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Abstract Functional binaural models have been used since the mid-20th century to
simulate laboratory experiments. The goal of this chapter is to extend the capabilities
of a cross-correlationmodel so it can demonstrate human listening in complex scenar-
ios found in nature and human-built environments. A ray-tracingmodel is introduced
that simulates a number of environments for this study. This chapter discusses how
the auditory system is used to read and understand the environment and how tasks
that require binaural hearing may have evolved throughout human history. As use
cases, sound localization in a forest is examined, as well as the binaural analysis of
spatially diffuse and rectangular rooms. The model is also used to simulate binaural
hearing during a walk-through a simulated office-suite environment.

1 Introduction

The goal of this chapter is to examine binaural models from an evolving-habitat
perspective. While the evolution of the auditory system has been studied extensively
from a phylogenetic perspective to establish knowledge of how the auditory system
developed anatomically over time, the auditory system’s ability to adapt to chang-
ing habitats over tens of thousands of years has been hardly investigated. Since it is
impossible to travel back in time, the topic cannot be studied directly. This chapter
describes an attempt of an initial study examining this by simulating different envi-
ronments with a ray tracing model and using an extended binaural model for an
auditory-specific analysis. When studying how the auditory system can adapt to dif-
ferent habitats, one must keep in mind that the anatomical changes of the auditory
system took place over millions of years. While the structure of the auditory system
continues to change over time, these changes occur at a much slower pace than most
sociological changes. Thus, it can be assumed that our auditory system is basically
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structured the same way that it was during the beginning of modern civilization,
which started about 50,000 years ago (Peck 1994). Since the neurological struc-
ture of the brain is very flexible, mammals and other organisms can easily adapt to
new environments and situations—especially during the early post-natal phase (Peck
1995). This flexibility allows us to adjust to new sonic environments. Humans can,
for example, comprehend and appreciate classical music in modern concert halls
using an auditory system that primarily developed in natural habitats.

Traditionally, binaural models have been designed to simulate laboratory sce-
narios, for example, to predict the lateral position of a binaural stimulus presented
over headphones. In this chapter, it is attempted to extend this knowledge for bet-
ter understanding and predicting binaural-hearing tasks in natural environments and
other complex situations that arose as civilization evolved and the built environ-
ment changed. Also, a bridge will be created to the robotic community, which has
its own distinct way of designing sound-sensing systems. Experts in robotics often
attempt to solve tasks in complex environments, for example, acoustically navigat-
ing systems, but without the desire to understand how these tasks are accomplished
in biological systems. In the context of this chapter, understanding will be defined
as the ability to make judgments from perceived information. In some cases, the
understanding consists of the ability to accurately decode the intended meaning sent
by a communication partner, for example, a conversation partner, or the ability to
interpret unintended cues—such as the sounds of an approaching predator. In any
case, understanding allows us to infer something from the received acoustic signals,
and these signals then become information.

Evolutionary biologists agree that a biological organism needs to be successful
in this behavioral complex of four tasks to survive as a species, namely, (i), feeding,
(ii), fleeing, (iii), fighting, and (iv), flirting (reproduction)1—compare, for instance,
Graham (2014). Spatial awareness is essential to success in all these goals—to find
food, avoid predators and to communicate with tribe members for various reasons
ranging from cooperation to mating. As a starting point for the binaural analysis, the
need for spatial acoustic communication and sensing will now be examined in the
view of the main four survival tasks mentioned above.

1.1 Feeding

The early Homo Sapiens survived mainly as hunters and gatherers. Unlike other
vertebrates, such as barn owls or bats, who find their prey acoustically, humans
localize prey or gather objects using vision as their primary sense. Consequently,
the acoustic-localization performance does not need to be as accurate as is the case
for acoustical hunters, who must target their prey precisely. Most likely, acoustic
communication between tribe members played a big role when hunting animals, for
example,whenengaging in an attack. Studies have foundevidence that the early homo

1Also known as the four F’s: feeding, fleeing, fighting, fornication.
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sapiens lived in the plains and hunted large animals from a distance using spears and
other long-distance weapons—Villa and Soriano (2010). The ability to follow these
hunting patternswas a direct result of theCognitive Revolution—Wynn andCoolidge
(2004, 2008), Coolidge andWynn (2018). The rise of new cognitive abilities enabled
homo sapiens to plan ahead, conduct better-coordinated group hunting and also to
spatially navigate larger terrains—Baril (2012).

In contrast, Homo Neanderthalensis is believed to have been a hunter who killed
animals in close combat, based on the type of spear perforations found in deer
skeletons—Gaudzinski-Windheuser et al. (2018) and other evidence. In this context,
it is noteworthy that homo sapiens has a voice box that is very different from that
of Homo Neanderthalensis and other early human species. This results in a lower
fundamental pitch (Fitch 2000). The need for lowering the voice could have resulted
from the need to communicate acoustically over larger distances in the plain as the
homo sapiens started to specialize in hunting animals fromadistance. Thiswould also
explain why the frequency range is lower than it is the case of many other mammals.
The first mammals were small nocturnal animals who presumably lived in densely
vegetated areas—Gerkema et al. (2013). Their high-frequency hearing range is opti-
mal for localizing potential predators at a close distance (Joris and Trussell 2018).
However, high frequencies are not optimal for localizing sound sources from a larger
distance because of air absorption (dissipation), which increases with frequency.

