
Chapter 1
Banach and Hilbert Spaces

1.1 Introduction

In this chapter we present the basic material on metric, Banach, and Hilbert spaces
needed in the sequel. By design, every Hilbert space is a Banach space—with
the converse being untrue. Banach and Hilbert spaces play a central role in many
areas and subareas of mathematical analysis as most of the spaces encountered and
utilized in practical problems turn out to be either Hilbert spaces or Banach spaces.

Recall that Banach spaces were named after the Polish mathematician Stefan
Banach who introduced them in the mathematical literature around 1920–1922.
Basically, a Banach space is a normed vector space that is complete, that is, every
Cauchy sequence in it must converge in it. For instance Q the field of rational
numbers equipped with the standard absolute value is not complete; its completion
is in fact R, the field of real numbers. Standard examples of Banach spaces include,
but are not limited to, Rd , Cd , �p(N), Lp (Lebesgue spaces), Wk,p (Sobolev
spaces), Ck,α (Hölder spaces), Bs

p,q (Besov spaces), Hp(S1) (Hardy spaces), and
BMO (functions of bounded mean oscillation)—when they are equipped with their
respective standard norms.

In this chapter, we first study some of the basic properties of metric spaces and
then use these to deduce those of Banach and Hilbert spaces.

One should stress upon the fact that the introductory material presented in
this chapter can be found in any good book in (nonlinear) functional analysis.
Consequently, some proofs will be omitted.
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2 1 Banach and Hilbert Spaces

1.2 Metric Spaces

This section is essentially devoted to metric spaces and their basic properties.
Among other things, the following notions will be introduced and studied in the
context of metric spaces: convergence, completeness, continuity, compact metric
spaces, and the Banach fixed-point principle.

1.2.1 Basic Definitions and Examples

Definition 1.1 A pair (M, d) consisting of a nonempty set M and a mapping
(metric or distance) d : M × M �→ [0,∞) is called a metric space, if the mapping
d fulfills the following properties,

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and

iii) d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ M .

The inequality iii) appearing in Definition 1.1 is commonly known as the triangle
inequality. Further, elements of the set M are called points and the quantity d(x, y)

is referred to as the distance between the points x, y ∈ M .
If (M, d) is a metric space, then using the triangle inequality, it can be easily

shown that the following property holds,

∣
∣
∣d(x, y) − d(y, z)

∣
∣
∣ ≤ d(x, z)

for all x, y, z ∈ M .

Example 1.2

(1) Let d0 and d1 be two metrics upon a nonempty set M . Consider the mapping d

defined by, d(x, y) = αd0(x, y) + βd1(x, y) for all x, y ∈ M , where α, β ≥ 0
and α + β = 1. It is not hard to see that the pair (M, d) is a metric space.

(2) Let M be an arbitrary nonempty set which we endow with the so-called discrete
metric ds defined by

ds(x, y) :=

⎧

⎪⎪⎨

⎪⎪⎩

0 if x = y

1 if x �= y

It can be easily shown that (M, ds) is a metric space.
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(3) Fix p ≥ 1. Then (Rn, dp) is a metric space, where

dp(α, β) :=
( n

∑

k=1

|αk − βk|p
)1/p

for all α = (α1, α2, ..., αn), β = (β1, β2, ..., βn) ∈ Rn.
(4) Consider the unit circle, S1 = {z ∈ C : |z| = 1} and let A (S1) stand for the

collection of all functions f : S1 �→ C for which

∫ 2π

0
|f (eiθ )|2dθ < ∞.

It can be easily seen that (A (S1), ρ) is a metric space, where the metric ρ is
defined by,

ρ(f, g) :=
( ∫ 2π

0
|f (eiθ ) − g(eiθ )|2dθ

) 1
2

for all f, g ∈ A (S1).

As usual, if (M, d) is a metric space, then the metric d enables us to define the
notions of balls and spheres in M . Indeed, the (open) ball centered at x ∈ M with
radius r > 0 is defined by B(x, r) = {y ∈ M : d(x, y) < r}. Similarly, the (closed)
ball centered at x ∈ M with radius r ≥ 0 is defined by B(x, r) = {y ∈ M :
d(x, y) ≤ r}. By the sphere S(x, r), centered at x ∈ M with radius r ≥ 0, we mean
the set of all points defined by S(x, r) = {y ∈ M : d(x, y) = r}.
Definition 1.3 Let (M, d) be a metric space and let O ⊂ M be a subset. The set O
is said to be an open set if for all x ∈ M , there exists r > 0 such that B(x, r) ⊂ O.

Classical examples of open sets in a metric space (M, d) include M itself and the
empty set, ∅. Recall that arbitrary unions of open sets of M are also open sets of M .
Further, finite intersections of open sets of M are also open sets of M .

Definition 1.4 Let (M, d) be a metric space and let O ⊂ M be a subset. A point
x ∈ M is said to be an interior point of O if and only if there exists r > 0 such that
B(x, r) ⊂ O.The collection of all interior points of O is denoted Int(O).

It can be shown that a subset O of M is open if and only if it contains all of its
interior points, that is, O = Int(O).

Definition 1.5 Let (M, d) be a metric space and let O ⊂ M be a subset. The set O
is said to be a closed set if its complement OC = M \ O is an open set.

Classical examples of closed sets of a metric space (M, d) include singletons
{x}, M , and ∅.
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Definition 1.6 Let (M, d) be a metric space and let O ⊂ M be a subset. A point
x ∈ M is said to be an adherent point of O if and only if for all r > 0, the following
holds, B(x, r) ∩ O �= {∅}. The collection of all adherent points of O is called the
closure of O and is denoted O .

It can be shown that a subset O of M is closed if and only if it contains all of its
adherent points, that is, O = O . In other words, O is closed if and only if for any
sequence (xn)n∈N ⊂ O such that d(xn, x) → 0 for some x ∈ M as n → ∞, then
one must have x ∈ O .

Definition 1.7 Let (M, d) be a metric space and let O ⊂ M be a subset. The subset
O is said to be bounded it is included in some ball B(x, r). Otherwise, the set O is
said to be unbounded.

It is easy to see that O ⊂ M is bounded if and only if its diameter, diam(O) :=
sup

x,y∈O
d(x, y), is finite, that is, diam(O) < ∞.

If (M, d) is a metric space, then the metric d enables us to define the notion of
convergence in M .

Definition 1.8 Let (M, d) be a metric space. A sequence (xn)n∈N ⊂ M is said to
converge to some x ∈ M with respect to the metric d, if d(xn, x) → 0 as n → ∞.
Equivalently, for every ε > 0, there exists N ∈ N such that d(xn, x) < ε for all
n ≥ N .

If a sequence (xn)n∈N ⊂ M converges to some x ∈ M with respect to the metric
d, then we write lim

n→∞ xn = x.

Proposition 1.9 Let (M, d) be a metric space. If a sequence (xn)n∈N ⊂ M

converges, then its limit is unique.

Proof Suppose (xn)n∈N ⊂ M converges to two limits x, y ∈ M . Then, using the
triangle inequality it follows that 0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y). Letting n →
∞ in the previous inequality, it follows that d(x, y) = 0 which yields x = y.

Definition 1.10 Let (M, d) be a metric space. A sequence (xn)n∈N ⊂ M is called
a Cauchy sequence, if for every ε > 0, there exists N ∈ N such that d(xn, xm) < ε

for all n,m ≥ N .

