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Abstract. When combining beliefs from different sources, often not only
new knowledge but also conflicts arise. In this paper, we investigate how
we can measure the disagreement among sources. We start our investi-
gation with disagreement measures that can be induced from inconsis-
tency measures in an automated way. After discussing some problems
with this approach, we propose a new measure that is inspired by the
η-inconsistency measure. Roughly speaking, it measures how well we can
satisfy all sources simultaneously. We show that the new measure satis-
fies desirable properties, scales well with respect to the number of sources
and illustrate its applicability in inconsistency-tolerant reasoning.

1 Introduction

One challenge in logical reasoning are conflicts between given pieces of informa-
tion. Therefore, a considerable amount of work has been devoted to repairing
inconsistent knowledge bases [1,2] or performing paraconsistent reasoning [3–
5]. Inconsistency measures [6,7] quantify the degree of inconsistency and help
analyzing and resolving conflicts. While work on measuring inconsistency was
initially inspired by ideas from repairing knowledge bases and paraconsistent
reasoning [8], inconsistency measures also inspired new repair [9,10] and para-
consistent reasoning mechanisms [11,12].

Here, we are interested in belief profiles (κ1, . . . , κn) rather than single knowl-
edge bases κ. Intuitively, we can think of each κi as the set of beliefs of an agent.
Our goal is then to measure the disagreement among the agents. A natural idea
is to reduce measuring disagreement to measuring inconsistency by transforming
multiple knowledge bases to a single base using multiset union or conjunction.
However, both approaches have some flaws as we will discuss in the following.
This observation is similar to the insight that merging belief profiles should be
guided by other principles than repairing single knowledge bases [13]. We will
therefore propose some new principles for measuring disagreement and introduce
a new measure that complies with them.

After explaining the necessary basics in Sect. 2, we will discuss the relation-
ship between inconsistency measures and disagreement measures in Sect. 3. To
begin with, we will define disagreement measures as functions with two basic
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properties that seem quite indisputable. We will then show that disagreement
measures induced from inconsistency measures by taking the multiset union or
conjunction satisfy these basic desiderata and give us some additional guaran-
tees. In Sect. 4, we will propose some stronger principles for measuring disagree-
ment. One key idea is to allow resolving conflicts by majority decisions. We will
show that many measures that are induced from inconsistency measures must
necessarily violate some of these principles. In Sect. 5, we will then introduce
a new disagreement measure that is inspired by the η-inconsistency measure
from [6]. Intuitively, it attempts to satisfy all agents’ beliefs as well as possible
and then measures the average dissatisfaction. We will show that the measure
satisfies the principles proposed in Sect. 4 and some other properties that corre-
spond to principles for measuring inconsistency. To give additional motivation
for this work, we will sketch how the measure can be used for belief merging and
inconsistency-tolerant reasoning at the end of Sect. 5.

2 Basics

We consider a propositional logical language L built up over a finite set A of
propositional atoms using the usual connectives. Satisfaction of formulas F ∈ L
by valuations v : A → {0, 1} is defined as usual. A knowledge base κ is a non-
empty finite multiset over L. K denotes the set of all knowledge bases. An n-
tuple B = (κ1, . . . , κn) ∈ Kn is called a belief profile. We let

⊔ B =
⊔n

i=1 κi,
where � denotes multiset union. Note that using multisets is crucial to avoid
information loss when several sources contain syntactically equal beliefs. For
instance, {¬a} � {a} � {a} = {¬a, a, a}. We let B ◦ κ = (κ1, . . . , κn, κ), that is,
B ◦ κ is obtained from B by adding κ at the end of the profile. Furthermore, we
let B◦1κ = B◦κ and B◦k κ =

(B◦k−1κ
)◦κ for k > 1. That is, B◦k κ is obtained

from B by adding k copies of κ. We call a non-contradictory formula f safe in κ
iff f and κ are built up over distinct variables from A. Intuitively, adding a safe
formula to κ cannot introduce any conflicts.

A model of κ is a valuation v that satisfies all f ∈ κ. We denote the set of
all models of κ by Mod(κ). If Mod(κ) �= ∅, we call κ consistent and inconsistent
otherwise. A minimal inconsistent (maximal consistent) subset of κ is a subset
of κ that is inconsistent (consistent) and minimal (maximal) with this property.
If Mod(κ) ⊆ Mod(κ′), we say that κ entails κ′ and write κ |= κ′. If κ |= κ′ and
κ′ |= κ, we call κ and κ′ equivalent and write κ ≡ κ′. If κ = {f} and κ′ = {g}
are singletons, we just write f |= g or f ≡ g.

