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Abstract. Axiom pinpointing refers to the problem of finding the
axioms in an ontology that are relevant for understanding a given entail-
ment or consequence. One approach for axiom pinpointing, known as
glass-box, is to modify a classical decision procedure for the entailments
into a method that computes the solutions for the pinpointing problem.
Recently, consequence-based decision procedures have been proposed as
a promising alternative for tableaux-based reasoners for standard ontol-
ogy languages. In this work, we present a general framework to extend
consequence-based algorithms with axiom pinpointing.
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1 Introduction

Ontologies are now widely used in various domains such as medicine [22–24], biol-
ogy [26], chemistry [10], geography [17,18] and many others [29], to represent
conceptual knowledge in a formal and easy to understand manner. It is a multi-
task effort to construct and maintain such ontologies, often containing thousands
of concepts. As these ontologies increase in size and complexity, it becomes more
and more challenging for an ontology engineer to understand which parts of the
ontology cause a certain consequence to be entailed. If, for example, this conse-
quence is an error, the ontology engineer would want to understand its precise
causes, and correct it with minimal disturbances to the rest of the ontology.

To support this task, a technique known as axiom pinpointing was intro-
duced in [25]. The goal of axiom pinpointing is to identify the minimal sub-
ontologies (w.r.t. set inclusion) that entail a given consequence; we call these
sets MinAs. There are two basic approaches to axiom pinpointing. The black-
box approach [20] uses repeated calls to an unmodified decision procedure to find
these MinAs. The glass-box approach [4,5], on the other hand, modifies the deci-
sion algorithm to generate the MinAs during one execution. In reality, glass-box
methods do not explicitly compute the MinAs, but rather a compact represen-
tation of them known as the pinpointing formula. In this setting, each axiom
of the ontology is labelled with a unique propositional symbol. The pinpointing
formula is a (monotone) Boolean formula, satisfied exactly by those valuations
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which evaluate to true the labels of the axioms in the ontology which cause the
entailment of the consequence. Thus, the formula points out to the user the rel-
evant parts of the ontology for the entailment of a certain consequence, where
disjunction means alternative use of the axioms and conjunction means that the
axioms are jointly used.

Axiom pinpointing can be used to enrich a decision procedure for entailment
checking by further presenting to the user the axioms which cause a certain con-
sequence. Since glass-box methods modify an existing decision procedure, they
require a specification of the decision method to be studied. Previously, general
methods for extending tableaux-based and automata-based decision procedures
to axiom pinpointing have been studied in detail [4,5]. Classically, automata-
based decision procedures often exhibit optimal worst-case complexity, but the
most efficient reasoners for standard ontology languages are tableaux-based.
When dealing with pinpointing extensions one observes a similar behaviour: the
automata-based axiom pinpointing approach preserves the complexity of the
original method, while tableau-based axiom pinpointing is not even guaranteed
to terminate in general. However, the latter are more goal-directed and lead to
a better run-time in practice.

A different kind of reasoning procedure that is gaining interest is known as the
consequence-based method. In this setting, rules are applied to derive explicit
consequences from previously derived knowledge. Consequence-based decision
procedures often enjoy optimal worst-case complexity and, more recently, they
have been presented as a promising alternative for tableaux-based reason-
ers for standard ontology languages [8,9,14,15,27,28,30]. Consequence-based
algorithms have been previously described as simple variants of tableau algo-
rithms [6], and as syntactic variants of automata-based methods [12]. They share
the positive complexity bounds of automata, and the goal-directed nature of
tableaux.

In this work, we present a general approach to produce axiom pinpointing
extensions of consequence-based algorithms. Our driving example and use case
is the extension of the consequence-based algorithm for entailment checking for
the prototypical ontology language ALC [15]. We show that the pinpointing
extension does not change the ExpTime complexity of the consequence-based
algorithm for ALC.

2 Preliminaries

We briefly introduce the notions needed for this paper. We are interested in
the problem of understanding the causes for a consequence to follow from an
ontology. We consider an abstract notion of ontology and consequence relation.
For the sake of clarity, however, we instantiate these notions to the description
logic ALC.
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2.1 Axiom Pinpointing

To keep the discourse as general as possible, we consider an ontology language
to define a class A of axioms. An ontology is then a finite set of axioms; that
is, a finite subset of A. We denote the set of all ontologies as O. A consequence
property (or c-property for short) is a binary relation P ⊆ O × A that relates
ontologies to axioms. If (O, α) ∈ P, we say that α is a consequence of O or
alternatively, that O entails α.

