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Foreword

Many phenomena in reality are scientifically modeled as evolution equations, and
so solutions of those evolution equations are functions in time that are either
continuous or discrete, and characterizing quantitative and qualitative properties
of the corresponding phenomenon. On the other hand, the study of evolution
equations is usually a difficult task, which has led in the past to the development
of new branches of mathematics like functional analysis, mathematical analysis,
differential equations, stochastic processes, and difference equations. All these
achievements are collected nowadays in well-known textbooks, so anyone interested
in this knowledge may find it and learn. It is clear that this procedure is still in
progress, since new phenomena and problems appear during the current scientific
research that lead to new types of evolution equations. Hence recently either new
mathematical methods were developed for solving evolution equations or new
applications of the known methods have been applied. These achievements are
mostly scattered in scientific articles. Consequently, there is a need to collect
them in new textbooks and monographs on evolution equations. The monograph,
Semilinear Evolution Equations and Their Applications by Professor Toka Diagana,
fits perfectly in this frame, since on one side, it presents essential known but
basic results like from functional analysis, operator theory, semigroups of linear
operators for understanding the theory of evolution equations, but on the other
side, it serves new results such as singular difference equations, almost periodic
functions, fractional evolution equations with many interesting applications for
instance arising in population dynamics. This book is a nice continuation of
the author’s previous one, Almost Automorphic Type and Almost Periodic Type
Functions in Banach Spaces. The results are well written and the proofs are clearly
described. Certainly, it is a pleasure to learn from this book and I recommend
it to anyone interested in new trends on evolution and difference equations with
applications to partial differential equations and practical problems.

Bratislava, Slovakia Michal Fečkan
March 2018
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Preface

This book, which is a continuation of Almost Automorphic Type and Almost Periodic
Type Functions in Banach Spaces, presents the recent trends and developments upon
fractional, first-, and second-order semilinear difference and differential equations
on abstract spaces including singular ones. It systematically discusses various
stability, existence, and uniqueness results for these semilinear difference and
evolution equations. In order to establish the existence results of the book, one
makes extensive use of a wide range of tools from nonlinear functional analysis,
fractional calculus, and operator theory. Various applications to partial differential
equations and population dynamics will be amply discussed.

For the sake of completeness and clarity, ample background materials on Banach
and Hilbert spaces including Lebesgue, Sobolev, and Hölder spaces, fixed-point
theorems, operator theory, semigroups of operators with special emphasis on
analytic semigroups, almost periodic functions, almost periodic sequences on Z are
provided.

Chapter 1 is devoted to the basic material on metric, Banach, and Hilbert spaces
needed in the sequel. By definition, every Hilbert space is a Banach—with the
converse being untrue. Banach and Hilbert spaces play a central role in many areas
and subareas of mathematical analysis as most of the spaces encountered in practical
problems turn out to be either Hilbert spaces or Banach spaces. Recall that Banach
spaces were named after the Polish mathematician Stefan Banach, who introduced
and studied these spaces. Basically, a Banach space is a normed vector space which
is complete, that is, every Cauchy sequence in it must converge in it. For instance
Q, the field of rational numbers, equipped with the standard absolute value is not
complete; its completion is in fact R, the field of real numbers. Standard examples
of Banach spaces include, but are not limited to, Rd , Cd , �p(N), Lp, Wk,p (Sobolev
spaces), Ck,α (Holder spaces), Bs

p,q (Besov spaces), Hp(S1) (Hardy spaces), and
BMO (functions of bounded mean oscillation).

Chapter 2 reviews basic properties of bounded and unbounded operators as
well as their spectral theory. The main references for this chapter are Diagana
[47], Bezandry and Diagana [27], and Lunardi [87, 88]. For additional readings
on the topics covered in this chapter, we refer to Benzoni [25], Brézis [31, 32],
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Conway [38, 39], Gohberg et al. [60], Eidelman et al. [53], Kato [73], Rudin [102],
Weidmann [111], and Yosida [112].

In Chap. 3, we collect fundamental results on strongly continuous semigroups
and evolution families that are needed in the entire book. The main references
for this chapter are the following books: Bezandry and Diagana [27], Chicone and
Latushkin [37], Diagana [47], Engel and Nagel [55], Lunardi [87], and Pazy [100],
as well as some papers such as Acquistapace and Terreni [8], Baroun et al. [20], and
Schnaubelt [105].

The theory of almost periodic functions, which was introduced in the mathe-
matical literature by the Danish mathematician H. Bohr, is an interesting theory
that has many applications in various fields including astronomy, signal processing,
stochastic differential equations, and harmonic analysis. In Chap. 4, we study the
basic properties of almost periodic functions as well as their discrete counterparts
needed in the sequel. The main references for this chapter are the following books:
Amerio and Prouse [13], Besicovitch [26], Bezandry and Diagana [27], Bohr [29],
Corduneanu [40, 41], Diagana [47], Fink [58], Halanay and Rasvan [63], Levitan
and Zhikov [82], Levitan [81], N’Guérékata [94, 95], Pankov [99], Zhang [114],
Hino et al. [70], as well as papers such as Diagana et al. [49], Diagana [45], Diagana
and Pennequin [48], and Fan [56].

The mathematical problem, which consists of studying the existence of solutions
to difference equations with almost periodic coefficients, is an important one as
almost periodicity, according to Henson et al. [66], is more likely to accurately
describe many phenomena occurring in population dynamics than periodicity. In
particular, in Diagana et al. [49], the effect of almost periodicity upon population
dynamics including the well-known Beverton-Holt model which arises in fishery
was investigated. Among others, Diagana et al. made extensive use of dichotomy
techniques to obtain sufficient conditions that do guarantee the existence of a
globally attracting (Bohr) almost periodic solution to a semilinear system of
difference equations on Z+. These existence results were, next, utilized to study
discretely reproducing populations with and without overlapping generations. The
main objective in Chap. 5 is twofold. We first extend the above-mentioned theory of
almost periodic sequences built by Diagana et al. [49] to Z. Next, we make extensive
use of dichotomy techniques to find sufficient conditions for the existence of almost
periodic solutions to the semilinear systems of difference equations,

x(t + 1) = A(t)x(t)+ f (t, x(t)), t ∈ Z

where A(t) is a k×k almost periodic square matrix, and the function f : Z×R
k →

R
k is almost periodic in the first variable uniformly in the second one. As in the

case of Z+, our existence results are, subsequently, applied to discretely reproducing
populations with overlapping generations.

In Chap. 6, we study and establish the existence of Bohr (respectively, Besi-
covitch) almost periodic solutions to the following class of singular systems of
difference equations,
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Ax(t + 1)+ Bx(t) = f (t, x(t)) (1)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic
in t ∈ Z uniformly in the second variable, and A, B are N × N square matrices
satisfying detA = detB = 0. Recall that singular difference equations of the form
Eq. (1) arise in many applications including optimal control, population dynamics,
economics, and numerical analysis [52]. The main result discussed in this chapter
can be summarized as follows: if λA+B is invertible for all λ ∈ S1 = {z ∈ C : |z| =
1} and if f is Bohr (respectively, Besicovitch) almost periodic in t ∈ Z uniformly in
the second variable and under some additional conditions, then Eq. (1) has a unique
Bohr (respectively, Besicovitch) almost periodic solution. Chapter 6 is organized
as follows: Sect. 6.1 serves as an introduction but also provides preliminary tools
needed in the sequel. In Sect. 6.2, some preliminary results corresponding to the
case f (t, x(t)) = C(t) are obtained. Section 6.3 is devoted to the main results
of this chapter. In Sect. 6.4, we make use of the main results in Sect. 6.3 to study
the existence of Bohr (respectively, Besicovitch) almost periodic solutions for some
second-order (and higher-order) systems of singular difference equations.

Fractional calculus is a generalization of both classical differentiation and
integration of non-integer order. Fractional calculus is as old as differential calculus.
Fractional differential and integral equations have recently been applied to various
areas including engineering, science, finance, applied mathematics, bioengineering,
radiative transfer, neutron transport, and the kinetic theory of gases, see, e.g.,
[16, 33, 35, 36, 71, 74]. Some recent progress in the study of ordinary and partial
fractional differential equations has been made, see for instance the following books
[4, 6, 19, 51, 77, 91, 101] and [103]. Further, some recent results upon the existence
and attractiveness of solutions to various integral equations of two variables have
been obtained by many people. In this Chap. 7, we study the existence, uniqueness,
estimates, and global asymptotic stability for some classes of fractional integro-
differential equations with finite delay. In order to achieve our goal, we make
extensive use of some fixed-point theorems as well as the so-called Pachpatte
techniques.

In Chap. 8, we study the existence of classical and mild solutions for the Cauchy
problem in the inhomogeneous and semilinear cases. The last part of Chap. 8 is
devoted to the existence of almost periodic mild solutions to first-order differential
equations including nonautonomous ones.

Let α ∈ (0, 1]. Chapter 9 constitutes a brief introduction to the fast-growing the-
ory of fractional evolution equations. More precisely, we study sufficient conditions
for the existence of classical (respectively, mild) solutions for the inhomogeneous
fractional Cauchy problem

{
D

α
t u(t) = Au(t)+ f (t), t > 0

u(0) = u0 ∈ X

and its corresponding semilinear evolution equation
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{
D

α
t u(t)+ Au(t) = F(t, u(t)), t > 0,

u(0) = u0 ∈ X,

where D
α
t is the fractional derivative of order α in the sense of Caputo, A :

D(A) ⊂ X �→ X is a closed linear operator on a complex Banach space X, and
f : [0,∞) �→ X and F : [0,∞) × X �→ X are continuous functions satisfying
some additional conditions. Under some appropriate assumptions, various existence
results are obtained. The main tools utilized to establish the existence of classical
(respectively, mild) solutions to the above-mentioned fractional evolutions are the
so-called (α, α)β -resolvent families S

β
α and almost sectorial operators A ∈ Σ

γ
ω (X)

where γ ∈ (−1, 0) and 0 < ω < π
2 . For more on these tools and related issues, we

refer the reader to Keyantuo et al. [75] and Wang et al. [110].
Chapter 10 discusses some existence results for some second-order semilinear

evolution equations.
Thermoelastic plate systems play an important role in many applications. For this

reason, they have been, in recent years, of great interest to many people. Among
other things, the study of the controllability and stability of thermoelastic plate
systems has been considered by many people including [14, 18, 24, 44, 65, 79],
and [92]. Let Ω ⊂ R

N (N ≥ 1) be a bounded subset, which is sufficiently regular,
and let a, b : R �→ R be positive functions. In Sect. 10.2, we make extensive use
of a wide range of tools including evolution families, real interpolation spaces, and
some fixed-point theorems, to study and obtain the existence of almost periodic mild
solutions to the following nonautonomous thermoelastic plate systems,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2 +Δ2u+ a(t)Δθ = f1(t,∇u,∇θ), if t ∈ R, x ∈ Ω

∂θ

∂t
− b(t)Δθ − a(t)Δ

∂u

∂t
= f2(t,∇u,∇θ), if t ∈ R, x ∈ Ω,

θ = u = Δu = 0, if t ∈ R, x ∈ ∂Ω,

where u, θ are the vertical deflection and the variation of temperature of the plate,
f1, f2 are jointly continuous and (globally) Lipschitz functions. Assuming that the
coefficients a, b, f1, f2 are almost periodic in the first variable (in t ∈ R) uniformly
in the other ones, it will be shown that the system above has an almost periodic mild
solution.

Let I ⊂ R be an interval. The main focus in Sect. 10.3 consists of studying the
existence of asymptotically almost periodic solutions to some classes of second-
order partial functional-differential equations of the form

d

dt

[
ϕ′(t)− g(t, ϕt )

] = Aϕ(t)+ f (t, ϕt ), t ∈ I,

ϕ0 = ψ ∈ B,
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ϕ′(0) = ξ ∈ X,

where A is the infinitesimal generator of a strongly continuous cosine family
(C(t))t∈R of bounded linear operators on X, the history ϕt : (−∞, 0] → X,
ϕt (θ) := ϕ(t + θ), belongs to an abstract phase space B defined axiomatically, and
f, g are some appropriate functions. The abstract existence results are subsequently
utilized to study the existence of asymptotically almost periodic solutions to some
integro-differential equations, which arise in the theory of heat conduction within
fading memory materials.

The prerequisite for the book is the Introduction to Real Analysis course material.
Although it is primarily intended for beginning graduate students, postgraduates,
and researchers, it may also be of interest to nonmathematicians such as physicists
and theoretically oriented engineers for instance. Further, it can be used as a
graduate text on topics such as operator theory, theory of semigroups, evolution
equations, and difference equations and their applications to partial differential
equations and practical problems arising in population dynamics.

Toka Diagana
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Chapter 1
Banach and Hilbert Spaces

1.1 Introduction

In this chapter we present the basic material on metric, Banach, and Hilbert spaces
needed in the sequel. By design, every Hilbert space is a Banach space—with
the converse being untrue. Banach and Hilbert spaces play a central role in many
areas and subareas of mathematical analysis as most of the spaces encountered and
utilized in practical problems turn out to be either Hilbert spaces or Banach spaces.

Recall that Banach spaces were named after the Polish mathematician Stefan
Banach who introduced them in the mathematical literature around 1920–1922.
Basically, a Banach space is a normed vector space that is complete, that is, every
Cauchy sequence in it must converge in it. For instance Q the field of rational
numbers equipped with the standard absolute value is not complete; its completion
is in fact R, the field of real numbers. Standard examples of Banach spaces include,
but are not limited to, R

d , C
d , �p(N), Lp (Lebesgue spaces), Wk,p (Sobolev

spaces), Ck,α (Hölder spaces), Bs
p,q (Besov spaces), Hp(S1) (Hardy spaces), and

BMO (functions of bounded mean oscillation)—when they are equipped with their
respective standard norms.

In this chapter, we first study some of the basic properties of metric spaces and
then use these to deduce those of Banach and Hilbert spaces.

One should stress upon the fact that the introductory material presented in
this chapter can be found in any good book in (nonlinear) functional analysis.
Consequently, some proofs will be omitted.

© Springer Nature Switzerland AG 2018
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2 1 Banach and Hilbert Spaces

1.2 Metric Spaces

This section is essentially devoted to metric spaces and their basic properties.
Among other things, the following notions will be introduced and studied in the
context of metric spaces: convergence, completeness, continuity, compact metric
spaces, and the Banach fixed-point principle.

1.2.1 Basic Definitions and Examples

Definition 1.1 A pair (M, d) consisting of a nonempty set M and a mapping
(metric or distance) d : M × M �→ [0,∞) is called a metric space, if the mapping
d fulfills the following properties,

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and

iii) d(x, z) ≤ d(x, y)+ d(y, z)

for all x, y, z ∈ M .

The inequality iii) appearing in Definition 1.1 is commonly known as the triangle
inequality. Further, elements of the set M are called points and the quantity d(x, y)

is referred to as the distance between the points x, y ∈ M .
If (M, d) is a metric space, then using the triangle inequality, it can be easily

shown that the following property holds,

∣∣∣d(x, y)− d(y, z)

∣∣∣ ≤ d(x, z)

for all x, y, z ∈ M .

Example 1.2

(1) Let d0 and d1 be two metrics upon a nonempty set M . Consider the mapping d

defined by, d(x, y) = αd0(x, y)+ βd1(x, y) for all x, y ∈ M , where α, β ≥ 0
and α + β = 1. It is not hard to see that the pair (M, d) is a metric space.

(2) Let M be an arbitrary nonempty set which we endow with the so-called discrete
metric ds defined by

ds(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if x = y

1 if x �= y

It can be easily shown that (M, ds) is a metric space.



1.2 Metric Spaces 3

(3) Fix p ≥ 1. Then (Rn, dp) is a metric space, where

dp(α, β) :=
( n∑

k=1

|αk − βk|p
)1/p

for all α = (α1, α2, ..., αn), β = (β1, β2, ..., βn) ∈ R
n.

(4) Consider the unit circle, S1 = {z ∈ C : |z| = 1} and let A (S1) stand for the
collection of all functions f : S1 �→ C for which

∫ 2π

0
|f (eiθ )|2dθ < ∞.

It can be easily seen that (A (S1), ρ) is a metric space, where the metric ρ is
defined by,

ρ(f, g) :=
(∫ 2π

0
|f (eiθ )− g(eiθ )|2dθ

) 1
2

for all f, g ∈ A (S1).

As usual, if (M, d) is a metric space, then the metric d enables us to define the
notions of balls and spheres in M . Indeed, the (open) ball centered at x ∈ M with
radius r > 0 is defined by B(x, r) = {y ∈ M : d(x, y) < r}. Similarly, the (closed)
ball centered at x ∈ M with radius r ≥ 0 is defined by B(x, r) = {y ∈ M :
d(x, y) ≤ r}. By the sphere S(x, r), centered at x ∈ M with radius r ≥ 0, we mean
the set of all points defined by S(x, r) = {y ∈ M : d(x, y) = r}.
Definition 1.3 Let (M, d) be a metric space and let O ⊂ M be a subset. The set O
is said to be an open set if for all x ∈ M , there exists r > 0 such that B(x, r) ⊂ O.

Classical examples of open sets in a metric space (M, d) include M itself and the
empty set, ∅. Recall that arbitrary unions of open sets of M are also open sets of M .
Further, finite intersections of open sets of M are also open sets of M .

Definition 1.4 Let (M, d) be a metric space and let O ⊂ M be a subset. A point
x ∈ M is said to be an interior point of O if and only if there exists r > 0 such that
B(x, r) ⊂ O.The collection of all interior points of O is denoted Int(O).

It can be shown that a subset O of M is open if and only if it contains all of its
interior points, that is, O = Int(O).

Definition 1.5 Let (M, d) be a metric space and let O ⊂ M be a subset. The set O
is said to be a closed set if its complement OC = M \ O is an open set.

Classical examples of closed sets of a metric space (M, d) include singletons
{x}, M , and ∅.
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Definition 1.6 Let (M, d) be a metric space and let O ⊂ M be a subset. A point
x ∈ M is said to be an adherent point of O if and only if for all r > 0, the following
holds, B(x, r) ∩ O �= {∅}. The collection of all adherent points of O is called the
closure of O and is denoted O .

It can be shown that a subset O of M is closed if and only if it contains all of its
adherent points, that is, O = O . In other words, O is closed if and only if for any
sequence (xn)n∈N ⊂ O such that d(xn, x) → 0 for some x ∈ M as n → ∞, then
one must have x ∈ O .

Definition 1.7 Let (M, d) be a metric space and let O ⊂ M be a subset. The subset
O is said to be bounded it is included in some ball B(x, r). Otherwise, the set O is
said to be unbounded.

It is easy to see that O ⊂ M is bounded if and only if its diameter, diam(O) :=
sup

x,y∈O
d(x, y), is finite, that is, diam(O) < ∞.

If (M, d) is a metric space, then the metric d enables us to define the notion of
convergence in M .

Definition 1.8 Let (M, d) be a metric space. A sequence (xn)n∈N ⊂ M is said to
converge to some x ∈ M with respect to the metric d, if d(xn, x) → 0 as n → ∞.
Equivalently, for every ε > 0, there exists N ∈ N such that d(xn, x) < ε for all
n ≥ N .

If a sequence (xn)n∈N ⊂ M converges to some x ∈ M with respect to the metric
d, then we write lim

n→∞ xn = x.

Proposition 1.9 Let (M, d) be a metric space. If a sequence (xn)n∈N ⊂ M

converges, then its limit is unique.

Proof Suppose (xn)n∈N ⊂ M converges to two limits x, y ∈ M . Then, using the
triangle inequality it follows that 0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y). Letting n →
∞ in the previous inequality, it follows that d(x, y) = 0 which yields x = y.

Definition 1.10 Let (M, d) be a metric space. A sequence (xn)n∈N ⊂ M is called
a Cauchy sequence, if for every ε > 0, there exists N ∈ N such that d(xn, xm) < ε

for all n,m ≥ N .

Proposition 1.11 Let (M, d) be a metric space. Every convergent sequence is a
Cauchy sequence. Further, every Cauchy sequence is bounded.

Proof

i) Let (xn)n∈N be a convergent sequence in the metric space (M, d). This means
that there exists x ∈ M such that d(xn, x) → 0 as n → ∞. Equivalently, for all
ε > 0, there exists N ∈ N such that d(xn, x) < ε

2 for all n ≥ N . Now, using the
triangle inequality it follows that d(xn, xm) ≤ d(xn, x)+d(x, xm) < ε

2 + ε
2 = ε

for all n,m ≥ N . Consequently, (xn)n∈N is a Cauchy sequence.
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ii) Suppose that (xn)n∈N is a Cauchy sequence. For ε = 1, there exists N ∈ N such
that d(xn, xm) < 1 for n,m ≥ N . In particular, d(xn, xN) < 1 for all n ≥ N .
Setting r = 1 + max{1, d(x1, xN), d(x2, xN), ..., d(xN−1, xN)}, one can easily
see that (xn)n∈N ⊂ B(xN, r) which yields the sequence (xn)n∈N is bounded.

1.2.2 Complete Metric Spaces

Definition 1.12 A metric space (M, d) is said to be complete, if every Cauchy
sequence in it converges in it.

Classical examples of complete metric spaces include R
n equipped with its

corresponding Euclidean metric defined by

d(x, y) =
(

n∑
k=1

|xk − yk|2
) 1

2

for all x = (x1, x2, ..., xn), y = (y1, y2..., yn) ∈ R
n, and BC(R,M) the

collection of all bounded continuous functions which go from R into a complete
metric space (M, d), when it is equipped with the sup norm metric, d∞(f, g) =
supt∈R d(f (t), g(t)) for all f, g ∈ BC(R,M), etc.

A classical example of a metric space which is not complete is Q; the field of
rational numbers; when it is equipped with the standard absolute value defined by
d0(x, y) = |x−y| for all x, y ∈ Q. There are obviously various ways of constructing
a Cauchy sequence in Q which diverges. Let us exhibit one here. Indeed, consider
the recurrent sequence (xn)n∈N given by,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 = q ∈ N,

xn+1 = 2

3
xn + 1

xn
, for all n ∈ N.

It is not hard to show that not only (xn)n∈N is a sequence of rational numbers but
also that lim

n→∞ xn = √
3 ∈ R \Q. This shows that (Q, d0) is not complete.

The larger question regarding the completion of a given arbitrary metric space
(M, d) is the following: if (M, d) is not complete, are there ways of making it
complete? The answer is a “yes.” Indeed, suppose that (M, d) is not complete and
let

CS(M, d) :=
{

all Cauchy sequences in (M, d)
}
.
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Define an equivalence relation upon elements of CS(M, d) as follows: two
sequences (xn)n∈N, (yn)n∈N in CS(M, d) are said to be equivalent which we
denote (xn)n∈N ∼ (yn)n∈N if and only if, for ε > 0, there exists N ∈ N such that

d(xn, ym) < ε for all n,m ≥ N.

Consider

˜CS(M, d) = CS(M, d)/ ∼

and define the mapping d̃ : ˜CS(M, d)× ˜CS(M, d) �→ [0,∞) as follows: if x, y ∈
˜CS(M, d), that is, x = [(xn)n] and y = [(yn)n∈N] (equivalence classes of (xn)n∈N

and (yn)n∈N), then

d̃(x, y) = lim
n→∞ d(xn, yn).

It is easy to check that d̃ is a metric upon ˜CS(M, d). Moreover, the metric space

( ˜CS(M, d), d̃), by construction, is complete.

1.2.3 Continuous Functions

In the sequel, the pairs (M, d), (M ′, ρ), (M1, d1), (M2, d2), and (M3, d3) stand for
metric spaces.

Definition 1.13 A function f : (M, d) �→ (M ′, ρ) is said to be continuous at
x0 ∈ M , if for all ε > 0 there exists δ > 0 such that for all x ∈ M , d(x0, x) < δ

yields ρ(f (x0), f (x)) < ε. The function f is said to be continuous on M , if it is
continuous at each point of M .

Recall that the continuity of a function f : (M, d) �→ (M ′, ρ) at x0 ∈ M is
equivalent to its sequential continuity at x0 ∈ M , that is, for any arbitrary sequence
(xn)n∈N ⊂ M that converges to some x0, we have that f (xn) converges to f (x0).
In general, it is easier to prove the continuity of a function using the sequential
continuity than the general definition of continuity given in Definition 1.13.

We have the following composition result for continuous functions on metric
spaces whose proof is left to the reader as an exercise.

Proposition 1.14 Let f : M1 �→ M2 and g : M2 �→ M3 be given functions. Let
x0 ∈ M1 be such that f is continuous at x0 and that g is continuous at f (x0). Then,
gof , the composition of f with g, is also continuous at x0.
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Definition 1.15 A function f : (M, d) �→ (M ′, ρ) is said to be uniformly
continuous if, for all ε > 0, there exists δ > 0 such that for all x, y ∈ M ,
d(x, y) < δ yields ρ(f (x), f (y)) < ε.

Obviously, every uniformly continuous function is continuous. However, the
converse, except in the case when M is a compact metric space, is in general not
true (see for instance Theorem 1.20).

1.2.4 Compact Metric Spaces

Definition 1.16 An open covering of (M, d) is a collection of open sets whose
union is M .

Definition 1.17 A metric space (M, d) is said to be compact if every open covering
of it has a finite subcovering.

Definition 1.18 A subset O of a metric space (M, d) is called relatively compact if
its closure O is a compact subset of M .

Theorem 1.19 A metric space (M, d) is compact if and only if every sequence of
elements of M has a subsequence which converges.

Proof The proof is left to the reader as an exercise.

Theorem 1.20 If (M, d) is a compact metric space and if f : M �→ M ′ is a
continuous function, then f is uniformly continuous.

Proof Let ε > 0 and x ∈ M be given. Using the fact that f is continuous, we deduce
that there exists δx > 0 such that d(x, y) < δx yields ρ(f (x), f (y)) < ε

2 . Since M

is compact, it follows that there exists a finite number of points x1, x1, ..., xd such
that the following holds,

M ⊂
d⋃

j=1

B

(
xj ,

δxj

2

)
.

Now let δ = 1
2 min{δxj : j = 1, 2, ..., d}. Clearly, δ > 0. Further, for all (x, y) ∈

M × M satisfying d(x, y) < δ, one can find j0 ∈ {1, 2, ..., d} such that x and y

belong to B(xj0 , δj0), which yields ρ(f (x), f (xj0)) <
ε
2 and ρ(f (y), f (xj0)) <

ε
2 .

Using the triangle inequality it follows that,

ρ(f (x), f (y)) ≤ ρ(f (x), f (xj0))+ ρ(f (xj0), f (y)) < ε,

which shows that the function f is uniformly continuous.
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Let C(M,M ′) denote the collection of all continuous functions from M into M ′.
If M ′ = C, then C(M,C) will be denoted by C(M). If M is compact, then C(M)

is a metric space when it is equipped with the metric, d∞(u, v) = maxx∈M |u(x)−
v(x)| for all u, v ∈ C(M).

Definition 1.21 A sub-collection Γ ⊂ C(M) is called uniformly bounded if there
exists C > 0 such that |u(x)| ≤ C for every x ∈ M and u ∈ Γ .

Definition 1.22 A sub-collection Γ ⊂ C(M,M ′) is said to be equi-continuous if
for all x0 ∈ M and for all ε > 0 there exists δ = δ(x0, ε) > 0 such that d(x, x0) < δ

yields ρ(f (x), f (x0)) < ε for all f ∈ Γ.

Example 1.23 Let Γ ⊂ C(M) be defined as the family of all K-Lipschitz functions
on M where K ≥ 0. That is, all functions u : M �→ C such that |u(x) − u(y)| ≤
Kd(x, y) for all x, y ∈ M . It can be easily shown that the family Γ is equi-
continuous.

Theorem 1.24 (Arzelà-Ascoli Theorem) A sub-collection Γ ⊂ C(M) is rela-
tively compact if and only if,

(a) Γ is equi-continuous; and
(b) Γ is uniformly bounded.

Proof The proof is left to the reader as an exercise.

Corollary 1.25 A sub-collection Γ ⊂ C(M) is compact if and only if it is closed,
uniformly bounded, and equi-continuous.

Proof The proof is left to the reader as an exercise.

1.2.5 Banach Fixed-Point Principle

Definition 1.26 A mapping T : (M, d) �→ (M ′, ρ) is said to be Lipschitz if there
exists K ≥ 0 (Lipschitz constant) such that

ρ(T (x), T (y)) ≤ Kd(x, y)

for all x, y ∈ M . In the case when 0 ≤ K < 1, then the map T is said to be a strict
contraction.

Example 1.27 Let O ⊂ M be a subset. If x ∈ M , ones defines the distance between
the point x and the set O as follows,

d(x,O) := inf
y∈O

d(x, y).
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Proposition 1.28 The map D : M �→ R+, x �→ D(x) := d(x,O) is Lipschitz with
1 as its Lipschitz constant. That is,

|d(x,O)− d(y,O)| ≤ d(x, y)

for all x, y ∈ M .

Proof Using the triangle inequality and a property of the infimum it follows that
D(x) ≤ d(x, e) ≤ d(x, y) + d(y, e) for all x, y ∈ M and e ∈ O , which yields
D(x) − d(x, y) ≤ d(y, e) for all x, y ∈ M and e ∈ O . Using the fact that the
infimum is the greatest element that is less than or equal to all elements, we deduce
that D(x) − d(x, y) ≤ D(y) which in turn yields D(x) − D(y) ≤ d(x, y) for all
x, y ∈ M . Since x and y are arbitrary elements of M , replacing x with y in the
previous inequality, one gets, D(y) − D(x) ≤ d(y, x) = d(x, y) for all x, y ∈ M .
Combing the last two inequalities, we deduce that |D(x)−D(y)| ≤ d(x, y) for all
x, y ∈ M .

If T : (M, d) �→ (M, d) is a mapping, then one defines its fixed-points by FT =
{x ∈ M : T (x) = x}.
Remark 1.29 Note that if T is a strict contraction, then FT cannot contain more
than one element. Indeed, suppose x = T x and y = Ty, then d(x, y) =
d(T (x), T (y)) ≤ Kd(x, y) < d(x, y), this impossible. Consequently, FT cannot
contain more than one element.

Theorem 1.30 (Banach Fixed-Point Theorem [47]) If (M, d) is a complete
metric space and if T : M �→ M is a strict contraction, then it has a unique
fixed-point.

Proof Let x0 ∈ M . Define the sequence xn = T nx0 which yields xn+1 = T xn and
xn = T xn−1. Consequently, d(xn+1, xn) ≤ Knd(x0, x1) where 0 ≤ K < 1 is the
Lipschitz constant. Similarly, for all n,m ∈ N with n > m, we have

d(xn, xm) ≤ d(xn+1, xn)+ d(xn, xn−1)+ ...+ d(xm, xm−1)

≤
(
Kn +Kn−1 + ...+Km−1

)
d(x1, x0)

≤ Kn

1 −K
d(x1, x0).

This yields the sequence (xn)n∈N ⊂ M which is a Cauchy sequence and since
(M, d) is complete, it follows that there exists x ∈ M such that lim

n→∞ d(xn, x) = 0.

Since T is continuous, it follows that T x = lim
n→∞ T xn = lim

n→∞ xn+1 = x which

yields x ∈ FT . Using Remark 1.29, we deduce that FT = {x}.
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1.2.6 Equilibrium Points for the Discrete Logistic Equation

This subsection is an application to the Banach fixed-point theorem and is based
upon [72, Chapter 3]. Indeed, we make use of the Banach fixed-point theorem to
determine equilibrium points of the (discrete) logistic equation. One of the most
celebrated discrete dynamical systems arising in dynamic of population is that of
the logistic equation, which is given by the following nonlinear difference equation,

x(t + 1) = 4σx(t)(1 − x(t)),

where σ ∈ [0, 1] and x(t) ∈ [0, 1] for all t ∈ N.
In many concrete applications, x(t) stands for the size of the population being

studied at the generation t of a reproducing population. Recall that the linear part
of the logistic equation, that is, x(t + 1) = 4σx(t), describes, depending upon σ ,
the exponential growth (if σ > 1

4 ) or decay (if σ < 1
4 ) of a population subject to

constant birth or death rate.
Clearly, the discrete logistic equation is of the form, x(t+1) = Sx(t), where the

function S (logistic map) is defined by

S : [0, 1] �→ [0, 1], x �→ 4σx(1 − x).

Obviously, equilibrium points of the logistic equation correspond to the fixed-points
of the logistic map S. It can be easily shown that for σ ∈ [0, 1

4 ], the point x0 = 0
is the only fixed-point (equilibrium point of the discrete logistic equation) of S. For
σ ∈ ( 1

4 , 1], fixed-points of the logistic map S are given by the points of the form,
x(σ ) := 1−(4σ)−1. Consequently, the logistic map S has infinity many fixed-points
(or equilibrium points for the logistic equation) given by

FS =
{

0
}
∪
{
xσ := 1 − (4σ)−1 : σ ∈ (

1

4
, 1]
}
.

1.3 Banach Spaces

In the rest of this book, unless otherwise stated, F stands for the field of real numbers
R or the field of complex numbers C.

1.3.1 Basic Definitions

Let X be a vector space over the field F. A norm on X is a mapping ‖ · ‖ : X �→ R+
satisfying the following properties,
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i) ‖x‖ = 0 if and only if x = 0;
ii) ‖λx‖ = |λ| ‖x‖; and

iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖
for all x, y ∈ X and λ ∈ F.

The pair (X, ‖ · ‖) is then called a normed vector space. From a given normed
vector space (X, ‖ · ‖), one can construct a metric space (X, d), where the metric d

is defined by d(x, y) := ‖x − y‖ for all x, y ∈ X.
In what follows, we introduce two important notions which play a crucial role

in many fields: separable and uniformly convex normed vector spaces. For that, we
need to introduce a few notions.

Definition 1.31 Let (X, ‖ · ‖) be a normed vector space and let D ⊂ X be a subset.
Then, D is said to be dense, if X = D . Equivalently, for each x ∈ X, there exists a
sequence (xn)n∈N ⊂ D such that d(xn, x) = ‖xn − x‖ → 0 as n → ∞.

Definition 1.32 A set D is called countable if it is finite or has the same cardinality
as N (i.e., there exists a bijection between D and N). A set D is called uncountable
if it is infinite and not countable.

Definition 1.33 A normed vector space (X, ‖·‖) is said to be separable if it contains
a countable dense subset D .

Classical examples of separable normed vector spaces include, but are not limited
to, (R, | · |), (C, | · |), and (�p(N), ‖ · ‖p) for 1 ≤ p < ∞, where �p(N) is vector
space consisting of all sequences x = (xn)n∈N with xn ∈ C for all n ∈ N and

‖x‖p :=
( ∞∑

k=1

|xk|p
)1/p

< ∞.

It is also well known that �∞(N), the vector space of all bounded sequences (the
vector space consisting of all sequences x = (xn)n∈N with xn ∈ C for all n ∈ N such
that |xn| ≤ M for all n ∈ N with M ≥ 0 being a constant), is not separable, when it
is equipped with its natural sup-norm ‖·‖∞ defined, for each x = (xn)n∈N ∈ �∞(N),
by

‖x‖∞ = sup
n∈N

|xn|.

Definition 1.34 A normed vector space (X, ‖ · ‖) is said to be uniformly convex if
for each ε > 0 there exists δ > 0 such that

x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε yields
∥∥∥x + y

2

∥∥∥ < 1 − δ.

While the normed vector spaces (R, | · |), (C, | · |), and (�p(N), ‖ · ‖p) for 1 <

p < ∞ are uniformly convex, �∞(N) is not.
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Definition 1.35 A normed vector space (X, ‖ ·‖) is said to be a Banach space if the
metric space (X, d), where d(x, y) := ‖x − y‖ for all x, y ∈ X, is complete.

Classical examples of Banach spaces include finite-dimensional normed vector
spaces. Obviously, there are plenty of normed vector spaces which are not Banach
spaces (not complete). Indeed, for a < b, consider C[a, b], the collection of all
continuous functions f : [a, b] �→ R. It is clear that C[a, b] is a vector space over
R which we equip with the norm given, for p ∈ [1,∞), by

‖f ‖p :=
( ∫ b

a

|f (t)|pdt
) 1

p
for all f ∈ C[a, b].

It is not hard to see that the normed vector space (C[a, b], ‖ · ‖p) is not complete.
Obviously, Banach spaces are more interesting for applications than incomplete

normed vector spaces. Consequently, in what follows, our main focus will be on
Banach spaces and their basic properties.

The proof of the next theorem presents no difficulty and hence is left to the reader
as an exercise.

Theorem 1.36 If (X, ‖ · ‖) is a Banach space and if Y ⊂ X is a subspace, then
(Y, ‖ · ‖) is a Banach space if and only if Y is closed.

1.3.2 The Quotient Space

Definition 1.37 Let L be a subspace of the vector space X. The cosets of L are
defined by the sets, [x] = x + L = {x + � : � ∈ L}.

Define the quotient X \ L as follows X \ L = {[x] : x ∈ X}. The canonical
projection of X onto X \ L is defined by π : X �→ X \ L, x �→ [x]. It is not hard to
see that π is surjective and that Ker(π) = {x ∈ X : π(x) = 0} = L. Further, X \ L
is a vector space over F ([x + y] = [x] + [y] and [λx] = λ[x] for all x, y ∈ X and
λ ∈ F) called the quotient space. Furthermore, the mapping ‖ · ‖ : X \ L �→ [0,∞)

defined by

‖[x]‖ = ‖x + L‖ = d(x,L) = inf
y∈L ‖x − y‖

for each [x] ∈ X \ L, is a norm on the quotient vector space X \ L. Indeed, for all
x, y ∈ X and λ ∈ F, using the fact that L is closed, we have d(x,L) = 0 if and only
if x ∈ L. Thus ‖[x]‖ = ‖x + L‖ = 0 if and only if [x] = x + L = 0 + L.

Suppose λ �= 0. Then, we have

‖λ[x]‖ = ‖λ(x + L)‖ = d(λx,L) = d(λx, λL) = |λ|d(x,L) = |λ|‖[x]|.
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Now, if λ = 0, it easily follows that

‖0(x + L)‖ = ‖0 + L‖ = 0 = |0|‖x + L‖.

Now let x1, y1 ∈ L, then

‖(x + L)+ (y + L)‖ = ‖(x + y)+ L‖
≤ ‖x + y + x1 + y1‖
≤ ‖x + x1‖ + ‖y + y1‖,

which yields

‖(x + L)+ (y + L)‖ ≤ ‖x + L‖ + ‖y + L‖

That is,

‖[x] + [y]‖ ≤ ‖[x]‖ + ‖[y]‖.

Recall that if L a closed subspace of the normed vector space (X, ‖ · ‖), then the
canonical projection π is linear and continuous as ‖π(x)‖ ≤ ‖x‖ for all x ∈ X.

Theorem 1.38 Let (X, ‖ · ‖) be Banach space and let L ⊂ X is a closed subspace.
Then the quotient normed vector space (X \ L, ‖ · ‖) is a Banach space.

1.3.3 Lp(Ω,μ) Spaces

Definition 1.39 Let Ω be a set and let F be a σ -algebra of measurable sets, that
is, F ⊂ P(Ω) is a subset and satisfies the following conditions:

i) ∅ ∈ F ;
ii) if Γ ⊂ F , then its complement Γ C belongs to F ; and

iii)
∞⋃
j=1

Γj ∈ F whenever Γj ∈ F for all j .

Elements of F are then called measurable sets.

Definition 1.40 The mapping μ : Ω �→ [0,∞] is called a measure, if it satisfies
the following conditions:

i) μ(∅) = 0; and

ii) μ(

∞⋃
j=1

Γj ) =
∞∑
j=1

μ(Γj ) for any disjoint countable family (Γj )j∈N of elements

of F .
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The σ -algebra F is said to be σ -finite if there exists a disjoint countable family

(Γj )j∈N of elements of F such that Ω =
∞⋃
j=1

Γj with μ(Ωj ) < ∞ for all j .

The space (Ω,F , μ) is called a measure space if Ω is a set, F is a σ -algebra
on Ω , and μ is a measure on Ω .

Let p ∈ [1,∞) and let (Ω,F , μ) be a measure space. The space Lp(Ω,μ) (also
denoted Lp(Ω)) is defined as the collection of all measurable functions f : Ω �→ C

such that

‖f ‖Lp = ‖f ‖p :=
[ ∫

Ω

|f (x)|pdμ
] 1

p
< ∞.

Recall that in Lp(Ω,μ), two functions f and g are equal, if they are equal almost
everywhere on Ω . Obviously, (Lp(Ω,μ), ‖ · ‖p) is a normed vector space.

Similarly, one defines L∞(Ω,μ) (also denoted L∞(Ω)) as the set of all
measurable functions f : Ω �→ C such that there exists a constant M ≥ 0 such
that |f (x)| ≤ M a.e. x ∈ Ω . Now define, for all f ∈ L∞(Ω,μ),

‖f ‖∞ := inf
{
M : |f (x)| ≤ M a.e. x ∈ Ω

}
.

Obviously, (L∞(Ω,μ), ‖ · ‖∞) is a normed vector space.
In view of the above, (Lp(Ω), ‖·‖p) is a normed vector space for all p ∈ [1,∞].

Example 1.41 Take Ω = R and dμ = dx (Lebesgue measure). Consider the
function defined by f (x) = e−|x| for all x ∈ R. One can easily see that f ∈
Lp(R, dx) for all p ∈ [1,∞].
Proposition 1.42 Let (Ω,μ) be a measure space. If 1 ≤ p ≤ q < ∞ and if
0 < μ(Ω) < ∞, then

‖f ‖p ≤ [μ(Ω)]r‖f ‖q
for any measurable function f , where r = p−1 − q−1.

Proof The proof is left to the reader as an exercise.

Corollary 1.43 Let (Ω,μ) be a measure space. If 1 ≤ p ≤ q < ∞ and if 0 <

μ(Ω) < ∞, then the injection

Lq(Ω,μ) ↪→ Lp(Ω,μ)

is continuous.

Proof The proof is left to the reader as an exercise.

Theorem 1.44 (Riesz-Fisher) The space (Lp(Ω,μ), ‖·‖p) is a Banach space for
any 1 ≤ p ≤ ∞.
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Proof The proof is left to the reader as an exercise.

Theorem 1.45 Let p ∈ [1,∞]. If u ∈ L1(R) and let v ∈ Lp(Rn), then for
almost every x ∈ R

n, the function y �→ u(x − y)v(y) is integrable on R
n. And

the convolution of u and v defined by

(u ∗ v)(x) :=
∫
Rn

u(x − y)v(y)dy

is well defined. Further, u ∗ v ∈ Lp(Rn) and

‖u ∗ v‖Lp ≤ ‖u‖L1‖v‖Lp .

Proof See the book by Brézis [31].

More generally,

Theorem 1.46 (Young) Let p, q ∈ [1,∞] such that r−1 = p−1 + q−1 − 1 ≥ 0. If
u ∈ Lp(Rn) and let v ∈ Lq(Rn), then u ∗ v ∈ Lr(Rn) and

‖u ∗ v‖Lr ≤ ‖u‖Lp‖v‖Lq .

Proof See the book by Brézis [31].

Let Ω ⊂ R
n be a subset and let dμ = dx (Lebesgue measure). Let Lp

loc(Ω) for
1 ≤ p < ∞ stand for the collection of all measurable functions f : Ω �→ C such
that

( ∫
Ω ′

|f (x)|pdx
) 1

p
< ∞ (1.1)

for any Ω ′ ⊂ Ω bounded closed subset.
Clearly, Lp

loc(Ω) is a vector space. Further, Lp(Ω) is a subspace of Lp
loc(Ω). The

natural topology of L
p
loc(Ω) is given as follows: a sequence (fn)n∈N ∈ L

p
loc(Ω) is

said to converge to some f ∈ L
p
loc(Ω) if ‖fn − f ‖p → 0 as n → ∞ in Lp(Ω ′) for

any Ω ′ ⊂ Ω bounded closed subset. Although L
p
loc(Ω) equipped with such a type

of convergence is a topological vector space, it is not a Banach space.

