
Chapter 6
Singular Difference Equations

6.1 Introduction

The mathematical problem which consists of studying the existence of solutions to
singular difference equations with almost periodic coefficients is an important one
as almost periodicity, according to Henson et al. [66], is more likely to accurately
describe many phenomena occurring in population dynamics than periodicity. In
the previous chapter, the existence of almost periodic solutions to some classes of
nonautonomous non-singular difference equations was obtained. These results were
utilized to study the effect of almost periodicity upon the Beverton-Holt model.

In this chapter, we study and establish the existence of Bohr (respectively,
Besicovitch) almost periodic solutions to the following class of singular systems
of difference equations,

Ax(t + 1) + Bx(t) = f (t, x(t)) (6.1)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic
in t ∈ Z uniformly in the second variable, and A, B are N × N square matrices
satisfying det A = det B = 0.

Recall that singular difference equations of the form Eq. (6.12) arise in
many applications including optimal control, population dynamics, economics,
and numerical analysis [52]. The main result discussed in this chapter can be
summarized as follows: if λA + B is invertible for all λ ∈ S

1 = {z ∈ C : |z| = 1}
and if f is Bohr (respectively, Besicovitch) almost periodic in t ∈ Z uniformly
in the second variable and under some additional conditions, then Eq. (6.12) has a
unique Bohr (respectively, Besicovitch) almost periodic solution.

The chapter is organized as follows: Sect. 6.1 serves as an introduction but also
provides preliminary tools needed in the sequel. In Sect. 6.2, some preliminary
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results corresponding to the case f (t, x(t)) = C(t) are obtained. Section 6.3 is
devoted to the main results of this chapter. In Sect. 6.4, we make use of the main
results in Sect. 6.3 to study the existence of Bohr (respectively, Besicovitch) almost
periodic solutions for some second-order (and higher-order) singular systems of
difference equations.

Let x = (x(t))t∈Z be a sequence. Define P(x) as follows

P(x) := sup
k∈Z

lim sup
N→∞

[
1

N

k+N∑
j=k+1

‖x(j)‖2
] 1

2

.

Set

B̃ =
{
x = (x(t))t∈Z : P(x) < ∞

}
.

It is not hard to see that P is a semi-norm on B̃. Consider the following
equivalence relation on B̃: x, y ∈ B̃, x ∼ y if and only if, P(x − y) = 0. The
quotient space

B := B̃/ ∼

endowed with P(·) is a normed vector space.

Definition 6.1 A sequence x = (x(t))t∈Z is called Besicovitch almost periodic if
it belongs to the closure of trigonometric polynomials under the semi-norm P . The
collection of all Besicovitch almost periodic sequences will be denoted B2(Z,RN).

Definition 6.2 A sequence F : Z × R
N �→ R

N, (t, u) �→ F(t, u) is called
Besicovitch almost periodic in t ∈ Z if t �→ F(t, u) belongs to B2(Z,RN)

uniformly in u ∈ R
N .

6.2 The Case of a Linear Equation

In this section, we consider the case when the forcing term f does not depend on x,
that is, f (t, x(t)) = C(t) where (C(t))t∈Z is almost periodic. Namely, we study the
existence of almost periodic solutions for the singular difference equation

Ax(t + 1) + Bx(t) = C(t), t ∈ Z (6.2)

where C : Z �→ R
N is Bohr (respectively, Besicovitch) almost periodic.
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6.2.1 Existence of a Bohr Almost Periodic Solution

Define the resolvent ρ(A,B) by

ρ(A,B) :=
{
λ ∈ C : λA + B is invertible

}
.

Theorem 6.3 If S
1 ⊆ ρ(A,B), then Eq. (6.2) has a unique almost periodic

solution.

Proof The strategy here consists of adapting our setting to that of Campbell [34].
Indeed, setting Â = (A + B)−1A, B̂ = (A + B)−1B, and ˆC(t) = (A + B)−1C(t),

one can easily see that Eq. (6.2) is equivalent to,

Âx(t + 1) + B̂x(t) = ˆC(t), t ∈ Z. (6.3)

Using the identity, Â + B̂ = IN , it follows that ÂB̂ = B̂Â. Consequently, one
can find a common basis of trigonalization for Â and B̂. That is, there exists an
invertible matrix T such that

Â = T −1
(

A1 0
0 A2

)
T , B̂ = T −1

(
B1 0
0 B2

)
T ,

where A1, B2 are invertible and A2, B1 are nilpotent.
Recall that here, Ai + Bi = IN for i = 1, 2. Consequently, writing

