
Chapter 9
Semilinear Fractional Evolution
Equations

9.1 Introduction

Let α ∈ (0, 1]. The main objective of this chapter consists of acquainting the reader
with the fast-growing theory of fractional evolution equations. More precisely,
we study sufficient conditions for the existence of classical (respectively, mild)
solutions for the inhomogeneous fractional Cauchy problem

{
D

α
t u(t) = Au(t) + f (t), t > 0

u(0) = u0 ∈ X

and its corresponding semilinear evolution equation

{
D

α
t u(t) + Au(t) = F(t, u(t)), t > 0,

u(0) = u0 ∈ X,

where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X (respectively,
A ∈ Σ

γ
ω (X) where γ ∈ (−1, 0) and 0 < ω < π

2 ), and f : [0,∞) �→ X and
F : [0,∞)×X �→ X are continuous functions satisfying some additional conditions.
Under some appropriate assumptions, various existence results are discussed.

The main tools utilized to establish the existence of classical (respectively, mild)
solutions to the above-mentioned fractional evolutions are the so-called (α, α)β -
resolvent families S

β
α (·) and almost sectorial operators. Additional details on these

classes of operators can be found in Keyantuo et al. [75] and Wang et al. [110]. For
additional readings upon the topics discussed in this chapter, we refer to [6, 21–
23, 37, 42], etc.
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9.2 Fractional Calculus

Let (X, ‖·‖) be a complex Banach space. If J ⊂ R is an interval and if (V , ‖·‖) ⊂ X

is a (normed) subspace, then C(J ;V ) (respectively, C(k)(I ;V ) for k ∈ N) will
denote the collection of all continuous functions from J into V (respectively, the
collection of all functions of class Ck which go from J into V ).

Definition 9.1 If f : R+ �→ R and g : R+ �→ X are functions, we define their
convolution, if it exists, as follows:

(f ∗ g)(t) :=
∫ t

0
f (t − s)g(s)ds, t ≥ 0.

Definition 9.2 If u : R+ �→ X is a function, then its Riemann–Liouville fractional
derivative of order β is defined by

D
β
t u(t) := dn

dtn

[ ∫ t

0
gn−β(t − s)u(s)ds

]
, t > 0

where n := 
β� is the smallest integer greatest than or equal to β, and

gβ(t) := tβ−1

Γ (β)
, t > 0, β > 0,

with g0 = δ0 (the Dirac measure concentrated at 0).

Note that gα+β = gα ∗ gβ for all α, β ≥ 0.

Definition 9.3 The Caputo fractional derivative of order β > 0 of a function u :
R+ �→ X is defined by

D
β
t u(t) := D

n−β
t u(n)(t) =

∫ t

0
gn−β(t − s)u(n)(s)ds,

where n := 
β�.

We have the following additional relationship between Riemann–Liouville and
Caputo fractional derivatives:

D
β
t f (t) = D

β
t

(
f (t) −

n−1∑
k=0

f (k)(0)gk+1(t)

)
, t > 0,

where n := 
β�.

Definition 9.4 If f : R+ �→ X is integrable, then its Laplace transform is
defined by
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(Lf )(z) = f̂ (z) :=
∫ ∞

0
e−ztf (t)dt

provided this integral converges absolutely for some z ∈ C.

Among other things, if 
α� = n ≥ 1, then

D̂
α
t f (z) = zαf̂ (z) −

n−1∑
k=0

zα−k−1f (k)(0)

and

D̂α
t f (z) = zαf̂ (z) −

n−1∑
k=0

(gn−α ∗ f )(k)(0)zn−1−k

where zα is uniquely defined as zα = |z|αei arg z with −π < arg z < π .
Let k ∈ N. If u ∈ Ck−1(R+;X) and v ∈ Ck(R+;X), then for every t ≥ 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0) + (u ∗ v(k))(t)

=
k−1∑
j=0

dk−1

dtk−1

[
(gj ∗ u)(t)v(j)(0)

]
+ (u ∗ v(k))(t).