1.3.4 Sobolev Spaces

If α = (α1, α2, ..., αn) with αi ∈ Z+ for i = 1, ..., n, one defines the length |α| of
α as follows: |α| = α1 + α2 + ...+ αn. In this event, the differential operator Dα is
defined by

Dα = ∂ |α|

∂x
α1
1 ∂x

α2
2 ...∂x

αn
n

.
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Definition 1.47 Let 1 ≤ p ≤ ∞ and let k ∈ N. Suppose Ω ⊂ R
n is an open

subset. The Sobolev spaces Wk,p(Ω) is the collection of all functions u : Ω �→ F

belonging to the set

Wk,p(Ω) :=
{
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ k

}
. (1.2)

If p = 2, the Sobolev space Wk,2(Ω) is denoted by Hk(Ω). The space Wk,p(Ω)

is equipped with the norm defined by

‖u‖k,p =
( ∑
|α|≤k

‖Dαu‖pp
) 1

p
, if 1 ≤ p < ∞, (1.3)

and

‖u‖k,∞ = max|α|≤k
|Dαu|∞ if p = ∞. (1.4)

Definition 1.48 If f : Ω �→ F is a function, then its support denoted supp(f ) is
defined by Supp(f ) := {x ∈ Ω : f (x) �= 0}.
Example 1.49 If E ⊂ R is a subset, then the support of the characteristic function
χE of the set E defined by χE(x) = 1 if x ∈ E and χE(x) = 0 if x �∈ E, is E

(closure of E).

Definition 1.50 The notation C∞
0 (Ω) stands for the collection of all functions u :

Ω �→ R (or C) of class C∞ with compact support in Ω .

Definition 1.51 The Sobolev space W
k,p

0 (Ω) is defined to be the closure of C∞
0 (Ω)

in the space Wk,p(Ω), that is,

W
k,p

0 (Ω) = C∞
0 (Ω)

Wk,p(Ω)
.

If p = 2, then the Sobolev space W
k,2
0 (Ω) is denoted by Hk

0 (Ω). Further, if Ω =
R

n, then W
k,p

0 (Rn) = Wk,p(Rn).

Theorem 1.52 ([47]) The Sobolev space Wk,p(Ω) is a Banach space.

Definition 1.53 Let 1 ≤ p < ∞ and let s = k + σ where k ∈ N and σ ∈ (0, 1).
The Sobolev space Ws,p(Ω) is defined by

Ws,p(Ω) :=
{
u ∈ Wk,p(Ω) : |D

αu(x)−Dαu(y)|
‖x − y‖σ+ n

p

∈ Lp(Ω×Ω), ∀α, |α| = k
}
,

whose norm is given by
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‖u‖s,p =
(
‖u‖pk,p +

∑
|α|=k

∫
Ω×Ω

|Dαu(x)−Dαu(y)|p
‖x − y‖pσ+n

dxdy

)1/p

.

If p = 2, then Ws,2(Ω) is denoted Hs(Ω). If s ≥ 0, then we define W
s,p

0 (Ω) to
be the closure of the space C∞

0 (Ω) in the Sobolev space Ws,p(Ω). In particular,

W
s,2
0 (Ω) is denoted by Hs

0 (Ω).

1.3.5 Embedding Theorems for Sobolev Spaces

In this subsection, we collect some important and useful embedding theorems on
Sobolev spaces including the Sobolev–Gagliardo–Nirenberg’s Theorem and the
Poincaré’s Theorem. Although most of the proofs of these theorems are omitted,
we will be referring the reader to the appropriate references.

Theorem 1.54 (Sobolev–Gagliardo–Nirenberg) Let p ∈ [1, n). Then the follow-
ing embedding holds,

W 1,p(Rn) ⊂ Lq(Rn)

where
1

q
= 1

p
− 1

n
. Moreover, there exists a constant C(p, n) such that

‖u‖Lq ≤ C‖∇u‖Lp

for all u ∈ W 1,p(Rn), where the gradient ∇u of u is defined by the vector

∇u = grad u =
( ∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xn

)
.

Proof See Brézis [32].

Theorem 1.55 Let k ∈ N and let p ∈ [1,∞). Then the following continuous
embeddings hold,

Wk,p(Rn) ⊂ Lq(Rn) where
1

q
= 1

p
− k

n
, if

1

p
− k

n
> 0,

Wk,p(Rn) ⊂ Lq(Rn) for all q ∈ [p,∞), if
1

p
− k

n
= 0,

Wk,p(Rn) ⊂ L∞(Rn) if
1

p
− k

n
< 0.
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Proof See Brézis [32].

Theorem 1.56 Let Ω ⊂ R
n be an open subset of class C1 with bounded boundary

∂Ω . If p ∈ [1,∞], we have the following continuous embeddings,

W 1,p(Ω) ⊂ Lq(Ω) where
1

q
= 1

p
− k

n
, if p < n,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [p,∞), if p = n,

W 1,p(Ω) ⊂ L∞(Ω) if p > n.

Proof See Brézis [32].

We also have

Theorem 1.57 (Rellich–Kondrachov) Let Ω ⊂ R
n be a bounded subset and of

class C1. If p ∈ [1,∞], we have the following compact embeddings,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [1, r) 1

r
= 1

p
− 1

n
, if p < n,

W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [p,∞), if p = n,

W 1,p(Ω) ⊂ C(Ω) if p > n.

Proof See Brézis [32].

We also have the so-called Poincaré’s inequality.

Theorem 1.58 (Poincaré’s Inequality) Let p ∈ [1,∞) and let Ω ⊂ R
n be an

open bounded subset. Then there exists a constant C = C(Ω,p) > 0 such that

‖u‖Lp ≤ C‖∇u‖Lp

for all u ∈ W
1,p
0 (Ω).

Proof See Brézis [32].

Theorem 1.59 Let Ω ⊂ R
n be an open bounded subset with a smooth boundary

∂Ω . Suppose 0 ≤ k ≤ m− 1. Then, we have the following embeddings,

Wm,p(Ω) ⊂ Wk,q(Ω) if
1

q
≥ 1

p
− m− k

n

Wm,p(Ω) ⊂ Wk,q(Ω) if q < ∞, and
1

p
= m− k

n
.
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While the second embedding is compact, the first one is compact only if

1

q
>

1

p
− m− k

n
.

Proof See Adams [10].

1.3.6 Bounded Continuous Functions

Let J ⊂ R be an interval (possibly unbounded) and let (X, ‖ · ‖) be a Banach space.

Definition 1.60 Let BC(J ;X) denote the space of all bounded continuous func-
tions f : J �→ X. The space BC(J ;X) will be equipped with the sup-norm defined
by

‖f ‖∞ := sup
t∈J

‖f (t)‖

for all f ∈ BC(J ;X).

Theorem 1.61 The normed vector space (BC(J ;X), ‖ · ‖∞) is a Banach space.

Proof The proof is left to the reader as an exercise.

Proposition 1.62 If (fn)n∈N ⊂ BC(J ;X) such that fn converges to some f with
respect to the sup-norm, then f ∈ BC(J ;X).

Proof The proof is left to the reader as an exercise.

1.3.7 Hölder Spaces Ck,α(Ω)

Fix once and for all α ∈ (0, 1). Let J ⊂ R be an interval (possibly unbounded) and
let (X, ‖ · ‖) be a Banach space.

The space Cm(J ;X) (m ∈ N) stands for the collection of all m-times continu-
ously differentiable functions from J into X and let BCm(J ;X) stand for the space,

BCm(J ;X) = {f ∈ Cm(J ;X) : f (k) ∈ BC(J ;X), k = 0, 1, ..., m}

equipped with the norm

‖f ‖BCm(J ;X) :=
m∑

k=0

‖f (k)‖∞ for all f ∈ BCm(J ;X).
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Definition 1.63 Hölder spaces of continuous functions C0,α(J ;X) and Ck,α(J ;X)

for α ∈ (0, 1) and k ∈ N are respectively defined by

C0,α(J ;X) =
{
f ∈ BC(J ;X) : [f ]C0,α(J ;X) = sup

t,s∈J,s<t

‖f (t)− f (s)‖
(t − s)α

< ∞
}

equipped with the norm

‖f ‖C0,α(J ;X) = ‖f ‖∞ + [f ]C0,α(J ;X), and

Ck,α(J ;X) =
{
f ∈ BCk(J ;X) : f (k) ∈ C0,α(J ;X)

}
equipped with the norm

‖f ‖Ck,α(J ;X) = ‖f ‖BCk(J ;X) + [f (k)]C0,α(J ;X).

Proposition 1.64 The Hölder spaces C0,α(J ;X) and Ck,α(J ;X) for α ∈ (0, 1)
and k ∈ N equipped with their corresponding norms are respectively Banach
spaces.

Proof The proof is left to the reader as an exercise.

Definition 1.65 The Lipschitz space Lip(J ;X) is defined by

Lip(J ;X) =
{
f ∈ BC(J ;X) : [f ]Lip(J ;X) = sup

t,s∈J,s<t

‖f (t)− f (s)‖
(t − s)

< ∞
}
,

and is equipped with the norm defined by

‖f ‖ ˜Lip(J ;X)
= ‖f ‖∞ + [f ]Lip(J ;X).

Proposition 1.66 The Lipschitz space (Lip(J ;X), ‖·‖ ˜Lip(J ;X)
) is a Banach space.

Proof The proof is left to the reader as an exercise.

Definition 1.67 Let Ω ⊂ R
N be an open subset. The Hölder space C

0,α
b (Ω)

consists of all bounded continuous functions f : Ω �→ C such that

[f ]Cα
b (Ω) := sup

x �=y∈Ω

|f (x)− f (y)|
‖x − y‖α < ∞.
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Theorem 1.68 The space (C
0,α
b (Ω), ‖ · ‖

C
0,α
b (Ω)

) is a Banach space, where the

norm ‖ · ‖
C

0,α
b (Ω)

is defined by

‖f ‖
C

0,α
b (Ω)

= ‖f ‖∞ + [f ]
C

0,α
b (Ω)

for all f ∈ C
0,α
b (Ω).

Proof The proof is left to the reader as an exercise.

Definition 1.69 Let k ∈ N. The Hölder space C
k,α
b (Ω) consists of all functions

f : Ω �→ C which are k-times continuously differentiable functions with bounded
partial derivatives such that Dβf ∈ C

0,α
b (Ω) for any multi-index β with |β| = k.

Theorem 1.70 The space Hölder space (C
k,α
b (Ω), ‖ · ‖

C
k,α
b (Ω)

) is a Banach space,

where the norm ‖ · ‖
C

k,α
b (Ω)

is defined by

‖u‖
C

k,α
b (Ω)

=
∑
|β|≤k

‖Dβu‖∞ +
∑
|β|=k

[Dβ ]
C

0,α
b (Ω)

.

Proof The proof is left to the reader as an exercise.

Remark 1.71 Note that the subscript “b” in C
k,α
b (Ω) should be dropped in the case

when the domain Ω is bounded. In other words, if Ω is bounded, then C
k,α
b (Ω) will

be denoted Ck,α(Ω).

1.3.8 Embedding Theorems for Hölder Spaces

Theorem 1.72 Let Ω ⊂ R
n be an open bounded subset with a smooth boundary

∂Ω . Suppose 0 ≤ k ≤ m− 1. Then, we have the following compact embedding,

Wm,p(Ω) ⊂ Ck,α(Ω) if
n

p
< m− (k + α) with 0 < α < 1.

Proof See Adams [10].

Theorem 1.73 Let Ω ⊂ R
n be an open subset with a smooth boundary ∂Ω .

Suppose m ∈ Z+ and α, β are given such that 0 < α < β ≤ 1. Then, we have
the following embeddings,

C
m,α
b (Ω) ⊂ Cm(Ω),

C
m,β
b (Ω) ⊂ C

m,α
b (Ω).
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If Ω is bounded, then embeddings,

Cm,α(Ω) ⊂ Cm(Ω),

Cm,β(Ω) ⊂ Cm,α(Ω).

are compact.

Proof See Adams and Fournier [11].

1.3.9 The Dual Space

Let (X, ‖ · ‖) be a normed vector space over the field F. A functional ξ : X �→ F,
ξ �→ ξ(x) (ξ(x) is also denoted 〈ξ, x〉), is said to be linear if it satisfies the following
identity, ξ(λx + μy) = λξ(x)+ μξ(y) for all λ,μ ∈ F and for all x, y ∈ X.

A functional ξ : X �→ F is called continuous, if there exists a constant K ≥ 0
such that

|ξ(x)| ≤ K‖x‖ (1.5)

for all x ∈ X.
The collection of all linear continuous functionals ξ : X �→ F, which we denote

by X
∗, is called the (topological) dual of X. Clearly, X∗ is a vector space over F as

we can add elements of X∗ up and multiply them by scalars and still get continuous
linear functionals. One can endow the dual X∗ of X with a norm which we denote
by ‖ · ‖∗ and which is defined as follows: the norm ‖ξ‖∗ of ξ ∈ X

∗, is the smallest
constant K satisfying Eq. (1.5). Consequently,

‖ξ‖∗ = sup
0 �=x∈X

|〈ξ, x〉|
‖x‖ .

Using the definition of the norm ‖ · ‖∗, it easily follows that |〈ξ, x〉| ≤ ‖ξ‖∗‖x‖ for
all ξ ∈ X

∗ and x ∈ X. Furthermore,

‖ξ‖∗ = sup
‖x‖≤1

|〈ξ, x〉| = sup
‖x‖=1

|〈ξ, x〉|.

Theorem 1.74 The normed vector space (X∗, ‖ · ‖∗) is a Banach space.

Proof The proof is left to the reader as an exercise.
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1.3.10 The Schauder Fixed-Point Theorem

Definition 1.75 A nonempty set S is said to be convex if for all x, y ∈ S and
λ ∈ [0, 1], then λx + (1 − λ)y ∈ S.

Theorem 1.76 (The Brouwer Fixed-Point Theorem [76]) Let S ⊂ F
n be a

nonempty bounded closed convex subset. If the mapping T : S �→ S is continuous,
then T has at least one fixed-point, that is, FT �= ∅.

Theorem 1.77 (The Schauder Fixed-Point Theorem [76]) Let X be a Banach
space and let S ⊂ X be a nonempty compact convex subset. If the mapping T :
S �→ S is continuous, then T has at least one fixed-point, that is, FT �= ∅.

The following concept which measures the “non-compactness” is due to Kura-
towski [78].

Definition 1.78 If D ⊂ X is a bounded subset, one defines the measure α(D) of
non-compactness of D as follows:

α(D) := inf
{
d > 0 : D has a finite covering of diameter less than d

}
.

Definition 1.79 Let D ⊂ X be a subset. Suppose that the map P : D �→ X is
continuous. The map P is called condensing if for any bounded subset D′ of D,
α(D′) > 0 yields

α(P (D′)) < α(D′).

We have the following generalization of the Schauder’s fixed-point due to
Sadovsky.

Theorem 1.80 (The Sadovsky Fixed-Point Theorem [76]) Let D be a nonempty
convex, bounded, and closed subset of a Banach space X and F : D → D be a
condensing map. Then F has a fixed point in D.

Proof The proof makes use of the Schauder’s fixed point theorem (Theorem 1.77).
Indeed, fix x ∈ D and let Γ be the set of all closed convex subsets C of D such that
x ∈ C and F maps C into itself.

Set

Ω =
⋂
C∈Γ

C and K = Conv{F(Ω) ∪ {x}},

where Conv denotes the convex envelop and Conv its closure.
Using the fact that x ∈ Ω and that F maps Ω into itself yields one must have

K ⊆ Ω , which, in turn, yields F(K) ⊆ F(Ω) ⊆ Ω . Now from x ∈ K it follows
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that K ∈ Γ . Consequently, Ω ⊆ K which yields Ω = K , which, in turn, yields
F(K) = F(Ω) ⊆ K and, therefore,

α(K) = α(Conv{F(Ω) ∪ {x}}) = α({F(Ω) ∪ {x}}) = α(F (Ω)) = α(F (K)).

Using the fact that F is condensing it follows that α(K) = 0, which yields Ω is
compact. Consequently, F is a continuous function which maps a convex compact
set K into itself and so using Schauder theorem it follows that F has a fixed point.

1.3.11 Leray-Schauder Alternative

We will need the following fixed-point theorem in the sequel.

Theorem 1.81 (Leray-Schauder Alternative [61, Theorem 6.5.4]) Let D be a
closed convex subset of a Banach space X with 0 ∈ D. Let G : D → D be a
completely continuous map. Then, either G has a fixed point in D or the set

{
x ∈ D : x = λG(x), 0 < λ < 1

}
is unbounded.

1.4 Hilbert Spaces

Hilbert spaces play an important role in many areas including mathematical anal-
ysis, physics, quantum mechanics, Fourier analysis, partial differential equations,
etc. These spaces, which generalize in a natural fashion the Euclidean space, are
named after the German mathematician David Hilbert who introduced them in the
mathematical literature. Obviously, a Hilbert space is, by design, a Banach space.
Some of their basic properties will be discussed in this section and throughout the
entire book. For the uncovered material on Hilbert spaces, we refer the interested
reader to some of the classical books in functional analysis, i.e., Brézis [31, 32],
Conway [38], Eidelman et al. [53], Naylor and Sell [93], etc.

1.4.1 Basic Definitions

In this section, H stands for a vector space over the field F where F = (R, | · |) or
(C, | · |).
Definition 1.82 A mapping a : H ×H �→ F is said to be a sesquilinear form, if
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i) the mapping x �→ a(x, y) is linear for all y ∈ H , that is,

a(λx + μx′, y) = λa(x, y)+ μa(x′, y)

for all x, x′, y ∈ H ; and
ii) the mapping y �→ a(x, y) is anti-linear for all x ∈ H , that is,

a(x, λy + μy′) = λa(x, y)+ μa(x, y′)

for all x, y, y′ ∈ H .

Definition 1.83 An inner product or scalar product 〈·, ·〉 on H is a sesquilinear
form which goes from H × H into F and satisfies:

i) 〈x, x〉 ≥ 0 for all x ∈ H ;
ii) 〈x, x〉 = 0 if and only if x = 0; and

iii) 〈y, x〉 = 〈x, y〉 for all x, y ∈ H .

Recall that if 〈·, ·〉 is an inner product on H , then the mapping ‖ · ‖ : H �→ R+
defined by ‖x‖ := [〈x, x〉] 1

2 for all x ∈ H is a norm on H ; called the norm
deduced from the inner product 〈·, ·〉. Recall also that the norm ‖ · ‖ satisfies various
properties including the so-called Cauchy-Schwarz inequality and the parallelogram
identity given respectively by,

∣∣∣〈x, y〉∣∣∣ ≤ ‖x‖ . ‖y‖, (1.6)

and

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (1.7)

for all x, y ∈ H .
While the proof of the Cauchy-Schwarz inequality requires more efforts, that of

the parallelogram identity is easy and is based upon the following identities:

‖x + y‖2 = ‖x‖2 + 2�e〈x, y〉 + ‖y‖2

and

‖x − y‖2 = ‖x‖2 − 2�e〈x, y〉 + ‖y‖2

for all x, y ∈ H .
Let H be a vector space over F equipped with the inner product given by, 〈·, ·〉.

Two vectors x, y ∈ H are said to be orthogonal if 〈x, y〉 = 0. If 〈x, y〉 = 0, then
the Pythagorean theorem holds in H , that is,

‖x + y‖2 = ‖x‖2 + ‖y‖2.
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More generally, if (xn)n∈N ⊂ H is a sequence such that 〈xn, xm〉 = 0 for all
n,m ∈ N with n �= m, then the series

∑∞
n=1 xn converges if and only if

∑∞
n=1 ‖xn‖2

does. In that event, we have the following generalized Pythagorean theorem,

∥∥∥ ∞∑
n=1

xn

∥∥∥2 =
∞∑
n=1

∥∥∥xn∥∥∥2
.

If M ⊂ H is a subspace, then its orthogonal M⊥ is defined by

M⊥ :=
{
x ∈ H : 〈x, y〉 = 0 for all y ∈ M

}
.

Proposition 1.84 If M ⊂ H is a subspace, then its orthogonal M⊥ is a closed
subspace of H .

Proof Let (xn)n∈N ⊂ M⊥ be a sequence such that ‖xn − x‖ → 0 as n → ∞ for
some x ∈ H . Now, using the fact that, 〈x, y〉 = 〈x − xn + xn, y〉 = 〈x − xn, y〉 +
〈xn, y〉 = 〈x−xn, y〉 for all y ∈ M and n ∈ N, it follows, using the Cauchy-Schwarz
inequality, that |〈x, y〉| ≤ ‖x − xn‖ . ‖y‖ → 0 as n → ∞, which yields 〈x, y〉 = 0,
and hence x ∈ M⊥.

Note that in addition to Proposition 1.84, we also have H ⊥ = {0} and {0}⊥ =
H . Further, if M ⊂ N where M,N are subspaces of H , then N⊥ ⊂ M⊥ and
M ⊂ (M⊥)⊥ with (M⊥)⊥ = M if M is closed.

Definition 1.85 The space H is said to be a Hilbert space if (H , ‖ ·‖) is complete
where ‖ · ‖ is the norm deduced from the inner product 〈·, ·〉.
One of the most important properties of Hilbert spaces is that of the projection
theorem. It plays an important role in many areas.

Theorem 1.86 Let H be a Hilbert space and let Σ ⊂ H be a nonempty closed
convex subset. For each x ∈ H , there exists a unique point PΣ(x) belonging to Σ

and called the orthogonal projection of x onto Σ that satisfies the identity

∥∥∥x − PΣ(x)

∥∥∥ = inf
y∈Σ

∥∥∥x − y

∥∥∥.
An immediate consequence of Theorem 1.86 is that if L ⊂ H is a closed

subspace, then H can be written as the direct sum of L and L
⊥ as follows:

H = L ⊕ L
⊥. This means that each x ∈ H can be uniquely written as

x = (x − PL(x)) + PL(x) where PL(x) ∈ L and x − PL(x) ∈ L
⊥. The mapping

PL : H �→ H , x �→ PL(x), is called the orthogonal projection of H onto L.
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1.4.2 Examples of Hilbert Spaces

Classical examples of Hilbert spaces include, but are not limited to, Rn, Cn, L2(Ω),
and �2(N), equipped with their natural inner products. Other examples of Hilbert
spaces include Sobolev spaces Hk(Ω). Take k = 1, Ω = R, and consider H 1

defined by

H 1(R) = {f ∈ L2(R) : f ′ ∈ L2(R)}.

Recall that f ′ appearing in the definition of H 1(R) is the derivative of f in the sense
of distributions. The inner product on H 1(R) and its corresponding norm are given
respectively by

〈f, g〉 =
∫ ∞

−∞
f (t)g(t)dt +

∫ ∞

−∞
f ′(t)g′(t)dt

and

‖f ‖H 1(R) =
[ ∫ ∞

−∞
|f (t)|2dt +

∫ ∞

−∞
|f ′(t)|2dt

] 1
2

for all f, g ∈ H 1(R).

1.5 Exercises

1. Let (X, d) be a metric space. Show that

|d(x, y)− d(y, z)| ≤ d(x, z)

for all x, y, z ∈ X.
2. Let d0 and d1 be two metrics on a nonempty set X. Show that mapping d defined

by, d = αd0 + βd1 (d(x, y) = αd0(x, y) + βd1(x, y) for all x, y ∈ X) where
α, β ≥ 0 and α + β = 1, is a metric on X.

3. Prove Proposition 1.14.
4. Prove Theorem 1.19.
5. Let a, b > 0 and let f be the function given for all x ∈ R

n by

f (x) = 1

(1 + ‖x‖a)(1 + (ln ‖x‖)b) ,

where ‖ · ‖ denotes the Euclidean norm of Rn. Find conditions under which
f ∈ Lp(Rn).
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6. Show that the Lebesgue space Lp(Ω) is vector space for all p ∈ [1,∞].
7. Prove Theorem 1.44.
8. Let C[a, b] the collection of all continuous functions f : [a, b] �→ R.

a) Show that C[a, b] is a vector space over R.
b) Show that C[a, b] equipped with the norm given, for p ∈ [1,∞), by

‖f ‖p :=
( ∫ b

a

|f (t)|pdt
) 1

p
for all f ∈ C[a, b],

is not a Banach space.

Hint: Construct a Cauchy sequence in (C[a, b], ‖·‖p) which does not converge.
9. Consider the function f : Rn �→ R defined by f (x) = ‖x‖−α where ‖ · ‖ is

the Euclidean norm of Rn and α ∈ R. Show that f ∈ L1
loc(R

n) if and only if
α < n.

10. Let 1 < p ≤ ∞ and let 1 ≤ q < ∞ be such that p−1 + q−1 = 1. Show that
the (topological) dual of Lp(Ω) is Lq(Ω).

11. Let s ≥ 0 and 1 ≤ p < ∞. Suppose q is such that p−1 + q−1 = 1. Show that
the (topological) dual of Ws,p

0 (Ω) is the Sobolev space W−s,q(Ω).
12. Prove Theorem 1.64.
13. Prove Theorem 1.66.
14. Prove Theorem 1.68.
15. Prove Theorem 1.70.
16. Prove Theorem 1.74.
17. Prove Theorem 1.86.

1.6 Comments

Some of the basic materials of Sects. 1.3.3, 1.3.4, 1.3.6, and 1.3.10 are taken from
the following sources: Adams [10], Adams and Fournier [11], Brézis [31, 32] and
Diagana [47]. The material covered in Sects. 1.3.7 and 1.3.9 are partially taken
from Bezandry and Diagana [29] and Lunardi [87]. For additional readings upon
Lp spaces and Sobolev spaces Wk,p we refer the reader to Adams [10], Adams
and Fournier [11], and Brézis [32]. For additional readings upon basic functional
analysis and real analysis, we refer to Conway [38], Diagana [45], Eidelman et al.
[53], Kato [73], Rudin [102], Weidmann [111], and Yosida [112].

The proof of Theorem 1.80 follows Khamsi and Kirk [76, Proof of Theorem
7.12, pages 190–191].

For additional references on metric and normed vector spaces, we refer to the
book by Oden and Demkowicz [97]. For additional readings on fixed-point theory,
we refer to the book by Khamsi and Kirk [76].



Chapter 2
Operator Theory

In this chapter, the notations (X, ‖ · ‖1) and (Y, ‖ · ‖2) stand for Banach spaces over
the same field F = R or C.

2.1 Bounded Linear Operators

2.1.1 Basic Definitions

A transformation A : X �→ Y is said to be linear if it satisfies the following property,

A(tx + sy) = tAx + sAy

for all x, y ∈ X and t, s ∈ F.

Definition 2.1 A bounded (or continuous) linear operator is any linear transforma-
tion A : X �→ Y satisfying: there exists a constant K ≥ 0 such that

‖Ax‖2 ≤ K‖x‖1 (2.1)

for all x ∈ X.

The collection of such bounded linear operators is denoted B(X,Y). In particular,
B(X,X) is denoted by B(X). If A ∈ B(X,Y), then the smallest constant K

satisfying Eq. (2.1) is called the norm of A and is denoted by ‖A‖. Further, it can be
shown that the following equalities hold,

‖A‖ = sup
x∈X\{0}

‖Ax‖2

‖x‖1
= sup

‖x‖1=1
‖Ax‖2 = sup

‖x‖1≤1
‖Ax‖2.
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Example 2.2 Consider the normed vector space �p(N) of all p-summable infinite
sequences of complex numbers whose norm is given by

‖x‖�p =
( ∞∑

k=1

|xk|p
)1/p

for all x = (x1, x2, x3, ...) ∈ �p(N).

Consider the right shift operator SR on �p(N) is defined by

SR(x1, x2, x3, ...) = (0, x1, x2, x3, ...) for all x = (x1, x2, ...) ∈ �p(N).

It can be easily shown that SR : �p(N) �→ �p(N) is a bounded linear operator whose
norm is given by ‖SR‖ = 1. One should point out that one gets similar results as
above, if SR is replaced with the so-called left shift SL defined by

SL(x1, x2, x3, ...) = (x2, x3, x4, ...) for all x = (x1, x2, ...) ∈ �p(N).

Indeed, it can be shown that SL : �p(N) �→ �p(N) is a bounded linear operator
whose norm is given by ‖SL‖ = 1.

Example 2.3 Let p, q ≥ 1 such that p−1 + q−1 = 1 and let v = (v1, v2, ...) ∈
�q(N). Consider the linear operator T : �p(N) �→ �1(N) defined by

T (x1, x2, x3, ...) = (v1x1, v2x2, v3x3, ...) for all x = (x1, x2, ...) ∈ �p(N).

Using the discrete Hölder’s inequality it follows that,

‖T x‖�1 =
∞∑
k=1

|vkxk|

≤
( ∞∑

k=1

|xk|p
)1/p

.
( ∞∑

k=1

|vk|q
)1/q

= K‖x‖�p for all x ∈ �p(N),

where K = ‖v‖�q =
(∑∞

k=1 |vk|q
)1/q

.

Consequently, T is a well-defined bounded linear operator from �p(N) to �1(N).

It can be shown that B(X,Y) equipped with the above-mentioned operator norm
topology ‖ · ‖ is a normed vector space which is complete as stated in the next
theorem.

Theorem 2.4 The space B(X,Y) equipped with the operator norm topology ‖ · ‖
defined previously is a Banach space.

Proof The proof is left to the reader as an exercise.
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If (L, ‖ · ‖3) is another Banach space, it can be shown that if A ∈ B(X,Y) and
B ∈ B(Y,L), then BA ∈ B(X,L). Moreover,

‖BA‖ ≤ ‖B‖ . ‖A‖.

Theorem 2.5 Let A : X �→ Y be a linear operator. Then the following statements
are equivalent,

i) A is continuous;
ii) A is continuous at 0;

iii) there exists a constant K ≥ 0 such that ‖Ax‖2 ≤ K‖x‖1 for all x ∈ X.

Proof The proof is left to the reader as an exercise.

Obviously, both the identity operator IX : X �→ X, x �→ IX(x) = x and the
zero operator OX : X �→ X, x �→ OX(x) = 0 are classical elements of B(X). If
A ∈ B(X,Y), one defines its kernel N(A) and range R(A) as follows,

N(A) = Ker (A) = {x ∈ X : Ax = 0} and R(A) = {Ax : x ∈ X}.

2.1.2 Some Classes of Bounded Operators

Definition 2.6 An operator A ∈ B(X,Y) is said to be injective if N(A) = {0}.
Similarly, an operator A ∈ B(X,Y) is said to be surjective if R(A) = Y.

Definition 2.7 An operator A ∈ B(X,Y) is said to be bijective or invertible if
N(A) = {0} and R(A) = Y. In this event, there exists a unique operator called the
inverse of A and denoted A−1 : Y �→ X such that

AA−1 = IY and A−1A = IX.

Note that if A−1 exists, then it is a bounded linear operator. The collection of
all invertible bounded linear operators which go from X into Y will be denoted by
O(X,Y). Further, if X = Y, then O(X,X) is denoted O(X).

Theorem 2.8 Let A ∈ B(X) be such that ‖A‖ < 1. Then I − A ∈ O(X) and its
inverse (I − A)−1 is given by

(I − A)−1 =
∞∑
k=0

Ak = I + A+ A2 + A3 + ...

Proof The proof is left to the reader as an exercise.

Definition 2.9 The rank of an operator A ∈ B(X,Y) is defined as dim R(A), the
dimension of the vector space R(A). An operator A is said to be an operator of finite
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rank, if dim R(A) < ∞. The collection of all finite rank linear operators from X

into Y is denoted by F (X,Y) with F (X,X) = F (X).

Example 2.10 Let X = Y = L2(0, 1) be equipped with its L2-topology ‖ · ‖L2 and
let fi, gj be functions that belong to L2(0, 1) for i, j = 1, 2, ..., N . Consider the
linear operator A : L2(0, 1) �→ L2(0, 1) defined by

(Af )(x) =
∫ 1

0
K(x, y)f (y)dy

where the kernel K : (0, 1)× (0, 1) �→ F is given by

K(x, y) =
N∑

j=1

fj (x)gj (y).

It can be shown that A ∈ F (L2(0, 1)).

Definition 2.11 An operator A ∈ B(X,Y) is said to be compact if A maps bounded
subsets of X into relatively compact subsets of Y. The collection of all compact
linear operators from X into Y is denoted by K (X,Y).

Definition 2.11 is equivalent to the following definition:

Definition 2.12 An operator A ∈ B(X,Y) is compact if for each sequence (xn)n∈N
in X such that ‖xn‖1 ≤ 1 for each n ∈ N, the sequence (Axn)n∈N has a subsequence
which converges in Y.

Theorem 2.13 If A,B ∈ K (X,Y) and λ ∈ F, then λA and A + B are compact
operators. Moreover, if C ∈ B(X) and D ∈ B(Y), then AC and DA are compact
operators.

Proof It is clear that λA is compact for all λ ∈ F.
Let (xn) ⊂ X with ‖xn‖1 ≤ 1. Using the fact that A is compact operator it follows

that (Axn)n∈N has a convergent subsequence (Axnk
)k∈N in Y. Similarly, (Bxn)n∈N

has a convergent subsequence (Bxnk
)k∈N. Therefore, ((A+B)xnk

)k∈N converges in
Y. This implies that A+ B is compact.

Let (yn)n∈N ⊂ X with ‖yn‖ ≤ 1 for each n ∈ N. consequently, (Cyn)n∈N
is bounded. Since A is compact, it is clear that (ACyn)n∈N has a convergent
subsequence in Y. This implies that AC is compact.

Let (zn)n∈N ⊂ X with ‖zn‖ ≤ 1 for each n ∈ N. Since A is compact, (Azn)n∈N
has a convergent subsequence, which we denote (Aznk

)k∈N. From the continuity of
D it follows that (DAznk

)k∈N converges. This implies that DA is compact.

Example 2.14 Let X = Y = L2(0, 1) be equipped with its L2-topology ‖ · ‖L2 .
Consider the linear operator A : L2(0, 1) �→ L2(0, 1) defined by

(Af )(x) =
∫ 1

0
K(x, y)f (y)dy
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where the kernel K : (0, 1)× (0, 1) �→ F satisfies

∫ 1

0

∫ 1

0
|K(x, y)|2dxdy < ∞.

It can be shown that A ∈ K(L2(0, 1)).

2.2 Unbounded Linear Operators

2.2.1 Basic Definitions

Definition 2.15 An unbounded linear operator is any linear transformation A :
D(A) ⊂ X �→ Y which goes from a subspace D(A) of X (called the domain of
A) into Y.

Definition 2.16 If A : D(A) ⊂ X �→ Y is an unbounded linear operator, then its
graph is defined by the set,

G (A) = {(x,Ax) : x ∈ D(A)}.

Definition 2.17 An unbounded linear operator is said to be closed if G (A) ⊂ X×Y

is closed. Alternatively, for any (xn)n∈N ⊂ D(A) such that (xn)n∈N converges to
some x ∈ X and (Axn)n∈N converges to some y ∈ Y, one must have x ∈ D(A) and
Ax = y.

Definition 2.18 Let A,B be two linear operators. The operator A is said to be an
extension of B if D(B) ⊂ D(A) and Ax = Bx for all x ∈ D(B).

Definition 2.19 An unbounded linear operator is said to be closable if it has a
closed extension.

Recall that the closure of a given operator A : D(A) ⊂ X �→ Y may or may not
exist. Obviously, if A is closed, then it is closable. In the same way, any bounded
linear operator is closed and hence is closable.

For a given unbounded operator A : D(A) ⊂ X �→ X, one defines its graph norm
as follows:

‖x‖D(A) = ‖x‖ + ‖Ax‖

for all x ∈ D(A). It can be easily shown that if A is closed, then (D(A), ‖ · ‖D(A))

is a Banach space.
In the rest of this book, the space (D(A), ‖ · ‖D(A)) will be denoted by [D(A)].



34 2 Operator Theory

As in the case of bounded linear operators, if A : D(A) ⊂ X �→ X is a
unbounded linear operator, then its kernel N(A) and range R(A) are defined as
follows,

N(A) = Ker(A) = {x ∈ D(A) : Ax = 0}

and

R(A) = {Ax : x ∈ D(A)}.

2.2.2 Examples of Unbounded Operators

Example 2.20 ([85]) Take X = Y = L2(R) which is endowed with its L2-topology
‖ · ‖L2 . Consider the one-dimensional Laplace differential operator defined by

D(A) = H 2(R) and Aψ = −ψ ′′ for all ψ ∈ H 2(R).

Consider the sequence of functions ψn(x) = e−n|x|, n = 1, 2, .... It can be
shown that ψn ∈ D(A) = H 2(R) for all n ∈ N. Moreover,

‖ψn‖2
L2 =

∫ ∞

−∞
e−2n|x|dx = 1

n

and

‖Aψn‖2
L2 =

∫ ∞

−∞
n4e−2n|x|dx = n3.

Consequently,
‖Aψn‖L2

‖ψn‖L2
= n → ∞ as n goes to ∞ which yields A is an unbounded

linear operator on L2(R).

Example 2.21 ([85]) Take X = Y = L2(0, 1) which is endowed with its L2-
topology ‖ · ‖L2 . Consider the first-order derivative operator defined by

D(A) = C1(0, 1) and Aψ = ψ ′ for all ψ ∈ C1(0, 1),

where C1(0, 1) is the set of all continuously differentiable functions over (0, 1).
Clearly, the sequence of functions defined by: φn(x) = xn, n = 1, 2, ... belongs

to ∈ C1(0, 1). Moreover,

‖φn‖2
L2 =

∫ 1

0
x2ndx = 1

2n+ 1
,
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and

‖Aφn‖2
L2 =

∫ 1

0
n2x2n−2 dx = n2

2n− 1
.

Now

‖Aφn‖L2

‖φn‖L2
= n

√
2n+ 1

2n− 1
→ ∞ as n → ∞

which yields A is an unbounded linear operator on L2(0, 1).

2.2.3 The Adjoint Operator in Banach Spaces

Let A : D(A) ⊂ X �→ Y be a densely defined (D(A) = X) closed unbounded
linear operator. Our main objective here is to define the adjoint operator of A. For
that, define

D(A∗) =
{
ξ ∈ Y

∗ : ∃K ≥ 0 such that |ξ(Ax)| ≤ K‖x‖1 for all x ∈ D(A)
}
.

Clearly, D(A∗) defined above is a subspace of Y∗. Now, define the adjoint operator
A∗ : D(A∗) ⊂ Y

∗ �→ X
∗ of A as follows,

ξ(Ax) = A∗ξ(x) for all x ∈ D(A), ξ ∈ D(A∗).

Theorem 2.22 Let A : D(A) ⊂ X �→ Y be a densely defined closed unbounded
linear operator. Then we have,

i) N(A) = R(A∗)⊥;
ii) N(A∗) = R(A)⊥;

iii) N(A∗)⊥ = R(A); and
iv) R(A∗) ⊂ N(A)⊥.

Proof See Brézis [31].

Theorem 2.23 Let A : D(A) ⊂ X �→ Y be a densely defined closed unbounded
linear operator. Then the following statements are equivalent,

i) R(A) is closed;
ii) R(A∗) is closed;

iii) N(A∗)⊥ = R(A); and
iv) R(A∗) ⊂ N(A)⊥.

Proof See Brézis [31].



36 2 Operator Theory

If X = Y = H is a Hilbert space equipped with the norm and inner product
given respectively by ‖ · ‖1 and 〈, ·, 〉, then the adjoint operator A∗ is defined by,

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ D(A), y ∈ D(A∗)

where D(A∗) is defined by

D(A∗) = {
y ∈ H : ∃K ≥ 0 such that |〈Ax, y〉| ≤ K‖x‖1 for all x ∈ D(A)

}
.

If A ∈ B(H ), then D(A) = H and all the previous properties of the adjoint
applies to A∗. In addition, A∗ ∈ B(H ) and ‖A‖ = ‖A∗‖. Further, if A,B ∈ B(H ),
then (A+ B)∗ = A∗ + B∗; (AB)∗ = B∗A∗; (λA)∗ = λA∗; I ∗ = I ; and O∗ = O.

Definition 2.24 An unbounded linear operator A : D(A) ⊂ H �→ H is said to
be self-adjoint if A∗ = A.

Example 2.25 Let A be the operator defined in the Hilbert space L2(R) by

Af = −i
df

dx
for all f ∈ D(A) = H 1(R).

It can be shown that A = A∗ and so A is a self-adjoint operator.

Definition 2.26 An unbounded linear operator A : D(A) ⊂ H �→ H is said to
be normal if A∗A = AA∗.

Obviously, every self-adjoint operator A : D(A) ⊂ H �→ H is normal but
the converse is untrue. If A is closed, it can be shown that both AA∗ and A∗A are
self-adjoint operators.

2.2.4 Spectral Theory

Let A : D(A) ⊂ X �→ Y be a closed linear operator. The resolvent set of A denoted
ρ(A) is defined by

ρ(A) =
{
λ ∈ C : (λI − A)−1 ∈ B(X)

}
.

Similarly, the spectrum of A denoted σ(A) is the complement of the resolvent set
ρ(A) in C, that is,

σ(A) = C \ ρ(A).

Although the definition of the spectrum is easy to understand, computing it is in
general a very hard task.
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Example 2.27 In L2(R)n, consider the differential operator with constant coeffi-
cients defined by

A = S(∂x) =
d∑

k=0

ak∂
k
x

where ak ∈ M(n,C) for k = 0, 1, ..., d (M(n,C) being the vector space of n × n-
square matrices with complex entries), and

S(z) =
d∑

k=0

akz
k ∈ M(n,C)

for each z ∈ C.

Theorem 2.28 ([25]) The spectrum of the differential operator A is given by

σ(A) =
{
λ ∈ C : ∃μ ∈ R, det[λIn − S(iμ)] = 0

}
.

Example 2.29 Let A be the operator defined in the Hilbert space L2(R) by

Af = −i
df

dx
for all f ∈ D(A) = H 1(R).

Then, σ(A) = R.

Definition 2.30 The point spectrum σp(A) of an operator A : D(A) ⊂ X �→ X

consists of its eigenvalues, that is, all λ ∈ C such that λI − A is not injective,

σp(A) =
{
λ ∈ C : N(λI −A) �= {0}

}
=
{
λ ∈ C : ∃u ∈ X\ {0} : (λI −A)u = 0

}
.

Definition 2.31 The residual spectrum σr(A) of an operator A : D(A) ⊂ X �→ X

consists of all λ ∈ C such that N(λI − A) = {0} but R(λI − A) is not dense in X,

σr(A) =
{
λ ∈ C : N(λI − A) = {0} and R(λI − A) �= X

}
.

Definition 2.32 The continuous spectrum σc(A) of an operator A : D(A) ⊂ X �→
X consists of all λ ∈ C such that N(λI − A) = {0} but R(λI − A) is dense in X,

σc(A) =
{
λ ∈ C : N(λI − A) = {0} and R(λI − A) = X

}
.

Obviously,

σ(A) = σp(A) ∪ σr(A) ∪ σc(A).
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Another way of defining the spectrum of a linear operator is through both its
point spectrum and the so-called essential spectrum.

Definition 2.33 An unbounded linear operator A : D(A) ⊂ X �→ X is said to be a
Fredholm operator if,

i) dim N(A) < ∞;
ii) R(A) is closed; and

iii) CodimR(A) < ∞.