Proposition 1.11 Let (M, d) be a metric space. Every convergent sequence is a
Cauchy sequence. Further, every Cauchy sequence is bounded.

Proof

i) Let (xn)n∈N be a convergent sequence in the metric space (M, d). This means
that there exists x ∈ M such that d(xn, x) → 0 as n → ∞. Equivalently, for all
ε > 0, there exists N ∈ N such that d(xn, x) < ε

2 for all n ≥ N . Now, using the
triangle inequality it follows that d(xn, xm) ≤ d(xn, x)+d(x, xm) < ε

2 + ε
2 = ε

for all n,m ≥ N . Consequently, (xn)n∈N is a Cauchy sequence.
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ii) Suppose that (xn)n∈N is a Cauchy sequence. For ε = 1, there exists N ∈ N such
that d(xn, xm) < 1 for n,m ≥ N . In particular, d(xn, xN) < 1 for all n ≥ N .
Setting r = 1 + max{1, d(x1, xN), d(x2, xN), ..., d(xN−1, xN)}, one can easily
see that (xn)n∈N ⊂ B(xN, r) which yields the sequence (xn)n∈N is bounded.

1.2.2 Complete Metric Spaces

Definition 1.12 A metric space (M, d) is said to be complete, if every Cauchy
sequence in it converges in it.

Classical examples of complete metric spaces include Rn equipped with its
corresponding Euclidean metric defined by

d(x, y) =
(

n
∑

k=1

|xk − yk|2
) 1

2

for all x = (x1, x2, ..., xn), y = (y1, y2..., yn) ∈ Rn, and BC(R,M) the
collection of all bounded continuous functions which go from R into a complete
metric space (M, d), when it is equipped with the sup norm metric, d∞(f, g) =
supt∈R d(f (t), g(t)) for all f, g ∈ BC(R,M), etc.

A classical example of a metric space which is not complete is Q; the field of
rational numbers; when it is equipped with the standard absolute value defined by
d0(x, y) = |x−y| for all x, y ∈ Q. There are obviously various ways of constructing
a Cauchy sequence in Q which diverges. Let us exhibit one here. Indeed, consider
the recurrent sequence (xn)n∈N given by,

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = q ∈ N,

xn+1 = 2

3
xn + 1

xn

, for all n ∈ N.

It is not hard to show that not only (xn)n∈N is a sequence of rational numbers but
also that lim

n→∞ xn = √
3 ∈ R \ Q. This shows that (Q, d0) is not complete.

The larger question regarding the completion of a given arbitrary metric space
(M, d) is the following: if (M, d) is not complete, are there ways of making it
complete? The answer is a “yes.” Indeed, suppose that (M, d) is not complete and
let

CS(M, d) :=
{

all Cauchy sequences in (M, d)
}

.
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Define an equivalence relation upon elements of CS(M, d) as follows: two
sequences (xn)n∈N, (yn)n∈N in CS(M, d) are said to be equivalent which we
denote (xn)n∈N ∼ (yn)n∈N if and only if, for ε > 0, there exists N ∈ N such that

d(xn, ym) < ε for all n,m ≥ N.

Consider

˜CS(M, d) = CS(M, d)/ ∼

and define the mapping d̃ : ˜CS(M, d) × ˜CS(M, d) �→ [0,∞) as follows: if x, y ∈
˜CS(M, d), that is, x = [(xn)n] and y = [(yn)n∈N] (equivalence classes of (xn)n∈N

and (yn)n∈N), then

d̃(x, y) = lim
n→∞ d(xn, yn).

It is easy to check that d̃ is a metric upon ˜CS(M, d). Moreover, the metric space

( ˜CS(M, d), d̃), by construction, is complete.

1.2.3 Continuous Functions

In the sequel, the pairs (M, d), (M ′, ρ), (M1, d1), (M2, d2), and (M3, d3) stand for
metric spaces.

Definition 1.13 A function f : (M, d) �→ (M ′, ρ) is said to be continuous at
x0 ∈ M , if for all ε > 0 there exists δ > 0 such that for all x ∈ M , d(x0, x) < δ

yields ρ(f (x0), f (x)) < ε. The function f is said to be continuous on M , if it is
continuous at each point of M .

Recall that the continuity of a function f : (M, d) �→ (M ′, ρ) at x0 ∈ M is
equivalent to its sequential continuity at x0 ∈ M , that is, for any arbitrary sequence
(xn)n∈N ⊂ M that converges to some x0, we have that f (xn) converges to f (x0).
In general, it is easier to prove the continuity of a function using the sequential
continuity than the general definition of continuity given in Definition 1.13.

We have the following composition result for continuous functions on metric
spaces whose proof is left to the reader as an exercise.

Proposition 1.14 Let f : M1 �→ M2 and g : M2 �→ M3 be given functions. Let
x0 ∈ M1 be such that f is continuous at x0 and that g is continuous at f (x0). Then,
gof , the composition of f with g, is also continuous at x0.
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Definition 1.15 A function f : (M, d) �→ (M ′, ρ) is said to be uniformly
continuous if, for all ε > 0, there exists δ > 0 such that for all x, y ∈ M ,
d(x, y) < δ yields ρ(f (x), f (y)) < ε.

Obviously, every uniformly continuous function is continuous. However, the
converse, except in the case when M is a compact metric space, is in general not
true (see for instance Theorem 1.20).

1.2.4 Compact Metric Spaces

Definition 1.16 An open covering of (M, d) is a collection of open sets whose
union is M .

Definition 1.17 A metric space (M, d) is said to be compact if every open covering
of it has a finite subcovering.

Definition 1.18 A subset O of a metric space (M, d) is called relatively compact if
its closure O is a compact subset of M .

Theorem 1.19 A metric space (M, d) is compact if and only if every sequence of
elements of M has a subsequence which converges.

Proof The proof is left to the reader as an exercise.

Theorem 1.20 If (M, d) is a compact metric space and if f : M �→ M ′ is a
continuous function, then f is uniformly continuous.

Proof Let ε > 0 and x ∈ M be given. Using the fact that f is continuous, we deduce
that there exists δx > 0 such that d(x, y) < δx yields ρ(f (x), f (y)) < ε

2 . Since M

is compact, it follows that there exists a finite number of points x1, x1, ..., xd such
that the following holds,

M ⊂
d

⋃

j=1

B

(

xj ,
δxj

2

)

.

Now let δ = 1
2 min{δxj

: j = 1, 2, ..., d}. Clearly, δ > 0. Further, for all (x, y) ∈
M × M satisfying d(x, y) < δ, one can find j0 ∈ {1, 2, ..., d} such that x and y

belong to B(xj0 , δj0), which yields ρ(f (x), f (xj0)) < ε
2 and ρ(f (y), f (xj0)) < ε

2 .
Using the triangle inequality it follows that,

ρ(f (x), f (y)) ≤ ρ(f (x), f (xj0)) + ρ(f (xj0), f (y)) < ε,

which shows that the function f is uniformly continuous.
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Let C(M,M ′) denote the collection of all continuous functions from M into M ′.
If M ′ = C, then C(M,C) will be denoted by C(M). If M is compact, then C(M)

is a metric space when it is equipped with the metric, d∞(u, v) = maxx∈M |u(x) −
v(x)| for all u, v ∈ C(M).

Definition 1.21 A sub-collection Γ ⊂ C(M) is called uniformly bounded if there
exists C > 0 such that |u(x)| ≤ C for every x ∈ M and u ∈ Γ .

