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Abstract. While many systems exist for reasoning with Description
Logics knowledge bases, very few of them are able to cope with uncer-
tainty. BUNDLE is a reasoning system, exploiting an underlying non-
probabilistic reasoner (Pellet), able to perform inference w.r.t. Proba-
bilistic Description Logics. In this paper, we report on a new modular
version of BUNDLE that can use other OWL (non-probabilistic) reason-
ers and various approaches to perform probabilistic inference. BUNDLE
can now be used as a standalone desktop application or as a library
in OWL API-based applications that need to reason over Probabilistic
Description Logics. Due to the introduced modularity, BUNDLE perfor-
mance now strongly depends on the method and OWL reasoner chosen
to obtain the set of justifications. We provide an evaluation on several
datasets as the inference settings vary.

Keywords: Probabilistic Description Logic · Semantic Web
Reasoner · OWL Library

1 Introduction

The aim of the Semantic Web is to make information available in a form that is
understandable and automatically manageable by machines. In order to realize
this vision, the W3C has supported the development of a family of knowledge
representation formalisms of increasing complexity for defining ontologies, called
OWL (Web Ontology Language), that are based on Description Logics (DLs).
Many inference systems, generally called reasoners, have been proposed to reason
upon these ontologies, such as Pellet [23], Hermit [22] and Fact++ [24].

Nonetheless, modeling real-world domains requires dealing with information
that is incomplete or that comes from sources with different trust levels. This
motivates the need for the uncertainty management in the Semantic Web, and
many proposals have appeared for combining probability theory with OWL lan-
guages, or with the underlying DLs [4,8,12,14,15]. Among them, in [18,26] we
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introduced the DISPONTE semantics for probabilistic DLs. DISPONTE bor-
rows the distribution semantics [20] from Probabilistic Logic Programming, that
has emerged as one of the most effective approaches for representing probabilistic
information in Logic Programming languages. Examples of probabilistic reason-
ers that perform inference under DISPONTE are BUNDLE [18,19,26], TRILL
and TRILLP [26,27]. The first one is implemented in Java, whereas the other
two are written in Prolog to exploit Prolog’s backtracking facilities during the
search of all the possible justifications.

In order to perform probabilistic inference over DISPONTE knowledge bases
(KBs), it is necessary to find the covering set of justifications and this is accom-
plished by a non probabilistic reasoner. The first version of BUNDLE was able
to execute this search by exploiting only the Pellet reasoner [23].

In this paper, we propose a new version of BUNDLE which is modular and
allows one to use different OWL reasoners and different approaches for justifica-
tion finding. In particular, it embeds Pellet, Hermit, Fact++ and JFact as OWL
reasoners, and three justification generators, namely GlassBox (only for Pel-
let), BlackBox and OWL Explanation. The introduced modularity has two main
advantages with respect to BUNDLE’s previous version. First, it allows one to
“plug-in” a new OWL API-based reasoner in a very simple manner. Second, the
framework can be easily extended by including new concrete implementations of
algorithms for justification finding.

In this modular version, BUNDLE performance will strongly depend on the
sub-system employed to build the set of justifications for a given query. To eval-
uate it we ran several experiments on different real-world and synthetic datasets.

The paper is organized as follows: Sect. 2 briefly introduces DLs, while Sect. 3
illustrates the justification finding problem. Sections 4 and 5 present DISPONTE
and the theoretical aspects of inference in DISPONTE KBs respectively. The
description of BUNDLE is provided in Sect. 6. Finally, Sect. 7 shows the experi-
mental evaluation and Sect. 8 concludes the paper.

2 Description Logics

An ontology describes the concepts of the domain of interest and their rela-
tions with a formalism that allows information to be processable by machines.
The Web Ontology Language (OWL) is a family of knowledge representation
languages for authoring ontologies or knowledge bases. OWL 2 [25] is the last
version of this language and since 2012 it became a W3C recommendation.

Descriptions Logics (DLs) provide a logical formalism for knowledge repre-
sentation. They are useful in all the domains where it is necessary to represent
information and to perform inference on it, such as software engineering, medical
diagnosis, digital libraries, databases and Web-based informative systems. They
possess nice computational properties such as decidability and (for some DLs)
low complexity [1].

