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Preface

The 14th International Workshop on Coalgebraic Methods in Computer Science,
CMCS 2018, was held during April 14–15, 2018, in Thessaloniki, Greece, as a satellite
event of the Joint Conference on Theory and Practice of Software, ETAPS 2018.
Coalgebras allow for a uniform treatment of a large variety of state-based dynamical
systems, such as transition systems, automata (including weighted and probabilistic
variants), Markov chains, and game-based systems. Over the last two decades, coal-
gebra has developed into a field of its own interest, presenting a deep mathematical
foundation, a growing field of applications, and interactions with various other fields
such as reactive and interactive system theory, object-oriented and concurrent pro-
gramming, formal system specification, modal and description logics, artificial intel-
ligence, dynamical systems, control systems, category theory, algebra, analysis, etc.
The aim of the workshop is to bring together researchers with a common interest in the
theory of coalgebras, their logics, and their applications.

Previous workshops of the CMCS series were held in Lisbon (1998), Amsterdam
(1999), Berlin (2000), Genova (2001), Grenoble (2002), Warsaw (2003), Barcelona
(2004), Vienna (2006), Budapest (2008), Paphos (2010), Tallinn (2012), Grenoble
(2014), and Eindhoven (2016). Since 2004, CMCS has been a biennial workshop,
alternating with the International Conference on Algebra and Coalgebra in Computer
Science (CALCO).

The CMCS 2018 program featured a keynote talk by Samson Abramsky (University
of Oxford, UK), an invited talk by Clemens Kupke (University of Strathclyde, UK),
and an invited talk by Daniela Petrişan (Université Paris Diderot, France). In addition, a
special session on categorical quantum computation was held, featuring invited tuto-
rials by Bob Coecke (University of Oxford, UK) and Aleks Kissinger (Radboud
University Nijmegen, The Netherlands).

This volume contains revised regular contributions (10 accepted out of 17 sub-
missions) and the abstracts of two keynote/invited talks. All regular contributions were
refereed by three reviewers. Special thanks go to all the authors for the high quality
of their contributions, to the reviewers and Program Committee members for their
thorough reviewing and help in improving the papers presented at CMCS 2018, and to
all the participants for active discussions.

May 2018 Corina Cîrstea
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Relating Structure and Power:
Comonadic Semantics for Computational

Resources
Extended Abstract

Samson Abramsky(B) and Nihil Shah

Department of Computer Science, University of Oxford, Oxford, UK
samson.abramsky@cs.ox.ac.uk, nihil@berkeley.edu

Abstract. Combinatorial games are widely used in finite model theory,
constraint satisfaction, modal logic and concurrency theory to character-
ize logical equivalences between structures. In particular, Ehrenfeucht-
Fräıssé games, pebble games, and bisimulation games play a central role.
We show how each of these types of games can be described in terms of
an indexed family of comonads on the category of relational structures
and homomorphisms. The index k is a resource parameter which bounds
the degree of access to the underlying structure. The coKleisli categories
for these comonads can be used to give syntax-free characterizations of
a wide range of important logical equivalences. Moreover, the coalge-
bras for these indexed comonads can be used to characterize key com-
binatorial parameters: tree-depth for the Ehrenfeucht-Fräıssé comonad,
tree-width for the pebbling comonad, and synchronization-tree depth for
the modal unfolding comonad. These results pave the way for systematic
connections between two major branches of the field of logic in computer
science which hitherto have been almost disjoint: categorical semantics,
and finite and algorithmic model theory.

1 Introduction

There is a remarkable divide in the field of logic in Computer Science, between
two distinct strands: one focussing on semantics and compositionality (“Struc-
ture”), the other on expressiveness and efficiency (“Power”). It is remarkable
because these two fundamental aspects of our field are studied using almost dis-
joint technical languages and methods, by almost disjoint research communiities.
We believe that bridging this divide is a major issue in Computer Science, and
may hold the key to fundamental advances in the field.

In this paper, we develop a novel approach to relating categorical semantics,
which exemplifies the first strand, to finite model theory, which exemplifies the
second. It builds on the ideas introduced in [1], but goes much further, showing
clearly that there is a strong and robust connection, which can serve as a basis
for many further developments.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
C. Ĉırstea (Ed.): CMCS 2018, LNCS 11202, pp. 1–5, 2018.
https://doi.org/10.1007/978-3-030-00389-0_1
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1.1 The Setting

Relational structures and the homomorphisms between them play a fundamen-
tal rôle in finite model theory, constraint satisfaction and database theory. The
existence of a homomorphism A → B is an equivalent formulation of constraint
satisfaction, and also equivalent to the preservation of existential positive sen-
tences [4]. This setting also generalizes what has become a central perspective
in graph theory [5].

1.2 Model Theory and Deception

In a sense, the purpose of model theory is “deception”. It allows us to see struc-
tures not “as they really are”, i.e. up to isomorphism, but only up to definable
properties, where definability is relative to a logical language L. The key notion
is logical equivalence ≡L. Given structures A, B over the same vocabulary:

A ≡L B Δ⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

If a class of structures K is definable in L, then it must be saturated under ≡L.
Moreover, for a wide class of cases of interest in finite model theory, the converse
holds [6].

The idea of syntax-independent characterizations of logical equivalence is
quite a classical one in model theory, exemplified by the Keisler-Shelah theo-
rem [10]. It acquires additional significance in finite model theory, where model
comparison games such as Ehrenfeucht-Fraissé games, pebble games and bisim-
ulation games play a central role [7].

We offer a new perspective on these ideas. We shall study these games, not as
external artefacts, but as semantic constructions in their own right. Each model-
theoretic comparison game encodes “deception” in terms of limited access to the
structure. These limitations are indexed by a parameter which quantifies the
resources which control this access. For Ehrenfeucht-Fraissé games, this is the
number of rounds; for pebble games, the number of pebbles; and for bisimulation
games, the modal depth.

2 Main Results

We now give a conceptual overview of our main results. Technical details are
provided in [2].

We shall consider three forms of model comparison game: Ehrenfeucht-Fraissé
games, pebble games and bisimulation games [7]. For each of these notions of
game G, and value of the resource parameter k, we shall define a corresponding
comonad Ck on the category of relational structures and homomorphisms over
some relational vocabulary. For each structure A, CkA is another structure over
the same vocabulary, which encodes the limited access to A afforded by playing
the game on A with k resources. There is always an associated homomorphism
εA : CkA → A (the counit of the comonad), so that CkA “covers” A. Moreover,
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given a homomorphism h : CkA → B, there is a Kleisli coextension homomor-
phism h∗ : CkA → CkB. This allows us to form the coKleisli category Kl(Ck)
for the comonad. The objects are relational structures, while the morphisms
from A to B in Kl(Ck) are exactly the homomorphisms of the form CkA → B.
Composition of these morphisms uses the Kleisli coextension. The connection
between this construction and the corresponding form of game G is expressed by
the following result:

Theorem 1. The following are equivalent:

1. There is a coKleisli morphism CkA → B
2. Duplicator has a winning strategy for the existential G-game with k resources,

played from A to B.
The existential form of the game has only a “forth” aspect, without the “back”.
This means that Spoiler can only play in A, while Duplicator only plays in B.
This corresponds to the asymmetric form of the coKleisli morphisms CkA → B.
Intuitively, Spoiler plays in CkA, which gives them limited access to A, while
Duplicator plays in B. The Kleisli coextension guarantees that Duplicator’s
strategies can always be lifted to CkB; while we can always compose a strat-
egy CkA → CkB with the counit on B to obtain a coKleisli morphism.

This asymmetric form may seem to limit the scope of this approach, but in
fact this is not the case. For each of these comonads Ck, we have the following
three equivalences:

– A �k B iff there are coKleisli morphisms CkA → B and CkB → A. Note
that there need be no relationship between these morphisms.

– A ∼=Kl(Ck) B iff A and B are isomorphic in the coKleisli category Kl(Ck). This
means that there are morphisms CkA → B and CkB → A which are inverses
of each other in Kl(Ck).

Clearly, ∼=Kl(Ck) strictly implies �k. We can also define an intermediate “back-
and-forth” equivalence ↔k, parameterized by a winning condition WA,B ⊆
CkA × CkB.

For each of our three types of game, there are corresponding fragments Lk

of first-order logic:

– For Ehrenfeucht-Fraissé games, Lk is the fragment of quantifier-rank ≤ k.
– For pebble games, Lk is the k-variable fragment.
– For bismulation games over relational vocabularies with symbols of arity at

most 2, Lk is the modal fragment [3] with modal depth ≤ k.

In each case, we write ∃Lk for the existential positive fragment of Lk, and L#
k

for the extension of Lk with counting quantifiers [7].
We can now state our first main result, in a suitably generic form.
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Theorem 2. For finite structures A and B:

(1) A ≡∃Lk B ⇐⇒ A �k B.

(2) A ≡Lk B ⇐⇒ A ↔k B.

(3) A ≡L#
k B ⇐⇒ A ∼=Kl(Ck) B.

Note that this is really a family of three theorems. Thus in each case, we capture
the salient logical equivalences in syntax-free, categorical form.

We now turn to the significance of indexing by the resource parameter k.
When k ≤ l, we have a natural inclusion morphism CkA → ClA, since playing
with k resources is a special case of playing with l ≥ k resources. This tells us
that the smaller k is, the easier it is to find a morphism CkA → B. Intuitively,
the more we restrict Spoiler’s abilities to access the structure of A, the easier it
is for Duplicator to win the game.

The contrary analysis applies to morphisms A → CkB. The smaller k is, the
harder it is find such a morphism. Note, however, that if A is a finite structure
of cardinality k, then A �k CkA. In this case, with k resources we can access
the whole of A. What can we say when k is strictly smaller than the cardinality
of A?

It turns out that there is a beautiful connection between these indexed
comonads and combinatorial invariants of structures. This is mediated by the
notion of coalgebra, another fundamental (and completely general) aspect of
comonads. A coalgebra for a comonad Ck on a structure A is a morphism
A → CkA satisfying certain properties. We define the coalgebra number of a
structure A, with respect to the indexed family of comonads Ck, to be the least
k such that there is a Ck-coalgebra on A.

We now come to our second main result.

Theorem 3.

– For the pebbling comonad, the coalgebra number of A corresponds precisely to
the treewidth of A.

– For the Ehrenfeucht-Fraissé comonad, the coalgebra number of A corresponds
precisely to the tree-depth of A [8].

– For the modal comonad, the coalgebra number of A corresponds precisely to
the forest depth of A.

The main idea behind these results is that coalgebras on A are in bijective cor-
respondence with decompositions of A of the appropriate form. We thus obtain
categorical characterizations of these key combinatorial invariants.
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Coalgebraic Logics & Duality

Clemens Kupke(B)

Department of Computer and Information Sciences, University of Strathclyde,
Glasgow, Scotland

clemens.kupke@strath.ac.uk

Abstract. I will provide a brief introduction to coalgebraic modal logics
and highlight a few central concepts concerning these logics. After that
I will outline my current research in the area.

This note is not a survey of coalgebraic logics such as [1,2]. Instead, I am
going to highlight ideas that continue to be important for my research within
the area. A leitmotif is the fundamental role played by duality theory.

1 Logics for Coalgebras

The concepts behaviour and observation are central for the coalgebraic modelling
of systems. Whereas behaviour is formalised within the theory of Universal Coal-
gebra [3] via bisimilarity and finality, it is less clear how to devise a matching
notion of observations that allows to formally specify, verify and reason about
this behaviour. Providing such a theory of observations is an important goal that
has been driving the development of coalgebraic logics.

Why Modal Logic? A simple answer to this question is that basic modal logic
is the logic of Kripke frames and Kripke frames are coalgebras for the covariant
power set functor P. More importantly, modal logics usually express properties
that are invariant under bisimulations which matches our intuition that formulas
of a coalgebraic logic should allow to observe coalgebraic behaviour. In addition
to that, a more categorical answer was provided in [4–6] where it was shown
that the abstract relationship between coalgebra and modal logic dualises the
fundamental link between algebra and equational logic. A basic problem that had
to be overcome was to devise suitable (and usable!) modal languages that would
allow to specify properties about coalgebras. Probably the two most successful
proposals where on the one hand Moss’ ∇-modality [7,8] (which originally was
denoted by Δ) that made the radical step to use the coalgebraic type functor
as a syntax constructor of the logic and, on the other hand, Pattinson’s logic
given by predicate liftings [9]. Another important line of research was to use the
syntactic structure of polynomial functors to inductively define corresponding
modal operators [10–12]. This research helped to develop one of the key features

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
C. Ĉırstea (Ed.): CMCS 2018, LNCS 11202, pp. 6–12, 2018.
https://doi.org/10.1007/978-3-030-00389-0_2
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of coalgebraic modal logics: languages and deduction systems can be composed
in an elegant, seamless fashion [13,14] that mirrors the composition of functors.

Expressive Languages. One criterion for what a suitable language for spec-
ifying coalgebra is, is the so-called Hennessy-Milner property stating that two
coalgebra states are bisimilar iff they satisfy the same formulas of the language.
A language that satisfies this property is often called expressive. It is clear that
expressive languages do not exist for functors for which there is no final coalge-
bra [15–17]. An important positive result in coalgebraic modal logic states that
for finitary set functors there is a always an expressive language of predicate lift-
ings [18]. Its proof uses an alternative characterisation of predicate liftings via
the Yoneda Lemma. Similarly, for finitary, weak pullback preserving set functors,
the ∇-language is always expressive, a statement that is easily proven using ter-
minal sequence induction. Other positive results include functors on the category
of Stone spaces [19] and measure spaces [20]. In these cases the proof of expres-
sivity goes via a logical construction of final coalgebras that proves expressivity
of the language at the same time as completeness of the logic.

Logics via a Dual Adjunction. All modal languages for coalgebras can be
abstractly described via a dual adjunction

C
F

��
T

�� ⊥ Dop

G

�� L�� (1)

together with a natural transformation δ : L ◦ F → F ◦ T , sometimes referred to
as the “one-step semantics” of the language. One of the first papers advocating
this view was probably [21] but only for the restricted case of the well-known dual
equivalence between the category of Stone Spaces and the category of Boolean
algebras whereas the more general picture above was fully developed in [22]. The
abstract approach allows on the one hand to formulate properties of the logic
as properties of δ, eg., completeness of the logic is linked to δ being componen-
twise mono whereas expressivity to its mate δ� : T ◦ G → G ◦ L having that
property (cf. [22,23]). Since then several researchers have pushed this approach
significantly further covering - for example - positive modal logics [24], process
algebra [25] and logics for trace equivalence [26], to name just a few.

2 The Power Law for ∇
A Distributive Law For ∇. While the duality-based approach to coalgebraic
logics originated for logics based on predicate liftings, it is not too difficult to
see that Moss’ original ∇-logic also fits into the framework [2]. Key for showing
this is the following distributive law

ρ∇ : T ◦ P → P ◦ T

π �→ {t ∈ TX | (t, π) ∈ T (∈)}
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that exists for all weak pullback preserving set functors T (the law has been
called the power law in [27]). Here T denotes the unique extension of the set
functor T to a relator [28]. The significance of this law, however, goes far beyond
being the one-step semantics of the ∇-logic. It forms the basis of the definition
of so-called redistributions [29,30]. Roughly speaking, an element Ξ ∈ TPX is
called redistribution of some Π ∈ PTX if Π ⊆ ρ∇(Ξ). Redistributions allow to
formulate an important logical distributive law for the ∇-logic

∧

π∈Π

∇π ↔
∨

Ξ∈SRD(Π)

∇(T∧)(Ξ). (2)

where SRD(Π) the collection of all (slim) redistributions of Π. The law is the
key for the work [30,31] developing a complete deduction system for the ∇-logic
that is entirely parametric in the set functor T .

Coalgebraic Fixpoint Logics. The coalgebraic logics that I have discussed
so far can only formulate the finite-step behaviour of a coalgebra. For prop-
erties such as liveness (“something will happen infinitely often in the future”)
and safety (“at no point in the future the systems will crash”) we need to be
able to specify the ongoing, possibly infinite behaviour. A coalgebraic treatment
of fixpoint-logics is difficult as duality-based techniques cannot be applied eas-
ily [32]. This makes completeness proofs for such logics notoriously hard. Nev-
ertheless these logics have been studied successfully on a coalgebraic level. In
the first instance, the focus was on automata for coalgebraic fixpoint logics that
employed the ∇-operator [33]. The above logical distributive law (2) provided
the key to prove important closure properties [29] of these “coalgebra automata”
and thus a general finite model property and decidability result. After these ini-
tial proof-of-concept results attention shifted to fixpoint logics using predicate
liftings. Both automata [34] and tableau-systems [35] were developed - the role
of the power law and of redistributions is played by the assumption that the
given predicate liftings come with a sound and complete axiomatisation via so-
called one-step rules [36]. Apart from these results on checking satisfiability of
coalgebraic fixpoint logic research on complete axiomatisations also made grad-
ual progress, first for so-called flat coalgebraic fixpoint logics [37,38], later for
coalgebraic dynamic logics [39] and finally with a recent breakthrough result on
completeness for the full coalgebraic μ-calculus [40].

3 Current Research

I am now going to list research directions within coalgebraic logic that I am
currently focusing on and that I am planning to discuss in my talk.

Coalgebra Automata and Duality. Coalgebra automata play an important
role for studying the coalgebraic μ-calculus: not only do they provide a tool
for deciding satisfiability but they are also instrumental in completeness proofs,
cf. e.g. [40]. Building on our recent work for game logic [41] we are working
on devising automata for coalgebraic dynamic logics. Furthermore we plan to
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develop automata that operate on coalgebras over Stone Spaces. A first step in
this direction was made in [42] where we obtained a characterisation of the clopen
semantics of the (standard) μ-calculus in terms of parity games. The long term
goal is a completeness proof for coalgebraic fixpoint logics via a duality theoretic
argument.

Learning and Duality. In recent work [43] we devised a generalisation of
Angluin’s well-known L∗-algorithm for learning regular languages [44]. The gen-
eralisation can be summarised in the following (informally stated) theorem that
holds for any finitary set functor T .

Theorem 1. Let (X, x) be a pointed T -coalgebra that is behaviourally equivalent
to a finite well-pointed (=minimal & reachable) T -coalgebra (Y, y). Let L be an
expressive language for T -coalgebras. Our algorithm determines the well-pointed
coalgebra (Y, y) using queries and counter-examples from L.
A key observation that led to the algorithm is that Angluin’s algorithm essen-
tially learns modal filtrations. These filtrations can be defined relative to any
coalgebraic logic. In my talk I will discuss the above theorem and report on
ongoing work on fitting filtrations and thus learning into the dual adjunction
framework of coalgebraic logic.

Possible Application: Iterated Games. In our recent paper [45] we use
the framework of open games [46] to represent an infinitely iterated strategic
game (such as the well-known Prisoner’s Dilemma) as a final coalgebra. As a
byproduct, this work allows to characterise subgame perfect equilibiria using
the (standard) coalgebraic μ-calculus. To give the reader a rough idea, let me
spell out some of the details. Consider a simple game (think of the Prisoner’s
Dilemma) with set of moves Y where an element of Y represents the moves
played by all players simultaneously. A play of the infinitely iterated game is an
infinite sequence of moves ρ ∈ Y ω, strategies in this game are pointed coalgebras
of the form

〈now, ltr〉 : X → Y × XY

where at each state x ∈ X the coalgebra map determines the next move now(x)
and moves to the next state ltr(x)(y′) depending on which move y′ ∈ Y has been
actually carried out in one round of the game. Pay-off functions for the infinitely
iterated game are of type k : Y ω → R (where R is typically of the form R

n for
an n-player game). This leads us to define a coalgebra

〈now, ltr〉 : (X × RY ω

) −→ Y × (X × RY ω

)Y

by putting

now(x, k) := now(x)
ltr(x, k) := λy.〈ltr(x)(y), ky〉
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where ky(ρ) := k(yρ) for y ∈ Y , ρ ∈ Y ω. The intuition behind this definition
is to record the current strategy of the players and the payoff function - both
based on the history of the game played thus far. With these definitions in place
it is not difficult to see that subgame perfect equilibria in the infinitely repeated
game can be characterised via a μ-calculus formula ψ = νX.P ∧�X for a suitable
predicate P that is defined using the equilibrium of the stage game. The obtained
characterisation has the following form:

(x, k) |= ψ iff x represents an s.p.equilibrium of the game with payoff k.

While the coalgebra 〈now, ltr〉 will in general be infinite, assumptions on the
pay-off function (such as discounted sum) will allow us to obtain a finite equiv-
alent coalgebra. In my talk I will provide the details of this construction and I
will explain how this observation connects the afore mentioned automata and
learning techniques to game theory.

Acknowledgements. The overview of current research is based on joint work with
Simone Barlocco, Nick Bezhanisvili, Neil Ghani, Helle Hvid Hansen, Alasdair Lambert,
Johannes Marti, Fredrik Nordvall Forsberg, Jurriaan Rot and Yde Venema.
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logic. In: Adámek, J. (ed.) Proceedings of the Workshop on Coalgebraic Methods
in Computer Science (CMCS). Electronic Notes in Theoretical Computer Science,
vol. 106 (2004)

22. Klin, B.: Coalgebraic modal logic beyond sets. ENTCS 173, 177–201 (2007)
23. Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logics. J. Log. Comput.

20(5), 1041–1068 (2010)
24. Dahlqvist, F., Kurz, A.: The positivication of coalgebraic logics. In: Bonchi, F.,

König, B. (eds.) CALCO 2017. LIPIcs, vol. 72, pp. 9:1–9:15 (2017)
25. Klin, B.: Bialgebraic methods and modal logic in structural operational semantics.

Inf. Comput. 207(2), 237–257 (2009)
26. Klin, B., Rot, J.: Coalgebraic trace semantics via forgetful logics. Log. Methods

Comput. Sci. 12(4) (2016)
27. Jacobs, B.: Trace semantics for coalgebras. ENTCS 106, 167–184 (2004)
28. Rutten, J.: Relators and metric bisimulation (extended abstract). Electron. Notes

Theor. Comput. Sci. 11, 1–7 (1998)
29. Kupke, C., Venema, Y.: Coalgebraic automata theory: basic results. Log. Methods

Comput. Sci. 4(4) (2008)
30. Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality.

Log. Methods Comput. Sci. 8(3) (2012)
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Abstract. A cyclic proof system gives us another way of representing
inductive and coinductive definitions and efficient proof search. Podelski-
Rybalchenko termination theorem is important for program termina-
tion analysis. This paper first shows that Heyting arithmetic HA proves
Kleene-Brouwer theorem for induction and Podelski-Rybalchenko the-
orem for induction. Then by using this theorem this paper proves the
equivalence between the provability of the intuitionistic cyclic proof sys-
tem and that of the intuitionistic system of Martin-Lof’s inductive defi-
nitions when both systems contain HA.

1 Introduction

This paper studies two subjects: intuitionistic Podelski-Rybalchenko theorem for
induction, and equivalence between intuitionistic system of Martin-Löf’s induc-
tive definitions and an intuitionistic cyclic proof system.

Podelski-Rybalchenko theorem [18] states that if a transition invariant is a
finite union of well-founded relations then the transition invariant is also well-
founded. This gives us good sufficient conditions for analysis of program termi-
nation [18]. Intuitionistic provability of this theorem is also interesting; if we can
show this theorem is provable in some intuitionistic logical system, the theorem
also gives us not only termination but also an upper bound of computation steps
of a given program. For this purpose, we have to replace well-foundedness in the
theorem by induction principle, since well-foundedness is a property of negation
of existence and induction principle can show a property of existence. We say
Podelski-Rybalchenko theorem for induction when we replace well-foundedness
by induction principle in Podelski-Rybalchenko theorem. [3] shows Podelski-
Rybalchenko theorem for induction is provable in intuitionistic second-order
logic. [5] shows that this theorem for induction is provable in Peano arithmetic,
by using the fact that Peano arithmetic can formalize Ramsey theorem. However
until now it was not known whether Podelski-Rybalchenko theorem for induc-
tion is provable in some intuitionistic first-order logic. This paper will show this
theorem for induction is provable in Heyting arithmetic and answer this question.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
C. Ĉırstea (Ed.): CMCS 2018, LNCS 11202, pp. 13–33, 2018.
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An inductive/coinductive definition is a way to define a predicate by an
expression which may contain the predicate itself. The predicate is interpreted
by the least/greatest fixed point of the defining equation. Inductive/coinductive
definitions are important in computer science, since they can define useful recur-
sive data structures such as lists, trees, and streams, and useful notions such
as bisimulations. Inductive definitions are important also in mathematical logic,
since they increase the proof theoretic strength. Martin-Löf’s system of induc-
tive definitions given in [16] is one of the most popular systems of inductive
definitions. This system has production rules for an inductive predicate, and the
production rule determines the introduction rules and the elimination rules for
the predicate.

[8,11] proposed an alternative formalization of inductive definitions, called
a cyclic proof system. A proof, called a cyclic proof, is defined by proof search,
going upwardly in a proof figure. If we encounter the same sequent (called a
bud) as some sequent we already passed (called a companion) we can stop. The
induction rule is replaced by a case rule, for this purpose. The soundness is
guaranteed by some additional condition, called a global trace condition, which
can show the case rule decreases some measure of a bud from that of the com-
panion. In general, for proof search, a cyclic proof system can find an induction
formula in a more efficient way than Martin-Löf’s system, since a cyclic proof
system does not have to choose fixed induction formulas in advance. A cyclic
proof system enables us to get efficient implementation of theorem provers with
inductive definitions [7,9,10,12]. A cyclic proof system can also give us another
logical system for coinductive predicates, since a coinductive predicate is a dual
of an inductive predicate, and sequent calculus is symmetric for this dual.

[8,11] investigated Martin-Löf’s system LKID of inductive definitions in
classical logic for the first-order language, and the cyclic proof system CLKIDω

for the same language, showed the provability of CLKIDω includes that of
LKID, and conjectured the equivalence.

As the second subject, this paper studies the equivalence for intuitionistic
logic, namely, the provability of the intuitionistic cyclic proof system, called
CLJIDω, is the same as that of the intuitionistic system of Martin-Lof’s induc-
tive definitions, called LJID. This question is theoretically interesting, and
answers will potentially give new techniques of theorem proving by cyclic proofs
to type theories with inductive/coinductive types and program extraction by
constructive proofs.

This paper first points out that the countermodel of [4] also shows the equiv-
alence is false in general. Then this paper shows the equivalence is true under
arithmetic, namely, the provability of CLJIDω is the same as that of LJID,
when both systems contain Heyting arithmetic HA.

There are not papers that study the equivalence for intuitionistic logic or
Kleene-Brouwer theorem for induction in intuitionistic first-order logic. For
Podelski-Rybalchenko theorem for induction, [3] intuitionistically showed it but
the paper used second-order logic.
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Section 2 proves Kleene-Brouwer theorem for induction and Podelski-
Rybalchenko theorem for induction. Section 3 defines LJID and CLJIDω and
discuss a cyclic proof system for streams. Section 4 discusses the countermodel,
defines CLJIDω + HA and LJID + HA, states the equivalence theorem, and
explains ideas of the equivalence proof. Section 5 discusses proof transforma-
tion and proves the equivalence theorem. Section 6 discusses related work. We
conclude in Sect. 7.

2 HA-Provable Podelski-Rybalchenko Theorem
for Induction

This section will prove Podelski-Rybalchenko theorem for induction, inside Heyt-
ing arithmetic HA. First we will prove Kleene-Brouwer theorem for induction,
inside HA. This is done by carefully using some double induction. This theorem
is new. Next we will show induction for the set MS of monotonically-colored
subsequences. Monotonically-colored subsequences are used in ordinary proof of
Ramsey theorem and we will show some intuitionistic property of them. Then
by applying Kleene-Brouwer theorem to a part of MS and some orders >u,Left

and >u,Right, we will obtain two Kleene-Brouwer relations >KB1,r and >KB2,r

and show their induction principle. These two relations are simple but necessary
preparation for the next relation. Then by applying Kleene-Brouwer theorem to
some lifted tree determined by >KB2,r and the relation >KB1,r, we will obtain
a Kleene-Brouwer relation >KB,r and show its induction principle. This relation
is a key of the proof. Then we will show that induction for decreasing transi-
tive sequences is reduced to induction for Erdös trees with the relation >KB,r.
An Erdös tree is some set of monotonically-colored sequences and implicitly
used in ordinary proof of Ramsey theorem. Since Erdös trees are in the lifted
tree, by combining them, finally we will prove Podelski-Rybalchenko theorem for
induction.

2.1 Kleene-Brouwer Theorem

We will show Kleene-Brouwer theorem for induction, which states that if we have
both induction principle for a lifted tree (namely 〈u〉 ∗ T for some tree T ) with
respect to the one-step extension relation and induction principle for relations
on children, then we have induction principle for the Kleene-Brouwer relation.
We can prove it by refining an ordinary proof of Kleene-Brouwer theorem for
orders.

We assume Heyting arithmetic HA is defined in an ordinary way with con-
stants and function symbols 0, s,+,×. We define x < y by ∃z.x + sz = y and
x ≤ y by x = y ∨ x < y. We can assume some coding of a sequence of numbers
by a number in Heyting arithmetic, because the definitions on pages 115–117 of
[19] work also in HA. We write 〈t0, . . . , tn〉 for the sequence of t0, . . . , tn. We also
write |t|, and (t)u for the length of the sequence t, and the u-th element of the
sequence t respectively. We write ∗ for the concatenation operation of sequences.
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We write >R or > for a binary relation. We write <R for the binary relation
of the inverse of >R. For notational simplicity, we say X is a set in order to
say there is some first-order formula Fx such that x ∈ X ↔ Fx. Then we also
say t ∈ X in order to say Ft. We write y <R x ∈ X for y <R x ∧ y ∈ X. We
write x ∈ σ when x is an element of the sequence σ. We write U<ω for the set
of finite sequences of elements in U . For a set S of sequences, we write 〈u〉 ∗ S
for {〈u〉 ∗ σ | σ ∈ S}. For a set U and a binary relation >R for U , the induction
principle for (U,>R) is defined as

Ind(U,>R, F ) ≡ ∀x ∈ U((∀y <R x ∈ U.Fy) → Fx) → ∀x ∈ U.Fx,

Ind(U,>R) ≡ Ind(U,>R, F ) (for every formula Fx).

For a set U a set T is called a tree of U if T ⊆ U<ω and T is nonempty and closed
under prefix operations. Note that the empty sequence is a prefix of any sequence.
As a graph, the set of nodes is T and the set of edges is {(x, y) ∈ T 2 | y = x∗〈u〉}.
We call a set T ⊆ U<ω a lifted tree of U when there are a tree T ′ ⊆ U<ω and
r ∈ U such that T = 〈r〉∗T ′. We define LiftedTree(T,U) as a first-order formula
that means T is a lifted tree of U .

For x, y ∈ U<ω we define the one-step extension relation x >ext y if y = x∗〈u〉
for some u. For a set T ⊆ U<ω and σ ∈ U<ω, we define Tσ as {ρ ∈ T | ρ = σ∗ρ′}.
Note that Tσ is a subset of T . For a nonempty sequence σ, we define first(σ) and
last(σ) as the first and the last element of σ respectively.

The next lemma shows induction implies x �> x. The proof is in [6].

Lemma 2.1. If HA � Ind(U,>), then HA � ∀x, y ∈ U(y < x → y �= x).

Definition 2.2 (Kleene-Brouwer Relation). For a set U , a lifted tree T
of U , and a set of binary relations >u on U for every u ∈ U , we define the
Kleene-Brouwer relation >KB for T and {(>u) | u ∈ U} as follows: for x, y ∈ T ,
x >KB y if (1) x = z ∗ 〈u, u1〉 ∗ w1, y = z ∗ 〈u, u2〉 ∗ w2, and u1 >u u2 for some
z, u, u1, w1, u2, w2, or (2) y = x ∗ z for some z �= 〈 〉.

When (>u) is some fixed (>) for all u, for simplicity we call the relation
(>KB) the Kleene-Brouwer relation for T and >.

Note that (>KB) is a relation on T . This Kleene-Brouwer relation is slightly
different from ordinary Kleene-Brouwer order for the following points: it creates
a relation instead of an order, it uses a set of relations indexed by an element, and
it is defined for a lifted tree instead of a tree (in order to use indexed relations).

The next theorem shows induction principle for the Kleene-Brouwer relation.

Theorem 2.3 (Kleene-Brouwer Theorem for Induction). If HA �
LiftedTree(T,U), HA � Ind(T,>ext) and HA � ∀u ∈ U.Ind(U,>u), then
HA � Ind(T,>KB).

Proof. By induction on (T,>ext) with the induction principle Ind(T,>ext), we
will show ∀σ ∈ T.Ind(Tσ, >KB). After we prove it, we can take σ to be 〈 〉 to
show the theorem, since T〈 〉 = T .
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Fix σ ∈ T in order to show Ind(Tσ, >KB). Note that we can use induction
hypothesis for every σ ∗ 〈u〉 ∈ T :

Ind(Tσ∗〈u〉, >KB). (1)

Assume
∀x ∈ Tσ((∀y <KB x ∈ Tσ.Fy) → Fx) (2)

in order to show ∀x ∈ Tσ.Fx. For simplicity we write F (X) for ∀x ∈ X.Fx. Let
Gu ≡ F (Tσ∗〈u〉). By Ind(U,>last(σ)) we will show the following claim.

Claim: ∀u ∈ U.Gu.
Fix u ∈ U in order to show Gu.
By IH for v with >last(σ) we have

v <last(σ) u → F (Tσ∗〈v〉). (3)

We can show

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → (∀y <KB x ∈ Tσ.Fy)) (4)

as follows. Fix x ∈ Tσ∗〈u〉, assume

∀y <KB x ∈ Tσ∗〈u〉.Fy (5)

and assume y <KB x ∈ Tσ in order to show Fy. By definition of >KB, we have
y ∈ Tσ∗〈v〉 for some v <last(σ) u, or y ∈ Tσ∗〈u〉. In the first case, Fy by (3). In
the second case, Fy by (5). Hence we have shown (4).

Combining (4) with (2), we have

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → F (x)). (6)

By IH (1) for σ ∗ 〈u〉, we have Ind(Tσ∗〈u〉, >KB), namely,

∀x ∈ Tσ∗〈u〉((∀y <KB x ∈ Tσ∗〈u〉.Fy) → Fx) → ∀x ∈ Tσ∗〈u〉.Fx. (7)

By (6), (7), F (Tσ∗〈u〉). Hence we have shown the claim.
If y <KB σ ∈ Tσ, we have y ∈ Tσ∗〈u〉 for some u, since y <KB σ implies y �= σ

by definition of KB and Lemma 2.1 for >u. By the claim, Fy. Hence

∀y <KB σ ∈ Tσ.Fy. (8)

By letting x := σ in (2), we have (∀y <KB σ ∈ Tσ.Fy) → Fσ. By (8), Fσ.
Combining it with the claim, ∀x ∈ Tσ.Fx. ��

2.2 Proof Ideas for Podelski-Rybalchenko Theorem for Induction

In this subsection we will explain proof ideas of Theorem 2.15.
A sequence u1 >R u2 >R u3 >R . . . is called transitive when ui >R uj for

any i < j. We say the edge from u to v is of color R when u >R v. A sequence
is called monotonically-colored when for any element there is a color such that
the edge from the element to any element after it in the sequence has the same
color.
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Definition 2.4. For a set U and a relation > for U , we define the set DS(U,>) of
decreasing sequences as {〈x0, . . . , xn−1〉 | n ≥ 0, xi ∈ U,∀i < n − 1.(xi > xi+1)}.

We define the set DT(U,>) of decreasing transitive sequences by
{〈x0, . . . , xn−1〉 | n ≥ 0, xi ∈ U,∀i(∀j ≤ n − 1.(i < j → xi > xj))}.

We define >R1∪...∪Rk
as the union of >Ri

for all 1 ≤ i ≤ k. We define
>R1+...+Rk

as the disjoint union of >Ri
for all 1 ≤ i ≤ k. (Whenever we use it,

we implicitly assume the disjointness is provable in HA.)
We define MonoseqR1,...,Rk

(x) to hold when x = 〈x0, . . . , xn−1〉 ∈
DT(U,>R1+...+Rk

) and ∀i < n − 1.(∀j ≤ n − 1.(i < j →
∧

1≤l≤k

(xi >Rl

xi+1 → xi >Rl
xj))). Note that n may be 0.

We define MS as {x ∈ DT(U,>R1+...+Rk
) | MonoseqR1,...,Rk

(x)}.

MS is the set of monotonically-colored finite sequences. Note that MS〈r〉 is a
subset of MS (by taking T and σ to be MS and 〈r〉 in our notation Tσ) and a
lifted tree of U for any r ∈ U .

We will show Podelski-Rybalchenko theorem for induction stating that if a
transition invariant >Π is a finite union of relations >π such that each Ind(>n

π)
is provable for some n, and each (>π) is decidable, then Ind(>Π) is provable.

First each Ind(>π) is obtained by Ind(>n
π). Next by the decidability of each

(>π), we can assume all of (>π) are disjoint to each other. For simplicity, we
explain the idea of our proof for well-foundedness instead of induction principle.

Assume the relation >Π has some infinite decreasing transitive sequence

u1 >Π u2 >Π u3 >Π . . .

in order to show contradiction.
The set MS will be shown to be well-founded with the one-step extension

relation. For a decreasing transitive sequence x of U , a lifted tree T ∈ U<ω is
called an Erdös tree of x when the elements of x are the same as elements of
elements of T , every element of T is monotonically-colored, and the edges from
a parent to its children have different colors. Let ET be a function that returns
an Erdös tree of a given decreasing transitive sequence. Then we consider

ET(〈u1〉),ET(〈u1, u2〉),ET(〈u1, u2, u3〉), . . . .
Define MS〈r〉 as the set of sequences beginning with r in MS. Define >KB1,r

as the Kleene-Brouwer relation for the lifted tree MS〈r〉 and some left-to-right-
decreasing relation on children of the lifted tree. Define >KB2,r as the Kleene-
Brouwer relation for the lifted tree MS〈r〉 and some right-to-left-decreasing rela-
tion on children of the lifted tree. By Kleene-Brouwer theorem, (>KB1,r) and
(>KB2,r) are well-founded. Define ET2(〈u1, . . . , un〉) as the (>KB2,u1)-sorted
sequence of elements in ET(〈u1, . . . , un〉). Then consider

ET2(〈u1〉),ET2(〈u1, u2〉),ET2(〈u1, u2, u3〉), . . . .
Define >KB,r as the Kleene-Brouwer relation for >KB1,r and the set of

(>KB2,r)-sorted finite sequences of elements in MS〈r〉. This definition is a key
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idea. By this definition, we can show the most difficult step in this proof:

ET2(〈u1〉) >KB,u1 ET2(〈u1, u2〉) >KB,u1 ET2(〈u1, u2, u3〉) >KB,u1 . . . .

Since (>KB,u1) is well-founded by Kleene-Brouwer theorem, we have contradic-
tion. Hence we have shown u1 >Π u2 >Π u3 >Π . . . terminates.

In general we need classical logic to derive induction principle from well-
foundedness, but the idea we have explained will work well for showing induction
principle in intuitionistic logic.

2.3 Proof of Podelski-Rybalchenko Theorem for Induction

This subsection gives a proof of Podelski-Rybalchenko Theorem for Induction.
The next lemma shows that induction principle for each relation implies

induction principle for monotonically-colored sequences. This lemma can be
proved by refining Lemma 6.4 (1) of [3] from second-order logic to first-order
logic. The proof is given in [6].

Lemma 2.5. If HA � Ind(DT(U,>Ri
), >ext) for all 1 ≤ i ≤ k, then HA �

∀r ∈ U.Ind(MS〈r〉, >ext).

Next we create Kleene-Brouwer relations >KB1,r and >KB2,r for
monotonically-colored sequences beginning with r. Then we consider the set of
(>KB2,r)-sorted finite sequences of monotonically-colored finite sequences begin-
ning with r. It is a lifted tree. Then, by induction principle for MS, the lifted
tree is well-founded with the one-step extension relation. The Kleene-Brouwer
relation for the lifted tree and >KB1,r gives us >KB,r for the lifted tree. Since an
Erdös tree is in the lifted tree, this will later show induction principle for Erdös
trees.

Definition 2.6. For u ∈ U , we define >u,Left for U by: u1 >u,Left u2 if u >Rj
u1,

u >Rl
u2, and j < l for some j, l.

We define >KB1,r for MS〈r〉 as the KB relation for MS〈r〉 ⊆ U<ω and (>u,Left)
⊆ U2 for all u ∈ U .

For u ∈ U , we define >u,Right for U by: u1 >u,Right u2 if u1 <u,Left u2.
We

define >KB2,r for MS〈r〉 as the KB relation for MS〈r〉 ⊆ U<ω and (>u,Right)
⊆ U2 for all u ∈ U .

We define >KB,r for DS(MS〈r〉, >KB2,r)〈〈r〉〉 as the KB relation for
DS(MS〈r〉, >KB2,r)〈〈r〉〉 ⊆ MS<ω

〈r〉 and >KB1,r.

>u,Left is the left-to-right-decreasing order of children of u in some ordered tree
of U in which the edge label Ri is put to an edge (x, y) such that x >Ri

y, each
parent has at most one child of the same edge label, and children are ordered
by their edge labels with R1 < . . . < Rk. Similarly >u,Right is the right-to-left-
decreasing order of children of u in the ordered tree.
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Definition 2.7. For u ∈ U ⊆ N , finite T ⊆ MS such that ∀ρ ∈ T.∀v ∈
ρ.(v >R1+...+Rk

u), and for σ ∈ T , we define the function insert by:

insert(u, T, σ) =
insert(u, T, σ ∗ 〈v〉) if last(σ) >Ri

u, v = μv.(σ ∗ 〈v〉 ∈ T ∧ last(σ) >Ri
v),

T ∪ {σ ∗ 〈u〉} otherwise,

where μv.F (v) denotes the least element v with the natural number order such
that F (v). Formally insert(u, T, σ) = T ′ is an abbreviation of some HA-formula
G(u, T, σ, T ′). It is the same for ET below.

For x ∈ DT(U,>R1+...+Rk
) − {〈 〉}, we define ET(x) ⊆ MS by

ET(〈u〉) = {〈u〉},

ET(x ∗ 〈u〉) = insert(u,ET(x), 〈first(x)〉) if x �= 〈 〉.
Note that insert(u, T, σ) adds a new element u to the set T at some position
below σ to obtain a new set. ET(x) is an Erdös tree obtained from the decreasing
transitive sequence x.

The next lemma (1) states a new element is inserted at a leaf. It is proved
by induction on the number of elements in T . The claim (2) states that edges
from a parent to its children have different colors. It is proved by induction on
the length of x.

Lemma 2.8. (1) For u ∈ U , T ⊆ MS, and σ ∈ T , if u /∈ ρ for all ρ ∈ T ,
σ = 〈x0, . . . , xn−1〉, xi >Rj

xi+1 implies xi >Rj
u for all i < n − 1, and

insert(u, T, σ) = T ′, then there is some ρ ∈ Tσ such that ρ ∗ 〈u〉 ∈ MS, T ′ =
T + {ρ ∗ 〈u〉}, and ρ ∗ 〈u〉 is a maximal sequence in T ′.

(2) If σ ∗ 〈u, u1〉 ∗ ρ1, σ ∗ 〈u, u2〉 ∗ ρ2 ∈ ET(x), u >Ri
u1, and u >Ri

u2, then
u1 = u2.

Definition 2.9. For x ∈ DT(U,>R1+...+Rk
) − {〈 〉}, we define

ET2(x) ≡ 〈x0, . . . , xn−1〉
where {x0, . . . , xn−1} = ET(x) and ∀i < n − 1.(xi >KB2,first(x) xi+1).

Note that >KB2,first(x) is a total order on ET(x) by Lemma 2.8 (2). ET2(x) is the
decreasing sequence of all nodes in the Erdös tree ET(x) ordered by >KB2,first(x).

The next lemma shows ET2 is monotone. It is the key property of reduction
in Lemma 2.11.

Lemma 2.10. HA � ∀r ∈ U.∀x, y ∈ DT(U,>R1+...+Rk
)〈r〉.(x >ext y →

ET2(x) >KB,r ET2(y)).

Proof. Fix r ∈ U and x, y ∈ DT(U,>R1+...+Rk
)〈r〉 and assume x >ext y. Let

y = x ∗ 〈u〉. Then ET(y) = insert(u,ET(x), 〈r〉). By Lemma 2.8 (1), we have σ
such that ET(y) = ET(x) + {σ ∗ 〈u〉}. Then we have two cases:

Case 1. last(ET2(x)) >KB2,r σ ∗ 〈u〉.
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Then ET2(y) = ET2(x) ∗ 〈σ ∗ 〈u〉〉. By definition, ET2(x) >KB,r ET2(y).
Case 2. σ ∗ 〈u〉 >KB2,r τ for some τ ∈ ET2(x).
Let ρ be the next element of σ ∗ 〈u〉 in ET2(y). Then ET2(x) = α ∗ 〈ρ〉 ∗ β

and ET2(y) = α ∗ 〈σ ∗ 〈u〉, ρ〉 ∗ β. By definition of ET2, σ ∗ 〈u〉 >KB2,r ρ. Since
σ ∗ 〈u〉 is maximal in ET(y) by Lemma 2.8 (1), there is no α �= 〈 〉 such that
σ ∗ 〈u〉 ∗ α = ρ. Hence σ ∗ 〈u〉 <KB1,r ρ. Hence ET2(x) >KB,r ET2(y). ��

The next lemma shows that induction for decreasing transitive sequences is
reduced to induction for Erdös trees with >KB,r.

Lemma 2.11. HA � ∀r ∈ U.Ind(ET2(DT(U,>R1+...+Rk
)〈r〉), >KB,r) implies

HA � Ind(DT(U,>R1+...+Rk
), >ext).

Proof sketch. In order to show Ind(DT(U,>R1+...+Rk
), >ext) for F , define Gy ≡

∀z ∈ DT(z �= 〈 〉 → ET2(z) = y → Fz) and use Ind(ET2(DT(U,>R1+...+Rk
)〈r〉),

>KB,r) for G and Lemma 2.10. The proof is in [6]. ��
The next lemma shows induction holds when we restrict the universe. The

proof is in [6].

Lemma 2.12. HA � Ind(U,>) and HA � V ⊆ U imply HA � Ind(V,>).

The next lemma shows induction is implied from induction for decreasing
sequences. The proof is in [6].

Lemma 2.13. HA � Ind(DS(U,>), >ext) implies HA � Ind(U,>).

The next lemma shows induction for a power of a relation implies induction for
the relation. The proof is in [6].

Lemma 2.14. HA � Ind(U,>n) implies HA � Ind(U,>).

Define

Trans(U,>R) ≡ ∀xyz ∈ U(x >R y ∧ y >R z → x >R z),
Decide(U,>R) ≡ ∀xy ∈ U(x >R y ∨ ¬(x >R y)).

The next theorem states that if some powers of relations >Ri
have induction

principle, >Ri
are decidable and their union is transitive, then the union has

induction principle. This theorem is the same as Theorem 6.1 in [5] except HA
and the decidability condition Decide(U,>Ri

).

Theorem 2.15 (Podelski-Rybalchenko Theorem for Induction). If
HA � Ind(U,>n1

R1
), HA � Decide(U,>R1), . . . , HA � Ind(U,>nk

Rk
), HA �

Decide(U,>Rk
), and HA � Trans(U,>R1+...+Rk

), then Ind(U,>R1+...+Rk
).

Proof. We will discuss in HA.
By Lemma 2.14, we can replace ni by 1 and obtain Ind(U,>Ri

). In order to
obtain disjoint relations, we define >R′

1
as >R1 and >R′

i+1
as (>Ri+1) − (>R′

1
)

− . . . − (>R′
i
). Then (>R′

1
), . . . , (>R′

k
) are disjoint and ∀xy ∈ U(x >R1∪...∪Rk



22 S. Berardi and M. Tatsuta

y → x >R′
1+...+R′

k
y) by Decide(U,>Ri

) for 1 ≤ i ≤ k. Since (>R′
i
) ⊆ (>Ri

),
Ind(U,>R′

i
). For simplicity, from now on we write >Ri

for >R′
i
in this proof. We

will show Ind(U,>R1+...+Rk
).

From Ind(U,>Ri
), by replacing induction on elements by induction on

sequences, we have Ind(DT(U,>Ri
), >ext) for 1 ≤ i ≤ k. By Lemma 2.5,

we have ∀r ∈ U.Ind(MS〈r〉, >ext). Apparently ∀u ∈ U.Ind(U,>u,Left). By tak-
ing U to be U , T to be MS〈r〉, and >u to be >u,Left in Theorem 2.3 for
>KB1,r, we have ∀r ∈ U.Ind(MS〈r〉, >KB1,r). By Theorem 2.3 for >KB2,r,
we have ∀r ∈ U.Ind(MS〈r〉, >KB2,r) similarly. By replacing induction on ele-
ments by induction on sequences, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r), >ext).
Since DS(MS〈r〉, >KB2,r)〈〈r〉〉 is a subset of DS(MS〈r〉, >KB2,r), from Lemma
2.12, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r)〈〈r〉〉, >ext). By taking T to be
DS(MS〈r〉, >KB2,r)〈〈r〉〉, U to be MS〈r〉, and (>u) to be (>KB1,r) in Theo-
rem 2.3 for >KB,r, we have ∀r ∈ U.Ind(DS(MS〈r〉, >KB2,r)〈〈r〉〉, >KB,r). This
is a key step of this proof. Since ET2(DT(U,>R1+...+Rk

)〈r〉) ⊆ DS(MS〈r〉,
>KB2,r)〈〈r〉〉, by Lemma 2.12, we have ∀r ∈ U.Ind(ET2(DT(U,>R1+...+Rk

)〈r〉),
>KB,r). By Lemma 2.11, Ind(DT(U,>R1+...+Rk

), >ext). By Trans(U,
>R1+...+Rk

), DT(U,>R1+...+Rk
) is DS(U,>R1+...+Rk

). Hence we have Ind(DS(U,
>R1+...+Rk

), >ext). From Lemma 2.13, by replacing induction on sequences by
induction on elements, we have Ind(U,>R1+...+Rk

). ��

3 Cyclic Proofs

3.1 Intuitionistic Martin-Löf ’s Inductive Definition System LJID

We define an intuitionistic Martin-Löf’s inductive definition system, called
LJID.

The language of LJID is determined by a first-order language with inductive
predicate symbols. The logical system LJID is determined by production rules
for inductive predicate symbols. These production rules mean that the inductive
predicate denotes the least fixed point defined by these production rules.

We assume the first order terms t, u, . . .. We assume ∀x and ∃y are less tightly
connected than other logical connectives. To save space, we sometimes write Pxy
and Fxy for P (x, y) and F (x, y).

For example, the production rules of the inductive predicate symbol N are

N0
Nx
Nsx

These production rules mean that N denotes the smallest set closed under 0 and
s, namely the set of natural numbers.

The inference rules of LJID contains the introduction rules and the elimi-
nation rules for inductive predicates, determined by the production rules. These
rules describe that the predicate actually denotes the least fixed point. In par-
ticular, the elimination rule describes the induction principle.
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For example, the above production rules give the introduction rules

Γ � N0
Γ � Nx
Γ � Nsx

and the elimination rule

Γ � F0 Γ, Fx � Fsx

Γ,Nt � Ft

This elimination rule describes mathematical induction principle.

Fig. 1. Inference rules

The inference rules are given in Fig. 1 where for (Pi R) we assume the pro-
duction rule

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

and for (Ind Pj) we assume a predicate Fi for each Pi and the minor premises
are defined as

Γ,Qi1
−→u i1, . . . , Qini

−→u ini
, F1

−→
t i1, . . . , Fimi

−→
t imi

� Fi
−→
t i

for each production rule

Qi1
−→u i1 . . . Qini

−→u ini
P1

−→
t i1 . . . Pimi

−→
t imi

Pi
−→
t i
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Note that the antecedents and the succedents are sets and the succedent is empty
or a formula.

The system LJID is the same as the system obtained from classical Martin-
Löf’s inductive definition system LKID defined in [11] by restricting every
sequent to intuitionistic sequents and replacing (→L), (∨R), and (Ind Pj) accord-
ingly. The provability of the system LJID is the same as that of the natural
deduction system given in [16].

3.2 Cyclic Proof System CLJIDω

An intuitionistic cyclic proof system, called CLJIDω, is defined as the system
obtained from classical cyclic proof system CLKIDω defined in [11] by restrict-
ing every sequent to intuitionistic sequents and replacing (→L) and (∨R) in the
same way as LJID. Note that the global trace condition in CLJIDω is the same
as that in CLKIDω (Definition 5.5 of [11]).

Namely, the inference rules of CLJIDω are obtained from LJID by replacing
(IndPj) by

case distinctions
Γ, P−→u � Δ

(CaseP )

where the case distinctions are

Γ,−→u =
−→
t ,Q1

−→u 1, . . . , Qn
−→u n, P1

−→
t 1, . . . , Pm

−→
t m � Δ

for each production rule

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

A cyclic proof in CLJIDω is defined by (1) allowing a bud as an open assumption
and requiring a companion for each bud, (2) requiring the global trace condition.

The global trace condition [8,10] is the condition that for every infinite path
in the infinite unfolding of a given cyclic proof, there is a trace that passes main
formulas of case rules infinitely many times. The global trace condition ensures
that when we think some measure by counting case rules, the measure of a bud
is smaller than that of the companion. For example, in the next example the
companion (a) uses Px0y, but the bud (a) uses Px0y where x is x′ and x′ < x,
so their actual meanings are different even though they are of the same form.
The global trace condition guarantees the soundness of a cyclic proof system.

An example of a cyclic proof (trivial steps are omitted) is as follows:

� 0 = 0
x = 0, y = 0, Px0y � x = y

(a)Px0y � x = y

Px′0y′ � x′ = y′ (Subst)

Px′0y′, x = sx′, y = sy′ � x′ = y′ (Wk)

Px′0y′, x = sx′, y = sy′ � sx′ = sy′

Px′0y′, x = sx′, y = sy′ � x = y

(a)Px0y � x = y
(Case P )
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where the mark (a) denotes the bud-companion relation, and the production
rules are

P0yy

Pxyz

P (sx)y(sz)

Note that the predicate P is addition on natural numbers and the proof is,
essentially, deriving the arithmetic identity x + 0 = x.

We call an atomic formula an inductive atomic formula when its predicate
symbol is an inductive predicate symbol.

3.3 Cyclic Proofs for Coinductive Predicates

This subsection shows how we can use a cyclic proof system to formalize coinduc-
tive predicates. Since a coinductive predicate is a dual of an inductive predicate,
and sequent calculus is symmetric for this dual, we can construct a cyclic proof
system for coinductive predicates. For example, for stream predicates we can
define a cyclic proof system μνLK from CLKIDω as follows:

(1) Add function symbols head, tail, and the pair 〈 , 〉 with the axioms 〈x, y〉 =
〈x′, y′〉→x = x′∧y = y′ and x = 〈head x, tail x〉, and a coinductive predicate
symbol P with its coproduction rule

Qyx Px

P 〈y, x〉 co

which means P is defined coinductively by this rule. Note that P represents
the set of streams 〈x0, 〈x1, 〈x2, 〈. . .〉〉〉 such that Q(xi, 〈xi+1, 〈xi+2, 〈. . .〉〉) for
all i.

(2) Add the inference rules (P R) and (Case P ) in the same way as CLKIDω,
namely,

Γ, t = 〈y, x〉, Qyx, Px � Δ

Γ,Pt � Δ
(Case P )

Γ � Qyx,Δ Γ � Px,Δ

Γ � P 〈y, x〉,Δ (P R)

(3) We call an atomic formula a coinductive atomic formula when its predicate
symbol is a coinductive predicate symbol. We define a cotrace as a sequence
of coinductive atomic formulas in the succedents of a path such that two
atomic formulas are related by an inference rule in a similar way to a trace
defined in [11]. The global trace and cotrace condition is the condition that
for every infinite path in the infinite unfolding of a given cyclic proof, the
path contains either a trace that passes main formulas of case rules infinitely
many times, or a cotrace that passes main formulas of rules (P R) infinitely
many times.

(4) A cyclic proof is a preproof that satisfies the global trace and cotrace con-
dition.
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Example. We define the bit stream predicate BS by the following coproduction
rules:

Bit y BS x

BS〈y, x〉 co

where Bit is an ordinary predicate symbol with the axiom Bit x ↔ x = 0∨x = 1.
The inference rules from this production rule are:

Γ � Bit y,Δ Γ � BS x,Δ

Γ � BS〈y, x〉,Δ (BS R)
Γ, t = 〈y, x〉,Bit y,BS x � Δ

Γ,BS t � Δ
(Case BS)

Then we can show x = 〈0, x〉 � BS x, namely, the zero stream is a bit stream,
as follows (trivial steps are omitted):

x = 〈0, x〉 � Bit 0 (a) x = 〈0, x〉 � BS x

x = 〈0, x〉 � BS〈0, x〉 (BS R)

(a) x = 〈0, x〉 � BS x

where (a) denotes the bud-companion relation.
The cyclic proof system μνLK is sound for the standard model.

Theorem 3.1. If a sequent is provable in μνLK, then it is true in the standard
model where a coinductive predicate is interpreted as the greatest fixed point that
satisfies the coproduction rules.

Proof sketch. We add an ordinary predicate symbol Q̃ with the axiom Q̃yx ↔
¬Qyx and add an inductive predicate symbols P̃ with the production rules

Q̃(head x)(tail x)

P̃ x

P̃ (tail x)

P̃ x

In the standard model, P is the greatest solution of the equation

Px ↔ ∃yx′(x = 〈y, x′〉 ∧ Qyx′ ∧ Px′)

and P̃ is the least solution of the equation

P̃ x ↔ Q̃(head x)(tail x) ∨ P̃ (tail x).

By putting ¬ on both sides of the equation for P and taking y and x′ to be
head x and tail x, we can show ¬P is a solution of the equation for P̃ . Hence
P̃ x→¬Px is true. In the same say by putting ¬ on both sides of the equation for
P̃ , and using x = 〈headx, tailx〉, we can show ¬P̃ is a solution of the equation
for P . Hence ¬P̃ x → Px is true. Therefore P̃ x ↔ ¬Px is true.

We define a transformation ( )− for a sequent and a proof, in order to replace
P by P̃ . For a sequent J , we define J− by replacing P by ¬P̃ and then moving
an atomic formula ¬P̃ t of the antecedent to P̃ t of the succedent and moving an
atomic formula ¬P̃ t of the succedent to P̃ t of the antecedent.
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Given a cyclic proof π, we define π− by replacing each sequent J by J− and
then replacing (P R) by

Γ− � Qyx′,Δ−

Γ−, Q̃yx′ � Δ− Γ−, P̃ x′ � Δ−

Γ−, P̃ 〈y, x′〉 � Δ− (Case P̃ )
(trivial steps are omitted)

and replacing (CaseP ) by

Γ−, x = 〈y, x′〉, Qyx′ � P̃ x′,Δ−

Γ−, x = 〈y, x′〉 � Q̃yx′, P̃ x′,Δ−

Γ−, x = 〈y, x′〉 � Q̃yx′, P̃ x,Δ− (P̃ R)

Γ−, x = 〈y, x′〉 � P̃ x,Δ− (P̃ R)

Γ− � P̃ x,Δ− (trivial steps are omitted)

Then a cotrace in π corresponds to a trace in π−. Hence π− is a cyclic proof
of J− in CLKIDω when π is a cyclic proof of J in μνLK. By the soundness of
CLKIDω, J− is true in the standard model. Since P̃ x ↔ ¬Px is true, J is true
in the standard model where P is interpreted as the greatest fixed point. ��

4 Equivalence Between LJID and CLJIDω

This section studies the equivalence between CLJIDω and LJID.

4.1 Countermodel and Addition of Heyting Arithmetic

This subsection gives a countermodel and adds arithmetic to the logical systems.
The counterexample given in [4] also shows that the equivalence between

CLJIDω and LJID does not hold in general, because the proof of the statement
H in [4] is actually in CLJIDω, and LJID does not prove H since LKID does
not prove H. This gives us the following theorem (it is not new in the sense [4]
immediately implies it).

Theorem 4.1. There are some signature and some set of production rules for
which the provability of CLJIDω is not the same as that of LJID.

There is a possibility of the equivalence under some conditions. We will show
the equivalence holds by adding arithmetic to both systems.

We add arithmetic to both LJID and CLJIDω.
Definition 4.2. CLJIDω + HA and LJID + HA are defined to be obtained
from CLJIDω and LJID by adding Heyting arithmetic. Namely, we add con-
stants and function symbols 0, s,+,×, the inductive predicate symbol N , the
productions for N , and Heyting axioms:

N0
Nx
Nsx � Nx → sx �= 0, � Nx ∧ Ny → sx = sy → x = y,

� Nx → x + 0 = x, � Nx ∧ Ny → x + sy = s(x + y),
� Nx → x × 0 = 0, � Nx ∧ Ny → x × sy = x × y + x.
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4.2 Equivalence Theorem

In this subsection we state the equivalence theorem and explains proof ideas.
First we assume a new inductive predicate symbol P ′ for each inductive

predicate symbol P and define the production rules of P ′ in the same way as [5].

Definition 4.3. We define the production rule of P ′

Q1
−→u 1 . . . Qn

−→u n v > v1 P ′
1
−→
t 1v1 . . . v > vm P ′

m
−→
t mvm Nv

P ′−→t v

for each production rule of P

Q1
−→u 1 . . . Qn

−→u n P1
−→
t 1 . . . Pm

−→
t m

P
−→
t

where v, v1, . . . , vm are fresh variables.

We write LJID + HA + (Σ,Φ) for the system LJID + HA with the signa-
ture Σ and the set Φ of production rules. Similarly we write CLJIDω + HA +
(Σ,Φ). For simplicity, in Φ we write only P for the set of production rules for
P . We define ΣN = {0, s,+,×, <,N} and ΦN = {N}. We write P ′′ for (P ′)′.

The next theorem shows the equivalence of LJID + HA and CLJIDω + HA
with signatures.

Theorem 4.4 (Equivalence of LJID + HA and CLJIDω + HA). Let
Σ = ΣN ∪ {−→

Q,
−→
P ,

−→
P ′} and Φ = ΦN ∪ {−→

P ,
−→
P ′}. Then the provability of

CLJIDω + HA + (Σ,Φ) is the same as that of LJID + HA + (Σ,Φ).

We explain our ideas of proofs of this theorem. [5] shows the equivalence
between classical systems by using classical Podelski-Rybalchenko theorem for
induction. This proof goes well even if we replace classical systems by intu-
itionistic systems except that we have to replace classical Podelski-Rybalchenko
theorem for induction by intuitionistic Podelski-Rybalchenko theorem for induc-
tion. Since we proved intuitionistic Podelski-Rybalchenko theorem for induction
in Theorem 2.15, by combining them, we can show the equivalence between
LJID and CLJIDω.

5 Proof Transformation

This section gives the proof of the equivalence. More detailed discussions
are given in [6]. We define proof transformation from CLJIDω + HA to
LJID + HA. First we will define stage numbers and path relations, and then
define proof transformation using them.

For notational convenience, we assume a cyclic proof Π in this section. Let
the buds in Π be J1i (i ∈ I) and the companions be J2j (j ∈ K). Assume
f : I → K such that the companion of a bud J1i is J2,f(i).
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5.1 Stage Numbers for Inductive Definitions

In this subsection, we define and discuss stage transformation.
We introduce a stage number to each inductive atomic formula so that the

argument of the formula comes into the inductive predicate at the stage of the
stage number. This stage number will decrease by a progressing trace. A proof
in LJID + HA will be constructed by using the induction on stage numbers.

First we give stage transformation of an inductive atomic formula. We assume
a fresh inductive predicate symbol P ′ for each inductive predicate symbol P and
we call it a stage-number inductive predicate symbol. P ′(

−→
t , v) means that the

element
−→
t comes into P at the stage v. We transform P (

−→
t ) into ∃vP ′(

−→
t , v).

We call a variable v a stage number of
−→
t when P ′(

−→
t , v). P (

−→
t ) and ∃vP ′(

−→
t , v)

will become equivalent by inference rules introduced by the transformation of
production rules. We call P ′(

−→
t , v) a stage-number inductive atomic formula.

Secondly we give stage transformation of a production rule. We transform
the production of P into the production of P ′ given in Definition 4.3.

Next we give the stage transformation of a sequent. For given fresh variables−→v , we transform a sequent J into J◦−→v defined as follows. We define Γ • as the
set obtained from Γ by replacing P (

−→
t ) by ∃vP ′(

−→
t , v). For fresh variables −→v ,

we define (Γ )◦−→v as the sequent obtained from Γ • by replacing the i-th element
of the form ∃vP ′(

−→
t , v) in the sequent Γ • by P ′(

−→
t , vi). We define (Γ � Δ)• by

Γ • � Δ•, and define (Γ � Δ)◦−→v by (Γ )◦−→v � Δ•.
We write (ai)i∈I for the sequence of elements ai where i varies in I. We extend

the notion of proofs by allowing open assumptions. We write Γ �CLJIDω+HA Δ
with assumptions (Ji)i∈I when there is a proof with assumptions (Ji)i∈I and the
conclusion Γ � Δ in CLJIDω + HA.

Definition 5.1. In a path π in a proof, we define Ineq(π) as the set of the forms
v > v′ and v = v′ for any stage numbers v, v′ eliminated by every case distinction
in π.

The proof of the next proposition gives stage transformation of a proof into a
proof of the stage transformation of the conclusion of the original proof. We
write Π◦ for the stage transformation of Π.

Proposition 5.2 (Stage Transformation). For any fresh variables −→v , if
Γ �CLJIDω+HA Δ with assumptions (Γi � Δi)i∈I without any buds, then for
some fresh variables (−→v i)i∈I we have (Γ )◦−→v �CLJIDω+HA Δ• with assumptions
(Ineq(πi), (Γi)◦−→v i

� Δ•
i )i∈I without any buds, where πi is the path from the con-

clusion to the assumption (Γi)◦−→v i
� Δ•

i .

5.2 Path Relation

In this section, we will introduce path relations and discuss them.
We assume a subproof Πj of Π such that it does not have buds, its conclusion

is J2j and its assumptions are J1i (i ∈ Ij).
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For J in Π◦
j , we define J̃ as 〈v1, . . . , vk〉 where J is Γ ◦

v1...vk
� Δ•.

For a path π from the conclusion to an assumption in Π◦
j , we write π̌ for

the corresponding path in Π. We extend this notation to a finite composition
of π’s. By the correspondence (̌ ), a stage-number inductive atomic formula in
Π◦

j corresponds to an inductive atomic formula in Π, and a path, a trace, and
a progressing trace in Π◦

j correspond to the same kind of objects in Π.