1.2 Fleeing

In contrast to when hunting prey, the angular localization accuracy is not that critical
when fleeing from predators because one usually runs away from the them. However,
it is essential to detect the predators early on before they pose an imminent danger.
Auditory cues always become predominant when visual cues are not available. This
is the case when it is too dark to see, visual objects are occluded, or the acoustic
sources are outside the visual field. The auditory sense alsomonitors the environment
during sleep, and it can be shown that children are not yet disturbed by sounds at night
(Busby et al. 1994). One explanation for this observation is that, from an evolutionary
perspective, it is better for children at certain ages to have an undisturbed sleep and
rely on their parents for monitoring than to monitor the environment themselves. A
study on detecting fire alarms revealed that the sleep of children is often so deep that
children do not wake up when the alarm is set off (Bruck 1999).

In discussions it is usually emphasized that the ability to detect signals tomonitors
predators is of particular relevance. However, an absence of sound can be equally
important, because other animals will quiet down in a sector fromwhere a predator is
approaching. This might be one the reasons for enjoying immersive sounds, namely,
that they can serve as an inherent indicator that no predator is approaching.2 While
this hypothesis remains to be proven, several studies have shown that human subjects

2Personal communication with David Mountain, Boston University, April 5, 2013.
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do not feel comfortablewhen performing tasks in extremely quiet environments (Volf
2012; DeLoach et al. 2015). Alternative strategies are pursued where fleeing is not
an option. The females of the indigenous BaYaka group, for example, gather together
and shouted group calls to make themselves appear as a large and well-coordinated
group to scare away predators in lieu of fleeing (Knight and Lewis 2017, p. 442).

1.3 Fighting

Combat between humans is as nearly as old as the homo sapiens (Meller and Schefzik
2015; Ferrill 2018), and the remains of the oldest homicide victim found are 430,000
years old (Sala et al. 2015). The acoustic requirements for human combat against
other humans or predators are very similar to the acoustic communication in hunting
situations discussed above. Shouting calls are essential to coordinate attacks and
warn others from counter attacks, demanding excellent spatial-hearing skills.

1.4 Reproduction

Many animalsmostly rely on acoustic signaling and sound localization to findmating
partners.Althoughmany animals shout outmating calls over long distances, it ismore
likely human courting has always been an intimate social interaction, since humans
always lived together in groups. It is widely believed that the fundamental pitch
differences in human female and male voices have evolved to make each other more
attractive to the opposite sex (Jones et al. 2010). In the context of spatial hearing, it is
interesting though that homo sapiens engaged in artistic activities from early on that
appear to address both erotic and musical desires. For example, in the Hohle-Fels
cave, bone flutes were found next to venus figurines and phallus sculptures (Conard
and Wolf 2014; Conard et al. 2009). Since then, the flute has been a typical courting
instrument in indigenous cultures, see for example Conlon (2004). Adjacent to the
inhabited part of the Hohle-Fels cave, where the bone flute was excavated, a much
larger cavern exists with a reverberation time of about 2 s. It is not hard to imagine that
our ancestors would have played the flutes in this larger cavern to enjoy the acoustics.
At least, it known that early humans were very aware of their acoustic environment.
For instance, Reznikoff found that many prehistoric cave drawings were painted at
places with dominant acoustic resonances (Reznikoff 2004/2005).

1.5 Modality and Bandwidth

In order to understand how our auditory system developed and was utilized, one
needs to examine what cues and mechanisms are available to process these cues.
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This way, situations can be determined in which acoustic cues supersede other cues.
Of the five major senses, touch, taste, smell, vision, and audition, only the last three
are useful to sense objects from a distance. Our olfactory sense is less developed
than that of other species, including dogs. Human beings only have a directional
sense of smell when they are moving, and even though it can be useful to detect the
presence of a predator or food, this sense lacks the spatial precision of the auditory
and visual systems. The early homo sapiens was primarily a diurnal hunter using
the visual sense to hunt animals from a distance with spears and to collect food
from plants. Most likely, the auditory sense had initially a support role until speech
communication became increasingly important. The visual sense is limited to the
binocular visual field and covers only about 214◦ in the horizontal plane (Rönne
1915). In contrast, the auditory sense is not spatially restricted, and it also helps us
monitor our environment at night. Sound localization has been important to detect
the direction of a predator quickly. It can also be assumed that it was important for
our ancestors to localize each others’ voice commands when tracking prey. Sound
localization has also always been important in environments where vision is partially
obstructed, for examplewhen hunting deer in a dense forest (Gaudzinski-Windheuser
et al. 2018; Roebroeks et al. 1992). Our first example deals with such a situation. A
virtual walk-through in a forest is presented and analyzed in the next section.

2 Simulating Sound Localization in a Forest with Partially
Obstructed Sight Using a Ray-Tracing Model

2.1 Introduction

To be able to better understand how the binaural system evolved over millions of
years to perform robustly in complex environments, several scenarioswere developed
in which auditory cues are particularly important. Obviously, sound localization
is always in demand when the source is out of sight. Aside from monitoring the
environment at night, forests are a good test case because trees and other vegetation
typically visually obstruct objects, and some of these objects might be looking for
dinner. The forest simulation was set up using a ray-tracing simulation program,
which is described in the next section. Circular boundaries are used as acoustic
objects to simulate the acoustic behavior of tree trunks. The forest is simulated by
randomly creating circles in an area of 100 × 100m2. The diameters of the tree trunks
are set by a stochastic process.
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Fig. 1 Demonstration of the ray-tracing algorithm for the Haydn-Saal in Eisenstadt, Austria, where
Joseph Haydn was active. (Left) Processed marked-up floor plan for visual inspection. (Center)
Assignment of wall-corner identification numbers. (Right) Geometric model with sound source
(red dot), receiver (blue dot), and calculated rays. The original floor plan was obtained from
Meyer (1978, p. 147)

2.2 Creating Geometric Models

The method presented here is confined to simulations in the horizontal plane
(two-dimensional rendering method) to allow fast calculations. This enables the sim-
ulation of completewalk-throughs using a batch process.3 The ray-tracing implemen-
tation was programmed in Matlab following common practice—details in Vorländer
(1989), Lehnert and Blauert (1992a, b), Blauert et al. (2000). Additional features
were added where needed, for example, an algorithm to create circular boundaries
to simulate tree trunks and a method to generate models from floor plans rapidly.