Definition 1.22 A sub-collection Γ ⊂ C(M,M ′) is said to be equi-continuous if
for all x0 ∈ M and for all ε > 0 there exists δ = δ(x0, ε) > 0 such that d(x, x0) < δ

yields ρ(f (x), f (x0)) < ε for all f ∈ Γ.

Example 1.23 Let Γ ⊂ C(M) be defined as the family of all K-Lipschitz functions
on M where K ≥ 0. That is, all functions u : M �→ C such that |u(x) − u(y)| ≤
Kd(x, y) for all x, y ∈ M . It can be easily shown that the family Γ is equi-
continuous.

Theorem 1.24 (Arzelà-Ascoli Theorem) A sub-collection Γ ⊂ C(M) is rela-
tively compact if and only if,

(a) Γ is equi-continuous; and
(b) Γ is uniformly bounded.

Proof The proof is left to the reader as an exercise.

Corollary 1.25 A sub-collection Γ ⊂ C(M) is compact if and only if it is closed,
uniformly bounded, and equi-continuous.

Proof The proof is left to the reader as an exercise.

1.2.5 Banach Fixed-Point Principle

Definition 1.26 A mapping T : (M, d) �→ (M ′, ρ) is said to be Lipschitz if there
exists K ≥ 0 (Lipschitz constant) such that

ρ(T (x), T (y)) ≤ Kd(x, y)

for all x, y ∈ M . In the case when 0 ≤ K < 1, then the map T is said to be a strict
contraction.

Example 1.27 Let O ⊂ M be a subset. If x ∈ M , ones defines the distance between
the point x and the set O as follows,

d(x,O) := inf
y∈O

d(x, y).
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Proposition 1.28 The map D : M �→ R+, x �→ D(x) := d(x,O) is Lipschitz with
1 as its Lipschitz constant. That is,

|d(x,O) − d(y,O)| ≤ d(x, y)

for all x, y ∈ M .

Proof Using the triangle inequality and a property of the infimum it follows that
D(x) ≤ d(x, e) ≤ d(x, y) + d(y, e) for all x, y ∈ M and e ∈ O , which yields
D(x) − d(x, y) ≤ d(y, e) for all x, y ∈ M and e ∈ O . Using the fact that the
infimum is the greatest element that is less than or equal to all elements, we deduce
that D(x) − d(x, y) ≤ D(y) which in turn yields D(x) − D(y) ≤ d(x, y) for all
x, y ∈ M . Since x and y are arbitrary elements of M , replacing x with y in the
previous inequality, one gets, D(y) − D(x) ≤ d(y, x) = d(x, y) for all x, y ∈ M .
Combing the last two inequalities, we deduce that |D(x) − D(y)| ≤ d(x, y) for all
x, y ∈ M .

If T : (M, d) �→ (M, d) is a mapping, then one defines its fixed-points by FT =
{x ∈ M : T (x) = x}.
Remark 1.29 Note that if T is a strict contraction, then FT cannot contain more
than one element. Indeed, suppose x = T x and y = Ty, then d(x, y) =
d(T (x), T (y)) ≤ Kd(x, y) < d(x, y), this impossible. Consequently, FT cannot
contain more than one element.

Theorem 1.30 (Banach Fixed-Point Theorem [47]) If (M, d) is a complete
metric space and if T : M �→ M is a strict contraction, then it has a unique
fixed-point.

Proof Let x0 ∈ M . Define the sequence xn = T nx0 which yields xn+1 = T xn and
xn = T xn−1. Consequently, d(xn+1, xn) ≤ Knd(x0, x1) where 0 ≤ K < 1 is the
Lipschitz constant. Similarly, for all n,m ∈ N with n > m, we have

d(xn, xm) ≤ d(xn+1, xn) + d(xn, xn−1) + ... + d(xm, xm−1)

≤
(

Kn + Kn−1 + ... + Km−1
)

d(x1, x0)

≤ Kn

1 − K
d(x1, x0).

This yields the sequence (xn)n∈N ⊂ M which is a Cauchy sequence and since
(M, d) is complete, it follows that there exists x ∈ M such that lim

n→∞ d(xn, x) = 0.

Since T is continuous, it follows that T x = lim
n→∞ T xn = lim

n→∞ xn+1 = x which

yields x ∈ FT . Using Remark 1.29, we deduce that FT = {x}.



10 1 Banach and Hilbert Spaces

1.2.6 Equilibrium Points for the Discrete Logistic Equation

This subsection is an application to the Banach fixed-point theorem and is based
upon [72, Chapter 3]. Indeed, we make use of the Banach fixed-point theorem to
determine equilibrium points of the (discrete) logistic equation. One of the most
celebrated discrete dynamical systems arising in dynamic of population is that of
the logistic equation, which is given by the following nonlinear difference equation,

x(t + 1) = 4σx(t)(1 − x(t)),

where σ ∈ [0, 1] and x(t) ∈ [0, 1] for all t ∈ N.
In many concrete applications, x(t) stands for the size of the population being

studied at the generation t of a reproducing population. Recall that the linear part
of the logistic equation, that is, x(t + 1) = 4σx(t), describes, depending upon σ ,
the exponential growth (if σ > 1

4 ) or decay (if σ < 1
4 ) of a population subject to

constant birth or death rate.
Clearly, the discrete logistic equation is of the form, x(t +1) = Sx(t), where the

function S (logistic map) is defined by

S : [0, 1] �→ [0, 1], x �→ 4σx(1 − x).

Obviously, equilibrium points of the logistic equation correspond to the fixed-points
of the logistic map S. It can be easily shown that for σ ∈ [0, 1

4 ], the point x0 = 0
is the only fixed-point (equilibrium point of the discrete logistic equation) of S. For
σ ∈ ( 1

4 , 1], fixed-points of the logistic map S are given by the points of the form,
x(σ ) := 1−(4σ)−1. Consequently, the logistic map S has infinity many fixed-points
(or equilibrium points for the logistic equation) given by

FS =
{

0
}

∪
{

xσ := 1 − (4σ)−1 : σ ∈ (
1

4
, 1]

}

.

1.3 Banach Spaces

In the rest of this book, unless otherwise stated, F stands for the field of real numbers
R or the field of complex numbers C.

1.3.1 Basic Definitions

Let X be a vector space over the field F. A norm on X is a mapping ‖ · ‖ : X �→ R+
satisfying the following properties,
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i) ‖x‖ = 0 if and only if x = 0;
ii) ‖λx‖ = |λ| ‖x‖; and

iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖
for all x, y ∈ X and λ ∈ F.

The pair (X, ‖ · ‖) is then called a normed vector space. From a given normed
vector space (X, ‖ · ‖), one can construct a metric space (X, d), where the metric d

is defined by d(x, y) := ‖x − y‖ for all x, y ∈ X.
In what follows, we introduce two important notions which play a crucial role

in many fields: separable and uniformly convex normed vector spaces. For that, we
need to introduce a few notions.

Definition 1.31 Let (X, ‖ · ‖) be a normed vector space and let D ⊂ X be a subset.
Then, D is said to be dense, if X = D . Equivalently, for each x ∈ X, there exists a
sequence (xn)n∈N ⊂ D such that d(xn, x) = ‖xn − x‖ → 0 as n → ∞.

Definition 1.32 A set D is called countable if it is finite or has the same cardinality
as N (i.e., there exists a bijection between D and N). A set D is called uncountable
if it is infinite and not countable.