The collection of those Fredholm operators is denoted Φ(X).

Classical examples of Fredholm operators include invertible unbounded opera-
tors.

Definition 2.34 If A ∈ Φ(X), then its index i(A) is defined by

i(A) = dimN(A)− codim R(A).

Definition 2.35 Let A : D(A) ⊂ X �→ X be an unbounded linear operator. Then
the essential spectrum of A, denoted, σess(A), is defined by

σess(A) =
{
λ ∈ C : λI − A is not a Fredholm operator of index 0

}
.

Proposition 2.36 ([25]) Let A : D(A) ⊂ X �→ X be an unbounded linear
operator. Then its spectrum is defined by

σ(A) = σp(A) ∪ σess(A).

Proof If λ ∈ K does not belong to neither σp(A) nor σe(A), then λI − A must be
injective (N(λI − A) = {0}) and R(λI − A) is closed with

0 = dimN(λI − A) = dimX \ R(λI − A).

Consequently, (λI − A) must be bijective which yields λ ∈ ρ(A). In view of the
above, we have, σ(A) = σp(A) ∪ σe(A).

Example 2.37 Consider the differential operator in Example 2.27. It can be shown
(see for instance [25]) that σp(A) = ∅ and that

σ(A) = σess(A) =
{
λ ∈ C : ∃μ ∈ R, det(λIn − S(iμ)) = 0

}

where S(z) =
N∑

k=0

Ckz
k.
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One should stress on the fact that the union σ(A) = σp(A)∪σe(A) is not disjoint.
It is not hard to find out that the intersection σp(A) ∩ σe(A) consists of eigenvalues
λ of A for which,

(a) either dimN(λI − A) is not finite,
(b) or R(λI − A) is not closed, and
(c) or dimN(A) �= dim (X \ R(A)).

Definition 2.38 Define the continuous spectrum σc(A) of an unbounded linear
operator A : D(A) ⊂ X �→ X as follows:

σc(A) :=
{
λ ∈ σe(A) \ σp(A) : R(λI − A) = X

}
.

Definition 2.39 Define the residual spectrum σr(A) of an unbounded linear opera-
tor A : D(A) ⊂ X �→ X as follows

σr(A) :=
(
σe(A) \ σp(A)

)
\ σc(A).

Using the above definitions, through the essential spectrum, one retrieves the
usual formula for the spectrum,

σ(A) = σp(A) ∪ σc(A) ∪ σr(A).

Definition 2.40 The resolvent of A denoted RA
λ or R(λ,A), which maps ρ(A) into

B(X), is defined by

RA
λ = R(λ,A) := (λI − A)−1

for all λ ∈ ρ(A).

We have the following properties of the resolvent whose proofs are left to the
reader as an exercise.

Proposition 2.41 ([47]) Let A,B be closed unbounded linear operators on the
Banach space X.

i) If λ,μ ∈ ρ(A), then R(λ,A) − R(μ,A) = (μ − λ)R(λ,A) R(μ,A).

Furthermore, R(λ,A) and R(μ,A) commute.
ii) If D(A) ⊂ D(B), then for all λ ∈ ρ(A) ∩ ρ(B) we have

R(λ,A)− R(λ,B) = R(λ,A)(A− B)R(λ, B).

iii) If D(A) = D(B), then for all λ ∈ ρ(A) ∩ ρ(B) we have

R(λ,A)− R(λ,B) = R(λ,A)(A− B)R(λ, B) = R(λ,B)(A− B)R(λ,A).



40 2 Operator Theory

Definition 2.42 ([47]) A linear operator A is said to have a compact resolvent if
ρ(A) �= ∅ and R(λ,A) = (λI − A)−1 is a compact operator for all λ ∈ ρ(A). In
particular, A is said to have a compact inverse whether A−1 is compact.

2.2.5 Sectorial Operators

Definition 2.43 A linear operator A : D(A) ⊂ X → X (not necessarily densely
defined) is said to be sectorial if there exist constants ω ∈ R, θ ∈ (π2 , π), and M > 0
such that the following holds,

i) ρ(A) ⊃ Sθ,ω :=
{
λ ∈ C : λ �= ω, | arg(λ− ω)| < θ

}
, and

ii)
∥∥∥(λI − A)−1

∥∥∥ ≤ M

|λ− ω| for each λ ∈ Sθ,ω.

Recall that the resolvent of a sectorial operator A is nonempty. Therefore, the
operator A is closed. Consequently, [D(A)] is a Banach space.

2.2.6 Examples of Sectorial Operators

Example 2.44 Let p ≥ 1. Take X = Y = Lp(0, 1) which is equipped with its
natural norm. Consider the linear operator A defined by

Au = d2u

dx2 for all u ∈ D(A) =
{
u ∈ W 2,p(0, 1) : u(0) = u(1) = 0

}
.

Then, the linear operator A is sectorial.

Example 2.45 Let O ⊂ R
n be a bounded open subset with C2 boundary ∂O and let

X = Y = L2(O). Consider the second-order differential operator

Au = Δu, ∀u ∈ D(A) = W 2,p(O) ∩W
1,p
0 (O).

Then, the linear operator A is sectorial.

Example 2.46 Let O ⊂ R
N be a bounded open subset whose boundary ∂O is of

class C2 and let n(x) be the outer normal to O for each x ∈ ∂O .
Consider

A0u(x) =
N∑

i,j=1

aij (x)
∂u

∂xi∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x)

where aij and bi and c are real, bounded, and continuous on O .
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Further, we suppose that for each x ∈ O , the matrix [aij (x)]i,j=1,...,N is
symmetric and strictly positive definite, that is,

N∑
i,j=1

aij (x)ξiξj ≥ ω|ξ |2 for all x ∈ O, ξ ∈ R
N.

Theorem 2.47 (Agmon [12] and Lunardi et al. [86]) Let p > 1.

i) Let Ap : W 2,p(RN) �→ Lp(RN) be the linear operator defined by Apu = A0u.
Then the operator Ap is sectorial in Lp(RN) and the domain D(Ap) is dense
in Lp(RN).

ii) Let O and A0 defined as above and let Ap be the linear operator defined by

D(Ap) = W 2,p(O) ∩W
1,p
0 (O), Apu = A0u.

then the linear operator Ap is sectorial in Lp(Ω). Moreover, D(Ap) is dense
in Lp(O).

iii) Let O and A0 defined as above and let Ap be the linear operator defined by

D(Ap) = {u ∈ W 2,p(O) : Bu|∂O = 0}, Apu = A0u, u ∈ D(Ap)

where

Bu(x) = b0u(x)+
N∑
i=1

bi(x)
∂u

∂xi

with the coefficients bi (i = 1, ..., N ) are in C1(O) and the condition

N∑
i=1

bi(x)ni(x) �= 0 x ∈ ∂O

holds. Then Ap is sectorial in Lp(O) and D(Ap) is dense in Lp(O).

We have the following characterizations of sectorial operators and their pertur-
bations whose proofs can be found in [87, 88].

Proposition 2.48 Let A : D(A) ⊂ X �→ X be a linear operator such that,

i) {λ ∈ C : �eλ ≥ ω} ⊂ ρ(A); and
ii) ‖λ(λI − A)−1‖ ≤ M for � eλ ≥ ω with ω ∈ R and M > 0.

Then the linear operator A is sectorial.

Proposition 2.49 Let A be a sectorial operator and let B be a linear operator
satisfying,
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i) D(B) ⊂ D(A); and
ii) ‖Bx‖ ≤ a‖x‖ + b‖Ax‖ for all x ∈ D(B) for some constants a, b ≥ 0.

There exists δ > 0 such that if a ∈ [0, δ], then A+ B is sectorial.

Proposition 2.50 If A is a sectorial operator and if B is a linear operator such that
for some constants θ ∈ (0, 1) and C > 0,

‖Bx‖ ≤ C (‖x‖ + ‖Ax‖)θ ‖x‖1−θ .

Then the algebraic sum A+ B of A and B is a sectorial linear operator.

2.3 Exercises

Let (X, ‖ · ‖) be a Banach space over F and let (H , ‖ · ‖) be a Hilbert space over F,
where F = R or C.

1. If A ∈ B(X), show that its norm ‖A‖ satisfies,

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖≤1

‖Ax‖.

2. Prove Theorem 2.4.
3. Prove Theorem 2.5.
4. Prove Theorem 2.8.
5. Show that if A,B ∈ O(X), then AB ∈ O(X) and that (AB)−1 = B−1A−1.
6. Show that if A ∈ O(X) and if B ∈ B(X) such that ‖A − B‖ < 1

‖A−1‖ , then
B ∈ O(X).

Hint: Write B = A[I − A−1(A− B)] and use the fact ‖A−1(A− B)‖ < 1.
7. Let (An)n∈N ⊂ K(X,Y). Suppose (An)n∈N converges in the operator norm

topology to an operator A. Prove that A ∈ K(X,Y).
8. Let A ∈ B(X) and suppose λ ∈ σ(A). Show that

|λ| ≤ ‖A‖.

9. The spectral radius r(A) of a linear operator A : X �→ X is defined by

r(A) := sup
λ∈σ(A)

|λ|.

Show that

r(A) ≤ ‖A‖.
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10. Show that if A ∈ B(X), then

r(A) = lim
n→∞‖An‖ 1

n .

11. Let A,B ∈ B(X) such that AB = BA. Show that

r(AB) ≤ r(A)r(B).

12. Show that the resolvent set ρ(A) of a bounded linear operator A is open.
13. Show that the spectrum σ(A) of a bounded linear operator A is a compact set.
14. Prove Theorem 2.23.
15. Prove that for all A,B ∈ B(H ) and t ∈ F, then

a. (A∗)∗ = A;
b. (AB)∗ = B∗A∗;
c. (tA)∗ = tA∗;
d. (A+ B)∗ = A∗ + B∗;
e. ‖A∗‖ = ‖A‖.

16. Prove Theorem 2.28.
17. Let A : D(A) ⊂ X �→ X be a sectorial operator. For which values of α ∈ C is

A+ αI sectorial?

2.4 Comments

Most of the materials of this chapter are taken from the following sources: Diagana
[47], Bezandry and Diagana [27], and Lunardi [87, 88]. For additional readings
on the topics covered in this chapter, we refer the reader to Benzoni [25], Brézis
[31, 32], Conway [38, 39], Gohberg et al. [60], Eidelman, Milman and Tsolomitis
[53], Kato [73], Rudin [102], Weidmann [111], and Yosida [112].



Chapter 3
Semi-Group of Linear Operators

3.1 Introduction

In this chapter, we collect some of the classical results on strongly continuous semi-
groups and evolution families needed in the sequel. All the materials presented here
can be found in most of the classical books on semi-groups and evolution families.

While Sect. 3.2 follows Diagana [47], Bezandry and Diagana [27], Chicone and
Latushkin [37], Engel and Nagel [55], and Pazy [100], Sect. 3.3 is based upon the
following sources: Chicone and Latushkin [37], Lunardi [87], Diagana [47], as
well as some articles such as Acquistapace and Terreni [8], Baroun et al. [20], and
Schnaubelt [105]. Most of the proofs will not be provided, and therefore, the reader
is referred to the above-mentioned references.

3.2 Semi-Group of Operators

3.2.1 Basic Definitions

Definition 3.1 A family of bounded linear operators (T (t))t∈R+ : X �→ X is said
to be a strongly continuous semi-group or a C0-semi-group, if

i) T (0) = I ;
ii) T (t + s) = T (t)T (s) for all t, s ∈ R+; and

iii) lim
t↘0

T (t)x = x for each x ∈ X.

© Springer Nature Switzerland AG 2018
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If (T (t))t∈R+ is a C0-semi-group, then it is the so-called infinitesimal generator,
is a linear operator A : D(A) ⊂ X �→ X defined by

D(A) :=
{
u ∈ X : lim

t↘0

T (t)u− u

t
exists

}

and

Au := lim
t↘0

T (t)u− u

t

for every u ∈ D(A).

Example 3.2 Let p ≥ 1 and let X = Lp(Rn) be equipped with its corresponding
Lp-norm ‖ · ‖Lp .

Definition 3.3 A function f : R
n �→ C is said to be rapidly decreasing if it is

infinitely many times differentiable, that is, f ∈ C∞(Rn), and

lim‖x‖→∞‖xkDαf (x)‖ = 0

for all k ∈ N and for all the multi-index α ∈ N
n.

The Schwartz space is defined by

S (Rn) =
{
f ∈ C∞(Rn) : f is rapidly decreasing

}
.

The Schwartz space is endowed with the family of semi-norms defined by

‖f ‖k,α = sup
x∈Rn

‖xkDαf (x)‖

for all f ∈ S (Rn), which makes it a Fréchet space that contains C∞
c (Rn) (class of

functions of class C∞ with compact support) as a dense subspace.
Consider the family of operators in Lp(Rn) defined by

T (t)f (s) := (4πt)−
n
2

∫
Rn

e
−‖s−r‖2

4t f (r)dr

for all t > 0, s ∈ R
n, and f ∈ Lp(Rn).

Proposition 3.4 ([55]) The family of linear operators T (t) given above, for t > 0
and with T (0) = I , is a strongly continuous semi-group on Lp(Rn) whose
infinitesimal generator A coincides with the closure of the Laplace operator

Δf (x) =
n∑

k=1

∂2

∂x2
k

f (x1, x2, ..., xn)

defined for every f in the Schwartz space S (Rn).
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Proposition 3.5 ([55]) If (T (t))t∈R+ is a C0-semi-group, then there exists con-
stants M ≥ 1 and ω ∈ R such that

‖T (t)‖ ≤ M eωt for all t ∈ R+.

Theorem 3.6 ([100]) Let (T (t))t∈R+ be a C0-semi-group, then the following
hold,

i) For each x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.

ii) For each x ∈ X,
∫ t

0
T (s)xds ∈ D(A) and

A
( ∫ t

0
T (s)xds

)
= T (t)x − x.

iii) For all x ∈ D(A),

T (t)x − T (s)x =
∫ t

s

T (r)Axdr =
∫ t

s

AT (r)xdr.

Proposition 3.7 ([47]) If (T (t))t∈R+ : X → X is a C0-semi-group, then the
following hold,

i) the infinitesimal generator A of T (t) is a closed densely defined operator;
ii) the following differential equation holds

d

dt
T (t)x = AT (t)x = T (t)Ax,

holds for every x ∈ D(A);
iii) for every x ∈ X, we have T (t)x = lim

s↘0
(exp(tAs))x, with

Asx := T (s)x − x

s
,

where the above convergence is uniform on compact subsets of R+; and
iv) if λ ∈ C such that �e λ > ω, then the integral

R(λ,A)x := (λI − A)−1x =
∫ ∞

0
e−λt T (t)x dt,
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gives rise to a bounded linear operator R(λ,A) on X whose range is D(A) and
satisfies the following identity,

(λI − A) R(λ,A) = R(λ,A)(λI − A) = I.

If (T (t))t∈R+ : X → X is a C0-semi-group, then we know that there exist
constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤ Metω

for all t ∈ R+.
Now, if ω = 0, then (T (t))t∈R+ is a C0-semi-group that is uniformly bounded.

If in addition, M = 1, then (T (t))t∈R+ is said to be a C0-semi-group of contraction.
In what follows, we study necessary and sufficient conditions so that A is the
infinitesimal generator of a C0-semi-group of contraction.

Theorem 3.8 (Hille–Yosida) A linear operator A : D(A) → X is the infinitesimal
generator of a C0-semi-group (T (t))t∈R+ of contraction if and only if,

i) A is a densely defined closed operator; and
ii) the resolvent ρ(A) of A contains [0,∞) and for all λ > 0,

∥∥∥(λI − A)−1
∥∥∥ ≤ M

λ
. (3.1)

For the proof of the Hille-Yosida’s theorem, we refer the reader to Pazy [100,
Pages 8-9].

3.2.2 Analytic Semi-Groups

Definition 3.9 ([87, Page 34]) A family of bounded linear operators T (t) : X �→ X

satisfying the following conditions (semi-group),

i) T (0) = I ;
ii) T (t + s) = T (t)T (s) for all t, s ≥ 0

is called an analytic semi-group, if (0,∞) �→ B(X), t �→ T (t) is analytic.

Definition 3.10 An analytic semi-group (T (t))t≥0 is said strongly continuous, if
the function [0,∞) �→ X, t �→ T (t)x is continuous for all x ∈ X.

It is well known (see for instance Lunardi [87, Page 33]) that if A : D(A) ⊂
X �→ X is a sectorial linear operator, then T (t) defined by

T (t) = 1

2iπ

∫
w+γr,η

eλt (λI − A)−1dλ, t > 0 (3.2)
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is analytic, where r > 0, η ∈ (π2 , π) and γr,η is the curve in the complex plane
defined by

{λ ∈ C : | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : | arg λ| ≤ η, |λ| = r},

which we assume to be oriented counterclockwise.

Definition 3.11 ([87, Page 34]) If A : D(A) ⊂ X �→ X is a sectorial linear
operator, then the family of linear operators {T (t) : t ≥ 0} defined in Eq. (3.2)
is called the analytic semi-group associated with the operator A.

Proposition 3.12 ([87, Proposition 2.1.1]) Let A be a sectorial operator and let
T (t) be the analytic semi-group associated with it. Then the following hold:

i) T (t)u ∈ D(An) for all t > 0, u ∈ X, n ∈ N. If u ∈ D(An), then

AnT (t)u = T (t)Anu, t ≥ 0;

ii) there exist constants M0,M1, ... such that∥∥∥T (t)

∥∥∥ ≤ M0e
ωt , t > 0, and

∥∥∥tn(A− ωI)nT (t)

∥∥∥ ≤ Mne
ωt , t > 0; and

iii) the mapping t → T (t) belongs to C∞((0,∞), B(X)) and

dn

dtn
T (t) = AnT (t), t > 0, ∀n ∈ N.

Proposition 3.13 ([87, Proposition 2.1.9]) Let (T (t))t>0 be a family of bounded
linear operators on X such that t �→ T (t) is differentiable, and

i) T (t + s) = T (t)T (s) for all t, s > 0;
ii) there exist ω ∈ R, M0,M1 > 0 such that∥∥∥T (t)

∥∥∥ ≤ M0e
ωt ,

∥∥∥tT ′(t)
∥∥∥ ≤ M1e

ωt , ∀t > 0;

iii) either: there exists t > 0 such that T (t) is one-to-one, or: for every x ∈ X,
lim
t→0

T (t)x = x.

Then t �→ T (t) is analytic in (0,∞) with values in B(X), and there exists a unique
sectorial operator A : D(A) ⊂ X → X such that (T (t))t≥0 is the semi-group
associated with A.
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3.2.3 Hyperbolic Semi-Groups

Definition 3.14 ([55]) A strongly continuous semi-group (T (t))∈R+ is called

i) Uniformly exponentially stable, if there exists ε > 0 such that

lim
t→∞ eεt‖T (t)‖ = 0.

ii) Uniformly stable, if

lim
t→∞‖T (t)‖ = 0.

iii) Strongly stable, if

lim
t→∞‖T (t)x‖ = 0 for all x ∈ X.

Definition 3.15 A semi-group (T (t))t∈R+ : X �→ X is said to be hyperbolic if the
Banach space X can be decomposed as a direct sum

X = Xs ⊕ Xu

where Xs (stable) and Xu (unstable) are two T (t)-invariant closed subspaces such
that Ts(t) the restriction of T (t) to Xs and Tu(t) the restriction of T (t) to Xu satisfy
the following properties,

i) (Ts(t))t∈R+ is a semi-group that is uniformly exponentially stable on Xs ; and
ii) (Tu(t))t∈R+ is a semi-group that is invertible on Xu and its inverse

((Tu)
−1(t))t∈R+ is uniformly exponentially stable on Xu.

Remark 3.16 It can be shown that a C0-semi-group (T (t))t∈R+ is hyperbolic if and
only if there exist a projection P : X �→ X and some constants M, δ > 0 such that
T (t)P = PT (t) for all t ∈ R+, T (t)(N(P )) = N(P ), and

i) ‖T (t)x‖ ≤ Me−δt‖x‖ for all t ∈ R+ and x ∈ R(P ); and
ii) ‖T (t)x‖ ≥ 1

M
eδt‖x‖ for all t ∈ R+ and x ∈ N(P ).

Proposition 3.17 ([55, Proposition 3.1.3]) For a C0-semi-group (T (t))t∈R+ , the
following statements are equivalent,

i) (T (t))t∈R+ is hyperbolic.
ii) σ(T (t)) ∩ S

1 = ∅ for one (for all) t > 0, where S
1 = {z ∈ C : |z| = 1}.

Definition 3.18 A C0-semi-group (T (t))t∈R+ is said to have the circular spectral
mapping theorem, if

S
1 . T (t) \ {0} = S

1etσ (A) for one (for all) t > 0,

where A is the infinitesimal generator of (T (t))t∈R+ .
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Proposition 3.19 ([55, Theorem 3.1.5]) Let (T (t))t∈R+ be a C0-semi-group that
has the circular spectral mapping theorem. Then, the following statements are
equivalent,

i) (T (t))t∈R+ is hyperbolic.
ii) σ(T (t)) ∩ S

1 = ∅ for one (for all) t > 0.
iii) σ(A) ∩ iR = ∅.

3.3 Evolution Families

This section introduces evolution families which play a central role when it comes
to dealing with nonautonomous differential equations on Banach spaces. For more
on evolution equations and related issues, we refer to the following books: Chicone
and Latushkin [78] and Lunardi [87].

3.3.1 Basic Definitions

Let J ⊂ R be an interval (possibly unbounded).

Definition 3.20 A family of bounded linear operators U = {U(t, s) : t, s ∈
J, t ≥ s} on X is called an evolution family (also called “evolution systems,”
“evolution operators,” “evolution processes,” “propagators,” or “fundamental solu-
tions”) if the following hold,

i) U(t, s)U(s, r) = U(t, r) for t, s, r ∈ J such that t ≥ s ≥ r;
ii) U(t, t) = I for all t ∈ J .

The evolution family U is called strongly continuous if, for each x ∈ X, the
function, J × J �→ X, (t, s) �→ U(t, s)x, is continuous for all s, t ∈ J with t ≥ s.

Example 3.21 If (T (t))t∈R+ is a C0-semi-group, then U defined by U(t, s) =
T (t − s) for all t, s ∈ J = R+ with t ≥ s, is an evolution family that is strongly
continuous.

Definition 3.22 The exponential growth bound ω(U ) of an evolution family U =
{U(t, s) : t, s ∈ J, t ≥ s} on X is defined by

ω(U ) := inf
{
σ ∈ R : ∃Mσ ≥ 1, ‖U(t, s)‖ ≤ Mσe

σ(t−s) for all t, s ∈ J, t ≥ s
}
.

Definition 3.23 An evolution family U = {U(t, s) : t, s ∈ R, t ≥ s} defined on
X is called exponentially bounded if ω(U ) < ∞ and U is exponentially stable if
ω(U ) < 0.
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Obviously, the evolution family defined by U(t, s) = T (t − s) where (T (t))t≥0
is an exponentially stable C0-semi-group, and is an example of an evolution family
which is exponentially stable.

3.3.2 Acquistapace–Terreni Conditions

Definition 3.24 A family of linear operators (A(t))t∈R (not necessarily densely
defined) is said to satisfy the Acquistapace–Terreni conditions whether there exist
ω ∈ R and the constants θ ∈ (π2 , π), L,K ≥ 0, and μ, ν ∈ (0, 1] with μ + ν > 1
such that

Σθ ∪ {0} ⊆ ρ(A(t)− ωI) � λ, ‖R(λ,A(t)− ωI)‖ ≤ K

1 + |λ| (3.3)

and

‖(A(t)− ωI)R(ω,A(t)− ωI) [R(ω,A(t))− R(ω,A(s))] ‖ ≤ K |t − s|μ |λ|−ν

(3.4)

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ} .
Recall that Acquistapace–Terreni conditions were introduced by Acquistapace

and Terreni in [8, 9] for ω = 0. Among other things, Eqs. (3.3) and (3.4) yield the
existence of an evolution family

U = {U(t, s) : t, s ∈ R, t ≥ s}
associated with A(t) such that for all t, s ∈ R with t > s, then (t, s) �→ U(t, s),
R × R �→ B(X) is strongly continuous and continuously differentiable in t ∈ R,
U(t, s)X ⊆ D(A(t)) for all t, s ∈ R,

∂tU(t, s) = A(t)U(t, s),

(a)

‖A(t)kU(t, s)‖ ≤ C (t − s)−k (3.5)

for 0 < t − s ≤ 1, k = 0, 1; and
(b) ∂+s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈

D(A(s)).

Remark 3.25 Recall that if D(A(t)) = D is constant in t ∈ R, then Eq. (3.4) (see
for instance [100]) can be replaced with the identity: there exist constants L and
0 < μ ≤ 1 such that

‖ (A(t)− A(s)) R(ω,A(r))‖ ≤ L|t − s|μ, s, t, r ∈ R. (3.6)
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Definition 3.26 An evolution family U = {U(t, s) : t, s ∈ R, t ≥ s} ⊂ B(X)

is said to have an exponential dichotomy (or is hyperbolic) if there are projections
P(t) that are uniformly bounded and strongly continuous in t and constants δ > 0
and N ≥ 1 such that

i) U(t, s)P (s) = P(t)U(t, s) for all t ≥ s;
ii) U(t, s) : Q(s)X → Q(t)X is invertible with inverse Ũ (s, t); and

iii) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖Ũ (s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and
t, s ∈ R, where Q(t) = I − P(t).

3.3.2.1 Estimates for U(t, s)

Fix once and for all α ∈ (0, 1) let A : D(A) ⊂ X �→ X be a sectorial operator. We
will be using the following real interpolation space in the sequel:

X
A
α :=

{
x ∈ X : ‖x‖Aα := supr>0 ‖rα(A− ζ )R(r,A− ζ )x‖ < ∞

}
.

Clearly, (XA
α , ‖ · ‖Aα ) is a Banach space.

We also define

X
A
0 := X, ‖x‖A0 := ‖x‖, X

A
1 := D(A), X̂

A := D(A), and ‖x‖A1 := ‖(ζ−A)x‖.

Obviously, the following continuous embedding holds,

D(A) ↪→ X
A
β ↪→ D((ζ − A)α) ↪→ X

A
α ↪→ X̂

A ⊂ X, (3.7)

for all 0 < α < β < 1.
Similarly,

X
A
β ↪→ D(A)

‖·‖Aα (3.8)

for 0 < α < β < 1.
If the family of linear operators A(t) for t ∈ R satisfies Acquistapace–Terreni

conditions, we let

X
t
α := X

A(t)
α , X̂

t := X̂
A(t)

for 0 ≤ α ≤ 1 and t ∈ R.
Recall that the above interpolation spaces are of class Jα and hence there is a

constant l(α) such that

‖y‖tα ≤ l(α)‖y‖1−α‖A(t)y‖α, y ∈ D(A(t)). (3.9)
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Proposition 3.27 ([20, 47]) For x ∈ X, 0 ≤ α ≤ 1 and all t > s, the following
hold,

(a) There is a constant c(α), such that

‖U(t, s)P (s)x‖tα ≤ c(α)e−
δ
2 (t−s)(t − s)−α‖x‖. (3.10)

(b) There is a constant m(α), such that

‖Ũ (s, t)Q(t)x‖sα ≤ m(α)e−δ(t−s)‖x‖. (3.11)

3.4 Exercises

1. Let T (t) be the family of linear operators on L2(Rn) defined for all t > 0 by

T (t)f (s) := (4πt)−
n
2

∫
Rn

e
−‖s−r‖2

4t f (r)dr

for all s ∈ R
n, and f ∈ L2(Rn), and by setting T (0) = I .

Show that (T (t))t≥0 defined above is a C0-semi-group whose generator is
the Laplace operator Δ.

2. Let BUC(R) denote the collection of all real-valued uniformly continu-
ous bounded functions equipped with the sup norm defined by ‖f ‖∞ =
supt∈R |f (t)|. Let T (t) be the family of linear operators on BUC(R) defined
by

T (t)f (s) = f (t + s)

for all t, s ∈ R, and f ∈ BUC(R).
Show that (T (t))t≥0 defined above is a C0-semi-group whose generator is

the linear operator defined by

D(A) = {f ∈ BUC(R) : f ′ ∈ BUC(R)}, and Af = f ′

for all f ∈ D(A).
3. Prove Proposition 3.5.
4. Prove Proposition 3.7.
5. Let (T (t))t∈R+ be a C0-semi-group (T (t))t∈R+ . Show that

(a) For each x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.
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(b) For each x ∈ X,
∫ t

0
T (s)xds ∈ D(A) and

A
( ∫ t

0
T (s)xds

)
= T (t)x − x.

(c) For all x ∈ D(A),

T (t)x − T (s)x =
∫ t

s

T (r)Axdr =
∫ t

s

AT (r)xdr.

6. Prove Theorem 3.8.
7. Prove Proposition 3.17.
8. Prove Proposition 3.19.
9. Let A be the linear operator defined on C([0, 1]) by Af = af ′′ + bf for all

f ∈ D(A) = {g ∈ C2([0, 1]) : g(0) = g(1) = 0} where a > 0 and b �= 0 are
constant real numbers.

(a) Show that σ(A) = {b − n2π2√a : n ∈ N}.
(b) Show that A is the infinitesimal generator of an analytic semi-group

(T (t))t≥0.
(c) Show that (T (t))t≥0 is not strongly continuous at t = 0.
(d) Find conditions on a and b so that the semi-group (T (t))t≥0 is hyperbolic,

that is, σ(A) ∩ i R = ∅.

10. Let A : D(A) ⊂ X �→ X be a linear operator on a Banach space X and let
a : R �→ R be a bounded continuous function satisfying

inf
t∈R a(t) = a0 > 0.

Suppose that A is the infinitesimal generator of a C0-semi-group (T (t))t∈R+ .

(a) Show that U = {U(t, s) : t, s ∈ R, t ≥ s} defined on X by

U(t, s) = T

(∫ t

s

a(r)dr

)

is an evolution family.
(b) Show that if (T (t))t∈R+ is exponentially stable, then so is U .
(c) Find the generator associated with the evolution family U .
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3.5 Comments

The material on semi-groups is taken from various sources. Among them are
Diagana [47], Bezandry and Diagana [27], Pazy [100], Chicone and Latushkin [37],
Engel and Nagel [55], and Lunardi [87]. Section 3.3 is mainly based upon the
following books: Chicone and Latushkin [37], Lunardi [87], Diagana [47], Bezandry
and Diagana [27], as well as some articles including Acquistapace and Terreni [8],
Baroun et al. [20], and Schnaubelt [105].

Most of the proofs are omitted, and therefore, the reader is referred to the above-
mentioned references for proofs and additional material on the different topics
discussed in this chapter.



Chapter 4
Almost Periodic Functions and Sequences

In this chapter we review basic properties of almost periodic functions as well as
their discrete counterparts needed in the sequel. It is mainly based upon various
sources including Corduneanu [41], Diagana [47], Halanay and Rasvan [63], and
Levitan and Zhikov [82]. For the sake of completeness and clarity, the proofs
of some of those nontrivial results are given in great details. Beyond the above-
mentioned references, additional readings on the theory of almost periodic functions
and related topics can for instance be found in Besicovitch [26], Bohr [29],
Corduneanu [40], Pankov [99], Bezandry and Diagana [27], Fink [58], Henry [65],
Amerio and Prouse [13], Levitan [81], N’Guérékata [94, 95], Zhang [114], Hino et
al. [70], Diagana et al. [49], Diagana [45], Diagana and Pennequin [48], Fan [56],
etc.

4.1 Introduction

In this chapter we study almost periodic functions and almost periodic sequences.
Basically, an almost periodic function f : R �→ X is any continuous function that
is the uniform limit of a trigonometric polynomial. In particular, any continuous
periodic function and more generally any trigonometric polynomial is almost
periodic. Thus if f, g : R �→ X are almost periodic functions and if λ ∈ F, then
both f + g and λf are almost periodic functions. Further, it can be shown that the
space of almost periodic functions equipped with the sup norm ‖ · ‖∞ is a Banach
space.

Almost periodic functions play a crucial role in many fields including mathemat-
ical analysis, signal processing, harmonic analysis, physics, dynamical systems, etc.
These functions were introduced in the mathematical literature around 1924–1926
with the landmark work of the Danish mathematician Bohr [28]. A decade after
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their introduction in the literature, various other significant contributions on these
functions were made by, among others, S. Bochner, H. Weyl, A. Besicovitch, J. von
Neumann, V. V. Stepanov, and many other people.

4.2 Almost Periodic Functions

4.2.1 Basic Definitions

If f : R �→ X is a function, then the notation Rsf stands for the function defined by

Rsf (t) = f (t + s)

for all s, t ∈ R.

Definition 4.1 A set P ⊂ R is said to be relatively dense if there exists � > 0 such
that

P ∩ (α, α + �) �= ∅

for all α ∈ R.

Definition 4.2 A real number τ is said to be an ε-period of a function f : R �→ X if

sup
t∈R

‖Rτ f (t)− f (t)‖ < ε.

The collection of all the ε-periods for the function f is denoted by P(ε, f ).

Definition 4.3 (Bohr) A function f ∈ C(R,X) is called (Bohr) almost periodic
if for ε > 0, P(ε, f ) is relatively dense. Equivalently, there exists �(ε) > 0 such
that every interval (α, α+ �(ε)) of length �(ε) contains a τ = τ(ε) ∈ P(ε, f ). The
collection of all almost periodic functions f : R �→ X will be denoted by AP(X)

or AP(R,X).

Standard examples of almost periodic functions include trigonometric polynomi-
als, that is, any function PN : R �→ X of the form

PN(t) =
N∑

k=1

ake
iλkt (4.1)

where λk ∈ R and ak ∈ X for k = 1, . . . , N .
Every continuous periodic function is almost periodic but the converse is untrue.

Indeed, let α, β ∈ R be such that αβ−1 ∈ R \ Q and consider the function defined
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by f (t) = sinαt + sinβt. It is clear that f is not periodic although it is the sum of
two periodic functions. Further, it can be shown that f in fact is almost periodic.

Theorem 4.4 If f, g : R �→ X are almost periodic functions, then the following
properties hold,

i) The function f is uniformly continuous.
ii) The range R(f ) = {f (t) : t ∈ R} is relatively compact in X.

iii) If g is F-valued such that 0 < M ≤ |g(t)| for each t ∈ R for some constant M ,
then the quotient function t �→ fg−1(t) is almost periodic.

iv) Let (fn)n∈N be a sequence of almost periodic functions such that there exists
h ∈ C(R,X) with ‖fn − h‖∞ → 0 as n → ∞. Then h is almost periodic.

Proof We only provide the proofs of items i) and ii). For the proofs of iii) and iv),
we refer the reader to the books by Corduneanu [40, 41].

i) From f : R �→ X is almost periodic, it follows that for each ε > 0 there exists
�(ε) > 0 such that every interval of length �(ε) contains a number τ with the
property

‖f (t + τ)− f (t)‖ <
ε

3

for all t ∈ R.
Using the fact that f is uniform continuity on compact intervals of R, let

δ ∈ (0, 1) such that

‖f (t)− f (s)‖ ≤ ε

for 0 ≤ t, s ≤ �(ε)+ 1 and |t − s| ≤ δ.

Let t, s ∈ R be such that |t − s| ≤ δ. Let τ be such that 0 < t + τ, s + τ <

�(ε)+ 1.
Now

‖f (t)− f (s)‖ ≤ ‖f (t)− f (t + τ)‖ + ‖f (t + τ)− f (s − τ)‖
+‖f (s + τ)− f (s)‖

< ε.

ii) From f ∈ AP(X), it follows that, for each ε > 0, there exists �(ε) > 0 such
that every interval of length �(ε) contains a number τ with the property

‖f (t + τ)− f (t)‖ <
ε

2

for all t ∈ R.
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Since f [0, �(ε)] is compact in X, choose a finite sequence t1, . . . , tn ∈
[0, �(ε)] such that

f (t) ∈
n⋃

i=1

B
(
f (ti),

ε

2

)
.

Now let t ∈ R, τ = τ(t) such that 0 < t + τ < �(ε), tj an element of the
sequence t1, . . . , tn such that f (t + τ) ∈ B(f (ti),

ε
2 ). Then

‖f (t)− f (tj )‖ ≤ ‖f (t)− f (t + τ)‖ + ‖f (t + τ)− f (tj )‖ < ε

so that

R(f ) ⊆
n⋃

i=1

B
(
f (ti),

ε

2

)
.

Since ε is arbitrary it follows that R(f ) is relatively compact.

Definition 4.5 (Bochner) A function f ∈ BC(R,X) is called (Bochner) almost
periodic if for any sequence (σ ′

n)n∈N of real numbers there exists a subsequence
(σn)n∈N of (σ ′

n)n∈N such that (f (t + σn))n∈N converges uniformly in t ∈ R.

Theorem 4.6 ([41, 82]) A function is Bohr almost periodic if and only if it is
Bochner almost periodic.

Proof Let f : R �→ X be a Bohr almost periodic function and consider {f (t + sn)},
the translates of f , for an arbitrary sequence (sn)n∈N of real numbers. Using the
fact that the range of f is relatively compact (Theorem 4.4) and applying a diagonal
procedure extraction, one can find a subsequence {f (t + tn)} of {f (t + sn)} which
converges for each t ∈ Q. Let us now show that {f (t + tn)} actually converges
uniformly in t ∈ R. For every ε > 0, let �(ε) stand for the associated length
(appearing in Definition 4.3) and choose δ(ε) (from the uniform continuity of f , see
Definition 1.15). Next, subdivide the interval [0, �(ε)] into d subdivisions denoted
Ij for j = 1, 2, . . . , d whose length should not be greater than δ(ε). Further, in each
Ik , we choose an rk ∈ Ik ∩Q. Let n = N0(ε) be chosen such that

‖f (rk + tn)− f (rk + tm)‖ < ε (4.2)

for all n,m ≥ N0(ε) and k = 1, 2, . . . , d.
Clearly, for every t0 ∈ R, there exists an ε-period denoted τ = τ0 such that

0 ≤ t0 + τ ≤ �(ε) which yields −t0 ≤ τ ≤ −t0 + �(ε). Suppose that t1 = t0 + τ

belongs to Ik0 and that rk0 ∈ Ik0 (rk0 being the rational point chosen above).
Now

‖f (t1 + tn)− f (rk0 + tn)‖ < ε and ‖f (t1 + tm)− f (rk0 + tm)‖ < ε. (4.3)
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In view of Eqs. (4.2) and (4.3) it follows that,

‖f (t0 + tn)− f (t0 + tm)‖
≤ ‖f (t0 + tn)− f (t1 + tn)‖ + ‖f (t1 + tn)− f (rk0 + tn)‖

+‖f (rk0 + tn)− f (rk0 + tm)‖ + ‖f (rk0 + tm)− f (t1 + tm)‖
+‖f (t1 + tm)− f (t0 + tm)‖ < 5ε.

Since t0 ∈ R is arbitrary, it follows that {f (t + tn)} converges uniformly in t ∈ R

and so f is Bochner almost periodic.
Suppose that f is not Bohr almost periodic. Then there exists at least one ε > 0

such that �(ε) does not exist. In particular, there exists an interval of length �(ε)

which has no ε-periods of f . Let σ1 ∈ R be arbitrary and let (α1, β1) ⊂ R be an
interval of length larger than 2|σ1| such that (α1, β1) has no ε-period for f . Setting
σ2 := α1+β1

2 one can see that σ2 − σ1 ∈ (α1, β1) which yields σ2 − σ1 cannot be an
ε-period for f . Similarly, consider the interval (α2, β2) ⊂ R of length larger than
2|σ1| + 2|σ2| such that (α2, β2) has no ε-period for f . Setting σ3 := α2+β2

2 one
can see that σ3 − σ1 and σ3 − σ2 belong to (α2, β2) which yields both σ3 − σ1 and
σ3−σ2 cannot be an ε-periods for f . Proceeding this way, one constructs a sequence
σ1, σ2, σ3, σ4, . . . such that none of the differences σi − σj for i > j can be an ε-
period for f . Consequently, for all i > j , we have sup ‖f (t + σi)− f (t + σj )‖ =
sup ‖f (t + σi − σj )− f (t)‖ ≥ ε for all t ∈ R, which means that f is not Bochner
almost periodic. The proof is complete.

One of the consequences of Theorem 4.6 is that the space of almost periodic
functions, as stated in Theorem 4.7, is a vector space.

Theorem 4.7 If f, g : R �→ X are almost periodic functions and if λ ∈ F, then the
following properties hold,

i) f + g ∈ AP(X).
ii) λf ∈ AP(X).

iii) If g is F-valued, then fg ∈ AP(X).
iv) The function t �→ f (t + α) belongs to AP(X) for all α ∈ R.
v) The function t �→ f (αt) belongs to AP(X) for all α ∈ R.

Proof The proof makes extensive use of the Bochner’s almost periodicity as it is,
according to Theorem 4.6, equivalent of the Bohr’s almost periodicity.

i) Using the fact f ∈ AP(X), for any sequence (s′′n)n∈N of real numbers there
exists a subsequence (s′n)n∈N of (s′′n)n∈N such that the sequence of functions
(f (t + s′n))n∈N converges uniformly in t ∈ R. Similarly, using the fact g ∈
AP(X) it follows that there exists a subsequence (sn)n∈N of (s′n)n∈N such that
the sequence of functions (g(t + sn))n∈N converges uniformly in t ∈ R. Now
(f (t + sn))n∈N converges uniformly in t ∈ R as (sn)n∈N is also a subsequence
of (s′′n)n∈N and therefore (f (t + sn) + g(t + sn))n∈N converges uniformly in
t ∈ R, that is, f + g ∈ AP(X).
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ii) From f ∈ AP(X), for any sequence (s′n)n∈N of real numbers there exists a
subsequence (sn)n∈N of (′n)n∈N such that the sequence of functions (f (t +
sn))n∈N converges uniformly in t ∈ R. Now (λf (t + sn))n∈N converges
uniformly in t ∈ R and hence λf ∈ AP(X).

iii) The proof can be done as in i). Indeed, from f ∈ AP(X), for any sequence
(s′′n)n∈N of real numbers there exists a subsequence (s′n)n∈N of (s′′n)n∈N such
that the sequence of functions (f (t + s′n))n∈N converges uniformly in t ∈ R.
Since g ∈ AP(F) it follows that there exists a subsequence (sn)n∈N of (s′n)n∈N
such that the sequence of functions (g(t + sn))n∈N converges uniformly in
t ∈ R. Now (f (t + sn))n∈N converges uniformly in t ∈ R as (sn)n∈N is
also a subsequence of (s′′n)n∈N and therefore (f (t + sn).g(t + sn)n∈N converges
uniformly in t ∈ R, that is, fg ∈ AP(X).

iv) From f ∈ AP(X), for any sequence (s′n)n∈N of real numbers there exists a
subsequence (sn)n∈N of (s′n)n∈N such that the sequence of functions (f (s +
sn))n∈N converges uniformly in s ∈ R. In particular, letting s = t +α it follows
that (f (t+α+ sn))n∈N converges uniformly in t ∈ R and hence θ �→ f (θ+α)

belongs to AP(X) for all α ∈ R.
v) From f ∈ AP(X), for any sequence (s′n)n∈N of real numbers there exists a

subsequence (sn)n∈N of (s′n)n∈N such that the sequence of functions (f (s +
sn))n∈N converges uniformly in s ∈ R. In particular, letting s = αt it follows
that (f (αt + sn))n∈N converges uniformly in t ∈ R and hence θ �→ f (αθ)

belongs to AP(X).