(9.1)

Define the generalized Mittag–Leffler special function Eα,β by

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)

= 1

2πi

∫
Γ

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C,

where Γ is a contour which starts and ends at −∞ and encircles the disc

|λ| ≤ |z|1/α

counter-clockwise.
In what follows, we set

Eα(z) := Eα,1(z),

and

eα(z) := Eα,α(z).
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9.3 Inhomogeneous Fractional Differential Equations

9.3.1 Introduction

Let α ∈ (0, 1]. In this section, we study the existence of classical (respectively,
mild) solutions for the inhomogeneous fractional Cauchy problem

{
D

α
t u(t) = Au(t) + f (t)

u(0) = u0 ∈ X

(9.2)

where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X, and f : R+ �→ X

is a function satisfying some additional conditions.
As it was pointed out in Keyantuo et al. [75], Caputo fractional derivative is

more appropriate for equations of the form Eq. (9.2) than the Riemann–Liouville
fractional derivative. Indeed, Caputo fractional derivative requires that the solution
u of the above Cauchy problem be known at t = 0 while that of Riemann–Liouville
requires that it be known in a right neighborhood of t = 0.

Recall that if α = 1, then there are two situations that can be considered. If A

is the infinitesimal generator of a strongly continuous semi-group, then semi-group
techniques can be used to establish the existence of solutions to Eq. (9.2). Now, if A

is not the infinitesimal generator of a strongly continuous semi-group, the concept
of exponentially bounded β-times integrated semi-groups can be utilized to deal
with existence of solutions to the above Cauchy problem. Similarly, if α ∈ (0, 1),
a family of strongly continuous linear operators Sα : R+ �→ B(X) can be used to
establish the existence of solutions to the above Cauchy problem. Unfortunately, the
previous concept is inappropriate for some important practical problems, see details
in Keyantuo et al. [75]. This in fact is one of the main reasons that led Keyantuo
et al. to introduce the concept of (α, α)β -resolvent families (respectively, (α, 1)β -
resolvent families), which generalizes naturally all the above-mentioned cases. Such
a new concept will play a central role in this section.

9.3.2 Basic Definitions

Definition 9.5 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and let
α ∈ (0, 1] and β ≥ 0. The operator A is called an (α, α)β -resolvent family if there
exist ω ≥ 0, M ≥ 0, and a family of strongly continuous functions T

β
α : [0,∞) �→

B(X) (respectively, T
β
α : (0,∞) �→ B(X) in the case when α(1 + β) < 1) such

that,

i)
∥∥∥(g1 ∗ T

β
α )(t)

∥∥∥ ≤ Meωt for all t > 0;
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ii)
{
λα : e λ > ω

}
⊂ ρ(A); and

(λαI − A)−1u = λαβ

∫ ∞

0
e−λtT β

α (t)u dt, e λ > ω, u ∈ X.

Definition 9.6 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. The operator A is called an (α, 1)β -resolvent family
generator if there exist ω ≥ 0, M ≥ 0, and a family of strongly continuous functions
S

β
α : R+ �→ B(X) such that,

i)
∥∥∥(g1 ∗ S

β
α )(t)

∥∥∥ ≤ Meωt for t ≥ 0;

ii)
{
λα : eλ > ω

}
⊂ ρ(A); and

λα−1(λαI − A)−1u = λαβ

∫ ∞

0
e−λtSβ

α (t)u dt, e λ > ω, u ∈ X.

Remark 9.7 A family of strongly continuous functions T
β
α (t) that satisfies items

i)–ii) of Definition 9.5 is called the (α, α)β -resolvent family generated by the linear
operator A. And there is uniqueness of the (α, α)β -resolvent family (respectively,
(α, 1)β -resolvent family) associated with a given operator A.

In fact, there is a relationship between these two new notions. It is not hard
to show that if A generates an (α, α)β -resolvent family T

β
α , then it generates an

(α, 1)β -resolvent family S
β
α (see [75] for details) and that both T

β
α and S

β
α are linked

through the following identity,

Sβ
α (t)x = (g1−α ∗ T β

α )(t)x, t ≥ 0, x ∈ X.

Let us now collect a few additional properties of both (α, 1)β - and (α, α)β -
resolvent families.

Proposition 9.8 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. If A generates an (α, 1)β -resolvent family S

β
α , then the

following hold,

i) S
β
α (t)(D(A)) ⊂ D(A) and

ASβ
α (t)x = Sβ

α (t)Ax

for all x ∈ D(A) and t ≥ 0.
ii) For all x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x +

∫ t

0
gα(t − s)ASβ

α (s)xds, t ≥ 0.



