
the configuration file, in Cuckoo Sandbox again, and fed the recorded API call
sequence to the same LSTM malware classifier. This time, the malware classi-
fier classification was benign, although the malicious functionality remains: files
were still being encrypted by the new binary, as can be seen in the Cuckoo Sand-
box snapshot and API call sequence. This means that the proposed attack was
successful, end-to-end, without damaging WannaCry’s functionality.

5.2 Handling API Arguments

We now modify our attack to evade classifiers that analyze arguments as well.
In order to represent the API call arguments, we used MIST [20], as was done
by other malware classifiers, e.g., MALHEUR [14]. MIST (Malware Instruction
Set) is a representation for monitored behavior of malicious software, optimized
for analysis of behavior using machine learning. Each API call translates to an
instruction. Each instruction has levels of information. The first level corresponds
to the category and name of a monitored API call. The following levels of the
instruction contain different blocks of arguments. The main idea underlying this
arrangement is to move “noisy” elements, such as the loading address of a DLL,
to the end of an instruction, while discriminative patterns, such as the loaded
DLL file path, are kept at the beginning of the instruction. We used MIST level
2. We converted our Cuckoo Sandbox reports to MIST using Cuckoo2Mist. We
extracted a total of 220 million lines of MIST instructions from our dataset. Of
those, only several hundred of lines were unique, i.e., different permutations of
argument values extracted in MIST level 2. This means that most API calls dif-
fer only in arguments that are not relevant to the classification or use the same
arguments. To handle MIST arguments, we modified our attack in the following
way: Instead of one-hot encoding every API call type, we one-hot encoded every
unique [API call type, MIST level 2 arguments] combination. Thus, LoadLibrary
(“kernel32.dll”) and LoadLibrary (“user32.dll”) are now regarded as separate

https://github.com/M-Gregoire/Cuckoo2Mist
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APIs by the classifier. Our framework remains the same, where Algorithm 2
selects the most impactful combination instead of API type. However, instead
of adding combinations that might harm the code’s functionality (e.g., ExitWin-
dowsEx ()), we simply add a different API call type (the one with the minimal
Jacobian value) in Algorithm 2, which would not cause this issue. We now
assume a more informed attacker, who knows not just the exact encoding of
each API type, but also the exact encoding of every argument combination.
This is a reasonable assumption since arguments used by benign programs, like
Windows DLLs file paths, are known to attackers [8].

Handling other API arguments (and not MIST level 2) would be similar, but
require more preprocessing (word embedding, etc.) with a negligible effect on the
classifier accuracy. Thus, focusing only on the most important arguments (MIST
level 2) that can be used by the classifier to distinguish between malware and
benign software, as done in other papers [9], proves that analyzing arguments is
not an obstacle for the proposed attack.

5.3 Handling Hybrid Classifiers and Multiple Feature Types

Since our attack modifies only a specific feature type (API calls), combining
several types of features might make the classifier more resistant to adversarial
examples against a specific feature type. Some real-world next generation anti-
malware products (such as SentinelOne) are hybrid classifiers, combining both
static and dynamic features for a better detection rate.

Our attack can be extended to handle hybrid classifiers using two phases:
(1) the creation of a combined surrogate model, including all features, using
Algorithm 1, and (2) attacking each feature type in turn with a specialized attack,
using the surrogate model. If the attack against a feature type fails, we continue
and attack the next feature type until a benign classification by the target model
is achieved or until all feature types have been (unsuccessfully) attacked.

We decided to use printable strings inside a PE file as our static features,
as they are commonly used as the static features of state of the art hybrid
malware classifiers [9], although any other modifiable feature type can be used.
Strings can be used, e.g., to statically identify loaded DLLs and called functions,
recognize modified file paths and registry keys, etc. Our architecture for the
hybrid classifier, shown in Fig. 2b, is: (1) A dynamic branch that contains an
input vector of 140 API calls, each one-hot encoded, inserted into a LSTM layer
of 128 units, and sigmoid activation function, with a dropout rate of 0.2 for
both inputs and recurrent states. (2) A static branch that contains an input
vector of 20,000 Boolean values: for each of the 20,000 most frequent strings in
the entire dataset, do they appear in the file or not? (analogous to a similar
procedure used in NLP, which filters the least frequent words in a language).
This vector is inserted into two fully-connected layers with 128 neurons, a ReLU
activation function, and a dropout rate of 0.2 each. The 256 outputs of both
branches are inserted into a fully-connected output layer with sigmoid activation
function. Therefore, the input of the classifier is a vector containing 140 one-
hot encoded APIs and 20,000 Boolean values, and the output is malicious or
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benign classification. All other hyper parameters are the same as in Sect. 4.2. The
surrogate model used has a similar architecture to the attacked hybrid model
described above, but it uses a different architecture and hyper parameters: GRU
instead of LSTM in the dynamic branch and 64 hidden units instead of 128 in
both static and dynamic surrogate branches. Due to hardware limitations, we
used just a subset of the dataset: 54,000 training samples and test and validation
sets of 6,000 samples each. The dataset was representative and maintained the
same distribution as the dataset described in Sect. 4.1. Trained on this dataset,
a classifier using only the dynamic branch (Fig. 2a) reaches 92.48% accuracy on
the test set, a classifier using only the static branch attains 96.19% accuracy,
and a hybrid model, using both branches (Fig. 2b) achieves 96.94% accuracy,
meaning that using multiple feature types improves the accuracy.

We used two specialized attacks: an attack against API call sequences and an
attack against printable strings. The API sequence attack is Algorithm 2. When
performing it against the hybrid classifier, without modifying the static features
of the sample, the attack effectiveness (Eq. 4) decreases to 45.95%, compared to
96.03% against a classifier trained only on the dynamic features, meaning that
the attack was mitigated by the use of additional features. The strings attack
is a variant of the attack described in [5], using the surrogate model instead of
the attacked model used in [5] to compute the gradients in order to select the
string to add, while the adversarial sample’s maliciousness is still tested against
the attacked model, making this method a black-box attack. In this case, the
attack effectiveness is 68.66%, compared to 77.33% against a classifier trained
only on the static features. Finally, the combined attack’s effectiveness against
the hybrid model was 82.27%. Other classifier types provide similar results which
are not presented here due to space limits.

We designed GADGET with the ability to handle a hybrid model, by adding
its configuration file’s static features’ modification entries. Each such string is
appended to the original binary before being IAT patched, either to the EOF or
to a new section, where those modifications don’t affect the binary’s functional-
ity.

To summarize, we have shown that while the usage of hybrid models decreases
the specialized attacks’ effectiveness, using our suggested hybrid attack achieves
high effectiveness. While not shown due to space limits, the attack overhead isn’t
significantly affected.

6 Conclusions and Future Work

In this paper, we demonstrated a generic black-box attack, generating adversarial
sequences against API call sequence based malware classifiers. Unlike previous
adversarial attacks, we have shown an attack with a verified effectiveness against
all relevant common classifiers: RNN variants, feed forward networks, and tra-
ditional machine learning classifiers. Therefore, this is a true black-box attack,
which requires no knowledge about the classifier besides the monitored APIs.
We also created the GADGET framework, showing that the generation of the
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adversarial sequences can be done end-to-end, in a generic way, without access
to the malware source code. Finally, we showed that the attack is effective, even
when arguments are analyzed or multiple feature types are used. Our attack is
the first practical end-to-end attack dealing with all of the subtleties of the
cyber security domain, posing a concrete threat to next generation anti-malware
products, which have become more and more popular. While this paper focus
on API calls and printable strings as features, the proposed attack is valid for
every modifiable feature type, static or dynamic.

Our future work will focus on two areas: defense mechanisms against such
attacks and attack modifications to cope with such mechanisms. Due to space
limits, we plan to publish an in depth analysis of various defense mechanisms
in future work. The defense mechanisms against such attacks can be divided
into two subgroups: (1) detection of adversarial examples, and (2) making the
classifier resistant to adversarial attacks. To the best of our knowledge, there is
currently no published and evaluated method to detect or mitigate RNN adver-
sarial sequences. This will be part of our future work. We would also compare
between the effectiveness of different surrogate models’ architecture.
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Abstract. The effects of botnet attacks, over the years, have been dev-
astating. From high volume Distributed Denial of Service (DDoS) attacks
to ransomware attacks, it is evident that defensive measures need to be
taken. Indeed, there has been a number of successful takedowns of bot-
nets that exhibit a centralized architecture. However, this is not the case
with distributed botnets that are more resilient and armed with coun-
termeasures against monitoring. In this paper, we argue that monitoring
countermeasures, applied by botmasters, will only become more sophisti-
cated; to such an extent that monitoring, under these adverse conditions,
may become infeasible. That said, we present the most detailed analy-
sis, to date, of parameters that influence a P2P botnet’s resilience and
monitoring resistance. Integral to our analysis, we introduce BotChurn
(BC) a realistic and botnet-focused churn generator that can assist in
the analysis of botnets. Our experimental results suggest that certain
parameter combinations greatly limit intelligence gathering operations.
Furthermore, our analysis highlights the need for extensive collaboration
between defenders. For instance, we show that even the combined knowl-
edge of 500 monitoring instances is insufficient to fully enumerate some
of the examined botnets. In this context, we also raise the question of
whether botnet monitoring will still be feasible in the near future.

1 Introduction

Botnets are networks of infected computers, that can be remotely controlled
by malicious entities, commonly referred to as botmasters. Botnets have been
historically used for launching a multitude of attacks, ranging from DDoS and
blackmailing, to credential theft, banking fraud, etc. Recently, with the emer-
gence of the Internet of Things (IoT), the landscape of vulnerable connected
devices has increased significantly. This led to a resurgence of many new botnets
infecting weakly protected IoT devices. These IoT botnets are particularly noto-
rious for their high bandwidth DDoS attacks, bringing down even well protected
websites and services.
c© Springer Nature Switzerland AG 2018
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An approach to remove the botnet threat, is to identify and take down the
Command and Control (C2) channel used by the botmasters. For centralized
botnets, this has proven to be an effective approach with many being taken
down by seizing their respective C2 servers [7]. More advanced botnets over-
come this Single Point of Failure (SPoF), by employing a peer-to-peer (P2P) C2
structure, where each bot acts as a server and a client. Hence, defenders have
to target the majority of bots to take the botnet down. This requires knowledge
about the population and inter-connectivity of the botnet, which is commonly
achieved via monitoring. Monitoring mechanisms are commonly developed by
reverse engineering and re-implementing the communication protocol of a botnet
to gather intelligence. As botnet monitoring poses a threat for the botmasters,
many botnets, e.g., GameOver Zeus [3] and Sality [6], implement monitoring
countermeasures. These mechanisms increase the difficulty of monitoring opera-
tions, but do not prevent them [20]. Nevertheless, recent publications presented
sophisticated countermeasures, that further limit or even prevent monitoring
activities [2,14,25]. Hence, we argue that it is a matter of time until botmasters
introduce such countermeasures to impede monitoring in its current form.

To deal with next-generation botnets, we need to understand the extent at
which advanced countermeasures prevent monitoring operations. Investigating
each of the countermeasures individually will likely end in a never ending arms
race for new monitoring and anti-monitoring mechanisms. To avoid this arms
race, we instead introduce a lower boundary for monitoring operations in adverse
conditions, i.e., monitoring in the presence of sophisticated countermeasures.

To achieve this, we make the assumption that a botmaster can detect any
behavior deviating from that of a normal bot. Therefore, the maximum intelli-
gence that can be gathered with a single monitoring instance is limited to the
information that can be obtained by any regular bot itself. As this can vary
for different botnets, we analyze several botnet parameterizations to be able
to evaluate how much intelligence can be gathered in different botnet designs.
This allows us to evaluate the effectiveness of monitoring operations in adverse
conditions, based on the parameters of the botnet protocol. To ensure that our
simulations accurately replicate the behavior of real bots, we utilize churn mea-
surements taken from live botnets [11]. Moreover, we develop and present a novel
botnet churn generator that simulates churn more accurately than the state of
the art. At a glance, the two major contributions of this paper are:

– An extensive analysis of botnet designs and parameterizations, with an
emphasis to their resilience and monitoring resistance.

– A realistic and botnet-focused churn generator, namely BotChurn (BC).

The remainder of this paper is structured as follows. Sections 2 and 3, intro-
duce the background information and the related work respectively. Section 4,
presents our analysis regarding the effectiveness of monitoring in adverse con-
ditions. Section 5, provides a detailed description of our proposed botnet churn
generator. Section 6 discusses the evaluation of our churn generator and the effec-
tiveness of monitoring in adverse conditions. Lastly, Sect. 7, concludes our work
and presents outlooks with regard to our future work.
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2 Background

In the following, we provide background information with regard to P2P botnets
and their underlying technologies as well as introductory information regarding
common monitoring mechanisms.

2.1 P2P Botnets

The decentralized nature of P2P botnets and the absence of a SPoF, makes them
highly resilient against takedown attempts [20]. P2P networks can be catego-
rized into structured and unstructured overlays. Structured P2P overlays such
as Kademlia [16] use a concept called Distributed Hash Table (DHT). As an
example, Kademlia implements a ring structure on which all peers, i.e., partici-
pants in the P2P network, are placed based on their ID. Peers connect to a set
peers, based on their distance in the ring structure. Unstructured P2P overlays
do not have such a structure but maintain connectivity based on a Membership
Management (MM) mechanism. At the core of this MM is a so called Neigh-
borlist (NL). The NL consists of a subset of all existing peers commonly referred
to as neighbors. To maintain connectivity within the network, peers frequently
exchange NL-entries with their neighbors.

For botnets, the major difference between structured and unstructured P2P
networks is related to the difficulty of monitoring. For instance, structured bot-
nets, e.g., Storm [10], can be monitored efficiently [21]. More recent P2P botnets
such as Sality [6], GameOver Zeus [3] and ZeroAccess [18] use unstructured
P2P overlays. This makes them more difficult to be monitored, as the lack of
a structure prevents the usage of efficient approaches applicable to structured
P2P networks. Due to the greater resistance against monitoring attempts, this
paper focuses on unstructured P2P botnets.

A major challenge for any P2P overlay is the handling of node churn, i.e.,
nodes leaving and joining the network. Churn is caused by diurnal patterns or
by machines being turned off and on throughout the globe. To ensure that the
network remains connected under the effects of churn, P2P overlays leverage
the MM system. The MM ensures that inactive peers, in the NL of a node, are
replaced with responsive peers. This is usually achieved by probing the activity
of all entries in an NL at fixed intervals. Common values for such Membership
Management Interval (MMIs) are between one second [18] and 40 min [6].

If an entry in the NL of a bot is unresponsive for several consecutive MMIs,
it is removed from the NL. To replace removed peers, a node commonly asks
their own neighbors for responsive candidates by sending an NL-request. A bot’s
NL can also be passively updated upon receipt of a message from a bot that
is not in the bot’s NL [3]. This allows the bots to maintain active connections
among bots within the P2P overlay despite being affected by churn.

2.2 Botnet Monitoring Mechanisms

To obtain information about the extent of a botnet infection, one has to conduct
intelligence gathering by monitoring the botnet. Monitoring a P2P botnet is
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achieved via the usage of crawlers, sensors or a combination of both. At a glance,
crawlers are more of an active approach whereas sensors are more passive.

A crawler enumerates the botnet by continuously requesting NL-entries from
bots. Given a list of seed-nodes, a crawler follows a crawling strategy such as
Breadth-First Search (BFS), Depth-First Search (DFS) or Less Invasive Crawl-
ing Algorithm (LICA) [12] to discover bots within the botnet. The seed-list is
updated between crawls by adding all newly discovered bots into it. This allows
crawlers to quickly obtain information about participating bots and their inter-
connectivity. The major drawback of crawlers is that they cannot discover bots
that are behind Network Address Translation (NAT) or a firewall. Such bots
usually cannot be contacted from the Internet, unless they initiate the connec-
tion first. Therefore, crawlers underestimate the population of a botnet [20].
Moreover, the aggressive sending of NL-requests makes crawlers easy to detect
[14].

Sensors can provide more accurate enumerations of botnets by overcoming
the aforesaid drawback of crawlers. A sensor imitates the behavior of a regular
bot by responding to probe messages from other bots. By remaining active within
the botnet for prolonged periods, sensors become popular within the botnet.
That is, more bots will add the sensor to their NL and frequently contact it
during their MMI. This allows a sensor to accurately keep track of the entire
botnet population including those that are behind NAT-like devices. However,
a major drawback for sensors is the lack of inter-connectivity information of
the botnet. Therefore, sensors are commonly used as an addition to crawlers
instead of a replacement. Another drawback of sensors is that they require time
to become popular and therefore do not yield results as quickly as crawlers. This
can again be surmounted by using a crawler to help spread information about
the sensor to speed up the popularization process [27].

3 Related Work

In this section, we discuss the state of the art of: (i) P2P botnet monitoring
techniques and (ii) advanced countermeasures against monitoring.

3.1 P2P Botnet Monitoring

Rossow et al. present an in-depth analysis on the resilience against intelligence
gathering and disruption of P2P botnets [20]. They analyze the peer enumeration
capabilities of sensors and crawlers on several P2P botnets and provide real world
results. Furthermore, they analyze the resilience of these botnets against com-
munication layer poisoning and sink-holing attacks. Their work clearly presents
the drawbacks and benefits of crawlers and sensors. The authors also present
an analysis of reconnaissance countermeasures implemented by botnets. Most
notably, botnets such as Sality and GameOver Zeus implement rate limiting
mechanisms on neighborlist replies. In addition, GameOver Zeus implements an
automated blacklisting mechanism against aggressive crawlers.
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Karuppayah et al. introduce a new crawling strategy called LICA [12]. Their
crawling algorithm approximates the minimum vertex coverage by prioritizing
nodes with high in-degree. Their approach provides a means to crawl a bot-
net faster and more efficiently compared to BFS or DFS. Yan et al. present a
sensor popularization method called popularity boosting [27]. Popularity boost-
ing leverages a mechanism that botnets commonly use to allow new bots to
get into other peers NLs. For instance, in the Sality botnet, a bot can send a
server-announcement-message upon joining the botnet. If the bot fulfills a set
of conditions, such as being publicly routable, it will be added at the end of the
receiving bot’s NL. This mechanism allows sensors to be quickly injected into
the NL of active bots in a botnet. In [13], the authors present an algorithm that
efficiently extracts all entries from a bot’s NL in the GameOver Zeus botnet.
Contrary to a random spoofing of IDs, their strategic approach guarantees to
extract all entries from a bot’s NL. Lastly, botnet detection mechanisms such as
[8,17] also provide monitoring information about botnets. While the main goal
this research is to detect botnets within a monitored network, this information
can also be used for enumeration or derivation of connectivity between individual
bots.

3.2 Monitoring Countermeasures

In this section, we introduce the landscape of monitoring countermeasures. We
differentiate between countermeasures that have been implemented by botmas-
ters and novel countermeasures that have been proposed by researchers.

Existing Anti-monitoring Mechanisms: As monitoring poses a threat to
botmasters, some botnets implement features specifically aimed at preventing
monitoring attempts. Many botnets such as GameOver Zeus [3], Sality [6], and
ZeroAccess [18] implement restricted Neighborlist Reply Sizes (NLRSs). This
means, that when being requested, they only share a subset of their NL to the
requesting bot. This significantly increases the enumeration effort for crawlers.

Furthermore, GameOver Zeus implements an automated blacklisting mech-
anism that blacklists a node if it sends more than five requests within a sliding
window of one minute. The Sality botnet also implements a simple trust mech-
anism called Goodcount. For each NL-entry, such a Goodcount value is main-
tained. A bot sends periodic messages to all its neighbors and increases a nodes
Goodcount upon receipt of a valid reply and decreases the Goodcount otherwise.
This locally maintained reputation mechanism prevents that a bot replaces well
known active NL-entries with newer entries, e.g., sensors.

Proposed Advanced Anti-monitoring Mechanisms: Andriesse et al. ana-
lyzed whether sensors and crawlers can be detected, from the botmasters’ per-
spective, based on protocol and behavioral anomalies [2]. Their findings suggest
that crawlers can indeed be detected based on anomalous behavior. The anoma-
lies that were used for identifying the crawlers, vary from implementation-specific
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ones to logical and protocol level misconducts. The authors were also able to
detect sensor nodes based on deviating (protocol) features.

Karuppayah et al. present another mechanism, that uses a bot’s local view
to identify crawlers within a P2P botnet [14]. For that, they focus on protocol
violations that are common for crawlers in all P2P botnets. Upon detection, a
bot can blacklist the crawler and prevent any further communication with it.

In [5,11], the authors use graph connectivity metrics to identify sensor
nodes within P2P overlays. Both approaches are based on the assumption that
researchers and law enforcement agencies cannot aid the botnet in any way,
including the returning of valid neighbors when being asked. Böck et al. [5] use
the Local Clustering Coefficient (LCC) mechanism to detect sensors that do not
have any neighbors or groups of sensors that are fully meshed. Moreover [11],
improves upon this and introduces two other mechanisms based on PageRank
[19] and Strongly Connected Components (SCCs). Their proposed mechanisms
cannot be easily avoided by defenders as they require either large numbers of col-
luding sensors or active sharing of valid neighbors when being requested. Lastly,
Vasilomanolakis et al. propose the use of computational trust for calculating
trust scores for all neighbors of a bot [25]. This allows them to automatically
blacklist bots that refuse to cooperate in the sharing of commands.

4 Botnet Monitoring Under Adverse Conditions

The adoption of advanced countermeasures will change the landscape of botnet
monitoring. Here, we define the term adverse conditions and discuss approaches
for monitoring in the presence of countermeasures. Furthermore, we introduce
the idea of leveraging the Membership Management (MM) to obstruct moni-
toring operations. Moreover, we discuss the limitations of the MM design with
regard to the trade-off between monitoring resistance and the resilience of bot-
nets.

4.1 Identifying the Worst-Case Monitoring Scenario

We contend, that existing botnet monitoring mechanisms may no longer be feasi-
ble under adverse conditions (see Sect. 3). Therefore, new approaches to monitor
botnets are urgently needed. Based on our analysis of the related work, we pro-
pose five approaches to conduct monitoring in adverse conditions. Namely these
are: short-term monitoring, network traffic analysis, network scanning, taking
control of active bots, and running botnet malware in controlled environments.

Depending on the specifics of the implemented anti-monitoring mechanisms,
short-term monitoring may be possible for monitoring using crawlers and sen-
sors. To avoid preemptive blacklisting of legitimate bots, anti-monitoring mech-
anisms may require multiple anomalous interactions before a blacklisting occurs
[25]. This can allow short-time monitoring, in which the anti-monitoring mecha-
nisms are not triggered. Furthermore, if sufficient resources are available, black-
listed IPs can be replaced to perform continuous monitoring. The major draw-
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back of this approach is the scarcity of IP addresses which leads to higher costs
and eventually IPs run out due to blacklisting.

Network traffic analysis based monitoring approaches are not affected by the
anti-monitoring mechanisms described in Sect. 3. Traffic based monitoring pas-
sively analyzes the network traffic and is therefore outside the scope of advanced
countermeasures. Approaches such as [8,17] can detect botnet traffic on top of
Internet Service Provider (ISP) level network traces. The benefit of this approach
is that it provides a centralized view on all bot infections within the network
and their neighbors. Nevertheless, this approach is unlikely to provide a holistic
view of the botnet unless all ISPs cooperate and share their information.

Alternatively, another approach is to scan the Internet for botnet activity
on specific ports. Such a network scanning approach has already been done to
obtain bootstrap nodes for crawling the ZeroAccess botnet [15]. This requires
the botnet to use a fixed port for its communication which is the case for botnets
such as the ZeroAccess family [18]. In fact, tools such as ZMAP are capable of
rapidly scanning the entire IPv4 address space [1]. However, many recent botnets
implement dynamic ports to avoid being scanned easily.

Another approach to obtain intelligence about a botnet can be to take control
of active bots. This could theoretically be realized by anti-virus companies or
operating system manufacturers. Once the malware is identified, the related
network traffic can be analyzed to identify other infected hosts. Furthermore,
if detailed knowledge about the malware is available, malicious traffic could be
blocked. This would allow the controlling parties to use the infected machines
themselves as monitors by analyzing the MM traffic.

In addition, it is also possible to run and observe botnet malware in a con-
trolled environment, such as a bare metal machine or a controlled virtual envi-
ronment. Contrary to taking control of an infected device, a clean machine is
deliberately infected with the botnet malware. This allows to set up machines
specifically for botnet monitoring, e.g. not storing sensitive data, rate limiting
network connections, or installing software to analyze the network traffic. Even
with such safeguards, legal and ethical limitations need to be considered with
this approach.

Defining exactly how much information can be gathered under adverse con-
ditions is not possible, as combinations of monitoring and sophisticated counter-
measures will only lead to a never-ending arms race. However, all of the discussed
monitoring approaches can gather at least as much information as a regular bot
without being detected. In fact, network-based monitoring approaches on the
ISP level will likely observe traffic of multiple infections at once. To avoid the
aforementioned arms race, we focus on the worst-case scenario and establish a
lower boundary for monitoring under adverse conditions.

Based on the findings of this section, we want to define the term Monitoring
Device (MD) as any monitoring approach, that obtains intelligence based on the
view of a bot. Similarly, we define the term adverse conditions as a botnet envi-
ronment in which any behavior deviating form that of a normal bot can be auto-
matically detected by botmasters. Therefore, we argue that the lower boundary
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for monitoring operations in adverse conditions is limited to the knowledge/view
that can be obtained by any regular bot itself.

4.2 Limiting Monitoring Information Through the MM Design

The amount of information a single bot can obtain influences the results of
monitoring in adverse conditions. Hence, it is likely that botmasters will design
their botnets such that a single bot learns as less as possible about the botnet
without jeopardizing the resilience of the botnet itself. This can be achieved by
tweaking the MM protocol of the botnet. At its core, the MM protocol must
provide three features: maintain an NL, provide a means to update the NL and
frequently check the availability of neighbors. To identify how these requirements
are met by existing botnets, we identified and compared the related parameters
of five existing P2P botnets in Table 1.

The need of maintaining an NL is commonly addressed with two parameters,
the NL-size and the Neighborlist Minimum Threshold (NLMT). The NL-size is
an integer indicating the maximum size of the NL. The NLMT is another integer
indicating the minimum number of bots that should always be maintained. A
bot will not remove any more bots once this threshold is reached, and it will start
sending NL-requests to obtain fresh entries. Oftentimes, botnets do not explicitly
state an NLMT and instead have NL-size = NLMT. To update a bot’s NL, both
push or pull based NL-updates can be used. Push based updates allow a bot to
insert itself into another bot’s NL and are commonly only used for bots joining
a botnet. Pull based updates are usually realized through NL-request messages,
which allow a bot to ask actively for additional bots. NL-request messages are
often affected by an Neighborlist Reply Size (NLRS) which limits the number
of bots shared upon a single request, and the Neighborlist Reply Preference
(NLRP) which defines how the shared bots are selected. Lastly, to check the
availability of their neighbors, bots commonly probe all NL-entries during the
MMI.

To illustrate how MM can be used to limit monitoring information, we con-
sider the following scenario. The NLMT indicates the minimal number of neigh-
bors with whom a bot communicates regularly. Thus, limiting the NLMT is an
effective measure to limit the knowledge that can be obtained by a bot. However,
the NLMT is not the only parameter that can limit this type of knowledge. Other
parameters such as the MMI, the number of nodes returned upon an NL-request,
the churn behavior of the botnet or which neighbors are returned when being
requested, can influence the amount of knowledge each bot can obtain about
the botnet. In Sect. 6, we examine in detail, how each parameter influences the
knowledge obtainable by a single bot, i.e., the lower boundary knowledge for
monitoring operations under adverse conditions.

4.3 Botnet Design Constraints

Optimizing a botnet’s MM to impede monitoring operations, comes at a cost.
The usage of P2P overlays for inter-bot communication was initially intended
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Table 1. Analysis of common MM parameters and their values.

GameOver

Zeus [3]

Sality [6] ZeroAccess

[26]

Kelihos F. [20] Nugache [20]

Pull based updates Yes Yes Yes Yes Yes

Push based updates Always Join Join Join Join

MMI 30min 40min 1 s 10min Random

NL-size 50 1000 256 3000 100

NLRS <= 10 1 16 250 (v3), 500 (v5,v6) 100

NLMT 25 980 Unknown Unknown Unknown

NLRP Custom Random Latest Latest Latest

to improve the resilience against takedown attempts. However, we expect that
the resilience of a botnet’s overlay is inversely proportional to the monitoring
resistance of a botnet. That is, by limiting the knowledge obtainable by a bot,
the robustness of the resulting overlay suffers.

This can be visualized by observing two extreme cases. On the one hand,
the most resilient network architecture is a complete mesh in which each node
knows all other nodes in the system. Such a network is very resilient as the
failure of some nodes does not influence the connectivity of the remaining nodes.
However, in a complete mesh, every bot also has complete knowledge about the
botnet population. On the other hand, a minimally connected network such as
a ring provides minimal knowledge to nodes at the cost of poor resilience to
node failures or targeted attacks. Therefore, a botmaster has to consider both
resilience and resistance against monitoring operations when designing the MM.

4.4 Connecting the Dots

Within this section, we discussed possible approaches to conduct monitoring in
adverse conditions, how MM can be used to obstruct monitoring operations, and
the trade-off between monitoring resistance and resilience in MM design.

We argue, that we can use this information to identify a lower boundary for
the success of monitoring operations in any P2P botnet. In fact, we have dis-
cussed several approaches to monitor P2P botnets, that can at least obtain as
much knowledge as any regular bot. While the information of bots can be limited
through MM design, this is limited by the trade-off with resilience. Therefore,
we can establish a lower bound by determining the boundaries of optimal MM
designs. That is, identifying the MM parameters that provide the greatest mon-
itoring resistance while maintaining adequate resilience. In Sect. 6, we identify
and discuss, what constitutes such an optimal MM design and to what extent
monitoring is possible under such adverse conditions.

5 Modeling and Simulating Botnet Churn

As one of the core contributions of this paper, we propose and verify a novel
churn model and generator, focused on the simulation of botnet churn based on
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real world measurements. Section 5.1 discusses the shortcomings of existing churn
generators with regard to simulation of real world botnet churn. Furthermore,
Sect. 5.2 introduces our churn generator.

5.1 Simulation of Real World Churn Models

The availability of a bot’s neighbors directly influences whether old connections
are retained or if newer connections need to be established. Therefore, churn
significantly impacts the overall structure of the botnet overlay. This is why we
consider churn generators as a crucial feature for a P2P botnet simulator.

A recent survey by Surati et al. [24] examined the existing P2P simulators.
We analyzed each of these simulators with regard to their churn generator func-
tionalities. Out of all simulators, Peerfactsim.kom [22] and OverSim [4] provide
the most advanced churn functionalities. Peerfactsim.kom implements a churn
generator that is based on the exponential distribution, whereas OverSim pro-
vides the choice between random, life-time and Pareto churn models. However,
according to Stutzbach et al. [23] exponential and Pareto distributions do not fit
churn characteristics observed in real world P2P networks. Moreover, a random
churn model is also not suitable as it only provides rudimentary presentation
of churn and does not characterize the network accurately. This leaves only the
option of life-time based churn models. Such a churn, which is implemented in
OverSim, allows the usage of different probability distributions, e.g., the Weibull
distribution. According to both [11,23], Weibull distributions fit well with the
churn observed in regular P2P networks and P2P botnets.

However, the implementation in OverSim has two major drawbacks. First,
the life-time and down-time of nodes is drawn from the same probability distri-
bution. We speculate that this is done to allow for an easily adjustable active
population. However, this is a critical issue, as it is highly unrealistic that life-
and down-time distributions are equal, at least in the case of P2P botnets.
Second, the implementation in OverSim requires the overall population of the
simulated network to be exactly double of the desired active population. This
allows to have an equal number of active and inactive nodes. In combination
to nodes joining and leaving based on the same distribution the active popula-
tion is approximated throughout the simulation period. Given these drawbacks
of life-time churn, all existing churn generators present severe drawbacks with
regard to a realistic simulation of churn in P2P botnets.

5.2 The BotChurn (BC) Generator

Based on the aforesaid shortcomings of existing churn simulation models, we
develop BC, a novel approach to simulate P2P botnet churn based on real world
measurements. To overcome the drawbacks of existing churn generators, BC
focuses on addressing the following three features: (i) individual distributions for
life- and down-times of nodes, (ii) support for existing P2P churn measurements,
and (iii) independently adjustable active and overall population parameters.
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Support for distinct Weibull distributions for life- and down-times:
One approach to overcome the issue of having a single distribution for life- and
down-times would be to use two different distributions as it is done for the Pareto
churn model [28]. However, obtaining accurate measurements of down-times is
often not possible as many P2P botnets do not provide unique identifiers [6,18].
Therefore, it is difficult to accurately measure when a node rejoins a system.

As an alternative, BC is based on a life-time and an inter-arrival distribution.
Theoretically, any probability distribution function can be used. However, we
currently support only the Weibull distribution for life-time and inter-arrival
measurements as it is found best suited for churn in P2P systems [11,23]. In
contrast to life-time churn, BC starts with all nodes being inactive. Based on
the times drawn from the inter-arrival distribution, a random inactive node is
activated. Upon activation, a life-time value is assigned based on the life-time
distribution. Once a bot’s life-time comes to an end, it becomes inactive. This is
a continuous process, where inactive bots will eventually rejoin the system based
on the inter-arrival cycle.

Calculation of the average active population: One issue that needs to be
addressed by our approach, is that whenever a node needs to be activated, an
inactive node must be available to join the network. Therefore, the overall bot
population needs to be larger than the average active population of the simulated
botnet. This requires that we first calculate the average active number of bots
based on the two input distributions.

According to the law of large numbers, with sufficiently long simulation time
τ , with τ → ∞, the average inter-arrival time of nodes joining the system
will converge towards the mean of the inter-arrival distribution. Therefore, the
arrival-rate Ra will eventually converge towards the mean. However, the number
of nodes leaving the system is dependent on the life-time distribution and the
number of nodes active in the system. If we consider the average life-time λ and
an active number of nodes Na, on average nodes will go off-line at a rate of λ

Na
.

We can therefore calculate the average active population by identifying the
active population Na, at which the average departure-rate Rd is equal to the
average arrival-rate Ra. This is achieved by solving Eq. 1.

Ra = Rd =
λ

Na
⇒ Na =

λ

Ra
(1)

Independent active- and overall-populations: Lastly, we want to address
the need for an independently adjustable overall- and active-population. In BC,
the overall-population can be set to any desired value. However, as discussed
earlier, it should be bigger than the desired active-population.

Adjusting the active population requires additional effort. In more details, it
is necessary to modify at least one of the two distributions, as the active popu-
lation is directly related to both inter-arrival and life-time distributions. While
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this means that we modify the values obtained from real world measurements,
this is often necessary to experiment with different sizes of botnets.

To adjust the active population, we can modify either the inter-arrival or
the life-time Weibull distribution. As the reported measurements of Karuppayah
[11] showed high similarity in the fitting of Weibull life-time distributions for
botnets of different sizes, we maintain the input life-time distribution without
any modification. Furthermore, it is not very likely that the size of a botnet has
a direct influence on the life-time behavior of its individual nodes.

Therefore, we have to adjust the inter-arrival distribution to accommodate
an adjustable active population. To adjust a Weibull distribution, one can either
choose its shape β or scale α parameter. To change the real world measurements
as little as possible, we want to change the parameter that is less similar across all
botnets measured in [11]. The shape parameter of the reported inter-arrival dis-
tributions ranges from 0.61 to 1.04, whereas the scale parameter varies between
0.6801 and 160.2564. As the difference between the scale parameters is bigger
across the measured botnets, we choose to modify the scale parameter α, while
keeping the shape parameter β unaltered. With this modification, we can choose
any desired active population value as an input to Eq. 1 and obtain the required
arrival rate Ra.

6 Evaluation

Within this section, we present the evaluation of BotChurn (BC) and the influ-
ence of MM on monitoring resistance and resilience of botnets. Furthermore, an
analysis on the effectiveness of monitoring in adverse conditions is also provided.

6.1 Datasets and Evaluation Metrics

In our evaluation, we utilize three datasets: (i) real world churn measurements
of Sality and ZeroAccess botnets, (ii) real world graphs of the Sality botnet and
(iii) a simulated dataset consisting of 1, 458 combinations of different parame-
ters.

The real-world churn measurements, that we obtained from [11], consist of
inter-arrival and life-time distributions. In this paper, we focus on three par-
ticular measurements. These are the ZeroAccess 16465 (ZA65) including non-
superpeers, i.e., bots behind NAT or firewalls, ZeroAccess 16471 (ZA71) and
Sality version three (SalityV3). The details for these datasets are given in Table 2.

The real-world snapshots of the Sality botnet were taken from [9]. The
authors, present an analysis on the graph characteristics and resilience of the
Sality and ZeroAccess botnets. The metrics used in their analysis are the number
of nodes, number of edges, degree, in-degree, out-degree, density, global cluster-
ing coefficient, average path length and the diameter of the botnet. We utilize
their publicly available snapshot of the Sality botnet to compare it against our
simulated botnet topologies. More specifically, we utilize the dataset to compare



Next Generation P2P Botnets: Monitoring Under Adverse Conditions 523

Table 2. Churn measurements by [11]; weibull parameters as tuples (shape, scale).

ZeroAccess 71
(ZA71)

ZeroAccess 65 including
non-super peers (ZA65)

Sality v3
(SalityV3)

Inter-Arrival: Ra(β, α) (0.95, 3.0769) (1.04, 3.8023) (0.66, 5.814)

Life-Time: λ(β, α) (0.21, 76.9231) (0.18, 12.21) (0.28,
1139.3174)

Active Population (Na) 165 1037 1963

the graph characteristics and resilience reported by Haas et al. [9] against those
from the generated topologies.

Our last dataset is generated using our simulation framework1. We simulated
1, 458 different parameter combinations with 20 repetitions for a duration of 75
days each. Table 3, presents all parameter types and their values. The parame-
ters used in our simulations consist of the churn model, the MM parameters as
discussed in Sect. 4, the number of MDs and the active and overall population.

It is important to note, that the maximum NL-size is not independently
varied but instead dependent on the Neighborlist Minimum Threshold (NLMT).
In an analysis on the influence of each individual parameter, we found that
the NL-size itself only has a minor influence on the resilience or monitoring
resistance. The reason for this is, that bots only search for additional neighbors
if the NLMT is reached. Therefore, we set the NL-size to be twice as large as the
NLMT. Furthermore, we adjusted the overall population in relation to the active
population. We chose to use a factor of three, four or five, as our simulations
of the churn model have shown, that the simulated graphs are most similar to
the real world graphs at an overall population about four times larger than the
active population.

Table 3. Parameter combinations used for the evaluation.

Parameter Value

Churn Model SalityV3, ZA65, ZA71

Membership Management Interval (MMI) 30m, 1 h, 2 h

Max NL-size 2x NLMT

Neighborlist Minimum Threshold (NLMT) 10, 25, 50

Neighborlist Reply Size (NLRS) 1, 5, 10

Neighborlist Reply Preference (NLRP) Latest, Random

Number of MDs 1, (10, 50, 200, 500)

Active Population (Na) 1963, 1037, 165

Overall Population (Nt) x3, x4, x5 Active Population

1 https://git.tk.informatik.tu-darmstadt.de/SPIN/BSF.

https://git.tk.informatik.tu-darmstadt.de/SPIN/BSF
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To evaluate our work, we utilize the network resilience and monitoring resis-
tance metrics. We measure the resilience of a botnet similarly to [9]. Iteratively
the bot with the highest in-degree is removed from the botnet, until the ratio
of nodes disconnected from the largest weakly connected component exceeds a
threshold t ∈ [0, 1]. Therefore, the GraphResilience(t) denotes the fraction of
bots that need to be removed, to have more than t% of the remaining bots dis-
connected from the botnet. Within our evaluation, we consider a threshold of
t = 0.5, as it was least affected by outliers. The monitoring resistance indicates
the difficulty of monitoring a botnet, i.e., the fraction of the overall population
that could not be enumerated. We define monitoring resistance ρ in Eq. 2, based
on the overall-population Nt, and μ the information obtained by an MD.

ρ = 1 − |μ|
|Nt| (2)

6.2 Simulation Setup

Within this subsection, we introduce our simulation setup. Overall we introduce
three separate experiments: (i) an evaluation of BC, (ii) an analysis of the MM
on monitoring resistance and network resilience, and (iii) an evaluation on how
utilizing multiple MDs increases the intelligence gathered through monitoring.

For the evaluation of BC, we intend to investigate two research topics. First,
the warm-up time required to reach the desired active population, and second,
whether the generated topologies are more similar to the real-world characteris-
tics reported in [9] than those created with OverSim’s life-time churn generator.

To compare the two churn generators with the real world dataset, we run 24
simulations of the Sality botnet with each of them. To match the active popula-
tion of the real world Sality graph provided by Haas et al. [9], we set the target
active population to 1, 422. In addition, to compare the difference between the
graph characteristics of the real world Sality botnet and the simulated topolo-
gies, we use the mean absolute error. The Mean Absolute Error (MAE) allows us
to calculate the average difference between the graph characteristics of the sim-
ulated and real world dataset. To ensure, that the parameters are in comparable
value ranges when calculating the error, we normalized all values through feature
scaling. Furthermore, we compare the graphs with regard to their resilience.

To analyze the effects of each MM parameter with regard to monitoring resis-
tance and botnet resilience we use our simulated dataset (see Table 3). Further-
more, to highlight the influence of each parameter, we analyze and discuss each
of them individually. Every simulation is run for a period of 75 days, with the
MD joining after 40 days. After the entire simulation time, we took a snapshot
of the graph and then analyzed its monitoring resistance and graph resilience.

We expect, that a single MD will not yield enough intelligence to conduct
successful monitoring in adverse conditions. This raises the question about how
we can improve the knowledge obtained by monitoring operations. One approach
is to broaden the information obtained via monitoring by increasing the number
of MDs. To analyze the effects of aggregating the information of multiple MDs,
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(a) MAE at different populations. (b) Graph resilience comparison.

Fig. 1. Comparison of life-time churn, BC and the real world Sality botnet graph.

we repeated the simulations with the most monitoring resistant and resilient
MM parameter combinations, i.e., under the most adverse conditions. To keep
the number of MDs within a realistic range, we ran the simulations with 10, 50,
200 and 500 deployed MDs. Note that, 500 is close to the highest number of
sensors ever reported (512) to be used to monitor a botnet [2].

6.3 Results

In this subsection, we present the results of our evaluation.

BotChurn (BC) evaluation. Before the comparison between simulated and
real world graphs, we evaluated the warm-up period required by BC to reach
the desired active population. The results for all three investigated churn models
indicate, that the active population is reached within less than 40 days.

Figure 1a, depicts the mean absolute error between simulated graphs and a
real world Sality snapshot obtained from [9]. The results clearly indicate, that the
graphs generated with BC are closer to the real world botnet. Furthermore, our
churn generator performs best at an overall population between 5, 500 to 6, 500.
This is about twice as much as the overall population in life-time churn, which
does not allow to adapt the overall population. While the error for BC generated
botnets may still seem high, we want to point out that the error is dominated
by only two out of 13 graph properties. In fact, the average path length and
diameter are so similar throughout all graphs, that due to the normalization
even slight changes cause large errors. For BC at a population of 6000, the
average path length is 1.7045 compared to 1.5149 in Sality and the diameters
are 2 and 3 respectively. If we remove these two outliers from the calculation,
the error drops from 27% to only 15%.

Figure 1b, compares the average resilience of the simulated graphs against
the resilience of the real world graph at its maximum and minimum population.
Interestingly, the simulated networks are significantly more resilient than the real
world Sality graphs. The reasoning behind this finding is that the connections
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(a) Active Population (b) NLMT

Fig. 2. Influence of individual parameters on monitoring resistance and resilience.

in all graphs are made prominently through a strongly connected core. However,
the simulated graphs also have more connections among bots at the edges of
the graph, which leads to the higher resilience. We speculate, that this is largely
caused by the Goodcount mechanism of Sality and the botnet being active for
several years. Even though, the resilience of the simulated graphs are significantly
higher than the real world Sality, similar resilience has been observed for the
ZeroAccess botnet [9]. In summary, the graphs generated with BC are more
similar to the real-world graphs than those create with life-time churn.

MM Design Evaluation. We now investigate, the influence each parameter
has on monitoring resistance and botnet resilience. As the first parameter, we
look at the influence of the active population. The results depicted in Fig. 2a
indicate, that the active population2 of the botnet has a significant impact on
its monitoring resistance. We argue that there is a two-fold reasoning behind
this behavior. First, if more highly stable nodes are available in the botnet, they
must share the in-degree of the less stable nodes and therefore, it is less likely
for an MD to be within a bot’s NL. Second, parameters such as the NL-size do
not scale with the active population. Therefore, the information contained in a
MD’s NL amounts to a significantly larger fraction of the population in small
botnets when compared to larger botnets.

Out of all MM parameters, the Neighborlist Minimum Threshold (NLMT)
has the greatest influence on the resilience of a botnet. Figure 2b, highlights this
influence in a scatter plot of all simulation runs with an active population of 1963.
As the botnets with such a population size are most resistant to monitoring, we
omit other active populations in the subsequent analysis due to clarity/space
reasons. While the highest resilience obtained by botnets with an NLMT of 10
2 The scatter plots depict all parameter variations, with one of them being highlighted.
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(a) NL Reply Size (b) Overall Population

Fig. 3. Influence of individual parameters on monitoring resistance and resilience.

is approximately 40%, botnets with an NLMT of 50 approached a resilience of
almost 90%. However, the increase of resilience comes at the cost of decreasing
monitoring resistance (see also Sect. 4). As the resilience of the botnet is eval-
uated based on global knowledge of the botnet, we cannot state the best value
for a botnet’s NLMT. While a low NLMT hampers the gathering of information
required to conduct an attack, a high NLMT is more likely to withstand an
attack even if a lot of information is obtained by botnet defenders.

The effects of the Neighborlist Reply Size (NLRS) on the monitoring resis-
tance of a botnet increases with higher NLMTs. Figure 3a illustrates, that with
increased resilience the difference between an NLRS of 1 and 10 changes signif-
icantly. This growth of resilience is caused by the increasing NLMT, which is
highlighted by the colored overlays. While the difference between an NLRS of 1,
5, or 10 does not seem to have a significant influence at an NLMT of 10, it is
clear that an NLRS of 1 is superior at NLMTs of 5 and 10. We speculate, that
the reason for this is, that an NL-reply is likely to contain more entries than
the requesting bot needs. As an example, if a bot with 47 out of 50 neighbors
receives an NL-reply with 10 entries, that is seven more bots than it required to
have a full NL. Therefore, an NLRS of 1 is preferable with regard to monitoring
resistance, as no unnecessary information is shared.

Similar to the active population, the overall population greatly influences the
resilience of the botnet. Figure 3b, depicts the analysis of overall populations of
5889, 7852, and 9815 for an active population of 1963. The figure shows, that
the resilience increases with a lower overall population. This pattern is repeated
based on different NLMTs which are highlighted by the colored overlays. We
argue, that this is caused by the increased likelihood of any node being online.
As the overall population is lesser, a node will rejoin the botnet more frequently.
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(a) Churn Model (b) Multiple MDs

Fig. 4. Influence of parameters on monitoring resistance (and resilience).

The difference among the three observed churn models seems to be most
pronounced in the resilience of the botnet. Our analysis results in Fig. 4a, indi-
cate that the botnets differ slightly with regard to resilience and monitoring
resistance. The churn models SalityV 3 followed by ZA71 create more resilient
botnets, whereas ZA65 has the highest monitoring resistance. Nevertheless, the
scaling of churn models appears to work well with only small differences between
the churn models with regard to resilience and monitoring resistance.

The NLRP , minimally influences the monitoring resistance of a botnet.
Interestingly, the preferable parameter value changes with growing NLMT. Our
results indicate that a random selection is preferable for an NLMT of one,
whereas returning the last seen neighbors is better for NLMTs of higher val-
ues.

The range of values we analyzed for the MMI , did not show any influence
on monitoring resistance or resilience. Nevertheless, a lower MMI may reduce
the probability of a bot getting disconnected from the botnet. At the same time,
the shorter the MMI, the more communication overhead will be incurred by
the botnet. We expect that with increased message overhead, it will be easier to
detect the botnet. Therefore, any of the values is good with regard to monitoring
resistance and resilience, but may cause the botnet to be more susceptible to
detection.

In summary, we identified that among the MM parameters, NLMT and NLRS
have the greatest effect on monitoring resistance and botnet resilience. Contrary,
the MMI and NLRP exhibit only minor effects. We argue, based on our results,
that a parameter combination of NLMT = 10, NLRS = 1, NLRP = random and
MMI = 1h, exhibits the most adverse conditions for monitoring. Furthermore,
our analysis of active and overall population indicates that with growing popula-
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tion the monitoring resistance increases significantly. Lastly, the three evaluated
churn models showed similar behavior for the observed active populations.