We are only interested in relations that are monotonic in the sense that for
any two ontologies O,O′ ∈ O and axiom α ∈ A such that O ⊆ O′, if (O, α) ∈ P
then (O′, α) ∈ P. In other words, adding more axioms to an ontology will only
increase the set of axioms that are entailed from it. For the rest of this paper
whenever we speak about a c-property, we implicitly assume that it is monotonic
in this sense.

Notice that our notions of ontology and consequence property differ from pre-
vious work. In [4,5], c-properties are defined using two different types of state-
ments and ontologies are allowed to require additional structural constraints.
The former difference is just syntactic and does not change the generality of our
approach. In the latter case, our setting becomes slightly less expressive, but at
the benefit of simplifying the overall notation and explanation of our methods.
Our results can be easily extended to the more general setting from [4,5].

When dealing with ontology languages, one is usually interested in deciding
whether an ontology O entails an axiom α; that is, whether (O, α) ∈ P. In axiom
pinpointing, we are more interested in the more detailed question of why it is a
consequence. More precisely, we want to find the minimal (w.r.t. set inclusion)
sub-ontologies O′ ⊆ O such that (O′, α) ∈ P still holds. These subsets are known
as MinAs [4,5], justifications [13], or MUPS [25]—among many other names—
in the literature. Rather than enumerating all these sub-ontologies explicitly,
one approach is to compute a formula, known as the pinpointing formula, that
encodes them.

Formally, suppose that every axiom α ∈ A is associated with a unique propo-
sitional variable lab(α), and let lab(O) be the set of all the propositional variables
corresponding to axioms in the ontology O. A monotone Boolean formula φ over
lab(O) is a Boolean formula using only variables in lab(O) and the connectives
for conjunction (∧) and disjunction (∨). The constants � and ⊥, always eval-
uated to true and false, respectively, are also monotone Boolean formulae. We
identify a propositional valuation with the set of variables which are true in
it. For a valuation V and a set of axioms O, the V-projection of O is the set
OV := {α ∈ O | lab(α) ∈ V}. Given a c-property P and an axiom α ∈ A,
a monotone Boolean formula φ over lab(O) is called a pinpointing formula for
(O, α) w.r.t P if for every valuation V ⊆ lab(O):

(OV , α) ∈ P iff V satisfies φ.
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2.2 Description Logics

Description logics (DLs) [3] are a family of knowledge representation formalisms
that have been successfully applied to represent the knowledge of many appli-
cation domains, in particular from the life sciences [29]. We briefly introduce,
as a prototypical example, ALC, which is the smallest propositionally closed
description logic.

Given two disjoint sets NC and NR of concept names and role names, respec-
tively, ALC concepts are defined through the grammar rule:

C ::= A | ¬C | C � C | ∃r.C,

where A ∈ NC and r ∈ NR. A general concept inclusion (GCI) is an expression
of the form C 
 D, where C,D are ALC concepts. A TBox is a finite set of
GCIs.

The semantics of this logic is given in terms of interpretations which are
pairs of the form I = (ΔI , ·I) where ΔI is a finite set called the domain, and
·I is the interpretation function that maps every concept name A ∈ NC to a
set AI ⊆ ΔI and every role name r ∈ NR to a binary relation rI ⊆ ΔI × ΔI .
The interpretation function is extended to arbitrary ALC concepts inductively as
shown in Fig. 1. Following this semantics, we introduce the usual abbreviations
C � D := ¬(¬C � ¬D), ∀r.C := ¬(∃r.¬C), ⊥ := A � ¬A, and � := ¬⊥. That is,
� stands for a (DL) tautology, and ⊥ for a contradiction. The interpretation I
satisfies the GCI C 
 D iff CI ⊆ DI . It is a model of the TBox T iff it satisfies
all the GCIs in T .

Fig. 1. Semantics of ALC

One of the main reasoning problems in DLs is to decide subsumption between
two concepts C,D w.r.t. a TBox T ; that is, to verify that every model of the
TBox T also satisfies the GCI C 
 D. If this is the case, we denote it as
T |= C 
 D. It is easy to see that the relation |= defines a c-property over
the class A of axioms containing all possible GCIs; in this case, an ontology is a
TBox.1

The following example instantiates the basic ideas presented in this section.