Definition 5.3. For a finite composition π of paths in {Π◦
j | j ∈ K} such that

π̌ is a path in the infinite unfolding of Π, we define the path relation >̃π by

x>̃πy ≡ |x| = |J̃2| ∧ |y| = |J̃1| ∧
∧

F (q1,q2)

(x)q2 > (y)q1 ∧
∧

G(q1,q2)

(x)q2 = (y)q1

where J1 and J2 are the top and bottom sequents of π respectively, J̌1 and J̌2

are those of the path π̌, F (q1, q2) is that there is some progressing trace from
the q2-th atomic formula in J̌2 to the q1-th atomic formula in J̌1, G(q1, q2) is
that there is some non-progressing trace from the q2-th atomic formula in J̌2 to
the q1-th atomic formula in J̌1.

We define B1 as the set of paths from conclusions to assumptions in Π◦
j (j ∈

K). We define B as the set of finite compositions of elements in B1 such that if
π ∈ B then π̌ is a path in the infinite unfolding of Π.

Definition 5.4. For π ∈ B, define x >π y by

x >π y ≡ (x)0 = j ∧ (y)0 = f(i) ∧ (x)1>̃π(y)1,

where J1i is the top sequent of π̌, and J2j is the bottom sequent of π̌.

Note that ( )0 and ( )1 are operations for a number that represents a sequence of
numbers defined in Sect. 3. The first element is a companion number.

Lemma 5.5. {>π | π ∈ B} is finite.

Proof. Define Cn as {>π1...πm
| m ≤ n, πi ∈ B1}. Since >π is a relation on

N × N≤p where p is the maximum number of inductive atomic formulas in the
antecedents of Π, there is L such that |Cn| ≤ L for all n. Then we have the least
n such that Cn+1 = Cn. Then |{>π | π ∈ B}| = |Cn|. ��

The next lemma is the only lemma that uses the global trace condition.

Lemma 5.6. For all π ∈ B, there is n > 0 such that �HA Ind(U,>n
π).

We define >Π as
⋃{>π | π ∈ B}. Note that >Π is transitive, since the top

sequent of π1 is the bottom sequent of π2 by the first element, and ((>π1) ◦
(>π2)) ⊆ (>π1π2).
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5.3 Proof Transformation

This section gives proof transformation.
The next lemma shows we can replace (Case) rules of CLJIDω + HA by

(Ind) rules of LJID + HA.

Lemma 5.7. If there is a proof with some assumptions and without any buds
in CLJIDω + HA, then there is a proof of the same conclusions with the same
assumptions in LJID + HA.

The next is a key lemma and shows each bud in a cyclic proof is provable in
LJID + HA, which is proved by using Theorem 2.15.

Lemma 5.8. For every bud J of a proof in CLJIDω + HA and fresh variables−→v , (J)◦−→v is provable in LJID + HA.

The next is the main proposition stating that a cyclic proof is transformed into
an (LJID + HA)-proof with stage-number inductive predicates.

Proposition 5.9. If a sequent J is provable in CLJIDω + HA + (ΣN ∪
{−→
P }, ΦN ∪{−→

P }), then J is provable in LJID + HA+(ΣN ∪{N ′,
−→
P ,

−→
P ′}, ΦN ∪

{−→
P ,

−→
P ′}) where N ′,

−→
P ′ are the stage-number inductive predicates of N,

−→
P .

The next shows conservativity for stage-number inductive predicates.

Proposition 5.10 (Conservativity of N ′ and P ′′). Let Σ = ΣN ∪
{−→
Q,

−→
P ,

−→
P ′}, Φ = ΦN ∪ {−→

P ,
−→
P ′}, Σ′ = Σ ∪ {N ′,

−→
P ′′}, and Φ′ = Φ ∪ {N ′,

−→
P ′′}.

Then LJID + HA + (Σ′, Φ′) is conservative over LJID + HA + (Σ,Φ).

Proof of Theorem 4.4. (1) LJID + HA+(Σ,Φ) to CLJIDω + HA+(Σ,Φ).
For this claim, we can obtain a proof from the proof of Lemma 7.5 in [11] by

restricting every sequent into intuitionistic sequents and replacing LKID+(Σ,Φ)
and CLKIDω + (Σ,Φ) by LJID + (Σ,Φ) and CLJIDω + (Σ,Φ) respectively.

(2) CLJIDω + HA + (Σ,Φ) to LJID + HA + (Σ,Φ).
Let Σ′ = Σ ∪ {N ′,

−→
P ′′} and Φ′ = Φ ∪ {N ′,

−→
P ′′}. Assume J is provable in

CLJIDω + HA + (Σ,Φ). By Proposition 5.9, J is provable in LJID + HA +
(Σ′, Φ′). By Proposition 5.10, J is provable in LJID + HA + (Σ,Φ). ��

6 Related Work

The conjecture 7.7 in [11] (also in [8]) is that the provability of LKID is the
same as that of CLKIDω. In general, the equivalence was proved to be false
in [4], by showing a counterexample. However, if we restrict both systems to
only the natural number inductive predicate and add Peano arithmetic to both
systems, the equivalence was proved to be true in [20], by internalizing a cyclic
proof in ACA0 and using some results in reverse mathematics. [5] proved that if
we add Peano arithmetic to both systems, CLKIDω and LKID are equivalent,
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namely the equivalence is true under arithmetic, by showing arithmetical Ramsey
theorem and Podelski-Rybalchenko theorem for induction.

This paper shows that similar results as shown in [5] hold for intuitionistic
logic, namely, the provability of LJID is the same as that of CLJIDω if we add
Heyting arithmetic to both systems.

The results of this paper immediately give another proof to the equivalence
under arithmetic for classical logic shown in [5] by using the fact Γ �CLKIDω+PA

Δ implies E,Γ,¬Δ �CLJIDω+HA for some finite set E of excluded middles.
By taking

−→
Q and

−→
P to be empty in Theorem 4.4, we have conservativity of

CLJIDω + HA over LJID + HA with only the inductive predicate N , which
answers the question (iv) in Sect. 7 of [20].

[15] presented the first logical system for inductive/coinductive predicates.
[17] also gave a similar system. They are both based on a finite system with unfold
and fold, and limited to propositional logic. [21] showed the completeness of the
system by using a cyclic proof system but it is also limited to propositional logic.
[2,14] investigated cyclic proof systems for inductive/coinductive predicates. [1,
13] also used cyclic proof systems for inductive/coinductive predicates to show
some completeness results. But these systems are all limited to propositional
logic.

7 Conclusion

We have first shown intuitionistic Podelski-Rybalchenko theorem for induction
in HA, and we have secondly shown the provability of the intuitionistic cyclic
proof system is the same as that of the intuitionistic system of Martin-Lof’s
inductive definitions when both systems contain HA. We have also constructed
a cyclic proof system μνLK for stream predicates.

One future work would be to construct a cyclic proof system for coinductive
predicates in a general way and show the equivalence between the cyclic proof
system and other logical systems for coinductive predicates.
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Abstract. Decidability of type checking for dependently typed lan-
guages usually requires a decidable equality on types. Since bisimilarity
on (weakly final) coalgebras such as streams is undecidable, one can-
not use it as the equality in type checking. Instead, languages based on
dependent types with decidable type checking such as Coq or Agda use
intensional equality for type checking. Two streams are definitionally
equal if the underlying terms reduce to the same normal form, i.e. if the
underlying programs are syntactically equivalent. For reasoning about
equality of streams one introduces bisimilarity as a propositional rather
than judgemental equality.

In this paper we show that it is not possible to strengthen inten-
sional equality in a decidable way while having the property that equality
respects one step expansion, which means that a stream with head n and
tail s is equal to cons(n, s). This property, which would be very useful
in type checking, would not necessarily imply that bisimilar streams are
equal, and we prove that there exist equalities with this properties which
do not coincide with bisimilarity. Whereas a proof that bisimilarity on
streams is undecidable is straightforward, proving that respecting one
step expansion makes equality undecidable is much more involved and
relies on an inseparability result for sets of codes for Turing machines.
We prove this theorem both for streams with primitive corecursion and
with coiteration as introduction rule.

Therefore, pattern matching on streams is, understood literally, not a
valid principle, since it assumes that every stream is equal to a stream
of the form cons(n, s). We relate this problem to the subject reduction
problem found when adding pattern matching on coalgebras to Coq and
Agda. We discuss how this was solved in Agda by defining coalgebras
by their elimination rule and replacing pattern matching on coalgebras
by copattern matching, and how this relates to the approach in Agda
which uses the type of delayed computations, i.e. the so called “musical
notation” for codata types.

Keywords: Coalgebra · Weakly final coalgebras · Codata
Decidable type checking · Martin-Löf type theory
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C. Ĉırstea (Ed.): CMCS 2018, LNCS 11202, pp. 34–55, 2018.
https://doi.org/10.1007/978-3-030-00389-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00389-0_4&domain=pdf
http://orcid.org/0000-0002-7677-3582
http://orcid.org/0000-0001-5322-6060


Undecidability of Equality for Codata Types 35

1 Introduction

Many programs in computing are interactive in nature. We use user interfaces,
text editors, data bases, interact with sensors and actuators, and communicate
with other devices such as mobile phones or servers. Such programs potentially
run forever – a text editor will never terminate, unless we terminate it explicitly
or by accident, communication with a data base will never stop unless the server
is shut down, etc. In a series of articles [HS05,HS00,HS04] Peter Hancock and
the second author have shown how to represent interactive programs as non-
well-founded trees. Such a connection has been observed in other contexts as
well such as in order to give semantics to process algebras or describe interactive
programs in functional programs using streams or monads. Because of this, non-
well-founded data types play an important rôle in computer science. The usual
approach to such non-well-founded structures is to represent them as coalgebraic
data types.

In this paper we investigate final coalgebras in the context of dependent type
theory with decidable type checking where by coalgebras we will mean, unless
stated differently, weakly final strictly positive coalgebras. Decidable type check-
ing requires that definitional equality, i.e. the equality used for type checking, is
decidable. Theorem provers with decidable type checking such as Agda are very
easy to use and allow one to write proofs in the same way as programs in many
programming languages are written. The requirement for decidable definitional
equality doesn’t prevent reasoning about bisimilar coalgebras: one can define
bisimilarity of coalgebras as a proposition, and prove that certain elements of
coalgebras are bisimilar.

Coalgebras can be encoded using inductive types. However, in dependent type
theory, it seems to be difficult or might even be impossible to get an encoding
which gives the desired equalities w.r.t. decidable definitional equality. Therefore,
it is of interest to add coalgebras explicitly to type theory. Coalgebras have been
added in the form of codata types to both Coq [INR17] (see [Ber06,BC04] for
their approach to coalgebras) and Agda [Nor07,Agd14]. The approach regarding
coalgebras in Agda is described in [DA10]. Recently, the approach to define
coalgebras by their elimination rules has been added as well to Agda, and used
for implementing concepts from object based programming and graphical user
interfaces in Agda [AAS17,AAS16].

In this article we answer the often asked question whether rules for intensional
equality can be strengthened so that they permit at least one step expansion: if
a stream s has head a and tail s′, then it should be equal to (cons a s′). Such
an equality does not necessarily imply that bisimilar streams are equal – only
streams, which have the same first n elements and then are equal need to be
equated. We show that indeed there are equalities which differ from bisimilarity
but admit one step expansion. We give a negative answer to the initial ques-
tion and show that there exists no decidable equality which allows for one step
expansion. While a proof that bisimilarity on streams is undecidable is straight-
forward, since extensional equality on functions of type N → N is undecidable,
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this proof is much more evolved and relies on an inseparability result for sets of
codes for Turing machines.

A consequence is that, if we want to stay in an intensional type theory
with decidable type checking, we cannot assume that every stream is equal to
(cons n s) for some n, s. Therefore, pattern matching on streams, understood
literally, is not a valid principle: A definition

f : (s : Stream) → A[s]
f (cons n s) = t[n, s]

assumes that every stream is equal to a stream of the form (cons n a).
This explains why defining coalgebras by their introduction rules led to a sub-

ject reduction problem in both Coq and Agda [Gim96,Our08,McB09,APTS13].
This problem was solved in Agda initially by disallowing the dependency of A
on s. This however restricted quite severely its usefulness. Later it was solved
together with the pattern matching problem by changing the type of s to be a
new type (∞ Stream) of delayed computations. We discuss this approach in the
conclusion. The latest approach taken in Agda is that coalgebras are defined by
their elimination rules, and pattern matching is replaced by copattern matching.
This approach has good properties: there are no restrictions on when to apply
reductions, subject reduction holds, and we have complete duality between alge-
braic and coalgebraic data types.

Content of the Article. In Sect. 2 we review the notion of codata types. We
discuss why decidable type checking and therefore a decidable definitional equal-
ity is useful. We review the problems of the codata approach (especially subject
reduction) and review the approach of defining coalgebras by their elimination
rules, which fixes this problem. We discuss as well the principle of primitive core-
cursion. In Sect. 3 we introduce encodings of streams which consist of a set of
streams, functions head and tail, and an equality. Such encodings are universal
if they admit the principle of primitive corecursion. Then we show in Theorem 9
that there is no decidable equality in such a universal encoding which fulfils
the condition that 〈head, tail〉 is injective, i.e., that if the heads and tails of
streams are equal, then the streams are equal. It follows (Corollary 11) that it
is not possible to have a universal encoding of strings such that every stream
is equal to a stream of the form (cons n s). We show as well (Examples 13)
that there exist universal encodings for streams such that 〈head, tail〉 is not
injective, and that injectivity of 〈head, tail〉 doesn’t imply that the equality is
bisimilarity. The proof of the main theorem makes essential use of the principle
of primitive corecursion, and the question is whether the theorem still holds if
we replace corecursion by coiteration. In Sect. 4 we show (Theorem 17) that this
is the case. The paper ends with a conclusion, a discussion of related work, and
a discussion of the use of codata types in theorem proving and programming. In
particular we discuss how codata types can be reduced to coalgebras, and how
notations such as the so-called “musical notation” in Agda can be understood
as syntactic sugar, which allows one to keep most of the benefits of the codata
approach when working with coalgebras.
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2 Codata Types and Coalgebras

Codata Types. In the codata approach pioneered by Turner [Tur04,Tur95]1

one creates non-well-founded versions of algebraic data types. An example of a
(well-founded) algebraic type is the type of natural numbers defined by2

data N : Set where
0 : N
suc : N → N

The elements of N are obtained by finitely many applications of the constructors.
One can define a function from N to another type by pattern matching, i.e. by
making a case distinction on whether the argument is 0 or (suc n).

An example of a codata type is the set of streams of natural numbers

codata Stream : Set where
cons : N → Stream → Stream

The keyword codata indicates that we are allowed to have infinitely many appli-
cations of cons, and therefore form infinitary terms (cons n0 (cons n1 · · · )). As
for data types one would expect pattern matching to work for codata types. We
won’t make this assumption in this article, and actually show that there is no
decidable equality such that every element of a codata type matches a pattern,
i.e. is equal to an element of the form (cons n s). In this article by codata types
we mean types which are like data types, but we allow infinite (more generally
non-wellfounded) applications of the constructor.

The Need for Decidable Equality. Problems of the codata approach arise if
one requires decidable type checking, as one does in most typed programming
languages.

Most theorem provers use a goal-directed approach to derive proofs. One
states a goal and then uses inference rules to derive that goal. If one had to
write programs in normal programming languages this way one would need to
derive a program by, for instance in case of Java, using a rule stating that it
consists of a class with some name and some methods. Then one would have to
use another rule to derive how a method is defined, etc. Using such an approach
for deriving programs would be much more tedious and more difficult to learn
than using the standard approach of first writing the program text and then
type checking it by the compiler.

Agda is an example of a theorem prover with decidable type checking. Proving
is very close to programming: instead of deriving an element of a type using rules,
1 The earliest occurrence of codata types we could find is [Gim95], who called it
“Coinductive”. Hagino uses the notion of “codatatype” in [Hag89], but that notion
refers to coalgebras defined by their elimination rules.

2 We use in this section a notation similar to that of Agda. In particular, as common in
Martin-Löf type theory, Set denotes the set of small types, and we write application
in functional style, i.e. (f a) for f applied to a.
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the user types in a program text with some help from the system, which is then
type checked automatically. Certain parts of the program text can be left open
(called “goals”). The code is type checked automatically by the system and the
user gets some help for filling in the goals. This allows the programmer to type
in known parts directly and to combine in a very flexible way both forward and
backward reasoning.

Decidable type checking in dependent types implies decidability of equality.
This can be most easily seen when using Leibniz equality: If a, b : A, we have

(λX.λx.x : ΠX:A→Set(X a → X b)) ⇔ a and b are equal elements of A.

Here, ΠX:A→Set(X a → X b) is the polymorphic type of functions mapping any
predicate on A (i.e. of type A → Set) to an element of (X a → X b). Therefore,
in a type theory which permits the definition of the polymorphic type of Leibniz
equality and which has decidable type checking we can decide using the type
statement on the left hand side whether a and b are equal elements of type A.
Hence decidability of type checking implies decidability of equality.

Problems of the Codata Approach. The natural equality on Streams is
bisimilarity, which means that two streams (cons n0 (cons n1 · · · )) and
(cons m0 (cons m1 · · · )) are equal if ni = mi for all i : N, that is, the functions
λi.ni and λi.mi are extensionally equal. Since extensional equality on N → N is
undecidable, bisimilarity is undecidable as well.

In order to deal with the problem of undecidability of extensional equality for
function spaces, in Martin-Löf type theory (MLTT ) one defines for type checking
purposes two functions f, g : A → B as definitionally (or judgementally) equal,
if f, g as λ-terms reduce to the same normal form.

Two functions are definitionally equal if the underlying programs reduce to
the same normal form. In order to state that two functions are extensionally
equal, one introduces a type (or proposition) expressing extensional equality,
and then can prove extensional equality of functions in type theory. In the same
way a decidable equality on codata types can be based on the principle that
two elements of a codata type are equal if the underlying terms have the same
normal form. Bisimilarity can then be introduced as a proposition which is given
as a coinductive relation.

We cannot permit full expansion of codata types, since this would result in
infinite and therefore non-normalising terms. The solution taken in Coq and
earlier versions of Agda is to impose restrictions on when an element of a codata
type can be expanded (see also the approach in [ADLO10] using lifting and
boxing operators). These solutions led to a problem of subject reduction in Coq
and earlier versions of Agda (see [APTS13] for a discussion on the history of this
problem). As a consequence, in Agda elimination rules for codata types have
been initially restricted to such extent that they are difficult to use. Later the
“musical approach” was taken, which will be discussed in the conclusion. The
latest approach taken in Agda uses coalgebras.

Coalgebras. A solution to this problem goes back to Hagino [Hag87,Hag89],
namely to use the categorical dual of initial algebras (which correspond to
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algebraic data types), namely coalgebras. This approach has been further devel-
oped by Geuvers [Geu92], Howard [How96], Greiner [Gre92], Mendler [Men91].
It has been promoted for the use in MLTT by the second author in several talks
and in [Set12,Set16], and by Granström [Gra08], and McBride [McB09]. See as
well the work by Abbott, Altenkirch, and Ghani on containers [AAG03], and by
Basold and Geuvers [BG16]. This approach has now been implemented in Agda
(e.g. [AAS17,AAS16]).

Instead of defining Stream by its introduction rule, it is defined by its elimi-
nation rules

coalg Stream : Set where
head : Stream → N

tail : Stream → Stream

The notation used in Agda is

record Stream : Set where
coinductive
field

head : N
tail : Stream

Elements of Stream are terms such that head and tail applied to them return
elements of N and Stream, respectively. A model of coalgebras as sets of natural
numbers can for instance be found in [Set16].

The dual of primitive recursion is primitive corecursion (the earliest occur-
rence of this notion is probably Vene and Uustalu [VU98], see as well [Set12]).
It corresponds to guarded recursion (see [Coq94]). Primitive corecursion means
for the type Stream that if we have A : Set, h : A → N, t : A → (Stream + A),
then there exists

f : A → Stream
head (f a) = h a,

tail (f a) =
{

s if t a = inl s,
f a′ if t a = inr a′.

In the codata approach this principle translates as follows: Assuming h and
t as before, we can define

f : A → Stream

f a =
{

cons (h a) s if t a = inl s,
cons (h a) (f a′) if t a = inr a′.

Essentially we can define f a = cons n s, where n and s depend on a, and s can
be a stream which was defined before or s = f a′ for some a′ : A.

Guarded recursion is widely accepted as a natural rule for coalgebras and
codata types. In the POPL article [APTS13], coauthored by the second author, a
simply typed recursive calculus was introduced in which the principle of primitive
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corecursion is represented by copattern matching, the dual of pattern matching.
There it was shown that this calculus fulfils subject reduction.

Guarded Recursion for Codata Types. The principle of copattern matching
and primitive corecursion for coalgebras corresponds to the principle of guarded
recursion as introduced originally for codata types by Coquand [Coq94]. If we
take the codata definition of Stream, guarded recursion allows one to define a
function f : A → Stream by defining f a = s for a stream s (depending on a)
defined before, or by defining f a = cons s (f t) for some s, t which depend
on a. Nesting of constructors on the right hand side are allowed, but no other
functions can be used.

An equation f a = cons s (f t) corresponds in the coalgebra approach to the
copattern matching equations

head (f a) = s
tail (f a) = f t

and an equation f a = s for a stream s defined before to

head (f a) = head s
tail (f a) = tail s

So guarded recursion translates directly into copattern matching and primitive
corecursion, and vice versa. Nested applications of constructors in a guarded
recursion equation correspond to nested copattern matching: an equation f a =
cons s (cons t (f r)) for guarded recursion corresponds to the equations

head (f a) = s
head (tail (f a)) = t
tail (tail (f a)) = f r

Weakly Final Coalgebras. In final coalgebras one requires uniqueness of the
function f introduced by primitive corecursion.3 This principle is equivalent to
bisimilarity as equality on coalgebras, which for streams means componentwise
equality, and is therefore undecidable. We note that for final coalgebras the con-
structor is an isomorphism, so every element of a final coalgebra is introduced
by a constructor. In order to obtain decidability of type checking, one replaces
final coalgebras by weakly final coalgebras. In weakly final coalgebras, only the
existence of functions defined by primitive corecursion is required, not their
uniqueness. Elements of the coalgebra are introduced by the primitive corecur-
sion operator Pcorec,A

3 Actually it is only required for the principle of coiteration, where tail needs always
to be of the form f a′. If one has uniqueness, one can derive the existence and
uniqueness of functions defined by primitive corecursion. See [Set16] for a proof that
for strictly positive coalgebras uniqueness of the functions defined by coiteration and
by primitive corecursion are both equivalent to having a final coalgebra.
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Pcorec,A : (A → N) → (A → (Stream + A)) → A → Stream
head (Pcorec,A h t a) = h a

tail (Pcorec,A h t a) =
{

s if t a = inl s,
Pcorec,A h t a′ if t a = inr a′.

Elements of the coalgebra are equal if they reduce to the same normal form.
MLTT style rules for coalgebras are worked out in [Set12]. Mendler [Men87] and
Geuvers [Geu92] (Prop. 5.7) have shown that the polymorphic lambda calculus
extended by weakly initial algebras and weakly final coalgebras for positive type
schemes and higher type primitive recursion and primitive corecursion is strongly
normalising. Therefore we obtain a decidable equality on coalgebras.

3 Undecidability of Weak Forms of Equality on Streams

We are going to show that, under minimal desirable conditions for streams,
there is no decidable equality such that two streams with the same head and
the same tail are equal. As usual when defining an undecidability result, we
assume some encoding of computable streams as subsets of natural numbers.
Any implementation of type theory would need some form of representing terms
inside the systems, which amounts to encoding them in the computer, i.e. in
binary and hence as a natural number. So we will work now in a standard
setting of computability theory. As is tradition there, we will use mathematical
notation for application, i.e. we write f(x) instead of (f x).

Convention 1.(a) By a decidable relation on A ⊆ N we mean a subset B ⊆ A
such that there is a partial recursive function f such that for all x ∈ A, f(x)
is defined with f(x) ∈ {0, 1}, and x ∈ B iff f(x) = 1.

(b) When writing f : A → B where A,B ⊆ N we man that f is a function from
N to N such that f(x) ∈ B for all x ∈ A.

Assumption 2.(a) We assume a standard primitive recursive pairing function
π : N

2 → N with projections π0, π1 : N → N satisfying π0(π(x, y)) = x,
π1(π(x, y)) = y for x, y ∈ N.

(b) Let inl, inr : N → N, inl(n) := 2n, inr(n) := 2n + 1.
(c) For A,B ⊆ N we set

– A ×N B := {π(a, b)} | a ∈ A, b ∈ B}.
– A +N B := {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}.
(Note that N +N N = N ×N N = N).

(d) We assume encodings of Turing machines (TM) and configurations for TMs
as natural numbers. A configuration represent the finite portion of the tape
currently used, the head position and the state of the TM. We assume that
the working of TMs is modelled by primitive recursive functions
– init : N → N, which computes for a TM e its initial configuration;
– next : N

2 → N, which computes for a TM e and configuration c the
configuration obtained after executing the next step of the TM;
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– checkHalt : N
2 → N, which for TM e and configuration c determines

whether e has halted (then it returns true := 1, otherwise it returns
false := 0);

– result : N2 → N, such that result(e, c) returns, if TM e in configuration c
has halted, the result of this TM by reading it off the tape.

For e ∈ N, {e} denotes the partial recursive function (without input) corre-
sponding to TM e, that is {e} 
 run(e, init(e)) where

run(e, c) 

{

result(e, c) if checkHalt(e, c) = true,
run(e,next(e, c)) otherwise.

Definition 3. From init,next, checkHalt, result we derive primitive recursive
functions which operate on pairs π(e, c) for TMs e and configurations c. We
also define a bounded variant of the function run that models termination after
a given number n of computation steps:

– init′ : N → N, init′(e) = π(e, init(e)).
– next′ : N → N, next′(π(e, c)) = π(e,next(e, c)).
– checkHalt′ : N → N, checkHalt′(π(e, c)) = checkHalt(e, c).
– result′ : N → N, result′(π(e, c)) = result(e, c).

– run′
n(d) =

⎧⎨
⎩

result′(d) + 1 if n = 0 and checkHalt′(d) = true,
run′

n−1(next′(d)) if n > 0 and checkHalt′(d) = false,
0 otherwise.

run′
n(d) is a primitive recursive function of n and d such that run′

n(init′(e)) > 0
if and only if the TM encoded by e halts after exactly n steps and in that case
{e} 
 run′

n(init′(e)) − 1.

Definition 4. An encoding of streams (Stream,head, tail,==) is given by:

(a) A subset Stream ⊆ N.
(b) An equivalence relation == ⊆ Stream × Stream, called the equality of the

stream encoding. We write s == s′ for (s, s′) ∈ ==, and s �== s′ for
(s, s′) �∈ ==.

(c) Functions head : Stream → N, tail : Stream → Stream that respect ==, i.e.

∀s, s′ : Stream . s == s′ → head(s) = head(s′) ∧ tail(s) == tail(s′)

Note that we do not impose any effectivity conditions on the set Stream or the
functions head and tail.

Definition 5. Let (Stream,head, tail,==) be an encoding of streams. For s, s′ ∈
Stream and a vector of natural numbers n we define

s
n→ s′ ⇔ (∀i < |n|headi(s) = ni) ∧ tail|n |(s) == s′

where tailk is the k-fold iteration of tail, and headk(s) := head(tailk(s)).
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Definition 6. An encoding of streams (Stream,head, tail,==) is injective if the
function

〈head, tail〉 : Stream → N × Stream, 〈head, tail〉(s) = (head(s), tail(s))

is injective w.r.t. ==, that is

∀s, s′ : Stream .head(s) = head(s′) ∧ tail(s) == tail(s′) → s == s′

The following easy lemma shows that every encoding of streams can be naturally
turned into two injective ones that differ from the original one only in their
equality.

Lemma and Definition 7. Let (Stream,head, tail,==) be an encoding of
streams. Define

s ==<ω s′ ⇔ ∃n, t (s n→ t ∧ s′ n→ t)
s ∼ s′ ⇔ ∀i ∈ N (headi(s) = headi(s′))

Then (Stream,head, tail,==<ω) and (Stream,head, tail,∼) are injective encod-
ings of streams with == ⊆ ==<ω ⊆ ∼.

==<ω can also be inductively defined as the least relation containing == and
making 〈head, tail〉 injective. ∼ is the usual bisimilarity of stream which can also
be defined coinductively. If == is an intensional notion of equality on streams,
then the three equalities ==, ==<ω, ∼ are usually all different. We will give
concrete examples where these equalities differ, after the proof of our main result,
Theorem 9.

Definition 8. An encoding of streams (Stream,head, tail,==) is universal if for
any primitive recursive functions h : N → N and t : N → (Stream +N N) there
exists a primitive recursive function g : N → Stream such that

– head(g(n)) = h(n)

– tail(g(n)) ==
{

s if t(n) = inl(s),
g(k) if t(n) = inr(k).

We say g is defined by primitive corecursion (from h and t) if g is primitive
recursive and satisfies the equations above.

Every constructive type theory equipped with coalgebras (or codata) and a prim-
itive corecursion operator P gives rise to a universal encoding of streams with
g := P(h, t) : N → Stream as the function defined by primitive corecursion from
h and t.

Theorem 9. Every injective universal encoding of streams has an undecidable
equality.
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Proof: Let (Stream,head, tail,==) be a universal encoding of streams. By uni-
versality, let const : N → Stream be defined from the identity function and inr by
primitive corecursion, that is, head(const(i)) = i and tail(const(i)) == const(i).

Claim. Assume s
0n→ const(k).

(a) s == const(0) implies k = 0.
(b) If 〈head, tail〉 is injective, then k = 0 implies s == const(0).

Proof of the Claim by induction on n: If n = 0, then the assumption is
s == const(k). For (a) assume s == const(0). Then const(k) == const(0) and
therefore k = head(const(k)) = head(const(0)) = 0. Part (b) follows trivially
from the assumption.

Now assume n > 0. The assumption now means head(s) = 0 and tail(s) 0n−1

→
const(k). For (a) assume s == const(0). Then tail(s) == tail(const(0)) ==
const(0). Hence by induction hypothesis we get k = 0. For (b) assume k = 0. By
induction hypothesis, tail(s) == const(0). Hence s == const(0), by injectivity
and since head(s) = 0 = head(const(0)). This completes the proof of the Claim.

By universality, there exists a primitive recursive function f : N → Stream
s.t. if TM e terminates with result k after n steps, that is, run′

n(init′(e)) = k+1,
then

f(e) 0n+1

→ const(k)

We will give a detailed argument why f exists at the end of the proof.
Now assume that 〈head, tail〉 is injective. Then we have by the Claim, applied

to s = f(e) where e is a TM that halts with result k, that f(e) == const(0) iff
k = 0. Therefore, if == were decidable, then the function λe . f(e) == const(0)
would be recursive and it would separate the TMs which terminate with result
0 from the TMs terminating with result > 0. But there is no recursive function
separating these two sets, by the following well-known result in computability
theory (part of the proof of Theorem II.2.5 on p. 148 in Odifreddi [Odi92];
references to originators are due to Odifreddi; the result can be found as well in
Gasarch 1998 [Gas98], p. 1047, Note 2.8.):

Theorem 10. (Rosser [Ros36], Kleene [Kle50], Novikov, Trakhtenbrot
[Tra53]). Let A := {e | {e} 
 0} and B := {e | {e} 
 1}. Then A and
B are recursively inseparable, that is, there is no (total) recursive function
f : N → {0, 1} such that f(0) = 0 for all e ∈ A, and f(e) = 1 for all e ∈ B.

We complete the proof of Theorem 9 by showing that a function f with the
property specified above exists. Define primitive recursive functions h : N → N

and t : N → (Stream +N N) by

h(d) = 0

t(d) =
{

inl(const(result′(d))) if checkHalt′(d) = true,
inr(next′(d)) otherwise.
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Let g be defined by primitive corecursion from h and t. We have

head(g(d)) = 0

tail(g(d)) ==
{

const(result′(d)) if checkHalt′(d) = true,
g(next′(d)) otherwise.

Let f : N → Stream, f(e) = g(init′(e)). We show that f is as required, that is,

if run′
n(init′(e)) = k + 1, then f(e) 0n+1

→ const(k). We show more generally if

run′
n(d) = k + 1, then g(d) 0n+1

→ const(k), by induction on n.
If n = 0, then checkHalt′(d) = true (since run′

n(d) > 0). Therefore
run′

n(d) = result′(d) + 1 and k = result′(d). It follows head(g(d)) = 0,

tail(g(d)) == const(result′(d)) = const(k), and therefore g(d) 0n+1

→ const(k).
If n > 0, then checkHalt′(d) = false (since run′

n(d) > 0). Therefore run′
n(d) =

run′
n−1(next′(d)) = k+1. By induction hypothesis g(next′(d)) 0n→ const(k). Since

head(g(d)) = 0 and tail(g(d)) == g(next′(d)) it follows g(d) 0n+1

→ const(k).

Corollary 11. Assume a universal encoding of streams (Stream,head, tail,==).
Assume a function cons : N × Stream → Stream that respects ==, that is,

∀n, s, s′ . s == s′ → cons(n, s) == cons(n, s′)

(a) Assume

∀s : Stream . s == cons(head(s), tail(s))

that is, cons is a left-inverse of 〈head, tail〉 w.r.t. ==. Then == is undecid-
able.

(b) Assume

∀s : Stream .head(cons(n, s)) = n ∧ tail(cons(n, s)) == s

that is, cons is a right-inverse of 〈head, tail〉 w.r.t. ==. Assume further

∀s : Stream .∃n.∃s′ : Stream . s == cons(n, s′)

that is, cons is surjective w.r.t. ==. Then == is undecidable.

Proof of Corollary 11: (a) If 〈head, tail〉 has a left-inverse, it is injective, hence
Theorem 9 applies. (b) A surjective right-inverse is also a left-inverse.

Corollary 12. For every universal encoding of streams the equalities ==<ω

and ∼ defined in Lemma 7 are undecidable.

Examples 13. Let (Stream,head, tail,==) be a universal encoding of streams
that is derived from some intensional constructive type theory with primitive
corecursion (like for example the theory underlying Agda) such that == corre-
sponds to definitional equality.
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First, we argue that ==<ω is not the same as bisimilarity by constructing
bisimilar streams that are not related by ==<ω: Let f : N → Stream be defined
by primitive corecursion such that head(f(x)) = 0 and tail(f(x)) == f(x) for
all x ∈ N. Since f(0) and f(1) come from different terms in normal form we have
f(0) �== f(1). Since for all n ∈ N

tailn(f(0)) == f(0) �== f(1) == tailn(f(1))

it follows that f(0) �==<ω f(1). However, clearly f(0) and f(1) are bisimilar.
Next, we construct streams witnessing the fact that == and ==<ω are differ-

ent. From Theorem 9 we know that these two relation cannot coincide since ==
is decidable but ==<ω isn’t, however, it is interesting to see the difference by an
example. We simply modify the above example slightly. Let f ′ : N → Stream be
defined by primitive corecursion such that head(f ′(x)) = 0 and tail(f ′(x)) ==
f(0) for all x ∈ N. With the same argument as before, f ′(0) �== f ′(1). However
f ′(0) 0→ f(0) and f ′(1) 0→ f(0), therefore f ′(0) ==<ω f ′(1).

Remark 14. In the definitions and proofs above one may replace the class of
primitive recursive functions by any other class of recursive functions satisfying
some minimal closure conditions, for example all recursive functions, elementary
functions, or polynomial time computable functions. Then Theorem 9 is still
valid with the same proof.

4 Extension of Theorem 9 to Coiteration

For coalgebras we have the principles of primitive corecursion and coiteration
which are the dual of primitive recursion and iteration for algebraic data types.
A detailed discussion of these concepts and why they are dual can for instance
be found in [Set16]. When we define a function f : A → Stream by primitive
corecursion, we have the choice of defining tail(f(a)) = f(a′) or tail(f(a)) = s
for some given stream s. Coiteration restricts this choice by demanding that
tail(f(a)) always needs to be equal to f(a′) for some a′. An encoding of streams
is coiteratively universal if it is closed under the coiteration operator:

Definition 15. An encoding of streams (Stream,head, tail,==) is coiteratively
universal if for any primitive recursive functions h : N → N and t : N → N there
exists a primitive recursive function g : N → Stream such that

– head(g(n)) = h(n)
– tail(g(n)) == g(t(n)).

We say g is defined by coiteration (from h and t), if g is primitive recursive and
satisfies the equations above.

Note that the functions f and f ′ in Example 13 are in fact defined by coiter-
ation. However, our main Theorem 9 above relied essentially on the fact that we
have primitive corecursion. This allowed us to escape once the TM has termi-
nated into the streams const(i), and it is important that it was the same stream
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and not only a stream bisimilar to const(i). We will show that the main theorem
applies as well to coiteratively universal encodings of streams, and that we can
overcome the problem of not being able to escape into const(i) directly. But let
us first repeat the standard argument that coiteration can simulate primitive
corecursion up to bisimilarity:

Lemma 16. Let (Stream,head, tail,==) be a coiteratively universal encoding
of streams. Assume head and tail are primitive recursive (which are therefore
defined on N). Let h, t as in the definition of “universal encoding of streams”,
that is, h : N → N and t : N → (Stream +N N). Then there exist a primitive
recursive function g : N → Stream such that g behaves up to ∼ like a function
defined by primitive corecursion from h, t, more precisely,

(a) head(g(n)) = h(n),
(b) if t(n) = inl(s), then tail(g(n)) ∼ s,
(c) if t(n) = inr(m), then tail(g(n)) == g(m).

Proof: Define

h′ : N → N (recall that N = N +N N)
h′(inl(n)) = head(n)
h′(inr(n)) = h(n)

t′ : N → N

t′(inl(n)) = inl(tail(n))
t′(inr(n)) = t(n)

Let g′ be defined by coiteration from h′ and t′, that is, for all n ∈ N

head(g′(n)) = h′(n),
tail(g′(n)) == g′(t′(n)).

Let g(n) := g′(inr(n)). Then g is primitive recursive and satisfies the conditions
(a), (b), (c) as we show now. Conditions (a) and (c) are easy:

head(g(n)) = head(g′(inr(n)) = h′(inr(n)) = h(n),

and if t(n) = inr(m), then

tail(g(n)) == tail(g′(inr(n))) == g′(t′(inr(n′))) == g′(t(n)) = g(m).

For condition (b) we show first that g′(inl(s)) ∼ s for all s ∈ Stream. In fact, for
all n ∈ N tailn(g′(inl(s))) == g′(t′n(inl(s))) = g′(inl(tailn(s))) and therefore

head(tailn(g′(inl(s)))) = head(g′(inl(tailn(s))))
= h′(inl(tailn(s)))
= head(tailn(s)).

Now, if t(n) = inl(s), then

tail(g(n)) == tail(g′(inr(n))) == g′(t′(inr(n))) == g′(t(n)) = g′(inl(s)) ∼ s.
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Theorem 17. Every injective coiteratively universal encoding of streams has
an undecidable equality.

Proof: First note that although Lemma 16 reduces primitive corecursion to
coiteration it cannot be used to reduce Theorem 17 to Theorem 9 since the
reduction (b) in Lemma 16 is only with respect to bisimilarity. Therefore, we
need a new proof, which however can be obtained by suitably modifying the
proof of Theorem 9.

We replace the function g used in Theorem 9 by a function g′ which on argu-
ments inl(n) behaves like the function g before, and on arguments inr(n) behaves
like the constant stream with elements in n. Now we can replace escaping into
const(k) by a recursive call to g′(inr(n)): More precisely, we define by coiteration

g′′ : N → Stream
head(g′′(inl(d)) = 0

tail(g′′(inl(d)) =
{

g′′(inr(result′(d))) if checkHalt′(d) = true,
g′′(inl(next′(d))) otherwise.

head(g′′(inr(k)) = k
tail(g′′(inr(k)) = g′′(inr(k))

We define now

g′ : N → Stream
g′(k) = g′′(inl(k))

const′ : N → Stream
const′(k) = g′′(inr(k))

We obtain

head(g′(d)) = 0

tail(g′(d)) =
{

const′(result′(d)) if checkHalt′(d) = true,
g′(next′(d)) otherwise.

head(const′(k)) = k
tail(const′(k)) = const′(k)

Now by replacing const by const′ and g by g′ in the proof of Theorem 9, and
using the equations above, we obtain a proof of Theorem 17.

Corollary 18. Corollaries 11 and 12 hold for iteratively universal encodings of
streams as well.

5 Conclusion and Related Work

Codata Types and Coalgebras in Programming and Theorem Proving.
This paper shows that codata types are problematic in dependent type theory
if one requires decidability of type checking. Codata types can still be used in a
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simply typed settings in functional programming since type checking there does
not require checking of equalities. They can be used as well in systems such as
Nuprl where type statements are derived by the user and therefore decidability
of type checking is not required. Otherwise, the best approach known at the
moment is to define coalgebraic types as defined by their elimination rules.

Programming with coalgebras is very natural in a situation where a corre-
sponding codata type would only have one constructor. The main example is
the type of streams defined by having observations head and tail as defined
earlier. As an example demonstrating that copattern matching is very natural
consider the function enum : N → Stream enumerating the natural numbers from
n onwards which can be defined by the copattern equations head (enum n) = n
and tail (enum n) = enum (n + 1).

When we define a coalgebra where the corresponding codata type has more
than one constructor we face the problem that several constructors in a codata
type correspond to a disjoint union whereas several observations in a coalgebra
correspond to a product. For instance, the observations head and tail of Stream
can be replaced by one observation elim : Stream → N × Stream. Several obser-
vations in a coalgebra therefore do not allow to simulate several constructors of
a codata type directly. Consider the example of colists (i.e. potentially infinite
lists) which are defined as codata as

codata coList : Set where
nil : coList
cons : N → coList → coList

The eliminator for a corresponding coalgebra needs to determine for a colist
whether it is nil or (cons n s). It can be done by defining

coalg coList : Set where
elim : coList → � + N × coList

Here � is the one element type with element tt, + the disjoint union. elim l =
inl tt means that l is of the form nil, and elim l = inr (n , l′) means that l is of
the form (cons n l′).

For programming it is more convenient to replace �+N×Stream by an extra
type. A good notation is to replace the name coList by ∞coList and use coList
for the extra type. We obtain the simultaneous definition of two types coList
and ∞coList (using notations inspired by the “musical approach” in Agda see
below):

coalg ∞coList : Set where
� : ∞coList → coList

data coList : Set where
cons : N → ∞coList → coList
nil : coList

Every element of coList is of the form (cons n s) or nil, and one can make
case distinction on elements of coList. But one cannot pattern match on ∞coList
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and therefore not pattern match on the second argument of cons – in order to
unfold it further one needs to apply � to it.

Decidability of equalities for coalgebras mentioned at the end of Sect. 2
holds in this situation as well. Our proof regarding undecidability of equality
(Theorem 9) wouldn’t go through in this situation, since it required that if we
unfold l, l′ : coList finitely many times and get the same heads and tail, then
l == l′. For example, the case of unfolding the elements l and l′ twice doesn’t
mean that they are both equal to (cons n (cons n′ s)). It only means that
l = cons n l0, where � l0 = cons n′ s, and l′ = cons n l′0, where � l′0 = cons n′ s.
But these equations do not imply l0 == l′0 and therefore neither l == l′.

Using the “Musical Approach” in Agda to Simulate Codata Types by
Coalgebras (and Related Work). In Agda there exists, apart from the coal-
gebra approach, an approach which can be considered as introducing syntactic
sugar for the above way of simulating codata types by coalgebras [Agd11,Dan09].
In that approach Agda generates for every name A for a type automatically a
builtin type (∞ A), which is a type defined simultaneously with A.4 Note that
we should not have ∞ : Set → Set.5 The type (∞ A) can be considered as a
coalgebra defined simultaneously with A by

coalg (∞ A) : Set where
� : ∞ A → A

Agda provides as well a builtin function � which is defined by copattern
matching as

� : A → ∞ A
� (� a) = a

With this approach we can replace ∞coList by (∞ coList), omit its definition
(since it is builtin) and get a definition which is close to that of a codata type:

data coList : Set where
cons : N → ∞ coList → coList
nil : coList

We can now define enum : N → ∞ coList by copattern matching in a way
which is very close to the definition for codata types:6

� (enum n) = cons n (enum (n + 1))
4 There are various options of how to deal with types depending on parameters – this
is left as future work.

5 Actually, a constant of this type exists in Agda – the reason is that the musical
approach is introduced via a library rather than a direct syntactic extension of
Agda.

6 That’s how we believe Agda should behave. In fact, in Agda one defines instead
enum : N → coList by enum n = cons n (� (enum (n + 1))), an equation which,
considered verbally, is not normalising and brings back the problems avoided by the
coalgebra approach.
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In [Agd11,Dan09], the type (∞ A) is considered as the type of delayed com-
putations, and � : A → ∞ A forms a delayed computation from an element of
A. Conversely, � triggers a delayed computation.

This approach works well in situations where one needs to simulate pure
codata types, which occur quite often. However, especially the work of the second
author with Bashar Igried on CSP-Agda [IS18,IS17,IS16] has shown that it can
be useful to have coalgebras with several observations. Even in a situation where
one has a type which has a main observation similar to � above, one often needs
additional observations (in CSP-Agda there was the need to add an additional
string component to the type of processes).

The musical approach in Agda is also a way of interpreting the approach by
Altenkirch et al. [ADLO10] who introduce the language ΠΣ, which has the type
[A] of delayed computations, which require ! (similar to �) in order to unfold
them further. Note that ΠΣ is, as stated in [ADLO10], designed as a partial
language which permits general recursion.

Further Related Work. McBride states at the end of Sect. 3 of [McB09] that
there is no equality on colists such that every colist is introduced by a construc-
tor. He gives some argument, but that argument relies on the undecidabilty
of the Turing halting problem and doesn’t work if one takes into account that
there exist, as constructed by us, an (undecidable) equality on colists (we con-
structed it for streams) such that every element is introduced by a constructor,
but which is not equal to bisimilarity. We needed to use a deeper theorem from
computability theory in order to give a full mathematical proof for our theorem.

Conclusion. We have reviewed the two approaches for introducing non-well-
founded data types, namely codata types given by introduction rules, and coal-
gebras given by elimination rules. We have shown that under weak assumptions,
which are very natural for both approaches, there exists no decidable equality
on Stream such that every element of Stream is introduced by a constructor.
This causes at least conceptual problems for the codata approach. The theory
of coalgebras seems to be simpler, avoids this problem and appears to be a
conceptually superior approach to codata types. Reduction rules are easier in
coalgebras since there are no special restrictions on when to apply reductions.
Elements of coalgebras are finite objects which unfold to infinite objects only
when applying destructors to them iteratively.

Overall, our results suggest that the future of codata types in dependent type
theory with decidable type checking lies in its role as a useful derived concept
based on coalgebras defined by observations. The musical notation in Agda can
be seen as a realisation of this idea which makes it easy to work with the very
commonly occurring situation of coalgebras which originate from codata types.
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[Gim95] Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dyb-
jer, P., Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp.
39–59. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60579-
7 3
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Abstract. We introduce a generic expression language describing
behaviours of finite coalgebras over sets; besides relational systems, this
covers, e.g., weighted, probabilistic, and neighbourhood-based system
types. We prove a generic Kleene-type theorem establishing a corre-
spondence between our expressions and finite systems. Our expression
language is similar to one introduced in previous work by Myers but has
a semantics defined in terms of a particular form of predicate liftings as
used in coalgebraic modal logic; in fact, our expressions can be regarded
as a particular type of modal fixed point formulas. The predicate liftings
in question are required to satisfy a natural preservation property; we
show that this property holds in particular for the Moss liftings intro-
duced by Marti and Venema in work on lax extensions.

1 Introduction

Expression languages that support the syntactic description of system behaviour
are one of the classical topics in computer science. The prototypic example are
regular expressions; further examples include Kleene algebra with tests [17] and
expression languages for labelled transition systems [1].

There has been recent interest in phrasing such expression languages gener-
ically, obtaining their syntax and semantics as well as meta-theoretic results
including Kleene theorems by instantiation of a parametrized framework. This
is achieved by abstracting the type of systems as coalgebras for a given type
functor. This line of work originates with expression languages for a specific
class of functors that essentially covers relational systems, so-called Kripke poly-
nomial functors [34], and was subsequently extended to cover also weighted
systems [32]. A generic expression language for arbitrary finitary functors can
be based on algebraic functor presentations [25]. Here, we introduce a similar
and, as it will turn out, in fact largely equivalent generic expression language
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for finitary functors, which we base on coalgebraic modalities in predicate lift-
ing style, following the paradigm of coalgebraic logic [9]; on predicate liftings,
we impose strong conditions, notably including preservation of singletons. Marti
and Venema [20] have shown that for functors admitting a lax extension (in par-
ticular for functors that admit a separating set of monotone predicate liftings),
one can convert operations from the functor presentation into predicate liftings,
the so-called Moss liftings. We show that the Moss liftings preserve singletons;
the converse does not hold in general, i.e. not all singleton-preserving predicate
liftings are Moss liftings under a given lax extension.

We thus arrive at a generic expression language that covers, e.g., various
flavours of relational, weighted, and probabilistic systems, as well as monotone
neighbourhood systems as in the semantics of game logic [26] and concurrent
dynamic logic [29]. We prove a Kleene theorem stating that every expression
denotes the behavioural equivalence class of some state in a finite system, and
that conversely every such behavioural equivalence class is denoted by some
expression.

We make no claim to novelty for the design of a generic expression lan-
guage as such, and in fact the expression language developed by Myers in his
PhD dissertation [25] appears to be even more general. In particular, unlike
Myers’ language our expression language is currently restricted to describing
behavioural equivalence classes in set-based coalgebras, and does not yet support
algebraic operations (e.g. a join semilattice structure as in Silva et al.’s language
for Kripke-polynomial functors [34] or in fact in standard regular expressions).
The main point we are making is, in fact, a different one: we show that

coalgebraic expression languages embed into coalgebraic logic,

specifically into (the conjunctive fragment of) the coalgebraic μ-calculus [8],
extending the classical result that every bisimilarity class of states in finite
labelled transition systems is expressible by a characteristic formula in the μ-
calculus [2,10,14,35]. This result provides a direct link between descriptions of
processes and their property-oriented specification; as indicated above, the key
to lifting it to a coalgebraic level of generality are singleton-preserving predicate
liftings.

Related Work. As mentioned above, we owe much to work by Marti and Venema
on Moss liftings [20], and moreover we use a notion of Λ-bisimulation [12] that
turns out to be an instance of their definition of bisimulation via lax extensions.
Besides the mentioned work on generic expression languages for Kripke polyno-
mial [34], weighted [32], and finitary [25] functors, there is work on expression
languages for reactive T -automata [11], which introduce an orthogonal dimension
of genericity: The coalgebra functor as such remains fixed but the computational
capacities of the automaton model at hand are encapsulated as a computational
monad [23]. Venema [38] proves that for weak-pullback preserving fuctors, every
bisimilarity class of finite coalgebras is expressible in coalgebraic fixpoint logic
over Moss’ ∇ modality.
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2 Preliminaries

In the standard paradigm of universal coalgebra, types of state-based systems are
encapsulated as endofunctors. We recall details on presentations of set functors
and on their property-oriented description via predicate-lifting based coalgebraic
modalities.

Functor Presentations describe set functors by signatures of operations and
a certain restricted form of equations, so-called flat equations, alternatively by
a suitable natural surjection. A signature is a sequence Σ = (Σn)n∈ω of sets.
Elements of Σn are regarded as n-ary operation symbols (we write τ/n ∈ Σ for
τ ∈ Σn). Every signature Σ determines the corresponding polynomial endofunc-
tor TΣ on Set, which maps a set X to the set

TΣX =
∐

n∈ω

Σn × Xn

and similarly on maps.

Definition 2.1. A presentation of a functor T : Set → Set is a pair (Σ,α)
consisting of a signature Σ and a natural transformation α : TΣ � T with
surjective components αX . In the following, we abuse notation and denote, for
every τ/n ∈ Σ, the corresponding coproduct component of α : TΣ � T again
by τ : (−)n → T , and refer to it as an operation of T .

Most of our results concern finitary set functors. Recall that a functor is
finitary if it preserves filtered colimits. Over Set, we have the following equivalent
characterizations:

Theorem 2.2 (Adámek and Trnkova [3]). Let T : Set → Set be a functor.
Then the following are equivalent:

1. T is finitary;
2. T is bounded, i.e. for every element x ∈ TX there exists a finite subset

m : Y ↪→ X and an element y ∈ TY such that x = Tm(y);
3. T has a presentation.

Indeed, for the equivalence of (1) and (3) note that every polynomial func-
tor TΣ is finitary, and finitary functors are closed under taking quotient functors.
Conversely, given a finitary functor T , let Σn = Tn and define αX : TΣX → TX
by αX(τ, t) = Tt(τ), where t ∈ Xn is considered as a function n → X. It is easy
to show that this yields a natural transformation with surjective components.

Remark 2.3. As indicated above, the natural surjection α in a functor pre-
sentation (Σ,α) can be replaced with a set of flat equations over Σ, where an
equation is called flat if both sides consist of an operation symbol applied to
variables [3]. Incidentally, this (standard) term should not be confused with the
same term introduced in the context of our expression language in Sect. 5.
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Example 2.4. (1) Let A be an input alphabet. The functor TX = 2 × XA,
whose coalgebras are deterministic automata, is polynomial, and finitary if A
is finite. Thus, T has a presentation (Σ,α) by a signature Σ with two |A|-ary
operations and no equations, i.e. α is the natural isomorphism TΣ

∼= 2 × (−)A.
(2) For a commutative monoid (M,+, 0M ) the monoid-valued functor M (−) :

Set → Set is defined by

M (X) = {μ : X → M | μ(x) = 0M for all but finitely many x ∈ X}

and by M (h)(μ) = y �→
∑

h(x)=y μ(x) on maps h : X → Y . We view elements
of M (X) as finitely supported additive measures on X, and in particular write
μ(A) =

∑
x∈A μ(x) for A ⊆ X; in this view, maps M (h) just take image measures.

For a set G ⊆ M of generators (i.e. there exists a surjective monoid morphism
G∗ � M), M (−) is represented by

αX :
∐

n∈ω

Gn × Xn � M (X), αX(τ, t) = M (t)(τ),

where τ ∈ Gn is considered as an element of M (n).
(3) The finite powerset functor Pω (with Pω(X) being the set of finite subsets

of X) is the monoid-valued functor for the monoid ({0, 1},∨, 0). Since this is
generated by G = {1}, we have one n-ary operation symbol for each n ∈ ω:

αX :
∐

n∈ω

Xn � PωX, αX(x1, . . . , xn) = {x1, . . . xn};

e.g. α identifies the tuples (x1, x1, x2) and (x1, x2).
(4) For the monoid N of natural numbers with addition, one obtains the bag

functor B as N(−). Concretely, B maps a set X to the set BX of bags (i.e. finite
multisets) on X. Since (N,+, 0) is generated by G = {1}, we have the same
signature as for Pω, namely one n-ary operation symbol per n ∈ ω; of course,
the presentation α now identifies fewer tuples, e.g. distinguishes (x1, x2, x1) and
(x1, x2).

(5) The finite distribution functor D is a subfunctor of the monoid-valued
functor R

(−)
≥0 for the additive monoid of the non-negative reals, given by DX =

{μ ∈ R
(−)
≥0 |

∑
x∈X μ(x) = 1}. Note that elements of DX can be represented

as formal convex combinations
∑n

i=1 pixi, pi ∈ R≥0, xi ∈ X for i = 1, . . . , n,
with p1 + · · · + pn = 1. Taking R≥0 itself as the set of generators and restrict-
ing to D, we obtain a presentation (Σ,α) with an n-ary operation symbol for
each n-tuple (p1, . . . , pn) ∈ R

n
≥0 such that p1 + · · · + pn = 1, and αX maps

((p1, . . . , pn), (x1, . . . , xn)) to the formal convex combination
∑n

i=1 pixi.
(6) The finitary monotone neighbourhood functor Mω, i.e. the finitary part of

the standard monotone neighbourhood functor M, can be described as follows.
To begin, M is the subfunctor of the double contravariant powerset functor
QQop given on objects by

MX = {A ⊆ Q(X) | A upwards closed under ⊆}.
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We can then describe MωX as consisting of all A ∈ MX having finitely many
minimal elements, all of them finite, such that every element of A is above
a minimal one. We have the following presentation of Mω: For every choice
of numbers n ≥ 0, k1, . . . , kn ≥ 0, we have a

∑n
i=1 ki-ary operation mapping

(xij)i=1,...,n;j=1,...,ki
to the upwards closure of the set system

{{xi1, . . . , xiki
} | i = 1, . . . , n}.

Coalgebraic Logic. Since coalgebras serve as generic models of reactive sys-
tems, it is natural to specify properties of coalgebras in terms of suitable modal-
ities. The semantics of coalgebraic modalities can be defined using predicate lift-
ings [27,30], which specify how a predicate on a base set X induces a predicate
on the set TX where T is the coalgebraic type functor:

Definition 2.5. For n ∈ ω an n-ary predicate lifting for a functor T : Set → Set
is a natural transformation

λ : Qn → QT op

where Q : Setop → Set is the contravariant powerset functor, with Qf taking
preimages, i.e.

Qf(A) = f−1[A].

We write λ/n to indicate that λ has arity n. A predicate lifting λ is monotone
if it preserves set inclusion in every argument. A set Λ of predicate liftings is
separating [28,30] if every t ∈ TX is uniquely determined by the set

TΛ(t) = {(λ,A1, . . . , An) | λ/n ∈ Λ,Ai ∈ QX and t ∈ λX(A1, . . . , An)}.

Example 2.6. The basic example is the interpretation of the standard box
modality � over the covariant powerset functor P (with Pf taking direct
images), given by the monotone unary predicate lifting λ defined by

λX(A) = {B ∈ P(X) | B ⊆ A}.

For a further monotone example, we interpret the box modality over the mono-
tone neighbourhood functor M (Example 2.4) by the monotone unary predicate
lifting

λX(A) = {A ∈ MX | A ∈ A}.

It is easy to see that in both these examples, the predicate lifting for � alone is
separating.

Predicate-lifting-based modalities can be embedded into coalgebraic logics of
varying degrees of expressiveness. Our expression language introduced in Sect. 5
will live inside the coalgebraic μ-calculus [8], more precisely its conjunctive frag-
ment [13]. We defer details to Sect. 5.
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3 Singleton-Preserving Predicate Liftings

Our generic expression language will depend on a specific type of predicate
liftings, as well as on a strengthening of separation:

Definition 3.1. An n-ary predicate lifting λ preserves singletons if

|λX({x1}, . . . , {xn})| = 1

for all x1, . . . , xn ∈ X. Moreover, a set Λ of predicate liftings is strongly expressive
if for every t ∈ TX there exist λ/n ∈ Λ and x1, . . . , xn ∈ X such that

{t} = λX({x1}, . . . , {xn}).

Singleton preservation will serve to ensure that expressions of our language
denote unique behaviours, while strong expressivity will guarantee that all
(finite) behaviours are expressible. The following is immediate:

Lemma 3.2. Every strongly expressive set of predicate liftings is separating.

Example 3.3. The predicate liftings in Example 2.6 both fail to preserve single-
tons. Our main source of singleton-preserving predicate liftings are Moss liftings
as introduced in general terms in the next section. For the finite powerset func-
tor Pω consider the predicate liftings λn/n given by

λn
X(A1, . . . , An) = {B ∈ PωX | B ⊆

⋃n
i=1 Ai and

B ∩ Ai �= ∅ for i = 1, . . . , n} (3.1)

(which can be seen as arising from the above lifting for � by Boolean combi-
nation). Then λn

X({x1}, . . . , {xn}) = {{x1, . . . , xn}} for x1, . . . , xn ∈ X, which
shows that the λn preserve singletons and that the set {λn | n ∈ ω} is strongly
expressive.

Remark 3.4. Singleton-preserving predicate liftings should not be confused
with Kurz and Leal’s singleton liftings [18,19]. The definition of the latter
is based on the one-to-one correspondence between subsets of T (2n) and n-
ary predicate liftings for T [30], which maps an n-ary predicate lifting λ to
λ2n(π−1

1 ({}), . . . , π−1
n ({})) ⊆ T (2n), and C ⊆ T (2n) to the lifting λ defined

by λX(A1, . . . , An) = {t ∈ TX | T 〈χA1 , . . . , χAn
〉(t) ∈ C}, where πi : 2n → 2

is the i-th projection and χA : X → 2 denotes the characteristic function of
A ⊆ X. An n-ary predicate lifting is a singleton lifting if it corresponds to a
singleton subset of T (2n).

It is then indeed immediate that every unary singleton-preserving predicate
lifting λ is a singleton lifting, since the above correspondence maps λ to the
singleton λ2({}). The following examples show that this implication breaks
down at higher arities, and that the converse also fails in general.
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Example 3.5. (1) The unary singleton lifting for P corresponding to {{⊥}} ⊆
P2 fails to preserve singletons. Of course, this lifting fails to be monotone.

(2) Binary monotone singleton liftings need not preserve singletons. E.g. for
the distribution functor D, the monotone singleton lifting λ corresponding to {1 ·
(,)} ⊆ D(22) is given by λ(A,B) = {μ | μ(A) = μ(B) = 1}, so λ({x}, {y}) =
∅ for x �= y. We leave it as an open question whether unary monotone singleton
liftings preserve singletons.

(3) The binary singleton-preserving predicate lifting

λ(A,B) = {μ | μ(A) ≥ 1/2, μ(B) ≥ 1/2, μ(A ∪ B) = 1}

for the distribution functor D (see Example 4.7 for details) is not a singleton
lifting, as it corresponds to the following infinite subset of D(22):

{μ | μ(2 × {}) ≥ 1/2, μ({} × 2) ≥ 1/2, μ(2 × {} ∪ {} × 2) = 1}.

It is not hard to see that we can recover operations for a functor from mono-
tone singleton preserving predicate liftings; in detail:

Lemma 3.6. Let T : Set → Set. Then the following hold.

1. For each monotone singleton-preserving predicate lifting λ/n,

{τλ,X(x1, . . . , xn)} := λX({x1}, . . . , {xn}) (3.2)

defines a natural transformation τλ : (−)n → T .
2. If Λ is a strongly expressive set of monotone singleton-preserving predicate

liftings, then taking operation symbols τλ for each λ ∈ Λ, with associated
interpretation as per (3.2), yields a functor presentation of T .

Example 3.7. The singleton-preserving predicate liftings λn from Example 2.6
induce, according to the above construction, the operations Xn → Pω(X),
(x1, . . . , xn) �→ {x1, . . . , xn}.

The other direction, generating predicate liftings from functor presentations,
is more involved, and treated next.

4 Moss Liftings

Marti and Venema [20] introduce Moss liftings, predicate liftings that are con-
structed from functor presentations with the help of a generalized form of the
nabla operator, extending an earlier construction for weak-pullback preserving
functors by Kurz and Leal [18]. Recall that for a weak-pullback-preserving func-
tor T , Moss’ [24] classical nabla operator ∇ : TQ ⇒ QT op is the natural trans-
formation defined by

∇(Φ) = {t ∈ TX | (t, Φ) ∈ T (∈X)}.
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Here, ∈X ⊆ X×QX is the element-of relation for X, and T is the Barr extension
of T , viz. the functor T on the category of sets and relations defined on a relation
R ⊆ X × Y by TR = {(Tπ1(r), Tπ2(r)) | r ∈ TR}, where π1 : R → X and
π2 : R → Y are the projection maps (cf. [24]). Barr [5] (see also Trnková [37])
proved that T is a functor if and only if T preserves weak pullbacks.

Further recall that the converse of a relation R ⊆ X × Y is the relation
R◦ = {(y, x) | x R y} ⊆ Y × X. We denote the composite of two relations
R ⊆ X × Y and S ⊆ Y × Z diagrammatically by R;S ⊆ X × Z. Also, for
A ⊆ X we denote by R[A] ⊆ Y the relational image R[A] = {y | ∃x ∈ A. xRy}.
The construction T �→ T is generalized and abstracted in the notions of relation
lifting and, more specifically, lax extension of a functor, as recalled next.

Definition 4.1 (Relation lifting, lax extension [20]). A relation lifting L
for a functor T is an assignment mapping every relation R ⊆ X ×Y to a relation
LR ⊆ TX × TY such that converses are preserved: L(S◦) = (LS)◦. A relation
lifting L is a lax extension if for all relations R,R′ ⊆ X × Z, S ⊆ Z × Y and
functions f : X → Z (identified with their graph relation) the following hold:

R′ ⊆ R ⇒ LR′ ⊆ LR,

LR;LS ⊆ L(R;S),
T f ⊆ Lf.

A lax extension L preserves diagonals if for all sets X

LΔX ⊆ ΔTX .

Proposition 4.2 (Properties of Lax Extensions [20]). Let L be a lax exten-
sion for a functor T . Then for all functions f : X → Z, g : Y → Z and relations
R ⊆ X × Z, S ⊆ Z × Y ,

(i) ΔTX ⊆ LΔX ,
(ii) Tf ;LS = L(f ;S) and LR; (Tg)◦ = L(R; g◦),

and if L preserves diagonals, then

(iii) ΔTX = LΔX and Tf = Lf ,
(iv) Tf ; (Tg)◦ = L(f ; g◦).

One use of relation liftings is to determine coalgebraic notions of bisimulation:

Definition 4.3 (L-Bisimulation [20]). Let L be a relation lifting for a functor
T : Set → Set, and let (X, ξ), (Y, ζ) be T -coalgebras. A relation S ⊆ X × Y is
an L-simulation if for all x ∈ X and y ∈ Y ,

x S y implies ξ(x) LS ζ(y).

An L-bisimulation is a relation S such that S and S◦ are L-simulations. Two
states are L-bisimilar if there exists an L-bisimulation relating them.
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Marti and Venema [20, Theorem 11] show that if L is a lax extension that
preserves diagonals, then L-bisimilarity coincides with behavioural equivalence.

Assumption 4.4. From now on we fix a finitary endofunctor T : Set → Set
having a diagonal-preserving lax extension L and a presentation (Σ,α) of T .

Another key feature of lax extensions is that they induce canonical modalities,
generalizing Moss’ coalgebraic logic [24]:

Definition 4.5 (Lax Nabla [20]). The lax nabla of L is the family of functions

∇L
X : TQX → QT opX

Φ �→ {t ∈ TX | (t, Φ) ∈ L(∈X)},

where ∈X ⊆ X × QX is the element-of relation for X.