Successful Monitoring in Adverse Conditions. For our last experiment, we
analyzed how increasing the number of MDs influences the monitoring resistance
of a botnet. Figure 4b, presents the results of deploying multiple MDs for the
botnets with the most adverse conditions. In addition to the optimal parameter
combination identified in the previous section, we varied the NLMT to cover
the more resilient botnets as well. One can observe how an increase in MDs
results in a decreased monitoring resistance of the botnet. However, the increase
in knowledge does not increase linearly with the increase in MDs. This is the
case due to two reasons: (i) knowledge gained by adding additional MDs may
overlap with existing knowledge and therefore not add to the overall knowledge,
and (ii) the potential increase in knowledge is limited by the total population of
the botnet. Due to these factors, we can only enumerate the entire botnet for an
NLMT of 50. Moreover, this is only possible with 500 deployed MDs. However, a
fraction of the nodes remains unknown in the NLMT = 25 scenario, and almost
20% of the overall population remain undiscovered using 500 MDs in a botnet
with an NLMT of 10.

We argue, that this clearly indicates that short term monitoring, deploying
bots in controlled environments, or controlling active bots requires a large pool
of diverse IP addresses to effectively monitor botnets in adverse conditions. As
suggested by [2,11], this could be realized through collaboration of multiple
parties. Furthermore, network based monitoring is a promising approach, as large
amounts of bots can be observed at once without requiring a pool of IP addresses.
However, a drawback of this approach is that it requires the collaboration of
multiple ISPs which may prove to be difficult, as they are usually reluctant
about sharing private data.

7 Conclusion and Future Work

In this paper, we argue that once botnets adapt more advanced countermea-
sures, monitoring as we know it today will no longer be feasible. We defined the
term adverse conditions as a botnet environment in which any deviation from
the behavior of a regular bot can easily be detected by the botmaster. Further-
more, we investigated the idea of designing a botnet’s MM to further limit the
knowledge obtainable by monitoring.

To thoroughly analyze botnets, we discussed different churn models and pro-
pose BotChurn (BC), a novel churn generator for botnets. In our experiments,
we identified a lower boundary for intelligence gathering in adverse conditions. In
particular, our results indicate that the MM design significantly affects both the
monitoring resistance and resilience of the botnet. Finally, we conducted addi-
tional simulations in which we aggregated the intelligence obtained by multiple
MDs, to observe how this increases the intelligence obtained via monitoring. The
results indicate, that such a distributed approach provides a way to improve the
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gathered intelligence. However, this requires a significant amount of available
IP addresses. To overcome this, we suggest that future research considers the
concept of collaborative monitoring. If the defenders combine their resources,
this would increase the quality of the gathered intelligence and also reduce the
cumulative cost to conduct monitoring.
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Abstract. The expansion of the Internet of Things (IoT) promotes the
roll-out of low-power wide-area networks (LPWANs) around the globe.
These technologies supply regions and cities with Internet access over
the air, similarly to mobile telephony networks, but they are specifically
designed for low-power applications and tiny computing devices. Fore-
casts predict that major countries will be broadly covered with LPWAN
connectivity in the near future. In this paper, we investigate how the
expansion of the LPWAN infrastructure facilitates new attack vectors in
hardware security. In particular, we investigate the threat of malicious
modifications in electronic products during the physical distribution pro-
cess in the supply chain. We explore to which extent such modifications
allow attackers to take control over devices after deployment by tam-
pering with the serial communication between processors, sensors, and
memory. To this end, we designed and built a malicious IoT implant, a
small electronic system that can be inserted in arbitrary electronic prod-
ucts. In our evaluation on real-world products, we show the feasibility of
leveraging malicious IoT implants for hardware-level attacks on safety-
and security-critical products.

Keywords: IoT · LPWAN · Implant · Serial communication
Hardware attack

1 Introduction

The Internet of Things (IoT) promises to optimize workflows, enhance energy
efficiency, and to improve our everyday life. According to a recent estimation [11],
11.2 billion IoT devices will be installed by the end of 2018. These devices are
connected in mostly wireless and local networks all over the world, comprising
together a global IoT infrastructure. In the past, security concerns have been
expressed regarding this powerful IoT infrastructure: Besides security issues in
IoT devices [28,33], IoT networks [30], and IoT applications [9], the force of
these billions of devices can be weaponized for targeted attacks with impactful
consequences. Examples are recent denial-of-service (DoS) attacks on Internet
infrastructure [3,20], in which attacker-controlled IoT nodes utilize existing IoT
infrastructure to build large botnets.
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In this paper, we explore a new threat where the connectivity of low-power
wide-area networks (LPWANs) is leveraged as a communication channel to con-
trol malicious hardware. Our objective is to prove that public IoT infrastructure
can be used to perform attacks at hardware level remotely, even if the target
device does not feature a network interface. The underlying threat of malicious
hardware arises from an untrusted supply chain, in which electronic products are
manufactured and shipped in large volumes. The global supply chain of electronic
products consists of a number of sequential steps from designing a new prod-
uct, fabrication process, and distribution to the installation. Hereby, we focus
on the physical distribution process that involves entities such as manufacturers,
third-party logistics providers, distributors, retailers, and costumers. In addition,
government agencies oversee the flow of goods at borders for legal and documen-
tation purposes. Thus, an electronic product can be physically accessed and
manipulated by a number of entities during distribution. These entities could
be potential attackers or cooperate with an attacker, and therefore the integrity
of an product should not be assumed in general. This contradicts the inherent
trust of consumers that new products are not tampered with.

Inspired by the leaked NSA ANT catalog [4], we experiment with the inser-
tion of additional hardware, referred to as hardware implants, into an exist-
ing electronic system after the fabrication process. Although the threat of
hardware implants seems to be acknowledged by the academic security com-
munity, previous research on malicious hardware mainly focused on hardware
trojans, i.e., diverse types of malicious hardware inserted during design phase
[2,8,12,13,18,24] and fabrication phase [5,36,42] but not during the distribution
phase.

We summarize our major contributions in this work as follows:

1. We comprehensively explore a new attack vector: malicious IoT implants. We
show that IoT infrastructures can be abused for malicious purposes other
than DoS attacks. Although the existence of hardware implants is known [4],
we are the first in the scientific community that design and build a malicious
IoT implant, a low-cost electronic implant to facilitate hardware-level attacks,
that connects to the Internet over an IoT infrastructure.

2. We investigate new vulnerabilities on hardware level that exploit insecurities
in serial communication on printed circuit boards (PCBs). We start by iden-
tifying the de-facto serial communication standards by analyzing over 11,000
microcontroller (MCU) models. Then, we show that serial communication is
vulnerable to malicious IoT implants. For our implementation that focuses
on the widely-adopted I2C standard, we introduce four attack procedures in
which our implant directly interferes with the communication on I2C buses.
At the end, we discuss the adoption of these attacks to other serial commu-
nication standards.

The presented threat is not considered in current threat models for hardware
security [15,34] that mainly cover hardware trojans, side-channel attacks, reverse
engineering, piracy of intellectual property, and counterfeiting. Also, guidelines
on supply chain risks, such as NIST SP 800-161 [6], consider malicious software
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insertion but no malicious hardware insertion. Thus, the goal of this paper is
to demonstrate and understand the feasibility of Internet-connected hardware
implants and their effects on the security of arbitrary target devices to raise
awareness for this novel threat.

2 Preliminaries

2.1 LPWAN Infrastructure

The global IoT infrastructure is split into millions of local networks that are inter-
connected via the Internet. From an application perspective, these networks can
be categorized into body-area, personal-area, local-area, and wide-area networks.
In this paper, we focus on LPWANs, which provide connectivity for thousands of
IoT nodes across large geographical areas as their wireless range competes with
the ranges of mobile telephony networks. In contrast to mobile telephony net-
works that support high data rates and bandwidths, LPWANs are specifically
designed for low-power machine-to-machine (M2M) applications that commu-
nicate at low data rates. As of June 2018, a popular LPWAN technology with
deployments in over 100 countries is LoRa [26]. LoRa operates in three frequency
bands (433/868/915 MHz) at different channels and bandwidths, and uses a chirp
chip spectrum modulation scheme that provides a high resistance against wire-
less interference. These advanced propagation properties allow transmissions of
wireless data over distances of up to a few kilometers. The specifications of
LoRaWAN, the LoRa network protocol, are maintained by the LoRa Alliance,
a global non-profit organization consisting of more than 500 member companies
[25]. From a network perspective, LoRaWAN utilizes a star-to-star architecture,
in which so-called gateways relay messages either between IoT nodes or from an
IoT node to the central network server and vice versa. The wireless transmissions
between IoT nodes and the gateway are based on the LoRa technology, while
the Internet Protocol (IP) is used for data transfers between gateways and the
central network server.

The cost of deploying LPWANs is significant lower than the roll-out of mobile
telephony networks such that even non-profit initiatives are able to provide net-
work coverage for entire cities and regions. A prominent example is The Things
Network (TTN), a crowd source initiative that claims to have a fast growing com-
munity with over 42,000 people in more than 80 countries. The TTN community
deploys LoRaWAN gateways world-wide to achieve their objective of enabling
a global network for IoT applications without subscription costs. According to
TTN, 10 gateways are enough to cover a major city like Amsterdam with wire-
less connectivity for IoT applications. Currently, almost 4,000 TTN gateways
are globally deployed. Besides non-profit initiatives, the roll-out of national-wide
LPWANs driven by telecommunication companies is ongoing in many countries,
e.g., India [17], Australia [32], and the USA [38]. According to a forecast [27],
LPWANs will supersede mobile telephony networks in providing wireless con-
nectivity for IoT applications by 2023.
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2.2 Serial Communication

Although electronic products provide a large diversity in function, features, and
appearance, their underlying hardware platform follows similar design principles.
Typically, the hardware platform consists of a number of integrated circuits (ICs)
that are mounted on PCBs and interconnected via on-board communication
interfaces. A typical PCB comprises multiple sensors and actuators. Generally,
one or more MCUs are present to process the data received from the sensors,
as well as memory chips to store data persistently, and network interfaces to
communicate with external entities.

For the communication between ICs exist a number of serial and parallel data
transmission mechanisms. In parallel communication, multiple bits are transmit-
ted simultaneously over multiple communication channels. This is in contrast to
serial communication, where bits are sent sequentially over a single communica-
tion channel. Since the cost of ICs is also determined by the number of input and
output pins, ICs on PCBs often use serial communication to interact with each
other. Serial communication mechanisms can be categorized into synchronous
and asynchronous systems. Synchronous systems associate a clock signal to the
data signals, which is shared by all bus participants. In asynchronous systems,
the data signals are transmitted without a shared clock signal. Most of the serial
communication systems comprise a hierarchy of master and slave ICs. MCUs
are typically masters and control the communication as well as command slaves,
e.g., memory and sensors, to send data or to execute particular tasks.

To determine the most important serial communication interfaces on PCBs,
we performed a parametric search on the product databases of six leading MCU
suppliers: NXP, Renesas, Microchip, STMicroelectronics (STM), Infineon, and
Texas Instruments (TI). In 2016, these suppliers had in sum a market share
of 72% of all sold MCUs based on the revenue [16]. We analyzed more than
11,000 MCU models regarding their serial communication interfaces and found
that 86.7% have a UART interface, 83.5% support I2C and 63.8% SPI. We also
analyzed the support for further serial communication interfaces, such as CAN
(34.3%), USB (30.2%), and Ethernet (11.5%), which are mainly application-
specific and not as widely supported as SPI, I2C and UART. A detailed analysis
can be found in Table 1. Although the support of a serial interface is no war-
rant that this interface is also used in a product that features this MCU, these
numbers indicate the de-facto standards that are supported by leading MCU
suppliers.

2.3 I2C Communication Protocol

Although serial communication interfaces have diverse properties regarding syn-
chronization, data rates, and complexity, there are architectural similarities from
a security perspective. The most obvious property of these systems is that none
of their specifications define any kind of cryptographic security measure. There-
fore, the majority of the demonstrated attacks can also be adapted to other serial
communication interfaces. In the implementation and evaluation of this work,
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Table 1. Number of MCU models sorted by supplier and product families (as of
January 2018). If a database entry of an MCU model had no parameter regarding
a certain interface, we assume that this interface is not supported. Notation: ‘MS’
- market share of MCU sales by revenue in 2016, ‘Family’ - MCU product family
as advertised by the supplier (if applicable), ‘Bit’ - bit size of the MCU architecture,
‘#MCUs’ - number of MCU models, ‘ETH’ - Ethernet.

Supplier MS Family Bit #MCUs #MCUs that support

UART I2C SPI CAN USB ETH

NXP 19%

i.MX 32 251 243 243 243 219 243 220

Kinetis 32 928 812 812 812 264 334 72

LPC 32 540 534 531 482 228 276 136

MPC 32 762 0 290 94 475 0 0

S32 32 17 17 6 1 7 0 0

VF 32 35 34 34 34 34 0 0

Renesas 16%

Various 8 566 550 354 3 36 1 0

Various 16 2,358 2,304 2,226 485 340 72 0

Various 32 2,318 2,313 2,069 1,924 1,441 1,298 585

Microchip 14%

AVR 8 49 39 43 45 0 5 0

PIC 8 116 106 104 104 0 0 0

PIC 16 366 366 366 366 0 58 0

PIC 32 241 241 220 241 0 175 0

SAM 32 255 255 255 255 0 187 0

STM 10%
STM8 8 137 30 42 33 21 0 0

STM32 32 799 799 796 794 490 598 167

Infineon 7%

Various 8 140 140 16 135 0 0 0

Various 16 156 156 93 145 88 0 0

Various 32 308 205 189 206 29 14 11

TI 6%

MSP430 16 536 471 446 500 0 0 0

DRA 32 28 28 28 28 28 18 25

DSP 32 175 67 72 54 0 54 48

Perform. 32 254 124 235 248 170 60 0

Sitara 32 43 25 26 26 20 26 37

TDA 32 12 12 12 12 12 8 12

By bit size

8
1,008 865 559 320 57 14 0

8.8% 85.8% 55.5% 31.7% 5.7% 1.4% 0

16
3,416 3,297 3,131 1,496 428 130 0

30.0% 96.5% 91.7% 43.8% 12.5% 3.8% 0

32
6,966 5,709 5,818 5,454 3,417 3,291 1,313

61.2% 81.9% 83.5% 78.3% 49.1% 47.3% 18.9%

In sum
11,390 9,871 9,508 7,270 3,902 3,435 1,313

100.0% 86.7% 83.5% 63.8% 34.3% 30.2% 11.5%
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we focus on the I2C serial bus [31] for following reasons: I2C facilitates a sophis-
ticated communication protocol, in contrast to UART and SPI. Furthermore,
I2C and UART are the most widely supported serial communication interfaces,
and in 32-bit architectures (which make 61.1% off all evaluated MCU models),
I2C is even the most supported serial communication interface.

I2C uses two signal lines: one clock line (denoted as SCL) and one data line
(denoted as SDA). ICs are chained along these two signal lines, which are referred
to as bus. In order to request and send data from one IC to another, each IC
has a distinct address. Furthermore, each IC can be configured to act either as
master or slave. The I2C standard supports multiple masters, which can initi-
ate transactions on the bus. The master that currently performs a transaction
also generates the clock signal. Slaves cannot start own transactions and remain
passive until they respond to the requests of masters. Typical examples of mas-
ters are MCUs and processors, while sensors, memory chips, and actuators are
usually configured as slaves.

A transaction between master and slaves contains two types of frames: An
address frame that informs all participants at the bus for which slave the mes-
sage is intended, and one or more data frames, each consisting of an 8-bit data
block. To start a new transaction, a master sends a start condition indicating its
intention to occupy the bus. If more than one master aims to use the bus at the
same time, the master get access that pulls the SDA line with a clock signal first.
The other masters wait until the current bus master completes its transaction
via a stop sequence. Upon receiving a start sequence, all slaves on the bus listen
for an address frame. The master sends the 7 bit address of the corresponding
slave after which only this particular slave continues listening. Then, the master
sends an 8th bit to indicate whether he wants to write or read. Once these 8
bits are sent by the master, the receiving slave sends a bit to acknowledge its
readiness to receive data. In case of no explicit acknowledgment bit was received,
the master aborts the transaction.

After the address frame is sent, the transmission of the data frames starts.
Depending on whether the master indicated its intention to read or write, either
the master or the slave writes data on the SDA line and the corresponding device
acknowledges the receipt. Finally, the master sends a stop condition to complete
the transaction.

3 Threat Model

Serial communication on PCBs is security-critical as many high-level applica-
tions rely on correct data transmissions to function properly. For instance, spoof-
ing of a temperature sensor with false values can have a significant impact on
manufacturing processes that require a particular temperature. The injection
of wrong gyroscope data into the serial communication of an unmanned aerial
vehicle can lead to a crash. Eavesdropping the passcode entered into the pin
pad of a safe grants an attacker access to the content without using brute force.
The manipulation of loudspeakers in headphones can injure the hearing abil-
ity of the user. All these examples show that attacks on serial communication
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between ICs have serious impacts. To this end, we define following security goals
for the serial communication between ICs on PCB boards: (a) Confidentiality :
Only legitimate ICs have access to the data that is transmitted on the serial
bus. (b) Integrity : The tampering with data on the serial bus during transfer
is recognized by the legitimate ICs. (c) Availability : The legitimate ICs always
have access to the transmitted data on the serial bus.

In this paper, we present a threat model that involves a so-called malicious
IoT implant. Malicious IoT implants are electronic systems that are inserted into
an existing system after the fabrication process, which feature a bidirectional
direct wireless connection to a public IoT infrastructure. The system that hosts
the implant is denoted as target system. We refer to the entity that inserts the
implant into the target system as attacker. The objective of the attacker is to
violate the security goals of the serial communication between ICs.

3.1 Untrusted Supply Chain

From an economic perspective, a supply chain can be described as a series of
inter-related business processes ranging from the acquisition and transformation
of raw materials and parts into products to the distribution and promotion of
these products to the retailers or customers [29]. The supply chain process can
be divided into two main business processes: material management and physical
distribution. In this work, we focus on the physical distribution as malicious IoT
implants are inserted into the target system after its fabrication.

We identified a number of stakeholders that are involved in the physical dis-
tribution process shown in Fig. 1: Manufacturers use raw materials and parts
to produce goods. Distributors buy goods from manufacturers, store and resell
them either to retailers or customers. Retailers sell goods to customers. Third-
party logistics providers manage the flow of goods between point of origin and
destination, which includes shipping, inventory, warehousing, and packaging.
Government agencies, e.g., customs inspection, enforce regulations and docu-
ment the flow of goods in and out of a country. Customers receive and consume

Fig. 1. Physical distribution of goods in the supply chain process. Solid lines: flow of
goods. Dashed lines: flow of services (third-party logistics providers) or possibility of
interception (government agencies).
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goods, while having the ability to choose between different products and sup-
pliers. Hence, the physical distribution process provides many entry points for
attackers to gain physical access to a target device. Potentially any of these
stakeholders can either be an attacker or cooperate with an attacker. Therefore,
we assume an untrusted supply chain in our threat model.

3.2 Attacker Model

We assume that the attacker has physical access to the target device as described
in Sect. 3.1, and is able to remove the device’s enclosure without leaving physical
traces. The attacker identifies access points on the PCB to which a malicious IoT
implant can be connected within a reasonable amount of time. We further assume
that the target device only requires a power supply, neither Internet nor network
access are necessary. The attacker succeeds with an attack if the implant is able
to interfere with the communication of the serial buses and cannot be detected
without opening the enclosure of the product. Thus, we assume that the attacker
targets systems that are not likely to be disassembled by the user. Furthermore,
we assume that the attacker has access to a public IoT infrastructure within the
wireless range of the implant. In this case, the attacker is not required to be
physically present within the wireless range of the implant.

The motivations to utilize malicious IoT implants are various. Governmental
organizations might have an interest to use this approach for surveillance, indus-
trial espionage, or the manipulation of infrastructure in enemy states. Leaked
documents of the National Security Agency [4] indicate the usage of similar
malicious hardware for these purposes. Besides governmental entities, criminal
organizations and terrorist groups can use malicious IoT implants to achieve
similar goals for financial and political profit. All these groups are likely to be
experienced in covert operations, and have the potential to access target devices
in the supply chain.

4 Malicious IoT Implant

4.1 Design Criteria

To achieve its objectives, the attacker has certain design criteria regarding the
malicious IoT implant: 1 Small Dimensions: Size is a constraint as the implant
has to be hidden inside the enclosure of the target device. In addition, small
dimensions of an implant make detection harder. 2 Wireless Connectivity: If
the implant should be remotely controlled, it requires a radio transceiver. This
transceiver should provide a communication interface to an LPWAN infrastruc-
ture such that physical presence of the attacker is not required. 3 Access to
Serial Communication: The implant acts as a legitimate participant on the serial
bus and is able to eavesdrop on legitimate transactions and to insert malicious
transactions. 4 Invisibility: The implant does not influence the normal mode of
operation except during an active attack. 5 Low-Power: The implant is either
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powered by an external power source, i.e., battery or accumulator, or supplied
with power from the target device. To increase the lifetime of the implant as
well as the target device, the implant should consume as less energy as possible.
6 Low-Cost: The implant should be designed in a low-cost way using mainly
off-the-shelf components.

To the best of our knowledge, we are the first (in a scientific context) that
design and implement an implant, which fulfills all of these design criteria.

4.2 Attack Procedures

To achieve the attacker’s high-level objectives, we propose hardware-level attacks
that interfere with the communication on the serial bus. To perform these pro-
cedures, the implant must be connected to the SDA and SCL signal lines of the
target device.

Eavesdropping. Eavesdropping is a passive attack in which the implant
observes and stores data that is transmitted on the I2C bus. This data can
then be relayed to the attacker via the wireless interface of the implant.

Denial-of-Service. A DoS disables all communication on the I2C bus. A mali-
cious IoT implant can perform such an active attack by permanently pulling
the SDA and SCL lines to a low voltage state. As a result, no further data
can be transmitted on the bus. All other bus participants have to wait until
the implant releases the signal lines.

Injection of Transactions. In this active attack, the implant acts as additional
master on the bus. Most implementations offer time gaps between transac-
tions, in which the masters and slaves are in idle state. The implant has the
chance to execute own transactions on the bus during this period of time. The
injection of own transactions allows to perform further implicit attacks: (a)
Read out memory and configurations: The implant can read out data from
memory chips as well as the configurations of slaves. These information can
then be exfiltrated to the attacker via the wireless interface. (b) Reconfigura-
tion: The implant can send commands to modify the configuration of slaves
consistently. For example, a pre-configured threshold can be altered or, in
some cases, a slave could be completely disabled. This ultimately allows for
slave impersonation attacks, in which the implant responds to messages of
the legitimate master instead of the disabled slave.

On-The-Fly Bit Modification. Whenever a logical 1 is sent on the I2C bus,
the transmitting IC releases the SDA signal. A pull-up resistor connected to
SDA then pulls the voltage of the signal to high level and the next clock
signal carries the bit value. As an active attack, the implant can utilize this
idle state to pull the SDA signal to low level, which results in the transmission
of a logical 0 instead of the sent logical 1 on the bus. Due to the electronic
characteristics of the I2C bus, a modification of logical 0 to logical 1 is not
possible.
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Fig. 2. Components of the malicious IoT implant: (1) indicator LED, (2) power con-
verter, (3) I/O interface for serial bus signals (SDA, SCL) and power supply (VCC,
GND), (4) removable programming and debug interface, (5) MCU, (6) wired monopole
antenna, (7) LoRa radio transceiver.

4.3 Implementation

Wireless Connectivity. We use the LoRa technology (cf. Sect. 2.1) as wireless
communication interface for the implant. Competing LPWAN standards to LoRa
[1] exist, such as SigFox, Weightless, and LTE Narrowband IoT, but they are
currently not supported by such a large community of industrial and private
partners as LoRa. However, the presented attacks could also be facilitated using
one of these LPWAN technologies.

TTN acts as service provider to connect the implant to the Internet using
LoRa communication. Application builder can register an account at the TTN
website and get access to the network infrastructure in order to connect to their
deployed IoT nodes via LoRaWAN. An account can be created easily using a
user name, email address and password. The purpose of the application is not
checked by TTN.

Hardware Architecture. The hardware architecture of the implant consists of a
PCB that is equipped with various ICs as shown in Fig. 2. The implant can be
connected to a power source that provides an input voltage between 3.3 V and
16 V. Power can be supplied via the VCC and GND pads, either from the target
device or using a battery.

The front side of the implant features a power converter, an I/O interface, an
MCU, a number of capacitors, as well as an optional indicator LED. This LED
is activated when the implant is supplied with power and blinks each time a
LoRa message is sent or received. The MCU STM32F303CBT6 [39] contains an
ARM Cortex-M4 core and 128 Kbytes of Flash memory. The radio transceiver
RFM95W-868S2 [14] is mounted on the backside of the implant. This mod-
ule supports the LoRa technology and uses the 868 MHz frequency band. We
soldered a simple wired monopole antenna of length 86.4 mm (quarter of the
868 MHz wave length) to the transceiver.

For programming and debugging of the implant, a serial wire debug (SWD)
interface is added to the implant. This interface can be physically removed
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(through breaking or cutting off) after the final version of firmware is installed
on the implant.

Software Architecture. The software architecture is based on the STM32CubeMX
platform [40] that includes the hardware abstraction layer and the link layer
for the MCU. The real-time operating system FreeRTOS builds on top of this
vendor-specific platform. A number of libraries is installed: The board support
package provides drivers for the interfaces of the implant. The LMiC library [21]
implements the LoRaWAN stack, and communicates with the LoRa module. The
Arduino JSON library is used to decode and encode messages received within
the payload of the LoRa messages. On top, so-called ‘tasks’ are defined. For
example, the ‘attack task’ implements the attack procedures, while an ‘LED task’
defines the state of the indicator LED. The implant is registered as application
belonging to the TTN account of the attacker and can be operated via the TTN
web console.

5 Evaluation

Dimensions. Small dimensions are crucial in order to insert the implant into
arbitrary target systems, and furthermore, to avoid visual detection. The implant
has a size of 19.5× 17.8 mm and a height of 4.5 mm. We measured the weight
of the implant to be 3 g. Note that these dimensions are measured without the
debug header, antenna, and wires connected to the target. We assert that the
dimensions of the implant are small enough for many threat scenarios, in which
the enclosure provides a suitable amount of space. We assume that the layout
of malicious IoT implants can be further minimized if we waive the usage of
off-the-shelf hardware components.

Power Consumption. The malicious IoT implant has to be powered either by the
power supply of the target device, or using an external battery. We determined
that the power consumption of the implant during sleep mode (i.e., radio is duty
cycling) is 110µA for 3.3 V input voltage, while the implant consumes around
42 mA in attack mode (i.e., radio listens continuously). For comparison: a regular
3.7 V Lithium polymer battery with a capacity of 2000 mAh supplies an implant
in sleep mode for more than two years, or 176 h in attack mode. Thus, attackers
can wake a sleepy implant even months after the insertion into the target device.

Wireless Range. The wireless range determines from which distance an attacker
is able to remotely control a malicious IoT implant. Also, it indicates in which
areas the implant has coverage by an LPWAN. The implant utilizes the LoRa
technology, which achieves a wireless range of 2–5 km in urban areas and up to
15 Km in sub-urban areas [1]. It is hard to make general statements about the
wireless range of the implant as the propagation of radio waves depends on many
variables, e.g., the enclosure of the target device, building structures and walls,
nearby electrical installations, as well as other deployed wireless networks that
interfere with the LoRa frequency bands.
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Cost. Once we have the final schematics, we are able to build a batch of 10
implants for the hardware costs of approximately 194 Euros. The cost per unit
decrease with an increasing batch size: For a batch size of 100 units, the hardware
cost add up to around 1075 Euros. Thus, we can build a malicious IoT implant
using mainly off-the-shelf components for less than 11 Euros per unit (assuming
a batch size of 100 units). These costs comprise the customized PCB as well as all
electronic components including MCU, radio transceiver, LED, power converter,
and capacitors. Not included are laboratory equipment, labor costs, shipping
costs, and consumable materials.

5.1 Effort of Insertion

The procedure of implanting malicious hardware into the target device consists of
three steps: identifying access points on the PCB, analyzing the communication
on the bus, and inserting the implant into the device.

In the first step, we open the case of the target device and look whether there
is enough space to insert the implant. If so, we identify the PCBs and list the
descriptors of all ICs. Then, we search for the datasheets of these ICs on the
Internet. The identification of ICs on a PCB can also be automated using image
recognition [19]. A datasheet usually contains a feature description as well as a
pin layout, which we use to identify ICs that support I2C. After we confirm that
an IC supports I2C, we check whether the I2C pins are used. Optical indications
are signal lines on the PCB that are connected to these pins. Then, we look for
suitable solder points on the PCB where we can later attach the wires to the
implant. It is not advisable to directly solder the wires onto the pins of an IC
since this requires a very precise way of working and can easily lead to damages
or electrical shorts with neighboring pins. Good access points are larger solder
joints, for example, at surface-mounted capacitors or at through-hole connec-
tions. As second step, we use a logic analyzer to inspect the communication
on the bus. Using logic diagrams, we identify the ICs that communicate with
each other, the bus frequency, and the transmitted data (datasheets might help
again). As a result, we configure the software of the implant accordingly. In
the third step, we solder wires onto the access points after we have removed
the power supply and batteries. Then, we attach the wires to the implant. If
required, we fixate the implant within the target device such that the antenna
does not touch other electronic parts. We supply the target device with power
again, and if the insertion was successful, the indicator LED on the implant
turns on. In addition, we test whether the implant can be remotely controlled.
Finally, we close the casing of the target device and try to remove all traces of
this modification procedure.

The danger of damaging the PCB boards during the insertion of the implant
is low if we take standard precautions: The process of insertion should be per-
formed in an electrostatic discharge protected area. In this area, all conductive
materials and workers are grounded and mechanisms to prevent the build-up of
electrostatic charges should be in place. Furthermore, the power supply needs
to be safely removed to prevent electrical shorts. Then, the danger of damaging
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the target device is mainly reduced to the threat of thermal influences on the
ICs from the soldering process and physical damages.

In the physical distribution process, time is crucial. Thus, the time to insert
the implant into the target system should be appropriate. If we want to insert
the implant into a large batch of similar target devices, the customization of the
implant is only required once. From our experience, the process of customization
can add up to a few hours. The insertion process needs to be performed for each
target device. In our experiments, the manual inserting of the implants takes a
few minutes, in some cases we were even able to insert the implant within less
than a minute.

5.2 Feasibility of Attacks

We demonstrate the feasibility of the attacks outlined in Sect. 4.2 through insert-
ing the malicious IoT implant into three exemplarily target devices: One eval-
uation board and two real-world products. We selected the real-world products
through searching online in databases of disassembled products, e.g., iFixit, for
security- and safety-relevant devices that indicate the usage of I2C communica-
tion.

Evaluation Board. The first hardware platform is an evaluation board that was
specifically designed to test the implementation of the implant. It imitates a mon-
itoring application that observes the temperature of an industrial manufacturing
process. If the temperature exceeds or undercuts a preconfigured threshold, an
alarm is triggered and the light of an LED diode warns the operator. From a
technical perspective, the MCU reads temperature sensor data from the regis-
ters of the sensor via I2C, and shows the value on an LCD display. The lower
and upper bounds of the temperature threshold are stored in the registers of the
temperature sensor.

After attaching the implant to the SDA and SCL solder pads of the evaluation
board, we are able to perform all attacks described in Sect. 4.2. During sleep
mode, the implant does not interfere with the normal operation of the evaluation
board. In attack mode, the implant eavesdrops the current temperature values
as well as the threshold configuration, which both are requested multiple times
per second by the MCU. The implant then relays these values to the attacker’s
operator interface. Upon receiving the DoS command from the attacker, the
implant disables all communication on the bus. On the target device, the MCU
cannot read data from the sensor anymore and throws an exception, which results
in a bus error message on the display. Furthermore, the implant can inject own
transactions to read the data stored in the registers of the sensor, and to write
new values to the registers. This way, the attacker is able to reconfigure the
threshold that triggers the alarm. Finally, we are able to manipulate legitimate
temperature values on the bus by performing the on-the-fly bit modification
attack. Exemplary, we changed one bit of a temperature value byte such that the
bus transferred 0x0F instead of 0x8F. As a result, the MCU reads a temperature
of 15.9 ◦C instead of 28.9 ◦C.
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(a) Cash box (b) Drone (implant with debug header)

Fig. 3. Malicious IoT implant (green PCB) inserted into exemplary devices.

Cash Box. As a second hardware platform, we inserted the implant into a First
Alert 3040DFE cash box that allows access by entering a pin into an electronic
pin pad. Each time a pin is entered into the pin pad, the MCU uses I2C com-
munication to read the master pin stored in an EEPROM. If the entered pin
matches the master pin, the content of the cash box can be accessed. The mas-
ter pin is set by pushing a red button that is located inside the cash box, and
then entering the new master pin two times into the pin pad. Assuming that
the attacker inserts the implant at some point during the physical distribution
process, the attacker is later able to eavesdrop and set the master pin, and thus,
to access the content of the box. As shown in Fig. 3a, we attached the SDA and
SCL wires of the implant to solder points of a pull-up resistor and the reset
button, respectively. To supply the implant with power, we attached the VCC
and GND wires to solder points connected to the batteries of the cash box. The
enclosure of the cash box provides plenty of space for the implant and a wired
monopole antenna. Controlling the implant from the operator interface, we per-
formed eavesdropping, DoS, and the injection of transactions. First, the attacker
is able to monitor the bus to retrieve the master pin that is requested by the
MCU each time a pin is entered into the pin pad. The implant then exfiltrates
the master pin via the wireless interface. In addition, the implant can disable all
I2C communication upon receiving a DoS command from the attacker. Then, the
MCU cannot read the master pin from the EEPROM anymore, and thus, does
not unlock the cash box. Through the injection of own commands, the attacker
can then read the master pin from the EEPROM and also set this pin to an
arbitrary value. During sleep mode, the implant does not influence the normal
operation of the cash box.

Drone. We used a Syma X5C-1 drone as third hardware platform to evaluate the
malicious IoT implant. The drone features a gyroscope and accelerometer sensor
that stabilizes the drone during flights. An MCU reads data from this sensor
every 3 ms using I2C communication, and subsequently adjusts the individual
speed of the four rotors according to its flight position. As depicted in Fig. 3b, we
attached the SDA and SCL wires of the implant to a pin of the MCU as well as
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a pin of the sensor. Also, we attached the GND and VCC wires to solder points
that are connected to the battery power supply of the drone. The body of the
drone provides enough space for the implant and its antenna. Also, the drone is
capable of carrying the implant without any effects on its flight characteristics.
During sleep mode, the implant does not affect the normal operation of the
drone. We performed eavesdropping and DoS attacks on the drone. Using the
implant, the attacker can eavesdrop on the sensor data that is requested by the
MCU. This sensor data contains triple-axis angular rates as well as triple-axis
accelerometer data. Parts of these aggregated information can be sent to the
attacker in regular intervals. Upon receiving a DoS command from the attacker,
the implant blocks the I2C bus through pulling both lines to low. The MCU of
the drone cannot read data from the gyroscope and accelerometer, and thus, the
speed of the rotors is not adjusted anymore. In consequence, the flight position
of drone destabilizes and the drone hits the ground.

6 Discussion

The results of our evaluation underline two major threats: As a first threat, the
emergence of IoT infrastructure provide novel attack vectors besides DoS attacks
on Internet infrastructure [3,20]. As we demonstrate, malicious IoT implants
connected to LPWANs can be leveraged to exfiltrate secret information, manip-
ulate the functionality of target devices, and in worst case, might even pose a
threat to humans. Such attacks can be performed anonymously as one can reg-
ister an account and set up the application without any identification at the
website of the LoRaWAN service provider TTN. Furthermore, the attacker can
control the implant from a remote location over the Internet. These attacks
are not specific to LoRaWAN and can also be performed using other compet-
ing LPWAN standards. We note that the usage of traditional mobile telephony
infrastructure (e.g., GSM and LTE) would not satisfy the design criteria given
in Sect. 4.1 since a GSM or LTE radio transceiver consumes more energy, the
attacker would have to pay for data transmissions, and in most countries a SIM
card registration requires an official identification document. The effort of build-
ing such an implant is relatively low for experts since the hardware and software
design is based mainly on off-the-shelf components and open-source software,
respectively. Thus, the dissemination of LPWANs open up new attack vectors,
which did not exist before when traditional mobile telephony infrastructure was
the only wide-area connectivity provider.

As a second threat, serial communication on PCBs is vulnerable to mali-
cious hardware inserted during physical distribution in the supply chain. While
the presented malicious IoT implant is tailored to attack I2C buses, other serial
communication systems, such as UART and SPI, could be adapted with a rea-
sonable effort. However, we might only be able to apply a subset of the presented
attacks to other bus systems due to different approaches in the electronic design
of these systems. In contrast to other serial buses, I2C facilitates a communica-
tion protocol that allows multiple masters on the bus. Since the implant acts as



550 P. Morgner et al.

a master, the injection of own transactions in SPI and UART communication is
not easily possible. Nevertheless, we can eavesdrop the communication between
ICs to exfiltrate information and perform DoS attacks through pulling all lines
of the communication system to a low voltage state. In our evaluation, both
attacks had a significant impact on the target devices’ security and reliability.

One might ask why should attackers use malicious IoT implants when mali-
cious software (malware) could do the same job? Although we agree that the
effort of facilitating malware might be lower, malware falls short in several sce-
narios. First, if the target device has no Internet connection, then malware has
usually no communication channel to the attacker. For this reason, neither of
our three evaluation devices could be remotely attacked using malware due to
missing network interfaces. Second, in case a direct interference with serial com-
munication on hardware level is desired, e.g., to circumvent software protection
mechanisms. Third, malware could be detected by other software, in contrast
to implants that are “invisible” at software level. During the evaluation, the
implant had no influence on the regular operation of the target device except if
the attacker performs an attack. Since the attacks directly influence the com-
munication on hardware level, an incident investigator is not able to find digital
traces in the log files of the target device’s software. The only indications might
be exceptions triggered by the MCU and physical evidence, e.g., the presence of
an implant or traces on the PCB that indicate that an implant was attached.

6.1 Limitations

The threat of LPWAN-connected malicious IoT implants comes with a number
of limitations for attackers. Each implant needs to be inserted manually, which
renders this attack procedure unsuitable for large-scale operations in which thou-
sands of devices have to be modified. Furthermore, expert knowledge in electronic
engineering and programming of software is necessary for the preparation and
insertion of an implant. Moreover, a number of potential target devices, e.g.,
mobile phones and tablets, might not provide enough space within the enclo-
sure to carry an implant that is designed using mainly off-the-shelf components.
Also, the feasibility of utilizing an LPWAN-connected implant is limited through
the coverage of the selected service provider’s LPWAN infrastructure. Finally,
the amount of exfiltrated data is restricted since LPWANs only provide low data
rates to achieve their low-power objectives. Nevertheless, the bandwidth between
implant and attacker is reasonable for most threat scenarios.

6.2 Countermeasures

We analyze a variety of potential approaches to encounter malicious IoT
implants, which we divide into detection and safeguard mechanisms. While detec-
tion mechanisms disclose the presence of a malicious IoT implant in a system,
safeguard mechanisms prohibit an implant from interfering with the serial com-
munication.
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Detection Mechanisms. A trivial approach to detect malicious IoT implants is
visual inspection of the PCBs. The advantage is that no expensive equipment is
required. On the other hand, this requires the removal of the enclosure for most
products, which could be quite a cumbersome task since many products are not
intended to be disassembled. Therefore, this approach becomes impractical if
large batches of products should be investigated. Also, future implant layouts
might become smaller and can be implemented into PCBs hidden as legitimate
ICs, which makes visual detection much harder and more time-consuming. In
addition, non-expert user might not be able to recognize malicious hardware
elements if the implant is camouflaged as a legitimate part of the PCB.

Since malicious IoT implants have a physical appearance, another detection
approach is to compare the weight of suspicious products with the weight of
an evidently unmodified product. The advantage of this approach is low costs
as only a precision scale is needed. The disadvantage is that an attacker can
potentially reduce the weight of a modified device by removing small pieces of
the enclosure. Also, this approach is not suitable for heavy devices since the
weight of the implant might be hidden within the measurement tolerance.

In anomaly detection, potential side-channel effects resulting from the pres-
ence of an implant are observed. For instance, the implant consumes a certain
amount of power as evaluated in Sect. 5, which might be supplied from the host
system. Thus, the power consumption of manipulated products should show
anomalies compared to unaltered products. Also, malicious IoT implants pro-
vide a wireless interface that emits radio waves, which can be detected with
special equipment. The advantage of anomaly detection procedures is potential
large-scale automation. The disadvantage is the need for hardware extensions on
the products or special equipment in testing facilities.

Safeguard Mechanisms. Another way to protect against the insertion of malicious
IoT implants is the adding of tamper-evident features. For example, the packaging
of a product can be sealed in way that the attacker cannot access the product
without irreversibly destroying the sealing. Also, physical security measures,
such as a locked encasement or resin encapsulation, could be in place to protect
the PCB against tampering. Tamper resistance does not always prevent the
implementation of an implant but it increases the attacker’s effort and makes
the detection of malicious actions much more likely.

The usage of cryptographic security measures can be a countermeasure to
circumvent malicious IoT implants to read and inject messages into the serial
buses. Lázaro et al. [23] proposed an authenticated encryption scheme for I2C
buses. In their proposal, the I2C data frames are encrypted and authenticated
using AES-GCM, while addressing frames are not protected. The calculation
of ciphertext and signature is directly implemented into the master and slave
ICs. The authors assume a pre-installed key on each IC that was installed in a
secure environment. The advantage of encryption is that it provides an efficient
way to lock out non-authorized entities. As a disadvantage, all ICs on the bus
must implement the encryption mechanism and need to be equipped with key
material. Most probably, this requires a change of the I2C specifications.
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7 Related Work

Previous research investigated the insertion of malicious hardware at three
stages: in the design phase, during fabrication phase, and in the post-fabrication
phase. Especially hardware trojans attracted a high amount of research in the
last decade. From a high level perspective, hardware trojans are malicious mod-
ifications of the hardware during the design or fabrication process. In contrast,
malicious hardware implants are alien elements that are added to a system after
the fabrication process.

There exist different approaches to insert malicious trojans into hardware.
A first approach are modifications of the system design at hardware descrip-
tion language (HDL) level [8,12,13,18,24,41], which results in the adding of
additional logic to the IC. Prototypes of these trojans have been mainly imple-
mented and evaluated using FPGAs. A second approach of inserting malicious
hardware is the implementation of hardware trojans at gate level during fabrica-
tion [5,22,36]. In contrast to modifications at HDL level, this approach does not
add additional logic to the system but only modifies existing hardware elements.
A third approach is the adding of analog circuits to the system [42].

The first ICs that relate to hardware implants were called mod chips [35],
which modify functions of the target system, e.g., to circumvent copyright pro-
tection mechanisms in video playback devices or to enable restricted features in
game consoles. Compared to design and fabrication phase attacks, less atten-
tion was paid by the academic community to malicious hardware attacks in
post-fabrication phases. Shwartz et al. [37] demonstrated how aftermarket com-
ponents, e.g., third-party touchscreens used in repairs of broken mobile devices,
could be manipulated such that a malicious mobile phone app can get root access
to the device. In a non-academic context, Datko and Reed [7] implemented a
hardware implant inspired by the NSA Ant catalog [4]. Their proof-of-concept
features a GSM interface to ex-filtrate data and connects to the target system
via a VGA display adapter using I2C communication. To relay data from the
computer, a malware on the target system is assumed that sends data via I2C to
the implant. In contrast to our work, this implant does not fulfill design criteria
1 and 6 . FitzPatrick [10] presented a number of proof-of-concepts for hard-
ware implants that connect to targeted systems via I/O pins or JTAG. Although
these implants fulfill most design criteria, they lack a communication interface
to an IoT or cellular infrastructure ( 2 ).

8 Conclusion

In this paper, we described the implementation and evaluation of the first mali-
cious IoT implant showing that IoT infrastructure enables novel hardware-level
attack vectors. These threats grow with the expansion of LPWANs, which will
supersede mobile telephony networks in terms of providing M2M connectivity
in a few years. Future threat models for hardware security have to take these
threats into account.
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Abstract. The insecurity of smart Internet-connected or so-called
“IoT” devices has become more concerning than ever. The existence
of botnets exploiting vulnerable, often poorly secured and configured
Internet-facing devices has been known for many years. However, the
outbreak of several high-profile DDoS attacks sourced by massive IoT
botnets, such as Mirai, in late 2016 served as an indication of the poten-
tial devastating impact that these vulnerable devices represent. Since
then, the volume and sophistication of attacks targeting IoT devices have
grown steeply and new botnets now emerge every couple of months.
Although a lot of research is being carried out to study new spurs of
attacks and malware, we still lack a comprehensive overview of the cur-
rent state of the IoT thread landscape. In this paper, we present the
insights gained from operating low- and high-interaction IoT honeypots
for a period of six months. Namely, we see that the diversity and sophisti-
cation of IoT botnets are both growing. While Mirai is still a dominating
actor, it now has to coexist with other botnets such as Hajime and IoT
Reaper. Cybercriminals also appear to be packing their botnets with
more and more software vulnerability exploits targeting specific devices
to increase their infection rate and win the battle against the other com-
peting botnets. Finally, while the IoT malware ecosystem is currently
not as sophisticated as the traditional one, it is rapidly catching up. We
thus believe that the security community has the opportunity to learn
from passed experience and act proactively upon this emerging threat.

1 Introduction

Over the last few years, security, or lack thereof, in the world of smart Internet-
connected (or Internet of Things, IoT) devices has raised a lot of attention and
concerns. In late 2016, several massive and high-profile DDoS attacks originated
from a botnet of compromised devices, such as IP cameras and home routers,
have taken part of the Internet down [7]. Although it was known for many years
that there exists a lot of poorly configured Internet-facing IoT devices with
default credentials or outdated firmware making them vulnerable to full device
takeover, the high-profile attacks really revealed the destructive potential an
army of such devices represent when used in a coordinated fashion.
c© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 556–576, 2018.
https://doi.org/10.1007/978-3-030-00470-5_26
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There is a number of existing research work [7,14,18,23,30,31] that looked
into these increasing threats.The most notable work is probably Antonakakis et
al.’s forensic analysis of the Mirai botnet in 2017 [7]. Indeed, this study pro-
vides a very detailed description of the operations and evolution of the infamous
botnet over a period of about one year. While this work provides an unprece-
dented understanding into this major IoT threat, we have seen that Mirai and its
close variants only account for a limited set of IoT botnets. Additionally, Cozzi
et al. [14] studied Linux malware but focused on their system-level behaviour.
Others have proposed techniques to build honeypots to study IoT threats but
these suffer from intrinsic limitations. For example, IoTCandyJar [23] requires
active scanning of real IoT devices and replay parts of real attacks against these
devices to build realistic models of real-device interactions. Siphon [18] relies on
real devices to build high-interaction honeypots but lacks a proper instrumen-
tation mechanism and suffer from scalability issues. Finally, IoTPot [30] by Pa
et al. combine low-interaction honeypots with sandbox-based high-interaction
honeypots but limit themselves to monitor telnet-based attacks. The analysis
of IoT threats from these honeypot-based studies thus bears some limitations
from their design. All this motivated us to carry out a global study of the IoT
threat landscape. Our ultimate goal is to better answer the following questions.
What are the IoT threats we currently observe in the wild? What is the attackers’
modus operandi to penetrate, infect and monetise IoT devices? How is the IoT
threat landscape evolving?

To help answer these questions, we designed an experimental environment
specifically tailored for the study of the IoT threat landscape combining low-
and high-interaction honeypots. We leverage embedded device firmware emu-
lation techniques [11,13] to build high-interaction honeypots and show that it
enables us to overcome major limitations in previous deployments, such as the
instrumentation of the honeypots, while assuring a highly accurate real device-
like interaction with attackers. We then present the results of the analysis of six
months of data collected from our honeypots. We take a look at the three main
stages of IoT device compromise - intrusion, infection and monetisation - and
present our findings. For example, we see that while the Mirai botnet and its
variants appear to be dominating the IoT threat landscape, other botnets like
IoT Reaper and Hajime are fighting to grow and compromise as many devices as
possible. We also see that IoT botnets are very dynamic, with rapidly changing
malware hosting infrastructure and malware polymorphism. They also evolve
very quickly due to, for instance, the source code release of some botnets, which
means that we have to continually monitor them to detect when their behaviour
changes and adapt our mitigation strategy. Finally, we observe a worrying trend
of more and more IoT botnets leveraging a myriad of software vulnerabilities in
specific devices to compromise them.

It is important to mention that such a work is not meant to be an one-off
study but should rather be repeated over time to closely monitor the evolution
of the threat landscape, that is, track existing and new botnets so as to adapt
our intrusion detection and infection mitigation strategies.
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Fig. 1. Experimental environment for the study of the IoT threat landscape.