130 9 Semilinear Fractional Evolution Equations

iii) For all x ∈ X, (gα ∗ S
β
α )(t)x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x + A

∫ t

0
gα(t − s)Sβ

α (s)xds, t ≥ 0.

iv) S
β
α (0) = gαβ+1(0); S

β
α (0) = I if β = 0 and S

β
α (0) = 0 if β > 0 .

Proposition 9.9 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. If A generates an (α, α)β -resolvent family T

β
α , then the

following hold,

i) T
β
α (t)(D(A)) ⊂ D(A) and

AT β
α (t)x = T β

α (t)Ax

for all x ∈ D(A) and t > 0.
ii) For all x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x +

∫ t

0
gα(t − s)AT β

α (s)xds, t ≥ 0.

iii) For all x ∈ X, (gα ∗ T
β
α )(t)x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x + A

∫ t

0
gα(t − s)T β

α (s)xds, t > 0.

iv) If β > 0, then for every x ∈ D(A),

1

Γ (α(1 + β))
lim
t→0

t1−α(1+β)T β
α (t)x = x

if α(1+β) < 1; T
β
α (0)x = x if α(1+β) = 1; and T

β
α (0)x = 0 if α(1+β) > 1.

v) If α(1 + β) > 1, then all the above equalities occur for t ≥ 0. .

A strongly continuous function h : [0,∞) �→ X is called exponentially bounded
if there exist constants M,ω ≥ 0 such that

‖h(t)‖ ≤ Meωt

for all t > 0. In particular, an (α, α)β -resolvent family T
β
α (respectively, (α, 1)β -

resolvent family S
β
α ) is exponentially bounded, there exist constants M,ω ≥ 0 such

that

‖T β
α (t)‖ ≤ Meωt
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for all t > 0 (respectively, there exist constants M ′, ω′ ≥ 0 such that

‖Sβ
α (t)‖ ≤ M ′eω′t

for all t ≥ 0).
For more on (α, α)β -resolvent families (respectively, (α, 1)β -resolvent families),

we refer the reader to [75].

9.3.3 Existence of Classical and Mild Solutions

Definition 9.10 ([75]) A continuous function A function u : [0,∞) �→ D(A) is
said to be a classical solution to Eq. (9.2) if g1−α ∗ (u − u(0)) : [0,∞) �→ X is a
continuous function and Eq. (9.2) holds.

Definition 9.11 ([75]) A continuous function u : [0,∞) �→ X is said to be a mild
solution to Eq. (9.2) if (gα ∗ u)(t) ∈ D(A) for all t ≥ 0 and

u(t) = u0 + A

∫ t

0
gα(t − s)u(s)ds +

∫ t

0
gα(t − s)f (s)ds, t ≥ 0. (9.3)

Theorem 9.12 ([75]) Let α ∈ (0, 1] and β ≥ 0 and set n = 
β� and k =

αβ�. Suppose that A is the generator of an (α, 1)β -resolvent family S

β
α . Then the

following hold,

i) For every f ∈ C(k+1)(R+;X), f (l)(0) ∈ D(An+1−l ) for l = 0, 1, . . . , k, Dαβ
t f

is exponentially bounded and u0 ∈ D(An+1), Eq. (9.2) has a unique classical
solution given by

u(t) = D
αβ
t Sβ

α (t)u0 + D
αβ
t D

1−α
t (Sβ

α ∗ f )(t), t ≥ 0. (9.4)

ii) For every f ∈ C(k)(R+;X), f (l)(0) ∈ D(An−l ) for l = 0, 1, . . . , k − 1, Dαβ
t f

is exponentially bounded and u0 ∈ D(An), Eq. (9.2) has a unique mild solution
given by Eq. (9.4).

Corollary 9.13 ([75]) Let α ∈ (0, 1] and β ≥ 0 and set n = 
β� and k = 
αβ�.
Suppose that A generates an (α, α)β -resolvent family T

β
α . And let S

β
α be the (α, 1)β -

resolvent family generated by A. Then the following hold:

(a) For every f ∈ C(k+1)(R+;X), f (j)(0) ∈ D(An+1−j ) for j = 0, 1, . . . , k,
D

αβ
t f is exponentially bounded, and for every u0 ∈ D(An+1), the unique

classical solution to Eq. (9.2) is given by

u(t) = D
αβ
t

[
Sβ

α (t)u0 +
∫ t

0
T β

α (t − s)f (s)ds

]
, t ≥ 0. (9.5)
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(b) For every f ∈ C(k)(R+;X), f (j)(0) ∈ D(An−j ) for j = 0, 1, . . . , k−1, Dαβ
t f

is exponentially bounded and for every u0 ∈ D(An), the unique mild solution
to Eq. (9.2) is given by Eq. (9.5).