There are many different DL languages that differ in the constructs that
are allowed for defining concepts (sets of individuals of the domain) and roles
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(sets of pairs of individuals). The SROIQ(D) DL is one of the most common
fragments; it was introduced by Horrocks et al. in [7] and it is of particular
importance because it is semantically equivalent to OWL 2.

Let us consider a set of atomic concepts C, a set of atomic roles R and a
set of individuals I. A role could be an atomic role R ∈ R, the inverse R− of
an atomic role R ∈ R or a complex role R ◦ S. We use R− to denote the set of
all inverses of roles in R. Each A ∈ A, ⊥ and � are concepts and if a ∈ I, then
{a} is a concept called nominal. If C, C1 and C2 are concepts and R ∈ R∪R−,
then (C1 � C2), (C1 � C2) and ¬C are concepts, as well as ∃R.C, ∀R.C, ≥nR.C
and ≤nR.C for an integer n ≥ 0.

A knowledge base (KB) K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A. An RBox R is a finite set of transitivity axioms Trans(R),
role inclusion axioms R  S and role chain axioms R ◦ P  S, where R,P, S ∈
R ∪ R−. A TBox T is a finite set of concept inclusion axioms C  D, where C
and D are concepts. An ABox A is a finite set of concept membership axioms
a : C and role membership axioms (a, b) : R, where C is a concept, R ∈ R and
a, b ∈ I.

A KB is usually assigned a semantics using interpretations of the form I =
(ΔI , ·I), where ΔI is a non-empty domain and ·I is the interpretation function
that assigns an element in ΔI to each individual a, a subset of ΔI to each
concept C and a subset of ΔI × ΔI to each role R. The mapping ·I is extended
to complex concepts as follows (where RI(x,C) = {y|〈x, y〉 ∈ RI , y ∈ CI} and
#X denotes the cardinality of the set X):

�I = ΔI ⊥I = ∅
{a}I = {aI} (¬C)I = ΔI\CI

(C1 � C2)
I = CI

1 ∪ CI
2 (C1 � C2)

I = CI
1 ∩ CI

2

(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅} (∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}
(≥nR.C)I = {x ∈ ΔI |#RI(x, C) ≥ n} (≤nR.C)I = {x ∈ ΔI |#RI(x, C) ≤ n}

(R−)I = {(y, x)|(x, y) ∈ RI} (R1 ◦ . . . ◦ Rn)I = RI
1 ◦ . . . ◦ RI

n

SROIQ(D) also permits the definition of datatype roles, which connect an
individual to an element of a datatype such as integers, floats, etc.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written as K |= Q.

Example 1. Consider the following KB “Crime and Punishment”

Nihilist  GreatMan ∃killed.�  Nihilist

(raskolnikov, alyona) : killed (raskolnikov, lizaveta) : killed

This KB states that if you killed someone then you are a nihilist and whoever is
a nihilist is a “great man” (TBox). It also states that Raskolnikov killed Alyona
and Lizaveta (ABox). The KB entails the query Q = raskolnikov : GreatMan (but
are we sure about that?).
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3 Justification Finding Problem

Here we discuss the problem of finding the covering set of justifications for a
given query. This non-standard reasoning service is also known as axiom pin-
pointing [21] and it is useful for tracing derivations and debugging ontologies.
This problem has been investigated by various authors [2,6,9,21]. A justifica-
tion corresponds to an explanation for a query Q. An explanation is a subset
of logical axioms E of a KB K such that E |= Q, whereas a justification is an
explanation such that it is minimal w.r.t. set inclusion. Formally, we say that an
explanation J ⊆ K is a justification if for all J ′ ⊂ J , J ′ �|= Q, i.e. J ′ is not
an explanation for Q. The problem of enumerating all justifications that entail a
given query is called axiom pinpointing or justification finding. The set of all the
justifications for the query Q is the covering set of justifications for Q. Given a
KB K, the covering set of justifications for Q is denoted by All-Just(Q,K).

Below, we provide the formal definitions of justification finding problem.

Definition 1 (Justification finding problem).
Input: A knowledge base K, and an axiom Q such that K |= Q.
Output: The set All-Just(Q,K) of all the justifications for Q in K.

There are two categories of algorithms for finding a single justification: glass-
box algorithms [9] and black-box algorithms. The former category is reasoner-
dependent, i.e. a glass-box algorithm implementation depends on a specific rea-
soner, whereas a black-box algorithm is reasoner-independent, i.e. it can be used
with any reasoner. In both cases, we still need a reasoner to obtain a justification.