2 Data Collection Infrastructure

Studying the threat landscape in the world of smart Internet-connected (or IoT)
devices is a very wide and complex task. IoT encompasses a lot of different types
of devices, e.g., smart televisions, surveillance systems, connected vehicles, water
plant pumps, that can be deployed in a large variety of environments, e.g., smart
home and factories. Monitoring all these devices to detect potential compromise
would be ideal but is of course infeasible. Indeed many of these devices, like
industrial control systems, are deployed in very specialised environments and are
also known to run on exotic and often proprietary hardware architectures and
operating systems. These barriers thus makes it very hard to study the security
of these devices. There is however a corpus of devices that run on commodity
hardware and lightweight Linux-based operating systems. Such devices include,
for instance, some home routers, IP cameras, smart televisions, DVRs and many
more. These devices represent only a fraction of all the so-called “IoT” devices
but, interestingly, they have been increasingly involved in cyber hazards over the
last few of years due to flawed manufacturing and poor security configurations.
Yet they are massively available in the consumer market.

Data Collection. Motivated by this, we thus decided to focus on the threats
targeting these Linux-based IoT devices in this work. We deployed a set of
honeypots mimicking various functionalities of some devices in order to observe
three aspects of IoT attacks. That is, (i) the reconnaissance or intrusion phase,
where attackers attempt to penetrate the defences of a device. (ii) The infection
phase, where attackers usually take full control over the device and prepare it for
whatever it is supposed to be used. (iii) Finally, the monetisation phase starts
when the attackers use the compromised device for other nefarious purposes,
such as infecting other devices, launching DDoS attacks, etc.

Figure 1 depicts the data collection and enrichment infrastructure we
designed, deployed and have been operating since August 2017. The data
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collection part consists of seven different open-source low-interaction honeypots1.
Each honeypot is running inside a docker container to isolate it from the host
and easily manage how network traffic flows between the host and the honeypot-
emulated services. The main advantage of these low-interaction honeypots is
that they are very straightforward to deploy thus allowing to collect IoT-related
threat data very quickly. These honeypots aim at tricking attackers into infect-
ing them by offering a very basic interaction for various services/applications,
such as a telnet remote management interface, a FTP server or an embedded
web interface. Since the interaction is purposely generic, i.e., independent of a
specific device, and completely hard-coded into the honeypot, attackers can take
advantage of this to detect them by performing some specific checks. These hon-
eypots are also unable to observe the monetisation phase as their functionalities
do not enable them to get compromised.

To overcome the limitations of the low-interaction honeypots, we decided
to explore the design and deployment of high-interaction IoT honeypots. As
described in Sect. 4, different techniques have already been proposed to build a
high-interaction IoT honeypot. Having considered the different previously pro-
posed techniques, we realised that none of them provided the required amount
of flexibility, scalability and ease of deployment. To this end, we leveraged two
different techniques to build our emulated high-interaction honeypots. The first
technique we used is an open-source firmware emulation framework called Fir-
madyne [11], which enables emulation of Linux-based systems by extracting the
operating system from firmware images and running it with a generic kernel
inside the QEMU virtualiser. It enables us to emulate the network-facing services
provided by the devices, such as a telnet service, a web server, etc. However,
Firmadyne requires the whole operating system (except the kernel) to be embed-
ded in the firmware images for the emulation to work. Moreover, many device
operating systems appear to be tightly bound to their hardware architecture,
preventing the system from being successfully emulated when, for instance, the
system seeks access to specific hard-coded memory addresses. This limitation
also appears to affect certain types of devices, e.g., IP cameras, more than oth-
ers, e.g., home routers. We thus decided to leverage another technique borrowed
from [13], which consists of extracting the file system from firmware images and
running the specific services we are interested in, such as a web server, inside
a chroot environment on a QEMU-virtualised generic operating system of the
same architecture as the real device.

We built one high-interaction honeypot for the Netgear WNAP320 (home
router) and the DLink 850L (home router) using Firmadyne and one for the

1 Glutton: https://github.com/mushorg/glutton
Cowrie: https://github.com/micheloosterhof/cowrie
Telnet-IoT-honeypot: https://github.com/Phype/telnet-iot-honeypot
MTPot: https://github.com/Cymmetria/MTPot
Honeything: https://github.com/omererdem/honeything
Dionaea: https://github.com/DinoTools/dionaea
Conpot: https://github.com/mushorg/conpot.

https://github.com/mushorg/glutton
https://github.com/micheloosterhof/cowrie
https://github.com/Phype/telnet-iot-honeypot
https://github.com/Cymmetria/MTPot
https://github.com/omererdem/honeything
https://github.com/DinoTools/dionaea
https://github.com/mushorg/conpot
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Brickcom CB-100AP (IP camera) using the “chroot” technique. Since these hon-
eypots run on emulated firmware images, we instrument them by reseting them
to their original, clean state every hour.

We thus operate a total of 10 different honeypots - seven low-interaction ones
and three high-interaction ones - offering a total of 15 different services on 26
ports. We also collect all incoming and outgoing traffic (the outgoing traffic from
high-interaction honeypots is blocked on ports known to be used for scanning and
rate-limited otherwise so that they do not involuntarily attack or scan other real
devices on the Internet). Each honeypot is deployed on two different network
infrastructures, namely a large cloud infrastructure that publishes its cloud-
reserved IP address ranges and a tier-3 ISP cloud and hosting infrastructure.
Finally, the honeypots are deployment over a set of 76 IP addresses located in
six different countries and spanning two continents.

Data Enrichment. As depicted in Fig. 1 the data enrichment part of our frame-
work essentially consists of two tasks: (i) enrich the logs generated by and the
files dropped on the honeypots, and (ii) process the network traffic captured at
the honeypots to extract additional attack logs and files generated by attackers.
More specifically, we extract information about devices our honeypots interact
with from Shodan [1] and an IP and domain reputation feed. Furthermore, we
retrieve binary reports about files dropped on the honeypots from VirusTotal [2]
and run the Snort IDS with the subscription rules to help us label the collected
network traffic.

3 Insights into the IoT Threat Landscape

In this section we present the results obtained by analysing the data collected
from our honeypot deployment over a period of six months between August
2017 and February 2018. This data consists of (i) enriched logs produced by the
different honeypots, (ii) raw network traffic and (iii) files dropped by attackers.

3.1 IoT Device Reconnaissance and Intrusion

First, let us look at how attackers penetrate IoT devices in order to further com-
promise and monetise them. We have recorded a total of 37,360,767 connections
to our honeypots from 1,586,530 unique IP addresses over the six month period.
Additionally, our honeypots record peaks of up to 500K connections per day. It
is noteworthy to mention that, in an effort to exclude as much as possible the
basic port scanning traffic (i.e., check if port is open/closed/filtered), we con-
sider only fully-established TCP connections or at least two-packet long UDP
connections. Comparably, previous IoT honeypot deployments reported about
70K telnet connections for IoTPot [30], 18M requests by IoTCandyJar [23] and
80K connections by the telnet honeypot used by Antonakakis et al. in their study
of the Mirai botnet [7].
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Looking at Attack Sources. First, we take a look at countries that originated
attacks against the honeypots. Surprisingly, more than one third of the attacks
originated from Brazil. Note that none of the honeypots are deployed in this
country and in the South American continent. Looking into more details at this
phenomenon, it turns out that no less than 25% of attacks come from one of
the biggest ISP in Brazil: Telefonica. Japan’s third place is also surprising and,
for the big part, attributable to the largest Japanese branch of the ISP NTT.
Interestingly, Antonakakis et al. [7] observed a similar distribution in their study
of Mirai with most bots concentrated in South America and East Asia. This
suggests that the issues affecting these regions have yet to be resolved. Finally,
China, Russia and the United States together account for about 20% of attacks.

Now looking at the distribution of device types attacking our honeypots, we
see that networking devices, such as routers, DSL/cable modems, come first sup-
posedly due to the fact that they are widespread and typically directly reachable
from the Internet. After networking devices our honeypots were heavily hit by
IP cameras, digital video recorders (DVRs) and alarm systems.

Finally, we extracted the IP-based reputation of attack sources from a large
feed aggregator at the time these IP addresses connected to the honeypots.
This reputation feed aggregates tens of blacklists describing different malicious
activity, such as bot infections, spam, C&C server hosting, web-based attacks,
etc. More than two thirds of attack sources were not known to any blacklist
when we observed them for the first time. Additionally, about 15% of attacking
IP addresses have been flagged as compromised and already part of a botnet.
This last observation is consistent with the worm-like behaviour of IoT botnets
where compromised devices are trying to self-replicate themselves.

Scanned and Attacked Services. Looking at the distribution of connections
per service given in Table 1, we can see that telnet dominates with more than
65% of connections, followed by http accounting for about 22% of connections.
The remaining 13 decoy services represent a total of about 10% of connections.
This distribution is of course skewed towards some services, such as telnet or
http, which are provided by multiple of our honeypots while others, such as
modbus, bacnet or mqtt, are emulated by only one honeypot. We thus provide
the average number of connections per service, per day and per honeypot as a
metric of the popularity (or attractiveness) of a service to attackers/scanners.
With such a metric we can see that http ranks first, closely followed by telnet
with an average of 5, 712.97 and 4, 733.02 daily connections respectively.

Since http and telnet are by far the most “attractive” and hit services at
our honeypots and that these services are often provided by Internet-connected
devices for remote administration, we decided to focus our investigation of IoT
device intrusion mechanisms with these services.

Telnet Access. As documented in [7,30] as well as in various blog posts [21],
the intrusion mechanism of a large number of IoT botnets rely heavily on the
exploitation of the telnet-based remote management interface often provided
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Table 1. Breakdown of the number of connections to and average daily hit rate of the
different decoy services offered by the honeypots.

Rank Service No. of
connections

Avg. hit rate
per day ↓

Rank Service No. of
connections

Avg. hit rate
per day ↓

1 http 8, 469, 122 5712.97 9 s7comm 8, 623 7.10

2 telnet 25, 334, 377 4733.02 10 snmp 4, 620 4.98

3 ssh 1, 061, 343 1019.26 11 mqtt 698 4.78

4 upnp 208, 635 761.44 12 cwmp 10, 011 4.51

5 smb 1, 824, 945 356.37 13 pptp 512 3.51

6 https 384, 863 131.57 14 bacnet 1, 193 1.04

7 modbus 14, 408 15.54 15 ipmi 16 0.01

8 ftp 37, 401 12.38

by IoT devices. Given the usual lack of proper security management and poor
manufacturing of devices, default or hardcoded [6] telnet login credentials can
provide an easy, dictionary-based brute-force attack vector that usually leads
attackers to take full control over the devices.

We have seen a total of 11,791,128 telnet connections (46.5% of the total 25M)
where attackers successfully logged into the box. Furthermore, attackers needed
on average three attempts to guess the correct username and password associated
with the different honeypots. Note that our honeypots are all configured with
default or easy to guess passwords as our goal is to capture as many attacks as
possible. Finally, we have seen that attackers have tried to log in with a total of
4,095 unique usernames and passwords.

Vulnerability Exploitation. Lately, anecdotal evidence suggested that IoT
botnets started leveraging not only telnet credentials brute-forcing but also
exploiting very specific software vulnerabilities in IoT device firmware [8,9]. To
investigate this phenomenon, we leveraged our three high-interaction honeypots
to determine how attackers have attempted to exploit them. Table 2 summarises
the various vulnerabilities affecting these devices and the number of times these
vulnerabilities were seen exploited by attackers2.

We can see that both the DLink router and the Brickcom IP camera are
affected by a lot of vulnerabilities, and than many of them - seven for the router
and five for the camera - are being exploited in the wild. We can also see that
the most exploited vulnerability for both the DLink router and the Brickcom IP
camera leads to credentials disclosure, which appears to be what attackers are
looking for the most. The other exploited vulnerabilities on the DLink router lead
to remote command execution or full system takeover. As far as the Brickcom IP
camera is concerned, apart from the XSS vulnerability, all other vulnerabilities
2 We retained only vulnerabilities that can be exploited from by a remote attacker

and that were related to services exposed by our honeypots.
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Table 2. Software vulnerabilities affecting the high-interaction honeypot devices.

Device Vulnerability Discl. date No. of

exploitations

DLink 850L

(home router)

Stealing login and password [17] Sep. 2017 258

Remote Buffer Overflow in Cookie Header [25] Jun. 2014 49

Full Superuser access (RCE to Root) to the device [17] Sep. 2017 13

Remote Command Execution via WAN and LAN [29] Aug. 2017 6

Buffer overflows in authentication and HNAP

functionalities [26]

Nov. 2015 3

Remote code execution (CVE-2016-5681) [5] Jun. 2016 2

UPnP SOAP TelnetD Command Execution [24] Sep. 2013 1

Updating firmware in Recovery mode [17] Sep. 2017 0

XSS (CVE-2017-{14413,14414,14415,14416}) [19] Sep. 2017 0

Retrieving admin password (CVE-2017-{14417,14418})
[19]

Sep. 2017 0

Nonce brute-forcing for DNS configuration -

CVE-2017-14423 [19]

Sep. 2017 0

Pre-Auth RCEs as root (L2) - CVE-2017-14429 [19] Sep. 2017 0

Netgear

WNAP320

(home router)

Arbitrary command execution (CVE-2016-1555) [4] Jan. 2016 0

Brickcom

CB-100AP-3456

(IP camera)

Remote Credentials and Settings Disclosure [28] Jul. 2017 50

Cross-site Request Forgery [27] Jun. 2016 11

Hard-coded Credentials [27] Jun. 2016 6

Cross-site Scripting [27] Jun. 2016 6

Insecure Direct Object Reference/Authentication

Bypass [27]

Jun. 2016 6

are related to credentials/device information disclosure and all of them are being
exploited. Surprisingly, the only vulnerability affecting our Netgear router hon-
eypot, which enables remote code execution and eventually a full device takeover,
was never found to be exploited. In total 411 vulnerability exploitations have
been observed across the three high-interaction honeypots over a period of four
and a half month. While this number is still low compared to the number of
telnet credentials cracking attempts, the fact that cybercriminals use so many
and diverse vulnerability exploits (sometimes very recent) shows that they are
putting a lot more care and sophistication into the building of their botnets. It
also shows a real evolution from the first IoT botnets that were relying solely
on telnet credentials brute-forcing. To the best of our knowledge this is the first
time such a behaviour is reported with an assessment of actual vulnerability
exploitations against IoT devices in the wild. It is also noteworthy that the dis-
closure date of the various exploited vulnerabilities vary a lot, from 2013 to the
end of 2017. Moreover, the most exploited vulnerability for the DLink router
and the Brickcom IP camera were both disclosed in the second half of 2017, only
a few weeks before we started seeing them used against out honeypots.

To sum up, most of the time the goal of attackers is to get some privileged
access to the device in order to proceed with the infection and later the moneti-
sation. On the one hand, exploiting a software vulnerability on a specific device
can facilitate the intrusion when devices are not properly patched and reduce
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Fig. 2. Intrusion attempts from the IoT Reaper botnet.

the noise produced by the brute-forcing. However, it also requires more work
and research from the botnet creator to find IoT device exploits.

A Sneak Peek at IoT Reaper. One particular botnet appears to be heavily
relying on software vulnerability exploitation to spread: IoT Reaper [10]. The
botnet emerged in late 2017. Figure 2 depicts the number of intrusion attempts
attributable to the IoT Reaper botnet against our honeypots. The figure shows
that the botnet exhibited an aggressive peak of intrusions at the beginning of
October 2017, when the botnet was born. After one month, it initiated a quieter
phase, which could be due to (i) the botmaster(s) purposely slowing down the
growth of the botnet after it reached a steady size or (ii) an attempt to remain
under the radar after raising a lot of attention in its first, very active month.
Interestingly, the motivations behind IoT Reaper’s operators is still unknown.

Browsing Attackers. Telnet credentials brute-forcing and vulnerability
exploitation are not the only behaviours we observe from our honeypots. In
fact, given that our high-interaction honeypots mimics almost all functionalities
of the real devices they emulate, we have witnessed some attackers “browsing”
through the web interfaces of the two routers and the IP camera. Table 3 shows
a snippet of some URLs requested from the different devices and the action
triggered or information disclosed. Furthermore, we next attempt to determine
if such “browsing” behaviour is generated by individuals actually visiting the
pages or if it is generated by automated scanning tools. First, we look at the
time elapsed between http requests from each client IP address and notice that
30% of clients issue requests with an average time gap of less than one second,
which means these queries are thus likely generated by automated scanning tools.
On the other hand, about 10% of clients issue requests with an average time gap
of several 10’s of seconds, which is more compatible with a real human “brows-
ing” behaviour. Finally, one could argue that such a behaviour, when performed
in an automated way, is likely to be part of some reconnaissance or device iden-
tification phase. However, in most cases, access to specific admin pages of the
remote management web interfaces requires authentication, which assumes that
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Table 3. Snippet of URLs requested by “browsing” attackers.

Device URL Action No. of

requests

DLink 850L

(home router)

GET /diagnostic.php Display previous diagnostic reports 99

GET /bsc wlan.php Wireless network settings 14

GET /adv wps.php Access WiFi protection setup 14

GET /tools.php Access administrator settings 4

GET /advanced.php Access advanced setup 3

GET /setup.php Access internet connection setup 3

GET /status.php Get device information 2

GET /st wlan.php Get connected wireless client list 1

GET /st routing.php Get device routing table 1

POST /routing stat.php Issue routing-related command 1

Netgear

WNAP320

(home router)

GET /config.php?json=true Dump router configuration 127

GET /downloadFile.php?file=config Download config. file containing credentials 1

Brickcom CB-

100AP-3456

(IP camera)

GET /snapshot.jpg Get snapshot from IP camera video feed 85

POST /cgi-bin/camera.cgi Set camera settings 9

GET /cgi-bin/motiondetection.cgi?

action=getMD& index=1

Get motion detector settings 2

POST /cgi-bin/audiometer.cgi Set microphone sensitivity 1

attackers have already gotten access to valid credentials and presumably already
know what device they are interacting with. Moreover, we typically observe that
attackers accessing more than one page of a given web interface never request
inexistent pages, showing that they are either browsing through the web interface
or know exactly what pages are provided by the given device.

3.2 IoT Device Infection

In the previous section, we described some of the IoT device reconnaissance
and intrusion mechanisms we observed are used by cybercriminals to access
and take control over IoT devices. This is usually the first step to a multi-
stage attack eventually leading to compromised devices being used to perform
other nefarious activities. In this section, we will discuss the second stage of
an IoT device takeover where attackers prepare the device for its monetisation,
usually by running some malicious code that (i) further tries to spreads itself by
exploiting other devices and (ii) joins the C&C channel of an existing botnet.

In order to study the infection mechanisms against our IoT honeypots and
given that, from our observations, telnet is by far the most prominent intrusion
mechanism used by attackers, we extracted all commands issued by attackers
from each telnet connection to our two telnet-enabled high-interaction honey-
pots, namely the Netgear router and the Brickcom IP camera, stripping away
command arguments and credentials entered at the beginning of the sessions.
Filtering out empty connections as well as connections where attackers didn’t
manage to successfully log into the box left us with a total of 169,804 out of
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Table 4. Telnet session clustering results: top 10 clusters by size.

Cluster ID Size Malware families

No. of connections No. of sessions

A 45,599 (7.46%) 5624 Linux.Downloader, Linux.Mirai,
Linux.Aidra, Linux.Kaiten,
Linux.Gafgyt

B 10,259 (1.68%) 5 LinuxMirai, Linux.Masuta

C 7,146 (1.17%) 8 Linux.Mirai

D 6,820 (1.12%) 6 Linux.Mirai, Linux.Gafgyt

E 4,205 (0.69%) 3 Linux.Hajime

F 3,121 (0.51%) 7 Linux.Mirai

G 2,620 (0.43%) 21 Linux.Mirai, Linux.Gafgyt

H 2,212 (0.36%) 5 Linux.Mirai, Linux.Aidra

I 1,444 (0.24%) 4 Linux.Mirai, Linux.Aidra,
Linux.Gafgyt

J 1,402 (0.23%) 5 Linux.Mirai

611,429 (27.77%) connections. Next, we removed short connections where the
client issued a sequence of less than two commands, which is unlikely to imple-
ment a real compromise. This step left us with 93,099 (15.23% of the total) con-
nections. Finally, we transformed each sequence of commands into an unordered
set of commands, leading to a total of 8,167 unique telnet sessions. We then
clustered these 8K sessions with the DBSCAN clustering algorithm using the
Jaccard index to compute the similarity between each pair of telnet sessions. We
obtained a total of 70 clusters. The clustering results are summarised in Table 4.
Note that only telnet commands were used in the clustering and the malware
families were added afterwards to illustrate the clusters.

First of all we can see that the first cluster (A) is by far the biggest one
with more than 45K telnet connections. It contains a lot of variety, with more
than 5K unique sessions (i.e., unique sets of commands). Cluster A can be linked
to malware samples belonging to multiple families, namely Mirai, Aidra, Kaiten
and Gafgyt, based on AV detections extracted from running the binaries dropped
during these telnet sessions to VirusTotal. This observation, plus the low com-
pactness of the cluster can be explained by the fact that the commands founds
in the cluster are quite generic and common to a lot of malware families.

Cluster B contains about 10K telnet connections attributable to Mirai and
Masuta. Masuta is a very recent variant of the Mirai botnet that emerged in late
2017. When digging further, we notice that the telnet command sequences lead-
ing to a Mirai sample and to a Masuta sample are almost identical, highlighting
their common roots. In this case, the difference between the two threats resides
in the dropped binaries.
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Interestingly, cluster E appears to be related to the so-called “vigilante”
(a.k.a. white hat) botnet Hajime [16]. Hajime is known to be a sophisti-
cated, P2P-operated botnet that infects vulnerable IoT devices by brute-forcing
their credentials. So far, it has not been linked to any specific type of attack,
such as DDoS attacks. Interestingly, Edwards et al. described the Hajime
infection process that would drop the malicious binary by issuing a series of
echo -ne"<hex-string>" >> <file> commands over telnet in order to rebuild
the binary and then execute it. This contrasts with most of IoT botnets, which
drop binaries by downloading them from a remote host. However, from cluster
E, it appears that Hajime has added the “download” functionality to its self-
replication module. It now appears to first check whether it can download the
binary and, upon failure, “echo load’s” a custom dropper that downloads the
main bot via HTTP.

We further looked at the number of commands issued by attackers visiting
our low- and high-interaction honeypots. It is interesting to note that attackers,
when getting into low-interaction honeypots are inclined to execute more unique
commands during telnet sessions. We speculate that this phenomenon is due
to the fact that low-interaction honeypots provide some default telnet session
policies that return an empty result to the attackers. This default behaviour
triggers the attackers to execute several other branches of their scripts to identify
the architecture of the honeypot, alternative ways (e.g., tftp) to deliver binaries
when wget failed, etc.

Looking at the telnet commands issued during the infection phase thus
appears to provide a way to fingerprint attackers and attribute them to specific
threats (or botnets). We believe that such a fine-grained profiling of attackers can
greatly assist with the detection and investigation of IoT threats, for instance
when writing IoCs.

Dropped Files Analysis. Over the six months of operations our honeypots
have collected 3,385 files that were dropped by attackers. For the sake of compar-
ison, previous work on the study of IoT malware analysed 43 binaries in IoTPot
[30] and 434 in the Mirai botnet study [7]. Attackers use various techniques to
drop files to compromise devices. (i) The most common technique consists in
downloading the binary, usually via HTTP or FTP from a remote host. (ii) The
other technique we have witnessed is the “echo load” where attackers rebuild
the binary in the telnet session by “echoing” hexadecimal strings into a file. So
far, we have witnessed all malware families use method (i) and only a couple of
them, namely Hajime and Gafgyt use (ii) in combination to (i).

We further obtained malware families of the more than 3K binaries we col-
lected by querying the VirusTotal binary reports and normalising AV detection
labels, as presented in Table 5. Note that 2,887 out of 3,385 (85.2%) files were
not known to VirusTotal before we submitted them. From the perspective of our
honeypots, Mirai represents the biggest set (47.5%) of binaries we see. Hajime
and Gafgyt follows, with 24.4% and 13.7% respectively. We also observed a mix
of old and new botnets, e.g., Masuta emerged in late 2017, Mirai, Hajime and
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Table 5. Normalised AV detections of dropped binaries as given by VirusTotal.

Rank Malware family No. of files ↓ Rank Malware family No. of files ↓
1 Linux.Mirai 1, 609 8 Linux.Generic 7

2 Linux.Hajime 792 9 Linux.Remaiten 9

3 Linux.Gafgyt 464 10 Linux.Amnesia 5

4 Linux.Aidra 297 11 Linux.BitcoinMiner 1

5 Linux.Kaiten 154 12 Others 4

6 Linux.Download 30 13 Undetected 3

7 Linux.Masuta 10 Total 3, 385

Remaiten appeared in 2016 and the first evidence of Gafgyt dates back to 2014.
Interestingly, we can see that there appears to be one instance of a cryptocur-
rency mining malware that infected one of our honeypots.

Finally, we looked at the observation window of individual malware sample
hashes, which is plotted in Fig. 3(a). The short-lived trend here is very strong,
with almost 90% of unique malware hashes seen during only one day. Addition-
ally, four malware families - Mirai, Gafgyt, Kaiten and Hajime - have samples
that are being observed for weeks and even months (with a maximum of four
months and 13 days for Mirai). In case of Hajime, we witnessed only two bina-
ries that have an observation window of several weeks. According to Edwards et
al.’s analysis of the botnet [16], the two binaries appear to be Hajime’s stage2s
module, which corresponds to the final piece of the bot being run to fully com-
promise the device. Unlike the rest of Hajime’s binaries we collected, these two
binaries are also very likely packed, based on their Shannon entropy above 7.98
(out of 8). We speculate that malware authors decided to put more care into
designing and obfuscating the stage2s binary, which is then observed for longer
periods of time than the other first-stage binaries.

Malicious Files Download. A total 2,837 binaries were downloaded from
832 different IP addresses hosted in 146 different ASes. Figure 3(b) plots the
observation window as seen from our honeypots. We can see that at least 90%
of malware download servers appear to be short-lived, with a witnessed lifetime
of less than five days. This is also corroborated by the fact that 60% of malware
distributing IP addresses were never blacklisted throughout the six month data
collection period. Such IP addresses thus appear to be used for a very short
period of time to distribute IoT malware and then disposed of to move on to
other IP addresses, so it is hard to rely on techniques like IP blacklisting to
block them. It is also noteworthy that 40% of IP addresses are located in only
five different ASes associated with large national ISPs providing hosting and
cloud services. Note that 99.7% of URLs used by attackers to download files
use raw IP addresses rather than domain names. Another interesting thing we
observe is that attackers seem to use very limited number of IP addresses to host
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Fig. 3. CDF of the observation window of (a) malware samples and (b) malware dis-
tribution servers.

Table 6. Top 10 ports in volume of post-infection traffic.

Netgear router Brickcom IP camera

Rank Port No. of connections Port No. of connections

1 80/udp 2, 604, 683 80/udp 4, 866, 276

2 3074/udp 1, 337, 377 3074/udp 1, 461, 617

3 53/udp 1, 004, 940 53/udp 1, 384, 311

4 443/udp 764, 040 22/udp 810, 670

5 22/udp 630, 907 443/udp 805, 234

6 443/tcp 519, 864 27015/udp 618, 537

7 27015/udp 489, 547 5355/udp 164, 900

8 16837/udp 195, 545 777/tcp 98, 130

9 3074/tcp 129, 435 34/tcp 96, 703

10 8080/udp 123, 446 53/tcp 95, 490

malicious binaries. We observe, on average, 12 malicious files being hosted at a
single IP address and it is worth noting that one IP address was seen hosting
up to 468 malicious binaries. We also noticed that the Brickcom IP Camera (avg.
863 downloads/day) is more active than the Netgear router honeypot (avg. 163
downloads/day) in terms of malware downloads. We speculate that this is due to
the widely publicised article disclosing the camera’s vulnerabilities with PoCs.

3.3 IoT Device Monetisation

The final stage of an IoT device compromise usually consists, for the attacker, in
leveraging its full control of the device to perform other nefarious activity, such
as infecting other devices to expand its botnet, launching DDoS attacks, etc.

We define the post-infection traffic as the traffic received and generated by
a honeypot excluding the intrusion and infection. The post-infection traffic thus
contains all potential C&C communications as well as other attacks or malicious
activity performed from the compromised honeypots. It is important to note
that the following post-infection traffic analysis is different from the previous
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Fig. 4. Incoming and outgoing post-infection traffic per destination port (x-axis)
recorded at the Netgear router and Brickcom IP camera honeypots.

research efforts due to the fact that we allow the malicious binaries in the real
environment and only block or rate-limit outgoing traffic (see Sect. 2 for the
detailed design information). Note in the following analysis we focus on the
Netgear router and Brickcom IP camera high-interaction honeypots.

High-Level Overview. We first carry out a high-level analysis of post-infection
traffic by dividing it into TCP and UDP and incoming and outgoing. The goal
is to identify if the high-interaction honeypots would experience different traf-
fic volumes due to the fact that both devices, in the real world, have differ-
ent computational capabilities. Our analytical results are shown in Fig. 4. It is
straightforward to notice that the router honeypot experienced more outgoing
UDP and TCP traffic (see Fig. 4(a) and (b)) than the IP camera honeypot. Our
interpretation of this behaviour is that the Netgear router has superior compu-
tational capabilities compared to an IP camera, hence the attackers do not need
to “throttle” the performance of the payloads. It is also interesting to note that
we observe outgoing traffic (on both TCP and UDP) on 65,335 different ports
(see Fig. 4), which contrasts with the incoming traffic observed on only 14,560
and 5,320 ports for the Brickcom and Netgear honeypots respectively. The top
10 ports for outgoing post-infection traffic from both high-interaction honeypots
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Table 7. Analysis of binaries that triggered peaked post-infection traffic.

Peak Malware sample Time Top three ports per volume of traffic (port

number/no. of connections)

❶ tcp (attack) Binary 1, 2, 3 and 4 2018-02-11 16:00 – 17:00 3324/tcp (117,267), 53/udp (160), 6881/udp

(75)

❷ udp (attack) Binary 5 and 6 2018-02-20 02:00 – 03:00 80/udp (172,493), 3074/udp (167,535), 100/udp

(54,772)

❸ udp (scan) Binary 7 and 8 2018-02-25 17:00 – 18:00 21351/udp (79), 64031/udp (78), 3937/udp (77)

❹ udp (scan) Binary 9, 10 and 11 2018-02-27 19:00 – 20:00 6881/udp (108), 35159/udp (100), 54680/udp

(100)

Fig. 5. Post-infection traffic analysis: traffic bursts.

are shown in Table 6. The first thing we observe is that the top 10 ports for
outgoing traffic contributes to 30% of each high-interaction honeypot’s total
traffic. The second thing we observe is that the top three ports for outgoing
traffic cover port scanning (80/udp), possible C&C communications (3074/udp)
and DDoS attacks (53/udp). This traffic contributes to about 20% of each high-
interaction honeypot’s total traffic. We observed that even though there is a
difference in the volume of traffic between the two high-interaction honeypots,
however, in general, they show similar traffic patterns, e.g., 80% of connections
on ports 80/udp and 53/udp have less 10 packets and 80% of connections on
port 3074/udp have less than 20 packets.

Spiked Traffic Analysis. After a high-level overview of the post-infection
traffic, we turn our attention to the temporal analysis. As shown in Fig. 5, there
are four peaks in the traffic: peak ❶ is caused by a dramatic increase in TCP
traffic while peak ❷, ❸ and ❹ are triggered by elevated UDP traffic. In order to
identify the root causes of these peaks, we correlate the file downloads observed
during the infection phase (see Sect. 3) to these traffic peaks in order to identify
the binaries that have contributed to such spikes. Note that due to the design
philosophy of our high-interaction honeypots, we allow multiple binaries to run
at the same in the same environment and it is hard to nail down traffic to a single
binary. Taking this point into consideration, we slide an one-hour window along
each day of post-infection traffic (i.e., we obtain 24 traffic measurements per
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Table 8. Attack, scan and mixed post-infection traffic analysis.

Honeypot Attack

(no./avg. ports/avg. binaries)

Scan

(no./avg. ports/avg. binaries)

Mixed

(no./avg. ports/avg. binaries)

udp tcp udp tcp udp tcp

Netgear router 16/1,910/3 10/308/54 7/60,020/3 6/53,573/2 2/29,307/3 0/0/0

Brickcom IP

camera

12/1,371/4 12/11/8 8/58,424/5 7/39,820/5 3/37,393/6 0/0/0

day) and rank them based upon the traffic volume. Once we have these ranked
measurements in place, we identify the binaries that were downloaded during
the top most active windows as the root cause of this peaked traffic. The results,
shown in Table 7, are interesting. We noticed that the volume of traffic per port
for the top three ports of peak ❸ and ❹ is way smaller than that of peak ❶ and
❷. For example, we observed 3,936,628 UDP connections between 19:00–20:00
in peak ❹, yet the traffic on the top three ports only cover around 0.01% of
the total traffic observed during that hour. More interestingly, during the same
hour, we observed outgoing traffic on 54,721 different ports. In contrast, in peak
❶, we only observed traffic on 628 different ports, yet one port covered 96% of
the total traffic of that window. This observation motivates us to carry out a
detail behavioural analysis.

Behavioural Analysis. In order to obtain a better understanding of the under-
lying communications behind the post-infection traffic, we attempted to classify
it into three categories: (i) scanning traffic, (ii) attacking traffic and (iii) C&C
traffic. First of all, we focus on days where we observe more than 10K connec-
tions, for TCP and UDP separately. On each day, we identify the largest hourly
TCP and UDP traffic and obtain the top three ports, which are measured and
ranked by the number of connections on each port. Then, if the volume of traffic
on the top three ports is higher than 70% of the total hourly traffic, we classify
the period as an attack ; if the volume is lower than 20%, we classify the period
as a scan, otherwise we consider it a mixed period. We can see from Table 8 that
both the Netgear and Brickcom honeypots show similar volume of TCP/UDP
traffic. It is interesting to observe that the UDP traffic covers a wider range of
ports in the attack scenarios then the TCP traffic, yet in the scan scenario, the
number of ports for TCP and UDP are comparable. This leads to our preliminary
conclusion that binaries that launched TCP attacks focused on a more limited
number of ports than those using UDP. However, it requires further proof from
binary analysis which is out of the scope of this paper. To our best knowledge,
IoTPoT [30] is the only research effort that discussed how attackers monetised
the compromised devices. However, it provided limited insights into binary clus-
ters and traffic patterns. In this paper, we were able to quantify the relationship
between binaries and the traffic observed with fine granularity.

Distributed Denial of Service Attacks. IoT botnets are well known to be
primarily used to launch DDoS attacks. Leveraging the classification of traffic
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bursts into scan traffic and attack traffic, we next attempted to estimate the total
number of DDoS attacks launched from our honeypots. We observed a total of
41 high-volume traffic peaks we attributed to DDoS attacks our honeypots have
taken part of. On average each attack generated 141,962 packets and lasted
143 seconds, which gives an average of 993 packets per second. From the 41
attacks, 37 were carried out over UDP and 4 over TCP. Moreover, 38 attacks
were targeted towards a single IP address. We recorded five noticeably massive
attacks that lasted for several minutes: four DNS (53/udp) attacks at 6K packets
per second with from 25 to 54 Mb/s of traffic and one TCP SYN (25565/tcp)
attack at 3K packets per second with 1Mb/s of traffic. These five attacks were
targeted towards five different IP addresses, one IP address each. Interestingly,
two of the IP addresses appeared to be hosting online gaming servers: one Steam
and one Minecraft server. In fact, gaming servers seem to be regular targets of
DDoS attacks as outlined by Krebs’ article [20] and Antonakakis et al.’s Mirai
study [7]. The three other IP addresses belong to two hosting providers and one
American university network.

4 Related Work

IoT Honeypots. ScriptGen by Leita et al. [22] is one of the earliest efforts
in building high-interaction honeypots. It analyses the sequences of message
exchanged between attackers and real servers and automatically derives a state
machine that represents the observed interaction. In the same spirit, IoTCandy-
Jar [23] proposed a technique that captures attackers requests, then scans the
internet for real IoT devices that can respond to these requests and use machine
learning to build a model to be used in future interactions with the attackers.
However, the ethics of this approach with respect to routing traffic to real IoT
devices remains debatable. Guarnizo et al. [18] proposed Siphon, an architecture
to build a scalable high-interaction honeypot infrastructure backed by real IoT
devices. Given that Siphon relies on real devices, its scalability is thus intrin-
sically limited. Authors also fail to explain how they actually perform the IoT
device instrumentation and reset to clean state. Pa et al. [30] proposed IoTPoT,
a telnet-based IoT honeypot. Its core design philosophy is similar to ScriptGen.
When an incoming command is unknown, it forwards its to a set of sandbox
environments running an embedded Linux OS for different CPU architectures.
The interaction between the attacker and the backend is modeled so that the
system can later handle the same request without interacting with the back-
end. Following this design philosophy, Wang et al. [31] proposed ThingPot, a
proof-of-concept honeypot for Philips HUE light bulbs.

Embedded Device Security and IoT Botnets. The insecurity of Internet-
connected embedded devices have been studied for many years. In 2010, Cui et
al. [15] already reported on more than 500K devices with weak or default cre-
dentials. In 2012, the Internet census powered by the IoT device-backed Carna
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botnet confirmed this trend [3]. In parallel, researchers have also been study-
ing the security of embedded device firmware. Costin et al. performed extensive
vulnerability assessment of IoT device firmware in [12,13]. Zaddach et al. also
proposed Avatar [32] and Chen et al. proposed Firmadyne [11], both of which
provide an emulation environment for embedded devices that further enable vul-
nerability assessment of firmware images. All these studies highlight the myriad
of software vulnerabilities crippling IoT products.

The most notable work on the IoT threat landscape is the recent forensic
study of the Mirai botnet by Antonakakis et al. in [7]. By combining historical
and heterogeneous data sources they were able to reconstruct the whole history
of the infamous botnet and track its various evolutions following the release of its
source code. Pa et al. also leverages their IoTPot [30] infrastructure to analyse
telnet-based intrusion mechanisms and the behaviour of the few malware samples
they collected. Recently, Cozzi et al. [14] published a study of Linux (and Linux-
based IoT) malware describing some of the trends in their behaviour and level
of sophistication.

Our work serves as a follow up to these previous studies. First, we go beyond
the scope of the Mirai botnet and aim at providing a global picture of the current
IoT threat landscape that includes a myriad of other malware and botnets. We
leverage some of the techniques used in the study of embedded device firmware
security to build high-interaction IoT honeypots. Finally, unlike IoTPot and
ThingPot, we do not restrict ourselves to attacks targeting a particular service
or device but instead try to provide as much diversity as possible to get an
accurate view into the threat landscape.

5 Conclusion

We used six months of data collected from our honeypots and enriched with
various reputation feeds and binary analyses to report on the current threats
targeting IoT devices. For instance, we have seen that while attackers still heav-
ily rely on brute-forcing attacks against remote management interface of devices,
a worrying and increasing number of botnets are getting equipped with a suite
of exploits targeting a wide range of software vulnerabilities inside IoT device
firmware, sometimes disclosed a couple of weeks before we start seeing them in
the wild. Additionally, botnets powered by the Mirai malware appear to be dom-
inating the IoT thread landscape but other new and old players, such as Hajime
and IoT Reaper are aggressively claiming their share of the vulnerable IoT prod-
ucts. Finally, while the core business of IoT botnets is still DDoS attacks, some
emerging botnets like IoT Reaper are yet to unveil their real purpose. In sum-
mary, we are now witnessing an abrupt change in the sophistication of the IoT
threat ecosystem. We believe that, given the experience gained from studying the
traditional malware ecosystem, we now have an opportunity to better anticipate
and take proactive actions upon the evolutions of the IoT threat landscape.
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Abstract. Industrial control systems (ICSs) operate a variety of critical
infrastructures such as waterworks and power plants using cyber physical
systems (CPSs). Abnormal or malicious behavior in these critical infras-
tructures can pose a serious threat to society. ICS networks tend to be
configured such that specific tasks are performed repeatedly. Further, for
a specific task, the resulting pattern in the ICS network traffic does not
vary significantly. As a result, most traffic patterns that are caused by
tasks that are normally performed in a specific ICS have already occurred
in the past, unless the ICS is performing a completely new task. In such
environments, anomaly-based intrusion detection system (IDS) can be
helpful in the detection of abnormal or malicious behaviors. An anomaly-
based IDS learns a statistical model of the normal activities of an ICS.
We use the nearest-neighbor search (NNS) to learn patterns caused by
normal activities of an ICS and identify anomalies. Our method learns
the normal behavior in the overall traffic pattern based on the number
of network packets transmitted and received along pairs of devices over
a certain time interval. The method uses a geometric noise model with
lognormal distribution to model the randomness on ICS network traffic
and learns solutions through cross-validation on random samples. We
present a fast algorithm, along with its theoretical time complexity anal-
ysis, in order to apply our method in real-time on a large-scale ICS. We
provide experimental results tested on various types of large-scale traffic
data that are collected from real ICSs of critical infrastructures.

1 Introduction

Industrial Control System (ICS) is a general term that describes control sys-
tems and related instrumentation designed to control and monitor industrial
processes using cyber physical systems. ICSs are used in a variety of national
core infrastructures such as waterworks, railways, transportation, power plants,
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and more. Abnormal or malicious behavior in these critical infrastructures can
pose a serious threat to the society.

To minimize the possibility of outside intrusion, most ICSs are isolated from
outside networks to a certain extent. Some old systems were built as stand-alone
systems, which are disconnected completely from outside networks. However,
malware can also be introduced to isolated infrastructure facilities via removable
drives, and this can cause serious disasters. Many modern ICSs are connected to
the Internet through a protected extension of the corporate network, and there-
fore they are potentially reachable from the Internet by malicious adversaries.
Many studies [9] have been conducted on ICS control devices that are connected
to the Internet, and there is even a search engine [1] to find them.

Fig. 1. ICS network traffic behavior

The anomaly-based approach (also known as behavior-based approach) is an
alternative approach that overcomes the drawbacks of signature-based IDS. In
this approach, a statistical model of the normal activities of an ICS is learned,
and then the model is compared with the current input to detect abnormal activi-
ties in the system, caused by even unknown attacks such as zero-day and already-
forgotten attacks. In order to detect anomalies, the IDS must learn to recognize
normal system activities in advance, typically in the training phase of the system.
There are several learning methods, and typically artificial intelligence-based
techniques are employed. As ICSs become larger and more complex, it becomes
increasingly difficult to ensure ICS security based on techniques that require
human intervention and maintenance. Anomaly-based IDSs can be valuable in
such scenarios.

Our goal is to develop a widely applicable anomaly-based IDS that only
requires network traffic data of the target ICS. In this paper, we present an
anomaly-based IDS with high detection rate and low false alert rate, using the
nearest-neighbor search (NNS) to find normal patterns of the ICS network.

Our method learns normal behavior in the overall traffic pattern based on the
number of network packets transmitted and received along pairs of devices over a
certain time interval as shown in Fig. 1. The method uses a geometric noise model
with lognormal distribution to model the randomness on ICS network traffic and
learns solutions through cross-validation on random samples. The method then
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Previously Occurred Normal Pa erns Pa erns to Determine Anomaly

Abnormal Normal

Fig. 2. An example of benefit of analyzing traffic patterns across the entire network.
The red traffic that keeps the ACL is determined as abnormal. (Color figure online)

determines whether a traffic instance contains an attack or not by comparing
the NNS distance of the traffic instance with the distribution. The expected
benefit on this approach is that it can detect abnormalities in traffic that might
appear normal from a local perspective. For example, an attack carried out by
following the access control list (ACL) can appear normal when we observe only
two associated nodes. However, the anomaly can be detected by analyzing the
traffic patterns in the entire network, as illustrated in Fig. 2.

This approach can be widely applied to various ICS devices irrespective of
the protocol used for communication or the encryption method, because it only
requires the number of packets between two devices to be collected and does not
require an in depth knowledge of individual devices or applications in an ICS
network. In addition, practically any unknown attack introduced at the packet
level can be detected, provided the attack affects traffic patterns in the network.

Our main contributions in this paper can be summarized as follows.

– We propose a new statistical model that distinguishes between normal and
abnormal traffic patterns using the overall traffic flow in an ICS network.

– Based on our concrete statistical model, we provide an IDS method to detect
a small amount of network traffic variation with the low false alert rates.

– We present a fast algorithm, along with its theoretical time complexity anal-
ysis, to enable our method to be used real-time in a large-scale ICS.

– We provide experimental results tested on various types of large-scale
(18.5 TB) traffic data collected from real control systems of critical infras-
tructures.

The rest of this paper is organized as follows. Section 2 describes prior
research on ICS network security. Section 3 proposes an ICS network traffic
pattern learning method and an abnormal traffic detection algorithm based on
the method. Section 4 presents the performance improvement of the proposed
algorithm. Section 5 analyzes the experimental results of applying the proposed
algorithm to the network traffic data collected from the control systems of actual
infrastructures in 11 sites, and Sect. 6 concludes this paper.
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2 Related Work

Numerous studies on anomaly detection techniques have been conducted. One
category of techniques focuses on changes in the physical states of control sys-
tems. There have been some recent works on data set generation for ICS research
[11,16,19]. Many studies have been carried out to perform anomaly detection
based on the characteristics of the ICS network and control devices [10,13,20,21].
They compare the estimate with the actual current physical state to determine
anomalies. However, in order for each research to be effective, it is necessary to
construct a matrix containing the real-world dynamics of the physical system.
In a large-scale ICS, it can be challenging to gather a byte-wise understanding of
the data from the applications in the ICS, in conjunction with an understanding
of the laws of physics and to implement the corresponding physical laws [7,13].

Our research focuses on the development of a practically scalable IDS by
using the self-similar nature of ICS network traffic. For common IT network
traffic, it has long been known that network traffic has a self-similar nature [15].
Subsequent studies have found more evidence of self-similarity with statistical
characteristics, such as long-range dependency [12], the Noah effect [22], and
wavelet analysis [14,18,23]. Compared to common IT networks, ICS networks
operate specific tasks with fewer human interventions. Therefore, network traffic
of some devices on ICS networks can be expected to possess stronger self-similar
characteristics such as periodicity and auto-correlation [4,10,17] than traffic from
common IT networks, but not all devices have such clear characteristics accord-
ing to our experience in critical infrastructures.

Several prior studies have applied methods from IT network traffic analysis
on ICS networks. However, such studies focused on analyzing ICS network traffic
[2], and it is difficult to find anomalies in the ICS network based only on network
traffic [3].

3 Chi-Square Distribution of NNS Distances for Normal
Network Traffic

To detect a small amount of network traffic variation by analyzing ICS network
traffic, we focused on the solutions provided by the NNS algorithm on network
traffic data. With an analytical choice of distance metric for NNS, we prove
that the distribution of NNS distances for normal network traffic follows a vari-
ant of the chi-square distribution. The traffic instance whose NNS distance is
significantly different from the variant of chi-square is considered abnormal.

3.1 Representation of Normal Network Traffic

An ICS network can be abstracted as a directed graph G(N,E), where N is
the set of nodes, and E is the set of directed edges in G. Let m be the number
of edges in G. During a fixed unit time interval U , let p be an m-dimensional
vector, where each element of p represents the number of packets+1 that pass
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through the corresponding edge in E. The slight distortion (+1 for every edge) is
added for subsequent analysis. By repeating this on the ICS network for n time
intervals, an ordered data set for normal traffic P = {p1, ...,pn} is obtained.
At a time t > n, the problem we intend to address can be formally defined as
follows: given P, decide whether pt contains an anomaly or not.

Fig. 3. An example of how our model views an actual traffic generated from the set of
tasks and noise at time i.

Note that in an ICS network, specific tasks are repeated from time to time.
Suppose that for a given edge in the ICS network, we can obtain the expected
number of packets generated by the specific task or combinations of tasks trans-
mitting on that edge during the time interval U . This results in a (hidden) set
of m-dimensional task vectors U = {u1,u2, ...}. While U cannot be obtained in
practice, it plays an important role as a hidden model for subsequent statistical
analysis. The overall network traffic pi at time i comprises of uT (i) values over all
the edges, along with some noise, where T (i) represents the task, or combination
of tasks, in U that generates traffic across an edge at time i. Figure 3 illustrates
this with an example on a simple ICS network.

To model the noises in the network traffic, we use a geometric noise model.
Although arithmetic noise, which follows normal distribution, is more widely
used, many aspects of network traffic are geometric [8]. In our case, for example,
traffic changes of ±100 are common when measuring an edge that normally
transmits 10, 000 packets, but is uncommon on an edge that normally transmits
300 packets. Therefore, geometric changes help to suitably normalize the amount
of noise for each edge. In the finance field, where many financial asset values
tend to change geometrically with randomness, it is widely known that random
geometric changes can be effectively modeled using a lognormal distribution. One
famous example is BSM [6]1. Similarly, we use a geometric model with lognormal
distribution to model the randomness on ICS network traffic. Formally, for each
network traffic instance pi = {p(i,1), ..., p(i,m)} and its corresponding hidden task

1 The Black-Scholes option pricing model that received 1997 Nobel Memorial Prize in
Economic Sciences.
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uT (i) = {u(T (i),1), ..., u(T (i),m)}, the traffic in pi is generated by

p(i,j) = u(T (i),j)X(i,j), (1)

where X(i,j) ∼ ln N(0, σ2) is an independent and identically distributed (IID)
random variable following a lognormal noise at a time i on an edge j, with σ
depending on the noise level of the ICS network.