As shown by Marti and Venema [20], the lax nabla is in fact a natural trans-
formation ∇L : TQ ⇒ QT op, and coincides with Moss’ classical ∇ for L being
the Barr extension of T (and T preserving weak pullbacks). In combination with
a functor presentation, the lax nabla gives rise to a family of predicate liftings:

Definition 4.6 (Moss Liftings [20]). Every operation symbol τ/n ∈ Σ yields
a predicate lifting λ defined by

λ = (Qn τQ=⇒ TQ ∇L

=⇒ QT op),

that is,

λX(X1, . . . Xn) = {t ∈ TX | (t, τQX(X1, . . . , Xn)) ∈ L(∈X)}.

These predicate liftings are called the Moss liftings of T .

Example 4.7. Some standard functor presentations are converted into Moss
liftings as follows.

(1) For the deterministic automata functor TX = 2 × XA consider the Barr
extension L = T . Then elements of TQX are pairs (b, (Ya)a∈A), where each Ya

is a subset of X, and

∇X(b, (Ya)a∈A) = {(b, (xa)a∈A) | ∀a ∈ A : xa ∈ Ya} for b = 0, 1.

The two Moss liftings λ0, λ1 : QA → Q(2 × (−)A) corresponding to the two |A|-
ary operation symbols from the presentation in Example 2.4(1) are thus defined
(slightly abusing notation) by

λi((Ya)a∈A) = {(i, (xa)a∈A) | ∀a ∈ A : xa ∈ Ya} for i = 0, 1.

(2) As indicated in Example 2.4, the finite powerset functor Pω has operations
τn/n given by τn(x1, . . . , xn) = {x1, . . . , xn}. The Moss lifting λn associated to
τn when using the Barr extension is exactly the one given by (3.1) above.
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(3) Recall from Example 2.4 that the operations of the finite distribution
functor D take formal convex combinations. Via the Barr extension, such an
operation, determined by coefficients p1, . . . , pn such that

∑
pi = 1, induces

the predicate lifting λ given by λX(A1, . . . , An) consisting of all μ ∈ DX such
that there exists a distribution on ∈X (a subset of X × Q(X)) whose marginal
distributions are μ (on X) and the distribution ν on Q(X) given by ν({Ai}) = pi,
respectively. In fact, however, this description can be substantially simplified; e.g.
one readily checks that in the case n = 2, we actually have

λ(A1, A2) = {μ ∈ D(X) | μ(A1) ≥ p1, μ(A2) ≥ p2, μ(A1 ∪ A2) = 1}.

(The generalization to higher arities is via what is nowadays known as the split-
ting lemma [36, Theorem 11].)

(4) For the finitary monotone neighbourhood functor Mω (Example 2.4),
we obtain Moss liftings as follows. Marti and Venema [20] define a diagonal-
preserving lax extension L for M (which, then, restricts to Mω) by means of
nested Egli-Milner liftings. An explicit description of L is

LR = {(A,B) ∈ MX × MY | ∀A ∈ A. R[A] ∈ B,∀B ∈ B. R◦[B] ∈ A}

for R ⊆ X × Y . In particular, for A ∈ MX and Φ ∈ MQX ⊆ QQQX, we have

A ∈ ∇L
X(Φ) iff A L(∈) Φ iff ∀β ∈ Φ.

⋃
β ∈ A and

∀A ∈ A. {B ∈ QX | B ∩ A �= ∅} ∈ Φ.

Combining ∇L with the presentation of Mω (Example 2.4) produces, for each
choice of numbers n ≥ 0 and k1, . . . , kn ≥ 0, a

∑n
i=1 ki-ary Moss lifting λ given by

λ((Aij)i=1,...,n;j=1,...,ki
) = {A ∈ MωX | ∀i.

⋃
j Aij ∈ A and

∀B ∈ A.∃i.∀j. B ∩ Aij �= ∅}.

Since Mω preserves finite sets and the box modality � as described in Exam-
ple 2.6 is separating, it is clear that the Moss liftings are expressible using � and
Boolean operators. Concretely, this works as follows. For readability, we denote
the predicate lifting interpreting � by � as well, similarly for the dual modal-
ity ♦, so that ♦X(A) := MX \ �X(X \ A) = {A ∈ MX | ∀B ∈ A. B ∩ A �= ∅}.
Then the Moss lifting λ as described above can be written as

λ((Aij)) =
⋂

i �X(
⋃

j Aij) ∩
⋂

π ♦X(
⋃

i Aiπ(i))

where π ranges over all selection functions assigning to each i ∈ {1, . . . , n} an
index π(i) ∈ {1, . . . , ki}.

Moss liftings are always monotone [20, Proposition 24]. We show that they
also preserve singletons:

Proposition 4.8. Moss liftings preserve singletons. More specifically, let λ be
the Moss lifting induced by τ/n ∈ Σ. Then for all x1, . . . , xn ∈ X,

λX({x1}, . . . , {xn}) = {τX(x1, . . . , xn)}.
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Marti and Venema already establish that the Moss liftings are separating [20,
Proposition 25]; we show that they are even strongly expressive:

Proposition 4.9. The set Λ of all Moss liftings of T is strongly expressive.

Remark 4.10. Incidentally, this also means that for finitary functors the exis-
tence of a separating set of monotone predicate liftings is equivalent to the
existence of a strongly expressive set of monotone singleton-preserving predi-
cate liftings. The right-to-left implication is trivial; the converse follows from
Propositions 4.8 and 4.9, and the fact that for finitary functors the existence of
a separating set of monotone predicate liftings is equivalent to the existence of
a lax extension [20].

We have thus seen that given a fixed diagonal-preserving lax extension, from
every natural transformation τ : (−)n → T we obtain the corresponding Moss
lifting λτ/n, which is a monotone singleton-preserving predicate lifting. Con-
versely, every monotone singleton-preserving predicate lifting λ yields a natural
transformation τλ : (−)n → T (Lemma 3.6(1)). From Proposition 4.8, it is
immediate that for τ : (−)n → T we have

τ = τ (λτ ).

In particular, taking Moss liftings is an injection from functor operations to
monotone singleton-preserving predicate liftings. Conversely, however, λ = λ(τλ)

need not hold in general – recall that the construction of Moss liftings depends
on the choice of a diagonal-preserving lax extension, and a functor may have
more than one such extension. We report an example due to Paul Levy:

Example 4.11. Let M be the monoid of non-negative reals. This monoid in fact
forms a division semiring in the expected sense (e.g. [39]), i.e. it is a semiring, and
its non-zero elements form a multiplicative group. We note that every division
semiring is refinable in the sense of Gumm and Schröder [15], i.e. n specified row
sums b1, . . . , bn and k specified column sums c1, . . . , ck that induce the same total
sum d =

∑
bi =

∑
cj can always be realized by some n×k-matrix (aij) – in fact,

one can just put aij = bicj/d. Now let b ∈ (0, 1) be a transcendental number,
and let N ⊆ M be generated by b in M as a division semiring. Concretely,
elements of N have the form f(b)/g(b) where f(X) and g(X) �= 0 are polynomials
with non-negative rational coefficients. In particular, 1 − b /∈ N : If we could
write 1 − b in the prescribed form f(b)/g(b), then by transcendentality of b,
f(X)/g(X) = 1−X, in contradiction to the leading coefficients of f and g being
positive.

Both M and N are positive (x + y = 0 implies x = y = 0) and refinable,
so that the monoid-valued functors F = M (−) and G = N (−) both preserve
weak pullbacks [15]. As recalled above, it follows that in both cases, the Barr
extension is functorial, in particular is a diagonal-preserving lax extension. Now
diagonal-preserving lax extensions are easily seen to be inherited by subfunctors,
so that the Barr extension F induces a diagonal-preserving lax extension L
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of G. This extension differs from the Barr extension G; we immediately cast the
counterexample in the form that interests us here:

Let X = {u, v}. Representing elements of GX as formal linear combinations,
we have a binary functor operation τ(x, y) = x+by for G. We write λ1 and λ2 for
the Moss liftings induced from τ via G and via L, respectively (by the above, both
λ1 and λ2 induce τ). Then u + bv ∈ λ1({u, v}, {u}) but u + bv /∈ λ2({u, v}, {u}):
For the former, we have a unique witnessing element of F∈X , namely (1 −
b)(u, {u, v})+b(v, {u, v})+b(u, {u}); but in G∈X , there is no witnessing element
since 1 − b /∈ N .

Summing up, even for weak-pullback preserving functors, singleton-
preserving monotone predicate liftings are not in general uniquely determined
by the functor operation they induce. In the above example, both singleton
predicate liftings inducing the given functor operation arise as Moss liftings, via
different diagonal-preserving lax extensions; we currently do not know whether
every singeleton-preserving monotone predicate lifting is a Moss lifting for some
diagonal-preserving lax extension.

Remark 4.12. It is fairly easy to see that for monotone singleton-preserving
unary predicate liftings λ, we do have λ = λ(τλ).

5 Generic Expressions

We proceed to define, given a set of monotone and singleton-preserving predicate
liftings for a functor T , syntactic expressions describing the behaviour of states
of T -coalgebras. Our main result is a Kleene-type theorem stating that for every
state of a T -coalgebra there exists an equivalent expression, and conversely, every
expression describes the behaviour of some state of a finite T -coalgebra. As
indicated above, our expression language is a small fragment of the coalgebraic
μ-calculus, essentially restricted to modalities and greatest fixed points νz. φ.

Definition 5.1 ( Expressions). We fix a set V of fixed point variables and a
set L of modalities equipped with an arity function ar : L → ω; we write L/n ∈ L
if L ∈ L and ar(L) = n. The set E of expressions φ, . . . is then defined by the
grammar

φ ::= z | νz. φ | L(φ1, . . . φn) (z ∈ V, L/n ∈ L).

An expression is closed if all its fixed point variables are bound by a fixed point
operator. An expression is guarded if all its fixed point variables are separated
from their binding fixed point operator by at least one modality. We write E0

for the set of closed and guarded expressions. We have the usual notion of α-
equivalence of expressions modulo renaming of bound variables. An occurrence
of a fixed point operator in an expression is top-level if it is not in scope of a
modality.

We next define the semantics of expressions, which agrees with their inter-
pretation as formulas in coalgebraic logic. We fix the requisite data:
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Assumption 5.2. For the rest of the paper, we fix a set L of modalities and an
assignment of a singleton-preserving monotone n-ary predicate lifting �L� for T
to each L/n ∈ L such that the set Λ := {�L� | L ∈ L} is strongly expressive.

By the results of the previous section, these assumptions imply that T has a
presentation and is thus finitary (Theorem 2.2).

Definition 5.3 (Semantics). Given a T -coalgebra C = (X, ξ) and a valuation
κ : V → QX, the semantics �φ�κ

C ⊆ X of expressions φ ∈ E is given by

�z�κ
C = κ(z)

�L(φ1, . . . φn)�κ
C = ξ−1[�L�X(�φ1�

κ
C , . . . �φn�κ

C)]

�νz.φ�κ
C = νY.�φ�

κ[z 	→Y ]
C

where as usual, we use ν to denote greatest fixed points of monotone maps.
When φ is closed, we simply write �φ�C in lieu of �φ�κ

C , and we drop the sub-
script C whenever C is clear from the context.

Note that since the predicate liftings �L� are monotone and ξ−1 is a monotone
map, the requisite greatest fixed points exist by the Knaster-Tarski fixed point
theorem. Moreover, the assumption that the predicate liftings are singleton-
preserving will ensure that every expression describes exactly one behavioural
equivalence class (see Theorem 5.15).

By dint of the fact that our expression language is contained in the coalge-
braic μ-calculus, the following is an immediate consequence of the fact that the
latter is invariant under behavioural equivalence (e.g. [31]):

Lemma 5.4 (Invariance under behavioural equivalence). For every
closed expression φ and coalgebras C = (X, ξ), D = (Y, ζ), if states x ∈ X
and y ∈ Y are behaviourally equivalent, then x ∈ �φ�C iff y ∈ �φ�D.

Lemma 5.5. For all expressions φ ∈ E, �νz.φ� = �φ[νz.φ/z]�.

Example 5.6. (1) For the deterministic automaton functor TX = 2×XA with
A = {a, b}, we let L be the set of two binary modalities 〈0, a.(−), b.(−)〉 and
〈1, a.(−), b.(−)〉 (corresponding to the two Moss liftings of Example 4.7(1)). We
interpret expressions in the final T -coalgebra νT carried by all formal languages
over A. Here are a few closed and guarded expressions and their semantics in
νT (as usual |w|b denotes the number of b’s in w):

�νv.〈0, a.v, b.v〉� = {∅}
�νz.〈1, a.z, b.z〉� = {A∗}

�νx.〈1, a.x, b.νy.〈0, a.y, b.x〉〉� = {{w ∈ A∗ | |w|b even}}

va,b za,b x ya

b

a

b



Predicate Liftings and Functor Presentations 69

Note that the semantics of each of these expressions is a singleton (up to
behavioural equivalence); in fact, for an arbitrary T -coalgebra X, the seman-
tics of the above expressions is the set of states accepting the language in the
singleton on the right. In Lemma 5.12 further below we prove that this holds in
general.

(2) Consider T = Pω(A × −) where A is a finite set of labels. A presentation
of T is given by the signature containing for each n-tuple �a = (a1, . . . , an) ∈ An

one n-ary operation symbol, and the corresponding natural transformation τ	a :
(−)n → T is defined by

τ	a
X : (x1, . . . , xn) �→ {(a1, x1), . . . , (an, xn)}.

The corresponding Moss lifting is λ	a/n given by

λ	a
X(Y1, . . . , Yn) = {Z ∈ Pω(A × X) | Z ⊆

⋃n
i=1({ai} × Yi)

and Z ∩ {ai} × Yi �= ∅ for i = 1, . . . , n}

(cf. (3.1)). Now put L = {[�a]/n | �a ∈ An, n ∈ ω} and interpret each [�a] by λ	a.
For example, for A = {a, b} the expression νx.[a]([a, b, a](x, [()], [()])), where [()]
is the unique nullary modality in L, describes the left-hand state in the following
labelled transition system

x y z

w

a

a

a

b

(3) For T = D we have the presentation with an n-ary operation τ 	p for every
�p = (p1, . . . , pn) with

∑n
i=1 pi = 1 and corresponding Moss liftings as described

in Example 4.7(3). For each such �p, we introduce a modality [�p]/n ∈ L, and
interpret it as λ	p. Now consider the Markov chain (i.e. D-coalgebra)

x

y

z2/3

1/3

1/3

1/6

1/2

3/4
1/4

The behaviour of the left-hand state is described by the expression

νx.[2/3, 1/3](x, νy.[1/6, 1/3, 1/2](x, y, νz.[1/4, 3/4](x, z))).
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Remark 5.7. The syntax of our expressions is determined purely by the finitary
coalgebraic type functor, more precisely, by a given strongly expressive set Λ of
monotone singleton-preserving predicate lifting. In contrast, existing expression
calculi such as standard regular expressions for deterministic automata or the
coalgebraic expression calculi in [32,34] use extra operations (e.g. expressing
union or concatenation of languages). These operations are not dictated by the
setting, viz. an endofunctor on Set. Rob Myers’ PhD thesis [25] explains nicely
how such extra operations are obtained naturally in an expression calculus when
one works over an algebraic category (such as the one of join-semilattices or
vector spaces over the reals, i.e. algebras for the monad R

(−)). We leave the
extension of our expression language to this more general setting for future
work.

Our Kleene theorem requires a number of technical lemmas:

Lemma 5.8. Let λ/n and λ′/n′ be monotone singleton-preserving predicate lift-
ings for T . Let S be an equivalence relation on a set X, let A1, . . . , An, be S-
equivalence classes or empty, and let B1, . . . , Bn′ be S-closed subsets of X. Then
the following holds.

(1) λX(A1, . . . An) ⊆ λ′
X(B1, . . . Bn′) or λX(A1, . . . An) ∩ λ′

X(B1, . . . Bn′) = ∅.
(2) If the B1, . . . , Bn′ are even S-equivalence classes or empty, then

λX(A1, . . . An) = λ′
X(B1, . . . Bn′) or λX(A1, . . . An) ∩ λ′

X(B1, . . . Bn′) = ∅.

Proof (Sketch). Apply naturality to the quotient map q : X � X/S. ��

In the proof of Lemma 5.12 further below, we will make use of a Λ-
bisimulation. We briefly recall the essentials of this notion [12]:

Definition 5.9 (Λ-Simulation). Given a pair of T -coalgebras (X, ξ) and
(Y, ζ), a Λ-simulation is a relation S ⊆ X ×Y such that for all predicate liftings
λ ∈ Λ and Xi ⊆ X, x S y implies

ξ(x) ∈ λX(X1, . . . , Xn) ⇒ ζ(y) ∈ λY (S[X1], . . . , S[Xn]).

A Λ-bisimulation is a Λ-simulation S such that S◦ is also a Λ-simulation. Ele-
ments (x, y) ∈ X × Y are Λ-bisimilar if there is a Λ-bisimulation relating x
and y.

Theorem 5.10. Λ-bisimilarity conincides with behavioural equivalence.

Remark 5.11. In fact, for Theorem 5.10 it is sufficient that Λ is separating
and the predicate liftings in Λ are monotone. It turns out that Theorem 5.10 is
actually a special case of [20, Theorem 11], applied to the case where the lax
extension is induced by a separating set of monotone predicate liftings.
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Lemma 5.12. Let (X, ξ) be a T -coalgebra, let λi/k ∈ Λ, i = 1, . . . , k, and let
(A1, . . . , Ak) be the greatest fixed point of the map h : (QX)k → (QX)k defined by

⎛

⎜⎝
X1

...
Xk

⎞

⎟⎠ �→

⎛

⎜⎝
ξ−1[λ1,X(X1, . . . , Xk)]

...
ξ−1[λk,X(X1, . . . , Xk)]

⎞

⎟⎠ (5.1)

Then for each i, all elements of Ai are behaviourally equivalent, and for all i, j,
either Ai ∩ Aj = ∅ or Ai = Aj.

(In the above lemma, we restrict to all λi having full arity k and using their
arguments in the given order only in the interest of readability; this is w.l.o.g.
since we can just reorder arguments and add dummy arguments.)

Proof (Sketch). Let S ⊆ X × X be the relation

S = {(x1, x2) | ∃Ai . x1 ∈ Ai ∧ x2 ∈ Ai} ∪ ΔX .

Using Lemma 5.8 one shows first that S is an equivalence relation, which already
takes care of the second part of the claim, and then that S is a Λ-bisimulation.
The first claim of the lemma then follows by Theorem 5.10. ��

The final ingredient of our Kleene-type correspondence is the following adap-
tation of Bekič’s bisection lemma [6]:

Lemma 5.13. For complete lattices (X,≤), (Y,≤) and for every pair of mono-
tone maps f : X × Y → X and g : X × Y → Y , we have

ν(x, y).(f(x, y), g(x, y)) = (x0, y0) with
x0 = νx.f(x, νy.g(x, y))
y0 = νy.g(x0, y).

Although in [6] this lemma only covers least fixed points in a slightly different
setting, the proof is the same.

Using Lemma 5.13 we can transform every expression φ ∈ E0 into a system
of flat equations (z1 = φ1, . . . , zk = φk) for some k ∈ ω, i.e. equations without
nested modalities or fixed point operators: This is done by first ensuring that
every fixed point operator uses a different fixed point variable and then binding
every modality that is not nested directly under a fixed point operator with
a new fixed point operator using a fresh variable. Thus we can rewrite every
expression φ ∈ E0 in the form

φ ≡ νz1.L1(z1, νz2.L2(. . . ), . . . , νzk.Lk(. . . ))

for some modalities Li ∈ L, i = 1, . . . , k. If we now inductively apply Lemma 5.13
and, for readability, additionally normalize every modality to have as many argu-
ments as there are different fixed point variables in such an expression, intro-
ducing dummy arguments where necessary, then we can write φ as a system

z1 = L1(z1, z2, . . . , zk)
z2 = L2(z1, z2, . . . , zk)
...

zk = Ln(z1, z2, . . . , zk)

(5.2)
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of flat equations. Given any coalgebra C = (X, ξ), the above system induces an
obvious map of the form (5.1) (replacing zi by Xi and Li by λi = �Li�), and the
first components of its greatest fixed point is the semantics �φ�C . The following
example shows a concrete case.

Example 5.14 (Applying Bekič’s bisection lemma). Consider the
expression

φ = νx.L1(x,L2(x), νy.L3(y, νz.L2(z)))

In order to transform it as per the procedure indicated, we first need to add a
fixed point operator with a fresh variable to the first occurrence of L2:

φ = νx.L1(x, νw.L2(x), νy.L3(y, νz.L2(z)))

Then we can form the equation system for the variables x,w, y, z

x = L1(x,w, y, z) = L1(x,w, y)

w = L2(x,w, y, z) = L2(x)

y = L3(x,w, y, z) = L3(y, z)

z = L4(x,w, y, z) = L2(z)

where we extend L with additional operators Li having dummy arguments,
defined as indicated. The semantics of this equation system in a coalgebra
C = (X, ξ) is defined as the greatest fixpoint (A0, A1, A2, A3) of the map
h : QnX → QnX defined by

h :

⎛

⎜⎜⎝

X1

X2

X3

X4

⎞

⎟⎟⎠ �→

⎛

⎜⎜⎝

ξ−1[�L1�X(X1,X2,X3)]
ξ−1[�L2�X(X1)]

ξ−1[�L1�X(X2,X4)]
ξ−1[�L2�X(X4)]

⎞

⎟⎟⎠ .

The semantics of φ in C is then �φ�C = A0.

The following two results together establish a Kleene-type correspondence
for the generic expressions of Definition 5.1.

Theorem 5.15. Every expression φ ∈ E0 describes exactly one behavioural
equivalence class, which is moreover realized in a finite coalgebra. Explicitly:
there exists a state x in a finite coalgebra such that for every coalgebra C, �φ�C

contains precisely the states of C that are behaviourally equivalent to x.

Proof. (Sketch). By Lemma 5.4, it suffices to show that any two states (w.l.o.g.
in the same coalgebra, using coproducts) satisfying φ are bisimilar. Since φ can
transformed into a system (5.2) of flat equations, this follows by Lemma 5.12.
Realization in a finite coalgebra follows from the finite model property of the
coalgebraic μ-calculus [8], and alternatively is shown by constructing a model
from the variables in a flat equation system. ��
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Theorem 5.16. Let C = (X, ξ) be a finite T -coalgebra. For every x ∈ X, there
exists an expression φ ∈ E0 such that x ∈ �φ�C .

Proof. Let X = {x1, . . . , xk} and w.l.o.g. x = x1. Since Λ is strongly expressive,
for every xi ∈ X there is a modality Li, w.l.o.g. with arity k and prescribed
argument ordering, such that

{ξ(xi)} = �Li�X({x1}, . . . , {xk}).

That is, the {xi} solve the system (xi = Li(x1, . . . , xk))i=1,...,k of flat fixed point
equations, so for the greatest fixed point (A1, . . . , Ak) of the system, we have
xi ∈ Ai for every i, in particular x = x1 ∈ A1. It now just remains to convert the
equation system into an equivalent single expression in the standard manner [7]
(incurring exponential blow-up); then x ∈ �φ�C as desired. ��

Corollary 5.17. Every expression denotes a behavioural equivalence class of a
state in a finite coalgebra, and conversely every such class is denoted by some
expression.

Example 5.18. (1) For the functor TX = 2 × XA for A = {a, b} consider the
coalgebra with carrier X = {x1, x2} and with coalgebra structure ξ : X → 2×XA

with ξ(x0) = (1, (a �→ x0, b �→ x1)) and ξ(x1) = (0, (a �→ x1, b �→ x0)). Then we
clearly have {ξ(x1)} = λ1({x1}, {x2}) and {ξ(x2)} = λ1({x2}, {x1}). Using the
syntax of Example 5.6(1) and following the proof of Theorem 5.16, we obtain the
following expression for the behavioural equivalence class (i.e. formal language)
for x1:

νx1.〈1, a.x1, b.νx2.〈0, a.x2, b.x1〉〉.

Note that this is the same expression (modulo α-equivalence) as the third expres-
sion from Example 5.6(1).

(2) For the functor Pω(A × −) and A = {a, b} the coalgebra C =
({x, y, z, w}, ξ) depicted in Example 5.6(2) satisfies the following equations:

{ξ(x)} = λ
(a)
C ({y}), {ξ(y)} = λ

(a,b,c)
C ({x,w, z}), {ξ(w)} = λ

()
C(), {ξ(w)} = λ

()
C()

By Theorem 5.16 {{x}, {y}, {z}, {w}} solves the following system, reusing the
same variable names,

x = [a](y), y = [a, b, a](x,w, z), w = [()], z = [()]

which can be transformed as demonstrated in Example 5.14 to the expression
given in Example 5.6(2), describing the behaviour of the state x.

(3) For the functor T = D consider the expression from Example 5.6(3):
νx.[2/3, 1/3](x, νy.[1/6, 1/3, 1/2](x, y, νz.[1/4, 3/4](x, z))), which transforms to the
system

x = [2/3, 1/3](x, y), y = [1/6, 1/3, 1/2](x, y, z), z = [1/4, 3/4](x, z).
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By Theorem 5.15 we can construct a coalgebra C = ({x, y, z}, ξ) defined by:

{ξ(x)} = λ
(2/3,1/3)
X ({x}, {y})

{ξ(y)} = λ
(1/6,1/3,1/2)
X ({x}, {y}, {z})

{ξ(z)} = λ
(1/4,3/4)
X ({x}, {z})

which is exactly the coalgebra depicted in Example 5.6(3) where x is in the
behavioural equivalence class of the above expression.

An alternative approach to defining the semantics of expressions is to con-
struct a T -coalgebra structure on the set E0 of closed and guarded expressions,
similarly as in the work of Silva et al. [34] and also Myers [25]. In Theorem 5.21
below we show that this new semantics coincides with the previous one.

Definition 5.19. We define a T -coalgebra ε : E0 → TE0 inductively by

ε(L(φ1, . . . , φn)) ∈ �L�({φ1}, . . . , {φn}) (5.3)
ε(νx.φ) = ε(φ[νx.φ/x]). (5.4)

This is actually a definition of ε because (a) in (5.3), �L� preserves single-
tons and thus there is only one element in �L�({φ1}, . . . , {φn}), and (b) for the
inductive part (5.4), one can use the number of top-level fixed point operators
as a termination measure, which decreases in each step because the fixed points
are guarded.

Now recall that a coalgebra ξ : X → TX is locally finite if every x ∈ X is
contained in a finite subcoalgebra of ξ. Locally finite coalgebras are precisely
the (directed) unions of finite coalgebras (see [21]). Thus, it follows from The-
orem 5.16 that for any x ∈ X in a locally finite coalgebra ξ : X → TX, there
exists a φ ∈ E0 with x ∈ �φ�X .

Moreover, E0 is obviously not finite; however, arguing via finiteness of the
Fischer-Ladner closure [16] we obtain

Proposition 5.20. The T -coalgebra (E0, ε) is locally finite.

The following theorem says that (E0, ε) serves as a canonical model of the
expression language:

Theorem 5.21. For every closed and guarded expression φ ∈ E0 and every
state x in a T -coalgebra C, x ∈ �φ�C iff x is behaviourally equivalent to φ as a
state in (E0, ε).

In particular, the above implies that

φ ∈ �φ�E0 for all φ ∈ E0, (5.5)

essentially a truth lemma for E0. For the proof of Theorem 5.21, we note:

Lemma 5.22. α-Equivalent expressions are behaviourally equivalent as states
in (E0, ε).
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Proof (Theorem 5.21, sketch). It suffices to prove (5.5): The ‘if’ direction of
the claim then follows from invariance of φ under behavioural equivalence
(Lemma 5.4), and ‘only if’ is by Theorem 5.15. We generalize (5.5) to expres-
sions φ with free variables: Whenever σ is a substitution of the free variables
of φ and κ a valuation such that σ(v) ∈ κ(v) for every free variable v of φ, then

φσ ∈ �φ�κ
E0

.

We proceed by induction on φ, using Lemma 5.22 in the fixpoint case. ��

Remark 5.23. To give a concrete example use of the connection between
expression languages and modal fixed point logics afforded by the above results,
we note that we now obtain an alternative handle on equivalence of expressions
that complements the standard approach via partition refinement: Expressions
φ, ψ are equivalent iff some state described by φ (obtained, e.g., via the one of the
model constructions in Theorems 5.15 and 5.21) satisfies ψ. Note that the latter
is fairly easy to check as long as the modalities are computationally tractable,
since ψ otherwise involves only greatest fixed points. This approach is similar to
reasoning algorithms in the lightweight description logic EL [4], where checking
validity of φ → ψ is reduced to model checking ψ in a minimal model of φ; we
leave a more detailed analysis to future work.

6 Conclusion and Further Work

We have defined a generic expression language for behaviours of finite set coal-
gebras based on predicate liftings, specifically on a strongly expressive set of
singleton-preserving predicate liftings. There are mutual conversions between
such sets of predicate liftings and functor presentations, one direction being via
the Moss liftings introduced by Marti and Venema [20]; we have however demon-
strated that these fail to be mutually inverse in one direction, i.e. in general not
all singleton-preserving predicate liftings are Moss liftings. Our language is pre-
sumably equivalent to the set-based instance of Myer’s expression language [25];
our alternative presentation is aimed primarily at showing that expression lan-
guages embed naturally into the coalgebraic μ-calculus, generalizing well-known
results on the relational μ-calculus [2,10,14,35]. The benefit of this insight is
to tighten the connection between expression languages and specification logics,
e.g. it allows for combining model checking, equivalence checking, and reasoning
within a single formalism. On a more technical note, we show, e.g., that one can
provide an alternative semantics of expressions by defining a coalgebra struc-
ture on expressions, an approach pioneered by Silva et al. [34] and used also by
Myers [25]; in the light of the expressions/logic correspondence, this construction
is now seen as a canonical model construction for a fragment of the coalgebraic
μ-calculus, and the core part of the proof that the two semantics agree becomes
just a truth lemma.

An important point for further work is to extend the current setup from
the base category Set to algebraic categories (such as join semi-lattices or pos-
itive convex algebras) in order to generalize our results to expression calculi
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involving convenient additional operations (reflecting the ambient algebraic the-
ory) such as addition. A closely related point is the connection with coalgebraic
determinization [33]; it should be interesting to see whether our ideas can lead to
expression calculi for coarser system equivalences than bisimilarity, such as trace
equivalence for transition systems or distribution bisimilarity for Segala systems.
Such a generalization might be based on our recent approach to coalgebraic trace
semantics via graded monads [22].
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Abstract. This paper studies Markov decision processes (MDPs) from
the categorical perspective of coalgebra and algebra. Probabilistic sys-
tems, similar to MDPs but without rewards, have been extensively stud-
ied, also coalgebraically, from the perspective of program semantics. In
this paper, we focus on the role of MDPs as models in optimal planning,
where the reward structure is central. The main contributions of this
paper are (i) to give a coinductive explanation of policy improvement
using a new proof principle, based on Banach’s Fixpoint Theorem, that
we call contraction coinduction, and (ii) to show that the long-term value
function of a policy with respect to discounted sums can be obtained via
a generalized notion of corecursive algebra, which is designed to take
boundedness into account. We also explore boundedness features of the
Kantorovich lifting of the distribution monad to metric spaces.

Keywords: Markov decision process · Long-term value
Discounted sum · Coalgebra · Algebra · Corecursive algebra
Fixpoint · Metric space

1 Introduction

Markov Decision Processes (MDPs) [23] are a family of probabilistic, state-
based models used in planning under uncertainty and reinforcement learning.
Informally stated, an MDP models a situation in which an agent (the decision
maker) has to make choices at each state of a process, and each choice leads
to some reward and a probabilistic transition to a next state. The aim of the
agent is to find an optimal policy, i.e., a way of choosing actions that maxi-
mizes future expected rewards. In this paper, we consider a simple version of
MDPs known as time-homogeneous, infinite-horizon MDPs in which the set of
states and actions are finite, and future rewards are computed according to the
discounted summation criterion.

Probabilistic systems of similar type have been studied extensively, also coal-
gebraically, in the area of program semantics (see for instance [8,9,27,28]). Our
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focus is not so much on the observable behavior of MDPs viewed as computa-
tions, but on their role in solving optimal planning problems.

The classic theory of MDPs with discounting is well-developed (see [23,
Chapter 6]), and indeed we do not prove any new results about MDPs as such.
Our work is inspired by Bellman’s principle of optimality, which states the fol-
lowing: “An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision” [4, Chapter III.3]. This
principle has clear coinductive overtones, and our aim is to situate it in a body of
mathematics that is also concerned with infinite behavior and coinductive proof
principles, i.e., in coalgebra.

The main contributions of this paper are the following. First, we present a
coinductive proof of the correctness of a classic iterative procedure known as pol-
icy iteration [12]. This leads us to formulate a coinductive proof principle that we
have named contraction (co)induction, and which is closely related to Kozen’s
metric coinduction [17]. We believe contraction (co)induction should have appli-
cations far beyond the topic of MDPs. Second, we show that long-term values of
policies can be obtained from the universal property of a generalized notion of
corecursive algebra. The technical challenge here is to encode boundedness infor-
mation in order to ensure the unique existence of certain fixpoints. This leads
us to introduce the notions of b-categories and b-corecursive algebras (bcas).
Combining these with well-known techniques from coinductive specification and
trace semantics [3,14], we obtain the desired universal maps.

Contents of This Paper. In Sect. 2 we give a brief introduction to MDPs and
the classical results that we aim to categorify. In Sect. 3, we present contraction
coinduction and apply it to prove the correctness of policy iteration and related
results. In Sect. 4, we describe the (set-based) coalgebraic and algebraic struc-
tures that we use to model MDPs and discounted sums. In Sect. 5, we move to a
category of metric spaces, we introduce b-categories and b-corecursive algebras
(bcas), and we show that the long-term value of a policy as well as the opti-
mal value arise as universal arrows. We briefly discuss extensions of our work in
Sect. 6. Finally, we conclude and discuss related and future work in Sect. 7.

2 Markov Decision Processes

We refer to [23] for a comprehensive overview of MDPs, including numerous
applications to planning problems such as inventory management and highway
maintenance. Here, we confine ourselves to a brief introduction.

An MDP models a situation in which an agent in each state s ∈ S chooses
to execute an action a ∈ Act , and this choice results in a probabilistic transition
to a new state s′ ∈ S. That is, for every state s and every action a, there is
a probability distribution t(s)(a) over states. Furthermore, in each state s, the
agent collects a reward (or utility) specified by a real number u(s). The aim of
the agent is to find a policy that will maximize his expected long-term rewards.
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Letting ΔS denote the set of probability distributions on a finite set S, MDPs
and policies are formally defined as follows.

Definition 1. Let Act be a finite set of actions. A Markov decision process
(MDP) m = 〈S, u, t〉 consists of a finite set S of states, a reward function
u : S → R, and a probabilistic transition structure t : S → (ΔS)Act . We often
omit S and simply write m = 〈u, t〉. A policy is a function σ : S → Act.

More generally, MDPs are considered with respect to a time evolution which
may be discrete or continuous, and the transition structure and reward function
may depend on the time step. If the time evolution is assumed to end after
finitely many steps, the MDP is called finite-horizon. In our definition of MDPs,
time evolution is implicitly assumed to be discrete, but t and u do not depend
on the time step, making them time-homogeneous, and the time evolution is not
assumed to end, making them infinite-horizon.

Similarly, there are more general notions of policy in which the policy may
depend on the time step. A policy that does not depend on the time step is
called stationary. The choices prescribed by a non-stationary policy may depend
on the entire history of the system up until the present time step, but if each
choice depends only on the current state and not the history, then the policy is
called Markovian or memoryless. Finally, a policy may also be randomized, i.e.,
of type S → ΔAct , as opposed to deterministic. That means, in this paper we
consider stationary (and therefore memoryless), deterministic policies.

Example 1. Consider the MDP m shown in Fig. 1, taken from [20]. A startup
company can be in one of four states that we abbreviate by PU, PF, RU, and
RF. In each state, the company receives an immediate reward u(s), and chooses
to either advertise (A) or save (S). The effect of an action in a state is in general
probabilistic, as indicated by the arrows. We take a discount factor γ = 0.9.

Fig. 1. Example of an MDP modeling of a startup (taken from [20]).

There are several criteria for evaluating the long-term rewards expected by
following a given policy. A classic one found in the literature takes the long-term
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rewards to be the discounted infinite sum of expected rewards. The idea is that
rewards collected tomorrow are worth less than rewards collected today. Before
we state the definition, we need some notation. Given a probabilistic transition
structure t : S → (ΔS)Act and a policy σ ∈ ActS , we get a map tσ : S → ΔS by
letting tσ(s) = t(s)(σ(s)). The pair 〈u, tσ〉 is sometimes called a Markov reward
process. The map tσ corresponds to a column-stochastic |S| × |S|-matrix Pσ.
Viewing u ∈ R

S as a row |S|-vector and a start state s as a column |S|-vector vs

with 1 in position s and 0 everywhere else, the probability that the agent is in
a state s′ at time step n is found in position s′ of the column-stochastic vector
Pn

σ vs, and the expected reward rσ
n(s) at time step n is the scalar uPn

σ vs.

Definition 2. Let γ be a fixed real number with 0 ≤ γ < 1. Such a γ is called
a discount factor. Let an MDP m = 〈u, t〉 be given. The long-term value of
a policy σ (for m) according to the discounted sum criterion is the function
LTVσ : S → R defined as follows:

LTVσ(s) = rσ
0 (s) + γ · rσ

1 (s) + · · · + γn · rσ
n(s) + · · · (1)

where rσ
n(s) is the expected reward at time step n. A policy σ is optimal if for

all s ∈ S, LTVσ(s) = maxτ∈ActS LTVτ (s).

Note that rσ
0 (s) = u(s) for all s ∈ S, and since S is finite, maxs rσ

0 (s) < ∞. This
boundedness property entails that the infinite sum in (1) is convergent.

It will be convenient to work with the map �σ that takes the expected value
of LTVσ relative to some distribution. Formally, �σ : ΔS → R is defined for all
ϕ ∈ ΔS by

�σ(ϕ) =
∑

s∈S

ϕ(s) · LTVσ(s). (2)

Observe that for each state s, LTVσ(s) is equal to the immediate rewards plus
the discounted future expected rewards. Seen this way, (1) may be re-written to
the corecursive equation

LTVσ(s) = u(s) + γ ·
(∑

s′∈S

tσ(s)(s′) · LTVσ(s′)
)

= u(s) + γ · �σ(tσ(s)). (3)

Viewing LTVσ as a column vector in R
S , the equation in (3) represents a

linear system, LTVσ = u + γPσ LTVσ. We find LTVσ by solving it: LTVσ =
(I − γPσ)−1u, where I is the identity matrix.

Equivalently, LTVσ is defined as the unique fixpoint of the (linear), contrac-
tive, monotone (for the pointwise order) operator

Ψσ : RS → R
S Ψσ(v) = u + γPσv. (4)

Note that Ψσ is contractive since Pσ is column-stochastic and we multiply with
γ, and R

S is a complete metric space. Hence by the Banach Fixpoint Theorem,
the unique fixpoint exists. Moreover, Ψσ is monotone, because Pσ has all non-
negative entries.
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Example 2. We continue with Example 1. An example of a policy is the “miserly”
σ given by σ(s) = S for all states s, i.e., the startup chooses to save in each state.
The equations that describe the probabilistic system mσ resulting from following
σ are given in the equations on the left below. To compute LTVσ, the expression
from (1) for this policy may be rewritten to the equations on the right in (5)
below. (Recall that the discount factor is γ = 0.9.)

mσ(PU) = (0, 1 · PU)

mσ(PF) = (0, 1
2 · PU+ 1

2 · RF)

mσ(RU) = (10, 1
2 · PU+ 1

2 · RU)

mσ(RF) = (10, 1
2 · RU+ 1

2 · RF)

LTVσ(PU) = 0 + γ · LTVσ(PU)

LTVσ(PF) = 0 + γ · ( 1
2 · LTVσ(PU) + 1

2 · LTVσ(RF))

LTVσ(RU) = 10 + γ · ( 1
2 · LTVσ(PU) + 1

2 · LTVσ(RU))

LTVσ(RF) = 10 + γ · ( 1
2 · LTVσ(RU) + 1

2 · LTVσ(RF))

(5)

Solving this linear system, we get LTVσ(PU) = 0, LTVσ(PF) = 14.876,
LTVσ(RU) = 18.182, and LTVσ(RF) = 33.058.

The long-term value induces an ordering on policies: σ ≤ τ if LTVσ ≤ LTVτ

in the pointwise order on R
S . It is a classic result [23, Theorem 6.2.7] that for

our simple model of MDPs with discounting, the best stationary, memoryless,
deterministic policy is as good as any policy. In other words, one cannot do
better by allowing time-dependence, memory, or randomization in policies. This
result is also the theoretical basic for finding optimal policies via policy iteration,
as we describe further below.

Before we move on to policy iteration, we recall the notion of optimal value
function. Given an MDP m, the optimal value of m is the map V ∗ : S → R

that for each state gives the best long-term value that can be obtained for any
policy [23]:

V ∗(s) = max
σ∈ActS

{LTVσ(s)}.

We note that a transition structure t : S → (ΔS)Act corresponds to an Act-
indexed set of maps ta : S → ΔS, a ∈ Act , each of which in turn corresponds
to a column-stochastic |S| × |S|-matrix. It is an important classic result that
V ∗ is the unique (bounded) map v : S → R that satisfies Bellman’s optimality
equation [4,23]:

v(s) = u(s) + γ · max
a∈Act

{ ∑

s′∈S

ta(s)(s′) · v(s′)
}

.

In other words, V ∗ is a fixpoint of the (non-linear) contractive, monotone Bell-
man operator, given by

Ψ∗ : RS → R
S Ψ∗(v) = u + γ · max

a∈Act
{tav},

where the maximum is taken in the pointwise order on R
S .

3 Policy Improvement via Contraction Coinduction

3.1 Policy Iteration

The optimality equation together with the above mentioned result that an opti-
mal policy may be found among the stationary, deterministic policies is the
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basis for an effective algorithm for finding optimal policies, known as policy
iteration [12]. The algorithm starts from any policy σ ∈ ActS , and iteratively
improves σ to some τ such that σ ≤ τ . This leads to an increasing sequence
of policies in the preorder of all policies (SAct ,≤). Since this preorder is finite,
this process will at some point stabilize. The policy improvement step of the
algorithm is obtained via the following definition.

Definition 3. (Improved Policy). A policy τ is called an improvement of a
policy σ if for all s ∈ S it holds that

τ(s) = argmaxa∈Act{�σ(ta(s))}. (6)

Informally, τ(s) is an action a that maximizes the expected future rewards
obtained by doing a now, and then continuing with σ. However, it is not prima
facie clear that τ is an improvement, since following τ means to also “continue
with τ” (not with σ). Proving that σ ≤ τ is the content of the Policy Improve-
ment Theorem (Theorem 2) which we prove below.

Note that improved policies need not be unique, because there could be
different actions a that maximize �σ(ta(s)), but (6) describes a procedure for
improving a policy σ assuming that LTVσ has been computed (e.g., by solving
the associated linear system).

Example 3. We return to Example 1 and to the “miserly” policy σ in Example 2.
To determine τ(PF) where τ is an improved policy, we compare

�σ(t(PF)(S)) = E ◦ Δ LTVσ

(1
2

PU +
1
2

RF
)

=
(1

2
· 0

)
+

(1
2

· 33.058
)

and

�σ(t(PF)(A)) = E ◦ Δ LTVσ(1 · PF) = 1 · 14.876.

Since the latter is smaller, we have τ(PF) = S.

Classically, policy improvement is proved [12,23] using that (I − γPσ)−1 is
a monotone operator. This in turn follows from the matrix (I − γPσ)−1 having
only non-negative entries, a property which we show in Example 5 below using
contraction coinduction.

3.2 The Contraction Coinduction Principle

We now introduce the contraction coinduction principle. We only assume basic
knowledge of metric spaces, as can be found in, e.g., [21]. Here we just recall a
few basic definitions and fix notation. A metric space (X, dX) is a set X equipped
with a metric dX : X → R. Sometimes the metric is left implicit and we simply
refer to the metric space X. We always assume the standard Euclidean metric on
the set of real numbers R. Any set X can be equipped with the discrete metric,
given by dX(x, y) = 1 if x 	= y, and dX(x, y) = 0 if x = y, for all x, y ∈ X.
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A function f : X → Y between metric spaces is bounded if there is a real
number C such that for all x, y ∈ X, it holds that dY (f(x), f(y)) ≤ C. We write
B(X,Y ) for the set of all bounded f : X → Y . The set B(X,Y ) can be equipped
with the supremum metric: for all f, g ∈ B(X,Y ),

d(f, g) = sup{dY (f(x), g(x)) | x ∈ X}. (7)

When Y is a complete space (for example, R), so is B(X,Y ). We recall that a
function f : X → X on a metric space X is contractive if there is a C < 1 such
that for all x1, x2 ∈ X, we have dX(f(x1), f(x2)) ≤ C · dX(x1, x2). A fixpoint of
f is an element x∗ such that f(x∗) = x∗.

The contraction coinduction principle is a variation of the classic Banach
Fixpoint Theorem, asserting that any contractive mapping has a unique fixpoint.
We need a version of this theorem which, in addition to a complete metric, also
has an order. For this reason we introduce the following definition.

Definition 4. An ordered metric space is a structure (M,d,≤) such that d is
a metric on M and ≤ is a partial order on M , satisfying the extra property that
for all y ∈ M , {z | z ≤ y} and {z | y ≤ z} are closed sets in the metric topology.
This space is said to be complete if it is complete as a metric space.1

Example 4. For any set X, B(X,R) with the pointwise order (and supremum
metric, as in (7) above) is a complete ordered metric space.

We can now state contraction (co)induction. It will lead to elegant proofs of
order statements concerning fixpoints, as we shall see below.

Theorem 1. (Contraction (Co)Induction). Let M be a non-empty, com-
plete ordered metric space. If f : M → M is both contractive and order-
preserving, then the fixpoint x∗ of f is a least pre-fixpoint (if f(x) ≤ x, then
x∗ ≤ x), and also a greatest post-fixpoint (if x ≤ f(x), then x ≤ x∗).

Proof. We only verify the first assertion; the second is similar. Suppose that
f(x) ≤ x. By induction on n and monotonicity of f , we have for all n ≥ 0,
fn(x) ≤ x. Since f is contractive, the proof of the Banach Fixpoint Theorem
shows that {fn(x)}n is a convergent sequence. But {z | z ≤ x} is closed and
contains this sequence, so limn fn(x) ≤ x. The proof of the Banach Fixpoint
Theorem also shows that limn fn(x) equals the fixpoint x∗. Thus, x∗ ≤ x. ��
Remark 1. Theorem 1 follows from the Metric Coinduction Principle [17,24].
E.g., to derive contraction induction, let x be such that f(x) ≤ x. The set
A = {y ∈ X | y ≤ x} is non-empty, since x ∈ A, and closed by our assumption
that X is an ordered metric space. Moreover, f [A] ⊆ A by monotonicity. Hence
by metric coinduction, x∗ ∈ A.
1 We could weaken the partial order in the definition of an ordered metric space to a

transitive relation. However, our aim is not the highest level of generality. Rather, we
see contraction (co)induction as an instance of metric coinduction (see Remark 1)
that suffices to prove interesting results about MDPs.
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Example 5. We recover a fact that comes up frequently in the area (e.g., [12]
uses it to justify policy improvement): if P is a column-stochastic n × n matrix,
then (I−γP )−1 has all non-negative entries. We do not really need this fact, and
we mainly mention it to point out that contraction coinduction might streamline
the proofs of known results. To see this, let M = R

n×n. We order M pointwise,
and as metric we use d(X,Y ) = ‖X − Y ‖, where ‖X‖ = maxi,j |xi,j | (so that
‖PX‖ ≤ ‖X‖). This gives a complete ordered metric space. Let f : M → M
be f(X) = I + (γP )X. Easily, f is a monotone contraction, and its fixpoint
is (I − γP )−1. Note that f(0) ≥ 0, where 0 is the zero matrix. By contraction
coinduction, we conclude that (I − γP )−1 ≥ 0.

We now give our proof of policy improvement using contraction coinduction.

Theorem 2 (Policy Improvement). Let an MDP be given by t : S →
(ΔS)Act and u : S → R. Let σ and τ be policies. If �σ ◦ tτ ≥ �σ ◦ tσ, then
LTVτ ≥ LTVσ. Similarly, if �σ ◦ tτ ≤ �σ ◦ tσ, then LTVτ ≤ LTVσ.

Proof. Assuming that �σ ◦ tτ ≥ �σ ◦ tσ, we have for all s ∈ S,

u(s) + γ
∑

s′∈S

tσ(s)(s′) · LTVσ(s′) ≤ u(s) + γ
∑

s′∈S

tτ (s)(s′) · LTVσ(s′).

Since LTVσ and LTVτ are the fixpoints of the contractive, monotone operators
Ψσ and Ψτ , respectively (cf. (4)), the above inequality may be recast to say
that Ψτ (LTVσ) ≥ Ψσ(LTVσ) = LTVσ. By contraction coinduction (Theorem 1),
LTVτ ≥ LTVσ. This completes the proof of the first assertion. The second one
is proved similarly. ��

Next, we use contraction coinduction to show the classic result that V ∗ is an
upper bound for the long-term value of all policies, and that a so-called greedy
policy is optimal [4,23]. Lemma 1 below is standard, and essentially the same
proof as ours appears as Lemma 5.2 in Kozen and Ruozzi [24].

Lemma 1. For all policies σ, LTVσ ≤ V ∗.

Proof. A straightforward calculation and monotonicity argument shows that for
all f ∈ B(S,R), Ψσ(f) ≤ Ψ∗(f). In particular, LTVσ = Ψσ(LTVσ) ≤ Ψ∗(LTVσ).
By contraction coinduction we conclude that LTVσ ≤ V ∗. ��
Define the greedy policy σ∗ : S → Act by

σ∗(s) = argmaxa∈Act

{∑

s′∈S

ta(s)(s′) · V ∗(s′)
}

. (8)

Due to ties, this policy is strictly speaking not unique. But following standard
usage, we speak of “the” greedy policy when we mean “a” greedy one.

Proposition 1. The greedy policy is optimal. That is, LTVσ∗ = V ∗.

Proof. Observe that Ψσ∗(V ∗) ≥ V ∗ (in fact, equality holds). By contraction
coinduction, V ∗ ≤ LTVσ∗ . The other direction follows from Lemma 1. ��

It is a direct consequence of Proposition 1 that the optimal value is attained
by some policy.
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4 Coalgebras and Algebras for MDPs

In this section, we present the coalgebraic and algebraic structures that we use
to model MDPs and their long-term values. We assume the reader is familiar
with basic notions in coalgebra [25] and category theory [18], but we briefly
recall some definitions and results (see, e.g., [3,13,16]) related to monads and
distributive laws that are needed for this paper.

4.1 Algebras, Monads, and Distributive Laws

Given a functor T : C → C on a category C, a T -algebra is a pair (A,α) where
A is a C-object and α : TA → A is a C-arrow. A T -algebra homomorphism from
(A,α) to (B, β) is a C-arrow f : A → B such that f ◦ α = β ◦ Tf .

A monad (on C) is a triple (T, η, μ) where T is a C-endofunctor, and η : Id ⇒
T and μ : TT ⇒ T are natural transformations such that μ ◦ Tη = id = μ ◦ ηT

and μ ◦ μT = μ ◦ Tμ. Given a monad (T, η, μ), an Eilenberg-Moore T -algebra
is a T -algebra (A,ω) such that ω ◦ ηA = id and ω ◦ μA = ω ◦ Tω. We denote
the category of Eilenberg-Moore T -algebras and T -algebra homomorphisms by
EM(T ). Note that (TX, μX) is an Eilenberg-Moore T -algebra.

Example 6. The well-known distribution monad is the discrete variant of the
Giry monad [11]. The functor part Δ : Set → Set maps a set X to the finitely
supported probability distributions on X:

ΔX = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑

x ϕ(x) = 1},

(Δf)(ϕ)(y) =
∑

x∈f−1(y) ϕ(x) for all f : X → Y.

It is sometimes convenient to write an element ϕ of ΔX as a formal linear
combination ϕ = r1x1+· · ·+rnxn, where supp(ϕ) = {x1, . . . , xn} and ϕ(xi) = ri,
or also ϕ =

∑
x∈X ϕ(x)x. In this notation, (Δf)(ϕ) = r1f(x1) + · · · + rnf(xn)

for f : X → Y , where coefficients of identical f(xi)-values are summed implicitly.
Equivalently stated, we have

(Δf)(ϕ) =
∑

x∈X

f(x)ϕ(x). (9)

The unit δ : Id ⇒ Δ is δX(x) = 1x (the Dirac distribution at x), and the
multiplication μ : ΔΔ ⇒ Δ is given as follows. For ψ = r1ϕ1+· · ·+rnϕn ∈ ΔΔX,
we have μX(ψ)(x) =

∑n
i=1 riϕi(x), i.e., μX(ψ) =

∑
x∈X

( ∑
ϕ∈ΔX ψ(ϕ) ·ϕ(x)

)
x.

The category EM(Δ) is also known as the category of convex sets and affine
(or linear) maps, since an Eilenberg-Moore Δ-algebra can be seen as a set X in
which convex combinations r1x1 + · · · + rnxn can be evaluated.

Let (T, η, μ) be a monad and F an endofunctor, both on C. A distributive law
of (T, η, μ) over F is a natural transformation λ : TF ⇒ FT that is compatible
with the monad structure, meaning that λ◦ηF = Fη and λ◦μF = Fμ◦λT ◦Tλ.
We recall (see, e.g., [15,16]) that such a distributive law corresponds to a lifting
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Fλ of F to the category EM(T ), and equivalently to a lifting Tλ of T to the
category CoalgC(F ) of F -coalgebras. The functors Fλ and Tλ are defined as
follows:

Fλ(A,ω : TA → A) = (FA,Fω ◦ λA) Fλ(f) = Ff,

Tλ(B, β : B → FB) = (TB, λB ◦ Tβ) Tλ(f) = Tf.

We also recall (cf. [3,14]) that such a distributive law induces an operation
(−)� : CoalgC(FT ) → CoalgEM(T )(Fλ), which is often referred to as an abstract
form of determinization (cf. [14,26]). For every FT -coalgebra c : X → FTX, c�

is defined as

c� = FμX ◦λTX ◦Tc : (TX, μX) → Fλ(TX, μX), and we have c� ◦ηX = c. (10)

Determinization (−)� is a functor, but we shall not use this fact. Note that
the underlying F -coalgebra of c� is of type TX → FTX.

We write E: ΔR → R for the map that computes expected value. That is,
viewing an element ϕ ∈ ΔR as a formal linear combination, E evaluates ϕ by
interpreting the formal expression in R, i.e., E(ϕ) =

∑
x∈R

ϕ(x) · x.
Note that for f : X → R, by (9) we have, for all ϕ ∈ ΔX, that

E((Δf)(ϕ)) =
∑

x∈X

f(x) · ϕ(x). (11)

Lemma 2. The expected value E: ΔR → R is an Eilenberg-Moore Δ-algebra:
E ◦ δR = idR and E ◦ ΔE = E ◦ μR.

4.2 Coalgebraic Modeling of MDPs

As we saw in Definition 2, long-term values arise by summing infinite sequences
(or streams) of real numbers. It is well-known [25] that such streams form a final
coalgebra for the Set-endofunctor H = R × Id. The final H-coalgebra structure
is given by mapping a stream x = (x0, x1, x2, . . .) to (head(x), tail(x)), where
head(x) = x0 and tail(x) = (x1, x2, . . .).

Given an MDP m = 〈u, t〉 and a policy σ : S → Act , the resulting Markov
reward process mσ = 〈u, tσ〉 is easily seen to be an HΔ-coalgebra

mσ = 〈u, tσ〉 : S → R × ΔS,

where, as we recall from from Sect. 2, tσ(s) = t(s)(σ(s)).
Similarly, it is not hard to see that an MDP m = 〈u, t〉 is a KΔ-coalgebra

〈u, t〉 : S → R × (ΔS)Act , where K = H ◦ (−)Act and (−)Act is the covariant
hom-functor.

Since E: ΔR → R is an Eilenberg-Moore Δ-algebra, there is a distributive
law χ of (Δ, δ, μ) over H (cf. [13]) specified by

χX : Δ(R × X)
〈Δπ1,Δπ2〉 �� ΔR × ΔX

E×id �� R × ΔX,
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i.e.,
χX = 〈E ◦ Δπ1,Δπ2〉. (12)

The lifted functor Hχ : EM(Δ) → EM(Δ) is concretely given as

Hχ(A,ω) = (R × A, (R × ω) ◦ 〈E ◦ Δπ1,Δπ2〉)
= (R × A, 〈E ◦ Δπ1, ω ◦ Δπ2〉).

Using the distributive law χ from (12), the determinization m�
σ : ΔS → R ×

ΔS is given for each ϕ ∈ ΔS by

m�
σ(ϕ) = ((E ◦ Δu)(ϕ), (μS ◦ Δtσ)(ϕ))

= (
∑

s∈S u(s) · ϕ(s), s �→ ∑
s′∈S tσ(s)(s′) · ϕ(s′)).

Considering ϕ as a probabilistic state, the first component of the pair m�
σ(ϕ)

is the expected reward given ϕ, and the second component is the expected next
probabilistic state. The morphism μS ◦Δtσ : ΔS → ΔS is the Kleisli extension of
tσ : S → ΔS, which can be seen as a column-stochastic |S|×|S|-matrix. Viewing
u ∈ R

S as a row |S|-vector and a distribution ϕ ∈ ΔS as a column-stochastic
|S|-vector, we have that m�

σ(ϕ) = 〈uϕ, tσϕ〉, where juxtaposition denotes matrix-
vector multiplication. The unique H-coalgebra morphism from m�

σ to the final
H-coalgebra of streams maps a distribution ϕ to the stream of expected rewards
(uϕ, utσϕ, ut2σϕ, . . .).

The distributive law given by χ is an EM-law in the terminology of [14],
where determinization was studied for the purpose of obtaining trace semantics.
The trace semantics of mσ : S → R × ΔS is the function that maps a state s to
the stream of expected rewards (rσ

0 (s), rσ
1 (s), rσ

2 (s), . . .) from (1).

4.3 Algebraic Modeling of Discounted Sums

The long-term value of a policy σ in state s is the discounted infinite sum of
the stream ρ(s) = (rσ

0 (s), rσ
1 (s), rσ

2 (s), . . .) of expected rewards. Due to S being
finite, the values in this stream are bounded, which ensures that the discounted
sum converges. A leading observation of this paper is that we can re-express
the recursive equation (3) for LTVσ by saying that LTVσ : S → R makes the
following diagram commute:

S
mσ ��

LTVσ

��

R × ΔS

R×Δ(LTVσ)

��
R R × R

αγ

�� R × ΔR
R×E

��

(13)

Here, αγ : R × R → R is the H-algebra

αγ : HR → R αγ(x, y) = x + γ · y. (14)
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Notice that LTVσ is an HΔ-coalgebra-to-algebra map. We naturally wonder
whether the HΔ-algebra at the bottom of the diagram is a corecursive algebra [6]:
for every coalgebra f : X → HΔX (where X is possibly infinite), is there a
unique map f† : S → R making the diagram commute? As suggested by the
previous discussion, problems can arise if the reward values in f are unbounded.
But the question can be framed in an even more basic way. Namely, by [5,
Theorem 19], αγ ◦ (R × E) is a corecursive algebra for HΔ if and only if αγ is
a corecursive algebra for H. But the latter is not the case. Consider an infinite
system of equations

xn = an + γ · xn+1, n = 0, 1, . . . , (15)

where an are fixed real numbers. Then (15) corresponds uniquely to a H-
coalgebra g : X → R × X. Solutions to (15) in turn correspond to maps g†

such that g† = αγ ◦ (R×g†)◦g, i.e., to coalgebra-to-algebra maps from (X, g) to
(R, αγ). The reason why αγ is not a corecursive algebra is that (15) always has
continuum many solutions. Namely, the solution value for x0 may be chosen arbi-
trarily, and the rest are determined from it. Note however, if (an)n is unbounded
then all solutions are unbounded. [To see this, let (bn)n be a solution. We have:
|an| > 2K ⇒ |bn+1| = |an + γ · bn| ≥ |an| − γ|bn| ⇒ |bn+1| + γ|bn| > 2K ⇒
|bn| > K or |bn+1| > K. Hence, for each K there is some i such that |bi| > K.]

If, on the other hand, (an)n is bounded, then there is a unique bounded
solution to (15), namely xn =

∑∞
i=0 γi · an+i for all n. Boundedness is used in

asserting that the sum converges, and the detailed verification that this solution
works and is unique follows from Proposition 6 below. In summary, uniqueness
is only obtained by restricting to bounded solutions.

We end this section by noting that αγ is an algebra for the lifted functor Hχ,
essentially because αγ is affine. We will need this result in Sect. 5.3.

Lemma 3. ((R,E), αγ) is an Hχ-algebra in EM(Δ), that is, we have the equal-
ity E ◦ Δαγ = αγ ◦ 〈E ◦ Δπ1,E ◦ Δπ2〉.

5 Long-Term Values via b-Corecursive Algebras

In this section, we will develop some categorical notions in order to capture
boundedness properties, and eventually show that long-term values can be char-
acterized via a universal property of a notion of corecursive algebra for bounded
maps.

5.1 MDPs in Metric Spaces

The first step is to identify the appropriate category of metric spaces. There are
several types of functions on metric spaces that are of interest. In this paper,
we shall consider the following. Let (X, dX) and (Y, dY ) be metric spaces and
f : X → Y a function (not necessarily continuous). Then f is said to be Lipschitz
if dY (f(x1), f(x2)) ≤ C ·dX(x1, x2) for all x1, x2 ∈ X, for some fixed real number
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C. A Lipschitz function that satisfies the above inequality for C = 1 is called non-
expansive (or short). It is clear that the composition of two Lipschitz functions
is again Lipschitz, and the composition of non-expansive functions again non-
expansive.

Bounded functions need not be Lipschitz, and vice versa. Although bounded
maps are of particular interest to us, we point out the fact that metric spaces
with bounded maps do not form a category, since the identity on a space of
infinite diameter is not bounded. Our main interest in Lipschitz functions is
that if g is bounded and f is Lipschitz, then f ◦g is bounded; also, they are used
in the Kantorovich metric just below.

We write Met for the category that has metric spaces as objects and all
functions as arrows. Usually, the morphisms of metric spaces are taken to be
the non-expanding functions or continuous functions. The reason we take all set
functions is that we are going to use the metric structure only in connection with
boundedness, and so our (non-standard) choice will become more sensible. (In
Sect. 6.2, we hint that with additional results we can indeed work with a“real”
metric-type category, the Polish metric spaces.)

We lift our Set-endofunctors H and Δ to Met using the maximum and
Kantorovich(-Wasserstein) metrics (cf. [2,29]). This last metric is usually defined
in the measure-theoretic setting, so discrete probability measures are a special
case.

Definition 5 (Product and Kantorovich Metrics). Let (X, dX) and
(Y, dY ) be metric spaces.

– The product (X, dX) × (Y, dY ) = (X × Y, dX × dY ) has the maximum metric

(dX × dY )((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

– The Kantorovich lifting of dX is the metric dΔX on ΔX, defined by

dΔX(ϕ, ψ) = sup{dR((E ◦ Δf)(ϕ), (E ◦ Δf)(ψ)) | f : X → R is non-expansive}.

Remark 2. See [10] for ten choices for the metric d on ΔX. Incidentally, very
little is known concerning the question of whether each d leads to a functor on the
category of all metric spaces and continuous functions. However, it follows from
Theorem 1 of [11] that for the related category of Polish spaces, the Kantorovich
lifting does lead to a functor.

We can view a Markow reward process 〈u, tσ〉 : S → R × ΔS as a coalgebra
in Met for the lifted functor HΔ, by equipping the state space S with a metric.
(The discrete metric is the canonical choice, but any metric will do.)

The next lemma will be frequently used in Sect. 5.2 to prove boundedness
preservation properties.

Lemma 4. If f : X → Y is Lipschitz, so is Hf . If f : X → Y is Lipschitz with
constant C, then so is Δf .
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5.2 Categorical Structure for Bounded Maps

This section aims at a sparse categorification of boundedness that will permit us
to re-work the notion of a corecursive algebra to a bounded corecursive algebra
in Sect. 5.3 below. To this aim, we introduce the notion of b-category and related
concepts.

Definition 6. Let C be a category and B a class of morphisms in C. We call B
a b-structure2 on C if for all f ∈ B and all arrows g in C, if f ◦ g is defined,
then f ◦ g ∈ B. A b-category is a pair (C,B), where C is a category and B is
a b-structure on C. We frequently call a morphism f ∈ B a B-morphism. We
denote the collection of all C-morphisms X → Y that are also in B by B(X,Y ).

The key feature of Lipschitz and bounded functions for our purposes is cap-
tured in the following definition.

Definition 7. We say that a C-arrow f preserves B if whenever g ∈ B and f ◦g
is defined, then f ◦ g ∈ B.

It is easy to see that for every category C, (C,M) is a b-category, where M is
the collection of morphisms of C. If (C,B) is a b-category, then every morphism
in B preserves B.

Example 7. Our primary example of a b-category is (Met, B), where Met is the
category of metric spaces and all functions, and B is the collection of bounded
maps of metric spaces. While the metric structure is not used in the Met-
morphisms, it figures in the b-structure.

Every Lipschitz function preserves B. For any metric spaces X1 and X2, the
projections πi : X1 × X2 → Xi preserve B. The algebras E: ΔR → R and αγ ,
from (14), both preserve B.

Next, we formulate definitions of functors and natural transformations which
incorporate b-structures. The main motivation for the definitions below are the
examples which follow and also the properties that we shall see at the end of
this section, in Proposition 5 and Example 8.

Definition 8. Let (C,B) and (C′,B′) be b-categories. A functor F : C → C′ is a
b-functor, written F : (C,B) → (C′,B′), if whenever f ∈ B, then Ff preserves
B′; and F is a strong b-functor if whenever f ∈ B, then Ff ∈ B′.

If F,G : C → C′ are functors (not necessarily b-functors), then a b-natural
transformation σ : F ⇒ G is a natural transformation in the usual sense such
that every component σX preserves B′.

Proposition 2. (1) Constant functors are b-functors. (2) The identity on a b-
category is a b-endofunctor. (3) If F is a strong b-functor, then F is a b-functor.

We now investigate how the functor H, monad (Δ, δ, μ), and distributive law
χ interact with the b-structure B of bounded maps on Met.
2 During CMCS 2018, we learned from Henning Urbat that a b-structure is also known

as a sieve. We currently do not know how to put this fact to use.
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Proposition 3. H : Met → Met is a b-endofunctor, but not a strong b-
endofunctor, on (Met, B).

