
Chapter 10
Second-Order Semilinear Evolution
Equations

10.1 Introduction

This chapter is aimed at studying the existence of almost periodic and asymptoti-
cally almost periodic solutions to some classes of second-order semilinear evolution
equations. In order to establish these existence results, we make extensive use
of various tools including the Banach fixed point theorem, the Leray–Schauder
alternative, the Sadovsky fixed theorem, etc.

Thermoelastic plate systems play an important role in many applications.
For this reason, they have been, in recent years, of a great interest to many
researchers. Among other things, the study of the controllability and stability
of those thermoelastic plate systems has been considered by many researchers
including [14, 18, 24, 44, 65, 79], and [92]. In Sect. 10.2, we study the existence
of almost periodic mild solutions to some thermoelastic plate systems with almost
periodic forcing terms using mathematical tools such as evolution families and real
interpolation spaces.

The main goal of Sect. 10.3 consists of studying the existence of asymptotically
almost periodic solutions to some classes of second-order partial functional-
differential equations with unbounded delay. The abstract results will, subsequently,
be utilized to study the existence of asymptotically almost periodic solutions to some
integro-differential equations, which arise in the theory of heat conduction within
fading memory materials.
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10.2 Almost Periodic Solutions to Some Thermoelastic
Plate Systems

10.2.1 Introduction

In this section, we study the existence of almost periodic solutions to thermoelastic
plate systems using tools such as evolution families and real interpolation spaces.
For that, our main strategy consists of studying its corresponding abstract version.
Next, we subsequently use our obtained abstract results to study the existence of
almost periodic solutions to these thermoelastic plate systems with almost periodic
coefficients.

Let Ω ⊂ R
N (N ≥ 1) be a bounded subset, which is sufficiently regular and let

a, b : R �→ R be positive functions. The main concern in this section consists
of studying the existence (and uniqueness) of almost periodic mild solutions to
thermoelastic plate systems given by

⎧
⎪⎪⎨

⎪⎪⎩

utt + Δ2u + a(t)Δθ = f1(t,∇u,∇θ), if t ∈ R, x ∈ Ω

θt − b(t)Δθ − a(t)Δut = f2(t,∇u,∇θ), if x ∈ Ω,

θ = u = Δu = 0, on R × ∂Ω

(10.1)

where u, θ are respectively the vertical deflection and the variation of temperature
of the plate, the functions f1, f2 are continuous and (globally) Lipschitz, and the
symbols ∇ and Δ stand respectively for the first and second differential operators
given by, ∇u = (ux1, ux2 , . . . , uxN

) and

Δv =
N∑

j=1

vxj xj
.

Assuming that the coefficients a, b and the forcing terms f1, f2 are almost
periodic in the first variable (in t ∈ R) uniformly in the other ones, it will be shown
that Eq. (10.1) has a unique almost periodic mild solution.

Recall that a particular case of Eq. (10.1) was investigated by Leiva et al. [80]
in the case when not only the coefficients a, b were constant but also there was no
gradient terms in the semilinear terms f1 and f2. Consequently, the results of this
section can be seen as a natural generalization of the results of Leiva et al.

To study the existence of almost periodic solutions to Eq. (10.1), we first study
its corresponding abstract semilinear evolution equation and then use the obtained
results to establish our existence results. In order to achieve that, let H = L2(Ω)

and let A to be the linear operator defined by

D(A) = H 2(Ω) ∩ H 1
0 (Ω) and Aϕ = −Δϕ for each ϕ ∈ D(A).
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Setting

x :=
⎛

⎝
u

ut

θ

⎞

⎠ ,

then Eq. (10.1) can be easily recast in X := D(A) × H × H in the following form

x′(t) = A(t)x(t) + f (t, x(t)), t ∈ R, (10.2)

where A(t) are the time-dependent linear operators defined by

A(t) =
⎛

⎝
0 IX 0

−A2 0 a(t)A

0 −a(t)A −b(t)A

⎞

⎠ (10.3)

whose constant domains D are given by

D = D(A(t)) = D(A2) × D(A) × D(A), t ∈ R.

Moreover, the semilinear term f is defined only on R×Xα for some 1
2 < α < 1 by

f (t, u, v, θ) =

⎛

⎜
⎜
⎝

0

f1(t,∇u,∇θ)

f2(t,∇u,∇θ)

⎞

⎟
⎟
⎠ ,

where Xα is the real interpolation space between X and D(A(t)) given by Xα =
H1+α × Hα × Hα , with Hα = (L2(Ω),D(A))α,∞ = L2(Ω)Aα,∞, and H1+α is the
domain of the part of A in Hα .

In Sect. 10.2.3, we show that the family of operators A(t) given in Eq. (10.3)
satisfies the Aquistapace–Terreni condition. The fact that each operator A(t) is
sectorial was shown in [80]; however, for the sake of clarity and completeness, a
complete proof will be given, as we have to determine the precise constants in order
to comply with assumption (H.820) from Chap. 8 of this book. Finally, by applying
the abstract result developed in Sect. 8.2 of Chap. 8, we prove that the thermoelastic
plate system Eq. (10.1) has a unique almost periodic solution

(
u

θ

)

in H1+α × Hα .
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10.2.2 Assumptions on the Coefficients of the Thermoelastic
System

Let a, b : R �→ R be positive functions and let Ω ⊂ R
N (N ≥ 1) be a bounded

subset whose boundary ∂Ω is sufficiently regular. The main objective here consists
of studying Eq. (10.1) in the case when the positive real-valued functions a, b are
undervalued by a0, b0, and a, b ∈ C

0,μ
b (R) ∩ AP(R), where u, θ are the vertical

deflection and the temperature of the plate. Further, it will be assumed that

max
t∈R

b2(t) < 3(a2
0 + 1). (10.4)

In addition to the above assumptions, we suppose that the functions f1, f2 :
R × H 1

0 (Ω) × H 1
0 (Ω) → L2(Ω) are defined by

fi(t, u, θ)(x) = fi(t,∇u(x),∇θ(x)) = Kdi(t)

1 + |∇u(x)| + |∇θ(x)|
for x ∈ Ω, t ∈ R, i = 1, 2, where di : R �→ R are almost periodic functions.

It is hard to see that the functions fi (i = 1, 2) are jointly continuous. Further, fi

(i = 1, 2) are globally Lipschitz, that is, there exists L > 0 such that

∥
∥
∥fi(t, u, θ) − fi(t, v, η)

∥
∥
∥

L2(Ω)
≤ L

(
‖u − v‖2

H 1
0 (Ω)

+ ‖θ − η‖2
H 1

0 (Ω)

) 1
2

for all t ∈ R, u, v, η and θ ∈ H 1
0 (Ω).

10.2.3 Existence of Almost Periodic Solutions

In order to apply the results of Chap. 8 to this setting, we need to check that some
assumptions hold.

Theorem 10.1 ([20, Baroun, Boulite, Diagana, and Maniar]) Under previous
assumptions, the thermoelastic plate system Eq. (10.1) has a unique almost periodic
solution

⎛

⎝
u

θ

⎞

⎠

in H1+α × Hα , whenever L is small enough.

Proof In order to show that A(t) satisfies the Acquistapace–Terreni conditions, we
will proceed in two main steps.
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Step 1—Let 0 < λ1 < λ2 < · · · < λn → ∞ be the sequence eigenvalues of A

with each eigenvalue being of a finite multiplicity γn equal to the dimension of the
corresponding eigenspace and {φn,k} is a complete orthonormal set of eigenvectors
for A. For all x ∈ D(A) we have

Ax =
∞∑

n=1

λn

γn∑

k=1

〈x, φn,k〉φn,k :=
∞∑

n=1

λnEnx,

with 〈·, ·〉 being the inner product in H.
Obviously, En is a complete family of orthogonal projections in H and so each

x ∈ H can be written as

x =
∞∑

n=1

γn∑

k=1

〈x, φn,k〉φn,k =
∞∑

n=1

Enx.

Consequently, for

⎛

⎝
w

v

θ

⎞

⎠ ∈ D(A(t)), the linear operators A(t) can be rewritten

as follows,

A(t)z =
⎛

⎝
0 I 0

−A2 0 a(t)A

0 −a(t)A −b(t)A

⎞

⎠

⎛

⎝
w

v

θ

⎞

⎠

=
⎛

⎝
v

−A2w + a(t)Aθ

−a(t)Av − b(t)Aθ

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞∑

n=1

Env

−
∞∑

n=1

λ2
nEnw + a(t)

∞∑

n=1

λnEnθ

−a(t)

∞∑

n=1

λnEnv − b(t)

∞∑

n=1

λnEnθ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∞∑

n=1

⎛

⎝
0 1 0

−λ2
n 0 a(t)λn

0 −a(t)λn −b(t)λn

⎞

⎠

⎛

⎝
En 0 0
0 En 0
0 0 En

⎞

⎠

⎛

⎝
w

v

θ

⎞

⎠

=
∞∑

n=1

An(t)Pnz,

where

Pn :=
⎛

⎝
En 0 0
0 En 0
0 0 En

⎞

⎠ , n ≥ 1,
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and

An(t) :=
⎛

⎝
0 1 0

−λ2
n 0 a(t)λn

0 −a(t)λn −b(t)λn

⎞

⎠ , n ≥ 1. (10.5)

Obviously, the characteristic equation associated with An(t) is given by

λ3 + b(t)λnλ
2 + (1 + a(t)2)λ2

nλ + b(t)λ3
n = 0. (10.6)