Coordinates of acoustic boundaries can be assigned to the ray-tracing algorithm
in three different ways, (i) line segments with start and end points representing
walls, (ii) squared pillars with the center coordinates and the pillar width, (iii) circles
represented by center and radius coordinates. Figure1 shows an example of the ray-
tracing software for a concert hall in Eisenstadt, Austria, that was recreated from a
floor plan. The software can work with annotated floor plans. For this purpose floor
plans are marked up within a standard bitmap editor (GIMP, Photoshop, etc.) using
red dots for room corners, green dots for squared pillars, and blue dots for circles—
see Fig. 1, left graph. In the next step, the program plots annotated points on top of

3Originally, the ray-tracing method was implemented to create auralizations for the horizontal array
of 128-channel loudspeakers at Rensselaer’s CRAIVE-Lab.
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the map providing a unique index for each annotated point—see Fig. 1, center graph.
The user then creates a list of how the red points connect to walls. The scale of the
floor plan needs to annotated, and the original dimensions need to be handed over
to the program as well (e.g., 1m and 10m for two scale points respectively). The
program then transforms these data points to an editable list of geometrical objects
that can be extended by the user, for example, by adding identifiers for wall materials.

The Ray-Tracing Algorithm

The program sends out rays from a user-specified source position. The program
computes the rays for equidistant azimuths covering the full 360◦ angular range.
Intersection points are computed for each ray and boundary object as shown in
Fig. 2, left graph. For each ray, the closest boundary intersection is determined. At
the intersections, the reflection angle is calculated using Snell’s law, which predicts
that the reflected angle measured from the normal of a plane surface equals the
incoming angle, that is, cos(αo) = cos(αi ). Consequently, the next-order ray is sent
out into the new direction until the maximum order (e.g., the number of reflections)
as specified by the user is reached. The outgoing rays are stored as a sequence of
ray elements containing the intersection points and the boundary-material identifiers.
Since the initial angles are stored with the rays, a source-specific directivity pattern
can be simulated after all rays have been traced.

Creating a Binaural Room Impulse Response

Next, the rays are collected by a receiver, which can be located anywhere in the
rendered room. For this purpose, a virtual circle with an adjustable diameter is posi-

(a) (b)

Fig. 2 (Left) Diagram to illustrate the ray-tracing method. (Right) Schematic of the simulated
forest environment (top view)
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Fig. 3 Ray-tracing signal flow

tioned at the receiver location. Then, the algorithm calculates which ray elements
intersect the circle, and for all positive cases, the total ray distance between sound
source and receiver is calculated. All listed values are stored together with the final
angle of incidence, that is, the angle that the ray was initially sent out, the reflection
order, and the sequence of identifiers of the walls that the ray has hit on its way to the
receiver. Based on these data, the impulse response is computed. The direct sound
and the reflection are computed as delta peak at the delay that corresponds to the
path length that the ray has traveled from the source to the receiver. In addition, each
impulse is transformed in the following way—see also Fig. 3.

1. The magnitude of the ray is reduced based on the inverse-square law.
2. The high frequencies are filtered out based on dissipation effects in the air.
3. The absorption coefficients of the walls and other boundaries are simulated using

a cascaded Finite Impulse Response (FIR) filter. Thesematerial-specific filters are
chosen from a publicly available database (DIN 1968). The number of cascaded
filters matches the order of the reflection.

4. In the final step, the incoming direct sound and the reflections are selected by
their close proximity passing the receiver position. These are then filtered with
HeadRelated Transfer Functions (HRTFs) that correspond to the closest available
HRTFmeasurement for the direction of incidence. At this point, the room impulse
response is transformed into a stereo signal. An overlap-method ensures that the
delayed reflections can partially overlap.

Simulation of Late Reverberation

Late diffuse reverberation is computed in addition to the early reflections that are
generated by the ray-tracing model. Since the late reverberation tail is formed by
a stochastic process with an underlying Gaussian distribution, the fine structure of
the simulated reverberation tail is constructed from a Gaussian noise sample. The
duration of the Gaussian noise sample is adjusted to twice the value of the maximum
reverberation time.Next, the noise sample is processed through a filter bankwith nine
adjacent octave-wide bandpass filters. An exponentially decaying time window, yk ,
adjusted to the frequency-specific reverberation time, is calculated for each octave
band, k:

yk = e
−t ·20·log(10)

Tk ·60 . (1)
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with the reverberation time, Tk , in the kth frequency band, and the time, t , in sec-
onds. Afterward, the total exponentially-decaying noise signal, xt , is reassembled by
summing up, sample-by-sample, the octave-filtered noise signals, multiplied with
the exponentially decaying time window:

xt =
K∑

k=1

xk · yk . (2)

This process is repeated for each channel, two for a binaural signal in each case,
using independent Gaussian noise samples for each channel while keeping all other
parameters constant. The frequency-specific reverberation times, T, is calculated
using the Eyring formula, which is based on a three-dimensional room model that
takes the room volume and the effective absorptive surface area into account, namely,