3.2 Traffic Behavior Modeling Using NNS

At a time t > n, we decide whether pt contains an anomaly or not, using the
data P = {p1, ...,pn}. If pt was generated from normal traffic, it would be the
case that a similar pattern of traffic had previously been generated by the same
task.

For a traffic instance pt measured at time t > n, we attempt to find a traffic
instance in P that is likely to be generated by the same task as that for pt. One
approach is to pick the traffic instance p ∈ P with maximum similarity to pt,
as the estimate for the instance that is generated by the same task. Formally,
we find a p that satisfies,

arg min
∀pi∈P

D(pi,pt) (2)

where D is an m-dimensional distance metric,

D(pi,pt) =
m∑

j=1

(ln(p(i,j)) − ln(p(t,j)))2 (3)

We use the squared difference of two log values as the distance metric, for two
reasons. First, we deal with geometric changes of traffic and the log difference of
two changes are the same if and only if their geometric changes are the same. For
example, ln(c1)− ln(c2) = ln(c3)− ln(c4) for some positive constants c1, c2, c3, c4
holds if and only if c1

c2
= c3

c4
. Second, D naturally works as a penalty for an

extreme geometric difference, thereby preventing the traffic difference of any
particular edge from dominating the results.

Note that the minimization (2) is precisely a definition of the NNS problem
with distance metric (3). Let N : Rm �→ Z be a traffic to time mapping function
that maps pt to its NNS solution pN(pt) ∈ P. Then we estimate that pN(pt)

was generated by the same task as that for pt, which can be formally written as
follows.

Assumption 1. uT (t) = uT (N(pt))

Under Assumption 1, we can offset the impact of ICS tasks on the normal
network traffic by using NNS, and only the part representing the distribution of
noise can be obtained as a random variable.

Lemma 1. For a traffic instance pt generated by the normal behavior of an ICS,
the well normalized NNS distance 1

2σ2 D(pN(pt),pt) = Zt is a random variable
Zt ∼ χ2(m)
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Proof. Let s = N(pt). With our traffic model (1) and the Assumption 1, the
distance between ps, the solution of the NNS, and the query pt, can be rewritten
as follows.

D(ps,pt) =
m∑

j=1

(ln(u(T (s),j)X(s,j)) − ln(u(T (t),j)X(t,j)))2 (4)

=
m∑

j=1

(ln X(s,j) − ln X(t,j))2. (5)

=
m∑

j=1

(Yj)2 (6)

where Yj = lnX(s,j) − ln X(t,j). Note that each X(i,j) was defined to follow
ln N (0, σ2). By the definition of lognormal, lnX(i,j) ∼ N (0, σ2). Then, Yj ∼
N (0, 2σ2) and 1√

2σ
Yj ∼ N (0, 1). Therefore, we can derive the following equations

from Eq. (6).

1
2σ2

D(pN(pt),pt) =
m∑

j=1

(
1√
2σ

Yj)2 (7)

Note that the squared sum of m IID random variables that follow N (0, 1) follows
χ2(m).

Zt ∼ χ2(m) (8)

Since each 1√
2σ

Yj follows N (0, 2σ2

2σ2 ), which is the standard normal distribution,
the summation term in the right side of Eq. (7) follows χ2(m), Chi-square dis-
tribution of degree m. Therefore, we get the following.

D(pN(pt),pt)
d= 2σ2χ2(m) (9)

��
Lemma 1 is our core result, which has two important advantages when applied

to anomaly-based IDS. First, it shows that the distances of NNS solutions for
normal traffic follow a distribution associated with the well-known chi-square
distribution. Thus, it is possible to set a statistically interpretable threshold that
the NNS solutions of normal traffic should be present in, by observing normal
traffic only. Second, in the process of deriving Lemma1, for a normal traffic pt

generated by normal task in U , the majority of the traffic generated by normal
tasks is canceled out by uT (t) and uN(pt). In contrast, for a traffic rt = pt + at

where at represents a traffic vector that is not generated from normal task in U ,
the amount of traffic caused by at may not be canceled, since there is no matched
task in U . In other words, the effect of an abnormal task will be amplified in
NNS distance. Moreover, we can expect that the amplification will mainly act
towards increasing the NNS distance, since we define D(, ) as a sum of squares.
Any difference between the actual traffic and its NNS solution on each edge is
accumulated by the square. Therefore, we have the following observation.
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Observation 1. E[D(pN(rt), rt)] will be larger than E[D(pN(pt),pt)] during
most times t.

50 100 150 200

(a) Cross validation

Normal test (100 times) Abnormal test (100 times):
Five IPs send 0.2% more packets to one IP

40 80 120 160 200 240

(b) Normal/anomaly test

Fig. 4. Nearest log distance of network traffic of a site that we collected

To help understand the difference, we include brief results of the experiment
in Fig. 4. Figure 4a is the cross validation of the NNS distance distribution for the
number of packets transmitted per edge in one minute at site 1 of our dataset.
Figure 4b shows the NNS distance distribution of the normal test and the abnor-
mal test. The normal test shows the NNS distance of normal traffic not used for
learning, and the abnormal test computes the NNS distance when five IPs send
0.2% more packets than usual to one IP. Similar results were obtained in the
remaining sites of our dataset.

3.3 Learning Distribution of NNS Solution

In the previous section, we arrived at Lemma 1, which is well defined in theory.
As illustrated in Fig. 4 (and we also present extensive empirical results later in
Sect. 5), our theory also fits well with the empirical results. Nevertheless, real-
world network traffic typically tends to contain some dirty phenomena, which
makes them differ from that expressed by theory. For example, Assumption 1 may
not perfectly hold for some traffic instances, which makes it hard to estimate
σ for the noise X(i,j) ∼ ln N (0, σ2) used in Lemma 1. Additionally, m = |E|
is too large to be used for the degree of the chi-square that we derived, since
the majority of edges in an ICS network never (or almost never) transmit any
packets at all. Therefore, in order to use Lemma 1 for real IDS, a robust method
to estimate σ and k for 2σ2χ2(k) is required. We solve this problem by using
ncv-fold cross validation [5].

ncv-fold cross validation runs our algorithm by dividing the dataset into ncv

equally sized pieces. Formally, let Pc ⊂ P be the cth piece among ncv equally
divided pieces of P. We randomly sample the nsp number of traffic instances
pc ∈ Pc from each Pc, and run the NNS algorithm with each pc on the dataset
P \ Pc. After cross validation, we can achieve a set D (|D| = ncvnsp) of NNS
distances. Let μ̂ and ŝ2 be the sample mean and the (unbiased) variance achieved
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by observing D, respectively. By Lemma 1, we already know that each element
in D is sampled from the distribution 2σ2χ2(k) for some σ and k. Also, by the
definition of χ2(k), its mean and variance are k and 2k, respectively. Therefore,
with the large number of samples ncvnsp, we have the following equations.

μ̂ ≈ 2σ2k (10)

ŝ2 ≈ (2σ2)22k (11)

We have two unknown variables k and σ in two Eqs. (10) and (11). k and σ for
2σ2χ2(k) can be easily calculated as follows.

k ≈ 2μ̂2

ŝ2
(12)

σ2 ≈ ŝ2

4μ̂
(13)

By using this method, all the ncvnsp number of NNS distances in D contribute to
the estimation of 2σ2χ2(k). Therefore, even if D contains several strange results,
we can robustly estimate k and σ from Eqs. (12) and (13), respectively.

3.4 Detecting Anomaly of Traffic

After learning σ and k by using cross-validation, the implementation of the
detection method is straightforward. Let CCDF (k, α) be the complemen-
tary cumulative distribution function that evaluates the probability E[A|A >
α] for a random variable A ∼ χ(k). For a normal traffic instance pt, let
CCDF (k, 1

2σ2 D(pN(pt),pt)) = φt. By Lemma 1, φt will be larger than Φ ∈ [0, 1]
with probability Φ. In contrast, the NNS distance of a traffic instance contain-
ing attacks would have a smaller φt by Observation 1. Therefore, our detection
algorithm sets a small Φ (i.e. 0.01) and it determines that a traffic contains an
attack when φt < Φ.

4 An Efficient Algorithm for Anomaly Detection

The algorithm described in the section above can be used as an anomaly-based
IDS with reasonable performance. Nevertheless, its performance might not be
sufficient for detecting certain small amount of network traffic variation. In par-
ticular, the following three methods are common ways for hiding attacks, which
also reduce their impact on network traffic. First, the attacker can minimize
the short-term impact by spreading the attack over a long period. Second, the
attacker can minimize the impact on the ICS network by minimizing the number
of target devices to attack. Third, the attacker can mimic the normal behavior
of the ICS. The full version of our IDS includes additional methods to improve
the detection performance against such stealthy attacks.

We provide two extended methods to improve the detection performance:
windowed NNS and partitioned NNS. A summary of the two extended methods
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Fig. 5. Brief concepts about windowed NNS (red) and partitioned NNS (blue). (Color
figure online)

is illustrated in Fig. 5. In the following subsections, we formally define windowed
NNS and partitioned NNS. We also analyze how we can achieve improved detec-
tion performance with those methods, and use the findings of these analyses.
Finally, we provide a fast algorithm that applies these techniques for a large-
scale ICS in real-time.

4.1 Windowed NNS

We will first consider a continuous attack that lasts from time t to t + w − 1. In
order to gather some intuition for the improvement of the detection performance
of our simple version IDS, let us go back to the theoretical basis and analyze
Lemma 1. Consider the normal traffic instances Zt and Zt+1. Since they come
from different IID random variables (see Eq. (5)), Zt and Zt+1 are also IID
random variables. Let us define Z

(w)
t as a summation of the w number of Z’s as

follow.

Z
(w)
t =

t+w−1∑

i=t

Zi (14)

Note that Z
(w)
t ∼ χ2(wm), since each Zi ∼ χ2(m) is IID. Obviously, E[Z(w)

t ] =∑t+w−1
i=t E[Zt] by the linearity of the expectation. Let us define an inverse func-

tion CCDF−1(m,Φ) that returns α, where CCDF (m,α) = Φ. For two constants
α1 = CCDF−1(m,Φ) and αw = CCDF−1(wm,Φ), the linearity does not hold in
general. Especially, for a small Φ, it tends to αw < wα1. Although the CCDF−1
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function can be expressed by a regularized gamma function, it is somewhat com-
plex to analyze. Instead, we tested all the CCDF−1(m, 0.01) for m with practi-
cal ranges. Figure 6 illustrates the result of the IID chi-square random variables,
for several different Φ. We empirically found that CCDF−1(m, 0.01) decreases
monotonically as m increases. Therefore, we have the following Lemma.

Fig. 6. The ratio CCDF−1(m, Φ)/E[χ2(m)] with respect to m (log scale)

Lemma 2. For Φ = 0.01, at least up to wm ≤ 10, 000,
CCDF−1(wm,Φ)/E[Z(w)

t ] < CCDF−1(m,Φ)/E[Zt].

Since we aim to detect unknown attacks, it is difficult to quantify the impact
of the attacks. Nevertheless, we can expect that effect of the attacks on traffic will
lead to an increase in the NNS distance in most cases from Observation 1. Let

ψt = D(pN(rt), rt) − D(pN(pt),pt) (15)

be the increased NNS distance. For an attack that continues for a duration of
w, the total increased distance is defined as follow.

ψ
(w)
t =

t+w−1∑

i=t

ψt. (16)

There are two possible cases to analyze based on ψ
(w)
t .

– Case 1: Each ψt+i is similar for i ∈ [t, t + w − 1]
– Case 2: One ψt+i or some ψt+i’s are very different from the others.

In Case 1, the following inequality holds for all i ∈ [t, t + w − 1] by Lemma 2.

CCDF (wm,E[Z(w)
t ] + ψt+i(w)) < CCDF (m,E[Zt+i] + ψt+i) (17)

Therefore, the window version CCDF (wm,Z
(w)
t+i +ψ

(w)
t+i) has a higher probability

of detecting the attack (to be smaller than Φ). In Case 2, some ψt+i is much
larger than others, thereby neither window version CCDF (m,Zt+i + ψt+i) has
a higher probability of detecting the attack.
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4.2 Partitioned NNS

Partition search is a method for effectively detecting an attack or anomaly where
only a small fraction of the nodes have a change in the amount of packet trans-
mission. In this method, the d-dimensional is recursively cut out randomly in
half, and the log distance is obtained by looking at each partition as an inde-
pendent histogram. In this case, if there is a change in the packet transmission
amount within the partition, the abnormal state can be determined more effec-
tively than the abnormal d-dimensional histogram.

Using the relationship between edges when dividing a partition in the entire
histogram allows for the possibility of an attack that avoids our detection meth-
ods. To prevent this possibility, we chose to partition the edges randomly.

4.3 Anomaly Detection on All Sub-Sequences

The detection rates of both windowed and partitioned NNS can be affected by
their parameters: the number of windows and the number of partitions. Instead
of using a single parameter, we set the maximum number of windows and the
maximum number of partitions and perform anomaly detection on all the num-
bers of windows and partitions smaller than this maximum value to determine
the abnormal state.

A naive process of performing all calculations simply can consume a signifi-
cant amount of time. However, since there is a subset relationship between mul-
tiple size windows and recursively truncated partitions, dynamic programming
techniques can be used to create algorithms that work efficiently in a practical
time span.

4.4 Efficient Distance Calculation

The process of finding the smallest distance value by computing (3) for every
X ∈ S can be solved by the NNS in the dw dimension. However, when a number
of nodes communicate with each other on the network, if the number of nodes
is N , the dimension d increases to O(N2) and the execution time increases
significantly. To address this problem, we used a method to speed up the NNS
in a sparse vector.

In a typical network, communication between all pairs of nodes does not
always occur, and communication tends to occur only between predetermined
pairs of nodes. This is even more so in a control network designed to per-
form a specific task. Table 1 also illustrates this fact, as there are only 614
IP → IPs (edges) between the 208 nodes based on packets transmitted in site 1,
which is much smaller than the theoretical maximum of 43, 056 = 208×(208−1).

Therefore, instead of storing the data in d-dimensions, we can save the time
required for the nearest search by storing only the non-zero transmission edges
in a sparse format as below.

[(edgeId):(logFrequency), . . . , (edgeId):(logFrequency)]
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In this case, the time complexity for distance calculation is O(m1 + m2),
where m1 is the number of non-zero edges in data, m2 is the number of non-zero
edges in a query, and m1 + m2 � N2.

5 Experiments

This section describes the results of applying the extended algorithm to our
dataset. The results in all experiments are calculated based on the number of
packets sent per an edge. Similar results are obtained when the total number of
bytes is used instead of the number of packets and therefore omitted here.

Table 1. Collected traffic

Site Volume
(GB)

Period
(days)

Number
of IPs

Number of edges
(IP → IPs)

Average number of
edges per 1min

1 366 11.7 208 614 346

2 43 7.3 40 80 37

3 188 9.8 56 117 75

4 440 8.3 47 183 59

5 66 12.0 57 210 96

6 71 5.0 91 297 117

7 1,341 29.0 375 1,341 498

8 378 7.0 174 393 133

9 300 8.7 106 249 136

10 381 3.0 126 532 270

11 15,346 21.0 780 3,743 1,893

5.1 Dataset

We collected traffic from 11 active control systems of critical infrastructure in
separated networks. This section introduces the characteristics of the network
traffic we collected.

The capacity and collection period of the collected traffic are shown in
Table 1. The numbers of IPs and edges represent the total number of IP addresses
and IP→ IPs used in the collected traffic. The number of edges is not very large,
considering the number of IPs.

Sites 1 through 9 are control systems of the same domain. The primary
function of sites 1, 7, 8, and 9 is to periodically collect and analyze information,
often requiring operator action to manage equipment and analyze data. Site 2
is a backup site for site 1, site 6 is a testbed replicating site 1, and most of the
network traffic on these sites is generated by automated communication between
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the devices. In sites 3, 4 and 5, managers perform control operations based on
the situation in the field. Sites 10 and 11 are control systems of other domains,
and little human intervention is required in these sites. Most of the sites are
operated based on a predetermined schedule. In sites 7, 10, and 11, network
traffic was collected for all IPs in the control network, and network traffic was
collected only for the main IPs in the remaining sites.2

In all sites, about half of all edges have the maximum number of packet
transmissions of less than 10 per second, and only about 20% of edges have
a maximum of 100 packet transmissions per second or more. It can be seen
that the total amount of network traffic is relatively small, and a small number
of edges take up most traffic. Some control devices also show various network
traffic transmission patterns, but the patterns depend on the monitoring unit
time. Most devices and edges do not show specific patterns.

Table 2. Precision using the extended algorithm

Site Number of edges Number of partitions Precision (%)

1 614 32 99.0

2 80 8 98.6

3 117 8 99.0

4 183 16 95.2

5 210 16 99.0

6 297 16 97.4

7 1,341 128 99.8

8 393 32 99.6

9 249 16 100.0

10 532 32 98.6

11 3,743 256 99.4

5.2 Precision: Detecting Normal Traffic

The parameters for algorithm implementation were determined based on our
experience. The unit time is 60 s and the number of windows is 5.

When dividing a partition, we divide the edges by half recursively, so that
at least 10 edges are included in one partition. Since the total number of edges
need to be considered while dividing a partition, it is not appropriate to specify
the maximum number of partitions for each site equally.

Precision test results are shown as Table 2. High precision can be found at all
sites, regardless of whether the site is controlled by a person or not, and whether

2 For security reasons, we cannot provide more detailed information about our dataset.
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the learning period is short or long. We used 80% of the collected normal network
traffic as training data and then extracted 500 samples out of the remaining 20%
to determine whether these samples are classified as normal. As mentioned in
Sect. 3.4, if the input network traffic is included in 99% of the learning result, it
is judged as normal.

5.3 Recall: Detecting Anomaly of Traffic

We tested whether the proposed algorithm detected abnormal traffic generated
by modifying normal traffic not used for learning. We used the same parame-
ters and learning data used in the precision experiments. Each experiment was
performed 500 times.

Cyber attack patterns are dependent on the attacker’s knowledge. It is pos-
sible to carry out an attack based on scans of the surroundings and by using a
small amount of traffic causing abnormal behaviors of target devices. However,
existing systems have fixed traffic transmission patterns that are intertwined
with multiple systems. If an attacker modifies the operations even by a small
degree, the traffic patterns will change and the impact will be evident overall.
In general, cyber attacks cause additional traffic or changes in content, which
do not normally occur in the ICS. Certain communications may be temporarily
interrupted by cyber attacks. Sometimes cyber attacks can also change speed of
traffic transmission.

We present abnormal network traffic changes as three parameters in consid-
eration of our anomaly detection algorithm.

– Victim windows indicate the time when the network traffic volume changes
and display the windows where the network traffic changes among the win-
dows used in anomaly detection.

– Victim edges represent communication paths that change the actual
network traffic throughput per victim window and are selected among
IP→ IPsshown in the learning process.

– Added packets indicates the number of added packets for each victim edge.
In the proposed algorithm, the increments and decrements in the amount
of network traffic produce the same effect in the calculation of the distance
between network traffic instances. Therefore, in order to simplify the experi-
ment, only the case where the number of packets increases is considered3.

Table 3 shows the detection rate of our algorithm for anomalous network
traffic activity for five minutes. It can be seen that the detection rate increases
more rapidly when the number of victim edges becomes larger than the increases
in the added packets. Since the log scale is used to represent the number of
packets in the histogram at the current unit time, it is advantageous to select
a victim edge with few or no packets when the distance based on the change in

3 In our additional experiments, which are omitted in this paper, the proposed method
also showed similar detection power when the total number of bytes is increased or
decreased.
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Table 3. Recall according to the numbers of victim edges and added packets

Site Number of victim edges Victim windows: 1,2,3,4,5

Number of added packets

1 5 10 20

1 1 68.4 68.4 68.4 68.4

2 91.0 91.0 91.0 91.0

5 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0

2 1 25.4 26.0 26.4 26.8

2 32.8 35.0 35.0 36.0

5 59.4 71.2 74.8 76.8

10 67.4 90.4 94.6 96.4

3 1 10.2 10.4 11.0 14.2

2 8.0 8.6 12.2 20.6

5 7.6 18.0 30.6 40.8

10 15.6 39.2 43.4 48.6

4 1 97.2 97.2 97.2 97.2

2 99.6 99.6 99.6 99.6

5 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0

5 1 1.2 1.2 1.2 1.2

2 0.8 0.8 0.8 0.8

5 2.2 2.2 2.2 2.4

10 2.4 2.6 2.8 3.4

6 1 82.8 82.8 82.8 82.8

2 99.6 99.6 99.6 99.6

5 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0

7 1 58.0 58.0 58.0 58.0

2 63.8 63.8 63.8 63.8

5 64.0 64.0 64.0 64.2

10 63.6 63.6 64.0 64.0

8 1 65.8 65.8 66.0 66.2

2 93.2 93.2 93.4 93.4

5 99.8 99.8 99.8 99.8

10 100.0 100.0 100.0 100.0

9 1 36.4 36.4 36.4 36.8

2 70.4 71.0 71.0 71.0

5 93.2 93.6 93.4 93.6

10 94.8 96.4 96.6 96.8

10 1 42.6 42.6 42.6 42.6

2 80.2 80.2 80.6 80.8

5 97.0 97.0 97.2 97.2

10 97.0 97.2 97.6 97.8

11 1 82.0 82.0 82.0 82.0

2 94.6 94.6 94.6 94.6

5 96.8 96.8 96.8 97.0

10 96.8 96.8 96.8 96.8



NNS of Critical Infrastructure Network Traffic 593

Table 4. Recall according to the number of victim windows

Site Number of victim edges Number of added packets: 5

Victim windows

1 1,2 1,2,3 1,2,3,4 1,2,3,4,5

1 1 1.0 13.6 43.4 58.0 68.4

2 1.0 30.0 70.6 87.8 91.0

5 1.2 57.8 95.6 99.6 100.0

10 1.2 64.4 99.8 100.0 100.0

2 1 1.6 3.4 15.2 23.2 26.0

2 2.0 3.0 14.8 19.8 35.0

5 2.2 4.6 3.2 4.8 71.2

10 2.2 4.6 1.8 2.6 90.4

3 1 1.0 3.2 5.0 6.8 10.4

2 1.2 5.0 5.6 9.0 8.6

5 1.2 7.0 4.6 12.2 18.0

10 1.4 7.8 7.0 26.8 39.2

4 1 32.8 68.6 85.0 94.2 97.2

2 40.2 86.4 97.4 99.8 99.6

5 45.0 95.6 100.0 100.0 100.0

10 45.4 95.8 100.0 100.0 100.0

5 1 1.4 0.8 0.8 1.0 1.2

2 1.4 0.6 0.4 0.6 0.8

5 1.6 0.4 0.4 1.0 2.2

10 1.6 0.6 0.6 1.2 2.6

6 1 3.6 7.2 43.0 72.2 82.8

2 3.8 9.8 76.4 95.2 99.6

5 3.8 11.4 92.8 100.0 100.0

10 4.0 11.6 95.4 100.0 100.0

7 1 0.2 12.2 39.4 51.2 58.0

2 0.4 22.6 58.0 66.0 63.8

5 0.4 28.6 62.8 63.6 64.0

10 0.4 28.8 63.6 63.6 63.6

8 1 0.6 1.0 18.6 51.8 65.8

2 0.6 1.6 33.2 83.2 93.2

5 0.6 2.2 49.4 97.6 99.8

10 0.6 2.2 52.4 98.6 100

9 1 0.0 0.4 10.8 30.6 36.4

2 0.0 0.6 23.2 59.4 71.0

5 0.0 1.2 46.4 81.8 93.6

10 0.0 1.2 52.6 85.0 96.4

10 1 1.6 1.8 5.6 24.2 42.6

2 1.6 3.6 14.0 58.6 80.2

5 1.6 3.6 28.6 91.0 97.0

10 1.6 4.0 34.6 97.2 97.2

11 1 1.4 13.2 40.8 73.2 82.0

2 1.2 18.8 55.6 91.2 94.6

5 1.2 21.8 63.2 94.8 96.8

10 1.2 22.2 63.6 95.2 96.8
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Table 5. Recall according to positions of victim windows

Site Number of victim edges Number of added packets: 5

Number of victim windows

2 3

Victim windows

1,2 2,4 1,5 1,2,3 1,3,5 2,3,4

1 1 13.6 18.4 13.6 43.4 41.6 49.6

2 30.0 43.8 30.4 70.6 68.4 80.4

5 57.8 87.0 62.4 95.6 94.4 98.2

10 64.4 98.8 67.8 99.8 99.4 100.0

2 1 3.4 27.4 3.6 15.2 26.4 30.0

2 3.0 55.6 3.8 14.8 52.4 27.4

5 4.6 95.2 5.0 3.2 95.6 6.6

10 4.6 99.8 5.4 1.8 100.0 2.0

3 1 3.2 8.0 1.0 5.0 3.6 7.4

2 5.0 12.6 1.0 5.6 6.6 10.6

5 7.0 19.8 1.4 4.6 9.8 10.6

10 7.8 29.6 1.6 7.0 18.4 18.6

4 1 68.6 70.0 48.8 85.0 81.4 86.6

2 86.4 89.6 60.6 97.4 95.8 99.0

5 95.6 99.8 65.0 100.0 99.8 100.0

10 95.8 100.0 65.8 100.0 100.0 100.0

5 1 0.8 1.6 1.4 0.8 2.4 1.0

2 0.6 1.0 2.0 0.4 1.8 0.4

5 0.4 1.2 2.0 0.4 2.4 0.4

10 0.6 1.4 2.2 0.6 2.6 0.8

6 1 7.2 31.6 6.0 43.0 38.6 57.8

2 9.8 50.6 8.6 76.4 72.8 85.6

5 11.4 60.8 9.6 92.8 96.6 99.2

10 11.6 62.6 10.0 95.4 97.2 99.8

7 1 12.2 34.0 10.0 39.4 37.6 51.2

2 22.6 62.0 21.2 58.0 65.0 71.0

5 28.6 83.2 27.0 62.8 82.2 71.8

10 28.8 84.0 26.8 63.6 83.8 72.0

8 1 1.0 23.6 1.8 18.6 21.6 41.2

2 1.6 49.0 2.0 33.2 42.0 69.0

5 2.2 61.6 2.8 49.4 66.0 95.0

10 2.2 63.0 2.8 52.4 69.8 96.2

9 1 0.4 21.6 0.4 10.8 10.4 27.0

2 0.6 49.2 0.2 23.2 33.4 57.2

5 1.2 90.4 1.6 46.4 87.2 77.4

10 1.2 99.4 1.6 52.6 98.8 80.6

10 1 1.8 13.6 2.2 5.6 11.4 21.2

2 3.6 27.0 3.2 14.0 32.4 48.8

5 3.6 39.8 3.8 28.6 74.8 90.4

10 4.0 42.8 3.8 34.6 83.2 98.0

11 1 13.2 49.2 11.8 40.8 45.4 67.6

2 18.8 78.6 18.2 55.6 76.6 88.4

5 21.8 91.6 21.6 63.2 90.6 95.0

10 22.2 92.6 21.6 63.6 92.0 94.8
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the number of packets is considerably different. As the number of victim edges
increases, the probability of adding packets to the corresponding edge increases,
which increases the detection rate significantly.

Table 4 shows the results of the experiments according to the number of
victim windows. In general, the higher number of victim windows confirms the
higher detection rate in Table 4. When packets are added to only one window,
most sites have low detection rates. It is difficult to distinguish small amounts
of traffic change with only one window due to noise. However, since the noise
generated in each window is different, it is possible to find out the probability
of artificially added network traffic by comparing multiple windows.

Table 5 shows that the detection rate varies with the occurrence of victim
windows even if the number of victim windows is the same. The timing at which
packets are added artificially determines the difference between existing traffic
transmission patterns.

The actual reasons for the detection rates observed in each individual site
vary.

Site 1 collects network traffic only from control devices, which perform only
certain specific tasks, resulting in a high anomaly detection rate. A high detection
rate is also obtained at sites 6, 8, 9, 10, and 11, where regular communication
between control devices is mostly achieved. The CCDF density graph of site 11
in Fig. 7a shows that the CCDF values learned and the CCDF values in the
anomaly test are well separated.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.000001 0.00001 0.0001 0.001 0.01 0.1 1

MinCCDF Density

learn a ackE a ackN Normal

(a) Site 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.000001 0.00001 0.0001 0.001 0.01 0.1 1

MinCCDF Density

learn a ackE a ackN Normal

(b) Site 5

Fig. 7. CCDF density graph (blue: learning result, yellow: normal test, orange: abnor-
mal test) (Color figure online)

Site 2 is a backup site, but the resident administrator continuously monitors
the site information using the HMI. Because a network traffic throughput pattern
is learned based on human operation on the small-scale site, small changes in the
network traffic are difficult to detect in a short period of time. However, since
human monitoring task does not require a long time to perform once, it can be
seen that abnormal behavior is detected with a high probability when the traffic
change time exceeds 4 min.

Sites 3 and 5 experienced a lot of administrator work during the period when
the traffic data was collected. Site 5 in particular had DB server backup, failure
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response, and other administrator work being carried out. Because the learning
traffic contains too many transmission patterns, the proposed algorithm could
not detect small changes in the amount of network traffic in site 5. The CCDF
density graph of site 5 in Fig. 7b shows that it is difficult to distinguish CCDF
values from learning, normal test, and anomaly tests.

Site 4 only performed periodic field monitoring by control devices during the
network traffic data collection, without any non-regular work. As can be seen
in Table 1, site 4 has fewer IP → IPs used in one minute than in other sites.
Therefore, when selecting the victim edge, the probability of choosing an edge
without network traffic transmission is higher in site 4 than other sites. This has
affected the high detection rate in site 4.

Site 7 has similar size and work characteristics to site 1. However, network
traffic for all IPs was collected in site 7. The network traffic collected at site 7
includes non-regular and uneven patterned network traffic generated by security
equipment, web server, HMI, etc. Therefore, site 7 has a lower detection rate
than site 1.

Table 6. Querying time

Site Period of learned
traffic (days)

Volume of learned
data (MB)

Query time (s)

1 9.36 66.4 0.902

2 5.84 4.8 0.042

3 7.84 12.0 0.118

4 6.64 7.8 0.084

5 9.60 18.4 0.292

6 4.00 9.6 0.062

7 23.20 237.6 7.030

8 5.60 15.2 0.152

9 6.96 19.2 0.228

10 2.40 13.6 0.072

11 16.80 448.0 8.736

5.4 Speed of Anomaly Detection

Our experiments were carried out on a server with Intel Xeon CPU E5-2670
2.30 GHz and 384 GB RAM, and the time to perform anomaly detection (referred
to below as query) is shown in Table 6.

A more detailed analysis of the execution times for site 1 is as follows. In site
1, we collected 11.7 days of network traffic and used 80% (9.36 days) network
traffic for learning data. As shown in Table 1, the capacity of converting the
network traffic used for learning into the histogram every minute is 66.4 MB.
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The approximate capacity of 1-minute histograms of network traffic over a year
can be estimated to be 2.5 GB (365 days ÷ 9.36 days × 66.4 MB = 2.5 GB).
Therefore, even if histograms for more than one year are used as learning data,
it is assumed that all the data are stored in the RAM, so that the calculation
time is proportional to the length of the learning data. According to Table 6, the
querying time is 0.902 s when using 9.36 days network traffic as learning data.
Therefore, when 1-year network traffic is used as learning data, the querying
time is 35.2 s (365 days ÷ 9.36 days × 0.902 s = 35.2 s) and the query can be
executed within 1 min. That is, even if 1-year network traffic is used as learning
data, this algorithm can be used for real-time detection.

Sites 7 and 11 require 110.6 s and 189.8 s, respectively, for queries with one
year of traffic. It is possible to shorten the detection time by performing the
distance calculation of NNS in parallel by dividing the learning traffic into several
parts.

6 Conclusion

In this paper, we set out to propose an anomaly-based IDS based on the NNS to
learn normal traffic patterns over the entire network of an ICS. If an attack or
an operation error in the equipment or communication within a system does not
cause changes in the traffic patterns, it may be difficult to detect the attack or
error solely through monitoring the network traffic. However, for a system that
performs repetitive tasks, such as a control system, analyzing the entire network
of the system can lead to the identification of unusual outliers.

We proposed a method to find anomalous signals in an ICS using the traffic
transmission pattern of the control system network. We mathematically deduced
whether the traffic transmission pattern can be used, and confirmed its effective-
ness by applying it to the traffic collected from actual control system infrastruc-
tures.

Our experiments confirmed that small changes4 in the amount of traffic can
be detected in a small number of communication sections and that the speed of
execution can be used for real-time network monitoring. We demonstrated the
utility of our method to monitor the number of packets per IP→IP in this paper.
Similar results are obtained when the total number of bytes is used instead of
the number of packets following our experience, and our method can also be
applied on a server-by-client basis.
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Abstract. PostScript is a Turing complete page description language
dating back to 1982. It is supported by most laser printers and for a long
time it had been the preferred file format for documents like academic
papers. In this work, we show that popular services such as Wikipedia,
Microsoft OneDrive, and Google Mail can be attacked using malicious
PostScript code. Besides abusing legitimate features of the PostScript
language, we systematically analyzed the security of the most popular
PostScript interpreter – Ghostscript. Our attacks include information
disclosure, file inclusion, and remote command execution. Furthermore,
we present methods to obfuscate PostScript code and embed it within
legitimate PDF files to bypass security filters. This allows us to create a
hybrid exploit that can be used to attack web applications, clients sys-
tems, print servers, or printers. Our large-scale evaluation reveals that
56% of the analyzed web applications are vulnerable to at least one
attack. In addition, three of the top 15 Alexa websites were found vul-
nerable. We provide different countermeasures and discuss their advan-
tages and disadvantages. Finally, we extend the scope of our research
considering further targets and more advanced obfuscation techniques.

Keywords: PostScript · EPS · PDF · Web application security

1 Introduction

In the early 1980s, PostScript was created as a page description language. It
is a Turing complete language and allows to execute arbitrary code or to write
complex functions. With respect to security, execution of arbitrary code is dan-
gerous. Security was not among the original design goals of this language because
it was primarily used for printing trusted documents or displaying graphics in
local environments. Meanwhile, PostScript is a widely deployed language sup-
ported by various online services including websites offered by Google, Microsoft,
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Fig. 1. Abstract overview of a web application’s architecture and its components that
are relevant for our attacks. The main goal of the attacker is to force the usage of
Ghostscript to carry out these attacks.

or Apple. These services accept untrusted PostScript documents and present a
potential danger to their providers as attackers may use many legitimate features
to harm the systems processing PostScript documents. In this paper, we ana-
lyze the security implications resulting from processing PostScript documents
on well-known websites. In Fig. 1, we give an abstract overview of the relevant
components in scope for our attacks.

Initially, the attacker navigates her user-agent to the website where the
web application is deployed. It contains a form to upload a PostScript file to
the web application. The web frontend carrying out the HTTP communication
receives the file and forwards it either first to an image conversion library such as
ImageMagick1 – which in turn delegates the file based on its content – or directly
to the PostScript interpreter. According to our observations, in most cases this
is Ghostscript2 since it provides a rich set of output formats and features like
resizing, conversion into other file types such as images, and further operations.
Finally, the web application returns the resulting output of executed PostScript
code as a rendered image. This gives the attacker a feedback channel to leak
sensitive information and to verify if the attack had been successful.

Considering the wide deployment of PostScript and the dangers of using it,
the question regarding the security of current interpreters arises.

Existing Gaps. The potential risks of processing PostScript files were first
reported in 1996 by Goldberg et al. [14] and Sibert [22]. More concrete attacks
were presented by Costin et al. [9,11,12] in 2010, 2011, and 2012 by attacking
printers with malicious PostScript commands. In the meantime, attack vectors
were not systematically analyzed; they were rather mentioned in blog posts or
CVE entries.

1 ImageMagick Studio LLC, ImageMagick, http://imagemagick.org, Mar. 2017.
2 Artifex Software, Ghostscript, https://ghostscript.com/, Mar. 2017.

http://imagemagick.org
https://ghostscript.com/
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The first scientific paper on attacking web applications processing PostScript
was published by Müller et al. [18] in 2017. They showed that Google Cloud
Print could be exploited by uploading crafted files with PostScript commands.
However, a thorough security analysis of web applications processing PostScript
was left open for future work. Our research addresses this gap and reveals novel
insights missed by previous research.

Systematization of Knowledge. To the best of our knowledge, there is no
comprehensive database of existing vulnerabilities and attack vectors regard-
ing PostScript. Therefore, the first challenge for our work was to systematically
collect those. We collected all attack vectors by manually searching through vul-
nerability databases, individual blog posts and forums as well as by thoroughly
studying the PostScript language reference. In essence, we found that attacks
on PostScript interpreters can be divided into five different categories: Denialof-
Service (DoS), information disclosure, file system access, command execution,
and content masking. This is consistent with attack categories that were already
found by previous research on other languages such as XML [23] and PJL [18].

Evaluation. We tested two types of web applications: (Category 1) online image
converters and (Category 2) the top 15 Alexa websites. Category 1 web appli-
cations were collected using search engines such as Google. We collected one
hundred web applications of this type and evaluated them. The results are sur-
prising – 56% are vulnerable against at least one attack.

To prove the impact of our attacks on prominent and more complex web
applications, we decided to extend our research by evaluating Category 2 web
applications. This is more challenging because the PostScript processing func-
tionality provided by the web application has to be identified first and studied
carefully with valid user accounts. We thoroughly studied the top 15 Alexa web-
sites and finally were able to evaluate 10 out of them. Five web applications
were excluded due to the duplicity (e.g. google.com and google.co.jp) or because
of language barriers. Three of these web applications are vulnerable, including
prominent providers such as Wikipedia and Microsoft.

Contribution

– We provide an exhaustive study regarding attacks against Ghostscript and
PostScript. We systematize attack vectors and provide them in a comprehen-
sive attack catalog.

– We evaluate the security of one hundred online image converters and ten top
websites. Based on the responsible disclosure model, we reported our findings
to the affected vendors and helped them to fix the issues.

– We identify various methods to include malicious PostScript code within legit-
imate PDF files and provide a hybrid proof-of-concept exploit.

– We discuss countermeasures mitigating or limiting the attacks. In addition,
we reveal novel aspects targeting future research complementing our work.

http://www.google.com/
https://www.google.co.jp/
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2 Foundations

The PostScript page description language [2] was originally invented by Adobe
between 1982 and 1984 for high quality printing on laser printers. However,
PostScript soon became a common document exchange format, for example to
share electronic versions of academic publications. It is a stack-based Turing
complete programming language with a rich set of commands and data types. In
this regard, Encapsulated PostScript (EPS) is also noteworthy as it is generally
considered as a vector image format and supported by various applications such
as LATEX processors. While EPS is limited to a subset of the PostScript language,
all commands that we classify as potentially harmful are still available in EPS.
An example PostScript document displaying Hello World is given in Listing 1.

1 %!PS
2 /Times-Roman findfont 75 scalefont setfont
3 100 500 moveto (Hello World) show showpage

Listing 1. Example PostScript document.

With respect to security, interpreting PostScript is equal to arbitrary code
execution. PostScript is even capable of basic file system I/O – this was origi-
nally designed as a feature to store frequently used graphics or fonts. When run-
ning untrusted PostScript code in a sensitive environment like on a web server,
such functionality can be dangerous since arbitrary files can be accessed by the
attacker. In this work, the PostScript language is used to perform a variety of
attacks, such as DoS and information disclosure against web applications.

Ghostscript. The Ghostscript software suite provides interpreters for
PostScript and PDF and is available on most Linux distributions. Ghostscript
expects as input PDF or PostScript files. As output, multiple formats such as
PNG, JPEG, and GIF are supported. Based on this rich feature set, almost all
online converters use Ghostscript to convert PostScript and PDF files into other
file types, for example to generate a thumbnail preview of an uploaded PDF file.

Ghostscript provides various extensions to the PostScript standard such as
accessing environment variables and even shell command execution on the host
system. The dangers of such powerful features have been recognized by the
Ghostscript developers. For this purpose an option activating the ‘more secure’
execution of PostScript code was implemented. By starting Ghostscript with the
-dSAFER flag, critical operations such as executing shell commands and writing
to files directly on the host filesystem are disabled while reading files is lim-
ited to certain directories. Nevertheless, we will show that some attacks are still
applicable even if this flag is enabled.

In the past ten years, 51 Common Vulnerabilities and Exposures (CVE)
IDs have been filed for Ghostscript, with ten of them being classified as ‘critical’
(CVSS rating of 9 to 10). We also consider these vulnerabilities in our evaluation.

ImageMagick. ImageMagick is an open-source software suite handling a vast
variety of raster and vector image file formats. Web applications and frameworks
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often use ImageMagick – or forks of it such as GraphicsMagick – to convert or
resize images. For working with PDF and PostScript files, ImageMagick delegates
the processing to Ghostscript. Therefore, ImageMagick may be an exploit vector
for malicious PostScript code.

3 Attacker Model

We assume that an attacker is able to create PostScript code and send it as input
to a target web application. After that, the attacker may access the resulting
image generated by the target web application from the PostScript document.

Our attacker is successful if one or more of the following five goals are
achieved: (1) Processing the PostScript code forces the web application to allo-
cate huge amounts of resources such as CPU or memory (DoS). (2) The attacker
obtains non-public information useful for further attacks, such as path names or
environment variables. (3) The attacker can read from or write to files on the
file system of the web application. (4) The attacker can execute shell commands
on the hosting machine of the web application. (5) The attacker can display
different content to different users viewing the same document.

4 Attacking via PostScript

This section describes five different attacks achieving at least one of the described
goals. All described attacks target the Ghostscript component, see Fig. 1.

Denial-of-Service (DoS). PostScript provides features that can be misused to
allocate large amounts of resources such as CPU or RAM. Thus, if an interpreter
does not impose any upper processing time or memory consumption limits, the
host is prone to DoS attacks.

1 %!PS
2 {10000000 array} loop

Listing 2. Infinite memory allocation loop within a malicious PostScript document.

The example shown in Listing 2 forces the allocation of large arrays on the
stack within an infinite loop. If run in the Ghostscript interpreter, all available
memory is consumed within seconds. By sending this small PostScript document,
an attacker could harm the availability of a machine. Furthermore, PostScript
allows arbitrary strings to be printed to stdout and stderr within loops at high
data rates. If error messages get logged, this allows an attacker to flood logfiles
and exhaust all available disk space.

Information Disclosure. Given access to the results of executed PostScript
code, an attacker can obtain reconnaissance information such as the target’s sys-
tem time and platform or the used PostScript interpreter version. Proprietary
extensions featured by Ghostscript enable further low-level information disclo-
sure attacks such as access to the command line arguments the program has
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been called with (including file names) and the full path names for configuration
and font files. Older Ghostscript versions even allowed environment variables to
be read even if the -dSAFER flag was set.

File System Access. The PostScript language allows reading from and writ-
ing to arbitrary files on the host file system. The Ghostscript interpreter, if
called with -dSAFER, restricts access to reading certain fonts and configuration
files. However, bypasses were discovered in the past such as CVE-2016-7977.
Note that file inclusion may lead to further attacks such as DoS by accessing
/dev/random.

Write access to Ghostscript configuration files even enables an attacker to
escalate into other PostScript or Portable Document Format (PDF) files pro-
cessed by the interpreter. This way, subsequent documents uploaded by users
can be captured or manipulated by an attacker. Older versions of Ghostscript
allowed directory listings even with activated -dSAFER mode. In current ver-
sions, an attacker can still verify if a certain file or directory exists on the file
system and obtain its size and timestamp.

Command Execution. Technically, every direct access to a PostScript inter-
preter can already be classified as code execution. Certainly, without access to the
network stack or additional operating system libraries, possibilities are limited
to arbitrary mathematical calculations such as mining cryptocurrencies. How-
ever, the Ghostscript interpreter – if not called with -dSAFER – allows to invoke
arbitrary shell commands to be executed using the proprietary %pipe%cmd com-
mand. Furthermore, bypasses were discovered in the past leading to command
execution even in safer mode, such as CVE-2016-7976 and CVE-2017-8291.

Content Masking. The appearance of a PostScript document is dynamically
generated based on its code. This enables an attacker to create a document with
a different content being displayed based on conditional statements such as the
current time or the host it is running on. Backes et al. [6] and Costin [12] used
this feature to manipulate purchase contracts. In the context of web applications,
such an approach may allow to bypass filters for illegal or offensive content: The
document can be made to look different when previewed in the cloud, when
opened locally, or when printed. We show that such attacks are even possible with
PDF files containing PostScript overlay code. This fundamentally undermines
trust in PDF documents since they are commonly assumed to display the same
content, independent of their environment. Furthermore, conditional PostScript
statements allow to render a different number of pages depending on whether
the document is processed on a printer or a print server such as CUPS3. This
enables an attacker to manipulate or bypass page counters used for accounting.

3 Apple Inc., Common UNIX Printing System, https://www.cups.org/, Mar. 2017.

https://www.cups.org/
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5 Obfuscating Malicious PostScript Files

Security related filters within the web frontend can be applied to prohibit the
upload of potentially dangerous files. Usually, such filters restrict allowed files to
certain types such as images. Once the file is uploaded it is just passed through
to ImageMagick which – based on magic header bytes – detects the file format.
There are two options for an attacker to get PostScript code deployed: Either (1)
rename the PostScript file extension to a whitelisted filetype such as .png or (2)
change the content type to a harmless or whitelisted header like image/png.
The goal of such obfuscation is to bypass the web application’s logic limiting
the file upload to ‘images only’ by imitating other filetypes. Since ImageMagick
analyzes the first bytes of the file content to determine which interpreter should
be used, the attacker can still enforce the execution of malicious PostScript files.

Obfuscation with PDFs. PDF supports PostScript code defined within itself.
Thus, if a web application accepts PDF files, PostScript code can be hidden and
uploaded. Different tools can be used for the creation of malicious PDF files.
For instance, the pdfmark [3] PostScript command in combination with tools
such as ps2pdf allows to create a PDF document containing PostScript code.
Another option is to use open-source tools implementing the PDF specification
such as PDFBox4. We identified four techniques to embed PostScript within
PDF.

PostScript Prepended to PDF. Many PDF interpreters such as Adobe
Reader or Chrome’s internal PDF viewer treat PDF files as valid if the PDF
header starts within the first 1024 bytes [19]. Prepended byte streams are
ignored.
1 %!PS
2 {malicious code up to 1023 bytes in total}
3 %PDF-1.5
4 {legitimate PDF content}

Listing 3. PostScript code prepended to a legitimate PDF file.

This allows an attacker to create a valid PDF file with up to 1023 bytes of
PostScript code prepended. This PostScript code however is only executed if the
file is processed by Ghostscript – which recognizes the PostScript header – while
other PDF viewers will display the PDF content instead.

PostScript Pass-Through. Ghostscript supports a proprietary, undocu-
mented feature which allows to hide inline PostScript code snippets within PDF
byte stream containers. While other PDF viewers ignore the malicious PostScript
code, Ghostscript executes it in case the PDF file is converted, e.g. to an image.
1 ({malicious code}) PS

Listing 4. Inline pass-through PostScript code within a PDF file.

4 The Apache Software Foundation, PDFBox, https://pdfbox.apache.org/, Mar. 2017.

https://pdfbox.apache.org/
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PostScript XObjects. The PDF standard allows to embed external objects
(XObjects), e.g. images. PDF 1.1 allows XObjects containing PostScript code to
be executed when printing the document. However, this feature is discouraged
by the PDF 1.3 specification and is disabled in current versions of Ghostscript.

The first four lines in Listing 5 define an object within a PDF file. The type is
XObject and the subtype defines that the content is PostScript code. In line 5,
the beginning of a byte stream container is defined. The following lines contain
the PostScript code, which ends in line 8 by closing the byte stream container.

1 <<
2 /Type /XObject
3 /Subtype /PS
4 >>
5 stream
6 %!PS
7 {malicious code}
8 endstream

Listing 5. PostScript code hidden in
an XObject object within a PDF file.

1 <<
2 /Type /Font
3 /Subtype /Type1
4 >>
5 stream
6 %!PS-AdobeFont-1.0
7 {malicious code}
8 endstream

Listing 6. PostScript code hidden in
an Font object within a PDF file.

PostScript Fonts. The PDF standard allows fonts of various formats to be
embedded. One format is of particular interest: Type 1 fonts are defined in plain
PostScript itself. While these are actually limited to a subset of the PostScript
language [1], Ghostscript does not consider this limitation and executes arbitrary
PostScript code embedded in Type 1 fonts within a PDF file, see Listing 6.

