
Chapter 5
Nonautonomous Difference Equations

5.1 Introduction

An autonomous difference equation is an equation of the form

x(t + 1) = f0(x(t)), t ∈ Z.

Although these equations play an important role when it comes to studying
some models arising in population dynamics, they do not take into account some
important parameters such as environmental fluctuations or seasonal changes.
Nonautonomous difference equations, that is, equations of the form

x(t + 1) = f1(t, x(t)), t ∈ Z,

seem to be more suitable to capture environmental fluctuations and seasonal
changes, see, e.g., Elaydi [54].

The main objective of this chapter is two-fold. We first extend the theory of
almost periodic sequences built in Z+ by Diagana et al. [49] to Z. Next, we make
extensive use of dichotomy techniques to find sufficient conditions for the existence
of almost periodic solutions for the class of semilinear systems of difference
equations given by

x(t + 1) = A(t)x(t) + h(t, x(t)), t ∈ Z (5.1)

where A(t) is a k×k almost periodic matrix function defined on Z, and the function
h : Z×R

k → R
k is almost periodic in the first variable uniformly in the second one.

As in the case of Z+, our existence results are, subsequently, applied to discretely
reproducing populations with overlapping generations.
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Recall once again that �∞(Z), the Banach space of all bounded R
k-valued

sequences, is equipped with the sup norm defined for each x = {x(t)}t∈Z ∈ �∞(Z),
by

‖x‖∞ = sup
t∈Z

‖x(t)‖ .

In order to deal with the existence of almost periodic solutions to the above-
mentioned nonautonomous difference equations, we need to introduce the concepts
of bi-almost periodicity and positively bi-almost periodicity for sequences.

Definition 5.1 A sequence L : Z × Z �→ R
k is called bi-almost periodic if for

every ε > 0, there exists a positive integer N0(ε) such that any set consisting of
N0(ε) consecutive integers contains at least one integer σ for which

‖L(t + σ, s + σ) − L(t, s)‖ < ε

for all t, s ∈ Z. The collection of such sequences is denoted bAP (Z × Z,Rk).

Let ˜T be the set defined by

˜T :=
{

(t, s) ∈ Z × Z : t ≥ s
}

.

Definition 5.2 A sequence L : ˜T �→ R
k is called positively bi-almost periodic if

for every ε > 0, there exists a positive integer N0(ε) such that any set consisting of
N0(ε) consecutive integers contains at least one integer σ for which

‖L(t + σ, s + σ) − L(t, s)‖ < ε

for all (t, s) ∈ ˜T. The collection of such sequences will be denoted bAP (˜T,X).

Obviously, every bi-almost periodic sequence is positively bi-almost periodic
with the converse being untrue.

Example 5.3 Classical examples of bi-almost periodic sequences L include those
which are of the form L(t, s) = h(t − s) for all (t, s) ∈ Z×Z, where h = (h(t)t∈Z
is periodic, that is, there exists 0 �= ω ∈ Z such that h(t + ω) = h(t) for all t ∈ Z.

In this chapter, we are aimed at finding sufficient conditions for the existence of
almost periodic solutions to the class of semilinear systems of difference equations
given by

x(t + 1) = A(t)x(t) + f (t, x(t)), t ∈ Z (5.2)

where A(t) is a k×k almost periodic matrix function defined on Z, and the function
f : Z × R

k → R
k is almost periodic in the first variable uniformly in the second

one.
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To study the existence of solutions to Eq. (5.2), we make extensive use of the
fundamental solutions to the system

x(t + 1) = A(t)x(t), t ∈ Z (5.3)

to examine almost periodic solutions of the system of difference equations

x(t + 1) = A(t)x(t) + g(t), t ∈ Z (5.4)

where g : Z �→ R
k is almost periodic.

5.2 Discrete Exponential Dichotomy

Define the state transition matrix associated with A(t) as follows

X(t, s) =
t−1
∏

r=s

A(r), X(t, t) = I,

for t > s.