T60 = 0.161 · V/(A + 4m · V ) s, (3)

whereby, A is total effective absorption, defined as the sum of all surface elements,
Sk , multiplied with their specific absorption coefficients, αk :

A =
(

K∑

k=1

αk · Sk
)
. (4)

In order to estimate the room volume, V , the area of the floor plan is calculated and
then multiplied by the average room height, which has to be provided to the program.
The formula for this calculation is:

V = AF · h. (5)

The total effective absorption is calculated from the wall elements in the ray-
tracing model, each multiplied with the average height. The frequency-specific
absorption coefficients are determined with the values stored in the DIN database
(DIN 1968) via thewall material identifiers. A linear onset ramp is calculated to grad-
ually blend in the late reverberation tail with the direct sound and early reflections.
The starting and end points of the ramps can be adjusted by the user.

Two methods are available to calculate the direct-to-reverberant energy ratio.
The first method estimates the critical distance, the distance from the sound source at
which the sound-pressure levels of the direct sound matches the sound-pressure level
of the reverberant field. For an omnidirectional sound source, the critical distance
can be calculated using the following equation (Kuttruff 2000, p. 317),

rc = 0.057 ·
√

γV

T
, (6)



260 J. Braasch

with the volume, V , the reverberation time, T , and the directivity coefficient, γ. In
the subsequent calculation, omnidirectional sound sources are assumed to have a
directivity coefficient that equals to one.

In the next step, the impulse response is calculated at a receiver position at the
critical distance. The overall energy of the impulse response, ET , is the sum of the
direct sound energy, ED , the early reflection energy, EE , aswell as the late reverberant
energy, EL , as follows,

ET = ED + EE + EL . (7)

At the critical distance, the following condition has to be met for an omnidirectional
source and receiver pair,

ED = EE + EL . (8)

Consequently, the energy of the late reverberation has to be adjusted to

EL = ED − EE , (9)
2RT∑

t=0

p2L =
2RT∑

t=0

p2D −
2RT∑

t=0

p2E , (10)

with the sound pressure, p, which is, of course, proportional to the digital signal
amplitude.

In the second method, the exponentially-decaying amplitude of the reverberation
tail is fitted to the exponentially-decaying amplitudes of the reflection pattern. For
this purpose, both signals are logarithmized so that the decaying impulse response
can be fitted by a linear-regression curve. The amplitudes of the decaying slope are
then matched and a cross-fade method is used to blend out the early reflections while
gradually blending in the late reverberation.

2.3 The Forest Walk-Through

Coming back to the forest simulation example, the environment is depicted in Fig. 2b.
The red dot shows the sound source, which is located at the coordinate 40m/7m (x /y
coordinates in meters). In cases where two circles overlapped, one of the circles was
removed since two tree stems cannot occupy the same space. The absorption coef-
ficient was set to 5% based on measurement results for tree barks (Reethof et al.
1977). Diffuse reverberation that results from leaves and other objects was added.
The reverberation time was adjusted to 1.6 s and the reverberation ratio, adjusted
to the interaural coherence, was 0.4 at a source-to-receiver distance of 40m. Both
values were chosen based on forest-acoustics measurements by Sakai et al. (1998).
The rays are depicted through dashed lines that become lighter with increasing order.
Three walk pathways were computed at different y-coordinates that were held con-
stant for each condition, that is, 17m, 27m,and 47m, labeled as 10-m, 20-m and
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Fig. 4 Results of cue analysis of a simulated forest walk-through. The left panels show the results
for the pathway that is 10m behind the listener in the y-direction. The center panels show the
results for the 20-m condition, and the right panels for the 40-m condition. For each condition, the
order of the first arriving reflection is shown in the top graph as a function of the x-position. An
order of zero indicates that the direct signal passes to the listener position and is not obstructed by
the tree trunks. The panels 2nd from the top show the actual path lengths of the first wavefront
from the source to the receiver—indicated by the dots. The dashed line shows the direct distance
between the sound and the listener. The panels 3rd from top show the angles of incidence of the
first-arriving wavefront indicated by the dots. The dashed lines show the actual azimuths between
the sound source and the listener. The bottom graphs depict the coherence indicated by the solid
lines. All coherence values that correspond to cases where the direct signal was not obstructed are
emphasized by additional dots

40-m conditions—referring to the distance in the y-dimension between source and
receiver. Each walkway covers the distance from 15 to 100m along the x-coordinate.
Binaural impulse responses were computed in 1m increments along the x-axis and
then analyzed.

The analysis results are shown in Fig. 4. The three columns show the results for
the different distances along the y-coordinate. The top row shows the order of the
first arriving wave. For the 10-m condition, the unobstructed direct signal (0th order)
arrives at the listener position in 37% of the cases—see top-left graph of Fig. 4. In
those cases, where the receiver is further away from the sound source based on the
x-axis position (x-position > 60 m), the direct line of sight is obstructed in all cases
and the first ray that reaches the receiver is typically on the order of two or higher.
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For x > 80 m, the effective path length becomes much greater than in the other cases
with values of 100m and beyond—see graph second from the top in the left panel
of Fig. 4. This also greatly affects the azimuth of the first arriving wavefront, which
is not necessarily the direct signal—see graph second from the bottom in the left
panel of Fig. 4. With a few exceptions, the first wave front arrives from the azimuth
direction of the sound source or an angle close by if the receiver is located at an x-
position between 20 and 60m. Outside this range, the azimuth values differ greatly
from the actual sound-source angle.