Proposition 4. Δ : Met → Met is a strong b-endofunctor on (Met, B).

Lemma 5. If f : X → Y preserves B, then so does Hf : R × X → R × Y .

Lemma 6. For all metric spaces (X, dX), the following hold.

1. δX is an isometric embedding.
2. μX is non-expanding.
3. χX is Lipschitz.

It follows that δ, μ, and χ are b-natural transformations in (Met, B).

One crucial observation is that if the HΔ-coalgebra mσ obtained from an
MDP m and a policy σ is bounded, then so is the determinized H-coalgebra
m�

σ. The following proposition shows that our setup of b-structures ensures that
this holds abstractly.

Proposition 5. Let λ be a distributive law of monad (T, η, μ) over a functor F
such that T is a strong b-endofunctor, and Fμ and λ are b-natural transforma-
tions. Then B is closed under (−)�, i.e., if c ∈ B then c� ∈ B.
Proof. This follows instantly from c� = FμX ◦ λTX ◦ Tc (cf. Equation (10)). ��
Example 8. For our running example for MDPs where F = H, T = Δ, and
λ = χ is given by (12), we have the conclusion of Proposition 5 in the b-category
(Met, B). Indeed, by Proposition 4, Δ is a strong b-endofunctor. By Lemma 6, χ
is b-natural. Finally, by the second part of Lemmas 4 and 6 (2), HμX is Lipschitz
for every X, and thus preserves bounded maps. Therefore, Hμ is b-natural.

5.3 b-Corecursive Algebras (bcas)

As we explained in Sect. 4.3, the long-term value map LTVσ is a certain
coalgebra-to-algebra morphism, i.e., it is a solution to a set of recursive equa-
tions, but it is only uniquely defined if we restrict to bounded maps. The following
notion of b-corecursive algebra categorifies this observation.

Definition 9. Let (C,B) be a b-category, F an endofunctor on C (not necessarily
a b-endofunctor), and β : FA → A an F -algebra. Then β is a b-corecursive
algebra (bca) if for every F -coalgebra f : X → FX with f ∈ B, there is a unique
solution map f† ∈ B such that the diagram

X
f ��

f†

��

FX

Ff†

��
A FA

β��

commutes, or equivalently stated, such that f† is the fixed point of the operator
Φf,β : C(X,A) → C(X,A), defined for all j ∈ C(X,A) by Φf,β(j) = β ◦ Fj ◦ f .
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We note that a corecursive algebra [6] is a bca with B the family of all
morphisms in the underlying category.

Remark 3. A corecursive algebra is a special kind of completely iterative algebra
(also called cias, see Milius [19]). With the obvious definition, the examples in
this paper would be b-cias. Alas, we have not found any application of this fact.

The next lemma uses the b-category concepts to give conditions that ensure
the operator Φf,β from Definition 9 restricts to B-morphisms. This is the abstract
analogue of showing that the Bellman operator maps bounded maps to bounded
maps.

Lemma 7. Let (C,B) be a b-category. If F is a b-endofunctor on (C,B), and
β : FA → A is an F -algebra that preserves B, it holds that for every F -coalgebra
f : X → FX in B, the operator Φf,β : C(X,A) → C(X,A) from Definition 9
restricts to an operator Φf,β : B(X,A) → B(X,A).

Proof. Let j ∈ B(X,A). Since F is assumed to be an b-endofunctor, Fj preserves
B. Thus since f ∈ B, Fj ◦ f ∈ B as well. Finally, since β preserves B, it follows
that Φf,β(j) = β ◦ Fj ◦ f ∈ B. ��

The following result is the first step towards obtaining the long-term value
map LTVσ from the universal property of bcas.

Proposition 6. The H-algebra αγ : HR → R is a bca in (Met, B).

Proof. Fix a bounded f : X → HX. Recall from Example 4 that the bounded
function space B(X,R) is a complete ordered metric space with the supremum
metric. Since H is a b-endofunctor (Lemma 5) and αγ preserves B (Example 7),
the operator

Φ = Φf,αγ
: B(X,R) → B(X,R) : Φ(j) = αγ ◦ Hj ◦ f

is well-defined by Lemma 7.
We now show that Φ is a contractive map. So let j, k ∈ B(X,R), and x ∈ X.

We write f = 〈f1, f2〉 : X → R × X. Then

dR(Φ(j)(x), Φ(k)(x)) ≤ γ · |j(f2(x)) − k(f2(x))| ≤ γ · d(j, k).

This holds for all x ∈ X. Since 0 ≤ γ < 1, it follows that Φ is contractive. By
the Banach Fixpoint Theorem, Φ has a unique fixpoint. This proves that the
operator Φf,αγ

has a unique bounded fixpoint, which is what we had to show. ��
The second step for obtaining the long-term value function LTVσ from the

universal property of bcas, is to show how to obtain a bca for HΔ from the bca
αγ for H. The next theorem shows that we can prove this result abstractly using
b-structure.

We first note that given a b-structure (C,B) and a monad (T, η, μ), the cat-
egory EM(T ) has a b-structure consisting of the T -algebra morphisms ϕ such
that Uϕ ∈ B in the base b-structure; we shall write the b-structure on EM(T )
as B as well.
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Theorem 3. Let (C,B) be a b-category, F a C-endofunctor, (T, η, μ) a monad
on C, and λ a distributive law of (T, η, μ) over F . Assume further that T is a
strong b-functor and that λ and Fμ are b-natural in (C,B).

1. If β : Fλ(A,ω) → (A,ω) is an Fλ-algebra in EM(T ) such that the underlying
F -algebra β : FA → A is a bca for F and ω preserves B, then it holds that
β ◦ Fω : FTA → A is a bca for FT .

2. Let the solution operation for the bca β : FA → A be denoted h �→ h‡, and the
solution operation for the bca β ◦ Fω : FTA → A be denoted h �→ h†. Then
for all g : X → FTX in B, we have g† = (g�)‡ ◦ ηX and (g�)‡ = ω ◦ Tg†.

Excluding the “b-considerations”, Theorem 3 is formulated and proved in
dual form (i.e., for comonads and recursive coalgebras) in [5, Theorem 19]. Our
assumptions related to the b-structure ensure that the proof carries over to the
case of bcas.

Using Theorem 3, we obtain the bca that will give us the long-term value.

Corollary 1. The HΔ-algebra α = αγ ◦ (R × E) is a bca in (Met, B).

Proof. This result follows from Theorem 3. We check the conditions. First, by
Lemma 3, αγ : Hχ(R,E) → (R,E) is a Hχ-algebra in EM(Δ). Next, by Proposi-
tion 6, the underlying H-algebra αγ is a bca for H, and in Example 7 we saw that
E preserves B. Finally, we saw in Example 8 that Δ is a strong b-endofunctor,
and χ and Hμ are b-natural. By Theorem 3, we have a bca structure for HΔ on
R, namely αγ ◦ HE = αγ ◦ (R × E). ��

Using that αγ is a bca for H (Proposition 6), we obtain from the universal
property of αγ a unique bounded map �′

σ : ΔS → R that makes the diagram
below on the left commute. Also, we obtain a map LTV′

σ : S → R from the
universal property of αγ ◦ (R×E) as a bca for HΔ (Corollary 1). That is, LTV′

σ

is the unique bounded map that makes the diagram below on the right commute.

ΔS
m�

σ ��

′
σ

��

R × ΔS

R×′
σ

��
R R × R

αγ

��

S
mσ=〈u,tσ〉 ��

LTV′
σ

��

R × ΔS

R×Δ(LTV′
σ)

��
R R × ΔR

αγ◦(R×E)
��

Moreover, by Theorem 3 (2) we have that

LTV′
σ = �′

σ ◦ δS and �′
σ = E ◦ Δ LTV′

σ . (16)

In particular, LTV′
σ is the unique fixpoint of the operator

Φσ = Φmσ,αγ◦(R×E) : B(S,R) → B(S,R) Φσ(f) = αγ◦〈u, E◦(Δf)◦tσ〉. (17)

It is not hard to see that, as expected, Φσ = Ψσ from (4) in Sect. 2 (note that
B(S,R) = R

S because S is finite). Hence, by unicity, LTV′
σ = LTVσ. By the
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definition of �σ (cf. (2)) and the right-hand side of (16), we also see that �′
σ = �σ.

Therefore, the equations in (16) express that

LTVσ = �σ ◦ δS and �σ = E ◦ Δ LTVσ . (18)

In this way, we re-obtained LTVσ and �σ using our categorical perspective.
Note however that thanks to Corollary 1, in our novel approach we did not need
to show that Φσ is contractive in order to get LTVσ.

5.4 The Optimal Value Function V ∗

We recall from Sect. 2 that the optimal value function V ∗ is the unique solution
to Bellman’s optimality equation, which we restate here for convenience:

V ∗(s) = u(s) + γ · max
a∈Act

{∑

s′∈S

ta(s)(s′) · V ∗(s′)
}

.

To say that V ∗ solves this is to say that the diagram below commutes:

S
m=〈u,t〉 ��

V ∗

��

R × (ΔS)Act

R×(ΔV ∗)Act

��
R R × (ΔR)Act

αγ◦(R×maxAct ◦EAct )

��

This diagram clearly looks like a bca diagram, and it is therefore natural to ask
whether we can prove the existence of V ∗ by generalizing the results for LTVσ.
It turns out that many, but not all, do generalize. We give a brief overview.

The coalgebraic modeling is straightforward. Recall that an MDP is a KΔ-
coalgebra, where K is the functor K = H ◦ (−)Act where (−)Act is the covariant
hom-functor. There is also a distributive law ρ of Δ over K. It uses strength
str : Δ ◦ (−)Act ⇒ (−)Act ◦ Δ; specifically, we have ρ = 〈E ◦ Δπ1, str ◦Δπ2〉.

We can lift K to Met by viewing XAct as an Act-fold product, i.e., we use the
maximum metric. The metric version of K has the same nice properties as the
metric version of H. For example, if f is Lipschitz, then so is Kf (generalizing
the second part of Lemma 4), and K : (Met, B) → (Met, B) is a b-endofunctor
(generalizing Proposition 3).

Moreover, we can show that the K-algebra αγ ◦ H maxAct : R×R
Act → R is

a bca for K (generalizing Proposition 6). Part of the verification shows that the
map maxAct : RAct → R preserves B; this uses the simple fact that for all sets
A and all h1, h2 ∈ R

A, it holds that |maxA h1 − maxA h2| ≤ maxA|h1 − h2| =
dRA(h1, h2).

Things only go sour when we try to apply Theorem 3 to get a bca for KΔ
from the bca β = αγ ◦ H maxAct for K. The problem is that in order to do
so, we need to show that β is an arrow in EM(Δ), which entails that maxAct

is an arrow in EM(Δ), and this is not the case since, unlike αγ , maxAct is not
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affine as it does not commute with convex linear combinations. Nevertheless, αγ◦
(R× (maxAct ◦EAct)) is a bca for KΔ, since this is equivalent to the statement
that the Bellman operator Φ∗ (as a map on B(S,R)) has a unique fixpoint. The
difference with the situation for H and LTVσ is that we cannot use Theorem 3
to relate the bca structure for KΔ to the bca structure for K.

6 Extensions

We briefly discuss some extensions to our work.

6.1 Alternative Treatment of MDPs

In our definition of MDPs, rewards are associated with states. However, often
MDPs are presented with rewards associated with transitions, i.e., an MDP is
then of type n : S → (R × ΔS)Act . The latter is an HActΔ-coalgebra, where
HAct = (−)Act ◦ H. For the general results, not much changes. We again have a
distributive law of HAct over Δ, given by 〈E ◦Δπ1,Δπ2〉Act ◦ str, and a policy σ
yields an HΔ-coalgebra given by nσ = 〈uσ, tσ〉 = n◦σ. (Compare: mσ = 〈u, tσ〉.)
So we again obtain �σ and LTVσ from Proposition 6 together with Corollary 1.
Also, (18) holds, just as before. The contractive operator characterizing LTVσ

in nσ is defined as

Φσ(f) = αγ ◦ 〈uσ,E ◦ Δf ◦ tσ〉.
We adapt the definition of improved policies to the current setting by letting

τ(s) = argmaxa∈Act αγ(π1(n(s)(a)), �σ(π2(n(s)(a))).

We can prove the Policy Improvement Theorem. We expect that with similar
adaptations, the results of Sect. 5.4 also go through as before.

6.2 Changing the Setting to Polish Metric Spaces

The main setting of this paper was the b-category (Met, B) of all metric spaces,
where the hom-sets are those of Set and the B-morphisms are the bounded maps.
Since it would be more satisfying to have a more “metric” category, we want to
sketch how this can be done.

The first way is to restrict the morphisms between metric spaces to be
non-expansive maps. We call the resulting category Met1. Taking B to be the
bounded, non-expansive maps, (Met1, B) is a b-category. For our work, the prob-
lem with Met1 is that when products are given the maximum metric, αγ is not a
morphism in Met1. Using the sum metric on products, we get a b-category, and
even bca structures for H, HΔ, K and KΔ. However, other technical problems
arise that suggest that this is not a worthwhile approach.

A more fruitful direction is to work with the category of Polish metric spaces
(complete separable spaces) and continuous functions, called PolMet. Let us
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write P̂ : Met → Met for the endofunctor which takes a space M to the met-
ric space of all Borel probability measures on M , using (for concreteness) the
Kantorovich metric, defined using integrals instead of sums. The resulting topol-
ogy is the weak topology. Giry [11] proved that P̂ restricts to an endofunctor
P : PolMet → PolMet. For every Polish space X, the set ΔX of discrete probabil-
ity distributions is a dense subset of P̂X (see [29, Theorem 6.18]). For every map
k : X → Y in Met, P̂ k and Δk both work the same way, by “pushing forward” a
distribution. The appropriate version of E is E(μ) =

∫
x dμ. All of the results in

Sects. 4 and 5 adapt to this setting, mutatis mutandis. The upshot is that we get
a b-category (PolMet, B), where B is the class of bounded continuous functions.
Furthermore, the policy improvement theorem can be done in that setting.

7 Conclusion

Our main goal has been to show that the value functions LTVσ and V ∗ arise from
a universal property of sorts, and to re-prove the correctness of policy improve-
ment using a coinductive argument. The universal property was explained in
terms of bca-structures, and for this we needed the notion of a b-category. The
main examples led us to study boundedness preservation properties of the liftings
of the stream functor and the distribution monad to metric spaces.

The coinductive analysis of policy improvement went by means of a new
contraction coinduction principle. In essence, contraction coinduction allows one
to infer qualitative relationships (e.g., policy improvement) without a detour
into quantitative results. We would like to think this principle has many other
uses.

We have a few comments on earlier work in the same general area.
Kozen and Ruozzi [24] surely had the intuition that aspects of the theory of

MDPs should be understood coinductively. Their paper has a very interesting
coinductive proof of the fact that the optimal policies in MDPs may be taken to
be deterministic. They were not concerned with policy improvement, our target
for coinduction. As for ourselves, we formulated contraction coinduction; this
is an easy consequence of the metric coinduction principle from [17,24], and it
seems to do the work one would want for inequalities as one finds in policy
improvement.

One should go back to Shapley games and other infinite games to see if
the metric coinduction principle from [17,24] could simplify the (subtle) positive
results in the area. Also, the metric coinduction principle was used by Abramsky
and Winschel [1] to establish a predicate coinduction principle. They use that
result in connection with subgame perfect equilibria in infinite games such as
the dollar auction. Pavlovic [22] shares some programmatic features with our
work, even though the formal work appears different. There are connections to
be made with all of these papers.

Denardo [7] is concerned with some of the same issues that we address. In
some ways his work is more abstract than ours, as he does not assume a particular
system type, and in some ways less. His work does not use categorical notions,
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so it does not directly compare with our work, but assumptions pertaining to
contraction mappings and to order-preservation are prominent in the paper. Our
contraction coinduction principle simplifies several of the proofs in [7].

A related point: Denardo assumes that (his version of) Φ maps bounded
functions to bounded functions. Our notions of b-functor and b-preservation give
us a compositional account of this fact. This was put to use in Proposition 6.
On the other hand, to show that Φ is a contraction, our general machinery was
not useful. So there certainly is more work to be done on that.

This paper emphasizes compositional reasoning about functions and functors.
The classical theory of MDPs does not do this; it directly proves properties (such
as boundedness) of composites viewed as monolithic entities, instead of deriving
them from preservation properties of their constituents. So it neither needs nor
uses the extra information that we obtained by working in a categorical setting.
Indeed, most of our paper is devoted to this extra information. We hope that
our work will be useful in settings beyond MDPs. We have some pilot results in
this direction, but for lack of space these do not appear in this paper.
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Abstract. We show how finite and infinite trace semantics of generative
probabilistic transition systems arises through a determinisation con-
struction. This enables the use of bisimulations (up-to) to prove equiv-
alence. In particular, it follows that trace equivalence for finite proba-
bilistic transition systems is decidable. Further, the determinisation con-
struction applies to both discrete and continuous probabilistic systems.

1 Introduction

The theory of coalgebras encompasses a wide variety of probabilistic systems,
and according notions of bisimulation and behavioural equivalence [18]. We focus
on one of the most basic instances: (generative) probabilistic transition systems
(PTS), consisting of a set of states X and for every state a probability distribu-
tion over next states and (explicit) termination. Formally, they are coalgebras
of the form α : X → D(A × X + 1), where A is a fixed set of transition labels, D
the probability distribution functor and 1 = {∗} a singleton, whose element we
interpret as an extra ‘accepting/termination’ state (Sect. 3 for details).

There is a natural notion of finite trace semantics for such PTSs, assigning
to every state a sub-probability distribution of words, as a quantitative analogue
of acceptance of words in non-deterministic automata. The definition of infinite
traces is more subtle: it requires assigning probability to sets of traces rather
than individual traces (infinite traces often have probability zero), and to move
to probability measures. It is shown in [13] how finite and infinite trace semantics
arises by modelling PTSs as coalgebras in the Kleisli category of the Giry monad.

As such, the (in)finite traces semantics of PTSs is an instance of the general
theory of trace semantics through Kleisli categories, as proposed in [10]. A fun-
damentally different way of obtaining trace semantics of coalgebras is through
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determinisation constructions, generalising the classical powerset construction
of non-deterministic automata [12,16] but also encompassing many other exam-
ples. In particular, in [12,17] it is described how the finite traces of probabilistic
transition systems arise through a certain determinisation construction, turning
a PTS into a Moore automaton with sub-probability distributions as states. One
of the advantages of determinisation is that it allows to use bisimulations (up-to)
to prove trace equivalence. In particular, bisimulations up to congruence were
used in Bonchi and Pous’ HKC algorithm for non-deterministic automata [4]
and in its extension to weighted automata [2].

In this paper, we show that the finite and infinite trace semantics of PTS,
as in [13], arises through a determinisation construction (Sect. 4). The essential
underlying idea that enables this approach, is that the (in)finite traces semantics
in [13] is generated basically from two kinds of finite trace semantics: those that
take into account termination/acceptance (as mentioned above), and those that
do not (simply the probability of exhibiting a path in the PTS). In particular,
for finite PTS, our determinisation construction yields an effective procedure for
proving (in)finite trace equivalence using bisimulation up to congruence, using
a variation of the HKC algorithm (Sect. 5). We finally show that the determini-
sation construction generalises to the setting of continuous PTS, working in the
category of measurable spaces and with D replaced by the Giry monad (Sect. 6).
While this generalises the discrete case, it is presented separately to make the
discrete case accessible to a wider audience: the latter requires very little measure
theory. We conclude with a discussion of related work (Sect. 7).

2 Preliminaries

Any finite set A can be called an alphabet and its elements letters. The set of
words of length n with letters in A is denoted by An. By convention A0 = {ε}
where ε is the empty word. The set of finite words over A is denoted by A∗ =⋃

n∈N
An, the set of infinite words by Aω = AN and the set of all (finite and

infinite) words by A∞ = A∗ ∪ Aω. A language L is a subset of P(A∗). It can be
seen as a function L : A∗ → {0, 1}, by setting L(w) = 1 iff w ∈ L. The language
derivative of L with respect to a letter a is defined by La(w) = L(aw). The
length of w ∈ A∞ is denoted by |w| ∈ N ∪ {∞}. The concatenation function
c : A∗ × A∞ → A∞ is denoted by juxtaposition (c(u, v) = uv) and defined by
uv(n) = u(n) if n < |u| and uv(n) = v(n − |u|) if |u| ≤ n < |u| + |v|. It can be
extended to languages P(A∗) × P(A∞) → P(A∞) by setting LM = {uv | u ∈
L, v ∈ M}. We sometimes abbreviate {w}M by wM .

Coalgebras and Moore Automata. We recall the basic definition of coalgebras,
see, e.g., [11,15] for details and examples. The only instances that we use in
this paper are Moore automata (recalled below), probabilistic transition sys-
tems (Sect. 3) and measure-theoretic generalisations of both (Sect. 6). Let C be
a category, and F : C → C a functor. An F -coalgebra consists of an object X
and an arrow α : X → FX. Given coalgebras (X,α) and (Y, β), a coalgebra
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homomorphism is an arrow f : X → Y such that β ◦ f = Ff ◦ α. Coalgebras
and homomorphisms form a category CoAlg(F ). A final object in CoAlg(F )
is called final coalgebra; explicitly, a coalgebra (Ω,ω) is final if for every F -
coalgebra (X,α) there is unique coalgebra homomorphism ϕ : X → Ω. We recall
the notion of bisimulation only for Moore automata, below.

Let B be a set. Define the machine functor FB : Set → Set by FBX = B×XA

and Ff = idB × fA. An FB-coalgebra 〈o, t〉 : X → B × XA is called a Moore
automaton (with output in B). A relation R ⊆ X × X on the states of a Moore
automaton 〈o, t〉 : X → B×XA is a bisimulation if for all (x, y) ∈ R: o(x) = o(y)
and for all a ∈ A, (ta(x), ta(y)) ∈ R (here, we used the classical notation ta(x)
instead of writing t(x)(a)). We write x ∼ y if there exists a bisimulation R such
that xRy, and in this case say that x and y are bisimilar. For every B, there
exists a final FB-coalgebra (Ω,ω) where Ω = BA∗

. For an FB-coalgebra (X,α),
we write ϕα : X → BA∗

or simply ϕ for the unique coalgebra morphism. We think
of the elements of BA∗

as (weighted) languages, and of ϕ(x) as the language of
a state x. In particular, for B = 2, Moore automata are classical deterministic
automata, and ϕ gives the usual language semantics. We have ϕ(x) = ϕ(y) iff
x ∼ y, i.e., language equivalence coincides with bisimilarity.

Measure Theory. Let X be a set. A σ-algebra on X is a subset ΣX ⊆ P(X) such
that ∅ ∈ ΣX and ΣX is closed under complementation and countable union.
Note that this implies that X ∈ ΣX and that ΣX is closed under countable
intersection and set difference. Given any subset G ⊆ P(X), there always exists
a smallest σ-algebra containing G. Indeed, P(X) is a σ-algebra containing G,
and the intersection of an arbitrary non-empty set of σ-algebras is itself a σ-
algebra: just take the intersection of all σ-algebras containing G. We call it
the σ-algebra generated by G and denote it by σX(G). For example, P(X) is
a σ-algebra on X. When working with real numbers R, we will use the Borel
σ-algebra B(R) = σR({(−∞, x] | x ∈ R}). We use B([0, 1]) = {B ∩ [0, 1] |
B ∈ B(R)} as the canonical σ-algebra on [0, 1]. If X is a set and ΣX is a σ-
algebra on X, the pair (X,ΣX) is called a measurable space. We write X for
(X,ΣX) when the σ-algebra used is clear. A function f : (X,ΣX) → (Y,ΣY ) is
measurable if for all SY ∈ ΣY , f−1(SY ) ∈ ΣX . The composition of measurable
functions is measurable. An (implicitly finite) measure is a map m : ΣX → R+

such that m(∅) = 0 and m
(⋃

n∈N
An

)
=
∑

n∈N
m(An) if the union is disjoint

(σ-additivity property). We write M(X) for the set of measures on a measurable
space (X,ΣX).

(Sub)distribution. The distribution functor D : Set → Set is defined by D(X) =
{p : X → [0, 1] | ∑x∈X p(x) = 1} and, given a function f : X → Y , Df(u)(y) =∑

x∈f−1({y}) u(x). The functor D extends to a monad, with the unit η given
by the Kronecker delta ηX(x) = δx (i.e., η(x)(y) = 1 if x = y and η(x)(y) =
0 otherwise), and the multiplication by μX(U)(y) =

∑
u∈DX U(u) · u(y). The

sub-distribution functor S : Set → Set is defined by S(X) = {p : X → [0, 1] |∑
x∈X p(x) ≤ 1}. It extends to a monad in a similar way. There is a natural

embedding of D in S, which we denote by ι : D ⇒ S.
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3 Trace Semantics of Probabilistic Transition Systems

In this section, we recall PTSs and their (finite and infinite) trace semantics,
following [13]. We start with the finite trace semantics.

Definition 3.1. A probabilistic transition system (PTS) is a coalgebra for the
functor D(A× Id +1), i.e., a set X together with a map α : X → D(A×X +1).

Definition 3.2. Let α : X → D(A×X+1) be a PTS. The finite trace semantics
�−�f : X → S(A∗) is defined by the following equations.

�x�f (ε) = α(x)(∗) �x�f (aw) =
∑

y∈X

α(x)(a, y) · �y�f (w)

for all x ∈ X, a ∈ A, w ∈ A∗.

Consider as a first example the simple PTS below, where the element ∗ is rep-
resented as a distinguished double-circled state, and a transition is represented
by an arrow labeled with its probability.

x ∗a,1/2
1/2

(1)

We have �x�f (an) = 1
2n+1 for all n. The trace semantics becomes more subtle if

infinite words are also taken into account. Consider, for instance, the following
PTS.

ya,1/2 b,1/2 za,3/4 b,1/4
(2)

Intuitively both states accept any finite or infinite word w over {a, b} with prob-
ability 0. However, the probability of ‘starting with an a’ in y or z is clearly
different. This becomes apparent when we move to assigning probability to sets
of traces, which is where we need a bit of measure theory. We therefore first
define a suitable σ-algebra on the set A∞ of finite and infinite words.

Definition 3.3. Let S∞ = {∅} ∪ {{w} | w ∈ A∗} ∪ {wA∞ | w ∈ A∗}. The
σ-algebra of measurable sets of words is defined to be ΣA∞ = σA∞(S∞).

This σ-algebra is generated by a countable family of generators: the empty set,
the singletons of finite words, and the cones, i.e., sets wA∞ of words that have
the finite word w as a prefix. This σ-algebra is very natural. Indeed, the usual
measure-theoretical σ-algebra on A∗ ∪ Aω would be the combination of the dis-
crete σ-algebra P(A∗) and the product σ-algebra (see, e.g., [1], Definition 4.42)
of all P(A) on Aω. One can easily prove that this construction yields our ΣA∞

too. In the sequel, this is the σ-algebra on A∞ implicitly used. The following
proposition establishes measurability for some useful sets.

Proposition 3.4. The following sets of words are measurable:
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(i) The singleton {w} for any w ∈ A∞;
(ii) any countable language;
(iii) any language of finite words;
(iv) ∅, A∗, Aω, A∞;
(v) the concatenation LS where L ⊆ A∗ and S ∈ ΣA∞ .

In the following, if m is a measure over A∞ and w ∈ A∞, we will write m(w)
instead of m({w}). We have the following key theorem, which follows easily from
results in [13]:

Theorem 3.5. Let m : S∞ → R+ be a map satisfying m(∅) = 0. The two fol-
lowing conditions are equivalent.

(i) There exists a unique measure m̃ : ΣA∞ → R+ such that m̃|S∞ = m.
(ii) For all w ∈ A∗, m(wA∞) = m(w) +

∑
a∈A m(waA∞).

Proof. (i) ⇒ (ii) The equation comes directly from the σ-additivity of m̃. (ii) ⇒
(i) According to Lemma 3.18 of [13], (ii) is equivalent to the fact that m is a pre-
measure. Using Caratheodory’s extension theorem (e.g., [14]), this pre-measure
can be uniquely extended to a measure as in (i). ��
Recall that M(A∞) denotes the set of measures m on A∞.

Definition 3.6. Let α : X → D(A × X + 1) be a PTS. The (finite and infinite)
trace semantics �−� : X → M(A∞) is defined by the following equations.

�x�(εA∞) = 1 �x�(ε) = α(x)(∗)

�x�(awA∞) =
∑

y∈X

α(x)(a, y) · �y�(wA∞) �x�(aw) =
∑

y∈X

α(x)(a, y) · �y�(w)

(These equations uniquely determine a measure by Theorem 3.5.)

Example 3.7. Consider the following PTS over the alphabet A = {a}.

x y ∗
a,1/3

a,1/3

1/3

a,1

The semantics �x� is easy to compute for sets of words in S∞ by induction:
for every finite word w, �x�(w) = 0 and �x�(wA∞) = 1. Because anA∞ is a
non-increasing sequence of measurable sets converging to {aω}, properties of
measures yield �x�(aω) = limn→+∞�x�(anA∞) = 1. Let us look at �y�. Intu-
itively, the probability of performing n loops in state y and then moving to (and
staying in) state x is 1/3n+1. Summing them for n ∈ N ∪ {0} gives 1/2, the
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probability of moving eventually to state x. Indeed, first observe that �y�(ε) =
1/3 and �y�(εA∞) = 1. Let n ∈ N ∪ {0}, then:

�y�(an+1) =
1
3
�y�(an) +

1
3
�x�(an) =

1
3
�y�(an)

�y�(an+1A∞) =
1
3
�y�(anA∞) +

1
3
�x�(anA∞) =

1
3
�y�(anA∞) +

1
3

One can then prove that �y�(an) = 1/3n+1 and �y�(aω) = limn→+∞�y�(anA∞) =
limn→+∞(1 + 3−n)/2 = 1/2.

Example 3.8. Consider again the PTS in (2). We have �y�(w) = �z�(w) = 0 for
all w ∈ A∗. However, �y�(aA∞) = �y�(bA∞) = 1/2 whereas �z�(aA∞) = 3/4
and �z�(bA∞) = 1/4. Hence �y� �= �z�, as expected.

The above (in)finite trace semantics is essentially generated from two kinds of
finite trace semantics: one for finite words w, and one for cones wA∞, where
w ∈ A∗. The probability of the latter is simply the probability the finite trace w
without considering acceptance/termination, i.e., the probability of exhibiting
the path w. This finite presentation is exploited in the determinisation construc-
tion in the next section, which essentially encodes both kinds of finite trace
semantics simultaneously.

4 Determinisation

In this section, we show how the finite and infinite trace semantics of PTS
(Definition 3.6) arises through a determinisation construction. This construction
transforms any PTS into a certain kind of Moore machine with sub-probability
distributions as states. The final coalgebra semantics of this Moore machine
represents the trace semantics �−� : X → M(A∞) of the original PTS. The
determinisation procedure is exploited in the next section to give an algorithm
for computing (in)finite trace equivalence, based on bisimulations.

In Sect. 6, we consider a more general kind of PTS, with measurable sets as
state spaces, which fully generalises the results and constructions of the current
section. Most proofs in the current section are hence omitted. Moreover, it is
explained in Sect. 6 that our approach is an instance of the abstract framework
of coalgebraic determinisation based on distributive laws [12,16]. In the current
section we mostly neglect this and present the concrete constructions.

Throughout this section, let α : X → D(A×X +1) be a PTS. Our approach
to (in)finite traces resembles the determinisation construction of [12,17] for finite
traces of PTSs. As explained below, there is one crucial addition for (in)finite
traces: we make the total weight of sub-distributions in the determinised coal-
gebra observable, essentially to capture the probability of the ‘cones’ wA∞. We
will show that the resulting final coalgebra semantics factorises through the set
M(A∞) of measures on words, recovering the trace semantics of Definition 3.6.
The overall construction is as follows.
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(i) Translate α into a coalgebra α̃ : X → [0, 1] × [0, 1] × (SX)A.
(ii) Determinise it: define an α� : SX → [0, 1]×[0, 1]×(SX)A such that α�◦ηX =

α̃. Let ϕ : SX → ([0, 1]× [0, 1])A∗
be the unique map to the final coalgebra.

(iii) Factorise ϕ to get a coalgebra morphism SX → M(A∞), then precompose
with ηX to get the desired trace semantics X → M(A∞).

The construction is summed up in the following diagram. Below, we explain each
of the steps in detail.

X SX M(A∞) ([0, 1] × [0, 1])A∗

D(A × X + 1)

S(A × X + 1) [0, 1] × [0, 1] × (SX)A [0, 1] × [0, 1] × (M(A∞))A [0, 1] × [0, 1] × (([0, 1] × [0, 1])A∗
)A

α

ιA×X+1

ηX [−]

α� Π ω

eX

ϕ

id × ϕA

α̃

Remark 4.1. As mentioned above, the construction is quite close to the deter-
minisation of finite traces [12,17]. There are two main differences: first, the lat-
ter determinises to a Moore automaton of the type SX → [0, 1] × (SX)A (so
with [0, 1] rather than [0, 1] × [0, 1]). Second, the decomposition of ϕ here yields
measures (to represent (in)finite trace semantics) rather than sub-probability
distributions (to represent finite trace semantics).

(i) Translation: from α to α̃. The first step, the definition of α̃ from α,
basically forgets certain information about probability distributions. The natural
transformation e is given on a component X by eX : S(A × X + 1) → [0, 1] ×
[0, 1] × (SX)A,

eX(u) =

〈
∑

z∈A×X+1

u(z), u(∗), a �→ [y �→ u(a, y)]

〉

.

We have α̃(x) = 〈1, α(x)(∗), a �→ [y �→ α(x)(a, y)]〉.
(ii) Determinisation.In the second step, we turn α̃ into a Moore automaton
over sub-distributions. Formally, the latter will be a coalgebra for the functor
F[0,1]×[0,1] : Set → Set; recall from Sect. 2 that this is defined by F[0,1]×[0,1]X =
[0, 1] × [0, 1] × XA. In the remainder of this section we abbreviate F[0,1]×[0,1]

by F . Notice that α̃ is an FS-coalgebra. Any FS-coalgebra determinises to an
F -coalgebra, but we spell it out here only for the necessary instance α̃. For a
concrete example, see the first part of Example 5.9 in the next section.

Definition 4.2. The determinisation of the PTS α : X → D(A × X + 1) is the
Moore machine α� : SX → FSX = [0, 1] × [0, 1] × (SX)A, defined by:

α�(u) =

〈
∑

x∈X

u(x),
∑

x∈X

u(x) · α(x)(∗), a �→ [y �→
∑

x∈X

u(x) · α(x)(a, y)]

〉

.
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(iii) Factorisation of final coalgebra semantics. Since α� is an F -
coalgebra, there exists a unique coalgebra morphism ϕ from (SX,α�) to the
final coalgebra (([0, 1] × [0, 1])A∗

, ω). This is not quite the right type: the
(in)finite trace semantics �−� is a (probability) measure over words, hence,
for each x, �x� should be an element of the set M(A∞) of measures over
A∞ (Sect. 2). In the last step (iii), we equip M(A∞) with an F -coalgebra
structure Π which is final among F -coalgebras satisfying a certain property,
satisfied by our determinisation α�. This allows us to factor ϕ through a coal-
gebra homomorphism [−] : S(X) → M(A∞). In the more general setting of
Sect. 6 we show how the coalgebra structure on M(A∞) arises from the Giry
monad and the final coalgebra of the Set endofunctor X �→ A × X + 1. For
now, we define it explicitly, which requires:

Definition 4.3 (Measure derivative). Let m be a measure on A∞ and a ∈ A.
The map ma defined by ma(S) = m(aS) for any S ∈ ΣA∞ is a measure, called
the measure derivative of m (with respect to a).

It is easy to check that ma as defined above is indeed a measure, so that the
measure derivative is well-defined. Now, the coalgebra Π : M(A∞) → [0, 1] ×
[0, 1] × (M(A∞))A is defined by Π : m �→ 〈m(εA∞),m(ε), a �→ ma〉. Since Π is
an F -coalgebra, we obtain a coalgebra morphism to the final F -coalgebra ω.

Lemma 4.4. The unique coalgebra morphism from Π to ω is injective.

A proof is given in the more general setting of Lemma 6.8. The following crucial
lemma states in which cases the factorisation is possible. It establishes the F -
coalgebra Π as a final object in a certain subcategory of CoAlg(F ).

Proposition 4.5. Let β = 〈β⊕, β∗, a �→ τa〉 : Y → FY be an F -coalgebra. The
two following conditions are equivalent:

(i) There exists an F -coalgebra morphism [−] from β to Π.
(ii) The equation β⊕ = β∗ +

∑
a∈A β⊕ ◦ τa holds.

In this case, this morphism is unique.

See Theorem 6.9 for a proof in the (more general) continuous setting.

Lemma 4.6. The coalgebra α� : SX → [0, 1] × [0, 1] × (SX)A satisfies (ii) in
Proposition 4.5.

It is important to note that condition (ii) does not hold in general if the whole
construction starts from a coalgebra of the form α : X → S(A × X + 1). The
price to be paid for a PTS to be compatible enough to generate infinite trace
semantics from the finite traces in a measure-theoretic way is to sum to 1, i.e.,
to use D and not S.

The following result summarises the situation.
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Corollary 4.7. The morphism ϕ decomposes as a unique coalgebra morphism
[−] : SX → M(A∞) from α� to Π followed by an injective coalgebra morphism
ϕΠ from Π to ω, as shown in the following diagram.

SX M(A∞) ([0, 1] × [0, 1])A∗

[0, 1] × [0, 1] × (SX)A [0, 1] × [0, 1] × (M(A∞))A [0, 1] × [0, 1] × ([0, 1] × [0, 1])A∗

[−]

α� Π

ϕΠ

ϕ

ω

We thus obtain the semantics [−]◦ηX : X → M(A∞) by precomposing with the
unit of the monad S. It coincides with the semantics �−� of Definition 3.6:

Theorem 4.8. We have �−� = [−] ◦ ηX .

Theorem 4.8 is the main result of this section, stating that the (in)finite
trace semantics is recovered by finality through a determinisation construction.
Together with Lemma 4.4, it yields equivalence between the first two points
below.

Corollary 4.9. For any x, y ∈ X, the following are equivalent:

1. �x� = �y�,
2. ϕ(δx) = ϕ(δy),
3. δx ∼ δy,

where ∼ is bisimilarity on the Moore automaton α�, the determinisation of α
(Definition 4.2).

The equivalence between 2. and 3. is standard, and was mentioned in Sect. 2. By
the equivalence between 1. and 3., we can prove (in)finite trace equivalence by
computing bisimulations, which is used in the next section.

5 Computing Trace Equivalence

The aim of this section is to give an algorithm that takes states x, y ∈ X of a PTS
and tells whether x and y are (in)finite trace equivalent (i.e., �x� = �y�) or not,
based on the determinisation construction described in Sect. 4. Our algorithm
is a variant of HKC, an algorithm for language equivalence of non-deterministic
automata based on determinisation and bisimulation (up-to) techniques [4]. More
specifically, we will use its generalisation to weighted automata given in [2].

Let α : X → D(A × X + 1) be a finite-state PTS and α� its determinisation
(Definition 4.2). By Corollary 4.9, to prove �x� = �y� it suffices to show δx ∼ δy,
i.e., that there is a bisimulation R ⊆ SX × SX on the determinised Moore
automaton such that (δx, δy) ∈ R. However, this task can be simplified using
bisimulation up-to techniques, as explained next. In order to use the techniques
from [2], we first move from sub-probability distributions to vector spaces. To this
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end, define R
X
ω as the set of finitely supported functions X → R, i.e., RX

ω =
{u : X → R | u(x) �= 0 for finitely many x}. We define the Moore automaton
α = 〈α⊕, α∗, a �→ αa〉 : RX

ω → R × R × (RX
ω )A as follows on any u ∈ R

X
ω :

α⊕ =
∑

x∈X

u(x) α∗ =
∑

x∈X

u(x) · α(x)(∗) αa =

[

y �→
∑

x∈X

u(x) · α(x)(a, y)

]

(3)
This is almost the same construction as in Definition 4.2, with sub-probability
distributions replaced by vectors. (Note that this is well-defined since X is
assumed to be finite; it would also suffice to assume that α is finitely branching.)
It is easy to see that the embedding i : SX → R

X
ω is an injective F[0,1]×[0,1]-

coalgebra morphism from α� to α. Together with Corollary 4.9, this yields:

Corollary 5.1. For any x, y ∈ X: �x� = �y� iff δx ∼ δy, where ∼ is bisimilarity
on the Moore automaton α.

We now formulate bisimulation up to congruence, concretely for α.

Definition 5.2. Let R ⊆ R
X
ω × R

X
ω . Its congruence closure c(R) is the least

congruence that contains R, i.e., that satisfies

(u, v) ∈ R

(u, v) ∈ c(R) (u, u) ∈ c(R)
(u, v) ∈ c(R)
(v, u) ∈ c(R)

(u, v) ∈ c(R) (v, w) ∈ c(R)
(u,w) ∈ c(R)

(r · u, r · v) ∈ c(R)
(u, v) ∈ c(R)

(r ∈ R)
(u, u′) ∈ c(R) (v, v′) ∈ c(R)

(u + u′, v + v′) ∈ c(R)

Definition 5.3. Define α : RX
ω → R×R× (RX

ω )A from a finite-state PTS α, as
in Eq. (3). A relation R ⊆ R

X
ω ×R

X
ω is a bisimulation up to congruence (on α)

if for all (u, v) ∈ R:

– α⊕(u) = α⊕(v), α∗(u) = α∗(v), and
– ∀a ∈ A: (αa(u), αa(v)) ∈ c(R).

The following result states soundness of bisimulations up to congruence. This
can either be proved from the abstract coalgebraic theory [3] or more directly
using compatible functions, as in [2,4].

Theorem 5.4. For any u, v ∈ R
X
ω : u ∼ v iff there is a bisimulation up to

congruence R (on α) such that (u, v) ∈ R.
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Combined with Corollary 5.1, this means that to prove that �x� = �y� for states
x, y of a PTS, it suffices to show that there is a bisimulation up to congruence
relating δx and δy. The following algorithm attempts to compute one given x, y.

HKC∞(x, y)

(1) R := ∅; todo := ∅
(2) insert (δx, δy) into todo

(3) while todo is not empty do
(3.1) extract (u, v) from todo

(3.2) if (u, v) ∈ c(R) then continue
(3.3) if α⊕(u) �= α⊕(v) then return false

(3.3’) if α∗(u) �= α∗(v) then return false

(3.4) for all a ∈ A, insert (αa(u), αa(v)) into todo

(3.5) insert (u, v) into R

(4) return true

Theorem 5.5. Whenever HKC∞(x, y) terminates, it returns true iff �x� = �y�.

Despite the fact that during the determinisation the state space always becomes
infinite, the following results show that if the initial state space X is finite, then
HKC∞ does terminate.

Theorem 5.6 (see [6]). Let R be a ring and X be a finite set. Let R ⊆ RX×RX

be a relation and let (v, v′) ∈ RX × RX be a pair of vectors. Let UR = {u − u′ |
(u, u′) ∈ R}. Then (v, v′) ∈ c(R) iff v − v′ ∈ [UR], where [UR] is the submodule
of RX generated by UR.

Proposition 5.7. If X is finite, HKC∞(x, y) terminates for every x, y ∈ X.

Example 5.8. To begin with, here is a very simple PTS which we use to demon-
strate the need for bisimulation up to congruence over plain bisimulations.

x ∗ ya,1/2
1/2

a,1/2
1/2

A bisimulation on the determinised automaton containing (δx, δy) would require
adding (δx/2k, δy/2k) for all k to the relation. However, HKC∞(x, y) (which com-
putes a bisimulation up to congruence) stops after one step because it spots that
(δx/2, δy/2) is in the congruence closure of the relation {(δx, δy)}.

Example 5.9. Consider the PTS depicted on the left below. We will use HKC∞

to check if the states x and z are (in)finite trace equivalent.
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x y z

∗

i

a,1/6

1/3

a,1/2

a,1/3

2/3

a,1/3

1/3

a,1/3

a,1

u =

⎛

⎜
⎜
⎝

ux

uy

uz

ui

⎞

⎟
⎟
⎠ Ma =

⎛

⎜
⎜
⎝

0 0 0 0
1/6 1/3 0 0
0 0 1/3 0

1/2 0 1/3 1

⎞

⎟
⎟
⎠

L =
(

L⊕
L∗

)

First, we compute part of the determinised automaton. To this end, observe that
because X is finite, RX

ω = R
X has a basis (ex, ey, ez, ei). An element u ∈ R

X
ω is

seen as a column vector uxex + uyey + uzez + uiei in this basis. Moreover α⊕
and α∗ are linear forms that can be seen as the row vectors L⊕ =

(
1 1 1 1

)
and

L∗ =
(
1/3 2/3 1/3 0

)
, and αa is an endomorphism with a transition matrix Ma

defined by (Ma)j,k = ta(k)(j). This is depicted on the right above.
We represent here two parts of the determinised automaton. The first is the

path beginning with the single state x; the second is the path beginning with
the single state z. Each state here has two real outputs, obtained by matrix
multiplication with L⊕ and L∗.

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
1/6
0

1/2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
0

1/3
1/3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
1/18

0
1/2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
0

1/9
4/9

⎞

⎟
⎟
⎠

...

...

⎛

⎜
⎜
⎝

0
1/(2 × 3n)

0
1/2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
0

1/3n

(1 − 3−n)/2

⎞

⎟
⎟
⎠

...

...

a

a

a

a

a

a

a

a

a

a

Now, HKC∞(x, z) begins with todo = {(ηX(x), ηX(z))} = {(ex, ez)} and R = ∅.
It checks that Lex = Lez, etc. as shown in the following table.

The check succeeds in loop 3 because (u, v) ∈ c(R) according to Theorem 5.6:
⎛

⎜
⎜
⎝

0
1/18

0
1/2

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝

0
0

1/9
4/9

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
1/18
−1/9
1/18

⎞

⎟
⎟
⎠ =

1
3

⎛

⎜
⎜
⎝

0
1/6

−1/3
1/6

⎞

⎟
⎟
⎠ =

1
3

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
1/6
0

1/2

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝

0
0

1/3
1/3

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

Because todo is eventually empty, the algorithm returns true. Indeed, if we
compute directly the measures �x� and �z�, we can see that �x�(an) = 1/3n+1,
�x�(aω) = 1/2 and similarly for �z�. Here the bisimulation up to congruence check
is necessary for termination. The construction of a bisimulation up to equiva-
lence (dashed + dotted lines on the determinised automaton picture) would
take an infinite number of steps. But the construction of the bisimulation up to
congruence (dashed lines) takes only 2 steps.
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Step (3.1) (3.2) (3.3) (3.4) (3.5)

Loop

counter

(u, v) extracted

from todo

Check

(u, v) ∈ c(R)

Check Lu = Lv (Mau, Mav) added

to todo

Cardinality

of R

1 (

⎛
⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎠
) Fail

(
1

1/3

)
=

(
1

1/3

)
(

⎛
⎜⎜⎜⎜⎝

0

1/6

0

1/2

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0

0

1/3

1/3

⎞
⎟⎟⎟⎟⎠
) 1

2 (

⎛
⎜⎜⎜⎜⎝

0

1/6

0

1/2

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0

0

1/3

1/3

⎞
⎟⎟⎟⎟⎠
) Fail

(
2/3

1/9

)
=

(
2/3

1/9

)
(

⎛
⎜⎜⎜⎜⎝

0

1/18

0

1/2

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0

0

1/9

4/9

⎞
⎟⎟⎟⎟⎠
) 2

3 (

⎛
⎜⎜⎜⎜⎝

0

1/18

0

1/2

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0

0

1/9

4/9

⎞
⎟⎟⎟⎟⎠
) Success / / 2

4 Empty / / / /

6 Continuous Systems

In this section, we generalise the determinisation construction for (in)finite trace
semantics previously defined to the case of continuous PTS, defined later as coal-
gebras for the analogue of functor D(A×−+1) in the category Meas (see [13] for
examples of such PTSs). The underlying distributive law is brought to light, so
that the origin of the determinisation process is better understood. The following
table sums up the analogies and differences with the discrete case.

Discrete case General case

Category Set Meas

Usual operation
∑ ∫

Machine functor FX = [0, 1] × [0, 1] × XA Measurable version of F

Probability monad Distribution monad D Giry’s monad D

Determinisation monad Sub-distribution monad S Sub-Giry’s monad S

PTS state space Set X Measurable space (X, ΣX)

Determinised state Finitely supported vector Measure (≤ 1)

Transitions Matrix ta : X × X → [0, 1] Kernel ta : X × ΣX → [0, 1]

Final F -coalgebra ω Measurable version of ω

Measure coalgebra Π Measurable version of Π

Pseudo-final morphism [−] : SX → M(A∞) [−] : SX → SA∞

In this section we work in the category Meas of measurable spaces and functions.
It is easy to adapt F , but considering the monads we will need some additional
measure-theoretic background.
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Product. Given measurable spaces (X,ΣX) and (Y,ΣY ), we define a product
σ-algebra on X × Y by ΣX ⊗ ΣY = σX×Y ({SX × SY | SX ∈ ΣX , SY ∈ ΣY }).
The product of measurable spaces is then defined by (X,ΣX)⊗ (Y,ΣY ) = (X ×
Y,ΣX ⊗ ΣY ).

Sum. Given measurable spaces (X,ΣX) and (Y,ΣY ), we define a sum σ-algebra
on the disjoint union X +Y = {(x, 0) | x ∈ X}∪{(y, 1) | y ∈ Y } by ΣX ⊕ΣY =
{SX + SY | SX ∈ ΣX , SY ∈ ΣY }. The sum of measurable spaces is then defined
by (X,ΣX) ⊕ (Y,ΣY ) = (X + Y,ΣX ⊕ ΣY ).

Given measurable spaces X,Y and a measurable function f : X → Y , define
a new functor L : Meas → Meas by LX = A × X + 1 along with its canonical
σ-algebra ΣLX = P(A) ⊗ ΣX ⊕ P(1), and Lf = idA × f + id1. Moreover, define
FX = [0, 1]× [0, 1]×XA along with its σ-algebra B([0, 1])⊗B([0, 1])⊗⊗a∈A ΣX

and Ff = id[0,1] × id[0,1] × fA.

Integration. Let (X,ΣX ,m) be a measure space and f : X → R be a measur-
able function. If f(X) = {α1, . . . , αn} for some α1, . . . , αn ∈ R+, then f is called
a simple function and its integral can be set as

∫
X

fdm =
∑n

i=1 αim(f−1({αi})).
If f is non-negative, define

∫
X

fdm = sup
{∫

X
gdm | g ≤ f, g simple

} ∈ [0,∞].
Finally, for any f : X → R, decompose f = f+ − f− where f+ ≥ 0 and f− ≥ 0.
If their integrals are not both ∞, define

∫
X

fdm =
∫

X
f+dm − ∫

X
f−dm. If

this is finite, we say that f is m-integrable. Furthermore, for any S ∈ ΣX , the
indicator function 1S is measurable and we define

∫
S

fdm =
∫

X
1Sfdm.

Given a measurable function g : X → Y and measure m : ΣX → R+, the
pushforward measure of m by g is m ◦ g−1. For any measurable f : Y → R, f is
m ◦ g−1-integrable iff f ◦ g is m-integrable and in this case,

∫
Y

fd(m ◦ g−1) =∫
X

(f ◦ g)dm. Each positive measurable function X → R+ is the pointwise limit
of an increasing sequence of simple functions. To prove some property for every
positive measurable function, one can prove it for simple functions (or for indica-
tor functions, if it is preserved by linear combinations) and show it is preserved
by limits. Many such proofs use the monotone convergence theorem (see [14]),
which states that if (fn)n∈N is an increasing sequence of positive functions with
pointwise limit f , then f is measurable and

∫
X

fdm = lim
∫

X
fndm.

The Giry Monad. The Giry monad [8] provides a link between probabil-
ity theory and category theory. In Meas, the Giry monad (D, η, μ) is defined
as follows. For any measurable space X, DX is the space of probability mea-
sures over (X,ΣX), and ΣDX is the σ-algebra generated by the functions
eX
S : DX → [0, 1] defined by eX

S (m) = m(S). For any measurable function
g : X → Y , (Dg)(m) = m ◦ g−1. The unit is defined by ηX(x)(S) = 1S(x) and
the multiplication by μX(Φ)(S) =

∫
DX

eX
S dΦ. Similarly, one defines the sub-Giry

monad (S, η, μ), with the only difference that SX is the space of sub-probability
measures over (X,ΣX). There is a natural embedding of D in S, denoted by
ι : D ⇒ S.
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6.1 Trace Semantics via Determinisation

The aim of this section is to define trace semantics for continuous PTS, i.e.,
coalgebras of the form α : X → D(A × X + 1) where X is a measurable space.
We proceed in the same way as for discrete systems.

(i) Transform α into a more convenient coalgebra α̃ : X → FSX.
(ii) Determinise α̃ into an F -coalgebra α� : SX → FSX.
(iii) Factorise the final morphism : ϕα� = ϕΠ ◦ [−], then precompose with ηX .

The following diagram sums up the construction. Here Σ([0,1]×[0,1])A∗ is the Σ-
algebra generated by the functions L �→ L(w).

X SX SA∞ ([0, 1] × [0, 1])A∗

D(A × X + 1)

S(A × X + 1) [0, 1] × [0, 1] × (SX)A [0, 1] × [0, 1] × (SA∞)A [0, 1] × [0, 1] × (([0, 1] × [0, 1])A∗
)A

α

ιA×X+1

ηX [−]

α� Π ω

eX

ϕ

id × (ϕ)A

α̃

(i) Translation: from α to α̃

Proposition 6.1. For any measurable space X, the function eX : SLX → FSX
defined by eX(m) = 〈m(LX),m(1), a �→ [S �→ m({a} × S)]〉 is measurable.
Moreover, e : SL ⇒ FS is a natural transformation.

Now take α̃ = eX ◦ ιLX ◦ α : X → [0, 1] × [0, 1] × (SX)A. Explicitly:

α̃(x) = 〈α(x)(LX)
︸ ︷︷ ︸

1

, α(x)(1), a �→ [S �→ α(x)({a} × S)]〉

We decompose it as a pairing α̃ = 〈α̃⊕, α̃∗, a �→ ta〉.

(ii) Determinisation. We recall some basic observations in abstract deter-
minisation [12,16]. By distributive law here we mean the standard notion of
distributive law of monad over functor (called EM-law in [12]).

Lemma 6.2. Let C be a category, F : C → C be an endofunctor and (T, η, μ) be
a monad on C. Let f : X → TFX be a TF -coalgebra and h : TFTX → FTX be
an Eilenberg-Moore T -algebra. Then there exists a unique T -algebra morphism
f � : (TX, μX) → (FTX, h) such that f = f � ◦ ηX .

Lemma 6.3. With the same notations as for Lemma 6.2, and given a distribu-
tive law λ : TF ⇒ FT , then h = FμX ◦ λTX : TFTX → FTX is an Eilenberg-
Moore T -algebra.
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The next step is to define a distributive law λ : SF ⇒ FS in order to apply
Lemmas 6.2 and 6.3. In the following we write idFX = 〈π⊕

X , π∗
X , a �→ πa

X〉. Note
that πε : F ⇒ [0, 1] (for ε ∈ {∗,⊕}) and πa : F ⇒ IdC (for a ∈ A) are natural
transformations.

Lemma 6.4. Let g : S([0, 1]) → [0, 1] be defined by g(m) =
∫
[0,1]

id[0,1]dm. Then
g is measurable and an Eilenberg-Moore S-algebra.

For any object X of Meas, define λX : SFX → FSX by

λX = 〈g ◦ Sπ⊕
X , g ◦ Sπ∗

X , a �→ Sπa
X〉

This is a measurable function because each component is measurable.

Proposition 6.5. λ : SF ⇒ FS is a distributive law.

Let us compute the value of our resulting determinisation. Given α̃ : X → FSX,
take h = FμX ◦ λSX (Lemma 6.3) and α� = h ◦ Sα̃ (Lemma 6.2). We get

α� = h ◦ Sα̃

= FμX ◦ λSX ◦ Sα̃

= FμX ◦ 〈g ◦ S(π⊕
SX ◦ α̃), g ◦ S(π∗

SX ◦ α̃), a �→ S(πa
SX ◦ α̃)〉

= 〈g ◦ Sα̃⊕, g ◦ Sα̃∗, a �→ μX ◦ Sta〉
Let m ∈ SX. This more explicit expression shows that the coalgebra that arises
from the determinisation is natural in the sense that the components of α� are
basically obtained by integrating the information provided by α.

α�(m) =
〈∫

X

α̃⊕dm,

∫

X

α̃∗dm, a �→
[

S �→
∫

X

ta(−)(S)dm

]〉

=
〈∫

X

α(−)(LX)dm,

∫

X

α(−)(1)dm, a �→
[

S �→
∫

X

α(−)({a} × S)dm

]〉

(iii) Final coalgebra. This heavy determinisation part gives us an F -
coalgebra α�. There exists a final object in CoAlg(F ):

Proposition 6.6. Let Ω = ([0, 1] × [0, 1])A∗
and ΣΩ be the smallest σ-algebra

that makes the functions ew : Ω → [0, 1] × [0, 1] defined by ew(L) = L(w) mea-
surable for every w ∈ A∗. Let ω : Ω → FΩ be defined by ω(L) = 〈L(ε), a �→ La〉.
Then (Ω,ω) is a final F -coalgebra.

Thus for any F -coalgebra β the final morphism towards ω, denoted ϕβ , gives a
canonical notion of semantics. What we want is something slightly more specific
that takes into account the way α� was built to produce a probability measure
in SA∞. This is obtained via the coalgebra Π : SA∞ → FSA∞, built as follows.

Proposition 6.7. Let π : A∞ → LA∞ be defined by π(ε) = ∗ and π(aw) =
(a,w). This is a final L-coalgebra.
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Let Π = eA∞ ◦ Sπ. One can check that with this definition, Π : SA∞ → FSA∞

has the same expression as the Π : M(A∞) → FM(A∞) of Sect. 4:

Π(m) = 〈m(π−1(LA∞)),m(π−1(1)), a �→ [S �→ m(π−1({a} × S))]〉
= 〈m(A∞),m(ε), a �→ ma〉

The aim is now to factorise the semantics obtained via ω into semantics obtained
via Π. The following result is a kind of completeness property for this operation.

Lemma 6.8. The final morphism ϕΠ from Π to ω is injective.

Proof. For any m,m′ ∈ SA∞, in order to have m = m′, it is sufficient that
m|S∞ = m′

|S∞ (see Theorem 3.5). By induction on w, we prove that for m,m′ ∈
SA∞ such that ϕΠ(m) = ϕΠ(m′), then 〈m(wA∞),m(w)〉 = 〈m′(wA∞),m′(w)〉.
First, 〈m(εA∞),m(ε)〉 = ϕΠ(m)(ε) = ϕΠ(m′)(ε) = 〈m′(εA∞),m′(ε)〉. Note
that ϕΠ(m) = ϕΠ(m′) implies ϕΠ(ma)(w) = ϕΠ(m)(aw) = ϕΠ(m′)(aw) =
ϕΠ(m′

a)(w) so that ϕΠ(ma) = ϕΠ(m′
a). Use the induction hypothesis to

obtain that 〈m(awA∞),m(aw)〉 = 〈ma(wA∞),ma(w)〉 = 〈m′
a(wA∞),m′

a(w)〉 =
〈m′(awA∞),m′(aw)〉. This achieves the induction, so m and m′ coincide on S∞,
hence m = m′. ��
The following proposition states precisely in which cases the factorisation can be
done. This is a variant of Theorem 3.5 in which we really see that our system is
making one step. This version is stronger than Proposition 4.5, because it also
proves that the involved functions are measurable.

Theorem 6.9. Let β = 〈β⊕, β∗, a �→ τa〉 : Y → FY be an F -coalgebra. The two
following conditions are equivalent:

(i) There exists an F -coalgebra morphism [−] from β to Π.
(ii) The equation β⊕ = β∗ +

∑
a∈A β⊕ ◦ τa holds.

In this case, this morphism is unique.

For convenience we denote eA∞
S ◦ [−] by [−](S), and φa ◦ [−] by [−]a, where the

measure derivative function φa : m �→ ma is measurable as a component of Π.

Proof. (i) ⇒ (ii). Suppose [−] is a coalgebra morphism from β to Π. Commuta-
tion of the diagram yields 〈β⊕, β∗, a �→ [−] ◦ τa〉 = 〈[−](A∞), [−](ε), a �→ [−]a〉.
Let y ∈ Y . Because [y] is a measure, β⊕(y) = [y](εA∞) = [y](ε)+

∑
a∈A[y](aA∞).

Thus β⊕(y) = β∗(y) +
∑

a∈A[τa(y)](A∞) = β∗(y) +
∑

a∈A(β⊕ ◦ τa)(y).
Uniqueness. If [−]′ is another such morphism, we have [−](A∞) = [−]′(A∞),

[−](ε) = [−]′(ε) and for any a ∈ A, [−] ◦ τa = [−]a and [−]′ ◦ τa = [−]′a. An
immediate induction yields [−]|S∞ = [−]′|S∞ , thus [−] = [−]′ by Theorem 3.5.

(ii) ⇒ (i) Assume that (ii) holds. Let us define [−] on S∞ by induction:

[y]|S∞(εA∞) = β⊕(y) [y]|S∞(ε) = β∗(y)
[y]|S∞(awA∞) = [τa(y)]|S∞(wA∞) [y]|S∞(aw) = [τa(y)]|S∞(w)
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We must prove that it can be extended to a measure, using Theorem 3.5.
First, note that [y]|S∞(εA∞) = β⊕(y) = β∗(y) +

∑
a∈A(β⊕ ◦ τa)(y) =

[y]|S∞(ε) +
∑

a∈A[y]|S∞(aA∞). If it is known that for all y ∈ Y , [y]|S∞(wA∞) =
[y]|S∞(w) +

∑
a∈A[y]|S∞(waA∞) then for any b ∈ A we obtain the equation

[y]|S∞(bwA∞) = [τb(y)]|S∞(wA∞) = [τb(y)]|S∞(w) +
∑

a∈A[τb(y)]|S∞(waA∞) =
[y]|S∞(bw) +

∑
a∈A[y]|S∞(bwaA∞). This proves the (ii) of Theorem 3.5. We

denote by [−] the extension of [−]|S∞ . We postpone the proof of the measurabil-
ity of [−]; what is left is the commutation of the coalgebra diagram. The first line
of the definition of [−]|S∞ gives directly that β⊕ = [−](A∞) and β∗ = [−](ε).
Let a ∈ A. For any y ∈ Y , according to the second line of the definition of
[−]|S∞ , the measures [τa(y)] and [y]a coincide on S∞, hence are equal according
to Theorem 3.5, so [−] ◦ τa = [−]a. This achieves the proof that the diagram
commutes.

Measurability. It is not immediate to see why [−] : Y → SA∞ is a mea-
surable function. What has to be shown is that for any S ∈ ΣA∞ , [−](S)
is measurable. This is true when S ∈ S∞. Indeed, [−](∅) is the zero func-
tion, which is measurable. For the rest we proceed by induction. Obviously
[−](εA∞) = β⊕ and [−](ε) = β∗ are measurable because β is. Furthermore,
[−](awA∞) = [−]a(wA∞) = [−](wA∞)◦τa and [−](aw) = [−]a(w) = [−](w)◦τa

are measurable by induction hypothesis and composition.
We need to introduce a widely known theorem of measure theory, namely

the π −λ theorem (see [1], Lemma 4.11). Let Z be a set. A set P ⊆ P(Z) is a π-
system if it is non-empty and closed under finite intersections. A set D ⊆ P(Z) is
a λ-system if it contains Z and is closed under difference (if A,B ∈ D and A ⊆ B
then B \A ∈ D) and countable increasing union. The π −λ theorem states that
given P a π-system, D a λ-system such that P ⊆ D, then σZ(P ) ⊆ D.

Take Z = A∞, P = S∞ and D = {S ∈ ΣA∞ | [−](S) is measurable}.
It is easy to see that S∞ is a π-system. Moreover, D is a λ-system. Indeed,
A∞ ∈ D (see above), if (Sn)n∈N is an increasing sequence of sets in D, then
[−](S1 \ S0) = [−](S1) − [−](S0) is measurable as a difference of measurable
functions and [−]

(⋃
n∈N

Sn

)
= limn→∞[−](Sn) is measurable as a pointwise

limit of measurable functions. Finally, given the preceding paragraph, we have
S∞ ⊆ D. The π −λ theorem therefore yields ΣA∞ ⊆ D. Thus [−] is measurable.

��
An interpretation of the last proposition is that, in the subcategory of all F -
coalgebras that satisfy the equation (ii), the final object is Π. If Theorem 6.9
holds, then note that ϕΠ ◦ [−] is a coalgebra morphism from β into the final
coalgebra ω. Hence by finality ϕΠ ◦ [−] = ϕβ . Along with Lemma 6.8, this yields
the following proposition, which is exactly the same as in Sect. 2.

Proposition 6.10. Let β : Y → FY be an F -coalgebra for which Theorem 6.9
holds. Then for any y, z ∈ Y , [y] = [z] iff ϕβ(y) = ϕβ(z).

Back to α : X → DLX we check that Theorem 6.9 holds for α� = 〈α�
⊕, α�

∗, a �→
τa〉. Note that because α(−)(LX) = 1, we have for all m ∈ SX that m(X) =
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∫
X

1dm =
∫

X
α(−)(LX)dm = α�

⊕(m). This justifies the last equality:

α�
⊕(m) =

∫

X

α(−)(LX)dm =
∫

X

(

α(−)(1) +
∑

a∈A

α(−)({a} × X)

)

dm

=
∫

X

α(−)(1)dm +
∑

a∈A

∫

X

α(−)({a} × X)dm

= α�
∗(m) +

∑

a∈A

τa(m)(X) = α�
∗(m) +

∑

a∈A

(α�
⊕ ◦ τa)(m)

Conclusion. Any α : X → DLX can be given a canonical trace semantics via a
determinisation process. This is a function [−] : SX → SA∞.

6.2 Correctness of the Resulting Trace Semantics

In [13], given a PTS α : X → DLX, the trace semantics �−� : X → DA∞

(denoted by tr in [13]) is defined by

�x�(εA∞) = α(x)(LX) (= 1) �x�(ε) = α(x)(1)

�x�(awA∞) =
∫

X

�−�(wA∞)dta(x) �x�(aw) =
∫

X

�−�(w)dta(x)

We will hereby prove that this semantics fits with ours, in the sense that the
following diagram commutes.