Definition 5.4 ([65, Definition 7.6.4, p. 229]) Equation (5.3) is said to have a
discrete exponential dichotomy if there exist k × k projection matrices P(t) with
t ∈ Z and positive constants M and β ∈ (0, 1) such that,

(i) A(t)P (t) = P(t + 1)A(t);
(ii) The matrix A(t)

(

R(P (t))
)

is an isomorphism from R(P (t)) onto R(P (t+1));
(iii) ‖X(t, r)P (r)x‖ ≤ Mβr−t ‖x‖ , for t < r , x ∈ R

k;
(iv) ‖X(t, r)(I − P(r))x‖ ≤ Mβt−r ‖x‖ , for r ≤ t, x ∈ R

k .

By repeated application of [(i), Definition 5.4], we obtain

P(t)X(t, s) = X(t, s)P (s). (5.5)

If Eq. (5.3) has a discrete dichotomy, then we define its associated Green function
G by setting

G(t, s) =
{−X(t, s)P (s) if t < s,

X(t, s)(I − P(s)) if t ≥ s.

In view of the above, we have

‖G(t, s)‖ ≤
{

Mβs−t if t < s,

Mβt−s if t ≥ s.
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Remark 5.5 It should be mentioned that if t �→ A(t) is almost periodic and if
Eq. (5.3) has discrete dichotomy, then the Green operator function G(t, s)Y ∈
bAP (T,Rk) uniformly for all Y in any bounded subset of Rk .

We have the following characterization for the discrete exponential dichotomies:

Theorem 5.6 ([65, Theorem 7.6.5, p. 230]) The following statements are equiva-
lent,

i) Equation (5.3) has a discrete exponential dichotomy;
ii) For every bounded R

k-valued sequence g, Eq. (5.4) has a unique bounded
solution.

If Eq. (5.3) has a discrete exponential dichotomy, then Theorem 5.6 ensures the
existence and uniqueness of a bounded solution to Eq. (5.4) whenever g : Z �→ R

k

is a bounded sequence. Moreover, it can be shown that such a solution is given by

x(t) =
∞
∑

r=−∞
G(t, r + 1)g(r)

=
t−1
∑

r=−∞
X(t, r + 1)(I − P(r + 1))g(r) −

∞
∑

r=t

X(t, r + 1)P (r + 1)g(r)

for all t ∈ Z.

Theorem 5.7 Suppose t �→ A(t) is almost periodic and that Eq. (5.3) has a discrete
exponential dichotomy. If g ∈ AP(Z), then Eq. (5.4) has a unique almost periodic
solution which can be expressed as

x(t) =
t−1
∑

r=−∞
X(t, r+1)(I −P(r+1))g(r)−

∞
∑

r=t

X(t, r+1)P (r+1)g(r). (5.6)

Proof Since every almost periodic sequence is bounded, it follows from Theo-
rem 5.6 that Eq. (5.4) has a unique bounded solution given by Eq. (5.6). Moreover,

‖x(t)‖ ≤
{

t−1
∑

r=−∞
‖X(t, r + 1)(I − P(r + 1))‖

+
∞
∑

r=t

‖X(t, r + 1)P (r + 1)‖
}

‖g‖∞

≤
{

M

1 − β
+ Mβ

1 − β

}

‖g‖∞

= M(1 + β)

1 − β
‖g‖∞
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which yields

‖x‖∞ ≤ M(1 + β)

1 − β
‖g‖∞ .

To complete the proof, one has to show that x ∈ AP(Z). For that, write x =
M(g) − N(g) where

M(g)(t) :=
t−1
∑

r=−∞
X(t, r + 1)(I − P(r + 1))g(r)

and

N(g)(t) =
∞
∑

r=t

X(t, r + 1)P (r + 1)g(r).