Rescaling as follows, λ/λn = −ρ, Eq. (10.6) can be recast as follows,

ρ3 − b(t)ρ2 + (1 + a(t)2)ρ − b(t) = 0. (10.7)

Using the well-known Routh–Hurwitz theorem we deduce that the real part of
the roots ρ1(t), ρ2(t), ρ3(t) of Eq. (10.7) are positive. By a simple calculation one
can also verify that Eq. (10.4) does ensure that the roots ρ1, ρ2, and ρ3 are simple
and are uniformly separated. In particular, one root is real and the other ones are
complex with imaginary part sufficiently far from 0. Consequently, the eigenvalues
of An(t) are simple and are given by σi(t) = −λnρi(t), i = 1, 2, 3. Therefore, the
matrices An(t) are diagonalizable and can be written as follows,

An(t) = Kn(t)
−1Jn(t)Kn(t), n ≥ 1,

with

Kn(t) =

⎛

⎜
⎜
⎜
⎝

1 1 1

λnρ1(t) λnρ2(t) λnρ3(t)

a(t)ρ1(t)

ρ1(t) − b(t)
λn

a(t)ρ2(t)

ρ2(t) − b(t)
λn

a(t)ρ3(t)

ρ3(t) − b(t)
λn

⎞

⎟
⎟
⎟
⎠

,

Jn(t) =

⎛

⎜
⎜
⎝

−λnρ1(t) 0 0

0 −λnρ2(t) 0

0 0 −λnρ3(t)

⎞

⎟
⎟
⎠

and

Kn(t)
−1 = 1

a(a(t), b(t))λn

⎛

⎜
⎜
⎝

a11(t) −a12(t) a13(t)

−a21(t) a22(t) −a23(t)

a31(t) −a32(t) a33(t)

⎞

⎟
⎟
⎠ ,
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where

a11(t) = a(t)ρ3(t)ρ2(t)(ρ2(t) − ρ3(t))

(ρ3(t) − b(t))(ρ2(t) − b(t))
, a12(t)= a(t)ρ3(t)ρ1(t)(ρ1(t) − ρ3(t))

(ρ3(t) − b(t))(ρ1(t) − b(t))
,

a13(t) = a(t)ρ2(t)ρ1(t)(ρ1(t) − ρ2(t))

(ρ2(t) − b(t))(ρ1(t) − b(t))
, a21(t)= a(t)b(t)(ρ2(t) − ρ3(t))

(ρ3(t) − b(t))(ρ2(t) − b(t))
,

a22(t) = a(t)b(t)(ρ1(t) − ρ3(t))

(ρ3(t) − b(t))(ρ1(t) − b(t))
, a23(t)= a(t)b(t)(ρ1(t) − ρ2(t))

(ρ2(t) − b(t))(ρ1(t) − b(t))
,

a31 = (ρ3(t) − ρ2(t)), a32 = (ρ3(t) − ρ1(t)), a33 = (ρ2(t) − ρ1(t)),

a(a(t), b(t)) = a(t)ρ3(t)ρ2(t)

(ρ3(t) − b(t))
+ a(t)ρ1(t)ρ3(t)

(ρ1(t) − b(t))
+ a(t)ρ2(t)ρ1(t)

(ρ2(t) − b(t))

−a(t)ρ1(t)ρ2(t)

(ρ1(t) − b(t))
− a(t)ρ3(t)ρ1(t)

(ρ3(t) − b(t))
− a(t)ρ2(t)ρ3(t)

(ρ2(t) − b(t))
.

From the fact that b(·) is not a solution to Eq. (10.7), it can be shown that the
matrix operators Kn(t) and K−1

n (t) are well defined and Kn(t)Pn(t) : Z := H ×
H × H �→ X, K−1

n (t)Pn(t) : X �→ Z.
We claim that the roots ρi(t), i = 1, 2, 3, of Eq. (10.7) are bounded. Indeed,

setting l(t) = ρ(t) − b(t)
3 , then Eq. (10.7) becomes

l(t)3 + p(t)l(t) + q(t) = 0,

where p(t) := (1 + a(t)2) − b(t)2

3 , q(t) := 2
27b(t)3 − (2 − a(t)2)

b(t)
3 .

Since q is bounded and

|q(t)| = |l(t)‖l(t)2 + p(t)| ≥ |l(t)||l(t)|2 − |p(t)|,

then l is also bounded. Thus the boundedness of b yields the above claim.
Define the sector Sθ as

Sθ = {λ ∈ C : | arg(λ)| ≤ θ, λ �= 0},

where

0 ≤ sup
t∈R

| arg(ρi(t))| <
π

2
, i = 1, 2, 3

and

π

2
< θ < π − max

i=1,2,3
sup
t∈R

{| arg(ρi(t))|}.
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For λ ∈ Sθ and z ∈ X, one has

R(λ,A(t))z =
∞∑

n=1

(λ − An(t))
−1Pnz

=
∞∑

n=1

Kn(t)(λ − Jn(t)Pn)
−1K−1

n (t)Pnz.

Hence,

‖R(λ,A(t))z‖2 ≤
∞∑

n=1

‖Kn(t)Pn(λ − Jn(t)Pn)
−1K−1

n (t)Pn‖2
B(X)‖Pnz‖2

≤
∞∑

n=1

‖Kn(t)Pn‖2
B(Z,X)‖(λ − Jn(t)Pn)

−1‖2
B(Z)

. ‖K−1
n (t)Pn‖2

B(X,Z)‖Pnz‖2.

Using Eq. (10.7) and the fact that b(t) > b0 par assumption, it follows that

|ρ(t) − b(t)| ≥ a(t)2|ρ(t)|
1 + |ρ(t)|2 , inf

t∈R |ρ(t)| > 0. (10.8)

Consequently, from the assumption a(t) > a0 it follows that

inf
t∈R |ρ(t) − b(t)| > 0. (10.9)

Moreover, for z :=
⎛

⎝
z1

z2

z3

⎞

⎠ ∈ Z, we have

‖Kn(t)Pnz‖2 = λ2
n‖Enz1 + Enz2 + Enz3‖2

+λ2
n‖ρ1(t)Enz1 + ρ2(t)Enz2 + ρ3(t)Enz3‖2

+λ2
n

∥
∥
∥
∥

a(t)ρ1(t)

ρ1(t) − b(t)
Enz1 + a(t)ρ2(t)

ρ2(t) − b(t)
Enz2 + a(t)ρ3(t)

ρ3(t) − b(t)
Enz3

∥
∥
∥
∥

2

.

Therefore, there is C1 > 0 such that

‖Kn(t)Pnz‖H ≤ C1λn‖z‖Z for all n ≥ 1 and t ∈ R.
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Arguing as above, for z :=
⎛

⎝
z1

z2

z3

⎞

⎠ ∈ X, one can show

‖K−1
n (t)Pnz‖ ≤ C2

λn

‖z‖ for all n ≥ 1 and t ∈ R.

Now, for z ∈ Z, we have

‖(λ − JnPn)
−1z‖2

Z =

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

1
λ+λnρ1(t)

0 0

0 1
λ+λnρ2(t)

0

0 0 1
λ+λnρ3(t)

⎞

⎟
⎠

⎛

⎝
z1

z2

z3

⎞

⎠

∥
∥
∥
∥
∥
∥
∥

2

Z

≤ 1

(λ + λnρ1(t))2
‖z1‖2 + 1

(λ + λnρ2(t))2
‖z2‖2

+ 1

(λ + λnρ3(t))2 ‖z3‖2.

Let λ0 > 0. Obviously, the function defined by

η(λ) := 1 + |λ|
|λ + λnρi(t)|

is continuous and bounded on the closed set Σ := {λ ∈ C/|λ| ≤ λ0, | arg λ| ≤ θ}.
On the other hand, it is clear that η is bounded for |λ| > λ0. Thus η is bounded

on Sθ . If we take

N = sup

{
1 + |λ|

|λ + λnρi(t)| : λ ∈ Sθ , n ≥ 1 ; i = 1, 2, 3, t ∈ R

}

.

Therefore,

‖(λ − JnPn)
−1z‖Z ≤ N

1 + |λ| ‖z‖Z, λ ∈ Sθ .

Consequently,

‖R(λ,A(t))‖ ≤ K

1 + |λ|
for all λ ∈ Sθ and t ∈ R.
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The operators A(t) are invertible and their inverses are given by

A(t)−1 =

⎛

⎜
⎜
⎝

−a(t)2b(t)−1A−1 −A−2 −a(t)b(t)−1A−2

I 0 0

−a(t)b(t)−1 0 −b(t)−1A−1

⎞

⎟
⎟
⎠ , t ∈ R.

Hence, for t, s, r ∈ R, one has

(A(t) − A(s))A(r)−1

=

⎛

⎜
⎜
⎝

0 0 0

−a(r)b(r)−1(a(t) − a(s))A 0 −b(r)−1(a(t) − a(s))

−(a(t) − a(s))A + a(r)b(r)−1(b(t) − b(s))A 0 −b(r)−1(b(t) − b(s))

⎞

⎟
⎟
⎠ ,

and hence

‖(A(t) − A(s))A(r)−1z‖ ≤ √
3(‖a(r)b(r)−1(a(t) − a(s))Az1‖

+‖b(r)−1(a(t) − a(s))z3‖ + ‖(a(t) − a(s))Az1‖
+‖a(r)b(r)−1(b(t) − b(s))Az1‖
+‖b(r)−1(b(t) − b(s))z3‖)

≤ √
3(|a(r)b(r)−1‖t − s|μ‖Az1‖ + |b(r)−1|‖t − s|μ‖z3‖

+|t − s|μ‖Az1‖ + ‖a(r)b(r)−1||t − s|μ‖Az1‖
+|b(r)−1‖t − s|μ‖z3‖)

≤ (2
√

3|a(r)b(r)−1| + 1)|t − s|μ‖Az1‖
+2

√
3|a(r)b(r)−1|‖t − s|μ‖z3‖.