X
�−� ��

ηX

��

DA∞

ιA∞

��
SX

[−] �� SA∞

(4)

Lemma 6.11. For any m ∈ SX and any S ∈ S∞, [m](S) =
∫

X
([−]◦ηX)(S)dm.

Proof. In this proof,
∫

X
fdm may be denoted by

∫
x∈X

f(x)m(dx). One can
show using the monotone convergence theorem that for any measurable func-
tion f : X → [0, 1],

∫

X

fdτa(m) =
∫

x∈X

(∫

X

fdta(x)
)

m(dx)

Note further that [ηX(x)](εA∞) = (α�
⊕ ◦ηX)(x) = α̃⊕(x) = α(x)(LX) and in

the same way [ηX(x)](ε) = α(x)(1). Now let us prove the lemma by induction,
for all m ∈ SX. First

[m](εA∞) = α�
⊕(m) =

∫

X

α(−)(LX)dm =
∫

X

([−] ◦ ηX)(εA∞)dm

[m](ε) = α�
∗(m) =

∫

X

α(−)(1)dm =
∫

X

([−] ◦ ηX)(ε)dm
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Assume the result is true for wA∞ and w. Take � ∈ {{ε}, A∞}.

[m](aw�) = [τa(m)](w�) =
∫

X

([−] ◦ ηX)(w�)dτa(m) (induction hypothesis)

=
∫

x∈X

(∫

X

([−] ◦ ηX)(w�)dta(x)
)

m(dx) (preliminary remark)

=
∫

x∈X

[τa(ηX(x))](w�)m(dx) (definition of τa)

=
∫

X

([−] ◦ ηX)(aw�)dm

��
Using this last lemma and that τa ◦ ηX = ta, we have for any x ∈ X:

[ηX(x)](εA∞) = α(x)(LX)
[ηX(x)](ε) = α(x)(1)

[ηX(x)](awA∞) = [(τa ◦ ηX)(x)](wA∞)
= [ta(x)](wA∞) =

∫
X

[ηX(−)](wA∞)dta(x)
[ηX(x)](aw) = [(τa ◦ ηX)(x)](w) = [ta(x)](w) =

∫
X

[ηX(−)](w)dta(x)

Thus, for any x ∈ X, ([−] ◦ ηX)(x) and (ιA∞ ◦ �−�)(x) are measures in SA∞

that coincide on S∞. Because of Theorem 3.5, they are equal. Consequently, the
trace semantics we get via determinisation and Eilenberg-Moore algebras is the
same as the Kleisli trace semantics of [13].

Theorem 6.12. The diagram (4) commutes, i.e., the maps ιA∞ ◦ �−� and [−]◦
ηX coincide.

Finally, note that, in the event that α : X → DLX can be seen as a discrete
system, i.e., for all x ∈ X, α(x) is a convex countable sum of Dirac distributions,
then the general semantics coincide with those obtained in Sect. 2.

7 Related Work

The (in)finite trace semantics of PTS discussed in this paper was presented
coalgebraically in [13], through the Kleisli category of the (sub-)Giry monad.
By using a determinisation construction, we obtain the same trace semantics,
in a fundamentally different way. This determinisation construction is precisely
what allows us to use bisimulations (up-to) to prove equivalence. Further, our
determinisation construction can be presented separately for the discrete and
continuous cases (the discrete case is much more basic), whereas in the Kleisli
setting only the general continuous case can be presented (since discrete sys-
tems generate a probability measure). Other coalgebraic approaches to infinite
traces (based on fixed points, e.g., [7,19]) do not use determinisation.

Our determinisation construction for (in)finite traces is strongly inspired by
the one for finite traces in [12,17]. As explained in Sect. 4, the main technical
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difference is that the total probability mass of states in the determinised Moore
automaton becomes observable, and that this yields a probability measure over
sets of traces rather than a (sub)probability distribution over individual traces.

The above-mentioned equivalence between the determinisation and ‘Kleisli’
trace semantics for finite traces is a motivating example for the general com-
parison between coalgebraic determinisation and Kleisli traces in [12]. However,
we do not know if those results can be applied here for at least one reason:
the correspondence stated in [12] uses only one monad for both constructions,
using, in case of finite traces, an extension natural transformation of the form
e : SL ⇒ FS (actually, the discrete version). However, in our construction, we
have to move from probability measures in the definition of PTSs (modeled by
D) to sub-probability measures in the determinised Moore automaton (modeled
by S). In contrast to the case of finite traces, we can not simply replace D by S in
the definition of PTS, since the sums-to-1 condition is required for the condition
(ii) of Theorem 6.9. One might try to nevertheless use only S as the monad,
focusing on PTSs (involving S) that satisfy the sums-to-one condition. But it
is currently unclear to us how such a subclass fits into the framework of [12];
moreover, the Kleisli semantics for PTSs based on S is finite traces [13, Theo-
rem 3.33]. Another idea is to use the isomorphism D(A×X +1) � S(A×X), (via
the map m �→ m|ΣA⊗ΣX

) but this does not seem to solve the issue: the Kleisli
semantics of PTS of the form X → S(A × X) is trivial [13, Theorem 3.33]. We
leave a suitable extension of the abstract framework [12] for future work.

For the algorithm presented in Sect. 5, we embed convex combinations (in
the transition structure of PTS) into vector spaces, in order to use a more gen-
eral contextual closure, w.r.t. arbitrary linear combinations rather than only
convex combinations. This guarantees termination of the algorithm based on
bisimulation up to congruence. We do not know whether this move is really nec-
essary: perhaps the contextual closure w.r.t. only convex combinations suffices.
The recent [5] might be of use in answering this question.

This work was done primarily from a coalgebraic point of view. Actually, as
pointed out by one of the reviewers, the determinization of a PTS involves to a
standard construction in the theory of Markov chains and stochastic processes:
the passage from a kernel to a stochastic operator. This perspective could be
investigated further. Notably, one motivation for trying to do so is to study how
the results of Sect. 5 could extend to (discrete approximations) of the measurable
PTSs of Sect. 6.

Acknowledgments. We are grateful to Filippo Bonchi, Paul Levy, Damien Pous, Jan
Rutten, Ana Sokolova and the anonymous reviewers for comments and suggestions.
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2. Bonchi, F., König, B., Küpper, S.: Up-to techniques for weighted systems. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 535–552.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 31

https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1007/978-3-662-54577-5_31


(In)finite Trace Equivalence of Probabilistic Transition Systems 121

3. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: A general account of coinduction up-to.
Acta Inf. 54(2), 127–190 (2017). https://doi.org/10.1007/s00236-016-0271-4

4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Principle of Programming Languages (POPL), Roma, Italy, pp. 457–468.
ACM (2013). https://doi.org/10.1145/2429069.2429124. 16 p

5. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R.,
Nestmann, U. (eds.) 28th International Conference on Concurrency Theory (CON-
CUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 85, pp.
23:1–23:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.23

6. Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 12
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Abstract. In the theory of coalgebras, trace semantics can be defined
in various distinct ways, including through algebraic logics, the Kleisli
category of a monad or its Eilenberg-Moore category. This paper elabo-
rates two new unifying ideas: (1) coalgebraic trace semantics is naturally
presented in terms of corecursive algebras, and (2) all three approaches
arise as instances of the same abstract setting. Our perspective puts the
different approaches under a common roof, and allows to derive condi-
tions under which some of them coincide.

1 Introduction

Traces are used in the semantics of state-based systems as a way of recording
the consecutive behaviour of a state in terms of sequences of observable (input
and/or output) actions. Trace semantics leads to, for instance, the notion of
trace equivalence, which expresses that two states cannot be distinguished by
only looking at their iterated in/output behaviour.

For many years already, trace semantics is a central topic of interest in the
coalgebra community — and not only there, of course. One of the key features
of the area of coalgebra is that states and their coalgebras can be considered in
different universes, formalised as categories. The break-through insight is that
trace semantics for a system in universe A can often be obtained by switching
to a different universe B. More explicitly, where the (ordinary) behaviour of the
system can be described via a final coalgebra in universe A, the trace behaviour
arises by finality in the different universe B. Typically, the alternative universe B
is a category of algebraic logics, the Kleisli category, or the category of Eilenberg-
Moore algebras, of a monad on universe A.

This paper elaborates two new unifying ideas.

1. We observe that the trace map from the state space of a coalgebra to a carrier
of traces is in all three situations the unique ‘coalgebra-to-algebra’ map to a
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corecursive algebra [6] of traces. This differs from earlier work which tries to
describe traces as final coalgebras. For us it is quite natural to view languages
as algebras, certainly when they consist of finite words/traces.

2. Next, these corecursive algebras, used as spaces of traces, all arise via a uni-
form construction, in a setting given by an adjunction together with a special
natural transformation that we call a ‘step’. We heavily rely on a basic result
saying that in this situation, the (lifting of the) right adjoint preserves core-
cursive algebras, sending them from one universe to another. This is a known
result [5], but its fundamental role in trace semantics has not be recognized
before. For an arbitrary coalgebra there is then a unique map to the trans-
ferred corecursive algebra; this is the trace map that we are after.

The main contribution of this paper is the unifying step-based approach to coal-
gebraic trace semantics: it is shown that three existing flavours of trace semantics
— logical, Eilenberg-Moore, Kleisli — are all instances of our approach. More-
over, comparison results are given relating two of these forms of trace semantics,
namely logic-to-Eilenberg-Moore and logic-to-Kleisli. The other combinations
involve subtleties which we do not fully grasp yet. Due to space limitations, we
don’t cover the whole field of coalgebraic trace semantics: we focus only on finite
trace semantics, and also exclude at this stage the ‘iteration’ based approaches,
e.g., in [8,22,25].

Outline. The paper is organised as follows. It starts in Sect. 1 with the abstract
step-and-adjunction setting, and the relevant definitions and results for corecur-
sive algebras. In the next three sections, it is explained how this setting gives
rise to trace semantics, by presenting the above-mentioned three approaches to
coalgebraic trace semantics in terms of steps and adjunctions: Eilenberg-Moore
(Sect. 3), logical (Sect. 4) and Kleisli (Sect. 5). In each case, the relevant corecur-
sive algebra is described. These sections are illustrated with several examples.
The next section establishes a connection between the Eilenberg-Moore and the
logical approach, and a connection between the Kleisli and logical approach
(Sect. 6). In Sect. 7 we briefly show that our construction of corecursive algebras
strengthens to a construction of completely iterative algebras. Finally, in Sect. 8
we provide some directions for future work.

Notation. In the context of an adjunction F � G, we shall use overline notation
(−) for adjoint transposition. The unit and counit of an adjunction are, as usual,
written as η and ε.

For an endofunctor H, we write Alg(H) for its algebra category and
CoAlg(H) for its coalgebra category. For a monad (T, η, μ) on C, we write EM(T )
for the Eilenberg-Moore category and K�(T ) for the Kleisli category.

We recall that any functor S : Sets → Sets has a unique strength st. We write
st : S(XA) → S(X)A for st(t)(a) = S(eva)(t), where eva = λf.f(a) : XA → X.
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2 Coalgebraic Semantics from a Step

This section is about the construction of corecursive algebras and their use for
semantics. The notion of corecursive algebra, studied in [6,9] as the dual of
Taylor’s notion of recursive coalgebra [10], is defined as follows.

Definition 1. Let H be an endofunctor on a category C.

1. A coalgebra-to-algebra morphism from a coalgebra c : X → H(X) to an alge-
bra a : H(A) → A is a map f : X → A such that the diagram

X
f

��

c
��

A

H(X)
H(f)

�� H(A)
a

��

commutes. Equivalently: such a morphism is a fixpoint for the endofunction
on the homset C(X,A) sending f to the composite

X
c �� H(X)

H(f)
�� H(A) a �� A

2. An algebra a : H(A) → A is corecursive when for every coalgebra c : H →
H(X) there is a unique coalgebra-to-algebra morphism (X, c) → (A, a).

Here is some intuition.

– As explained in [14], the specification of a coalgebra-to-algebra morphism f
is a “divide-and-conquer” algorithm. It says: to operate on an argument, first
decompose it via the coalgebra c, then operate on each component via H(f),
then combine the results via the algebra a.

– For each final H-coalgebra ζ : A
∼=→ H(A), the inverse ζ−1 : H(A) → A is a

corecursive algebra. For most functors of interest, this final coalgebra gives
semantics up to bisimilarity, which is finer than trace equivalence. So trace
semantics requires a different corecursive algebra.

In all our examples, we use the same procedure for obtaining a corecursive
algebra, which we shall now explain. Our basic setting consists of an adjunction,
two endofunctors, and a natural transformation:

C
F

��
H

�� ⊥ D
G

�� L�� with HG
ρ �� GL (1)

The natural transformation ρ : HG ⇒ GL will be called a step. Here H is the
behaviour functor : we study H-coalgebras and give semantics for them in a
corecursive H-algebra. This arrangement is well-known in the area of coalgebraic
modal logic [3,7,20,24,27], but we shall see that its application is wider.

A step can be formulated in several equivalent ways [18,23].
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Theorem 2. In the situation (1), there are bijective correspondences between
natural transformations ρ1 : HG ⇒ GL, ρ2 : FH ⇒ LF , ρ3 : FHG ⇒ L and
ρ4 : H ⇒ GLF .

Moreover, if H and L happen to be monads, then ρ1 is an EM-law (map
HG ⇒ GL compatible with the monad structures) iff ρ2 is a K�-law (map FH ⇒
LF compatible with the monad structures) iff ρ4 is a monad map; and two further
equivalent characterisations are respectively a lifting of G or an extension of F :

EM(H)

��

EM(L)

��

G		

C DG		

K�(H) F �� K�(L)

C F ��

��

D

��

Proof. We only mention the bijective correspondences: ρ1 and ρ3 correspond
by adjoint transposition, and similarly for ρ2 and ρ4. Further, ρ2 and ρ3 are
obtained from each other by:

ρ3 =
(

FHG
ρ2G �� LFG

Lε �� L

)

ρ2 =
(

FH
FHη �� FHGF

ρ3F �� LF

)
.

��
It is common to refer to ρ1 and ρ2 as mates; the other two maps are their

adjoint transposes. In diagrams we omit the subscript i in ρi and let the type
determine which version of ρ is meant.

Further, in the remainder of this paper we drop the usual subscript of com-
ponents of natural transformations.

Definition 3. In the setting (1), the step natural transformation ρ gives rise to
both:

– a lifting Gρ of the right adjoint G, called the step-induced algebra lifting:

Alg(H)

��

Alg(L)

��

Gρ
		

C DG		

Gρ

(
L(A) a−→ A

)
:=(

HG(A)
ρ−→ GL(A)

G(a)−−−→ G(A)
)
.

– dually, a lifting F ρ of the left adjoint F , called the step-induced coalgebra
lifting:

CoAlg(H)

��

F ρ
�� CoAlg(L)

��

C F �� D

F ρ
(
X

c−→ H(X)
)

:=(
F (X)

F (c)−−−→ FH(X)
ρ−→ LF (X)

)
.

Our approach relies on the following basic result.
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Proposition 4 ([5]). For each corecursive L-algebra a : L(A) → A, the trans-
ferred H-algebra Gρ(A, a) : HG(A) → G(A) is also corecursive. Explicitly, for
any H-coalgebra (X, c), the unique coalgebra-to-algebra map (X, c) → Gρ(A, a) is
the adjoint transpose of the unique coalgebra-to-algebra map F ρ(X, c) → (A, a).

��
Thus, by analogy with the familiar statement that “right adjoints preserves

limits”, we have “step-induced algebra liftings of right adjoints preserve corecur-
siveness”. Now we give the complete construction for semantics of a coalgebra.

Theorem 5. Suppose that L has a final coalgebra ζ : Ψ
∼=→ L(Ψ). Then for every

H-coalgebra (X, c) there is a unique coalgebra-to-algebra map c† as on the left
below:

X
c†

������

c
��

G(Ψ)

H(X)
H(c†)

����� HG(Ψ)
Gρ(Ψ,ζ−1)
��

F (X) c†
������

F ρ(X,c)
��

Ψ

LF (X)
L(c†)

����� L(Ψ)
ζ−1

��

The map c† on the left can alternatively be characterized via its adjoint transpose
c† on the right, which is the unique coalgebra-to-algebra morphism. The latter
can also be seen as the unique map to the final coalgebra Ψ

∼=→ L(Ψ). ��
Note that Theorem 5 generalises final coalgebra semantics: taking in (1)

F = G = IdC and H = L, the map c† in the above theorem is the unique
homomorphism to the final coalgebra. In the remainder of this paper we focus
on instances where c† captures traces, and we therefore refer to it as the trace
semantics map.

3 Traces via Eilenberg-Moore

EM(T ) B ��

U
��

EM(T )
U
��

C
B

�� C

(2)

We recall the approach to trace semantics devel-
oped in [4,17,29], putting it in the framework of
the previous section. The approach deals with
coalgebras for the composite functor BT , where
T is a monad that captures the ‘branching’
aspect. The following assumptions are required.

1. An endofunctor B : C → C with a final coalgebra ζ : Θ
∼=→ B(Θ).

2. A monad (T, ηT , μT ), with the standard adjunction F � U between categories
C � EM(T ), where U is ‘forget’ and F is for ‘free algebras’.

3. A lifting B of B, as in (2), or, equivalently, an EM-law κ : TB ⇒ BT .

Example 6. To briefly illustrate these ingredients, we consider non-deterministic
automata. These are BT -coalgebras with B : Sets → Sets, B(X) = 2 × XA

with 2 = {⊥,�} and T the finite powerset monad. The functor B has a final
coalgebra carried by the set 2A∗

of languages. Further, EM(T ) is the category
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of join semi-lattices (JSL). The lifting is defined by product in EM(T ), using
the JSL on 2 given by the usual ordering ⊥ ≤ �. By the end of this section, we
revisit this example and obtain the usual language semantics.

These assumptions give rise to the following instance of our general setting (1):

C
F





BT
�� ⊥ EM(T )

U

�� B
��

with
ρ : BTU =⇒ UB where

ρ(X,a) =
(
BTX

Ba−−→ BX
)

Actually — and equivalently, by Theorem2 — the step ρ is most easily given
in terms of ρ4 : BT ⇒ UBF : since B lifts B, we have UBF = BUF = BT , so
that ρ4 is then defined simply as the identity.

The following result is well-known, and is (in a small variation) due to [30].

Lemma 7. There is a unique algebra structure a : T (Θ) → Θ making ((Θ, a), ζ)
a B-coalgebra. Moreover, this coalgebra is final. �

We apply the step-induced algebra lifting Gρ : Alg(B) → Alg(BT ) to the
inverse of this final B-coalgebra, obtaining a BT -algebra:

(
BT (Θ) �em−−→ Θ

)
:= Gρ((Θ, a), ζ−1) =

(
BT (Θ)

B(a)−−−→ B(Θ)
ζ−1

−−→ Θ
)
.

By Theorem 5, this algebra is corecursive, giving us trace semantics of BT -
coalgebras. More explicitly, given a coalgebra c : X → BT (X), the trace seman-
tics is the unique map, written as emc, making the following square commute.

X
emc �������

c
��

Θ

BT (X)
BT (emc)

����� BT (Θ)

�em

��

(3)

The unique map emc in (3) appears in the literature as a ‘coiteration up-to’ or
‘unique solution’ theorem [1]. Examples follow later in this section (Theorem 8,
Example 9).

In [17,29], the above trace semantics of BT -coalgebras arises through ‘deter-
minisation’, which we explain next. Given a coalgebra c : X → BT (X), one takes
its adjoint transpose:

c : X → BT (X) = BUF(X) = UBF(X)
c : F(X) → BF(X)

T (X)
emc ������

c
��

Θ

BT (X)
B(emc)

����� B(Θ)

ζ−1

��

(4)

It follows from Theorem 2 and our definition
of ρ that this transpose coincides with the
application of the step-induced coalgebra lift-
ing Fρ : CoAlg(BT ) → CoAlg(B) from the pre-
vious section, i.e., Fρ(X, c) = (F(X), c). The
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functor Fρ thus plays the role of determinisation, see [17]. By Theorem 5, the
trace semantics emc can equivalently be characterised in terms of Fρ, as the
unique map emc making (4) commute. This is how the trace semantics via
Eilenberg-Moore is presented in [17,29]: as the transpose emc = emc ◦ ηT

X .
We conclude this section by recalling a canonical construction of a distribu-

tive law [15] for a class of ‘automata-like’ examples.

Theorem 8. Let Ω be a set, T a monad on Sets and t : T (Ω) → Ω an EM-
algebra. Let B : Sets → Sets, B(X) = Ω × XA, and κ : TB ⇒ BT given by

κX :=
(

T (Ω × XA)
〈T (π1),T (π2)〉

�� T (Ω) × T (XA)
t×st

�� Ω × T (X)A
)

.

Then κ is an EM-law. Moreover, the final B-coalgebra (ΩA∗
, ζ) together with

the algebra structure T (ΩA∗
) st �� T (Ω)A∗ tA∗

�� ΩA∗
is a final B-coalgebra. �

Example 9. By Theorem 8, we obtain an explicit description of the trace seman-
tics arising from the corecursive algebra (3): for any 〈o, f〉 : X → Ω × T (X)A,
the trace semantics is the unique map em in

X
em ����������������������

〈o,f〉
��

ΩA∗

BT (X)
BT (em)

����� BT (ΩA∗
)

st
�� B(T (Ω)A∗

)
B(tA∗

)

�� BT (ΩA∗
)

ζ−1
��

We instantiate the trace semantics em for various choices of Ω, T and t. Given
a coalgebra 〈o, f〉 : X → Ω × T (X)A, we have em(x)(ε) = o(x) independently
of these choices. The table below lists the inductive case em(x)(aw) respectively
for non-deterministic automata (NDA) where branching is interpreted as usual
(NDA-∃), NDA where branching is interpreted conjunctively (NDA-∀) and (reac-
tive) probabilistic automata (PA). Here Pf is the finite powerset functor, and Dfin

the finitely supported distribution functor.

T Ω t : T (Ω) → Ω em(x)(aw)

NDA-∃ Pf 2 = {⊥, �} S �→ ∨
S

∨
y∈f(x)(a) em(y)(w)

NDA-∀ Pf 2 = {⊥, �} S �→ ∧
S

∧
y∈f(x)(a) em(y)(w)

PA Dfin [0, 1] ϕ �→ ∑
p∈[0,1] p · ϕ(p)

∑
y∈X em(y)(w) · f(x)(a)(y)

For other examples, and a concrete presentation of the associated determin-
isation constructions, see [17,29].
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4 Traces via Logic

This section illustrates how the ‘logical’ approach to trace semantics of [21],
started in [27], fits in our general framework. In essence, traces are built up from
logical formulas, also called tests, which are evaluated for states. These tests
are obtained via an initial algebra of a functor L. The approach works both for
TB and BT -coalgebras (and could, in principle, be extended to more general
combinations). We start by listing our assumptions in this section.

1. An adjunction F � G between categories C � Dop.
2. A functor T on C with a step τ : TG ⇒ G.
3. A functor B : C → C and a functor L : D → D with a step δ : BG ⇒ GL.
4. An initial algebra α : L(Φ) ∼=→ Φ.

We deviate from the convention of writing ρ for ‘step’, since the above map τ
gives rise to multiple steps δτ and δτ in (6) below, in the sense of Definition 2;
here we use ‘delta’ instead of ‘rho’ notation since it is common in modal logic.

Example 10. We take C = D = Sets, and F,G both the contravariant powerset
functor 2−. Non-deterministic automata are obtained either as BT -coalgebras
with B(X) = 2 × XA and T the finite powerset functor; or as TB-coalgebras,
with B(X) = A × X + 1 and T again the finite powerset functor. In both
cases, L is given by L(X) = A × X + 1. The map τ : T2− ⇒ 2− is defined
by τX(S)(x) =

∨
ϕ∈S ϕ(x), and intuitively models the existential choice in the

semantics of non-deterministic automata. The map ρ and the language semantics
are defined later in this section.

The assumptions are close to the general step-and-adjunction setting (1). Here,
we have an opposite category on the right, and instantiate H to TB or BT :

C
F

��
H

�� ⊥ Dop

G

�� L�� where H = BT or H = TB (5)

Notice that our assumptions already include a step δ (involving B,L) and a step
τ , which we can compose to obtain steps for the TB respectively BT case:

δτ :=
(
TBG

Tδ �� TGL
τL �� GL

)
CoAlg(L)

Gδτ �� Alg(TB)

δτ :=
(
BTG

Bτ �� BG
δ �� GL

)
CoAlg(L)

Gδτ
�� Alg(BT )

(6)

Both δτ and δτ are steps, and hence give rise to step-induced algebra liftings
Gδτ

and Gδτ of G (Sect. 2). By Theorem 5, we obtain two corecursive algebras
by applying these liftings to the inverse of the initial algebra, i.e., the (inverse
of the) final coalgebra in Dop:

�log :=
(
TBG(Φ)

δτ �� GL(Φ)
G(α−1)

∼=
�� G(Φ)

)
,

�log :=
(
BTG(Φ) δτ

�� GL(Φ)
G(α−1)

∼=
�� G(Φ)

)
.

(7)
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These corecursive algebras define trace semantics for any TB-coalgebra (X, c)
and BT -coalgebra (Y, d):

X
logc �������

c
��

G(Φ)

TB(X)
TB(logc)������ TBG(Φ)

�log

��
Y

logd �������

d
��

G(Φ)

BT (Y )
BT (logd)����� BTG(Φ)

�log

��

(8)

It is instructive to characterise this trace semantics in terms of the transpose
and the step-induced coalgebra liftings F δτ and F δτ

, showing how they arise as
unique maps from an initial algebra:

F (X) Φ

α−1

��

logc		� � � � �

LF (X)

F δτ (X,c)

��

L(Φ)
L(logc)		� � � �

F (Y ) Φ

α−1

��

logd		� � � � �

LF (Y )

F δτ
(Y,d)

��

L(Φ)
L(logd)		� � � �

(9)

In the remainder of this section, we show two classes of examples of the logical
trace semantics. With these descriptions we retrieve most of the examples from
[21] in a smooth manner.

Proposition 11. Let Ω be a set, T : Sets → Sets a functor and t : T (Ω) → Ω a
map. Then the set of languages ΩA∗

carries a corecursive algebra for the functor
Ω × T (−)A. Given a coalgebra 〈o, f〉 : X → Ω × T (X)A, the unique coalgebra-
to-algebra morphism log : X → ΩA∗

satisfies

log(x)(ε) = o(x) log(x)(aw) = t
(
T (evw ◦ log)(f(x)(a))

)

for all x ∈ X, a ∈ A and w ∈ A∗.

Proof. We instantiate the assumptions in the beginning of this section by C =
D = Sets, F = G = Ω−, B(X) = Ω×XA, L(X) = A×X +1 and T the functor
from the statement. The initial L-algebra is α : A × A∗ + 1 ∼=→ A∗. The map t
extends to a modality τ : TG ⇒ G, given on components by

τX :=
(

T (ΩX) st �� T (Ω)X tX
�� ΩX

)
.

The logic δ : BG ⇒ GL is given by the isomorphism Ω × (Ω−)A ∼= Ω(A×−)+1.
Instantiating (7) we obtain the corecursive BT -algebra

Ω × T (ΩA∗
)A

id×(st)A

�� Ω × (T (Ω)A∗
)A

id×(tA∗
)A

�� Ω × (ΩA∗
)A Ωα−1◦δ �� ΩA∗

.

The concrete description of log follows by spelling out the coalgebra-to-algebra
diagram that characterises it. ��
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Example 12. We instantiate the trace semantics log from Proposition 11 for var-
ious choices of Ω, T and t. Similar to the instances in Example 9, we consider
a coalgebra 〈o, f〉 : X → Ω × T (X)A, and we always have log(x)(ε) = o(x).
The cases of non-deterministic automata (NDA-∃, NDA-∀) and probabilistic
automata (PA) are the same as in Example 9. However, in contrast to the
Eilenberg-Moore approach and other approaches to trace semantics, a monad
structure on T is not required here. This is convenient as it also allows to treat
alternating automata (AA), where T = PfPf; it is unclear whether T carries a
suitable monad structure in that case.

T Ω t : T (Ω) → Ω log(x)(aw)

NDA-∃ Pf 2 = {⊥, �} S �→ ∨
S

∨
y∈f(x)(a) log(y)(w)

NDA-∀ Pf 2 = {⊥, �} S �→ ∧
S

∧
y∈f(x)(a) log(y)(w)

PA Dfin [0, 1] ϕ �→ ∑
p∈[0,1] p · ϕ(p)

∑
y∈X log(y)(w) · f(x)(a)(y)

AA PfPf 2 = {⊥, �} S �→ ∨
T∈S

∧
b∈T b

∨
T∈f(x)(a)

∧
y∈T log(y)(w)

We also describe a logic for polynomial functors constructed from a signature.
Here, we model a signature by a functor Σ : N → Sets, where N is the discrete
category of natural numbers. This gives rise to a functor HΣ : Sets → Sets as
usual by HΣ(X) =

∐
n∈N

Σ(n)×Xn. We abuse notation and write σ(x1, . . . , xn)
instead of (σ, x1, . . . xn). The initial algebra of HΣ consists of closed terms (or
finite node-labelled trees) over the signature.

Proposition 13. Let Ω be a meet semi-lattice with top element � as well as
a bottom element ⊥, let T : Sets → Sets be a functor, and t : T (Ω) → Ω a
map. Let Φ be the initial HΣ-algebra. The set ΩΦ of ‘tree’ languages carries a
corecursive algebra for the functor THΣ. Given a coalgebra c : X → THΣ(X),
the unique coalgebra-to-algebra map log : X → ΩΦ is given by

log(x)(σ(t1, . . . , tn)) = t(T (m) ◦ c(x)) ,where

m =

(
t �→

{∧
i log(xi)(ti) if ∃x1 . . . xn. t = σ(x1, . . . , xn)

⊥ otherwise

)
: HΣ(X) → Ω

for all x ∈ X and σ(t1, . . . , tn) ∈ Φ.

Proof. We use C = D = Sets, F = G = Ω−, B = L = HΣ . The map t
extends to a modality τ : TG ⇒ G as in the proof of Proposition 11. The logic
δ : HΣΩ− ⇒ ΩHΣ(−) is:

δX(σ(φ1, . . . , φn))(t) =

{∧
i φi(xi) if ∃x1 . . . xn. t = σ(x1, . . . , xn)

⊥ otherwise
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The corecursive algebra �log is then given by:

THΣ(ΩΦ)
T (δ)

�� T (ΩHΣ(Φ)) st �� T (Ω)HΣ(Φ) tHΣ(Φ)
�� ΩHΣ(Φ)

∼= �� ΩΦ .

The explicit characterisation of log is a straightforward computation. ��
Example 14. Given a signature Σ, a coalgebra f : X → PfHΣ(X) is a (top-
down) tree automaton. With Ω = {⊥,�} and t(S) =

∨
S, Proposition 13 gives:

log(x)(σ(t1, . . . , tn)) = � iff ∃x1 . . . xn.σ(x1, . . . , xn) ∈ f(x) ∧
∧

1≤i≤n

log(xi)(ti)

for every state x ∈ X and tree σ(t1, . . . , tn). This is the standard semantics of
tree automata. It is easily adapted to weighted tree automata, see [21].

In both Examples 14 and 12, the step-induced coalgebra lifting Fδτ (respectively
Fδτ

) of the underlying logic corresponds to reverse determinisation, see [21,28]
for details. In particular, in Example 14 it maps a top-down tree automaton to
the corresponding bottom-up tree automaton.

5 Traces via Kleisli

K�(T ) B �� K�(T )

C
B

��

J
��

C
J
��

(10)

In this section we briefly recall the ‘Kleisli app-
roach’ to trace semantics [12], and cast it in our
abstract framework. It applies to coalgebras for
a composite functor TB, where T is a monad
modelling the type of branching. For example,
a coalgebra X → P(A × X + S) has an associated map X → P(A∗ × S) that
sends a state x ∈ X to the set of its complete traces. (Taking S = 1, this is the
usual language semantics of a nondeterministic automaton.) To fit this to our
framework, the monad T is P and the functor B is (A × −) + S. In general, the
following assumptions are required.

1. An endofunctor B : C → C with an initial algebra β : B(Ψ) ∼=→ Ψ .
2. A monad (T, ηT , μT ), with the standard adjunction J � U between categories

C � K�(T ), where J(X) = X and U(Y ) = T (Y ).
3. An extension B of B, as in (10), or, equivalently, a K�-law λ : BT ⇒ TB.
4. (Ψ, J(β−1)) is a final B-coalgebra.

In the case that B is the functor (A × −) + S, its initial algebra is carried by
A∗ × S, and the canonical K�-law is given at X by

[T inl ◦ stA,X , T inr ◦ ηT
S ] : A × TX + S → T (A × X + S)

A central observation for the Kleisli approach to traces is that the fourth assump-
tion holds under certain order enrichment requirements on K�(T ), see [12]. In par-
ticular, these hold when T is the powerset monad, the (discrete) sub-distribution
monad or the lift monad.
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The above assumptions give rise to the following instance of our setting (1):

C
J





TB
�� ⊥ K�(T )

U

 B��
with

ρ : TBU =⇒ UB where ρX =(
TBTX

T (λ)−−−→ T 2BX
μT

−−→ TBX
)

Similar to the EM-case in Sect. 3, the map of adjunctions is most easily given in
terms of ρ4 : TB ⇒ UBJ as the identity, using that B extends B.

We apply the step-induced algebra lift Gρ : Alg(B) → Alg(TB) to the inverse
of the final B-coalgebra, and call it �kl:(

TBT (Ψ) �kl−−→ T (Ψ)
)

:= Gρ(Ψ, J(β−1)−1)

= Gρ(Ψ, J(β))

=
(
TBT (Ψ)

T (λ)−−−→ T 2B(Ψ)
μT

−−→ TB(Ψ)
T (β)−−−→ T (ψ)

)
.

By Theorem 5, this algebra is corecursive, i.e., for every coalgebra c : X →
TB(X), there is a unique map klc as below:

X

c
��

klc �������

��

T (Ψ)

TB(X)
TB(klc)

����� TBT (Ψ)

�kl

��

The trace semantics is exactly as in [12], to which we refer for examples.

6 Comparison

The presentation of trace semantics in terms of corecursive algebras allows us
compare the different approaches by constructing algebra morphisms between
them. In this section, we compare the Eilenberg-Moore against the logical app-
roach, and the Kleisli against the logical approach as well. For a comparison
between Kleisli and Eilenberg-Moore we refer to [17]. The latter is not in terms
of corecursive algebras; we leave such a reformulation for future work. In [21],
logical traces are also compared to determinisation constructions. But the tech-
nique is different, with the primary difference that no corecursive algebras are
used there.

6.1 Eilenberg-Moore and Logic

To compare the Eilenberg-Moore approach to the logical approach, we combine
their assumptions. This amounts to an adjunction F � G, endofunctors B,L
and a monad T as follows:

Dop

G

��L
�� ⊥ C

F
��

F




BT

��

⊥ EM(T )
U

�� B
��



134 B. Jacobs et al.

together with:

1. A final B-coalgebra ζ : Θ
∼=→ B(Θ).

2. An EM-law κ : TB ⇒ BT , or equivalently, a lifting B of B.
3. An initial algebra α : L(Φ) ∼=→ Φ.
4. A step δ : BG ⇒ GL.
5. A step τ : TG ⇒ G, whose components are EM-algebras (a monad action).

The map τ is an assumption of the logical approach, but the compatibility with
the monad structure was not assumed before (in the logical approach, T is not
assumed to be a monad). We note that τ being a monad action is the same
thing as τ being an EM-law (involving the monad T on the left and the identity
monad on the right). Therefore, by Theorem 2:

Lemma 15. The following are equivalent:

1. a monad action τ1 : TG ⇒ G;
2. a map τ2 : F ⇒ FT , satisfying the obvious dual equations;
3. a monad morphism τ4 : T ⇒ GF ;
4. an extension F̂ : K�(T ) → Dop (= K�(Id)) of F .
5. a lifting Ĝ : Dop → EM(T ) of G.

Such monad actions and the corresponding liftings are used, e.g., in [11,13,16]
where F̂ is called Pred. We turn back to the comparison between the Eilenberg-
Moore and logical approach. First, observe that since δ : BG ⇒ GL is a step,

it induces a corecursive B-algebra BG(Φ) δ−→ GL(Φ)
G(α−1)−−−−−→ G(Φ). Hence, we

obtain a unique map e as in the following diagram:

Θ
ζ ��

e �� G(Φ)

B(Θ)
B(e)

�� BG(Φ) δ �� GL(Φ)
G(α−1)
��

(11)

This is a map from the carrier of the corecursive algebra �em (from the Eilenberg-
Moore approach) to the carrier of the corecursive algebra �log (from the logical
approach). Note that, by the above diagram, it is a B-algebra morphism, whereas
�em and �log are BT -algebras. The following is a sufficient condition under which
the map e is a BT -algebra morphism from �em to �log, which implies that the log-
ical trace semantics factors through the Eilenberg-Moore trace semantics (The-
orem 17).

Lemma 16. The distributive law κ commutes with the logics in (6), as in:

TBG
κG ��

δτ ����
���

�� BTG

δτ�����
���

�

GL

(12)

iff there is a natural transformation � : BĜ ⇒ ĜL such that U(�) = δ — where
the functor Ĝ : Dop → EM(T ) is the lifting corresponding to τ (Lemma 15).
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Proof. The existence of such a � amounts to the property that each component
δX : BG(X) → GL(X) is a T -algebra homomorphism from BĜ(X) to ĜL(X),
i.e., the following diagram commutes:

TBGX
Tδ ��

κG
��

TGLX

τL

��

BTGX

Bτ
��

BGX
δ �� GLX

This corresponds exactly to (12). ��
Theorem 17. If the equivalent conditions in Lemma 16 hold, then the map e
defined in (11) is an algebra morphism from �em to �log, as on the left below.

BT (Θ)

�em
��

BT (e)
�� BTG(Φ)

�log

��

Θ
e

�� G(Φ)

X
emc

����
��
��
� logc

���
��

��
��

Θ
e

�� G(Φ)

In that case, for any coalgebra X
c→ BT (X) the triangle on the right commutes.

Proof. We use that �em = ζ−1 ◦ B(a) : BT (Θ) → Θ, where ((Θ, a), ζ) is the
final B-coalgebra, see Sect. 3. We need to prove that the outside of the following
diagram commutes.

BT (Θ)
�� ��

�em

��B(a)
��

BT (e)
��

B(Θ)

B(e)
��

ζ−1

∼=
�� Θ

e
��

BTG(Φ)
B(τ1)

��
�� �	

�log

��
BG(Φ)

δ
�� GL(Φ)

G(α−1)

∼= �� G(Φ)

The rectangle on the right commutes by definition of e. For the square on the
left, it suffices to show e ◦ a = τ1 ◦T (e); this is equivalent to F (a) ◦ e = τ2 ◦ e in:

Φ
e=F (e)◦ε

�� F (Θ)
F (a)

��

τ2
�� FT (Θ)

Indeed, by transposing we have on the one hand:

e ◦ a = F (a ◦ e) ◦ εΦ = F (a) ◦ F (e) ◦ εΦ = F (a) ◦ e
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And on the other hand, using that τ2 = F (τ1 ◦ T (η)) ◦ ε,

τ2 ◦ e = F (τ1 ◦ T (η)) ◦ ε ◦ F (e) ◦ ε

= F (τ1 ◦ T (η)) ◦ FG(F (e) ◦ ε) ◦ ε

= F
(
G(F (e) ◦ ε) ◦ τ1 ◦ T (η)

) ◦ ε

= F
(
τ1 ◦ TG(F (e) ◦ ε) ◦ T (η)

) ◦ ε

= F
(
τ1 ◦ T (G(ε) ◦ GF (e) ◦ η)

) ◦ ε = F (τ1 ◦ T (e)) ◦ ε = τ1 ◦ T (e).

By transposing the maps in (11), it follows that e : Φ → F (Θ) is the unique
morphism from the initial L-algebra to F (ζ) ◦ δ2 : LF (Θ) → F (Θ). Hence, for
the desired equality F (a) ◦ e = τ2 ◦ e, it suffices to prove that F (a) and τ2 are
both algebra homomorphisms from F (ζ)◦δ2 to a common algebra, which in turn
follows from commutativity of the following diagram.

LF (Θ)
L(τ2)

��

δ2

��

LFT (Θ)
δ2T
��

LF (Θ)
δ2��

LF (a)
		

FBT (Θ)
Fκ
��

FB(Θ)

F (ζ)

��

FB(a)
		

FB(Θ)
F (ζ)

��

τ2B
�� FTB(Θ)

FT (ζ)
��

F (Θ)
τ2

�� FT (Θ) F (Θ)
F (a)

		

Using the translation (−)1 ↔ (−)2 (of Theorem 2), one shows that the upper-
left rectangle is equivalent to the assumption (12). To see this, we use that
(δτ )2 = (δ1 ◦ Bτ1)2 = δ2T ◦ Lτ2 and (δτ )2 = (τ1L ◦ Tδ1)2 = τ2B ◦ δ2 (as stated,
e.g., in [21]); moreover, it is easy to check that (δ1◦Bτ1◦κG)2 = Fκ◦(δ1◦Bτ1)2.
The lower-right rectangle commutes since ((Θ, a), ζ) is a B-coalgebra. The other
two squares commute by naturality.

For the second part of the theorem, let c : X → BT (X) be a coalgebra. Since
e is an algebra morphism, the equation e ◦ emc = logc follows by uniqueness of
morphisms from c to the corecursive algebra on G(Φ). ��

The equality e ◦ emc = logc means that equivalence wrt Eilenberg-Moore
trace semantics implies equivalence wrt the logical trace semantics. The converse
is, of course, true if e is monic. For that, it is sufficient if δ : BG ⇒ GL is
expressive. Here expressiveness is the property that for any B-coalgebra, the
unique coalgebra-to-algebra morphism to the corecursive algebra on G(Φ) factors
as a B-coalgebra homomorphism followed by a mono. This holds in particular if
the components δA : BG(A) → GL(A) are all monic (in C) [20].

Lemma 18. If δ : BG ⇒ GL is expressive, then e is monic. Moreover, if δ is
an isomorphism, then e is an iso as well.
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Proof. Expressivity of δ means that we have e = m ◦ h for some coalgebra
homomorphism h and mono m. By finality of ζ there is a B-coalgebra morphism
h′ such that h′ ◦ h = id. It follows that h is monic (in C), so that m ◦ h =
e is monic too. For the second claim, if δ is an isomorphism, then G(α−1) ◦
δ : BG(Φ) → G(Φ) is an invertible corecursive B-algebra, which implies it is
a final coalgebra (see [5, Proposition 7], which states the dual). It then follows
from (11) that e is a coalgebra morphism from one final B-coalgebra to another,
which means it is an isomorphism. ��

Previously, we have seen both a class of examples of the Eilenberg-Moore
approach (Theorem 8), and the logical approach (Proposition 11). Both arise
from the same data: a monad T (just a functor in the logical approach) and an
EM-algebra t. We thus obtain, for these automata-like examples, both a logical
trace semantics and a matching ‘Eilenberg-Moore’ semantics, where the latter
essentially amounts to a determinisation procedure. The underlying distributive
laws satisfy (12) by construction, so that the two approaches coincide (as already
seen in the concrete examples).

Theorem 19. Let Ω be a set, T : Sets → Sets a monad and t : T (Ω) → Ω an
EM-algebra. The EM-law κ of Theorem 8, together with δ, τ as defined in the
proof of Proposition 11, satisfies (12). For any coalgebra c : X → Ω × T (X)A,
the map logc coincides (up to isomorphism) with the map emc.

Proof. To prove (12), i.e., δτ ◦ κ = δτ , we first compute, following (6),

(δτ )X = δX ◦ (id × τA
X) = δX ◦ (id × (tX ◦ st)A) : Ω × (T (ΩX))A → ΩA×X+1

(δτ )X = τA×X+1 ◦ T (δX) = tA×X+1 ◦ st ◦ T (δX) : T (Ω × (ΩX)A) → ΩA×X+1

Hence, we need to show that

δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T (π1), T (π2)〉 = tA×X+1 ◦ st ◦ T (δX) (13)

for every set X. To this end, let S ∈ T (Ω × (ΩX)A) and t ∈ (A × X + 1). We
first spell out the right-hand side:

(tA×X+1 ◦ st ◦ T (δX)(S))(t)

= t((st ◦ T (δX)(S))(t))

= t(T (evt ◦ δX)(S))

=

{
t(T (π1)(S)) if t = ∗ ∈ 1
t(T (evx ◦ eva ◦ π2)(S)) if t = (a, x) ∈ A × X

In the last step, we used the definition of δ:

ev∗ ◦ δX(ω, f) = δX(ω, f)(∗) = ω = π1(ω, f) ,

ev(a,x) ◦ δX(ω, f) = δX(ω, f)(a, x) = f(a)(x) = evx ◦ eva ◦ π2(ω, f) .
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For the left-hand side of (13), distinguish cases ∗ ∈ 1 and (a, x) ∈ A × X.

(δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T (π1), T (π2)〉(S))(∗)

= π1(id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T (π1), T (π2)〉(S))
= t(T (π1)(S))

which matches the right-hand side of (13). For (a, x) ∈ A × X, we have:

(δX ◦ (id × (tX ◦ st)A) ◦ (t × st) ◦ 〈T (π1), T (π2)〉(S))(a, x)

= (((tX ◦ st)A ◦ st)(T (π2)(S)))(a)(x)

= (((tX)A ◦ stA ◦ st)(T (π2)(S)))(a)(x)

= (tX ◦ st(st(T (π2)(S))(a)))(x)

= (tX ◦ st(T (eva)(T (π2)(S)))(x)

= (tX ◦ st(T (eva ◦ π2)(S)))(x)
= t(st(T (eva ◦ π2)(S))(x))
= t(T (evx) ◦ T (eva ◦ π2)(S))
= t(T (evx ◦ eva ◦ π2)(S))

which also matches the right-hand side, hence we obtain (13) as desired.
Since (12) is satisfied, it follows from Theorem 17 that e ◦ emc = logc. Since

δ is an iso, e is an iso as well by Lemma 18. ��

6.2 Kleisli and Logic

To compare the Kleisli approach to the logical approach, we combine their
assumptions. This amounts to an adjunction F � G, endofunctors B,L and
a monad T as follows:

Dop

G

��L
�� ⊥ C

F
��

J




TB

��

⊥ K�(T )
U

�� B��

together with:

1. An initial algebra β : B(Ψ) ∼=→ Ψ .
2. A K�-law λ : BT ⇒ TB, or equivalently, an extension B of B.
3. (Ψ, J(β−1)) is a final B-coalgebra.
4. An initial algebra α : L(Φ) ∼=→ Φ.
5. A step δ : BG ⇒ GL.
6. A step τ : TG ⇒ G, whose components are EM-algebras (a monad action).

Again, we assume τ to be compatible with the monad, satisfying the equiva-
lent conditions in Lemma 15. Since δ is a step, we obtain the following unique
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coalgebra-to-algebra morphism k from the initial B-algebra:

Ψ
β−1

��

k �� G(Φ)

B(Ψ)
B(k)

�� BG(Φ) δ �� GL(Φ)
G(α−1)
�� (14)

Since τ is a monad action, for every X, G(X) carries an Eilenberg-Moore algebra
τX . Thus we can take the adjoint transpose k = τΦ ◦ T (k) : T (Ψ) → G(Φ). We
have the following analogue of Theorem17.

Lemma 20. The distributive law λ commutes with the logics in (6), as in:

BTG
λG ��

δτ ����
���

�� TBG

δτ�����
���

�

GL

(15)

iff there is a natural transformation � : LF̂ ⇒ F̂B given by �J = δ — where the
functor F̂ : K�(T ) → Dop is the extension corresponding to τ (Lemma 15).

Proof. The condition �J = δ simply means that �X = δX for every object X
in C. Naturality of � amounts to commutativity of the outside of the diagram
below, for every map f : X → T (Y ).

LF (Y ) δ ��

Lτ ��

FB(Y ) τB �� FTB(Y )
Fλ��

LFT (Y )
δT

��

LF (f)
��

FBT (Y )
FB(f)
��

LF (X)
δ

�� FB(X)

The lower rectangle commutes by naturality, the upper is equivalent to (15).
Hence, (15) implies naturality. Conversely, if � is natural, then the upper rect-
angle commutes for each Y by taking f = idTY (the identity map in C). ��
Theorem 21. If the equivalent conditions in Lemma 20 hold, then the map k =
τΦ ◦ T (k) : T (Ψ) → G(Φ) is an algebra morphism from �kl to �log, as on the left
below.

TBT (Ψ)

�kl
��

TB(k)
�� TBG(Φ)

�log
��

T (Ψ) k �� G(Φ)

X
klc

����
��
��
� logc

���
��

��
��

T (Ψ) k �� G(Φ)

In that case, for any coalgebra c : X → TB(X) there is a commuting triangle as
on the right above.
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Proof. Consider the following diagram.

TBT (Ψ)
Tλ
��

TBT (k)
��

��

��

�kl

��

TBTG(Φ) TBτ ��

TλG
��

TBG(Φ)
Tδ

��

��

�	

�log

		

TTB(Ψ)
μB
��

TTB(k)
�� TTBG(Φ) TTδ ��

μBG
��

TTGL(Φ) TτL ��

μGL
��

TGL(Φ)
τL

��

TB(Ψ)
TB(k)

��

T (β)
��

TBG(Φ) Tδ �� TGL(Φ) τL ��

TG(α−1)
��

GL(Φ)
G(α−1)

��

T (Ψ)
T (k)

�� TG(Φ)
τ

�� G(Φ)

Everything commutes: the upper right rectangle by assumption (15), the right-
most square in the middle row since τ is an action, the outer shapes by definition
of �kl and �log, the lower left rectangle by (14) and the rest by naturality. ��

The above result gives a sufficient condition under which ‘Kleisli’ trace equiv-
alence implies logical trace equivalence. However, contrary to the case of traces
in Eilenberg-Moore, in Lemma18, we currently do not have a converse. If δ has
monic components, then it is easy to use corecursiveness to define a map from
�log to �kl, but this surprisingly is not sufficient to show k to be monic, as con-
firmed by Example 22 below. In the comparison between Eilenberg-Moore and
Kleisli traces [17], a similar difficulty arises: it is unclear under what conditions
the map from the final coalgebra in Kleisli to the final coalgebra in Eilenberg-
Moore obtained there is mono (and hence, if Eilenberg-Moore trace equivalence
implies Kleisli trace equivalence).

Example 22. We give an example where δ : BG ⇒ GL is monic and (15) com-
mutes, but where nevertheless logical equivalence is stronger than ‘Kleisli’ trace
equivalence. Let C = D = Sets, F = G = 2−, B = L = (A × −) + 1, T = P,
τ : P2− ⇒ 2− given by union as before, and define the step δ by δX(a, ϕ)(t) = �
iff ∃x.t = (a, x) ∧ ϕ(x), and δX(∗)(t) = � (the latter differs from the step in
Proposition 13). Notice that δ indeed has monic components.

Let λ : BT ⇒ TB be the distributive law from [12], given by λX(a, S) =
{(a, x) | x ∈ S} and λ(∗) = {∗}. Then (15) is satisfied:

A × P(2X) + 1 λ ��

id×τ+1 ��

P(A × 2X + 1)
P(δ)��

A × 2X + 1 δ �� 2A×X+1 P(2A×X+1)τ		

It is straightforward to check that this commutes. However, given a coalgebra
f : X → TB(X), the induced logical semantics log : X → 2A∗

is: log(x)(w) = �
iff ∗ ∈ f(x) or ∃a ∈ A, v ∈ A∗, y ∈ X.w = av ∧ (a, y) ∈ f(x) ∧ log(y)(v) = �. In
particular, this means that if ∗ ∈ f(x) and ∗ ∈ f(y) for some states x, y, then
they are trace equivalent. This differs from the Kleisli semantics, which amounts
to the usual language semantics of non-deterministic automata [12].
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Ĉırstea [8] compares logical traces to a ‘path-based semantics’, which resem-
bles the Kleisli approach (as well as [22]) but does not require a final B-coalgebra.
In particular, given a commutative monad T on Sets and a signature Σ, she
considers a canonical distributive law λ : HΣT ⇒ THΣ , which coincides with
the one in [12]. Ĉırstea shows that, with Ω = T (1), t = μ1 : TT (1) → T (1) and
δ from the proof of Proposition 13 (assuming T1 to have enough structure to
define that logic), the triangle (15) commutes (see [8, Lemma 5.12]).

7 Completely Iterative Algebras

In this paper, we constructed several corecursive algebras. We briefly show that
they all satisfy the following stronger property [26].

Definition 23. For an endofunctor H on C, an H-algebra a : HA → A is
completely iterative when [id, a] is a corecursive A + H-coalgebra. Explicitly:
when for every c : X → A + HX there is a unique f : X → A such that the
following diagram commutes.

X
f

��

c
��

A
[id,a]
��

A + HX
A+Hf

�� A + HA

Following [14,26], we have two ways of constructing such algebras.

Proposition 24. 1. If ζ : A → HA is a final H-coalgebra, then (A, ζ−1) is
completely iterative.

2. Given a step as in Sect. 2, the functor Gρ preserves complete iterativity.

We may thus say: “step-induced algebra liftings of right adjoints preserve com-
plete iterativity”. Consequently, by analogy with Theorem 5, if L has a final
coalgebra (Ψ, ζ) then Gρ(A, ζ−1) is completely iterative. For our examples, this
may be seen as a trace semantics for a coalgebra c that may sometimes stop
following the behaviour functor and instead provide semantics directly.

8 Future Work

The main contribution of this paper is a general treatment of trace semantics
via corecursive algebras, constructed through an adjunction and a step, cover-
ing the ‘Eilenberg-Moore’, ‘Kleisli’ and ‘logic’ approaches to trace semantics.
It is expected that our framework also works for other examples, such as the
‘quasi-liftings’ in [2], but this is left for future work. In [19], several examples of
adjunctions are discussed in the context of automata theory, some of them the
same as the adjunctions here, but with the aim of lifting them to categories of
coalgebras, under the condition that what we call the step is an iso. In our case,
it usually is not an iso, since the behaviour functor is a composite TB or BT ;
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however, it remains interesting to study cases in which such adjunction liftings
appear, as used for instance in the aforementioned paper and [21,28]. Further,
our treatment in Sect. 3 (Eilenberg-Moore) assumes a monad to construct the
corecursive algebra, but it was shown by Bartels [1] that this algebra is also
corecursive when the underlying category has countable coproducts (and drop-
ping the monad assumption). We currently do not know whether this fits our
abstract approach. Finally, the Eilenberg-Moore/logic and Kleisli/logic compar-
isons (Sect. 6) seem to share certain aspects (the conditions look very similar),
but so far we have been unable to derive a general perspective on such compar-
isons that covers both, and possibly also the Eilenberg-Moore/Kleisli comparison
of [17].

Acknowledgement. We are grateful to the anonymous referees for various comments
and suggestions.
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Abstract. For every finitary monad T on sets and every endofunctor F
on the category of T -algebras we introduce the concept of an ffg-Elgot
algebra for F , that is, an algebra admitting coherent solutions for finite
systems of recursive equations with effects represented by the monad T .
The goal of this paper is to study the existence and construction of free
ffg-Elgot algebras. To this end, we investigate the locally ffg fixed point
ϕF , the colimit of all F -coalgebras with free finitely generated carrier,
which is shown to be the initial ffg-Elgot algebra. This is the techni-
cal foundation for our main result: the category of ffg-Elgot algebras is
monadic over the category of T -algebras.

1 Introduction

Terminal coalgebras yield a fully abstract domain of behavior for a given type
of state-based systems whose transition type is described by an endofunctor F .
Often one is mainly interested in the study of the semantics of finite coalgebras;
for instance, regular languages are the behaviors of finite deterministic automata,
while the terminal coalgebra of the corresponding functor is formed by all for-
mal languages. For endofunctors on sets, the rational fixed point introduced by
Adámek et al. [2] yields a fully abstract domain of behavior for finite coalgebras.
However, in recent years there has been a lot of interest in studying coalge-
bras over more general categories than sets. In particular, categories of algebras
for a (finitary) monad T on sets are a paradigmatic setting; they are used, for
instance, in the generalized determinization framework of Silva et al. [30] and
yield coalgebraic language equivalence [9] as a semantic equivalence of systems
with a side effect provided by the monad T . In the category C of T -algebras, sev-
eral notions of ’finite’ object are natural to consider, and each of those yields an
ensuing notion of ‘finite’ coalgebra: free objects on finitely many generators (ffg
objects) yield precisely the coalgebras that are the target of generalized deter-
minization; finitely presentable (fp) objects are the ones that can be presented
by finitely many generators and relations and yield the rational fixed point; and
finitely generated (fg) objects, i.e. those presented by finitely many generators
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(but possibly infinitely many relations). Taking the colimits of all coalgebras
with ffg, fp, and fg carriers, respectively, yields three coalgebras ϕF , �F and
ϑF which, under suitable assumptions on F , are all fixed points of F [2,24,34].
Our present paper is devoted to studying the fixed point ϕF , which we call the
locally ffg fixed point of F . For a finitary endofunctor F preserving surjective
and non-empty injective morphisms in C , the three fixed points are related (to
the terminal coalgebra νF ) as shown in the picture below:

ϕF � �F � ϑF � νF, (1.1)

where � denotes a quotient coalgebra and � a subcoalgebra. The three right-
hand fixed points are characterized by a universal property both as a coalgebra
and (inverting their coalgebra structure) as an algebra [2,19,24]; see [34] for one
uniform proof. We recall this in more detail in Sect. 2.4.

The main contribution of this paper is a new characterization of the locally
ffg fixed point ϕF by a universal property as an algebra. As already observed by
Urbat [34], as a coalgebra, ϕF does not satisfy the expected finality property.
A simple initiality property of ϕF as an algebra was recently established by
Milius [21]. Here we go a step further and introduce the notion of an ffg-Elgot
algebra (Sect. 4), which is an algebra for F equipped with an operation that
allows to take solutions of effectful iterative equations (see Remark 4.5) subject
to two natural axioms. These axioms are inspired by and closely related to the
axioms of (ordinary) Elgot algebras [1], which we recall in Sect. 3. We then prove
that ϕF is the initial ffg-Elgot algebra (Theorem 4.11).

In addition, we study the construction of free ffg-Elgot algebras. In the case of
ordinary Elgot algebras, it was shown in [1] that the parametrized rational fixed
point �(F (−)+Y ) is a free Elgot algebra on Y . In addition, the category of Elgot
algebras is the Eilenberg-Moore category for the corresponding monad on C . In
the present paper, we first prove that free ffg-Elgot algebras exist on every object
Y of C . But is it true that the free ffg-Elgot algebra on Y is ϕ(F (−) + Y )? We
do not know the answer for arbitrary objects Y , but if Y is a free T -algebra (on
a possibly infinite set of generators), the answer is affirmative (Theorem 4.15).

Finally, we prove that the category of ffg-Elgot algebras is monadic over C ,
i.e. ffg-Elgot algebras are precisely the Eilenberg-Moore algebras for the monad
that assigns to a given object Y of C its free ffg-Elgot algebra (Theorem 4.16).
Full proofs of all results presented here can be found in [18].

2 Preliminaries

2.1 Varieties and ‘Finite’ Algebras

Throughout the paper we will work with a (finitary, many-sorted) variety C
of algebras. Equivalently, C is the category of Eilenberg-Moore algebras for a
finitary monad T on the category SetS of S-sorted sets [6]. We will speak about
objects of C (rather than algebras for T ) and reserve the word ‘algebra’ for
algebras for an endofunctor on C . All the usual categories of algebraic structures
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and their homomorphisms are varieties: monoids, (semi-)groups, rings, vector
spaces over a fixed field, modules for a (semi-)ring, positive convex algebras, join-
semilattices, Boolean algebras, distributive lattices, and many others. In each
case, the corresponding monad T assigns to a set the free object on it, e.g. TX =
X∗ for monoids, the finite power-set monad T = Pf for join-semilattices, and
the subdistribution monad D for positive convex algebras, etc.

As mentioned in the introduction, every variety C of algebras comes with
three natural notions of ’finite’ objects, each of which admits a neat category-
theoretic characterization (see [6]):

Finitely presentable objects (fp objects, for short) can be presented by finitely
many generators and relations. An object X is fp iff the covariant hom-functor
C (X,−):C → Set is finitary, i.e. it preserves filtered colimits.1 We denote by
Cfp the full subcategory of C given by all fp objects. In our proofs we will use
the well-known fact that every object X is the filtered colimit of the canonical
diagram Cfp/X → C , i.e. objects in the diagram scheme are morphisms P → X
in C with P fp.

Finitely generated objects (fg objects, for short) are presented by finitely many
generators but, possibly, infinitely many relations. An object X is fg iff C (X,−)
preserves filtered colimits with monic connecting morphisms. Hence, every fp
object is fg but not conversely. In fact, the fg objects are precisely the (regular)
quotients of the fp objects [6, Proposition 5.22].

Free finitely generated objects (ffg objects, for short) are the objects (TX0, μX0)
where X0 is a finite S-sorted set (i.e. the coproduct of all components Xs, s ∈ S
is finite). An object X is a split quotient of an ffg object iff C (X,−) preserves
sifted colimits [6, Corollary 5.14]. Recall from [6] that sifted colimits are more
general than filtered colimits: a sifted colimit is a colimit of a diagram D:D → C
whose diagram scheme D is a sifted category, which means that finite products
commute with colimits over D in Set. For instance, every filtered category and
every category with finite coproducts is sifted, see [6, Example 2.16].

The category C is cocomplete and the forgetful functor C → SetS preserves
and reflects sifted colimits, that is, sifted colimits in C are formed on the level
of underlying sets [6, Proposition 2.5].

A finitely cocomplete category has sifted colimits if and only if it has filtered
colimits and reflexive coequalizers, and, moreover a functor preserves sifted col-
imits if and only if it preserves filtered colimits and reflexive coequalizers [5].

We denote by Cffg the full subcategory of ffg objects of C . Analogously to
the corresponding result for fp objects, every object X is a sifted colimit of the
canonical diagram Cffg/X → C ; this follows from [6, Proposition 5.17].

2.2 Relation Between the Object Classes

We already mentioned that every fp object is fg (but not conversely, in general).
Clearly, every ffg object is fg, but not conversely in general. So, in general, we
have full embeddings
1 These are colimits of diagrams D:D → C where D is filtered, i.e. every finite sub-

category D0 ↪→ D has a cocone in D .
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Cffg
�=
↪→ Cfp

�=
↪→ Cfg.

In rare cases, all three object classes coincide; e.g. in Set (considered as a variety)
and the category of vector spaces over a field.

In addition to those examples, the equation Cfg = Cfp holds true, for exam-
ple, for all locally finite varieties (i.e. where ffg objects are carried by finite sets),
for positive convex algebras [31], commutative monoids [14,29], abelian groups,
and more generally, in any category of (semi-)modules for a semiring S that is
Noetherian in the sense of Ésik and Maletti [12], i.e. every subsemimodule of an
fg semimodule is fg itself. For example, the following semirings are Noetherian:
every finite semiring, every field, every principal ideal domain such as the ring
of integers and therefore every finitely generated commutative ring by Hilbert’s
Basis Theorem. The tropical semiring (N ∪ {∞},min,+,∞, 0) is not Noethe-
rian [11]. The usual semiring of natural numbers is also not Noetherian, but for
the category of N-semimodules (= commutative monoids), Cfp = Cfg still holds.

2.3 Functors and Liftings

We will consider coalgebras for functors F on the variety C . In many cases
F is a lifting of a set functor, i.e. we have functor F0: SetS → SetS such that
F0 ·U = U ·F , where U :C → SetS is the forgetful functor. It is well-known [7,15]
that liftings of a given functor F0 on SetS to C , the variety given by the monad
T , are in bijective correspondence with distributive laws of the monad T over the
functor F0. It was observed by Turi and Plotkin [28] that a final coalgebra for
F0 lifts to a final coalgebra for the lifting F , and this is then the final bialgebra
for the corresponding distributive law.

Coalgebras for lifted functors are significant for us because the targets of
finite coalgebras X under generalized determinization [30] are precisely those
coalgebras for the lifting F carried by ffg objects TX. In more detail, generalized
determinization is the process of turning a given coalgebra c: X → F0TX in SetS

into a coalgebra for the lifting F : one uses the freeness of TX and the fact that
FTX is a T -algebra to extend c to a T -algebra homomorphism c∗: TX → FTX.
The coalgebraic language semantics [9] of (X, c) is then the final semantics of c∗

in C . The classical instance of this is the language semantics of non-deterministic
automata considered as coalgebras X → {0, 1} × (PfX)Σ ; here the generalized
determinization with T = Pf and F = {0, 1} × XΣ on Set is the well-known
subset construction from automata theory.

2.4 Four Fixed Points

Let us now consider a finitary endofunctor F :C → C on our variety. Then we
know that F has a terminal coalgebra [4], which we denote by νF . Its coalgebra
structure νF → F (νF ) is an isomorphism by Lambek’s lemma [17], and so νF
is a fixed point of F .
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There are three more fixed points of F obtained from ‘finite’ coalgebras,
where ‘finite’ can mean each of the three notions discussed in the previous sub-
section. More precisely, we consider the full subcategories of the category Coalg F
given by those coalgebras with fp, fg, and ffg carriers, respectively and denote
them as shown below:

Coalgffg F ↪→ Coalgfg F ↪→ Coalgfp F ↪→ Coalg F.

Since all three categories Coalgx F (for x = fp, fg or ffg) are essentially small, we
can form coalgebras as the colimits of the above inclusions as follows:

ϕF = colim(Coalgffg F ↪→ Coalg F ),

ϑF = colim(Coalgfg F ↪→ Coalg F ),

�F = colim(Coalgfp F ↪→ Coalg F ).

Note that the latter two colimits are filtered; in fact, Coalgfg F and Coalgfp F are
clearly closed under finite colimits in Coalg F , whence they are filtered categories.
The first colimit is a sifted colimit since its diagram scheme Coalgffg F is closed
under finite coproducts [22, Lemma 3.7]. In what follows, the objects of Coalgffg F
are called ffg-coalgebras.

We now discuss the three above coalgebras in more detail.