1 ALC ontologies often include also an ABox with facts about individuals. We disre-
gard that part, as it is irrelevant for our example setting.
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Example 1. Consider for example the ALC TBox Texa containing the axioms

A 
 ∃r.A : ax1, ∃r.A 
 B : ax2,
A 
 ∀r.B : ax3, A � B 
 ⊥ : ax4,

where axi, 1 ≤ i ≤ 4 are the propositional variables labelling the axiom. It is
easy to see that Texa |= A 
 ⊥, and there are two justifications for this fact;
namely, the TBoxes {ax1, ax2, ax4} and {ax1, ax3, ax4}. From this, it follows that
ax1 ∧ ax4 ∧ (ax2 ∨ ax3) is a pinpointing formula for A 
 ⊥ w.r.t. Texa.

3 Consequence-Based Algorithms

Abstracting from particularities, a consequence-based algorithm works on a set A
of consequences, which is expanded through rule applications. Algorithms of this
kind have two phases. The normalization phase first transforms all the axioms
in an ontology into a suitable normal form. The saturation phase initializes the
set A of derived consequences with the normalized ontology and applies the rules
to expand it. The set A is often called a state. As mentioned, the initial state
A0 contains the normalization of the input ontology O. A rule is of the form
B0 → B1, where B0,B1 are finite sets of consequences. This rule is applicable to
the state A if B0 ⊆ A and B1 �⊆ A. Its application extends A to A ∪ B1. A is
saturated if no rule is applicable to it. The method terminates if A is saturated
after finitely many rule applications, independently of the rule application order
chosen. For the rest of this section and most of the following, we assume that
the input ontology is already in this normal form, and focus only on the second
phase.

Given a rule R = B0 → B1, we use pre(R) and res(R) to denote the sets B0

of premises that trigger R and B1 of consequences resulting of its applicability,
respectively. If the state A′ is obtained from A through the application of the
rule R, we write A →R A′, and denote A → A′ if the precise rule used is not
relevant. As usual, →∗ denotes the transitive and reflexive closure of →.

Consequence-based algorithms derive, in a single execution, several axioms
that are entailed from the input ontology. Obviously, in general they cannot
generate all possible entailed axioms, as such a set may be infinite (e.g., in the
case of ALC). Thus, to define correctness, we need to specify for every ontology
O, a finite set δ(O) of derivable consequences of O. This set is assumed to be
provided as part of the consequence-based algorithm.

Definition 2 (Correctness). A consequence-based algorithm is correct for the
consequence property P if for every ontology O, the following two conditions hold:
(i) it terminates, and (ii) if O →∗ A and A is saturated, then for every derivable
consequence α ∈ δ(O) it follows that (O, α) ∈ P iff α ∈ A.

That is, the algorithm is correct for a property if it terminates and is sound
and complete w.r.t. the finite set of derivable consequences δ(O).
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Notice that the definition of correctness requires that the resulting set of
consequences obtained from the application of the rules is always the same,
independently of the order in which the rules are applied. In other words, if
O →∗ A, O →∗ A′, and A,A′ are both saturated, then A = A′. This is a funda-
mental property that will be helpful for showing correctness of the pinpointing
extensions in the next section.

Table 1. ALC consequence-based algorithm rules B0 → B1.

A well-known example of a consequence-based algorithm is the ALC reason-
ing method from [27]. To describe this algorithm we need some notation. A literal
is either a concept name or a negated concept name. Let H,K denote (possibly
empty) conjunctions of literals, and M,N are (possibly empty) disjunctions of
concept names. For simplicity, we treat these conjunctions and disjunctions as
sets. The normalization phase transforms all GCIs to be of the form:

n�

i=1

Ai 

m⊔

j=1

Bj , A 
 ∃r.B, A 
 ∀r.B, ∃r.A 
 B.

For a given ALC TBox T , the set δ(T ) of derivable consequences contains all
GCIs of the form H 
 M and H 
 N � ∃r.K. The saturation phase initializes
A to contain the axioms in the (normalized) TBox, and applies the rules from
Table 1 until a saturated state is found. After termination, one can check that for
every derivable consequence C 
 D it holds that T |= C 
 D iff C 
 D ∈ A;
that is, this algorithm is correct for the property [27].