T x(t) =
(

w(t)

v(t)

)

and

T ˆC(t) =
(

α(t)

β(t)

)
,

where (α(t))t and (β(t))t are almost periodic, it follows that Eq. (6.3) can be
rewritten as {

A1w(t + 1) + B1w(t) = α(t)

A2v(t + 1) + B2v(t) = β(t).
(6.4)

Using the fact that both A1 and B2 are invertible, one can see that Eq. (6.4) is
equivalent to,

{
w(t + 1) + A−1

1 B1w(t) = A−1
1 α(t)

B−1
2 A2v(t + 1) + v(t) = B−1

2 β(t).
(6.5)
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Let us now put our main focus upon the first equation appearing in Eq. (6.5), that
is, the equation given by

w(t + 1) − (−A−1
1 B1)w(t) = A−1

1 α(t), t ∈ Z. (6.6)

Obviously, t �→ (A−1
1 α(t))t∈Z is almost periodic. We shall now prove that

−A−1
1 B1 has no eigenvalue that belongs to S

1. From that, we will deduce that
Eq. (6.6) has a unique almost periodic solution. For that, consider a nonzero
eigenvalue λ of −A−1

1 B1. Let x1 	= 0 be an eigenvector for −A−1
1 B1, that is,

−A−1
1 B1x1 = λx1. Consequently,

(λA1 + B1)x1 = 0,

from which we deduce that

(λÂ + B̂)T −1
(

x1

0

)
= 0.

Using the fact that

T −1
(

x1

0

)
	=

(
0
0

)

we deduce that λÂ + B̂ is not invertible, thus this is the case for λA + B too. With
the assumption made, this proves that |λ| 	= 1. Consequently, there exists a unique
almost periodic solution (w(t))t∈Z to

w(t + 1) − (−A−1
1 B1)w(t) = A−1

1 α(t).

For the second equation appearing in Eq. (6.5), setting V (t) = v(−t), it becomes,
by changing t in −t ,

V (t) + B−1
2 A2V (t − 1) = B−1

2 β(−t). (6.7)

Using similar arguments as above, one can see that Eq. (6.7) has a unique almost
periodic solution (V (t))t∈Z, so the second equation appearing in Eq. (6.5) has a
unique almost periodic solution (v(t))t∈Z. Since Eqs. (6.5) and (6.2) are equivalent,
we obtain existence and uniqueness of an almost periodic solution to Eq. (6.2). The
proof is complete.

Remark 6.4 Notice that the continuous operator

T : (x(t))t∈Z → (Ax(t + 1) + Bx(t))t∈Z
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is invertible and maps the Banach space of (Bohr) almost periodic sequences into
itself. It follows from the Bounded Inverse Theorem that T −1 is also continuous.
Consequently, there exists a constant M > 0 such that for all (C(t))t∈Z,

‖(x(t))t‖∞ ≤ M‖(C(t))t‖∞.

An immediate consequence of Theorem 6.3 is the following:

Corollary 6.5 Let A = (aij ) and B = (bij ) be N ×N square matrices and suppose
that

∀i, ||aii | − |bii || >
∑
j 	=i

(|aij | + |bij |
)
.

Then Eq. (6.2) has a unique almost periodic solution.

Proof Indeed, let λ ∈ S
1 and let cij = aij λ + bij , so that λA + B = (cij ).

Now

|cii | = |λaii + bii | ≥ ||λaii | − |bii || = ||aii | − |bii ||

and

∑
j 	=i

|cij | =
∑
j 	=i

|aijλ + bij | ≤
∑
j 	=i

(|aij | + |bij |
)

so thus for all i,

|cii | >
∑
j 	=i

|cij |,

which yields S1 ⊆ ρ(A,B).
In view of the above, using Theorem 6.3 it follows that Eq. (6.2) has a unique

almost periodic solution.

Remark 6.6 Let us mention that there exist infinitely many pairs of matrices (A,B)

satisfying the assumption of Corollary 6.5.

6.2.2 Existence of Besicovitch Almost Periodic Solution

In this subsection, we suppose (C(t))t∈Z is Besicovitch almost periodic and study
the existence of Besicovitch almost periodic solutions to Eq. (6.2). Here, the proof
is more straightforward, using tools from Fourier analysis.
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Indeed, write C(t) ∼ ∑
α∈[0,2π) cαêα(t), where êα(t) = eiαt and (cα)α ∈

�2([0, 2π),RN). We look for a solution in the following form,

x(t) ∼
∑

α∈[0,2π)

aαêα(t), (aα)α ∈ �2([0, 2π),RN).