An inconsistency measure I : Kn → R
+
0 maps knowledge bases to non-

negative degrees of inconsistency. The most basic example is the drastic measure
that yields 0 if the knowledge base is consistent and 1 otherwise [14]. Hence, it
basically performs a satisfiability test. There exist various other measures, see
[15] for a recent overview. While there is an ongoing debate about what prop-
erties an inconsistency measure should satisfy, there is general agreement that
it should be consistent in the sense that I(κ) = 0 if and only if κ is consistent.
Hence, the inconsistency value is greater than zero if and only if κ is inconsistent.
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Various other properties of inconsistency measures have been discussed [14–16].
We will present some of these later, when talking about corresponding properties
of disagreement measures.

3 Induced Disagreement Measures

To begin with, we define disagreement measures as functions over the set of all
belief profiles

⋃∞
n=1 Kn that satisfy two basic desiderata.

Definition 1 (Disagreement Measure). A disagreement measure is a func-
tion D :

⋃∞
n=1 Kn → R

+
0 such that for all belief profiles B = (κ1, . . . , κn), we

have

1. Consistency: D(B) = 0 iff
⊔n

i=1 κi is consistent.
2. Symmetry: D(B) = D(κσ(1), . . . , κσ(n)) for each permutation σ of {1, . . . , n}.
Consistency generalizes the corresponding property for inconsistency measures.
Symmetry assures that the disagreement value is independent of the order in
which the knowledge bases are presented. It is similar to Anonymity in social
choice theory [17] and guarantees equal treatment of different sources.

Note that each disagreement measure D induces a corresponding inconsis-
tency measure ID : K → R

+
0 defined by ID(κ) = D(κ). Conversely, we can

induce disagreement measures from inconsistency measures as we discuss next.

3.1 �-Induced Disagreement Measures

It is easy to see that each inconsistency measure induces a corresponding dis-
agreement measure by taking the multiset union of knowledge bases in the profile.

Proposition 1 (�-induced Measure). If I is an inconsistency measure, then
the function D�

I :
⋃∞

n=1 Kn → R
+
0 defined by D�

I (B) = I(
⊔ B) for all B ∈ Kn is

a disagreement measure. We call D�
I the measure �-induced by I.

What can we say about the properties of �-induced measures? As we explain
first, many properties for inconsistency measures have a natural generalization
to disagreement measures that is compatible with �-induced measures in the
following sense.

Definition 2 (Corresponding Properties). Let P be a property for incon-
sistency measures and let P ′ be a property for disagreement measures. We call
(P, P ′) a pair of corresponding properties iff

1. if an inconsistency measure I satisfies P , then the �-induced measure D�
I

satisfies P ′,
2. if a disagreement measure D satisfies P ′, then the corresponding inconsistency

measure ID satisfies P .
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One big class of properties for inconsistency measures gives guarantees about the
relationship between inconsistency values when we extend the knowledge bases
by particular formulas. We start with a general lemma and give some examples
in the subsequent proposition.

Lemma 1 (Transfer Lemma). Let R be a binary relation on R and let C ⊆ K3

be a ternary constraint on knowledge bases. Given a property for inconsistency
measures

For all κ, S, T ∈ K, if C(κ, S, T ) then I(κ � S) R I(κ � T ), (1)

define a property for disagreement measures as follows:

For all κ1, . . . , κn, S, T ∈ K, if C(
n⊔

i=1

κi, S, T ) then

D(κ1 � S, κ2, . . . , κn) R D(κ1 � T, κ2, . . . , κn). (2)

Then ((1), (2)) is a pair of corresponding properties.

Remark 1. The reader may wonder why the corresponding property looks only
at the first argument. Note that by symmetry of disagreement measures, the
same is true for all other arguments. For instance, we have Inc∗(κ1, κ2 � S) =
Inc∗(κ2 � S, κ1)R Inc∗(κ2 � T, κ1) = Inc∗(κ1, κ2 � T ).