Example 3. Recall the ALC TBox Texa from Example 1. Notice that all axioms
in this TBox are already in normal form; hence the normalization step does not
modify it. The consequence-based algorithm starts with A := Texa and applies
the rules until saturation. One possible execution of the algorithm is

A0 →5 A 
 B →3 A 
 ⊥ →7 A 
 ∃r.(A � B) →∗ . . . ,

where A0 contains Texa and the result of adding all the tautologies generated by
the application of Rule 1 over it (see Fig. 2). Since rule applications only extend
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the set of consequences, we depict exclusively the newly added consequence; e.g.,
the first rule application A0 →1 A 
 A is in fact representing A0 →1 A0 ∪{A 

A}. When the execution of the method terminates, the set of consequences A
contains A 
 ⊥; hence we can conclude that this subsumption follows from Texa.
Notice that other consequences (e.g., A 
 B) are also derived from the same
execution.

Fig. 2. An execution of the ALC consequence-based algorithm over Texa from Exam-
ple 3. Arrows point from the premises to the consequences generated by the application
of the rule denoted in the subindex.

For the rest of this paper, we consider an arbitrary, but fixed, consequence-
based algorithm, that is correct for a given c-property P.

4 The Pinpointing Extension

Our goal is to extend consequence-based algorithms from the previous section to
methods that compute pinpointing formulae for their consequences. We achieve
this by modifying the notion of states, and the rule applications on them. Recall
that every axiom α in the class A (in hence, also every axiom in the ontology
O) is labelled with a unique propositional variable lab(α). In a similar manner,
we consider sets of consequences A that are labelled with a monotone Boolean
formula. We use the notation Apin to indicate that the elements in a the set A
are labelled in this way, and use α : ϕα ∈ Apin to express that the consequence
α, labelled with the formula ϕα, belongs to Apin. A pinpointing state is a set of
labelled consequences. We assume that each consequence in this set is labelled
with only one formula. For a set of labelled consequences Apin and a set of
(unlabelled) consequences X, we define fm(X,Apin) :=

∧
α∈X ϕα, where ϕα = ⊥

if α /∈ A.
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A consequence-based algorithm A induces a pinpointing consequence-based
algorithm Apin by modifying the notion of rule application, and dealing with
pinpointing states, instead of classical states, through a modification of the for-
mulae labelling the derived consequences.

Definition 4 (Pinpointing Application). The rule R = B0 → B1 is pin-
pointing applicable to the pinpointing state Apin if fm(B0,Apin) �|= fm(B1,Apin).
The pinpointing application of this rule modifies Apin to:

{α : ϕα ∨ fm(B0,Apin) | α ∈ B1, α : ϕα ∈ Apin} ∪ (Apin \ {α : ϕα | α ∈ B1}).

The pinpointing state Apin is pinpointing saturated if no rule is pinpointing
applicable to it.

Example 5. Consider again the TBox Texa from Example 1. At the beginning of
the execution of the pinpointing algorithm, the set of consequences is the TBox,
with each axiom labelled by the unique propositional variable representing it;
that is T pin = {A 
 ∃r.A : ax1,∃r.A 
 B : ax2, A 
 ∀r.B : ax3, A�B 
 ⊥ : ax4}.
A pinpointing application of Rule 1 adds the new consequence A 
 A : �, where
the tautology � labelling this consequence arises from the fact that rule 1 has
no premises. At this point, one can pinpointing apply Rule 5 with

B0 = {A 
 ∃r.A, A 
 A, ∃r.A 
 B}, B1 = {A 
 B}

(see the solid arrow in Fig. 2). In this case, fm(B0,Apin) = ax1 ∧ � ∧ ax2 and
fm(B1,Apin) = ⊥ because the consequence A 
 B does not belong to Apin yet.
Hence fm(B0,Apin) �|= fm(B1,Apin), and the rule is indeed pinpointing applica-
ble. The pinpointing application of this rule adds the new labelled consequence
A 
 B : ax1 ∧ ax2 to Apin. Then, Rule 3 becomes pinpointing applicable with

B0 = {A 
 B, A 
 A, A � B 
 ⊥},

which adds A 
 ⊥ : ax1 ∧ax2 ∧ax4 to the set of consequences. Then, Rule 7 over
the set of premises