It is possible to incrementally compute all justifications for an entailment by
using Reiter’s Hitting Set Tree (HST) algorithm [17]. This algorithm repeatedly
calls a glass-box or a black-box algorithm which builds a new justification. To
avoid the extraction of already found justifications, at each iteration the extrac-
tion process is performed on a KB from which some axioms are removed by
taking into account the previously found justifications. For instance, given a KB
K and a query Q, if the justification J = {E1, E2, E3} was found, where Eis
are axioms, to avoid the generation of the same justification, the HST algorithm
tries to find a new justification on K′ = K � E1. If no new justification is found
the HST algorithm backtracks and tries to find another justification by removing
other axioms from J , one at a time.

4 Probabilistic Description Logics

DISPONTE [18,26] applies the distribution semantics [20] to Probabilistic
Description Logic KBs.

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms
or probabilistic axioms. Certain axioms take the form of regular DL axioms.
Probabilistic axioms take the form

p :: E
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where p ∈ [0, 1] and E is a DL axiom. p :: E means that we have degree of belief
p in axiom E.

DISPONTE associates independent Boolean random variables to the DL
axioms. The set of axioms that have the random variable assigned to 1 constitutes
a world. The probability of a world w is computed by multiplying the probability
pi for each probabilistic axiom Ei included in the world by the probability 1−pi

for each probabilistic axiom Ei not included in the world.
Below, we provide some formal definitions for DISPONTE.

Definition 2 (Atomic choice). An atomic choice is a couple (Ei, k) where
Ei is the ith probabilistic axiom and k ∈ {0, 1}. The variable k indicates whether
Ei is chosen to be included in a world (k = 1) or not (k = 0).

Definition 3 (Composite choice). A composite choice κ is a consistent set of
atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m (only one decision
is taken for each axiom).

The probability of composite choice κ is

P (κ) =
∏

(Ei,1)∈κ

pi

∏

(Ei,0)∈κ

(1 − pi)

where pi is the probability associated with axiom Ei, because the random vari-
ables associated with axioms are independent.

Definition 4 (Selection). A selection σ is a total composite choice, i.e., it
contains an atomic choice (Ei, k) for every probabilistic axiom of the theory. A
selection σ identifies a theory wσ called a world: wσ = C ∪ {Ei|(Ei, 1) ∈ σ},
where C is the set of certain axioms.

P (wσ) is a probability distribution over worlds. Let us indicate with W the
set of all worlds. The probability of Q is [18]:

P (Q) =
∑

w∈W:w|=Q

P (w)

i.e. the probability of the query is the sum of the probabilities of the worlds in
which the query is true.

Example 2. Let us consider the knowledge base and the query Q = raskolnikov :
GreatMan of Example 1 where some of the axioms are probabilistic:

E1 = 0.2 ::Nihilist  GreatMan C1 = ∃killed.�  Nihilist

E2 = 0.6 :: (raskolnikov, alyona) : killed E3 = 0.7 :: (raskolnikov, lizaveta) : killed

Whoever is a nihilist is a “great man” with probability 0.2 (E1) and Raskolnikov
killed Alyona and Lizaveta with probability 0.6 and 0.7 respectively (E2 and E3).
Moreover there is a certain axiom (C1). The KB has eight worlds and Q is true
in three of them, corresponding to the selections:

{{(E1, 1), (E2, 1), (E3, 1)}, {(E1, 1), (E2, 1), (E3, 0)}, {(E1, 1), (E2, 0), (E3, 1)}}
The probability is P (Q) = 0.2·0.6·0.7+0.2·0.6·(1−0.7)+0.2·(1−0.6)·0.7 = 0.176.
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5 Inference in Probabilistic Description Logics

It is often infeasible to find all the worlds where the query is true. To reduce
reasoning time, inference algorithms find, instead, explanations for the query
and then compute the probability of the query from them. Below we provide
the definitions of DISPONTE explanations and justifications, which are tightly
intertwined with the previous definitions of explanation and justification for the
non-probabilistic case.

Definition 5 (DISPONTE Explanation). A composite choice φ identifies
a set of worlds ωφ = {wσ|σ ∈ S, σ ⊇ φ}, where S is the set of all selections. We
say that φ is an explanation for Q if Q is entailed by every world of ωφ.