Summary. There are various ways to obfuscate PostScript code or files in order
to bypass restrictions imposed by a web application. Some of the bypasses use
simple techniques such as changing the file extension or sending the wrong con-
tent type. When PDF files are processed by a web application, more sophisticated
techniques can be used to hide malicious PostScript code within them. In addi-
tion, the obfuscation can be improved by deflating the PostScript code within
the byte stream container. This feature is defined in the PDF specification and
supported by all PDF interpreters which makes the detection of PostScript code
by firewalls and Intrusion Detection Systems (IDSs) more complicated.

6 Evaluation

To evaluate PostScript based attacks as described in Sect. 4, we created a com-
prehensive attack catalog – implemented as a specially crafted EPS file – and
uploaded it to various websites. This proof-of-concept file is available for down-
load from http://bit.ly/ps attacker catalog5. The attack catalog serves as a

5 Note that the proof-of-concept file is hosted on Dropbox. After uploading, we real-
ized that Dropbox itself processes PostScript documents. The shown preview image
therefore is the rendered result of the attack catalog executed on the Dropbox server.

http://bit.ly/ps_attacker_catalog
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blueprint to test PostScript processing applications such as websites that gen-
erate thumbnail previews of uploaded images. It can also be used to perform
a security evaluation of other software like print servers or desktop applica-
tions. If processed, the attack catalog automatically checks for various features,
misconfigurations, and vulnerabilities in both the PostScript language and the
Ghostscript implementation. A resulting preview image after conversion by a
web application running Ghostscript 9.19 is given in Fig. 4 in the appendix.

Based on the catalog, we first evaluated 100 image conversion websites to get
a large-scale overview. We conducted a Google search for online image converter
and tested the top 100 results. Second, we evaluated the Alexa top 15 sites to
verify if more popular web applications are vulnerable too.

6.1 Image Conversion Websites

Given our test set of 100 image conversion sites, we could have executed malicious
PostScript code on 56 of them. An overview is given in Fig. 2. Detailed results
are documented in Table 2 in the appendix.

Fig. 2. Evaluation of 100 image conversion websites. 56% of them were found vulnerable
to at least one attack.

Most websites do not accept PostScript or EPS files based on the file exten-
sion and content type (application/postscript). However, by renam-
ing the file extension to .png and accordingly setting the content type
(image/png) the attack often works. Observing this behavior of web applica-
tions, it is obvious that PostScript documents were actually not intended to be
supported by the web applications but could be enforced by simple obfuscation
techniques.

We did not perform any tests concerning actual DoS attacks. Instead, we mea-
sured the time it takes to calculate 10,000 MD5 hash sums, which was possible for
all 56 websites and varied between 14 ms and 2,147 ms. Limited information dis-
closure attacks such as obtaining the system date and leaking pathnames could
also be performed on all 56 PostScript processing websites. These results can be
explained by the fact that even if Ghostscript is started with the -dSAFER flag,
these commands are allowed. System environment variables could be dumped on
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35 websites using proprietary Ghostscript commands. The reason for the lower
number of affected systems is that this vulnerability is already addressed by
CVE-2013-5653.

Read access to arbitrary files (LFI) could be performed on 31 websites. Such
full read access is based on missing -dSAFER options or on a bypass addressed
in CVE-2016-7977. By this means, older version of Ghostscript are still affected.

On 22 sites, we had only limited read access to fonts and Ghostscript con-
figuration files. This can also be problematic since an attacker can read out the
gs init.ps file defining protection mechanisms. Disclosing this information
can lead to further, more precise attack vectors bypassing the defined restric-
tions. On five websites we could write to arbitrary files due to missing -dSAFER
options.

On 33 websites, we could get a directory listing for the whole file system.
On 21 sites, we could only list the font and configuration directories, which has
limited impact. This vulnerability abuses a Ghostscript configuration with less
restrictive -dSAFER options, which is already documented in CVE-2013-5653.

However, we could still get status information for arbitrary files on the file
system on 51 websites. Using the PostScript ‘status’ command, the existence of
files/directories on the server including sizes and timestamps can be verified.

On nine websites we gained remote shell command execution – on five of
them due to missing -dSAFER options and on four due to CVE-2016-7976. Note
that we did not evaluate further known vulnerabilities and CVEs existing for
the used Ghostscript versions because they are based on buffer overflows, which
can harm the server and cause damage.

Because PostScript/EPS is vulnerable to content masking attacks by design,
we limited such attacks to PDF files. As proof-of-concept we created a PDF file
containing PostScript overlay code. In case that the converted version of the
file visually differs from the unconverted PDF, the attack was successful. On 32
websites we were able to generate different views of the same document.

It is interesting to note that most websites use outdated versions of
Ghostscript. Out of 56 websites interpreting PostScript, 30 use a Ghostscript
version older than 9.18 (the current version for Debian/Ubuntu) which leads to
multiple vulnerabilities. Furthermore, some websites with the same Ghostscript
version behave differently – we assume this due to backporting.

6.2 Alexa Top 15 Sites

Image conversion websites can be considered easy targets because they are likely
to be less hardened and to accept PostScript input. Therefore, we performed a
test on the Alexa top 15 websites, which are frequently checked by hundreds of
security researchers and bug bounty hunters around the world. Because Google’s
domains (google.co.in, google.co.jp) occur multiple times in this list – likely with
the same technology serving them – we limited our test to the main google.com
domain. Furthermore, three domains (baidu.com, qq.com, taobao.com) do not
have an English interface and require a mainland China phone number to regis-
ter. Thus, we could not test these.

https://www.google.ca/
https://www.google.co.jp/
www.google.com/
http://baidu.com
http://www.qq.com/
http://taobao.com
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Table 1. Evaluation of PostScript based attacks against top websites.

Of the remaining ten websites, two allow the upload of EPS/PostScript files
directly (google.com and live.com), while six allow PDF files to be uploaded
and preview them on the server side (google.com, wikipedia.org, yahoo.com,
amazon.com, and live.com). Note that Facebook uses client side JavaScript code
to preview PDF files, which is out of scope for our attacks. We did not succeed
in embedding and executing PostScript code within PDF files on Yahoo! and
Amazon. All ten websites allow image files to be uploaded, however, we could
not inject PostScript code through their image upload function. In the end, we
could attack three websites discussed below. It is noteworthy to mention that
all of them use outdated versions of Ghostscript. An overview of the evaluation
is given in Table 1.

Google. Google Drive and Google Mail preview uploaded EPS files that contain
PostScript code. However, after contacting the Google developers we learned that
their conversion process is sandboxed, limiting the attacks to a virtual machine.

Wikipedia. Wikipedia, which is based on MediaWiki6, does not allow
PostScript or EPS files to be uploaded directly for security reasons. However,
PDF files can be uploaded and previews are generated on the server side. Using
PostScript pass-through as described in Sect. 5, we could create a specially
crafted PDF file which executes PostScript code that could be used for DoS
attacks. Information disclosure and accessing the file system was limited because
we could only extract a limited number of bytes using this technique.

Microsoft. Microsoft OneDrive, which is hosted on live.com, allows arbitrary
EPS files to be uploaded, which are processed for preview on the server side. This
allowed us to dump environment variables and to read arbitrary files (LFI).

6 Wikimedia Foundation, MediaWiki, https://www.mediawiki.org/, Mar. 2017.

www.google.com/
http://live.com
www.google.com/
https://www.wikipedia.org/
https://www.yahoo.com/
https://www.amazon.com/
http://live.com
http://live.com
https://www.mediawiki.org/
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6.3 Responsible Disclosure and Ethical Considerations

We responsibly disclosed all security vulnerabilities to the respective website
administrators. Microsoft rewarded our findings with $5000. Ethical consider-
ations were discussed internally during the creation of the attack catalog and
before starting the tests. As a result, we defined a methodology that ensured
both the verifiability of our attacks as well as minimal interference with the
tested services. This includes precautions against DoS or leaking sensitive data
like private keys or passwords.

7 Towards a Hybrid Exploit

Web applications are not the only systems that can be attacked with PostScript.
To demonstrate the flexibility of malicious PostScript code hidden inside PDFs
as described in Sect. 5 we created a hybrid proof-of-concept PostScript/PDF
worm which can be used to attack various types of hosts as depicted in Fig. 3. It
abuses missing -dSAFER mode, CVE-2016-7976 and CVE-2017-8291 to attack
Ghostscript and CVE-2017-2741 to attack HP printers.

Fig. 3. A PostScript-based worm attacking and spreading on different systems.

Web Applications. When uploaded and processed by a web application vul-
nerable to Ghostscript-based remote code execution, the worm infects all PDF
files found on the server it has write access to. Such a scenario would especially be
disastrous for cloud storage providers which keep the PDFs of many users, or for
scholarly research databases like IEEE Xplore or ACM which provide millions
of PDF documents frequently requested by researchers around the world.

Client Systems. If any of these infected PDF files is downloaded by a vic-
tim onto a vulnerable Linux client, in turn, all PDF files on his host’s file sys-
tem would be infected. Infection routines could either be provided by simply
replacing benign PDF files with a copy of the worm or by silently injecting
malicious PostScript code into benign PDF files. The later method can be can
be accomplished by restructuring the PDF content without changing the actual
appearance of the document. Note that to trigger the infection it is not always
necesarry to open the PDF file. It usually is sufficient to open a file manager



PostScript Undead: Pwning the Web with a Years Old Language 615

which previews containing images and PDF files and therefore execute the mali-
cious code. Even simple command-line tools like less(1)7 are affected because on
current Linux distributions, less file.pdf automatically converts PDFs to
text to preview them in the console using Ghostscript. Note that the Windows
world is not directly affected because PostScript code within PDF files is usually
just ignored here. However known vulnerabilities and CVEs exist, e.g. for Adobe
Reader which could be added to the malicious PDF document.

Printers and Print Servers. In April 2017, HP published CVE-2017-2741, a
critical vulnerability present in various printer models without giving any details.
In June 2017, Baines [7] identified specially crafted PJL commands to exploit
the issue. We found another method to exploit the weakness based on PostScript
code. An example exploit to gain a permanent reverse shell on printer startup
is shown in Listing 7. We tested the exploit on a HP OfficeJet Pro 8210.

1 %!PS
2 /outfile (../var/etc/profile.d/telnetd.sh) (w+) file def
3 outfile (nc attacker.com 31337 -e /bin/sh) writestring
4 outfile closefile

Listing 7. Exploiting CVE-2017-2741 to gain a reverse shell on HP printers.

This exploit can be combined into the malicious PostScript/PDF file and is
triggered when using direct PDF printing – which is becoming more and more
popular – or from USB stick on a printer model vulnerable to CVE-2017-2741.
The printer interprets and executes the PostScript code contained in PDF files
leading to code execution. The worm can spread further to other vulnerable
printers in the network by printing the same PostScript/PDF file (e.g. by itself
sending to port 9100/tcp of all reachable network printers). In case a local print
server like CUPS is in the print job deployment chain, it can also be infected
because CUPS is dependent on Ghostscript for PostScript/PDF processing.

For ethical reasons, we did not evaluate the worm in the wild. But we are
confident that such a hybrid exploit, viable on cloud servers as well as Linux
clients and even printers is a relevant concept from an attacker’s perspective.

8 Related Work

In the following, we give an introduction to significant prior research on
PostScript, PDF and related security problems.

PostScript. The potential dangers of PostScript has been pointed out by Gold-
berg et al. [14] and Sibert [22], however we are not aware of any efforts to sys-
tematically exploit PostScript language functions. Backes et al. [6] show that
PostScript documents can be crafted to force different content when opened
in different viewers which allows them to manipulate sales agreements. A
7 GNU Project, GNU less, https://www.gnu.org/software/less/, Mar. 2017.

https://www.gnu.org/software/less/
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comprehensive discussion of printer security – including a survey of malicious
PostScript commands has been given by Costin [9,10,12]. Costin [12] further
demonstrate how to abuse proprietary PostScript extensions to get command
execution and access the memory of Xerox devices. They also demonstrate that
a malicious PostScript payload can be made to execute only on a certain printer
using conditional statements to check the environment the PostScript inter-
preter is running. [18] further demonstrate how to exploit PostScript and other
languages supported by network printers and discuss the dangers of executing
PostScript code in Google Cloud Print. A study conducted in parallel to our
research which comes closest to our work has been conducted by [15] who use
PostScript payloads to attack web applications.

PDF. In [8,20,21] the authors concentrated mainly on abusing legitimate fea-
tures of PDF to create malware and to execute arbitrary code on the victim’s
system. The detection of potentially dangerous code within PDF files by scanning
for known malicious structures is described in [5]. The authors mainly focused
on detecting the execution of legitimate PDF features leading to command exe-
cution. PostScript was however not in the scope of the research. In [16] the
authors use polyglot-based attacks by writing a code valid in multiple program-
ming languages. The authors used PDF files as a carriage of the malicious code
to invoke arbitrary URLs and bypass browser restrictions like the Same-Origin-
Policy. None of the previous work considered the risks of hidden PostScript code
within PDF files, which is executed in a web application context. Markwood et
al. [17] show that extracted specially crafted fonts can be embedded into PDF
files, which display a different text depending on whether the document is pro-
cessed by a web application or a screen reader. This allows them to fool PDF
indexers like search engines, plagiarism detection software and even automatic
reviewer assignment systems in use by academic conferences.

9 Countermeasures

Basically, there are two approaches to mitigate the presented attacks: (1) By
validating user input to globally reject PostScript code or (2) by sandboxing the
PostScript interpreter. In the following, both approaches are discussed.

Input File Validation. As shown in Sect. 6 various image conversion websites
support PostScript files – often without knowing it. If there is no requirement
to accept PostScript, EPS or PDF files this functionality should be turned off
completely. However, this is not always practical because PostScript interpreter
can be deeply anchored in web applications. For example, web application frame-
works simply call ImageMagick or another background library for image conver-
sion and may not have an option to limit input files to certain types. In such
cases, the web application developer has to manually whitelist uploaded files
based on their ‘magic’ header bytes before processing them. This approach to
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accept only certain file types like JPEG, PNG or GIF can provide sufficient pro-
tection if implemented correctly. However, it must be noted that allowing PDF
files also implies allowing arbitrary PostScript code as shown in Sect. 5.

Note that a common technique to verify if a file is actually an image and
therefore protect web applications against malicious uploads is to check if the
image is resizable [13]. This will not protect against malicious PostScript code:
First, because EPS files are resizable and secondly because once an EPS file is
resized, it is already interpreted meaning the contained malicious PostScript code
has already been executed. Generally spoken, scanning for potentially dangerous
PostScript code is usually based on executing the PostScript code. As a result,
preventing the processing of PostScript is not possible by this countermeasure.

Interpreter Sandboxing. In case that the web application must process EPS,
PostScript or PDF files the execution of PostScript code is inevitable. Dif-
ferentiating between benign and malicious PostScript code can be considered
hard, because the PostScript language provides dozens of obfuscation techniques.
Therefore, PostScript file uploads should be treated as what they are: execut-
ing a Turing complete programming language with client input on the server
side. Hence, an additional layer of security is required to mitigate the risks.
Ghostscript provides a -dSAFER flag, however there have been various bypasses
in the past (see Sect. 4) and even in ‘safer’ mode it is possible to start DoS
attacks and perform information disclosure attacks like obtaining information on
local files. Therefore, the conversion process should be completely isolated from
the rest of the operating system. This can be provided using sandboxing tech-
niques (Firejail, chroot, etc.) or operating-system-level virtualization (Docker,
etc.). Such techniques come at the cost of implementation efforts and in some
cases higher CPU usage. But they are the only safe way we know of to warp
and execute PostScript code. Furthermore, the sandbox should apply resource
limitation in terms of computing time, memory usage, process runtime and the
number of parallel image conversion processes to be started from a single user to
prevent DoS attacks. In the disclosure process we learned that sandboxing tech-
niques are applied, for example, by Google Drive and Dropbox when thumbnails
for uploaded EPS files are generated.

10 Future Work and Discussion

Based on our findings, we consider further targets and similar technologies to
apply our attacks. Such targets are printers, printing services and desktop envi-
ronments. In addition, we are convinced of the relevance of more advanced obfus-
cating techniques which should be analyzed further.

10.1 Further Targets

Besides web applications, other services and devices are capable of processing
PostScript such as printers, online printing services, desktop and mobile appli-
cations, and web robots.
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Direct PDF Printers. Almost all laser printers support PostScript. In 2017,
Müller et al. [18] showed how dangerous the execution of PostScript on printers
can be. As a reaction, many vendors restrict the dangerous features of PostScript
and thus prevent or limit the impact of the attacks. However, modern printers
can interpret PDF and other file formats directly. This raises the question on
whether PostScript code hidden in other file formats is processed nevertheless –
and whether this is done by the hardened PostScript interpreter or not.

Printing Services. Printing services such as Google Cloud Print or HP ePrint
provide an interface between the user and one or multiple printers. Users do
not need to install any software or printer driver. They just send the file to
a server that interprets it and forwards it to the printer. Similarly, printing
services like textile or digital printing offer the possibility to upload EPS files
or other file types that are used to create customized products like T-Shirts,
cups, calendars, or flyers. Such services may be a valuable target for attacks if
malicious documents are processed.

Desktop/Mobile Clients. There is no large-scale evaluation on the security
of desktop or mobile clients capable to process PostScript. Thus, the risks by
opening of an unsuspicious file like PDF or PNG are barely studied. Such an
evaluation should consider all popular software products like PDF readers, image
viewers, and browsers on all major platforms. Commercial software products like
Adobe Illustrator, PDF Studio, and even AutoCAD should be considered too.

PostScript in LATEX. There are various services offering the compilation of
LATEXfiles and the generation of PDF files from them. Such systems like arXiv.org
and ShareLaTeX.com are popular in the research community. An attacker may
include malicious code within LATEXsource files that will eventually be executed
during the compilation. In addition, it may be possible that after compilation
the malicious code is included in the resulting PDF file.

10.2 Obfuscation

We introduced several obfuscating techniques to bypass security measures and
limitations implemented by web applications as a protection mechanism. How-
ever, further obfuscating techniques are conceivable and should be considered in
future research.

Masking PDF Files as Images. The PDF format allows attackers to create
polyglots – ambiguous files that allow multiple interpretations of its content.
For example, an attacker may create a valid PDF document that is also a valid
image such as a JPEG file when opened in an image viewer. This has been
demonstrated by previous research [4,16,20].

This technique may be capable of bypassing the protection mechanisms
of some web applications as discussed in Sect. 9. If one manages to create a

https://arxiv.org/
https://www.sharelatex.com/
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valid image file (including ‘magic’ header bytes) that is identified as PDF by
ImageMagick and therefore forwarded to Ghostscript, one may again inject mali-
cious PostScript code. As a proof-of-concept, we created a polyglot file that
is recognized as JPEG image by the file(1)8 tool, but identified and handled
as PDF by ImageMagick’s convert tool. Thus, further research is required to
develop attack and defense techniques.

Discussion. In this work, we presented a methodology to systematically analyze
PostScript processing web applications for security vulnerabilities. We found 56
of 100 tested online image conversion websites to be vulnerable to at least one
attack. We were further able to attack high-value targets such as Wikipedia or
Microsoft OneDrive on which we could include arbitrary files. Our work was
acknowledged according to the vendor’s bug bounty program.

Causes. We identified three possible reasons leading to the security gaps:

1. The dangers of PostScript are poorly documented and widespread in many
blogs and CVEs. Despite the fact that many of the attacks are already known,
there is no document describing the best current practices and clarifying the
risks by using PostScript interpreter. As a result, many administrators, secu-
rity experts, and developers may not be aware of the existing treats. With
our paper, we address the security community and reveal the need to recap
our knowledge regarding the risks of PostScript.

2. The support of PostScript is hidden deep inside the frameworks used by
web applications. Thus, even if a developer or administrator is aware of the
risks involved in processing PostScript code, he may not be aware of it being
enabled. For instance, if the Laraval PHP framework is used to resize an
image, this is done by calling the $img->resize(); function. This function
calls ImageMagick, which in turn may invoke Ghostscript. As a result, the
application may be vulnerable even if its developer never intended to support
PostScript.

3. PostScript supports features, which can harm the host. To reduce risks, widely
deployed interpreters like Ghostscript implemented restrictions with respect
to security, e. g. the -dSAFER flag. However, even with in safer mode, attacks
such as DoS are possible.

11 Conclusion

Web application and framework developers need to be aware of PostScript injec-
tion attacks and have to put more effort into addressing them. This should be
done on the one side by the security community clarifying the need for pre-
venting such attacks and on the other side by developers and administrators
disabling PostScript execution by default or using it exclusively in an isolated
environment with activated security restrictions.
8 Christos Zoulas, The file(1) Command, https://github.com/file/file, Mar. 2017.

https://github.com/file/file
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A Comprehensive Attack Catalog

Fig. 4. Resulting preview image of a malicious proof-of-concept PostScript file, our
comprehensive attack catalog, uploaded to a web application running Ghostscript 9.19.
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B Evaluation of Image Conversion Websites

Table 2. Evaluation of PostScript based attacks against web applications.
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Abstract. We study key leakage in the context of cryptocurrencies.
First, we consider the problem of explicit key leakage occurring on open-
source intelligence platforms. To do this, we monitor the Pastebin feed
from Sep 2017–Mar 2018 to find exposed secret Bitcoin keys, reveal-
ing that attackers could have stolen 22.40 BTC worth roughly $178,000
given current exchange rates. Then, we focus on implicit key leakage by
exploiting the wrong usage of cryptographic primitives and scan Bitcoin’s
blockchain for ECDSA nonce reuse. We systematically outline how an
attacker can use duplicate r values to leak nonces and secret keys, which
goes beyond the simple case where the same nonce and the same key have
been used in conjunction more than once. Our results show that ECDSA
nonce reuse has been a recurring problem in the Bitcoin ecosystem and
has already been exploited by attackers. In fact, an attacker could have
exploited nonce reuse to steal 412.80 BTC worth roughly $3.3 million.

1 Introduction

Cryptocurrencies have become popular entities in global financial markets. A
prime example of such a currency is Bitcoin [17] with a current market capital-
ization of over $135 billion [1] or Ethereum [23] with a current market capital-
ization of over $44 billion [2]. As such, it comes as no surprise that malicious
actors constantly try to steal those currencies, i.e., change ownership of cryp-
tocurrency assets without consent of the legitimate owners. The decentralized
and anonymous (or at least pseudonymous) nature of those currencies makes
such malicious activities more attractive, as traceback and prosecution by law
enforcement agencies is significantly harder than with traditional currencies.

In terms of stealing cryptocurrency assets, there are several possibilities. A
cryptocurrency is usually based on a cryptographic protocol, which uses several
cryptographic primitives such as elliptic curves [15] or digital signatures [12],
which one could try to attack. However, both the protocol and the primitives are
usually well studied and are either proven secure in theory, or have been subject
to an auditing process by experts in the field. Therefore, the best attackers can
hope for in this setting are implementation flaws, which are usually short-lived
due to the open-source nature of cryptocurrency implementations. The most
prominent incident of such an implementation flaw happened in February 2014,
when attackers found a vulnerability in the Mt. Gox Bitcoin exchange, which
allowed them to steal 850,000 BTC worth around $450 million at that time.
c© The Author(s) 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 623–643, 2018.
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While the attack did not affect the Bitcoin protocol itself, it exploited the inher-
ent transaction malleability of Bitcoin transactions to break some assumptions
of the internal accounting system of Mt. Gox [11].

While such large-scale incidents are rare, a more common and thus also severe
class of attacks against cryptocurrencies aims to leak cryptographic keys. Cryp-
tocurrency assets are cryptographically protected by a collection of secret keys,
which is called a wallet. If this wallet is stored in an insecure manner, i.e., in plain
on disk without any additional protection, then malware can simply scan the disk
for such wallets and report them to the attacker, which in turn can use them to
steal assets. Due to the popularity of cryptocurrencies, attackers have massively
deployed malware that aims to leak such secret keys. A well-known case of such
malware was the Pony Botnet, which operated from September 2013 to January
2014 [18]. The malware scanned the victim’s machine for various confidential
credentials including cryptocurrency keys, which resulted in financial damage
of $220,000. Modern wallets now use more sophisticated means of key manage-
ment such as additional encryption with a password, two-factor authentication
or hardware-based security [13], which protects against such local attacks.

In this paper, we take a different perspective and study whether remote
attack vectors allow leaking cryptographic keys from users. First, we study
whether users (accidentally or knowingly) explicitly leak cryptographic keys,
that is, post them publicly. To this end, we leverage the notion of open-source
intelligence (OSINT) with respect to cryptocurrency leaks. As a case study, we
consider Bitcoin as it is the most prevalent cryptocurrency currently used, but
any other cryptocurrency would be suitable as well. As an OSINT platform we
consider Pastebin [3], which is a popular information-sharing web application on
the Internet, and has already proven to leak different types of privacy-related
information [16]. However, other OSINT platforms such as Twitter, Reddit, Face-
book or GitHub would also work. We envision a scenario where a victim uses
Pastebin to share a piece of information including Bitcoin secrets such as a code
snippet performing a transaction or the debug output of wallet software. The
victim creates this paste to privately share the information, not knowing that it
will be publicly available in the Pastebin feed. An attacker that monitors this
feed can then scan each new paste for Bitcoin keys, for example using their
well-known format, and use those keys to steal Bitcoins. To simulate this, we
have monitored the Pastebin feed since September 2017 for Bitcoin secrets. Our
results show that an attacker could have stolen 22.40 BTC during this timespan.

We then also study the possibility of implicit key leakage, given that cryp-
tocurrency users (or software developers) may misapply cryptographic primi-
tives. In particular, keeping our focus on Bitcoin, we study the incorrect use of
the Elliptic Curve Digital Signature Algorithm (ECDSA), which, however, also
applies to other cryptocurrencies that are based on this primitive. To sign a
message m using ECDSA with a secret key sk, one must compute a signature,
which involves a randomly chosen nonce k. It is well known that apart from the
secret key, the nonce must also be kept secret, as an attacker can otherwise use
the signature and k to retrieve sk. Similarly, if one signs two distinct messages
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m1 and m2 using the same k and the same sk, then an attacker can recompute
sk based on the structure of the signature and the knowledge that both the key
and the nonce have been reused. While such a duplicate occurrence should not
happen in practice, as the set of possible nonces is sufficiently large, i.e., almost
2256 in the case of Bitcoin, such duplicates can still appear for other reasons.
One such reason could be the use of weak random number generators [4] or vul-
nerable software that is not aware of the implications of nonce reuses. Another
scenario which could also be responsible for such duplicate occurrences is cloning
or resetting a virtual machine, which could possibly result in reusing the same
seed for the random number generator. While there is anecdotal evidence for
duplicate nonces in the Bitcoin blockchain, there is no systematic study on the
actual impact or the prevalence of this phenomenon, i.e., the potential financial
damage that can be caused. To fill this gap, we scan the Bitcoin blockchain
for duplicate nonces and simulate an attack scenario in which a malicious actor
actively monitors incoming transactions to look for duplicate nonce occurrences
to leak keys and steal Bitcoins. In particular, we systematically outline how an
attacker can use duplicate nonces to leak secrets, which has not been shown
before in such detail. This goes beyond näıve cases where the same key and
nonce pair was used twice to sign two distinct messages. In fact, we show that
it is also possible to leak secrets by exploiting cyclic dependencies between keys
and duplicate nonces. Our results show that an attacker could have used this
methodology to steal 412.80 BTC.

To summarize, our contributions are as follows: (i) We assess the threat of
explicit Bitcoin key leaks using OSINT. We instantiate this idea by monitor-
ing the public feed of Pastebin for leaked secret keys. Our results demonstrate
how an attacker doing this could have stolen 22.40 BTC. (ii) We systematically
demonstrate how attackers can monitor Bitcoin transactions to scan for implicit
key leaks. We develop a methodology that can map signatures with duplicate
nonces to linear equation systems using a bipartite graph representation. (iii)
We assess the impact of implicit key leaks in the context of Bitcoin. That is, we
analyze how prevalent they are and how much Bitcoins an attacker could have
stolen by exploiting them. Finally, we study if such exploitation has happened
in the past. Our results show that an attacker could have stolen 412.80 BTC
and that attackers have exploited nonce reuse in the past to steal Bitcoins.

2 Background

In this section, we outline the preliminaries required for the scope of this paper
in order to grasp our ideas using the Bitcoin technology.

Blockchain and Mining. The central component of the Bitcoin protocol is the
Bitcoin blockchain, which is a distributed append-only log, also called a ledger.
The idea of this ledger is to keep track of all transactions that have ever occurred
in the Bitcoin network. The ledger consists of a sequence of blocks, each of which
consists of a set of transactions. Adding such a block to the blockchain requires
solving a computational puzzle using the Hashcash proof-of-work system [9]. The
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process of adding blocks to the blockchain is called mining and is rewarded with
Bitcoins. Transactions and blocks are created and distributed by the peers of
the network. Before transactions are mined, they are put in a temporary buffer
called the mempool. Miners, i.e., the peers which mine blocks, will then take
transactions from the mempool to build and mine a block and finally, announce
a newly mined block to the network.

Transactions. A Bitcoin transaction T consists of a sequence of inputs Ti =
[i1, . . . , im] and a sequence of outputs To = [o1, . . . , on] and is uniquely identified
by a transaction ID, which is generated by computing a hash of the transaction.
Inputs and outputs are therefore uniquely identified by the ID of the transaction
which contains them and their index in the input list and output list, respec-
tively. An output oj ∈ To carries a value, which is the number of satoshis that this
output is worth. A satoshi is defined to be such that one Bitcoin (BTC) equals
108 satoshis. The purpose of a transaction is to spend outputs by creating new
ones, which represents the money flow. To do this, every input ij ∈ Ti uniquely
references an output of another previous transaction, i.e., the ones which will
be spent, and creates new outputs that can be spent by future transactions.
An output can only be referenced once, and the outputs in the blockchain which
have not been referenced at any given moment in time is called the set of unspent
outputs. Every transaction carries an implicit transaction fee, which is the dif-
ference between the sum of the values of the outputs and the sum of the value
of the referenced outputs. Transaction fees will be paid to the miners, which
thus prioritize transactions based on their fees, i.e., the higher the fee, the faster
the transaction will be mined. Since a block can only be 1 MiB in size, miners
will usually consider transaction fees as a function of satoshis per byte of the
transaction, i.e., the larger the transaction the larger the nominal value of the fee
should be. Transaction fees are an essential economical element of the Bitcoin
network and change constantly depending on the number of transactions in the
mempool and how much peers are willing to pay the miners. Special transactions
without any inputs referencing other outputs are so-called coinbase transactions
and are created when a block is mined to reward the miner, which is how Bit-
coins are initially created. That is, before a miner mines a block, they will first
create a coinbase transaction which will be put in the block and rewards them
with Bitcoins. This reward is a fixed amount, which gets halved every 210,000
blocks, plus the fees of all transactions in the block.

Scripts. Transactions in the Bitcoin network are verified by using a small stack-
based language, the programs of which are called scripts. Every input and output
contains a script, which is often referred to as scriptSig and scriptPubKey, respec-
tively. These scripts can perform arithmetic, cryptography, flow control and so
on. In order for a transaction to be valid, one must concatenate the scriptSig of
each input with the scriptPubKey of its referenced output, which yields a new set
of scripts, i.e., one for each input. All of these scripts are then evaluated, and for
the transaction to be valid, there must be only one element on the stack after
evaluation and this element must be equal to true. The scriptPubKey can there-
fore be considered a means of protection, i.e., one can only redeem an output
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if they can provide a correct scriptSig. The scripting language contains special
instructions for elliptic curve cryptography, which is used within this scripting
framework to cryptographically secure transactions. In this context, every user
has a secret key sk and a public key pk. The most prevalent type of transaction is
called a Pay To Pubkey Hash (P2PKH) transaction. Outputs belonging to such
transactions have a scriptPubKey that verifies that the sender of the transaction
possesses the correct public key by comparing it against a hash. Additionally,
the script verifies a signature, which means that a working scriptSig must provide
both the public key pk as well as a valid signature that can be verified with pk,
which means that the sender must know sk.

Bitcoin Addresses. A Bitcoin address is a serialized hash of pk, which is gen-
erated by hashing the public key with the SHA-256 and the RIPMED-160 hash
functions and appending and prepending a version byte and checksum bytes. The
hash is then serialized using base58 encoding, which is a more human-readability-
friendly version of the base64 encoding and removes ambiguous-looking charac-
ters (e.g., zero (“0”) and capital o (“O”)). An example of such an address is
16UwLL9Risc3QfPqBUvKofHmBQ7wMtjvM. Before hashing, pk must be serialized,
for which there are two options, namely the compressed public key and the
uncompressed public key. We omit the technical details here as they are not
required for the scope of this paper. It is only important that both serialization
options yield different addresses, which means that every public key pk corre-
sponds to two addresses, which can be used independently of each other. This
means that if an attacker leaks a secret key, they gain control over the balances
of two addresses. We can define the balance of a P2PKH address by using the
previously mentioned scripts. For instance, we determine that the balance of
a P2PKH address encoding a hash h, is the sum of the values of all unspent
outputs that can be redeemed with the public key pk that h is a hash for.

3 Explicit Key Leaks: Open Source Intelligence

In this section, we will outline the methodology that we use to discover explicit
Bitcoin key leaks, i.e., cases where users (knowingly or not) directly disclose
sensitive Bitcoin key material to the public. To this end, we follow the general
idea of open source intelligence (OSINT), in which an attacker harvests publicly
available information to derive sensitive information. To evaluate this idea in
the context of Bitcoin secrets, we chose Pastebin as an OSINT platform. Given
its popularity, we expect that Bitcoin users accidentally leak secret information
there. Examples of such leaks would be users publishing code snippets doing
Bitcoin transactions or the debug output of some wallet software which users
want to share privately, not knowing that these pastes are then publicly visible
in the Pastebin feed. We monitored all pastes starting from September 2017 and
scanned each paste for Bitcoin secrets, i.e., secret keys.
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3.1 Finding Bitcoin Secrets

To scan a paste for secret Bitcoin keys, we leverage the observation that Bitcoin
keys are serialized using a well-known format. A secret key is an integer sk, which
we will describe further in Sect. 4.1. An agreed-upon format for serializing those
keys is the Wallet Import Format (WIF). To convert a secret key sk into this
format, the following procedure is applied. First, sk is converted to a 32-bytes-
long big-endian representation, which we call b. Then, 0x80 is prepended to b and
optionally 0x01 is appended if the secret key will correspond to a compressed
public key. Then SHA256 is applied twice on b, and we call the last four bytes
of this hash c. The WIF is defined to be the base58 encoding of b||c.

The last 4 bytes in this format are a checksum for the remaining bytes, which
is used in practice to avoid copy and paste mistakes. However, this checksum
also allows a systematic scan for instances of WIF strings in text with a very low
probability of false positives. In our Bitcoin monitoring tool, we thus proceed
for each new paste as follows. First, we move a sliding window over the content
of the paste to discover all valid base58 encoded substrings of the paste which
are 51 or 52 characters long and start with either “5”, “K” or “L”. Both of
these constraints are a consequence of the base58 encoding and the fact that the
fixed byte 0x80 is prepended. For each string which matches these criteria, we
compute and verify the checksum as described above. If the checksum verifies,
we have found a valid WIF string and we can compute the corresponding secret
key sk. Finally, we check if the secret key is in the valid range (cf. Sect. 4.1), and
if this is the case, then we consider this key for further analysis.

3.2 Results

To apply our methodology, we monitored and scanned all public pastes on Paste-
bin since September 2017. We identified 21,464 secret keys, which correspond to
42,936 addresses, i.e., 2 addresses per key as described in Sect. 2. However, most
of these addresses are unused, i.e., there is no transaction in the blockchain which
transferred Bitcoins from or to these addresses. As of now, 391 (0.91%) of those
addresses held a balance at some point in time. However, for stealing Bitcoins it
is not sufficient that an address held a balance at some point in time. Instead,
we also have to take into account that the address held a balance after we have
seen the corresponding secret key in a paste. If we respect this constraint, we
find that 165 (0.38%) addresses held a balance after we have seen their secret
key in a paste. Those keys were scattered among a total of 34 pastes. Summing
up those balances gives a total of 326.70 BTC.

It should be mentioned, though, that this is still not a guarantee that this
number of Bitcoins could have been stolen. This is due to the fact that we deter-
mine the balance of an address at some point in time based on the blockchain, not
the mempool. That is, we take the latest block that was mined before the paste
was published and check the balance of an affected address up to this block. It
could be the case that there was a transaction in the meantime which redeemed
outputs from the given address, i.e., there could be a pending transaction in
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the mempool. In this case, an attacker could not easily create a transaction to
steal the Bitcoins. Current network rules discourage the distribution of trans-
actions that double-spend outputs unless the transaction is explicitly marked
as a replace-by-fee (RBF) transaction. An attacker could try to mine a stealing
transaction themselves or try to directly announce the stealing transaction to
mining pools which do not follow these network rules. Alternatively, if the block-
ing transaction has a low fee, the attacker could wait until a significant number
of peers do not have the transaction in their copy of the mempool anymore. This
would increase the chances that the new stealing transaction will be pushed to
more peers, which in turn will increase the chances that the stealing transactions
will be mined. However, none of these methods guarantees success, and therefore
the amount of 326.70 BTC is an upper limit.

To get a more conservative estimation of the amount of stealable Bitcoins,
we have to consider pending transactions. That is, we only considered cases
where there was no transaction in between which was not marked as RBF. As
it turns out, this was the case for 26 addresses in 119 pastes. For the remaining
cases, there was a blocking transaction in between, i.e., the paste containing
the secret key was published after the blocking transaction was distributed. For
example, one paste contained an address holding a balance of 40.84 BTC for
which a transaction was already placed in the mempool. In total, we found
that an attacker could have stolen 22.40 BTC. We excluded transaction fees in
this analysis as they are highly dynamic over time and the number of stealable
outputs was so small that the resulting fees would not be a significant factor.

This demonstrates that an attacker can cause significant financial loss with
relatively simple means. This is amplified by the fact that an attacker could
expand this methodology to other cryptocurrencies and OSINT platforms.

4 Implicit Key Leaks: Incorrectly Used Cryptography

Seeing that even explicit key leaks pose a problem to Bitcoin users, in this section,
we will study how users implicitly leak secrets. To this end, we will first describe
the most important cryptographic primitive in Bitcoin, namely ECDSA. We then
show how the incorrect use of this primitive opens severe vulnerabilities. That
is, we will systematically describe how an attacker monitoring the transactions
of the Bitcoin network can use nonce reuse to steal Bitcoins, and what amount
of damage could have been caused (or was caused) in the past by attackers.

4.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to cryp-
tographically secure transactions. The scheme is based on the computational
infeasibility assumption of solving the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP), i.e., given two points Q and Qk on the curve, there is no
polynomial-time algorithm for recovering k. Bitcoin uses the secp256k1 curve,
which is based on the equation y2 = x3 + 7 over the finite field Fp with the
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256-bit prime number p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1. Furthermore,
secp256k1 uses a generator point G with the 256-bit group order n = 2256 −
0x14551231950B75FC4402DA1732FC9BEBF, i.e., n is the smallest number such
that Gn = 0. To create and verify signatures, we need the notion of a secret
key sk and a public key pk. In the context of elliptic curve cryptography, sk is
a randomly chosen integer from {1, . . . , n − 1} and the public key pk can be
derived by multiplying the generator G with sk, i.e., pk = Gsk. This derivation
is considered secure, as recovering sk from pk would require solving ECDLP.

To sign a message m with a secret key sk using ECDSA, the following pro-
cedure is followed: First a hash of the message h = H(m) is created using a
cryptographic hash function H. The hash h is then interpreted as a number
and truncated so that it does not contain more bits than the group order n.
In the case of Bitcoin, we have H = SHA2562, i.e., applying SHA256 twice,
which means that h will not be truncated as n is a 256-bit number. Then, a
random nonce k is chosen from {1, . . . , n − 1}. After that, the r value is com-
puted, which is the x-coordinate of the point that is yielded by multiplying the
generator point G with k, which we denote by r = (Gk)x mod n. Finally, the
value s = k−1(h+rsk) mod n is computed and the tuple (r, s) is returned as the
signature. If r = 0 or s = 0, then this procedure is repeated until both r and s are
non-zero. To verify that (r, s) is a valid signature for a message m using the public
key pk, one proceeds as follows: First the hash h = H(m) is created and truncated
as before. Then, the curve point (x, y) = (Gh+pkr)s−1 is calculated and the sig-
nature is considered valid if x = r. The correctness follows from the observation
that pk = Gsk, which implies (Gh + pkr)s−1 = G(h + skr)s−1 = Gkss−1 = Gk.

In terms of key or nonce leakage, note that the equation s = k−1(h +
rsk) mod n contains two unknowns and therefore cannot be used to leak the
secret key or the nonce. Recovering k from r = (Gk)x would require solving
ECDLP, similar to how pk = Gsk cannot be used to recover sk.

4.2 Using Duplicate Nonces to Leak Keys

It is known that ECDSA fails catastrophically if nonce reuse occurs. Nonce reuse
means that there are multiple signatures using the same nonce k, which might
allow an attacker to leak secret keys under certain circumstances. For instance, if
the same k (and thereby the same r value) and sk are used to create 2 signatures
(r, s1) and (r, s2) for two distinct messages m1 and m2, then we have1:

s1 = k−1(h1 + rsk) s2 = k−1(h2 + rsk), (1)

This allows leaking the secret key sk with:

s2h1 − s1h2

r(s1 − s2)
=

h1h2 + rh1sk − h1h2 − rh2sk

rh1 + rsk − rh2 − rsk
=

rh1sk − rh2sk

rh1 − rh2
= sk. (2)

1 Note that all calculations on signatures are done modulo n, which we omit for brevity.
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Similarly, k can be leaked with:

h1 − h2

s1 − s2
=

h1 − h2

k−1(h1 − h2 + sk(r − r))
= k. (3)

However, not every kind of nonce reuse leads to cases where an attacker can
leak secrets. For instance, consider the case where a nonce k is used with two
different keys sk1 and sk2 to sign two distinct messages, i.e.,:

s1 = k−1(h1 + rsk1) s2 = k−1(h2 + rsk2). (4)

It turns out that it is not possible in this case to leak any secrets. To get a better
understanding of this, we need to consider the fundamental underlying problem
that constitutes the act of leaking secrets in this setting. If we rewrite Eq. (1) to
look as follows:

s1k − rsk = h1 s2k − rsk = h2

it becomes evident that this is a system of linear equations. In particular, this sys-
tem consists of 2 linearly independent equations, since h1 �= h2, and 2 unknowns,
i.e., k and sk, and is therefore uniquely solvable. On the other hand, Eq. (4) con-
sists of 2 equations and 3 unknowns, i.e., k, sk1 and sk2, and is therefore not
uniquely solvable as there are more unknowns than equations.

4.3 Beyond Single-Key Nonce Reuse

Interestingly, in some cases secrets leak even though the nonces are not reused
with the same secret key. For example, consider the following case, where two
keys sk1, sk2 are used with the same pair of nonces k1, k2, i.e.,:

s1,1 = k−1
1 (h1,1 + r1sk1) s1,2 = k−1

1 (h1,2 + r1sk2)

s2,1 = k−1
2 (h2,1 + r2sk1) s2,2 = k−1

2 (h2,2 + r2sk2)

Here, no nonce is used twice by the same key, but nonces have been reused
across keys. The system thus consists of 4 linearly independent equations and 4
unknowns and is thus uniquely solvable. A solution for sk2 that can be computed,
with Gaussian elimination for example, would be:

sk2 =
r1s1,2(h2,2s2,1 − h2,1s2,2) − r2s2,2(h1,2s1,1 − h1,1s1,2)

r1r2(s1,2s2,1 − s1,1s2,2)
.

In general, we can think of this problem as follows. An attacker is given
a set of signatures S = {(h1, r1, s1, pk1), . . . , (hn, rn, sn, pkn)}, which can be
extracted from the Bitcoin blockchain, for example. Each tuple (hi, ri, si, pki) ∈
S corresponds to a signature (ri = (Gki)x, si = k−1

i (hi + rsk)) where pk = Gsk.
The goal of the attacker is to leak as many keys (or nonces) as possible by solving
systems of linear equations. To achieve this, an attacker has to identify subsets
of solvable systems. They can do so by reducing this problem to graph theory.
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For instance, we build an undirected bipartite graph G = (Vpk ∪ Vr, E), where
Vpk = {pki | (·, ·, ·, pki) ∈ S}, Vr = {ri | (·, ri, ·, ·) ∈ S} and E = {{ri, pki} |
(·, ri, ·, pki) ∈ S}. The graph G consists of two types of nodes, r values ri and
public keys pki, each of which corresponds to an unknown (a nonce ki and a secret
key ski). An edge {r, pk} in this graph corresponds to a signature, which in turn
corresponds to an equation in the system of linear equations that S constitutes.
As a pre-filtering step, we first collect all the r values and public keys that appear
at least twice in conjunction, i.e., we collect F = {r, pk | |{(·, r, ·, pk) ∈ S}| > 1}.
Since this corresponds to the same nonce being used by the same key at least
twice, it means that we can leak the used secrets k and sk using Eqs. (3) and
(2) with the appropriate signatures. Additionally, we can leak all the secrets
which correspond to the nodes that are reachable by every public key and nonce
in F . To understand this, assume we have an r value ri ∈ F , which means
that we can leak the nonce ki as described. Now assume that there is a node
pkj ∈ Vpk such that {ri, pkj} ∈ E, which implies the existence of the equation
sj = k−1

i (hj + rskj). Since we know ki, we can leak skj with skj = sjki−hj

r .
The same is analogously true if we assume a public key pki ∈ F and an r
value rj ∈ Vr such that {rj , pki} ∈ E. By applying this argument inductively, it
becomes evident that we can leak the secrets associated with all nodes that are
reachable from every ri ∈ F and every pki ∈ F .

In the next step, we need to identify the nodes and edges which can be
mapped to a solvable system of linearly independent equations. This can be
achieved by finding non-trivial cycles in G, i.e., distinct nodes r0, pk0, . . . , rn, pkn
for n > 0 such that {ri, pki} ∈ E and {pki, ri+1 mod n} ∈ E for 0 ≤ i ≤ n. Such a
cycle contains 2(n+1) nodes, i.e., unknowns, and 2(n+1) edges, i.e., equations,
and thus directly implies the existence of a solvable system of linear equations.
Hence, for all such cycles we can leak the corresponding secrets, and, as before,
we can also leak the secrets of the reachable nodes. The output of this whole
process is two sets V ′

pk ⊆ Vpk and V ′
r ⊆ Vr, which are the public keys and r values

for which we have leaked the secret keys and nonces, respectively. If we remove
the nodes in V ′

pk ∪ V ′
r and their edges from G, the resulting graph should not

contain any non-trivial cycles. This means that no more secrets can be leaked
and hence V ′

pk and V ′
r are optimal with respect to their size.

There is, however, a little twist to the methodology we described here. We
consider two signatures (r1, s1) and (r2, s2) a case of nonce reuse if the r values
coincide, i.e., if r1 = r2. This is not strictly true, as the r value is only the
x-coordinate of Gk. Since elliptic curves are based on a Weierstrass equation of
the form y2 = x3 + bx+a, there are always two nonces k which lead to the same
r value2. In particular, if we have Gk = (x, y), then we have G(−k) = (x,−y).
This means that if the r values coincide, we need to take into account that one
nonce might be the additive inverse of the other rather than being equal. To
respect this, we must consider for every signature (r, s) the signature (r,−s)
as well, which is the signature that is yielded by negating k. For each such
combination we have to solve the system of linear equations and check if the

2 Recall that r �= 0 (cf. Sect. 4.1).
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returned solutions are correct to leak the correct keys and nonces. This can be
done by double-checking that each leaked secret key sk corresponds to the given
public key pk, which can be done by verifying the equality Gsk = pk.

4.4 Results

We will now outline our results regarding nonce reuse in the Bitcoin blockchain.
To achieve this, we downloaded a copy of the Bitcoin blockchain up until block
506071, which was mined on 2018-01-25 16:04:14 UTC. We parsed all inputs
from all P2PKH transactions to extract their ECDSA signatures.