Now

Ax(t + 1) + Bx(t) ∼
∑

α∈[0,2π)

(êα(1)Aaα + Baα)êα(t).

By the uniqueness of the Fourier-Bohr expansion, Eq. (6.2) is equivalent to,

∀α ∈ [0, 2π), (êα(1)A + B)aα = cα.

Since êα(1) ∈ S
1, given that êα(1)A + B is invertible, so we obtain a candidate

∀α ∈ [0, 2π), aα = (êα(1)A + B)−1cα.

We need now to prove that (aα)α ∈ �2([0, 2π),RN). Since S
1 is compact, then

the function S
1 �→ (0,∞), λ → ‖(λA + B)−1‖ is bounded and so let M > 0 be

such that

∀λ ∈ S
1, ‖(λA + B)−1‖ ≤ M.

Clearly,

|aα|2 ≤ M2 |cα|2 .

This yields (aα)α ∈ �2([0, 2π),RN). Further,

‖(x(t))t∈Z‖2 ≤ M‖(C(t))t∈Z‖2.

Notice here that we have a formula for M which is given by

M = sup
λ∈S1

‖(λA + B)−1‖.

Remark 6.7 In the case of assumptions of Theorem 6.5, one can actually compute
explicitly a bound for M . Indeed, let us consider

θ := min
i=1,2,...,N

{||aii | − |bii || −
∑
j 	=i

(|aij | + |bij |)}.
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Then

M ≤
√

n

θ
.

Set cij = aijλ + bij . Given λ ∈ S
1, let us consider the system Y = (λA + B)X

and fix i0 such that |Xi0 | = maxi |Xi |.
Now

|Y |2 ≥ |Yi0 | = |
∑
j

(λai0j + bi0jXj )| ≥

|ai0i0 |.|Xi0 | −
∑
j 	=i0

|λai0j + bi0j ||Xj | ≥ θ |X|∞,

thus

|X|2 ≤ √
n|X|∞ ≤

√
n

θ
|Y |2.

We apply this with Y = cα and X = aα .

6.3 The Semilinear Equation

First of all, note that from Sect. 6.2, we deduce that the linear operator

T : (x(t))t∈Z → (Ax(t + 1) + Bx(t))t∈Z

is bijective and bi-continuous from AP(Z,RN) (respectively, from B2(Z,RN) into
itself) into itself.

Using similar arguments as above and the composition of almost periodic
sequences, we can obtain the existence of Bohr (respectively, Besicovich) almost
periodic solutions to Eq. (6.12).

Theorem 6.8 Suppose S
1 ⊆ ρ(A,B) and that f ∈ AP(Z,RN). Further, suppose

that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K , Eq. (6.12) has a
unique Bohr almost periodic solution.

Theorem 6.9 Suppose S
1 ⊆ ρ(A,B) and that f : bZ × R

N → R
N is

Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.12) has a unique Besicovitch
almost periodic solution.
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Let X be either AP(Z,RN) or B2(Z,RN). From the assumptions upon f , the
Nemytskii operator for f is given by

Nf : ((x(t))t∈Z) �→ (f (t, x(t)))t∈Z,

which maps X into itself. Moreover, T is bi-continuous from X to itself.
Equation (6.12) is equivalent to,

T ((x(t))t∈Z) = Nf ((x(t))t∈Z),

which is equivalent to finding a fixed point for T −1 ◦ Nf . This nonlinear operator
is ‖T −1‖K-Lipschitzian. Consequently,

K < ‖T −1‖−1

to obtain the existence of a unique almost periodic solution to Eq. (6.12), we use the
Banach fixed-point theorem.

6.4 Second-Order Singular Difference Equations

Of interest is the study of (respectively, Besicovitch) Bohr almost periodic to the
following second-order difference equations

Ax(t + 2) + Bx(t + 1) + Cx(t) = f (t, x(t)), t ∈ Z (6.8)

where A,B,C are N × N -squares matrices with det A = det B = det C = 0 and
f : Z × R

N �→ R
N is almost periodic in the first variable uniformly in the second

one.
In order to study the existence of (respectively, Besicovitch) Bohr almost periodic

solutions to Eq. (6.8), one makes extensive use of the results obtained in Sect. 6.3.
For that, we rewrite Eq. (6.8) as follows:

Lw(t + 1) + Mw(t) = F(t, w(t)), t ∈ Z (6.9)

where

L =
(

B A

I O

)
, M =

(
C O

O −I

)
, F =

(
f

0

)
, w(t) =

(
x(t)

x(t + 1)

)

with O and I being the N × N zero and identity matrices.

