
Chapter 8
First-Order Semilinear Evolution
Equations

In this chapter we study and establish the existence of classical and (bounded and
almost periodic) mild solutions to some semilinear evolutions including nonau-
tonomous ones.

8.1 First-Order Autonomous Evolution Equations

8.1.1 Existence of Mild and Classical Solutions

Let J ⊂ R be an interval whose infimum, inf J , is zero.
Consider the first-order evolution equation{

u′(t) = Au(t) + f (t), t > 0

u(0) = u0
(8.1)

where A : D(A) ⊂ X �→ X is a sectorial linear operator whose associated analytic
semi-group will be denoted (T (t))t≥0 and f : J �→ X is a continuous function.

Our main objective in this subsection consists of studying the existence of
solutions to Eq. (8.1) when J is either [0, T ] or R+ = [0,∞) where T > 0 is a
constant.

In this chapter, various types of solutions will be discussed. We basically follow
and adopt definitions from Lunardi [87, Definition 4.1.1, Pages 123-124].

Definition 8.1 Let f : [0, T ] �→ X be a continuous function and let u0 ∈ X. A
function u ∈ C([0, T ];D(A)) ∩ C1([0, T ];X) that satisfies,

u′(t) = Au(t) + f (t) for each t ∈ [0, T ] and u(0) = u0,

is called a strict solution to Eq. (8.1) on the interval J = [0, T ].
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114 8 First-Order Semilinear Evolution Equations

Definition 8.2 Let f : [0, T ] �→ X be a continuous function and let u0 ∈ X. A
function u ∈ C([0, T ];X) is called a strong solution to Eq. (8.1) on the interval
J = [0, T ] if there exists a sequence (un)n∈N ⊂ C([0, T ];D(A)) ∩ C1([0, T ];X)

such that

sup
t∈[0,T ]

‖un(t) − u(t)‖ → 0 and sup
t∈[0,T ]

‖u′
n(t) − Aun(t) − f (t)‖ → 0

as n → ∞.

Definition 8.3 Let f : (0, T ] �→ X be a continuous function. Any function u ∈
C([0, T ];X) ∩ C((0, T ];D(A)) ∩ C1((0, T ];X) that satisfies,

u′(t) = Au(t) + f (t) for each t ∈ (0, T ] and u(0) = u0,

is called a classical solution to Eq. (8.1) on the interval J = [0, T ].

Definition 8.4 Let f : [0,∞) �→ X be a continuous function. A function u :
[0,∞) �→ X is said to be a strict (respectively, classical or strong) solution to
Eq. (8.1) on the interval J = [0,∞), if for every T > 0, the restriction of the
function u to the interval [0, T ] is a strict (respectively, classical or strong) solution
to Eq. (8.1) on the interval [0, T ].

Definition 8.5 Let f ∈ L1((0, T );X) and let u0 ∈ X. A function u is called a mild
solution to Eq. (8.1) if it can be written as follows,

u(t) = T (t)u0 +
∫ t

0
T (t − s)f (s)ds, t ∈ [0, T ]. (8.2)

Let us make a few remarks upon the notions which we have just introduced.

Remark 8.6

i) If u is a strict solution to Eq. (8.1), then the function u satisfies,

u′(t) = Au(t) + f (t) for each t ∈ [0, T ] and u(0) = u0.

Consequently,

u′(0) = Au(0) + f (0) = Au0 + f (0)

which yields two things. First, the previous equation makes sense only if u0
belongs to D(A). Second, u′(0) = Au0 + f (0) must belong to D(A).

ii) If u is a classical solution, then one must have u0 ∈ D(A). In this event, if in
addition, f ∈ L1((0, T );X) ∩ C((0, T ];X), then

u(t) = T (t)u0 +
∫ t

0
T (t − s)f (s)ds, t ∈ [0, T ].
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iii) If u is a mild solution to Eq. (8.1), then using the fact that A is a sectorial
linear operator [see ii) of Proposition 3.12], it follows that there exists a constant
C > 0 such that u satisfies the following estimate,

‖u‖ ≤ C
(
‖u0‖ +

∫ t

0
‖f (s)‖ds

)
for all t ∈ [0, T ].