Theorem 4.8 Let X be a uniformly convex Banach space. If f : R �→ X is almost
periodic, then the function defined by,

F(t) =
∫ t

t0

f (σ)dσ

is almost periodic if and only if sup
t∈R

‖F(t)‖ < ∞.

Proof We refer the reader to the book by Corduneanu [40, Proof of Theorem 6.20,
pages 179–180].

4.2.2 Fourier Series Representation

Definition 4.9 If f : R �→ X is a continuous function and if the limit

lim
r→∞

1

2r

∫ r

−r

f (t)dt

exists, we then call it the mean value of the function f and denote it M(f ).
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Theorem 4.10 If f : R �→ X is almost periodic, then the mean value of f ,

M(f ) := lim
r→∞

1

2r

∫ r

−r

f (t)dt

exists. Furthermore,

lim
r→∞

1

2r

∫ r+a

−r+a

f (t)dt = M(f )

exists uniformly in a ∈ R.

Proof We refer the reader to the book by Levitan and Zhikov [82, Proof of Property
1—The Mean Value Theorem, pages 22–23].

Recall that the mean M(f ) of an almost periodic function f can be written in
various way. Among others, we have

M(f ) = lim
r→∞

1

r

∫ r

0
f (t)dt = lim

r→∞
1

2r

∫ r

−r

f (t)dt = lim
r→∞

1

r

∫ 0

−∞
f (t)dt.

Corollary 4.11 ([41]) If f : R �→ X is a continuous ω-periodic function (f (t +
ω) = f (t) for all t ∈ R), then its mean value exists and is given by

M(f ) = 1

ω

∫ ω

0
f (σ)dσ.

Proposition 4.12 Let f, g : R �→ X be almost periodic functions and let α ∈ C.
Then the following properties hold,

i) If f is C-valued, then M(f ) = M(f ).
ii) M(αf ) = αM(f ).

iii) If f is R-valued, then M(f ) ≥ 0 for all f ≥ 0.
iv) M(f + g) = M(f )+M(g).
v) If (fn)n∈N is a sequence of almost periodic functions, which converges uni-

formly to f , then

lim
n→∞M(fn) = M(f ).

Proof The proof is left to the reader as an exercise.

Clearly, if f ∈ AP(X) and if λ ∈ R, then the function defined by t �→ f (t)e−iλt

belongs to AP(X). Define the Fourier coefficients of f by setting

a(λ, f ) := M({f (t)e−iλt }) = lim
r→∞

1

2r

∫ r

−r

f (t)e−iλt dt.
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Definition 4.13 If f ∈ AP(X), then the numbers λ1, λ2, . . . , λn, . . . for which
a(λk, f ) �= 0 are called the Fourier exponents of f . The set of Fourier exponents is
called the Bohr spectrum and is denoted by σb(f ).

If f ∈ AP(X), then a(λ, f ) is nonzero at most at countably many points.

Definition 4.14 If f ∈ AP(X) and if σb(f ) = {λk : k = 1, 2, . . .}, then the series

f̂ (t) :=
∞∑
k=1

a(λk, f )eiλkt

will be called the Fourier series associated with f .

Theorem 4.15 ([82, 83]) If f ∈ AP(X), then for every ε > 0 there exists a
trigonometric polynomial

Pε(t) =
n∑

k=1

ake
iλkt

where ak ∈ X and λk ∈ σb(f ) such that ‖f (t)− Pε(t)‖ < ε for all t ∈ R.

Proposition 4.16 ([41, 47]) If f, g ∈ AP(X) and if f̂ = ĝ, then f = g.

For more on Fourier series theory for almost periodic functions and related issues
we refer to Besicovitch [26] and Corduneanu [40, 41].

4.2.3 Composition of Almost Periodic Functions

Definition 4.17 ([47]) A jointly continuous function F : (t, x) �→ F(t, x) is called
almost periodic if t �→ F(t, x) is almost periodic uniformly in x ∈ B, where B is
any bounded subset of X. That is, for each ε > 0 there exists �(ε) > 0 such that
every interval of length �(ε) > 0 contains a number τ with the property

‖F(t + τ, x)− F(t, x)‖ < ε

for all t ∈ R and x ∈ B.
The collection of such functions will be denoted AP(R×X) or AP(R×X,X).

To study the existence of almost periodic solutions to semilinear differential
equations, one makes use of the following composition theorems whose proofs are
omitted.

Theorem 4.18 ([47]) Let F : R×X �→ X, (t, x) �→ F(t, x) be an almost periodic
function in t ∈ R uniformly in x ∈ B where B ⊂ X is an arbitrary bounded subset.
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Suppose that F is Lipschitz in x ∈ X uniformly in t ∈ R, i.e., there exists L > 0
such that

‖F(t, x)− F(t, y)‖ ≤ L ‖x − y‖, for all x, y ∈ X, t ∈ R. (4.4)

If g : R �→ X is almost periodic, then the function Γ (t) = F(t, g(t)) : R �→ X

is also almost periodic.

Theorem 4.19 ([47]) Let F : R×X �→ X be an almost periodic function. Suppose
u �→ F(t, u) is uniformly continuous on every bounded subset B ′ ⊂ X uniformly
for t ∈ R. If g ∈ AP(X), then Γ : R → X defined by Γ (·) := F(·, g(·)) belongs to
AP(X).

Theorem 4.20 ([47]) If F : R× X �→ X, (t, x) �→ F(t, x) is a jointly continuous
function such that t �→ F(t, x) is almost periodic uniformly in x ∈ K where K ⊂ X

is an arbitrary compact subset and if g ∈ AP(X), then Γ : R → X defined by
Γ (·) := F(·, g(·)) belongs to AP(X).

4.3 Asymptotically Almost Periodic Functions

Let C0(R+,X) stand for the collection of all continuous functions ϕ : R+ �→ X

such that

lim
t→∞‖ϕ(t)‖ = 0.

4.3.1 Basic Definitions and Properties

Definition 4.21 A continuous function f : R+ �→ X is said to be asymptotically
almost periodic if there exist h ∈ AP(X) and ϕ ∈ C0(R+,X) such that

f (t) = h(t)+ ϕ(t), t ∈ R+.

The collection of all asymptotically almost periodic functions will be denoted
AAP(X).

Proposition 4.22 A continuous function f : R+ �→ X is asymptotically almost
periodic if and only if for any sequence (τn)n∈N with τn → ∞ as n → ∞ there
exists a subsequence (τnk

)k∈N for which f (t + τnk
) converges uniformly in t ∈ R+.

Proof The proof is left to the reader as an exercise.

Lemma 4.23 ([47]) If f ∈ AP(X) such that lim
t→∞‖f (t)‖ = 0, then f = 0.
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Lemma 4.24 ([47]) If f ∈ AAP(X), that is, f = h + ϕ where h ∈ AP(X) and
ϕ ∈ C0(R+,X), then

{h(t) : t ∈ R} ⊂ {f (t) : t ∈ R+}.

Proposition 4.25 ([47]) The decomposition of asymptotically almost periodic
functions is unique, that is, AAP(X) = AP(X)⊕ C0(R+,X).

Proposition 4.26 ([47]) If f, g ∈ AP(X) and if there exists t0 ∈ R+ such that
f (t) = g(t) for all t ≥ t0, then f = g.

Proposition 4.27 ([47]) If (fn)n∈N ⊂ AAP(X) such that fn converges uniformly
to f on R+, that is,

lim
n→∞‖fn − f ‖AAP = 0.

Then f ∈ AAP(X).

4.3.2 Composition of Asymptotically Almost Periodic
Functions

Let C0(R+ × X) stand for the collection of all jointly continuous functions Ψ :
R+ × X �→ X such that

lim
t→∞‖Ψ (t, x)‖ = 0

uniformly in x ∈ K where K ⊂ X is an arbitrary bounded subset.

Definition 4.28 A jointly continuous function F : R+ ×X �→ X, (t, x) �→ F(t, x)

is called asymptotically almost periodic if t �→ F(t, x) is asymptotically almost
periodic uniformly in x ∈ K , where K is an arbitrary bounded subset of X. That
is, F = H + Φ where H ∈ AP(R × X) and Φ ∈ C0(R+ × X). The collection of
all such asymptotically almost periodic functions will be denoted AAP(R+×X) or
AAP(R+ × X,X).

Theorem 4.29 ([47]) Let F : R+×X �→ X, (t, x) �→ F(t, x) be an asymptotically
almost periodic function in t ∈ R+ uniformly in x ∈ B, where B is arbitrary
bounded subset. Letting F = H+Φ where H ∈ AP(R×X) and Φ ∈ C0(R+×X),
we suppose that both H and Φ are Lipschitz in x ∈ X uniformly in t , i.e., there exists
L1, L2 > 0 such that

‖H(t, x)−H(t, y)‖ ≤ L1 ‖x − y‖ (4.5)
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for all x, y ∈ X and t ∈ R, and

‖Φ(t, x)−Φ(t, y)‖ ≤ L2 ‖x − y‖ (4.6)

for all x, y ∈ X and t ∈ R+
If g : R+ �→ X is asymptotically almost periodic, then the function Γ (t) =

F(t, g(t)) : R+ �→ X is also asymptotically almost periodic.

Theorem 4.30 ([47]) Let F : R+ × X �→ X, (t, x) �→ F(t, x) be asymptotically
almost periodic in t ∈ R+ uniformly in x ∈ B where B is arbitrary bounded subset.
Letting F = H +Φ where H ∈ AP(R×X) and Φ ∈ C0(R+×X), we suppose that
u �→ H(t, u) is uniformly continuous on every bounded subset B ⊂ X uniformly
for t ∈ R and that Φ is Lipschitz in x ∈ X uniformly in t ∈ R+, i.e., there exists
L > 0 such that

‖Φ(t, x)−Φ(t, y)‖ ≤ L ‖x − y‖, for all x, y ∈ X. t ∈ R+. (4.7)

If g : R+ �→ X is asymptotically almost periodic, then the function Γ (t) =
F(t, g(t)) : R+ �→ X is also asymptotically almost periodic.

Theorem 4.31 ([47]) Let F : R+ × X �→ X be an asymptotically almost periodic
function. Suppose u �→ F(t, u) is uniformly continuous on every bounded subset
B ⊂ X uniformly for t ∈ R+. If g ∈ AAP(X), then Γ : R+ → X defined by
Γ (·) := F(·, g(·)) belongs to AAP(X).

Theorem 4.32 ([47]) If F : R+×X �→ X, (t, x) �→ F(t, x) such that t �→ F(t, x)

is asymptotically almost periodic uniformly in x ∈ K where K ⊂ X is an arbitrary
compact subset and if g ∈ AAP(X), then Γ : R → X defined by Γ (·) := F(·, g(·))
belongs to AAP(X).

4.4 Almost Periodic Sequences

4.4.1 Basic Definitions

Let I = Z+ or Z. Recall that �∞(I ) stands for the Banach space of all bounded
X-valued sequences equipped with the sup-norm defined for each x = {x(t)}t∈I ∈
�∞(I ), by

‖x‖∞ = sup
t∈I

‖x(t)‖ .

Define

N(Z+) :=
{
x = (x(t))t∈Z+ ∈ �∞(Z+) : lim

t→∞ x(t) = 0
}
.
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Definition 4.33 An X-valued sequence x = {x(t)}t∈Z is called (Bohr) almost
periodic if for each ε > 0, there exists a positive integer N0(ε) such that any set
consisting of N0(ε) consecutive integers contains at least one integer τ with the
property

‖x(t + τ)− x(t)‖ < ε, ∀t ∈ Z.

As in the continuous setting, the integer τ is called an ε-period (or an ε-
translation number) of the sequence x = {x(t)}t∈Z. The collection of all the
ε-periods for the sequence x is denoted by P(ε, x). The collection of all almost
periodic X-valued sequences on Z will be denoted by AP(Z).

Definition 4.34 An X-valued sequence x = {x(t)}t∈Z is called (Bochner) almost
periodic if for every sequence {h(t)}t∈Z ⊂ Z there exists a subsequence {h(Ks)}s∈Z
such that {x(t + h(Ks))}s∈Z converges uniformly in t ∈ Z.

4.4.2 Properties of Almost Periodic Sequences

If x = {x(t)}t∈Z and y = {y(t)}t∈Z belong to AP(Z) and if λ,μ ∈ F, then the
following properties hold,

i) λx ∈ AP(Z);
ii) λx + μy ∈ AP(Z);

iii) If x is F-valued, then xy ∈ AP(Z) where xy = {x(t)y(t)}t∈Z;

iv)
x

y
∈ AP(Z) provided y is F-valued and |y(t)| ≥ α > 0 for all t ∈ Z; and

v) for any fixed s ∈ Z, xs ∈ AP(X) where xs(t) = x(t + s) for all t ∈ Z.

In view of the above, it follows that AP(Z) is a vector space, which in fact is a
Banach space when it is equipped with the sup norm ‖ · ‖∞.

Theorem 4.35 ([63]) A necessary and sufficient condition for a sequence x =
{x(t)}t∈Z to be almost periodic is the existence of an almost periodic function f ∈
AP(X) such that x(t) = f (t) for all t ∈ Z.

Proof Let f ∈ AP(X) and let {αj }j be a sequence of integers. Define, x(t+αj ) :=
f (t + αj ) for j ∈ N and t ∈ Z. Using the fact that the function f is (Bochner)
almost periodic, it follows that there exists a subsequence {βi}i of {αj }j such that
{f (s + βi)}i converges uniformly in s ∈ Z. Consequently, (x(t + βj ))j converges
uniformly in t ∈ Z which yields the almost periodicity of (x(t))t∈Z.

Conversely, suppose that x = {x(t)}t∈Z is an almost periodic sequence. Define
the map f : R �→ X as follows:

f (t) = x(s)+ (t − s)(x(s + 1)− x(s)), s ≤ t < s + 1, for all s ∈ Z.

Obviously, f (t) = x(t) for all t ∈ Z. Further, one can easily see that if τ ∈
P( ε3 , x), then τ ∈ P(ε, f ).
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Theorem 4.36 Every almost periodic sequence is bounded.

Proof Using the fact x(t) = f (t) for all t ∈ Z (Theorem 4.35), for some almost
periodic function f : R �→ X (Theorem 4.35) it follows that

sup
t∈Z

‖x(t)‖ ≤ sup
t∈R

‖f (t)‖ < ∞.

Consequently, the sequence (x(t))t∈Z is bounded.

Proposition 4.37 Let xm = {xm(t)}t∈Z be an almost periodic sequence converging
uniformly in m ∈ Z to x, then the sequence x is almost periodic.

Proof The proof is left to the reader as an exercise.

Theorem 4.38 ([63]) A sequence x = {x(t)}t∈Z is Bochner almost periodic if and
only if it is Bohr almost periodic.

Proof Suppose that the sequence x = {x(t)}t∈Z is Bochner almost periodic. If x =
{x(t)}t∈Z is not Bohr almost periodic, then there exists at least one ε0 > 0 such that
for any positive integer N0, there exist N0 consecutive integers which contain no ε0-
period for {x(t)}t∈Z. Let GN denotes the group of N -consecutive integers and let σ1
be an arbitrary integer. Choose σ2 such that σ2 − σ1 ∈ G1 and denote G1 := Gν1 .
Let ν2 be such that ν2 > |σ1 −σ2| and choose σ3 such that both σ3 −σ1 and σ3 −σ2
belong to Gν2 . Proceeding this way, one can construct a sequence

νj ≥ max{|σν − σμ| : 1 ≤ μ ≤ ν ≤ j}

and choose σj+1 such that σj+1 − σμ ∈ Gνj for 1 ≤ μ ≤ j . In fact, one may take
σj+1 = min{g : g ∈ Gνj } + max{σμ : 1 ≤ μ ≤ j}.

Now

sup
σ

‖x(σ + σr)− x(σ + σs)‖ = sup
σ

‖x(σ + σr − σs)− x(σ )‖

where σr − σs ∈ Gνr−1 if r ≥ s.

From the definition of GN0 it follows that,

sup
σ

‖x(σ + σr)− x(σ + σs)‖ ≥ ε0.

Let (σji ) be a subsequence of the sequence (σj )j constructed previously such
that {x(σ + σji )} converges uniformly in σ ∈ Z. Consequently, there exists j0 such
that r ≥ j0 and s ≥ j0 yield

‖x(σ + σjr )− x(σ + σjs )‖ ≥ ε0

2

which is in contradiction with the property of the sequence (σj )j constructed above.
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Conversely, suppose that the sequence {x(t)}t∈Z is Bohr almost periodic and let{
tj
}
j∈Z be a sequence of integers. For each ε > 0 there exists an integer N0 > 0

such that between tj and tj −N0 there exist an ε-period τj with 0 ≤ tj − τj ≤ N0.
Setting sj = tj − τj , one can see that sj can only take a finite number (at most
N0 + 1) values. Consequently, there exists some s, 0 ≤ s ≤ N0 such that sj = s for
infinite numbers of j ′s. Let these indexes be numbered as ji , then we have∥∥x(t + tj )− x(t + sj )

∥∥ = ∥∥x(t + τj + sj )− x(t + sj )
∥∥ < ε.

Hence, ∥∥x(t + tj )− x(t + sj )
∥∥ < ε

for all t ∈ Z.

Now let {εr }r be a sequence such that εr → 0 (for instance, εr = 1

r
). Now, from

the sequence
{
x(t + tj )

}
j
, consider a subsequence chosen so that

∥∥∥x(t + tj1
i
)− x(n+ s1)

∥∥∥ ≤ ε1.

Next, from the previous sequence, we take a new subsequence such that∥∥∥x(n+ tj2
i
)− x(n+ s2)

∥∥∥ ≤ ε2.

Repeating this procedure and for each r ∈ N we obtain a subsequence
{
x(t + tj r

i
)
}
i

such that ∥∥∥x(t + tj r
i
)− x(t + sr )

∥∥∥ ≤ εr .

Now, for the diagonal sequence,
{
x(t + tj i

i
)
}
i
, for each ε > 0 take k(ε) ∈ N such

that εk(ε) <
ε
2 , where εr belongs to the previous sequence {εr}r∈N .

Using the fact that the sequences
{
tj r

r

}
and

{
tj s

s

}
are both subsequences of{

t
j
k(ε)
i

}
, for r ≥ k(ε) we have

∥∥x(t + tj r
r
)− x(t + tj s

s
)
∥∥ ≤

∥∥∥x(t + tj r
r
)− x(t + sk)

∥∥∥
+
∥∥∥x(t + sk)− x(t + tj s

s
)

∥∥∥
≤ εk(ε) + εk(ε)

≤ ε.

Therefore, the sequence
{
x(t + tj i

i
)
}
i

is a Cauchy sequence and hence converges

uniformly in t ∈ Z.



4.5 Asymptotically Almost Periodic Sequences 71

4.4.3 Composition of Almost Periodic Sequences

Definition 4.39 A sequence F : Z × X �→ X, (t, u) �→ F(t, u) is called almost
periodic in t ∈ Z uniformly in u ∈ B where B ⊂ X is an arbitrary bounded subset,
if for each ε > 0 there exists a positive integer N0(ε) such that among any N0(ε)

consecutive integers, there exists at least one integer s with the property:

‖F(t + s, u)− F(t, u)‖ < ε

for all t ∈ Z and u ∈ B.

We have the following composition theorems (of almost periodic sequences)
which are used to deal with the existence of almost periodic solutions to semilinear
difference equations. Their proofs are omitted as there are particular cases of
composition theorems for almost periodic functions.

Theorem 4.40 Suppose that F : Z× X → X, (t, u) �→ F(t, u) is almost periodic
in t ∈ Z uniformly in u ∈ B, where B ⊂ X is a bounded subset of X. If in addition,
F is Lipschitz in u ∈ X uniformly in t ∈ Z that is, there exists L > 0 such that

‖F(t, u)− F(t, v)‖ ≤ L ‖u− v‖ for all u, v ∈ X, t ∈ Z,

then for every X-valued almost periodic sequence x = {x(t)}t∈Z, the X-valued
sequence y(t) = F(t, x(t)) is almost periodic.

Theorem 4.41 If F : Z × X �→ X, (t, x) �→ F(t, x) such that t �→ F(t, x) is
almost periodic uniformly in x ∈ K where K ⊂ X is an arbitrary compact subset
and if t �→ z(t) is almost periodic, then the sequence y : Z → X defined by
y(·) := F(·, z(·)) is almost periodic.

4.5 Asymptotically Almost Periodic Sequences

4.5.1 Basic Definitions

Definition 4.42 An X-valued sequence x = {x(t)}t∈Z+ is called asymptotically
almost periodic if for each ε > 0, there exist two positive integers N,M such that
any set consisting of N+1 consecutive positive integers contains at least one integer
τ with the property

‖x(t + τ)− x(t)‖ < ε, ∀t ≥ M.

Definition 4.42 is equivalent to the following definition:

Definition 4.43 An X-valued sequence x = {x(t)}t∈Z+ is called asymptotically
almost periodic if for each ε > 0, there exist two positive integers N,M such that,
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any set consisting of N + 1 consecutive integers contains at least one integer τ with
the property

‖x(t + τ)− x(t)‖ < ε, t ≥ N, t + τ ≥ M.

The integer τ is called an asymptotic ε-period of the sequence x = {x(t)}t∈Z+ .
The collection of all asymptotically almost periodic X-valued sequences defined
above will be denoted AAP(Z).

4.5.2 Properties of Asymptotically Almost Periodic Sequences

Theorem 4.44 If the X-valued sequence x = {x(t)}t∈Z+ is asymptotically almost
periodic, then it can be decomposed as

x(t) = u(t)+ υ(t), t ∈ Z+,

where u = {u(t)}t∈Z ∈ AP(Z) and {υ(t)}t∈Z+ ∈ N(Z+).

Proof We refer the reader to this article by Fan [56].

Lemma 4.45 If x = {x(t)}t∈Z ∈ AP(Z) and lim
t→∞ x(t) = 0, then x(t) = 0 for all

t ∈ Z.

Proof We use the fact that there exists f ∈ AP(X) such that x(t) = f (t) for all
t ∈ Z. Moreover, it is well known that any almost periodic function h that goes to 0
as x → 0 is identically equal to zero. Consequently, f = 0 which yields x = 0.

Lemma 4.46 The decomposition of an asymptotically almost periodic sequence is
unique. That is, AP(Z)∩ N(Z+) = {0}.
Proof Suppose that x = {x(t)}t∈Z+ can be decomposed as x(t) = u(t)+ υ(t) and
x(t) = v(t)+ δ(t), where u = {u(t)}t∈Z , ν = {ν(t)}t∈Z ∈ AP(Z) and {υ(t)}t∈Z+ ,

{δ(t)}t∈Z+ ∈ N(Z+). Clearly, u(t) − ν(t) = δ(t) − υ(t) ∈ AP(Z)∩ N(Z+). By
Lemma 4.45, we deduce that u = ν and υ = δ.

4.6 Exercises

1. If f, g : R �→ X are almost periodic functions and if λ ∈ F, then the following
properties hold,

i) If g is F-valued such that 0 < M ≤ |g(t)| for each t ∈ R for some constant
M , then the quotient function t �→ fg−1(t) is almost periodic.
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ii) Let (fn)n∈N be a sequence of almost periodic functions such that there
exists h ∈ C(R,X) with ‖fn − h‖∞ → 0 as n → ∞. Then h is almost
periodic.

iii) Show that if f ∈ AP(X) and g ∈ L1(R), then their convolution defined by

(f ∗ g)(t) =
∫ ∞

−∞
f (s)g(t − s)ds

belongs to AP(X).

2. Show that (AP (X), ‖ · ‖∞) is a Banach space.
3. Show that the function defined by f (t) =∑d

k=0 ake
iλkt for all t ∈ R is almost

periodic.
4. Show that if f : R �→ X is almost periodic, then the mean value of f ,

M(f ) := lim
r→∞

1

2r

∫ r

−r

f (t)dt

exists. Furthermore,

lim
r→∞

1

2r

∫ r+a

−r+a

f (t)dt = M(f )

exists uniformly in a ∈ R.
5. If f, g : R �→ X are almost periodic functions and if α, β ∈ C, show that

a. If f is C-valued, then M(f ) = M(f ).
b. M(αf + βg) = αM(f )+ βM(f ).
c. If f is R-valued, then M(f ) ≥ 0 for all f ≥ 0.
d. Show that if f is R-valued, f ≥ 0, and M(f ) = 0, then f ≥ 0.
e. If (fn)n∈N is a sequence of almost periodic functions, which converges

uniformly to f , then

lim
n→∞M(fn) = M(f ).

6. Show that AP(R) ∩ Lp(R) = {0} for p ≥ 1.
7. Suppose f ∈ AP(R). Is f N ∈ AP(R) (N being an positive integer)?
8. Show that a continuous function f : R+ �→ X is asymptotically almost periodic

if and only if for any sequence (τn)n∈N with τn → ∞ as n → ∞ there exists a
subsequence (τnk

)k∈N for which f (t + τnk
) converges uniformly in t ∈ R+.

9. Prove Theorem 4.40.
10. Prove Theorem 4.41.
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4.7 Comments

The materials on almost periodic and asymptotically almost periodic functions
discussed in this chapter are mainly taken from the following sources: Besicovitch
[26], Bohr [29], Corduneanu [40, 41], Diagana [45], Diagana [47], Bezandry and
Diagana [27], Fink [58], Levitan and Zhikov [82], N’Guérékata [94, 95], and Zhang
[114]. While the first part of the proof of Theorem 4.6 follows Levitan and Zhikov
[82], the second one follows Corduneanu [41]. The proofs of Theorems 4.4 and 4.7
are taken from Diagana [47].

The part of the chapter on almost periodic and asymptotically almost periodic
sequences is based upon Diagana [47], Diagana et al. [49], Halanay and Rasvan
[63], and Fan [56]. The proofs of both Theorems 4.35 and 4.38 are taken from
Halanay and Rasvan [63].

Details on the proof of Theorem 4.20 can be found in both Fink [58] and Zhang
[114] for instance.



Chapter 5
Nonautonomous Difference Equations

5.1 Introduction

An autonomous difference equation is an equation of the form

x(t + 1) = f0(x(t)), t ∈ Z.

Although these equations play an important role when it comes to studying
some models arising in population dynamics, they do not take into account some
important parameters such as environmental fluctuations or seasonal changes.
Nonautonomous difference equations, that is, equations of the form

x(t + 1) = f1(t, x(t)), t ∈ Z,

seem to be more suitable to capture environmental fluctuations and seasonal
changes, see, e.g., Elaydi [54].

The main objective of this chapter is two-fold. We first extend the theory of
almost periodic sequences built in Z+ by Diagana et al. [49] to Z. Next, we make
extensive use of dichotomy techniques to find sufficient conditions for the existence
of almost periodic solutions for the class of semilinear systems of difference
equations given by

x(t + 1) = A(t)x(t)+ h(t, x(t)), t ∈ Z (5.1)

where A(t) is a k×k almost periodic matrix function defined on Z, and the function
h : Z×R

k → R
k is almost periodic in the first variable uniformly in the second one.

As in the case of Z+, our existence results are, subsequently, applied to discretely
reproducing populations with overlapping generations.
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Recall once again that �∞(Z), the Banach space of all bounded R
k-valued

sequences, is equipped with the sup norm defined for each x = {x(t)}t∈Z ∈ �∞(Z),
by

‖x‖∞ = sup
t∈Z

‖x(t)‖ .

In order to deal with the existence of almost periodic solutions to the above-
mentioned nonautonomous difference equations, we need to introduce the concepts
of bi-almost periodicity and positively bi-almost periodicity for sequences.

Definition 5.1 A sequence L : Z × Z �→ R
k is called bi-almost periodic if for

every ε > 0, there exists a positive integer N0(ε) such that any set consisting of
N0(ε) consecutive integers contains at least one integer σ for which

‖L(t + σ, s + σ)− L(t, s)‖ < ε

for all t, s ∈ Z. The collection of such sequences is denoted bAP (Z× Z,Rk).

Let T̃ be the set defined by

T̃ :=
{
(t, s) ∈ Z× Z : t ≥ s

}
.

Definition 5.2 A sequence L : T̃ �→ R
k is called positively bi-almost periodic if

for every ε > 0, there exists a positive integer N0(ε) such that any set consisting of
N0(ε) consecutive integers contains at least one integer σ for which

‖L(t + σ, s + σ)− L(t, s)‖ < ε

for all (t, s) ∈ T̃. The collection of such sequences will be denoted bAP (T̃,X).

Obviously, every bi-almost periodic sequence is positively bi-almost periodic
with the converse being untrue.

Example 5.3 Classical examples of bi-almost periodic sequences L include those
which are of the form L(t, s) = h(t − s) for all (t, s) ∈ Z×Z, where h = (h(t)t∈Z
is periodic, that is, there exists 0 �= ω ∈ Z such that h(t + ω) = h(t) for all t ∈ Z.

In this chapter, we are aimed at finding sufficient conditions for the existence of
almost periodic solutions to the class of semilinear systems of difference equations
given by

x(t + 1) = A(t)x(t)+ f (t, x(t)), t ∈ Z (5.2)

where A(t) is a k×k almost periodic matrix function defined on Z, and the function
f : Z × R

k → R
k is almost periodic in the first variable uniformly in the second

one.
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To study the existence of solutions to Eq. (5.2), we make extensive use of the
fundamental solutions to the system

x(t + 1) = A(t)x(t), t ∈ Z (5.3)

to examine almost periodic solutions of the system of difference equations

x(t + 1) = A(t)x(t)+ g(t), t ∈ Z (5.4)

where g : Z �→ R
k is almost periodic.

5.2 Discrete Exponential Dichotomy

Define the state transition matrix associated with A(t) as follows

X(t, s) =
t−1∏
r=s

A(r), X(t, t) = I,

for t > s.

Definition 5.4 ([65, Definition 7.6.4, p. 229]) Equation (5.3) is said to have a
discrete exponential dichotomy if there exist k × k projection matrices P(t) with
t ∈ Z and positive constants M and β ∈ (0, 1) such that,

(i) A(t)P (t) = P(t + 1)A(t);
(ii) The matrix A(t)

(
R(P (t))

)
is an isomorphism from R(P (t)) onto R(P (t+1));

(iii) ‖X(t, r)P (r)x‖ ≤ Mβr−t ‖x‖ , for t < r , x ∈ R
k;

(iv) ‖X(t, r)(I − P(r))x‖ ≤ Mβt−r ‖x‖ , for r ≤ t, x ∈ R
k .

By repeated application of [(i), Definition 5.4], we obtain

P(t)X(t, s) = X(t, s)P (s). (5.5)

If Eq. (5.3) has a discrete dichotomy, then we define its associated Green function
G by setting

G(t, s) =
{−X(t, s)P (s) if t < s,

X(t, s)(I − P(s)) if t ≥ s.

In view of the above, we have

‖G(t, s)‖ ≤
{
Mβs−t if t < s,

Mβt−s if t ≥ s.
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Remark 5.5 It should be mentioned that if t �→ A(t) is almost periodic and if
Eq. (5.3) has discrete dichotomy, then the Green operator function G(t, s)Y ∈
bAP (T,Rk) uniformly for all Y in any bounded subset of Rk .

We have the following characterization for the discrete exponential dichotomies:

Theorem 5.6 ([65, Theorem 7.6.5, p. 230]) The following statements are equiva-
lent,

i) Equation (5.3) has a discrete exponential dichotomy;
ii) For every bounded R

k-valued sequence g, Eq. (5.4) has a unique bounded
solution.

If Eq. (5.3) has a discrete exponential dichotomy, then Theorem 5.6 ensures the
existence and uniqueness of a bounded solution to Eq. (5.4) whenever g : Z �→ R

k

is a bounded sequence. Moreover, it can be shown that such a solution is given by

x(t) =
∞∑

r=−∞
G(t, r + 1)g(r)

=
t−1∑

r=−∞
X(t, r + 1)(I − P(r + 1))g(r)−

∞∑
r=t

X(t, r + 1)P (r + 1)g(r)

for all t ∈ Z.

Theorem 5.7 Suppose t �→ A(t) is almost periodic and that Eq. (5.3) has a discrete
exponential dichotomy. If g ∈ AP(Z), then Eq. (5.4) has a unique almost periodic
solution which can be expressed as

x(t) =
t−1∑

r=−∞
X(t, r+1)(I−P(r+1))g(r)−

∞∑
r=t

X(t, r+1)P (r+1)g(r). (5.6)

Proof Since every almost periodic sequence is bounded, it follows from Theo-
rem 5.6 that Eq. (5.4) has a unique bounded solution given by Eq. (5.6). Moreover,

‖x(t)‖ ≤
{

t−1∑
r=−∞

‖X(t, r + 1)(I − P(r + 1))‖

+
∞∑
r=t

‖X(t, r + 1)P (r + 1)‖
}
‖g‖∞

≤
{

M

1 − β
+ Mβ

1 − β

}
‖g‖∞

= M(1 + β)

1 − β
‖g‖∞
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which yields

‖x‖∞ ≤ M(1 + β)

1 − β
‖g‖∞ .

To complete the proof, one has to show that x ∈ AP(Z). For that, write x =
M(g)−N(g) where

M(g)(t) :=
t−1∑

r=−∞
X(t, r + 1)(I − P(r + 1))g(r)

and

N(g)(t) =
∞∑
r=t

X(t, r + 1)P (r + 1)g(r).

Let us show that t �→ Mg(t) is almost periodic. Indeed, since g is almost
periodic, for every ε > 0 there exists a positive integer N0(ε) such that any set
consisting of N0(ε) consecutive integers contains at least one integer τ for which

‖g(t + τ)− g(t)‖ < ε

for all t ∈ Z.
Setting Q(t) = I − P(t), we obtain,

M(g)(t + τ)−M(g)(t)

=
t+τ−1∑
r=−∞

X(t + τ, r + 1)Q(r + 1)g(r)−
t−1∑

r=−∞
X(t, r + 1)Q(r + 1)g(r)

=
t−1∑

r=−∞
X(t + τ, r + 1 + τ)Q(r + τ + 1)g(r + τ)

−
t−1∑

r=−∞
X(t, r + 1)Q(r + 1)g(r)

=
t−1∑

r=−∞
X(t + τ, r + 1 + τ)Q(r + 1 + τ)

[
g(r + τ)− g(r)

]

+
t−1∑

r=−∞

[
X(t + τ, r + 1 + τ)Q(r + 1 + τ)−X(t, r + 1)Q(r + 1)

]
g(r).
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Clearly,

∥∥ t−1∑
r=−∞

X(t + τ, r + 1 + τ)Q(r + 1 + τ)
[
g(r + τ)− g(r)

]∥∥ < c1(β,M)ε

From Remark 5.5 it follows that

∥∥ t−1∑
r=−∞

[
X(t + τ, r + 1 + τ)Q(r + 1 + τ)

−X(t, r + 1)Q(r + 1)
]
g(r)

∥∥ < c2(β,M)ε,

and hence

‖M(g)(t + τ)−M(g)(t)‖ < c3(β,M)ε

for each t ∈ Z.
Using similar ideas as the previous ones, one can easily see that N(g) ∈ AP(Z).

This completes the proof.

Suppose that there exists L > 0 such that

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖

for all t ∈ R and x, y ∈ R
k .

Theorem 5.8 Suppose that t �→ A(t) is almost periodic and that Eq. (5.3) has a
discrete exponential dichotomy. Further, we assume that (t, w) �→ f (t, w) is almost
periodic in t ∈ Z uniformly in w ∈ B where B ⊂ R

k is an arbitrary bounded subset.
Then Eq. (5.2) has a unique almost periodic solution given by

z(t) =
t−1∑

r=−∞
X(t, r + 1)Q(r + 1)f (r, z(r))−

∞∑
r=t

X(t, r + 1)P (r + 1)f (r, z(r)),

(5.7)

whenever L is small enough.

Proof Using the composition of almost periodic sequences (Theorem 4.40) it
follows that r �→ g(r) := f (r, z(r)) belongs to AP(Z) whenever z ∈ AP(Z).

Let Δ be the nonlinear operator defined by

(Δz) (t) :=
∞∑

r=−∞
G(t, r + 1)g(r) for all t ∈ Z.

Using the proof of Theorem 5.7, one can easily see that Δ is well defined as it
maps AP(Z) into itself.
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Now for all u, v ∈ AP(Z),

‖(Δu) (t)− (Δv) (t)‖ ≤ M(1 + β)

1 − β
‖f (t, u(t))− f (t, u(t))‖ ,

and hence

‖Δu−Δv‖∞ ≤ ML(1 + β)

1 − β
‖u− v‖∞ .

Thus the nonlinear operator Δ is a strict contraction whenever L is small enough,
that is,

ML(1 + β)

1 − β
< 1.

To conclude, we make use of the classical Banach fixed point principle.

5.3 The Beverton-Holt Model with Overlapping Generations

To illustrate the results of the previous section, we consider the following theoretical
discrete-time population model,

x(t + 1) = f (t, x(t))+ γ x(t), t ∈ Z (5.8)

where x(t) is the total population size in generation t , γ ∈ (0, 1) is the constant
“probability” of surviving per generation, and f : Z × R → R models the birth or
recruitment process.

In order to induce almost periodic effects on the population model, we consider
the general model in the form,

x(t + 1) = f (t, x(t))+ γtx(t), t ∈ Z. (5.9)

where both {γt }t∈Z and f (t, x(t)) belong to AP(Z) and γt ∈ (0, 1) for all t ∈ Z.
Recall that Eq. (5.9) was studied by Franke and Yakubu [59] in Z+ and when

recruitment function is of the form:

f (t, x(t)) = Kt(1 − γt ), (5.10)

and (with the periodic Beverton-Holt recruitment function)

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ− 1 + γt )x(t)
, (5.11)

where the carrying capacity Kt is p-periodic, that is, Kt+p = Kt for all t ∈ Z+ and
μ > 1 [43, 59].
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Among other things, they have shown that the periodically forced recruitment
functions Eqs. (5.10) and (5.11) generate globally attracting cycles in Eq. (5.9) (see
details in [59]).

In this section, we extend these results to the almost periodic case in Z. For that,
we make use of Theorem 5.8 to show that if both {Kt }t∈Z and {γt }t∈Z are almost
periodic, then Eq. (5.9) has a unique almost periodic solution.

Theorem 5.9 Let

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ− 1 + γt )x(t)
,

where both {Kt }t∈Z and {γt }t∈Z are almost periodic, each γt ∈ (0, 1), Kt > 0 and
μ > 1. Then Eq. (5.9) has a unique almost periodic solution whenever

sup {γt |t∈Z} < 1

μ+ 1
.

Proof First of all, note that Eq. (5.9) is in the form of Eq. (5.2), where A(t) and f

can be taken respectively as follows

A(t) = γt ,

and

f (t, x(t)) = (1 − γt )μKtx(t)

(1 − γt )Kt + (μ− 1 + γt )x(t)
.

Now

|f (t, x)− f (t, y)|

≤ (1 − γt )
2μK2

t |x − y|
(1 − γt )2K2

t + (μ− 1 + γt )(1 − γt )Kt (x + y)+ (μ− 1 + γt )2xy

≤ μ |x − y| .

Consequently, f is Lipschitz with the Lipschitz constant L = μ. Similarly, take
M < μ−1 and β = sup {γt |t∈Z}. Clearly, Eq. (5.9) has a unique almost periodic
solution whenever

sup {γt |t∈Z} < 1 − μM

1 + μM
.

Similarly, if f (t, x(t)) = Kt(1 − γt ), then f (t, x) − f (t, y) = 0 which yields
Eq. (5.9) has a unique almost periodic solution.
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Corollary 5.10 Let the recruitment function be f (t, x(t)) = Kt(1 − γt ), where
both {Kt }t∈Z and {γt }t∈Z are almost periodic, each γt ∈ (0, 1) and Kt > 0.
Then Eq. (5.9) has a unique globally asymptotically stable almost periodic solution
whenever

sup {γt |t∈Z} < 1.

5.4 Exercises

1. Prove Theorem 5.6.
2. Use dichotomy techniques to study the existence of almost periodic solutions to

the semilinear difference equation with delay given by

u(t + 1) = A(t)u(t)+ f (t, u(t), u(t − 1)), t ∈ Z

where t �→ A(t) is a d × d almost periodic matrix and f : Z× R
d × R

d → R
d

is almost periodic in t ∈ Z uniformly in the second and the third variables.
3. Use dichotomy techniques to study the existence of almost periodic solutions to

the functional difference equation given by

u(t + 1) = A(t)u(t)+ f (t, u(h1(t)), u(h2(t)), u(h3(t))), t ∈ Z

where t �→ A(t) is a d × d almost periodic matrix, the sequence hj : Z �→ Z

with hj (Z) = Z for j = 1, 2, 3, and f : Z × R
d × R

d × R
d → R

d is almost
periodic in t ∈ Z uniformly in the other variables.

5.5 Comments

The main references for this chapter include Diagana [47], Diagana et al. [49] and
Henry [65]. Some parts of this chapter are based upon the following references:
Diagana [46] and Araya et al. [17]. For additional readings on this topic, we refer to
Diagana [47], Lizama and Mesquita [84], and Henry [65].



Chapter 6
Singular Difference Equations

6.1 Introduction

The mathematical problem which consists of studying the existence of solutions to
singular difference equations with almost periodic coefficients is an important one
as almost periodicity, according to Henson et al. [66], is more likely to accurately
describe many phenomena occurring in population dynamics than periodicity. In
the previous chapter, the existence of almost periodic solutions to some classes of
nonautonomous non-singular difference equations was obtained. These results were
utilized to study the effect of almost periodicity upon the Beverton-Holt model.

In this chapter, we study and establish the existence of Bohr (respectively,
Besicovitch) almost periodic solutions to the following class of singular systems
of difference equations,

Ax(t + 1)+ Bx(t) = f (t, x(t)) (6.1)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic
in t ∈ Z uniformly in the second variable, and A, B are N × N square matrices
satisfying detA = detB = 0.

Recall that singular difference equations of the form Eq. (6.12) arise in
many applications including optimal control, population dynamics, economics,
and numerical analysis [52]. The main result discussed in this chapter can be
summarized as follows: if λA + B is invertible for all λ ∈ S

1 = {z ∈ C : |z| = 1}
and if f is Bohr (respectively, Besicovitch) almost periodic in t ∈ Z uniformly
in the second variable and under some additional conditions, then Eq. (6.12) has a
unique Bohr (respectively, Besicovitch) almost periodic solution.

The chapter is organized as follows: Sect. 6.1 serves as an introduction but also
provides preliminary tools needed in the sequel. In Sect. 6.2, some preliminary

© Springer Nature Switzerland AG 2018
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results corresponding to the case f (t, x(t)) = C(t) are obtained. Section 6.3 is
devoted to the main results of this chapter. In Sect. 6.4, we make use of the main
results in Sect. 6.3 to study the existence of Bohr (respectively, Besicovitch) almost
periodic solutions for some second-order (and higher-order) singular systems of
difference equations.

Let x = (x(t))t∈Z be a sequence. Define P(x) as follows

P(x) := sup
k∈Z

lim sup
N→∞

[
1

N

k+N∑
j=k+1

‖x(j)‖2
] 1

2

.

Set

B̃ =
{
x = (x(t))t∈Z : P(x) < ∞

}
.

It is not hard to see that P is a semi-norm on B̃. Consider the following
equivalence relation on B̃: x, y ∈ B̃, x ∼ y if and only if, P(x − y) = 0. The
quotient space

B := B̃/ ∼

endowed with P(·) is a normed vector space.

Definition 6.1 A sequence x = (x(t))t∈Z is called Besicovitch almost periodic if
it belongs to the closure of trigonometric polynomials under the semi-norm P . The
collection of all Besicovitch almost periodic sequences will be denoted B2(Z,RN).