B0 = {A 
 ∃r.A, A 
 A, A 
 ∀r.B},

yields the new consequence A 
 ∃r.(A � B) : ax1 ∧ ax3.
Notice that, at this point Rule 6 is not applicable in the classical case over

the set of premises B0 = {A 
 ∃r.(A � B), A � B 
 ⊥} because its (regu-
lar) application would add the consequence A 
 ⊥ that was already derived.
However,

fm(B0,Apin) = ax1 ∧ ax3 ∧ ax4 �|= ax1 ∧ ax2 ∧ ax4 = ϕA�⊥ = fm(B1,Apin);

hence, the rule is in fact pinpointing applicable. The pinpointing application of
this Rule 6 substitutes the labelled consequence A 
 ⊥ : ax1 ∧ ax2 ∧ ax4 with
the consequence A 
 ⊥ : (ax1 ∧ ax2 ∧ ax4) ∨ (ax1 ∧ ax3 ∧ ax4). The pinpointing
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extension will then continue applying rules until a saturated state is reached. This
execution is summarized in Fig. 3. At that point, the set of labelled consequences
will contain, among others, A 
 ⊥ : (ax1∧ax2∧ax4)∨(ax1∧ax3∧ax4). The label
of this consequence corresponds to the pinpointing formula that was computed
in Example 1.

We denote as Apin ⇀R Bpin the fact that Bpin is obtained from the pinpoint-
ing application of the rule R to Apin. As before, we drop the subscript R if the
name of the rule is irrelevant and write simply Apin ⇀ Bpin. The pinpointing
extension starts, as the classical one, with the set of all normalized axioms. For
the rest of this section, we assume that the input ontology is already normal-
ized, and hence each axiom in the initial pinpointing state is labelled with its
corresponding propositional variable. In the next section we show how to deal
with normalization.

Fig. 3. Pinpointing application of rules over Texa in Example 5. Arrows point from
the premises to the consequences generated by the pinpointing application of the rule
denoted in the subindex.

Notice that if a rule R is applicable to some state A, then it is also pinpointing
applicable to it. This holds because the regular applicability condition requires
that at least one consequence α in res(R) should not exist already in the state A,
which is equivalent to having the consequence α : ⊥ ∈ Apin. Indeed, we used this
fact in the first pinpointing rule applications of Example 5. If the consequence-
based algorithm is correct, then it follows by definition that for any saturated
state A obtained by a sequence of rule applications from O, O |= α iff α ∈ A.
Conversely, as shown next, every consequence created by a pinpointing rule
application is also generated by a regular rule application. First, we extend the
notion of a V-projection to sets of consequences (i.e., states) in the obvious
manner: AV := {α | α : ϕα ∈ Apin,V |= ϕ}.

Lemma 6. Let Apin,Bpin be pinpointing states and let V be a valuation. If
Apin ⇀∗ Bpin then AV →∗ BV .
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Proof. We show that if Apin ⇀R Bpin then AV →R BV or AV = BV , where
R = B0 → B1 is a rule. If V does not satisfy fm(B0,Apin) then AV = BV
since the labels of the newly added assertions are not satisfied by V, and the
disjunction with fm(B0,Apin) does not change the evaluation of the modified
labels under V. On the other hand, if V satisfies fm(B0,Apin) then B0 ⊆ AV . If
B1 �⊆ AV then AV →R BV . Otherwise, again we have AV = BV . ��

Since all the labels are monotone Boolean formulae, it follows that the valua-
tion V� = lab(O) that makes every propositional variable true satisfies all labels,
and hence for every pinpointing state Apin, AV� = A. Lemma 6 hence entails
that the pinpointing extension of the consequence-based algorithm A does not
create new consequences, but only labels these consequences. Termination of
the pinpointing extension then follows from the termination of the consequence-
based algorithm and the condition for pinpointing rule application that entails
that, whenever a rule is pinpointing applied, the set of labelled consequences is
necessarily modified either by adding a new consequence, or by modifying the
label of at least one existing consequence to a weaker (i.e., more general) mono-
tone Boolean formula. Since there are only finitely many monotone Boolean
formulas over lab(O), every label can be changed finitely many times only.