Theorem 8.7 ([88, Lemma 4.2.5, Pages 45 and 46]) Let f : (0, T ] �→ X be a
bounded continuous function and let u0 ∈ D(A). If u is a mild solution to Eq. (8.1),
then the following statements are equivalent.

i) u ∈ C((0, T ];D(A));
ii) u ∈ C1((0, T ];X);

iii) u is a classical solution to Eq. (8.1).

If f ∈ C([0, T ];X), then the following statements are equivalent:

i) u ∈ C([0, T ];D(A));
ii) u ∈ C1([0, T ];X);

iii) u is a strict solution to Eq. (8.1).

8.1.2 Existence of Almost Periodic Solutions

The main objective here consists of studying the existence of bounded and almost
periodic solutions to first-order evolution equations in the case when the analytic
semi-group (T (t))t≥0 associated with our sectorial operator A : D(A) ⊂ X �→ X is
hyperbolic, that is,

σ(A) ∩ iR = {∅}. (8.3)

From Proposition 3.12 it follows that there exist constants M0,M1 > 0 such that

‖T (t)‖ ≤ M0e
ωt , t > 0, (8.4)

‖t (A − ω)T (t)‖ ≤ M1e
ωt , t > 0. (8.5)

Since the semi-group (T (t))t≥0 is assumed to be hyperbolic, then there exists
a projection P and constants M, δ > 0 such that T (t) commutes with P , N(P ) is
invariant with respect to T (t), T (t) : R(Q) �→ R(Q) is invertible, and the following
hold

‖T (t)Px‖ ≤ Me−δt‖x‖ for t ≥ 0, (8.6)

‖T (t)Qx‖ ≤ Meδt‖x‖ for t ≤ 0, (8.7)

where Q := I − P and, for t ≤ 0, T (t) := (T (−t))−1.
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Definition 8.8 Let α ∈ (0, 1). A Banach space (Xα, ‖ · ‖α) is said to be an
intermediate space between D(A) and X, or a space of class Jα , if D(A) ⊂ Xα ⊂
X and there is a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖α
A, x ∈ D(A), (8.8)

where ‖ · ‖A is the graph norm of A.

Precise examples of the intermediate space Xα include D((−Aα)) for α ∈ (0, 1),
the domains of the fractional powers of A, the real interpolation spaces DA(α,∞),
α ∈ (0, 1), defined as the space of all x ∈ X such

[x]α = sup
0<t≤1

‖t1−αAT (t)x‖ < ∞.

with the norm

‖x‖α = ‖x‖ + [x]α,

the abstract Hölder spaces DA(α) := D(A)
‖.‖α as well as complex interpolation

spaces [X,D(A)]α .
For a given hyperbolic analytic semi-group (T (t))t≥0, it can be checked that

similar estimations as both Eqs. (8.6) and (8.7) still hold with the α-norms ‖ · ‖α . In
fact, as the part of A in R(Q) is bounded, it follows from Eq. (8.7) that

‖AT (t)Qx‖ ≤ C′eδt‖x‖ for t ≤ 0.

Thus from Eq. (8.8) there exists a constant c(α) > 0 such that

‖T (t)Qx‖α ≤ c(α)eδt‖x‖ for t ≤ 0. (8.9)

In addition to the above, the following holds

‖T (t)Px‖α ≤ ‖T (1)‖B(X,Xα)‖T (t − 1)Px‖, t ≥ 1,

and hence from Eq. (8.6), one obtains

‖T (t)Px‖α ≤ M ′e−δt‖x‖, t ≥ 1,

where M ′ depends on α. For t ∈ (0, 1], by Eqs. (8.5) and (8.8),

‖T (t)Px‖α ≤ M ′′t−α‖x‖.
Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T (t)Px‖α ≤ M(α)t−αe−γ t‖x‖ for t > 0. (8.10)
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Consider the differential equation

u′(t) = Au(t) + f (t), t ∈ R (8.11)

where A : D(A) ⊂ X �→ X is a sectorial linear operator for which Eq. (8.3) holds
and f : R �→ X is a bounded continuous function.