The rational fixed point is the coalgebra �F ; that this is a fixed point was proved
by Adámek et al. [2]. In addition, �F is characterized by a universal property
both as a coalgebra and as an algebra: (a) as a coalgebra, �F is the terminal
locally finitely presentable (lfp) coalgebra, where a coalgebra is called lfp if it is a
filtered colimit of a diagram formed by coalgebras from Coalgfp F [20]; and (b) as
an algebra, �F is the initial iterative algebra for F . An iterative algebra is an F -
algebra a: FA → A such that every fp-equation, i.e. a morphism e: X → FX +A
with X fp, has a unique solution in A. The latter means that there exists a
unique morphism e† such that the following square commutes:

X
e†

��

e

��

A

FX + A
Fe†+A

�� FA + A

[a,A]

��

(2.1)

(Note that in a diagram we usually denote identity morphisms simply by the
(co)domain object.) This notion is a categorical generalization of iterative Σ-
algebras for a single-sorted signature Σ originally introduced by Nelson [27]; see
also Tiuryn [33] for a closely related concept.

The locally finite fixed point is the coalgebra ϑF ; this coalgebra was recently
introduced and studied by Milius et al. [24] for a finitary and mono-preserving
functor F . It was proved to be a fixed point of F and characterized by two
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universal properties analogous to the rational fixed point: (a) as a coalgebra,
ϑF is the terminal locally finitely generated (lfg) coalgebra, where a coalgebra is
called lfg if it is a colimit of a directed diagram of coalgebras in Coalgfg F ; and
(b) as an algebra, ϑF is the initial fg-iterative algebra for F , where fg-iterative
is simply the variation of iterative where the domain object of e: X → FX +A is
required to be fg in lieu of fp. Moreover, ϑF always is a subcoalgebra of νF [24,
Theorem 3.10] and thus fully abstract w.r.t. behavioral equivalence.

The locally ffg fixed point is the coalgebra ϕF . Recently, Urbat [34] has proved
that ϕF is indeed a fixed point of F , provided that F preserves sifted colimits.
Actually, he defined ϕF as the colimit of all F -coalgebras whose carrier is a split
quotient of an ffg object. However, this is the same colimit as the one we use
above . Moreover, loc. cit. provides a general framework that allows to prove
that all four coalgebras �F , �F , ϑF and νF are fixed points by one uniform
proof. Also, a uniform proof of the universal properties of �F , ϑF and νF is
given.

Somewhat surprisingly, the coalgebra ϕF fails to have the finality property
w.r.t. to coalgebras in Coalgffg F : Urbat [34, Example 4.12] gives an example of a
coalgebra for the identity functor on the category C of algebras with one unary
operation (and no equations) that admits two coalgebra homomorphisms into
ϕF ; see Example 2.2 below. This also shows that ϕF cannot have a universal
property as some kind of iterative algebra (i.e. where solutions are unique).

Relations between the Fixed Points. Recall that a quotient of a coalgebra is
represented by a coalgebra homomorphism carried by a regular epimorphism
(= surjective algebra morphism) in C . Suppose we have a finitary functor
F on C preserving surjective and non-empty injective morphisms.2 Then the
subcoalgebra ϑF of νF is a quotient of �F , which in turn is a quotient of
ϕF [22,23]; see (1.1). Whenever, Cfp = Cfg, we clearly have Coalgfp F = Coalgfg F
and hence �F ∼= ϑF (i.e. �F is fully abstract w.r.t. behavioral equivalence),
and if Cfp = Cfg = Cffg then those two coincide with ϕF as well. Moreover,
Milius [22] introduced the notion of a proper functor (generalizing the notion of
a proper semiring of Ésik and Maletti [11]) and proved that a functor F is proper
if and only if the three fixed points coincide, i.e. the picture (1.1) collapses to
ϕF ∼= �F ∼= ϑF ↪→ νF . Loc. cit. also shows that on a variety C where fg objects
are closed under taking kernel pairs, every endofunctor mapping kernel pairs to
weak pullbacks in Set is proper [22, Proposition 3.18].3

Instances of the three fixed points have mostly been considered for proper func-
tors (where the three are the same, e.g. for functors on Set), or else on algebraic

2 These are mild assumptions; e.g. if C is single-sorted and F a lifting of a set functor,
then the conditions are fulfilled.

3 Note that these conditions are fulfilled in particular by every locally finite variety
and every category of semirings for a Noetherian semiring and any lifted endofunctor
whose underlying Set functor preserves weak pullbacks.
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categories where Cfp = Cfg (where the rational and locally finite fixed points coin-
cide). For example, regular languages for the automaton functor 2×(−)Σ on Set;
rational formal power series for the functor S×(−)Σ on S-semimodules (whenever
S is a proper semiring the three fixed points coincide); rational (a.k.a. regular)
Σ-trees for the polynomial functor on Set associated to the signature Σ; even-
tually periodic and rational streams for the functor k × (−) on Set and vector
spaces over the field k, respectively; the behaviors of probabilistic automata mod-
elled as coalgebras for [0, 1] × (−)Σ on the category of positive convex algebras
(that this functor is proper was recently proved by Sokolova and Woracek [32]);
finally, (deterministic) context-free languages and constructively S-algebraic for-
mal power-series (the weighted counterpart of context-free languages) [24]. Note
that the last two examples are instances of the locally finite fixed point ϑF , but
a description of ϕF and �F is unknown.

Remark 2.1. The rational and locally finite fixed points are defined and studied
more generally than in the present setting, namely for finitary functors F on
a locally finitely presentable category C (see Adámek and Rosický [4] for an
introduction to locally presentable categories). The following are instances of
�F and ϑF for F on a locally finitely presentable category C : (a) Courcelle’s
algebraic trees [10] as proved in [24]; (b) rational λ-trees (modulo α-equivalence)
for a functor on the category of presheaves over finite sets [3] or for a related
functor on the category of nominal sets [26]; more generally, (c) rational trees
over an arbitrary binding signature (see Fiore et al. [13]) as proved in [25].
Again, (a) is an instance of the locally finite fixed point ϑF but a description
of the rational fixed point is unknown. In the setting of general locally finitely
presentable categories, there is no analogy to ϕF , of course.

We now present a new example where only ϕF is interesting but the other
three fixed points are trivial.

Example 2.2. We consider the monad T on Set whose algebras are the algebras
with one unary operation u (with no equation):

TX = N × X with u(n, x) = (n + 1, x).

The functor F is the identity functor Id on the category C = SetT . The final
coalgebra for Id is (lifted from Set and therefore is) the trivial algebra on 1 with
id1 as coalgebra structure. Since 1 is clearly finitely presented by one generator
x and the relation u(x) = x, both of the diagrams Coalgfp Id and Coalgfg Id have
a terminal object which is then their colimit, whence �Id ∼= ϑId ∼= 1.

However, ϕId is non-trivial and interesting: an ffg-coalgebra TX
γ−→ TX may

be viewed (by restricting it to its generators in X) as obtained by generalized

determinization of an FT -coalgebra with F = Id on Set, i.e. a map X
〈o,δ〉−−−→ N×X

that we call stream coalgebra. Given a state x ∈ X, we call the sequence of natural
numbers

( o(x), o(δ(x)), o(δ2(x)), . . . )
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the stream generated by x. Since X is finite, this stream is eventually periodic,
i.e. of the form s = s0s

ω
1 for finite lists s0 and s1 of natural numbers. (Here (−)ω

means infinite iteration.) Two eventually periodic streams s = s0s
ω
1 and t = t0t

ω
1

with s1 = (s1,0, . . . , s1,p−1) and t1 = (t1,0, . . . , t1,q−1) are called equivalent if one
has

q ·
∑

i<p

s1,i = p ·
∑

j<q

t1,j , (2.2)

i.e. the entries of the two lists sq
1 and tp1 of length p · q have the same sum. For

instance, the streams

s = (1, 2, 7, 4)(1, 3, 2)ω = (1, 2, 7, 4, 1, 3, 2, 1, 3, 2, 1, 3, 2, . . .)

and

t = (5, 6)(0, 4)ω = (5, 6, 0, 4, 0, 4, 0, 4, 0, 4, . . .)

are equivalent. Note that the above notion of equivalence is well-defined, i.e. not
depending on the choice of the finite lists s0, s1 and t0, t1 in the representation
of s and t. In fact, given alternative representations s = s0s

ω
1 and t = t0t

ω
1 with

s1 = (s1,0, . . . , sp−1) and t1 = (t1,0, . . . , t1,q−1), the lists sp
1 and sp

1 are equal
up to cyclic shift, as are the lists tq1 and t

q
1. Therefore from (2.2) it follows that

q · q · p ·
∑

i<p

s1,i = q · q · p ·
∑

i<p

s1,i = q · p · p ·
∑

j<q

t1,j = p · p · q ·
∑

j<q

t1,j .

Dividing by p · q yields

q ·
∑

i<p

s1,i = p ·
∑

j<q

t1,j ,

as required.

Lemma 2.3. (a) The coalgebra ϕId is carried by the set of equivalence classes
of eventually periodic streams. The unary operation and the coalgebra structure
are both given by id:ϕId → ϕId. (b) For any Id-coalgebra (TX, γX) with X finite,
the colimit injection γ#

X : TX → ϕId maps (m,x) ∈ TX to the equivalence class
of the stream generated by x.

Proof. (1) We first show that the morphisms (−)# form a cocone. Given an ffg-
coalgebra (TX, γX) and elements (m,x), (n, y) ∈ TX with γX(m,x) = (n, y),
the stream generated by y is the tail of the stream generated by x, and thus the
two streams are equivalent. This shows that γ#

X is a coalgebra homomorphism.
To show that the morphisms (−)# form a compatible family, suppose that

h: (TX, γX) → (TY, γY ) is a homomorphism of ffg-coalgebras, and let (m,x) ∈
TX and (n, y) ∈ TY with h(m,x) = (n, y) be given. We need to show that the
streams generated by x and y are equivalent. Denote by

(mj , xj) := γj
X(m,x) and (nj , yj) := γj

Y (n, y) (j = 0, 1, 2, . . .) (2.3)
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the states reached from (m,x) and (n, y) after j steps. Since h is a coalgebra
homomorphism, one has h(mj , xj) = (nj , yj) for all j. Since X is finite, there
exist natural numbers k ≥ 0 and p > 0 with xk = xk+p. Then the eventually
periodic stream generated by x is given by

(m1 − m0,m2 − m1, . . . ,mk − mk−1)(mk+1 − mk, . . . ,mk+p − mk+p−1)ω

Since h(mk, xk) = (nk, yk) and h(mk+p, xk+p) = (nk+p, yk+p), one has yk =
yk+p, which implies that y generates the stream

(n1 − n0, n2 − n1, . . . , nk − nk−1)(nk+1 − nk, . . . , nk+p − nk+p−1)ω

To show that the streams generated by x and y are equivalent, it suffices to
verify that mk+p − mk = nk+p − nk, as this entails that

p ·
∑

i<p

mk+i+1 − mk+i = p · (mk+p − mk) = p · (nk+p − nk)

= p ·
∑

i<p

nk+i+1 − nk+i.

To prove the desired equation, we compute

(nk+p, yk+p) = h(mk+p, xk+p)
= h(mk+p, xk)
= h(mk+p − mk + mk, xk)
= (mk+p − mk + nk, yk)

where the last equality uses that h(mk, xk) = (nk, yk) and that h is a morphism
in C . This implies nk+p = mk+p − mk + nk.

(2) We prove that the cocone (−)# is a colimit cocone. Since sifted colimits
in Coalg Id are formed as in C and thus as in Set, it suffices to show that (i) the
morphisms γ#

X are jointly surjective and (ii) given ffg-coalgebras (TX, γX) and
(TY, γY ) and two states (m,x) ∈ TX and (n, y) ∈ TY merged by γ#

X and γ#
Y ,

there exists a zig-zag in Coalgffg Id connecting the two states. Statement (i) is
clear because finite stream coalgebras generate precisely the eventually periodic
streams. For (ii), we adapt the argument of the first part of our proof and
continue to use the notation (2.3). Since X and Y are finite, there exist natural
numbers k ≥ 0 and p > 0 with xk = xk+p and yk = yk+p. As the streams
generated by x and y are equivalent, one has mk+p − mk = nk+p − nk. Consider
the ffg-coalgebra (TZ, γZ) with Z = {z0, z1, . . . , zk+p−1}, and γZ defined by

γZ(zj) = (0, zj+1) (j < k + p − 1) and γZ(zk+p−1) = (mk+p − mk, zk).

Form the morphisms g: TZ → TX and h: TZ → TX given by

g(zj) = (mj , xj) and h(zj) = (nj , yj) (j < k + p).
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Then g and h are coalgebra homomorphisms. Indeed, for j < k + p − 1 we have

g(γZ(zj)) = g(0, zj+1) (def. γZ)
= (mj+1, xj+1) (def. g)
= γX(mj , xj) (def. mj+1, xj+1)
= γX(g(zj)) (def. g)

and moreover

g(γZ(zk+p−1)) = g(mk+p − mk, zk) (def. γZ)
= (mk+p − mk + mk, xk) (def. g)
= (mk+p, xk+p)
= γX(mk+p−1, xk+p−1) (def. mk+p, xk+1)
= γX(g(zk+p−1)) (def. g)

and analogously for h. Thus we have constructed a zig-zag

(TX, γX) (TZ, γZ)
g�� h �� (TY, γY )

in Coalgffg Id connecting (m,x) and (n, y), as required. �	
Observe that every non-empty ffg-coalgebra (TX, γX) admits infinitely many
coalgebra homomorphisms into ϕId, for instance, any constant map into ϕId
is one. This shows that, in general, the coalgebra ϕF is not final w.r.t. the
coalgebras in Coalgffg F .

3 Recap: Elgot Algebras

In this section we briefly recall the notion of an Elgot algebra [1] and some key
results to contrast this with our subsequent development of ffg-Elgot algebras
in Sect. 4. Throughout this section we assume the endofunctor F :C → C to be
finitary.

Definition 3.1. An fp-equation is a morphism

e: X → FX + A,

where X is an fp object (of variables) and A an arbitrary object of parameters.
Suppose that A carries the structure of an F -algebra a: FA → A. Then a

solution of e in A is a morphism e†: X → A such that the square (2.1) commutes.

Notation 3.2. We use the following notation for fp-equations:

(1) Given an fp-equation e: X → FX + A and a morphism h: A → B we have
an fp-equation

h • e =
(

X
e−→ FX + A

FX+h−−−−→ FX + B
)

.
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(2) Given a pair of fp-equations e: X → FX+Y and f : Y → FY +Z we combine
them into the following fp-equation

e � f =

(
X + Y

[e,inr]−−−→ FX + Y
FX+f−−−−→ FX + FY + Z

can+Z−−−−→ F (X + Y ) + Z

)
,

where can = [F inl, F inr]:FX + FY → F (X + Y ) denotes the canonical
morphism.

Definition 3.3. An Elgot algebra is a triple (A, a, †) where (A, a) is an F -
algebra and † is an operation

e: X → FX + A

e†: X → A

assigning to every fp-equation in A a solution subject to the following two con-
ditions:

(1) Weak Functoriality. Given a pair of equations e: X → FX+Z, f : Y → FY +
Z, where Z is an fp object, and a coalgebra homomorphism m: X → Y for
F (−)+Z, then for every morphism h: Z → A we have (h • f)†·m = (h • e)†:

X
e ��

m

��

FX + Z

Fm+Z

��
Y

f
�� FY + Z

=⇒
X (h•e)†

����
���

�

m

��
A

Y (h•f)†

��������

for all h: Z → A.

(2) Compositionality. For every pair of fp-equations e: X → FX+Y and f : Y →
FY + A we have

(e � f)† · inl = (f† • e)
†
: X → A.

Remark 3.4. Later we will need the following properties of • and �:

(1) t • (s • e) = (t · s) • e for every e: X → FX + A, s: A → B and t:B → C;
(2) s • (e � f) = e �(s • f) for every e: X → FX + Y , f : Y → FY + A and

s: A → B;
(3) (e � f) � g = (inl • e) �(f � g) for every e: X → FX + Y , f : Y → FY + Z and

g: Z → FZ + V .

For the proof of the first two see [1, Remark 4.6]. The remaining one is easy to
prove by considering the three coproduct components of X + Y + Z separately,
we leave this as an easy exercise for the reader.

Note that, in lieu of weak functoriality, † previously [1] was required to satisfy
(full) functoriality, i.e. given fp-equations e: X → FX + A, f : Y → FY + A and
a coalgebra homomorphism m: (X, e) → (Y, f) we have f† · m = e†: X → A.
However, this makes no difference:

Lemma 3.5. Functoriality and weak functoriality are equivalent properties of †.
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Proof. Functoriality clearly implies Weak Functoriality. In order to prove the
converse, let e: X → FX+A, f : Y → FY +A be fp-equations, and let m: (X, e) →
(Y, f) be a coalgebra morphism. Write A is the filtered colimit of its canonical
diagram Cfp/A (cf. Sect. 2.1). The functor FX + (−) preserves filtered colimits,
and so FX + A is the filtered colimit of the diagram formed by all morphisms
FX + h: FX + Z → FX + A. Since X is fp, the morphism e: X → FX + A
factors through one of these morphisms, i.e. there exists a morphism h: Z → A
with Z fp and e′: X → FX + Z such that e = h • e′:

X
e ��

e′
���

��
��

��
��

FX + A

FX + Z

FX+h

��

Similarly, we have a factorization of f : Y → FY + A, and by filteredness of
the diagram Cfp/A → C we can assume the same h: Z → A is used. Thus a
morphsm f ′: Y → FY + Z is given such that h • f ′ = (FY + h) · f ′ = f . We do
not claim that m is a coalgebra homomorphism from (X, e′) to (Y, f ′). However,
the corresponding equation holds when postcomposed by the colimit injection
FY + h:

(FX + h) · (Fm + Z) · e′ = (Fm + A) · (FX + h) · e′

= (Fm + A) · e

= f · m

= (FY + h) · f ′ · m.

Therefore there exists a morphism h: Z ′ → A with Z ′ fp and a connecting
morphism z:Z → Z ′ in Cfp/A, i.e. z satisfies h′ · z = h, such that FY + z merges
(Fm + Z) · e′ and f ′ · m. It follows that m is a coalgebra homomorphism from
z • e′ to z • f ′:

X
e′

��

m

��

FX + Z
FX+z ��

Fm+Z

��

FX + Z ′

Fm+Z′

��

������

z•e′

Y
f ′

�� FY + Z
FY +z

�� FY + Z ′
�����	

z•f ′

Indeed, the left-hand square commutes when postcomposed with FY + z; thus,
since the upper and lower parts as well as the right-hand square commute, so
does the outside, as desired. By weak functoriality, we thus conclude

f† · m = (h • f ′)† · m = ((h′ · z) • f ′)† · m = (h′ • (z • f ′))† · m

= (h′ • (z • e′))† = ((h′ · z) • e′)† = (h • e′)† = e†. �	
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Example 3.6. Let us recall a few examples of Elgot algebras [1].

(1) Iterative F -algebras (cf. Sect. 2.4): the operation † assigning to every equa-
tion its unique solution satisfies Compositionality and (Weak) Functoriality,
see [1, 2.15–1.19]. It follows that �F , ϑF and νF are Elgot algebras.

(2) Cpo enrichable algebras. Recall that a complete partial order (cpo, for short)
is a partially ordered set having joins of ω-chains. Cpos form a category CPO
together with the continuous functions, i.e. functions preserving joins of ω-
chains. Let F0: Set → Set be a functor having a locally continuous lifting
F : CPO → CPO, i.e. a lifting such that the hom mappings CPO(X,Y ) →
CPO(FX,FY ) are continuous. For example, every polynomial functor FΣ

associated to the signature Σ has a lifting to CPO.
Suppose further that a: FA → A is an algebra where A is a CPO with a
least element ⊥ and a is continuous. Then A is an Elgot algebra w.r.t. the
operation † assigning the least solution. More precisely, given an fp-equation
e: X → FX + A (in Set) consider X as a cpo with discrete order and let
e†: X → A be the least fixed point of the continuous function

h �→ [a,A] · (Fh + A) · e

on the cpo of continuous functions from X to A. For details see [1, 3.5–3.8].
(3) CMS enrichable algebras. A related example is based on complete metric

spaces, i.e. metric spaces in which every Cauchy sequence has a limit. Here
one considers the category CMS of complete metric spaces with distances
in [0, 1] and non-expanding maps, i.e. maps f : X → Y such that for every
x, x′ ∈ X one has dY (fx, fx′) ≤ dX(x, x′). Let F0: Set → Set have a locally
contracting lifting to CMS, i.e. a lifting F :CMS → CMS such that there
exists some ε < 1 such that for all f, g: X → Y in CMS one has

dX,Y (f, g) ≤ εdFX,FY (Ff, Fg),

where dX,Y denotes the sup-metric on CMS(X,Y ). Again, polynomial set
functors have locally contracting liftings to CMS.
Now suppose that a: FA → A is a non-empty algebra such that A carries a
complete metric space and a is a non-expanding map. Then A is iterative,
whence an Elgot algebra. In fact, for every equation e: X → FX+A consider
X as a discrete metric space (i.e. all distances are 1) and consider the ε-
contracting function

h �→ [a,A] · (Fh + A) · e

on CMS(X,A). Then, by Banach’s fixed point theorem, this function has a
unique fixed point, viz. a unique solution of e. For details see [1, 2.8–2.11].

(4) As a concrete instance of the previous point one can obtain fractals as
solutions of equations. For example, let A be the set of closed subsets of the
unit interval [0, 1] equipped with the following binary operation:

(C,C ′) �→ 1
3
C ∪

(
1
3
C ′ +

2
3

)
,
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where 1
3C = { 1

3c | c ∈ C} etc. Then A is an algebra for F0X = X × X
on Set, and this F0 has the locally contracting lifting F (X, d) = (X ×
X, 1

3dmax), where dmax denotes the usual maximum metric on the cartesian
product. One sees that A is an algebra for F when equipped with the so-
called Hausdorff metric. Hence, it is an Elgot algebra. For example, let
X = {x} and let e: X → FX + A be given by e(x) = (x, x). Then e†(x) is
the well-known Cantor set.

The rational fixed point �F is, besides being the initial iterative F -algebra,
also an initial Elgot algebra. Moreover, for every object Y , the rational fixed
point �(F (−) + Y ) is a free iterative algebra on Y . Thus, the object assignment
R:Y �→ �(F (−) + Y ) yields a monad on C , and one obtains the following

Theorem 3.7. ([1]). The category of Eilenberg-Moore algebras for R is isomor-
phic to the category of Elgot algebras for F .

Thus, in particular, �(F (−) + Y ) is not only a free iterative algebra but also a
free Elgot algebra on Y .

4 FFG-Elgot Algebras

The rest of our paper is devoted to studying the fixed point ϕF , the colimit of
all ffg-coalgebras for F , in its own right and establish a universal property of it
as an algebra.

Assumption 4.1. Throughout the rest of the paper we assume that C is a vari-
ety of algebras and that F :C → C is an endofunctor preserving sifted colimits.

Example 4.2.(1) For the monad T representing C , all functors that are liftings
of finitary set functor F0 (i.e., with a distributive law of T over F0) preserve
sifted colimits. Indeed, finitary set functors F0 preserve all sifted colimits [6,
Proposition 6.30]. Since C is cocomplete and the forgetful functor U :C →
Set preserves and reflects sifted colimits, it follows that every lifting of F0

preserves sifted colimits, too. The following examples are not liftings of set
functors.

(2) The functor FX = X + X, where + denotes the coproduct of C preserves
sifted colimits. More generally, every coproduct of sifted colimit preserving
functors preserves them too. Similarly, for finite products of sifted colimit
preserving functors. Thus, all polynomial functors on C preserve sifted col-
imits.

(3) Let C is an entropic variety, i.e. such that the usual tensor product makes
it symmetric monoidal closed. (Examples include sets, vector spaces, join-
semilattices, or abelian groups.) Then the functor FX = X ⊗ X preserves
sifted colimits. To see this, it suffices to show that (a) F is finitary and
(b) it preserves reflexive coequalizers (see [5]). First note that since C is
symmetric monoidal closed, we know that each functor X ⊗ − and − ⊗ X
is a left adjoint and therefore preserves all colimits.
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Ad (a). Suppose that D : D → C is a filtered diagram with colimit injections
ad : Dd → A for d ∈ D . We need to prove that all ad⊗ad : Dd⊗Dd → A⊗A
form a colimit cocone. That is, for every morphism f : X → A ⊗ A with X
fp, (i) there exists some d ∈ D and g : X → Dd ⊗ Dd with (ad ⊗ ad) · g = f
and (ii) given g, h : X → Dd ⊗ Dd that yield f in this way, there exists a
morphism m : d → d′ in D such that Dm ⊗ Dm merges g and h.
To prove (i), we use that − ⊗ A is finitary to obtain some d ∈ D and
f ′ : X → A ⊗ Dd with (A ⊗ ad) · f ′ = f . Now use that Dd ⊗ − is finitary
to obtain d′ ∈ D and f ′′ : X → Dd ⊗ Dd′ with (Dd ⊗ ad′) · f ′′ = f ′. Since
D is filtered, we can choose morphisms m : d → d̄ and n : d′ → d̄ in D . Let
g = (Dm ⊗ Dn) · f ′′. Then we have

(ad̄ ⊗ ad̄) · g = (ad̄ ⊗ ad̄) · (Dm ⊗ Dn) · f ′′ = (ad ⊗ ad′) · f ′′

= (ad ⊗ A) · (Dd ⊗ ad′) · f ′′ = (ad ⊗ A) · f ′ = f

as desired.
For (ii), use first that −⊗A is finitary and choose some morphism o : d → d′

such that

(Do ⊗ A) · ((Dd ⊗ ad) · g) = (Do ⊗ A) · ((Dd ⊗ ad) · h) .

It follows that (Dd′ ⊗ ad) merges (Do ⊗ Dd) · g and (Do ⊗ Dd) · h. Now use
that Dd′ ⊗ − is finitary and choose a morphism p : d → d′′ in D such that
(Dd′ ⊗Dp) also merges those two morphisms. Finally, use that D is filtered
to choose two morphisms q : d′ → d̄ and r : d′′ → d̄ such that q · o = r · p,
and let us call this last morphism m : d → d̄. It is then easy to see that
Dm ⊗ Dm merges g and h:

(Dm ⊗ Dm) · g = (D(q · o) ⊗ D(r · p)) · g = (Dq ⊗ Dr) · (Do ⊗ Dp) · g

= (Dq ⊗ Dr) · (Dd′ ⊗ Dp) · (Do ⊗ Dd) · g

= (Dq ⊗ Dr) · (Dd′ ⊗ Dp) · (Do ⊗ Dd) · h

= (Dm ⊗ Dm) · h.

Ad (b). Let f, g : A → B be any (not necessarily reflexive) parallel pair of
morphisms, and let c : B → C be their coequalizer. Use that all functors
− ⊗ X and X ⊗ − preserve coequalizers to see that in the following dia-
gram, whose parts commute in the obvious way, all rows and columns are
coequalizers:
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A ⊗ A
f⊗A ��

g⊗A
��

A⊗f

��

A⊗g

��

B ⊗ A
c⊗A ��

B⊗f

��

B⊗g

��

C ⊗ A

C⊗f

��

C⊗g

��
A ⊗ B

f⊗B ��

g⊗B
��

A⊗c

��

B ⊗ B
c⊗B ��

B⊗c

��

C ⊗ B

C⊗c

��
A ⊗ C

f⊗C ��

g⊗C
�� B ⊗ C

c⊗C �� C ⊗ C

By the ‘3-by-3 lemma’ [16, Lemma 0.17], it follows that the diagonal yields
a coequalizer too, i.e., c⊗c is a coequalizer of the pair f ⊗f, g⊗g as desired.

(4) Combining the previous argument with induction, we see that sifted colimit
preserving functors on an entropic variety C are stable under finite tensor
products. Thus, all tensor-polynomial functors on C preserve sifted colimits.

Under our assumptions we know that ϕF is a fixed point of F and we will
henceforth denote the inverse of its coalgebra structure by t: F (ϕF ) → ϕF.

Definition 4.3. By an ffg-equation is meant a morphism e: X → FX+A where
X is an ffg object. An ffg-Elgot algebra is a triple (A, a, †) where (A, a) is an
F -algebra and † is an operation

e: X → FX + A

e†: X → A

assigning to every ffg-equation in A a solution and satisfying Weak Functorial-
ity 3.3(1) and Compositionality 3.3(2) with X,Y and Z restricted to ffg objects.

Remark 4.4. Note that in categories where fp objects are ffg, e.g. in the cate-
gory of sets or vector spaces, (ordinary) Elgot algebras and ffg-Elgot algebras are
the same concept. However, in the present setting this may not be the case. More-
over, we do not know whether, for ffg-Elgot algebras, weak functoriality implies
functoriality. The proofs of our main results (in particular Proposition 4.8 and
Theorem 4.12) do not work when weak functoriality is replaced by functoriality.

Remark 4.5. In the case where F : SetT → SetT is a lifting of a functor
F0: Set → Set (via a distributive law λ), then an F -algebra is given by a set
A equipped with both a T -algebra structure α: TA → A and an F0-algebra
structure a: F0A → A such that a is a T -algebra homomorphism, i.e. one has
α · Ta = a · Fα · λA. Morphisms of F -algebras are those maps that are both
T -algebra and F0-algebra homomorphisms. Now one may think of ffg-equations
and their solutions as modelling effectful iteration. Indeed, let X0 be a finite set
of variables and consider any map

e0: X0 → T (F0X0 + A).
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Then this may be regarded as a system of recursive equations with variables
X0 and parameters in A, where for any recursive call a side effect in T might
happen. If (A,α, a) is an F -algebra, a solution to such a recursive system should
assign to each variable in X0 an element of A, i.e. we have a map e†

0: X0 → A,
such that the square below commutes (here we write + for disjoint union and ⊕
for the coproduct in C , which may be different):

X0

e†
0 ��

e0

��

A

TA

α

��

T (F0X0 + A)
T (F0e†

0+A)

�� T (F0A + A)
T [a,A]

��

Indeed, from e0 we may form the map

e =
(
X0

e0−→ T (F0X0 + A)
∼=−→ TF0X0 ⊕ TA

λX⊕α−−−−→ FTX0 ⊕ A
)

.

Then its unique extension TX0 → FTX0 ⊕ A to a T -algebra morphism is an
ffg-equation, and a solution TX0 → A of this in the sense of Definition 4.3 is
precisely the same as an extension of a solution for e0 in the above sense.

Construction 4.6. We aim at proving that ϕF is an initial ffg-Elgot algebra.
For that we first construct a solution e†: X → ϕF for every given ffg-equation
e: X → FX + ϕF . The colimit cocone of ϕF is denoted by c� : C → ϕF for
(C, c) in Coalgffg F .

Since X is an ffg-object, C (X,−) preserves the sifted colimit

FX + ϕF = colim(FX + C), (C, c) in Coalgffg F.

Every ffg-equation e: X → FX + ϕF thus factorizes through one of the colimit
injections FX + c�, i.e. for some c: C → FC in Coalgffg F and w: X → FX + C
we have the commutative triangle below:

X
e ��

w
����

���
���

�� FX + ϕF

FX + C

FX+c�

�� (4.1)

We see that w is an ffg-equation. We combine it with the ffg-equation c (having
the initial object 0 as parameter) to w � c: X +C → F (X +C), which is an object
of Coalgffg F . Finally, we put

e† =
(

X
inl−→ X + C

(w � c)�

−−−−−→ ϕF

)
. (4.2)

The proofs of the following results can be found in [18].
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Lemma 4.7. The definition of e† in (4.2) is independent of the choice of the
factorization (4.1), and e† is a solution of e in ϕF .

Proposition 4.8. The algebra t: F (ϕF ) → ϕF together with the solution oper-
ator † from Construction 4.6 is an ffg-Elgot algebra.

Definition 4.9. A morphism of ffg-Elgot algebras from (A, a, †) to (B, b, ‡) is
a morphism h: A → B in C preserving solutions, i.e. for every ffg-equation
e: X → FX + A we have

(h • e)‡ = h · e†.

Identity morphisms are clearly ffg-Elgot algebra morphisms, and ffg-Elgot alge-
bra morphisms compose. Therefore ffg-Elgot algebras form a category, which we
denote by

ffg-Elgot F.

The next lemma shows that the above category is a subcategory of the category
AlgF of algebras for F .

Lemma 4.10. Morphisms of ffg-Elgot algebras are F -algebra homomorphisms.

Note that the converse fails in general. In fact, [1, Example 4.4] exhibits an (ffg-)
Elgot algebra for the identity functor on Set and an algebra morphism on it which
is not solution-preserving.

Theorem 4.11. The triple (ϕF, t, †) is the initial ffg-Elgot algebra for F .

Proof. (Sketch). Let (A, a, ‡) be an ffg-Elgot algebra. We obtain a cocone over
the diagram

Coalgffg F � Coalg F
U−→ C

(where U is the forgetful functor) as follows: to every ffg-coalgebra c: C → FC
assign the solution

(iA • c)‡: C → A

of iA • c: C → FC + A, where iA: 0 → A is the unique morphism. Thus there
exists a unique morphism h: ϕF → A in C such that the triangle below commute
for every ffg-coalgebra c: C → FC:

C

c#

��

(iA•c)‡

		�
��

��
��

�

ϕF
h

�� A

One then shows that the morphism h is solution-preserving and is the unique
such morphism. �	
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The following result is the key to constructing free ffg-Elgot algebras. In the case
where Cffg = Cfp, this yields a new result about ordinary Elgot algebras.

Theorem 4.12. Let a: FA → A be an F -algebra and let Y be a free object of
C . For any morphism h:Y → A, there is a bijective correspondence between

(i) solution operators † such that (A, a, †) is an ffg-Elgot algebra for F , and
(ii) solution operators ‡ such that (A, [a, h], ‡) is an ffg-Elgot algebra for F (−)+Y .

Proof. (Sketch). (1) Given an ffg-Elgot algebra (A, a, †) for F , we define a
solution operator ‡ w.r.t. F (−) + Y as follows. For any ffg-equation e: X →
FX + Y + A, let

eh ≡ X
e−→ FX + Y + A

FX+[h,A]−−−−−−−→ FX + A

and put

e‡ := e†
h.

Then one can prove that (A, [a, h], ‡) is an ffg-Elgot algebra for F (−) + Y . (In
order to verify weak functoriality, the assumption that Y is free is critical.)

(2) Conversely, given an ffg-Elgot algebra (A, [a, h], ‡) for F (−)+Y , we define
a solution operator † w.r.t. F as follows. For any ffg-equation e: X → FX + A,
let

e ≡ X
e−→ FX + A

inl+A−−−→ FX + Y + A

and put

e† := e‡.

Then one can prove that (A, a, †) is an ffg-Elgot algebra.
(3) Finally, one shows that the two passages † �→ ‡ and ‡ �→ † are mutually

inverse. �	
For the forgetful functor of ffg-Elgot algebras

UF : ffg-Elgot F → C

recall that the slice category Y/UF has as objects all morphisms y:Y →
UF (A, a, †), and morphisms into y′: Y → UF (B, b, ‡) are the solution-preserving
morphisms p: (A, a, †) → (B, b, ‡) with p · y = p′. Denote by π:Y/UF → C the
projection functor.

Corollary 4.13. For every free object Y of C , there is an isomorphism I of
categories such that

UF (−)+Y =
(

ffg-Elgot(F (−) + Y ) I ��Y/UF
π ��C

)
.

It is given by (A, [a, h], ‡) �→ (h: Y → UF (A, a, †)).
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Construction 4.14. For any object Y of C denote by ΦY the colimit of all
ffg-coalgebras for F (−)+Y , that is, ΦY = ϕ(F (−)+Y ). Its coalgebra structure
is invertible, and we denote by tY : FΦY → ΦY and ηY : Y → ΦY the components
of its inverse.

The F -algebra (ΦY, tY ) is endowed with a canonical solution operation †:
given an ffg-equation e: X → FX + ΦY , put e ≡ X

e−→ FX + ΦY
FX+inl−−−−−→

FX + Y + ΦY . This ffg-equation for F (−) + Y has a solution e‡: X → ΦY in
the ffg-Elgot algebra ΦY = ϕ(F (−) + Y ), and we put e† := e‡.

The next result shows that all ffg-Elgot algebras form an algebraic category over
the given variety C .

Theorem 4.15. For every free object Y of C , the algebra (ΦY, tY ) with the
solution operation † is a free ffg-Elgot algebra for F on Y with ηY as the universal
morphism.

Proof. (Sketch). ΦY is an ffg-Elgot algebra since it, together with ηY , corre-
sponds to the initial ffg-Elgot algebra ϕ(F (−) + Y ) under the isomorphism of
Corollary 4.13. To verify its universal property, let (A, a, †) be an ffg-Elgot alge-
bra for F and h: Y → A a morphism. Corollary 4.13 gives an ffg-Elgot algebra
(A, [a, h],⊕) for F (−) + Y with e† = e⊕ for all ffg-equations e: X → FX + A.
Furthermore, Corollary 4.13 states that a morphism p: ΦY → A in C is solution-
preserving w.r.t. F (−) + Y if and only if it is solution-preserving w.r.t. F and
satisfies p · ηY = h. Therefore the universal property of ΦY w.r.t. F follows from
the initiality of ΦY w.r.t. F (−) + Y (see Theorem 4.11). �	
Theorem 4.16. The forgetful functor UF : ffg-Elgot F → C is monadic.

Proof. (Sketch). (1) First, one readily proves that UF creates sifted colimits.
Moreover, UF has a left adjoint. Indeed, for every ffg object Y there exists a
free ffg-Elgot algebra on Y by Theorem 4.15, which defines the corresponding
functor Φ:Cffg → ffg-Elgot F. We can extend it to a left adjoint of UF as follows.
Given an object Y of C expressed as a sifted colimit yi: Yi → Y (i ∈ I) of ffg
objects, then the image of that sifted diagram under Φ has a colimit colimi∈I ΦYi

which, since UF creates sifted colimits, is an ffg-Elgot algebra. It follows easily
that this colimit is a free ffg-Elgot algebra on Y .

(2) By Beck’s theorem it remains to prove that UF creates coequalizers of UF -
split pairs of morphisms. Thus let f, g: (A, a, †) → (B, b, ‡) be solution-preserving
morphisms of ffg-Elgot algebras and suppose that morphisms c: B → C, s: C →
B and t:B → A in C are given with c · f = c · g, c · s = idC , g · t = idB and
s · c = f · t.

A
f ��

g
�� B

c ��
t�� C

s
��

Since the category AlgF of F -algebras and their morphisms is monadic over
C [8] we know that there is a unique F -algebra structure γ: FC → C such that
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C is an F -algebra homomorphisms from (B, b) to (C, γ) and c is, moreover, a
coequalizer of f and g in AlgF . Define a solution operator ∗ for (C, γ) as follows.
Given an ffg-equation e: X → FX + C, put e∗ = c · (s • e)‡. One then proves
that ∗ is the unique solution operator making (C, γ, ∗) an ffg-Elgot algebra and
c a solution-preserving morphism from (B, b, ‡) to (C, γ, ∗). Moreover, c is a
coequalizer of f and g in ffg-Elgot F . �	

5 Conclusions and Further Work

For a functor F on a variety preserving sifted colimits, the concept of an Elgot
algebra [1] has a natural weakening obtained by working with iterative equations
having ffg objects of variables. We call such algebras ffg-Elgot algebras. We have
proved that the locally ffg fixed point ϕF of an endofunctor, constructed by
taking the colimit of all F -coalgebras with an ffg carrier, is the initial ffg-Elgot
algebra for F . Furthermore, we have proved that all free ffg-Elgot algebras exist,
and we have shown that the colimit of all ffg-carried coalgebras for F (−)+Y yield
a free ffg-Elgot algebra on Y whenever Y is a free object of C on some (possibly
infinite) set. Finally, we have proved that the forgetful functor ffg-Elgot H → C
is monadic.

We leave the task of giving a coalgebraic construction of arbitrary free ffg-
Elgot algebras for further work. In addition, the study of the properties of the
ensuing free ffg-Elgot algebra monad is also left for the future. The monad of
ordinary free Elgot algebras (cf. Sect. 3) yields the free Elgot monad on the given
endofunctor F ; it should be interesting to see whether the above monad of free
ffg-Elgot algebras is characterized by a similar universal property.

Finally, in the current setting we have the following picture of categories and
forgetful functors: ffg-Elgot F ↪→ Alg F → C → Set. Each of those functors has
a left-adjoint and is in fact monadic, and we have shown that the composite of
the first two is monadic, too. We leave the question whether the composite of
all three of the functors is monadic for further work.
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6. Adámek, J., Rosický, J., Vitale, E.: Algebraic Theories. Cambridge University
Press, New York (2011)



On Algebras with Effectful Iteration 165

7. Applegate, H.: Acyclic models and resolvent functors. Ph.D. thesis, Columbia Uni-
versity (1965)

8. Barr, M.: Coequalizers and free triples. Math. Z. 116, 307–322 (1970)
9. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of

coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1:7), 7:1–7:52
(2013)

10. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983)
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Abstract. Monoidal computer is a categorical model of intensional
computation, where many different programs correspond to the same
input-output behavior. The upshot of yet another model of computa-
tion is that a categorical formalism should provide a high-level language
for theory of computation, flexible enough to allow abstracting away
the low level implementation details when they are irrelevant, or taking
them into account when they are genuinely needed. A salient feature of
the approach through monoidal categories is the formal graphical lan-
guage of string diagrams, which supports geometric reasoning about pro-
grams and computations. In the present paper, we provide a coalgebraic
characterization of monoidal computer. It turns out that the availability
of interpreters and specializers, that make a monoidal category into a
monoidal computer, is equivalent with the existence of a universal state
space, that carries a weakly final state machine for all types of input and
output. Being able to program state machines in monoidal computers
allows us to represent Turing machines, and capture the time and space
needed for their executions. The coalgebraic view of monoidal computer
thus provides a convenient diagrammatic language for studying not only
computability, but also complexity.

1 Introduction

In theory of computation, an extensional model reduces computations to their
set theoretic extensions, computable functions, whereas an intensional model
also takes into account the multiple programs that describe each computable
function [4,29, II.3].

In computer science, this semantical gamut got refined on the extensional side
by denotational models, that take into account not just computable functions
but also some computational effects, and on the intensional side by operational
models, where the meaning of a program is specified up to an operational equiv-
alence [9,48]. Categorical semantics of computation arose from the realization
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that cartesian closed categories provide a simple and effective framework for
studying the extensional models [24]. Both denotational and operational seman-
tics naturally developed as extensions of this categorical framework [26,45].

The goal of the monoidal computer project is to provide categorical semantics
of intensional computation. This turns out to be surprisingly simple technically,
but subtle conceptually. In this section, we describe the structure of monoidal
computer informally, and try to explain it in the context of categorical semantics.
In the rest of the paper, we spell out some of its features formally, in particular
the coalgebraic part.

1.1 Categorical Computability: Context and Concept

The step from a cartesian closed category C, as an extensional model of compu-
tation, to a monoidal computer C, as an intensional model, can be summarized
as follows:

C (X, [A, B]) C(X × A, B)

εAB
X
∼=

λAB
X

C •(X,P) C(X ⊗ A, B)
γAB

X

(1)

The first line says that a category C is cartesian closed when it has the (carte-
sian) products X × A and a family of bijections, natural in X and indexed over
the types A and B, between the morphisms X × A → B and X → [A,B].

If a morphism X × A
f−→ B is thought of as an X-indexed family of compu-

tations with the inputs from A and the outputs in B, then the corresponding

morphism X
λAB

X (f)−−−−−→ [A,B] can be thought of as the X-indexed family of pro-
grams for these computations. This structure is the categorical version of the
simply typed extensional lambda calculus: λAB

X corresponds to the operation of
abstraction, whereas εAB

X corresponds to the application [24, Part I]. The equa-
tion εAB

X ◦ λAB
X = id says that if we abstract a computation into a program, and

then apply that program to some data, then we will get the same result as if we
executed the original computation on the data. This is the β-rule of the lambda
calculus, the crux of Alonzo Church’s representation of program evaluations as
function applications of λ-abstractions [10]. The equation λAB

X ◦ εAB
X = id says

that if we apply a program, and then abstract out of the resulting computation
a program, then we will get the same program that we started from. This is
the η-rule of the lambda calculus: the extensionality. Dropping the second equa-
tion thus corresponds to modeling the non-extensional typed lambda calculus,
with weak exponent types. While this structure was sometimes interpreted as
a model of intensional computation, and interesting results were obtained [18],
the main result was that every such non-extensional model is essentially exten-
sional, in the sense that it contains an extensional model as a retract [15]. In
genuinely intensional models, identifying extensionally equivalent programs is
not computable.
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The structure of a monoidal computer C is displayed in the second line of
(1). There are three changes with respect to the cartesian closed structure:

(a) the bijections εAB
X are relaxed to surjections γAB

X ;
(b) the exponents [A,B] are replaced with the type P of programs, the same for

all types A and B; and
(c) the product × is replaced with a tensor ⊗, and C is not a cartesian category,

but C • on the left is its largest cartesian subcategory with ⊗ as the product.

We try to clarify these changes in the next three paragraphs.
Change (a) means that we have not only dropped the extensionality equa-

tion λAB
X ◦ εAB

X = id, but eliminated the abstraction operation λAB
X altogether.

All that is left of the bijection between the abstractions and the applications,
displayed in the first line of (1), is a surjection from programs to computations,
displayed in the second line of (1): for every X-indexed family of computations

X ⊗ A
f−→ B there is an X-indexed family of programs X

F−→ P such that
f = γAB

X (F ). Could we get away with less? No, because the program evalua-
tion γAB

X has a left inverse λAB
X if and only if the model is essentially extensional

(i.e., it contains an extensional retract). We will see in Sect. 3.1 that the program
evaluation γAB

X is in fact executed by a universal evaluator {}AB ∈ C(P⊗A,B),
and thus takes the form γAB

X (F ) = {F}AB = f .
Change (b) means that all programs are of the same type P. The central

feature of intensional computation is that any program can be applied to any
data, and in particular to itself. The main constructions of computability theory
depend on this, as we shall see in Sect. 3.4. If computations of type A → B were
encoded by programs of a type depending on A and B, let us write it in the form
�A,B�, then such programs could not be applied to themselves, but they could
only be processed by programs typed in the form ��A,B�, C�. That is why all
programs must be of the same type P. We will see in Sect. 3.3 that this implies
that all types must be retracts of P. This does not imply that the type structure
of a monoidal computer can be completely derived from an applicative structure
on P, as an essentially untyped model of computation [24, I.15–I.17]. The type
structure of monoidal computer, can be derived from internal structure of P if
and only if the model is essentially extensional (i.e., it contains an extensional
retract, like before). But where does the monoidal structure come from?

Change (c) makes monoidal computers into monoidal categories, not carte-
sian. Just like cartesian categories, monoidal computers have the diagonals and
the projections for all types, which are necessary for data copying and delet-
ing, as explained in Sect. 2. Unlike in cartesian categories, though, the diagonals
and the projections in monoidal computers are not natural. The projections are
not natural because intensional computations may not terminate: they are not
total morphisms. The diagonals are not natural when the computations are not
deterministic: they are then not single-valued as morphisms. While intensional
computations can be deterministic, and the diagonals in a monoidal computer
can all be natural, if all projections are natural, i.e. if all computations are total,
then the model contains an extensional retract. A monoidal computer is thus
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a cartesian category if and only if it is essentially extensional. That is why a
genuinely intensional monoidal computer must be genuinely monoidal. On the
other hand, even a computation that is nowhere defined has a program, and pro-
grams are always well-defined values. So while the indexed families of intensional
computations cannot all be total functions, the corresponding indexed families
of programs must all be total functions. That is why the category C • on the left
in (1) is different from C: it is the largest subcategory of C for which ⊗ is the
cartesian product.

In summary, dropping or weakening any of the changes described in (a–
c) leads to the same outcome: an essentially extensional model. For a genuinely
intensional model it is thus necessary to have (c) a genuinely monoidal structure,
(b) untyped programs, and (a) no computable program abstraction operators. It
was shown in [36,41] that this is also sufficient for a categorical reconstruction
of the basic concepts of computability. Sections 2 and 3 provide a brief overview
of this. But our main concern in this paper is complexity.

1.2 Categorical Complexity: A Coalgebraic View

To capture complexity, we must capture dynamics, i.e. access the actual process
of computation. This, of course, varies from model to model, and different mod-
els of computation induce different notions of complexity. Abstract complexity
[7] provides, in a sense, a model-independent common denominator, which can
be viewed as an abstract notion of complexity; but the categorical view of com-
putations as morphisms at the first sight does not even provide a foothold for
abstract complexity. We attempted to mitigate the problem by extending the
structure of monoidal computer by grading [38], but the approach turned out to
be impractical for our goals (indicated in the next section). Now it turns out to
also be unnecessary, since dynamics of computation can be captured using the
coalgebraic tools available in any monoidal computer.

Coalgebra is the categorical toolkit for studying dynamics in general [42,44],
and dynamics of computation in particular [23,40,45]. Coalgebras, as morphisms
in the form X → EX for an endofuctor E, provide a categorical view of
automata, state machines, and processes with state update [20,39]; the other
way around, all coalgebras can be thought of as processes with state update.
In the framework on this paper, only a very special class of coalgebras will
be considered, as the morphisms in the form X × A → X × B, correspond-
ing to what is usually called Mealy machines [8,14,17, . . . ]. In the presence of
the exponents, such morphisms can be transposed to proper coalgebras in the
form X → [A,X × B]. But coalgebra provides a categorical reconstruction of
state machines even without the exponents, since the homomorphisms remain
the same, and the category of machines is isomorphic to a category of coal-
gebras even if the objects are not presented as coalgebras in the strict sense.
Our “coalgebras” will thus be in the form X × A → X × B, or more generally
X ⊗ A → X ⊗ B.

The crucial step in moving the monoidal computer story into the realm of
coalgebra is to replace the X-indexed functions X × A

f−→ B with X-state
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machines X × A
m−→ X × B. While a function f mapped for each index x an

input a to an output b, a machine m now maps at each state x an input a to
an output b, and updates the state to x′. This state update provides an abstract
view of dynamics. Continuous dynamics can be captured in varying the same
approach [39,42]. This step from X-indexed functions to X-state machines is
displayed in the first row of the following table.

models static dynamic

extensional
models:

cartesian
closed

[A, B] × A B

X × A

ε

∀f∃!λf×A

abstractions
ε←→
λ

applications

[A+, B] × B

[A+, B] × A X × B

X × A

ξ ∃!�m�×B

∀m∃!�m�×A

behaviors
�−�←−−− machines

intensional
models:

monoidal
computers

P ⊗ A B

X ⊗ A

{}

∀f∃F ×A

programs →→ computations

P ⊗ B

P ⊗ A X ⊗ B

X ⊗ A

{| |} ∃M⊗B

∀m∃M⊗A

adaptive programs ⇀⇀ processes

The representation of functions from A to B by the elements of [A,B] lifts to the
representation of machines with inputs in A and outputs in B by the induced
behaviors in [A+, B], where A+ is the inductive type of the nonempty sequences
from A. Behaviors are thus construed as functions extended in time [20,41,44].
In the presence of list constructors, the representation of functions using the
exponents [A,B] induces the representation of machines using the final machines
[A+, B]. The other way around, the final machines induce the exponents as soon
as the idempotents split.

The rows of the table depict the step from static models to dynamic models.
The columns depict the step from the extensional to the intensional. The left-
hand column is just a different depiction of (1): the upper triangle unpacks the
bijection in the first line of (1), whereas the lower triangle unpacks the surjection
in the second line. The right-hand column is the step from the extensional coin-
duction of final state machines to the intensional coinduction as implemented
in the structure of monoidal computer. The bottom row of the table is the step
from the monoidal computer structure presented in terms of universal evaluators,
the content of Sect. 3, to the monoidal computer structure presented in terms
of universal processes, the content of Sect. 4. The fact that the two presenta-
tions are equivalent is stated in Theorem9. This coalgebraic view of intensional
computation opens an alley towards capturing dynamics of Turing machines in
Sect. 5, and a direct internalization of time and space complexity measures in
Sect. 6. A general approach through abstract complexity is provided in the full
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version of the paper. A comment about the role of coalgebra in this effort is in
Sect. 7. Some proofs are in the Appendix.

1.3 Background and Related Work

While computability and complexity theorists seldom felt a need to learn about
categories, there is a rich tradition of categorical research in computability the-
ory, starting from one of the founders of category theory and his students [13,31],
through extensive categorical investigations of realizability [16,19,30], to the
recent work on Turing categories [12], and on a monoidal structure of Turing
machines [5]. A categorical account of time complexity was proposed in [11],
using a special structure called timed sets, introduced for the purpose. While
our approach in [38] used grading in a similar way, our current approach seems
closer in spirit to [2], even if that work is neither coalgebraic nor explicitly cat-
egorical. Our effort originated from a need for a framework for reasoning about
logical depth of cryptographic protocols and algorithms [34]. The scope of the
project vastly exceeded the original cost estimates [37], but also the original ben-
efit expectations. The unexpectedly simple diagrammatic formalism of monoidal
computer turned out to be a very convenient teaching tool in several courses.1

This extended abstract is shortened to fit the conference proceedings format.
The full text is available on arxiv:1704.04882.

2 Preliminaries

A monoidal computer is a symmetric monoidal category with some additional
structure. As a matter of convenience, and with no loss of generality, we assume
that it is a strict monoidal category. Monoidal categories are presented in many
textbooks, e.g. [25, Sect. VII.1 and Ch. XI].

We call data service the structure that allows passing the data around in
a monoidal category. In computer programs and in mathematical formulas, the
data are usually passed around using variables. They allow copying and propa-
gating the data values where they are needed, or deleting them when they are
not needed. The basic features of a variable are thus that it can be freely copied
or deleted. The basic data services over a type A in a monoidal category C are
the copying operation A

Δ−→ A ⊗ A, and the deleting operation A
�−→ I, which

together form a commutative comonoid, i.e. satisfy the equations

== =

Δ ; (Δ ⊗ A) = Δ ; (A ⊗ Δ) Δ ; (� ⊗ A) = Δ ; (A ⊗ �) = idA

=

Δ ; σ = Δ

1 The course materials are available from http://www.asecolab.org/courses/222/, and
the textbook [41] is in preparation.

http://arxiv.org/abs/org:1704.04882
http://www.asecolab.org/courses/222/
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The correspondence between variables and comonoids was formalized and
explained in [32]. The algebraic properties of the binary copying induce unique
n-ary copying A

Δ−→ A⊗n, for all n ≥ 0. The tensor products ⊗ in C are the
cartesian products × if and only if every A in C carries a canonical comonoid
A × A

Δ←− A
�−→ 1, where 1 is the final object of C, and all morphisms of C are

comonoid homomorphisms, or equivalently, the families A
Δ−→ A×A and A

�−→ 1
are natural. Cartesian categories are thus just monoidal categories with natural
families of copying and deleting operations.

Definition 1. A data service of type A in a monoidal category C is a commuta-
tive comonoid structure A⊗A

Δ←− A
�−→ I, where Δ provides the copying service,

and 
 provides the deleting service.

Definition 2. A morphism f ∈ C(A,B) is a map if it is a comonoid homomor-
phism with respect to the data services on A and B, which means that it satisfies
the following equations

=
f

f f

=
f

f ;ΔB = ΔA ; (f ⊗ f) f ;�B = �A

Given a symmetric monoidal category C with data services, we denote by C • the
subcategory spanned by the maps with respect to its data services, i.e. by those
C-morphisms that preserve copying and deleting.

Remark. If C is the category of relations, then the first equation says that f is
a single-valued relation, whereas the second equation says that it is total. Hence
the name. Note that the morphisms Δ and 
 from the data services are maps
with respect to the data service that they induce. They are thus contained in
C •, and each of them forms a natural transformation with respect to the maps.
This just means that the tensor ⊗, restricted to C •, is the cartesian product.

3 Monoidal Computer

3.1 Evaluation and Evaluators

Notation. When no confusion seems likely, we write AB instead of A⊗B, and
C(X) instead of C(I,X). We omit the typing superscripts whenever the types
are clear from the context.

Definition 3. A monoidal computer is a (strict) symmetric monoidal category
C, with a data service A ⊗ A

Δ←− A
�−→ I on every A, and a distinguished type

of programs P, given with, for every pair of types A,B, an X-natural family of

surjections C •(X,P) C(X ⊗ A,B)
γAB

X , representing program evaluations.
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The following proposition says that program evaluations can be construed as
a categorical view of Turing’s universal computer [46], or of Kleene’s acceptable
enumerations [29,43, II.5], or of interpreters and specializers from programming
language theory [21].

Proposition 4. Let C be a symmetric monoidal category with data services.
Then specifying the program evaluations γAB

X : C •(X,P) � C(X ⊗ A,B) that
make C into a monoidal computer, as defined in Definition 3, is equivalent to
specifying for any three types A,B,C ∈ |C| the following two morphisms:

(a) a universal evaluator {}AB ∈ C(PA,B) such that for every computation
f ∈ C(A,B) there is a program F ∈ C •(P) such that f(a) = {F}AB

a

(b) a partial evaluator [ ]AB ∈ C •(PA,P) with {G}(AB)C
(a, b) =

{
[G]AB

a
}BC

b

B

f

A

=

B

{}
F

A P A

{}

B

C

=

A

f
[ ]

BP

C

Remark. Note that the partial evaluators [ ] are maps, i.e. total and single
valued morphisms in C •, whereas the universal evaluators {} are ordinary mor-
phisms in C. A recursion theorist will recognize the universal evaluators as Tur-
ing’s universal machines [46], and the partial evaluators as Gödel’s primitive
recursive substitution function S, enshrined in Kleene’s Sm

n -theorem [22]. A pro-
grammer can think of the universal evaluators as interpreters, and of the partial
evaluators as specializers [21]. In any case, (a) can be understood as saying that
every computation can be programmed; and then (b) says that any program with
several inputs can be evaluated on any of its inputs, and reduced to a program
that waits for the remaining inputs:

=
[ ]

{}

X A

B B

AX

{}

HH
X A

B

=h

h(x, a) {H} (x, a) {[H] x} a= =

(2)

Together, the two conditions thus equivalently say that for every computation
h ∈ C(X ⊗ A,B) there is an X-indexed program Ξ ∈ C •(X,P) such that
h(x, a) = {Ξx}a, namely Ξ = [H].

Branching. By extending the λ-calculus constructions as in [36], we can extract
from P the convenient types of natural numbers, truth values, etc. E.g., if the
truth values t and f are defined to be some programs for the two projections,
then the role of the if-branching command can be played by the universal
evaluator:

if(b, x, y) = {b} (x, y) =

⎧
⎨

⎩

x if b = t

y if b = f =

=
t

f

if={}

if={}
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3.2 Examples of Monoidal Computer

Let S be a cartesian category and T : S → S a commutative monad. Then the
Kleisli category ST of free algebras is monoidal, with the data services induced
by the cartesian structure of S. The standard model of monoidal computer C
is obtained by taking S to be the category of finite and countable sets, and
TX = ⊥ + X to be the maybe monad, adjoining a fresh element to every set.
The category S⊥ is the category of partial functions, and the monoidal computer
C ⊆ S⊥ is the subcategory of computable partial functions:

|C| =
{
A ⊆ N | ∃e ∈ N. {e}a↓ ⇐⇒ a ∈ A

}
C(A, B) =

{
f : A ⇀ B | ∃e. {e} = f

}

The category C • is then the category of computable total functions. Assum-
ing that the programs are encoded as natural numbers, the type of programs is
P = N; but any language containing a Turing complete set of expressions would
do, mutatis mutandis. The sequence {0}, {1}, {2}, . . . denotes an acceptable enu-
meration of computable partial functions [29, II.5]. The universal evaluators can
be implemented as partial recursive functions; the partial evaluators are the total
recursive functions, constructed in Kleene’s Sm

n -theorem [22]. Other commuta-
tive monads T : S → S induce monoidal computers in a similar way, capturing
intensional computations together with the corresponding computational effects:
exceptions, nondeterminism, randomness [26]. Some of the familiar computa-
tional monads need to be restricted to finite support. The distribution monad
must be factored modulo computational indistinguishability. A simple quantum
monoidal computer can be constructed using a relative monad for finite dimen-
sional vector spaces [1]. However, in the model where the universal evaluators are
quantum Turing machines, the program evaluations cannot be surjective in the
usual sense, but only in the topologically enriched sense, i.e., they are dense [6].
We do not know how to derive this model from a computational monad, albeit
relative. Another interesting feature is that most computational effects induce
nonstandard data services, corresponding to complementary bases, which are, of
course, used in randomized, quantum, but also in nondeterministic algorithms
[33,35]. More examples are in [36], but most work is still ahead.

3.3 Encoding All Types

Proposition 5. Every type B in a monoidal computer is a retract of the type
of programs P. More precisely, for every type B ∈ |C| there are computations

eB : B P : dB such that eB is a map, and eB ; dB = idB. We often call

eB the encoding of B and dB ∈ C(P, B) is the corresponding decoding.

Remark. In [36] we only considered the basic monoidal computer, where all
types are powers of P. In the standard model, programs are encoded as natural
numbers, and all data are tuples of natural numbers, which can be recursively
encoded as natural numbers. Proposition 5 says that this must be the case in
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every computer. Note that there is no claim that either eB or dB is unique.
Indeed, in nondegenerate monoidal computers, each type B has many different
encoding pairs eB , dB . However, once such a pair is chosen, the fact that eB

is total and single-valued means that it assigns a unique program code to each
element of B. The fact that dB is not total means that some programs in P
may not correspond to elements of B. Since Proposition 5 says that the program
evaluations make every type into a retract of P, and Proposition 4 reduced the
structure of monoidal computer to the evaluators for all types, it is natural to
ask if the evaluators of all types can be reduced to the evaluators over the type
P of programs. Can all of the structure of a monoidal computer be derived from
the structure of the type P of programs? E.g., can the program evaluations be
“uniformized” by always encoding the input data of all types in P, performing the
evaluations to get the outputs in P, and then decoding the outputs back to the
originally given types? Can the type structure and the evaluation structure of a
monoidal computer be reconstructed by unfolding the structure of P, as it is the
case in models of λ-calculus. Is monoidal computer yet another categorical view
of a partial applicative structure? The answer to all these question is positive
just in the degenerate case of an essentially extensional monoidal computer. If
the type structure of monoidal computer can be faithfully encoded in P, then
there is a retract of P which supports an extensional model of computation, i.e.
allows assigning a unique program to each computation. If all evaluators can be
derived by decoding the evaluators with the output type P, and if the decoding
preserves the original evaluators on P, then all computation representable in
monoidal computer must be provably total and single valued: it degenerates
into a cartesian closed category derived from a C-monoid. For details see [24,
I.15-I.17], and the references therein.

3.4 The Fundamental Theorem of Computability

In this section we show that every monoidal computer validates the claim of
Kleene’s “Second Recursion Theorem” [22,27].

Theorem 6. In every monoidal computer C, every computation g ∈ C(P⊗A,B)
has a Kleene fixed point, i.e. a program Γ ∈ C(P) such that g(Γ, a) = {Γ} a.

B

A

{}

Γ

=

B

A
Γ

g

P P

Proof. Let G be a program such that

B

A

{}

G

=

B

A

g

PP

[ ]

P P

=g
(
[p] p, a

)
{G}(p, a)
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A Kleene fixed program Γ can now be constructed by partially evaluating G
on itself, i.e. as Γ = [G] G, because

B

A

{}

G

=

B

A

g

G G

B

A

{}=

G

B

A

G

{}=

[ ] [ ]

Γ Γ

= = = =g(Γ, a) g
(
[G]G, a

)
{G}(G, a)

{
[G]G

}
a {Γ} a

This theorem induces convenient representations of integers, arithmetic,
primitive recursion, unbounded search and thus shows that monoidal computer
is Turing complete [41]. In [36], this was done by using the λ-calculus construc-
tions. Next section provides yet another proof, through Turing machines.

4 Coalgebraic View

So far, we formalized the programs →→ computations correspondence from the
left hand column of the table in the Introduction. But presenting computations in

the form XA
{F}−−→ B only displays their interfaces, and hides the actual process

of computation. To capture that, we switch to the right hand column of the
table, and study the correspondence adaptive programs →→ processes. A process
is presented as a morphism in the form X ⊗ A → X ⊗ B. We interpreted the
morphisms in the form X ⊗ A → B as X-indexed families of computations with
the inputs from A and the outputs in B. The indices of type X can be thought
of as the states of the world, determining which of the family of computations
should be run. Interpreted along the same lines, a process X ⊗A

p−→ X ⊗B does
not only provide the output of type B, but it also updates the state in X. This
is what state machines also do, and that is why the morphisms X ×A

m−→ X ×B
in cartesian categories are interpreted as machines. In a sufficiently complete
cartesian category, every such machine m induces a machine homomorphism

X
�m�−−→ [A+, B], which assigns to each state x ∈ X a behavior �m�x ∈ [A+, B],

unfolded by the final AB-machine [A+, B] × A
ξ−→ [A+, B] × B. The table in the

Introduction displayed this. A monoidal computer, though, turns out to provide a
much stronger form of representation for its morphisms in the form X⊗A

p−→ X⊗
B: each of them induces a machine homomorphism X

P−→ P. This P is a program
for the process p. Note that there may be many programs for each process; but on
the other hand, all programs, for all processes of all possible input types A and
output types B, are represented in the same type of programs P. This makes a
fundamental difference, distinguishing machines m from computational processes
p, which include life [28,47]2. Every family of machines is designed in a suitable
2 Both Turing and von Neumann devoted a lot of attention to studying life as a com-

putational process. Their ideas have been adopted in biology [3], but most computer
scientists remain skeptical.
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engineering language; but all computational processes can be programmed in any
Turing complete language, just like all processes of life are programmed in the
language of genes. That is why the morphisms X⊗A

p−→ X⊗B are processes, and
not merely machines. Their representations X

P−→ P are not merely X-indexed
programs, but they are adaptive programs, since they adapt to the state changes,
in the sense that we now describe.

Definition 7. A morphism XA
p−→ XB in a monoidal category C is an AB-

process. If Y A
r−→ Y B is another AB-process, then an AB-process homomor-

phism is a C-morphism X
f−→ Y such that (f ⊗ A) ; r = p ; (f ⊗ B). We denote

the category of AB-processes by CAB.

Definition 8. A universal process in a monoidal category C is carried by a
universal state space S ∈ |C|, which comes with a weakly final AB-process

SA
{| |}−−→ SB for every pair A,B ∈ |C|. The weak finality means that for every

p ∈ C(X ⊗ A,X ⊗ B) there is an X-adaptive program P ∈ C •(X,S) where

{|P (x)|}S a = P (pX(x, a))

{|P (x)|}B a = pB(x, a)

B

{| |}

P

X

S

A

S

=

B

p

X

A

X

A

S

S ⊗ B

S ⊗ A X ⊗ B

X ⊗ A

{| |} P ⊗B

pP ⊗A

Theorem 9. Let C be a symmetric monoidal category with data services. Then
C is a monoidal computer if and only if it has a universal process. The type P
of programs coincides with the universal state space S.