Definition 6 (DISPONTE Justification). We say that an explanation γ is
a justification if, for all γ′ ⊂ γ, γ′ is not an explanation for Q.

A set of explanations Φ is covering Q if every world wσ ∈ W in which Q is
entailed is such that wσ ∈

⋃
φ∈Φ ωφ. In other words a covering set Φ identifies

all the worlds in which Q succeeds.
Two composite choices κ1 and κ2 are incompatible if their union is incon-

sistent. For example, κ1 = {(Ei, 1)} and κ2 = {(Ei, 0)} are incompatible. A
set K of composite choices is pairwise incompatible if for all κ1 ∈ K, κ2 ∈ K,
κ1 �= κ2 implies that κ1 and κ2 are incompatible. The probability of a pairwise
incompatible set of composite choices K is P (K) =

∑
κ∈K P (κ).

Given a query Q and a covering set of pairwise incompatible explanations Φ,
the probability of Q is [18]:

P (Q) =
∑

wσ∈ωΦ

P (wσ) = P (ωΦ ) = P (Φ) =
∑

φ∈Φ

P (φ) (1)

where ωΦ is the set of worlds identified by the set of explanations Φ.

Example 3. Consider the KB and the query Q = raskolnikov : GreatMan of Exam-
ple 2. We have the following covering set of pairwise incompatible explanations:
Φ = {{(E1, 1), (E2, 1)}, {(E1, 1), (E2, 0), (E3, 1)}}. The probability of the query
is P (Q) = 0.2 · 0.6 + 0.2 · 0.4 · 0.7 = 0.176.

Unfortunately, in general, explanations (and hence justifications) are not
pairwise incompatible. The problem of calculating the probability of a query
is therefore reduced to that of finding a covering set of justifications and then
transforming it into a covering set of pairwise incompatible explanations.

We can think of using justification finding algorithms for non-probabilistic
DLs to find the covering set of non-probabilistic justifications, then consider only
the probabilistic axioms and transform the covering set of DISPONTE justifica-
tions into a pairwise incompatible covering set of explanations from which it is
easy to compute the probability.
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Example 4. Consider the KB and the query Q = raskolnikov : GreatMan of
Example 2. If we use justification finding algorithms by ignoring the proba-
bilistic annotations, we find the following non-probabilistic justifications: J =
{{E1, C1, E2}, {E1, C1, E3}}. Then we can translate them into DISPONTE jus-
tifications: Γ = {{(E1, 1), (E2, 1)}, {(E1, 1), (E3, 1)}}. Note that Γ is not pair-
wise incompatible, therefore we cannot directly use Eq. (1). The solution to this
problem will be shown in the following section.

6 BUNDLE

The reasoner BUNDLE [18,19] computes the probability of a query w.r.t.
DISPONTE KBs by first computing all the justifications for the query, then
converting them into a pairwise incompatible covering set of explanations by
building a Binary Decision Diagram (BDD). Finally, it computes the probabil-
ity by traversing the BDD. A BDD for a function of Boolean variables is a rooted
graph that has one level for each Boolean variable. A node n has two children
corresponding respectively to the 1 value and the 0 value of the variable associ-
ated with the level of n. When drawing BDDs, the 0-branch is distinguished from
the 1-branch by drawing it with a dashed line. The leaves store either 0 or 1.

Given the set Φ of all DISPONTE explanations for a query Q, we can define
the Disjunctive Normal Form Boolean formula fΦ representing the disjunction
of all explanations as fΦ (X) =

∨
φ∈Φ

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi. The variables X =
{Xi | pi :: Ei ∈ K} are independent Boolean random variables with P (Xi = 1) =
pi and the probability that fΦ (X) takes value 1 gives the probability of Q.

BDDs perform a Shannon’s expansion of the Boolean function fΦ that makes
the disjuncts, and hence the associated explanations, mutually exclusive, i.e.
pairwise incompatible.

Given the BDD, we can use function Probability described in [10] to com-
pute the probability. This dynamic programming algorithm traverses the dia-
gram from the leaves to the root and computes the probability of a formula
encoded as a BDD.