Consequently,

‖(A(t) − A(s))A(r)−1z‖ ≤ C|t − s|μ‖z‖.
Step 2—For every t ∈ R, A(t) generates an analytic semigroup (eτA(t))τ≥0 on

X. Using similar computations as above, one can show that

sup
t,s∈R

‖A(t)A(s)−1‖ < ∞

and for every t, s ∈ R and 0 < μ ≤ 1,

‖A(t)A(s)−1 − Id‖ ≤ L′k|t − s|μ

with constant L′ ≥ 0 and k is the Lipschitz constant of the functions a and b.
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On the other hand, we have

eτA(t)z =
∞∑

n=0

Kn(t)
−1Pne

τJnPnKn(t)Pnz, z ∈ X.

Then,

‖eτA(t)z‖ =
∞∑

n=0

‖Kn(t)
−1Pn‖B(X,Z)‖eτJnPn‖B(Z)‖Kn(t)Pn‖B(Z,X)‖Pnz‖,

with for each z =
⎛

⎝
z1

z2

z3

⎞

⎠ ∈ Z

‖eτJnPnz‖2
Z =

∥
∥
∥
∥
∥
∥

⎛

⎝
e−λnρ1(t)τEn 0 0

0 e−λnρ2(t)τEn 0
0 0 e−λnρ3(t)τEn

⎞

⎠

⎛

⎝
z1

z2

z3

⎞

⎠

∥
∥
∥
∥
∥
∥

2

Z

≤ ‖e−λnρ1(t)τEnz1‖2 + ‖e−λnρ2(t)τEnz2‖2 + ‖e−λnρ3(t)τEnz3‖2

≤ e−2δτ‖z‖2
Z,

where δ = λ1 inf
t∈R{Re(ρ1(t)), Re(ρ2(t)), Re(ρ3(t))}.

Therefore

‖eτA(t)‖ ≤ Ce−δτ , τ ≥ 0. (10.10)

Using the continuity of the functions a, b and the spectral identity

R(λ,A(t)) − R(λ,A(s)) = R(λ,A(t)) (A(t) − A(s)) R(λ,A(s))

it follows that the mapping J � t �→ R(λ,A(t)) is strongly continuous for
λ ∈ Sθ where J ⊂ R is an arbitrary compact interval. Therefore, A(t) satisfies
the assumptions of [104, Corollary 2.3] and thus, the evolution family U(t, s) is
exponentially stable. The step 2 is complete.

To complete the proof, we have to show (A(·))−1 ∈ AP(R, B(X)) (See
assumption (H.823) of [Sect. 8.3, Chap. 8]). Let ε > 0, and τ = τε ∈ P(ε, a, b).
We have

A(t)−1 − A(t + τ)−1 = A(t + τ)−1(A(t + τ) − A(t))A(t)−1, (10.11)
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and,

A(t + τ) − A(t) =

⎛

⎜
⎜
⎝

0 0 0

0 0 (a(t + τ) − a(t))A

0 −(a(t + τ) − a(t))A −(b(t + τ) − b(t))A

⎞

⎟
⎟
⎠ .

Therefore, for z :=
⎛

⎝
z1

z2

z3

⎞

⎠ ∈ D, one has

‖(A(t + τ) − A(t))z‖ ≤ ‖(a(t + τ) − a(t))Az3‖ + ‖(a(t + τ) − a(t))Az2‖
+‖(b(t + τ) − b(t))Az3‖

≤ ε‖Az2‖ + ε‖Az3‖
≤ ε‖z‖D,

and using Eq. (10.11) (‖ · ‖D being the graph norm with respect to the domain D =
D(A(t))), we obtain

‖A(t + τ)−1y − A(t)−1y‖ ≤ ‖A(t + τ)−1(A(t + τ) − A(t))A(t)−1y‖
≤ ‖A(t + τ)−1‖B(X)

×‖(A(t + τ) − A(t))‖B(D,X)‖A(t)−1y‖D, y ∈ X.

Since ‖A(t)−1y‖D ≤ c‖y‖, then

‖A(t + τ)−1y − A(t)−1y‖ ≤ c′ε‖y‖.

Consequently, A(t)−1 is almost periodic.
Finally, for L sufficiently small, all assumptions of Theorem 8.21 are satisfied

and thus the thermoelastic system Eq. (10.1) has a unique almost periodic mild
solution

(
u

θ

)

with values in the interpolation space H1+α × Hα .
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10.3 Existence Results for Some Second-Order Partial
Functional Differential Equations

The main focus in this section consists of studying the existence of asymptotically
almost periodic solutions to some classes of second-order partial functional dif-
ferential equations with unbounded delay. The abstract results will, subsequently,
be utilized to studying the existence of asymptotically almost periodic solutions
to some integro-differential equations which arise in the theory of heat conduction
within fading memory materials.

10.3.1 Introduction

Our main concern in this section consists of studying the existence of asymptotically
almost periodic solutions to the class of second-order abstract partial functional
differential equations of the form

d

dt

[
x′(t) − g(t, xt )

] = Ax(t) + f (t, xt ), t ∈ I, (10.12)

x0 = ϕ ∈ B, (10.13)

x′(0) = ξ ∈ X, (10.14)

where A is the infinitesimal generator of a strongly continuous cosine family
(C(t))t∈R of bounded linear operators on X, the history xt : (−∞, 0] → X,
xt (θ) := x(t + θ), belongs to an abstract phase space B defined axiomatically,
and f, g are some appropriate functions.

Recall that the abstract Cauchy systems of the form, Eqs. (10.12)–(10.14) arise,
for instance, in the theory of heat conduction in materials with fading memories,
see, e.g., Gurtin–Pipkin [62] and Nunziato [96]. In the classical theory of heat
conduction, it is assumed that the internal energy and the heat flux depend linearly
upon the temperature u as well as its gradient ∇u. Under these conditions, the
classical heat equation describes sufficiently well the evolution of the temperature
in different types of materials. However, this description is not satisfactory for
materials with fading memories. In the theory developed in [62, 96], the internal
energy and the heat flux are described as functionals of u and ux . Upon some
physical conditions, they established that the temperature u(t, ξ) satisfies the
integro-differential equation

c
∂2u(t, ξ)

∂t2 = β(0)
∂u(t, ξ)

∂t
+

∫ ∞

0
β ′(s)∂u(t − s, ξ)

∂t
ds + α(0)�u(t, ξ)

+
∫ ∞

0
α′(s)�u(t − s, ξ)ds, (10.15)
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where β(·) is the energy relaxation function, α(·) is the stress relaxation function
and c is the density. Assuming that β(·) is smooth enough and that ∇u(t, ξ) is
approximately constant at t , we can rewrite the previous equation in the form

∂2u(t, ξ)

∂t2
= ∂

∂t

[
β(0)

c
u(t, ξ) + 1

c

∫ ∞

0
β ′(s)u(t − s, ξ)ds

]

+ d�u(t, ξ).

By making the function β(·) explicitly dependent on the time t , we can consider the
situation in which the material is submitted to an aging process so that the hereditary
properties are lost as the time goes to infinity. In this case, the previous equation
takes the form

∂2u(t, ξ)

∂t2
= ∂

∂t

[
β(t, 0)

c
u(t, ξ) + 1

c

∫ ∞

0

∂β(t, s)

∂s
u(t − s, ξ)ds

]

(10.16)

+d�u(t, ξ),

which can be transformed into the abstract systems of the form Eqs. (10.12)–(10.14)
assuming that the solution u(·) is known on [0,∞).

10.3.2 Preliminaries and Notations

In the rest of this section, if W is an arbitrary metric space, then the notation
Br(x,W) stands for the closed ball in W , centered at x with radius r . The linear
operator A : D(A) ⊂ X → X considered here will be assumed to be the
infinitesimal generator of a strongly continuous cosine family (C(t))t∈R of bounded
linear operators on X and (S(t))t∈R denote the associated sine function, which is
defined by

S(t)x =
∫ t

0
C(s)xds,H x ∈ X, t ∈ R.

For further details upon cosine function theory and their applications to the
second-order abstract Cauchy problem, we refer the reader to Fattorini [57] and
Travis and Webb [106, 107].

Recall that Travis and Webb [106] studied the existence of solutions to the
second-order abstract Cauchy problem,

x′′(t) = Ax(t) + h(t), t ∈ [0, b], (10.17)

x(0) = w, x′(0) = z, (10.18)

where h ∈ L1([0, b];X).
The corresponding semilinear case was also done by Travis and Webb [107].
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Recall that a mild solution for the system Eqs. (10.17)–(10.18) is any function x

that is given by

x(t) = C(t)w + S(t)z +
∫ t

0
S(t − s)h(s)ds, t ∈ [0, b]. (10.19)

In this section the definition of the phase space B will be as in [69]. Namely,
B will be a vector space of functions mapping (−∞, 0] into X endowed with a
semi-norm ‖ · ‖B . Moreover, we will assume that the following axioms hold,

(A) If x : (−∞, σ + b] → X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈
C([σ, σ + b];X), then for every t ∈ [σ, σ + b) the following conditions
hold:

(i) xt is in B,
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B ,

(iii) ‖ xt ‖B≤ K(t − σ) sup{‖ x(s) ‖: σ ≤ s ≤ t} + M(t − σ) ‖ xσ ‖B,

where H > 0 is a constant, K,M : [0,∞) → [1,∞) with K being
continuous, M is locally bounded, and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t → xt is continuous from [σ, σ +a)

into B.
(B) The space B is complete.