Definition 1.33 A normed vector space (X, ‖·‖) is said to be separable if it contains
a countable dense subset D .

Classical examples of separable normed vector spaces include, but are not limited
to, (R, | · |), (C, | · |), and (�p(N), ‖ · ‖p) for 1 ≤ p < ∞, where �p(N) is vector
space consisting of all sequences x = (xn)n∈N with xn ∈ C for all n ∈ N and

‖x‖p :=
( ∞

∑

k=1

|xk|p
)1/p

< ∞.

It is also well known that �∞(N), the vector space of all bounded sequences (the
vector space consisting of all sequences x = (xn)n∈N with xn ∈ C for all n ∈ N such
that |xn| ≤ M for all n ∈ N with M ≥ 0 being a constant), is not separable, when it
is equipped with its natural sup-norm ‖·‖∞ defined, for each x = (xn)n∈N ∈ �∞(N),
by

‖x‖∞ = sup
n∈N

|xn|.

Definition 1.34 A normed vector space (X, ‖ · ‖) is said to be uniformly convex if
for each ε > 0 there exists δ > 0 such that

x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε yields
∥
∥
∥
x + y

2

∥
∥
∥ < 1 − δ.

While the normed vector spaces (R, | · |), (C, | · |), and (�p(N), ‖ · ‖p) for 1 <

p < ∞ are uniformly convex, �∞(N) is not.
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Definition 1.35 A normed vector space (X, ‖ ·‖) is said to be a Banach space if the
metric space (X, d), where d(x, y) := ‖x − y‖ for all x, y ∈ X, is complete.

Classical examples of Banach spaces include finite-dimensional normed vector
spaces. Obviously, there are plenty of normed vector spaces which are not Banach
spaces (not complete). Indeed, for a < b, consider C[a, b], the collection of all
continuous functions f : [a, b] �→ R. It is clear that C[a, b] is a vector space over
R which we equip with the norm given, for p ∈ [1,∞), by

‖f ‖p :=
( ∫ b

a

|f (t)|pdt
) 1

p
for all f ∈ C[a, b].

It is not hard to see that the normed vector space (C[a, b], ‖ · ‖p) is not complete.
Obviously, Banach spaces are more interesting for applications than incomplete

normed vector spaces. Consequently, in what follows, our main focus will be on
Banach spaces and their basic properties.

The proof of the next theorem presents no difficulty and hence is left to the reader
as an exercise.

Theorem 1.36 If (X, ‖ · ‖) is a Banach space and if Y ⊂ X is a subspace, then
(Y, ‖ · ‖) is a Banach space if and only if Y is closed.

1.3.2 The Quotient Space

Definition 1.37 Let L be a subspace of the vector space X. The cosets of L are
defined by the sets, [x] = x + L = {x + � : � ∈ L}.

Define the quotient X \ L as follows X \ L = {[x] : x ∈ X}. The canonical
projection of X onto X \ L is defined by π : X �→ X \ L, x �→ [x]. It is not hard to
see that π is surjective and that Ker(π) = {x ∈ X : π(x) = 0} = L. Further, X \ L
is a vector space over F ([x + y] = [x] + [y] and [λx] = λ[x] for all x, y ∈ X and
λ ∈ F) called the quotient space. Furthermore, the mapping ‖ · ‖ : X \ L �→ [0,∞)

defined by

‖[x]‖ = ‖x + L‖ = d(x,L) = inf
y∈L ‖x − y‖

for each [x] ∈ X \ L, is a norm on the quotient vector space X \ L. Indeed, for all
x, y ∈ X and λ ∈ F, using the fact that L is closed, we have d(x,L) = 0 if and only
if x ∈ L. Thus ‖[x]‖ = ‖x + L‖ = 0 if and only if [x] = x + L = 0 + L.

Suppose λ �= 0. Then, we have

‖λ[x]‖ = ‖λ(x + L)‖ = d(λx,L) = d(λx, λL) = |λ|d(x,L) = |λ|‖[x]|.
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Now, if λ = 0, it easily follows that

‖0(x + L)‖ = ‖0 + L‖ = 0 = |0|‖x + L‖.

Now let x1, y1 ∈ L, then

‖(x + L) + (y + L)‖ = ‖(x + y) + L‖
≤ ‖x + y + x1 + y1‖
≤ ‖x + x1‖ + ‖y + y1‖,

which yields

‖(x + L) + (y + L)‖ ≤ ‖x + L‖ + ‖y + L‖

That is,

‖[x] + [y]‖ ≤ ‖[x]‖ + ‖[y]‖.

Recall that if L a closed subspace of the normed vector space (X, ‖ · ‖), then the
canonical projection π is linear and continuous as ‖π(x)‖ ≤ ‖x‖ for all x ∈ X.

Theorem 1.38 Let (X, ‖ · ‖) be Banach space and let L ⊂ X is a closed subspace.
Then the quotient normed vector space (X \ L, ‖ · ‖) is a Banach space.

1.3.3 Lp(Ω,μ) Spaces

Definition 1.39 Let Ω be a set and let F be a σ -algebra of measurable sets, that
is, F ⊂ P(Ω) is a subset and satisfies the following conditions:

i) ∅ ∈ F ;
ii) if Γ ⊂ F , then its complement Γ C belongs to F ; and

iii)
∞
⋃

j=1

Γj ∈ F whenever Γj ∈ F for all j .

Elements of F are then called measurable sets.

Definition 1.40 The mapping μ : Ω �→ [0,∞] is called a measure, if it satisfies
the following conditions:

i) μ(∅) = 0; and

ii) μ(

∞
⋃

j=1

Γj ) =
∞
∑

j=1

μ(Γj ) for any disjoint countable family (Γj )j∈N of elements

of F .
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The σ -algebra F is said to be σ -finite if there exists a disjoint countable family

(Γj )j∈N of elements of F such that Ω =
∞
⋃

j=1

Γj with μ(Ωj ) < ∞ for all j .

The space (Ω,F , μ) is called a measure space if Ω is a set, F is a σ -algebra
on Ω , and μ is a measure on Ω .

Let p ∈ [1,∞) and let (Ω,F , μ) be a measure space. The space Lp(Ω,μ) (also
denoted Lp(Ω)) is defined as the collection of all measurable functions f : Ω �→ C

such that

‖f ‖Lp = ‖f ‖p :=
[ ∫

Ω

|f (x)|pdμ
] 1

p
< ∞.

Recall that in Lp(Ω,μ), two functions f and g are equal, if they are equal almost
everywhere on Ω . Obviously, (Lp(Ω,μ), ‖ · ‖p) is a normed vector space.

Similarly, one defines L∞(Ω,μ) (also denoted L∞(Ω)) as the set of all
measurable functions f : Ω �→ C such that there exists a constant M ≥ 0 such
that |f (x)| ≤ M a.e. x ∈ Ω . Now define, for all f ∈ L∞(Ω,μ),

‖f ‖∞ := inf
{

M : |f (x)| ≤ M a.e. x ∈ Ω
}

.

Obviously, (L∞(Ω,μ), ‖ · ‖∞) is a normed vector space.
In view of the above, (Lp(Ω), ‖·‖p) is a normed vector space for all p ∈ [1,∞].