Definition 6.2 A sequence F : Z × R
N �→ R

N, (t, u) �→ F(t, u) is called
Besicovitch almost periodic in t ∈ Z if t �→ F(t, u) belongs to B2(Z,RN)

uniformly in u ∈ R
N .

6.2 The Case of a Linear Equation

In this section, we consider the case when the forcing term f does not depend on x,
that is, f (t, x(t)) = C(t) where (C(t))t∈Z is almost periodic. Namely, we study the
existence of almost periodic solutions for the singular difference equation

Ax(t + 1)+ Bx(t) = C(t), t ∈ Z (6.2)

where C : Z �→ R
N is Bohr (respectively, Besicovitch) almost periodic.
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6.2.1 Existence of a Bohr Almost Periodic Solution

Define the resolvent ρ(A,B) by

ρ(A,B) :=
{
λ ∈ C : λA+ B is invertible

}
.

Theorem 6.3 If S
1 ⊆ ρ(A,B), then Eq. (6.2) has a unique almost periodic

solution.

Proof The strategy here consists of adapting our setting to that of Campbell [34].
Indeed, setting Â = (A+ B)−1A, B̂ = (A+ B)−1B, and ˆC(t) = (A+ B)−1C(t),

one can easily see that Eq. (6.2) is equivalent to,

Âx(t + 1)+ B̂x(t) = ˆC(t), t ∈ Z. (6.3)

Using the identity, Â + B̂ = IN , it follows that ÂB̂ = B̂Â. Consequently, one
can find a common basis of trigonalization for Â and B̂. That is, there exists an
invertible matrix T such that

Â = T −1
(
A1 0
0 A2

)
T , B̂ = T −1

(
B1 0
0 B2

)
T ,

where A1, B2 are invertible and A2, B1 are nilpotent.
Recall that here, Ai + Bi = IN for i = 1, 2. Consequently, writing

T x(t) =
(
w(t)

v(t)

)

and

T ˆC(t) =
(
α(t)

β(t)

)
,

where (α(t))t and (β(t))t are almost periodic, it follows that Eq. (6.3) can be
rewritten as {

A1w(t + 1)+ B1w(t) = α(t)

A2v(t + 1)+ B2v(t) = β(t).
(6.4)

Using the fact that both A1 and B2 are invertible, one can see that Eq. (6.4) is
equivalent to,

{
w(t + 1)+ A−1

1 B1w(t) = A−1
1 α(t)

B−1
2 A2v(t + 1)+ v(t) = B−1

2 β(t).
(6.5)
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Let us now put our main focus upon the first equation appearing in Eq. (6.5), that
is, the equation given by

w(t + 1)− (−A−1
1 B1)w(t) = A−1

1 α(t), t ∈ Z. (6.6)

Obviously, t �→ (A−1
1 α(t))t∈Z is almost periodic. We shall now prove that

−A−1
1 B1 has no eigenvalue that belongs to S

1. From that, we will deduce that
Eq. (6.6) has a unique almost periodic solution. For that, consider a nonzero
eigenvalue λ of −A−1

1 B1. Let x1 �= 0 be an eigenvector for −A−1
1 B1, that is,

−A−1
1 B1x1 = λx1. Consequently,

(λA1 + B1)x1 = 0,

from which we deduce that

(λÂ+ B̂)T −1
(
x1

0

)
= 0.

Using the fact that

T −1
(
x1

0

)
�=
(

0
0

)

we deduce that λÂ+ B̂ is not invertible, thus this is the case for λA+ B too. With
the assumption made, this proves that |λ| �= 1. Consequently, there exists a unique
almost periodic solution (w(t))t∈Z to

w(t + 1)− (−A−1
1 B1)w(t) = A−1

1 α(t).

For the second equation appearing in Eq. (6.5), setting V (t) = v(−t), it becomes,
by changing t in −t ,

V (t)+ B−1
2 A2V (t − 1) = B−1

2 β(−t). (6.7)

Using similar arguments as above, one can see that Eq. (6.7) has a unique almost
periodic solution (V (t))t∈Z, so the second equation appearing in Eq. (6.5) has a
unique almost periodic solution (v(t))t∈Z. Since Eqs. (6.5) and (6.2) are equivalent,
we obtain existence and uniqueness of an almost periodic solution to Eq. (6.2). The
proof is complete.

Remark 6.4 Notice that the continuous operator

T : (x(t))t∈Z → (Ax(t + 1)+ Bx(t))t∈Z
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is invertible and maps the Banach space of (Bohr) almost periodic sequences into
itself. It follows from the Bounded Inverse Theorem that T −1 is also continuous.
Consequently, there exists a constant M > 0 such that for all (C(t))t∈Z,

‖(x(t))t‖∞ ≤ M‖(C(t))t‖∞.

An immediate consequence of Theorem 6.3 is the following:

Corollary 6.5 Let A = (aij ) and B = (bij ) be N×N square matrices and suppose
that

∀i, ||aii | − |bii || >
∑
j �=i

(|aij | + |bij |
)
.

Then Eq. (6.2) has a unique almost periodic solution.

Proof Indeed, let λ ∈ S
1 and let cij = aij λ+ bij , so that λA+ B = (cij ).

Now

|cii | = |λaii + bii | ≥ ||λaii | − |bii || = ||aii | − |bii ||

and ∑
j �=i

|cij | =
∑
j �=i

|aijλ+ bij | ≤
∑
j �=i

(|aij | + |bij |
)

so thus for all i,

|cii | >
∑
j �=i

|cij |,

which yields S1 ⊆ ρ(A,B).
In view of the above, using Theorem 6.3 it follows that Eq. (6.2) has a unique

almost periodic solution.

Remark 6.6 Let us mention that there exist infinitely many pairs of matrices (A,B)

satisfying the assumption of Corollary 6.5.

6.2.2 Existence of Besicovitch Almost Periodic Solution

In this subsection, we suppose (C(t))t∈Z is Besicovitch almost periodic and study
the existence of Besicovitch almost periodic solutions to Eq. (6.2). Here, the proof
is more straightforward, using tools from Fourier analysis.
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Indeed, write C(t) ∼ ∑
α∈[0,2π) cαêα(t), where êα(t) = eiαt and (cα)α ∈

�2([0, 2π),RN). We look for a solution in the following form,

x(t) ∼
∑

α∈[0,2π)

aαêα(t), (aα)α ∈ �2([0, 2π),RN).

Now

Ax(t + 1)+ Bx(t) ∼
∑

α∈[0,2π)

(êα(1)Aaα + Baα)êα(t).

By the uniqueness of the Fourier-Bohr expansion, Eq. (6.2) is equivalent to,

∀α ∈ [0, 2π), (êα(1)A+ B)aα = cα.

Since êα(1) ∈ S
1, given that êα(1)A+ B is invertible, so we obtain a candidate

∀α ∈ [0, 2π), aα = (êα(1)A+ B)−1cα.

We need now to prove that (aα)α ∈ �2([0, 2π),RN). Since S
1 is compact, then

the function S
1 �→ (0,∞), λ → ‖(λA + B)−1‖ is bounded and so let M > 0 be

such that

∀λ ∈ S
1, ‖(λA+ B)−1‖ ≤ M.

Clearly,

|aα|2 ≤ M2 |cα|2 .

This yields (aα)α ∈ �2([0, 2π),RN). Further,

‖(x(t))t∈Z‖2 ≤ M‖(C(t))t∈Z‖2.

Notice here that we have a formula for M which is given by

M = sup
λ∈S1

‖(λA+ B)−1‖.

Remark 6.7 In the case of assumptions of Theorem 6.5, one can actually compute
explicitly a bound for M . Indeed, let us consider

θ := min
i=1,2,...,N

{||aii | − |bii || −
∑
j �=i

(|aij | + |bij |)}.
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Then

M ≤
√
n

θ
.

Set cij = aijλ+ bij . Given λ ∈ S
1, let us consider the system Y = (λA+ B)X

and fix i0 such that |Xi0 | = maxi |Xi |.
Now

|Y |2 ≥ |Yi0 | = |
∑
j

(λai0j + bi0jXj )| ≥

|ai0i0 |.|Xi0 | −
∑
j �=i0

|λai0j + bi0j ||Xj | ≥ θ |X|∞,

thus

|X|2 ≤ √
n|X|∞ ≤

√
n

θ
|Y |2.

We apply this with Y = cα and X = aα .

6.3 The Semilinear Equation

First of all, note that from Sect. 6.2, we deduce that the linear operator

T : (x(t))t∈Z → (Ax(t + 1)+ Bx(t))t∈Z

is bijective and bi-continuous from AP(Z,RN) (respectively, from B2(Z,RN) into
itself) into itself.

Using similar arguments as above and the composition of almost periodic
sequences, we can obtain the existence of Bohr (respectively, Besicovich) almost
periodic solutions to Eq. (6.12).

Theorem 6.8 Suppose S
1 ⊆ ρ(A,B) and that f ∈ AP(Z,RN). Further, suppose

that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K , Eq. (6.12) has a
unique Bohr almost periodic solution.

Theorem 6.9 Suppose S
1 ⊆ ρ(A,B) and that f : bZ × R

N → R
N is

Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.12) has a unique Besicovitch
almost periodic solution.
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Let X be either AP(Z,RN) or B2(Z,RN). From the assumptions upon f , the
Nemytskii operator for f is given by

Nf : ((x(t))t∈Z) �→ (f (t, x(t)))t∈Z,

which maps X into itself. Moreover, T is bi-continuous from X to itself.
Equation (6.12) is equivalent to,

T ((x(t))t∈Z) = Nf ((x(t))t∈Z),

which is equivalent to finding a fixed point for T −1 ◦ Nf . This nonlinear operator
is ‖T −1‖K-Lipschitzian. Consequently,

K < ‖T −1‖−1

to obtain the existence of a unique almost periodic solution to Eq. (6.12), we use the
Banach fixed-point theorem.

6.4 Second-Order Singular Difference Equations

Of interest is the study of (respectively, Besicovitch) Bohr almost periodic to the
following second-order difference equations

Ax(t + 2)+ Bx(t + 1)+ Cx(t) = f (t, x(t)), t ∈ Z (6.8)

where A,B,C are N × N -squares matrices with detA = detB = detC = 0 and
f : Z × R

N �→ R
N is almost periodic in the first variable uniformly in the second

one.
In order to study the existence of (respectively, Besicovitch) Bohr almost periodic

solutions to Eq. (6.8), one makes extensive use of the results obtained in Sect. 6.3.
For that, we rewrite Eq. (6.8) as follows:

Lw(t + 1)+Mw(t) = F(t, w(t)), t ∈ Z (6.9)

where

L =
(
B A

I O

)
, M =

(
C O

O −I

)
, F =

(
f

0

)
, w(t) =

(
x(t)

x(t + 1)

)

with O and I being the N ×N zero and identity matrices.

Lemma 6.10 λL+M is invertible if and only if λ(A+ B)+ C is invertible.
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Proof The 2N × 2N square matrix λL+M is given by

λL+M =
(
λB + C λA

λI −I

)
.

Consequently, solving the system

(λL+M)

(
u

v

)
=
(
x

y

)

yields (λB +C)u+ λAv = x and λu− v = y. If λ2A+ λB +C is invertible, then
from v = λu− y it follows that (λ2A+ λB + C)u = λAy + x which yields,

u =
[
λ2A+ λB + C

]−1(
λAy + x

)
, v = λ

[
λ2A+ λB + C

]−1(
x + λAy

)
− y

which yields λL+M is invertible.
The proof for the converse can be done using similar arguments as above and

hence is omitted.

Set

ρ(A,B,C) :=
{
λ ∈ C : λ2A+ λB + C is invertible

}
.

Using Lemma 6.10, Theorem 6.8, and Theorem 6.9, we obtain the following
results:

Theorem 6.11 Suppose S
1 ⊆ ρ(A,B,C) and that f ∈ AP(Z,RN). Further,

suppose that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K , Eq. (6.8)
has a unique Bohr almost periodic solution.

Theorem 6.12 Suppose S
1 ⊆ ρ(A,B,C) and that f : bZ × R

N → R
N is

Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.8) has a unique Besicovitch
almost periodic solution.

Let p ≥ 2 be an integer. One should mention that the previous techniques can
be easily used to study the existence of almost periodic solutions to higher order
singular systems of difference equations of the form,

Apx(t+p)+Ap−1x(t+p−1)+. . .+A1x(t+1)+A0x(t) = f (t, x(t)), (6.10)

for all t ∈ Z, where Ak for k = 0, 1, 2, . . . , p, are N × N -squares matrices with
detAk = 0 for k = 0, 1, 2, .., p, and f : Z × R

N �→ R
N is almost periodic in the

first variable uniformly in the second one.
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Setting

ρ(Ap,Ap−1, . . . , A0) :=
{
λ∈C : λpAp+λp−1Ap−1+. . .+λA1+A0 is invertible

}
,

the existence results can be formulated as follows:

Theorem 6.13 Suppose S
1 ⊆ ρ(Ap,Ap−1, . . . , A0) and that f ∈ AP(Z,RN).

Further, suppose that x �→ f (t, x) is K-Lipschitzian. Then for sufficiently small K ,
Eq. (6.10) has a unique Bohr almost periodic solution.

Theorem 6.14 Suppose S1 ⊆ ρ(Ap,Ap−1, . . . , A0) and that f : bZ×R
N → R

N

is Caratheodory, f (., 0) ∈ �2(bZ,RN). Further, we suppose that x �→ f (t, x) is
K-Lipschitzian. Then for sufficiently small K , Eq. (6.10) has a unique Besicovitch
almost periodic solution.

6.5 Exercises

1. Give an example of square matrices A and B that satisfy the assumption of
Corollary 6.5.

2. Prove Theorem 6.8.
3. Prove Theorem 6.9.
4. Prove Theorem 6.11.
5. Prove Theorem 6.12.
6. Prove Theorem 6.13.
7. Prove Theorem 6.14.
8. Study the existence of Bohr (respectively, Besicovitch) almost periodic solutions

to the following class of nonautonomous singular difference equations,

A(t)x(t + 1)+ B(t)x(t) = f (t, x(t)) (6.11)

where f : Z × R
N → R

N is Bohr (respectively, Besicovitch) almost periodic
in t ∈ Z uniformly in the second variable, and A(t), B(t) are N × N square
matrices satisfying detA(t) = detB(t) = 0 for all t ∈ Z.

9. Study the existence of Bohr (respectively, Besicovitch) almost periodic solutions
to the following class of nonautonomous singular difference equations,

A(t)x(t + 2)+ B(t)x(t + 1)+ C(t)x(t) = f (t, x(t)) (6.12)

where f : Z× R
N → R

N is Bohr (respectively, Besicovitch) almost periodic in
t ∈ Z uniformly in the second variable, and A(t), B(t), C(t) are N × N square
matrices satisfying detA(t) = detB(t) = detC(t) = 0 for all t ∈ Z.
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6.6 Comments

This chapter is mainly based upon the work by Diagana and Pennequin [48]. Other
sources for this chapter include the work of Campbell [34]. For additional readings
on the topic discussed in this chapter, we refer the reader for instance to Anh et al.
[15] and Du et al. [52].



Chapter 7
Fractional Integro-Differential Equations

7.1 Introduction

Fractional calculus is a generalization of the classical differentiation and integration
of non-integer order. Fractional calculus is as old as differential calculus. Fractional
differential and integral equations have applications in many fields including engi-
neering, science, finance, applied mathematics, bio-engineering, radiative transfer,
neutron transport, and the kinetic theory of gases, see, e.g., [16, 33, 35, 36, 71, 74].
Noteworthy progress upon the study of ordinary and partial fractional differential
equations have recently been made, see, e.g., Abbas et al. [6], Baleanu et al. [19],
Diethelm [51], Kilbas et al. [77], Miller and Ross [91], Podlubny [101], and Samko
et al. [103]. Further, some recent results upon the existence and attractivity of
solutions to various integral equations of two variables have been obtained by many
people including Abbas et al. [2, 3, 5].

In this chapter, we study the existence, uniqueness, estimates, and global
asymptotic stability for some classes of fractional integro-differential equations with
finite delay. In order to achieve our goal, we make extensive use of some fixed-point
theorems as well as the so-called Pachpatte techniques.

Recently, Pachpatte [98] obtained some existence and uniqueness results as
well as some other properties of solutions to certain Volterra integral and integro-
differential equations in two variables. The main tools utilized in his analysis are
based upon the applications of the Banach fixed point theorem coupled with the so-
called Bielecki type norm and certain integral inequalities with explicit estimates.
Using integral inequalities and a fixed-point approach, we improve some of the
above-mentioned results and study the global attractivity of solutions for the system
of partial fractional integro-differential equations in the form,

D
r
θu(t, x) = f (t, x, u(t,x), (Gu)(t, x)), for (t, x) ∈ J := R+ × [0, b], (7.1)

u(t, x) = φ(t, x), if (t, x) ∈ J̃ := [−α,∞)× [−β, b]\(0,∞)× (0, b], (7.2)
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{
u(t, 0) = ϕ(t); t ∈ R+,

u(0, x) = ψ(x); x ∈ [0, b], (7.3)

where

(Gu)(t, x) = 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1g(t, x, s, y, u(s,y))dyds,

(7.4)

α, β, b > 0, θ = (0, 0), r = (r1, r2) ∈ (0, 1] × (0, 1], R+ = [0,∞), I r
θ is the

left-sided mixed Riemann–Liouville integral of order r, D
r
θ is the standard Caputo

fractional derivative of order r, f : J × C → R, g : J1 × C → R are given
continuous functions, J1 := {(t, x, s, y) : 0 ≤ s ≤ t < ∞, 0 ≤ y ≤ x ≤
b]}, ϕ : R+ → R, ψ : [0, b] → R are absolutely continuous functions with
limt→∞ ϕ(t) = 0, and ψ(x) = ϕ(0) for each x ∈ [0, b], Φ : J̃ → R is continuous
with ϕ(t) = Φ(t, 0) for each t ∈ R+, and ψ(x) = Φ(0, x) for each x ∈ [0, b], Γ (.)

is the Gamma function defined by

Γ (ξ) =
∫ ∞

0
t ξ−1e−t dt; ξ > 0,

and C := C([−α, 0] × [−β, 0]) is the space of continuous functions on [−α, 0] ×
[−β, 0] with the standard norm

‖u‖C = sup
(t,x)∈[−α,0]×[−β,0]

|u(t, x)|.

If u ∈ C := C([−α,∞)× [−β, b]), then for any (t, x) ∈ J define u(t,x) by

u(t,x)(τ, ξ) = u(t + τ, x + ξ); for (τ, ξ) ∈ [−α, 0] × [−β, 0].

7.2 Preliminaries and Notations

Let a, b > 0 and L1([0, a] × [0, b]) be the space of Lebesgue-integrable functions
u : [0, a] × [0, b] → R equipped with the norm,

‖u‖1 =
∫ a

0

∫ b

0
|u(t, x)|dxdt.

By C := C(J ) we denote the space of all continuous functions from J into R.

Similarly, by BC := BC([−α,∞) × [−β, b]) we denote the Banach space of all
bounded and continuous functions from [−α,∞) × [−β, b] into R equipped with
the standard sup norm which we denoted by

‖u‖BC = sup
(t,x)∈[−α,∞)×[−β,b]

|u(t, x)|.
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Definition 7.1 For u0 ∈ BC and η ∈ (0,∞), we denote by B(u0, η), the closed
ball in BC centered at u0 with radius η.

Definition 7.2 ([108]) Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈
L1([0, a] × [0, b]). The left-sided mixed Riemann–Liouville integral of order r of
u is defined by

(I r
θ u)(t, x) =

1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1u(s, y)dyds.

In particular,

(I θ
θ u)(t, x) = u(t, x), (I σ

θ u)(t, x) =
∫ t

0

∫ x

0
u(s, y)dyds;

for almost all (t, x) ∈ [0, a] × [0, b],

where σ = (1, 1).
For instance, I r

θ u exists for all r1, r2 > 0, when u ∈ L1([0, a] × [0, b]). Moreover

(I r
θ u)(t, 0) = (I r

θ u)(0, x) = 0; t ∈ [0, a], x ∈ [0, b].

Example 7.3 Let λ, ω ∈ (−1, 0)∪(0,∞) and r = (r1, r2) ∈ (0,∞)×(0,∞), then

I r
θ t

λxω = Γ (1 + λ)Γ (1 + ω)

Γ (1 + λ+ r1)Γ (1 + ω + r2)
tλ+r1xω+r2 ,

for almost all (t, x) ∈ [0, a] × [0, b].

By 1− r we mean (1− r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
tx := ∂2

∂t∂x
, the

mixed second order partial derivative.

Definition 7.4 ([108]) Let r ∈ (0, 1] × (0, 1] and u ∈ L1([0, a] × [0, b]). Recall
that the Caputo fractional derivative of order r of u is defined by the expression

D
r
θu(t, x) = (I 1−r

θ D2
txu)(t, x)

= 1

Γ (1 − r1)Γ (1 − r2)

∫ t

0

∫ x

0

(D2
syu)(s, y)

(t − s)r1(x − y)r2
dyds.

The case when σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (D2

xyu)(t, x), for almost all (t, x) ∈ [0, a] × [0, b].
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Example 7.5 Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0, 1] × (0, 1], then

D
r
θ t

λxω = Γ (1 + λ)Γ (1 + ω)

Γ (1 + λ− r1)Γ (1 + ω − r2)
tλ−r1xω−r2 ,

for almost all (t, x) ∈ [0, a] × [0, b].

In the sequel, we need the following lemma

Lemma 7.6 ([1]) Let f ∈ L1([0, a] × [0, b]). A function u ∈ AC([0, a] × [0, b])
is a solution to the problem

⎧⎪⎪⎨
⎪⎪⎩
(Dr

θu)(t, x) = f (t, x); (t, x) ∈ [0, a] × [0, b],
u(t, 0) = ϕ(t); t ∈ [0, a], u(0, x) = ψ(x); x ∈ [0, b],
ϕ(0) = ψ(0),

if and only if u satisfies

u(t, x) = μ(t, x)+ (I r
θ f )(t, x); (t, x) ∈ [0, a] × [0, b],

where

μ(t, x) = ϕ(t)+ ψ(x)− ϕ(0).

Denote by D1 := ∂
∂t
, the partial derivative of a function defined on J (or J1)

with respect to the first variable, D2 := ∂
∂x

, D2D1 := ∂2

∂t∂x
. In the sequel we will

make use of the following Lemma due to Pachpatte.

Lemma 7.7 ([98]) Let u, e, p ∈ C(J ), k,D1k,D2k,D2D1k ∈ C(J1) be positive
functions. If e(t, x) is nondecreasing in each variable (t, x) ∈ J and

u(t, x) ≤ e(t, x)+
∫ t

0

∫ x

0
p(s, y)

×
[
u(s, y)+

∫ s

0

∫ y

0
k(s, y, τ, ξ)u(τ, ξ)dξdτ

]
dyds; (t, x) ∈ J, (7.5)

then,

u(t, x) ≤ e(t, x)

[
1 +

∫ t

0

∫ x

0
p(s, y) exp

(∫ s

0

∫ y

0
[p(τ, ξ)+ A(τ, ξ)]dξdτ

)
dyds

]
(7.6)
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for all (t, x) ∈ J , where

A(t, x) = k(t, x, s, y)+
∫ t

0
D1k(t, x, s, y)ds +

∫ x

0
D2k(t, x, s, y)dy

+
∫ t

0

∫ x

0
D2D1k(t, x, s, y)dyds; (t, x) ∈ J. (7.7)

Let G be an operator from ∅ �= Ω ⊂ BC into itself and consider the solutions of
equation

(Gu)(t, x) = u(t, x). (7.8)

Now we review the concept of attractivity of solutions to Eq. (7.8). For u0 ∈ BC

and η ∈ (0,∞), we denote by B(u0, η), the closed ball in BC centered at u0 with
radius η.

Definition 7.8 ([5]) Solutions to Eq. (7.8) are locally attractive if there exists a ball
B(u0, η) in the space BC such that for any arbitrary solutions v = v(t, x) and w =
w(t, x) to Eq. (7.8) belonging to B(u0, η) ∩Ω , we have that, for each x ∈ [0, b],

lim
t→∞(v(t, x)− w(t, x)) = 0. (7.9)

Definition 7.9 When the limit to Eq. (7.9) is uniform with respect to B(u0, η),

solutions to Eq. (7.8) are said to be locally attractive (or equivalently that solutions
to Eq. (7.8) are asymptotically stable).

Definition 7.10 ([5]) The solution v = v(t, x) of Eq. (7.8) is said to be globally
attractive if Eq. (7.9) holds for each solution w = w(t, x) of Eq. (7.8). If condition
Eq. (7.9) is satisfied uniformly with respect to the set Ω, solutions of Eq. (7.8) are
said to be globally asymptotically stable (or uniformly globally attractive).

7.3 Main Results

Prior to getting into technical considerations and estimates, let us define what we
mean by a solution to the system Eqs. (7.1)–(7.3).

Definition 7.11 A function u ∈ BC whose mixed derivative D2
tx exists and is

integrable, is said to be a solution to the system Eqs. (7.1)–(7.3), if u satisfies
Eqs. (7.1) and (7.3) on J and that Eq. (7.2) on J̃ holds.
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7.3.1 Existence and Uniqueness

Our first result is devoted to the existence and uniqueness of a solution to Eqs. (7.1)–
(7.3).

Theorem 7.12 Assume that the following assumptions hold,

(H.61) The function ϕ is continuous and bounded with

ϕ∗ = sup
(t,x)∈R+×[0,b]

|ϕ(t, x)|;

(H.62) There exist positive functions p1, p2 ∈ BC(J ) such that

|f (t, x, u1, u2)− f (t, x, v1, v2)| ≤ p1(t, x)‖u1 − v1‖C + p2(t, x)|u2 − v2|,

for each (t, x) ∈ J, u1, v1 ∈ C and u2, v2 ∈ R. Moreover, assume that the
function

t →
∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1f (s, y, 0, (G0)(s, y))dyds

is bounded on J with

f ∗ = sup
(t,x)∈J

1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t−s)r1−1(x−y)r2−1|f (s, y, 0, (G0)(s, y))|dyds;

(H.63) There exists a positive function q ∈ BC(J1) such that

|g(t, x, s, y, u)− g(t, x, s, y, v)| ≤ q(t, x, s, y)|u− v|,

for each (t, x, s, y) ∈ J1 and u, v ∈ R.

If

p∗
1 + p∗

2q
∗ < 1, (7.10)

where

p∗
i = sup

(t,x)∈J

[ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1pi(s, y)dyds

]
; i = 1, 2,

and

q∗ = sup
(t,x)∈J

[ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1q(t, x, s, y)dyds

]
,

then the system (7.1)–(7.3) has a unique solution on [−α,∞)× [−β, b].
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Proof Define the nonlinear operator N : BC → BC by

(Nu)(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Φ(t, x), (t, x) ∈ J̃ ,

ϕ(t)+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

×f (s, y, u(s,y), (Gu)(s, y))dyds, (t, x) ∈ J.

(7.11)

Clearly, the function (t, x) �→ (Nu)(t, x) is continuous on [−α,∞) × [−β, b].
The next step consists of showing that N(u) ∈ BC for each u ∈ BC. Indeed, for
each (t, x) ∈ J̃ , we have

|Φ(t, x)| ≤ sup
(t,x)∈J̃

|Φ(t, x)| := Φ∗,

and so Φ ∈ BC.

From (H.62), and for arbitrarily fixed (t, x) ∈ J , we have

|(Nu)(t, x)| =
∣∣∣ϕ(t)+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× f (s, y, u(s,y), (Gu)(s, y))dyds

∣∣∣
≤ |ϕ(t)| + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

|f (s, y, u(s,y), (Gu)(s, y))− f (s, y, 0, (G0)(s, y))|dyds

+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1|f (s, y, 0, (G0)(s, y))|dyds

≤ |ϕ(t)| + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× (p1(s, y)|u(s,y)| + p2(s, y)|(Gu)(s, y)|) dyds
+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1|f (s, y, 0, (G0)(s, y))|dyds

≤ ϕ∗ + f ∗ + p∗
1‖u‖BC + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× p2(s, y)|(Gu)(s, y)− (G0)(s, y)|dyds. (7.12)
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Now (H.63) yields

|(Gu)(t, x)− (G0)(t, x)|

≤ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |g(t, x, s, y, u(s, y))− g(t, x, s, y, 0)|dyds

≤ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1q(t, x, s, y)|u(s, y)|dyds

≤ q∗‖u‖BC.

From (7.12) we get

|(Nu)(t, x)| ≤ ϕ∗ + f ∗ + p∗
1‖u‖BC

+ q∗‖u‖BC

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1p2(s, y)dyds

≤ ϕ∗ + f ∗ + p∗
1‖u‖BC + p∗

2q
∗‖u‖BC

≤ ϕ∗ + f ∗ + (p∗
1 + p∗

2q
∗)‖u‖BC.

thus N(u) ∈ BC.

Let u, v ∈ BC. Using our assumptions, for each (t, x) ∈ J, we obtain,

|(Nu)(t, x)− (Nv)(t, x)| ≤ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |f (s, y, u(s,y), (Gu)(s, y))− f (s, y, v(s,y), (Gv)(s, y))|dyds

≤ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× (p1(s, y)‖u(s,y) − v(s,y)‖C + p2(s, y)|(Gu)(s, y)− (Gv)(s, y)|)dyds

≤ ‖u− v‖BC

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1p1(s, y)dyds

+ ‖u− v‖BC

Γ 2(r1)Γ 2(r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× p2(s, y)

(∫ s

0

∫ y

0
(s − τ)r1−1(y − ξ)r2−1q(s, t, τ, ξ)dξdτ

)
dyds

≤ (p∗
1 + p∗

2q
∗)‖u− v‖BC.
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From Eq. (7.10), it follows from the Banach fixed-point principle (Theorem 1.30)
that N has a unique fixed point in BC which is the solution to Eqs. (7.1)–(7.3).

7.3.2 Estimates for Solutions

Theorem 7.13 Set

d = ϕ∗ + f ∗. (7.13)

Suppose that assumptions (H.61)–(H.63) hold and that we have,

(H.64) p1 = p2 and there exists a positive function p ∈ BC(J ) such that,

p1(s, y) ≤ Γ (r1)Γ (r2)(t − s)1−r1(x− y)1−r2p(s, y), for each (t, x, s, y) ∈ J1,

(H.65) k,D1k,D2k,D2D1k ∈ BC(J1), where

k(t, x, s, y) = 1

Γ (r1)Γ (r2)
(t − s)r1−1(x − y)r2−1q(t, x, s, y).

For any solution u to Eqs. (7.1)–(7.3) on [−α,∞)×[−β, b], then for each (t, x)∈ J ,

|u(t, x)| ≤ d

[
1 +

∫ t

0

∫ x

0
p(s, y) exp

(∫ s

0

∫ y

0
[p(τ, ξ)+ A(τ, ξ)]dξdτ

)
dyds

]
,

(7.14)

where A(t, x) is defined by Eq. (7.7).

Proof Using the fact that u is a solution to Eqs. (7.1)–(7.3) and from our assump-
tions, we have, for each (t, x) ∈ J,

|u(t, x)| ≤ |ϕ(t)|

+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1|f (t, x, 0, (G0)(t, x))|dyds

+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |f (s, y, u(s,y), (Gu)(s, y))− f (s, y, 0, (G0)(s, y))|dyds

≤ ϕ∗ + f ∗ + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1p1(s, y)

[
‖u(s,y)‖C

+ 1

Γ (r1)Γ (r2)

∫ s

0

∫ y

0
(s − τ)r1−1(y − ξ)r2−1q(s, y, τ, ξ)|u(τ, ξ)|dξdτ

]
dyds
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≤ d +
∫ t

0

∫ x

0
p(s, y)

[
‖u(s,y)‖C

+ 1

Γ (r1)Γ (r2)

∫ s

0

∫ y

0
q(s, y, τ, ξ)|u(τ, ξ)|dξdτ

]
dyds

≤ d +
∫ t

0

∫ x

0
p(s, y)

[
‖u(s,y)‖C +

∫ s

0

∫ y

0
k(s, y, τ, ξ)|u(τ, ξ)|dξdτ

]
dyds.

Consider the function w defined by

w(t, x) = sup{‖u(s, y)‖ : −α ≤ s ≤ t, − β ≤ y ≤ x}, 0 ≤ t < ∞, 0 ≤ x ≤ b.

Let (t∗, x∗) ∈ [−α, t] × [−β, x] be such that w(t, x) = |u(t∗, x∗)|. If (t∗, x∗) ∈ J̃ ,

then w(t, x) = ‖Φ‖C and the previous inequality holds. If (t∗, x∗) ∈ J, then by the
previous inequality, we have for (t, x) ∈ J,

w(t, x) ≤ d +
∫ t

0

∫ x

0
p(s, y)

[
w(s, y)+

∫ s

0

∫ y

0
k(s, y, τ, ξ)w(τ, ξ)dξdτ

]
dyds.

From Lemma 7.7, we get

w(t, x) ≤ d

[
1 +

∫ t

0

∫ x

0
p(s, y) exp

(∫ s

0

∫ y

0
[p(τ, ξ)+ A(τ, ξ)]dξdτ

)
dyds

]
;

(t, x) ∈ J. (7.15)

But, for every (t, x) ∈ J, ‖u(t,x)‖C ≤ w(t, x). Hence, Eq. (7.15) yields Eq. (7.14).

Theorem 7.14 Set

d := f ∗ + ϕ∗p∗(1 + q∗). (7.16)

Suppose that assumptions (H.61)–(H.65) hold. For any solution u to Eq. (7.2) on
[−α,∞)× [−β, b], we have the following estimates,

|u(t, x)− ϕ(t)|

≤ d

[
1 +

∫ t

0

∫ x

0
p(s, y) exp

(∫ s

0

∫ y

0
[p(τ, ξ)+ A(τ, ξ)]dξdτ

)
dyds

]
(7.17)

for all (t, x) ∈ J, where A is given by Eq. (7.7).

Proof Let h(t, x) = |u(t, x)−ϕ(t)|. Using the fact that u is a solution to Eqs. (7.1)–
(7.3) combined with our assumptions, it follows that, for each (t, x) ∈ J,



7.3 Main Results 107

h(t, x) ≤ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |f (s, y, u(s,y), (Gu)(s, y))− f (s, y, ϕ(s), (Gϕ)(s))|dyds

+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t−s)r1−1(x−y)r2−1|f (s, y, ϕ(s), (Gϕ)(s))|dyds

≤ d + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |f (s, y, u(s,y), (Gu)(s, y))− f (s, y, ϕ(s), (Gϕ)(s))|dyds

≤ d +
∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1p(s, y)

×
[
h(s, y)+

∫ s

0

∫ y

0
k(s, y, τ, ξ)h(τ, ξ)dξdτ

]
dyds. (7.18)

Using Lemma 7.7 and Eq. (7.18), one obtains Eq. (7.17).

7.3.3 Global Asymptotic Stability of Solutions

Our main objective here is to study the global asymptotic stability of solution. For
that, we show that under more suitable conditions on the functions involved in
Eqs. (7.1)–(7.3) that the solutions go zero exponentially as t → ∞.

Theorem 7.15 Suppose that assumptions (H.64)–(H.65) hold and that

(H.66) There exist constants λ > 0 and M ≥ 0 such that

|ϕ(t)| ≤ Me−λt ; (7.19)

|f (t, x, u1, u2)− f (t, x, v1, v2)| ≤ p1(t, x)e
−λt (‖u1 − v1‖C + |u2 − v2|),

(7.20)

for each (t, x) ∈ J, u1, v1 ∈ C , u2, v2 ∈ R,

|g(t, x, s, y, u)− g(t, x, s, y, v)| ≤ q(t, x, s, y)|u− v|; (7.21)

for each (t, x, s, y) ∈ J1, u, v ∈ R, and f (t, x, 0, (G0)(t, x)) = 0; for each
(t, x) ∈ J and the functions p, q be as in Theorem 7.13; and

(H.67)
∫ ∞

0

∫ x

0
[p(s, y)+ A(s, y)]dyds < ∞, where A is given by Eq. (7.7).

If u is any solution of Eqs. (7.1)–(7.3) on [−α,∞) × [−β, b], then all solutions to
Eqs. (7.1)–(7.3) are uniformly globally attractive on J.
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Proof From our assumptions, we have, for each (t, x) ∈ J,

|u(t, x)| ≤ |ϕ(t)| + 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1

× |f (s, y, u(s,y), (Gu)(s, y))− g(s, y, 0, (G0)(s, y))|dyds

+ 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1|f (s, y, 0, (G0)(s, y))|dyds

≤ Me−λt +
∫ t

0

∫ x

0
p(s, y)e−λt

[
u(s,y) + 1

Γ (r1)Γ (r2)

×
∫ s

0

∫ y

0
(s − τ)r1−1(y − ξ)r2−1q(s, y, τ, ξ)|u(τ, ξ)|dξdτ

]
dyds. (7.22)

From Eq. (7.22), we get

|u(t, x)|eλt ≤ M +
∫ t

0

∫ x

0
p(s, y)

[
u(s,y) + k(s, y, τ, ξ)|u(τ, ξ)|dξdτ ] dyds.

(7.23)

Using Lemma 7.7 to Eq. (7.23) we obtain

|u(t, x)|eλt ≤M

[
1 +

∫ t

0

∫ x

0
p(s, y) exp

(∫ s

0

∫ y

0
[p(τ, ξ)+A(τ, ξ)]dξdτ

)
dyds

]
;

(t, x) ∈ J, (7.24)

Multiplying both sides of Eq. (7.24) by e−λt and in view of (H. 66), we get

|u(t, x)| ≤ M

[
e−λt +

∫ t

0

∫ x

0
p(s, y)

exp
(
− λt +

∫ s

0

∫ y

0
[p(τ, ξ)+ A(τ, ξ)]dξdτ

)
dyds

]
.

Thus, for each x ∈ [0, b],

lim
t→∞ u(t, x) = 0.

Therefore, the solution u goes to zero as t → ∞. Consequently, all solutions to
Eqs. (7.1)–(7.3) are uniformly globally attractive on [−α,∞)× [−β, b].
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7.4 Example

To illustrate our previous results, we consider the system of partial fractional
integro-differential equations of the form,

D
r
θu(t, x) = f (t, x, u(t,x), (Gu)(t, x)); for (t, x) ∈ J := R+ × [0, 1],

(7.25)

u(t, x) = 1

1 + t2 ; if (t, x) ∈ J̃ := [−1,∞)× [−2, 1]\(0,∞)× (0, 1], (7.26)

⎧⎨
⎩u(t, 0) = 1

1 + t2
; t ∈ R+,

u(0, x) = 1; x ∈ [0, 1],
(7.27)

where

(Gu)(t, x) = 1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1g(t, x, s, y, u(s,y))dyds,

(7.28)
r1, r2 ∈ (0, 1],

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (t, x, u, v) = x2t−r1 sin t

2c(1 + t− 1
2 )(1 + |u(t + 1, x + 2)| + |v|)

;

f or (t, x) ∈ J, t �= 0 and u ∈ C , v ∈ R,

f (0, x, u, v) = 0,

c := Γ ( 1
2 )

Γ ( 1
2 + r1)

(
1 + Γ ( 1

2 )e

Γ ( 1
2 + r1)Γ (1 + r2)

)
,

⎧⎪⎪⎨
⎪⎪⎩

g(t, x, s, y, u)= t−r1s− 1
2 ex−y− 1

s
− 1

t

2c(1 + t− 1
2 )(1 + |u|)

; f or (t, x, s, y)∈ J1, st �= 0 and u ∈ R,

g(t, x, 0, y, u) = g(0, x, s, y, u) = 0,

and

J1 = {(t, x, s, y) : 0 ≤ s ≤ t < ∞, 0 ≤ y ≤ x ≤ 1}.

Set

ϕ(t) = 1

1 + t2 ; t ∈ R+.
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One can see that (H.61) holds as the function ϕ is continuous and bounded with
ϕ∗ = 1.

For each u1, v1 ∈ C , u2, v2 ∈ R and (t, x) ∈ J, we have

|f (t, x, u1, u2)− f (t, x, s, v1, v2)|

≤ 1

2c(1 + t− 1
2 )

(
x2t−r1 | sin t |

)
(|u1 − v1| + |u2 − v2|),

and for each u, v ∈ R and (t, x, s, y) ∈ J1, we have

|g(t, x, s, y, u)− g(t, x, s, y, v)| ≤ 1

2c(1 + t− 1
2 )

(
t−r1s−

1
2 ex−y−t− 1

s
− 1

t

)
|u− v|.

Therefore, (H.62) holds with⎧⎪⎪⎨
⎪⎪⎩

p1(t, x) = p2(t, x) = x2t−r1 | sin t |
2c(1 + t− 1

2 )
; t �= 0,

p1(0, x) = p2(0, x) = 0,

and assumption (H.63) holds with

⎧⎪⎨
⎪⎩

q(t, x, s, y) = 1

2c(1 + t− 1
2 )

(
t−r1s−

1
2 ex−y−t− 1

s
− 1

t

)
; st �= 0,

q(t, x, 0, y) = k(0, x, 0, y) = 0.

We shall show that Eq. (7.10) holds with b = 1. Indeed,

1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1p1(s, y)dyds

≤ 1

2c(1 + t− 1
2 )Γ (r1)Γ (r2)

∫ t

0

∫ 1

0
(t − s)r1−1(1 − y)r2−1x2t−r1dyds

≤ Γ ( 1
2 )et

− 1
2

2c(1 + t− 1
2 )Γ ( 1

2 + r1)Γ (1 + r2)
,

then

p∗
1 = p∗

2 ≤ Γ ( 1
2 )

2cΓ ( 1
2 + r1)

.



7.5 Comments 111

Now

1

Γ (r1)Γ (r2)

∫ t

0

∫ x

0
(t − s)r1−1(x − y)r2−1q(t, x, s, y)dyds

≤ 1

2c(1 + t− 1
2 )Γ (r1)Γ (r2)

∫ t

0

∫ 1

0
(t − s)r1−1(1 − y)r2−1t−r1s−

1
2 exdyds

≤ ext−r1 t−
1
2+r1

Γ ( 1
2 )

2c(1 + t− 1
2 )Γ ( 1

2 + r1)Γ (1 + r2)

≤ Γ ( 1
2 )et

− 1
2

2c(1 + t− 1
2 )Γ ( 1

2 + r1)Γ (1 + r2)
,

then

q∗ ≤ eΓ ( 1
2 )

2cΓ ( 1
2 + r1)Γ (1 + r2)

.

Thus,

p∗
1 + p∗

2q
∗ ≤ Γ ( 1

2 )

2cΓ ( 1
2 + r1)

(
1 + Γ ( 1

2 )e

Γ ( 1
2 + r1)Γ (1 + r2)

)
= 1

2
< 1,

which holds for each r1, r2 ∈ (0,∞). Consequently Theorem 7.12 yields
Eq. (7.25)—(7.27) has a unique solution defined on [−1,∞)× [−2, 1].

7.5 Comments

This chapter is mainly based upon the following source: Abbas et al. [7] with some
slight modifications. For additional readings on similar topics and related issues, we
refer the readers to the following references: [16, 33, 35, 36, 71, 74]. Furthermore,
recent progress made upon the study of ordinary and partial fractional differential
equations can be found in the following books: Abbas et al. [6], Baleanu et al. [19],
Diethelm [51], Kilbas et al. [77], Miller and Ross [91], Podlubny [101], and Samko
et al. [103].



Chapter 8
First-Order Semilinear Evolution
Equations

In this chapter we study and establish the existence of classical and (bounded and
almost periodic) mild solutions to some semilinear evolutions including nonau-
tonomous ones.