Table 1. The 10 most frequent r values and their number of occurrences.

r value Occurrences

0x00000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63 2,276,718

0x00006fcf15e8d272d1a995af6fcc9d6c0c2f4c0b6b0525142e8af866dd8dad4b 7,895

0x1206589b08a84cb090431daa4f8d18934a20c8fa52ad534c5ba0abb3232be1d9 265

0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 251

0x2ef0d2ae4c49c37703ba16a3126e27763e124ff3338fb93577ed7bd79ed0d19e 91

0x06cce13d7911baa7856dec8c6358aaa1fb119b5a77d0e4d75d5a61acae05fcfb 83

0xd47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1 76

0x281d3da7518241cd8ee30cd57ae3173a1bd9ee5e3b02a46ba30f25cd5b4c6aa8 68

0x8216f63d28f4dc0b6909a330d2af09b93df9dd3b853958c4d203d530328d8ed1 64

0x5d4eb477760cf19ff00fcb4bab0856de9e1ce7764d829a71d379367684712be4 52

In total, we extracted 647,110,920 signatures and we found 1,068 distinct r
values appearing at least twice and used by 4,433 keys. In total, these duplicate r
values make up for 2,290,850 (0.35%) of all r values. In Table 1, we show the top
10 most frequent duplicate r values along with their number of appearances. The
most frequent duplicate r value appears 2,276,671 times, which makes up 99.38%
of all duplicate occurrences. This r value is special, as it is extraordinary small,
given that its 90 most significant bits are all 0. Additionally, the corresponding
nonce k for this r value is k = 1

2 mod n. As this is unlikely to be a coincidence,
it is believed that the designers of the secp256k1 curve chose the generator
point G based on these values. It is also believed that this r value is used on
purpose by peers to save transaction fees. Bitcoin uses the DER encoding to
serialize signatures, which can compress the leading bits of this r value, which
reduces the transaction size and leads to smaller transaction fees. If peers use
this nonce only for the “last” transaction of an address, i.e., the final transaction
which removes all funds, then this should be secure as long as the transaction is
marked as non-replaceable. But since this transaction still leaks the secret key
of the address, the peer needs to make sure that they will never use the address
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again. Our analysis revealed that this r value was primarily used in two time
periods. The first block which contains this value is block 364,767 and the last
one is block 477,411. In total, we identified 1,550 blocks which contain this r
value. We found that the r value was used excessively in 2 time periods, which
is depicted in Fig. 1. We can see that between block 365,000 and block 366,000
and between block 374,000 and block 375,000, the value is used roughly 1 million
times each, which makes up almost all of its appearances.
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Fig. 1. Number of occurrences of the most prominent duplicate r value over time.

Inspecting the other duplicate r values a bit more closely reveals further
interesting cases. The second most used r value also has 16 leading 0 bits, which
is also an indication that the corresponding nonce was not chosen randomly. The
fourth most used r value corresponds to the nonce k = 1, which is an indication
of either a broken random number generator or a hand-crafted transaction where
the nonce was not randomized and the creator simply took the x-coordinate of
G. Another r value we found was using the nonce k = 12345678, which is also
an indication of an ad-hoc generated transaction using a fixed nonce rather
than a secure random one. Similarly, we found two other r values where the
corresponding nonces where suspiciously small, i.e., in one case the nonce was
k = 0x80001fff and in another case the nonce also had 74 leading 0 bits. In
another case the nonce was k =

∑32
i=0 16i, i.e., 0x0101...01 in hexadecimal

notation, which looks like a pattern that a human would produce.

4.5 Measuring the Impact of Weak Nonces

We will now assess how much damage an attacker could have caused by using
the previously described methodology for leaking keys and nonces. To do this,
we put ourselves in the position of an attacker who monitors the transactions of
the blockchain. That is, we use our copy of the blockchain to create an ordered
sequence of signatures [(Δ1, h1, r1, s1, pk1), . . . , (Δn, hn, rn, sn, pkn)] where Δi is
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a block number such that Δi ≤ Δj for i ≤ j and the remaining elements are the
components of a signature found in a transaction of block Δi. We then process
these entries in order as follows. We add each signature si = k−1(hi + ri) for
a public key pki in block Δi to a database, which allows us to quickly identify
duplicate r values as well as their signatures. Each identified duplicate r value ri
is then added to the graph G along with the used public key pki. However, before
adding these 2 nodes to the graph, we make a few checks. First, we check if we
have leaked both ki and ski, in which case we can completely disregard both, as
adding them will not lead to new leaks. Second, we check if G already contains
the edge {ri, pki}, in which case we can leak both ki and ski. Third, we check if
we have already leaked either ki or ski, in which case we can then leak ski or ki,
respectively. In the last two cases, we can also leak the secrets corresponding to
all the nodes reachable from both ri and pki as discussed previously. Only if none
of these three conditions apply, we add the edge {ri, pki} to G. After processing
all signatures of a block, we look for cycles in G to identify solvable systems of
linear equations in order to leak secrets as outlined previously. Whenever we find
a new leak, we make sure that we remove the corresponding signatures from the
database and that we remove the corresponding nodes and their edges from G,
as we will otherwise redundantly reconsider the same r values and cycles.
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Fig. 2. Number of stealable Bitcoins + number of vulnerable Bitcoin addresses
attributed to ECDSA nonce reuse over time.

Using this methodology, we managed to leak 892 out of the 1,550 possible
nonces (57.55%) and 2,537 out of the 4,433 secret keys that were used in conjunc-
tion with these nonces (57.23%). In total, this gives us theoretical control over
the balances of 5,074 addresses, i.e., two addresses per key. During this whole
operation we identified 23 cycles in the graph and the longest cycle consisted of
12 nodes, which represents a system of 12 linear equations and 12 unknowns (6
nonces + 6 secret keys). The final shape of G did not contain any more cycles,
which means that we have leaked the maximum number of secrets.

Figure 2 depicts the number of Bitcoins that an attacker could have stolen
at any point in time, i.e., the block height, as well as the number of vulnerable
addresses at each moment in time. We consider an address at a certain block
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vulnerable if we have leaked the key of the address and if it held a balance at
that block. There are a few notable spikes for both the number of stealable Bit-
coins as well as the number of vulnerable addresses. The first significant spike
occurs roughly between block 221,000 and block 227,000, where the peak steal-
able balance is 533.82 BTC. Interestingly, there was only one vulnerable address
during this spike. The next spike occurs roughly between block 296,000 and block
298,000 with a peak stealable balance of 20 BTC, which was stealable for a times-
pan of 3 blocks from block 297283 until block 297285. From block 297,261 up to
block 297,304 there were 90 vulnerable addresses, which is also the maximum
number of vulnerable addresses of the spike. The next spike is slightly shorter
and happens at around block 333,300 and lasts roughly until block 333,600.
During this timespan, an attacker could have stolen up to 266.73 BTC at block
333,387 and there were 290 peak vulnerable addresses at block 333,393. This is
followed by two similarly long-lasting spikes between blocks 365,000 and 366,000
and blocks 374,000 and 375,000. In the former case, 11.21 BTC was stealable and
there were 131 vulnerable addresses at some point, and in the latter case 15.41
BTC was stealable and there were 769 vulnerable addresses from block 374,386
to 374,386. This is also the largest number of addresses that were vulnerable at a
time over the whole timespan. Finally, while the number of vulnerable addresses
suddenly jumps to 289 at block 475,963, there are only 0.0064 BTC stealable at
the peak. At the current state of our copy of the blockchain, there are 5 vulner-
able addresses holding an accumulated balance of 4002 satoshis, i.e., 0.00004002
BTC, which is unlikely to be stolen given current transaction fees.
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Fig. 3. Number of Bitcoins an attacker could have stolen based on a balance threshold.

To assess how much an attacker could have stolen over time, we consider
two scenarios. First, we assume an attacker which steals the peak balance of
each address over time. That is, we take the sum of the peak balances of each
address, which gives a total of 1021.58 BTC. Here, we implicitly assume that
the owner notices the fraud and therefore we ignore all future funds. However,
this attack model requires an attacker to know the peak balance in advance,
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which is unrealistic. Therefore, we consider a second more realistic attacking
scenario in which an attacker defines a balance threshold ε. In this setting, an
attacker only steals a balance if it is equal to or larger than ε and we assume
again that we can only steal once from an address. Figure 3 plots the number of
Bitcoins that an attacker could have stolen in this scenario depending on ε. We
let ε range between 0 and 1 BTC with 0.001 increments. The optimal balance
threshold according to the plotted function is ε = 0.125, which an attacker could
have used to steal 412.80 BTC. Note that even though one address alone had a
balance of 533.82 BTC at some point, it does not mean that an attacker in this
setting can steal it completely. This is because we assume that we can steal only
once from an address once its balance surpasses the balance threshold ε, after
which we conservatively assume that the owner of the address becomes aware of
the problem. While this means that choosing a large ε such as ε = 500 BTC would
yield a larger profit for the attacker, we believe that it is not an optimal choice.
Given the current value of Bitcoin, we believe that it is unrealistic for a single
individual to hold such a large balance. Additionally, if we assume that there are
multiple competing attackers, then we also have to take this into consideration
when choosing ε. We therefore let ε range between 0 and 1 BTC as we believe
that this is a good compromise between what is currently practical and what is
optimal in theory. After said optimum, the number of BTC starts to decrease
steeply, and for ε = 1, there are 359.04 stealable Bitcoins, i.e., 13.02% less than
in the optimal case. Similar to our previous OSINT analysis in Sect. 3.2, we also
ignored transaction fees here due to their negligible impact. Additionally, we also
did not consider blocking transactions in this case, as an attacker monitoring
transactions can create stealing transactions as soon as possible.

4.6 Identifying Past Attacks

Given that the phenomenon of ECDSA nonce reuse is a known problem, we now
try to assess if it has been used by attackers in the past to steal Bitcoins. To do
this, we tried to identify for each of the 7 spikes in Fig. 2 the moment in time
when the number of stealable Bitcoins suddenly dropped. Then we tried to find
transactions, which were created during that time and whose outputs referenced
inputs of many vulnerable addresses. In the case of the first spike, it is hard
to argue whether it was used by an attacker as only 1 address was vulnerable
in this timespan. However, we identified several cases where the balance of the
address suddenly dropped by over 99.99%, which one could argue is an incident
where Bitcoins have been stolen. In the second, third, sixth and seventh spike
we found cases where the number of stealable Bitcoins decreased suddenly and
we identified in all cases a single transactions referencing all the responsible
vulnerable addresses, which makes us believe that Bitcoins were stolen. In the
case of the last spike, however, only 0.00064 BTC were stolen.

Regarding the fourth and fifth spike, we did not observe a similar suspi-
cious drop regarding the number of Bitcoins, but only regarding the number
of vulnerable addresses. To see the difference, consider Fig. 4, which shows and
compares a zoomed in view of the second and the fifth spike. In the former, we
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Fig. 4. Comparison of a spike where Bitcoins might have been stolen due to a sudden
drop in stealable Bitcoins (left) and a case where we see a smooth decrease indicating
that no coins might have been stolen (right).

can see a sudden drop in the number of stealable Bitcoins, i.e., while there are
7.49 stealable BTC at block 297,304, there are only 0.2 BTC stealable at block
297,305. We identified a single transaction which transferred all the stealable
Bitcoins, indicating a theft. The fact that the number of vulnerable addresses
did not decrease to 0 at the same time can be explained by various reasons. For
instance, it could be possible that the attacker was not aware of the remaining
vulnerable addresses. Or, it could be the case that the attacker used a balance
threshold and determined that the remaining addresses are not worth stealing
from based on this threshold, because as we can see, the 0.2 BTC are shared
among 86 vulnerable addresses. In the second spike in Fig. 4, we observe a smooth
and monotone decrease over time regarding the number of stealable Bitcoins and
then a sudden decrease of the number of vulnerable addresses at the same time
the stealable BTC drop. This phenomenon could be explained by the fact that all
the addresses belong to the same individual and that at the end all the so-called
change addresses are emptied by the wallet. Change addresses are addresses
which are used to accumulate leftover transaction outputs. For example, if an
address A wants to send 1 BTC to an address B using a single output, which is
worth 5 BTC, then the resulting transaction will create two outputs, one that
is worth 1 BTC and can be spent by address B and one that is worth 4 BTC
and can be spent by a change address that belongs to the owner of A. The final
transaction of the wallet will then use all accumulated outputs of the change
addresses, which could be an explanation for the sudden drop.

5 Discussion

In this section, we will consider the ethical aspects of our work and describe how
the problem of key leakage of cryptocurrencies can be tackled.
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5.1 Ethical Considerations

Given that we systematically describe how attackers can steal Bitcoins abusing
leaked keys, we have to address the ethical aspects that come along with such a
work. On the one hand, we believe that raising awareness of these attack vectors
is fundamental and important to improve the security of the cryptocurrency
ecosystem. On the other hand, one could argue that the amount of detail we put
into outlining these methods is not beneficial as it allows for easy reproducibility
by attackers. Yet we believe that this is the right way to tackle this problem as
“security by obscurity” has proven in the past to be an insufficient means in
the area of security. We also note that ECDSA nonce reuse is known to be
a problem and it has been reported in forum posts that this phenomenon has
occurred in the Bitcoin blockchain [5–7]. However, as we have shown in Sect. 4.4,
this apparently known problem still regularly occurs and is abused by attackers,
with the latest case of nonce reuse appearing in a block mined on 2017-07-15.
This constant recurrence leads us to believe that it will happen again, unless we
emphasize this problem better, which is why we outline the attack in detail.

Another ethical aspect of dealing with attacks on cryptocurrencies is that a
responsible disclosure process in terms of notifying the victims is not trivial. A
fundamental downside here is that Bitcoin itself is decentralized by design and
intends to ensure the anonymity (or pseudonymity) of the peers. This means
that (i) we have no dedicated point of contact, which we could inform about our
findings and (ii) we cannot reach out to the legitimate owners of the vulnerable
addresses. We tried to handle this problem as responsibly as possible and refrain
from disclosing problematic addresses and/or transactions. For example, we did
not mention any vulnerable addresses or URLs to pastes containing them, as we
cannot be sure that the owners of those addresses are aware of the vulnerability.
While an attacker can reproduce our methodology to find any future vulnerable
addresses using Pastebin, it should not be easily possible to find the addresses we
have discovered, since the Pastebin feed only lists the most current 250 pastes.
While Pastebin can be searched using standard search engines like Google, it
should be very hard to discover the pastes we have found, since search engines
only offer a keyword-based search, rather than a regex-based search which would
be required to find the addresses. In our ECDSA case study, we also did not
mention any vulnerable addresses. However, an attacker can fully reproduce
our results here, as the Bitcoin blockchain contains all the necessary historical
information. Therefore, not mentioning vulnerable addresses is not as effective
as in the case of our OSINT case study. Yet we also do not see a reason to do
so, as one could argue that this makes it too easy for an attacker.

5.2 Countermeasures

Explicitly leaking keys is not strictly a technical problem, as users seemingly pub-
lish private information without knowing the consequences of doing so. However,
there are some technical solutions that could be applied on OSINT platforms.
For example, Pastebin could include a check in their logic, which scans pastes for
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secrets such as Bitcoin secret keys encoded in the WIF format. In fact, they could
provide immediate feedback to users about the security implications of pasting
such content. We have therefore contacted Pastebin with a detailed description
of our work, proposing to adopt such a methodology.

To avoid ECDSA nonce reuse, there are a few solutions that can be applied.
One such solution proposed by RFC 6979 [19] is to choose the nonce k determin-
istically based on the message m and the key sk. As inputs differ, this scheme
provides unique nonces and hardens against nonce reuse. However, since this
solution is backwards-compatible with the existing ECDSA scheme, it also means
that peers do not have to follow this proposal. In particular, one cannot verify
that a signature has been created with the deterministic nonce choice as proposed
by RFC 6979. Another way of dealing with this problem is to incorporate a dupli-
cate nonce check into the Bitcoin protocol. For example, a check for duplicate r
values could be incorporated into the transaction verification process. Each peer
verifies each transaction of a block, which includes verifying the signature and
other sanity checks. Here, the protocol could also support a check for duplicate
r values, i.e., checking, for each r value of each signature, if it already occurs
in the blockchain. From a performance perspective, a Bloom filter could help to
scale this process. The more peers follow this, the less likely it will become that
a transaction containing a duplicate r value will be added to the blockchain.
However, an attacker monitoring the mempool instead of the blockchain might
still be able to observe transactions containing duplicate r values. Therefore,
one would need to additionally adapt the network rules such that a new rule is
added, which discourages the distribution of transactions which contain dupli-
cate nonces. If such a transaction reaches a peer which follows this new set
of rules, the duplicate r value will be detected and the transaction will not be
relayed further. Additionally, the peer sending the transaction should be notified
with an error message about the problem to create awareness. The more peers
follow this new set of rules, the less likely it becomes that transactions contain-
ing duplicate r values are distributed among the network. In total, we believe
that the adoption of all proposals, i.e., deterministic ECDSA and adapting the
network rules as well as the transaction verification process, are sufficient means
to eliminate nonce reuse from cryptocurrencies.

6 Related Work

In this section we discuss other work in the areas of OSINT, Bitcoin key leakage
and ECDSA nonce reuse, and how they relate to our work.

OSINT has been applied before to expose or harvest privacy-related informa-
tion. Matic et al. [16] performed a study in which they monitored the Pastebin
feed between late 2011 and early 2012 to develop a framework for detecting
sensitive information in pastes. They discovered almost 200,000 compromised
accounts of several websites as well as lists of compromised servers or leaked
database dumps. In a slightly different vein, Sabottke et al. [20] design a Twitter-
based exploit detector that can predict vulnerabilities such as code execution or
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Denial-of-Service attacks solely based on tweets. Similarly, Zhu et al. [24] show
how they can use academic security literature as OSINT to automatically engi-
neer features for malware detection. While all of these works show the potential
of OSINT, they are only remotely related to our work as our use case is different.

In terms of leaking Bitcoin secrets to steal money, there have been a few
other papers targeting this problem. Vasek et al. [22] have outlined how one
can attack passphrase-based wallets (brain wallets). The authors developed a
tool called Brainflayer, which uses brute force and a dictionary to generate
weak passphrases, which would have allowed an attacker to steal Bitcoins worth
$100,000 at that time. This approach is similar to ours in the sense that an
attacker exploits the fact that users treat sensitive information wrongly, i.e.,
passphrases in the case of Brainflayer and secret keys or nonces in our case. In
contrast to searching for weak passphrases, we harvest OSINT and cryptographic
primitives. More related are works by Castellucci et al. [10] and Valsorda [21],
which both consider ECDSA nonce reuse with respect to Bitcoin. However, both
only cover the basic case, where a nonce is used in conjunction with the same
key twice. We generalize this concept to systems of linear equations and system-
atically outline how an attacker can use a graph-based approach to leak secrets.

The general problem of nonce reuse in respect to ECDSA (or the closely
related DSA scheme) has been studied in other contexts. A notable incident
occurred in 2010, when it was discovered that Sony reused the same nonce to sign
software for the PlayStation 3 game console [8]. Furthermore, Heninger et al. [14]
studied the impact of weak keys and nonce reuse in the case of TLS and SSH
servers. The authors collected over 9 million signatures and found that 0.05%
of these signatures contained the same r value as at least one other signature.
Additionally, the authors used a subset of those signatures where a key and a
nonce appear in conjunction at least twice to leak 281 secret keys. Apart from
studying a different use case, i.e., Bitcoin, our work is different here in that we
systematically outline how an attacker can leak keys, which goes beyond the
simple case where the same key and nonce is used more than once.

7 Conclusion

We have studied the problem of implicit and explicit key leakage in the context of
cryptocurrencies, which shows how an attacker can leverage OSINT or duplicate
nonces to leak secret keys. Our case studies have shown the practical relevance
of these issues. An attacker monitoring Pastebin or scanning transactions for
nonce reuse could have stolen up to 22.40 BTC and 412.80 BTC, respectively.
Our work emphasizes aspects that are important for both the users and the
developers of cryptocurrencies. For instance, our Pastebin case study shows the
importance of making users aware of how to deal with cryptocurrency secrets.
Our results regarding ECDSA show that nonce reuse is a recurring problem and
highlight the benefits of incorporating countermeasures on the protocol level. In
the case that cryptocurrencies become even more popular, it will become more
lucrative for miscreants to perform key leakage attacks similar to the ones we
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described here. This highlights the importance of our research, which apart from
creating awareness of the problem, also can foster future research on the topic
of explicit and implicit key leakage in the context of cryptocurrencies.
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Abstract. Although Virtual Machine Introspection (VMI) tools are
increasingly capable, modern multi-tenant cloud providers are hesitant
to expose the sensitive hypervisor APIs necessary for tenants to use
them. Outside the cloud, VMI and virtualization-based security’s adop-
tion rates are rising and increasingly considered necessary to counter
sophisticated threats. This paper introduces Furnace, an open source
VMI framework that outperforms prior frameworks by satisfying both
a cloud provider’s expectation of security and a tenant’s desire to run
their own custom VMI tools underneath their cloud VMs. Furnace’s flex-
ibility and ease of use is demonstrated by porting four existing security
and monitoring tools as Furnace VMI apps; these apps are shown to be
resource efficient while executing up to 300x faster than those in previ-
ous VMI frameworks. Furnace’s security properties are shown to protect
against the actions of malicious tenant apps.

Keywords: Cloud security · Virtual machine introspection
Sandboxing

1 Introduction

Modern multi-tenant clouds offer their tenants accessible, affordable, and flex-
ible computing resources. The industry is booming; some clouds are growing
40% year over year,1 and public clouds such as Amazon Web Services (AWS),
Microsoft Azure, and Google Compute Engine are relied upon to power cus-
tomers’ most critical systems. While clouds are increasingly essential, tenant
security is a growing concern. After migrating to the cloud, tenants are unable
to use Virtual Machine Introspection (VMI) for low-level security and system
monitoring of their virtual machines. This lack of capability contrasts with devel-
opments outside of the cloud; since 2003, when Livewire [12] used a series of
cleverly designed tools to infer guest activity, hypervisor-based techniques have
gradually matured and are now adopted by major OS vendors,2 antivirus com-
panies,3 and hypervisors [19].
1 2017 Roundup of Cloud Computing Forecasts, https://goo.gl/pJ9uj2.
2 Microsoft Virtualization-Based Security: https://goo.gl/eixiqr.
3 BitDefender Hypervisor Introspection: https://goo.gl/MrZFQj.
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Hypervisor-based tools are important; as attacks have become more sophisti-
cated, defenders increasingly rely on these tools to provide powerful methods for
malware analysis and forensics [8,17], kernel integrity enforcement [28], surrep-
titious monitoring [5], and attack detection and response [10]. Cloud providers
do not currently provide an interface for their tenants (customers) to use this
growing body of hypervisor-based tools [4,15,24], and this absence of VMI in
the cloud is a security gap.

The mechanism to provide tenants (or their managed security providers)
with this access, a cloud VMI framework, allows the deployment of a tenant’s
VMI tools underneath their VMs. To be successful, a framework must satisfy
two requirements. First, it must protect the cloud provider from potentially
malicious tenant-supplied VMI tools. Second, it must enable these same tools to
be full-featured, fast, and resource-efficient. Both requirements depend on how
a framework provides access to the normally-inaccessible, privileged hypervisor
APIs that VMI tools require.

There have been a variety of proposals for cloud VMI frameworks, including
CloudVMI’s [2] network-based RPC, LiveCloudInspector’s [29] provider-curated
VMI API, and CloudPhylactor’s [27] hypervisor access control scheme. No pro-
posal has yet met the expectations of both cloud providers and tenants. Cloud-
VMI is slow and insufficiently secure; LiveCloudInspector provides only limited
tenant VMI capabilities; and, CloudPhylactor is too costly in resources.

This paper introduces Furnace, an open source cloud VMI framework that
leverages automated tool deployment, a software abstraction layer, and strong
sandboxing to provide tenants the ability to run VMI apps directly on the cloud
provider’s hypervisors. A tenant writes their app using an extended version of
the popular LibVMI API [19], then submits the app through Furnace’s cloud
API. Furnace runs the app in a sandbox on the appropriate provider hypervisor.

Furnace is underpinned by its three-partition sandbox, which uses a set of
well-accepted and well-tested security mechanisms to aggressively whitelist ten-
ant app behavior. Tenant app code runs deprivileged in the sandbox’s main
partition and performs work by making IPC cross-calls to Furnace-provided
resource brokers in adjacent partitions. Despite the overhead of sandboxing,
an app achieves similar performance to a native VMI tool through an app-
roach called VMI call pipelining ; this pipelining reduces IPC-related overhead
by exploiting the predictability of VMI calls.

Furnace is evaluated for its ease of use, security, and performance. Furnace’s
flexible API is used to port four VMI-related tools, including Rekall4 and a
syscall tracer. Furnace’s security claims hold against malicious tenant apps, sand-
box enumeration, and fuzzing. Finally, benchmarking shows that a Furnace app
approaches the speed of a native VMI tool and is up to 300x faster than Cloud-
VMI.

This paper makes the following contributions:

1. The design of an open source cloud VMI framework that meets the security,
performance, and feature expectations of cloud providers and their tenants.

4 http://www.rekall-forensic.com/.

http://www.rekall-forensic.com/
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2. A practical, partitioned sandbox design that combines overlapping security
mechanisms with a resource broker model.

3. A rich tenant API optimized for performance through VMI call pipelining.

Fig. 1. Under guest G1, an anti-rootkit VMI tool ensures kernel integrity. The forensics
tool under G2, G3, and G4 extracts process memory images. The monitoring tool under
G4 uses breakpoint injection to trace events occurring inside guest userspace processes.
Finally, an intrusion prevention tool inspects new G6 processes. The differing sizes of
guests in the diagram indicate the variety of instance types, operating systems, and
configurations found in modern clouds.

2 VMI Background

Virtual Machine Introspection (VMI) is a set of techniques to infer and influence
a virtual machine’s activity based on the interception, interpretation, and mod-
ification of a VM’s raw bit patterns in its main memory, vCPU registers, and
disk [12]. Some tools reason directly about a guest’s raw memory contents, while
others reconstruct a guest’s high-level semantics [4,15,24]. VMI tools can also
subscribe to guest events that result in VM exits, such as guest vCPU register
activity, software breakpoints, and extended page table violations. In general,
VMI tools offer compelling advantages over building features into a guest oper-
ating system and installing agents in a guest’s userspace:

– Privilege. An ability to freely read and modify guest memory and vCPUs.
– Stealthiness. The difficulty for a guest to detect underlying VMI tools.
– Transience. Tools can be quickly added and removed from under a guest.
– Visibility. All guest layers—drivers, kernel, process, data—are observable.
– Impunity. A general resistance to guest attempts at interference [3,15].

Most VMI tools are designed to run on a standalone hypervisor similar to
the one shown in Fig. 1, where they run as root and link directly into hypervisor
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VMI APIs. This paper refers to these tools as native VMI tools. Specifically in
the case of Xen, the hypervisor used in this work, native VMI tools typically run
in Xen’s privileged management domain, dom0, where VMI APIs are exposed.

While VMI’s advantages often benefit security-related tools, VMI supports
other use cases, including guest monitoring [1,5].

This paper introduces Furnace, a self-service framework that enables multi-
ple cloud tenants to run VMI tools under their VMs without sacrificing either
security or performance.

3 Design Goals

A cloud VMI framework’s primary objective is to provide tenants with controlled
access to the privileged hypervisor APIs necessary for VMI. The framework must
meet two expectations. First, if a cloud provider does not feel the framework pro-
vides this access safely, the framework will not be adopted. Second, the frame-
work’s users (the tenants) must also feel it is fast, cheap, and useful enough to
meet their goals.

Prior Work. The idea of a cloud VMI framework is not new, yet existing
proposals have flaws that can be categorized into three types:

—The RPC model. One of the early frameworks was CloudVMI (CV) [2],
which exposed an RPC server on the hypervisor. CV was flexible and easy to
use because tenant VMI tools simply had to be re-compiled against CV. At run-
time, these tools could then connect to a hypervisor’s CloudVMI RPC server
remotely across the network and have their VMI calls relayed to the hypervi-
sor’s VMI APIs. Although not implemented by CV, this method could be made
reasonably secure by RPC message gateways, authentication, and encryption.
However, CV’s major flaw is speed. A RPC call is issued for each VMI call.
Because VMI calls are analogous to individual memory accesses, this can result
in hundreds of RPC network round trips per second.

—The preset model. LiveCloudInspector (LCI) [29] presents tenants with a
preset list of VMI capabilities to choose from. Since the capabilities are devel-
oped and controlled by the cloud provider and activated via a simple, controlled
interface, the risk that a malicious tenant could abuse them is reduced. LCI is
likely faster than CV because (similar to a native VMI tool) its code runs directly
on the hypervisor. However, LCI’s problem is not with speed, but with choice. If
a tenant’s desired VMI action is not offered by the provider, they would have no
reason to use the framework. This proposal also places the burden to create and
maintain VMI capabilities on the cloud provider—a difficult proposition because
typically VMI profiles must be maintained for every possible tenant kernel [15].

—The VM model. Most recently, CloudPhylactor (CP) [27] implemented per-
VM security policies on the hypervisor that granted the ability for a tenant VM
to perform VMI on a second, adjacent tenant VM. This method is fast because
it uses the same APIs as native tools, and it is also flexible because a tenant is
in full control of the VM performing VMI. CP’s disadvantage is cost, both in
terms of resources and effort. First, for each VM to be inspected, a tenant must
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provision (and pay for) a corresponding monitoring VM. Only a fraction of this
VM’s resources will end up directly supporting the VMI tool; the VM’s kernel
and userspace require resources as well. Second, the tenant is now responsible
for managing, maintaining, and operating up to twice as many VMs along with
the set of VMI tools in each.

Table 1. Desirable properties for a cloud VMI framework

Category Fu
rn
ac
e

C
P
[2
7]

L
C
I
[2
9]

C
V

[2
]

N
at
iv
e

Sa
fe
ty Secure Resistant to malicious tenant VMI tools.
Abstract Doesn’t leak cloud platform details.

Accountable Can control/measure VMI resource use.

Fe
at
ur
es Fast Near-native VMI performance.
Flexible Allows tenant-supplied VMI tools.
Cheap Degree of resources req’d by VMI tool.

CloudPhylactor (CP). LiveCloudInspector (LCI). CloudVMI (CV).
Partial fill indicates marginal or incomplete applicability.

Filled circles are better.

Requirements. Table 1 shows the desirable properties for a VMI framework5

and compares Furnace with prior work. For illustration purposes, the table also
includes the native VMI tool model where tenants use privileged accounts on the
hypervisor—this model lacks any protection from malicious users. Each property
is briefly discussed below.

Safety. To protect the cloud, a secure cloud VMI framework should contain or
filter tenant VMI code to ensure it cannot execute in an unintended or uncon-
trolled manner. A framework should also uphold the cloud’s abstraction model
so a tenant VMI tool is prevented from inferring private cloud implementa-
tion details, i.e., a tenant should not be able to abuse the framework to deter-
mine which hypervisor is hosting their VM or what other VMs are co-resident.
Finally, a framework should account for, measure, and control a tenant VMI
tool’s resource usage. This is necessary for billing and to prevent the possibility
of (intentional or accidental) resource exhaustion.

Features. A tenant’s VMI tool should be suitably useful and powerful. A frame-
work should strive to run tools as fast as a native VMI tool. Designs that impose
heavy runtime overheads are undesirable. In order to be useful, a framework
should be flexible and expressive, allowing tenants to easily design their own
custom tools. Finally, a tenant VMI tool should be cheap, both easy to build
and inexpensive to run. This means a cloud framework should automate the
deployment, execution, and management of a tenant’s VMI tools, and, once
running, the resources required to support the tool should be minimized.

5 This list is an expansion of the five framework problems described by CloudPhylactor.
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Fig. 2. Threat Model.

Assumptions and Threat Model.
Figure 2 shows a common cloud
threat model [22] where the cloud
management plane, hypervisor, and
physical hardware are assumed to
be secure. Additionally, because Fur-
nace’s security model relies on a
sandbox to safely contain tenant app
code, it is assumed that the under-
lying mechanisms used to implement
this sandbox are correct and secure.
Through syscall filtering, only a
small set of syscalls are permitted to be used inside the sandbox; these syscalls
are also assumed to be secure. Given these assumptions, Furnace is designed to
be resilient against the following attack vectors:

A Malicious VMI Input. A malicious tenant or third-party malicious code
seizes control of the VMI tool. To do so, the tenant carefully crafts malicious
input—the guest’s main memory—in order to exploit a vulnerability in the
tool [27]. B Attacks against app APIs. A malicious tenant exploits flaws in
exposed VMI APIs, allowing the leaking of private cloud implementation details
or permitting a sandbox escape that yields access to the hypervisor. C App
network snooping : A third-party attacker tampers with messages sent between a
tenant’s VMI tool and external services, a concern for frameworks that provide
support for this communication.

Several threats are out of scope. Furnace does not protect against a malicious
D or “curious” cloud administrator. Micro-architectural attacks E and related
side channels are considered out of scope, as are attacks targeting the cloud
platform (e.g., OpenStack) itself F . Finally, while the strong semantic gap [15]
remains a concern for VMI tools, it is not in scope for Furnace.

4 Design

This section introduces Furnace as a safe, fast, and useful cloud VMI framework.
Furnace is first described from the perspective of a cloud provider and later from
that of a cloud tenant.

Cloud Provider Perspective. Figure 3 depicts Furnace’s architecture as part
of a typical cloud infrastructure. 1 A tenant submits a VMI app package to
the provider’s public Furnace cloud service. The package contains the tenant
app’s source code and metadata such as the tenant’s target VM and the app’s
allowed resource quotas. 2 The Furnace cloud service parses the package con-
tents, locates the tenant’s target VM, and signals 3 the appropriate Furnace
agent, which 4 provisions a Furnace sandbox under the VM and begins execut-
ing the tenant’s app inside it. 5 The app runs as an unprivileged process inside
the sandbox. 6 Using tenant-provided keys, Furnace provides a mechanism for
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Fig. 3. The Furnace architecture from the cloud provider’s perspective.

an app to securely communicate with a single tenant-controlled backend outside
of the cloud. At the cloud boundary, this communication is relayed onto the
public network via the Furnace message proxy.

Fig. 4. Tenant model.

Cloud Tenant Perspective. Figure 4
shows Furnace from the tenant’s perspective.
A tenant first begins by writing their VMI
app. Furnace’s tenant programming model
means the tenant could write up to two pro-
grams: the app and an optional backend.
A typical tenant use case will likely con-
sist of many copies of the same VMI app
each running under a different tenant VM
and all communicating with a single backend
running externally under the tenant’s con-
trol. When ready to use, the app is pack-
aged with metadata and submitted to Fur-
nace, which starts copies of the app beneath
each desired tenant VM. Once started, app
instances optionally establish a two-way connection with the backend, which
acts as a coordination activity between app instances and the rest of the ten-
ant’s security enterprise (e.g., logging, threat feeds, databases, external black-
lists, etc.). While apps are tightly constrained inside their Furnace sandbox, the
tenant can run the backend anywhere. Note the Furnace-enforced abstraction in
Fig. 4; as far as the tenant is concerned, both VMI and app↔backend messag-
ing are performed by simple function calls. Furnace is responsible for handling
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the (sensitive) details related to function call execution. The fact the app runs
in a sandbox can be ignored by the tenant. Additionally, because there is less
infrastructure for the tenant to directly operate, maintain, and secure, tenants
may find these abstractions safer and more scalable than prior work.

Sandbox Overview. Figure 3 also shows the Furnace sandbox. In the sandbox’s
L0 partition, the tenant’s app indirectly performs privileged tasks through IPC
cross-calls to provider-controlled resource brokers in adjacent sandbox partitions
L1 and L2. Many different apps can run under the same guest simultaneously;
each app has its own L0 and L1 partitions while the L2 partition is shared.

Furnace VMI App API. Tenants already familiar with VMI can quickly and
easily write Furnace VMI apps. The Furnace API inside L0 provides the core
component of the LibVMI API (56 functions) and 12 Furnace-specific functions.
As the tenant app executes, the VMI calls it makes to the Furnace API are
translated into synchronous cross-calls to the L2 partition where the VMI is
actually performed. In the opposite direction, events produced by the guest itself
are sent from L2 to the app in L0 either synchronously (the guest is paused until
the app responds) or asynchronously (the guest continues running), with delivery
occurring via a callback that the app registers at startup. The third partition,
L1, is used for communication with the app’s backend and to provide persistent
storage for the app.

Furnace’s VMI component in L2 is powered by DRAKVUF [17], a modu-
lar hypervisor-based dynamic malware analysis system, and tenant apps gain
all the benefits of DRAKVUF—stealthiness, multiplexed events, and its built-in
features—without having to build and configure it themselves. Furnace inte-
grates into upstream DRAKVUF via its plugin system.

Figure 5 contains example source code that demonstrates the basic operation
of a process whitelisting app. The example app first 1 registers for guest CR3
register events (process context switches). For each received event, the app 2

inspects the guest process that caused it. If the process is new, the app consults
3 the backend’s whitelisting rules, and terminates the process if it is not allowed.

Furnace’s initial implementation fully supports VMI apps written in Python.
However, due to its language-agnostic cross-call interface, Furnace can poten-
tially support tenant apps written in any language that has ZeroMQ6 and Pro-
tocol Buffers7 libraries.8

Cloud Integration. Figure 3 also shows other Furnace components elsewhere
in the cloud, including the public Furnace cloud service that tenants use to cre-
ate and tear down VMI apps; the per-hypervisor Furnace agent that controls
app sandboxes; and the Furnace message proxy that relays app↔backend mes-
sages between the public Internet and the internal cloud network used by each
sandbox’s L1 partition. The Furnace cloud service must integrate with the cloud

6 https://zeromq.org/.
7 https://developers.google.com/protocol-buffers/.
8 Similarly, while Furnace was developed on Xen, it can also support KVM when

equipped with a KVM-compatible L2 component.

https://zeromq.org/
https://developers.google.com/protocol-buffers/
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Fig. 5. Furnace tenant programming model. This example tenant app and backend
work together to intercept and whitelist new guest processes.

platform to authenticate tenants, get VM state, and query for a VM’s location.
Furnace has the potential to be paired with many popular cloud platforms, and
this integration is needed for a complete system.

Usage Model. Furnace’s intended users are cloud tenants that write and deploy
their own apps directly. However, Furnace can be used in other scenarios, such
as tenants choosing to delegate their Furnace privileges to a third party (such as
a managed security provider), or cloud providers that wish to use Furnace exclu-
sively (such as private clouds). Furnace also would work well in use cases where
there is no cloud management layer, such as distributed VMI-based malware
analysis across a set of hypervisors.

4.1 Security

Because Furnace runs the tenant’s app on the hypervisor, the ability for Furnace
to suppress potentially malicious tenant apps is its most important requirement.
Furnace’s approach is to place each tenant app in a sandbox that uses existing,
well-tested security mechanisms to whitelist the following allowed app activities:

1. VMI Operations: An app can read and write to its assigned VM’s memory
and vCPU registers, capture events from the VM, and pause/resume the VM.

2. Communication: An app can send arbitrary messages across the network to
its associated tenant backend.

3. General Computation: An app can make limited use of hypervisor CPU and
memory as a part of normal operation, including a limited ability to use the
hypervisor’s local disk for storage.

An app must be strictly constrained to these tasks. The Furnace sandbox
must ensure that a tenant app cannot learn anything about the cloud that cannot
already be discovered by a normal tenant VM. This includes preventing the app
from inferring sensitive information about its hypervisor, such as its file systems,
network interfaces, running processes, and co-resident VMs.

Sandbox Design. The Furnace sandbox uses a set of mutually reinforcing OS-
based security mechanisms that make it unlikely that a single flaw in policy
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or implementation would allow untrusted code to escape. The sandbox incor-
porates well-tested mechanisms already successfully leveraged by the Chrome,
AWS Lambda, and Mbox [16] sandboxes, but is notable and distinct for two
reasons.

Table 2. Sandbox comparison
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First, to a much more rigor-
ous extent, the Furnace sandbox
breaks apart the functionality of the
untrusted tenant app so that a gran-
ular, tight-fitting security policy can
be applied to each component. The
most pronounced example of this
segmentation is the sandbox’s use
of two resource brokers in L1 and
L2, each with differing privileges.
The Furnace sandbox also aggres-
sively and contextually whitelists
the behavior of each component. A profile of whitelisted behavior is generated
beforehand by the cloud provider and any deviation results in Furnace terminat-
ing the app for violating policy. Table 2 shows a feature comparison with related
sandboxes:

– Independent namespaces. Similar to container-based sandboxes such as AWS
Lambda,9 each Furnace sandbox partition features an independent file system
and employs userspace isolation.

– Resource broker model. Untrusted tenant code is limited to one primary exter-
nal action—making cross-calls. Cross-calls are IPC messages to an external
resource broker, which validates and acts upon the untrusted code’s requests.

– Syscall filtering. Furnace employs granular syscall filtering similar to Mbox,
and the full range of syscall arguments can be considered by a security policy.

– Dynamic policy tightening. Similar to Pledge,10 Furnace can swap syscall fil-
tering security policies based on context and does so when transitioning to a
more restrictive policy immediately prior to tenant app execution.

Table 3. Furnace partitions
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Sandbox Implementation. Furnace’s
sandbox implementation achieves a
base level of isolation and access control
via Linux namespaces and SELinux.
Seccomp-BPF is used to reduce the
hypervisor kernel’s exposure to an
app’s syscalls, and the syscalls that
are allowed are inspected by a con-
textual syscall inspector that leverages
the Linux kernel’s ptrace interface.

9 Lambda represents container-based sandboxes in part because it is routinely audited.
10 https://man.openbsd.org/pledge.2.

https://man.openbsd.org/pledge.2
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Finally, resource usage quotas (e.g., CPU and memory) are enforced by cgroups.
Each of these sandbox security mechanisms protect against a subset of attacks
and is essential to the overall security of the sandbox. When overlap between
mechanisms does occur, it is because one mechanism nullifies a weakness in
another.

Fig. 6. From bottom to top: the sandbox is assembled when a new app is started.

Table 3 shows the details of each Furnace partition’s unique security config-
uration, including the number of syscalls allowed at initialization and runtime
(creating these security policies is discussed later in this section). Figure 6 further
depicts sandbox initialization and how its components interact at runtime.

Linux Namespaces. Namespaces provide kernel-enforced userspace isolation ideal
for limiting an app’s ability to observe the rest of the hypervisor. Linux’s support
of namespaces includes user IDs, cgroups, mount points, IPCs, and network
interfaces. When Furnace uses these namespaces in combination, a VMI app lacks
any practical visibility outside of its assigned namespace. Mount namespaces
are used to “chroot” each sandbox partition into a minimal SELinux-labeled file
system tailored for its use. Process and user ID namespaces further isolate code
running in each partition. The L1 partition is the only partition given network
access. To control resource quotas, Furnace places each sandbox partition in its
own cgroup. Cgroups are used to limit the number of tasks allowed to exist
in a partition, and how much CPU and memory these tasks can use. Minimum
resource limits are statically determined based on profiling, and maximum limits
are set by (and billed to) the tenant. Furnace also uses cgroups to limit apps
to a single thread in order to prevent a known ptrace race condition involving
multi-threaded code [25].11

11 While this precludes multithreaded apps, Sect. 6.2 shows performance is acceptable.
Heavy processing is better accomplished by the app’s backend, which lacks this
restriction.
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Fig. 7. The syscall policy for the VMI app running in the sandbox’s L2 partition. The
remaining ≈245 syscalls are denied.

SELinux. Furnace uses a SELinux policy in each sandbox partition to provide a
consistent access control policy. Each partition’s file system is labeled with up to
four Furnace types: one for each partition’s processes, and one for files.

Seccomp-BPF. Furnace uses Seccomp-BPF to filter the syscalls made by a par-
tition. If a process attempts to make a prohibited syscall, it is terminated. Each
Furnace partition has its own Seccomp-BPF policy. Of the hundreds of syscalls
available in Linux, Table 2 and Fig. 7 show that Furnace whitelists ≈60 syscalls
in a partition’s most permissive state: as it is initialized. Of these, ten are related
to cross-calls or basic process functionality and allowed unconditionally, while
the remainder are subject to inspection by a ptrace-equipped security monitor
called the syscall inspector.

Syscall Inspection. The syscall inspector provides two security functions: deref-
erencing userspace pointers passed as syscall arguments and dynamically tight-
ening its current security policy based on context. One complication with
Seccomp-BPF is that certain syscalls such as open cannot be fully filtered
because Seccomp-BPF programs running in the Linux kernel cannot derefer-
ence userspace pointers [11,25]. To resolve this, Seccomp-BPF can partner with
a ptrace-equipped userspace process that can. Furnace’s three syscall inspectors
monitor the Furnace component in each partition and make filtering decisions
based on its syscall behavior. For example, if a tenant’s app attempts to open
a file not on the syscall inspector’s whitelist, the app will be terminated. The
syscall inspector applies its policies contextually. Based on the observation that
many unique syscalls only occur while the partition and its processes are start-
ing up, the syscall inspector initially uses a permissive security policy. Once
initialized, the partition’s policy is tightened.

Pertinent to Furnace’s threat model, each sandbox partition has its own
syscall inspector, so abnormal behavior in the L1 and L2 partitions will also
result in app termination.

Security Policy Generation. The cloud provider supplies Furnace with three
security policies: (1) a SELinux type enforcement policy; (2) a set of combined
Seccomp-BPF and contextual security policies used by the three syscall inspec-
tors; and (3) namespace-related parameters such as resource quotas. Only the
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Fig. 8. This sandbox security analysis depicts the order in which security mechanisms
are encountered by code running in a sandbox partition and asserts the sandbox is
reasonably secure if certain criteria are met. Furnace’s security evaluation will test
elements of this assertion (the “shown by” column) to provide confidence that Furnace
can successfully contain malicious VMI apps. Notes: for brevity, only the L0 partition
is shown, but L1and L2 are conceptually identical; the syscall inspector is not shown.

syscall inspector policies are expected to be periodically adjusted by the cloud
provider, and only on the occasion that minor adjustments need to be made.
These policies are meant to apply to all Furnace sandboxes (as opposed to cus-
tom per-tenant policies).

The syscall inspector policies are created by recording all system calls (via
the strace utility) made by each partition at runtime under a variety of benign
conditions—an approach similar to SysTrace [20]. These system calls and their
arguments are then analyzed and manually inspected. This manual inspection
requires detailed familiarity with system calls and benefits from existing policy
references (most notably Chromium’s12). Only the behaviors observed during
this profiling step become part of the partition’s allowed syscall profile. Figure 7
shows the syscall policy applied to the tenant’s VMI app running in the L0 parti-
tion. The only syscalls a tenant app can make are either unconditionally allowed
by Seccomp-BPF (column 1) or inspected by the syscall inspector (column 2).

Policies generated through profiling have been shown to be straightforward to
generate and are a good starting point for refinement13 [21]. One disadvantage of
profiling is the likelihood that benign behaviors are missed and later cause unpre-
dictable false positives at runtime. However, because the set of syscalls required
by each partition is small, the profiles are quite robust, and these types of false
positive were encountered rarely during testing. While a cloud provider can and

12 https://chromium.googlesource.com/chromium/src.git/+/master/sandbox/linux/.
13 https://github.com/Netflix/repokid.

https://chromium.googlesource.com/chromium/src.git/+/master/sandbox/linux/
https://github.com/Netflix/repokid
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should generate their own profiles (and analyze them for weaknesses [14]), Fur-
nace comes included with a default policy set.

Interlocking Mechanisms. Some security mechanisms appear redundant. One
clear example is the syscall inspector, which decides whether a file can be opened
or not—something SELinux also does. The overall design could potentially be
simplified if this redundancy was removed. However, each mechanism contributes
to the overall security of the sandbox. The syscall inspector can choose its secu-
rity policy dynamically at runtime, but lacks the more expressive and thorough
approach of SELinux, which Furnace uses for broad, basic policies. These inter-
locking mechanisms help ensure that unknown weaknesses in security policies,
implementation bugs, and profiling errors do not result in vulnerabilities. It is
practical to permit some overlap in case one mechanism fails, and this point is
discussed further in Furnace’s security evaluation.

Attacking the Sandbox. Although restricted, an app is still allowed to per-
form cross-calls and make certain system calls. Furnace takes additional steps to
minimize the chance these two interfaces can be successfully attacked. Figure 8
shows a security analysis that summarizes the sandbox’s assumptions, security
model, and how it will be evaluated.

Mitigating Exposed Kernel APIs. Flaws in existing syscalls have defeated
Seccomp-BPF-based sandboxes in the past—most recently in Chrome.14 In this
case, a missing access control check in the Linux kernel’s implementation of the
waitid() syscall—a syscall purposely allowed by the Chrome syscall policy—led
to a sandbox escape. This vulnerability demonstrates that, even in a small set of
whitelisted system calls, implementation bugs can still occur and be exploited.
While attacks like this remain possible, Furnace’s syscall filter is more restrictive
than Chrome’s, reducing the number of potentially vulnerable syscalls.

Mitigating Exposed IPC Logic. Flaws in IPC logic are another source of sandbox
escapes. These flaws are usually discovered through fuzzing [13,18]. Compared
to the Chrome sandbox,15 Furnace’s IPC interface is simpler, so Furnace’s IPC
mechanism is more difficult to attack. Also, unlike Chrome, Furnace’s IPC does
not use shared memory, making it immune to a class of IPC-related use-after-
free vulnerabilities.16 Regardless, fuzzing remains an important part of Furnace’s
security evaluation.