Example 1.41 Take Ω = R and dμ = dx (Lebesgue measure). Consider the
function defined by f (x) = e−|x| for all x ∈ R. One can easily see that f ∈
Lp(R, dx) for all p ∈ [1,∞].
Proposition 1.42 Let (Ω,μ) be a measure space. If 1 ≤ p ≤ q < ∞ and if
0 < μ(Ω) < ∞, then

‖f ‖p ≤ [μ(Ω)]r‖f ‖q

for any measurable function f , where r = p−1 − q−1.

Proof The proof is left to the reader as an exercise.

Corollary 1.43 Let (Ω,μ) be a measure space. If 1 ≤ p ≤ q < ∞ and if 0 <

μ(Ω) < ∞, then the injection

Lq(Ω,μ) ↪→ Lp(Ω,μ)

is continuous.

Proof The proof is left to the reader as an exercise.

Theorem 1.44 (Riesz-Fisher) The space (Lp(Ω,μ), ‖·‖p) is a Banach space for
any 1 ≤ p ≤ ∞.
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Proof The proof is left to the reader as an exercise.

Theorem 1.45 Let p ∈ [1,∞]. If u ∈ L1(R) and let v ∈ Lp(Rn), then for
almost every x ∈ Rn, the function y �→ u(x − y)v(y) is integrable on Rn. And
the convolution of u and v defined by

(u ∗ v)(x) :=
∫

Rn

u(x − y)v(y)dy

is well defined. Further, u ∗ v ∈ Lp(Rn) and

‖u ∗ v‖Lp ≤ ‖u‖L1‖v‖Lp .

Proof See the book by Brézis [31].

More generally,

Theorem 1.46 (Young) Let p, q ∈ [1,∞] such that r−1 = p−1 + q−1 − 1 ≥ 0. If
u ∈ Lp(Rn) and let v ∈ Lq(Rn), then u ∗ v ∈ Lr(Rn) and

‖u ∗ v‖Lr ≤ ‖u‖Lp‖v‖Lq .

Proof See the book by Brézis [31].

Let Ω ⊂ Rn be a subset and let dμ = dx (Lebesgue measure). Let L
p
loc(Ω) for

1 ≤ p < ∞ stand for the collection of all measurable functions f : Ω �→ C such
that

( ∫

Ω ′
|f (x)|pdx

) 1
p

< ∞ (1.1)

for any Ω ′ ⊂ Ω bounded closed subset.
Clearly, Lp

loc(Ω) is a vector space. Further, Lp(Ω) is a subspace of L
p
loc(Ω). The

natural topology of L
p
loc(Ω) is given as follows: a sequence (fn)n∈N ∈ L

p
loc(Ω) is

said to converge to some f ∈ L
p
loc(Ω) if ‖fn − f ‖p → 0 as n → ∞ in Lp(Ω ′) for

any Ω ′ ⊂ Ω bounded closed subset. Although L
p
loc(Ω) equipped with such a type

of convergence is a topological vector space, it is not a Banach space.

1.3.4 Sobolev Spaces

If α = (α1, α2, ..., αn) with αi ∈ Z+ for i = 1, ..., n, one defines the length |α| of
α as follows: |α| = α1 + α2 + ... + αn. In this event, the differential operator Dα is
defined by

Dα = ∂ |α|

∂x
α1
1 ∂x

α2
2 ...∂x

αn
n

.
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Definition 1.47 Let 1 ≤ p ≤ ∞ and let k ∈ N. Suppose Ω ⊂ Rn is an open
subset. The Sobolev spaces Wk,p(Ω) is the collection of all functions u : Ω �→ F

belonging to the set

Wk,p(Ω) :=
{

u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ k
}

. (1.2)

If p = 2, the Sobolev space Wk,2(Ω) is denoted by Hk(Ω). The space Wk,p(Ω)

is equipped with the norm defined by

‖u‖k,p =
( ∑

|α|≤k

‖Dαu‖p
p

) 1
p
, if 1 ≤ p < ∞, (1.3)

and

‖u‖k,∞ = max|α|≤k
|Dαu|∞ if p = ∞. (1.4)

Definition 1.48 If f : Ω �→ F is a function, then its support denoted supp(f ) is
defined by Supp(f ) := {x ∈ Ω : f (x) �= 0}.
Example 1.49 If E ⊂ R is a subset, then the support of the characteristic function
χE of the set E defined by χE(x) = 1 if x ∈ E and χE(x) = 0 if x �∈ E, is E

(closure of E).

Definition 1.50 The notation C∞
0 (Ω) stands for the collection of all functions u :

Ω �→ R (or C) of class C∞ with compact support in Ω .

Definition 1.51 The Sobolev space W
k,p

0 (Ω) is defined to be the closure of C∞
0 (Ω)

in the space Wk,p(Ω), that is,

W
k,p

0 (Ω) = C∞
0 (Ω)

Wk,p(Ω)
.

If p = 2, then the Sobolev space W
k,2
0 (Ω) is denoted by Hk

0 (Ω). Further, if Ω =
Rn, then W

k,p

0 (Rn) = Wk,p(Rn).

Theorem 1.52 ([47]) The Sobolev space Wk,p(Ω) is a Banach space.

Definition 1.53 Let 1 ≤ p < ∞ and let s = k + σ where k ∈ N and σ ∈ (0, 1).
The Sobolev space Ws,p(Ω) is defined by

Ws,p(Ω) :=
{

u ∈ Wk,p(Ω) : |Dαu(x) − Dαu(y)|
‖x − y‖σ+ n

p

∈ Lp(Ω×Ω), ∀α, |α| = k
}

,

whose norm is given by
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‖u‖s,p =
(

‖u‖p
k,p +

∑

|α|=k

∫

Ω×Ω

|Dαu(x) − Dαu(y)|p
‖x − y‖pσ+n

dxdy

)1/p

.

If p = 2, then Ws,2(Ω) is denoted Hs(Ω). If s ≥ 0, then we define W
s,p

0 (Ω) to
be the closure of the space C∞

0 (Ω) in the Sobolev space Ws,p(Ω). In particular,

W
s,2
0 (Ω) is denoted by Hs

0 (Ω).

1.3.5 Embedding Theorems for Sobolev Spaces

In this subsection, we collect some important and useful embedding theorems on
Sobolev spaces including the Sobolev–Gagliardo–Nirenberg’s Theorem and the
Poincaré’s Theorem. Although most of the proofs of these theorems are omitted,
we will be referring the reader to the appropriate references.

Theorem 1.54 (Sobolev–Gagliardo–Nirenberg) Let p ∈ [1, n). Then the follow-
ing embedding holds,

W 1,p(Rn) ⊂ Lq(Rn)

where
1

q
= 1

p
− 1

n
. Moreover, there exists a constant C(p, n) such that

‖u‖Lq ≤ C‖∇u‖Lp

for all u ∈ W 1,p(Rn), where the gradient ∇u of u is defined by the vector

∇u = grad u =
( ∂u

∂x1
,

∂u

∂x2
, ...,

∂u

∂xn

)

.

Proof See Brézis [32].

Theorem 1.55 Let k ∈ N and let p ∈ [1,∞). Then the following continuous
embeddings hold,

Wk,p(Rn) ⊂ Lq(Rn) where
1

q
= 1

p
− k

n
, if

1

p
− k

n
> 0,

Wk,p(Rn) ⊂ Lq(Rn) for all q ∈ [p,∞), if
1

p
− k

n
= 0,

Wk,p(Rn) ⊂ L∞(Rn) if
1

p
− k

n
< 0.
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Proof See Brézis [32].