Proof. Given a weakly final AB-process S ⊗ A
{| |}−−→ S ⊗ B, we show that

{}AB =
(
S ⊗ A

{| |}AB

−−−−→ S ⊗ B
�⊗B−−−→ B

)

is a universal evaluator, and thus makes C into a monoidal computer. Towards
proving (2), suppose that we are given a computation X ⊗A

h−→ B, and consider
the process

ĥ =
(
X ⊗ A

Δ⊗A−−−→ X ⊗ X ⊗ A
X⊗h−−−→ X ⊗ B

)
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By Definition 8, there is then an X-adaptive program Ξ = �h� ∈ C •(X,S)
satisfying the rightmost equation in the next diagram.

X A

B

{| |}

Ξ
X A

B

=h

X A

B

h

ĥ

=

X
{}S

S

=

X A

h

ĥ

Ξ
S

B

The middle equation holds because �h� is in C •, i.e. a comonoid homomorphism.
Deleting the state update from the process yields (2). The other way around, if
C is a monoidal computer, with universal evaluators for all pairs of types, we
claim that the weakly final AB-process is

{| |}AB =
(
P ⊗ A

{}A(PB)

−−−−−→ P ⊗ B

)

To prove the claim, take an arbitrary AB-process X ⊗ A
p−→ X ⊗ B, and post-

compose it with the partial evaluator on X, to get

p̂ =
(
P ⊗ X ⊗ A

P⊗p−−−→ P ⊗ X ⊗ B
[ ]XBP⊗B−−−−−−→ P ⊗ B

)

Using the Fundamental Theorem of Computability, Theorem6, construct a
Kleene’s fixed point P̂ ∈ C(P) of p̂.

B

A

{}

P̂

=

B

A

p

P̂

PP

X X

X

p̂[ ]

The X-adaptive program P ∈ C •(P) corresponding to the process p ∈
C(XA,XB) is now P (x) =

[
P̂ , x

]XBP
.

B

A

{}=

B

A

m

M̂

PP

X X

[ ]
P

M̂

[ ]
P

This completes the proof that {}A(BP) satisfies Definition 8 of weakly final AB-
process, and that P is thus not only a type of programs, but also a universal
state space.
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5 Computability

In the remaining two sections we show how to run Turing machines in a monoidal
computer, and how to measure their complexity. But a coalgebraic treatment of
Turing machines as machines, in the sense discussed at the beginning of Sect. 4,
would only display their behaviors, i.e. what rewrite and which move of the
machine head will happen on which input, and it obliterates the configurations
of the tape, where the actual computation happens. In terms of Sect. 4, a Turing
machine as a model of actual computation should not be viewed as a machine,
but as a process. So we call them Turing processes here. While changing well
established terminology is seldom a good idea, and we may very well regret this
decision, the hope is that it will be a useful reminder that we are doing some-
thing unusual: relating Turing machines with adaptive programs, coalgebraically.
The presented constructions go through in an arbitrary monoidal computer, but
require spelling out a suitable representation of the integers, and some arith-
metic. This was done in [36], and can be done more directly; but for the sake
of brevity, we work here with the category C of recursively enumerable sets and
computable partial functions from Sect. 3.2. The monoidal structure and the
data services are induced by the cartesian products of sets, which are, however,
not categorical products any more, since the singleton set, providing the ten-
sor unit, is not a terminal object for partial functions. The monoidal category
(C,⊗, I) will thus henceforth be (C,⊗,1).

Recall that Turing’s definition of his machines can be recast [40, Appendix]
to processes in the form Qρ ⊗ Σ

ρ
⇀ Qρ ⊗ Σ ⊗ Θ, where

– Qρ is the finite set of states, always including the final state � ∈ Qρ;
– Σ is a fixed alphabet, always including the blank symbol  ∈ Σ;
– Θ = {,�,
} are the directions in which the head can move along the tape.

Let us recall the execution model: how these machines and processes compute. A
Mealy machine Qκ ×I

κ
⇀ Qκ ×O inputs a string n

ι−→ I, where n = {0, 1, . . . , n−
1} sequentially, e.g. it reads the inputs ι0, then ι1 etc, and it outputs a string
n

ω−→ O in the same order, i.e. ω0, ω1, etc. In contrast, a Turing process in
principle overwrites its inputs, and outputs the results of overwriting when it
halts; therefore, in a Turing process, the input alphabet I and its output alphabet
O must be the same, say I = O = Σ. Both the inputs, and the outputs, and
the intermediary data of a Turing process are in the form w : Z → Σ, where
all but finitely many values w(z) must be . So each word w : Z → Σ is still
a finite string of symbols, like in the Mealy machine model. The difference is
that w is written on the infinite ‘tape’, here represented by the set of integers
Z, which allows the processing ‘head’ to move in both directions, or to stay
stationary (while in a Mealy machine the head moves in the same direction at
each step). We represent the position of the head by the integer 0, and the
symbol that the head reads on that position is thus denoted by w(0). If the
process Qρ ⊗ Σ

ρ
⇀ Qρ ⊗ Σ ⊗ Θ, which is a triple of functions ρ = 〈ρQ, ρΣ , ρΘ〉,

is defined on a given state q ∈ Qρ and a given input σ = w(0), then it will
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– overwrite σ with σ′ = ρΣ(q, σ),
– transition to the state q′ = ρQ(q, σ), and
– move the head to the next cell in the direction θ = ρΘ(q, σ).

If q = �, then ρ(�, σ) = 〈�, σ,�〉, which means that the process must halt at
the state �, if it ever reaches it. To capture this execution model formally, we
extend Turing processes over the alphabet Σ, first to processes over the set Σ̃ of
Σ-words written on a tape, and then to computations with the inputs and the
outputs from Σ̃

Qρ ⊗ Σ
ρ
⇀ Qρ ⊗ Σ ⊗ Θ

Qρ ⊗ Σ̃
ρ̃
⇀ Qρ ⊗ Σ̃

Qρ ⊗ Σ̃
ρ
⇀ Σ̃

where Σ̃ =
{

w : Z → Σ | supp(w) < ∞
}

is the set of Σ-words written on a

tape, and supp(w) = {z | w(z) �= }. The elements of Σ̃ are often also called the
tape configurations. Writing the tuples in the form ρ̃ = 〈ρ̃Q, ρ̃Σ̃〉, define

ρ̃Q(q, w) = ρQ(q, w(0))

ρ̃Σ̃(q, w) = w′ where w′(z) =

⎧
⎪⎨

⎪⎩

w̃(z − 1) if ρΘ (q, w(0)) = 

w̃(z) if ρΘ (q, w(0)) =�
w̃(z + 1) if ρΘ (q, w(0)) = �

⎫
⎪⎬

⎪⎭
and

w̃(z) =

{
ρΣ (q, w(0)) if z = 0
w(z) otherwise

}

ρ(q, w) =

{
w if q = �
ρ
(
ρ̃(q, w)

)
otherwise

The execution of all Turing processes can now be captured as a single process
Q⊗ Σ̃

p
⇀ Q⊗ Σ̃, where the state space Q is the disjoint union of the state spaces

Qρ of all Turing processes ρ ∈ T , i.e. Q =
∐

ρ∈T Qρ where T = {Qρ ⊗ Σ
ρ
⇀

Qρ ⊗ Σ ⊗ Θ}, so that the elements of Q are the pairs 〈ρ, q〉, where q ∈ Qρ, and
Q ⊗ Σ̃

p
⇀ Q ⊗ Σ̃ is the pair p = 〈pQ, pΣ̃〉 which, when applied to 〈ρ, q〉 ∈ Q and

w ∈ Σ̃, gives p
(
〈ρ, q〉, w

)
=

〈
〈ρ, q′〉, w′〉 where q′ = ρ̃Q(q, w) and w′ = ρ̃Σ̃(q, w).

By applying Theorem9 to the process Q ⊗ Σ̃
p
⇀ Q ⊗ Σ̃, we get the following

Proposition 10. There is an adaptive program P̃ ∈ C •(Q,P) such that P̃ (ρ, q)
executes any Turing process ρ starting from the initial state q ∈ Qρ. This means
that for every tape configuration w ∈ Σ̃ holds {|P̃ (ρ, q)|}P w = P̃ (ρ, q′) and
{|P̃ (ρ, q)|}Σ̃w = w′, where q′ = ρQ

(
q, w(0)

)
is the next state of ρ, and w′ =

ρ̃Σ̃

(
q, w

)
is the next tape configuration. (The string diagram is the same as the

one in Definition 8.)

Corollary 1. The monoidal computer C is Turing complete.
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6 Complexity

6.1 Evaluating Turing Processes

Using the process Q ⊗ Σ̃
p
⇀ Q ⊗ Σ̃, which according to Proposition 10 executes

the single step transitions of Turing processes, we would now like to define a
computation Q ⊗ Σ̃

p
⇀ Σ̃ that will evaluate Turing processes all the way; i.e.

should execute all transitions that a process executes, and halt and deliver the
output if the process halts, or diverge if the process diverges. The idea is to run
something like the following pseudocode

p
(
〈ρ, q〉, w

)
=

(
x := 〈ρ, q〉; y := w;

while
(
pQ(x, y) �= �

)

{
x := pQ(x, y); y := pΣ̃(x, y)

}
;

print y
)

(3)

We implement this program using the Fundamental Theorem of Computability.
The function p is derived as a Kleene’s fixed program for an intermediary function
p̃, lifting the derivation from Sect. 5, as follows

Q ⊗ ˜Σ
p
⇀ Q ⊗ ˜Σ

P ⊗ Q ⊗ ˜Σ
p̃
⇀ ˜Σ

Q ⊗ ˜Σ
p
⇀ ˜Σ

where p̃
(

Υ, 〈ρ, q〉, w
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

w if ρQ (q, w(0)) = �
{Υ}

(

〈ρ, q′〉, w′) otherwise

where q′ = ρQ

(

q, w(0)
)

and w′ = p
Σ̃

(

〈ρ, q〉, w
)

Using the if-branching from Sect. 3.1, this schema can be expressed in a
monoidal computer, as illustrated in the following Figure

{}¬�?

if = {}

p

P

Q Σ̃

Σ̃

Σ̃Q

P Σ̃

Σ̃

P̃

p̃

=

Σ̃

{}
P

Σ̃Q

P̃
p

=

Σ̃

{}

Σ̃Q

P̃

[ ]

P

(4)

The first equation is obtained by setting Υ to be Kleene’s fixed program P̃ of
p̃, and defining p = {P̃}. Given 〈ρ, q〉 ∈ Q and w ∈ Σ̃, this p thus runs ρ on w,
starting from q and halting at �, at which point it outputs the current w. If it
does not reach �, then ρ runs forever. The second equation proves the following
proposition.
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Proposition 11. There is an adaptive program P ∈ C •(Q,P) that evaluates
any Turing process ρ starting from a given initial state q ∈ Qρ. This means that
for every tape configuration w ∈ Σ̃ holds

{
P (ρ, q)

}
w = ρ(q, w).

6.2 Counting Time

To count the steps in the executions of Turing processes, we add a counter
i ∈ N to the Turing process evaluator p. The counter gets increased by 1 at each
execution step, and thus counts them. We call t the computation which outputs
the final count. If p halts, then t outputs the value of the counter i; if p does not
halt, then t diverges as well. The pseudocode for t could thus look something
like this:

t
(
〈ρ, q〉, w

)
=

(
x := 〈ρ, q〉; y := w; i := 0; (5)

while
(
pQ(x, y) �= �

)

{
x := pQ(x, y); y := pΣ̃(x, y); i := i + 1

}
;

print i
)

The implementation of t in a monoidal computer is similar to the implementation
of p. It follows a similar derivation pattern:

Q ⊗ ˜Σ
p
⇀ Q ⊗ ˜Σ

P ⊗ Q ⊗ ˜Σ ⊗ N
t̃

⇀ N

Q ⊗ ˜Σ
t

⇀ N

where ˜t
(

Υ, 〈ρ, q〉, w, i
)

=

{

i if ρQ (q, w(0)) = �
{Υ}

(

〈ρ, q′〉, w′, i + 1
)

otherwise

with q′ = ρQ

(
q, w(0)

)
and w′ = pΣ̃

(
〈ρ, q〉, w

)
. Like before, we set t

(
〈ρ, q〉, w

)
=

{
T̃

}(
〈ρ, q〉, w, 0

)
, where and T̃ is a Kleene fixed program of t̃. It is easy to see,

and prove, that t
(
〈ρ, q〉, w

)
halts if and only if ρ(q, w) halts, and if it does halt,

then it outputs the number of steps that ρ made before halting, having started
from q and w. The string diagrams that implement t̃, T̃ , t and T are similar to
those in figure (4): just rename ps to ts and P s to T s, and add a string of type N
on the right, with the successor operation on it, to increase the counter at each
run. The added string outputs the time complexity t. Hence

Proposition 12. There is an adaptive program T ∈ C •(Q,P) that outputs the
number of steps that a Turing process ρ makes in any run from a given initial
state q ∈ Qρ to the halting state �. If the Turing process ρ starting from q
diverges, then the computation {T (ρ, q)} diverges as well. This means that, for
every tape configuration w ∈ Σ̃ holds

{
T (ρ, q)

}
w = t

(
〈ρ, q〉, w

)
.
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6.3 Counting Space

So far, we used the integers Z as the index set for the tape configurations w :
Z → Σ. The position of the head has always been 0 ∈ Z, and whenever the head
moves, the tape configuration w gets updated to w′ = ρ̃Σ̃(q, w), where w′(0) is
the new position of the head, and the rest of the word w is reindexed accordingly,
as described in Sect. 5. At each point of the computation w thus describes the
tape content relative to the current position of the head ; there is no record of
the prior positions or contents. To count the tape cells used by Turing processes,
we must make the tape itself into a first class citizen. The simplest way to do
this seems to be to add a counter m ∈ Z, which denotes the offset of the current
position of the head with respect to the initial position. This allows us to record
how far up and down the tape, how far from its original position, does the head
ever travel in either direction during the computation. To record these maximal
offsets of the head, we need two more counters: let r ∈ Z be the highest value
that the head offset m ever takes; and let � ∈ Z be the lowest value that the
head offset m ever takes. The number of cells that the head has visited during
the computation is then clearly r− �. To implement this space counting idea, we
need to run a program roughly like this:

s
(
〈ρ, q〉, w

)
=

(

x := 〈ρ, q〉; y := w; �,m, r := 0;

while
(
pQ(x, y) �= �

)

{

x := pQ(x, y); y := pΣ̃(x, y);

if
(
ρΘ

(
q, w(0)

)
= 

)

{
if (m = �){� := � − 1}; m := m − 1

}

if
(
ρΘ

(
q, w(0)

)
= �

)

{
if (m = r){r := r + 1}; m := m + 1

}
}

print r − �

)

(6)

The derivation now becomes

Q ⊗ ˜Σ
p
⇀ Q ⊗ ˜Σ

P ⊗ Q ⊗ ˜Σ ⊗ Z3 s̃
⇀ N

Q ⊗ ˜Σ
s
⇀ N

where s̃
(

Υ, 〈ρ, q〉, w, �, m, r
)

=

⎧

⎪

⎨

⎪

⎩

r − � if ρQ (q, w(0)) = �
{Υ}

(

〈ρ, q′〉, . . .

. . . w′, �′, m′, r′) otherwise

and where
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q′ = ρQ

(
q, w(0)

)
�′ =

{
� − 1 if m = � and ρΘ

(
q, w(0)

)
= 

� otherwise

w′ = pΣ̃

(
〈ρ, q〉, w

)
m′ =

⎧
⎪⎨

⎪⎩

m − 1 if ρΘ

(
q, w(0)

)
= 

m if ρΘ

(
q, w(0)

)
=�

m + 1 if ρΘ

(
q, w(0)

)
= �

r′ =

{
r + 1 if m = r and ρΘ

(
q, w(0)

)
= �

r otherwise

Kleene’s fixed point S̃ of s̃ defines s
(
〈ρ, q〉, w

)
=

{
S̃

}(
〈ρ, q〉, w, 0, 0, 0

)
. The con-

struction is summarized in the following figure:

{}¬�?

if = {}

p

P

Q

N

Q

P

N

S̃

s̃

=

N

{}
P

Q

S̃

s

=

N

{}

Q

S̃

[ ]

S0

Σ̃

Σ̃

Σ̃ Σ̃
0

−

()′

Z3 Z3

Z3

	′ r′m′
	 r

r−	

(7)

The box ()′, which computes �′, m′ and r′ in Fig. (7), is implemented by compos-
ing several branching commands, e.g. as described at the end of Sect. 3.1. Imple-
menting this box is an easy but instructive exercise in programming monoidal
computers. Together, these constructions prove the following proposition.

Proposition 13. There is an adaptive program S ∈ C •(Q,P) that outputs the
number of cells that a Turing process ρ uses in any run from a given initial state
q ∈ Qρ to the halting state �. If the Turing process ρ starting from q diverges,
then the computation {S(ρ, q)} diverges as well. This means that, for every tape
configuration w ∈ Σ̃ holds

{
S(ρ, q)

}
w = s

(
〈ρ, q〉, w

)
.

Remark. There are many variations of the above definitions in the literature,
and several different counting conventions. E.g., an alternative to the above
definition of s would be something like

s′(〈ρ, q〉, w
)

=
{
S̃

}(
〈ρ, q〉, w, w�, 0, wr

)
where

w� = min{i ∈ Z | w(i) �= } wr = max{i ∈ Z | w(i) �= }

In contrast with s, where the space counting convention is that a memory cell
counts as used if and only if it is ever reached by the head, the space counting
convention behind s′ is that every computation uses at least |w| = wr −w� cells,
on which its initial input is written. If a Turing process halts without reading all
of its input w, or even without reading any of it, the space used will still be |w|.
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Some textbooks adhere to the s-counting convention, some to the s′-counting
convention, but many do not describe the process in enough detail to discern
this difference. This is perhaps justified by the fact that the resulting complexity
classes and their hierarchies are the same for all such subtly different counting
conventions. E.g., the difference between s and s′ is absorbed by the O-notation,
and only arises for computations that do not read their inputs.

7 Final Comments

A bird’s eye view of algebra and coalgebra in computer science suggests that
algebra provides denotational semantics of computation, whereas coalgebra pro-
vides operational semantics [23,40,45]. Denotational semantics goes beyond the
purely extensional view of computations (as maps from inputs to outputs), and
models certain computational effects (such as non-termination, exceptions, non-
determinism, etc.). Operational semantics goes further, and models computa-
tional operations. While computational effects are thus presented using the suit-
able algebraic operations in denotational semantics, computational behaviors
are represented as elements of final coalgebras in operational semantics. But
although both the denotational and the operational approaches go beyond the
purely extensional view, neither has supported a genuinely intensional view,
envisioned by Turing and von Neumann, where programs are data. Therefore,
in spite of the tremendous successes in understanding and systematizing com-
putational structures and behaviors, categorical semantics of computation has
remained largely disjoint from theories of computability and complexity.

The claim put forward in this paper is that coalgebra provides a natural cate-
gorical framework for a fully intensional categorical theory of computability and
complexity. The crucial step that enables this theory leads beyond final coalge-
bras, that assign unique descriptions to computational behaviors of fixed types,
to universal coalgebras, that assign non-unique descriptions to computations
of arbitrary types. These descriptions are what we usually call programs. Our
message is thus that programmability is a coalgebraic property, just like compu-
tational behaviors are coalgebraic. This message is formally expressed through
universal processes; it can perhaps be expressed more generally through universal
coalgebras, as families of weakly final coalgebras, all carried by the same univer-
sal state space. Theorem 9 spells out in the framework of monoidal computer
the fact that every Turing complete programming language provides a universal
coalgebra for computable functions of all types; and vice versa, every universal
coalgebra induces a corresponding notion of program. Just like abstract compu-
tational behaviors of a given type are precisely the elements of a final coalgebra
of that type, abstract programs are precisely the elements of a universal coalge-
bra. Just like final coalgebras can be used to define semantics of computational
behaviors [40], universal coalgebras can be used to define semantics of programs.
From a slightly different angle, the fact that universal coalgebras characterize
monoidal computers, proven in Theorem9, can also be viewed as a coalgebraic
characterization of computability. There are, of course, many characterizations
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of computability. The upshot of this one is, however, in Propositions 12 and 13:
the coalgebaic view of computability opens an alley towards complexity. In any
universe of computable functions, normal complexity measures [38] can be pro-
grammed coalgebraically. Combining this coalgebraic view of complexity with
the algebraic view of randomized computation seems to open up a path towards
a categorical model of one-way functions, and towards categorical cryptography,
which has been the original goal of this project [34].
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Abstract. Bisimulation and bisimilarity are fundamental notions in
comparing state-based systems. Their extensions to a variety of systems
have been actively pursued in recent years, a notable direction being
quantitative extensions. In this paper we present an abstract categorical
framework for such extended (bi)simulation notions. We use coalgebras
as system models and fibrations for organizing predicates—following the
seminal work by Hermida and Jacobs—but our focus is on the struc-
tural aspect of fibrational frameworks. Specifically we use morphisms of
fibrations as well as canonical liftings of functors via Kan extensions.
We apply this categorical framework by deriving some known properties
of the Hausdorff pseudometric and approximate bisimulation in control
theory.

1 Introduction

In the study of transition systems, bisimulation relations are a fundamental con-
cept, and their categorical study revealed the importance of coalgebras. One
approach to characterise bisimilarity is via liftings of the coalgebra functor
along fibrations [12], which are a well-established framework to attach relational
structures on categories for modelling transition systems and programming lan-
guages [14].

Recently, there is emerging interest in quantitative analysis of transition sys-
tems. Behavioural metrics were introduced in [5,7] to refine bisimilarity for prob-
abilistic transition systems. Metrics give a real number for each pair of states in
a transition system, while a relation can only provide a bit for each pair (whether
the pair is in the relation or not). Therefore a metric can indicate a degree to
which the behaviour of two states differ, whereas a bisimilarity relation can only
indicate whether or not those behaviours differ. From this observation, a com-
mon desideratum for behavioral metrics associated with coalgebras is that two
states should have distance 0 if and only if they are bisimilar.

Bisimilarity and behavioural metrics are also analogous on a categorical level.
Behavioural metrics were recently shown to be constructible from liftings of the
coalgebra functor to categories of (pseudo)metrics [2,3], similar to how Hermida-
Jacobs bisimulations are constructed from liftings of a functor to the category of
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relations. This type of construction is known generally as a coalgebraic predicate
and can be performed when a lifting of the coalgebra functor is known.

These developments present two natural issues. The first is an open-ended
quest for liftings of functors in general fibrations. These liftings are the rare ingre-
dient in forming coalgebraic predicates, so having a variety of liftings in a variety
of fibrations allows us to express more coalgebraic predicates. The second issue
is more recent and concerns the desired relationship between behavioural met-
rics and bisimilarity mentioned above. Given some liftings in different fibrations,
is there a relationship between the liftings we can use to verify a relationship
between the coalgebraic predicates they define on a given coalgebra?

The main contributions of this paper pertain to these two issues:

– We propose two methods to lift functors along fibrations, both of which gen-
eralise existing constructions. The first is the codensity lifting of endofunctors,
generalising Baldan et al.’s Kantorovich lifting [3] to arbitrary fibrations. This
lifting also represents a further development of the codensity lifting of monads
[15]. The second is the construction of an enriched left Kan extension using
the canonical symmetric monoidal closed structure [17] on the total category
in fibrations. This generalises Balan et al.’s construction [2] of enriched left
Kan extension for quantale-enriched small categories.
Apart from these lifting methods, we derive several methods to combine exist-
ing liftings. Using these methods, we construct the Hausdorff metric as the
pushforward of the lifting of the list functor along a particular transformation.

– We propose the use of predicate morphisms to translate between these liftings.
We use these translations to provide facilities for establishing relationships
between the coalgebraic predicates provided by these liftings on coalgebras.
We illustrate the utility of this approach with two examples. First, we demon-
strate the translation of approximate functions to ε-approximate relations,
which is the key technical tool used in control theory. Second, we translate
metrics to relations to show the kernels of many behavioural metrics are
bisimilarity relations.

Outline. In Sect. 2, we recall the important technical background for this work,
particularly focusing on a class of fibrations where each fibre category is a lat-
tice. In Sect. 3, we recall the construction of Hermida-Jacobs bisimulations and
general coalgebraic predicates. As mentioned above, these require a lifting of a
functor. Existence of such liftings is not guaranteed, and in Sect. 4 we present a
few generalizations of extant techniques for producing liftings in particular fibra-
tions to our more general class of fibrations. Finally, in Sect. 5, we use so-called
predicate morphisms to establish relationships between coalgebraic predicates,
focusing on deriving approximate functions from ε-approximate relations and
deriving bisimilarity as the kernel of behavioural metrics.

2 Background

In this paper, we are interested in finding data about a wide variety of state-
based transition systems. This data comes in a variety of types: relations, unary
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predicates, and pseudometrics are frequently found in the literature. Data of a
particular type can also satisfy a variety of properties. For example, we are inter-
ested in both a relation consisting of the states with exactly the same behaviours,
and a relation where the behaviours of the first member in the pair is a subset
of the behaviours of the second member of the pair.

We capture these degrees of flexibility with three largely orthogonal categor-
ical abstractions. First, we use coalgebras as a means of modeling many kinds of
transition systems. Second, fibrations represent the types of data we are inter-
ested in deriving about the states of a coalgebra. Finally, functor liftings together
with a property of fibrations allow us to model the different ways the same type
of data may be created. We review each of these concepts separately here.

We assume familiarity with basic category theory, but not necessarily with
the theory of fibrations.

2.1 Coalgebras

Coalgebras are our tool of choice for modeling state-based transition systems.
Given a Set endofunctor F , an F -coalgebra is a pair (I, f) consisting of a set I
and a function f : I → FI. The set is often called the carrier of the coalgebra,
while the function provides the transition structure of the coalgebra.

This pair is usually interpreted as a transition system under the following
scheme. The (object part of the) functor F is thought of as an operation which
sends a set of states to the set of all possible transition structures on that set.
The set I is the set of states of a transition system. Under this interpretation,
FI is then set of all the possible transition structures available using the set of
states I, so the transition structure map f : I → FI assigns one of these possible
transition structures to every state in I.

A coalgebra morphism φ : (I, f) → (J, g) is a function on the underlying state
sets φ : I → J which respects the transitions in the source coalgebra, meaning
g ◦ φ = Fφ ◦ f . F -coalgebras together with their morphisms form a category we
denote by Coalg(F ).

By varying the functor F , we can capture a wide variety of transition system
types, including deterministic and nondeterministic finite automata, Mealy and
Moore machines, probabilistic transition systems, Markov decision processes,
Segala systems and many more. For more background on the theory of coalgebra,
we recommend consulting [20].

2.2 Fibrations

A fibration over a category B is a functor π : E → B with a cartesian lifting
property. We will describe this property later, but intuitively, it allows us to take
the inverse image of objects in E along morphisms in B. The source category of
the fibration, E, is referred to as the “total category” and the target is the “base
category”.

Often the total category of a fibration is depicted vertically above the
base category and language referencing this physical configuration is common.
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An object or morphism ȧ in E is above or over an object or morphism a in
B means πȧ = a. The collection of objects and morphisms above an object I
and the idI morphism is called the fibre over I. Each of these fibres is itself a
subcategory of E, denoted by EI .

Now we discuss the cartesian lifting property. In a fibration1 over B, for every
morphism f : I → J in B and every object Y in E above J , there is a morphism
ḟ : f∗Y → Y such that ḟ is above f (hence f∗Y is above I). This morphism
is called a cartesian lifting of f with Y and is further required to satisfy the
following universal property: for all morphisms g : K → I in B and ḣ : Z → Y
in E above f ◦ g, there is a unique morphism ġ : Z → f∗Y above g such that
ḣ = ḟ ◦ ġ.

The operation sending Y to f∗Y is often called pullback.2

Pullback also sends morphisms in EJ to morphisms in EI by the universal
property. Straightforward checks show that the assignment Y �→ f∗Y extends
to a functor f∗ : EJ → EI . When g∗f∗ = (f ◦ g)∗ and id∗

I = IdEI
holds, we say

that the fibration is split.
A functor π is a cofibration if πop : E

op → B
op is a fibration, and bifibration if

π and πop are fibrations. Pullback in πop is denoted by f∗, and called pushforward.
In a bifibration, the pullback f∗ is a right adjoint to pushforward f∗ [14, Lemma
9.1.2].

A common scenario encountered in the study of fibrations is that each fibre EI

has a categorical structure, say X, and pullback functors preserve these fibrewise
structures. When this is the case, we say that the fibration has fibred X. For
instance, a fibration π : E → B has fibred final objects if (1) each fibre EI

has a final object, and (2) for any morphism f : I → J , the pullback functor
f∗ : EJ → EI preserves final objects. The fibrewise structure and the structure
on the total category often have a close relationship. We state it next for the
case X = “limit”.

Theorem 1 ([14]). Let π : E → B be a fibration and D be a category. If B has
limits of shape D, and π has fibred limits of shape D, then E also has limits of
shape D.

The dual version of this theorem also holds, replacing fibration with cofibration,
limit with colimit and pullback with pushforward.

We also mention the preservation of fibrations by functor-category construc-
tion:

Theorem 2. For any fibration π : E → B and category C, π◦− : [C, E] → [C, B]
is also a fibration.

In this work, we are interested in state-based transition systems. Hence, the
fibrations we are most interested in have B = Set. Indeed, most of the total
1 In this work we always assume that a cleavage is given to a fibration.
2 In this paper we shall use the word pullback in this fibrational sense. This usage gen-

eralizes the word’s common meaning as a limit of a cospan in a category. Specifically,
the latter gives a (fibrational) pullback in a codomain fibration. See [14].
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categories we are interested in are sets equipped with some extra structure, such
as sets with relations or sets with a metric. In these cases, the forgetful functor
is usually a fibration.

Example 3. The forgetful functors from the following categories to Set are fibra-
tions:

– Pre is the category of preorders and monotone functions between them.
– ERel is the category of endorelations. An object is a pair (I,R) of a set I and

a relation R ⊆ I × I. Morphisms are functions which preserve the relation,
meaning f : (I,R) → (J, S) is a function f : I → J such that i R i′ implies
f(i) S f(i′).

– RERel is the category of R
+-indexed endorelations.3 That is, an object is a

pair (I,R) of I ∈ Set and a R
+-indexed family {Rε}ε∈R+ of endorelations on

I monotone in the index, so δ ≤ ε implies Rδ ⊆ Rε. Morphisms are required
to preserve the relation at each value ε, meaning i Rε i′ implies f(i) Sε f(i′)
for all ε.

– BVal is the category of all R
+-valued binary endorelations. Objects in this

category are pairs (I, r) of a set I together with a function r : I×I → R
+, with

no constraints. Morphisms in this category are required to be non-expansive,
so f : (I, r) → (J, s) satisfies s(f(i), f(i′)) ≤ r(i, i′) for all i, i′ ∈ I.

– PMetb is the full subcategory of BVal consisting of b-bounded pseudometric
spaces, for a fixed bound b ∈ (0,∞].4 An extended pseudometric is an ∞-
bounded pseudometric, and the category of extended pseudometrics is called
EPMet.

– Top,Meas are the categories of all topological/measurable spaces and con-
tinuous/measurable functions between them, respectively.

– V-Cat, with a commutative quantale V, is the category of small V-categories
and V-functors between them. The forgetful functor extracts the object part
of small V-categories. This category is used in [2] as a generalisation of metric
spaces.

Technically, a fibration is a functor, particularly the forgetful functor in the
examples above. In these examples, however, the functor is relatively unremark-
able, so we will abuse terminology slightly and refer to the fibration by the name
of the total category.

Cartesian morphisms in ERel preserve and reflect their source relation, in
RERel they preserve and reflect the relation at each index, and in BVal and
PMetb they are isometries, replacing the inequality in the condition for non-
expansiveness with equality.
3 Throughout this paper, we write R

+ = [0, ∞].
4 A b-bounded pseudometric on a set I is a function r : I × I → [0, b] which satisfies

the axioms of a pseudometric: (1) r(i, i) = 0, (2) r(i, i′) = r(i′, i), and (3) r(i, i′′) ≤
r(i, i′) + r(i′, i′′) for all i, i′, i′′ ∈ I. A pseudometric drops only the definiteness
condition of a metric, so r(i, i′) = 0 does not imply i = i′ when r is a pseudometric.
This is crucial for our intended application to coalgebras where distinct states may
have identical behaviours and we wish the distance between two states to reflect the
difference in their behaviours only.
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2.3 CLat∧-Fibrations Over Set

In this paper, we focus on the fibrations over Set such that (1) each fibre category
is a complete lattice and (2) pullbacks preserve all meets in fibres. Such fibrations
bijectively correspond to functors of type Setop → CLat∧ via the Grothendieck
construction, where the codomain is the category of complete lattices and meet-
preserving functions between them. Following [1, Sect. 4.3], we call such fibrations
CLat∧-fibrations over Set, or simply CLat∧-fibrations in this paper. This is a
restricted class of topological functors to Set [13], where each fibre category is a
poset.

There are indeed many examples of CLat∧-fibrations over Set, covering a
wide range of mathematical objects, including preorders, predicates, relations,
pseudometrics, topologies, σ-fields and so on. In particular, every fibration listed
in Example 3 is a CLat∧-fibration.

We introduce a notation: for objects X,Y ∈ E in a CLat∧-fibration π : E →
Set and a function f : πX → πY , by f : X →̇ Y we mean the sentence: “there
exists a (necessarily unique) ḟ : X → Y such that πḟ = f”. For instance, in the
CLat∧-fibration π : Top → Set, f : X →̇ Y is equivalent to the sentence “a
function f : πX → πY is a continuous function from X to Y .

Despite their simple definition, CLat∧-fibrations have many useful prop-
erties. Let π : E → Set be a CLat∧-fibration. The following properties are
well-known:

– π is a split bifibration. (Each fibre is a poset and each pullback functor f∗ :
EJ → EI has a left adjoint f∗ : EI → EJ by the adjoint functor theorem.)

– π is faithful and has left and right adjoints, mapping I ∈ Set to the least and
greatest elements in EI , respectively. We name the left adjoint Δ : Set → E.
Intuitively, it constructs discrete spaces of given sets.

– E has small limits and colimits by Theorem 1.
– π uniquely lifts arbitrary limits and colimits that exist in Set, including large

ones. We describe this for the case of colimits. For any diagram F : D → E

and a colimiting cocone {ιD : πFD → C}D∈D of πF in Set, there exists a
unique colimiting cocone {ι̇D : FD → Ċ}D∈D of F in E such that πι̇D = ιD.
The colimit Ċ is given as

∨
D∈|D|(ιD)∗(FD). The same statement holds for

coends instead of colimits.
– The change-of-base of a CLat∧-fibration π : E → Set along any F : Set →

Set is again a CLat∧-fibration.

Another less known, but important fact is that the total category E of any
CLat∧-fibration over Set carries a canonical (affine) symmetric monoidal closed
(SMC for short) structure. The one on Top is described in [4,21]. The following
construction of the SMC structure is a reformulation of the one given in [17]
using fibred category theory.

The tensor unit is a chosen terminal object 1.
The tensor product of X,Y ∈ E is constructed as follows. Let us define πX ·Y

to be the coproduct of πX-many copies of Y . We explicitly construct it above
πX × πY by
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πX · Y =
∨

x∈πX

(x,−)∗Y,

where (x,−) : πY → πX × πY is the function that pairs an argument with a
specified x ∈ πX. We similarly define X ·πY to be the coproduct of πY -many
copies of X, again constructed above πX × πY . We then define the tensor
product of X and Y to be the join of these two in the fibre over πX × πY :

X ⊗ Y = (πX · Y ) ∨ (X · πY ).

This tensor product classifies bi-E-morphisms in the following sense: a func-
tion f satisfies f : X⊗Y →̇Z if and only if f(x,−) : Y →̇Z and f(−, y) : X→̇Z
holds for any x ∈ πX and y ∈ πY .

The closed structure of X,Y ∈ E is constructed as follows. We first construct
the product πX � Y of πX-many copies of Y above Set(πX, πY ) by

πX � Y =
∧

x∈πX

(−(x))∗Y,

where −(x) : Set(πX, πY ) → πY is the function that evaluates an argument
function with a specified x ∈ πX. We then define the closed structure X � Y
to be the pullback of πX � Y along the morphism part πX,Y : E(X,Y ) →
Set(πX, πY ) of π:

X � Y = π∗
X,Y (πX � Y ).

We note that both π : E → Set and its left adjoint Δ : Set → E are strict
symmetric monoidal (for Set we take the cartesian monoidal structure).

Example 4. We illustrate the bifibrational structure of BVal. Let us recall the
order relation in the fibre categories. The following are equivalent: (1) in the
fibre BValI , (I, r) ≤ (I, s) holds, (2) idI is a nonexpansive function from (I, r)
to (I, s), and (3) s(x, y) ≤ r(x, y) holds for all x, y ∈ I. Note the apparent
disparity between (1) and (3): though r ≤ s in the fibre order, s has smaller
values than r pointwise.

Next, let (I, r) ∈ BVal and H
f �� I

g �� J be functions. The pullback
(H, f∗r) and the pushforward (J, g∗r) are given by

f∗r(x, y) = r(f(x), f(y)), g∗r(x, y) = inf
g(p)=x
g(q)=y

r(p, q).

The fibrational construction of the canonical SMC structure on BVal yields the
following tensor product and closed structure:

(I, r) ⊗ (J, s) =

⎛
⎜⎜⎝I × J, λ((x, y), (x′, y′)) .

⎧⎪⎪⎨
⎪⎪⎩

∞ x �= x′ ∧ y �= y′
s(y, y′) x = x′ ∧ y �= y′
r(x, x′) x �= x′ ∧ y = y′
min(r(x, x′), s(y, y′)) x = x′ ∧ y = y′

⎞
⎟⎟⎠

(I, r) � (J, s) =

(
BVal((I, r), (J, s)), λ(f, f ′) . sup

x∈I
s(πf(x), πf ′(x))

)
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2.4 Liftings

Another major object of study in this work are liftings of a functor. Given a Set
endofunctor F and two functors π : E → Set and ρ : F → Set, a lifting of F is
a functor Ḟ : E → F such that ρ ◦ Ḟ = F ◦ π. In many of the cases we consider
π = ρ, so Ḟ is an endofunctor on the domain of π. To emphasize this particular
situation we will call such an Ḟ an endolifting. In [11], endoliftings were called
modalities.

Obviously, we will also usually be considering a situation where π and ρ are
CLat∧-fibrations. In such a case, restricting a lifting to a particular fibre yields
a functor between fibre categories: Ḟ |I : EI → FFI . Some liftings also specially
respect the cartesian morphisms of the fibrations they operate between. A lifting
is called a fibration morphism if it sends cartesian morphisms in E to cartesian
morphisms in F.

Notation. We pause here to set out some notational conventions, some of which
have already been used. Set is the category of sets and functions. Typical objects
of Set are denoted I, J , and K and typical morphisms are denoted f , g, and h.
Generally, F is a Set endofunctor, CI is the constant-to-I Set endofunctor, −∗

is the list functor, and Pfin is the finite (covariant) powerset functor.
Abstract categories are denoted D, E, and F and are often the total category

for a CLat∧-fibrations over Set with functors π or ρ. In such a case, applying
a dot or two over a Set-related entity denotes an entity in the total category
above the named Set-related entity. For example, İ is an object in the total
category, ḟ is a morphism in the total category, ×̇ is the binary product in the
total category, and Ḟ is a lifting of F to the total category. We will also generally
use X, Y , and Z as objects in a total category.

Two fibrations—BVal and ERel—are important enough to merit their own
notations. Generally, r and s will denote the function in a BVal object, while R
and S are the relation in an ERel object. Generally, writing a ·̂ or ·̃ over a Set-
related entity has the same meaning as a dot over that entity, but particularly
for the total categories BVal and ERel, respectively.

The length of a list is denoted len and subscripts shall be used to select an
element from a list at the indicated (zero-indexed) list position.

3 Endoliftings and Invariants

In this section, we describe how CLat∧-fibrations and liftings of a functor F to
that fibration can be used to define data about every F -coalgebra. Perhaps the
best-known instance of this construction creates Hermida-Jacobs bisimulations
from the canonical relation lifting of a functor along ERel → Set. We describe
this example first, particularly for polynomial functors F .

3.1 Relation Liftings Define Coalgebraic Relations

Recall from the previous section the fibration ERel has objects consisting of
pairs (I,R) where I is a set and R ⊆ I × I is a relation on that set. The fibre
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category ERelI is (isomorphic to) the lattice of relations on I with a vertical
morphism from (I,R) to (I, S) if and only if R ⊆ S.

A consequence of the equivalence between inclusion of relations in a fibre and
the existence of a vertical morphism between them is that any functor between
fibre categories in ERel is necessarily a monotone function on relations with
respect to the usual inclusion ordering.

Two important cases where we can apply this fact are (1) ERel liftings of
functors restricted to a fibre and (2) pullbacks along Set functions, since these
are both functors between fibre categories. If F̃ is an ERel lifting of F , then
F̃ |ERelI is a monotone function ERelI → ERelFI . Similarly, if f : I → FI
is an F -coalgebra structure on I, pullback along f is a monotone function f∗ :
ERelFI → ERelI .

Composing the above functions yields a monotone function f∗ ◦ F̃ |ERelF I
on

ERelI . Since ERelI is a complete lattice, this composite monotone function
has a greatest fixed point, which we denote by (I, νF̃(I,f)). The relation νF̃(I,f)

picked out in this greatest fixed point has historically turned out examples of
great interest.

Perhaps foremost among these examples is the so-called canonical relation
lifting, which yields bisimilarity as its greatest fixed point. We recall the descrip-
tion of this lifting for polynomial endofunctors.5 The polynomial Set endofunc-
tors are precisely those generated by the following grammar:

P ::= Id | CA | ∐
i Pi | P1 × P2

We can create an ERel lifting for any polynomial P with constructions for each
of the inductive cases.

Definition 5 (canonical relation lifting). Let
∐̃

and ×̃ be the coproduct and
binary product operations in ERel, respectively. (These exist by Theorem 1.) The
canonical relation lifting of a polynomial Set functor P is:

Rel(P ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ĩd = IdERel ifP = IdSet,

C̃A : (I,R) �→ (A,ΔA) ifP = CA,
∐̃

i Rel(Pi) ifP =
∐

i Pi, and

Rel(P1)×̃ Rel(P2) ifP = P1 × P2.

Given a polynomial Set functor P and a P -coalgebra (I, f), we can use the
canonical relation lifting Rel(P ) to form the function f∗◦Rel(P )|ERelI . Postfixed
points of this function in ERelI give a useful general definition of bisimulation
on (I, f) [12]. The greatest postfixed point νRel(P )(I,f) is bisimilarity on this
coalgebra.

5 The canonical relation lifting can in fact be defined for all functors using image
factorization in Set. We use the less-general inductive version as we will need it in
Sect. 5.
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Example 6. As two examples of the canonical relation lifting, we present bisim-
ulation on coalgebras of the list functor and on coalgebras of the finite powerset
functor. These examples will be referenced later when we construct behavioural
metrics on the same coalgebra types similarly to how we do it here.

The list functor is defined as (−)∗ =
∐

n∈ω

∏
i∈n Id. Following the inductive

definition above, each summand in the coproduct,
∏

n Id, sends a relation R to
the n-fold repetition of R: two lists k, � of length n are related by Rel(

∏
n Id)(R)

if kiR�i holds for 0 ≤ i < n. The canonical relation lifting for
∐

n∈ω

∏
n Id then

relates two lists k, � of arbitrary length if and only if len(k) = len(�) (they come
from the same index in the coproduct), and kiR�i holds for 0 ≤ i < len(k). In
other words, (k, �) ∈ Rel(

∏
n Id)(R).

The finite powerset functor is the quotient of the list functor by the trans-
formation setI : I∗ → PfinI given by setI : (i1, . . . , in) �→ {i1, . . . , in}. The
pushforward of the lifting for the list functor along this natural transformation
is the usual definition of bisimulation for the finite powerset functor. Explicitly,

Rel(Pfin)(R) = {(J, K) ∈ PfinI × PfinI : ∀j ∈ J, ∃k ∈ K.jRk ∧ ∀k ∈ K, ∃j ∈ J.jRk}

3.2 Generalizing Hermida-Jacobs Bisimulation

The necessary components to define Hermida-Jacobs bisimulation conveniently
can be found in any CLat∧-fibration with any endolifting of any functor. Thus,
we can define the abstract counterpart of a bisimulation. This terminology is
intended to echo [11].

Definition 7. Let Ḟ be a endolifting for F . An Ḟ -invariant [on an F -coalgebra
(I, f)] is an Ḟ -coalgebra (X,α) [such that πX = I and πα = f ].

An Ḟ -invariant morphism is an Ḟ -coalgebra morphism.

Ḟ -invariants and Ḟ -invariant morphisms together form a category, in fact
exactly the category Coalg(Ḟ ). Ḟ -invariants also evidently sit over F -coalgebras
according to π, so we name the functor sending Coalg(Ḟ ) to Coalg(F ).

Definition 8. Given a endolifting Ḟ on a functor F , the underlying coalgebra
functor Coalg(π) : Coalg(Ḟ ) → Coalg(F ) is defined as

Coalg(π)(X,α) = (πX, πα), Coalg(π)h = h.

Since π is faithful in a CLat∧-fibration, the coalgebra structure α of an Ḟ -
invariant (X,α) on (I, f) is unique. Therefore, an alternative definition of an
Ḟ -invariant on (I, f) is an object X above I such that there exists a (necessarily
unique) morphism α : X → ḞX above f .

Yet another definition of an Ḟ -invariant can be derived from the lattice struc-
ture of EI . For each coalgebra (I, f), there is a monotone function f∗ ◦ Ḟ |EI

:
EI → EFI → EI as described above. An Ḟ -invariant on (I, f) is then precisely
a postfixed point for this function.

A useful consequence of this last characterization is the observation that since
each fibre EI is a complete lattice, Knaster-Tarski ensures the Ḟ -invariants on
(I, f) form a complete sublattice. In particular
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Definition 9. The greatest Ḟ -invariant on an F -coalgebra (I, f) always exists
and is called the Ḟ -coinductive invariant. We denote the Ḟ -coinductive invariant
on (I, f) by νḞ(I,f).

We can alternatively reach νḞ(I,f) by the final sequence argument inside the
fibre EI ; this is the approach taken in [3]. In [11], coinducive invariants were
called coinductive predicates.

Ḟ -similarities give final objects within each fibre category, but there is no
assurance of a final object in the total category, nor that final objects are pre-
served by coalgebra morphisms. The next result, which reorganizes results pre-
sented in [11, Sect. 4], sets out some conditions entailing these desiderata.

Theorem 10. Let Ḟ be a endolifting for F . If it preserves cartesian morphisms,

1. [11, Proposition 4.1]. The underlying coalgebra functor Coalg(π) : Coalg(Ḟ )
→ Coalg(F ) is a fibration where pullbacks are the same as in the fibration π.

2. Each pullback functor of Coalg(π) preserves final objects (hence Coalg(Ḟ )
has fibered final objects).

3. If additionally Coalg(F ) has a final object νF , then Coalg(Ḟ ) has a final
object.

For the item 2 and 3 of the above theorem, see also [11, Corollary 4.3].
This theorem is a fibred counterpart of some results in Sect. 6 of [3]. To see

this, we instantiate Theorem 10 with the following data: the CLat∧-fibration
π : PMetb → Set (Sect. 2), a functor F : Set → Set having a final F -coalgebra
νF and a lifting Ḟ of F along π that preserves cartesian PMetb morphisms
(isometries). Then

– Theorem 6.1 in [3] is equivalent to the conclusion of (this instance of) item 3
of Theorem 10.

– Let I = (I, f) be an F -coalgebra, and !I : I → νF be the unique F -coalgebra
morphism. The behavioural distance of I in [3] corresponds to the pullback
!∗I(νḞνF ) in our fibrational language.

– Theorem 6.2 in [3] corresponds to νFI =!∗I(νḞνF ), which follows from (this
instance of) item 2 of Theorem 10.

4 Constructions of Liftings Along CLat∧-Fibrations

There are many examples of liftings of functors in well-known fibrations, such
as the fibration of relations or pseudometrics. Some of these liftings even form
classes which cover all functors, such as the canonical relation lifting or the
generalized Kantorovich liftings of [3], which ensure every functor has a lifting
in ERel and PMetb respectively. In this work we are considering a variety of
fibrations, so a natural concern is whether liftings of Set functors exist in all of
these CLat∧-fibrations.
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In this section, we generalize a variety of constructions known in particu-
lar fibrations to arbitrary CLat∧-fibrations. In Sects. 4.1 and 4.2, we give two
constructions, the first using enriched left Kan extensions and the second using
codensity liftings. Then in Sect. 4.3 we mention how to use the categorical struc-
ture of the CLat∧-fibration to create new liftings from old.

Hence, in this section we find ourselves with the ingredients F and π:

Set F �� Set E
π�� π : CLat∧-fibration (1)

and seek to create an endolifting of F in a variety of ways.

4.1 Lifting by Enriched Left Kan Extensions

The canonical SMC structure on E (Sect. 2) allows us to discuss enriched liftings
of F to E

e, the self-enriched category of E with its SMC structure. To discuss
this, we introduce some E-categories and E-functors.

– By E
e we mean the self-enriched E-category of E (that is, E

e(X,Y )= X � Y ).
– Since the left adjoint Δ : Set → E of π (see Sect. 2.3) is strict monoidal, it

yields the change-of-base 2-functor Δ∗ : CAT → E-CAT. It takes a locally
small category C and returns the E-category Δ∗C defined by Obj(Δ∗C) =
Obj(C) and (Δ∗C)(I, J) = Δ(C(I, J)).

– For any functor G : C → E, we define the E-functor G : Δ∗C → E
e by:

GI = GI, and GI,J : (Δ∗C)(I, J) → E
e(GI,GJ) is the mate of GI,J :

C(I, J) → E(GI,GJ) with the adjunction Δ � π; recall that π(Ee(X,Y )) =
π(X � Y ) = E(X,Y ) by construction.

The following is a generalisation of [2, Theorem 3.3].

Theorem 11. Consider the situation (1). Let C : Set → E be a functor such
that πC = F . Then there is an enriched left Kan extension Ḟ of C : Δ∗Set → E

e

along Δ : Δ∗Set → E
e such that its underlying functor Ḟ0 : E → E (see [16]) is

a lifting of F along π.

Proof. Since the codomain E
e of C has E-tensors, the enriched left Kan extension

can be computed by the enriched coend:

LanΔCX =
∫ I∈Δ∗Set

E
e(ΔI,X) ⊗ CI;

see [16, (4.25)]. We define the body of this coend by B(I, J) = E
e(ΔI,X)⊗CJ .

It is an E-functor of type (Δ∗Set)op ⊗ Δ∗Set → E
e. Similarly, we define an

ordinary functor B : Setop × Set → E by B(I, J) = B(I, J) on objects and
B(f, g) = πB(I,J),(I′,J ′)(f, g) on morphisms. A calculation shows that B is equal
to the ordinary functor λ(I, J) . (LI � X) ⊗ CJ .
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Because the codomain of B is E
e, the enriched coend can be computed as an

ordinary colimit of the following large diagram in E [16, Sect. 2.1]:

· · · B(I, I) B(J, J) · · ·

· · ·

���������

���������
Δ∗Set(J, I) ⊗ B(I, J)

rI,J

�������������lI,J

�������������
· · ·

���������

		�������

(2)

where I, J ranges over all objects in Set, and lI,J and rI,J are the uncurrying
of B(I,−)J,I and B(−, J)I,J , respectively.

In E, ΔI ⊗ X is a tensor of X with I ∈ Set because

E(ΔI ⊗ X,Y ) � E(ΔI,X � Y ) � Set(I, π(X � Y )) = Set(I, E(X,Y )).

We name the passage from right to left φ. The bottom objects of diagram (2)
are thus tensors of B(I, J) with Set(J, I) for each I, J ∈ Set, and moreover, by
easy calculation, we have lI,J = φ(B(I,−)) and rI,J = φ(B(−, J)). Therefore
a colimit of the diagram (2) can be computed as an ordinary coend of B :
Setop × Set → E.

To compute this (large) coend of B, it suffices to show that the coend of πB
exists in Set, because π uniquely lifts coends. We have a natural isomorphism
ιI,J : πB(I, J) → Set(I, πX) × FJ , and the right hand side has a coend {iI :
Set(I, πX) × FI → FπX}I∈Set defined by iI(f, x) = Ffx. Therefore since π
uniquely lifts colimits (Sect. 2.3), we obtain a coend of B. To summarise, the
enriched left Kan extension is computed as

LanΔCX =
∨

I∈Set

(iI ◦ ιI,I)∗((LI � X) ⊗ CI).

Example 12. Let π : Pre → Set be the CLat∧-fibration from the category Pre
of preorders and F : Set → Set be a functor. We compute the enriched left
Kan extension LanΔΔF . For (X,≤) ∈ Pre, the enriched left Kan extension
LanΔΔF (X,≤X) is the preorder on FX generated from the following binary
relation:

{(Ffa, Fga) | I ∈ Set, a ∈ FI, f, g ∈ Set(I,X),∀i ∈ I . fi ≤X gi}
= {(Fp1a, Fp2a) | a ∈ F (≤X)}

where pi : (≤X) → X is the composite of the inclusion (≤X) ↪→ X × X of the
preorder relation and the projection function πi : X × X → X.

When F is the powerset functor P , the enriched left Kan extension
LanΔΔP (X,≤X) gives the Egli-Milner preorder �X on PX, as computed in
[2, Example 3.8]:

V �X W ⇐⇒ (∀v ∈ V . ∃w ∈ W . v ≤X w) ∧ (∀w ∈ W . ∃v ∈ V . v ≤X w).
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4.2 Codensity Lifting of Endofunctors

As an analog to the codensity lifting of monads along CLat∧-fibrations
[15, Proposition10], we give a method to lift Set-endofunctors along CLat∧-
fibrations. We retain the name and call it the codensity lifting (of Set-
endofunctors). We demonstrate in Example 15 that it subsumes the Kantorovich
lifting in [3].

Consider the situation (1). We take the category SetF of F -algebras and the
associated forgetful functor U : SetF → Set. It comes with a natural transfor-
mation α : FU → U , whose components are defined by the F -algebra structure:
α(A,a) = a : FA → A.

The codensity lifting of F is defined with respect to a lifting parameter for F ,
which is a pair (R,S) of functors from a discrete category A such that πS = UR:

A
S ��

R




E

π




SetF

U
�� Set

SetF : category of F -algebras
U : forgetful functor
πS = UR

(3)

Then the codensity lifting F [R,S] of F with respect to the above lifting param-
eter (R,S) is defined by the following fibred meet:

F [R,S]X =
∧

A∈A,f∈E(X,SA)

(αRA ◦ Fπf)∗(SA).

The codensity lifting can be characterise as a vertex of a pullback when the
codensity monad RanSS exists. Suppose that RanSS exists. Since the CLat∧-
fibration π : E → Set preserves all limits, πRanSS is a right Kan extension of πS
along S. We then take the mate of the natural transformation αR : FπS → πS
with the right Kan extension of πS along S, and obtain αR : Fπ → πRanSS.

Theorem 13. Suppose that RanSS exists. Then F [R,S] is the vertex of the
following pullback in the fibration [E, p] : [E, E] → [E,Set]:

F [R,S] �� RanSS [E, E]

p◦−




Fπ
αR

�� πRanSS [E,Set]

The codensity lifting enjoys the following universal property. First, we intro-
duce a partial order on the liftings of F by: Ḟ ≤ F̈ if and only if ḞX ≤ F̈X
holds for all X ∈ E. Moreover, we say that a lifting Ḟ of F along π makes S an
algebra above R if, αRA : ḞSA →̇ SA holds for all A ∈ A.

Theorem 14. Consider the situation (1) and a lifting parameter given as (3).
The codensity lifting F [R,S] of F is the largest lifting of F that makes S an
algebra above R.



204 D. Sprunger et al.

Example 15. Fix a bound b ∈ (0,∞] for metrics. We show that the Kantorovich
lifting in [3] is a codensity lifting along the CLat∧-fibration π : PMetb → Set.
Let α : F [0, b] → [0, b] be an F -algebra; in [3] it is called an evaluation function.
We then form the following lifting parameter: A = 1, R = ([0, b], α), and S =
([0, b], de), where de is the standard Euclidean distance de(x, y) = |x−y| on [0, b].
Then the codensity lifting with this parameter yields the following construction
of pseudometric:

F [R,S](I, r) = (FI, r′)
r′(x, y) = sup {|α((Fπf)(x)) − α((Fπf)(y))| | f ∈ PMetb((I, r), S)} .

This is exactly the Kantorovich lifting in [3, Definition 3.1].

4.3 Combining Liftings

We have seen two methods to lift endofunctors. In this section, we discuss build-
ing new liftings from existing ones. Below we set up a suitable category in which
these operations are characterised as categorical constructions.

Let π : E → Set be a CLat∧-fibration. Then π ◦ − : [E, E] → [E,Set] is a
partial order bifibration with fibred meets of arbitrary size. We take the following
change-of-base of this fibration along − ◦ π:

Lift(π)

q




�� [E, E]

π◦−




[Set,Set] −◦π
�� [E,Set]

The vertex of this change-of-base is the category Lift(π) of liftings along π.
An object is a pair (F, Ḟ ) of an endofunctor F : Set → Set and its lifting
Ḟ : E → E along π. A morphism from (F, Ḟ ) to (G, Ġ) is a pair (α, α̇) of natural
transformations α : F → G and α̇ : Ḟ → Ġ such that πα̇ = απ.

The derived vertical leg q : Lift(π) → [Set,Set] is also a partial order
bifibration with fibred meets (of arbitrary size). Since [Set,Set] has small limits
and colimits, by Theorem 1, Lift(π) has small limits and colimits, hence small
products and coproducts.

The bifibredness of q, together with these products and coproducts give us a
recipe to combine liftings.

Identity and Constant. The lifting of IdSet is IdE, while the lifting of the
constant functor CI(J) ≡ I is ĊI(X) ≡ ΔI.
Product and Coproduct. Let (Fi, Ḟi) be an I-indexed family of liftings
along π. Then their product and coproduct are computed pointwise.
Pullbacks and Pushforwards. For a lifting (F, Ḟ ) along π and natu-

ral transformations H
α �� F

β �� G , the pullback lifting α∗F above H and
pushforward lifting β∗F above G are computed pointwise in the fibration
π : E → Set:
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(α∗Ḟ )(X) = (απX)∗(ḞX), (β∗Ḟ )(X) = (βπX)∗(ḞX).

In particular, these constructions ensure all polynomial and finitary functors
in Set have at least one lifting in every CLat∧-fibration.

4.4 The Hausdorff Pseudometric

As an example of how liftings can be constructed with these basic operations,
we demonstrate the construction of the Hausdorff pseudometric on finite sets
in a BVal lifting of the finite powerset functor. Our version of the Hausdorff
distance will take a BVal object (I, d) and create a BVal object (PfinI, Hd).

Recall that the finite powerset can be realized as a quotient of a polynomial
functor with the following construction. First, recall the list functor: (−)∗ =∐

n∈ω

∏
i∈n Id. This is patently a polynomial functor. Then the finite powerset

functor is the quotient of the list functor by the natural transformation setI :
I∗ → PfinI from Example 6.

We can build up a BVal lifting of the finite powerset functor in parallel with
this construction. First, using the product and coproduct in BVal we derive a
BVal lifting for the list functor. Given a BVal object (I, d) the lifted distance
on lists k, � ∈ I∗ is:

d∗(k, �) =

{
max

0≤i<len(k)
d(ki, �i) if len(k) = len(�)

∞ if len(k) �= len(�)

Then a BVal lifting for the finite powerset functor arises as the pushforward of
the list lifting along the transformation set. In Example 4, we found pushforward
in BVal explicitly so, Hd(J,K) = inf

k∈I∗: set(k)=J

∈I∗: set(
)=K

d∗(k, �). We have denoted this

distance Hd since it turns out to be equal to the usual Hausdorff distance.
However, this is not the usual formulation for the Hausdorff distance, so we
briefly discuss why this is equivalent.

The usual definition of Hausdorff distance for a metric space is

Hd(J,K) = max
(

sup
y∈J

inf
z∈K

d(y, z), sup
z∈K

inf
y∈J

d(y, z)
)

where J,K ⊆ I. Typically the Hausdorff distance is also restricted to nonempty
compact subsets of the metric space so that Hd is truly a metric. (Otherwise
Hd(J,K)= 0 does not imply J = K, for example.) Since we are interested in
pseudometrics anyway, we do not place any such restriction on the domain of Hd.

In the finite case, the Hausdorff distance has a game theoretic interpretation
as the result of a two-turn game played between a lazy walker (Gerry) and an
antagonist (Tony). In the first round, Tony picks a starting point from either J
or K for Gerry. In the second round, Gerry walks from Tony’s starting point in
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J(K) to any point in K(J). The result of the game is the distance Gerry walks.
Gerry’s goal is to minimize this distance; Tony’s goal is to maximize it.

Gerry’s optimal strategy is straightforward. Given a starting point, Gerry
finds the distances to the (finitely many) points in the other set and picks the
least one. Since Gerry’s optimal strategy is clear, Tony can make a list consisting
of all the points in J ∪ K and the distance Gerry will have to walk if that point
is used as the starting point. Then Tony’s optimal strategy is to pick the starting
point corresponding to the greatest distance on this list.

This analysis indicates we can interchange the order of the players and obtain
a game with the same result: Gerry can first announce where he will walk given
every possible choice of starting point, then Tony picks one of the choices offered
by Gerry. If Tony is given two lists k and � by Gerry, he will be to force the
result of this modified game to be

d∗(k, �)

where d∗ is the list distance defined above. Gerry’s best strategy is to pick k
and � with the closest corresponding distances possible, making the final result
of this modified game

inf
k∈I∗: set(k)=J

∈I∗: set(
)=K

d∗(k, �)

where the constraints set(k) = J and set(�) = K express the fact that Gerry
must make a choice for every single starting point. Since these games have the
same result, we know

max
(

sup
y∈J

inf
z∈K

d(y, z), sup
z∈K

inf
y∈J

d(z, y)
)

= inf
k∈I∗: set(k)=J

∈I∗: set(
)=K

d∗(k, �)

Therefore, our formulation of the Hausdorff distance is equal to the usual formu-
lation of the Hausdorff distance, modulo the consideration that we are satisfied
with a pseudometric and so do not confine our definition to nonempty compact
sets.6

5 The Category of Endoliftings

In Sect. 3, we defined endoliftings and their instantiations to Ḟ -invariants on
particular coalgebras. We showed that with certain constraints on the ambient
6 A more technical proof of the same result proceeds by first showing the Hausdorff

distance on the left is a lower bound for d∗(k, �) given the constraints on k and �.
The fact that J and K are finite is crucial so that the value of the left-hand side
must be witnessed at a particular entry in one of the lists. Then it can be shown
that this lower bound is sharp by a particular choice of k and � witnessing Gerry’s
optimal strategy, so indeed the left-hand side is the greatest lower bound for the
collection of values on the right-hand side.
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categories, the Ḟ -coinductive invariant exists and is preserved by coalgebra mor-
phisms. In Sect. 4, we showed that endoliftings exist in many CLat∧-fibrations,
and gave several constructions and combinators for producing endoliftings in
these general conditions. In this section, we we observe that endoliftings can be
collected into a category using the following definition.

Definition 16. A endolifting morphism from one endolifting (π : E → Set, Ḟ )
to another (ρ : F → Set, F̈ ) is a lifting H : E → F of IdSet (i.e. π = ρ ◦ H) such
that H ◦ Ḟ = F̈ ◦ H.

Endolifting morphisms do not appear in the story of Hermida-Jacobs bisimu-
lations or the coalgebraic predicates defined analogously, but we will observe this
category is a useful abstraction for comparing coalgebraic invariants of various
endoliftings.

A concrete goal in this section is to establish some general conditions under
which a BVal coinductive invariant has an ERel coinductive invariant at its
kernel. Results of this type are pursued, for example, in [6].

5.1 Quantitative and Qualitative Liftings

We begin by focusing on three CLat∧-fibrations introduced in Sect. 2.3, namely
ERel, RERel, and BVal. These total categories consist of sets together with
endorelations, real-indexed families of endorelations, and “distance” functions
(which satisfy no metric axioms other than having codomain nonnegative reals),
respectively.

These fibrations have many functors between them:

BVal
�� ��

Tε=(−ε)◦S

��

p
����

���
���

���
���

S ��	 RERel
L

��
−ε ��

q





	 ERel
χε

��

r
���

���
���

���
��

Set

where (the object parts of) each of these functors are given by

L(I, R) = (I, λ(x, y) . inf{δ | (x, y) ∈ Rδ}) S(I, r) = (I, λε . {(x, y) ∈ I | r(x, y) ≤ ε})

χε(I, R) =

(
I, λδ .

{
(I, ∅) if δ < ε
(I, R) if δ ≥ ε

)
(I, R)ε = (I, Rε)

Note that the two functors between ERel and RERel are actually a real-
indexed family of functors, where ε ∈ [0,∞). It may help to think of S as
Stratifying a distance function into a family of relations and L as finding the
Least index where the relation holds. As usual, the empty infimum in the defi-
nition of L is the maximum element, namely ∞.



208 D. Sprunger et al.

These functors patently do not change the index set I associated with each
of the objects in the total category. Each of these functors is also defined to be
the identity on morphisms.7 Therefore, these are liftings of the identity on Set.

We define the composite functor Tε = (−ε) ◦ S. This functor sends (I, r) ∈
BVal to (I, {(x, y) | r(x, y) ≤ ε}) ∈ ERel, truncating the distance function r at
ε. The fact that Tε is a right adjoint, as depicted in the diagram above, will be
an important fact later on.

The functor T0 gives the kernel of a distance function, namely the relation
consisting of pairs which are at distance 0. A common desideratum of pseudomet-
ric liftings or more generally BVal liftings is that the kernel of the F̂ -coinductive
invariant function in BVal is bisimilarity in ERel (i.e. the Rel(F )-coinductive
invariant where Rel(F ) is the canonical relation lifting of F , defined in Sect. 3.1).
We show how to establish this result for the Hausdorff metric in a highly reusable
manner.

5.2 Tε Is a Endolifting Morphism Between Kripke Polynomial
Functors

Next, we show that Tε is a endolifting morphism from every polynomial functor
in BVal to the polynomial functor of parallel shape in ERel. This result is the
backbone of our proof that Tε is a endolifting morphism from the Hausdorff
lifting of the finite powerset functor to the canonical relation lifting of the finite
powerset functor.