Definition 8.9 A function u ∈ BC(R,X) is called a mild solution to Eq. (8.11) on
R if for all τ ∈ R,

u(t) = T (t − τ)u(τ) +
∫ t

τ

T (t − s)f (s)ds, t ≥ τ. (8.12)

Proposition 8.10 If f ∈ BC(R,X), then Eq. (8.11) has a unique mild solution
u ∈ BC(R,X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R. (8.13)

Moreover, if f ∈ C0,α(R,X) for some α ∈ (0, 1), then u given above is a strict
solution to Eq. (8.11) that belongs to C0,α(R,D(A)).

Proof Clearly, the function given in Eq. (8.13), that is,

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R

is well defined and satisfies

u(t) = T (t − s)u(s) +
∫ t

s

T (t − s)f (s)ds, for all t, s ∈ R, t ≥ s. (8.14)

Consequently, u is a mild solution to Eq. (8.11).
For the uniqueness, let v be another mild solution to Eq. (8.11). Thus using the

projections P and Q = I − P , one obtains

Pv(t) = T (t − s)P v(s) +
∫ t

s

T (t − s)Pf (s)ds, for all t, s ∈ R, t ≥ s, (8.15)

and

Qv(t) = T (t − s)Qv(s) +
∫ t

s

T (t − s)Qf (s)ds, for all t, s ∈ R, t ≥ s. (8.16)

Using the fact that v is bounded and Eqs. (8.9)–(8.10), letting s → −∞ in
Eq. (8.15) (respectively, letting s → ∞ in Eq. (8.16) ), we obtain

Pv(t) =
∫ t

−∞
T (t − s)Pf (s)ds, for all t ∈ R,
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and

Qv(t) = −
∫ ∞

t

T (t − s)Qf (s)ds, for all t ∈ R,

which yields

v(t) = Pv(t) + Qv(t) =
∫ t

−∞
T (t − s)Pf (s)ds

−
∫ ∞

t

T (t − s)Qf (s)ds = u(t), ∀t ∈ R.

Therefore, u = v.
Using [88, Lemma 3.3.1 and Lemma 3.3.3], it can be shown that if f ∈

C0,α(R,X) for some α ∈ (0, 1), then u belongs to C0,α(R,D(A)).

We have

Corollary 8.11 If f ∈ AP(X), then Eq. (8.11) has a unique mild solution u ∈
AP(X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R. (8.17)

In particular, if f is continuous and T -periodic, then the mild solution u is also
T -periodic.

Proof Using the fact that AP(X) ⊂ BC(R,X), it follows that Eq. (8.11) has a
unique mild solution u ∈ BC(R,X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R.

To complete the proof, we have to show that u ∈ AP(X). Since f ∈ AP(X), for
all ε > 0, there exists 	(ε) > 0 such that for all a ∈ R, the interval (a, a + 	(ε))

contains a τ such that

‖f (t + τ) − f (t)‖ < ε (8.18)

for all t ∈ R.
Now

u(t + τ) − u(t) =
∫ 0

−∞
T (−s)P

(
f (s + t + τ) − f (s + t)

)
ds

+
∫ ∞

0
T (−s)Q

(
(s + t + τ) − f (s + t)

)
ds
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which, for α ∈ (0, 1), yields

‖u(t + τ) − u(t)‖α ≤
∫ 0

−∞
‖T (−s)P

(
f (s + t + τ) − f (s + t)

)
‖αds

+
∫ ∞

0
‖T (−s)Q

(
(s + t + τ) − f (s + t)

)
‖αds

≤ c(α)

∫ 0

−∞
eδs‖f (s − t − τ) − f (s − t)‖ds

+M(α)

∫ ∞

0
e−γ ss−α‖f (s − t − τ) − f (s − t)‖ds

by using Eqs. (8.9)–(8.10).
To conclude, one makes use of both Eq. (8.18) and the Lebesgue dominated

convergence theorem.