Theorem 1.56 Let Ω ⊂ Rn be an open subset of class C1 with bounded boundary
∂Ω . If p ∈ [1,∞], we have the following continuous embeddings,

W 1,p(Ω) ⊂ Lq(Ω) where
1

q
= 1

p
− k

n
, if p < n,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [p,∞), if p = n,

W 1,p(Ω) ⊂ L∞(Ω) if p > n.

Proof See Brézis [32].

We also have

Theorem 1.57 (Rellich–Kondrachov) Let Ω ⊂ Rn be a bounded subset and of
class C1. If p ∈ [1,∞], we have the following compact embeddings,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [1, r)
1

r
= 1

p
− 1

n
, if p < n,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [p,∞), if p = n,

W 1,p(Ω) ⊂ C(Ω) if p > n.

Proof See Brézis [32].

We also have the so-called Poincaré’s inequality.

Theorem 1.58 (Poincaré’s Inequality) Let p ∈ [1,∞) and let Ω ⊂ Rn be an
open bounded subset. Then there exists a constant C = C(Ω,p) > 0 such that

‖u‖Lp ≤ C‖∇u‖Lp

for all u ∈ W
1,p

0 (Ω).

Proof See Brézis [32].

Theorem 1.59 Let Ω ⊂ Rn be an open bounded subset with a smooth boundary
∂Ω . Suppose 0 ≤ k ≤ m − 1. Then, we have the following embeddings,

Wm,p(Ω) ⊂ Wk,q(Ω) if
1

q
≥ 1

p
− m − k

n

Wm,p(Ω) ⊂ Wk,q(Ω) if q < ∞, and
1

p
= m − k

n
.
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While the second embedding is compact, the first one is compact only if

1

q
>

1

p
− m − k

n
.

Proof See Adams [10].

1.3.6 Bounded Continuous Functions

Let J ⊂ R be an interval (possibly unbounded) and let (X, ‖ · ‖) be a Banach space.

Definition 1.60 Let BC(J ;X) denote the space of all bounded continuous func-
tions f : J �→ X. The space BC(J ;X) will be equipped with the sup-norm defined
by

‖f ‖∞ := sup
t∈J

‖f (t)‖

for all f ∈ BC(J ;X).

Theorem 1.61 The normed vector space (BC(J ;X), ‖ · ‖∞) is a Banach space.

Proof The proof is left to the reader as an exercise.

Proposition 1.62 If (fn)n∈N ⊂ BC(J ;X) such that fn converges to some f with
respect to the sup-norm, then f ∈ BC(J ;X).

Proof The proof is left to the reader as an exercise.

1.3.7 Hölder Spaces Ck,α(Ω)

Fix once and for all α ∈ (0, 1). Let J ⊂ R be an interval (possibly unbounded) and
let (X, ‖ · ‖) be a Banach space.

The space Cm(J ;X) (m ∈ N) stands for the collection of all m-times continu-
ously differentiable functions from J into X and let BCm(J ;X) stand for the space,

BCm(J ;X) = {f ∈ Cm(J ;X) : f (k) ∈ BC(J ;X), k = 0, 1, ..., m}

equipped with the norm

‖f ‖BCm(J ;X) :=
m

∑

k=0

‖f (k)‖∞ for all f ∈ BCm(J ;X).
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Definition 1.63 Hölder spaces of continuous functions C0,α(J ;X) and Ck,α(J ;X)

for α ∈ (0, 1) and k ∈ N are respectively defined by

C0,α(J ;X) =
{

f ∈ BC(J ;X) : [f ]C0,α(J ;X) = sup
t,s∈J,s<t

‖f (t) − f (s)‖
(t − s)α

< ∞
}

equipped with the norm

‖f ‖C0,α(J ;X) = ‖f ‖∞ + [f ]C0,α(J ;X), and

Ck,α(J ;X) =
{

f ∈ BCk(J ;X) : f (k) ∈ C0,α(J ;X)
}

equipped with the norm

‖f ‖Ck,α(J ;X) = ‖f ‖BCk(J ;X) + [f (k)]C0,α(J ;X).

Proposition 1.64 The Hölder spaces C0,α(J ;X) and Ck,α(J ;X) for α ∈ (0, 1)

and k ∈ N equipped with their corresponding norms are respectively Banach
spaces.

Proof The proof is left to the reader as an exercise.

Definition 1.65 The Lipschitz space Lip(J ;X) is defined by

Lip(J ;X) =
{

f ∈ BC(J ;X) : [f ]Lip(J ;X) = sup
t,s∈J,s<t

‖f (t) − f (s)‖
(t − s)

< ∞
}

,

and is equipped with the norm defined by

‖f ‖ ˜Lip(J ;X)
= ‖f ‖∞ + [f ]Lip(J ;X).

Proposition 1.66 The Lipschitz space (Lip(J ;X), ‖·‖ ˜Lip(J ;X)
) is a Banach space.

Proof The proof is left to the reader as an exercise.

Definition 1.67 Let Ω ⊂ RN be an open subset. The Hölder space C
0,α
b (Ω)

consists of all bounded continuous functions f : Ω �→ C such that

[f ]Cα
b (Ω) := sup

x �=y∈Ω

|f (x) − f (y)|
‖x − y‖α

< ∞.
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Theorem 1.68 The space (C
0,α
b (Ω), ‖ · ‖

C
0,α
b (Ω)

) is a Banach space, where the

norm ‖ · ‖
C

0,α
b (Ω)

is defined by

‖f ‖
C

0,α
b (Ω)

= ‖f ‖∞ + [f ]
C

0,α
b (Ω)

for all f ∈ C
0,α
b (Ω).

Proof The proof is left to the reader as an exercise.

Definition 1.69 Let k ∈ N. The Hölder space C
k,α
b (Ω) consists of all functions

f : Ω �→ C which are k-times continuously differentiable functions with bounded
partial derivatives such that Dβf ∈ C

0,α
b (Ω) for any multi-index β with |β| = k.

Theorem 1.70 The space Hölder space (C
k,α
b (Ω), ‖ · ‖

C
k,α
b (Ω)

) is a Banach space,

where the norm ‖ · ‖
C

k,α
b (Ω)

is defined by

‖u‖
C

k,α
b (Ω)

=
∑

|β|≤k

‖Dβu‖∞ +
∑

|β|=k

[Dβ ]
C

0,α
b (Ω)

.

Proof The proof is left to the reader as an exercise.

Remark 1.71 Note that the subscript “b” in C
k,α
b (Ω) should be dropped in the case

when the domain Ω is bounded. In other words, if Ω is bounded, then C
k,α
b (Ω) will

be denoted Ck,α(Ω).

1.3.8 Embedding Theorems for Hölder Spaces

Theorem 1.72 Let Ω ⊂ Rn be an open bounded subset with a smooth boundary
∂Ω . Suppose 0 ≤ k ≤ m − 1. Then, we have the following compact embedding,

Wm,p(Ω) ⊂ Ck,α(Ω) if
n

p
< m − (k + α) with 0 < α < 1.

Proof See Adams [10].

Theorem 1.73 Let Ω ⊂ Rn be an open subset with a smooth boundary ∂Ω .
Suppose m ∈ Z+ and α, β are given such that 0 < α < β ≤ 1. Then, we have
the following embeddings,

C
m,α
b (Ω) ⊂ Cm(Ω),

C
m,β
b (Ω) ⊂ C

m,α
b (Ω).
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If Ω is bounded, then embeddings,

Cm,α(Ω) ⊂ Cm(Ω),

Cm,β(Ω) ⊂ Cm,α(Ω).

are compact.