Proposition 17. For all ε ∈ [0,∞), Tε is a endolifting morphism:

1. from IdBVal to IdERel,
2. from ĈA to C̃A where CA is the constant-to-A functor, and
3. from F̂1×̂F̂2 to Rel(F1)×̃ Rel(F2), given that it is a morphism from F̂i to

Rel(Fi), and
4. from

∐̂
iF̂i to

∐̃
i Rel(Fi), given that it is a morphism from F̂i to Rel(Fi)

Therefore, Tε is a endolifting morphism from any polynomial functor in ERel
to the polynomial functor of the same shape in BVal.

This establishes Tε as a endolifting morphism between polynomial functors,
but we also want it to be a endolifting morphism from the Hausdorff lifting of
Pfin to the canonical relation lifting in BVal. That is, we want to show Tε : H →
Rel(Pfin) is a endolifting morphism. A reasonable strategy, given the proof we
just completed, would be to hope that if Tε is a endolifting morphism between
two liftings of a functor, then it is a morphism between the pushforward of those
7 Morphisms in each of these categories are Set-functions which satisfy conditions

regarding the extra data in the total category. (That is, functions which preserve
the source relation, shrink the source distance, etc.). It is straightforward to show
f : X → Y is a morphism in A implies f : FX → FY is a morphism in B by writing
down the extra conditions on f imposed by A and B where F : A → B is any of the
four functors defined above.
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functors along a natural transformation in the base category. In general this is
not true, but liftings satisfying a simple side condition do have this property.

Proposition 18. Suppose τ : P → F is a natural transformation in Set, Tε :
P̂ → P̃ (Sect. 5.1) is a endolifting morphism from a BVal lift of P to an ERel
lift of P , and F̂ and F̃ are the pushforwards of P̂ and P̃ along τ . Further
suppose for every set I, every f, f ′ ∈ FI and r : I × I → R

+, the lower bound
for {P̂ r(p, p′) : τp = f and τp′ = f ′} is achieved in this set. Then Tε is a
endolifting morphism from F̂ to F̃ .

We can now apply this proposition to obtain the following corollary.

Corollary 19. Tε is a endolifting morphism from H to Rel(Pfin).

Proof. Proposition 17 shows Tε is a endolifting morphism from the standard
BVal lifting for the list functor to the standard ERel lifting for the list functor.
We know H and Rel(Pfin) are the pushforwards of these list functors along setX
in their respective total categories.8 Hence to apply Proposition 18 we only
need to show for all finite sets J,K ⊆ I, and all distances r : I × I → R

+,
there exist lists k† and �† such that set(k†) = J , set(�†) = K and r∗(k†, �†) =

inf
set(k)=J
set(
)=K

r∗(k, �). We noted this in the Hausdorff distance section, where these

dagger lists represent Gerry’s optimal strategy.

5.3 Approximate Bisimulations: An Example from Control Theory

Here we present an example from a rather different context: approximate bisim-
ulation by Girard and Pappas [8]. Defined as a binary relation on a metric space
that is subject to the “mimicking” condition, the notion is widely used in con-
trol theory as a quantitative relaxation of usual (Milner-Park) bisimulation that
allows bounded errors. Its principal use is in bounding errors caused by some
abstraction of dynamical systems: given the original dynamics S, one derives its
abstraction A; by exhibiting an ε-approximate bisimulation between S and A,
one then shows that the difference between the trajectory of A and that of S is
bounded by ε. Such abstraction methods include: state space discretization (e.g.
in [10]) and ignoring switching delays [18]. See [9] for an overview.

In the above scenario, an ε-approximate bisimulation between S and A is
synthesized through analysis of the continuous dynamics of S: for example the
incremental stability of S yields an approximate bisimulation via its Lyapunov-
type witness. Another common strategy for finding an approximate bisimulation
is via a bisimulation function. Our goal here is to describe the latter strategy in
the current coalgebraic and fibrational framework.

We fix the set O of output values together with a distance function d :
O × O → R

+, and a U -labelled finitely branching LTS (Q, δ : Q → U � PfinQ)
with an output function o : Q → O, where � denotes the power operation
8 Recall setX from Example 6.
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[19, p. 70]. An ε-approximate bisimulation relation is a binary relation R ⊆ Q×Q
such that

∀(q, q′) ∈ R . d(o(q), o(q′)) ≤ ε ∧ ∀l ∈ U .

(∀r ∈ Q . r ∈ δ(l, q) =⇒ ∃r′ ∈ Q . r′ ∈ δ(l, q′) ∧ (r, r′) ∈ R)∧
(∀r′ ∈ Q . r′ ∈ δ(l, q′) =⇒ ∃r ∈ Q . r ∈ δ(l, q) ∧ (r, r′) ∈ R). (4)

The difference from the usual Milner-Park bisimulation is that R is additionally
required to witness the ε-proximity of outputs of related states q and q′.

A bisimulation function is a quantitative (real-valued) witness for an approx-
imate bisimulation. In many settings in control theory where dynamics are
smooth and described by ordinary differential equations, such real-valued func-
tions are easier to come up with than an approximate bisimulation itself. For the
above LTS, a function v : Q × Q → R

+ is a bisimulation function if it satisfies,
for each q, q′ ∈ Q,

max
(

d
(
o(q), o(q′)

)
, sup

l∈U
Hv

(
δ(l, q), δ(l, q′)

) )
≤ v(q, q′) (5)

A crucial fact is that a bisimulation function v gives rise to an ε-approximate
bisimulation {(q, q′) | v(q, q′) ≤ ε}. See e.g. [9].

We move on to give a categorical account of this construction. We use the
following functor as a coalgebra signature:

F : Set → Set, FX = O × (U � PfinX),

We can then package a U -labelled finitely branching LTS and an output function
into a single F -coalgebra Q = (Q, 〈o, δ〉 : Q → FQ).

Firstly, the endolifting that captures ε-approximate bisimulations consists of

r : ERel → Set, F̃εX = Tε(O, d) × (U � Rel(Pfin)(X)).

Secondly, the endolifting that captures bisimulation functions consists of

p : BVal → Set, F̂X = (O, d) × (U � HX).

Indeed, by unfolding the definitions the following can be observed: F̃ε-invariants
on Q are nothing but ε-approximate bisimulations; and F̂ -invariants on Q are
bisimulation functions. Thanks to Proposition 17 and Corollary 19, the functor
Tε—that sends a function v : Q×Q → R

+ to the relation {(q, q′) | v(q, q′) ≤ ε}—
is a endolifting morphism from F̂ to F̃ . Therefore Tε transfers a F̂ -invariant v on
Q to a F̃ε-invariant Tεv on Q, that is, a bisimulation function to an ε-approximate
bisimulation.

5.4 Endolifting Morphisms Preserve Final Coalgebras

We next state a result which we can use to ensure that the coinductive invariant
in the source of a endolifting morphism is sent to the coinductive invariant in
the target of that morphism.
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Lemma 20. Suppose H is a endolifting morphism from (π : E → Set, Ḟ ) to
(ρ : F → Set, F̈ ) which is also a fibration map. Suppose additionally that H
preserves fibred meets. Then H(I, νḞ(I,f)) = (I, νF̈(I,f)).

Proof. Preservation of top elements ensures H�EI
= �FI

. Since H is a fibra-
tion map and a endolifting morphism, we get H(f∗Ḟ (AI)) = f∗F̈ (H(AI)) for
all AI ∈ EI . Combining this with the above observation ensures H sends the
final sequence in the fiber EI to the final sequence in the fiber FI . Finally, H
preserving meets ensures H will send the Ḟ -coinductive invariant for (I, f) to
the F̈ -coinductive invariant for (I, f).

Note Tε satisfies most of the conditions in this lemma. Since we are interested
in concluding something about the kernel of a behavioural metric, we specialize
to the case where ε = 0 where these conditions are all satisfied.

Corollary 21. If T0 is a endolifting morphism from (F̂ ,BVal) to (Ḟ ,ERel),
then the behavioural metric induced by F̂ has the coalgebraic predicate induced
by Ḟ at its kernel.

Proof. Tε is a fibration map and a right adjoint, and thus preserves all fibred
meets.

All our work from the previous section establishing that Tε is a endolifting
morphism from H to Rel(Pfin) now pays off.

Corollary 22. The Hausdorff behavioural metric on PfinX has Pfin-bisimilarity
at its kernel.

Above, we also showed T0 is a endolifting morphism between many other
BVal and ERel liftings (Proposition 17). Therefore, we could also derive an
analog of Corollary 21 for these pairs and conclude behavioural metrics of the
BVal lift have bisimilarity (the coalgebraic relation of the corresponding ERel
lift) at their kernels.

6 Conclusions and Future Work

We presented a fibrational framework for various extensions of (bi)simulation
notions. On the categorical side our focus has been on structural aspects of
fibrations such as fibration morphisms and lifting by Kan extensions; on the
application side we took examples from quantitative reasoning about systems.
This has allowed us to capture known constructions in more abstract and general
terms, such as the Hausdorff pseudometric and approximate bisimulation in
control theory.

As future work, we shall investigate conditions under which the two lift-
ings in Sect. 4—one by left Kan extension and the other involving right
Kan extension—coincide. We would then compare this coincidence and the
Kantorovich-Wasserstein duality, which is the coincidence of the metric on proba-
bility distributions computed by sup and inf. We mentioned that Top and Meas
are examples of CLat∧-fibrations; their use in reasoning about systems will also
be explored.
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Abstract. Categorical studies of recursive data structures and their
associated reasoning principles have mostly focused on two extremes:
initial algebras and induction, and final coalgebras and coinduction. In
this paper we study their in-betweens. We formalize notions of alternat-
ing fixed points of functors using constructions that are similar to that of
free monads. We find their use in categorical modeling of accepting run
trees under the Büchi and parity acceptance condition. This modeling
abstracts away from states of an automaton; it can thus be thought of as
the “behaviors” of systems with the Büchi or parity conditions, in a way
that follows the tradition of coalgebraic modeling of system behaviors.

1 Introduction

Büchi Automata. The Büchi condition is a common acceptance
condition for automata for infinite words. Let xi ∈ X be a state
of an automaton A and ai ∈ A be a character, for each i ∈ ω. An
infinite run x0

a0−→ x1
a1−→ · · · satisfies the Büchi condition if xi is

an accepting state (usually denoted by �������	
������ ) for infinitely many i. An example of
a Büchi automaton is shown on the right. The word (ba)ω is accepted, while baω

is not. A function that assigns each x ∈ X the set of accepted words from x is
called the trace semantics of the Büchi automaton.

Categorical Modeling. The main goal of this paper is to give a
categorical characterization of such runs under the Büchi condition.
This is in the line of the established field of categorical studies of
finite and infinite datatypes: it is well-known that finite trees form an initial alge-
bra, and infinite trees form a final coalgebra; and finite/infinite words constitute
a special case. These categorical characterizations offer powerful reasoning prin-
ciples of (co)induction for both definition and proof. While the principles are
categorically simple ones corresponding to universality of initial/final objects,
they have proved powerful and useful in many different branches of computer
science, such as functional programming and process theory. See the diagram on
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the right above illustrating coinduction: given a functor F , its final coalgebra
ζ : Z

∼=→ FZ has a unique homomorphism to it from an arbitrary F -coalgebra
d : Y → FY . In many examples, a final coalgebra is described as a set of “infinite
F -trees.”

Extension of such (co)algebraic characterizations of data structures to the
Büchi condition is not straightforward, however. A major reason is the non-local
character of the Büchi condition: its satisfaction cannot be reduced to a local,
one-step property of the run. For example, one possible attempt of capturing
the Büchi condition is as a suitable subobject of the set Run(X) = (A× X)ω of
all runs (including nonaccepting ones). The latter set admits clean categorical
characterization as a final coalgebra Run(X) ∼=→ F

(
Run(X)

)
for the functor

F = (A × X) × . Specifying its subset according to the Büchi condition seems
hard if we insist on the coalgebraic language which is centered around the local
notion of transition represented by a coalgebra structure morphism c : X → FX.

There have been some research efforts in this direction, namely the categorical
characterization of the Büchi condition. In [5] the authors insisted on finality and
characterize languages of Muller automata (a generalization of Büchi automata)
by a final coalgebra in Sets2. Their characterization however relies on the lasso
characterization of the Büchi condition that works only in the setting of finite
state spaces. In [21] we presented an alternative characterization that covers
infinite state spaces and automata with probabilistic branching. The key idea
was the departure from coinduction, that is, reasoning that relies on the universal
property of greatest fixed points. Note that a final coalgebra ζ : Z

∼=→ FZ is a
“categorical greatest fixed point” for a functor F .

Our framework in [21] was built on top of the so-called Kleisli approach to
trace semantics of coalgebras [10–12,16]. There a system is a coalgebra in a
Kleisli category K�(T ), where T represents the kind of branching the system
exhibits (nondeterminism, probability, etc.). A crucial fact in this approach is
that homsets of the category K�(T ) come with a natural order structure. Specif-
ically, in [21], we characterized trace semantics under the Büchi condition as
in the diagrams (1) below1, where (i) X1 (resp. X2) is the set of nonaccepting
(resp. accepting) states of the Büchi automaton (i.e. X = X1 + X2), and (ii)
the two diagrams form a hierarchical equation system (HES), that is roughly
a planar representation of nested and alternating fixed points. In the HES, we
first calculate the least fixed point for the left diagram, and then calculate the
greatest fixed point for the right diagram with u1 replaced by the obtained least
fixed point. Note that the order of calculating fixed points matters.

FX
�

F [u1, u2]
��

=μ

FZ

X1

�c1

��

�u1 �� Z

�Jζ ∼=
�� FX

�
F [u1, u2]

��
=ν

FZ

X2

�c2

��

�u2 �� Z

�Jζ ∼=
�� (1)

1 We write f : X →� Y for a Kleisli arrow f ∈ K�(T )(X, Y ) and F : K�(T ) → K�(T )
for a lifting of the functor F over K�(T ), for distinction.
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Contributions: Decorated Trace Semantics by Categorical Datatypes.
In this paper we introduce an alternative categorical characterization to the one
in [21] for the Büchi conditions, where we do not need alternating fixed points
in homsets. This is made possible by suitably refining the value domain, from a
final coalgebra to a novel categorical datatypes F+⊕0 and F+(F+⊕0) that have
the Büchi condition built in them. Diagrammatically the characterization looks
as in (2) below. Note that we ask for the greatest fixed point in both squares.

FX
�F (v1 + v2)

��

=ν

F (F+(F+⊕0) + F+⊕0)

X1

�c1

��

� v1 �� F+(F+⊕0)

�J(β1)0 ∼=
�� FX

�F (v1 + v2)
��
=ν

F (F+(F+⊕0) + F+⊕0)

X2

�c2

��

�v2 �� F+⊕0

�J(β2)0 ∼=
�� (2)

The functors F+ and F+⊕ used in the datatypes are obtained by applying
two operations ( )+ and ( )⊕ to a functor F . For an endofunctor G on a
category C with enough initial algebras, G+X is given by the carrier object of
a (choice of) an initial G( + X)-algebra for each X ∈ C. The universality of
initial algebras allows one to define G+f : G+X → G+Y for each f : X → Y
and extend G+ to a functor G+ : C → C. This definition is much similar to that
of a free monad G∗, where G∗X is the carrier object of an initial G( ) + X-
algebra for X ∈ C. The operation ( )⊕ is defined similarly: for G : C → C and
X ∈ C, G⊕X is given by the carrier object of a final G( + X)-coalgebra. This
construction resembles to that of free completely iterative algebras [14].

The constructions of F+(F+⊕0) and F+⊕0 has a clear intuitive meaning.
For the specific example of A-labeled nondeterministic Büchi automata, T = P,
F = A × ( ), F+(F+⊕0) ∼= F+⊕0 ∼= (A+)ω. Hence an element in F+(F+⊕0)
or F+⊕0 is identified with an infinite sequence of finite words. We understand
it as an infinite word “decorated” with information about how accepting states
are visited, by considering that an accepting state is visited at each splitting
between finite words. For example, we regard (a0a1)(a2a3a4)(a5a6)(a7) . . . ∈
(A+)ω ∼= F+⊕0 as an infinite word decorated as follows.

�������	
������
a0 �� �������	 a1 �� �������	
������ a2 �� �������	 a3 �� �������	 a4 �� �������	
������ a5 �� �������	 a6 �� �������	
������ a7 �� �������	
������ �� · · ·

(3)

An element in F+(F+⊕0) is similarly understood, except that the initial state
is regarded as a nonaccepting state. We note that by its definition, the resulting
“decorated” word always satisfies the Büchi condition.

Thus the arrows v1 : X1 →� F+(F+⊕0) and v2 : X2 →� F+⊕0 in (2) are
regarded as a kind of trace semantics that assigns each state x ∈ X the set of
infinite words accepted from x “decorated” with information about the corre-
sponding accepting run. Hence we shall call v1 and v2 a decorated trace semantics
for the coalgebra c. The generality of the category theory allows us to define dec-
orated trace semantics for systems with other transition or branching types, e.g.
Büchi tree automata or probabilistic Büchi automata.
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In this paper, we also show the relationship between decorated trace seman-
tics and (ordinary) trace semantics for Büchi automata. For the concrete case of
Büchi automata sketched above, there exists a canonical function (A+)ω → Aω

that flattens a sequence and hence removes the “decorations”. It is easy to see
that if we thus remove decorations of a decorated trace semantics then we obtain
an ordinary trace semantics. We shall prove its categorical counterpart.

In fact, the framework in [21] also covered the parity condition, which gen-
eralizes the Büchi condition. A parity automaton is equipped with a function
Ω : X → [1, 2n] that assigns a natural number called a priority to each state
x ∈ X. Our new framework developed in the current paper also covers parity
automata. In order to obtain the value domain for parity automata, we repeat-
edly apply ( )+ and ( )⊕ to F like F+⊕···+⊕0.

Compared to the existing characterization shown in (1), one of the charac-
teristics of our new characterization as shown in (2) is that information about
accepting states is more explicitly captured in decorated trace semantics, as in
(3). This characteristics would be useful in categorically characterizing notions
about Büchi or parity automata. For example, we could use it for categorically
characterizing (bi)simulation notions for Büchi automata, e.g. delayed simulation
[8], a simulation notion known to be appropriate for state space reduction.

To summarize, our contributions in this paper are as follows:

– We introduce a new categorical data type F+⊕0, an alternating fixed point
of a functor, for characterizing the Büchi acceptance condition.

– Using the data type, we introduce a categorical decorated trace semantics,
simply as a greatest fixed point.

– We show the categorical relationship with ordinary trace semantics in [21].
– We instantiate the framework to several types of concrete systems.
– We extend the framework to the parity condition (in the appendix).

Related Work. As we have mentioned, a categorical characterization of Büchi
and parity conditions is also found in [5], but adaptation to infinite-state or
probabilistic systems seems to be difficult in their framework. There also exist
notions which are fairly captured by their characterization but seem difficult to
capture in the frameworks in [21] and this paper, such as bisimilarity.

The notion of alternating fixed point of functors is also used in [2,9]. In [9]
the authors characterize the set of continuous functions from Aω to Bω as an
alternating fixed point νX. μY. (B × X) + Y A of a functor. Although the data
type and the one used in the current paper are different and incomparable, the
intuition behind them is very similar, because the former comes with a Büchi-
like flavor: if f(a0a1 . . .) = b0b1 . . . then each bi should be determined by a finite
prefix of a0a1 . . ., and therefore f is regarded as an infinite sequence of such
assignments. In [2, Sect. 7] a sufficient condition for the existence of such an
alternating fixed point is discussed.
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Organization. Section 2 gives preliminaries. In Sect. 3 we introduce a categor-
ical data type for decorated trace semantics as an alternating fixed point of
functors. In Sect. 4 we define a categorical decorated trace semantics, and show
a relationship with ordinary categorical trace semantics in [21]. In Sect. 5 we
apply the framework to nondeterministic Büchi tree automata. In Sect. 6, we
briefly discuss systems with other branching types. In Sect. 7, we conclude and
give future work.

All the discussions in this paper also apply to the parity condition. However,
for the sake of simplicity and limited space, we mainly focus on the Büchi con-
dition throughout the paper, and defer discussions about the parity condition
to the appendix, that is found in the extended version [20] of this paper. We
omit a proof if an analogous statement is proved for the parity condition in the
appendix. Some other proofs and discussions are also deferred to the appendix.

2 Preliminaries

2.1 Notations

For m,n ∈ N, [m,n] denotes the set {i ∈ N | m ≤ i ≤ n}. We write πi :∏
i Xi → Xi and κi : Xi → ∐

i Xi for the canonical projection and injection
respectively. For a set A, A∗ (resp. Aω) denotes the set of finite (resp. infinite)
sequences over A, A∞ denotes A∗ ∪ Aω, and A+ denotes A∗ \ {〈〉}. We write 〈〉
for the empty sequence. For a monotone function f : (X,	) → (X,	), μf (resp.
νf) denotes its least (resp. greatest) fixed point (if it exists). We write Sets for
the category of sets and functions, and Meas for the category of measurable
sets and measurable functions. For f : X → Y and A ⊆ Y , f−1(A) denotes
{x ∈ X | f(x) ∈ A}.

2.2 Fixed Point and Hierarchical Equation System

In this section we review the notion of hierarchical equation system (HES) [3,6].
It is a kind of a representation of an alternating fixed point.

Definition 2.1 (HES). A hierarchical equation system (HES for short) is a
system of equations of the following form.

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 =η1 f1(u1, . . . , um) ∈ (L1,	1)
u2 =η2 f2(u1, . . . , um) ∈ (L2,	2)

...
um =ηm

fm(u1, . . . , um) ∈ (Lm,	m)

Here for each i ∈ [1,m], (Li,≤i) is a complete lattice, ui is a variable that ranges
over Li, ηi ∈ {μ, ν} and fi : L1 × · · · × Lm → Li is a monotone function.
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Definition 2.2 (Solution). Let E be an HES as in Definition 2.1. For each
i ∈ [1,m] and j ∈ [1, i] we inductively define f‡

i : Li × · · · × Lm → Li and
l
(i)
j : Li+1 × · · · × Lm → Lj as follows (no need to distinguish the base case from
the step case):

– f‡
i (ui, . . . , um) := fi(l

(i−1)
1 (ui, . . . , um), . . . , l(i−1)

i−1 (ui, . . . , um), ui, . . . , um);
and

– l
(i)
i (ui+1, . . . , um) := ηf‡

i ( , ui+1, . . . , um) where η = μ if i is odd and η = ν if i

is even. For j < i, l
(i)
j (ui+1, . . . , um) := l

(i−1)
j (l(i)i (ui+1, . . . , um), ui+1, . . . , um).

If such a least or greatest fixed point does not exist, then it is undefined.

We call (l(i)1 , . . . , l
(i)
i ) the i-th intermediate solution. The solution of the HES E

is a family (usol
1 , . . . , usol

m ) ∈ L1 × · · · × Lm defined by usol
i := l

(m)
i (∗) for each i.

2.3 Categorical Finite and Infinitary Trace Semantics

We review [11,12,16,18] and see how finite and infinitary traces of transition
systems are characterized categorically. We assume that the readers are familiar
with basic theories of categories and coalgebras. See e.g. [4,13] for details.

We model a system as a (T, F )-system, a coalgebra c : X → TFX where T is
a monad representing the branching type and F is an endofunctor representing
the transition type of the system. Here are some examples of T and F :

Definition 2.3 (P, D, L and G). The powerset monad is a monad P =
(P, ηP , μP) on Sets where PX := {A ⊆ X}, Pf(A) := {f(x) | x ∈ A},
ηP

X(x) := {x} and μP
X(Γ ) :=

⋃
A∈Γ A. The subdistribution monad is a monad

D = (D, ηD, μD) on Sets where DX := {δ : X → [0, 1] | |{x | δ(x) >
0}|is countable, and

∑
x δ(x) ≤ 1}, Df(δ)(y) :=

∑
x∈f−1({y}) δ(x), ηD

X(x)(x′) is
1 if x = x′ and 0 otherwise, and μD

X(Φ)(x) :=
∑

δ∈DX Φ(δ) · δ(x). The lift monad
is a monad L = (L, ηL, μL) on Sets where LX := {⊥} + X, Lf(a) is f(a) if
a ∈ X and ⊥ if a = ⊥, ηL

X(x) := x and μL
X(a) := a if a ∈ X and ⊥ if a = ⊥. The

sub-Giry monad is a monad G = (G, ηG , μG) on Meas where G(X,FX) is car-
ried by the set of probability measures over (X,FX), Gf(ϕ)(A) := ϕ(f−1(A)),
ηG

X(x)(A) is 1 if x ∈ A and 0 otherwise, and μG
X(Ξ)(A) :=

∫
δ∈GX

δ(A)dΞ.

Definition 2.4 (Polynomial Functors). A polynomial functor F on Sets is
defined by the following BNF notation: F ::= id | A | F × F | ∐

i∈I F where
A ∈ Sets and I is countable. A (standard Borel) polynomial functor F on Meas
is defined by the following BNF notation: F ::= id | A | F × F | ∐

i∈I F where
A ∈ Meas, I is countable, and the σ-algebras over products and coproducts are
given in the standard manner (see e.g. [18, Definition 2.2]).

A carrier of an initial F -algebra models a domain of finite traces [11] while
that of a final F -coalgebra models a domain of infinitary traces [12]. For example,
as we have seen in Sect. 1, for F = {�} +A× ( ) on Sets, the carrier set of the
final F -coalgebra is A∞ while that of the initial F -algebra is A∗. The situation
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is similar for a polynomial functor F = ({�},P{�}) + (A,PA) × ( ) on Meas.
The carrier of an initial algebra is (A∗,PA∗), and that of a final coalgebra is
(A∞,FA∞) where FAω is the standard σ-algebra generated by the cylinder set.

In general, for a certain class of functors, an initial algebra and a final coal-
gebra are obtained by the following well-known construction.

Theorem 2.5 ([1])

1. Let (A, (πi : F i0 → A)i∈ω) be a colimit of an ω-chain 0

!

−→ F0 F

!

−→ F 20 F 2

!

−−→
. . . . If F preserves the colimit, then the unique mediating arrow ι : FA → A
from the colimit (FA, (Fπi : F i+10 → FA)i∈ω) to a cocone (A, (π′

i : F i0 →
A)i∈ω) where π′

i = πi+1 is an initial F -algebra.

2. Let (Z, (πi : A → F i1)i∈ω) be a limit of an ωop-chain 1 !←− F1 F !←− F 21 F 2!←−−
. . . . If F preserves the limit, then the unique mediating arrow ζ : Z → FZ
from a cone (Z, (π′

i : A → F i1)i∈ω) where π′
i = πi+1 to the limit (FZ, (Fπi :

FZ → F i+11)i∈ω) is a final F -coalgebra. ��

We next quickly review notions about the Kleisli category K�(T ).

Definition 2.6 (K�(T ), J , Uand F ). Let T = (T, η, μ) be a monad on C. The
Kleisli category K�(T ) is given by |K�(T )| = |C| and K�(T )(X,Y ) = C(X,TY )
for X,Y ∈ |K�(T )|. An arrow f ∈ K�(T )(X,Y ) is called a Kleisli arrow, and we
write f : X→� Y for distinction. Composition of arrows f : X→� Y and g : Y →� Z
is defined by μZ ◦Tg◦f , and denoted by g�f for distinction. The lifting functor
J : C → K�(T ) is defined by: JX := X and J(f) := ηY ◦ f for f : X → Y . The
forgetful functor U : K�(T ) → C is defined by: UX := TX and U(g) := μY ◦ Tg
for g : X →� Y . A functor F : K�(T ) → K�(T ) is called a lifting of F : C → C if
FJ = JF .

Example 2.7. Let T = P and F =
∑ω

n=0 Σn × ( )n : Sets → Sets. A lifting
F over K�(T ) is given by FX = FX for X ∈ Sets and Ff(σ, x0, . . . , xn−1) =
{(σ, y0, . . . , yn−1) | ∀i. yi ∈ f(xi)} for f : X→� Y , σ ∈ Σn and x0, . . . , xn−1 ∈ X.
(see e.g. [11]).

It is well-known that there is a bijective correspondence between a lifting F
and a distributive law, a natural transformation λ : FT ⇒ TF satisfying some
axioms [15]. See Sect. D of the extended version [20] for the details.

In the rest of this section, let F be an endofunctor and T be a monad on a
category C, and assume that a lifting F : K�(T ) → K�(T ) is given.

In [11], a finite trace semantics of a transition system was characterized as
the unique homomorphism to the final F -coalgebra in K�(T ), which is obtained
by reversing and lifting the initial F -algebra in C.
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Definition 2.8 (tr(c)). We say F and T constitute a finite trace situation with
respect to F if the following conditions are satisfied:

– An initial F -algebra ιF : FA → A exists.
– J(ιF )−1 : A→� FA is a final F -coalgebra.

For c : X →� FX, the unique homomorphism from c to J(ιF )−1 is called the
(coalgebraic) finite trace semantics of c and denoted by tr(c) : X→� A.

In [11], a sufficient condition for constituting a finite trace situation is given.

Theorem 2.9 ([11]). Assume each homset of K�(T ) carries a partial order 	. If
the following conditions are satisfied, F and T constitute a finite trace situation.

– The functor F preserves ω-colimits in C.
– Each homset of K�(T ) constitutes an ω-cpo with a bottom element ⊥.
– Kleisli composition � is monotone, and the lifting F is locally monotone, i.e.

f 	 g implies Ff 	 Fg.
– Kleisli composition � preserves ω-suprema and the bottom element ⊥.

Here by Theorem 2.5, the first condition above implies existence of an initial
algebra.

In [11] it was shown that T ∈ {P,D,L} and a polynomial functor F sat-
isfy the conditions in Theorem 2.9 with respect to some orderings and liftings,
and hence constitute finite trace situations. We can see the result for T = D
implies that T = G and a standard Borel polynomial functor F also satisfy the
conditions.

An infinitary trace semantics was characterized in [12] as the greatest homo-
morphism to a weakly final coalgebra obtained by lifting a final coalgebra.

Definition 2.10 (Infinitary Trace Situation). We assume that each homset
of K�(T ) carries a partial order 	. We say that F and T constitute an infinitary
trace situation with respect to F and 	 if the following conditions are satisfied:

– A final F -coalgebra ζF : Z → FZ exists.
– JζF : Z→� FZ is a weakly final F -coalgebra that admits the greatest homo-

morphism, i.e. for an F -coalgebra c : X →� FX, there exists the greatest
homomorphism from c to JζF with respect to 	.

The greatest homomorphism from c to JζF is called the (coalgebraic) infinitary
trace semantics of c and denoted by tr∞(c) : X→� Z.

It is known that T ∈ {P,D,L,G} and a polynomial functor F constitute infini-
tary trace situations with respect to some orderings and liftings [18]. Differently
from finite trace situation, sufficient conditions for infinitary trace situation are
not unified. In [18], two sufficient conditions are given. One is applicable for
T = P, and the other is for T ∈ {L,G}. No condition is known for T = D.
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Example 2.11. Let T = P and F = {�} + A × ( ). Then a TF -coalgebra
c : X → P({�} + A × X) is identified with an A-labeled nondeterministic
automaton whose accepting states are given by {x | � ∈ c(x)}. The arrow tr(c)
has a type X→� A∗ and assigns the set of accepted finite words to each state [11]:

tr(c)(x) =

{

a1a2 . . . an ∈ A∗
∣
∣
∣
∣
∣

∃x0, . . . , xn ∈ X. ∀i ∈ [1, n − 1].
(ai+1, xi+1) ∈ c(xi) and � ∈ c(xn)

}

.

In contrast, tr∞(c) : X→� A∞ is given as follows [12]:

tr∞(c)(x) = tr(c)(x)

∪ {a1a2 . . . ∈ Aω | ∃x0, x1, . . . ∈ X. x = x0, ∀i ∈ ω. (ai+1, xi+1) ∈ c(xi)} .

2.4 Büchi (T, F )-systems and Its Coalgebraic Trace Semantics

The results in Sect. 2.3 was extended for systems with the parity acceptance con-
dition in [21]. We hereby review the results for the Büchi acceptance condition.

Definition 2.12 (Büchi (T, F )-system). Let n ∈ N. A Büchi (T, F )-system
is a pair (c, (X1,X2)) of a F -coalgebra c : X → FX in K�(T ) and a partition
(X1,X2) of X (i.e. X ∼= X1+X2). For i ∈ {1, 2}, we write ci for c◦κi : Xi → FX.

Their coalgebraic trace semantics is given by a solution of an HES.

Definition 2.13 (trBi (c)). Assume that each homset of K�(T ) carries a partial
order 	. We say that F and T constitute a Büchi trace situation with respect
to F and 	 if they satisfy the following conditions:

– A final F -coalgebra ζ : Z → FZ exists.
– For an arbitrary Büchi (T, F )-system X = (c, (X1,X2)), the following HES

has a solution.

Ec =
{

u1 =μ Jζ−1 � F [u1, u2] � c1 ∈ (K�(T )(X1, Z),	X1,Z)
u2 =ν Jζ−1 � F [u1, u2] � c2 ∈ (K�(T )(X2, Z),	X2,Z)

The solution
(
usol
1 : X1 →� Z, usol

2 : X2 →� Z
)

of Ec is called the (coalgebraic)
Büchi trace semantics of X . We write trBi (c) for usol

i for each i (see also Eq. (1)).

Example 2.14. Let T = P and F = A × ( ). Then a Büchi (T, F )-system (c :
X→� FX, (X1,X2)) is identified with an A-labeled Büchi automaton. Following
Definition 2.2 we shall sketch how the solution of the HES Ec in Definition 2.13
is calculated. Note that Z ∼= Aω.

– We first calculate an intermediate solution l
(1)
1 (u2) : X1 →� Aω as the least

fixed point of u1 �→ Jζ−1 � F [u1, u2] � c1 .
– We next define f‡

2 : K�(T )(X2, Z) → K�(T )(X2, Z) by f‡
2 (u2) := Jζ−1 �

F [l(1)1 (u2), u2] � c2 .
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– We calculate l
(2)
2 (∗) : X2→� Aω as the greatest fixed point of f‡

2 .
– We let l

(2)
1 (∗) := l

(1)
1 (l(2)2 ) : X1→� Aω.

Then for each i, the solution trBi (c) = l
(2)
i (∗) is given as follows [21]:

trBi (c)(x) :=

{

a1a2 . . . ∈ Aω

∣
∣
∣
∣
∣

∃x0, x1, . . . ∈ X. ∀i ∈ ω. (ai+1, xi+1) ∈ c(xi) and

xi ∈ X2 for infinitely many i

}

.

3 Alternating Fixed Points of Functors

3.1 Categorical Datatypes for Büchi Systems

We first introduce the categorical datatypes F+X and F⊕X, which are under-
stood as least and greatest fixed points of a functor F .

Definition 3.1 (F+, F⊕). For F : C → C, we define functors F+, F⊕ : C → C

as follows. Given X ∈ C, the object F+X is the carrier of (a choice of) an initial
algebra ιFX : F (F+X + X) ∼=→ F+X for the functor F ( + X). Similarly, the
object F⊕X is the carrier of a final coalgebra ζF

X : F⊕X
∼=→ F (F⊕X + X). For

f : X → Y , F+f : F+X → F+Y is given as the unique homomorphism from ιFX
to ιFY ◦ F (idF+Y + f). We define F⊕f : F⊕X → F⊕Y similarly.

Remark 3.2. The construction F+ resembles the free monad F ∗ over F . The
latter is defined as follows: given X ∈ C, the object F ∗X is the carrier of an
initial algebra F (F ∗X) + X

∼=→ F ∗X for the functor F ( ) + X. The notations
generalize the usual distinction between ∗ and +. Indeed, for C = Sets and
F = Σ0 × (where Σ0 is an alphabet), we have F+1 = Σ+

0 (the set of finite
words of length ≥ 1) and F ∗1 = Σ∗

0 (the set of all finite words). Similarly, F⊕

resembles the free completely iterative monad [14].

Example 3.3. For F = A × ( ), by the construction in Theorem 2.5, F+X ∼=
A+X, F⊕X ∼= A+X + Aω and F+⊕X ∼= (A+)+X + (A+)ω. Especially, if we let
X = 0 then F+⊕0 ∼= (A+)ω . We identify (a00a01 . . . a0n0)(a10a11 . . . a1n1) . . . ∈
F+⊕0 ∼= (A+)ω with the following “decorated” sequence:

(a00, �������	
������ )(a01, �������	) . . . (a0n0 ,
�������	)(a10, �������	
������ )(a11, �������	) . . . (a1n1 ,

�������	) . . . ∈ (A×{ �������	, �������	
������ })ω .

The second component of each element (i.e. decoration) represents a break of a
word: it is 2 if and only if it is the beginning of a word. It is remarkable that in
the sequence above, �������	
������ always appears infinitely many times. Hence w ∈ (A+)ω is
understood as an infinite word decorated so that the Büchi condition is satisfied.



224 N. Urabe and I. Hasuo

We next define Kleisli arrows β1X and β2X that are used to define decorated
trace semantics (see the diagrams in (2)).

Definition 3.4. We define natural transformations β1 : F+(F+⊕ + id) ⇒
F (F+F+⊕ + F+⊕ + id) and β2 : F+⊕ ⇒ F (F+F+⊕ + F+⊕ + id) as follows.

β1 X :=
(

F+(F+⊕X + X)
(ιF

F+⊕X
)−1

=======⇒ F (F+F+⊕X + F+⊕X + X)
)

β2 X :=
(
F+⊕X

ζF+
X==⇒ F+(F+⊕X + X)

(ιF
F+⊕X

)−1

=======⇒ F (F+F+⊕X + F+⊕X + X)
)

Remark 3.5. As a final coalgebra ζF+

X is an isomorphism, we can see from Def-
inition 3.4 that F+(F+⊕X +X) ∼= F+⊕X . For F = A×( ), if we regard F+⊕X
as (A+)ω as in Example 3.3, F+(F+⊕X +X) would be understood as A+(A+)ω,
which is indeed isomorphic to (A+)ω. However, in this paper, mainly for the
sake of simplicity of notations, we explicitly distinguish them and later write
types of a decorated trace semantics of a Büchi (T, F )-system as dtr1(c) : X1→�
F+(F+⊕0) and dtr2(c) : X2 →� F+⊕0. Because of this choice, while an element
in F+⊕0 ∼= (A+)ω is regarded as a decorated word whose first letter is decorated
by �������	
������ (Example 3.3), an element a0 . . . an

(
(a00a01 . . . a0n0)(a10a11 . . . a1n1) . . .

) ∈
F+(F+⊕0) ∼= A+(A+)ω is understood as the following decorated sequence:

(a0, �������	) . . . (an, �������	)(a00, �������	
������ )(a01, �������	) . . . (a0n0 ,
�������	)(a10, �������	
������ )(a11, �������	) . . . (a1n1 ,

�������	) . . ..

Fig. 1. The unique arrow uX Fig. 2. The unique arrow [p
(2)
1 X , p

(2)
2 X ]

3.2 Natural Transformations Regarding to F+ and F ⊕

We introduce two natural transformations for later use. As mentioned in
Remark 3.2, F+ resembles the free monad F ∗ while F⊕ is similar to the free
completely iterative monad. The first natural transformation we introduce is
analogous to the multiplication of those free monads.

Definition 3.6 (μF ⊕
). We define a natural transformation μF ⊕

: F⊕F⊕ ⇒
F⊕ by μF ⊕

:= (uX ◦ κ1)X∈C, where uX is the unique homomorphism from
[F [κ1, κ2] ◦ ζF

F ⊕X , F [κ2, κ3] ◦ ζF
X ] to ζF

X (see Fig. 1).

Example 3.7. Let F = A × ( ). According to the characterizations in Exam-
ple 3.3 and Remark 3.5, p

(1)
1X has a type (A+)+(A+)+X+(A+)+(A+)ω+(A+)ω →

(A+)+X +(A+)ω, and is given by the concatenating function that preserves each
finite word.
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The second natural transformation is for “removing” decorations.

Definition 3.8 (p(i)j ). We define a natural transformation p
(1)
1 : F+ ⇒ F⊕ so

that p
(1)
1X : F+X → F⊕X is the unique homomorphism from J(ιFX)−1 to JζF

X .
Similarly, we define natural transformations p

(2)
1 : F+(F+⊕ + id) ⇒ F⊕ and

p
(2)
2 : F+⊕ ⇒ F⊕ so that [p1X , p2X ] : F+(F+⊕X + X) + F+⊕X → F⊕X is the

unique homomorphism from [β1X , β2X ] to ζF
X (see Fig. 2).

Example 3.9. Let F = A × ( ). According to the characterizations in Exam-
ple 3.3 and Remark 3.5, p

(1)
1X has a type A+X → A+X + Aω and is given by

the natural inclusion. In contrast, p
(2)
1 0 and p

(2)
2 0 have types A+(A+)ω → Aω and

(A+)ω → Aω respectively, and they are given by the flattening functions. See
also Proposition 5.10.

3.3 Liftings F+ and F ⊕ over K�(T )

Let F : K�(T ) → K�(T ) be a lifting of of a functor F . We show that under certain
conditions, it induces liftings F+ : K�(T ) → K�(T ) of F+ and F⊕ : K�(T ) →
K�(T ) of F⊕. Note that a lifting F induces a lifting F ( + A) : K�(T ) → K�(T ) of
F ( +A) which is defined by F ( + A)f := F (f+idA) = F ([Tκ1, Tκ2]◦(f+ηA))
using the coproduct in K�(T ).

Definition 3.10. 1. Assume T and F constitute a finite trace situation. For
X ∈ C, we let F+X := F+X. For f : X→� Y , we define F+f : F+X→� F+Y
as the unique homomorphism from F (idF+X + f) � J(ιFX)−1 to J(ιFY )−1.

2. Assume T and F constitute an infinitary trace situation. For X ∈ C, we let
F⊕X := F⊕X. For f : X→� Y , we define F⊕f : F⊕X→� F⊕Y as the greatest
homomorphism from F (idF ⊕X + f) � JζF

X to JζF
Y .

In the rest of this section, we check under which conditions F+ and F⊕ are
functors and form liftings of F+ and F⊕. Functoriality of F+ holds if and only
if for each f : X→� Y and g : Y →� W , F+g � F+f is the unique homomorphism
from F (id+ g)�F (id+ f)�J(ιFX)−1 to J(ιFW )−1. Similarly, functoriality of F⊕
holds if and only if F⊕g � F⊕f is the greatest homomorphism from F (id + g) �
F (id + f) � JζF

X to JζF
W .

The former always holds by the finality. In contrast, the latter doesn’t neces-
sarily hold: a counterexample is T = D and F = {o}×( )2 (see Example C.1 for
details). Hence we need an extra assumption to make F⊕ a functor. We hereby
assume a stronger condition than is needed for the sake of discussions in Sect. 4.

Definition 3.11 (Φc,σ). Let c : X→� FX and σ : FY →� Y . We define a function
Φc,σ : K�(T )(X,Y ) → K�(T )(X,Y ) by Φc,σ(f) := σ � Ff � c.
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Definition 3.12. Assume that T and F constitute
an infinitary trace situation. Let ζF : Z → FZ be
a final F -coalgebra. We say that T and F satisfy
the gfp-preserving condition with respect to an F -
algebra σ : FY →� Y if for each X ∈ C and c : X →�
FX, if l : X→� Z is the greatest homomorphism from
c to JζF and the function ΦJζF ,σ has the greatest
fixed point m : Z →� Y , then m � l : X →� Y is the
greatest fixed point of Φc,σ.

We next check if F+ and F⊕ are liftings of F+ and F⊕. By definition, we have
F+JX = JF+X and F⊕JX = JF⊕X for each X ∈ C. Let f : X → Y . By
definition, F+Jf = JF+f holds if and only if JF+f is a unique homomorphism
from F (id + Jf) � J(ιFX)−1 to J(ζF

Y )−1. Similarly, F+Jf = JF+f holds if and
only if JF+f is the greatest homomorphism from F (id + Jf) � JζF

X to JζF
Y .

The former is easily proved by the finality of J(ιFY )−1, while the latter requires
an assumption again.

Definition 3.13. Assume T and F constitute an infinitary trace situation.
Let ζF : Z → FZ be a final F -coalgebra. We say that T and F satisfy the
deterministic-greatest condition if for c : X → FX in C, if u : X → Z is the
unique homomorphism from c to ζF then Ju is the greatest homomorphism from
Jc to JζF .

Concluding the discussions so far, we obtain the following proposition.

Proposition 3.14. 1. If T and F ( + A) constitute a finite trace situation for
each A ∈ C, the operation F+ is a functor and is a lifting of F+.

2. If T and F ( +A) constitute an infinitary trace situation and satisfy the gfp-
preserving condition with respect to an arbitrary algebra and the deterministic-
greatest condition for each A ∈ C, F⊕ is a functor and is a lifting of F⊕.

��
Hence under appropriate conditions, a lifting F : K�(T ) → K�(T ) of F gives rise

to liftings of F+ and F⊕. By repeating this, we can define F
(i)
j for each i and j.

See Sect. D of the extended version [20] for the distributive laws correspond-
ing to the liftings defined above.

Example 3.15. Let F = A× ( ) and T = P. As we have seen in Example 3.3,
F+⊕X ∼= (A+)+X+(A+)ω. Let F be a lifting that is given as in Example 2.7. We
can construct a lifting F+⊕ using Proposition 3.14, and for f : X→� Y in K�(P),
F+⊕f : (A+)+X +(A+)ω→� (A+)+Y +(A+)ω is given by F+⊕f(w) = {w′y | y ∈
f(x)} if w = w′x where w′ ∈ (A+)+ and x ∈ X, and {w} if w ∈ (A+)ω.
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4 Decorated Trace Semantics of Büchi (T, F )-systems

4.1 Definition

Assumption 4.1. Throughout this section, let T be a monad and F be an
endofunctor on C, and assume that each homset of K�(T ) carries a partial order
	. We further assume the following conditions for each A ∈ C.

1. F+, F+⊕ : C → C are well-defined and liftings F , F+, F+⊕ : K�(T ) → K�(T )
are given.

2. T and F ( +A) satisfy the conditions in Theorem 2.9 with respect to F ( +A)
and 	, and hence constitute a finite trace situation.

3. T and F+( + A) constitute an infinitary trace situation with respect to
F+( + A) and 	.

4. T and F+( + A) satisfy the gfp-preserving condition wrt. an arbitrary σ.
5. T and F+( + A) satisfy the deterministic-greatest condition.
6. The liftings F+ and F+⊕ are obtained from F and F+ using the procedure

in Definition 3.10 respectively.
7. F+( + A) and F+⊕( + A) are locally monotone.
8. T and F constitute a Büchi trace situation with respect to 	 and F .

Using the categorical data type defined in Sect. 3, we now introduce a deco-
rated Büchi trace semantics dtr1(c) : X1→� F+(F+⊕0) and dtr2(c) : X2→� F+⊕0.

Definition 4.2 (dtri(c)). For a Büchi (T, F )-system (c, (X1,X2)), the decorated
Büchi trace semantics is a solution (dtr1(c) : X1 →� F+(F+⊕0), dtr2(c) : X2 →�
F+⊕0) of the following HES (see also Eq. (2)).

{
v1 =ν J(β1 0)−1 � F (v1 + v2) � c1 ∈ (K�(T )(X1, F

+(F+⊕0)),	)
v2 =ν J(β2 0)−1 � F (v1 + v2) � c2 ∈ (K�(T )(X2, F

+⊕0),	)

Existence of a solution will be proved in the next section.

4.2 Trace Semantics vs. Decorated Trace Semantics

This section is devoted to sketching the proof of the following theorem, which
relates decorated trace semantics dtri(c) and Büchi trace semantics trBi (c) in [21]
via the natural transformation in Definition 3.8.

Theorem 4.3. For each i ∈ {1, 2}, trBi (c) = p
(2)
i 0 ◦ dtri(c). ��

To prove this, we introduce Kleisli arrows c‡
2, �̃

(1)
1 , �̃

(2)
1 and �̃

(2)
2 . They are

categorical counterparts to f‡
2 , l

(1)
1 , l

(2)
1 and l

(2)
2 (see Definition 2.2) for the HES

defining trBi (c) (see Definition 2.13), and bridge the gap between dtri(c) and
trBi (c).



228 N. Urabe and I. Hasuo

Definition 4.4 (c‡
2, �̃

(1)
1 , �̃

(2)
1 , �̃

(2)
2 ). We define Kleisli arrows �̃

(1)
1 : X1→� F+X2,

c‡
2 : X2→� F+X2, �̃

(2)
2 : X2→� F+⊕0 and �̃

(2)
1 : X1→� F+⊕0 as follows:

– We define �̃
(1)
1 : X1→� F+X2 as the unique homomorphism from an F ( +X2)-

coalgebra c1 to J(ιFX2
)−1 (see the left diagram in Eq. (4) below).

– We define c‡
2 : X2→� F+X2 by:

c‡
2 :=

(
X2

�
c2−→F (X1 + X2)

�

F (	̃
(1)
1 +id)−−−−−−−→F (F+X2 + X2)

�

JιF
X2−−−→F+X2

)
.

– We define �̃
(2)
2 : X2→� F+⊕0 as the greatest homomorphism from c‡

2 to JζF+

0

(see the right diagram below).

F (X1 + X2)
���F (	̃
(1)
1 +id)���� F (F+X2 + X2)

X1

�c1

��

����� 	̃
(1)
1 ������

=

F+X2

�J(ιF
X2

)−1∼=
��

F+(X2)
�F+(	̃

(2)
2 )�� F+ (F+⊕0))

X2

�c‡
2

��

�	̃
(2)
2 ��

=ν

F+⊕0

�JζF+
0

∼=
�� (4)

– We define �̃
(2)
1 : X1→� F+(F+⊕0) as follows:

�̃
(2)
1 :=

(
X1

�

	̃
(1)
1−−→F+X2

�

F+ 	̃
(2)
2−−−−→F+(F+⊕0)

)
.

We explain an intuition why Kleisli arrows defined above bridge the gap
between trBi (c) and dtri(c). One of the main differences between them is that
trB1 (c) is calculated from l

(1)
1 (u2) which is the least fixed point of a certain func-

tion, while dtr1(c) is defined as the greatest homomorphism. The arrow �̃
(1)
1 fills

the gap because it is defined as the unique fixed point, which is obviously both
the least and the greatest fixed point.

We shall prove Theorem 4.3 following the intuition above. The lemma below,
which is easily proved by the finality of a, shows that not only �̃

(1)
1 but also �̃

(2)
1

is characterized as the unique homomorphism.

Lemma 4.5. The Kleisli arrow �̃
(2)
1 :

X1→� F+(F+⊕0) is the unique homo-
morphism from F (id + �̃

(2)
2 ) � c1 to

J(ιFF+⊕0)
−1. ��

Together with the definition of �̃
(2)
2 , we have the following proposition.

Proposition 4.6. For each i ∈ {1, 2}, �̃
(2)
i = dtri(c). ��

This proposition implies the existence of a solution of the HES in Definition 4.2.
It remains to show the relationship between the �̃

(i)
j and trpi (c). By using that

�̃
(1)
1 is the unique fixed point (and hence the least fixed point), we can prove the

following equality for an arbitrary u2 : X2→� F⊕0.

l
(1)
1 (u2) =

(
X1

�

	̃
(1)
1−−→F+X2

�
F+u2−−−−→F+F⊕0

�

Jp
(1)
1 F ⊕0−−−−−→F⊕F⊕0

�

μF ⊕
0−−−→F⊕0

)
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The following equalities are similarly proved using the equality above.

l
(2)
1 (∗) =

(
X1

�

�̃
(2)
1−−→F+F ⊕0

�

F+F ⊕

!

F+⊕0−−−−−−−−−→F+F ⊕(F ⊕0)
�

Jp
(2)
1 F ⊕0−−−−−→F ⊕F ⊕0

�

μF ⊕
0−−−→F ⊕0

)

l
(2)
2 (∗) =

(
X2

�

�̃
(2)
2−−→F ⊕0

�

F ⊕

!

F+⊕0−−−−−−−→F ⊕(F ⊕0)
�

Jp
(2)
2 F ⊕0−−−−−→F ⊕F ⊕0

�

μF ⊕
0−−−→F ⊕0

)

By the definition of trBi (c), these equalities imply the following proposition.

Proposition 4.7. For each i ∈ {1, 2}, trBi (c) = p
(2)
i 0 ◦ �̃

(2)
i . ��

Propositions 4.6 and 4.7 immediately imply Theorem 4.3.

5 Decorated Trace Semantics for Nondeterministic
Büchi Tree Automata

We apply the framework developed in Sects. 3 and 4 to nondeterministic
Büchi tree automata (NBTA), systems that nondeterministically accept trees
with respect to the Büchi condition (see e.g. [17]). We show what datatypes
F+(F+⊕0) and F+⊕0, and dtri(c) characterize for an NBTA. We first review
some basic notions.

5.1 Preliminaries on Büchi Tree Automaton

Definition 5.1 (Ranked Alphabet). A ranked alphabet is a set Σ equipped
with an arity function | | : Σ → N. We write Σn for {a ∈ Σ | |a| = n}. For a
set X, we regard Σ + X as a ranked alphabet by letting |x| = 0. We also regard
Σ × X as a ranked alphabet by letting |(a, x)| = |a|.
Definition 5.2 (Σ-labeled Tree, [7]). A tree domain is a set D ⊆ N

∗ s.t.: i)
〈〉 ∈ D, ii) for w,w′ ∈ N

∗, ww′ ∈ D implies w ∈ D (i.e. it is prefix-closed), and
iii) for w ∈ D and i, j ∈ N, wi ∈ D and j ≤ i imply wj ∈ D (i.e. it is downward-
closed). A Σ-labeled (infinitary) tree is a pair t = (D, l) of a tree domain D
and a labeling function l : D → ⋃

n∈N
Σn s.t. for w ∈ D, |l(w)| = n implies

{i ∈ N | wi ∈ D} = [0, n − 1]. A Σ-labeled tree t = (D, l) is finite if D is a finite
set. We write Tree∞(Σ) (resp. Treefin(Σ)) for the set of Σ-labeled infinitary (resp.
finite) trees. For w ∈ D, the w-th subtree tw of t is defined by tw = (Dw, lw)
where Dw := {w′ ∈ N

∗ | ww′ ∈ D} and lw(w′) := l(ww′). A branch of t is a
possibly infinite sequence i1i2 . . . ∈ N

∞ s.t. i1i2 . . . ik ∈ D for each k ∈ N, and if
it is a finite sequence i1i2 . . . ik then |l(i0i1 . . . ik)| = 0. We sometimes identify a
branch i0i1 · · · ∈ N

∞ with a sequence l(〈〉)l(i1)l(i1i2) · · · ∈ Σ∞.

Remark 5.3. For the sake of notational simplicity, we identify a Σ-labeled tree
with a Σ-term in a natural manner. For example, a {a, b}-term (a, (b, b)) denotes
an {a, b}-labeled finite tree t = ({〈〉, 0, 1}, [〈〉 �→ a, 0 �→ b, 1 �→ b]). Moreover, for
{a, b, c}-labeled trees t0 = (D0, l0) and t1 = (D1, l1), we write (c, t0, t1) for a tree
t = ({〈〉 ∪ {0w | w ∈ D0} ∪ {1w | w ∈ D1}, [〈〉 �→ c, 0w �→ l0(w), 1w �→ l1(w)]).
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Definition 5.4 (NBTA). A nondeterministic Büchi tree automaton (NBTA) is
a tuple A = (X,Σ, δ,Acc) of a state space X, a ranked alphabet Σ, a transition
function δ : X → P(

∐
n∈N

Σn × Xn) and a set Acc ⊆ X of accepting states.

Definition 5.5 [LB
A]. Let A = (X,Σ, δ,Acc) be an NBTA. A run

tree over A is a (Σ × X)-labeled tree ρ such that for each subtree
((a, x), ((a0, x0), t00, . . . , t0n0), . . . , ((an, xn), tn0, . . . , tnnn

)), (a, x0, . . . , xn) ∈
δ(x) holds. A run tree is accepting if for each branch (a0, x0)(a1, x1) . . . ∈
(Σ×X)ω, xi ∈ Acc for infinitely many i. We write RunA(x) (resp. AccRunA(x))
for the set of run trees (resp. accepting run trees) whose root node is labeled
by x ∈ X. For A ⊆ X, RunA(A) denotes ∪x∈ARun(x). We define AccRunA(A)
similarly. If no confusion is likely, we omit the subscript A. We define DelSt :
Run(X) → Tree∞(Σ) by DelSt(D, l) := (D, l′) where l′(w) := π1(l(w)). The lan-
guage LB

A : X → PTree∞(Σ) of A is defined by LB
A(x) = DelSt(AccRunA(x)).

5.2 Decorated Trace Semantics of NPTA

A ranked alphabet Σ induces a functor FΣ =
∐

n∈N
Σn × ( )n : Sets → Sets.

In [21], an NBTA A was modeled as a Büchi (P, FΣ)-system, and it was shown
that LB

A is characterized by a coalgebraic Büchi trace semantics trBi (c).

Proposition 5.6 ([21]). For X,Y ∈ Sets, we define an order 	 on

K�(P)(X,Y ) by f 	 g
def.⇔ ∀x ∈ X. f(x) ⊆ g(x). We define FΣ : K�(P) → K�(P)

by FΣX := X for X ∈ K�(P) and FΣf(a, x1, . . . , xn) := {(a, y1, . . . , yn) | yi ∈
f(xi)} for f : X→� Y . It is easy to see that FΣ is a lifting of FΣ. Then we have:

1. P and FΣ constitute a Büchi trace situation (Definition 2.13) with respect to
	 and FΣ.

2. The carrier set of the final FΣ-coalgebra is isomorphic to Tree∞(Σ).
3. For an NBTA A = (X,Σ, δ,Acc), we define a Büchi (P, FΣ)-system (c : X→�

FΣX, (X1,X2)) by c := δ, X1 := X \ Acc and X2 := Acc. Then we have:
[trB1 (c), trB2 (c)] = LB

A : X → PTree∞(Σ). ��
In the rest of this section, for an NBTA A = (X,Σ, δ,Acc) modeled as a

(P, FΣ)-system (c : X → PFΣX, (X1,X2)), we describe dtri(c) and show the
relationship with trBi (c) using Theorem 4.3.

We first describe datatypes F+
Σ (F+⊕

Σ 0) and F+⊕
Σ 0 referring to the con-

struction of a final coalgebra in Theorem 2.5. We can easily see that F+
Σ A ∼=

Tree+fin(Σ,A) := Treefin(Σ +A)\{(x) | x ∈ A}. Hence for each i ∈ ω, by a similar
characterization to Example 3.3, we have:

(F+
Σ ( + 0))i1 ∼= Tree+fin(Σ,Tree+fin(Σ, . . .Tree+fin(Σ,

︸ ︷︷ ︸
i

{∗}) . . .)) ∼=
{

ξ ∈ Treefin(Σ × { �������	, �������	
������ }
+ {∗})

∣
∣
∣
∣

the root node is labeled by �������	
������ , and for each branch

whose last component is ∗, �������	
������ appears exactly i-times

}
.
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Therefore F+⊕
Σ 0, a limit of the above sequence by Theorem 2.5, and F+

Σ (F+⊕
Σ 0)

are characterized as follows:

Proposition 5.7. We define AccTreei(Σ) ⊆ Tree∞(Σ × { �������	 , �������	
������ }) by:

AccTreei(Σ) :=

⎧
⎨

⎩

ξ ∈ Tree∞(Σ × { �������	, �������	
������ }
+A)

∣
∣
∣
∣
∣
∣

the root node is labeled by •, and for each

infinite branch �������	
������ appears infinitely often

⎫
⎬

⎭
.

where i ∈ {1, 2} and • is �������	 if i = 1 and �������	
������ if i = 2. Then AccTree1(Σ) ∼=
F+

Σ (F+⊕
Σ 0) and AccTree2(Σ,A) ∼= F+⊕

Σ 0. ��
We now show what dtri(c) characterizes for an NBTA with respect to the

characterization in Proposition 5.7. Firstly, Assumption 4.1 in the previous
section is satisfied.

Proposition 5.8. Assumption 4.1 is satisfied by (T, F ) = (P, FΣ). ��
By Proposition 5.7, for i ∈ {1, 2}, βi 0 (see Definition 3.4) has a type

βi 0 : AccTreei(Σ) → ∐
n∈ωΣn × (AccTree1(Σ) + AccTree2(Σ)) ,

and is given by βi A(ξ) = (a, ξ0, . . . , ξn−1) if the root of ξ is labeled by (a, •) ∈
Σn × { �������	, �������	
������ }. Using this, we can show the following characterization of dtri(c).

Proposition 5.9. Let A = (X,Σ, δ,Acc) be an NBTA. We define Ω :
Run(X) → Tree∞(Σ × { �������	 , �������	
������ }) by Ω(D, l) := (D, l′) where for w ∈ D s.t.
l(w) = (a, x), l′(w) := (a, �������	) if x /∈ Acc and (a, �������	
������ ) if x ∈ Acc. We define a
Büchi (P, FΣ)-system (c : X →� FΣX, (X1,X2)) as in Proposition 5.6.3. Then
for i ∈ [1, 2n] and x ∈ Xi,

dtri(c)(x) =
{
Ω(ρ) ∈ AccTreei(Σ) | ρ ∈ AccRunA(x)

}
. ��

We conclude this section by instantiating p
(2)
i A (Definition 3.8) for NBTAs.

Proposition 5.10. We overload DelSt and define DelSt : AccTree1(Σ) +
AccTree2(Σ) → Tree∞(Σ) by DelSt(D, l) := (D, l′) where l′(w) := π1(l(w)).
Then with respect to the isomorphism in Proposition 5.7, DelSt(ξ) = p

(2)
i A(ξ) for

each i ∈ {1, 2} and ξ ∈ AccTreei(Σ). ��
Hence Theorem 4.3 results in the following (obvious) equation for NBTAs:

{
DelSt(Ω(ρ)) | ρ ∈ AccRunA(x)

}
= LB

A(x) .

6 Systems with Other Branching Types

In this section we briefly discuss other monads than T = P. As we have discussed
in Sect. 3.3, the framework does not apply to T = D.
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Let T =L and F =FΣ . A Büchi (L, FΣ)-system (c : X→� FΣX, (X1, . . . , X2n))
is understood as a Σ-labeled deterministic Büchi tree automaton with an excep-
tion. In a similar manner to T = P we can prove that they satisfy Assump-
tion 4.1. The resulting decorated trace semantics has a type dtri(c) : Xi →
{⊥}+AccTreei(Σ). Note that once x ∈ X is fixed, either of the following occurs:
a decorated tree is determined according to c; or ⊥ is reached at some point.
The function dtri(c) assigns ⊥ to x ∈ Xi if and only if ⊥ is encountered from x
or the resulting decorated tree does not satisfy the Büchi condition: otherwise,
the generated tree is assigned to x. See Sect. E.1 of the extended version [20] for
detailed discussions, which includes the case of parity automata.

We next let T = G. A Büchi (G, FΣ)-system is understood as a probabilistic
Büchi tree automaton. In fact, it is open if T = G and F = FΣ satisfy Assump-
tion 4.1. The challenging part is the gfp-preserving condition (Assumption 4.1.4).
However, by carefully checking the proofs of the lemmas and the propositions
where the gfp-preserving condition is used (i.e. Proposition 3.14, Lemma 4.5
and Proposition 4.7), we can show that Assumption 4.1.4 can be relaxed to the
following weaker but more complicated conditions:

4’-1. T and F+( + A) satisfy the gfp-preserving condition with respect to

F+(F+⊕B + A) �

F ‡
i (id+f)−−−−−−→ F+(F+⊕B + B) �

J(ζF+
B )−1

−−−−−−→ F+⊕B for each
f : A→� B;

4’-2. T and F+( + A) satisfy the gfp-preserving condition with respect to an

algebra F+(F⊕⊕A+A) �
Jτ−−→ F⊕(F⊕⊕A+A) �

J(ζF ⊕
A )−1

−−−−−−→ F⊕⊕A where τ is
the unique homomorphism from (ιFF ⊕⊕A+A)−1 to ζF

F ⊕⊕A+A; and
4’-3. T and F ( + A) satisfy the gfp-preserving condition with respect to an

algebra F (F⊕A + F⊕A + A) �

JF ([id,id]+id)−−−−−−−−−→ F (F⊕A + A) �

J(ζF
A )−1

−−−−−→ F⊕A.

In fact, only the first condition is sufficient to prove Proposition 3.14 and
Lemma 4.5.

We can show that T = G and F = FΣ on Meas satisfy the above weakened
gfp-preserving condition, and hence we can consider a decorated trace semantics
dtri(c) for a Büchi (G, FΣ)-system (c : X→� FΣX, (X1,X2)) and use Theorem 4.3.

Assume X is a countable set equipped with a discrete σ-algebra for sim-
plicity. Then the resulting decorated trace semantics dtri(c) has a type Xi →
G(AccTreei(Σ),FAccTreei(Σ)) where FAccTreei(Σ) is the standard σ-algebra gen-
erated by cylinders. The probability measure assigned to x ∈ Xi by dtri(c) is
defined in a similar manner to the probability measure over the set of run trees
generated by a probabilistic Büchi tree automaton (see e.g. [18]).

The situation is similar for parity (G, FΣ)-systems. See [20, Sect. E.2] for
details.

7 Conclusions and Future Work

We have introduced a categorical data type for capturing behavior of systems
with Büchi acceptance conditions. The data type was defined as an alternating
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fixed point of a functor, which is understood as the set of traces decorated with
priorities. We then defined a notion of coalgebraic decorated trace semantics, and
compared it with the coalgebraic trace semantics in [21]. We have applied our
framework for nondeterministic Büchi tree automata, and showed that decorated
trace semantics is concretized to a function that assigns a set of trees decorated
with priorities so that the Büchi condition is satisfied in every branch. We have
focused on the Büchi acceptance condition for simplicity, but all the results
can be extended to the parity acceptance condition (see Sect. A of [20] for the
details).

Future Work. There are some directions for future work. In this paper we
focused on systems with a simple branching type like nondeterministic or proba-
bilistic. Extending this so that we can deal with systems with more complicated
branching type like two-player games (systems with two kinds of nondeterminis-
tic branching) or Markov decision processes (systems with both nondeterministic
and probabilistic branching) is a possible direction of future work.

Another direction would be to use the framework developed here to cate-
gorically generalize a verification method. For example, using the framework of
coalgebraic trace semantics in [21], a simulation notion for Büchi automata is
generalized in [19]. Searching for an existing verification method that we can
successfully generalize in our framework would be interesting.

Finally, it was left open in Sect. 6 if Assumption 4.1.4 is satisfied by T = G
and F = FΣ . Investigating this is clearly a future work.
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