Example 5 (Example 2 cont.). Let us consider the KB and the query of Exam-
ple 2. If we associate random variables X1 with axiom E1, X2 with E2 and X3

with E3, the BDD representing the set of explanations is shown in Fig. 1. By
applying function Probability [10] to this BDD we get

Probability(n3) = 0.7 · 1 + 0.3 · 0 = 0.7
Probability(n2) = 0.6 · 1 + 0.4 · 0.7 = 0.88
Probability(n1) = 0.2 · 0.88 + 0.8 · 0 = 0.176

and therefore P (Q) = Probability(n1) = 0.176, which corresponds to the
probability given by DISPONTE.

BUNDLE uses implementations of the HST algorithm to incrementally
obtain all the justifications. However, the first version was able to use only a
glass-box approach which was dependent on the Pellet reasoner [23].
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Fig. 1. BDD representing the set of explanations for the query of Example 2.

In the following, we illustrate the modifications introduced in the new mod-
ular version of BUNDLE.

Figure 2 shows the new architecture of BUNDLE. The main novelties are the
adoption of the OWL Explanation library1 [6] and of the BlackBox approach
offered by OWL API. Thanks to them, BUNDLE is now reasoner-independent
and it can exploit different OWL reasoners.

Fig. 2. Software architecture of BUNDLE.

Modularity is therefore realized in two directions: (1) support of different
OWL reasoners: Pellet 2.5.0, Hermit 1.3.8.413 [22], Fact++ 1.6.5 [24], and JFact
4.0.42; (2) three different strategies for finding a justification, which are:

1 https://github.com/matthewhorridge/owlexplanation.
2 http://jfact.sourceforge.net/.

https://github.com/matthewhorridge/owlexplanation
http://jfact.sourceforge.net/
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GlassBox. A glass-box approach which depends on Pellet. It is a modified ver-
sion of the GlassBoxExplanation class contained in the Pellet Explanation
library.

BlackBox. A black-box approach offered by the OWL API3 [5]. The OWL API
is a Java API for the creation and manipulation of OWL 2 ontologies.

OWL Explanation. A library that is part of the OWL Explanation Work-
bench [6]. The latter also contains a Protégé plugin, underpinned by the
library, that allows Protégé users to find justifications for entailments in their
OWL 2 ontologies.

All reasoners can be paired with the BlackBox and OWL Explanation methods,
while only Pellet can exploit the GlassBox method.

To find all justifications of a given query with the GlassBox and BlackBox
approaches an implementation of the HST algorithm is used, which is a modified
version of the HSTExplanationGenerator class of the OWL API. We modified
this class in order to support annotated axioms (DISPONTE axioms are OWL
axioms annotated with a probability). OWL Explanation, instead, already con-
tains an HST implementation and a black-box approach that supports annotated
axioms.

BUNDLE can be used as standalone desktop application or, in this new
version, as a library.

6.1 Using BUNDLE as Application

BUNDLE is an open-source software and is available on Bitbucket, together with
its manual, at https://bitbucket.org/machinelearningunife/bundle.

A BUNDLE image was deployed in Docker Hub. Users can start using BUN-
DLE with just a couple of docker commands. All they have to do is pull the
image and start the container with the commands:

sudo docker pull giuseta/bundle :3.0.0

sudo docker run -it giuseta/bundle :3.0.0 bash

A bash shell of the container then starts and users can use BUNDLE by running
the command bundle. For instance, if we consider the KB and the query of
Example 2, the user can ask the query with:

bundle -instance http :// www.semanticweb.org/

crime_and_punishment#raskolnikov ,http :// www.

semanticweb.org/crime_and_punishment#GreatMan file:

examples/crime_and_punishment.owl

6.2 Using BUNDLE as Library

BUNDLE can also be used as a library. The library is set up as a Maven appli-
cation and published on Maven Central4.
3 http://owlcs.github.io/owlapi/.
4 With groupId it.unife.endif.ml, artifactId bundle and version 3.0.0.

https://bitbucket.org/machinelearningunife/bundle
http://owlcs.github.io/owlapi/
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Once the developer has added BUNDLE dependency in the project’s POM
file, the probability of the query can be obtained in just few lines:

1 Bundle reasoner = new Bundle ();

2 reasoner.setRootOntology(rootOntology);

3 reasoner.setReasonerFactory(new JFactFactory ());

4 reasoner.init();

5 QueryResult result = reasoner.computeQuery(query);

where rootOntology and query are objects of the classes OWLOntology and
OWLAxiom of the OWL API library respectively.

Line 3 shows that the developer can inject the preferred OWL API-based
reasoner and perform probabilistic inference without modifying BUNDLE.