(C2) If (ϕn)n∈N is a uniformly bounded sequence in C((−∞, 0];X) formed by
functions with compact support and ϕn → ϕ in the compact-open topology,
then ϕ ∈ B and

‖ϕn − ϕ‖B → 0

as n → ∞.

Example 10.2 (The Phase Space Cr × Lp(ρ;X)) Let r ≥ 0, 1 ≤ p < ∞ and
let ρ : (−∞,−r] → R be a nonnegative measurable function which satisfies
the conditions (g-5), (g-6) in the terminology of [69]. Briefly, this means that ρ is
a locally integrable function and that there exists a nonnegative locally bounded
function γ on (−∞, 0] such that

ρ(ξ + θ) ≤ γ (ξ)ρ(θ),

for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ , where Nξ ⊆ (−∞,−r) is a set whose
Lebesgue measure is zero.

The space Cr ×Lp(ρ;X) consists of all classes of functions ϕ : (−∞, 0] → X

such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and ρ‖ϕ‖p is Lebesgue
integrable on (−∞,−r). The semi-norm on Cr × Lp(ρ;X) is defined by

‖ϕ‖B := sup
{
‖ϕ(θ)‖ : −r ≤ θ ≤ 0

}
+

(∫ −r

−∞
ρ(θ)‖ϕ(θ)‖pdθ

)1/p

.



154 10 Second-Order Semilinear Evolution Equations

The space B = Cr × Lp(ρ;X) satisfies axioms (A)-(A1)-(B). Moreover, when
r = 0 and p = 2, we can take

H = 1, M(t) = γ (−t)1/2, and K(t) = 1 +
(∫ 0

−t

ρ(θ) dθ

)1/2

for t ≥ 0, see [69, Theorem 1.3.8] for details.
Some of our existence results require some additional assumptions upon the

phase space B.

Definition 10.3 Let B0 = {ψ ∈ B : ψ(0) = 0}. The phase space B is called a
fading memory space if ‖ S(t)ψ‖B → 0 as t → ∞ for every ψ ∈ B0. We say that
B is a uniform fading memory space if ‖S(t)‖L (B0) → 0 as t → ∞.

For further details upon phase spaces, we refer the reader to for instance [69].

Let I ⊂ R be an interval. Recall that the spaces BC(I ;V ) = Cb(I ;V ) and
C0([0,∞);V ) are defined respectively by

BC(I,V ) = Cb(I ;V )

=
{

x : I → V , x is continuous and ‖x‖ = sup
t∈I

‖ x(t) ‖< ∞
}

,

C0([0,∞);V ) =
{
x ∈ Cb([0,∞);V ) : lim

t→∞ ‖x(t)‖ = 0
}

,

and both spaces are endowed with their corresponding sup-norms.

10.3.3 Existence of Local and Global Mild Solutions

We establish the existence of mild solutions to Eqs. (10.12)–(10.14) in the particular
cases when I = [0, a] and I = [0,∞). Suppose, I = [0, a] or I = [0,∞) and let
N, Ñ be positive constants such that

‖C(t)‖ ≤ N

and

‖S(t)‖ ≤ Ñ

for every t ∈ I .
Our existence results require the following general assumption,

(H1) The functions f, g : I × B → X satisfy the following conditions:

(i) The functions f (t, ·), g(t, ·) : B → X are continuous a.e. t ∈ I .
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(ii) For each ψ ∈ B, the functions f (·, ψ), g(·, ψ) : I → X are strongly
measurable.

(iii) There exist integrable functions mf , mg : I → [0,∞) and continuous
nondecreasing functions Wf ,Wg : [0,∞) → (0,∞) such that

‖ f (t, ψ) ‖ ≤ mf (t)Wf (‖ ψ ‖B), (t, ψ) ∈ I × B,

‖ g(t, ψ) ‖ ≤ mg(t)Wg(‖ ψ ‖B), (t, ψ) ∈ I × B.

Motivated by the concept of mild solution given in Eq. (10.19), we adopt the
following concept of mild solution for Eqs. (10.12)–(10.14).

Definition 10.4 A function x : (−∞, 0] ∪ I → X is called a mild solution of the
abstract Cauchy problem Eqs. (10.12)–(10.14) on I , if x0 = ϕ and

x(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ∈ I.

In the rest of this section, we set W := max{Wf ,Wg}.

10.3.4 Existence of Solutions in Bounded Intervals

Recall that the existence of mild solutions to Eqs. (10.12)–(10.14) in the case when
I = [0, a] can be obtained through the results in [67]. However, for the sake of
clarity and completeness, we provide the reader with the proof of the next theorem,
as some of the ideas in this proof are also needed in the sequel.

Theorem 10.5 Suppose that assumption (H1) holds and that for every 0 < t ≤
a and r > 0, the sets U(t, r) = {S(t)f (s, ψ) : s ∈ [0, t], ‖ ψ ‖B≤ r} and
g(I × Br(0,B)) are relatively compact in X. If

Ka

∫ a

0
(Nmg(s) + Ñmf (s)) ds <

∫ ∞

c

ds

W(s)
, (10.20)

where

c = (KaNH + Ma) ‖ ϕ ‖B +KaÑ(‖ξ‖ + ‖g(0, ϕ)‖),

Ka = sup
s∈[0,a]

K(s),
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and

Ma = sup
s∈[0,a]

M(s),

then the system Eqs. (10.12)–(10.14) has a mild solution.

Proof Let the vector space

BC =
{
x : (−∞, a] → X : x|(−∞,0] ∈ B, x|[0,a] ∈ C([0, a];X)

}

be endowed with the norm defined by

‖x‖BC = ‖x|(−∞,0]‖B + ‖x|[0,a]‖a

for all x ∈ BC.
On this space, we define the map Γ : BC → BC by (Γ x)0 = ϕ and

Γ x(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ∈ I.

It is then easy to see that Γ x is well defined and that Γ x ∈ BC. Moreover, by using
the phase space axioms and the Lebesgue Dominated Convergence Theorem, one
can prove that Γ is a continuous function from BC into BC.

In order to apply Theorem 1.81, we establish an a priori estimate for the solution
of the integral equation x = λΓ x, λ ∈ (0, 1). Let xλ ∈ BC be a solution of
x = λΓ x, λ ∈ (0, 1). For t ∈ I , we get

‖ xλ(t) ‖ ≤ NH ‖ ϕ ‖B +Ñ(‖ ξ ‖ + ‖ g(0, ϕ) ‖) +
∫ t

0
(Nmg(s)

+Ñmf (s))W(‖ xλ
s ‖B)ds

which yields

‖ xλ
t ‖B ≤ (KaNH + Ma) ‖ ϕ ‖B +KaÑ(‖ ξ ‖ + ‖ g(0, ϕ) ‖)

+Ka

∫ t

0
(Nmg(s) + Ñmf (s))W(‖ xλ

s ‖B)ds.

Denoting by βλ(t) the right-hand side of the last inequality, we find that

β ′
λ(t) ≤ Ka(Nmg(t) + Ñmf (t))W(βλ(t)),
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and hence,

∫ βλ(t)

βλ(0)=c

ds

W(s)
≤ Ka

∫ t

0
(Nmg(s) + Ñmf (s)) ds <

∫ ∞

c

ds

W(s)
,

which enables to conclude that the set of functions {βλ : λ ∈ (0, 1)} is bounded. As
a consequence of the previous fact, {xλ : λ ∈ (0, 1)} is bounded in C(I,X) as

‖ xλ(t) ‖≤ H ‖ xλ
t ‖≤ βλ(t)

for every t ∈ I .
On the other hand, from [68, Lemma 3.1] we deduce that Γ is completely

continuous on BC. The existence of a mild solution for Eqs. (10.12)–(10.14) is
now a consequence of Theorem 1.81.

In many situations of practical interest, the sine function S(t) is compact. This is
the motivation for the next result.

Corollary 10.6 Suppose that assumption (H1) holds and that S(t) is compact for
all t ≥ 0 and the set g(I × Br(0,B)) is relatively compact in X for every r > 0. If
Eq. (10.20) holds, then the system Eqs. (10.12)–(10.14) has a mild solution.

Remark 10.7 Recall that except when the space X is a finite dimensional space, the
cosine function is not compact, and that for this reason, the compactness assumption
on the function g cannot be removed. For more on this and related issues, we refer
the reader to for instance the work of Travis and Webb [106, pp. 557].

Using similar ideas as in the proof of Theorem 10.5, we can prove the following
local existence result.

Theorem 10.8 Suppose that assumption (H1) holds and that for every 0 < t ≤ a

and r > 0, the sets

U(t, r) =
{
S(t)f (s, ψ) : s ∈ [0, t], ‖ψ‖B ≤ r

}

and

g(I × Br(0,B))

are relatively compact in X.
Then there exists a mild solution to Eqs. (10.12)–(10.14) on [0, b] for some 0 <

b ≤ a.
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10.3.5 Existence of Global Solutions

In this subsection, our discussions will be upon the existence of mild solutions
defined on the interval I = [0,∞). For that, we suppose that M,K are positive
constants such that M(t) ≤ M and K(t) ≤ K for every t ≥ 0 and that the functions
mf ,mg are locally integrable.

We need the following notations

W = max{Wf ,Wg}, m = max{mf ,mg}, γ (s) = Nmg(s) + Ñmf (s).