It is in fact possible to get a better understanding of the running time of the
pinpointing extension of a consequence-based algorithm. Suppose that, on input
O, the consequence-based algorithm A stops after at most f(O) rule applications.
Since every rule application must add at least one consequence to the state, the
saturated state reached by this algorithm will have at most f(O) consequences.
Consider now the pinpointing extension of A. We know, from the previous dis-
cussion, that this pinpointing extension generates the same set of consequences.
Moreover, since there are 2|O| possible valuations over lab(O), and every pin-
pointing rule application that does not add a new consequence must generalize
at least one formula, the labels of each consequence can be modified at most
2|O| times. Overall, this means that the pinpointing extension of A stops after
at most 2|O|f(O) rule applications. We now formalize this result.

Theorem 7. If a consequence-based algorithm A stops after at most f(O) rule
applications, then Apin stops after at most 2|O|f(O) rule applications.

Another important property of the pinpointing extension is that saturated-
ness of a state is preserved under projections.

Lemma 8. Let Apin be a pinpointing state and V a valuation. If Apin is pin-
pointing saturated then AV is saturated.

Proof. Suppose there is a rule R such that R is applicable to AV . This means that
B0 ⊆ AV and B1 �⊆ AV . We show that R is pinpointing applicable to Apin. Since
B0 ⊆ AV , V satisfies fm(B0,Apin). As B1 �⊆ AV , there is α ∈ B1 such that either
α �∈ A or α : ϕα ∈ Apin but V does not satisfy ϕα. In the former case, R is clearly
pinpointing applicable to Apin. In the latter, fm(B0,Apin) �|= fm(B1,Apin) since
V satisfies fm(B0,Apin) but not fm(B1,Apin). ��
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We can now show that the pinpointing extension of a consequence-based
algorithm is indeed a pinpointing algorithm; that is, that when a saturated
pinpointing state Apin is reached from rule applications starting from Opin,
then for every α : ϕα ∈ Apin, ϕα is a pinpointing formula for α w.r.t. Opin.

Theorem 9 (Correctness of Pinpointing). Let P be a c-property on axiom-
atized inputs for I and A. Given a correct consequence-based algorithm A for P,
for every axiomatized input Γ = (O, α) ∈ P, where O is normalized, then

if Opin ⇀∗ Apin, α : ϕα ∈ Apin, and Apin is pinpointing saturated, then
ϕα is a pinpointing formula for Γ w.r.t. P.

Proof. We want to show that ϕα is a pinpointing formula for P and (α,O). That
is, for every valuation V ⊆ lab(O): (α,OV) ∈ P iff V satisfies ϕα.

Assume that (α,OV) ∈ P, i.e., OV |= α, and let A0 = OV . Since A termi-
nates on every input, there is a saturated state B such that A0 →∗ B. Complete-
ness of A then implies that α ∈ B. By assumption, Apin

0 ⇀∗ Apin and Apin is
pinpointing saturated. By Lemma6 it follows that OV ⇀∗ AV , and by Lemma 8,
AV is saturated. Hence, since A is correct, AV = B. This implies that V |= ϕα

because α ∈ AV .
Conversely, suppose that V satisfies ϕα. By assumption, α : ϕα ∈ Apin,

Opin ⇀∗ Apin, and Apin is saturated. By Lemma 6, OV →∗ AV . Since V satisfies
ϕα, α ∈ AV . Then, by soundness of A, OV |= α. ��

As it was the case for classical consequence-based algorithms, their pinpoint-
ing extensions can apply the rules in any desired order. The notion of correctness
of consequence-based algorithms guarantees that a saturated state will always
be found, and the result will be the same, regardless of the order in which the
rules are applied. We have previously seen that termination transfers also the
pinpointing extensions. Theorem9 also shows that the formula associated to the
consequences derived is always equivalent.

Corollary 10. Let Apin,Bpin two pinpointing saturated states, O an ontology,
and α a consequence such that α : ϕα ∈ Apin and α : ψα ∈ Bpin. If Opin ⇀∗ Apin

and Opin ⇀∗ Bpin, then ϕα ≡ ψα.

To finalize this section, we consider again our running example of deciding
subsumption in ALC described in Sect. 3. It terminates after an exponential
number of rule applications on the size of the input TBox T . Notice that every
pinpointing rule application requires an entailment test between two monotone
Boolean formulas, which can be decided in non-deterministic polynomial time
on |O|. Thus, it follows from Theorem 7 that the pinpointing extension of the
consequence-based algorithm for ALC runs in exponential time.