8.2 Semilinear First-Order Evolution Equations

8.2.1 Existence of Mild and Classical Solutions

Consider the first-order semilinear evolution equation{
u′(t) = Au(t) + F(t, u(t)), t > 0

u(0) = u0
(8.19)

where A : D(A) ⊂ X �→ X is a sectorial linear operator whose corresponding
analytic semi-group is (T (t))t≥0 and F : [0, T ] × X �→ X is a jointly continuous
function and locally Lipschitz in the second variable, that is, there exist R > 0 and
L > 0 such that

‖F(t, u) − F(t, v)‖ ≤ L ‖u − v‖ (8.20)

for all t ∈ [0, T ] and u, v ∈ B(0, R).
Let J = [0, T0) or [0, T0] where T0 ≤ T . As in the linear case, we have the

following definitions for classical, strict, and mild solutions.

Definition 8.12 ([88]) A function u : J �→ X is said to be a strict solution to
Eq. (8.19) in J , if u is continuous with values in D(A) and differentiable with values
in X in the interval J , and satisfies Eq. (8.19).

Definition 8.13 ([88]) A function u : J �→ X is said to be a classical solution to
Eq. (8.19) in J , if u is continuous with values in D(A) and differentiable with values
in X in the interval J \ {0}, continuous in the interval J with values in D(A), and
satisfies Eq. (8.19).
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Definition 8.14 ([88]) A function u : J �→ X is called a mild solution to Eq. (8.19)
if it is continuous with values in D(A) in the interval J \ {0}, and satisfies

u(t) = T (t)u0 +
∫ t

0
T (t − s)F (s, u(s))ds, t ∈ J. (8.21)

Under some suitable conditions (see [87]) it can be shown that every mild
solution to Eq. (8.19) is a classical (or strict) solution.

Theorem 8.15 ([88]) Suppose F : [0, T ] × X �→ X is jointly continuous and
satisfies Eq. (8.20). Then for every v ∈ X there exist constants r, δ > 0,K > 0 such
that for ‖u0 − v‖ ≤ r , then Eq. (8.19) has a unique mild solution u = u(·, u0) ∈
BC((0, δ];X). The mild solution u belongs to C([0, δ];X) if and only if u0 ∈ D(A).
Further, for u0, u1 ∈ B(v, r), the following holds,

‖u(t, u0) − u(t, u1)‖ ≤ K‖u0 − u1‖, t ∈ [0, δ].

8.2.2 Existence Results on the Real Number Line

Consider the differential equation

u′(t) = Au(t) + F(t, u(t)), t ∈ R (8.22)

where A : D(A) ⊂ X �→ X is a sectorial linear operator for which Eq. (8.3) holds
and F : R × Xα �→ X for some α ∈ (0, 1) is a jointly continuous function and
globally Lipschitz in the second variable, that is, there exists a constant L > 0 such
that

‖F(t, u) − F(t, v)‖ ≤ L ‖u − v‖α (8.23)

for all t ∈ R and u, v ∈ Xα .

Definition 8.16 A mild solution to Eq. (8.22) is any function u : R �→ Xα which
satisfies the following variation of constants formula,

u(t) = T (t − s)u(s) +
∫ t

s

T (t − σ)F (σ, u(σ ))dσ (8.24)

for all t ≥ s, t, s ∈ R.

Using Corollary 8.11 in which we let f (t) := F(t, u(t)) and under some
additional assumptions, we obtain the next theorem.