Remark 10.9 Recall that if B is a fading memory space, then the functions M(·),
K(·) are bounded on [0,∞). For further details on this and related issues, we refer
the reader to [69, Proposition 7.1.5].

Let h : [0,∞) → (0,∞) be a continuous nondecreasing function with h(0) = 1
and such that h(t) → ∞ as t → ∞.

Let C0,h(X) denote the space defined by

C0,h(X) =
{

x ∈ C([0,∞);X) : lim
t→∞

‖ x(t) ‖
h(t)

= 0

}

,

which we equip with the norm

‖x‖h = sup
t≥0

‖ x(t) ‖
h(t)

.

Recall the following well-known compactness criterion:

Lemma 10.10 A set B ⊂ C0([0,∞);X) is relatively compact in C0([0,∞);X) if
and only if,

(a) B is equi-continuous;
(b) lim

t→∞ ‖ x(t) ‖ = 0, uniformly for x ∈ B;

(c) The set B(t) = {x(t) : x ∈ B} is relatively compact in X for every t ≥ 0.

Proof The proof is left to the reader as an exercise.

The main existence result of this subsection can now be formulated as follows:

Theorem 10.11 Under assumption (H1), if the following conditions hold:

(a) for every t ∈ I and each r ≥ 0 the sets

{
S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)

}
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and

g([0, t] × Br(0,B))

are relatively compact in X;
(b) for every L ≥ 0,

1

h(t)

∫ t

0
m(s)W(Lh(s)) ds → 0

as t → ∞ and

lim sup
r→∞

1

r

∫ ∞

0
γ (s)

W((K + M)rh(s))

h(s)
ds < 1.

Then the system Eqs. (10.12)–(10.14) has a mild solution on [0,∞).

Proof On the space

BC0,h(X) = {x : R → X : x0 ∈ B, x|I ∈ C0,h(X)}

endowed with the norm defined by

‖x‖BC0,h
= ‖x0‖B + ‖x|I‖h,

we define the map Γ : BC0,h(X) → BC0,h(X) by (Γ x)0 = ϕ and

Γ x(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ≥ 0.

It is easy to prove that the expression Γ x(·) is well defined for each x ∈ BC0,h(X).
On the other hand, using the fact that ‖xs‖B ≤ (K + M) ‖ x ‖BC0,h

h(s) for s ∈ I ,
we find that

‖Γ x(t)‖
h(t)

≤ NH‖ϕ‖B + (‖ξ‖ + ‖g(0, ϕ)‖)
h(t)

(10.21)

+ 1

h(t)

∫ t

0
[Nmg(s) + Ñmf (s)]W((K + M) ‖ x ‖BC0,h

h(s))ds,

which implies, from condition (c), that ‖Γ x(t)‖
h(t)

converges to zero as t → ∞. This
shows that Γ is a well-defined map from BC0,h(X) into BC0,h(X). Note that the
inequality (10.21) shows also that ‖Γ x(t)‖

h(t)
→ 0, as t → ∞, uniformly for x in

bounded sets of BC0,h(X).
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In the sequel we prove that Γ verifies the hypotheses of Theorem 1.81. We begin
by proving that Γ is continuous. Let (un)n be a sequence in BC0,h(X) and u ∈
BC0,h(X) such that un → u as n → ∞. Clearly, g(s, un

s ) → g(s, us), f (s, un
s ) →

f (s, us) a.e. s ∈ I as n → ∞, and

‖f (s, un
s )‖ ≤ mf (s)Wf (βh(s)), s ≥ 0,

‖g(s, un
s )‖ ≤ mg(s)Wg(βh(s)), s ≥ 0,

where β = (K + M)L and L > 0 is such that

sup{‖ u ‖BC0,h(X), ‖un‖BC0,h(X) : n ∈ N} ≤ L.

Since the functions on the right-hand side of the above inequalities (involving f and
g) are integrable on [0, t], we conclude that

‖ Γ un(t) − Γ u(t) ‖→ 0 as n → ∞

uniformly for t in bounded intervals. Moreover, using the argument that the set of
functions {un : n ∈ N} is bounded in BC0,h(X), for each ε > 0 there exists Tε > 0
such that ‖Γ un(t)−Γ u(t)‖

h(t)
≤ ε, for all n ∈ N and every t ≥ Tε . Combining these

properties we obtain that Γ un → Γ u in BC0,h(X). Thus, Γ is continuous.
On the other hand, if xλ ∈ BC0,h(X) is a solution of the integral equation λΓ z =

z, 0 < λ < 1, for t ≥ 0, we obtain that

‖xλ(t)‖
h(t)

≤ NH ‖ ϕ ‖B +Ñ(‖ ξ ‖ +‖g(0, ϕ) ‖)
h(t)

+ 1

h(t)

∫ t

0
γ (s)W((K + M) ‖ xλ ‖BC0,h(X) h(s))ds,

and hence

‖ xλ ‖BC0,h(X) ≤ (1 + NH) ‖ ϕ ‖B +Ñ(‖ ξ ‖ +‖g(0, ϕ) ‖)

+
∫ ∞

0
γ (s)

W((K + M) ‖ xλ ‖BC0,h(X) h(s))

h(s)
ds.

From the previous estimates, if the set {‖ xλ ‖BC0,h(X) : 0 < λ < 1} is unbounded,
we deduce the existence of a sequence (rn)n∈N with rn → ∞ such that

1 ≤ lim inf
n→∞

1

rn

∫ ∞

0
γ (s)

W((K + M)rnh(s))

h(s)
ds

which is absurd, therefore the set {‖ xλ ‖BC0,h(X): 0 < λ < 1, } is bounded.
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Arguing as in the proof of Theorem 10.5, we can prove that

{

Γ x(t) : x ∈ Br(0,BC0,h(X))

}

is relatively compact in X for every t ≥ 0 and that

{
Γ x

h
: x ∈ Br(0,BC0,h(X))

}

is equi-continuous on [0,∞). Moreover, from our previous remarks we know that
Γ x(t)
h(t)

→ 0 as t → ∞, uniformly for x ∈ Br(0,BC0,h(X)). Consequently, we have
shown that the set

{
Γ x

h
: x ∈ Br(0,BC0,h(X))

}

fulfills the conditions of Lemma 10.10, which yields it is relatively compact in
C0(X). Therefore, Γ Br(0,BC0,h(X))) is relatively compact in BC0,h(X).

The existence of a mild solution for the system Eqs. (10.12)–(10.14) on [0,∞)

follows from Theorem 1.81.

10.3.6 Existence of Asymptotically Almost Periodic Solutions

In this subsection we study the existence of asymptotically almost periodic solutions
for the abstract system Eqs. (10.12)–(10.14). For that, suppose that there exist two
positive constants N and Ñ such that

‖C(t)‖ ≤ N

and

‖S(t)‖ ≤ Ñ

for every t ≥ 0.
Let us recall the following definitions which are needed in the sequel:

Definition 10.12 An operator function F : [0,∞) → B(V ,W ) is said to be:

(a) strongly continuous if for every each x ∈ V , the function F(·)x : [0,∞) → W
is continuous;

(b) pointwise almost periodic (respectively, pointwise asymptotically almost peri-
odic ) if F(·)x ∈ AP(W ) for every x ∈ V ( respectively, F(·)x ∈ AAP(W )

for every x ∈ V );
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(c) almost periodic (respectively, asymptotically almost periodic ) if F(·) ∈
AP(B(V ,W )) (respectively, F(·) ∈ AAP(B(V ,W ))).

Remark 10.13 Note that if the sine function S(·) is uniformly bounded and
pointwise almost periodic, then the cosine function C(·) is also pointwise almost
periodic, see, e.g., [64, Lemma 3.1] and [64, Theorem 3.2] for details.

Lemma 10.14 ([113, Chapter 6]) Let V ⊆ AP(X) be a set with the following
properties:

(a) V is uniformly equi-continuous on R;
(b) for each t ∈ R, the set V (t) = {x(t) : x ∈ V } is relatively compact in X;
(c) V is equi-almost periodic, that is, for every ε > 0 there is a relatively dense set

H (ε, V ,X) ⊂ R such that

‖x(t + τ) − x(t)‖ ≤ ε, x ∈ V, τ ∈ H (ε, V ,X), t ∈ R.

Then, V is relatively compact in AP(X).

Remark 10.15 As an immediate consequence of this characterization, one can
assert that if F : R → B(X,Y) is almost periodic and U is a relatively compact
subset of X, then V = {F(·)x : x ∈ U} is relatively compact in AP(Y). For the
sine function, we can strengthen this property.

Proposition 10.16 Assume that the sine function S(·) is almost periodic and that
U ⊆ X. If the set {S(t)x : x ∈ U, t ≥ 0} is relatively compact in X, then V =
{S(·)x : x ∈ U} is relatively compact in AP(X).

Proof Let us fix δ > 0. Since S(δ)U is relatively compact in X, by using
Remark 10.15, we can claim that Vδ = {S(·)S(δ)x : x ∈ U} is relatively compact
in AP(X). On the other hand, for each ε > 0 there is δ > 0 such that

‖(I − C(s))S(t)x‖ ≤ ε

for all 0 ≤ s ≤ δ, every x ∈ U and all t ≥ 0.
We deduce from above that

‖ S(t)x − 1

δ
S(t)S(δ)x ‖=‖ 1

δ

∫ δ

0
(I − C(s))S(t)xds ‖≤ ε,

for every t ≥ 0.
This property and the decomposition

S(·)x = 1

δ
S(·)S(δ)x + S(·)x − 1

δ
S(·)S(δ)x,

imply that V ⊆ 1
δ
Vδ + Bε(0, Cb(X)), which in turn proves that V is relatively

compact in AP(X).
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Remark 10.17 Recall that the assumption on the compactness of the set {S(t)x :
x ∈ U, t ≥ 0} in Proposition 10.16 is verified, for instance, in the case when the
sine function is almost periodic.