Next, the interaural coherence is investigated. The interaural coherence estimates
how similar the left and the right ear signals are in the time domain after they have
been amplitude and time aligned. It is a measure of how reverberant the sound field
is at the listener position—knowing that the presence of reverberation decorrelates
both signals, thus making them more dissimilar. The interaural coherence can be
calculated as the absolute maximum of the normalized cross-correlation function,
which is defined as

Rl,r (n,m) =

N∑
n=n0

xl(n − m) · xr (n)
√

N∑
n=n0

x2l (n − m) ·
N∑

n=n0
x2r (n)

, (11)

with the time n, the internal delay, m, the left input signal, xl , and the right input
signal, xr .

The interaural coherence for the 10-m condition is shown in the bottom-left graph
of Fig. 4, solid line. It is noteworthy that the interaural coherence becomes noticeably
larger with the absolute distance from the source. Therefore the interaural coherence
is generally smaller in the 20-m–60-m x-position range than for the outside positions.
All values that correspond to cases that include the direct sound are emphasized
through dots.

The 20-m condition is shown in the center column of Fig. 4. The relative number
of x-positions, where the direct signal is not obstructed on the pathway to the listener
position is slightly lower than in the 10-m condition—33% versus 37%. The average
coherence, 0.17, is the same as found for the 10-m condition. Also, the coherence
is noticeably higher for most cases, where the direct signal reaches the listener’s
ears—as indicated by the dots.

The 40-m condition is shown in the right column of Fig. 4. Here, the direct path is
often obstructed and the direct signal reaches the listener only in 17% of the cases.
Consequently, only a fewazimuth values indicate the correct sound-source position—
see graph second from the bottom in the right panel of Fig. 4. The coherence values
are lower than for the other two conditions with an average of 0.13. However, also
in this case, the relative coherence values are higher when the direct signal is not
obstructed on its way to the listener.

In general, it can be concluded that in a dense forest environment the direct signal
is often obstructed, making it both acoustically and visually challenging to localize
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salient objects. By moving through the environment, the receiver can find locations
where the sound source arrives directlywithout obstructions. These positions are usu-
ally characterized by coherence values that are higher than those found for obstructed
sound sources. The forest scenario is a good example of where hearing and vision
canwork together to locate sound sources quickly because the sound source becomes
visible once it is no longer obstructed by objects.

3 Understanding the Fundamental Sound of Caves to
Concert Halls Using a Precedence-Effect Model

The next section investigates how binaural models can be used to extract room-
acoustic features from a running signal and compare the results to the first-known
type of concert venue—the cave. At the core of the human ability to extract infor-
mation from sound sources in reverberant spaces are auditory mechanisms related
to the precedence effect (Blauert 1997; Litovsky et al. 1999). The precedence effect,
formerly also called the law of the first wave front, describes the ability of the audi-
tory system to suppress information about secondary sound sources that are reflected
from walls and other objects. This enables the auditory system to localize the actual
position of a sound source by making the localization cues pertinent to the direct-
signal component available. This is a non-trivial task for the auditory system since the
direct signal and the reflected signal parts overlap in time and frequency. The primary
cues to localize a sound source are Interaural (arrival) Time Differences (ITDs) and
Interaural Level Differences (ILDs). ITDs occur because the path lengths between
a sound source and both ears differ depending on the incoming azimuth angle. The
cross-correlation algorithm, (11), is an adequate algorithm to simulate the processes
in the auditory system when extracting ITD cues. The lateral position of the cross-
correlation peak as a function of the internal delay, m, is used to determine the ITD.
ILDs occur because of shadowing effects of the head toward the contralateral ear.
For more details on ILDs, see, for instance, Breebaart et al. (2001), Braasch (2003,
2005).

The third type of spatial cues are called “monaural cues”. Monaural cues are
direction-dependent, pinna-induced spectral modifications that require only one ear
for analysis—Blauert (1969/1970, 1997), Zakarauskas and Cynader (1993). These
cues are especially important for judging the elevation and front / back orientation of a
sound source.Yet, it is shown in this chapter that these dimensions can also be handled
by ITD-based algorithms if head movements are considered—compare Pastore et al.
(2020, this volume). The focus of the chapter will, however, continues to focus on
sound-source localization and information extraction in reverberant environments.
Further, regards survival, the auditory system’s ability to segregate sound sources is
relevant as well—for details see, for instance, Bodden (1993), Roman et al. (2003),
Roman et al. (2006), Deshpande and Braasch (2017), Mi et al. (2017).
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When conducting room analyses, it should be kept in mind that modern concert
halls have not been around until very recently in the scheme of human history. It
will now be discussed how the auditory system can extract room-acoustic features
by using a system that does not have at its disposal auditory experience of millions
of years to adapt to rectangular-shaped rooms.