8.1 First-Order Autonomous Evolution Equations

8.1.1 Existence of Mild and Classical Solutions

Let J ⊂ R be an interval whose infimum, inf J , is zero.
Consider the first-order evolution equation{

u′(t) = Au(t)+ f (t), t > 0

u(0) = u0
(8.1)

where A : D(A) ⊂ X �→ X is a sectorial linear operator whose associated analytic
semi-group will be denoted (T (t))t≥0 and f : J �→ X is a continuous function.

Our main objective in this subsection consists of studying the existence of
solutions to Eq. (8.1) when J is either [0, T ] or R+ = [0,∞) where T > 0 is a
constant.

In this chapter, various types of solutions will be discussed. We basically follow
and adopt definitions from Lunardi [87, Definition 4.1.1, Pages 123-124].

Definition 8.1 Let f : [0, T ] �→ X be a continuous function and let u0 ∈ X. A
function u ∈ C([0, T ];D(A)) ∩ C1([0, T ];X) that satisfies,

u′(t) = Au(t)+ f (t) for each t ∈ [0, T ] and u(0) = u0,

is called a strict solution to Eq. (8.1) on the interval J = [0, T ].
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Definition 8.2 Let f : [0, T ] �→ X be a continuous function and let u0 ∈ X. A
function u ∈ C([0, T ];X) is called a strong solution to Eq. (8.1) on the interval
J = [0, T ] if there exists a sequence (un)n∈N ⊂ C([0, T ];D(A)) ∩ C1([0, T ];X)

such that

sup
t∈[0,T ]

‖un(t)− u(t)‖ → 0 and sup
t∈[0,T ]

‖u′n(t)− Aun(t)− f (t)‖ → 0

as n → ∞.

Definition 8.3 Let f : (0, T ] �→ X be a continuous function. Any function u ∈
C([0, T ];X) ∩ C((0, T ];D(A)) ∩ C1((0, T ];X) that satisfies,

u′(t) = Au(t)+ f (t) for each t ∈ (0, T ] and u(0) = u0,

is called a classical solution to Eq. (8.1) on the interval J = [0, T ].

Definition 8.4 Let f : [0,∞) �→ X be a continuous function. A function u :
[0,∞) �→ X is said to be a strict (respectively, classical or strong) solution to
Eq. (8.1) on the interval J = [0,∞), if for every T > 0, the restriction of the
function u to the interval [0, T ] is a strict (respectively, classical or strong) solution
to Eq. (8.1) on the interval [0, T ].

Definition 8.5 Let f ∈ L1((0, T );X) and let u0 ∈ X. A function u is called a mild
solution to Eq. (8.1) if it can be written as follows,

u(t) = T (t)u0 +
∫ t

0
T (t − s)f (s)ds, t ∈ [0, T ]. (8.2)

Let us make a few remarks upon the notions which we have just introduced.

Remark 8.6

i) If u is a strict solution to Eq. (8.1), then the function u satisfies,

u′(t) = Au(t)+ f (t) for each t ∈ [0, T ] and u(0) = u0.

Consequently,

u′(0) = Au(0)+ f (0) = Au0 + f (0)

which yields two things. First, the previous equation makes sense only if u0
belongs to D(A). Second, u′(0) = Au0 + f (0) must belong to D(A).

ii) If u is a classical solution, then one must have u0 ∈ D(A). In this event, if in
addition, f ∈ L1((0, T );X) ∩ C((0, T ];X), then

u(t) = T (t)u0 +
∫ t

0
T (t − s)f (s)ds, t ∈ [0, T ].
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iii) If u is a mild solution to Eq. (8.1), then using the fact that A is a sectorial
linear operator [see ii) of Proposition 3.12], it follows that there exists a constant
C > 0 such that u satisfies the following estimate,

‖u‖ ≤ C
(
‖u0‖ +

∫ t

0
‖f (s)‖ds

)
for all t ∈ [0, T ].

Theorem 8.7 ([88, Lemma 4.2.5, Pages 45 and 46]) Let f : (0, T ] �→ X be a
bounded continuous function and let u0 ∈ D(A). If u is a mild solution to Eq. (8.1),
then the following statements are equivalent.

i) u ∈ C((0, T ];D(A));
ii) u ∈ C1((0, T ];X);

iii) u is a classical solution to Eq. (8.1).

If f ∈ C([0, T ];X), then the following statements are equivalent:

i) u ∈ C([0, T ];D(A));
ii) u ∈ C1([0, T ];X);

iii) u is a strict solution to Eq. (8.1).

8.1.2 Existence of Almost Periodic Solutions

The main objective here consists of studying the existence of bounded and almost
periodic solutions to first-order evolution equations in the case when the analytic
semi-group (T (t))t≥0 associated with our sectorial operator A : D(A) ⊂ X �→ X is
hyperbolic, that is,

σ(A) ∩ iR = {∅}. (8.3)

From Proposition 3.12 it follows that there exist constants M0,M1 > 0 such that

‖T (t)‖ ≤ M0e
ωt , t > 0, (8.4)

‖t (A− ω)T (t)‖ ≤ M1e
ωt , t > 0. (8.5)

Since the semi-group (T (t))t≥0 is assumed to be hyperbolic, then there exists
a projection P and constants M, δ > 0 such that T (t) commutes with P , N(P ) is
invariant with respect to T (t), T (t) : R(Q) �→ R(Q) is invertible, and the following
hold

‖T (t)Px‖ ≤ Me−δt‖x‖ for t ≥ 0, (8.6)

‖T (t)Qx‖ ≤ Meδt‖x‖ for t ≤ 0, (8.7)

where Q := I − P and, for t ≤ 0, T (t) := (T (−t))−1.
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Definition 8.8 Let α ∈ (0, 1). A Banach space (Xα, ‖ · ‖α) is said to be an
intermediate space between D(A) and X, or a space of class Jα , if D(A) ⊂ Xα ⊂
X and there is a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖αA, x ∈ D(A), (8.8)

where ‖ · ‖A is the graph norm of A.

Precise examples of the intermediate space Xα include D((−Aα)) for α ∈ (0, 1),
the domains of the fractional powers of A, the real interpolation spaces DA(α,∞),
α ∈ (0, 1), defined as the space of all x ∈ X such

[x]α = sup
0<t≤1

‖t1−αAT (t)x‖ < ∞.

with the norm

‖x‖α = ‖x‖ + [x]α,

the abstract Hölder spaces DA(α) := D(A)
‖.‖α as well as complex interpolation

spaces [X,D(A)]α .
For a given hyperbolic analytic semi-group (T (t))t≥0, it can be checked that

similar estimations as both Eqs. (8.6) and (8.7) still hold with the α-norms ‖ · ‖α . In
fact, as the part of A in R(Q) is bounded, it follows from Eq. (8.7) that

‖AT (t)Qx‖ ≤ C′eδt‖x‖ for t ≤ 0.

Thus from Eq. (8.8) there exists a constant c(α) > 0 such that

‖T (t)Qx‖α ≤ c(α)eδt‖x‖ for t ≤ 0. (8.9)

In addition to the above, the following holds

‖T (t)Px‖α ≤ ‖T (1)‖B(X,Xα)‖T (t − 1)Px‖, t ≥ 1,

and hence from Eq. (8.6), one obtains

‖T (t)Px‖α ≤ M ′e−δt‖x‖, t ≥ 1,

where M ′ depends on α. For t ∈ (0, 1], by Eqs. (8.5) and (8.8),

‖T (t)Px‖α ≤ M ′′t−α‖x‖.
Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T (t)Px‖α ≤ M(α)t−αe−γ t‖x‖ for t > 0. (8.10)
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Consider the differential equation

u′(t) = Au(t)+ f (t), t ∈ R (8.11)

where A : D(A) ⊂ X �→ X is a sectorial linear operator for which Eq. (8.3) holds
and f : R �→ X is a bounded continuous function.

Definition 8.9 A function u ∈ BC(R,X) is called a mild solution to Eq. (8.11) on
R if for all τ ∈ R,

u(t) = T (t − τ)u(τ)+
∫ t

τ

T (t − s)f (s)ds, t ≥ τ. (8.12)

Proposition 8.10 If f ∈ BC(R,X), then Eq. (8.11) has a unique mild solution
u ∈ BC(R,X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R. (8.13)

Moreover, if f ∈ C0,α(R,X) for some α ∈ (0, 1), then u given above is a strict
solution to Eq. (8.11) that belongs to C0,α(R,D(A)).

Proof Clearly, the function given in Eq. (8.13), that is,

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R

is well defined and satisfies

u(t) = T (t − s)u(s)+
∫ t

s

T (t − s)f (s)ds, for all t, s ∈ R, t ≥ s. (8.14)

Consequently, u is a mild solution to Eq. (8.11).
For the uniqueness, let v be another mild solution to Eq. (8.11). Thus using the

projections P and Q = I − P , one obtains

Pv(t) = T (t − s)P v(s)+
∫ t

s

T (t − s)Pf (s)ds, for all t, s ∈ R, t ≥ s, (8.15)

and

Qv(t) = T (t − s)Qv(s)+
∫ t

s

T (t − s)Qf (s)ds, for all t, s ∈ R, t ≥ s. (8.16)

Using the fact that v is bounded and Eqs. (8.9)–(8.10), letting s → −∞ in
Eq. (8.15) (respectively, letting s → ∞ in Eq. (8.16) ), we obtain

Pv(t) =
∫ t

−∞
T (t − s)Pf (s)ds, for all t ∈ R,
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and

Qv(t) = −
∫ ∞

t

T (t − s)Qf (s)ds, for all t ∈ R,

which yields

v(t) = Pv(t)+Qv(t) =
∫ t

−∞
T (t − s)Pf (s)ds

−
∫ ∞

t

T (t − s)Qf (s)ds = u(t), ∀t ∈ R.

Therefore, u = v.
Using [88, Lemma 3.3.1 and Lemma 3.3.3], it can be shown that if f ∈

C0,α(R,X) for some α ∈ (0, 1), then u belongs to C0,α(R,D(A)).

We have

Corollary 8.11 If f ∈ AP(X), then Eq. (8.11) has a unique mild solution u ∈
AP(X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R. (8.17)

In particular, if f is continuous and T -periodic, then the mild solution u is also
T -periodic.

Proof Using the fact that AP(X) ⊂ BC(R,X), it follows that Eq. (8.11) has a
unique mild solution u ∈ BC(R,X) given by

u(t) =
∫ t

−∞
T (t − s)Pf (s)ds −

∫ ∞

t

T (t − s)(I − P)f (s)ds, t ∈ R.

To complete the proof, we have to show that u ∈ AP(X). Since f ∈ AP(X), for
all ε > 0, there exists �(ε) > 0 such that for all a ∈ R, the interval (a, a + �(ε))

contains a τ such that

‖f (t + τ)− f (t)‖ < ε (8.18)

for all t ∈ R.
Now

u(t + τ)− u(t) =
∫ 0

−∞
T (−s)P

(
f (s + t + τ)− f (s + t)

)
ds

+
∫ ∞

0
T (−s)Q

(
(s + t + τ)− f (s + t)

)
ds
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which, for α ∈ (0, 1), yields

‖u(t + τ)− u(t)‖α ≤
∫ 0

−∞
‖T (−s)P

(
f (s + t + τ)− f (s + t)

)
‖αds

+
∫ ∞

0
‖T (−s)Q

(
(s + t + τ)− f (s + t)

)
‖αds

≤ c(α)

∫ 0

−∞
eδs‖f (s − t − τ)− f (s − t)‖ds

+M(α)

∫ ∞

0
e−γ ss−α‖f (s − t − τ)− f (s − t)‖ds

by using Eqs. (8.9)–(8.10).
To conclude, one makes use of both Eq. (8.18) and the Lebesgue dominated

convergence theorem.

8.2 Semilinear First-Order Evolution Equations

8.2.1 Existence of Mild and Classical Solutions

Consider the first-order semilinear evolution equation{
u′(t) = Au(t)+ F(t, u(t)), t > 0

u(0) = u0
(8.19)

where A : D(A) ⊂ X �→ X is a sectorial linear operator whose corresponding
analytic semi-group is (T (t))t≥0 and F : [0, T ] × X �→ X is a jointly continuous
function and locally Lipschitz in the second variable, that is, there exist R > 0 and
L > 0 such that

‖F(t, u)− F(t, v)‖ ≤ L ‖u− v‖ (8.20)

for all t ∈ [0, T ] and u, v ∈ B(0, R).
Let J = [0, T0) or [0, T0] where T0 ≤ T . As in the linear case, we have the

following definitions for classical, strict, and mild solutions.

Definition 8.12 ([88]) A function u : J �→ X is said to be a strict solution to
Eq. (8.19) in J , if u is continuous with values in D(A) and differentiable with values
in X in the interval J , and satisfies Eq. (8.19).

Definition 8.13 ([88]) A function u : J �→ X is said to be a classical solution to
Eq. (8.19) in J , if u is continuous with values in D(A) and differentiable with values
in X in the interval J \ {0}, continuous in the interval J with values in D(A), and
satisfies Eq. (8.19).
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Definition 8.14 ([88]) A function u : J �→ X is called a mild solution to Eq. (8.19)
if it is continuous with values in D(A) in the interval J \ {0}, and satisfies

u(t) = T (t)u0 +
∫ t

0
T (t − s)F (s, u(s))ds, t ∈ J. (8.21)

Under some suitable conditions (see [87]) it can be shown that every mild
solution to Eq. (8.19) is a classical (or strict) solution.

Theorem 8.15 ([88]) Suppose F : [0, T ] × X �→ X is jointly continuous and
satisfies Eq. (8.20). Then for every v ∈ X there exist constants r, δ > 0,K > 0 such
that for ‖u0 − v‖ ≤ r , then Eq. (8.19) has a unique mild solution u = u(·, u0) ∈
BC((0, δ];X). The mild solution u belongs to C([0, δ];X) if and only if u0 ∈ D(A).
Further, for u0, u1 ∈ B(v, r), the following holds,

‖u(t, u0)− u(t, u1)‖ ≤ K‖u0 − u1‖, t ∈ [0, δ].

8.2.2 Existence Results on the Real Number Line

Consider the differential equation

u′(t) = Au(t)+ F(t, u(t)), t ∈ R (8.22)

where A : D(A) ⊂ X �→ X is a sectorial linear operator for which Eq. (8.3) holds
and F : R × Xα �→ X for some α ∈ (0, 1) is a jointly continuous function and
globally Lipschitz in the second variable, that is, there exists a constant L > 0 such
that

‖F(t, u)− F(t, v)‖ ≤ L ‖u− v‖α (8.23)

for all t ∈ R and u, v ∈ Xα .

Definition 8.16 A mild solution to Eq. (8.22) is any function u : R �→ Xα which
satisfies the following variation of constants formula,

u(t) = T (t − s)u(s)+
∫ t

s

T (t − σ)F (σ, u(σ ))dσ (8.24)

for all t ≥ s, t, s ∈ R.

Using Corollary 8.11 in which we let f (t) := F(t, u(t)) and under some
additional assumptions, we obtain the next theorem.

Theorem 8.17 Under Eqs. (8.3) and (8.23), if F ∈ AP(R×Xα,X), then Eq. (8.22)
has a unique almost periodic mild solution if L is small enough.
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Remark 8.18 A generalization of Theorem 8.17 to the case when the linear operator
A is replaced with A(t) is given by Theorem 8.20.

8.3 Nonautonomous First-Order Evolution Equations

8.3.1 Existence of Almost Periodic Mild Solutions

Consider the nonautonomous differential equation

u′(t) = A(t)u(t)+ f (t, u(t)) (8.25)

where A(t) for t ∈ R be a family of linear operators on X whose domains
D(A(t)) = D are constant for all t ∈ R and the function f : R × Xα �→ X is
continuous and globally lipschitzian, that is, there is k > 0 such that

‖f (t, x)− f (t, y)‖ ≤ k ‖x − y‖α for all t ∈ R and x, y ∈ Xα. (8.26)

To study the almost periodicity of the solutions of Eq. (8.25), we assume that the
following holds:

(H.820) The family of linear operators A(t) satisfy the Aquistapace–Terreni
conditions.

(H.821) The evolution family U generated by A(·) has an exponential dichotomy
with constants N, δ > 0 and dichotomy projections P(t) for t ∈ R.

(H.822) There exists 0 ≤ α < β < 1 such that

X
t
α = Xα and X

t
β = Xβ

for all t ∈ R, with uniform equivalent norms.
(H.823) R(ω,A(·)) ∈ AP(R, B(X)) with pseudo periods τ = τε belonging to

sets P(ε, A).

Definition 8.19 By a mild solution Eq. (8.25) we mean every continuous function
x : R �→ Xα, which satisfies the following variation of constants formula

x(t) = U(t, s)x(s)+
∫ t

s

U(t, σ )f (σ, x(σ ))dσ for all t ≥ s, t, s ∈ R. (8.27)

In order to study the existence of almost periodic mild solution to the semilinear
evolution equation Eq. (8.25), we first study the existence of almost periodic mild
solution to the inhomogeneous evolution equation

x′(t) = A(t)x(t)+ g(t), t ∈ R. (8.28)



122 8 First-Order Semilinear Evolution Equations

We have

Theorem 8.20 Suppose that assumptions (H.820)–(H.823) hold. If g ∈ BC(R,X),
then

(i) Equation (8.28) has a unique bounded mild solution x : R �→ Xα given by

x(t) =
∫ t

−∞
U(t, s)P (s)g(s)ds −

∫ +∞

t

Ũ (t, s)Q(s)g(s)ds. (8.29)

(ii) If g ∈ AP(R,X), then x ∈ AP(R,Xα).

Proof

(i) Since g is bounded, we know from [37] that the function x given by (8.29) is
the unique bounded mild solution to Eq. (8.28). To prove that x is bounded in
Xα , we make use of Proposition 3.27 to obtain,

‖x(t)‖α ≤ c ‖x(t)‖β

≤ c

∫ t

−∞
‖U(t, s)P (s)g(s)‖β ds + c

∫ +∞

t

∥∥Ũ (t, s)Q(s)g(s)
∥∥
β
ds

≤ cc(β)

∫ t

−∞
e−

δ
2 (t−s)(t − s)−β ‖g(s)‖ ds

+cm(β)

∫ +∞

t

e−δ(s−t) ‖g(s)‖ ds

≤ cc(β) ‖g‖∞
∫ +∞

0
e−σ

(
2σ

δ

)−β 2dσ

δ
+ cm(β) ‖g‖∞

∫ +∞

0
e−δσ dσ

≤ cc(β)δαΓ (1 − β) ‖g‖∞ + cm(β)δ−1 ‖g‖∞ ,

and hence

‖x(t)‖α ≤ c ‖x(t)‖β ≤ c[c(β)δβΓ (1 − β)+m(β)δ−1] ‖g‖∞ . (8.30)

(ii) Let ε > 0 and P(ε, A, f ) be the set of pseudo periods for the almost periodic
function t �→ (f (t), R(ω,A(t))). We know, from [89, Theorem 4.5] that x,
as an X-valued function is almost periodic. Hence, there exists a number τ ∈
P(
(
ε
c′
) β
β−α , A, f ) such that

‖x(t + τ)− x(t)‖ ≤
( ε

c′
) β

β−α
for all t ∈ R.
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For θ = α
β

, the reiteration theorem implies that Xα = (X,Xβ)θ,∞. Using the
property of interpolation and Eq. (8.30), we obtain

‖x(t + τ)− x(t)‖α ≤ c(α, β)‖x(t + τ)− x(t)‖ β−α
β ‖x(t + τ)− x(t)‖

α
β

β

≤ c(α, β)2
α
β

(
c[c(β)δβΓ (1 − β)+m(β)δ−1] ‖g‖∞

) α
β

‖x(t + τ)− x(t)‖ β−α
β

:= c′‖x(t + τ)− x(t)‖ β−α
β ,

and hence

‖x(t + τ)− x(t)‖α ≤ ε

for t ∈ R.

To show the existence of almost periodic solutions to Eq. (8.25), let y ∈
AP(R,Xα) and f ∈ AP(R×Xα,X). Using the theorem of composition of almost
periodic functions (Theorem 4.18) we deduce that the function g(·) := f (·, y(·)) ∈
AP(R,X), and from Theorem 8.20, the semilinear equation (Eq. (8.25)) has a
unique mild solution x ∈ AP (R,Xα) given by

x(t) =
∫ t

−∞
U(t, s)P (s)f (s, y(s))ds −

∫ +∞

t

Ũ (t, s)Q(s)f (s, y(s))ds, t ∈ R.

Define the nonlinear operator F : AP(R,Xα) �→ AP(R,Xα) by

(Fy)(t) :=
∫ t

−∞
U(t, s)P (s)f (s, y(s))ds

−
∫ +∞

t

Ũ (t, s)Q(s)f (s, y(s))ds, t ∈ R.

Now for any x, y ∈ AP (R,Xα),

‖Fx(t)− Fy(t)‖α ≤ c(α)

∫ t

−∞
e−δ(t−s)(t − s)−α ‖f (s, y(s))− f (s, x(s))‖ ds

+ c(α)

∫ +∞

t

e−δ(t−s) ‖f (s, y(s))− f (s, x(s))‖ ds.

≤ k[c(α)δ−αΓ (1 − α)+m(α)δ−1] ‖x − y‖∞ for all t ∈ R.
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By taking k small enough, that is, k < (c(α)δαΓ (1 − α)+m(α)δ−1)−1, the
operator F becomes a contraction on AP (R,Xα) and hence has a unique fixed point
in AP (R,Xα), which obviously is the unique Xα-valued almost periodic solution
to Eq. (8.25).

The previous discussion can be formulated as follows:

Theorem 8.21 Let α ∈ (0, 1). Suppose that assumptions (H.820)–(H.821)–
(H.822)–(H.823) hold and that f ∈ AP(R×Xα,X) with k < (c(α)δ−αΓ (1−α)+
m(α)δ−1)−1. Then Eq. (8.25) has a unique mild solution x in AP (R,Xα) .

8.4 Exercises

1. Prove Theorem 8.7
2. Prove Theorem 8.15.
3. Prove Theorem 8.17

8.5 Comments

The preliminary results of this chapter are taken from Lunardi [87, 88]. Let us point
out that the setting of Sect. 8.1.2 follows that of Boulite et al. [30]. The proofs of
Theorem 8.20 and Theorem 8.21 discussed follow Baroun et al. [20]. The existence
of mild solutions for similar evolution equations can be obtained in the cases when
the operator A is not necessarily sectorial. For these cases, we refer the interested
readers to Pazy [100] and Engel and Nagel [55]. The existence results obtained
when the forcing term is almost periodic can be extended to more general classes
of functions including almost automorphic and pseudo-almost periodic or pseudo-
almost automorphic functions, see, e.g., Diagana [47].



Chapter 9
Semilinear Fractional Evolution
Equations

9.1 Introduction

Let α ∈ (0, 1]. The main objective of this chapter consists of acquainting the reader
with the fast-growing theory of fractional evolution equations. More precisely,
we study sufficient conditions for the existence of classical (respectively, mild)
solutions for the inhomogeneous fractional Cauchy problem

{
D

α
t u(t) = Au(t)+ f (t), t > 0

u(0) = u0 ∈ X

and its corresponding semilinear evolution equation

{
D

α
t u(t)+ Au(t) = F(t, u(t)), t > 0,

u(0) = u0 ∈ X,

where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X (respectively,
A ∈ Σ

γ
ω (X) where γ ∈ (−1, 0) and 0 < ω < π

2 ), and f : [0,∞) �→ X and
F : [0,∞)×X �→ X are continuous functions satisfying some additional conditions.
Under some appropriate assumptions, various existence results are discussed.

The main tools utilized to establish the existence of classical (respectively, mild)
solutions to the above-mentioned fractional evolutions are the so-called (α, α)β -
resolvent families S

β
α (·) and almost sectorial operators. Additional details on these

classes of operators can be found in Keyantuo et al. [75] and Wang et al. [110]. For
additional readings upon the topics discussed in this chapter, we refer to [6, 21–
23, 37, 42], etc.
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9.2 Fractional Calculus

Let (X, ‖·‖) be a complex Banach space. If J ⊂ R is an interval and if (V , ‖·‖) ⊂ X

is a (normed) subspace, then C(J ;V ) (respectively, C(k)(I ;V ) for k ∈ N) will
denote the collection of all continuous functions from J into V (respectively, the
collection of all functions of class Ck which go from J into V ).

Definition 9.1 If f : R+ �→ R and g : R+ �→ X are functions, we define their
convolution, if it exists, as follows:

(f ∗ g)(t) :=
∫ t

0
f (t − s)g(s)ds, t ≥ 0.

Definition 9.2 If u : R+ �→ X is a function, then its Riemann–Liouville fractional
derivative of order β is defined by

D
β
t u(t) :=

dn

dtn

[ ∫ t

0
gn−β(t − s)u(s)ds

]
, t > 0

where n := !β" is the smallest integer greatest than or equal to β, and

gβ(t) := tβ−1

Γ (β)
, t > 0, β > 0,

with g0 = δ0 (the Dirac measure concentrated at 0).

Note that gα+β = gα ∗ gβ for all α, β ≥ 0.

Definition 9.3 The Caputo fractional derivative of order β > 0 of a function u :
R+ �→ X is defined by

D
β
t u(t) := D

n−β
t u(n)(t) =

∫ t

0
gn−β(t − s)u(n)(s)ds,

where n := !β".

We have the following additional relationship between Riemann–Liouville and
Caputo fractional derivatives:

D
β
t f (t) = D

β
t

(
f (t)−

n−1∑
k=0

f (k)(0)gk+1(t)

)
, t > 0,

where n := !β".

Definition 9.4 If f : R+ �→ X is integrable, then its Laplace transform is
defined by
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(Lf )(z) = f̂ (z) :=
∫ ∞

0
e−ztf (t)dt

provided this integral converges absolutely for some z ∈ C.

Among other things, if !α" = n ≥ 1, then

D̂
α
t f (z) = zαf̂ (z)−

n−1∑
k=0

zα−k−1f (k)(0)

and

D̂α
t f (z) = zαf̂ (z)−

n−1∑
k=0

(gn−α ∗ f )(k)(0)zn−1−k

where zα is uniquely defined as zα = |z|αei arg z with −π < arg z < π .
Let k ∈ N. If u ∈ Ck−1(R+;X) and v ∈ Ck(R+;X), then for every t ≥ 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0)+ (u ∗ v(k))(t)

=
k−1∑
j=0

dk−1

dtk−1

[
(gj ∗ u)(t)v(j)(0)

]
+ (u ∗ v(k))(t).

(9.1)

Define the generalized Mittag–Leffler special function Eα,β by

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)

= 1

2πi

∫
Γ

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C,

where Γ is a contour which starts and ends at −∞ and encircles the disc

|λ| ≤ |z|1/α

counter-clockwise.
In what follows, we set

Eα(z) := Eα,1(z),

and

eα(z) := Eα,α(z).
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9.3 Inhomogeneous Fractional Differential Equations

9.3.1 Introduction

Let α ∈ (0, 1]. In this section, we study the existence of classical (respectively,
mild) solutions for the inhomogeneous fractional Cauchy problem

{
D

α
t u(t) = Au(t)+ f (t)

u(0) = u0 ∈ X

(9.2)

where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X, and f : R+ �→ X

is a function satisfying some additional conditions.
As it was pointed out in Keyantuo et al. [75], Caputo fractional derivative is

more appropriate for equations of the form Eq. (9.2) than the Riemann–Liouville
fractional derivative. Indeed, Caputo fractional derivative requires that the solution
u of the above Cauchy problem be known at t = 0 while that of Riemann–Liouville
requires that it be known in a right neighborhood of t = 0.

Recall that if α = 1, then there are two situations that can be considered. If A

is the infinitesimal generator of a strongly continuous semi-group, then semi-group
techniques can be used to establish the existence of solutions to Eq. (9.2). Now, if A
is not the infinitesimal generator of a strongly continuous semi-group, the concept
of exponentially bounded β-times integrated semi-groups can be utilized to deal
with existence of solutions to the above Cauchy problem. Similarly, if α ∈ (0, 1),
a family of strongly continuous linear operators Sα : R+ �→ B(X) can be used to
establish the existence of solutions to the above Cauchy problem. Unfortunately, the
previous concept is inappropriate for some important practical problems, see details
in Keyantuo et al. [75]. This in fact is one of the main reasons that led Keyantuo
et al. to introduce the concept of (α, α)β -resolvent families (respectively, (α, 1)β -
resolvent families), which generalizes naturally all the above-mentioned cases. Such
a new concept will play a central role in this section.

9.3.2 Basic Definitions

Definition 9.5 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and let
α ∈ (0, 1] and β ≥ 0. The operator A is called an (α, α)β -resolvent family if there
exist ω ≥ 0, M ≥ 0, and a family of strongly continuous functions T

β
α : [0,∞) �→

B(X) (respectively, T β
α : (0,∞) �→ B(X) in the case when α(1 + β) < 1) such

that,

i)
∥∥∥(g1 ∗ T

β
α )(t)

∥∥∥ ≤ Meωt for all t > 0;
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ii)
{
λα : �e λ > ω

}
⊂ ρ(A); and

(λαI − A)−1u = λαβ

∫ ∞

0
e−λtT β

α (t)u dt, �e λ > ω, u ∈ X.

Definition 9.6 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. The operator A is called an (α, 1)β -resolvent family
generator if there exist ω ≥ 0, M ≥ 0, and a family of strongly continuous functions
S
β
α : R+ �→ B(X) such that,

i)
∥∥∥(g1 ∗ S

β
α )(t)

∥∥∥ ≤ Meωt for t ≥ 0;

ii)
{
λα : �eλ > ω

}
⊂ ρ(A); and

λα−1(λαI − A)−1u = λαβ

∫ ∞

0
e−λtSβ

α (t)u dt, �e λ > ω, u ∈ X.

Remark 9.7 A family of strongly continuous functions T
β
α (t) that satisfies items

i)–ii) of Definition 9.5 is called the (α, α)β -resolvent family generated by the linear
operator A. And there is uniqueness of the (α, α)β -resolvent family (respectively,
(α, 1)β -resolvent family) associated with a given operator A.

In fact, there is a relationship between these two new notions. It is not hard
to show that if A generates an (α, α)β -resolvent family T

β
α , then it generates an

(α, 1)β -resolvent family S
β
α (see [75] for details) and that both T

β
α and S

β
α are linked

through the following identity,

Sβ
α (t)x = (g1−α ∗ T β

α )(t)x, t ≥ 0, x ∈ X.

Let us now collect a few additional properties of both (α, 1)β - and (α, α)β -
resolvent families.

Proposition 9.8 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. If A generates an (α, 1)β -resolvent family S

β
α , then the

following hold,

i) S
β
α (t)(D(A)) ⊂ D(A) and

ASβ
α (t)x = Sβ

α (t)Ax

for all x ∈ D(A) and t ≥ 0.
ii) For all x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x +

∫ t

0
gα(t − s)ASβ

α (s)xds, t ≥ 0.
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iii) For all x ∈ X, (gα ∗ S
β
α )(t)x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x + A

∫ t

0
gα(t − s)Sβ

α (s)xds, t ≥ 0.

iv) S
β
α (0) = gαβ+1(0); S

β
α (0) = I if β = 0 and S

β
α (0) = 0 if β > 0 .

Proposition 9.9 ([75]) Let A : D(A) ⊂ X �→ X be a closed linear operator and
let α ∈ (0, 1] and β ≥ 0. If A generates an (α, α)β -resolvent family T

β
α , then the

following hold,

i) T
β
α (t)(D(A)) ⊂ D(A) and

AT β
α (t)x = T β

α (t)Ax

for all x ∈ D(A) and t > 0.
ii) For all x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x +

∫ t

0
gα(t − s)AT β

α (s)xds, t ≥ 0.

iii) For all x ∈ X, (gα ∗ T
β
α )(t)x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x + A

∫ t

0
gα(t − s)T β

α (s)xds, t > 0.

iv) If β > 0, then for every x ∈ D(A),

1

Γ (α(1 + β))
lim
t→0

t1−α(1+β)T β
α (t)x = x

if α(1+β) < 1; T β
α (0)x = x if α(1+β) = 1; and T

β
α (0)x = 0 if α(1+β) > 1.

v) If α(1 + β) > 1, then all the above equalities occur for t ≥ 0. .

A strongly continuous function h : [0,∞) �→ X is called exponentially bounded
if there exist constants M,ω ≥ 0 such that

‖h(t)‖ ≤ Meωt

for all t > 0. In particular, an (α, α)β -resolvent family T
β
α (respectively, (α, 1)β -

resolvent family S
β
α ) is exponentially bounded, there exist constants M,ω ≥ 0 such

that

‖T β
α (t)‖ ≤ Meωt
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for all t > 0 (respectively, there exist constants M ′, ω′ ≥ 0 such that

‖Sβ
α (t)‖ ≤ M ′eω′t

for all t ≥ 0).
For more on (α, α)β -resolvent families (respectively, (α, 1)β -resolvent families),

we refer the reader to [75].

9.3.3 Existence of Classical and Mild Solutions

Definition 9.10 ([75]) A continuous function A function u : [0,∞) �→ D(A) is
said to be a classical solution to Eq. (9.2) if g1−α ∗ (u − u(0)) : [0,∞) �→ X is a
continuous function and Eq. (9.2) holds.

Definition 9.11 ([75]) A continuous function u : [0,∞) �→ X is said to be a mild
solution to Eq. (9.2) if (gα ∗ u)(t) ∈ D(A) for all t ≥ 0 and

u(t) = u0 + A

∫ t

0
gα(t − s)u(s)ds +

∫ t

0
gα(t − s)f (s)ds, t ≥ 0. (9.3)

Theorem 9.12 ([75]) Let α ∈ (0, 1] and β ≥ 0 and set n = !β" and k =
!αβ". Suppose that A is the generator of an (α, 1)β -resolvent family S

β
α . Then the

following hold,

i) For every f ∈ C(k+1)(R+;X), f (l)(0) ∈ D(An+1−l ) for l = 0, 1, . . . , k, Dαβ
t f

is exponentially bounded and u0 ∈ D(An+1), Eq. (9.2) has a unique classical
solution given by

u(t) = D
αβ
t Sβ

α (t)u0 +D
αβ
t D

1−α
t (Sβ

α ∗ f )(t), t ≥ 0. (9.4)

ii) For every f ∈ C(k)(R+;X), f (l)(0) ∈ D(An−l ) for l = 0, 1, . . . , k − 1, Dαβ
t f

is exponentially bounded and u0 ∈ D(An), Eq. (9.2) has a unique mild solution
given by Eq. (9.4).

Corollary 9.13 ([75]) Let α ∈ (0, 1] and β ≥ 0 and set n = !β" and k = !αβ".
Suppose that A generates an (α, α)β -resolvent family T

β
α . And let Sβ

α be the (α, 1)β -
resolvent family generated by A. Then the following hold:

(a) For every f ∈ C(k+1)(R+;X), f (j)(0) ∈ D(An+1−j ) for j = 0, 1, . . . , k,
D

αβ
t f is exponentially bounded, and for every u0 ∈ D(An+1), the unique

classical solution to Eq. (9.2) is given by

u(t) = D
αβ
t

[
Sβ
α (t)u0 +

∫ t

0
T β
α (t − s)f (s)ds

]
, t ≥ 0. (9.5)
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(b) For every f ∈ C(k)(R+;X), f (j)(0) ∈ D(An−j ) for j = 0, 1, . . . , k−1, Dαβ
t f

is exponentially bounded and for every u0 ∈ D(An), the unique mild solution
to Eq. (9.2) is given by Eq. (9.5).

9.4 Semilinear Fractional Differential Equations

9.4.1 Preliminaries and Notations

Let γ ∈ (−1, 0) and let S0
μ (with 0 < μ < π ) be the open sector defined by

{z ∈ C \ {0} : | arg z| < μ}

and let Sμ be its closure, that is,

Sμ := {z ∈ C \ {0} : | arg z| ≤ μ} ∪ {0}.

Definition 9.14 ([110]) Let γ ∈ (−1, 0) and let 0 < ω < π/2. The set Σ
γ
ω (X)

stands for the collection of all closed linear operators A : D(A) ⊂ X → X

satisfying

i) σ(A) ⊂ Sω; and
ii) for every ω < μ < π there exists a constant Cμ such that

‖(zI − A)−1‖ ≤ Cμ|z|γ (9.6)

for all z ∈ C \ Sμ.

Definition 9.15 A linear operator A : D(A) ⊂ X �→ X that belongs to Σ
γ
ω (X) will

be called an almost sectorial operator on X.

Among other things, recall that if A ∈ Σ
γ
ω (X), then 0 ∈ ρ(A). Further, there

exist almost sectorial operators which are not sectorial, see, e.g., [109]. There are
many examples of almost sectorial operators in the literature, see, e.g., Wang et al.
[110].

Let α ∈ (0, 1). Our main objective in this section consists of studying the
existence of solutions to the following semilinear fractional differential equations

{
D

α
t u(t)+ Au(t) = f (t, u(t)), t > 0,

u(0) = u0 ∈ X,
(9.7)

where D
α
t is the Caputo fractional derivative of order α, A ∈ Σ

γ
ω (X) with 0 < ω <

π
2 , and f : [0,∞)× X �→ X is a jointly continuous function.
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Suppose that A ∈ Σ
γ
ω (X) such −1 < γ < 0 and 0 < ω < π/2. Define operator

families {Sα(t)}|t∈S0
π
2 −ω

, {Tα(t)}|t∈S0
π
2 −ω

by

Sα(t) := Eα(−ztα)(A) = 1

2πi

∫
Γθ

Eα(−ztα)(zI − A)−1dz,

Tα(t) := eα(−ztα)(A) = 1

2πi

∫
Γθ

eα(−ztα)(zI − A)−1dz,

where the integral contour Γθ := {R+eiθ }∪{R+e−iθ } is oriented counter-clockwise
and ω < θ < μ < π

2 − | arg t |.
We have

Theorem 9.16 ([110]) For each fixed t ∈ S0
π
2 −ω

, Sα(t) and Tα(t) are linear and

bounded operators on X. Moreover, there exist constants Cs = C(α, γ ) > 0, Cp =
C(α, γ ) > 0 such that for all t > 0,

‖Sα(t)‖ ≤ Cst
−α(1+γ ), ‖Tα(t)‖ ≤ Cpt

−α(1+γ ). (9.8)

9.4.2 Existence Results

Definition 9.17 ([110]) A continuous function u : (0, T ] �→ X is called a mild
solution to Eq. (9.7) if it satisfies,

u(t) = Sα(t)u0 +
∫ t

0
(t − s)α−1Tα(t−s)f (s, u(s))ds

for all t ∈ (0, T ].
Theorem 9.18 ([110]) Let A ∈ Σ

γ
ω (X) such that −1 < γ < − 1

2 and 0 < ω < π
2 .

Suppose that f : (0, T ]×X → X is continuous with respect to t and that there exist
constants M,N > 0 such that

‖f (t, x)− f (t, y)‖ ≤ M(1 + ‖x‖ν−1 + ‖y‖ν−1)‖x − y‖,
‖f (t, x)‖ ≤ N(1 + ‖x‖ν),

for all t ∈ (0, T ] and for each x, y ∈ X, where ν is a constant in [1,− γ
1+γ

). Then,
for every u0 ∈ X, there exists a T0 > 0 such that Eq. (9.7) has a unique mild solution
defined on (0, T0].
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Proof Fix r > 0 and consider the metric space (Fr(T , u0), ρT
) where

Fr(T , u0) =
{
u ∈ C((0, T ];X) : ρ

T
(u,Sα(t)u0) ≤ r

}
,

ρ
T
(u1, u2) = sup

t∈(0,T ]
‖u1(t)− u2(t)‖.

It can be shown that it is not difficult to see that the metric space (Fr(T , u0), ρT
) is

complete.
Now for all u ∈ Fr(T , u0),

‖sα(1+γ )u(s)‖ ≤ sα(1+γ )‖u− Sα(t)u0‖ + sα(1+γ )‖Sα(t)u0‖ ≤ L.

where L := T α(1+γ )r + Cs‖u0‖.
Let T0 ∈ (0, T ] such that

CpN
T
−αγ

0

−αγ
+ CpNLνT

−α(ν(1+γ )+γ )

0 β(−γα, 1 − να(1 + γ )) ≤ r, (9.9)

MCp

T
−αγ

0

−αγ
+ 2Lρ−1T

−α(γ+(1+γ )(ν−1))
0 β(−αγ, 1 − α(1 + γ )(ν − 1)) ≤ 1

2
, (9.10)

where β(η1, η2) with ηi > 0, i = 1, 2 stands for the usual Beta function.
Suppose u0 ∈ X and consider the mapping Γ α given by

(Γ αu)(t) = Sα(t)u0 +
∫ t

0
(t − s)α−1Pα(t − s)f (s, u(s))ds, u ∈ Fr(T0, u0).

From the assumptions upon f , Theorem 9.16, and [110, Theorem 3.2], we deduce
that (Γ αu)(t) ∈ C((0, T ];X) and

‖(Γ αu)(t)− Sα(t)u0‖

≤ CpN

∫ t

0
(t − s)−αγ−1(1 + ‖u(s)‖ν)ds

≤ CpN
T
−αγ

0

−αγ
+
∫ t

0
CpNLν(t − s)−αγ−1s−να(1+γ )ds

≤ CpN
T
−αγ

0

−αγ
+ CpNLνT

−α(ν(1+γ )+γ )

0 β(−γα, 1 − να(1 + γ ))

≤ r,

by using Eq. (9.9).
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In view of the above, one can see that Γ α maps Fr(T0, u0) into itself.
Now for all u, v ∈ Fr(T0, u0), using the assumptions upon f and Theorem 9.16

we deduce that

‖(Γ αu)(t)− (Γ αv)(t)‖

≤ CpM

∫ t

0
(t − s)−αγ−1(1 + ‖u(s)‖ρ−1 + ‖v(s)‖ρ−1)‖u(s)− v(s)‖ds

≤ CpMρt (u, v)

∫ t

0
(t − s)−αγ−1(1 + 2Lν−1s−α(ν−1)(1+γ ))ds

≤ 2Lρ−1T
−α(γ+(1+γ )(ν−1))
0 β(−αγ, 1 − α(1 + γ )(ν − 1))ρ

T0
(u, v)

+MCp

T
−αγ

0

−αγ
ρ

T0
(u, v).

Using (9.10), one can easily see that Γ α is a strict contraction on Fr(T0, u0) and
so Γα has a unique fixed point u ∈ Fr(T0, u0) which, by the Banach Fixed Point
Theorem, is the only mild solution to Eq. (9.7) on (0, T0].

It can be shown that X1 = D(A) equipped with the norm defined by ‖x‖X1 =
‖Ax‖ for all x ∈ X

1, is a Banach space.

Theorem 9.19 ([110]) Let A ∈ Θ
γ
ω(X) with −1 < γ < − 1

2 , 0 < ω < π
2 and

u0 ∈ X
1. Suppose there exists a continuous function Mf (·) : R+ → R

+ and a
constant Nf > 0 such that the mapping f : (0, T ] × X

1 → X
1 satisfies

‖f (t, x)− f (t, y)‖X1 ≤ Mf (r)‖x − y‖X1 ,

‖f (t,Sα(t)u0)‖X1 ≤ Nf (1 + t−α(1+γ )‖u0‖X1),

for all 0 < t ≤ T and for all x, y ∈ X
1 satisfying

sup
t∈(0,T ]

‖x(t)− Sα(t)u0‖X1 ≤ r, sup
t∈(0,T ]

‖y(t)− Sα(t)u0‖X1 ≤ r.