7 Experiments

We performed three different tests to compare the possible configurations of
BUNDLE, which depend on the reasoner and the justification search strategy
chosen, for a total of 9 combinations. In the first test we compared all configu-
rations on four different datasets, in order to highlight which combination rea-
soner/strategy show the best behavior in terms of inference time. In the second
one, we considered KBs of increasing size in terms of the number of probabilis-
tic axioms. Finally, in the third test, we asked queries on a synthetic dataset
of increasing size. The last two experiments were targeted to investigate the
scalability of the different configurations. All tests were performed on the HPC
System Marconi5 equipped with Intel Xeon E5-2697 v4 (Broadwell) @ 2.30 GHz,
using 8 cores for each test.

Test 1. The first test considers 4 real world KBs of various complexity as
in [27]: (1) BRCA [11], which models the risk factors of breast cancer; (2) an
extract of DBPedia6 [13], containing structured information from Wikipedia,
usually those contained in the information box on the righthand side of pages;
(3) Biopax level 37 [3], which models metabolic pathways; (4) Vicodi8 [16],
which contains information on European history and models historical events
and important personalities.

We used a version of the DBPedia and Biopax KBs without the ABox and
a version of BRCA and Vicodi with an ABox containing 1 individual and 19
individuals respectively. For each KB we added a probability annotation to each
axiom. The probability values were randomly assigned. We randomly created
50 subclass-of queries for all the KBs and 50 instance-of queries for BRCA and
Vicodi, following the concepts hierarchy of the KBs, ensuring each query had at
least one explanation.

5 http://www.hpc.cineca.it/hardware/marconi.
6 http://dbpedia.org/.
7 http://www.biopax.org/.
8 http://www.vicodi.org/.

http://www.hpc.cineca.it/hardware/marconi
http://dbpedia.org/
http://www.biopax.org/
http://www.vicodi.org/
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Table 1 shows the average time in seconds to answer queries with different
BUNDLE configurations. Bold values highlight the fastest configuration for each
KB. With the exception of DBPedia, the best results are obtained by Pellet with
the GlassBox approach, corresponding to the configuration of the previous non-
modular version of BUNDLE. However, the use of OWL Explanation library
with Pellet shows competitive results. For BioPax and Vicodi KBs, the BlackBox
approach with Fact++ wasn’t able to return a result (cells with “crash”).

Table 1. Average time (in seconds) for probabilistic inference with all possible con-
figurations of BUNDLE over different datasets (Test 1). For BioPax and Vicodi KBs
Fact++/BlackBox wasn’t able to return a result due to an internal error.

Reasoner Method Subclass-of queries Instance-of queries

BioPax DBPedia BRCA Vicodi BRCA Vicodi

Pellet GlassBox 0.501 0.416 0.85 0.393 1.654 0.42

Pellet BlackBox 1.779 0.484 1.488 0.667 5.671 0.804

Pellet OWLExp 0.768 0.937 1.051 0.772 2.564 0.687

Hermit BlackBox 4.281 2.192 7.68 1.968 29.944 2.416

Hermit OWLExp 2.304 2.216 3.373 1.739 10.645 2.17

Fact++ BlackBox crash 0.254 0.586 crash 3.368 crash

Fact++ OWLExp 1.568 1.077 0.934 0.667 2.532 1.183

JFact BlackBox 1.757 0.501 1.974 0.726 7.273 0.812

JFact OWLExp 1.072 1.248 2.036 0.869 3.47 1.291

Test 2. The second test was performed following the approach presented in [11]
on the BRCA KB (ALCHF(D), 490 axioms). To test BUNDLE, we randomly
generated and added an increasing number of subclass-of probabilistic axioms.
The number of these axioms was varied from 9 to 16, and, for each number, 100
different consistent ontologies were created. Although the number of additional
axioms, they may cause an exponential increase of the inference complexity
(please see [11] for a detailed explanation).