We now apply Lemma 1 to some basic properties for inconsistency measures
from [14] and adjunction invariance from [16] that will play an important role
later.

Proposition 2. The following are pairs of corresponding properties for incon-
sistency and disagreement measures:

– Monotony:
I(κ) ≤ I(κ � κ′)
D(κ1, κ2, . . . , κn) ≤ D(κ1 � κ′, κ2, . . . , κn)

– Dominance: For f, g ∈ L such that f |= g and f �|= ⊥,
I(κ � {f}) ≥ I(κ � {g})
D(κ � {f}, κ2, . . . , κn) ≥ D(κ � {g}, κ2, . . . , κn)

– Safe Formula Independence: If f ∈ L is safe in κ, then
I(κ � {f}) = I(κ)
If f ∈ L is safe in

⊔n
i=1 κi, then

D(κ1 � {f}, κ2, . . . , κn) = D(κ1, κ2, . . . , κn)
– Adjunction Invariance: For all f, g ∈ L,

I(κ ∪ {f, g}) = I(κ ∪ {f ∧ g})
D(κ1 ∪ {f, g}, κ2, . . . ) = D(κ1 ∪ {f ∧ g}, κ2, . . . )

Monotony demands that adding knowledge can never decrease the disagree-
ment value. Dominance says that replacing a claim with a (possibly weaker)
implication of the original claim can never increase the disagreement value. Safe
Formula Independence demands that a safe formula does not affect the disagree-
ment value. Adjunction invariance says that it makes no difference whether two
pieces of information are presented independently or as a single formula.
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Example 1. The inconsistency measure ILPm
that was discussed in [18] satisfies

Monotony, Dominance, Safe Formula Independence and Adjunction Invariance.
From Proposition 2, we can conclude that the �-induced disagreement measure
Inc�

LPm
satisfies the corresponding properties for disagreement measures.

What we can take from our discussion so far is that each inconsistency mea-
sure induces a disagreement measure with similar properties. As it turns out,
each �-induced disagreement measure satisfies an additional property and, in
fact, only the �-induced measures do. We call this property partition invariance.
Intuitively, partition invariance means that the disagreement value depends only
on the pieces of information in the belief profile and is independent of the dis-
tribution of these pieces. In the following proposition, a partition of a multiset
M is a sequence of non-empty multisets M1, . . . , Mk such that

⊔k
i=1 Mi = M .

Proposition 3 (Characterizations of Induced Families). The following
statements are equivalent:

1. D is �-induced by an inconsistency measure.
2. D is �-induced by ID.
3. D is partition invariant, that is, for all κ ∈ K and for all partitions

⊔n1
i=1 Pi =⊔n2

i=1 P ′
i = κ of κ, we have that D(P1, . . . , Pn1) = D(P ′

1, . . . , P
′
n2

).

So the �-induced disagreement measures are exactly the partition invariant mea-
sures. However, partition variance can be undesirable in some scenarios.

Example 2. Consider the political goals ‘increase wealth of households’ (h),
‘increase wealth of firms’ (f), ‘increase wages’ (w). Suppose there are three
political parties whose positions we represent in the profile

B = ({f, w, f → w}, {w, h,w → h}, {f,¬w,w → ¬f}).

In this scenario, the parties only disagree about w. We modify B by moving
w → ¬f from the third to the second party:

B′ = ({f, w, f → w}, {w, h,w → h,w → ¬f}, {f,¬w}).

The conflict with respect to w remains, but party 2’s positions now imply ¬f .
Since we now have an additional conflict with respect to f , we would expect
D(B) < D(B′).

Partition invariant measures are unable to detect the difference in Example 2.
Since partition invariance is an inherent property of �-induced measures, we
should also investigate non-�-induced measures.

3.2 ∧-Induced Disagreement Measures

Instead of taking the multiset union of all knowledge bases in the profile, we can
also just replace each knowledge base with the conjunction of the formulas that
it contains in order to induce a disagreement measure.
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Proposition 4 (∧-induced Measure). If I is an inconsistency measure, then
D∧

I :
⋃∞

n=1 Kn → R
+
0 defined by D∧

I (B) = I(
⊔

κ∈B{∧
F∈κ F}) for B ∈ Kn is a

disagreement measure. We call D∧
I the measure ∧-induced by I.