9.4 Semilinear Fractional Differential Equations

9.4.1 Preliminaries and Notations

Let γ ∈ (−1, 0) and let S0
μ (with 0 < μ < π ) be the open sector defined by

{z ∈ C \ {0} : | arg z| < μ}

and let Sμ be its closure, that is,

Sμ := {z ∈ C \ {0} : | arg z| ≤ μ} ∪ {0}.

Definition 9.14 ([110]) Let γ ∈ (−1, 0) and let 0 < ω < π/2. The set Σ
γ
ω (X)

stands for the collection of all closed linear operators A : D(A) ⊂ X → X

satisfying

i) σ(A) ⊂ Sω; and
ii) for every ω < μ < π there exists a constant Cμ such that

‖(zI − A)−1‖ ≤ Cμ|z|γ (9.6)

for all z ∈ C \ Sμ.

Definition 9.15 A linear operator A : D(A) ⊂ X �→ X that belongs to Σ
γ
ω (X) will

be called an almost sectorial operator on X.

Among other things, recall that if A ∈ Σ
γ
ω (X), then 0 ∈ ρ(A). Further, there

exist almost sectorial operators which are not sectorial, see, e.g., [109]. There are
many examples of almost sectorial operators in the literature, see, e.g., Wang et al.
[110].

Let α ∈ (0, 1). Our main objective in this section consists of studying the
existence of solutions to the following semilinear fractional differential equations

{
D

α
t u(t) + Au(t) = f (t, u(t)), t > 0,

u(0) = u0 ∈ X,
(9.7)

where D
α
t is the Caputo fractional derivative of order α, A ∈ Σ

γ
ω (X) with 0 < ω <

π
2 , and f : [0,∞) × X �→ X is a jointly continuous function.
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Suppose that A ∈ Σ
γ
ω (X) such −1 < γ < 0 and 0 < ω < π/2. Define operator

families {Sα(t)}|t∈S0
π
2 −ω

, {Tα(t)}|t∈S0
π
2 −ω

by

Sα(t) := Eα(−ztα)(A) = 1

2πi

∫
Γθ

Eα(−ztα)(zI − A)−1dz,

Tα(t) := eα(−ztα)(A) = 1

2πi

∫
Γθ

eα(−ztα)(zI − A)−1dz,

where the integral contour Γθ := {R+eiθ }∪{R+e−iθ } is oriented counter-clockwise
and ω < θ < μ < π

2 − | arg t |.
We have

Theorem 9.16 ([110]) For each fixed t ∈ S0
π
2 −ω

, Sα(t) and Tα(t) are linear and

bounded operators on X. Moreover, there exist constants Cs = C(α, γ ) > 0, Cp =
C(α, γ ) > 0 such that for all t > 0,

‖Sα(t)‖ ≤ Cst
−α(1+γ ), ‖Tα(t)‖ ≤ Cpt−α(1+γ ). (9.8)

9.4.2 Existence Results

Definition 9.17 ([110]) A continuous function u : (0, T ] �→ X is called a mild
solution to Eq. (9.7) if it satisfies,

u(t) = Sα(t)u0 +
∫ t

0
(t − s)α−1Tα(t−s)f (s, u(s))ds

for all t ∈ (0, T ].
Theorem 9.18 ([110]) Let A ∈ Σ

γ
ω (X) such that −1 < γ < − 1

2 and 0 < ω < π
2 .

Suppose that f : (0, T ]×X → X is continuous with respect to t and that there exist
constants M,N > 0 such that

‖f (t, x) − f (t, y)‖ ≤ M(1 + ‖x‖ν−1 + ‖y‖ν−1)‖x − y‖,
‖f (t, x)‖ ≤ N(1 + ‖x‖ν),

for all t ∈ (0, T ] and for each x, y ∈ X, where ν is a constant in [1,− γ
1+γ

). Then,
for every u0 ∈ X, there exists a T0 > 0 such that Eq. (9.7) has a unique mild solution
defined on (0, T0].
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Proof Fix r > 0 and consider the metric space (Fr(T , u0), ρT
) where

Fr(T , u0) =
{
u ∈ C((0, T ];X) : ρ

T
(u,Sα(t)u0) ≤ r

}
,

ρ
T
(u1, u2) = sup

t∈(0,T ]
‖u1(t) − u2(t)‖.