Lemma 6.10 λL + M is invertible if and only if λ(A + B) + C is invertible.
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Proof The 2N × 2N square matrix λL + M is given by

λL + M =
(

λB + C λA

λI −I

)
.

Consequently, solving the system

(λL + M)

(
u

v

)
=

(
x

y

)

yields (λB + C)u + λAv = x and λu − v = y. If λ2A + λB + C is invertible, then
from v = λu − y it follows that (λ2A + λB + C)u = λAy + x which yields,

u =
[
λ2A + λB + C

]−1(
λAy + x

)
, v = λ

[
λ2A + λB + C

]−1(
x + λAy

)
− y

which yields λL + M is invertible.
The proof for the converse can be done using similar arguments as above and

hence is omitted.

Set

ρ(A,B,C) :=
{
λ ∈ C : λ2A + λB + C is invertible

}
.

Using Lemma 6.10, Theorem 6.8, and Theorem 6.9, we obtain the following
results:

Theorem 6.11 Suppose S
1 ⊆ ρ(A,B,C) and that f ∈ AP(Z,RN). Further,

suppose that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K , Eq. (6.8)
has a unique Bohr almost periodic solution.

Theorem 6.12 Suppose S
1 ⊆ ρ(A,B,C) and that f : bZ × R

N → R
N is

Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.8) has a unique Besicovitch
almost periodic solution.

Let p ≥ 2 be an integer. One should mention that the previous techniques can
be easily used to study the existence of almost periodic solutions to higher order
singular systems of difference equations of the form,

Apx(t+p)+Ap−1x(t+p−1)+. . .+A1x(t+1)+A0x(t) = f (t, x(t)), (6.10)

for all t ∈ Z, where Ak for k = 0, 1, 2, . . . , p, are N × N -squares matrices with
det Ak = 0 for k = 0, 1, 2, .., p, and f : Z × R

N �→ R
N is almost periodic in the

first variable uniformly in the second one.
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Setting

ρ(Ap,Ap−1, . . . , A0) :=
{
λ ∈C : λpAp+λp−1Ap−1+. . .+λA1+A0 is invertible

}
,

the existence results can be formulated as follows:

Theorem 6.13 Suppose S
1 ⊆ ρ(Ap,Ap−1, . . . , A0) and that f ∈ AP(Z,RN).

Further, suppose that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K ,
Eq. (6.10) has a unique Bohr almost periodic solution.

Theorem 6.14 Suppose S1 ⊆ ρ(Ap,Ap−1, . . . , A0) and that f : bZ×R
N → R

N

is Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.10) has a unique Besicovitch
almost periodic solution.

6.5 Exercises

1. Give an example of square matrices A and B that satisfy the assumption of
Corollary 6.5.

2. Prove Theorem 6.8.
3. Prove Theorem 6.9.
4. Prove Theorem 6.11.
5. Prove Theorem 6.12.
6. Prove Theorem 6.13.
7. Prove Theorem 6.14.
8. Study the existence of Bohr (respectively, Besicovitch) almost periodic solutions

to the following class of nonautonomous singular difference equations,

A(t)x(t + 1) + B(t)x(t) = f (t, x(t)) (6.11)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic
in t ∈ Z uniformly in the second variable, and A(t), B(t) are N × N square
matrices satisfying det A(t) = det B(t) = 0 for all t ∈ Z.

9. Study the existence of Bohr (respectively, Besicovitch) almost periodic solutions
to the following class of nonautonomous singular difference equations,

A(t)x(t + 2) + B(t)x(t + 1) + C(t)x(t) = f (t, x(t)) (6.12)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic in
t ∈ Z uniformly in the second variable, and A(t), B(t), C(t) are N × N square
matrices satisfying det A(t) = det B(t) = det C(t) = 0 for all t ∈ Z.
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6.6 Comments

This chapter is mainly based upon the work by Diagana and Pennequin [48]. Other
sources for this chapter include the work of Campbell [34]. For additional readings
on the topic discussed in this chapter, we refer the reader for instance to Anh et al.
[15] and Du et al. [52].
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