By repeated application of adjunction invariance (c.f. Proposition 2), one can
show that each adjunction invariant inconsistency measure satisfies I(κ) =
I({∧

f∈κ f}), see [16], Proposition 9. We can use this result to show that for
adjunction invariant inconsistency measures, the ∧-induced and the �-induced
measures are equal.

Corollary 1. If I is an adjunction invariant inconsistency measure, then D∧
I =

D�
I .

This is actually the only case in which the ∧-induced measure can be
⊔

-induced.

Proposition 5. Let I be an inconsistency measure. D∧
I is �-induced if and only

if I is adjunction invariant.

The �-induced disagreement measures are characterized by partition invariance.
Adjunction invariance plays a similar role for ∧-induced measures.

Proposition 6. For each inconsistency measure I, D∧
I satisfies adjunction

invariance.

Note that the inconsistency measure ID∧
I induced by D∧

I will also be adjunction
invariant. Therefore, ID∧

I �= I if I is not adjunction invariant. In particular, D∧
I

can be a rather coarse measure if I is not adjunction invariant.

Example 3. The inconsistency measure IMI from [18] counts the number of min-
imal inconsistent sets of a knowledge base. IMI is not adjunction invariant. For
instance, IMI({a,¬a, a ∧ b}) = 2 because {a,¬a} and {¬a, a ∧ b} are the only
minimal inconsistent sets. However, IMI({a ∧ ¬a ∧ a ∧ b}) = 1 because the
only minimal inconsistent set is the knowledge base itself. Furthermore, we will
have D∧

IMI
(κ) = 1 whenever

∧
f∈κ f is inconsistent and D∧

IMI
(κ) = 0 otherwise.

Hence, the inconsistency measure corresponding to D∧
IMI

is the drastic measure.

Proposition 6 tells us that ∧-induced measures are necessarily adjunction
invariant. Whether or not each adjunction invariant disagreement measure is
∧-induced is currently an open question. However, we have the following result.

Proposition 7. If D satisfies adjunction invariance and

D({f1}, . . . , {fn}) = D(
n⊔

i=1

{fi}), (3)

then D is ∧-induced by an inconsistency measure.

We call property (3) singleton union invariance in the following. While adjunc-
tion invariance and singleton union invariance are sufficient for being ∧-induced,
they are no longer necessary as the following example illustrates.
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Example 4. Consider again the inconsistency measure IMI from [18] that was
explained in Example 3. We have D∧

IMI
({a ∧ b}, {¬a ∧ b}, {a ∧ ¬b}) = IMI({a ∧

b,¬a∧b, a∧¬b}) = 3 by definition of the ∧-induced measure. However, D∧
IMI

({a∧
b,¬a ∧ b, a ∧ ¬b}) = IMI({a ∧ b ∧ ¬a ∧ b ∧ a ∧ ¬b}) = 1. Hence, D∧

IMI
is not

singleton union invariant.

We close this section by showing that the set of disagreement measures �-induced
and ∧-induced from inconsistency measures are neither equal nor disjoint.

To begin with, the ILPm
inconsistency measure that was discussed in [18]

is adjunction invariant. Therefore, D�
ILPm

= D∧
ILPm

according to Corollary 1.
Hence, the intersection of �-induced and ∧-induced disagreement measures is
non-empty.

In order to show that there are partition invariant measures that are not
adjunction invariant and vice versa, we use the minimal inconsistent set measure
IMI from [18]. As demonstrated in Example 3, IMI is not adjunction invariant.
Therefore, the Transfer Lemma implies that D�

IMI
is not adjunction invariant

either. Hence, D�
IMI

cannot be ∧-induced according to Proposition 6.
On the other hand, D∧

IMI
is adjunction invariant because each ∧-induced

measure is. However, since IMI is not adjunction invariant, we know from Propo-
sition 5 that D∧

IMI
is not �-induced. Hence, D∧

IMI
is an example of a disagreement

measure that is ∧-induced, but not �-induced.
We illustrate our findings in Fig. 1. The ∧-induced incompatibility measures

are a subset of the adjunction invariant measures (Proposition 6). The fact that
all measures in the intersection of partition invariant and adjunction invariant
measures are ∧-induced follows from observing that partition invariance implies
singleton union invariance (3) and Proposition 7.