Lemma 10.18 Assume that S(·) is pointwise almost periodic and that U is a
bounded subset of X. If one of the following conditions holds:

(i) U is relatively compact.
(ii) S(·) is almost periodic and S(t) is compact for every t ∈ R.

Then {S(t)x : x ∈ U, t ≥ 0} is relatively compact in X.

Proof The proof is left to the reader as an exercise.

Recall that the case (ii) includes the case of periodic sine functions.
For asymptotically almost periodic functions, we have a similar characterization

of compactness given in the next lemma.

Lemma 10.19 Let V ⊆ AAP(X) be a set with the following properties:

(a) V is uniformly equi-continuous on [0,∞);
(b) for each t ≥ 0, the set V (t) = {x(t) : x ∈ V } is relatively compact in X;
(c) V is equi-asymptotically almost periodic, that is, for every ε > 0 there are

L(ε, V,X) ≥ 0 and a relatively dense set H (ε, V ,X) ⊆ [0,∞) such that

‖x(t + τ) − x(t)‖ ≤ ε, x ∈ V, t ≥ L(ε, V,X), τ ∈ H (ε, V ,X).

Then, V is relatively compact in AAP(X).

Proof The proof is left to the reader as an exercise.

Remark 10.20 If f ∈ AAP(X), then it can be decomposed in a unique fashion
as f = f1 + f2, where f1 ∈ AP(X) and f2 ∈ C0(X). Let V ⊆ AAP(X) and
Vi = {fi : f ∈ V }, i = 1, 2. It follows from the above-mentioned results that V

is relatively compact in AAP(X) if, and only if, V1 is relatively compact in AP(X)

and V2 is relatively compact in C0(X).

We will be using the next proposition.

Proposition 10.21 Let (Vi , ‖ · ‖Vi
), i = 1, 2, be Banach spaces and V ⊆

L1([0,∞),V1). If F1 : [0,∞) → B(V1,V2) and F2 : [0,∞) → B(V2) are
strongly continuous functions of bounded linear operators which satisfy

(a)
∫ ∞

L

F1(s)x(s)ds → 0 in V2 when L → ∞, uniformly for x ∈ V ;

(b) For each t ≥ 0, the set {x(s) : x ∈ V, 0 ≤ s ≤ t} is relatively compact in V1,

then the sets

W(t) =
{∫ t

0
F1(s)x(s)ds : x ∈ V

}

, t ≥ 0,
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and

W =
⋃

0≤t≤∞
W(t)

are relatively compact in V2. Moreover, if F2 is uniformly bounded on [0,∞) and

∫ t+h

t

F1(s)x(s)ds → 0,

as h → 0, uniformly for x ∈ V , then the set U = {zx : x ∈ V }, where

zx(t) = F2(t)

∫ ∞

t

F1(s)x(s)ds,

is relatively compact in C0(V2).

Proof Let (Kt )t≥0 be a family of compacts sets such that {x(s) : x ∈ V, s ∈
[0, t]} ⊆ Kt for every t ≥ 0. Since F1 is strongly continuous, then the set

F1Kt = {F1(s)y : y ∈ Kt, 0 ≤ s ≤ t}

is relatively compact in V2.
Let (K̃t )t≥0 be a nondecreasing family of compact and absolutely convex sets

such that F1Kt ⊂ K̃t for every t ≥ 0.
From the mean value theorem for the Bochner integral (see [90, Lemma 2.1.3]),

we infer that W(t) ⊆ tK̃t for all t > 0. On the other hand, for each ε > 0 there is a
constant L ≥ 0 such that

∥
∥
∥

∫ ∞

L

F1(s)x(s)ds‖V2 ≤ ε

for all x ∈ V .
Using the sets K̃t it follows that W ⊆ LK̃L + Bε(0,V2), which yields W is

relatively compact in V2. Thus, the sets W(t), t ≥ 0, and W are relatively compact
in V2.

To establish the last assertion, we make use of Lemma 10.10. The hypothesis (b)

of Lemma 10.10 can be easily obtained as an immediate consequence of (a) and the
fact that F2 is uniformly bounded. Moreover, for every t ≥ 0 and x ∈ V , we have
that

∫ ∞

t

F1(s)x(s)ds ∈ W − W(t) ⊂ W − W = W1,
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which proves that the set

U(t) =
{
F2(t)

∫ ∞

t

F1(s)x(s)ds : x ∈ V
}

is relatively compact in V2 for every t ≥ 0.
Finally, we prove that U is equi-continuous. To this end, we fix t ≥ 0. Since

elements
∫ ∞

t

F1(ξ)x(ξ) dξ, x ∈ V,

are in the compact set W1 (which is independent of t), and the family (F2(t))t≥0 is
strongly continuous in V2, for ε > 0 there exists δ > 0 such that

‖ F2(t + s)x − F2(t)x ‖ ≤ ε, x ∈ W1,

‖
∫ t+s

t

F1(ξ)x(ξ)dξ ‖ ≤ ε, x ∈ V,

for every 0 <| s |< δ with t + s ≥ 0. Consequently, for x ∈ V and 0 <| s |< δ

such that t + s ≥ 0, we get,

‖ F2(t + s)

∫ ∞

t+s

F1(ξ)x(ξ) dξ − F2(t)

∫ ∞

t

F1(ξ)x(ξ) dξ ‖

≤‖ (F2(t + s) − F2(t))

∫ ∞

t+s

F1(ξ)x(ξ)dξ ‖

+ ‖ F2(t) ‖‖
∫ t∨(t+s)

t∧(t+s)

F1(ξ)x(ξ) dξ ‖

≤ sup{‖ (F2(t + s)y − F2(t)y ‖: y ∈ W1}+ ‖ F2(t) ‖ ε,

≤ (1 + sup
θ≥0

‖ F2(θ) ‖)ε,

which implies that U is equi-continuous at t .

In the next results, for a locally integrable function x : [0,∞) → X, we denote
by zx, yx : [0,∞) → X the functions given by

zx(t) =
∫ t

0
C(t − s)x(s)ds

and

yx(t) =
∫ t

0
S(t − s)x(s)ds.
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Proposition 10.22 Assume that S(·) is pointwise almost periodic and that V ⊆
L1([0,∞),X) is a set with the following properties:

(a)
∫ ∞

L

‖x(s)‖ds → 0 when L → ∞, uniformly for x ∈ V ;

(b)
∫ t+s

t

‖x(ξ)‖ dξ → 0, when s → 0, uniformly for x ∈ V and t ≥ 0;

(c) for each t ≥ 0 the set {x(s) : 0 ≤ s ≤ t, x ∈ V } is relatively compact.

Then the sets {yx : x ∈ V } and {zx : x ∈ V } are relatively compact in AAP(X).

Proof We first establish that each function yx is asymptotically almost periodic. For
x ∈ V , we can write

yx(t) = S(t)

∫ t

0
C(s)x(s) ds − C(t)

∫ t

0
S(s)x(s) ds

= S(t)

∫ ∞

0
C(s)x(s) ds − S(t)

∫ ∞

t

C(s)x(s) ds

− C(t)

∫ ∞

0
S(s)x(s) ds + C(t)

∫ ∞

t

S(s)x(s) ds.

Since the sine function S(·) is pointwise almost periodic, it follows from [64,
Lemma 3.1] and [64, Theorem 3.2] that C(·) is also pointwise almost periodic.
Therefore, the first and third terms on the right-hand side define almost periodic
functions while the second and fourth terms are functions that vanish at ∞. Thus,
yx ∈ AAP(X).

From Proposition 10.21, we know that the integrals

∫ ∞

0
C(s)x(s)ds

and
∫ ∞

0
S(s)x(s)ds,

for x ∈ V, are included in a compact subset of X, which implies that the set formed
by the functions

S(·)
∫ ∞

0
C(s)x(s)ds − C(·)

∫ ∞

0
S(s)x(s)ds, x ∈ V,

is relatively compact in AP(X). The same Proposition enables us to infer that the
set
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{t → C(t)

∫ ∞

t

S(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds : x ∈ V }

is relatively compact in C0(X). This shows that {yx : x ∈ V } is relatively compact
in AAP(X).

We now prove that the set {zx : x ∈ V } is relatively compact in AAP(X). For
that we first show that the functions zx, x ∈ V, are uniformly continuous. First of
all, fix L > 0. Since C(·) is pointwise almost periodic, from (c) we have that

‖(C(t + s) − C(t))x(ξ)‖ → 0,

as s → 0, uniformly for t ≥ 0, 0 ≤ ξ ≤ L and x ∈ V . Therefore,

‖zx(t + s) − zx(t)‖

≤
∫ t∧(t+s)

0
‖C(t + s − ξ)x(ξ) − C(t − ξ)x(ξ)‖dξ

+ ‖
∫ t∨(t+s)

t∧(t+s)

C(t + s − ξ)x(ξ)dξ‖

≤
∫ L

0
sup

t≥0,x∈V

‖(C(t + s − ξ) − C(t − ξ))x(ξ)‖dξ

+ 2N

∫ ∞

L

‖x(ξ)‖dξ + N

∫ t∨(t+s)

t∧(t+s)

‖x(ξ)‖dξ.