Then there exists a T0 > 0 such that Eq. (9.7) has a unique mild solution defined on
(0, T0].
Proof Fix u0 ∈ X

1 and r > 0 and consider

F ′′
r (T , u0) = {u ∈ C((0, T ];X1); sup

t∈(0,T ]
‖u− Sα(t)u0‖X1 ≤ r}.

For any u ∈ F ′′
r (T , u0), using the assumptions upon f and Theorem 9.16, we obtain
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‖(Γ αu)(t)− Sα(t)u0‖X1

≤
∫ t

0
(t − s)α−1‖Pα(t − s)‖||f (s, u(s))− f (s,Sα(t)u0)||X1ds

+
∫ t

0
(t − s)α−1‖Pα(t − s)‖||f (s,Sα(t)u0))||X1ds

≤ Cp

∫ t

0
(t − s)−αγ−1(Mf (r)r +Nf +Nf s

−α(1+γ )‖u0‖)ds

≤ Cp(Mf (r)r +Nf )
T −αγ

−αγ
+ CpNf T

−α(1+2γ )β(−γα, 1 − α(1 + γ ))‖u0‖.

In view of the above and ideas from the proof of Theorem 9.18, we obtain the desired
result.

9.5 Exercises

1. Show that if A generates an (α, α)β -resolvent family T
β
α , then it generates an

(α, 1)β -resolvent family S
β
α . Further,

Sβ
α (t)x = (g1−α ∗ T β

α )(t)x, t ≥ 0, x ∈ X.

2. Let A : D(A) ⊂ X �→ X be a closed linear operator and let α ∈ (0, 1] and β ≥
0. Show that if A generates an (α, 1)β -resolvent family S

β
α , then the following

hold,

a. S
β
α (t)(D(A)) ⊂ D(A) and

ASβ
α (t)x = Sβ

α (t)Ax

for all x ∈ D(A) and t ≥ 0.
b. For all x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x +

∫ t

0
gα(t − s)ASβ

α (s)xds, t ≥ 0.

c. For all x ∈ X, (gα ∗ S
β
α )(t)x ∈ D(A),

Sβ
α (t)x = gαβ+1(t)x + A

∫ t

0
gα(t − s)Sβ

α (s)xds, t ≥ 0.

d. S
β
α (0) = gαβ+1(0); S

β
α (0) = I if β = 0 and S

β
α (0) = 0 if β > 0 .



9.6 Comments 137

3. Let A : D(A) ⊂ X �→ X be a closed linear operator and let α ∈ (0, 1] and β ≥
0. Show that if A generates an (α, α)β -resolvent family T

β
α , then the following

hold,

a. T
β
α (t)(D(A)) ⊂ D(A) and

AT β
α (t)x = T β

α (t)Ax

for all x ∈ D(A) and t > 0.
b. For all x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x +

∫ t

0
gα(t − s)AT β

α (s)xds, t ≥ 0.

c. For all x ∈ X, (gα ∗ T
β
α )(t)x ∈ D(A),

T β
α (t)x = gα(β+1)(t)x + A

∫ t

0
gα(t − s)T β

α (s)xds, t > 0.

d. If β > 0, then for every x ∈ D(A),

1

Γ (α(1 + β))
lim
t→0

t1−α(1+β)T β
α (t)x = x

if α(1+β) < 1; T β
α (0)x = x if α(1+β) = 1; and T

β
α (0)x = 0 if α(1+β) > 1.

e. If α(1 + β) > 1, then all the above equalities occur for t ≥ 0. .

4. Suppose p ∈ [1,∞), α ∈ (0, 1), and λ ∈ [0, π). Let Ap be the linear operator
defined by Ap = eiλΔp where Δp is a realization of the Laplace differential
operator on Lp(Rd). Show that Ap is the generator of an (α, 1)β on Lp(Rd) for
all β ≥ 0.

9.6 Comments

The material discussed in this chapter is mainly based upon the following two
sources: Keyantuo et al. [75] and Wang et al. [110]. One should mention that the
semilinear case is not treated in [75]. Consequently, an interesting question consists
of using the same tools as in [75] to study the existence of classical (respectively,
mild) solutions for the semilinear fractional Cauchy problem

{
D

α
t u(t) = Au(t)+ F(t, u(t))

u(0) = u0 ∈ X

(9.11)
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where Dα
t is the fractional derivative of order α in the sense of Caputo, A : D(A) ⊂

X �→ X is a closed linear operator on a complex Banach space X, and f : R+×X �→
X is a jointly continuous function satisfying some additional conditions.

For the proofs of the existence results Theorem 9.12 and Corollary 9.13, we refer
the reader to Keyantuo et al. [75].

The proofs of Theorems 9.18 and 9.19 are taken from Wang et al. [110]. For
additional readings upon these topics, we refer to [4, 6, 21–23, 37, 42], etc.



Chapter 10
Second-Order Semilinear Evolution
Equations

10.1 Introduction

This chapter is aimed at studying the existence of almost periodic and asymptoti-
cally almost periodic solutions to some classes of second-order semilinear evolution
equations. In order to establish these existence results, we make extensive use
of various tools including the Banach fixed point theorem, the Leray–Schauder
alternative, the Sadovsky fixed theorem, etc.

Thermoelastic plate systems play an important role in many applications.
For this reason, they have been, in recent years, of a great interest to many
researchers. Among other things, the study of the controllability and stability
of those thermoelastic plate systems has been considered by many researchers
including [14, 18, 24, 44, 65, 79], and [92]. In Sect. 10.2, we study the existence
of almost periodic mild solutions to some thermoelastic plate systems with almost
periodic forcing terms using mathematical tools such as evolution families and real
interpolation spaces.

The main goal of Sect. 10.3 consists of studying the existence of asymptotically
almost periodic solutions to some classes of second-order partial functional-
differential equations with unbounded delay. The abstract results will, subsequently,
be utilized to study the existence of asymptotically almost periodic solutions to some
integro-differential equations, which arise in the theory of heat conduction within
fading memory materials.

© Springer Nature Switzerland AG 2018
T. Diagana, Semilinear Evolution Equations and Their Applications,
https://doi.org/10.1007/978-3-030-00449-1_10

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00449-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-00449-1_10


140 10 Second-Order Semilinear Evolution Equations

10.2 Almost Periodic Solutions to Some Thermoelastic
Plate Systems

10.2.1 Introduction

In this section, we study the existence of almost periodic solutions to thermoelastic
plate systems using tools such as evolution families and real interpolation spaces.
For that, our main strategy consists of studying its corresponding abstract version.
Next, we subsequently use our obtained abstract results to study the existence of
almost periodic solutions to these thermoelastic plate systems with almost periodic
coefficients.

Let Ω ⊂ R
N (N ≥ 1) be a bounded subset, which is sufficiently regular and let

a, b : R �→ R be positive functions. The main concern in this section consists
of studying the existence (and uniqueness) of almost periodic mild solutions to
thermoelastic plate systems given by

⎧⎪⎪⎨
⎪⎪⎩

utt +Δ2u+ a(t)Δθ = f1(t,∇u,∇θ), if t ∈ R, x ∈ Ω

θt − b(t)Δθ − a(t)Δut = f2(t,∇u,∇θ), if x ∈ Ω,

θ = u = Δu = 0, on R× ∂Ω

(10.1)

where u, θ are respectively the vertical deflection and the variation of temperature
of the plate, the functions f1, f2 are continuous and (globally) Lipschitz, and the
symbols ∇ and Δ stand respectively for the first and second differential operators
given by, ∇u = (ux1, ux2 , . . . , uxN ) and

Δv =
N∑

j=1

vxj xj .

Assuming that the coefficients a, b and the forcing terms f1, f2 are almost
periodic in the first variable (in t ∈ R) uniformly in the other ones, it will be shown
that Eq. (10.1) has a unique almost periodic mild solution.

Recall that a particular case of Eq. (10.1) was investigated by Leiva et al. [80]
in the case when not only the coefficients a, b were constant but also there was no
gradient terms in the semilinear terms f1 and f2. Consequently, the results of this
section can be seen as a natural generalization of the results of Leiva et al.

To study the existence of almost periodic solutions to Eq. (10.1), we first study
its corresponding abstract semilinear evolution equation and then use the obtained
results to establish our existence results. In order to achieve that, let H = L2(Ω)

and let A to be the linear operator defined by

D(A) = H 2(Ω) ∩H 1
0 (Ω) and Aϕ = −Δϕ for each ϕ ∈ D(A).
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Setting

x :=
⎛
⎝ u

ut

θ

⎞
⎠ ,

then Eq. (10.1) can be easily recast in X := D(A)×H×H in the following form

x′(t) = A(t)x(t)+ f (t, x(t)), t ∈ R, (10.2)

where A(t) are the time-dependent linear operators defined by

A(t) =
⎛
⎝ 0 IX 0
−A2 0 a(t)A

0 −a(t)A −b(t)A

⎞
⎠ (10.3)

whose constant domains D are given by

D = D(A(t)) = D(A2)×D(A)×D(A), t ∈ R.

Moreover, the semilinear term f is defined only on R×Xα for some 1
2 < α < 1 by

f (t, u, v, θ) =

⎛
⎜⎜⎝

0

f1(t,∇u,∇θ)

f2(t,∇u,∇θ)

⎞
⎟⎟⎠ ,

where Xα is the real interpolation space between X and D(A(t)) given by Xα =
H1+α × Hα × Hα , with Hα = (L2(Ω),D(A))α,∞ = L2(Ω)Aα,∞, and H1+α is the
domain of the part of A in Hα .

In Sect. 10.2.3, we show that the family of operators A(t) given in Eq. (10.3)
satisfies the Aquistapace–Terreni condition. The fact that each operator A(t) is
sectorial was shown in [80]; however, for the sake of clarity and completeness, a
complete proof will be given, as we have to determine the precise constants in order
to comply with assumption (H.820) from Chap. 8 of this book. Finally, by applying
the abstract result developed in Sect. 8.2 of Chap. 8, we prove that the thermoelastic
plate system Eq. (10.1) has a unique almost periodic solution

(
u

θ

)

in H1+α ×Hα .
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10.2.2 Assumptions on the Coefficients of the Thermoelastic
System

Let a, b : R �→ R be positive functions and let Ω ⊂ R
N (N ≥ 1) be a bounded

subset whose boundary ∂Ω is sufficiently regular. The main objective here consists
of studying Eq. (10.1) in the case when the positive real-valued functions a, b are
undervalued by a0, b0, and a, b ∈ C

0,μ
b (R) ∩ AP(R), where u, θ are the vertical

deflection and the temperature of the plate. Further, it will be assumed that

max
t∈R

b2(t) < 3(a2
0 + 1). (10.4)

In addition to the above assumptions, we suppose that the functions f1, f2 :
R×H 1

0 (Ω)×H 1
0 (Ω) → L2(Ω) are defined by

fi(t, u, θ)(x) = fi(t,∇u(x),∇θ(x)) = Kdi(t)

1 + |∇u(x)| + |∇θ(x)|
for x ∈ Ω, t ∈ R, i = 1, 2, where di : R �→ R are almost periodic functions.

It is hard to see that the functions fi (i = 1, 2) are jointly continuous. Further, fi

(i = 1, 2) are globally Lipschitz, that is, there exists L > 0 such that

∥∥∥fi(t, u, θ)− fi(t, v, η)

∥∥∥
L2(Ω)

≤ L
(
‖u− v‖2

H 1
0 (Ω)

+ ‖θ − η‖2
H 1

0 (Ω)

) 1
2

for all t ∈ R, u, v, η and θ ∈ H 1
0 (Ω).

10.2.3 Existence of Almost Periodic Solutions

In order to apply the results of Chap. 8 to this setting, we need to check that some
assumptions hold.

Theorem 10.1 ([20, Baroun, Boulite, Diagana, and Maniar]) Under previous
assumptions, the thermoelastic plate system Eq. (10.1) has a unique almost periodic
solution

⎛
⎝u

θ

⎞
⎠

in H1+α ×Hα , whenever L is small enough.

Proof In order to show that A(t) satisfies the Acquistapace–Terreni conditions, we
will proceed in two main steps.
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Step 1—Let 0 < λ1 < λ2 < · · · < λn → ∞ be the sequence eigenvalues of A
with each eigenvalue being of a finite multiplicity γn equal to the dimension of the
corresponding eigenspace and {φn,k} is a complete orthonormal set of eigenvectors
for A. For all x ∈ D(A) we have

Ax =
∞∑
n=1

λn

γn∑
k=1

〈x, φn,k〉φn,k :=
∞∑
n=1

λnEnx,

with 〈·, ·〉 being the inner product in H.
Obviously, En is a complete family of orthogonal projections in H and so each

x ∈ H can be written as

x =
∞∑
n=1

γn∑
k=1

〈x, φn,k〉φn,k =
∞∑
n=1

Enx.

Consequently, for

⎛
⎝w

v

θ

⎞
⎠ ∈ D(A(t)), the linear operators A(t) can be rewritten

as follows,

A(t)z =
⎛
⎝ 0 I 0
−A2 0 a(t)A

0 −a(t)A −b(t)A

⎞
⎠
⎛
⎝w

v

θ

⎞
⎠

=
⎛
⎝ v

−A2w + a(t)Aθ

−a(t)Av − b(t)Aθ

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
n=1

Env

−
∞∑
n=1

λ2
nEnw + a(t)

∞∑
n=1

λnEnθ

−a(t)

∞∑
n=1

λnEnv − b(t)

∞∑
n=1

λnEnθ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∞∑
n=1

⎛
⎝ 0 1 0
−λ2

n 0 a(t)λn

0 −a(t)λn −b(t)λn

⎞
⎠
⎛
⎝En 0 0

0 En 0
0 0 En

⎞
⎠
⎛
⎝w

v

θ

⎞
⎠

=
∞∑
n=1

An(t)Pnz,

where

Pn :=
⎛
⎝En 0 0

0 En 0
0 0 En

⎞
⎠ , n ≥ 1,
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and

An(t) :=
⎛
⎝ 0 1 0
−λ2

n 0 a(t)λn

0 −a(t)λn −b(t)λn

⎞
⎠ , n ≥ 1. (10.5)

Obviously, the characteristic equation associated with An(t) is given by

λ3 + b(t)λnλ
2 + (1 + a(t)2)λ2

nλ+ b(t)λ3
n = 0. (10.6)

Rescaling as follows, λ/λn = −ρ, Eq. (10.6) can be recast as follows,

ρ3 − b(t)ρ2 + (1 + a(t)2)ρ − b(t) = 0. (10.7)

Using the well-known Routh–Hurwitz theorem we deduce that the real part of
the roots ρ1(t), ρ2(t), ρ3(t) of Eq. (10.7) are positive. By a simple calculation one
can also verify that Eq. (10.4) does ensure that the roots ρ1, ρ2, and ρ3 are simple
and are uniformly separated. In particular, one root is real and the other ones are
complex with imaginary part sufficiently far from 0. Consequently, the eigenvalues
of An(t) are simple and are given by σi(t) = −λnρi(t), i = 1, 2, 3. Therefore, the
matrices An(t) are diagonalizable and can be written as follows,

An(t) = Kn(t)
−1Jn(t)Kn(t), n ≥ 1,

with

Kn(t) =

⎛
⎜⎜⎜⎝

1 1 1

λnρ1(t) λnρ2(t) λnρ3(t)

a(t)ρ1(t)

ρ1(t)− b(t)
λn

a(t)ρ2(t)

ρ2(t)− b(t)
λn

a(t)ρ3(t)

ρ3(t)− b(t)
λn

⎞
⎟⎟⎟⎠ ,

Jn(t) =

⎛
⎜⎜⎝
−λnρ1(t) 0 0

0 −λnρ2(t) 0

0 0 −λnρ3(t)

⎞
⎟⎟⎠

and

Kn(t)
−1 = 1

a(a(t), b(t))λn

⎛
⎜⎜⎝

a11(t) −a12(t) a13(t)

−a21(t) a22(t) −a23(t)

a31(t) −a32(t) a33(t)

⎞
⎟⎟⎠ ,



10.2 Almost Periodic Solutions to Some Thermoelastic Plate Systems 145

where

a11(t) = a(t)ρ3(t)ρ2(t)(ρ2(t)− ρ3(t))

(ρ3(t)− b(t))(ρ2(t)− b(t))
, a12(t)= a(t)ρ3(t)ρ1(t)(ρ1(t)− ρ3(t))

(ρ3(t)− b(t))(ρ1(t)− b(t))
,

a13(t) = a(t)ρ2(t)ρ1(t)(ρ1(t)− ρ2(t))

(ρ2(t)− b(t))(ρ1(t)− b(t))
, a21(t)= a(t)b(t)(ρ2(t)− ρ3(t))

(ρ3(t)− b(t))(ρ2(t)− b(t))
,

a22(t) = a(t)b(t)(ρ1(t)− ρ3(t))

(ρ3(t)− b(t))(ρ1(t)− b(t))
, a23(t)= a(t)b(t)(ρ1(t)− ρ2(t))

(ρ2(t)− b(t))(ρ1(t)− b(t))
,

a31 = (ρ3(t)− ρ2(t)), a32 = (ρ3(t)− ρ1(t)), a33 = (ρ2(t)− ρ1(t)),

a(a(t), b(t)) = a(t)ρ3(t)ρ2(t)

(ρ3(t)− b(t))
+ a(t)ρ1(t)ρ3(t)

(ρ1(t)− b(t))
+ a(t)ρ2(t)ρ1(t)

(ρ2(t)− b(t))

−a(t)ρ1(t)ρ2(t)

(ρ1(t)− b(t))
− a(t)ρ3(t)ρ1(t)

(ρ3(t)− b(t))
− a(t)ρ2(t)ρ3(t)

(ρ2(t)− b(t))
.

From the fact that b(·) is not a solution to Eq. (10.7), it can be shown that the
matrix operators Kn(t) and K−1

n (t) are well defined and Kn(t)Pn(t) : Z := H ×
H×H �→ X, K−1

n (t)Pn(t) : X �→ Z.
We claim that the roots ρi(t), i = 1, 2, 3, of Eq. (10.7) are bounded. Indeed,

setting l(t) = ρ(t)− b(t)
3 , then Eq. (10.7) becomes

l(t)3 + p(t)l(t)+ q(t) = 0,

where p(t) := (1 + a(t)2)− b(t)2

3 , q(t) := 2
27b(t)

3 − (2 − a(t)2)
b(t)

3 .
Since q is bounded and

|q(t)| = |l(t)‖l(t)2 + p(t)| ≥ |l(t)||l(t)|2 − |p(t)|,

then l is also bounded. Thus the boundedness of b yields the above claim.
Define the sector Sθ as

Sθ = {λ ∈ C : | arg(λ)| ≤ θ, λ �= 0},

where

0 ≤ sup
t∈R

| arg(ρi(t))| < π

2
, i = 1, 2, 3

and

π

2
< θ < π − max

i=1,2,3
sup
t∈R

{| arg(ρi(t))|}.
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For λ ∈ Sθ and z ∈ X, one has

R(λ,A(t))z =
∞∑
n=1

(λ− An(t))
−1Pnz

=
∞∑
n=1

Kn(t)(λ− Jn(t)Pn)
−1K−1

n (t)Pnz.

Hence,

‖R(λ,A(t))z‖2 ≤
∞∑
n=1

‖Kn(t)Pn(λ− Jn(t)Pn)
−1K−1

n (t)Pn‖2
B(X)‖Pnz‖2

≤
∞∑
n=1

‖Kn(t)Pn‖2
B(Z,X)‖(λ− Jn(t)Pn)

−1‖2
B(Z)

. ‖K−1
n (t)Pn‖2

B(X,Z)‖Pnz‖2.

Using Eq. (10.7) and the fact that b(t) > b0 par assumption, it follows that

|ρ(t)− b(t)| ≥ a(t)2|ρ(t)|
1 + |ρ(t)|2 , inf

t∈R |ρ(t)| > 0. (10.8)

Consequently, from the assumption a(t) > a0 it follows that

inf
t∈R |ρ(t)− b(t)| > 0. (10.9)

Moreover, for z :=
⎛
⎝ z1

z2

z3

⎞
⎠ ∈ Z, we have

‖Kn(t)Pnz‖2 = λ2
n‖Enz1 + Enz2 + Enz3‖2

+λ2
n‖ρ1(t)Enz1 + ρ2(t)Enz2 + ρ3(t)Enz3‖2

+λ2
n

∥∥∥∥ a(t)ρ1(t)

ρ1(t)− b(t)
Enz1 + a(t)ρ2(t)

ρ2(t)− b(t)
Enz2 + a(t)ρ3(t)

ρ3(t)− b(t)
Enz3

∥∥∥∥
2

.

Therefore, there is C1 > 0 such that

‖Kn(t)Pnz‖H ≤ C1λn‖z‖Z for all n ≥ 1 and t ∈ R.
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Arguing as above, for z :=
⎛
⎝ z1

z2

z3

⎞
⎠ ∈ X, one can show

‖K−1
n (t)Pnz‖ ≤ C2

λn

‖z‖ for all n ≥ 1 and t ∈ R.

Now, for z ∈ Z, we have

‖(λ− JnPn)
−1z‖2

Z =

∥∥∥∥∥∥∥
⎛
⎜⎝

1
λ+λnρ1(t)

0 0

0 1
λ+λnρ2(t)

0

0 0 1
λ+λnρ3(t)

⎞
⎟⎠
⎛
⎝ z1

z2

z3

⎞
⎠
∥∥∥∥∥∥∥

2

Z

≤ 1

(λ+ λnρ1(t))2
‖z1‖2 + 1

(λ+ λnρ2(t))2
‖z2‖2

+ 1

(λ+ λnρ3(t))2 ‖z3‖2.

Let λ0 > 0. Obviously, the function defined by

η(λ) := 1 + |λ|
|λ+ λnρi(t)|

is continuous and bounded on the closed set Σ := {λ ∈ C/|λ| ≤ λ0, | arg λ| ≤ θ}.
On the other hand, it is clear that η is bounded for |λ| > λ0. Thus η is bounded

on Sθ . If we take

N = sup

{
1 + |λ|

|λ+ λnρi(t)| : λ ∈ Sθ , n ≥ 1 ; i = 1, 2, 3, t ∈ R

}
.

Therefore,

‖(λ− JnPn)
−1z‖Z ≤ N

1 + |λ| ‖z‖Z, λ ∈ Sθ .

Consequently,

‖R(λ,A(t))‖ ≤ K

1 + |λ|
for all λ ∈ Sθ and t ∈ R.
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The operators A(t) are invertible and their inverses are given by

A(t)−1 =

⎛
⎜⎜⎝
−a(t)2b(t)−1A−1 −A−2 −a(t)b(t)−1A−2

I 0 0

−a(t)b(t)−1 0 −b(t)−1A−1

⎞
⎟⎟⎠ , t ∈ R.

Hence, for t, s, r ∈ R, one has

(A(t)− A(s))A(r)−1

=

⎛
⎜⎜⎝

0 0 0

−a(r)b(r)−1(a(t)− a(s))A 0 −b(r)−1(a(t)− a(s))

−(a(t)− a(s))A+ a(r)b(r)−1(b(t)− b(s))A 0 −b(r)−1(b(t)− b(s))

⎞
⎟⎟⎠ ,

and hence

‖(A(t)− A(s))A(r)−1z‖ ≤ √
3(‖a(r)b(r)−1(a(t)− a(s))Az1‖

+‖b(r)−1(a(t)− a(s))z3‖ + ‖(a(t)− a(s))Az1‖
+‖a(r)b(r)−1(b(t)− b(s))Az1‖
+‖b(r)−1(b(t)− b(s))z3‖)

≤ √
3(|a(r)b(r)−1‖t − s|μ‖Az1‖ + |b(r)−1|‖t − s|μ‖z3‖

+|t − s|μ‖Az1‖ + ‖a(r)b(r)−1||t − s|μ‖Az1‖
+|b(r)−1‖t − s|μ‖z3‖)

≤ (2
√

3|a(r)b(r)−1| + 1)|t − s|μ‖Az1‖
+2

√
3|a(r)b(r)−1|‖t − s|μ‖z3‖.

Consequently,

‖(A(t)− A(s))A(r)−1z‖ ≤ C|t − s|μ‖z‖.
Step 2—For every t ∈ R, A(t) generates an analytic semigroup (eτA(t))τ≥0 on

X. Using similar computations as above, one can show that

sup
t,s∈R

‖A(t)A(s)−1‖ < ∞

and for every t, s ∈ R and 0 < μ ≤ 1,

‖A(t)A(s)−1 − Id‖ ≤ L′k|t − s|μ

with constant L′ ≥ 0 and k is the Lipschitz constant of the functions a and b.
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On the other hand, we have

eτA(t)z =
∞∑
n=0

Kn(t)
−1Pne

τJnPnKn(t)Pnz, z ∈ X.

Then,

‖eτA(t)z‖ =
∞∑
n=0

‖Kn(t)
−1Pn‖B(X,Z)‖eτJnPn‖B(Z)‖Kn(t)Pn‖B(Z,X)‖Pnz‖,

with for each z =
⎛
⎝ z1

z2

z3

⎞
⎠ ∈ Z

‖eτJnPnz‖2
Z =

∥∥∥∥∥∥
⎛
⎝ e−λnρ1(t)τEn 0 0

0 e−λnρ2(t)τEn 0
0 0 e−λnρ3(t)τEn

⎞
⎠
⎛
⎝ z1

z2

z3

⎞
⎠
∥∥∥∥∥∥

2

Z

≤ ‖e−λnρ1(t)τEnz1‖2 + ‖e−λnρ2(t)τEnz2‖2 + ‖e−λnρ3(t)τEnz3‖2

≤ e−2δτ‖z‖2
Z,

where δ = λ1 inf
t∈R{Re(ρ1(t)), Re(ρ2(t)), Re(ρ3(t))}.

Therefore

‖eτA(t)‖ ≤ Ce−δτ , τ ≥ 0. (10.10)

Using the continuity of the functions a, b and the spectral identity

R(λ,A(t))− R(λ,A(s)) = R(λ,A(t)) (A(t)− A(s)) R(λ,A(s))

it follows that the mapping J � t �→ R(λ,A(t)) is strongly continuous for
λ ∈ Sθ where J ⊂ R is an arbitrary compact interval. Therefore, A(t) satisfies
the assumptions of [104, Corollary 2.3] and thus, the evolution family U(t, s) is
exponentially stable. The step 2 is complete.

To complete the proof, we have to show (A(·))−1 ∈ AP(R, B(X)) (See
assumption (H.823) of [Sect. 8.3, Chap. 8]). Let ε > 0, and τ = τε ∈ P(ε, a, b).
We have

A(t)−1 − A(t + τ)−1 = A(t + τ)−1(A(t + τ)− A(t))A(t)−1, (10.11)
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and,

A(t + τ)− A(t) =

⎛
⎜⎜⎝

0 0 0

0 0 (a(t + τ)− a(t))A

0 −(a(t + τ)− a(t))A −(b(t + τ)− b(t))A

⎞
⎟⎟⎠ .

Therefore, for z :=
⎛
⎝ z1

z2

z3

⎞
⎠ ∈ D, one has

‖(A(t + τ)− A(t))z‖ ≤ ‖(a(t + τ)− a(t))Az3‖ + ‖(a(t + τ)− a(t))Az2‖
+‖(b(t + τ)− b(t))Az3‖

≤ ε‖Az2‖ + ε‖Az3‖
≤ ε‖z‖D,

and using Eq. (10.11) (‖ · ‖D being the graph norm with respect to the domain D =
D(A(t))), we obtain

‖A(t + τ)−1y − A(t)−1y‖ ≤ ‖A(t + τ)−1(A(t + τ)− A(t))A(t)−1y‖
≤ ‖A(t + τ)−1‖B(X)

×‖(A(t + τ)− A(t))‖B(D,X)‖A(t)−1y‖D, y ∈ X.

Since ‖A(t)−1y‖D ≤ c‖y‖, then

‖A(t + τ)−1y − A(t)−1y‖ ≤ c′ε‖y‖.

Consequently, A(t)−1 is almost periodic.
Finally, for L sufficiently small, all assumptions of Theorem 8.21 are satisfied

and thus the thermoelastic system Eq. (10.1) has a unique almost periodic mild
solution (

u

θ

)

with values in the interpolation space H1+α ×Hα .
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10.3 Existence Results for Some Second-Order Partial
Functional Differential Equations

The main focus in this section consists of studying the existence of asymptotically
almost periodic solutions to some classes of second-order partial functional dif-
ferential equations with unbounded delay. The abstract results will, subsequently,
be utilized to studying the existence of asymptotically almost periodic solutions
to some integro-differential equations which arise in the theory of heat conduction
within fading memory materials.

10.3.1 Introduction

Our main concern in this section consists of studying the existence of asymptotically
almost periodic solutions to the class of second-order abstract partial functional
differential equations of the form

d

dt

[
x′(t)− g(t, xt )

] = Ax(t)+ f (t, xt ), t ∈ I, (10.12)

x0 = ϕ ∈ B, (10.13)

x′(0) = ξ ∈ X, (10.14)

where A is the infinitesimal generator of a strongly continuous cosine family
(C(t))t∈R of bounded linear operators on X, the history xt : (−∞, 0] → X,
xt (θ) := x(t + θ), belongs to an abstract phase space B defined axiomatically,
and f, g are some appropriate functions.

Recall that the abstract Cauchy systems of the form, Eqs. (10.12)–(10.14) arise,
for instance, in the theory of heat conduction in materials with fading memories,
see, e.g., Gurtin–Pipkin [62] and Nunziato [96]. In the classical theory of heat
conduction, it is assumed that the internal energy and the heat flux depend linearly
upon the temperature u as well as its gradient ∇u. Under these conditions, the
classical heat equation describes sufficiently well the evolution of the temperature
in different types of materials. However, this description is not satisfactory for
materials with fading memories. In the theory developed in [62, 96], the internal
energy and the heat flux are described as functionals of u and ux . Upon some
physical conditions, they established that the temperature u(t, ξ) satisfies the
integro-differential equation

c
∂2u(t, ξ)

∂t2 = β(0)
∂u(t, ξ)

∂t
+
∫ ∞

0
β ′(s)∂u(t − s, ξ)

∂t
ds + α(0)#u(t, ξ)

+
∫ ∞

0
α′(s)#u(t − s, ξ)ds, (10.15)
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where β(·) is the energy relaxation function, α(·) is the stress relaxation function
and c is the density. Assuming that β(·) is smooth enough and that ∇u(t, ξ) is
approximately constant at t , we can rewrite the previous equation in the form

∂2u(t, ξ)

∂t2
= ∂

∂t

[
β(0)

c
u(t, ξ)+ 1

c

∫ ∞

0
β ′(s)u(t − s, ξ)ds

]
+ d#u(t, ξ).

By making the function β(·) explicitly dependent on the time t , we can consider the
situation in which the material is submitted to an aging process so that the hereditary
properties are lost as the time goes to infinity. In this case, the previous equation
takes the form

∂2u(t, ξ)

∂t2
= ∂

∂t

[
β(t, 0)

c
u(t, ξ)+ 1

c

∫ ∞

0

∂β(t, s)

∂s
u(t − s, ξ)ds

]
(10.16)

+d#u(t, ξ),

which can be transformed into the abstract systems of the form Eqs. (10.12)–(10.14)
assuming that the solution u(·) is known on [0,∞).

10.3.2 Preliminaries and Notations

In the rest of this section, if W is an arbitrary metric space, then the notation
Br(x,W) stands for the closed ball in W , centered at x with radius r . The linear
operator A : D(A) ⊂ X → X considered here will be assumed to be the
infinitesimal generator of a strongly continuous cosine family (C(t))t∈R of bounded
linear operators on X and (S(t))t∈R denote the associated sine function, which is
defined by

S(t)x =
∫ t

0
C(s)xds,H x ∈ X, t ∈ R.

For further details upon cosine function theory and their applications to the
second-order abstract Cauchy problem, we refer the reader to Fattorini [57] and
Travis and Webb [106, 107].

Recall that Travis and Webb [106] studied the existence of solutions to the
second-order abstract Cauchy problem,

x′′(t) = Ax(t)+ h(t), t ∈ [0, b], (10.17)

x(0) = w, x′(0) = z, (10.18)

where h ∈ L1([0, b];X).
The corresponding semilinear case was also done by Travis and Webb [107].
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Recall that a mild solution for the system Eqs. (10.17)–(10.18) is any function x

that is given by

x(t) = C(t)w + S(t)z+
∫ t

0
S(t − s)h(s)ds, t ∈ [0, b]. (10.19)

In this section the definition of the phase space B will be as in [69]. Namely,
B will be a vector space of functions mapping (−∞, 0] into X endowed with a
semi-norm ‖ · ‖B . Moreover, we will assume that the following axioms hold,

(A) If x : (−∞, σ + b] → X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈
C([σ, σ + b];X), then for every t ∈ [σ, σ + b) the following conditions
hold:

(i) xt is in B,
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B ,

(iii) ‖ xt ‖B≤ K(t − σ) sup{‖ x(s) ‖: σ ≤ s ≤ t} +M(t − σ) ‖ xσ ‖B,

where H > 0 is a constant, K,M : [0,∞) → [1,∞) with K being
continuous, M is locally bounded, and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t → xt is continuous from [σ, σ+a)

into B.
(B) The space B is complete.

(C2) If (ϕn)n∈N is a uniformly bounded sequence in C((−∞, 0];X) formed by
functions with compact support and ϕn → ϕ in the compact-open topology,
then ϕ ∈ B and

‖ϕn − ϕ‖B → 0

as n → ∞.

Example 10.2 (The Phase Space Cr × Lp(ρ;X)) Let r ≥ 0, 1 ≤ p < ∞ and
let ρ : (−∞,−r] → R be a nonnegative measurable function which satisfies
the conditions (g-5), (g-6) in the terminology of [69]. Briefly, this means that ρ is
a locally integrable function and that there exists a nonnegative locally bounded
function γ on (−∞, 0] such that

ρ(ξ + θ) ≤ γ (ξ)ρ(θ),

for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ , where Nξ ⊆ (−∞,−r) is a set whose
Lebesgue measure is zero.

The space Cr ×Lp(ρ;X) consists of all classes of functions ϕ : (−∞, 0] → X

such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and ρ‖ϕ‖p is Lebesgue
integrable on (−∞,−r). The semi-norm on Cr × Lp(ρ;X) is defined by

‖ϕ‖B := sup
{
‖ϕ(θ)‖ : −r ≤ θ ≤ 0

}
+
(∫ −r

−∞
ρ(θ)‖ϕ(θ)‖pdθ

)1/p

.
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The space B = Cr × Lp(ρ;X) satisfies axioms (A)-(A1)-(B). Moreover, when
r = 0 and p = 2, we can take

H = 1, M(t) = γ (−t)1/2, and K(t) = 1 +
(∫ 0

−t

ρ(θ) dθ

)1/2

for t ≥ 0, see [69, Theorem 1.3.8] for details.
Some of our existence results require some additional assumptions upon the

phase space B.

Definition 10.3 Let B0 = {ψ ∈ B : ψ(0) = 0}. The phase space B is called a
fading memory space if ‖ S(t)ψ‖B → 0 as t → ∞ for every ψ ∈ B0. We say that
B is a uniform fading memory space if ‖S(t)‖L (B0) → 0 as t → ∞.

For further details upon phase spaces, we refer the reader to for instance [69].

Let I ⊂ R be an interval. Recall that the spaces BC(I ;V ) = Cb(I ;V ) and
C0([0,∞);V ) are defined respectively by

BC(I,V ) = Cb(I ;V )

=
{
x : I → V , x is continuous and ‖x‖ = sup

t∈I
‖ x(t) ‖< ∞

}
,

C0([0,∞);V ) =
{
x ∈ Cb([0,∞);V ) : lim

t→∞‖x(t)‖ = 0
}
,

and both spaces are endowed with their corresponding sup-norms.

10.3.3 Existence of Local and Global Mild Solutions

We establish the existence of mild solutions to Eqs. (10.12)–(10.14) in the particular
cases when I = [0, a] and I = [0,∞). Suppose, I = [0, a] or I = [0,∞) and let
N, Ñ be positive constants such that

‖C(t)‖ ≤ N

and

‖S(t)‖ ≤ Ñ

for every t ∈ I .
Our existence results require the following general assumption,

(H1) The functions f, g : I × B → X satisfy the following conditions:

(i) The functions f (t, ·), g(t, ·) : B → X are continuous a.e. t ∈ I .
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(ii) For each ψ ∈ B, the functions f (·, ψ), g(·, ψ) : I → X are strongly
measurable.

(iii) There exist integrable functions mf , mg : I → [0,∞) and continuous
nondecreasing functions Wf ,Wg : [0,∞) → (0,∞) such that

‖ f (t, ψ) ‖ ≤ mf (t)Wf (‖ ψ ‖B), (t, ψ) ∈ I × B,

‖ g(t, ψ) ‖ ≤ mg(t)Wg(‖ ψ ‖B), (t, ψ) ∈ I × B.

Motivated by the concept of mild solution given in Eq. (10.19), we adopt the
following concept of mild solution for Eqs. (10.12)–(10.14).

Definition 10.4 A function x : (−∞, 0] ∪ I → X is called a mild solution of the
abstract Cauchy problem Eqs. (10.12)–(10.14) on I , if x0 = ϕ and

x(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ∈ I.

In the rest of this section, we set W := max{Wf ,Wg}.

10.3.4 Existence of Solutions in Bounded Intervals

Recall that the existence of mild solutions to Eqs. (10.12)–(10.14) in the case when
I = [0, a] can be obtained through the results in [67]. However, for the sake of
clarity and completeness, we provide the reader with the proof of the next theorem,
as some of the ideas in this proof are also needed in the sequel.

Theorem 10.5 Suppose that assumption (H1) holds and that for every 0 < t ≤
a and r > 0, the sets U(t, r) = {S(t)f (s, ψ) : s ∈ [0, t], ‖ ψ ‖B≤ r} and
g(I × Br(0,B)) are relatively compact in X. If

Ka

∫ a

0
(Nmg(s)+ Ñmf (s)) ds <

∫ ∞

c

ds

W(s)
, (10.20)

where

c = (KaNH +Ma) ‖ ϕ ‖B +KaÑ(‖ξ‖ + ‖g(0, ϕ)‖),

Ka = sup
s∈[0,a]

K(s),
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and

Ma = sup
s∈[0,a]

M(s),

then the system Eqs. (10.12)–(10.14) has a mild solution.

Proof Let the vector space

BC =
{
x : (−∞, a] → X : x|(−∞,0] ∈ B, x|[0,a] ∈ C([0, a];X)

}
be endowed with the norm defined by

‖x‖BC = ‖x|(−∞,0]‖B + ‖x|[0,a]‖a
for all x ∈ BC.

On this space, we define the map Γ : BC → BC by (Γ x)0 = ϕ and

Γ x(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ∈ I.

It is then easy to see that Γ x is well defined and that Γ x ∈ BC. Moreover, by using
the phase space axioms and the Lebesgue Dominated Convergence Theorem, one
can prove that Γ is a continuous function from BC into BC.

In order to apply Theorem 1.81, we establish an a priori estimate for the solution
of the integral equation x = λΓ x, λ ∈ (0, 1). Let xλ ∈ BC be a solution of
x = λΓ x, λ ∈ (0, 1). For t ∈ I , we get

‖ xλ(t) ‖ ≤ NH ‖ ϕ ‖B +Ñ(‖ ξ ‖ + ‖ g(0, ϕ) ‖)+
∫ t

0
(Nmg(s)

+Ñmf (s))W(‖ xλ
s ‖B)ds

which yields

‖ xλ
t ‖B ≤ (KaNH +Ma) ‖ ϕ ‖B +KaÑ(‖ ξ ‖ + ‖ g(0, ϕ) ‖)

+Ka

∫ t

0
(Nmg(s)+ Ñmf (s))W(‖ xλ

s ‖B)ds.

Denoting by βλ(t) the right-hand side of the last inequality, we find that

β ′
λ(t) ≤ Ka(Nmg(t)+ Ñmf (t))W(βλ(t)),



10.3 Existence Results for Some Second-Order Partial Functional Differential. . . 157

and hence,

∫ βλ(t)

βλ(0)=c

ds

W(s)
≤ Ka

∫ t

0
(Nmg(s)+ Ñmf (s)) ds <

∫ ∞

c

ds

W(s)
,

which enables to conclude that the set of functions {βλ : λ ∈ (0, 1)} is bounded. As
a consequence of the previous fact, {xλ : λ ∈ (0, 1)} is bounded in C(I,X) as

‖ xλ(t) ‖≤ H ‖ xλ
t ‖≤ βλ(t)

for every t ∈ I .
On the other hand, from [68, Lemma 3.1] we deduce that Γ is completely

continuous on BC. The existence of a mild solution for Eqs. (10.12)–(10.14) is
now a consequence of Theorem 1.81.

In many situations of practical interest, the sine function S(t) is compact. This is
the motivation for the next result.

Corollary 10.6 Suppose that assumption (H1) holds and that S(t) is compact for
all t ≥ 0 and the set g(I × Br(0,B)) is relatively compact in X for every r > 0. If
Eq. (10.20) holds, then the system Eqs. (10.12)–(10.14) has a mild solution.

Remark 10.7 Recall that except when the space X is a finite dimensional space, the
cosine function is not compact, and that for this reason, the compactness assumption
on the function g cannot be removed. For more on this and related issues, we refer
the reader to for instance the work of Travis and Webb [106, pp. 557].

Using similar ideas as in the proof of Theorem 10.5, we can prove the following
local existence result.

Theorem 10.8 Suppose that assumption (H1) holds and that for every 0 < t ≤ a

and r > 0, the sets

U(t, r) =
{
S(t)f (s, ψ) : s ∈ [0, t], ‖ψ‖B ≤ r

}
and

g(I × Br(0,B))

are relatively compact in X.
Then there exists a mild solution to Eqs. (10.12)–(10.14) on [0, b] for some 0 <

b ≤ a.
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10.3.5 Existence of Global Solutions

In this subsection, our discussions will be upon the existence of mild solutions
defined on the interval I = [0,∞). For that, we suppose that M,K are positive
constants such that M(t) ≤ M and K(t) ≤ K for every t ≥ 0 and that the functions
mf ,mg are locally integrable.

We need the following notations

W = max{Wf ,Wg}, m = max{mf ,mg}, γ (s) = Nmg(s)+ Ñmf (s).

Remark 10.9 Recall that if B is a fading memory space, then the functions M(·),
K(·) are bounded on [0,∞). For further details on this and related issues, we refer
the reader to [69, Proposition 7.1.5].

Let h : [0,∞) → (0,∞) be a continuous nondecreasing function with h(0) = 1
and such that h(t) → ∞ as t → ∞.

Let C0,h(X) denote the space defined by

C0,h(X) =
{
x ∈ C([0,∞);X) : lim

t→∞
‖ x(t) ‖
h(t)

= 0

}
,

which we equip with the norm

‖x‖h = sup
t≥0

‖ x(t) ‖
h(t)

.

Recall the following well-known compactness criterion:

Lemma 10.10 A set B ⊂ C0([0,∞);X) is relatively compact in C0([0,∞);X) if
and only if,

(a) B is equi-continuous;
(b) lim

t→∞‖ x(t) ‖ = 0, uniformly for x ∈ B;

(c) The set B(t) = {x(t) : x ∈ B} is relatively compact in X for every t ≥ 0.

Proof The proof is left to the reader as an exercise.

The main existence result of this subsection can now be formulated as follows:

Theorem 10.11 Under assumption (H1), if the following conditions hold:

(a) for every t ∈ I and each r ≥ 0 the sets

{
S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)

}
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and

g([0, t] × Br(0,B))

are relatively compact in X;
(b) for every L ≥ 0,

1

h(t)

∫ t

0
m(s)W(Lh(s)) ds → 0

as t → ∞ and

lim sup
r→∞

1

r

∫ ∞

0
γ (s)

W((K +M)rh(s))

h(s)
ds < 1.