Let us show that t �→ Mg(t) is almost periodic. Indeed, since g is almost
periodic, for every ε > 0 there exists a positive integer N0(ε) such that any set
consisting of N0(ε) consecutive integers contains at least one integer τ for which

‖g(t + τ) − g(t)‖ < ε

for all t ∈ Z.
Setting Q(t) = I − P(t), we obtain,

M(g)(t + τ) − M(g)(t)

=
t+τ−1
∑

r=−∞
X(t + τ, r + 1)Q(r + 1)g(r) −

t−1
∑

r=−∞
X(t, r + 1)Q(r + 1)g(r)

=
t−1
∑

r=−∞
X(t + τ, r + 1 + τ)Q(r + τ + 1)g(r + τ)

−
t−1
∑

r=−∞
X(t, r + 1)Q(r + 1)g(r)

=
t−1
∑

r=−∞
X(t + τ, r + 1 + τ)Q(r + 1 + τ)

[

g(r + τ) − g(r)
]

+
t−1
∑

r=−∞

[

X(t + τ, r + 1 + τ)Q(r + 1 + τ) − X(t, r + 1)Q(r + 1)
]

g(r).
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Clearly,

∥

∥

t−1
∑

r=−∞
X(t + τ, r + 1 + τ)Q(r + 1 + τ)

[

g(r + τ) − g(r)
]

∥

∥ < c1(β,M)ε

From Remark 5.5 it follows that

∥

∥

t−1
∑

r=−∞

[

X(t + τ, r + 1 + τ)Q(r + 1 + τ)

−X(t, r + 1)Q(r + 1)
]

g(r)
∥

∥ < c2(β,M)ε,

and hence

‖M(g)(t + τ) − M(g)(t)‖ < c3(β,M)ε

for each t ∈ Z.
Using similar ideas as the previous ones, one can easily see that N(g) ∈ AP(Z).

This completes the proof.

Suppose that there exists L > 0 such that

‖f (t, x) − f (t, y)‖ ≤ L‖x − y‖

for all t ∈ R and x, y ∈ R
k .

Theorem 5.8 Suppose that t �→ A(t) is almost periodic and that Eq. (5.3) has a
discrete exponential dichotomy. Further, we assume that (t, w) �→ f (t, w) is almost
periodic in t ∈ Z uniformly in w ∈ B where B ⊂ R

k is an arbitrary bounded subset.
Then Eq. (5.2) has a unique almost periodic solution given by

z(t) =
t−1
∑

r=−∞
X(t, r + 1)Q(r + 1)f (r, z(r)) −

∞
∑

r=t

X(t, r + 1)P (r + 1)f (r, z(r)),

(5.7)

whenever L is small enough.

Proof Using the composition of almost periodic sequences (Theorem 4.40) it
follows that r �→ g(r) := f (r, z(r)) belongs to AP(Z) whenever z ∈ AP(Z).

Let Δ be the nonlinear operator defined by

(Δz) (t) :=
∞
∑

r=−∞
G(t, r + 1)g(r) for all t ∈ Z.

Using the proof of Theorem 5.7, one can easily see that Δ is well defined as it
maps AP(Z) into itself.
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Now for all u, v ∈ AP(Z),

‖(Δu) (t) − (Δv) (t)‖ ≤ M(1 + β)

1 − β
‖f (t, u(t)) − f (t, u(t))‖ ,

and hence

‖Δu − Δv‖∞ ≤ ML(1 + β)

1 − β
‖u − v‖∞ .

Thus the nonlinear operator Δ is a strict contraction whenever L is small enough,
that is,

ML(1 + β)

1 − β
< 1.

To conclude, we make use of the classical Banach fixed point principle.

5.3 The Beverton-Holt Model with Overlapping Generations

To illustrate the results of the previous section, we consider the following theoretical
discrete-time population model,

x(t + 1) = f (t, x(t)) + γ x(t), t ∈ Z (5.8)

where x(t) is the total population size in generation t , γ ∈ (0, 1) is the constant
“probability” of surviving per generation, and f : Z × R → R models the birth or
recruitment process.