Using conditions (a) and (b) we can appropriately choose L to show that the right-
hand side of the above inequality converges to 0 as s → 0, uniformly in t ≥ 0
and x ∈ V , which proves that each function zx is uniformly continuous on [0,∞).
Moreover, from the above, it is clear that the set {zx : x ∈ V } is uniformly equi-
continuous on [0,∞). Since zx is the derivative of yx , it follows from [113, Theorem
5.2] that {zx : x ∈ V } is a uniformly equi-continuous subset of AAP(X). Moreover,
from Proposition 10.21 we obtain that {zx(t) : x ∈ V } is relatively compact, for all
t ≥ 0.

Finally, we establish that {zx : x ∈ V } is equi-asymptotically almost periodic.
For a given ε > 0, there exists Lε > 0 such that

∫ ∞

Lε

‖x(s)‖ds ≤ ε/6N

for all x ∈ V .
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In addition, since the set {C(·)x(s) : 0 ≤ s ≤ Lε} is equi-almost periodic, there
is a relatively dense set Pε ⊆ [0,∞) such that

‖C(ξ + τ)x(s) − C(ξ)x(s)‖ ≤ ε

3Lε

,

for all ξ ≥ 0, 0 ≤ s ≤ Lε and every τ ∈ Pε. Hence, for t ≥ Lε and τ ∈ Pε, we
obtain

‖zx(t + τ) − zx(t)‖ ≤
∫ t

0
‖C(t + τ − s)x(s) − C(t − s)x(s)‖ds

+
∫ t+τ

t

‖C(t + τ − s)x(s) ‖ ds

≤
∫ Lε

0
‖C(t + τ − s)x(s) − C(t − s)x(s)‖ds

+3N

∫ ∞

Lε

‖x(s)‖ ds

≤ ε

which shows the assertion.
One completes the proof by applying Lemma 10.19 to the set {zx : x ∈ V }.
Using this result and proceeding as in the proof of Proposition 10.16 we obtain

the compactness of {yx : x ∈ V } with some weaker conditions.

Proposition 10.23 Assume that S(·) is almost periodic and that V ⊆
L1([0,∞),X) is uniformly bounded and satisfies the following properties:

(a)
∫ ∞

L

‖ x(s) ‖ ds → 0, when L → ∞, uniformly for x ∈ V ;

(b)
∫ t+s

t

‖x(ξ)‖ dξ → 0, as s → 0, uniformly for t ≥ 0 and x ∈ V ;

(c) for each t, δ ≥ 0, the set {S(δ)x(s) : 0 ≤ s ≤ t, x ∈ V } is relatively compact
in X.

Then {yx : x ∈ V } is relatively compact in AAP(X).

Proof Define for all x ∈ V , the function

ỹx(t) =
∫ t

0
S(s)x(s)ds.

Let 0 < ε < t ≤ a. Since the function s → S(s) is Lipschitz continuous, we
can choose points 0 = t1 < t2 . . . < tn = t such that ‖ S(s) − S(s′) ‖≤ ε for
s, s′ ∈ [ti , ti+1] and i = 1, 2, . . . .n − 1. For x ∈ V , then from the Mean Value
Theorem for the Bochner integral (see [90, Lemma 2.1.3]), we find that
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ỹx(t) =
n−1∑

i=1

∫ ti+1

ti

(S(s) − S(ti))x(s)ds +
n−1∑

i=1

∫ ti+1

ti

S(ti)x(s)ds

∈ Cε +
n−1∑

i=1

(ti+1 − ti ) co({S(ti)z(s) : s ∈ [0, ti], z ∈ V })

⊂ Cε + Kε,

where Kε is compact and diam(Cε) → 0 as ε → 0. This proves that W1(t) =
{ỹx(t); x ∈ V } is relatively compact in X. Moreover, proceeding as in the proof of
Proposition 10.21, we infer that

W =
⋃

0≤t≤∞
W(t)

and

U =
{ ∫ ∞

t

S(s)x(s)ds : x ∈ V, t ≥ 0
}

are also relatively compact in X.
To complete the proof, we consider one more time the decomposition

yx(t) = S(t)

∫ ∞

0
C(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds

−C(t)

∫ ∞

0
S(s)x(s)ds + C(t)

∫ ∞

t

S(s)x(s)ds.

Since the cosine function is pointwise almost periodic (see Remark 10.13), we infer
from Remark 10.15 and Lemma 10.10 that the set of functions

{
t → −C(t)

∫ ∞

0
S(s)x(s) ds + C(t)

∫ ∞

t

S(s)x(s)
}

is relatively compact in AAP(X). Moreover, using the fact that S(·) is almost
periodic and that S(t) is a compact operator for every t ≥ 0, we can prove from
Remark 10.15 and Lemma 10.10 that the set of functions

{
t → S(t)

∫ ∞

0
C(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds : x ∈ V
}

is also completely continuous in AAP(X).
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The main result of this subsection can be formulated as follows:

Theorem 10.24 Assume that S(·) is almost periodic and that condition (H1) holds
with mf (·) and mg(·) in L1([0,∞)). Suppose, in addition, that for every t ≥ 0
and each r ≥ 0 the sets {S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)} and g([0, t] ×
Br(0,B)) are relatively compact in X. If

K

∫ ∞

0
(Nmg(s) + Ñmf (s))ds <

∫ ∞

c

ds

W(s)
, (10.22)

where c = (KNH + M) ‖ ϕ ‖B +KÑ(‖ ξ ‖ + ‖ g(0, ϕ) ‖), then there exists a
mild solution u(·) ∈ AAP(B,X) to the system Eqs. (10.12)–(10.14).

Proof Let BAAP = {x : R → X : x0 ∈ B, x |[0,∞)∈ AAP(X)} endowed with
the semi-norm ‖x‖BAAP := ‖x0‖B + supt≥0 ‖x(t)‖ and Γ : BAAP → BAAP

be the operator defined by

Γ x(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)]

+
∫ t

0
C(t − s)g(s, xs)ds +

∫ t

0
S(t − s)f (s, xs)ds,

for t ≥ 0, and (Γ x)0 = ϕ.
By the integrability of the functions mf (·) and mg(·) and proceeding as in the

proof of Proposition 10.22 for the functions f (s, xs) and g(s, xs), we infer that
Γ (x) ∈ AAP(B,X). Furthermore, if we take a sequence (xn)n that converges
to x in the space AAP(B,X), then S(t − s)f (s, xn

s ) → S(t − s)f (s, xs) and
C(t − s)g(s, xn

s ) → C(t − s)g(s, xs), as n → ∞, a.e. for t, s ∈ [0,∞]. Let
L = sup{‖x‖BC, ‖xn‖BC : n ∈ N} and β = (K + M)L. From the inequalities

‖C(t − s)g(s, xn
s ) − C(t − s)g(s, xs)‖ ≤ 2Nmg(s)Wg(β),

‖S(t − s)f (s, xn
s ) − S(t − s)f (s, xs)‖ ≤ 2Ñmf (s)Wf (β),

and using the integrability of mf (·) and mg(·), we conclude that ‖ Γ xn −
Γ x ‖BAAP → 0 when n → ∞. Thus, Γ is a continuous map from AAP(B,X)

into AAP(B,X).
On the other hand, proceeding as in the proof of Theorem 10.5, we conclude that

the set of functions {xλ ∈ AAP(B,X) : λΓ (xλ) = xλ, 0 < λ < 1} is uniformly
bounded on [0,∞).

Finally, we show that Γ is completely continuous. In order to establish this
assertion, we take a bounded set V ⊆ AAP(B,X). Since the sets of functions
Λ1 = {s → g(s, xs) : x ∈ V } and Λ2 = {s → f (s, xs) : x ∈ V }
satisfy the hypotheses of Propositions 10.22 and 10.23, respectively, we deduce that
Γ (V ) is relatively compact in AAP(X). The assertion is now a consequence of
Theorem 1.81.
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In Theorem 10.26 below, we prove the existence of an asymptotically almost
periodic mild solution to Eqs. (10.12)–(10.14) assuming that g(·) satisfies an
appropriate Lipschitz condition. For that, we need the following lemma.

Lemma 10.25 If B is a fading memory space and z ∈ BC(R;X) is a function such
that z0 ∈ B and z ∈ AAP(X), then t → zt ∈ AAP(B).

Theorem 10.26 Assume that the sine function S(·) is almost periodic and that B is
a fading memory space. Suppose, in addition, that the following conditions hold:

(a) For every t ≥ 0 and each r ≥ 0, the set

{
S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)

}

is relatively compact in X.
(b) There exists a function Lg ∈ L1([0,∞)) such that

‖ g(t, ψ1) − g(t, ψ2) ‖ ≤ Lg(t) ‖ ψ1 − ψ2 ‖B, (t, ψj ) ∈ [0,∞) × B.

(c) The condition (H1) is valid with mg,mf in L1([0,∞)) and

(K + M) lim inf
ξ→∞

W(ξ)

ξ

∫ ∞

0
(Nmg(s) + Ñmf (s))ds < 1. (10.23)

Then there exists a mild solution u(·) ∈ AAP(X) of (10.12)–(10.14).