Dom0 Complexity. Adding a new system such as Furnace to a cloud’s hyper-
visors inherently increases the cloud’s attack surface. However, not counting
the Furnace sandbox’s external dependencies (DRAKVUF, LibVMI, protocol
buffers, and ZeroMQ), Furnace’s combined 6k lines of sandbox-related code (2k
Python Furnace API in L0, 1k Python facilities daemon in L1, and 3k C/C++
for Furnace’s DRAKVUF plugin in L2) represent a small increase in dom0’s

14 https://salls.github.io/Linux-Kernel-CVE-2017-5123/.
15 http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html.
16 https://nvd.nist.gov/vuln/detail/CVE-2017-14904.

https://salls.github.io/Linux-Kernel-CVE-2017-5123/
http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html
https://nvd.nist.gov/vuln/detail/CVE-2017-14904
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Fig. 9. A tenant app source code snippet that demonstrates the use of Furnace’s VMI
call pipelining API. Here, the tenant programmer creates a batch object o, populates
it with several hundred VMI calls, then serializes and sends it to L2 to be processed
by calling batch send(). By pipelining related calls together in the same cross-call
message, IPC-related overhead can be greatly reduced.

attack surface, especially when compared to the 183k lines of C in common Xen
dom0 libraries.17

There are additional security measures that cloud providers could adopt to
further harden Furnace’s security model, including separating Furnace sandboxes
from dom0 by provisioning them in a single, per-hypervisor VMI-privileged VM.

4.2 Performance

While Furnace’s inter-partition IPC channels allow the tenant app to be depriv-
ileged, IPC overhead adds latency to every cross-call. This message-passing has
implications on both guest and app performance.

Batching and Pipelining. By default, a single Furnace app VMI call is serialized
into a single cross-call message that is sent between the L0 and L2 partitions.
To minimize IPC overhead, Furnace includes a batching API that bundles mul-
tiple independent VMI calls into a single cross-call message. This amortizes IPC
overhead across the entire batch, which would argue for bundling as many VMI
calls as possible into a single message.

While this simple batching technique is beneficial, several commonly encoun-
tered guest kernel data structures are built in ways that force a VMI app’s batch
sizes to remain small. One such example is walking a linked list in guest kernel
memory, where each link in the list contains a pointer to the next link. With
simple batching, the entire list cannot be walked in a single cross-call because
the pointers in each of the links are not known in advance.

With this problem in mind, the Furnace API further supports VMI call
pipelining. In this model, while the L2 partition processes a batch of VMI calls
17 https://github.com/xen-project/xen/tree/master/tools.

https://github.com/xen-project/xen/tree/master/tools
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in the same cross-call message, L2 can be programmed to make available the
results of an earlier VMI call as the input for subsequent calls. This enables a
single pipelined cross-call to walk the entire length of a linked list in guest kernel
memory at once.

If the length of the linked list is known, the message can include the exact
number of calls needed to walk the list completely. If the size is not known, it can
be estimated, and since the end of a linked list is trivial to detect, extraneous
results past this mark can simply be discarded.

The tenant app programmer must choose to use pipelining. To do so, the
programmer uses the Furnace API to generate a batch object, to which they
then add and link VMI calls. An example of this API is shown in Fig. 9. When
this batch object is ready, the Furnace API sends a single multi-part cross-call
message to L2, which extracts each VMI call from the message, resolves its
dependencies, executes it, and stores the results in a multi-part reply.

Built-in Native Procedures. Furnace’s API can also be used to invoke a small set
of built-in native VMI procedures present in DRAKVUF. While Furnace and
DRAKVUF could support an arbitrary number of built-in procedures, adding a
procedure requires DRAKVUF to be recompiled and therefore would not nor-
mally be available to a tenant.

5 Case Studies

This section describes four fully-functional examples of Furnace VMI apps.
All four examples are useful for memory analysis and fine-grained system
monitoring—two likely use cases for Furnace. Most are written in less than 100
lines of Python code. This small size is enabled by:

– Inherent features. Furnace handles many low-level VMI details automatically.
Through DRAKVUF, apps inherit features enhancing their stealthiness, the
ability to multiplex guest events across multiple apps (such as when two apps
consume events from the same guest), and built-in VMI procedures.

– Automated deployment. App deployment is handled by Furnace; the tenant
has no concern for the process required to build, deploy, and run their app.

– Familiar API. Furnace’s Python API function signatures are identical to Lib-
VMI’s Python library. Existing LibVMI tools written in Python can be placed
in a Furnace app and run with minor modification.

App: Memory Analysis. Rekall is a popular memory analysis framework. It
is typically invoked from the command line to analyze file-based memory dumps.
To use Rekall, a tenant leverages Furnace’s built-in Rekall app. The Rekall app
must be paired with a tenant-provided backend, which issues Rekall commands
to it. A 65 line backend was built for this purpose.

When a command is received, the Rekall app invokes Rekall in L0. A Furnace-
specific address space [7] was added to Rekall that converts Rekall’s high-level
reads and seeks into their equivalent cross-calls to L2, allowing Rekall to run
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against the tenant’s live virtual machine from within Furnace. Running against
live memory in place avoids the requirement to snapshot and download a mem-
ory dump out of the cloud, a potentially slow and bandwidth-intensive operation
unsuitable for many security use cases. In terms of raw performance, comparing
Furnace’s Rekall app to Rekall operating against an equivalent file-based mem-
ory dump reveals their comparable speeds (4.05 s to analyze 4 GB of memory
compared to Furnace’s 20.88 s).

App: Capturing and Exporting Guest Memory. While Furnace’s Rekall
app is useful because it quickly analyzes live guest memory, for certain use cases
it is also often desirable to obtain an offline copy. To demonstrate capturing
and exporting guest memory out of the cloud, a tenant app and backend were
developed (87 and 67 lines, respectively).

The app idles until the tenant’s backend instructs it to perform a memory
capture. The app is parameterized to compress and upload some or all of guest
memory, and does so asynchronously in 4 MB chunks, pausing briefly after every
segment to listen for new instructions from the backend.

From a throughput performance standpoint, this app stresses each partition,
the proxy, and the tenant’s backend. During testing, it was found that the average
end-to-end goodput was 40.47 MBps (≈101 s for a VM with 4 GB RAM) for a
backend running in a nearby LAN—conditions similar to if the app and backend
both resided in the same cloud.

App: System Call Inspection. Furnace provides API support for tenant apps
that consume syscall traces (debuggers, syscall analysis, etc.). A guest’s system
calls are challenging to capture due to their volume and the overhead associ-
ated with intercepting them [9]. While there is nothing preventing a tenant app
from performing syscall tracing directly, managing its low-level details (injecting,
single-stepping, and restoring breakpoints in guest memory) from the L0 parti-
tion would inefficient. Instead, Furnace leverages DRAKVUF’s syscall intercep-
tion plugin. This plugin handles the details of tracing and sends only the results,
a stream of syscall events (including the involved registers, calling process, user,
and memory addresses), to the tenant app.

A 35 line tenant app was built to activate syscall tracing through the Furnace
API and stream the resulting trace to its backend. During performance testing, it
was found that overhead related to Furnace’s cross-calls introduces a 5% in-guest
performance penalty when compared to DRAKVUF tracing by itself. The small
size of this syscall app indicates the ease at which a tenant can leverage Furnace
to perform a complicated built-in VMI procedure. Furnace’s deployment model
also means it is easy for a tenant to temporarily activate an app under a guest
for a specific purpose.

App: Process Event Monitoring. Arav [5] is a monitoring tool that uses VMI
to extract events from a guest’s userspace processes. Using a plugin specific to
the guest program being monitored, Arav traces the program’s function calls
and reconstitutes its semantics. The original C source code for Arav (1219 lines)
was ported to a 300 line Furnace app and a 40 line backend.
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We use Arav to demonstrate Furnace’s potential for integration with the ten-
ant’s security enterprise. Arav app instances were deployed under 10 Linux guests
to capture and send a real-time stream of guest SSH logins/logouts and a guest
kernel commit creds function trace through Arav’s backend into a (simulated)
tenant security event manager. As a substitute for more advanced analysis, this
simple manager periodically picked a username at random from the stream and
used the Furnace cloud service to deploy a Rekall app under the same guest.
The Rekall app ran analysis that was then returned to the event manager.

This scenario highlights the ease at which a tenant security architecture can
programmatically compose and deploy multiple Furnace apps. Because an app
is decoupled from its backend, the backend can be run on tenant infrastructure
and directly feed information into other tenant systems.

6 Evaluation and Results

Furnace was further evaluated in two ways. First, Furnace’s security properties
were tested through the execution of apps containing malicious code. Second,
Furnace’s performance was measured and compared with that of native VMI
apps and another cloud VMI framework, CloudVMI.

The evaluation environment consisted of a single Dell R920 hypervisor. The
hypervisor ran Xen version 4.8.1 with a Fedora 26 dom0 and was furnished
with four 2.3 GHz Intel Xeon E7-4870 processors and 256 GB RAM. Furnace
sandboxes were provisioned in dom0, which also supported the Furnace cloud
service, hypervisor agent, and message proxy. The evaluation’s guests were fully
virtualized Fedora 25 guests each with 1 vCPU, 1 GB RAM, and 5 GB storage.

6.1 Security Evaluation

The first experiments tested the security of Furnace’s sandbox with a specific
focus on the attack vectors described in the threat model: preventing or mitigat-
ing attacks again Furnace’s VMI app APIs, sandbox construction, and resource
brokers. Each test emulated an attacker’s actions: first by probing the sandbox
for weaknesses, then by attempting a direct escape, and finally by attempting
to find and exploit vulnerabilities in the cross-call interface. These experiments
are informed by previous vulnerabilities in related sandboxes [13,18].

Sandbox Enumeration. Serverless runtimes such as AWS Lambda are fre-
quently audited by the security community.18 An auditing app was built to
perform the same steps of enumeration, such as attempting to read kernel logs,
inspecting procfs for CPU and memory info, listing file systems and running
processes, and identifying the system, kernel version, current working directory,
and other environment variables.

Result: The sandbox was found to be clean, with few details available to the
app. Neither the /dev/kmsg device, procfs, nor sysfs are mapped into L0, so
18 https://www.denialof.services/lambda/.

https://www.denialof.services/lambda/
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kernel logs, CPU and memory info, file system info, and process info are not
available. Even if they were, attempts to read them (non-whitelisted behavior)
would still result in the syscall inspector terminating the app. A minimum set of
environment variables are artificially set in the sandbox during startup, further
preventing enumeration.

Attacks by Malicious Apps. A set of malicious VMI apps that attempted to
find weaknesses in the Furnace sandbox were implemented, and their execution
was monitored. Recall that although Furnace components are initialized inside
a permissive security policy, this policy is tightened prior to app execution.

Open Arbitrary Files. Attempts by an app to open files in directories mounted in
the sandbox—/tmp, /dev, /var, etc.—were trapped into the syscall inspector.
If the file was not on the inspector’s whitelist, the inspector terminated the app.
Additionally, SELinux prevented file accesses not explicitly allowed by policy.
Finally, because Furnace mounts a custom filesystem as the app partition’s root
file system, there were no sensitive hypervisor files visible to apps.

Open a Socket. Attempts to create a TCP socket or connect to a remote socket
were also intercepted by the syscall inspector. While these calls are allowed
during partition startup, once the app begins execution, they are forbidden. The
app’s L0 partition also lacks a network interface.

Spawn/exec a Process or Thread. Prior to app execution, the syscall inspector
disallowed the clone and exec families of syscalls. Furnace also used cgroups to
limit the maximum number of tasks running in a single partition.

Resource Exhaustion. An app allocated increasingly large amounts of memory
and stored it to disk and also entered an infinite loop. CPU and memory abuses
are prevented by Linux cgroups. Disk usage is controlled by L1, which refuses
to store additional data past the quota set in the app package manifest.

Attacks on Cross-Calls. Any crash in the sandbox’s two IPC interfaces would
indicate a potentially exploitable bug. A malicious app used protofuzz 19 to fuzz
the interfaces. While this was a black-box test, the malicious app was provided
the Furnace protobuf schema so it could directly create and send IPC messages.
The app first broadly tested the IPC interface by generating random protobuf
messages. Next, the app used a more intelligent approach [26] by mutating a
set of well-formed seed messages that exercise resource broker logic, such as the
code for VMI call pipelining, more thoroughly.

Result: Over 110 hours of fuzzing (150M mutated IPC messages) was unable to
crash or cause unexpected behavior in the L1 and L2 partitions, supporting the
conclusion that the interfaces are unlikely to permit escape.

6.2 Performance Evaluation

The second set of experiments compared Furnace’s performance with that of a
native VMI tool and the CloudVMI framework. As has been done in previous
19 https://github.com/trailofbits/protofuzz.

https://github.com/trailofbits/protofuzz
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Table 4. VMI performance comparison

Guest Effective App/Tool/CV Client CV Service
Performance Time Calls Msgs Mem CPU Mem CPU

Approach calc/sec† Δ% ms RT MB jiffie MB jiffie Description
1 Native VMI 327.9 100.0 0.13±0.13 301 25.1 21.5 LibVMI example code
2 DK Native 326.2 99.7 0.84±0.02 328 1 85.0 264.4 Built-in DK procedure
3 Pipeline* app 311.4 95.0 1.71±0.01 356 1 85.6 301.2 App w/ optimized API
4 Batch app 294.1 89.7 35.54±0.21 301 100 74.9 314.2 App w/ optimized API
5 Single app 283.4 86.4 98.52±0.72 304 304 85.4 324.5 App w/ unoptimized API
6 CV Local 311.8 95.1 34.93±0.24 315 315 2.0 <0.1 34.9 22.6 RPC client on local VM
7 CV Remote 258.3 78.8 541.96±4.43 315 315 2.0 0.3 34.8 21.2 RPC client across network

Round trip (RT). CloudVMI (CV). DRAKVUF (DK). †3 sec Sysbench CPU test. *Pipeline size: 120.
All measurements are averages with 0.95 confidence interval. Measured on a guest with 100 processes.

work, the measurements focused on LibVMI’s process list code example, which
measures the time required to traverse the guest kernel’s linked list of active
processes. Several functionally identical process list programs were written to
investigate differences between VMI approaches.

A variety of measurements were taken during these experiments: the time
necessary for a VMI approach to perform the traversal; the slowdown caused
when an approach pauses the guest to ensure guest memory consistency; the
number of VMI calls issued by the approach, and, if applicable, the number of
cross-call messages; and finally, the approach’s resident memory and CPU time
usage. Time stamps were taken immediately before and after each traversal
to avoid measuring startup delays. To measure the performance penalty each
VMI approach has on a guest, the sysbench CPU benchmark20 was ran for
3 s inside a guest, during which time the process list traversal was invoked once.
Comparing the average amount of work sysbench accomplished with the baseline
measurement in line 1 is used to quantify each approach’s performance impact
on the guest. While useful for comparing approaches, this metric focuses on a
single use case and is not suited to be a general measure of VMI performance.

Intuitively, CV’s RPC-based method is highly sensitive to network latency.
CloudVMI was measured using two topologies: line 6 ran the CV client on a
VM co-resident on the same hypervisor as the target guest, as would occur in
the scenario where the cloud scheduler happened to provision both on the same
hypervisor—a best case scenario for CV performance; Alternatively, line 7 placed
the client across a network throttled at 100 Mbps—a less ideal scenario.

Result. The results in Table 4 confirm the intuition that Furnace apps (lines 3–5)
should be slower than a native VMI tool (line 1). When comparing optimized
Furnace APIs (lines 3–4) to the unoptimized API (line 5), there is a clear pattern:
as the number of VMI calls per cross-call message increase (line 3 shows 356:1),
performance improves because fewer cross-calls are needed and less overhead
occurs. Calling DRAKVUF’s built-in procedures (line 2) yields Furnace’s best
performance, followed closely by Furnace’s pipelined app. The fastest CloudVMI

20 https://github.com/akopytov/sysbench.

https://github.com/akopytov/sysbench
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measurement is roughly equivalent to the Furnace batching app, but its slowest
is over 5x slower than the slowest Furnace app.

Furnace does require more memory and CPU time than CV. However, Fur-
nace’s results better reflect its true cost; there are no hidden costs as occur in
CV or CloudPhylactor (both require a host/VM to run on, which comes with
its own resource and maintenance costs). For example, with CloudPhylactor, a
tenant monitoring VM with 1 GB RAM would require 12x more memory than
the equivalent Furnace app (≈85 MB per Table 4).

6.3 Related Work

Cloud VMI Frameworks. In addition to the previously mentioned Cloud-
VMI [2], CloudPhylactor [27], and LiveCloudInspector [29], there have been
other proposals to facilitate cloud forensics, malware analysis, and security. Clou-
dIDEA [9] proposed a wide-ranging cloud analysis system consisting of several
VMI-based inputs, a dedicated analysis infrastructure, and an integrated decision
engine. Compared to Furnace’s tenant self-service model, CloudIDEA’s focus
was on a centralized, provider-driven approach. FROST [8] proposed methods
for tenants to gain access to low-level cloud VM artifacts on OpenStack clouds,
including firewall logs and memory dumps. Both CloudIDEA and FROST are
similar to the preset model described in Sect. 3. Self-service clouds [6] proposed
allowing tenants to assign VMs special privileges to perform VMI and intercept
block and network I/O. Furnace shares the tenant-empowering spirit of this pro-
posal but not the large hypervisor architectural changes it implies. Finally, Fur-
nace has parallels with software-defined networking (SDN) frameworks, including
FRESCO [23], which sought to enable modular SDN app development.

Constrained Execution Environments. The namespace-based isolation used
by Furnace is also leveraged by popular application containers (e.g., Docker,
LXC, and rkt) and other sandbox projects such as Flatpak, Sandstorm, nsjail,
and Firejail. The Furnace sandbox is distinct from these projects due to its use
of ptrace and its resource broker model. Finally, while the use of ptrace has
a mixed history as a sandbox mechanism [11,25], new unprivileged sandboxing
mechanisms under development, including LandLock,21 offer alternatives.

7 Conclusion

This paper proposed Furnace, a framework that enables cloud tenants to run
VMI applications under their cloud VMs. Compared to prior proposals, Furnace
provides better features for cloud tenants, including support for arbitrary tenant
VMI apps, speed improvements and cost reductions, and less infrastructure for a
tenant to maintain. Furnace also meets the expectations of cloud providers: it is
safe, accountable, and protective of cloud abstractions. Furnace’s sandbox with-
stood a multi-part security evaluation, supporting the conclusion that Furnace
is a practical, adoptable cloud VMI framework.
21 https://landlock.io.

https://landlock.io
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Abstract. Virtual machine introspection (VMI) is one compelling tech-
nique to enhance system security in clouds. It is able to provide strong
isolation between untrusted guests and security tools placed in guests,
thereby enabling dependability of the security tools even if the guest
has been compromised. Due to this benefit, VMI has been widely used
for cloud security such as intrusion detection, security monitoring, and
tampering forensics. However, existing VMI solutions suffer significant
performance degradation mainly due to the high overhead upon frequent
memory address translations and context-switches. This drawback limits
its usage in many real-world scenarios, especially when fine-grained mon-
itoring is desired. In this paper, we present ShadowMonitor, an effective
VMI framework that enables efficient in-VM monitoring without impos-
ing significant overhead. ShadowMonitor decomposes the whole moni-
toring system into two compartments and then assigns each compart-
ment with isolated address space. By placing the monitored components
in the protected compartment, ShadowMonitor guarantees the safety of
both monitoring tools and guests. In addition, ShadowMonitor employs
hardware-enforced instructions to design the gates across two compart-
ments, thereby providing efficient switching between compartments. We
have implemented ShadowMonitor on QEMU/KVM exploiting several
hardware virtualization features. The experimental results show that
ShadowMonitor could prevent several types of attacks and achieves 10×
speedup over the existing method in terms of both event monitoring and
overall application performance.

Keywords: Virtual machine introspection · Monitor · Isolation

1 Introduction

With the prevalence of cloud computing and virtualization technology, vir-
tual machine introspection (VMI) [7,12,15,17,28,29] has become an essential
c© Springer Nature Switzerland AG 2018
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technique to tackle security risks in virtualized environments. The basic idea of
VMI is to place the traditional security tools into the hypervisor or a separately
trusted virtual machine (VM, or guest in other literature), and then employ
introspection to monitor and protect the untrusted VMs from outside, so-called
out-of-VM introspection. In this way, it guarantees dependability and integrity
of the security tools even if the untrusted VM has been compromised.

Existing out-of-VM introspection techniques fall into two main categories:
passive technique and active technique. The passive technique usually provides
several APIs to touch the state of the monitored system; it invokes the API peri-
odically to detect whether the system is being compromised or not [15,17,34].
The main drawback is that it fails to detect the instant attack which is completed
within a short while. The active technique, in contrast, adopts an event-driven
way by intercepting a broad range of system events including process-switch,
system calls, interruptions, etc. Therefore, it is able to detect the state change in
real-time and thus detects attacks immediately [27,29]. Although the active tech-
nique is appealing in real-time detection, it introduces significant performance
overhead due to frequent context-switches (VM to hypervisor) and software-
based virtual address translations [34]. For example, Virtuoso takes 6 s to run
the simple command pslist [12] which is generally completed within a few mil-
liseconds without the interception. Drakvuf introduces 50% performance degra-
dation of guest applications according to our experiments [21]. Although the
overhead can be reduced by intercepting only a few types of events, this limits
the usage of the active technique.

In addition to placing the VMI outside of the VM, some studies propose
to deploy part of the monitoring components into the monitored VM, so-called
in-VM introspection. The main purpose of in-VM introspection is to provide the
same level of security as the out-of-VM approach without imposing significant
performance loss. However, the components placed into the untrusted guests
may be disabled or bypassed by the attackers who have compromised the guest.
Therefore, one key concern is to ensure the security of these components placed
into the guests. To achieve this, SIM [30] employs separate shadow page tables
to isolate the monitor components from the guest for guaranteeing security. The
same idea is adopted in other work including [8,29]. However, these works still
suffer from several problems. First, they cannot prevent the address translation
redirection attack [16], which is widely used to deceive the security tools with a
fake address mapping [20,23,26]. For instance, SIM isolates its monitor code in
an isolated address space whereas it cannot prevent the malicious kernel from
employing a different address mapping. In addition, the in-VM introspection
requires to insert hooks at the interception points in advance, it thus lacks the
flexibility of dynamic configuration at run-time. What’s worse, since they use
software-level shadow page tables to provide address space isolation, they impose
performance loss compared to the native mode which exploits hardware-assisted
optimization (e.g., EPT [2] or RVI [1]), especially when experiencing memory-
intensive operations.
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Many approaches have been proposed to enhance VM security with hardware
features. For example, SGX of Intel [25] places application code inside an enclave
and encrypts them with specific instructions to protect the code from untrusted
hardware and OS with higher privilege levels. SeCage [22] leverages hardware
virtualization features to enforce strong isolation between the protected com-
partments and the main compartment. It ensures that only the functions inside
the protected compartment can access the private data. These approaches, how-
ever, focus on isolation rather than monitoring. In addition, they require the
modification of application codes, which limits their usage in practical systems.

To mitigate these problems, we propose ShadowMonitor, a general-purpose
framework that provides efficient in-VM monitoring and strong isolation. The
key idea of ShadowMonitor is inspired by Secage [22], which employs hardware
features to enable privilege separation. ShadowMonitor decomposes the whole
monitored system into two separate compartments, i.e., shadow compartment
which contains the monitor tools along with the private data, and main com-
partment which provides the execution environments for guest OS and user
applications. Then, it isolates the two compartments, so that the shadow com-
partment can be protected even if the guest OS (i.e., main compartment) has
been compromised. To achieve this, ShadowMonitor leverages hardware virtual-
ization features (e.g., Intel multi-EPT feature (EPTP-switching) [2]) to assign
each compartment with a separate address space. Meanwhile, the address space
of shadow compartment is well protected; it can only be touched through some
specific gates using VMFUNC instruction [2]. In addition, exploiting these hard-
ware features, ShadowMonitor invokes event monitoring without trapping into
the hypervisor. Thus, it eliminates heavyweight operations including VM-exits
and VM-enters, and consequentially accesses memory at native speed. Different
from existing monitoring invoking methods [29,30], ShadowMonitor provides
flexible event monitoring with a trap-stepping approach. Rather than setup
hooks in advance, it configures a set of events at run-time including syscall,
kernel functions, and even single instructions.

We have implemented ShadowMonitor on QEMU/KVM [4] platform. We
evaluate ShadowMonitor with a set of experiments. The results show that Shad-
owMonitor is able to provide defenses against several types of attacks. In addi-
tion, ShadowMonitor gains a considerable speedup over existing methods when
monitoring syscalls and process switches. It provides 11× memory speedup and
reduces the performance loss by 58% compared to the out-of-VM introspection
approach, and improves 36.1% over in-VM approach.

The main contributions of this paper are as follows:

– We propose an efficient in-VM monitoring framework which employs hard-
ware features to separate compartments for isolating security tools from
untrusted guests and discuss the challenges to realize it (Sect. 2).

– We present the solutions of providing strong isolation between compartments,
efficient switching, and security event monitoring, which are key components
in ShadowMonitor. (Sect. 3).
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– We implement ShadowMonitor on QEMU/KVM platform (Sect. 4) and con-
duct a set of experiments to prove its effectiveness and efficiency (Sect. 6).

– We analyze how ShadowMonitor defends against several attacks, and show
that it can detect malicious behavior and prevent itself from attacks (Sect. 5).

2 Overview

ShadowMonitor aims to achieve three main goals, (i) provide an efficient mon-
itoring approach without introducing significant performance overhead, (ii) be
robust to attacks, and (iii) support customized configuration at run-time. In this
section, we will present the threat model and the basic idea of ShadowMonitor.

2.1 Threat Model

In ShadowMonitor, we follow the common assumption widely-adopted in many
full virtualized environments, i.e., the hypervisor is trustworthy while the guests
are not. In specific, we assume that the guest OS is trusted in the boot-up
procedure, which is the same as [30]. After boot-up, the attackers are able to
compromise the guest OS, yet they cannot break the underlying hypervisor and
hardware nor operate the isolated address space protected by hardware. In addi-
tion, the memory region of the interrupt descriptor table (IDT) is considered
to be safe, since it can be protected by setting permission flags in EPT entries
and trapping operations on IDTR register [2]. Similarly, the interruptions that
trigger address space switch are considered to be safe too. We also assume that
the users of ShadowMonitor are trusted, so that ShadowMonitor is safely oper-
ated. It’s worth noting that some attacks such as VM-escape attack, denial of
service attack (DDoS), and side-channel attack may break ShadowMonitor, we
will discuss them in Sect. 5.

2.2 Basic Idea

The architecture of ShadowMonitor is shown in Fig. 1. The basic idea is to
decompose the monitored system into two parts, i.e., main compartment and
shadow compartment, each of which is assigned with a separate hardware-
enforced address space. The shadow compartment contains monitor components
(e.g., code and collected data), and the main compartment provides the exe-
cution environments for guest operating systems and user applications. In this
way, the Monitor Code and Monitor Data placed in the shadow compartment
are invisible to the guest OS. The memory mappings of the shadow compartment
are inherited from the main compartment, allowing the monitor components to
access information from the guests. Entry and exit between the two compart-
ments are enabled with specifically designated gates for safety.

ShadowMonitor can be used as an additional service for a single VM or
VM clusters in clouds. Generally, the cloud provider deploys ShadowMonitor in
clouds and allows the VM user to configure it. With ShadowMonitor, a user
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Fig. 1. Overview of ShadowMonitor

is able to monitor applications running insides the VM and manages the VM
according to the monitoring data (e.g. rolling back when a potential attack is
detected). The monitor points can be customized by the user with ShadowMon-
itor APIs. More specifically, after a safe guest boot-up, ShadowMonitor will exe-
cute the following steps. (1) The VM user requests the cloud provider to deploy
the ShadowMonitor components (i.e., construct the shadow compartment and
then place inside the Monitor Code). (2) Then, the user set up (or remove)
traps in the guest by calling APIs of event register provided by ShadowMonitor.
(3) The traps once being touched will trigger the Monitor Code in the shadow
compartment so that the event, as well as its context (e.g., event address, time-
stamp, and arguments), can be recorded. (4) Finally, the data storage module
of ShadowMonitor will collect the monitoring data periodically and report them
to the VM user.

2.3 Challenges

Although the idea is simple, there are several challenges to be addressed to realize
ShadowMonitor.

– Isolation of compartments: The guest running in the main compartment after
being compromised may attempt to break the security tools deployed in the
shadow compartment. Therefore, to provide strong isolation between the two
is essential to ensure the security of ShadowMonitor.

– Efficient switching between compartments: The entry and exit to the main
and shadow compartments are achieved by a designated gate. Consider that
the switches between the two are frequent, how to switch with low overhead
is critical to the performance of guest application and monitoring.
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– Customized event interception at run-time: ShadowMonitor should be able to
monitor a wide range of events. Meanwhile, the user should be able to register
or cancel an event interception at run-time. Thus, it is important to provide
dynamic and flexible event monitoring.
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Guest ordinary memory

Guest 
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Fig. 2. Isolation between address space of two compartments.

3 System Design

In this section, we will present how to tackle the challenges above, mainly includ-
ing memory isolation, low-cost compartment switching, security of monitoring
execution flow, and monitoring integrity.

3.1 Isolation of Compartments

In ShadowMonitor, compartment isolation is achieved by the multi-page-
mapping mechanism. Generally, in a hardware-assisted memory virtualization
environment, the guest OS can only touch the first-level memory mapping which
maps guest virtual address (GVA) to guest physical address (GPA), while the
hypervisor manages the second-level mapping (known as extended page table
(EPT)) for each guest which maps GPA to host physical address (HPA).

Unlike previous work that configures only one EPT for each guest, the recent
advance in Intel CPU allows up to 512 EPTs for one guest. Exploiting this
feature, ShadowMonitor provides two EPTs for each guest, one is the native
EPT (EPT-N) for the guest (or the main compartment within the paper), and
another one is shadow EPT (EPT-S) used for the shadow compartment. In this
way, the mapping from GPA to HPA is divided into two steps, as shown in Fig. 2.
The GPA belonging to the address space of the main compartment is translated
to HPA by EPT-N (the left part), and the GPA from the shadow compartment is
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translated to HPA by EPT-S (the right part). Through address translation with
different EPTs, memory access will be forwarded automatically using hardware
instead of software emulation, thereby achieving native speed.

Figure 2 describes the details of memory mappings in ShadowMonitor. As
can be seen, the entire GVA is divided into three regions: Monitor Code, Mon-
itor Data, and Guest Ordinary Memory. The Guest Ordinary Memory is used
for guest OS and user applications, while the Monitor Code and Monitor Data
are used for monitoring and recording events of the guest. To achieve isolation
between the regions, ShodowMonitor only maps the address space of Guest Ordi-
nary Memory into the main compartment with EPT-N, and maps all the three
regions into the shadow compartment. In this way, the operations of guest can-
not touch the address of Monitor Code and Monitor Data. Although the Guest
Ordinary Memory is shared between the two compartments, it can only be read
in the shadow compartment to extract run-time information. For each memory
region, the permission flags are set in associated EPT entries by the hypervisor.

By dividing the address space and configuring associated EPT entries sep-
arately, ShadowMonitor provides strong isolation between different compart-
ments. Since the Monitor Code and Monitor Data are placed in the shadow com-
partment which takes a separated address space, they are invisible to the main
compartment. Thus, they cannot be touched by the instructions executed in the
main compartment, thereby preventing the compromised guest from breaking
the monitor components. On the other hand, since the Guest Ordinary Memory
region is mapped into the shadow compartment with read and write permission,
with the support of hardware EPT, the Monitor Code is able to directly access
the information of guest OS and user applications in native speed. This helps
improve the monitoring performance a lot.

3.2 Efficient Compartment Switching

To provide efficient switching between two compartments, ShadowMonitor lever-
ages the VM Function (VMFUNC) feature which is provided by Intel hardware
virtualization extension. With VMFUNC, the guest can directly invoke virtual
machine functions without triggering VM-exit, which avoids imposing heavy
performance loss. Specifically, in ShadowMonitor, we load the page directory
addresses of both shadow compartment and main compartment into EPTP list
(EPT base pointers list). Then, by calling VMFUNC, ShadowMonitor can switch
to the EPT mapping of the specified compartment. We use 2 EPTPs for the
shadow compartment and the main compartment respectively (Intel supports
up to 512 EPTPs), to switch between the address space of the two.

Since the Switch Gate determines the switching between the two compart-
ments, it has to share execution permissions between the main and shadow
compartments. In ShadowMonitor, we put the Switch Gate in the interrupt
descriptor table (IDT) with vector id 20. To prevent the Switch Gate from being
tampered by a compromised guest, we write-protect the IDT by setting per-
mission flags of corresponding EPT-N entries. One problem is that attacks may
still arise even if the IDT is write-protected. To solve this, we defend them by
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trapping LIDT instructions which modify the IDT pointer register (details are
presented in Sect. 5). In this way, the Switch Gate can be protected in untrusted
guest OS. On the other hand, the INT 20 will invoke the entry of Switch Gate
in ShadowMonitor. The execution of INT 20 is triggered by two issues. The first
one is the instruction ‘INT 20’ directly invoked by the monitor point for actively
switching to a specified compartment. The other one is issued by virtualization
exception (#VE, a new feature provided by Intel) which implies that the system
may be operated maliciously (details are presented in Sect. 5: VMFUNC Fake
Attack). By configuring the Virtual Machine Control Structure (VMCS), the
EPT violations, which reflects the page table change, will lead to virtualization
exceptions instead of VM-exit and finally trigger the entry of Switch Gate. This
will help ShadowMonitor defend against malicious attacks issued from the guest.

To conclude, upon ‘INT 20’ instruction or EPT violation, the Switch Gate
will be invoked by IDT vector 20. Then, the EPTP placed in the gate will be
triggered and operate the switching between the two compartments.

3.3 Work-Flow of Event Monitoring

In this subsection, we will describe the execution flow of ShadowMonitor. The
key concern of the design is to effectively execute the trapped instruction in
single-step without introducing significant performance loss. Considering the
performance issue, we will not use Monitor Trap Flag (MTF) that introduces
frequent VM-exit, nor use the in-guest single-step via debug register [27] which
introduces heavy overhead.
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Fig. 3. Comparison between program without interceptor and program enabling inter-
ceptor

Figure 3 compares the program without event interception and that with
event interception. As shown in Fig. 3a, if no event interceptor is registered, the



678 B. Shi et al.

code executes as normal in the main compartment. Meanwhile, the Switch Gate
(i.e., INT 20 handler) will not be invoked and thus will not switch the compart-
ments. On the contrary, Fig. 3b depicts the execution flow when an event has
been registered. To intercept the events for monitoring applications running in
the main compartment, ShadowMonitor replaces the instruction1 with INT 20,
which will introduce interrupt and invoke the Switch Gate (i.e., INT 20 handler).
Note that the INT 20 handler firstly executes the instruction CLI to disable
other interrupts, ensuring that the interception of the execution flow will not be
diverted. Then, ShadowMonitor calls the switching instruction (i.e., VMFUNC )
to switch to the shadow compartment. After that, the Monitor Code executing
in the shadow compartment will access the state of guest and record the infor-
mation into the Monitor Data. After monitoring is completed, the execution
returns to the address of instruction1. Since the instruction after instruction1
has been modified to INT 20, the INT 20 handler will be invoked again immedi-
ately after instruction1. In this way, ShadowMonitor switches back to the main
compartment. Then, we execute STI instruction to enable interrupts and return
to execute instruction2 for resuming the original process. After that, one cycle
of event interception and monitoring is completed.

The main advantage of the design is that it allows users to register (or cancel)
an event interceptor at run-time, which is not yet supported in existing in-
VM monitoring approaches (e.g., SIM). In addition, we provide several APIs to
facilitate the registration (or cancellation) of the event interceptor. The user can
easily configure interception as the following steps. (1) Replace the instruction
which needs to be intercepted (interception point) with INT 20 (0xcd14) in the
main compartment. (2) Set the page of interception point to be executable in
EPT-S. (3) Replace all the instructions neighbor to the interception point with
INT 20 in the shadow compartment. (4) Set the page of the interception point to
be write-protected in EPT-N. Note that this step is essential because it ensures
that the interception points will be safe in a compromised guest.

It’s worth noting that there exist two special cases upon the monitoring
of ShadowMonitor. One case is that instruction2 would be overwritten if the
machine code of instruction1 is shorter than INT 20. For this reason, our method
cannot intercept one-byte instructions, e.g. STI. Another is that instruction1 is
a jump instruction. Generally, the normal programs executing in the main com-
partment are not supposed to jump to the address of Monitor Code. Once this
case is detected upon the registration of interceptors, ShadowMonitor will block
the registration and report this exception since it probably indicates that the
guest has been attacked. In addition, the program may jump to an address that
has no execution permission. If so, EPT violation will occur and cause a virtu-
alization exception. The exception will trigger the execution of INT 20, which
switches back to the main compartment, as mentioned in Sect. 3.1. Finally, the
program returns to the jump destination as instruction1 is conducted. Instruc-
tion1 may also jump to the address that is neighbor to the interception point.
Similarly, since we have replaced all instructions neighbor to the interception
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point with INT 20, the Switch Gate will be invoked and execute following the
procedure above.

3.4 Exploiting EPT Violation

Malicious programs may attempt to attack ShadowMonitor by modifying the
interceptor points, touching the Monitor Code or Switch Gate. To prevent these,
we leverage the hardware features, i.e., EPT violation, to cause either virtualiza-
tion exception or VM-exit upon an unauthorized access. In specific, we set the
pages of Monitor Code, Monitor Data, and Switch Gate to be write-protected in
both EPT-N and EPT-S. If a malicious program tries to write these pages, EPT
violation will occur and trigger the page fault handler through virtualization
exception (#VE) or VM-exit. As stated before, ShadowMonitor prefers #VE
since it introduces insignificant performance overhead compared to VM-exit. To
achieve this, we assign 0 to the bit 63 of EPT paging-structure entries with
respect to the Guest Ordinary Memory.

3.5 Functionality of Monitor Code

In ShadowMonitor, the Monitor Code is independent of untrusted regions to
guarantee security. Thus, the Monitor Code should be self-contained. To achieve
this, we link a copy of necessary libraries within the Monitor Code. In Monitor
Code, we extract necessary information (including register content, parameter,
current process information, and etc.) from the guest and then save them to
Monitor Data. Generally, to verify the security state of the VM, some kernel
structures should be analyzed. One feasible method is to extend existing out-of-
VM approaches for parsing and identifying data structures. Moreover, if neces-
sary, we can dump the call trace of an event in Monitor Code by extracting data
from the stack. Consider that this operation is heavyweight, the user can decide
to enable or disable it.

The Monitor Data will be finally saved in the persistent storage. However,
saving them to the guest disk is risky because the malware may tamper the
data. Therefore, we take a different method in ShadowMonitor. Specifically, the
hypervisor will access the Monitor Data memory region and fetch the monitor
log periodically, and then save them to the persistent storage.

Another important aspect of ShadowMonitor is that the execution of Monitor
Code can be considered as an atomic operation because we execute CLI to
disable interrupts before executing Monitor Code. Although the hypervisor can
receive interrupts on behalf of guests, they will deliver them to the guest since
the interrupts have been disabled. Therefore, the interrupts will not be delivered
to the monitoring process.

4 Implementation

We implement ShadowMonitor on qemu-kvm-2.4.1 with Linux kernel 4.10.2
(Ubuntu 14.04 64-bit LTS). We first enable EPTP-switching and virtualization



680 B. Shi et al.

exception in KVM (they are not supported in the native KVM). Then we present
how to realize the prototype of the monitor system. Although the current imple-
mentation is specific to QEMU/KVM platform, we believe that it is portable to
other virtualization platforms such as Xen.

Fig. 4. A configuration for enabling EPTP-switching and #VE

4.1 Enabling EPTP-switching and #VE

Enableing EPTP-Switching. To enable EPTP-switching in KVM, we need to
configure the processor properly following three rules. (1) The enable bit of VM
function should be set 1 in Virtual Machine Control Structure (VMCS). (2) The
EPTP switching bit of the VM Function Control field should be correctly set. (3)
The value of pointers of the EPTP list should be stored into EPTP LIST ADDR.
Figure 4a shows an example of the configuration. In specific, in KVM, the struc-
ture kvm mmu page is used to store the EPT, and root hpa of kvm mmu is used
to store the EPTP which points to EPT. For EPTP-switching, we need to main-
tain multiple (at least two) EPTs in KVM. To this end, we modify the original
structure of the page table. In detail, we use an array ept root hpa list to save
pointers of EPTs, and kvm mmu page list to save the page directory of EPTs.
By default, only the first EPT is initialized, while the other elements in these
two arrays are set NULL. When we tend to use another EPT, we allocate a
new EPT page directory in KVM and then fill the associated structures. It’s
worth noting that we can manage up to 512 compartments for the guest since
the current Intel EPTP switching supports 512 EPTP entries.

Enabling Virtualization Exception. To enable virtualization exception, we
first set the #VE bit of EPT-violation to 1 in the execution control field of
VMCS, and then set bit 20 of EXCEPTION BITMAP to 0. Figure 4b shows an
example of configuration on virtualization exception. When building the EPT-S
paging-structure hierarchy, bit 63 of specific EPT paging-structure entries should
be 0 (which correspond to the pages that cause#VE upon EPT violation). In
addition, we place a handler at vector 20 of the IDT to handle the #VE in the
guest.
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4.2 Deploying ShadowMonitor Framework

As described in Sect. 3, ShadowMonitor components (i.e. Monitor Code, Moni-
tor data, and Switch Gate) are placed in the guest VM. Since the guest OS is
untrusted, we should satisfy two requirements for deploying them in the guest
safely and properly. First, the Monitor Code and Monitor Data are placed in a
separated address space that cannot be touched by the guest to guarantee their
safety, as described in Sect. 3.1; Second, the Switch Gate is write-protected by
hardware features, as introduced in Sect. 3.2. To achieve this, we use a collabo-
rative approach to cooperate guest OS and hypervisor. We first insert a kernel
module after OS boot-up, which takes charge of reserving two virtual address
ranges in the guest, one of which for INT 20 handler (i.e., Switch Gate) and
another for Monitor Code and Monitor Data. Since we assume that the OS dur-
ing the boot-up stage is safe, the module is considered to be inserted safely. Then,
the kernel module will inform the hypervisor of the start address and length of
the memory regions via VMCALL instruction. Once the hypervisor knows the
information about memory regions, it creates and activates EPT-S/EPT-N, sets
the permission of page table entries, and loads the Monitor Code as well as
Switch Gate for event monitoring, as described in Sects. 3.1 and 3.2.

5 Security Analysis

ShadowMnitor should not only detect malicious behaviors but also prevent itself
from attacks. To verify the effectiveness of ShadowMonitor, we present a com-
prehensive security analysis in this Section.

Rootkit Attack. Rootkit attack here tends to compromise the guest OS
and thus can destroy the monitoring tools placed in the guest. ShadowMonitor
can prevent such attacks because it provides strong isolation between the main
and shadow compartments in which the monitoring tools are invisible to the
guest. Moreover, the attacks that tend to tamper with the interceptor points
and the Switch Gate will trigger page fault since the associated pages have been
written-protected, thus they are easy to be detected.

Insider Attack. For each monitoring point, ShadowMonitor will execute
one guest instruction in the shadow compartment. Though we have some mecha-
nisms that check whether the instruction of guest code to be executed is benign, a
sophisticated attacker may still make a tricky attack by letting malicious instruc-
tion sequences execute in shadow compartment. This attack requires the permis-
sion to register event interceptors, so it must be the insider attacker. However, it
is beyond our study because we assume that the user who has the permission
to config ShadowMonitor are trusted.

Address Translation Redirection Attack. An attack can rewrite the
guest page mapping of the memory region of Switch Gate in the guest so that
the Switch Gate will not be protected in the shadow compartment. Then it can
tamper the content of Switch Gate and finally escape the monitoring of Shadow-
Monitor. ShadowMonitor could prevent such attack by tracking the modification
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of page tables. It tracks only 4 page table entries for each associated page to be
protected, and thus imposes insignificant performance loss.

IDT Redirection Attack. In ShadowMonitor, the Switch Gate is invoked
by INT 20 instruction. If the attacker redirects the interrupt descriptor table
(IDT) of the guest to a non-write-protected page, and then replace the INT 20
handler with a malware. Then, it can escape the detection of ShadowMonitor. We
prevent this attack by trapping all LIDT instructions which are used to modify
the IDT pointer register. The trapping can be configured in the VM-execution
control field of the VMCS.

INT 20 Fake Attack. Because the Switch Gate is visible in the main
compartment, the attacker may maliciously jump to the Switch Gate or invoke
INT 20 instruction, which will lead to unexpected switching of compartments.
To prevent it, we adopt the same method of SIM, i.e., we check the branch that
transferred execution to the entry gate using the LBR information (last branch
recording) so that we can detect this attack.

VMFUNC Fake Attack. The malicious program may intentionally invoke
VMFUNC instruction, thereby leading to unexpected switching of compart-
ments. To prevent this, the executable memory code of the shadow compartment
are predefined and fixedly located. This means that the memory pages containing
the faked VMFUNC instructions should be not executable after completing the
compartment switching. Thus, the fake operation will trigger an EPT violation
and finally lead to a virtualization exception (#VE). By the design of Shadow-
Monitor, the #VE will invoke the Switch Gate and then allows the operations
to switch back to the main compartment. It should be pointed out that expe-
riences attackers may carefully design the memory mapping of the guest. For
example, they place the GVA of a memory page to be the prior one before the
Monitor Code pages and then put the VMFUNC instruction into the last bytes
of this page. In this way, if this VMFUNC is invoked, the next program counter
will point to the instruction located in the Monitor Code. Once this instruction
is executed, the attacker could breaks into the shadow compartment without
passing the designated gate. To prevent this, we place VMFUNC instruction
into the first bytes of the Monitor Code pages. Therefore, the first touch of the
shadow compartment will force the malicious program to switch back to the
main compartment.

We reproduce some malicious attacks that try to subvert different VMI
approaches including ShadowMonitor, LibVMI, and SIM. The results in Table 1
illustrate that ShadowMonitor is able to prevent against different attacks. Shad-
owMonitor provides more security guarantee than SIM (in-VM monitor) and
no-less than LibVMI (out-VM monitor).

Limitations. There exist some attack approaches that beyond our scope
and thus cannot be directly defended by ShadowMonitor. (1) The vulnerabili-
ties hidden in the hypervisor would enable VM-escape attack, which will easily
destroy our system. One feasible solution for this type of attack is to deploy intru-
sion detection systems on the hosts. (2) In scenarios where network or hardware
are untrusted, side-channel attack may employ wiretapping to access private
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Table 1. Ability to resist different attacks

Approaches ShadowMonitor SIM LibVMI

Common attack
√ √ √

ATRA attack
√

X
√

IDT redirect attack
√

X -

INT 20 fake attack
√

- -

VMFUNC Fake Attack
√

- -

data. To defend such attack, we can leverage some hardware encrypting tech-
niques such as Secage [22] and Intel SGX [25]. (3) Bypass attack. Since the
interception points change the guest’s original execution flow, the attackers may
perceive their existence, identify them, and finally bypass the interception. This
critical problem is common in active monitoring approaches [27,29]. One pos-
sible solution is to use code analysis or call trace analysis to detect the bypass
behaviors. We will leave this as our future work.

6 Evaluation

In this section, we perform a set of experiments to demonstrate the performance
loss introduced by ShadowMonitor, under both micro and macro benchmarks.
The micro-benchmarks allow appreciating the raw benefit of the design while the
macro-benchmarks validate the benefits for the end users. We leverage LibVMI
(out-of-VM approach) and SIM (in-VM approach) as the baseline. LibVMI is
an open source introspection library that provides a variety of event monitoring
interfaces. It is the most representative out-of-VM approach. It’s worth noting
that LibVMI only supports event interception in Xen hypervisor, so the results
here of LibVMI are all collected on Xen (version 4.6). SIM is a representative
in-VM monitor approach, we re-implement SIM in KVM following to its design.

The hardware platform is configured with Intel Core i7-6700 3.4 GHz proces-
sors, 16 GB DDR memory, a 1000 GB WD disk with 7200 RPM and Intel I219-
LM Gigabit NIC card. The operating system on the physical server is Ubuntu
14.04 with 4.10.2 64bit kernel. The virtual machines are configured with 2 vcpus,
4 GB RAM, and 100 GB Disk unless specified otherwise.

6.1 Overhead of Monitoring Invocation

The overhead introduced by ShadowMonitor is mainly from switching between
compartments. We first measure the time cost of each VMFUNC instruction
and then compare it with that of syscall and VM-exit. As shown in Table 2, the
overhead of VMFUNC instruction is comparable to that of the syscall, i.e., 69.38
ns vs. 75.26 ns, while it is much longer for VM-exit, i.e., 653.71 ns.

To explore the monitoring overhead further, we then measure the time of
invocation of monitoring, which denotes the total time to intercept an event,
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Table 2. Overhead of syscall, VMFUNC, and VM-exit

Operations Average time (ns)

Syscall 69.38

VMFUNC 75.26

VM-exit 653.71

switch to the shadow compartment and then switch back. As can be seen from
Table 3, invoking the monitoring with ShadowMonitor is 11.1× faster than Lib-
VMI, since it introduces less switching than LibVMI. Since the overall perfor-
mance depends on the accumulation of time of single invocation, a monitor
that is frequently invoked (e.g. fine-grained monitoring) would gain benefit from
ShadowMonitor. It’s worth noting that the overhead of ShadowMonitor is sim-
ilar to SIM because both of these two methods adopt the idea of compartment
switching.