Fig. 1. Venn diagram illustrating induced measures in the space of all disagreement
measures.
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4 Principles for Measuring Disagreement

As illustrated in Fig. 1, induced measures correspond to disagreement measures
with very specific properties. �-induced measures are necessarily partition invari-
ant. This may be undesirable in certain applications as illustrated in Example 2.
If an inconsistency measure is adjunction invariant, the ∧-induced measure will
also be partition invariant. If it is not adjunction invariant, the ∧-induced mea-
sure will not be partition invariant, but the measure may become rather coarse
as illustrated in Example 3. This is some evidence that it is worth investigating
non-induced measures. To further distinguish inconsistency from disagreement
measures, we will now propose some stronger principles that go beyond our basic
desiderata from Definition 1.

To guide our intuition, we think of each knowledge base as the belief set of an
agent. We say that κi contradicts κj if κi ∪ κj is inconsistent. To begin with, let
us consider an agent whose beliefs do not contradict any consistent position (its
knowledge base is tautological). When adding such an agent to a belief profile,
the disagreement value should not increase. Dually, if we add an agent that
contradicts every position (its knowledge base is inconsistent), the disagreement
value should not decrease. This intuition is captured by the following principles.

Tautology. Let B ∈ Kn and let κ	 ∈ K be tautological. Then D(B ◦ κ	) ≤
D(B).

Contradiction. Let B ∈ Kn and let κ⊥ ∈ K be contradictory. Then D(B◦κ⊥) ≥
D(B).

Inconsistency measures focus mainly on the existence of conflicts. However,
in a multiagent setting, conflicts can often be resolved by majority decisions.
Given a belief profile B = (κ1, . . . , κn) ∈ Kn, we call a subset C ⊆ {1, . . . , n}
a consistent coalition iff

⋃
i∈C κi is consistent. We say that κj is involved in

a conflict in B iff there is a consistent coalition C such that κj ∪ ⋃
i∈C κi is

inconsistent. Our next principle demands that conflicts can be eased by majority
decisions.

Majority. Let B = (κ1, . . . , κn) ∈ Kn. If κj is consistent and involved in a
conflict, then there is a k ∈ N such that D(B ◦k κj) < D(B).

Intuitively, Majority says that we can decrease the severity of a conflict by giving
sufficient support for one of the conflicting positions. It does not matter what
position we choose as long as this position is consistent. In future work, one may
look at alternative principles based on other methods to make group decisions
[17], but Majority seems to be a natural starting point.

Majority implies that we can strictly decrease the disagreement value by
adding copies of one consistent position. However, this does not imply that the
disagreement value will vanish. If we keep adding copies, the disagreement value
will necessarily decrease but it may converge to a value strictly greater than 0.
While one may argue that the limit should be 0 if almost all agents agree, one may
also argue that the limit should be bounded from below by a positive constant if
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an unresolved conflict remains. We therefore do not strengthen majority. Instead,
we consider an additional principle that demands that the limit is indeed 0 if the
majority agrees on all non-contradictory positions. This intuition is captured by
the next principle.

Majority Agreement in the Limit. Let B ∈ Kn. If M is a ⊂-maximal con-
sistent subset of

⊔ B, then limk→∞ D(B ◦k M) = 0.

We close this section with an impossibility result: Monotony and Partition
Invariance cannot be satisfied jointly with our majority principles. The reason
is that such measures can never decrease when receiving new information as
explained in the following proposition.

Proposition 8. If D satisfies Monotony and Partition Invariance, then D(B◦k

κ) ≥ D(B) for all B ∈ Kn, κ ∈ K, k ∈ N.

The conditions of Proposition 8 are in particular met by several induced
measures.

Corollary 2. Every disagreement measure that is

– partition invariant and monotone or
– �-induced from a monotone inconsistency measure or
– ∧-induced from a monotone and adjunction invariant inconsistency measure

violates Majority and Majority Agreement in the Limit.

5 The η-Disagreement Measure

We now consider a novel disagreement measures inspired by the η-inconsistency
measure from [6]. Roughly speaking, the η-inconsistency measure attempts to
maximize the probability of all formulas within a knowledge base. By subtract-
ing this probability from 1, we get an inconsistency value. In order to assign
probabilities to formulas, we consider probability distributions over the set of
all valuations Ω = {v | v : A → {0, 1}} of our language. Given a probability
distribution π : Ω → [0, 1] (

∑
v∈Ω π(v) = 1) and a formula F ∈ L, we let

Pπ(F ) =
∑

v|=F

π(v).