The first-known musical instrument at all is a 40,000-year-old rim flute made
from a vulture bone. Yet, in the context of the current paper is not so much the
instrument itself that is important but rather the cave where it was found. This is
the Hohle-Fels cave near Schelklingen, Germany—Conard et al. (2009). It is hard
to imagine that this instrument has not been played in the cave. In 2016, the current
author had the opportunity to visit the cave and to record some impulse-responses in
it. This allowed him to estimate the cave’s mid-frequency reverberation time, which
came out as about 2 s—Braasch (2019). It is remarkable that the reverberation time
of the Hohle-Fels cave is in the range of modern classical concert halls. For example,
the Haydn-Saal in Eisenstadt, as was shown in Fig. 1, also has a reverberation time
of about 2 s in the mid-frequency range when the hall is occupied—Meyer (1978),
p.147. However, what is important in the context of this paper, is the following.
Despite the similarities in reverberation times of the Hohle-Fels cave and a typical
concert hall, there is a fundamental acoustic difference between them. Concert halls
are typically rectangularly shaped or have at least large plane surfaces, while the
surface of a cave is very irregular. The latter leads to a very diffuse echogram while
the concert hall has a few very distinct reflections. While reverberation chambers
for technical acoustic measurements are often kept diffuse, there are very few music
facilities that build on this diffuseness notion. The most distinct two in the world
are probably StudioC at Blackbird Studios in Nashville, TN, (Bonzai 2018), and
the Studios1 and2 at Rensselaer Polytechnic Institute’s Experimental Media and
PerformingArts Center (EMPAC) in Troy, NY. StudioCwas conceived and designed
by George Massenburg, and its walls are treated with 40 ton of long wood beams
similar to the absorptive wedges in anechoic chambers but with an irregular pattern
and being sound-reflective. While the sound of the studio is reverberant, this unique
design avoids spectral colorations imposed by comb filtering. Concurrently, a lot
of spatial properties that would commonly originate from the pattern of specular
reflections are not present in this studio. An anecdote illustrates the acoustic features
of this space. According to George Massenburg, a session was booked with a blind
pianist. When the musician entered the studio, he walked around the music stand
and the piano with the help of his cane but then, without the usual direct reflections
of planar surfaces, walked straight into a wall that he did not perceive to be there.
Studio1and2 at EMPAC were conceived by EMPAC director Johannes Goebel with
the diffuse acoustics of a forest opening in mind.
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3.1 Precedence-Effect Model

Estimating the ITD of the Direct Signal

The precedence-effect model as reported here, has the task of analyzing the
reverberant conditions. It is on the Binaurally Integrated Cross-correlation Auto-
correlation Mechanism (BICAM)—Braasch (2016). Modifications were made to the
original algorithm to calculate more accurate binaural-activity maps. Unlike tradi-
tional precedence-effect models that suppress the energy or spatial information of
early reflections, the BICAM algorithm separates the auditory cues for the direct
signal and from the early reflections but does not remove or suppress the latter. This
is important for this section because the aural quality of the room that the sound
source is presented in can thus be evaluated. The model separates auditory features
for the direct signals and early reflections from a running signal using a dual-layer
spatiotemporal filter. Figure5 shows the architecture of the model. The incoming
signal ascends from bottom to top. The model separates the incoming binaural sig-
nal into auditory bands at the initial stage—as shown in the bottom row of boxes.
Then, themodel performs a set of auto-/cross-correlation analyzes within all auditory
bands as depicted in boxes, labeled “AC” and “CC”, that are shown in the 2nd row
from the bottom. During this process, the following autocorrelation/crosscorrelation
sequences are calculated from the left and right ear signals, x and y—depicted as
Steps1and2 in Fig. 6,

Rxx (m) = E[xn+mx
∗
n ] (12)

Rxy(m) = E[xn+m y
∗
n ] (13)

Ryx (m) = E[yn+mx
∗
n ] (14)

Ryy(m) = E[yn+m y
∗
n ], (15)

with the cross-correlation sequence, R, the expected-value operator, E{. . . }. The
regular, non-normalized cross correlation is defined as follows:

Bandpass
filter bank

Right Ear SignalLeft Ear Signal

Bandpass
filter bank

ACL CCLR CCRL ACR

2nd-Layer Cross-correlation

Binaural Activity Map

Fig. 5 System architecture and signal flow of the BICAM model—(AC)…autocorrelation,
(CC)…cross correlation
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Fig. 6 Autocorrelation/cross-correlation procedures that are performed using the BICAM archi-
tecture to estimate the binaural room impulse response. The variable Rxx is the autocorrelation for
the left channel, Ryy denotes the same for the right channel. Rxy represents the cross-correlation
function between the left and the right channels. The hats over the variable R indicates that only
the right side is considered. The gray window in Step2, is used to compare the left-ear channel, L ,
to the right-ear channel, R

Ri, j (n,m) =
N∑

n=n0

i(n − m) · j (n), (16)

with, the time, n, the internal delay, m, and the input signals i, j . The variable n0
is the start time of the analysis window and N the end time. The left and right
input signals are assigned to the variables i and j . For the case i = j , R denotes
the autocorrelation. For the BICAM model, the range of the internal delays, −M to
M , needs to exceed the duration of the reflection pattern of interest. Otherwise, the
impulse response is not shown in its entire duration. Alternatively, ±M can also be
set to just show the early part of an impulse response. The variable n typically ranges
from the beginning of the signal, n = 0, to the end of the signal, N . The calculation
can be performed as a running analysis over shorter, overlapping time segments.

In the next step,which is typically not found in traditional cross-correlationmodels
(Sayers and Cherry 1957; Blauert and Cobben 1978; Stern and Colburn 1978), a
cross-correlation algorithm is performed on top of the combined autocorrelation/
cross-correlation algorithm as shown in the second top box in Fig. 5 and also in Step3
of Fig. 6. The goal of this procedure was to develop a method that incorporates the
causality of the direct sound and its reflections, which is not provided by conventional
cross-correlation models. Using the second-layer cross-correlation analysis over the
autocorrelation signal (e.g., Rxx ) in one-channel and the cross-correlation signal
(e.g., Rxy) in the second channel, the spatial information in the direct signal and in
the individual reflections can be segregated.