Table 3. Comparison of overhead on monitoring invocation

Approaches Average time (ns) Standard deviation (ns)

ShadowMonitor 471 63.8

SIM 488 61.4

LibVMI 5231 139.1

Table 4. Memory acess performance comparison

Bytes ShadowMonitor (µs) LibVMI (µs) SIM (µs)

4 0.357 17.3 0.187

64 0.351 17.4 0.194

6.2 Memory Access Speed

ShadowMonitor set the permission of memory pages to be protected. In this
experiment, we will measure the memory access speed of guest with Shadow-
Monitor. To make a fair comparison, we flush the TLB (translation lookaside
buffer) and disable the cache of LibVMI. Table 4 shows the experimental results.
As we can see, our ShadowMonitor method achieves hundreds of times faster
than LibVMI. It should be pointed out that ShadowMonitor performs poorer
than SIM, mainly because it needs the translation of the extended page table
(EPT). However, in practical scenarios, we should also consider the time of han-
dling page faults. As we will see in the next section, ShadowMonitor outperforms
SIM in terms of overall system performance.
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6.3 Overall System Performance

In this experiments, we intercept and monitor all the system calls and pro-
cess switches in the guest, for measuring the overall performance of the guest
system when VMI approach is employed. To monitor syscall, we directly set
interceptor on the memory address which is pointed by MSR-LSTAR. As for
process switches, we set interceptor on the kernel function context switch() for
ShadowMonitor and LibVMI. Note that SIM approach requires no interceptor
for process switch because all the process switches will cause VM-exit in SIM.
The Monitor Code will parse the arguments for syscall, and extract the process
name for a process switch. We evaluate ShadowMonitor under four benchmarks:
(1) UnixBench is a benchmark suite that measures Linux performance. With
this, we can easily quantify the performance impact of many different aspects
of the OS. We display four representative indicators of the Unixbench in the
results, which are Whetstone (computing), Process creation (scheduling and vir-
tual memory management), File copy (file system), and System call (kernel inter-
face). (2) Kernel compilation is a memory-intensive and IO-intensive work-
load. It can reflect the performance impacts on VMs when they are deployed
and launched in production systems. We compile the Linux 4.10.2 kernel by
default configure and measure the time it spends. (3) File Compression is a
IO-intensive and computation-intensive workload. This kind of workload is com-
mon when VMs are used as computation nodes. We use the zip algorithm to com-
press Linux kernel source and measure the time overhead. (4) Apachebench is
a benchmark measuring the performance of HTTP web servers. It is IO-intensive
and memory-intensive. We choose the performance index of requests per second
to denote the overall performance of the Apache server in processing concurrent
clients requests per second.

Table 5 demonstrates the result of our experiments. First, we can see that
ShadowMonitor introduces less overhead than LibVMI for all cases. The over-
head varies significantly among different benchmarks, which is mainly due to
the varying frequency of the monitored events. For workloads such as kernel
compilation, ShadowMonitor introduces 58% less overhead than LibVMI. Sec-
ond, in some computation-intensive benchmarks (e.g. WhetStone and File Com-
press), ShadowMonitor introduces slightly less overhead than SIM. However, in
memory-intensive benchmarks (e.g. Apachebench, kernel compilation, and pro-
cess creation benchmarks), SIM introduces 36.1%, 47.5%, and 600% more over-
head respectively. This is mainly because SIM uses shadow page table to manage
virtual memory and associated page table updating operations, which is much
slower than ShadowMonitor exploiting hardware-assisted memory virtualization
features.
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Table 5. Performance comparison by different benchmarks

Benchmark No monitor Our overhead LibVMI overhead SIM overhead

Kernel compile 4106.87 s 7.34% 65.1% 54.8%

Apachebench 4323 lps 5.48% 74.2% 41.9%

File Compress 41.69 s 1.12% 8.47% 1.55%

Whetstone 3339 Mwips 0.09% 3.83% 0.1%

Process creation 1785.8 lps 0.71% 9.1% 613%

File copya 251.1 MBps 10.1% 93.9% 11.3%

System call 2.7 Mlps 119% 7134% 123%

Average - 20.55% 1056% 120.8%
awith 256 bufsize 500 maxblocks

7 Related Works

Virtualization technology has always played important roles in system security.
The very first research on gaining the security by using virtualization was pro-
posed in [18,24]. In recent years, virtual machine introspection (VMI) technology
[7] has been widely used in addressing the security problems of computer sys-
tems. It takes advantage of the hypervisor software layer to provide security
support for the upper VM layer. Based on whether introspection uses the guest
VM’s kernel, VMI approaches can be further divided into in-VM introspection
and out-of-VM introspection.

Out-of-VM introspection places the security tools into hypervisor or a
separated trusted VM, and then watch and protect the untrusted guest VM
from outside. Therefore, it can detect the malicious activities without facing
the attacks. Existing works such as [17,28] mainly focus on bridging the seman-
tic gap [15], namely, to reconstruct the high-level knowledge from the internal
data structures of the guest operating system. And then use the reconstructed
information to detect attacks. Virtuoso [12] automatically creates introspection
tools by training the monitor application in a trusted VM and computing the
desired introspection information from the application. The introspection tool
will finally retrieve the information from outside of the target VM. VMST [13]
and POG [31] bridges the semantic gap by reusing the trusted VM’s kernel
code to monitor the target VM’s suspect behaviors. The security analysis pro-
grams run in the monitor VM and relevant data accesses are redirected to the
guest’s live memory. ImEE [34] points out that existing out-of-VM approaches
perform badly when accessing guest memory. To reduce the significant overhead,
ImEE uses an immersive execution environment with which the guest memory
is accessed at native speed without any emulation. However, above-mentioned
solutions only support the passive monitor. This means they all have the ‘delay
detection’ trouble. Intruders may have issued the transient attack [26] between
the inspection intervals. To detect the transient attacks, event-driven, or active,
monitoring has been proposed. Lares [29] and VMDriver [6] provide the frame-
work that enables users insert hooks inside the guest OS so that it can invoke
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a security application residing in another VM when a particular event occurs.
Moreover, VMDriver separates semantic reconstruction module from the event
interception module, so it can support different guest OS by changing different
‘OS driver’. LibVMI [27] is a virtual machine introspection library based on the
related XenAccess [28]. It provides APIs for accessing the VM’s memory and
registering interception points. LibVMI can support different OS by writing a
configuration file beforehand. To our knowledge, LibVMI is the most popular
opensource VMI library. Therefore, many VMI tools such as Drakvuf [21] and
Volatility [32] are implemented based on LibVMI. To reduce the amount of man-
ual intervention in the process, Tappan Zee Bridge [11] proposes a method to
automatically identify locations to place useful interceptor points or hooks.

In-VM introspection is proposed to mitigate the serious performance issue
of out-of-VM introspection. In general, in-VM introspection relies on the guest
kernel’s capabilities, so it can also save the engineering efforts when implement-
ing the security tools. Process Implanting [14] loads monitor tools such as strace
[5] and ltrace [3] into the guest VM and executes it with the camouflage of an
existing process. ShadowContext [33] hijacks an existing process in the monitored
VM, and then uses this process issues system calls on behalf of the introspec-
tion process. By this mean, ShadowContext can issue syscalls in the monitored
VM, thereby obtaining the security states of the VM. SYRINGE [8] is simi-
lar to the ShadowContext, it runs an agent in the monitor VM and allows the
introspection code to call the guest kernel functions in the agent’s context. For
these approaches, when the guest kernel is not trusted, the trustworthiness and
effectiveness will be totally broken, because it is straightforward for a rootkit to
tamper with the introspection. SIM [30] solves this problem by using hardware
memory protection to create a hypervisor protected address space (SIM) where
a monitor can execute. Meanwhile, hooks are placed in the guest to intercept
events. When the event is intercepted, the address space switches to SIM by
dedicated gates and then switches back when monitoring is done.

Some efforts also use virtualization to build high assurance execution envi-
ronments which protect applications from being attacked by the untrusted OS.
[19] provides application an encrypted memory view from the OS, and use hash
value to detect corruption of the physical pages caused by the OS. But they do
not prevent the illegal access to encrypted pages. KCoFI [9] and Virtual Ghost
[10] explored to change the original architecture into a protection mode, it cre-
ates applications ghost memory that the operating system cannot read or write.
SeCage [22] leverages hardware virtualization extensions to support efficient iso-
lation of sensitive code manipulating critical secrets from the remaining code.
It separates control and data plane using VMFUNC mechanism in Intel proces-
sors to transparently provide different memory views for different compartments,
and allow low-cost and transparent invocation across domains without hyper-
visor intervention. Our idea of using hardware-enforced isolation is similar to
SeCage. However, different from SeCage that focuses on the confidentiality of
program data, our approach tends to provide event monitoring. In addition, with
SeCage, the applications should be aware of the existence of SeCage and make
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modifications to cooperate with SeCage, e.g., actively switch the address space.
On the contrary, our proposed approach is invisible to guest applications and
thus requires no modification of them.

8 Conclusion

In this paper, we present a monitoring framework named ShadowMonitor, which
enables efficient in-VM monitoring and provides hardware-enforced isolation
between security tools and untrusted guests. ShadowMonitor achieves efficiency
by placing monitor tools in the guest for monitoring events and achieves robust-
ness by separating the security tools and the untrusted guest into isolated com-
partments exploiting Intel multi-EPT features. We described the design of Shad-
owMonitor and presented a comprehensive security analysis. We have imple-
mented the prototype of ShadowMonitor on QEMU/KVM platform. The exper-
iment results demonstrate that ShadowMonitor introduces much less overhead
than existing methods. In the future, we plan to implement kernel drivers to sup-
port more types of guest kernels, such as Windows. We also plan to implement
ShadowMonitor on other hypervisors, such as Xen.
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Abstract. Commodity OS kernels have broad attack surfaces due to
the large code base and the numerous features such as device drivers.
For a real-world use case (e.g., an Apache Server), many kernel ser-
vices are unused and only a small amount of kernel code is used. Within
the used code, a certain part is invoked only at runtime while the rest
are executed at startup and/or shutdown phases in the kernel’s lifetime
run. In this paper, we propose a reliable and practical system, named
KASR, which transparently reduces attack surfaces of commodity OS
kernels at runtime without requiring their source code. The KASR sys-
tem, residing in a trusted hypervisor, achieves the attack surface reduc-
tion through a two-step approach: (1) reliably depriving unused code
of executable permissions, and (2) transparently segmenting used code
and selectively activating them. We implement a prototype of KASR
on Xen-4.8.2 hypervisor and evaluate its security effectiveness on Linux
kernel-4.4.0-87-generic. Our evaluation shows that KASR reduces the
kernel attack surface by 64% and trims off 40% of CVE vulnerabilities.
Besides, KASR successfully detects and blocks all 6 real-world kernel
rootkits. We measure its performance overhead with three benchmark
tools (i.e., SPECINT, httperf and bonnie++). The experimental results
indicate that KASR imposes less than 1% performance overhead (com-
pared to an unmodified Xen hypervisor) on all the benchmarks.

Keywords: Kernel attack surface reduction
Reliable and practical systems · Hardware-assisted virtualization

1 Introduction

In order to satisfy various requirements from individuals to industries, commod-
ity OS kernels have to support numerous features, including various file systems
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and numerous peripheral device drivers. These features inevitably result in a
broad attack surface, and this attack surface becomes broader and broader with
more services consolidated into the kernel every year. As a consequence, the cur-
rent kernel attack surface gives an adversary numerous chances to compromise
the OS kernel and exploit the whole system. Although we have moved into the
virtualization and cloud era, the security threats are not being addressed. Instead
it becomes even worse with the introduction of additional software stacks, e.g., a
hypervisor layer. Recent years have witnessed many proposed approaches which
realized the severity of this issue and made an effort to reduce the attack sur-
face of the virtualized system. Specifically, schemes like NoHype [32], XOAR [7]
HyperLock [35] and Min-V [24] are able to significantly reduce the attack sur-
face of the hypervisor. In addition, several other schemes have been proposed to
reduce the huge kernel attack surface, which are summarized into the following
three categories.

Build from Scratch. The first category attempts to build a micro-kernel with
a minimal attack surface [1,11,12,14], among which Sel4 [14] is the first OS
that achieves a high degree of assurance through formal verification. Although
such micro-kernel schemes retrofit security, they are incompatible with legacy
applications.

Re-construction. The second category makes changes to current monolithic
kernel. Nooks [31], and LXFI [21] isolate buggy device drivers to reduce the
attack surface of the kernel. Considering that the reduced kernel is still large,
Nested Kernel [9] places a small isolated kernel inside the monolithic kernel,
further reducing the attack surface. Besides, strict access-control policies [8,28]
and system call restrictions [26] also contribute a lot. A common limitation of
these approaches is that they all require modifications of the kernel source code,
which is usually not applicable.

Customization. The last category manages to tailor existing kernels without
modifications. Tartler [33], Kernel Tailoring [18] and Lock-in-Pop [19] require
the Linux source code of either the kernel or core libraries (i.e., glibc) to restrict
user’s access to the kernel. They lack the OS distribution support due to the
requirement of source code re-compiling. Ktrim [17] and KRAZOR [16] rely
on specific kernel features (i.e., kprobes) to binary-instrument kernel functions
and remove unused ones. Face-Change [10] is a hypervisor-based technique to
tailor the kernel code. It supports neither the Kernel Address Space Layout
Randomization (KASLR) [8] nor multiple-vCPU for the target kernel. Besides,
it induces a worst-case overhead of 40%, impeding its deployment in practice.

Overview. In this paper, we propose a reliable and practical virtualized system,
named KASR, which is able to transparently reduce the attack surface of a
commodity OS kernel at runtime.

Consider a specified application workload (e.g., an Apache server), whose
operations do not necessarily need all kernel services. Instead, only a subset
of the services are invoked to support both the target Apache process and the
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kernel. For example, both of them always require code blocks related to mem-
ory management (e.g., kmalloc, kfree, get page) and synchronization mechanisms
(e.g., spin lock). Apart from that, certain used kernel functions are only used
during a specific period of kernel’s lifetime and remain unused for the rest of
the time. For instance, the initialization (e.g., kernel init) and power-off actions
(e.g., kernel power off ) will only be taken when the kernel starts up and shuts
down, respectively. In contrast to these used kernel code, many other kernel ser-
vices are never executed. We call them unused kernel code in this paper. The
unused kernel code resides in the main memory, contributing to a large portion
of the kernel attack surface. For example, a typical kernel vulnerability, e.g.,
CVE-2013-2094, is exploited via a crafted system call perf event open that is
unused or never invoked in the Apache workload.

Motivated by the above observation, KASR achieves the kernel attack surface
reduction in two steps. The first step is to reliably deprive unused code of exe-
cutable permissions. Commodity OS kernels are designed and implemented to
support all kinds of use cases (e.g., the Apache server and Network File System
service), and therefore there will be a large portion of kernel code (e.g., system
call handlers) unused for a given use case. By doing so, this step could effectively
reduce a large portion of the attack surface. The second step transparently seg-
ments used code and selectively activates it according to the specific execution
demands of the given use case. This segmentation is inspired by the observation
that certain kernel code blocks (e.g., kernel init) only execute in a particular
period, and never execute beyond that period. As a result, KASR dramatically
reduces the attack surface of a running OS kernel.

We implement a KASR prototype on a private cloud platform, with Xen 4.8.2
as the hypervisor and Ubuntu Server 16.04.3 LTS as the commodity OS. The
OS kernel is unmodified Linux version 4.4.0-87-generic with KASLR [8] enabled.
KASR only adds about 1.2K SLoC to the hypervisor code base. We evaluate
its security effectiveness under the given use cases (e.g., Linux, Apache, MySQL
and PHP (LAMP)-based server). The experimental results indicate that KASR
reduces more than 64% kernel attack surface at the granularity of code pages.
Also, we trims off 40% of Common Vulnerabilities and Exposures (CVEs), since
the CVE reduction indicates the number of CVEs that KASR could avoid. In
addition, KASR successfully detects and blocks all 6 real-world kernel rootkits.
We also measure the performance overhead using several popular benchmark
tools as given use cases, i.e., SPECint, httperf and bonnie++. The overall per-
formance overheads are 0.23%, 0.90% and 0.49% on average, respectively.

Contributions. In summary, we make the following key contributions:

– Propose a novel two-step approach to reliably and practically reduce the
kernel attack surface with being agnostic to the particular OS.

– Design and implement a practical KASR system on a recent private cloud
platform. KASR transparently “fingerprints” used kernel code and enables
them to execute according to their execution phases.

– Evaluate the security effectiveness of the KASR system by the reductions of
kernel attack surface, CVE and the mitigation of real-world rootkits.
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– Measure the performance overhead of the KASR system using several popular
benchmark tools. The low overhead makes KASR reasonable for real-world
deployment.

Organization. The rest of the paper is structured as follows. In Sect. 2, we
briefly describe our system goals and a threat model. In Sect. 3, we present the
kernel attack surface, its measurement and the rationale of its reduction. We
introduce in detail the system architecture of KASR in Sect. 4. Sections 5 and 6
present the primary implementation of KASR and its performance evaluation,
respectively. In Sects. 7 and 8, we discuss limitations of KASR, and compare it
with existing works, respectively. At last, we conclude this paper in Sect. 9.

2 Threat Model and Design Goals

Before we describe our design, we specify the threat model and the design goals.

2.1 Threat Model

In this paper, we focus on reducing the attack surfaces of commodity OS kernels
in a virtualized environment. Currently, most personal computers, mobile phones
and even embedded devices are armed with the virtualization techniques, such
as Intel [13], AMD [2] and ARM virtualization support [3]. Thus, our system
can work on such devices.

We assume a hypervisor or a Virtual Machine Monitor (VMM) working
beneath the OS kernel. The hypervisor is trusted and secure as the root of trust.
Although there are vulnerabilities for some existing hypervisors, we can leverage
additional security services to enhance their integrity [4,6,34] and reduce their
attack surfaces [7,32]. As our system relies on a training-based approach, we
also assume the system is clean and trusted in the training stage, but it could
be compromised at any time after that.

We consider threats coming from both remote adversaries and local adver-
saries. A local adversary resides in user applications, such as browsers and email
clients. The kernel attack surface exposed to the local adversary includes system
calls, exported virtual file system (e.g., Linux proc file system) for user applica-
tions. A remote adversary stays outside and communicates with the OS kernel
via hardware interfaces, such as a NIC. The kernel attack surface for the remote
adversary usually refers to device drivers.

2.2 Design Goals

Our goal is to design a reliable, transparent and efficient system to reduce the
attack surfaces of commodity OS kernels.

G1: Reliable. The attack surface should be reliably and persistently reduced.
Even if kernel rootkits can compromise the OS kernel, they cannot enlarge the
reduced attack surface to facilitate subsequent attacks.
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G2: Transparent. The system should transparently work for the commodity
OS kernels. Particularly, it neither relies on the source code nor breaks the kernel
code integrity through binary instrumentation. Source code requirement is diffi-
cult to be adopt in practice. And breaking the code integrity raises compatibility
issues against security mechanisms, such as Integrity Measurement Architecture.

G3: Efficient. The system should minimize the performance overhead, e.g., the
overall performance overhead on average is less than 1%.

Among these goals, G1 is for security guarantee, while the other two goals
(G2 and G3) are for making the system practical. Every existing approach has
one or more weaknesses: they either are unreliable (e.g., Lock-in-Pop [19] as
per G1), or depend on the source code (e.g., SeL4 [14]), or break the kernel
code integrity (e.g., Ktrim [17]), or incur high performance overhead (e.g., Face-
Change [10]). Our KASR system is able to achieve all the above goals at the
same time.

3 Design Rationale

We first present how to measure the attack surface of a commodity OS kernel,
and then illustrate how to reliably and practically reduce it.

3.1 Attack Surface Measurement

To measure the kernel attack surface, we need a security metric that reflects
the system security. Generally, the attack surface of a kernel is measured by
counting its source line of code (SLoC). This metric is simple and widely used.
However, this metric takes into account all the source code of a kernel, regardless
of whether it is effectively compiled into the kernel binary. To provide a more
accurate security measurement, Kurmus et al. [18] propose a fine-grained generic
metric, named GENSEC, which only counts effective source code compiled into
the kernel. More precisely, in the GENSEC metric, the kernel attack surface is
composed of the entire running kernel, including all the Loadable Kernel Modules
(LKMs).

However, the GENSEC metric only works with the kernel source code, rather
than the kernel binary. Thus it is not suitable for a commodity OS with only
a kernel binary that is made of a kernel image and numerous module binaries.
To fix this gap, we apply a new KASR security metric. Specifically, instead of
counting source lines of code, the KASR metric counts all executable instruc-
tions.

Similar to prior schemes that commonly use SLoC as the metric of the attack
surface, the KASR metric uses the Number of Instructions (NoI). It naturally
works well with instruction sets where all the instructions have an equal length
(e.g., ARM instructions). However, with a variable-length instruction set (e.g.,
x86 instructions [13]), it is hard to count instructions accurately. In order to
address this issue on such platforms, we use the Number of Instruction Pages
(NoIP). NoIP is reasonable and accurate due to the following reasons. First, it is
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consistent with the paging mechanism that is widely deployed by all commodity
OS kernels. Second, the kernel instructions are usually contiguous and organized
in a page-aligned way. Finally, it could smoothly address the issue introduced
by variable-length instructions without introducing any explicit security and
performance side-effects. In this paper, the KASR metric depends on NoIP to
measure the kernel attack surface.

3.2 Benefits of Hardware-Assisted Virtualization

In a hardware-assisted virtualization environment, there are two levels of page
tables. The first-level page table, i.e., Guest Page Table (GPT), is managed by
the kernel in the guest space, and the other one, i.e., Extended Page Table (EPT),
is managed by the hypervisor in the hypervisor space. The hardware checks the
access permissions at both levels for a memory access. If the hypervisor removes
the executable permission for a page Pa in the EPT, then the page Pa can never
be executed, regardless of its access permissions in the GPT. These mechanisms
have been widely supported by hardware processors (e.g., Intel [13], AMD [2],
and ARM [3]) and commodity OSes.

With the help of the EPT, we propose to reduce the attack surface by trans-
parently removing the executable permissions of certain kernel code pages. This
approach achieves all system goals listed before. First, it is reliable (achieving
G1) since an adversary in the guest space does not have the capability of modify-
ing the EPT configurations. Second, the attack surface reduction is transparent
(achieving G2), as the page-table based reduction is enforced in the hypervisor
space, without requiring any modifications (e.g., instruction instrumentation) of
the kernel binary. Finally, it is efficient (achieving G3) as all instructions within
pages that have executable permissions are able to execute at a native speed.

4 KASR Design

We firstly elaborate the design of the KASR system. As depicted in Fig. 1, the
general working flow of KASR proceeds in two stages: an offline training stage
followed by a runtime enforcement stage. In the offline training stage, a trusted
OS kernel Kern is running beneath a use case (e.g., user application Appa)
within a virtual machine. The KASR offline training processor residing in the
hypervisor space, monitors the kernel’s lifetime run, records its code usage and
generates a corresponding database. The generated kernel code usage database
is trusted, as the system in the offline training stage is clean. Once the generated
database becomes stable and ready to use, the offline training stage is done.

In the runtime enforcement stage, the KASR module, running the same vir-
tual machine, loads the generated database and reduces the attack surface of
Kern. The kernel attack surface is made up of the kernel code from the kernel
image as well as loaded LKMs. A large part of the kernel attack surface is reli-
ably removed (the dotted square in Fig. 1). Still, the remaining part (the solid
shaded-square in Fig. 1) is able to support the running of the use case Appa. The
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attack surface reduction is reliable, as the hypervisor can use the virtualization
techniques to protect itself and the KASR system, indicating that no code from
the virtual machine can revert the enforcement.

Fig. 1. The architecture of the KASR system.

4.1 Offline Training Stage

Commodity OSes are designed and implemented to support various use cases.
However, for a given use case (e.g., Appa), only certain code pages within the
kernel (e.g., Kern) are used while other code pages are unused. Thus, the KASR
offline training processor can safely extract the used code pages from the whole
kernel, the so-called used code extraction. On top of that, the used code pages
can be segmented into three phases (e.g., startup, runtime and shutdown). The
code segmentation technique is inspired by the observation that some used code
pages are only used in a particular time period. For instance, the init functions
are only invoked when the kernel starts up and thus they should be in the
startup phase. However, for certain functions, e.g., kmalloc and kfree, they are
used during the kernel’s whole lifetime and owned by all three phases. The KASR
offline training processor uses the used code extraction technique (Sect. 4.1) to
extract the used code pages, and leverages the used code segmentation technique
(Sect. 4.1) to segment used code into different phases. All the recorded code
usage information will be saved into the kernel code usage database, as shown
in Fig. 2.

The database will become stable quickly after the KASR offline processor
repeats the above steps several times. Actually, this observation has been suc-
cessfully confirmed by some other research works [17,18]. For instance, for the
use case of LAMP, a typical httperf [23] training of about ten minutes is sufficient
to detect all required features, although the httperf does not cover all possible
paths. This observation is reasonable due to the following two reasons. First,
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Fig. 2. Offline Training Stage. The KASR offline training processor working in the
hypervisor space, extracts used code from the OS kernel, segments used code into
three phases (i.e., startup, runtime and shutdown) and generates the kernel code usage
database.

people do not update the OS kernel frequently, and thus it will be stable within
a relatively long period. Second, although the user-level operations are complex
and diverse, the invoked kernel services (e.g., system calls) are relatively stable,
e.g., the kernel code that handles network packets and system files is constantly
the same.

Used Code Extraction. A key requirement of this technique is to collect all
used pages for a given workload. It means that the collection should cover the
whole lifetime of an OS kernel, from the very beginning of the startup phase to
the last operation of the shutdown phase. A straightforward solution is to use the
trace service provided by the OS kernel. For instance, the Linux kernel provides
the ftrace feature to trace the kernel-level function usage. However, all existing
integrated tracing schemes cannot cover the whole life cycle. For example, ftrace
always misses the code usage of the startup phase [18] before it is enabled.
Extending the trace feature requires modifying the kernel source code. To avoid
the modification and cover the whole life cycle of the OS kernel, we propose a
hypervisor-based KASR offline training processor. The offline training processor,
working in the hypervisor space, starts to run before the kernel starts up and
remains operational after the kernel shuts down.

In the following, we will discuss how to trace and identify the used code pages
in the kernel image and loaded LKMs.

Kernel Image Tracing. Before the kernel starts to run, the offline training
processor removes the executable permissions of all code pages of the kernel
image. By doing so, every code execution within the kernel image will raise
an exception, driving the control flow to the offline training processor. In the
hypervisor space, the offline training processor maintains the database recording
the kernel code usage status. When getting an exception, the offline training
processor updates the corresponding record, indicating that a kernel code page is
used. To avoid this kernel code page triggering any unnecessary exceptions later,
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the offline training processor sets it to executable. As a result, only the newly
executed kernel code pages raise exceptions and the kernel continues running,
thus covering the lifetime used code pages of the kernel image. Note that the
offline training processor filters out the user-space code pages by checking where
the exception occurs. (i.e., the value of Instruction Pointer (IP) register).

Kernel Modules Tracing. The above tracing mechanism works smoothly with
the kernel image, but not with newly loaded LKMs. All LKMs can be dynam-
ically installed and uninstalled into/from memory at runtime, and the newly
installed kernel modules may re-use the executable pages that have already been
freed by other modules in order to load their code. Thus, their page contents
have totally changed and they become new code pages that ought to be traced as
well. If we follow the kernel tracing mechanism, such to-be-reused pages cannot
be recorded into the database. Because these pages have been traced and the
processor has set them to executable, they are unable to trigger any exceptions
even when they are reused by other modules.

To address this issue, we dictate that only the page currently causing the
exception can gain the executable permission while other pages cannot. Specif-
ically, when a page Pa raises an exception, the offline training processor sets it
to executable so that the kernel can proceed to next page Pb. Once Pb raises the
exception, it is set to executable while Pa is set back to non-executable. Like-
wise, the offline training processor sets Pb back to non-executable when another
exception occurs. By doing so, pages like Pa or Pb can trigger new exceptions if
they will be re-used by newly installed modules and thus all used code pages can
be traced. Obviously, this approach is also suitable for the kernel image tracing.

Page Identification. The traced information is saved in the database, and the
database reserves a unique identity for each code page. It is relatively easy to
identify all code pages of the kernel image when its address space layout is unique
and constant every time the kernel starts up. Thus, a Page Frame Number (PFN)
could be used as the identification. However, recent commodity OS kernels have
already enabled the KASLR technology [8] and thus the PFN of a code page
is no longer constant. Likewise, this issue also occurs with the kernel modules,
whose pages are dynamically allocated at runtime, and each time the kernel may
assign a different set of PFNs to the same kernel module.

A possible approach is to hash every page’s content as its own identity. It
works for most of the code pages but will fail for the code pages which have
instructions with dynamically determined opcodes, e.g., for the call instruction,
it needs an absolute address as its operand, and this address may be different
each time, causing the failure of page identification. Another alternative is to
apply the fuzzy hash algorithm (e.g., ssdeep [15]) over a page and compute
a similarity (expressed as a percentage) between two pages. e.g., if two pages
have a similarity of over 60%, they are identical. However, such low similarity
will introduce false positives, which can be exploited by attackers to prompt
malicious pages for valid ones in the runtime enforcement stage.

To address the issues, we propose a multi-hash-value approach. In this offline
training stage, we trace the kernel for multiple rounds (e.g., 10 rounds) to collect
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all the used pages and dump the page content of each used page. Then we build a
map of what bytes are constant and what bytes are dynamic in every used page.
Each used page has multiple ranges and each range is made up of consecutive
constant bytes. The ranges are separated by the dynamic bytes. Based on the
map, we compute a hash value for every range. If and only if two pages have the
same hash value for each range, they are identical. As a result, a page’s identity
is to hash everything within the page but the dynamic bytes. On top of that,
we observe that the maximum byte-length of the consecutive dynamic bytes is
4, making it hardly possible for attackers to replace the dynamic bytes with
meaningful rogue ones. Relying on the approach, the risk of abusing the false
positives is minimized.

Used Code Segmentation. This technique is used to segment the used code
into several appropriate phases. By default, there are three phases: startup, run-
time, and shutdown, indicating which phases the used code have been executed
in. When the kernel is executing within one particular phase out of the three, the
offline training processor marks corresponding code pages with that phase. After
the kernel finishes its execution, the offline training processor successfully marks
all used code pages and saves their records into the database. To be aware of the
phase switch, the offline training processor captures the phase switch events. For
the switch between startup and runtime, we use the event when the first user
application starts to run, while for the switch between runtime and shutdown,
we choose the execution of the reboot system call as the switch event.

4.2 Runtime Enforcement Stage

When the offline training stage is done and a stable database has been generated
(see details in Sect. 5.2), KASR is ready for runtime enforcement. As shown in
Fig. 3, the KASR module loads the generated database for a specific workload,
and reduces the kernel attack surface in two steps:

1. Permission Deprivation. It keeps the executable permissions of all used code
pages (the solid shaded square in Fig. 3), and reliably removes the executable
permissions of all unused code pages (the dotted square in Fig. 3)

2. Lifetime Segmentation. It aims to further reduce the kernel attack surface
upon the permission deprivation. As shown in Fig. 3, it transparently allows
the used kernel code pages of a particular phase to execute while setting the
remaining pages to non-executable.

All instructions within the executable pages can execute at a native speed, with-
out any interventions from the KASR module. When the execution enters the
next phase, the KASR module needs to revoke the executable permissions from
the pages of the current phase, and set executable permissions to the pages
of the next phase. To reduce the switch cost, the KASR module performs two
optimizations. First, if a page is executable within the successive phase, the
KASR module skips its permission-revocation and keeps it executable. Second,
the KASR module updates the page permissions in batch, rather than updating
them individually.
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Fig. 3. Runtime Enforcement Stage. The KASR module residing in the hypervisor
space reduces OS kernel attack surface in two consecutive steps. The first step (i.e.,
permission deprivation) reliably deprives unused code of executable permission, and
the second step (i.e., lifetime segmentation) selectively activates corresponding used
code according to their phases.

5 KASR Database

This section presents the implementation details of the KASR database, includ-
ing database data-structure, database operations.

5.1 Data Structure

Basically, the database consists of two single-linked lists, which are used to man-
age the pages of kernel image and loaded modules, respectively. Both lists have
their own list lock to support concurrent updates. Every node of each list rep-
resenting a page is composed of a node lock, a page ID, a status flag and a
node pointer pointing to its next node. The node lock is required to avoid race
conditions and thus other nodes can be processed in parallel.

Page ID. The page ID is used to identify a page especially during the database
updates. As kernel-level randomization is enabled within the kernel, we use the
multi-hash-value approach for the identification. Specifically, we trace the kernel
for 10 rounds to make sure that all the used pages are collected. Pages in different
rounds are considered to be identical (i.e., a same page) if they satisfy two
properties: (1) more than 3366 out of 4096 bytes (i.e., over 82%) are constant and
the same among these pages; (2) the maximum byte-length of the consecutive
different bytes (i.e., dynamic bytes) among these pages is no greater than 4. And
then we perform a per-byte comparison of the identical pages so as to build a
map of what bytes are constant and what bytes are dynamic with the pages. By
doing so, each used page has multiple ranges of consecutive constant bytes and
dynamic bytes are between these ranges. As a result, all the constant bytes of
every range are hashed as a value and all the hash values make up the page ID.
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Status Flag. The status flag indicates the phase status (i.e., startup, runtime
and shutdown) of a used page. The flag is initialized as startup when the kernel
boots up. Once the kernel switches from the startup phase to the runtime phase,
or from the runtime phase to the shutdown phase, appropriate exceptions are
triggered so that the offline training processor can update the flag accordingly.
In our implementation, all code pages of the guest OS are deprived of executable
permissions. Once the OS starts to boot, it will raise numerous EPT exceptions.
In the hypervisor space, there is a handler (i.e., ept handle violation) responding
to the exception, and thus the offline training processor can mark the beginning
of the runtime phase by intercepting the first execution of the user-space code
as well as its end by intercepting the execution of the reboot system call.

5.2 Database Operations

The database operations are mainly composed of three parts, i.e., populating,
saving and loading.

Populate Database. To populate the database, the KASR offline training pro-
cessor must trace all the used pages and thus dictates that only the page raising
the exception would become executable while others are non-executable. How-
ever, we find that this will halt the kernel. The reason is that the x86 instructions
have variable lengths and an instruction may cross a page boundary, which means
that the first part of the instruction is at the end of a page, while the rest is in
the beginning of the next page. Under such situations, the instruction-fetch will
result in infinite loops (i.e., trap-and-resume loops).

To address this issue, we relax the dictation and implement a queue of 2
pages that own executable permissions. When the queue is full of two pages that
have caused the first two exceptions (i.e., the first two used pages), it will then
be updated by First-in, First-out, i.e., the newest used page will be pushed in
while the oldest used page will be popped out. Besides solving the cross-page-
boundary problem, we also accelerate the tracing performance. Besides, we can
capture all loaded modules, as all of them have no less than 2 code pages.

To the end, it is not enough to obtain all the used pages by running the offline
training stage just once. Thus, it is necessary to repeat this stage for multiple
rounds until the database size becomes stable. In our experiments, 10 rounds
are enough to get a stable database (see Sect. 6).

Save and Load Database. The database is generated in the hypervisor space,
and stored in the hard disk for reuse. Specifically, we have developed a tiny tool
in the privileged domain to explicitly save the database into the domain’s disk
after the offline training stage, and load the existing database into the hypervisor
space during the runtime enforcement stage.

6 Evaluation

We have implemented a KASR prototype on our private cloud platform, which
has a Dell Precision T5500 PC with eight CPU cores (i.e., Intel Core Xeon-
E5620) running at 2.40 GHz. Besides, Intel VT-x feature is enabled and supports
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the page size of 4 KB. Xen version 4.8.2 is the hypervisor while Hardware-assisted
Virtual Machine (HVM) is the Ubuntu Server 16.04.3 LTS, which has a KASLR-
enabled Linux kernel of version 4.4.0-87-generic with four virtual CPU cores and
4 GB physical memory. KASR only adds around 1.2K SLoC in Xen.

In the rest of this section, we measure the reduction rates of the kernel attack
surface. On top of that, we characterize the reduced kernel attack surface in the
metrics of Common Vulnerabilities and Exposures (CVEs). The use cases we
choose are SPECint, httperf, bonnie++, LAMP (i.e., Linux, Apache, MySQL and
PHP) and NFS (i.e., Network File System). Furthermore, we test and analyze its
effectiveness in defending against 6 real-world kernel rootkits. Also, we measure
the performance overhead introduced by KASR through the selected use cases
above. The experimental results demonstrate that we can effectively reduce ker-
nel attack surface by 64%, CVEs by 40%, safeguard the kernel against 6 popular
kernel rootkits and impose negligible (less than 1%) performance overhead on
all use cases.

6.1 Kernel Attack Surface Reduction

In the runtime enforcement stage, we measure the kernel attack surface reduction
through three representative benchmark tools, namely, SPECint, httperf and
bonnie++ and two real-world use cases (i.e., LAMP and NFS).

SPECint [29] is an industry standard benchmark intended for measuring the
performance of the CPU and memory. In our experiment, the tool has 12 sub-
benchmarks in total and they are all invoked with a specified configuration file
(i.e., linux64-ia32-gcc43+.cfg).

On top of that, we measure the network I/O of HVM using httperf [23].
HVM runs an Apache Web server and Dom0 tests its I/O performance at a rate
of starting from 5 to 60 requests per second (100 connections in total).

Also, we test the disk I/O of the guest by running bonnie++ [5] with its
default parameters. For instance, bonnie++ by default creates a file in a specified
directory, size of which is twice the size of memory.

Besides, we run the LAMP-based web server inside the HVM. Firstly, we use the
standard benchmark ApacheBench to continuously access a static PHP-based
website for five minutes. And then a Web server scanner Nikto [30] starts to
run so as to test the Web server for insecure files and outdated server software
and also perform generic and server type specific checks. This is followed by
launching Skipfish [22], an active web application security reconnaissance tool.
It operates in an extensive brute-force mode to carry out comprehensive security
checks. Running these tools in the LAMP server aims to cover as many kernel
code paths as possible.

Lastly, the other comprehensive application is NFS. HVM is configured to
export a shared directory via NFS. In order to stress the NFS service, we also use
bonnie++ to issue read and write-access to the directory.

All results are displayed in Table 1. Note that the average results for SPECint
are computed based on 12 sub-benchmark tools. We determine two interesting
properties of the kernel attack surface from this table. First, the attack surface
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Table 1. In every case, the kernel code pages are significantly tailored after each step.
Generally, KASR can reduce the kernel attack surface by 54% after the permission
deprivation, and 64% after the lifetime segmentation. (Orig.Kern = Original Kernel,
Aft.Per.Dep. = After Permission Deprivation, Aft.Lif.Seg. = After Lifetime Segmenta-
tion)

Cases Orig.Kern Aft.Per.Dep. Aft.Lif.Seg.

Page(#) Page(#) Reduction(%) Page(#) Reduction(%)

SPECint 2227 1034 54% 808 64%

httperf 2236 1026 54% 763 66%

bonnie++ 2235 1034 54% 761 66%

LAMP 2238 1043 53% 817 63%

NFS 2395 1096 54% 939 61%

reduction after each step is quite significant and stable for different use cases.
Generally, the attack surface is reduced by roughly 54% and 64% after the per-
mission deprivation and lifetime segmentation, respectively, indicating that less
than half of the kernel code is enough to serve all provided use cases. Second,
complicated applications (i.e., LAMP and NFS) occupy more kernel code pages
than the benchmarks, indicating that they have invoked more kernel functions.

CVE Reduction. Although some kernel functions (e.g., architecture-specific
code) contain past CVE vulnerabilities, they are never loaded into memory dur-
ing the kernel’s lifetime run and do not contribute to the attack surface. As a
result, we only consider the CVE-vulnerable functions that are loaded into the
kernel memory. We investigate CVE bugs of recent two years that provide a link
to the GIT repository commit and identify 14 CVEs that exist in the kernel
memory of all five use cases.

We observe that KASR has removed 40% of CVEs in the memory. To be spe-
cific, some CVE-vulnerable kernel functions within the unused kernel code pages
are deprived of executable permissions after the permission deprivation. For
example, the ecryptfs privileged open function in CVE-2016-1583 before Linux
kernel-4.6.3 is unused, thus being eliminated. After the lifetime segmentation,
some other vulnerable functions are also removed (e.g., icmp6 send in CVE-
2016-9919).

6.2 Rootkit Prevention

Even though the kernel attack surface is largely reduced by KASR, still there
may exist vulnerabilities in the kernel, which could be exploited by rootkits. We
demonstrate the effectiveness of KASR in defending against real-world kernel
rootkits. Specifically, we have selected 6 popular real-world kernel rootkits com-
ing from a previous work [25] and the Internet. These rootkits work on typical
Linux kernel versions ranging from 3.x to 4.x, representing the state-of-the-art
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kernel rootkit techniques. All these rootkits launch attacks by inserting a load-
able module and they can be divided into three steps:

1. inject malicious code into kernel allocated memory;
2. hook the code on target kernel functions (e.g., original syscalls);
3. transfer kernel execution flow to the code.

KASR is able to prevent the third step from being executed. Specifically, rootkits
could succeed at Step-1 and Step-2, since they can utilize exposed vulnerabilities
to modify critical kernel data structures, inject their code and perform target-
function hooking so as to redirect the execution flow. However, they cannot
execute the code in Step-3, because KASR decides whether a kernel page has an
executable permission. Recall that KASR reliably dictates that unused kernel
code (i.e., no record in the database) has no right to execute in the kernel space,
including the run-time code injected by rootkits. Therefore, when the injected
code starts to run in Step-3, EPT violations definitely will occur and then be
caught by KASR. The experimental results from Table 2 clearly show that KASR
has effectively defended against all 6 rootkits. As a result, KASR is able to defend
against the kernel rootkits to a great extent.

Table 2. KASR successfully defended against all 6 kernel rootkits. (LKM = Loadable
Kernel Module)

OS kernel Rootkit Attack vector Attack failed?

Linux 3.x-4.x adore-ng LKM
√

xingyiquan LKM
√

rkduck LKM
√

Diamorphine LKM
√

suterusu LKM
√

nurupo LKM
√

6.3 Performance Evaluation

In this section, we evaluate the performance impacts of KASR on CPU computa-
tion, network I/O and disk I/O using the same settings as we measure the kernel
attack surface reduction. Benchmark tools are conducted with two groups, i.e.,
one is called Original (HVM with an unmodified Xen), the other is KASR.

Specifically, SPECint has 12 sub-programs and the CPU overhead caused by
KASR within each sub-program is quite small and stable. In particular, the max-
imum performance overhead is 1.47% while the average performance overhead
is 0.23% for the overall system.

Httperf tests the Apache Web server inside the HVM using different request
rates. Compared to the Original, the network I/O overhead introduced by KASR
ranges from 0.00% to 1.94% and the average is only 0.90%.
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Fig. 4. In the case of LAMP, its database
is built from scratch and keeps its size
increasing until the round 6th.

Fig. 5. Incremental offline training.
Compared to that of Fig. 4, only 2 more
offline training rounds based on a pro-
vided database are needed to reach the
same stable state, largely reducing the
offline training cost.

The disk I/O results are generated by bonnie++ based on two test settings,
i.e., sequential input and sequential output. For each setting, the read, write and
rewrite operations are performed and their results indicate that KASR only
incurs a loss of 0.49% on average.

6.4 Offline Training Efficiency

We take LAMP server as an example to illustrate the offline training efficiency,
indicating how fast to construct a stable database for a given workload. Specifi-
cally, we repeat the offline training stage for several rounds to build the LAMP
database from scratch. After the first round, we get 1038 code pages, 99% of the
final page number. After that, 9 successive offline training rounds are completed
one by one, each of which updates the database based on previous one, ensuring
that the final database records all used pages. From Fig. 4, it can be seen that
the database as a whole becomes steady after multiple rounds (i.e., 6 in our
experiments). This observation is also confirmed in other cases.

In fact, it is still time-consuming to build a particular database from scratch.
To further accelerate this process, we attempt to do the offline training stage
from an existing database. In our experiments, we integrate every database gen-
erated respectively for SPECint, httperf, bonnie++ into a larger one, and try to
generate the LAMP database using incremental training. Based on the integrated
database, we find that only 2 rounds are enough to generate the stable database
for LAMP, shown in Fig. 5, significantly improving the offline training efficiency.
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7 Discussion

In this section, we will discuss limitations of our approach.

Training Completeness. Similar to Ktrim [17], KRAZOR [16] and Face-
Change [10], KASR also uses a training-based approach. As the approach might
miss some corner cases, it may cause KASR to mark certain pages that should
be used as unused, resulting in an incomplete offline training database. Theoret-
ically speaking, it is possible for such situations to occur. However, in practice,
they have never been observed in our experiments so far. Interestingly, Kurmus
al et. [18] found that a small offline training set is usually enough to cover all used
kernel code for a given use case, implying that the corner cases usually do not
increase the kernel code coverage. If the generated database is incomplete, EPT
violations may have been triggered at runtime. For such situations, KASR has
two possible responses. One is to directly stop the execution of the guest, which
is suitable for the security sensitive environment where any violations may be
treated as potential attacks. The other one is to generate a log message, which is
friendly to the applications that have high availability requirements. The gener-
ated log contains the execution context and the corresponding memory content
to facilitate a further analysis, e.g., system forensics.

Fine-Grained Segmentation. By default, we have three segmented phases
(i.e., startup, runtime, and shutdown). Actually, the whole lifecycle could be
segmented into more phases, corresponding to different working stages of a user
application. Intuitively, a more fine-grained segmentation will achieve a better
kernel attack surface reduction. Nonetheless, more phases will introduce more
performance overhead, such as the additional phase switches. In addition, it will
increase the complexity of the KASR offline training processor, and consequently
increases the trusted computing base (TCB). At last, the KASR module has
to deal with the potential security attacks, e.g., malicious phase switches. To
prevent such attacks, a state machine graph of phases should be provided, where
the predecessor, successor and the switch condition of each phase should be
clearly defined. At runtime, the KASR module will load this graph and enforce
the integrity: only the phase switches existing in the graph are legal, and any
other switches will be rejected.

8 Related Work

In this section, we provide an overview of existing approaches to enhance the
kernel security that require no changes to the kernel. Specifically, the approaches
are either kernel or hypervisor-dependent.

Kernel customizations [18,33] present automatic approaches of trimming ker-
nel configurations adapted to specific use cases so that the tailored configurations
can be applied to re-compile the kernel source code, thus minimizing the kernel
attack surface. Similarly, Seccomp [26] relies on the kernel source code to sand-
box specified user processes by simply restricting them to a minimal set of system
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calls. Lock-in-Pop [19] modifies and re-compiles glibc to restrict an application’
access to certain kernel code. In contrast, both Ktrim [17] and KRAZOR [16]
utilize kprobes to trim off unused kernel functions and prevent them from being
executed. All of the approaches above aim at providing a minimized kernel view
to a target application.

In the virtualized environment, both Secvisor [27] and NICKLE [25] only
protect original kernel TCB and do nothing to reduce it. Taking a step further,
unikernel [20] provides a minimal kernel API surface to specified applications
but developing the applications is highly dependent on the underlying unikernel.
Face-Change [10] profiles the kernel code for every target application and uses
the Virtual Machine Introspection (VMI) technique to detect process context
switch and thus provide a minimized kernel TCB for each application. However,
Face-Change has three disadvantages: (1) Its worst-case runtime overhead for
httperf testing Apache web server is 40%, whereas our worst overhead is 1.94%
(see Sect. 6.3), making it impractical in the cloud environment. (2) Its design
naturally does not support KASLR, which is an important kernel security fea-
ture and has been merged into the Linux kernel mainline since kernel version
3.14. In contrast, KASR is friendly to the security feature. (3) While multiple-
vCPU support is critical to system performance in the cloud environment, it
only supports a single vCPU within a guest VM, whereas KASR allocates four
vCPUs to the VM.

9 Conclusion

Commodity OS kernels provide a large number of features to satisfy various
demands from different users, exposing a huge surface to remote and local attack-
ers. In this paper, we have presented a reliable and practical approach, named
KASR, which has transparently reduced attack surfaces of commodity OS ker-
nels at runtime without relying on their kernel source code. KASR deploys two
surface reduction approaches. One is spatial, i.e., the permission deprivation
marks never-used code pages as non-executable while the other is temporal, i.e.,
the lifetime segmentation selectively activates appropriate used code pages. We
implemented KASR on the Xen hypervisor and evaluated it using the Ubuntu OS
with an unmodified Linux kernel. The experimental results showed that KASR
has efficiently reduced 64% of kernel attack surface, 40% of CVEs in all given
use cases. In addition, KASR defeated all 6 real-world rootkits and incurred low
performance overhead (i.e., less than 1% on average) to the whole system.

In the near future, our primary goals are to apply KASR to the kernel attack
surface reduction of a Windows OS since KASR should be generic to protect all
kinds of commodity OS kernels.
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