Corollary 11. Let T be an ALC TBox, and C,D two ALC concepts. A pin-
pointing formula for C 
 D w.r.t. T is computable in exponential time.
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5 Dealing with Normalization

Throughout the last two sections, we have disregarded the first phase of the
consequence-based algorithms in which the axioms in the input ontology are
transformed into a suitable normal form. In a nutshell, the normalization phase
takes every axiom in the ontology and substitutes it by a set of simpler axioms
that are, in combination, equivalent to the original one w.r.t. the set of derivable
consequences. For example, in ALC the axiom A 
 B �C is not in normal form.
During the normalization phase, it would then be substituted by the two axioms
A 
 B, A 
 C, which in combination provide the exact same constraints as the
original axiom.

Obviously, in the context of pinpointing, we are interested in finding the
set of original axioms that cause the consequence of interest, and not those in
normal form; in fact, normalization is an internal process of the algorithm, and
the user should be agnostic to the internal structures used. Hence, we need to
find a way to track the original axioms.

To solve this, we slightly modify the initialization of the pinpointing exten-
sion. Recall from the previous section that, if the input ontology is already in
normal form, then we initialize the algorithm with the state that contains exactly
that ontology, where every axiom is labelled with the unique propositional vari-
able that represents it. If the ontology is not originally in normal form, then it
is first normalized. In this case, we set as the initial state the newly normalized
ontology, but every axiom is labelled with the disjunction of the variables rep-
resenting the axioms that generated it. This disjunction is used to represent the
fact that the normalized axiom may be generated in more than one way. The
following example explains this idea.

Example 12. Consider a variant T ′
exa of the ALC TBox from Example 1 that is

now formed by the three axioms

A 
 ∃r.A � ∀r.B : ax′
1, ∃r.A 
 B : ax′

2,

A 
 ∀r.B : ax′
3 A � B 
 ⊥ : ax′

4.

Obviously, the first axiom ax′
1 is not in normal form, but can be normalized

by substituting it with the two axioms A 
 ∃r.A, A 
 ∀r.B. Thus, the nor-
malization step yields the same TBox Texa from Example 1. However, instead of
using different propositional variables to label these two axioms, they just inherit
the label from the axiom that generated them; in this case ax′

1. However, the
axiom A 
 ∀r.B is also caused by axiom ax′

3. Thus, the pinpointing algorithm
is initialized with

Apin = {A 
 ∃r.A : ax′
1,∃r.A 
 B : ax′

2, A 
 ∀r.B : ax′
1 ∨ ax′

3, A � B 
 ⊥ : ax′
4}.

Following the same process as in Example 5, we see that we can derive the
consequence A 
 ⊥ : ax′

1 ∧ ax′
4. Hence ax′

1 ∧ ax′
4 is a pinpointing formula for

A 
 ⊥ w.r.t. T ′
exa. It can be easily verified that this is in fact the case.

Thus, the normalization phase does not affect the correctness, nor the com-
plexity of the pinpointing extension of a consequence-based algorithm.
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6 Conclusions

We presented a general framework to extend consequence-based algorithms with
axiom pinpointing. These algorithms often enjoy optimal upper bound complex-
ity and can be efficiently implemented in practice. Our focus in this paper and
use case is for the prototypical ontology language ALC. We emphasize that this
is only one of many consequence-based algorithms available. The completion-
based algorithm for EL+ [2] is obtained by restricting the assertions to be of the
form A 
 B and A 
 ∃r.B with A,B ∈ NC ∪ {�} and r ∈ NR, and adding one
rule to handle role constructors. Other examples of consequence-based methods
include LTUR approach for Horn clauses [19], and methods for more expressive
and Horn DLs [8,14,16].

Understanding the axiomatic causes for a consequence, and in particular the
pinpointing formula, has importance beyond MinA enumeration. For example,
the pinpointing formula also encodes all the ways to repair an ontology [1].
Depending on the application in hand, a simpler version of the formula can be
computed, potentially more efficiently. This idea has already been employed to
find good approximations for MinAs [7] and lean kernels [21] efficiently.

As future work, it would be interesting to investigate how algorithms for
query answering in an ontology-based data access setting can be extended with
the pinpointing technique. The pinpointing formula in this case could also be
seen as a provenance polynomial, as introduced by Green et al. [11], in database
theory. Another direction is to investigate axiom pinpointing in decision proce-
dures for non-monotonic reasoning, where one would also expect the presence of
negations in the pinpointing formula.
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