Finally, an individual was added to every KB, randomly assigned to each
simple class that appeared in the probabilistic axioms, and a random probabil-
ity was attached to it. Complex classes contained in the conditional constraints
were split into their components, e.g., the complex class PostmenopausalWoman-
TakingTestosterone was divided into PostmenopausalWoman and WomanTak-
ingTestosterone. Finally, we ran 100 probabilistic queries of the form a : C where
a is the added individual and C is a class randomly selected among those that
represent women under increased and lifetime risk such as WomanUnderLife-
timeBRCRisk and WomanUnderStronglyIncreasedBRCRisk, which are at the
top of the concept hierarchy.
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Table 2 shows the execution time averaged over the 100 queries as a function
of the number of probabilistic axioms. For each size, bold values indicate the
best configuration. The BlackBox approaches are much slower on average than
the others. The best performance is shown by Pellet/GlassBox until size 12, and
by Pellet/OWLExp, Fact++/OWLExp and JFact/OWLExp from size 13.

Table 2. Average execution time (ms) for probabilistic inference with different config-
urations of BUNDLE on versions of the BRCA KB of increasing size (Test 2).

Reasoner Method 9 10 11 12 13 14 15 16

Pellet GlassBox 1.360 1.076 16.149 16.448 7.157 14.895 9.884 7.889

Pellet BlackBox 19.747 16.406 51.258 42.258 42.309 65.690 63.269 55.006

Pellet OWLExp 3.520 3.271 18.554 17.951 7.333 8.848 8.811 7.350

Hermit BlackBox 31.871 26.373 72.473 62.064 66.664 77.378 79.785 57.745

Hermit OWLExp 6.518 6.380 24.245 23.666 15.211 23.697 18.462 15.694

Fact++ BlackBox 3.718 2.846 20.880 18.879 8.479 19.221 15.837 10.411

Fact++ OWLExp 1.829 1.618 14.254 16.871 5.776 13.384 8.224 6.640

JFact BlackBox 5.570 4.483 25.897 22.272 15.319 28.686 24.082 16.120

JFact OWLExp 1.748 1.509 13.366 16.823 2.267 13.747 8.591 7.294

Test 3. In the third test we artificially created a set of KBs of increasing size of
the following form:

(E1,i) 0.6 :: Bi−1  Pi � Qi (E2,i) 0.6 :: Pi  Bi (E3,i) 0.6 :: Qi  Bi

where n ≥ 1 and 1 ≤ i ≤ n. The query Q = B0  Bn has 2n explanations, even
if the KB has a size that is linear in n.

We increased n from 2 to 10 in steps of 2 and we collected the running
time, averaged over 50 executions. Table 3 shows, for each n, the average time in
seconds that the systems took for computing the probability of the query Q (in
bold the best time for each size). We set a timeout of 10 min for each query, so
the cells with “–” indicate that the timeout occurred. This experiment confirms
what already suggested by Test 2, i.e. the best results in terms of scalability
are provided by the OWL Explanation method paired with any reasoner except
Hermit. Thanks to this library the new version of BUNDLE is able to beat the
first version (corresponding to Pellet/GlassBox), by reaching a larger dataset
size.
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Table 3. Average time (in seconds) for probabilistic inference with different configura-
tions of BUNDLE on a synthetic dataset (Test 3). “–” means that the execution timed
out (600 s).

Reasoner Method 2 4 6 8 10

Pellet GlassBox 0.404 0.673 3.651 – –

Pellet BlackBox 0.558 1.217 4.868 456.71 –

Pellet OWLExp 0.972 1.957 4.45 13.459 52.084

Hermit BlackBox 2.800 13.965 117.886 – –

Hermit OWLExp 2.307 8.507 37.902 185.158 –

Fact++ BlackBox 0.248 1.026 5.96 487.091 –

Fact++ OWLExp 0.815 1.708 4.282 15.331 76.313

JFact BlackBox 0.405 1.178 4.895 497.745 –

JFact OWLExp 0.946 1.878 4.258 17.547 78.831

8 Conclusions

In this paper, we presented a modular version of BUNDLE, a system for reason-
ing on Probabilistic Description Logics KBs that follow DISPONTE. Modularity
allows one to pair 4 different OWL reasoners with 3 different approaches to find
query justifications. In addition, BUNDLE can now be used both as a standalone
application and as a library. We provided a comparison between the various con-
figurations reasoner/approach over different datasets, showing that Pellet paired
with GlassBox or any reasoner (except Hermit) paired with the OWLExplana-
tion library achieve the best results in terms of inference time on a probabilistic
ontology. In the future, we plan to study the effects of glass-box or grey-box
methods for collecting explanations.

Acknowledgement. This work was supported by the “GNCS-INdAM”.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description logics, chap. 3, pp. 135–179. Else-
vier, Amsterdam (2008)
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