Theorem 8.17 Under Eqs. (8.3) and (8.23), if F ∈ AP(R×Xα,X), then Eq. (8.22)
has a unique almost periodic mild solution if L is small enough.
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Remark 8.18 A generalization of Theorem 8.17 to the case when the linear operator
A is replaced with A(t) is given by Theorem 8.20.

8.3 Nonautonomous First-Order Evolution Equations

8.3.1 Existence of Almost Periodic Mild Solutions

Consider the nonautonomous differential equation

u′(t) = A(t)u(t) + f (t, u(t)) (8.25)

where A(t) for t ∈ R be a family of linear operators on X whose domains
D(A(t)) = D are constant for all t ∈ R and the function f : R × Xα �→ X is
continuous and globally lipschitzian, that is, there is k > 0 such that

‖f (t, x) − f (t, y)‖ ≤ k ‖x − y‖α for all t ∈ R and x, y ∈ Xα. (8.26)

To study the almost periodicity of the solutions of Eq. (8.25), we assume that the
following holds:

(H.820) The family of linear operators A(t) satisfy the Aquistapace–Terreni
conditions.

(H.821) The evolution family U generated by A(·) has an exponential dichotomy
with constants N, δ > 0 and dichotomy projections P(t) for t ∈ R.

(H.822) There exists 0 ≤ α < β < 1 such that

X
t
α = Xα and X

t
β = Xβ

for all t ∈ R, with uniform equivalent norms.
(H.823) R(ω,A(·)) ∈ AP(R, B(X)) with pseudo periods τ = τε belonging to

sets P(ε, A).

Definition 8.19 By a mild solution Eq. (8.25) we mean every continuous function
x : R �→ Xα, which satisfies the following variation of constants formula

x(t) = U(t, s)x(s) +
∫ t

s

U(t, σ )f (σ, x(σ ))dσ for all t ≥ s, t, s ∈ R. (8.27)

In order to study the existence of almost periodic mild solution to the semilinear
evolution equation Eq. (8.25), we first study the existence of almost periodic mild
solution to the inhomogeneous evolution equation

x′(t) = A(t)x(t) + g(t), t ∈ R. (8.28)
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We have

Theorem 8.20 Suppose that assumptions (H.820)–(H.823) hold. If g ∈ BC(R,X),
then

(i) Equation (8.28) has a unique bounded mild solution x : R �→ Xα given by

x(t) =
∫ t

−∞
U(t, s)P (s)g(s)ds −

∫ +∞

t

Ũ (t, s)Q(s)g(s)ds. (8.29)

(ii) If g ∈ AP(R,X), then x ∈ AP(R,Xα).

Proof

(i) Since g is bounded, we know from [37] that the function x given by (8.29) is
the unique bounded mild solution to Eq. (8.28). To prove that x is bounded in
Xα , we make use of Proposition 3.27 to obtain,

‖x(t)‖α ≤ c ‖x(t)‖β

≤ c

∫ t

−∞
‖U(t, s)P (s)g(s)‖β ds + c

∫ +∞

t

∥∥Ũ (t, s)Q(s)g(s)
∥∥

β
ds

≤ cc(β)

∫ t

−∞
e− δ

2 (t−s)(t − s)−β ‖g(s)‖ ds

+cm(β)

∫ +∞

t

e−δ(s−t) ‖g(s)‖ ds

≤ cc(β) ‖g‖∞
∫ +∞

0
e−σ

(
2σ

δ

)−β 2dσ

δ
+ cm(β) ‖g‖∞

∫ +∞

0
e−δσ dσ

≤ cc(β)δαΓ (1 − β) ‖g‖∞ + cm(β)δ−1 ‖g‖∞ ,

and hence

‖x(t)‖α ≤ c ‖x(t)‖β ≤ c[c(β)δβΓ (1 − β) + m(β)δ−1] ‖g‖∞ . (8.30)

(ii) Let ε > 0 and P(ε, A, f ) be the set of pseudo periods for the almost periodic
function t �→ (f (t), R(ω,A(t))). We know, from [89, Theorem 4.5] that x,
as an X-valued function is almost periodic. Hence, there exists a number τ ∈
P(