A key to the function of the model is a comparison of the right side peaks of
both functions (autocorrelation function and cross-correlation function) as shown
in the gray box in Step2 of Fig. 6. These side peaks are correlated to each other
by windowing out the direct peaks and the left side of the (auto-)correlation func-
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tions. The temporal offset between both main peaks can be obtained by aligning the
side peaks in time to determine the interaural time difference (ITD) of the direct
sound. The alignment of the side peaks is accomplished by cross-correlating the two
autocorrelation/cross-correlation functions—(12) and (15)—over the segments of
both functions that contain the side peaks for positive internal delay values, m, (gray
areas in Step2 of Fig. 5). It is important to zero out all remaining segments so that
the main peaks and the side peaks for negative m values cannot affect the alignment
of the positive side peaks. Mathematically, this operation can be stated as

R̂i j = Ri j | ∀m > w ∧ R̂i j
!= 0 | ∀ −M ≤ m ≤ w. (17)

In the next step, the variables, i and j , are substituted with the left and right ear
signals, x and y, to compute the following four functions, R̂xx , R̂xy , R̂yx , and R̂yy .
The variable w is the length of the window to remove the main peak. The method
works if the cross terms (correlations between the reflections) are within certain
limits.

Using these functions, the 2nd-layer cross-correlation is calculated. The ITD for
the direct signal, kd̄ , can then be computed from the product of the 2nd-layer cross-
correlation terms—see Step3 in Fig. 5:

kd̄ = max arg
m

{√
|RR̂xy R̂xx

· RR̂yy R̂yx
|
}
. (18)

The solution for kd̄ represents the lateral position of the direct signal. In the next
step, this solution is used to further expand the algorithm to derive a binaural-activity
map that also contains information about the locations and delays of individual early
reflections—see top box in Fig. 5.

Binaural-Activity-Map Calculation

A binaural activity map is a three-dimensional plot of a binaural room impulse
response that depicts the temporal course of the reflections on the x-axis, the spatial
positions of the reflections on the y-axis and the amplitude of the reflections on the z-
axis—seeBraasch (2005) formore information. In order to create the binaural activity
map, the ITD of the direct signal, kd̄ , is used to shift one of the two autocorrelation
functions, Rxx or Ryy . The latter two functions are, in some form, a representation
the early reflection patterns for the left and right channels—see Step4 in Fig. 5. The
respective equations are

R̆xx (m) = Rxx (m), (19)

R̆yy(m) = Ryy(m − kd̄). (20)
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A series of cross-correlation functions is calculated overmoving segments of the time
aligned autocorrelation functions, R̆xx and R̆yy , for positive time values in order to
estimate the delays, ITDs and relative amplitudes of the reflections.

3.2 Acoustical Analysis

In order to demonstrate the effects of the two opposite sound environments, two
idealized environments were created, one with mostly diffuse reflections and the
other one with mostly specular reflections, using the ray-tracing model that was
introduced in Sect. 2.2. In the first case, simulating the cave, the impulse response
for the diffuse reverberation of the Hohle-Fels cave was simulated using decaying
Gaussian-noise burst roughly matching the RT of the cave, namely, 2 s, and an initial
time-delay gap of 12ms. The direct sound source was simulated using a delta peak
convolvedwith anHRTFpair corresponding to0◦ azimuth and0◦ elevation.AllHRTF
catalogs used for this chapter have been measured at the Institute of Communication
Acoustics of the Ruhr-University Bochum, Germany—for details see Braasch and
Hartung (2002). The direct-to-reverberant-energy ratio between the direct signal and
the late reverberation was set to 3dB. An anechoicmale voice sample of 12 s duration
was used as the sound signal for all examples in this section. For the simulation, the
auto- and cross-correlation terms, R̂xx , R̂xy , R̂yx , and R̂yy of the BICAM algorithm
were employed. The values for Eq. (17) are calculated in separate auditory bands
using the same gammatone-filter bank (Patterson et al. 1995) with 15 auditory bands
from 100 to 1600Hz. The beginning of the window w in (17) was set to 100samples
(2268µs). The length of the window equaled to 40ms. The ITD, kd̄ , for the direct
signalwas then estimated from the frequency-superposed 2nd-layer cross-correlation
functions according to (18).

Figure7a shows the binaural impulse response extracted from the running signal
using the BICAMmodel. One can clearly see that both the left and the right channels,
shown as blue and red lines, depict the direct sound but not the exponentially decaying
reverberation tail. Only some residual noise that results from the autocorrelation
process can be found due to the limited duration of the source signal. The binaural-
activity map that was computed using the estimated binaural impulse response is
shown in Fig. 8a. Based on the discussed features of the impulse response, it comes
as no surprise that the binaural-activity map only shows a single peak for the direct
signal but no trace of the reflections. With the exceptions of a few artifacts at the late
end of the binaural activity map, the outcome is very similar to the binaural-activity
map computed for an anechoic environment but an identical direct sound source—
see Fig. 7b and Fig. 8b. The results support the StudioC anecdote and are also in line
with a study by Teret et al. (2017) that demonstrates that listeners have no temporal
representation of a Gaussian reverberation tail independent of the sound stimuli that
are convolved with that reverberation tail.
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For the concert-hall example, the impulse response was composed of the same
direct signal and its reverberant tail as has already been used to simulate the cave.
In addition, four specular reflections were simulated at the following locations and
delays,

Azimuth Delay Reflection coefficient
−45◦ 16 ms 0.7
+45◦ 19 ms 0.7
−60◦ 22 ms 0.5
+60◦ 25 ms 0.4