Intuitively, Pπ(F ) is the probability that F is true with respect to π. The η-
inconsistency measure from [6] is defined by

Iη(κ) = 1 − max{p | ∃π : ∀F ∈ κ : Pπ(F ) ≥ p}.

This formula describes the intuition that we explained in the beginning. p∗ =
max{p | ∃π : ∀F ∈ κ : Pπ(F ) ≥ κ} is the maximum probability that all formulas
in κ can simultaneously take. We will have p∗ = 1 if and only if κ is consistent
[6].
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Let us first look at the disagreement measures induced by Iη. Iη satisfies
Monotony [15]. Therefore, D�

Iη
will violate our majority principles as explained in

Corollary 2. However, Iη is not adjunction invariant [15]. Therefore, Proposition 5
implies that D�

Iη
�= D∧

Iη
. Still, D∧

Iη
does not satisfy our majority principles either.

Example 5. Let B = ({a}, {¬a}). Since Pπ(a) = 1 − Pπ(¬a), we have for all
n ∈ N

D∧
Iη

({a}, {¬a}) = Iη({a,¬a}) = 0.5

= Iη({a,¬a} �
n⊔

i=1

{a}) = D∧
Iη

(
({a}, {¬a}) ◦n {a}).

However, we can modify the definition of the η-inconsistency measure in order
to get a disagreement measure that satisfies our desiderata. If we think of Pπ(F )
as the degree of belief in F , then we should try to find a π such that the beliefs
of all agents are satisfied as well as possible. To do so, we can first look at how
well π satisfies the beliefs of each agent and then look at how well π satisfies the
agents’ beliefs overall. To measure satisfaction of one agent’s beliefs, we take the
minimum of all probabilities assigned to the formulas in the agent’s knowledge
base. Formally, for all probability distributions π and knowledge bases κ over
our language, we let

sπ(κ) = min{Pπ(F ) | F ∈ κ}.

and call sπ(κ) the degree of satisfaction of κ. In order to measure satisfaction
of a belief profile, we take the average degree of satisfaction of the knowledge
bases in the profile. Formally, we let for all probability distributions π and belief
profiles B

Sπ(B) =
1

|B|
∑

κ∈B
sπ(κ)

and call S(B) the degree of satisfaction of B. We now define a new disagreement
measure. Intuitively, it attempts to maximize the degree of satisfaction of the
profile. By subtracting the maximum degree of satisfaction from 1, we get a
disagreement value.

Definition 3 (η-Disagreement Measure). The η-Disagreement Measure is
defined by

Dη(B) = 1 − max{p | ∃π : Sπ(B) = p}.

To begin with, we note that Dη is a disagreement measures as defined in Defi-
nition 1 and can be computed by linear programming techniques.

Proposition 9. Dη is a disagreement measures and can be computed by solving
a linear optimization problem.
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As we show next, Dη is neither �- nor ∧-induced from any inconsistency
measure. According to Propositions 3 and 6, it suffices to show that it is neither
partition invariant nor adjunction invariant.

Example 6. Consider again the belief profiles B and B′ from Example 2. We
have Dη(B) ≈ 0.33 and Dη(B) ≈ 0.44. As desired, Dη recognizes the increased
disagreement in the profile. In particular, Dη is not partition invariant.

Example 7. To see that Dη is not adjunction invariant, note that Dη({a,¬a}) =
0.5, whereas Dη({a ∧ ¬a}) = 1 (contradictory formulas have probability 0 with
respect to each π). Hence, Dη is also not adjunction invariant.

Dη satisfies our four principles for measuring disagreement as we show next. To
begin with, we note that the disagreement value necessarily decreases as the
proportion of agreeing agents increases.

Proposition 10. Let B ∈ Kn. If B contains a consistent coalition of size k,
then Dη(B) ≤ 1 − k

n .

Proposition 10 implies, in particular, that the disagreement value goes to 0
as the proportion of agreeing agents k

n goes to 1. Therefore, Dη satisfies our
majority principles.

Corollary 3. Dη satisfies Majority and Majority Agreement in the Limit.

Tautology and Contradiction are also satisfied and can be strengthened
slightly.