In order to induce almost periodic effects on the population model, we consider
the general model in the form,

x(t + 1) = f (t, x(t)) + γtx(t), t ∈ Z. (5.9)

where both {γt }t∈Z and f (t, x(t)) belong to AP(Z) and γt ∈ (0, 1) for all t ∈ Z.
Recall that Eq. (5.9) was studied by Franke and Yakubu [59] in Z+ and when

recruitment function is of the form:

f (t, x(t)) = Kt(1 − γt ), (5.10)

and (with the periodic Beverton-Holt recruitment function)

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ − 1 + γt )x(t)
, (5.11)

where the carrying capacity Kt is p-periodic, that is, Kt+p = Kt for all t ∈ Z+ and
μ > 1 [43, 59].
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Among other things, they have shown that the periodically forced recruitment
functions Eqs. (5.10) and (5.11) generate globally attracting cycles in Eq. (5.9) (see
details in [59]).

In this section, we extend these results to the almost periodic case in Z. For that,
we make use of Theorem 5.8 to show that if both {Kt }t∈Z and {γt }t∈Z are almost
periodic, then Eq. (5.9) has a unique almost periodic solution.

Theorem 5.9 Let

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ − 1 + γt )x(t)
,

where both {Kt }t∈Z and {γt }t∈Z are almost periodic, each γt ∈ (0, 1), Kt > 0 and
μ > 1. Then Eq. (5.9) has a unique almost periodic solution whenever

sup {γt |t∈Z} <
1

μ + 1
.

Proof First of all, note that Eq. (5.9) is in the form of Eq. (5.2), where A(t) and f

can be taken respectively as follows

A(t) = γt ,

and

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ − 1 + γt )x(t)
.

Now

|f (t, x) − f (t, y)|

≤ (1 − γt )
2μK2

t |x − y|
(1 − γt )2K2

t + (μ − 1 + γt )(1 − γt )Kt (x + y) + (μ − 1 + γt )2xy

≤ μ |x − y| .

Consequently, f is Lipschitz with the Lipschitz constant L = μ. Similarly, take
M < μ−1 and β = sup {γt |t∈Z}. Clearly, Eq. (5.9) has a unique almost periodic
solution whenever

sup {γt |t∈Z} <
1 − μM

1 + μM
.

Similarly, if f (t, x(t)) = Kt(1 − γt ), then f (t, x) − f (t, y) = 0 which yields
Eq. (5.9) has a unique almost periodic solution.



5.5 Comments 83

Corollary 5.10 Let the recruitment function be f (t, x(t)) = Kt(1 − γt ), where
both {Kt }t∈Z and {γt }t∈Z are almost periodic, each γt ∈ (0, 1) and Kt > 0.
Then Eq. (5.9) has a unique globally asymptotically stable almost periodic solution
whenever

sup {γt |t∈Z} < 1.

5.4 Exercises

1. Prove Theorem 5.6.
2. Use dichotomy techniques to study the existence of almost periodic solutions to

the semilinear difference equation with delay given by

u(t + 1) = A(t)u(t) + f (t, u(t), u(t − 1)), t ∈ Z

where t �→ A(t) is a d × d almost periodic matrix and f : Z × R
d × R

d → R
d

is almost periodic in t ∈ Z uniformly in the second and the third variables.
3. Use dichotomy techniques to study the existence of almost periodic solutions to

the functional difference equation given by

u(t + 1) = A(t)u(t) + f (t, u(h1(t)), u(h2(t)), u(h3(t))), t ∈ Z

where t �→ A(t) is a d × d almost periodic matrix, the sequence hj : Z �→ Z

with hj (Z) = Z for j = 1, 2, 3, and f : Z × R
d × R

d × R
d → R

d is almost
periodic in t ∈ Z uniformly in the other variables.

5.5 Comments

The main references for this chapter include Diagana [47], Diagana et al. [49] and
Henry [65]. Some parts of this chapter are based upon the following references:
Diagana [46] and Araya et al. [17]. For additional readings on this topic, we refer to
Diagana [47], Lizama and Mesquita [84], and Henry [65].
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