Proof See Adams and Fournier [11].

1.3.9 The Dual Space

Let (X, ‖ · ‖) be a normed vector space over the field F. A functional ξ : X �→ F,
ξ �→ ξ(x) (ξ(x) is also denoted 〈ξ, x〉), is said to be linear if it satisfies the following
identity, ξ(λx + μy) = λξ(x) + μξ(y) for all λ,μ ∈ F and for all x, y ∈ X.

A functional ξ : X �→ F is called continuous, if there exists a constant K ≥ 0
such that

|ξ(x)| ≤ K‖x‖ (1.5)

for all x ∈ X.
The collection of all linear continuous functionals ξ : X �→ F, which we denote

by X∗, is called the (topological) dual of X. Clearly, X∗ is a vector space over F as
we can add elements of X∗ up and multiply them by scalars and still get continuous
linear functionals. One can endow the dual X∗ of X with a norm which we denote
by ‖ · ‖∗ and which is defined as follows: the norm ‖ξ‖∗ of ξ ∈ X∗, is the smallest
constant K satisfying Eq. (1.5). Consequently,

‖ξ‖∗ = sup
0 �=x∈X

|〈ξ, x〉|
‖x‖ .

Using the definition of the norm ‖ · ‖∗, it easily follows that |〈ξ, x〉| ≤ ‖ξ‖∗‖x‖ for
all ξ ∈ X∗ and x ∈ X. Furthermore,

‖ξ‖∗ = sup
‖x‖≤1

|〈ξ, x〉| = sup
‖x‖=1

|〈ξ, x〉|.

Theorem 1.74 The normed vector space (X∗, ‖ · ‖∗) is a Banach space.

Proof The proof is left to the reader as an exercise.
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1.3.10 The Schauder Fixed-Point Theorem

Definition 1.75 A nonempty set S is said to be convex if for all x, y ∈ S and
λ ∈ [0, 1], then λx + (1 − λ)y ∈ S.

Theorem 1.76 (The Brouwer Fixed-Point Theorem [76]) Let S ⊂ Fn be a
nonempty bounded closed convex subset. If the mapping T : S �→ S is continuous,
then T has at least one fixed-point, that is, FT �= ∅.

Theorem 1.77 (The Schauder Fixed-Point Theorem [76]) Let X be a Banach
space and let S ⊂ X be a nonempty compact convex subset. If the mapping T :
S �→ S is continuous, then T has at least one fixed-point, that is, FT �= ∅.

The following concept which measures the “non-compactness” is due to Kura-
towski [78].

Definition 1.78 If D ⊂ X is a bounded subset, one defines the measure α(D) of
non-compactness of D as follows:

α(D) := inf
{

d > 0 : D has a finite covering of diameter less than d
}

.

Definition 1.79 Let D ⊂ X be a subset. Suppose that the map P : D �→ X is
continuous. The map P is called condensing if for any bounded subset D′ of D,
α(D′) > 0 yields

α(P (D′)) < α(D′).

We have the following generalization of the Schauder’s fixed-point due to
Sadovsky.

Theorem 1.80 (The Sadovsky Fixed-Point Theorem [76]) Let D be a nonempty
convex, bounded, and closed subset of a Banach space X and F : D → D be a
condensing map. Then F has a fixed point in D.

Proof The proof makes use of the Schauder’s fixed point theorem (Theorem 1.77).
Indeed, fix x ∈ D and let Γ be the set of all closed convex subsets C of D such that
x ∈ C and F maps C into itself.

Set

Ω =
⋂

C∈Γ

C and K = Conv{F(Ω) ∪ {x}},

where Conv denotes the convex envelop and Conv its closure.
Using the fact that x ∈ Ω and that F maps Ω into itself yields one must have

K ⊆ Ω , which, in turn, yields F(K) ⊆ F(Ω) ⊆ Ω . Now from x ∈ K it follows
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that K ∈ Γ . Consequently, Ω ⊆ K which yields Ω = K , which, in turn, yields
F(K) = F(Ω) ⊆ K and, therefore,

α(K) = α(Conv{F(Ω) ∪ {x}}) = α({F(Ω) ∪ {x}}) = α(F (Ω)) = α(F (K)).

Using the fact that F is condensing it follows that α(K) = 0, which yields Ω is
compact. Consequently, F is a continuous function which maps a convex compact
set K into itself and so using Schauder theorem it follows that F has a fixed point.

1.3.11 Leray-Schauder Alternative

We will need the following fixed-point theorem in the sequel.

Theorem 1.81 (Leray-Schauder Alternative [61, Theorem 6.5.4]) Let D be a
closed convex subset of a Banach space X with 0 ∈ D. Let G : D → D be a
completely continuous map. Then, either G has a fixed point in D or the set

{

x ∈ D : x = λG(x), 0 < λ < 1
}

is unbounded.

1.4 Hilbert Spaces

Hilbert spaces play an important role in many areas including mathematical anal-
ysis, physics, quantum mechanics, Fourier analysis, partial differential equations,
etc. These spaces, which generalize in a natural fashion the Euclidean space, are
named after the German mathematician David Hilbert who introduced them in the
mathematical literature. Obviously, a Hilbert space is, by design, a Banach space.
Some of their basic properties will be discussed in this section and throughout the
entire book. For the uncovered material on Hilbert spaces, we refer the interested
reader to some of the classical books in functional analysis, i.e., Brézis [31, 32],
Conway [38], Eidelman et al. [53], Naylor and Sell [93], etc.

1.4.1 Basic Definitions

In this section, H stands for a vector space over the field F where F = (R, | · |) or
(C, | · |).
Definition 1.82 A mapping a : H ×H �→ F is said to be a sesquilinear form, if
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i) the mapping x �→ a(x, y) is linear for all y ∈ H , that is,

a(λx + μx′, y) = λa(x, y) + μa(x′, y)

for all x, x′, y ∈ H ; and
ii) the mapping y �→ a(x, y) is anti-linear for all x ∈ H , that is,

a(x, λy + μy′) = λa(x, y) + μa(x, y′)

for all x, y, y′ ∈ H .

Definition 1.83 An inner product or scalar product 〈·, ·〉 on H is a sesquilinear
form which goes from H × H into F and satisfies:

i) 〈x, x〉 ≥ 0 for all x ∈ H ;
ii) 〈x, x〉 = 0 if and only if x = 0; and

iii) 〈y, x〉 = 〈x, y〉 for all x, y ∈ H .

Recall that if 〈·, ·〉 is an inner product on H , then the mapping ‖ · ‖ : H �→ R+
defined by ‖x‖ := [〈x, x〉] 1

2 for all x ∈ H is a norm on H ; called the norm
deduced from the inner product 〈·, ·〉. Recall also that the norm ‖ · ‖ satisfies various
properties including the so-called Cauchy-Schwarz inequality and the parallelogram
identity given respectively by,

∣
∣
∣〈x, y〉

∣
∣
∣ ≤ ‖x‖ . ‖y‖, (1.6)

and

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (1.7)

for all x, y ∈ H .
While the proof of the Cauchy-Schwarz inequality requires more efforts, that of

the parallelogram identity is easy and is based upon the following identities:

‖x + y‖2 = ‖x‖2 + 2�e〈x, y〉 + ‖y‖2

and

‖x − y‖2 = ‖x‖2 − 2�e〈x, y〉 + ‖y‖2

for all x, y ∈ H .
Let H be a vector space over F equipped with the inner product given by, 〈·, ·〉.