Proposition 11. Dη satisfies Tautology and Contradiction. Furthermore,

– If Dη(B) > 0, then Dη(B ◦ κ	) < Dη(B).
– If Dη(B) < 1, then Dη(B ◦ κ⊥) > Dη(B).

Regarding the properties corresponding to principles for measuring inconsis-
tency from Proposition 2, Dη satisfies all of them except Adjunction Invariance
(Example 7).

Proposition 12. Dη satisfies Monotony, Dominance and Safe Formula Inde-
pendence.

We already know that Dη yields 0 if and only if all knowledge bases in the
profile are consistent with each other. In the following proposition, we explain
in what cases it takes the maximum value 1.

Proposition 13. Let B ∈ Kn. We have Dη(B) = 1 iff all κi contain at least
one contradictory formula.

Intuitively, if there is a knowledge base that does not contain any contra-
dictory formulas, then all beliefs of one agent can be partially satisfied and the
disagreement value with respect to Dη cannot be 1. So the degree of disagreement
can only be maximal if each agent has contradictory beliefs.

In some applications, we may want to restrict to belief profiles with consistent
knowledge bases. We can rescale Dη for this purpose. Proposition 10 gives us the
following upper bounds on the disagreement value.
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Corollary 4. Let B = (κ1, . . . , κn). If some κi is consistent, then Dη(B) ≤
1 − 1

n .

The bound in Corollary 4 is actually tight even if all knowledge bases in the
profile are individually consistent as we explain in the following example.

Example 8. For n = 2 agents, we have Dη({a}, {¬a}) = 1
2 . For n = 3, we have

Dη({a ∧ b}, {¬a ∧ b}, {¬b}) = 2
3 . In general, if we have n satisfiable but pairwise

inconsistent (Fi∧Fj ≡ ⊥) formulas F1, . . . , Fn, then Dη({F1}, . . . , {Fn}) = 1− 1
n .

Hence, if we want to restrict to consistent knowledge bases, we can renormal-
ize Dη by multiplying by n

n−1 . The disagreement value will then be maximal
whenever all agents have pairwise inconsistent beliefs.

As explained in Proposition 9, computing Dη(B) is a linear optimization prob-
lem. Interior-point methods can solve these problems in polynomial time in the
number of optimization variables and constraints [19]. While the number of opti-
mization variables is exponential in the number of atoms |A| of our language,
the number of constraints is linear in the number of formulas in all knowledge
bases in the profile. Roughly speaking, computing Dη(B) is very sensitive to
the number of atoms, but scales well with respect to the number of agents.
In the language of parameterized complexity theory [20], computing Dη(B) is
fixed-parameter tractable (that is, polynomial if we fix the number of atoms).

Proposition 14. Computing Dη(B) is fixed-parameter tractable with parameter
|A|.

While interior-point methods give us a polynomial worst-case guarantee, they
are often outperformed in practice by the simplex algorithm. The simplex algo-
rithm has exponential runtime for some artificial examples, but empirically runs
in time linear in the number of optimization variables (exponential in |A|) and
quadratic in the number of constraints (quadratic in the overall number of for-
mulas in the belief profile) [19].

In the long-term, our goal is to reason over belief profiles that contain conflicts
among agents. While we must leave a detailed discussion for future work, we will
now sketch how the η-disagreement measure can be used for this purpose. The
optimal solutions of the linear optimization problem corresponding to Dη form
a topologically closed and convex set of probability distributions. This allows us
to compute lower and upper bound on the probability (or more intuitively, the
degree of belief) of formulas with respect to the optimal solutions that minimize
disagreement. This is similar to the probabilistic entailment problem [21], where
we compute lower and upper bounds with respect to probability distributions
that satisfy probabilistic knowledge bases. If, for a belief profile B, the lower
bound of the formula F is l and the upper bound is u, we write PB(F ) = [l, u].
If l = u, we just write PB(F ) = l. We call PB the aggregated group belief.

Example 9. Suppose we have 100 reviews about a restaurant. While most review-
ers agree that the food (f) and the service (s) are good, two reviewers dis-
agree about the interior design (d) of the restaurant. Let us assume that
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B = (
(
({d, f, s}, {¬d, f, s}) ◦95 {f, s}) ◦3 {¬f,¬s}). We have Dη(B) ≈ 0.03. Intu-

itively, the degree of disagreement among agents is low because the majority of
agents seem not to care about the interior design. The aggregated group beliefs
for the atoms in this example are PB(d) = 0.5, PB(f) = 1, PB(s) = 1.