(
ε
c′

) β
β−α , A, f ) such that

‖x(t + τ) − x(t)‖ ≤
( ε

c′
) β

β−α
for all t ∈ R.
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For θ = α
β

, the reiteration theorem implies that Xα = (X,Xβ)θ,∞. Using the
property of interpolation and Eq. (8.30), we obtain

‖x(t + τ) − x(t)‖α ≤ c(α, β)‖x(t + τ) − x(t)‖ β−α
β ‖x(t + τ) − x(t)‖

α
β

β

≤ c(α, β)2
α
β

(
c[c(β)δβΓ (1 − β) + m(β)δ−1] ‖g‖∞

) α
β

‖x(t + τ) − x(t)‖ β−α
β

:= c′‖x(t + τ) − x(t)‖ β−α
β ,

and hence

‖x(t + τ) − x(t)‖α ≤ ε

for t ∈ R.

To show the existence of almost periodic solutions to Eq. (8.25), let y ∈
AP(R,Xα) and f ∈ AP(R×Xα,X). Using the theorem of composition of almost
periodic functions (Theorem 4.18) we deduce that the function g(·) := f (·, y(·)) ∈
AP(R,X), and from Theorem 8.20, the semilinear equation (Eq. (8.25)) has a
unique mild solution x ∈ AP (R,Xα) given by

x(t) =
∫ t

−∞
U(t, s)P (s)f (s, y(s))ds −

∫ +∞

t

Ũ (t, s)Q(s)f (s, y(s))ds, t ∈ R.

Define the nonlinear operator F : AP(R,Xα) �→ AP(R,Xα) by

(Fy)(t) :=
∫ t

−∞
U(t, s)P (s)f (s, y(s))ds

−
∫ +∞

t

Ũ (t, s)Q(s)f (s, y(s))ds, t ∈ R.

Now for any x, y ∈ AP (R,Xα),

‖Fx(t) − Fy(t)‖α ≤ c(α)

∫ t

−∞
e−δ(t−s)(t − s)−α ‖f (s, y(s)) − f (s, x(s))‖ ds

+ c(α)

∫ +∞

t

e−δ(t−s) ‖f (s, y(s)) − f (s, x(s))‖ ds.

≤ k[c(α)δ−αΓ (1 − α) + m(α)δ−1] ‖x − y‖∞ for all t ∈ R.
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By taking k small enough, that is, k < (c(α)δαΓ (1 − α) + m(α)δ−1)−1, the
operator F becomes a contraction on AP (R,Xα) and hence has a unique fixed point
in AP (R,Xα), which obviously is the unique Xα-valued almost periodic solution
to Eq. (8.25).

The previous discussion can be formulated as follows:

Theorem 8.21 Let α ∈ (0, 1). Suppose that assumptions (H.820)–(H.821)–
(H.822)–(H.823) hold and that f ∈ AP(R×Xα,X) with k < (c(α)δ−αΓ (1−α)+
m(α)δ−1)−1. Then Eq. (8.25) has a unique mild solution x in AP (R,Xα) .

8.4 Exercises

1. Prove Theorem 8.7
2. Prove Theorem 8.15.
3. Prove Theorem 8.17

8.5 Comments

The preliminary results of this chapter are taken from Lunardi [87, 88]. Let us point
out that the setting of Sect. 8.1.2 follows that of Boulite et al. [30]. The proofs of
Theorem 8.20 and Theorem 8.21 discussed follow Baroun et al. [20]. The existence
of mild solutions for similar evolution equations can be obtained in the cases when
the operator A is not necessarily sectorial. For these cases, we refer the interested
readers to Pazy [100] and Engel and Nagel [55]. The existence results obtained
when the forcing term is almost periodic can be extended to more general classes
of functions including almost automorphic and pseudo-almost periodic or pseudo-
almost automorphic functions, see, e.g., Diagana [47].
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