Then the system Eqs. (10.12)–(10.14) has a mild solution on [0,∞).

Proof On the space

BC0,h(X) = {x : R → X : x0 ∈ B, x|I ∈ C0,h(X)}

endowed with the norm defined by

‖x‖BC0,h = ‖x0‖B + ‖x|I‖h,

we define the map Γ : BC0,h(X) → BC0,h(X) by (Γ x)0 = ϕ and

Γ x(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds

+
∫ t

0
S(t − s)f (s, xs)ds, t ≥ 0.

It is easy to prove that the expression Γ x(·) is well defined for each x ∈ BC0,h(X).
On the other hand, using the fact that ‖xs‖B ≤ (K +M) ‖ x ‖BC0,h h(s) for s ∈ I ,
we find that

‖Γ x(t)‖
h(t)

≤ NH‖ϕ‖B + (‖ξ‖ + ‖g(0, ϕ)‖)
h(t)

(10.21)

+ 1

h(t)

∫ t

0
[Nmg(s)+ Ñmf (s)]W((K +M) ‖ x ‖BC0,h h(s))ds,

which implies, from condition (c), that ‖Γ x(t)‖
h(t)

converges to zero as t → ∞. This
shows that Γ is a well-defined map from BC0,h(X) into BC0,h(X). Note that the
inequality (10.21) shows also that ‖Γ x(t)‖

h(t)
→ 0, as t → ∞, uniformly for x in

bounded sets of BC0,h(X).
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In the sequel we prove that Γ verifies the hypotheses of Theorem 1.81. We begin
by proving that Γ is continuous. Let (un)n be a sequence in BC0,h(X) and u ∈
BC0,h(X) such that un → u as n → ∞. Clearly, g(s, un

s ) → g(s, us), f (s, un
s ) →

f (s, us) a.e. s ∈ I as n → ∞, and

‖f (s, un
s )‖ ≤ mf (s)Wf (βh(s)), s ≥ 0,

‖g(s, un
s )‖ ≤ mg(s)Wg(βh(s)), s ≥ 0,

where β = (K +M)L and L > 0 is such that

sup{‖ u ‖BC0,h(X), ‖un‖BC0,h(X) : n ∈ N} ≤ L.

Since the functions on the right-hand side of the above inequalities (involving f and
g) are integrable on [0, t], we conclude that

‖ Γ un(t)− Γ u(t) ‖→ 0 as n → ∞

uniformly for t in bounded intervals. Moreover, using the argument that the set of
functions {un : n ∈ N} is bounded in BC0,h(X), for each ε > 0 there exists Tε > 0
such that ‖Γ un(t)−Γ u(t)‖

h(t)
≤ ε, for all n ∈ N and every t ≥ Tε . Combining these

properties we obtain that Γ un → Γ u in BC0,h(X). Thus, Γ is continuous.
On the other hand, if xλ ∈ BC0,h(X) is a solution of the integral equation λΓ z =

z, 0 < λ < 1, for t ≥ 0, we obtain that

‖xλ(t)‖
h(t)

≤ NH ‖ ϕ ‖B +Ñ(‖ ξ ‖ +‖g(0, ϕ) ‖)
h(t)

+ 1

h(t)

∫ t

0
γ (s)W((K +M) ‖ xλ ‖BC0,h(X) h(s))ds,

and hence

‖ xλ ‖BC0,h(X) ≤ (1 +NH) ‖ ϕ ‖B +Ñ(‖ ξ ‖ +‖g(0, ϕ) ‖)

+
∫ ∞

0
γ (s)

W((K +M) ‖ xλ ‖BC0,h(X) h(s))

h(s)
ds.

From the previous estimates, if the set {‖ xλ ‖BC0,h(X) : 0 < λ < 1} is unbounded,
we deduce the existence of a sequence (rn)n∈N with rn → ∞ such that

1 ≤ lim inf
n→∞

1

rn

∫ ∞

0
γ (s)

W((K +M)rnh(s))

h(s)
ds

which is absurd, therefore the set {‖ xλ ‖BC0,h(X): 0 < λ < 1, } is bounded.
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Arguing as in the proof of Theorem 10.5, we can prove that

{
Γ x(t) : x ∈ Br(0,BC0,h(X))

}

is relatively compact in X for every t ≥ 0 and that

{
Γ x

h
: x ∈ Br(0,BC0,h(X))

}

is equi-continuous on [0,∞). Moreover, from our previous remarks we know that
Γ x(t)
h(t)

→ 0 as t → ∞, uniformly for x ∈ Br(0,BC0,h(X)). Consequently, we have
shown that the set {

Γ x

h
: x ∈ Br(0,BC0,h(X))

}

fulfills the conditions of Lemma 10.10, which yields it is relatively compact in
C0(X). Therefore, Γ Br(0,BC0,h(X))) is relatively compact in BC0,h(X).

The existence of a mild solution for the system Eqs. (10.12)–(10.14) on [0,∞)

follows from Theorem 1.81.

10.3.6 Existence of Asymptotically Almost Periodic Solutions

In this subsection we study the existence of asymptotically almost periodic solutions
for the abstract system Eqs. (10.12)–(10.14). For that, suppose that there exist two
positive constants N and Ñ such that

‖C(t)‖ ≤ N

and

‖S(t)‖ ≤ Ñ

for every t ≥ 0.
Let us recall the following definitions which are needed in the sequel:

Definition 10.12 An operator function F : [0,∞) → B(V ,W ) is said to be:

(a) strongly continuous if for every each x ∈ V , the function F(·)x : [0,∞) → W
is continuous;

(b) pointwise almost periodic (respectively, pointwise asymptotically almost peri-
odic ) if F(·)x ∈ AP(W ) for every x ∈ V ( respectively, F(·)x ∈ AAP(W )

for every x ∈ V );
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(c) almost periodic (respectively, asymptotically almost periodic ) if F(·) ∈
AP(B(V ,W )) (respectively, F(·) ∈ AAP(B(V ,W ))).

Remark 10.13 Note that if the sine function S(·) is uniformly bounded and
pointwise almost periodic, then the cosine function C(·) is also pointwise almost
periodic, see, e.g., [64, Lemma 3.1] and [64, Theorem 3.2] for details.

Lemma 10.14 ([113, Chapter 6]) Let V ⊆ AP(X) be a set with the following
properties:

(a) V is uniformly equi-continuous on R;
(b) for each t ∈ R, the set V (t) = {x(t) : x ∈ V } is relatively compact in X;
(c) V is equi-almost periodic, that is, for every ε > 0 there is a relatively dense set

H (ε, V ,X) ⊂ R such that

‖x(t + τ)− x(t)‖ ≤ ε, x ∈ V, τ ∈ H (ε, V ,X), t ∈ R.

Then, V is relatively compact in AP(X).

Remark 10.15 As an immediate consequence of this characterization, one can
assert that if F : R → B(X,Y) is almost periodic and U is a relatively compact
subset of X, then V = {F(·)x : x ∈ U} is relatively compact in AP(Y). For the
sine function, we can strengthen this property.

Proposition 10.16 Assume that the sine function S(·) is almost periodic and that
U ⊆ X. If the set {S(t)x : x ∈ U, t ≥ 0} is relatively compact in X, then V =
{S(·)x : x ∈ U} is relatively compact in AP(X).

Proof Let us fix δ > 0. Since S(δ)U is relatively compact in X, by using
Remark 10.15, we can claim that Vδ = {S(·)S(δ)x : x ∈ U} is relatively compact
in AP(X). On the other hand, for each ε > 0 there is δ > 0 such that

‖(I − C(s))S(t)x‖ ≤ ε

for all 0 ≤ s ≤ δ, every x ∈ U and all t ≥ 0.
We deduce from above that

‖ S(t)x − 1

δ
S(t)S(δ)x ‖=‖ 1

δ

∫ δ

0
(I − C(s))S(t)xds ‖≤ ε,

for every t ≥ 0.
This property and the decomposition

S(·)x = 1

δ
S(·)S(δ)x + S(·)x − 1

δ
S(·)S(δ)x,

imply that V ⊆ 1
δ
Vδ + Bε(0, Cb(X)), which in turn proves that V is relatively

compact in AP(X).
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Remark 10.17 Recall that the assumption on the compactness of the set {S(t)x :
x ∈ U, t ≥ 0} in Proposition 10.16 is verified, for instance, in the case when the
sine function is almost periodic.

Lemma 10.18 Assume that S(·) is pointwise almost periodic and that U is a
bounded subset of X. If one of the following conditions holds:

(i) U is relatively compact.
(ii) S(·) is almost periodic and S(t) is compact for every t ∈ R.

Then {S(t)x : x ∈ U, t ≥ 0} is relatively compact in X.

Proof The proof is left to the reader as an exercise.

Recall that the case (ii) includes the case of periodic sine functions.
For asymptotically almost periodic functions, we have a similar characterization

of compactness given in the next lemma.

Lemma 10.19 Let V ⊆ AAP(X) be a set with the following properties:

(a) V is uniformly equi-continuous on [0,∞);
(b) for each t ≥ 0, the set V (t) = {x(t) : x ∈ V } is relatively compact in X;
(c) V is equi-asymptotically almost periodic, that is, for every ε > 0 there are

L(ε, V,X) ≥ 0 and a relatively dense set H (ε, V ,X) ⊆ [0,∞) such that

‖x(t + τ)− x(t)‖ ≤ ε, x ∈ V, t ≥ L(ε, V,X), τ ∈ H (ε, V ,X).

Then, V is relatively compact in AAP(X).

Proof The proof is left to the reader as an exercise.

Remark 10.20 If f ∈ AAP(X), then it can be decomposed in a unique fashion
as f = f1 + f2, where f1 ∈ AP(X) and f2 ∈ C0(X). Let V ⊆ AAP(X) and
Vi = {fi : f ∈ V }, i = 1, 2. It follows from the above-mentioned results that V
is relatively compact in AAP(X) if, and only if, V1 is relatively compact in AP(X)

and V2 is relatively compact in C0(X).

We will be using the next proposition.

Proposition 10.21 Let (Vi , ‖ · ‖Vi
), i = 1, 2, be Banach spaces and V ⊆

L1([0,∞),V1). If F1 : [0,∞) → B(V1,V2) and F2 : [0,∞) → B(V2) are
strongly continuous functions of bounded linear operators which satisfy

(a)
∫ ∞

L

F1(s)x(s)ds → 0 in V2 when L → ∞, uniformly for x ∈ V ;

(b) For each t ≥ 0, the set {x(s) : x ∈ V, 0 ≤ s ≤ t} is relatively compact in V1,

then the sets

W(t) =
{∫ t

0
F1(s)x(s)ds : x ∈ V

}
, t ≥ 0,
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and

W =
⋃

0≤t≤∞
W(t)

are relatively compact in V2. Moreover, if F2 is uniformly bounded on [0,∞) and

∫ t+h

t

F1(s)x(s)ds → 0,

as h → 0, uniformly for x ∈ V , then the set U = {zx : x ∈ V }, where

zx(t) = F2(t)

∫ ∞

t

F1(s)x(s)ds,

is relatively compact in C0(V2).

Proof Let (Kt )t≥0 be a family of compacts sets such that {x(s) : x ∈ V, s ∈
[0, t]} ⊆ Kt for every t ≥ 0. Since F1 is strongly continuous, then the set

F1Kt = {F1(s)y : y ∈ Kt, 0 ≤ s ≤ t}

is relatively compact in V2.
Let (K̃t )t≥0 be a nondecreasing family of compact and absolutely convex sets

such that F1Kt ⊂ K̃t for every t ≥ 0.
From the mean value theorem for the Bochner integral (see [90, Lemma 2.1.3]),

we infer that W(t) ⊆ tK̃t for all t > 0. On the other hand, for each ε > 0 there is a
constant L ≥ 0 such that

∥∥∥ ∫ ∞

L

F1(s)x(s)ds‖V2 ≤ ε

for all x ∈ V .
Using the sets K̃t it follows that W ⊆ LK̃L + Bε(0,V2), which yields W is

relatively compact in V2. Thus, the sets W(t), t ≥ 0, and W are relatively compact
in V2.

To establish the last assertion, we make use of Lemma 10.10. The hypothesis (b)
of Lemma 10.10 can be easily obtained as an immediate consequence of (a) and the
fact that F2 is uniformly bounded. Moreover, for every t ≥ 0 and x ∈ V , we have
that ∫ ∞

t

F1(s)x(s)ds ∈ W −W(t) ⊂ W −W = W1,



10.3 Existence Results for Some Second-Order Partial Functional Differential. . . 165

which proves that the set

U(t) =
{
F2(t)

∫ ∞

t

F1(s)x(s)ds : x ∈ V
}

is relatively compact in V2 for every t ≥ 0.
Finally, we prove that U is equi-continuous. To this end, we fix t ≥ 0. Since

elements ∫ ∞

t

F1(ξ)x(ξ) dξ, x ∈ V,

are in the compact set W1 (which is independent of t), and the family (F2(t))t≥0 is
strongly continuous in V2, for ε > 0 there exists δ > 0 such that

‖ F2(t + s)x − F2(t)x ‖ ≤ ε, x ∈ W1,

‖
∫ t+s

t

F1(ξ)x(ξ)dξ ‖ ≤ ε, x ∈ V,

for every 0 <| s |< δ with t + s ≥ 0. Consequently, for x ∈ V and 0 <| s |< δ

such that t + s ≥ 0, we get,

‖ F2(t + s)

∫ ∞

t+s

F1(ξ)x(ξ) dξ − F2(t)

∫ ∞

t

F1(ξ)x(ξ) dξ ‖

≤‖ (F2(t + s)− F2(t))

∫ ∞

t+s

F1(ξ)x(ξ)dξ ‖

+ ‖ F2(t) ‖‖
∫ t∨(t+s)

t∧(t+s)

F1(ξ)x(ξ) dξ ‖

≤ sup{‖ (F2(t + s)y − F2(t)y ‖: y ∈ W1}+ ‖ F2(t) ‖ ε,

≤ (1 + sup
θ≥0

‖ F2(θ) ‖)ε,

which implies that U is equi-continuous at t .

In the next results, for a locally integrable function x : [0,∞) → X, we denote
by zx, yx : [0,∞) → X the functions given by

zx(t) =
∫ t

0
C(t − s)x(s)ds

and

yx(t) =
∫ t

0
S(t − s)x(s)ds.
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Proposition 10.22 Assume that S(·) is pointwise almost periodic and that V ⊆
L1([0,∞),X) is a set with the following properties:

(a)
∫ ∞

L

‖x(s)‖ds → 0 when L → ∞, uniformly for x ∈ V ;

(b)
∫ t+s

t

‖x(ξ)‖ dξ → 0, when s → 0, uniformly for x ∈ V and t ≥ 0;

(c) for each t ≥ 0 the set {x(s) : 0 ≤ s ≤ t, x ∈ V } is relatively compact.

Then the sets {yx : x ∈ V } and {zx : x ∈ V } are relatively compact in AAP(X).

Proof We first establish that each function yx is asymptotically almost periodic. For
x ∈ V , we can write

yx(t) = S(t)

∫ t

0
C(s)x(s) ds − C(t)

∫ t

0
S(s)x(s) ds

= S(t)

∫ ∞

0
C(s)x(s) ds − S(t)

∫ ∞

t

C(s)x(s) ds

− C(t)

∫ ∞

0
S(s)x(s) ds + C(t)

∫ ∞

t

S(s)x(s) ds.

Since the sine function S(·) is pointwise almost periodic, it follows from [64,
Lemma 3.1] and [64, Theorem 3.2] that C(·) is also pointwise almost periodic.
Therefore, the first and third terms on the right-hand side define almost periodic
functions while the second and fourth terms are functions that vanish at ∞. Thus,
yx ∈ AAP(X).

From Proposition 10.21, we know that the integrals

∫ ∞

0
C(s)x(s)ds

and ∫ ∞

0
S(s)x(s)ds,

for x ∈ V, are included in a compact subset of X, which implies that the set formed
by the functions

S(·)
∫ ∞

0
C(s)x(s)ds − C(·)

∫ ∞

0
S(s)x(s)ds, x ∈ V,

is relatively compact in AP(X). The same Proposition enables us to infer that the
set
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{t → C(t)

∫ ∞

t

S(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds : x ∈ V }

is relatively compact in C0(X). This shows that {yx : x ∈ V } is relatively compact
in AAP(X).

We now prove that the set {zx : x ∈ V } is relatively compact in AAP(X). For
that we first show that the functions zx, x ∈ V, are uniformly continuous. First of
all, fix L > 0. Since C(·) is pointwise almost periodic, from (c) we have that

‖(C(t + s)− C(t))x(ξ)‖ → 0,

as s → 0, uniformly for t ≥ 0, 0 ≤ ξ ≤ L and x ∈ V . Therefore,

‖zx(t + s)− zx(t)‖

≤
∫ t∧(t+s)

0
‖C(t + s − ξ)x(ξ)− C(t − ξ)x(ξ)‖dξ

+ ‖
∫ t∨(t+s)

t∧(t+s)

C(t + s − ξ)x(ξ)dξ‖

≤
∫ L

0
sup

t≥0,x∈V
‖(C(t + s − ξ)− C(t − ξ))x(ξ)‖dξ

+ 2N
∫ ∞

L

‖x(ξ)‖dξ +N

∫ t∨(t+s)

t∧(t+s)

‖x(ξ)‖dξ.

Using conditions (a) and (b) we can appropriately choose L to show that the right-
hand side of the above inequality converges to 0 as s → 0, uniformly in t ≥ 0
and x ∈ V , which proves that each function zx is uniformly continuous on [0,∞).
Moreover, from the above, it is clear that the set {zx : x ∈ V } is uniformly equi-
continuous on [0,∞). Since zx is the derivative of yx , it follows from [113, Theorem
5.2] that {zx : x ∈ V } is a uniformly equi-continuous subset of AAP(X). Moreover,
from Proposition 10.21 we obtain that {zx(t) : x ∈ V } is relatively compact, for all
t ≥ 0.

Finally, we establish that {zx : x ∈ V } is equi-asymptotically almost periodic.
For a given ε > 0, there exists Lε > 0 such that

∫ ∞

Lε

‖x(s)‖ds ≤ ε/6N

for all x ∈ V .
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In addition, since the set {C(·)x(s) : 0 ≤ s ≤ Lε} is equi-almost periodic, there
is a relatively dense set Pε ⊆ [0,∞) such that

‖C(ξ + τ)x(s)− C(ξ)x(s)‖ ≤ ε

3Lε

,

for all ξ ≥ 0, 0 ≤ s ≤ Lε and every τ ∈ Pε. Hence, for t ≥ Lε and τ ∈ Pε, we
obtain

‖zx(t + τ)− zx(t)‖ ≤
∫ t

0
‖C(t + τ − s)x(s)− C(t − s)x(s)‖ds

+
∫ t+τ

t

‖C(t + τ − s)x(s) ‖ ds

≤
∫ Lε

0
‖C(t + τ − s)x(s)− C(t − s)x(s)‖ds

+3N
∫ ∞

Lε

‖x(s)‖ ds
≤ ε

which shows the assertion.
One completes the proof by applying Lemma 10.19 to the set {zx : x ∈ V }.
Using this result and proceeding as in the proof of Proposition 10.16 we obtain

the compactness of {yx : x ∈ V } with some weaker conditions.

Proposition 10.23 Assume that S(·) is almost periodic and that V ⊆
L1([0,∞),X) is uniformly bounded and satisfies the following properties:

(a)
∫ ∞

L

‖ x(s) ‖ ds → 0, when L → ∞, uniformly for x ∈ V ;

(b)
∫ t+s

t

‖x(ξ)‖ dξ → 0, as s → 0, uniformly for t ≥ 0 and x ∈ V ;

(c) for each t, δ ≥ 0, the set {S(δ)x(s) : 0 ≤ s ≤ t, x ∈ V } is relatively compact
in X.

Then {yx : x ∈ V } is relatively compact in AAP(X).

Proof Define for all x ∈ V , the function

ỹx(t) =
∫ t

0
S(s)x(s)ds.

Let 0 < ε < t ≤ a. Since the function s → S(s) is Lipschitz continuous, we
can choose points 0 = t1 < t2 . . . < tn = t such that ‖ S(s) − S(s′) ‖≤ ε for
s, s′ ∈ [ti , ti+1] and i = 1, 2, . . . .n − 1. For x ∈ V , then from the Mean Value
Theorem for the Bochner integral (see [90, Lemma 2.1.3]), we find that
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ỹx(t) =
n−1∑
i=1

∫ ti+1

ti

(S(s)− S(ti))x(s)ds +
n−1∑
i=1

∫ ti+1

ti

S(ti)x(s)ds

∈ Cε +
n−1∑
i=1

(ti+1 − ti ) co({S(ti)z(s) : s ∈ [0, ti], z ∈ V })

⊂ Cε + Kε,

where Kε is compact and diam(Cε) → 0 as ε → 0. This proves that W1(t) =
{ỹx(t); x ∈ V } is relatively compact in X. Moreover, proceeding as in the proof of
Proposition 10.21, we infer that

W =
⋃

0≤t≤∞
W(t)

and

U =
{ ∫ ∞

t

S(s)x(s)ds : x ∈ V, t ≥ 0
}

are also relatively compact in X.
To complete the proof, we consider one more time the decomposition

yx(t) = S(t)

∫ ∞

0
C(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds

−C(t)

∫ ∞

0
S(s)x(s)ds + C(t)

∫ ∞

t

S(s)x(s)ds.

Since the cosine function is pointwise almost periodic (see Remark 10.13), we infer
from Remark 10.15 and Lemma 10.10 that the set of functions

{
t → −C(t)

∫ ∞

0
S(s)x(s) ds + C(t)

∫ ∞

t

S(s)x(s)
}

is relatively compact in AAP(X). Moreover, using the fact that S(·) is almost
periodic and that S(t) is a compact operator for every t ≥ 0, we can prove from
Remark 10.15 and Lemma 10.10 that the set of functions

{
t → S(t)

∫ ∞

0
C(s)x(s)ds − S(t)

∫ ∞

t

C(s)x(s)ds : x ∈ V
}

is also completely continuous in AAP(X).
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The main result of this subsection can be formulated as follows:

Theorem 10.24 Assume that S(·) is almost periodic and that condition (H1) holds
with mf (·) and mg(·) in L1([0,∞)). Suppose, in addition, that for every t ≥ 0
and each r ≥ 0 the sets {S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)} and g([0, t] ×
Br(0,B)) are relatively compact in X. If

K

∫ ∞

0
(Nmg(s)+ Ñmf (s))ds <

∫ ∞

c

ds

W(s)
, (10.22)

where c = (KNH + M) ‖ ϕ ‖B +KÑ(‖ ξ ‖ + ‖ g(0, ϕ) ‖), then there exists a
mild solution u(·) ∈ AAP(B,X) to the system Eqs. (10.12)–(10.14).

Proof Let BAAP = {x : R → X : x0 ∈ B, x |[0,∞)∈ AAP(X)} endowed with
the semi-norm ‖x‖BAAP := ‖x0‖B + supt≥0 ‖x(t)‖ and Γ : BAAP → BAAP

be the operator defined by

Γ x(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)]

+
∫ t

0
C(t − s)g(s, xs)ds +

∫ t

0
S(t − s)f (s, xs)ds,

for t ≥ 0, and (Γ x)0 = ϕ.
By the integrability of the functions mf (·) and mg(·) and proceeding as in the

proof of Proposition 10.22 for the functions f (s, xs) and g(s, xs), we infer that
Γ (x) ∈ AAP(B,X). Furthermore, if we take a sequence (xn)n that converges
to x in the space AAP(B,X), then S(t − s)f (s, xn

s ) → S(t − s)f (s, xs) and
C(t − s)g(s, xn

s ) → C(t − s)g(s, xs), as n → ∞, a.e. for t, s ∈ [0,∞]. Let
L = sup{‖x‖BC, ‖xn‖BC : n ∈ N} and β = (K +M)L. From the inequalities

‖C(t − s)g(s, xn
s )− C(t − s)g(s, xs)‖ ≤ 2Nmg(s)Wg(β),

‖S(t − s)f (s, xn
s )− S(t − s)f (s, xs)‖ ≤ 2Ñmf (s)Wf (β),

and using the integrability of mf (·) and mg(·), we conclude that ‖ Γ xn −
Γ x ‖BAAP→ 0 when n → ∞. Thus, Γ is a continuous map from AAP(B,X)

into AAP(B,X).
On the other hand, proceeding as in the proof of Theorem 10.5, we conclude that

the set of functions {xλ ∈ AAP(B,X) : λΓ (xλ) = xλ, 0 < λ < 1} is uniformly
bounded on [0,∞).

Finally, we show that Γ is completely continuous. In order to establish this
assertion, we take a bounded set V ⊆ AAP(B,X). Since the sets of functions
Λ1 = {s → g(s, xs) : x ∈ V } and Λ2 = {s → f (s, xs) : x ∈ V }
satisfy the hypotheses of Propositions 10.22 and 10.23, respectively, we deduce that
Γ (V ) is relatively compact in AAP(X). The assertion is now a consequence of
Theorem 1.81.
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In Theorem 10.26 below, we prove the existence of an asymptotically almost
periodic mild solution to Eqs. (10.12)–(10.14) assuming that g(·) satisfies an
appropriate Lipschitz condition. For that, we need the following lemma.

Lemma 10.25 If B is a fading memory space and z ∈ BC(R;X) is a function such
that z0 ∈ B and z ∈ AAP(X), then t → zt ∈ AAP(B).

Theorem 10.26 Assume that the sine function S(·) is almost periodic and that B is
a fading memory space. Suppose, in addition, that the following conditions hold:

(a) For every t ≥ 0 and each r ≥ 0, the set

{
S(t)f (s, ψ) : (s, ψ) ∈ [0, t] × Br(0,B)

}
is relatively compact in X.

(b) There exists a function Lg ∈ L1([0,∞)) such that

‖ g(t, ψ1)− g(t, ψ2) ‖ ≤ Lg(t) ‖ ψ1 − ψ2 ‖B, (t, ψj ) ∈ [0,∞)× B.

(c) The condition (H1) is valid with mg,mf in L1([0,∞)) and

(K +M) lim inf
ξ→∞

W(ξ)

ξ

∫ ∞

0
(Nmg(s)+ Ñmf (s))ds < 1. (10.23)

Then there exists a mild solution u(·) ∈ AAP(X) of (10.12)–(10.14).

Proof Let BAAP = {x : R → X : x0 ∈ B, x |[0,∞)∈ AAP(X)} endowed with
the semi-norm defined by ‖x‖BAAP = ‖x0‖B + supt≥0 ‖x(t)‖. On this space, we
define the operators Γi : BAAP → BAAP , i = 1, 2, by

Γ1x(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)] +
∫ t

0
C(t − s)g(s, xs)ds,

Γ2x(t) =
∫ t

0
S(t − s)f (s, xs)ds,

for t ≥ 0, and (Γ1x)0 = ϕ and (Γ2x)0 = 0.
From the proof of Proposition 10.22, we infer that the functions

ζ(t) =
∫ t

0
S(t − s)g(s, xs)ds

and Γ2x are asymptotically almost periodic. It is easy to see that

ζ ′(t) =
∫ t

0
C(t − s)g(s, xs)ds.
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Moreover, since the function s → g(s, xs) is integrable on [0,∞) and

‖ζ ′(t + h)− ζ ′(t)‖ ≤
∫ h

0
N ‖ g(s, xs) ‖ ds

+N

∫ ∞

0
‖ g(s + h, xs+h)− g(s, xs) ‖ ds,

converge to zero as h → 0, uniformly for t ∈ [0,∞), we can conclude from
[113, Theorem 5.2] that Γ1x is also asymptotically almost periodic. This proof that
Γ1x, Γ2x are well defined and that Γ1, Γ2 are functions defined from BAAP into
BAAP .

Let y : R → X be the extension of ϕ to R such that

y(t) = C(t)ϕ(0)+ S(t)[ξ − g(0, ϕ)]

for t ≥ 0 and Γ : BAAP → BAAP be the map Γ = Γ1 +Γ2. We next prove that
there exists r > 0 such that Γ (Br(y,BAAP)) ⊂ Br(y,BAAP). Proceeding by
contradiction, we suppose that for each r > 0 there exist ur ∈ Br(y,BAAP) and
t r ≥ 0 such that ‖ Γ ur(tr )− y(tr ) ‖> r. Consequently,

r ≤ ‖ Γ ur(tr )− y(tr ) ‖

≤
∫ t r

0
(Nmg(s)+ Ñmf (s))W(‖ ur

s − ys ‖B + ‖ ys ‖B)ds

≤
∫ ∞

0
(Nmg(s)+ Ñmf (s))W((K +M)r + ρ)ds,

where ρ = (M +KNH) ‖ ϕ ‖B +KÑ ‖ ξ − g(0, ϕ) ‖, which yields

1 ≤ (K +M) lim inf
ξ→∞

W(ξ)

ξ

∫ ∞

0
(Nmg(s)+ Ñmf (s))ds.

Since this inequality contradicts Eq. (10.23), we obtain the assertion.
Let r > 0 such that Γ (Br(0,BAAP)) ⊂ Br(0,BAAP). Proceeding as in the

proof of Theorem 10.24, we can show that the map Γ2 is completely continuous.
Moreover, from the estimate

‖ Γ1u(t)− Γ1v(t) ‖ ≤ NK

∫ t

0
Lg(s)ds ‖ u− v ‖BAAP ,
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we infer that Γ1 is a contraction on BAAP , which enables us to conclude
that Γ is condensing on Br(0,BAAP). Now, the assertion is a consequence of
Theorem 1.80.

10.3.7 Asymptotically Almost Periodic Solutions to Some
Second-Order Integro-differential Systems

This subsection is devoted an illustrative example to the previous subsection and
consists of studying the existence of asymptotically almost periodic mild solutions
for the second-order partial differential equations given by

∂

∂t

[
∂u(t, ξ)

∂t
+ η(t)u(t, ξ)+

∫ t

−∞
α1(t, s)u(s, ξ)ds

]
= ∂2u(t, ξ)

∂ξ2

+
∫ t

−∞
α2(t, s)u(s, ξ)ds, (10.24)

for t ≥ 0 and ξ ∈ J = [0, π ], subject to the initial conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (10.25)

u(θ, ξ) = ϕ(θ, ξ), θ ≤ 0, ξ ∈ J, (10.26)

∂u(0, ξ)

∂t
= z(ξ), ξ ∈ J, (10.27)

where η(·) : R → R, αi : R2 → R (i = 1, 2) are continuous functions and ϕ, ξ are
some appropriate functions.

In order to cast the above system into an abstract version of the previous
subsection, we let X = (L2(0, π); ‖ · ‖2) and consider the operator A : D(A) ⊂
X → X defined by

D(A) =
{
u ∈ H 2(0, π) : u(0) = u(π) = 0

}
, Au = d2u

dx2 , u ∈ D(A).

It is well known that A is the infinitesimal generator of a strongly continuous
cosine function, (C(t))t∈R on X. Furthermore, A has discrete spectrum with
eigenvalues −n2, n ∈ N, with corresponding normalized eigenvectors given by

zn(ξ) =
(

2

π

)1/2

sin(nξ).
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Moreover, the following properties are fulfilled:

(a) The set {zn : n ∈ N} is an orthonormal basis of X;

(b) For u ∈ X, C(t)u =
∞∑
n=1

cos(nt)〈u, zn〉zn. It follows from this expression that

S(t)u =
∞∑
n=1

sin(nt)

n
〈u, zn〉zn.

Moreover, the sine function S(·) is periodic with S(t) being a compact operator
for all t ∈ R such that max{‖C(t)‖, ‖S(t)‖ } ≤ 1, for every t ∈ R.

As a phase space we choose the space B = Cr × Lp(ρ;X), r ≥ 0, 1 ≤ p < ∞
(see Example 10.2) and assume that the conditions (g-5)–(g-7) in the terminology
of [69] are valid. Note that under these conditions, the space B is a fading memory
space and that there exists K > 0 such that max{K(t),M(t)} ≤ K for all t ≥ 0, see
[69, Example 7.1.8] and [69, Proposition 7.1.5] for details.

By assuming that

Lg(t) = |η(t)| +
(∫ 0

−∞

[
α1(t, t + θ)

ρ(θ)

]2

dθ

)1/2

,

mf (t) =
(∫ 0

−∞

[
α2(t, t + θ)

ρ(θ)

]2

dθ

)1/2

,

are finite, for every t ≥ 0, we can define the operators g, f : R+ × B → X by the
mean of the expressions

g(t, ψ)(ξ) = η(t)ψ(0, ξ)+
∫ 0

−∞
α1(t, t + s)ψ(s, ξ)ds,

f (t, ψ)(ξ) =
∫ 0

−∞
α2(t, t + s)ψ(s, ξ)ds.

It is easy to see that g(t, ·) and f (t, ·) are bounded linear operators, as ‖
g(t, ·) ‖B(B,X)≤ Lg(t) and ‖ f (t, ·) ‖B(B,X)≤ mf (t) for every t ≥ 0. The next
results are a direct consequence of Theorem 10.26. Thus the details of the proof
will be omitted.

Proposition 10.27 Assume ϕ ∈ B, η ∈ X and that Lg(·),mf (·) are functions in
L1([0,∞)). If

2K
∫ ∞

0
(Lg(s)+mf (s))ds < 1, (10.28)

then there exists an asymptotically almost periodic mild solution to (10.24)–(10.27).
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To complete this subsection, we study the existence of asymptotically almost
periodic solutions for the system (10.16). To simplify the description and for sake
of brevity, we consider the case when d = 1. Assume that the functions β(·) and
∂β(·)
∂s

are continuous and that the expression

Lg(t) =
∣∣∣∣β(t, 0)

c

∣∣∣∣+ 1

| c |

(∫ 0

−∞

[
∂β(t, s)

∂s
ρ−1(s)

]2

ds

)1/2

defines a function in L1([0,∞)). By assuming that the solution u(·) of (10.16) is
known on [0,∞), and defining the function g : R× B → X by

g(t, ψ)(ξ) = β(t, 0)

c
ψ(0, ξ)+ 1

c

∫ ∞

0

∂β(t, s)

∂s
ψ(−s, ξ)ds,

we can transform system (10.16) into the abstract system (10.12)–(10.14).

Corollary 10.28 For every ϕ ∈ B and ξ ∈ X, there exists an asymptotically almost
periodic mild solution of Eq. (10.16) with u0 = ϕ.

Proof This result is a particular case of Proposition 10.27. We only observe that the
inequality (10.23) is automatically satisfied, as mf ≡ 0.

10.4 Exercises

1. Consider the functions f1, f2 : R×H 1
0 (Ω)×H 1

0 (Ω) → L2(Ω) are defined by

fi(t, u, θ)(x) = fi(t,∇u(x),∇θ(x)) = Kdi(t)

1 + |∇u(x)| + |∇θ(x)|
for x ∈ Ω, t ∈ R, i = 1, 2, where di : R �→ R are almost periodic functions.

a. Show that the functions fi (i = 1, 2) are jointly continuous.
b. Show that fi (i = 1, 2) are globally Lipschitz functions, that is, there exists

L > 0 such that

‖fi(t, u, θ)− fi(t, v, η)‖L2(Ω) ≤ L
(
‖u− v‖2

H 1
0 (Ω)

+ ‖θ − η‖2
H 1

0 (Ω)

) 1
2

for all t ∈ R, u, v, η and θ ∈ H 1
0 (Ω).

2. Prove Corollary 10.6.
3. Prove Theorem 10.8.
4. Prove Lemma 10.10.
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5. Prove Lemma 10.18.
6. Prove Lemma 10.19.
7. Prove Lemma 10.25.
8. Prove Proposition 10.27.

10.5 Comments

The existence results of Sect. 10.2 are based upon Baroun et al. [20] and Baroun
[29]. For additional reading on thermoelastic systems, we refer the reader to [14,
18, 24, 44, 65, 79], and [92].

The existence results of Sect. 10.2 are based upon Diagana et al. [50]. For
additional reading on the topics discussed in this section, we refer the reader to
Fattorini [57] and Travis and Webb [106, 107].



Appendix
List of Abbreviations and Notations

The following notations and abbreviations will be used in the rest of the book
without further explanation.
R—field of real numbers
C—field of complex numbers
(X, ‖ · ‖), (X, ‖ · ‖1), (Y, ‖ · ‖2), (V , ‖ · ‖V ), and (W , ‖ · ‖W )—Banach spaces
H —Denotes a generic Hilbert space over F
N—Denotes the set of positive integers
Z—Denotes the set of integers
Q—Denotes the field of rational numbers
R—Denotes the field of real numbers
R

n—The n-dimensional real numbers
C—Denotes the field of complex numbers
C

n—Denotes the n-dimensional complex numbers

S
1 =

{
z ∈ C : |z| = 1

}
Z+ = N ∪ {0}
R+ = [0,∞)

‖ · ‖—Denotes the Euclidean norm
| · |—Denotes the absolute value on F

Br(x,V )—Denotes the closed ball in V , centered at x with radius r

�p(N) = �p(N,RN) =
{
x = (x(t))t∈N : x(t) ∈ R

N for all t ∈ N,∑∞
t=1 ‖x(t)‖p < ∞

}
�∞(N) = �∞(N,RN) =

{
x = (x(t))t∈N : x(t) ∈ R

N, ∃M ≥ 0, ‖x(t)‖ ≤ M,

∀t ∈ N

}
(M, d)—Denotes a metric space
[x] = x + L = {x + � : � ∈ L}—denotes a coset

X \ L =
{
[x] : x ∈ X

}
—Denotes a quotient space
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(Ω,F , μ)—Denotes a measure space

Lp(Ω,μ) =
{
f : Ω �→ C measurable : ‖f ‖Lp = ‖f ‖p :=

[ ∫
Ω

|f (x)|pdμ
] 1

p

< ∞
}

Lp(Ω,μ) = Lp(Ω)

‖ · ‖Lp = ‖ · ‖p
L∞(Ω,μ) =

{
f : Ω �→ C measurable, ∃C ≥ 0 such that |f (x)| ≤ C

a.e. x ∈ Ω
}

L∞(Ω,μ) = L∞(Ω)

Dα = ∂ |α|

∂x
α1
1 ∂x

α2
2 ...∂x

αn
n

α = (α1, α2, ..., αn), αi ∈ N for i = 1, ..., n, and |α| = α1 + α2 + ...+ αn

Wk,p(Ω) :=
{
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ k

}
Wk,2(Ω) = Hk(Ω)

‖u‖k,p = ‖u‖Wk,p =
( ∑
|α|≤k

‖Dαu‖pp
) 1

p
if 1 ≤ p < ∞

‖u‖k,∞ = ‖u‖Wk,∞ = max|α|≤k
|Dαu|∞ if p = ∞

Ws,p(Ω) :=
{
u ∈ Wk,p(Ω) : |D

αu(x)−Dαu(y)|
‖x − y‖σ+ n

p

∈ Lp(Ω ×Ω), ∀α, |α| = k
}

BCm(J ;X) = {f ∈ Cm(J ;X) : f (k) ∈ BC(J ;X), k = 0, 1, ..., m}
‖f ‖BCm(J ;X) :=

m∑
k=0

‖f (k)‖∞, ∀f ∈ BCm(J ;X)

C0,α(J ;X) =
{
f ∈ BC(J ;X) : [f ]C0,α(J,X) = sup

t,s∈J,s<t

‖f (t)− f (s)‖
(t − s)α

< ∞
}

‖f ‖C0,α(J ;X) = ‖f ‖∞ + [f ]C0,α(J ;X)

Ck,α(J ;X) = {f ∈ BCk(J ;X) : f (k) ∈ C0,α(J ;X)}
‖f ‖Ck,α(J ;X) = ‖f ‖BCk(J ;X) + [f (k)]C0,α(J ;X)

Lip(J ;X) =
{
f ∈ BC(J ;X) : [f ]Lip(J ;X) = sup

t,s∈J,s<t

‖f (t)− f (s)‖
(t − s)

< ∞
}

‖f ‖ ˜Lip(J ;X)
= ‖f ‖∞ + [f ]Lip(J ;X)

C
0,α
b (Ω) =

{
f : Ω �→ C bounded continuous, [f ]Cα

b (Ω) = supx �=y∈Ω
|f (x)−f (y)|
‖x−y‖α

< ∞
}

‖f ‖
C

0,α
b (Ω)

= ‖f ‖∞ + [f ]
C

0,α
b (Ω)

C
k,α
b (Ω)—Consists of all functions f : Ω �→ C which are k-times continuously

differentiable functions with bounded partial derivatives such that Dβf ∈ C
0,α
b (Ω)

‖u‖
C

k,α
b (Ω)

=
∑
|β|≤k

‖Dβu‖∞ +
∑
|β|=k

[Dβ ]
C

0,α
b (Ω)

(X∗, ‖ · ‖∗)—Denotes the dual of the normed vector space (X, ‖ · ‖)
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B(X,Y)—Denotes the collection of all bounded linear operators from X to Y

‖ · ‖—Denotes the operator norm defined by sup
x∈X\{0}

‖Ax‖
‖x‖

O(X)—Denotes the class of invertible linear operator defined X

N(A) = Ker (A) =
{
x ∈ X : Ax = 0

}
—Kernel of A

R(A) =
{
Ax : x ∈ X

}
—Range of A

D(A)—Denotes the domain of A

G (A) =
{
(x,Ax) : x ∈ D(A)

}
—Graph of A

F (X,Y)—Denotes the class of finite rank operators from X to Y

K (X,Y)—Denotes the class of compact linear operators
‖x‖D(A) = ‖x‖ + ‖Ax‖ for all x ∈ D(A)—Graph norm
[D(A)] = (D(A), ‖ · ‖D(A))

ρ(A) =
{
λ ∈ C : (λI − A)−1 ∈ B(X)

}
—Resolvent set of A

σ = C \ ρ(A)—Spectrum of A
Φ(X)—Denotes the collection of Fredholm operators

σess(A) =
{
λ ∈ C : λI − A is not a Fredholm operator of index 0

}
—Essential

spectrum
R(λ,A) = RA

λ = (λI − λ)−1—Resolvent of A

Sθ,ω :=
{
λ ∈ C : λ �= ω, | arg(λ− ω)| < θ

}
—Sector

AP(R,X)—Denotes the collection of almost periodic functions
AP(Z)—Denotes the collection of almost periodic sequences
M(f )—Denotes the mean of f
AAP(X)—Denotes the class of asymptotically almost periodic functions
AAP(Z)—Denotes the class of asymptotically almost periodic sequences
bAP (Z× Z,Rk)—Denotes the class of bi-almost periodic sequences
B2(Z,RN)—Denotes the class of Besicovitch almost periodic sequences
S
β
α —Denotes an (α, α)β -resolvent family

T
β
α —Denotes an (α, 1)β -resolvent family

n := !β"—Denotes the smallest integer greatest than or equal to β

D
β
t u(t) = dn

dtn

[ ∫ t

0
gn−β(t − s)u(s)ds

]
, t > 0—Riemann–Liouville fractional

derivative

D
β
t u(t) = D

n−β
t u(n)(t) =

∫ t

0
gn−β(t − s)u(n)(s)ds—Caputo fractional derivative

(f ∗ g)(t) :=
∫ t

0
f (t − s)g(s)ds—Convolution

gα+β = gα ∗ gβ for all α, β ≥ 0

X
A
α :=

{
x ∈ X : ‖x‖Aα := supr>0 ‖rα(A− ζ )R(r,A− ζ )x‖ < ∞

}
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Strict contraction, 9
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T
Temperature, 151
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U
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Variation of temperature, 140
Vertical deflection, 140
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