Two vectors x, y ∈ H are said to be orthogonal if 〈x, y〉 = 0. If 〈x, y〉 = 0, then
the Pythagorean theorem holds in H , that is,

‖x + y‖2 = ‖x‖2 + ‖y‖2.
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More generally, if (xn)n∈N ⊂ H is a sequence such that 〈xn, xm〉 = 0 for all
n,m ∈ N with n �= m, then the series

∑∞
n=1 xn converges if and only if

∑∞
n=1 ‖xn‖2

does. In that event, we have the following generalized Pythagorean theorem,

∥
∥
∥

∞
∑

n=1

xn

∥
∥
∥

2 =
∞
∑

n=1

∥
∥
∥xn

∥
∥
∥

2
.

If M ⊂ H is a subspace, then its orthogonal M⊥ is defined by

M⊥ :=
{

x ∈ H : 〈x, y〉 = 0 for all y ∈ M
}

.

Proposition 1.84 If M ⊂ H is a subspace, then its orthogonal M⊥ is a closed
subspace of H .

Proof Let (xn)n∈N ⊂ M⊥ be a sequence such that ‖xn − x‖ → 0 as n → ∞ for
some x ∈ H . Now, using the fact that, 〈x, y〉 = 〈x − xn + xn, y〉 = 〈x − xn, y〉 +
〈xn, y〉 = 〈x−xn, y〉 for all y ∈ M and n ∈ N, it follows, using the Cauchy-Schwarz
inequality, that |〈x, y〉| ≤ ‖x − xn‖ . ‖y‖ → 0 as n → ∞, which yields 〈x, y〉 = 0,
and hence x ∈ M⊥.

Note that in addition to Proposition 1.84, we also have H ⊥ = {0} and {0}⊥ =
H . Further, if M ⊂ N where M,N are subspaces of H , then N⊥ ⊂ M⊥ and
M ⊂ (M⊥)⊥ with (M⊥)⊥ = M if M is closed.

Definition 1.85 The space H is said to be a Hilbert space if (H , ‖ ·‖) is complete
where ‖ · ‖ is the norm deduced from the inner product 〈·, ·〉.
One of the most important properties of Hilbert spaces is that of the projection
theorem. It plays an important role in many areas.

Theorem 1.86 Let H be a Hilbert space and let Σ ⊂ H be a nonempty closed
convex subset. For each x ∈ H , there exists a unique point PΣ(x) belonging to Σ

and called the orthogonal projection of x onto Σ that satisfies the identity

∥
∥
∥x − PΣ(x)

∥
∥
∥ = inf

y∈Σ

∥
∥
∥x − y

∥
∥
∥.

An immediate consequence of Theorem 1.86 is that if L ⊂ H is a closed
subspace, then H can be written as the direct sum of L and L⊥ as follows:
H = L ⊕ L⊥. This means that each x ∈ H can be uniquely written as
x = (x − PL(x)) + PL(x) where PL(x) ∈ L and x − PL(x) ∈ L⊥. The mapping
PL : H �→ H , x �→ PL(x), is called the orthogonal projection of H onto L.
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1.4.2 Examples of Hilbert Spaces

Classical examples of Hilbert spaces include, but are not limited to, Rn, Cn, L2(Ω),
and �2(N), equipped with their natural inner products. Other examples of Hilbert
spaces include Sobolev spaces Hk(Ω). Take k = 1, Ω = R, and consider H 1

defined by

H 1(R) = {f ∈ L2(R) : f ′ ∈ L2(R)}.

Recall that f ′ appearing in the definition of H 1(R) is the derivative of f in the sense
of distributions. The inner product on H 1(R) and its corresponding norm are given
respectively by

〈f, g〉 =
∫ ∞

−∞
f (t)g(t)dt +

∫ ∞

−∞
f ′(t)g′(t)dt

and

‖f ‖H 1(R) =
[ ∫ ∞

−∞
|f (t)|2dt +

∫ ∞

−∞
|f ′(t)|2dt

] 1
2

for all f, g ∈ H 1(R).

1.5 Exercises

1. Let (X, d) be a metric space. Show that

|d(x, y) − d(y, z)| ≤ d(x, z)

for all x, y, z ∈ X.
2. Let d0 and d1 be two metrics on a nonempty set X. Show that mapping d defined

by, d = αd0 + βd1 (d(x, y) = αd0(x, y) + βd1(x, y) for all x, y ∈ X) where
α, β ≥ 0 and α + β = 1, is a metric on X.

3. Prove Proposition 1.14.
4. Prove Theorem 1.19.
5. Let a, b > 0 and let f be the function given for all x ∈ Rn by

f (x) = 1

(1 + ‖x‖a)(1 + (ln ‖x‖)b) ,

where ‖ · ‖ denotes the Euclidean norm of Rn. Find conditions under which
f ∈ Lp(Rn).
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6. Show that the Lebesgue space Lp(Ω) is vector space for all p ∈ [1,∞].
7. Prove Theorem 1.44.
8. Let C[a, b] the collection of all continuous functions f : [a, b] �→ R.

a) Show that C[a, b] is a vector space over R.
b) Show that C[a, b] equipped with the norm given, for p ∈ [1,∞), by

‖f ‖p :=
( ∫ b

a

|f (t)|pdt
) 1

p
for all f ∈ C[a, b],

is not a Banach space.

Hint: Construct a Cauchy sequence in (C[a, b], ‖·‖p) which does not converge.
9. Consider the function f : Rn �→ R defined by f (x) = ‖x‖−α where ‖ · ‖ is

the Euclidean norm of Rn and α ∈ R. Show that f ∈ L1
loc(R

n) if and only if
α < n.

10. Let 1 < p ≤ ∞ and let 1 ≤ q < ∞ be such that p−1 + q−1 = 1. Show that
the (topological) dual of Lp(Ω) is Lq(Ω).

11. Let s ≥ 0 and 1 ≤ p < ∞. Suppose q is such that p−1 + q−1 = 1. Show that
the (topological) dual of W

s,p

0 (Ω) is the Sobolev space W−s,q(Ω).
12. Prove Theorem 1.64.
13. Prove Theorem 1.66.
14. Prove Theorem 1.68.
15. Prove Theorem 1.70.
16. Prove Theorem 1.74.
17. Prove Theorem 1.86.

1.6 Comments

Some of the basic materials of Sects. 1.3.3, 1.3.4, 1.3.6, and 1.3.10 are taken from
the following sources: Adams [10], Adams and Fournier [11], Brézis [31, 32] and
Diagana [47]. The material covered in Sects. 1.3.7 and 1.3.9 are partially taken
from Bezandry and Diagana [29] and Lunardi [87]. For additional readings upon
Lp spaces and Sobolev spaces Wk,p we refer the reader to Adams [10], Adams
and Fournier [11], and Brézis [32]. For additional readings upon basic functional
analysis and real analysis, we refer to Conway [38], Diagana [45], Eidelman et al.
[53], Kato [73], Rudin [102], Weidmann [111], and Yosida [112].

The proof of Theorem 1.80 follows Khamsi and Kirk [76, Proof of Theorem
7.12, pages 190–191].

For additional references on metric and normed vector spaces, we refer to the
book by Oden and Demkowicz [97]. For additional readings on fixed-point theory,
we refer to the book by Khamsi and Kirk [76].
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