We can use PB to define an entailment relation. For instance, we could say that
B entails F iff the lower bound is strictly greater than 0.5. Then, in Example 9,
PB entails f and s, but neither d nor ¬d.

6 Related Work

The authors in [22] considered the problem of measuring disagreement in limited
choice problems, where each agent can choose from a finite set of alternatives.
The measures are basically defined by counting the decisions and relating the
counts. The authors give intuitive justification for their measures, but do not
consider general principles. In order to transfer their approach to our setting,
one may identify atomic formulas with alternatives in their framework, but it is
not clear how this approach could be extended to knowledge bases that contain
complex formulas.

Some other conflict measures have been considered in non-classical frame-
works. These measures are often closer to distance measures because they mainly
compare how close two quantitative belief representations like probability func-
tions, belief functions or fuzzy membership functions are [23–25]. In [26], some
compatibility measures for Markov logic networks have been proposed. The mea-
sures are normalized and the maximum degree of compatibility can be related
to a notion of coherence of Markov logic networks. However, this notion cannot
be transferred to classical knowledge bases easily.

As we discussed, measuring disagreement is closely related to measuring
inconsistency [6,14,27] and merging knowledge bases [28–30]. The principles
Majority and Majority Agreement in the Limit from Sect. 4 are inspired by
Majority merging operators that allow that a sufficiently large interest group
can determine the merging outcome. The η-disagreement measure is perhaps
most closely related to model-based operators and DA2 operators, which attempt
to minimize some notion of distance between interpretations and the models
of the knowledge bases in the profile. In contrast, the η-disagreement measure
minimizes a probabilistic degree of dissatisfaction of the belief profile.

[31] introduced some entailment relations based on consensus in belief pro-
files. We will investigate relationships to entailment relations derived from the
η-disagreement measure in future work.

7 Conclusions and Future Work

In this paper, we investigated approaches to measuring disagreement among
knowledge bases. In principle, inconsistency measures can be applied for this
purpose by transforming belief profiles to single knowledge bases. However, we
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noticed some problems with this approach. For instance, many measures that are
naively induced from inconsistency measures violate Majority and Agreement
in the Limit as explained in Corollary 2. Even though this problem does not
apply to measures ∧-induced from inconsistency measures that violate adjunc-
tion invariance, these induced measures show another problem: they may be
unable to notice that a conflict can be resolved by giving up parts of agents’
beliefs. For instance, the measures D∧

IMI
and D∧

Iη
cannot distinguish the pro-

files ({a, b}, {¬a, b}) and ({a}, {¬a}) because IMI and Iη cannot distinguish the
knowledge bases {a ∧ b,¬a ∧ b} and {a,¬a}.

The η-inconsistency measure Dη satisfies our principles for measuring dis-
agreement and some other basic properties that correspond to principles for
measuring inconsistency. Since Dη can perform satisfiability tests, we cannot
expect to compute disagreement values in polynomial time with respect to the
number of atoms. However, if our agents argue only about a moderate number of
statements (we fix the number of atoms), the worst-case runtime is polynomial
with respect to the number of agents.

In the long-term, we are in particular interested in reasoning over belief
profiles that contain conflicts. We can use the η-inconsistency measure for this
purpose as we sketched at the end of Sect. 5. However, the aggregated group
belief PB does not behave continuously. For instance, if we gradually increase
the support for ¬s in Example 9, PB(s) will not gradually go to 0, but will jump
to an undecided state like 0.5 or will jump to 0 at some point. This is not a
principal problem for defining an entailment relation that either says that a
formula is entailed or not entailed by a profile. However, a continuous notion
of group beliefs would allow us to shift the focus from measuring disagreement
among agents to measuring disagreement about statements (logical formulas).
We could do so by measuring how well we can bound the aggregated beliefs
about the formulas in the profile away from 0.5. However, if PB does not behave
continuously, this approach will give us a rather coarse measure (basically three-
valued). Therefore, an interesting question for future research is whether we can
modify Dη or design other measures that give us an aggregated group belief with
a more continuous behavior.
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