It can be shown that it is not difficult to see that the metric space (Fr(T , u0), ρT
) is

complete.
Now for all u ∈ Fr(T , u0),

‖sα(1+γ )u(s)‖ ≤ sα(1+γ )‖u − Sα(t)u0‖ + sα(1+γ )‖Sα(t)u0‖ ≤ L.

where L := T α(1+γ )r + Cs‖u0‖.
Let T0 ∈ (0, T ] such that

CpN
T

−αγ

0

−αγ
+ CpNLνT

−α(ν(1+γ )+γ )

0 β(−γα, 1 − να(1 + γ )) ≤ r, (9.9)

MCp

T
−αγ

0

−αγ
+ 2Lρ−1T

−α(γ+(1+γ )(ν−1))

0 β(−αγ, 1 − α(1 + γ )(ν − 1)) ≤ 1

2
, (9.10)

where β(η1, η2) with ηi > 0, i = 1, 2 stands for the usual Beta function.
Suppose u0 ∈ X and consider the mapping Γ α given by

(Γ αu)(t) = Sα(t)u0 +
∫ t

0
(t − s)α−1Pα(t − s)f (s, u(s))ds, u ∈ Fr(T0, u0).

From the assumptions upon f , Theorem 9.16, and [110, Theorem 3.2], we deduce
that (Γ αu)(t) ∈ C((0, T ];X) and

‖(Γ αu)(t) − Sα(t)u0‖

≤ CpN

∫ t

0
(t − s)−αγ−1(1 + ‖u(s)‖ν)ds

≤ CpN
T

−αγ

0

−αγ
+

∫ t

0
CpNLν(t − s)−αγ−1s−να(1+γ )ds

≤ CpN
T

−αγ

0

−αγ
+ CpNLνT

−α(ν(1+γ )+γ )

0 β(−γα, 1 − να(1 + γ ))

≤ r,

by using Eq. (9.9).
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In view of the above, one can see that Γ α maps Fr(T0, u0) into itself.
Now for all u, v ∈ Fr(T0, u0), using the assumptions upon f and Theorem 9.16

we deduce that

‖(Γ αu)(t) − (Γ αv)(t)‖

≤ CpM

∫ t

0
(t − s)−αγ−1(1 + ‖u(s)‖ρ−1 + ‖v(s)‖ρ−1)‖u(s) − v(s)‖ds

≤ CpMρt (u, v)

∫ t

0
(t − s)−αγ−1(1 + 2Lν−1s−α(ν−1)(1+γ ))ds

≤ 2Lρ−1T
−α(γ+(1+γ )(ν−1))

0 β(−αγ, 1 − α(1 + γ )(ν − 1))ρ
T0

(u, v)

+ MCp

T
−αγ

0

−αγ
ρ

T0
(u, v).

Using (9.10), one can easily see that Γ α is a strict contraction on Fr(T0, u0) and
so Γα has a unique fixed point u ∈ Fr(T0, u0) which, by the Banach Fixed Point
Theorem, is the only mild solution to Eq. (9.7) on (0, T0].

It can be shown that X1 = D(A) equipped with the norm defined by ‖x‖X1 =
‖Ax‖ for all x ∈ X

1, is a Banach space.

Theorem 9.19 ([110]) Let A ∈ Θ
γ
ω(X) with −1 < γ < − 1

2 , 0 < ω < π
2 and

u0 ∈ X
1. Suppose there exists a continuous function Mf (·) : R

+ → R
+ and a

constant Nf > 0 such that the mapping f : (0, T ] × X
1 → X

1 satisfies

‖f (t, x) − f (t, y)‖X1 ≤ Mf (r)‖x − y‖X1 ,

‖f (t,Sα(t)u0)‖X1 ≤ Nf (1 + t−α(1+γ )‖u0‖X1),

for all 0 < t ≤ T and for all x, y ∈ X
1 satisfying

sup
t∈(0,T ]

‖x(t) − Sα(t)u0‖X1 ≤ r, sup
t∈(0,T ]

‖y(t) − Sα(t)u0‖X1 ≤ r.