Proof Let BAAP = {x : R → X : x0 ∈ B, x |[0,∞)∈ AAP(X)} endowed with
the semi-norm defined by ‖x‖BAAP = ‖x0‖B + supt≥0 ‖x(t)‖. On this space, we
define the operators Γi : BAAP → BAAP , i = 1, 2, by

Γ1x(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds,

Γ2x(t) =
∫ t

0
S(t − s)f (s, xs)ds,

for t ≥ 0, and (Γ1x)0 = ϕ and (Γ2x)0 = 0.
From the proof of Proposition 10.22, we infer that the functions

ζ(t) =
∫ t

0
S(t − s)g(s, xs)ds

and Γ2x are asymptotically almost periodic. It is easy to see that

ζ ′(t) =
∫ t

0
C(t − s)g(s, xs)ds.
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Moreover, since the function s → g(s, xs) is integrable on [0,∞) and

‖ζ ′(t + h) − ζ ′(t)‖ ≤
∫ h

0
N ‖ g(s, xs) ‖ ds

+N

∫ ∞

0
‖ g(s + h, xs+h) − g(s, xs) ‖ ds,

converge to zero as h → 0, uniformly for t ∈ [0,∞), we can conclude from
[113, Theorem 5.2] that Γ1x is also asymptotically almost periodic. This proof that
Γ1x, Γ2x are well defined and that Γ1, Γ2 are functions defined from BAAP into
BAAP .

Let y : R → X be the extension of ϕ to R such that

y(t) = C(t)ϕ(0) + S(t)[ξ − g(0, ϕ)]

for t ≥ 0 and Γ : BAAP → BAAP be the map Γ = Γ1 +Γ2. We next prove that
there exists r > 0 such that Γ (Br(y,BAAP)) ⊂ Br(y,BAAP). Proceeding by
contradiction, we suppose that for each r > 0 there exist ur ∈ Br(y,BAAP) and
t r ≥ 0 such that ‖ Γ ur(tr ) − y(tr ) ‖> r. Consequently,

r ≤ ‖ Γ ur(tr ) − y(tr ) ‖

≤
∫ t r

0
(Nmg(s) + Ñmf (s))W(‖ ur

s − ys ‖B + ‖ ys ‖B)ds

≤
∫ ∞

0
(Nmg(s) + Ñmf (s))W((K + M)r + ρ)ds,

where ρ = (M + KNH) ‖ ϕ ‖B +KÑ ‖ ξ − g(0, ϕ) ‖, which yields

1 ≤ (K + M) lim inf
ξ→∞

W(ξ)

ξ

∫ ∞

0
(Nmg(s) + Ñmf (s))ds.

Since this inequality contradicts Eq. (10.23), we obtain the assertion.
Let r > 0 such that Γ (Br(0,BAAP)) ⊂ Br(0,BAAP). Proceeding as in the

proof of Theorem 10.24, we can show that the map Γ2 is completely continuous.
Moreover, from the estimate

‖ Γ1u(t) − Γ1v(t) ‖ ≤ NK

∫ t

0
Lg(s)ds ‖ u − v ‖BAAP ,
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we infer that Γ1 is a contraction on BAAP , which enables us to conclude
that Γ is condensing on Br(0,BAAP). Now, the assertion is a consequence of
Theorem 1.80.

10.3.7 Asymptotically Almost Periodic Solutions to Some
Second-Order Integro-differential Systems

This subsection is devoted an illustrative example to the previous subsection and
consists of studying the existence of asymptotically almost periodic mild solutions
for the second-order partial differential equations given by

∂

∂t

[
∂u(t, ξ)

∂t
+ η(t)u(t, ξ) +

∫ t

−∞
α1(t, s)u(s, ξ)ds

]

= ∂2u(t, ξ)

∂ξ2

+
∫ t

−∞
α2(t, s)u(s, ξ)ds, (10.24)

for t ≥ 0 and ξ ∈ J = [0, π ], subject to the initial conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (10.25)

u(θ, ξ) = ϕ(θ, ξ), θ ≤ 0, ξ ∈ J, (10.26)

∂u(0, ξ)

∂t
= z(ξ), ξ ∈ J, (10.27)

where η(·) : R → R, αi : R2 → R (i = 1, 2) are continuous functions and ϕ, ξ are
some appropriate functions.

In order to cast the above system into an abstract version of the previous
subsection, we let X = (L2(0, π); ‖ · ‖2) and consider the operator A : D(A) ⊂
X → X defined by

D(A) =
{
u ∈ H 2(0, π) : u(0) = u(π) = 0

}
, Au = d2u

dx2 , u ∈ D(A).

It is well known that A is the infinitesimal generator of a strongly continuous
cosine function, (C(t))t∈R on X. Furthermore, A has discrete spectrum with
eigenvalues −n2, n ∈ N, with corresponding normalized eigenvectors given by

zn(ξ) =
(

2

π

)1/2

sin(nξ).
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Moreover, the following properties are fulfilled:

(a) The set {zn : n ∈ N} is an orthonormal basis of X;

(b) For u ∈ X, C(t)u =
∞∑

n=1

cos(nt)〈u, zn〉zn. It follows from this expression that

S(t)u =
∞∑

n=1

sin(nt)

n
〈u, zn〉zn.

Moreover, the sine function S(·) is periodic with S(t) being a compact operator
for all t ∈ R such that max{‖C(t)‖, ‖S(t)‖ } ≤ 1, for every t ∈ R.

As a phase space we choose the space B = Cr × Lp(ρ;X), r ≥ 0, 1 ≤ p < ∞
(see Example 10.2) and assume that the conditions (g-5)–(g-7) in the terminology
of [69] are valid. Note that under these conditions, the space B is a fading memory
space and that there exists K > 0 such that max{ K(t),M(t)} ≤ K for all t ≥ 0, see
[69, Example 7.1.8] and [69, Proposition 7.1.5] for details.

By assuming that

Lg(t) = |η(t)| +
(∫ 0

−∞

[
α1(t, t + θ)

ρ(θ)

]2

dθ

)1/2

,

mf (t) =
(∫ 0

−∞

[
α2(t, t + θ)

ρ(θ)

]2

dθ

)1/2

,

are finite, for every t ≥ 0, we can define the operators g, f : R+ × B → X by the
mean of the expressions

g(t, ψ)(ξ) = η(t)ψ(0, ξ) +
∫ 0

−∞
α1(t, t + s)ψ(s, ξ)ds,

f (t, ψ)(ξ) =
∫ 0

−∞
α2(t, t + s)ψ(s, ξ)ds.

It is easy to see that g(t, ·) and f (t, ·) are bounded linear operators, as ‖
g(t, ·) ‖B(B,X)≤ Lg(t) and ‖ f (t, ·) ‖B(B,X)≤ mf (t) for every t ≥ 0. The next
results are a direct consequence of Theorem 10.26. Thus the details of the proof
will be omitted.

Proposition 10.27 Assume ϕ ∈ B, η ∈ X and that Lg(·),mf (·) are functions in
L1([0,∞)). If

2K
∫ ∞

0
(Lg(s) + mf (s))ds < 1, (10.28)

then there exists an asymptotically almost periodic mild solution to (10.24)–(10.27).
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To complete this subsection, we study the existence of asymptotically almost
periodic solutions for the system (10.16). To simplify the description and for sake
of brevity, we consider the case when d = 1. Assume that the functions β(·) and
∂β(·)
∂s

are continuous and that the expression

Lg(t) =
∣
∣
∣
∣
β(t, 0)

c

∣
∣
∣
∣ + 1

| c |

(∫ 0

−∞

[
∂β(t, s)

∂s
ρ−1(s)

]2

ds

)1/2

defines a function in L1([0,∞)). By assuming that the solution u(·) of (10.16) is
known on [0,∞), and defining the function g : R × B → X by

g(t, ψ)(ξ) = β(t, 0)

c
ψ(0, ξ) + 1

c

∫ ∞

0

∂β(t, s)

∂s
ψ(−s, ξ)ds,

we can transform system (10.16) into the abstract system (10.12)–(10.14).

Corollary 10.28 For every ϕ ∈ B and ξ ∈ X, there exists an asymptotically almost
periodic mild solution of Eq. (10.16) with u0 = ϕ.

Proof This result is a particular case of Proposition 10.27. We only observe that the
inequality (10.23) is automatically satisfied, as mf ≡ 0.

10.4 Exercises

1. Consider the functions f1, f2 : R× H 1
0 (Ω) × H 1

0 (Ω) → L2(Ω) are defined by

fi(t, u, θ)(x) = fi(t,∇u(x),∇θ(x)) = Kdi(t)

1 + |∇u(x)| + |∇θ(x)|
for x ∈ Ω, t ∈ R, i = 1, 2, where di : R �→ R are almost periodic functions.

a. Show that the functions fi (i = 1, 2) are jointly continuous.
b. Show that fi (i = 1, 2) are globally Lipschitz functions, that is, there exists

L > 0 such that

‖fi(t, u, θ) − fi(t, v, η)‖L2(Ω) ≤ L
(
‖u − v‖2

H 1
0 (Ω)

+ ‖θ − η‖2
H 1

0 (Ω)

) 1
2

for all t ∈ R, u, v, η and θ ∈ H 1
0 (Ω).

2. Prove Corollary 10.6.
3. Prove Theorem 10.8.
4. Prove Lemma 10.10.
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5. Prove Lemma 10.18.
6. Prove Lemma 10.19.
7. Prove Lemma 10.25.
8. Prove Proposition 10.27.

10.5 Comments

The existence results of Sect. 10.2 are based upon Baroun et al. [20] and Baroun
[29]. For additional reading on thermoelastic systems, we refer the reader to [14,
18, 24, 44, 65, 79], and [92].

The existence results of Sect. 10.2 are based upon Diagana et al. [50]. For
additional reading on the topics discussed in this section, we refer the reader to
Fattorini [57] and Travis and Webb [106, 107].
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