Then there exists a T0 > 0 such that Eq. (9.7) has a unique mild solution defined on
(0, T0].
Proof Fix u0 ∈ X

1 and r > 0 and consider

F ′′
r (T , u0) = {u ∈ C((0, T ];X1); sup

t∈(0,T ]
‖u − Sα(t)u0‖X1 ≤ r}.

For any u ∈ F ′′
r (T , u0), using the assumptions upon f and Theorem 9.16, we obtain
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‖(Γ αu)(t) − Sα(t)u0‖X1

≤
∫ t

0
(t − s)α−1‖Pα(t − s)‖||f (s, u(s)) − f (s,Sα(t)u0)||X1ds

+
∫ t

0
(t − s)α−1‖Pα(t − s)‖||f (s,Sα(t)u0))||X1ds

≤ Cp

∫ t

0
(t − s)−αγ−1(Mf (r)r + Nf + Nf s−α(1+γ )‖u0‖)ds

≤ Cp(Mf (r)r + Nf )
T −αγ

−αγ
+ CpNf T −α(1+2γ )β(−γα, 1 − α(1 + γ ))‖u0‖.

In view of the above and ideas from the proof of Theorem 9.18, we obtain the desired
result.

9.5 Exercises

1. Show that if A generates an (α, α)β -resolvent family T
β
α , then it generates an

(α, 1)β -resolvent family S
β
α . Further,

Sβ
α (t)x = (g1−α ∗ T β

α )(t)x, t ≥ 0, x ∈ X.

2. Let A : D(A) ⊂ X �→ X be a closed linear operator and let α ∈ (0, 1] and β ≥
0. Show that if A generates an (α, 1)β -resolvent family S

β
α , then the following

hold,

a. S
β
α (t)(D(A)) ⊂ D(A) and

ASβ
α (t)x = Sβ

α (t)Ax

for all x ∈ D(A) and t ≥ 0.
b. For all x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x +

∫ t

0
gα(t − s)ASβ

α (s)xds, t ≥ 0.

c. For all x ∈ X, (gα ∗ S
β
α )(t)x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x + A

∫ t

0
gα(t − s)Sβ

α (s)xds, t ≥ 0.

d. S
β
α (0) = gαβ+1(0); S

β
α (0) = I if β = 0 and S

β
α (0) = 0 if β > 0 .
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3. Let A : D(A) ⊂ X �→ X be a closed linear operator and let α ∈ (0, 1] and β ≥
0. Show that if A generates an (α, α)β -resolvent family T

β
α , then the following

hold,

a. T
β
α (t)(D(A)) ⊂ D(A) and

AT β
α (t)x = T β

α (t)Ax

for all x ∈ D(A) and t > 0.
b. For all x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x +

∫ t

0
gα(t − s)AT β

α (s)xds, t ≥ 0.

c. For all x ∈ X, (gα ∗ T
β
α )(t)x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x + A

∫ t

0
gα(t − s)T β

α (s)xds, t > 0.

d. If β > 0, then for every x ∈ D(A),

1

Γ (α(1 + β))
lim
t→0

t1−α(1+β)T β
α (t)x = x

if α(1+β) < 1; T β
α (0)x = x if α(1+β) = 1; and T

β
α (0)x = 0 if α(1+β) > 1.

e. If α(1 + β) > 1, then all the above equalities occur for t ≥ 0. .

4. Suppose p ∈ [1,∞), α ∈ (0, 1), and λ ∈ [0, π). Let Ap be the linear operator
defined by Ap = eiλΔp where Δp is a realization of the Laplace differential
operator on Lp(Rd). Show that Ap is the generator of an (α, 1)β on Lp(Rd) for
all β ≥ 0.

9.6 Comments

The material discussed in this chapter is mainly based upon the following two
sources: Keyantuo et al. [75] and Wang et al. [110]. One should mention that the
semilinear case is not treated in [75]. Consequently, an interesting question consists
of using the same tools as in [75] to study the existence of classical (respectively,
mild) solutions for the semilinear fractional Cauchy problem

{
D

α
t u(t) = Au(t) + F(t, u(t))

u(0) = u0 ∈ X

(9.11)
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where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X, and f : R+×X �→
X is a jointly continuous function satisfying some additional conditions.

For the proofs of the existence results Theorem 9.12 and Corollary 9.13, we refer
the reader to Keyantuo et al. [75].

The proofs of Theorems 9.18 and 9.19 are taken from Wang et al. [110]. For
additional readings upon these topics, we refer to [4, 6, 21–23, 37, 42], etc.
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