(a) 0◦, source with diffuse reverberation (b) 0◦, source without reverb.
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(e) 30◦, specular & diffuse reverberation (f) −30◦, specular & diffuse reverb.
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Fig. 7 Binaural room impulse responses, estimated from running signals
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(a) 0◦, source with diffuse reverberation (b) 0◦, source without reverberation
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(c) 0◦, source with specular reflections (d) 0◦, specular & diffuse reverb.
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(e) 30◦, specular & diffuse reverberation (f) −30◦, specular & diffuse reverb.
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Fig. 8 Binaural-activity-map results of BICAM-model analyses for different conditions, including
diffuse and specular reflections as indicated in the individual graphs above
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The extracted impulse responses are shown in Fig. 7c,—impulse response direct
sound and specular reflections only—and in Fig. 7d,—impulse response with spec-
ular reflections and diffuse reverberation tail. The corresponding binaural-activity
maps are shown in Fig. 8c, d. In both cases, the map correctly identifies the lateral
positions and the delays of the direct sound and of most of the early reflections. In
order to demonstrate the ability of the model to provide an independent but joint
analysis of the direct sound and the early reflections, only the lateral position of
the direct sound source was moved while the lateral positions and delays of the
early reflections were maintained. Figure8e shows the same binaural-activity map
as Fig. 8d but for a direct signal that has been moved laterally to +30◦. The result
shows that the binaural-activitymap indicates the new lateral position correctly while
maintaining, in principle, the positions of the side peaks that indicate the delays and
lateral positions of the reflections. The positions of the side peaks are alsomaintained
when the direct-sound source is moved to −30◦—see Fig. 8f. Figure7e, f depict the
binaural room impulse responses that were extracted from the running signal for
the two conditions with a lateralized direct-sound source. In comparison with the
laterally centered direct-sound source, shown in Fig. 8d, one can see that the later
parts of the binaural room impulse responses are very similar while the onset delays
between left and right channels, shown in blue and red, are clearly visible.

Before concluding this section, the fundamental differences of the BICAM
algorithm when processing specular reflections and diffuse reflections should be
discussed. In this context it is worth noting that the binaural-activity map for the con-
dition with laterally centered direct signal and early specular reflections, as shown in
Fig. 8c, does not change much when a late, diffuse reverberation tail is added—see
Fig. 8d. Both maps are very similar indeed despite the fact that the stimulus of Fig. 8d
contains a diffuse reverberation tail in addition to the early specular reflections. The
similarity in both maps re-emphasizes that the BICAMmethod is “blind” toward dif-
fuse reverberation tails because these do not produce a distinct autocorrelation map.
Obviously, human listeners are aware of the presence of a late reverberant field,
otherwise acoustical designs like the Blackbird’s StudioC and the EMPAC’s Stu-
dios1and2 would not have a meaningful purpose. It has to be kept in mind, though,
that the proposed BICAM model is a localization model. Other types of psychoa-
cousticmodels, such as detectionmodels, are needed to extract further room-acoustic
features. Further standardmethods estimate, for instance, interaural coherence and/or
extract features of the (exponentially) decaying room impulse response from tran-
sients in the source signals, in particular, from impulses and abrupt stops.

While the interaural-coherence method is usually calculated from a measured
room impulse response, it can also be calculated from a running signal. This was
done for the forest walk-through—see (11). The drawback using the latter method
is that the type of source signal will influence the interaural coherence, and the
outcome is no longer solely based on the room parameters. However, also in real
life, the perceived reverberance is highly influenced by the source signal employed—
Teret et al. (2017). A further method is to estimate the reverberation time from the
exponential-decay rate—see, for instance, Huang et al. (1999).
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Among the three described methods, the binaural-activity-map analysis is the
only method that allows for the extraction of information about the location (angle
and distance) of reflective surfaces, for instance, of walls. Neither the interaural-
coherence method nor the exponential-decay method provides these cues. Without
them, the listener will not receive unambiguous information about the size of a room
and the location of walls and of further sound-reflecting or obscuring obstacles. This
is the reason why the blind pianist walked right into a wall in Blackbird’s StudioC—
the absence of salient cues.

4 Simulating an Office Walk-Through Using a Binaural
Model Capable of Utilizing Head Movements

An acoustic walk-through a building is inmanyways amodern-society version of the
forest walk-through. Also in this case, the direct sight to an object can be obstructed
and then one has to rely on the acoustic sense. However, obstructing objects have
very different acoustic qualities. While the forest is a leaky reverberation chamber
with diffusive character, office suites, and other small rooms are characterized by
specular reflections that arrive shortly after the direct sound. From an evolutionary
perspective, where anatomical changes occur over a span of several million years,
rectangular caverns with flat walls have only been introduced recently during our
early civilization and similar acoustic objects do not appear in nature. It is therefore
important to understand how the auditory system is able to adapt to built rooms given
that it has not specifically evolved to deal with such environments.

4.1 Head-Movement Algorithm

In order to simulate the office walk-through, an existing head-movement algorithm
(Braasch et al. 2013) is added to the binaural model, such that the model can resolve
back/front confusions and analyze the auditory scenes adequately. The model builds
on a theory proposed by Wallach (1939).

Auditory Periphery

The model takes a step back from the elaborate BICAM mechanism and uses a
traditional interaural-cross-correlation method as introduced by Sayers and Cherry
(1957) to estimate ITDs—see (17). The basic model structure, shown in Fig. 9, is
similar to the one proposed by Braasch (2002). The inputs signals are filtered with
HRTFs from desired directions. Basilar-membrane and hair-cell behavior are simu-
lated using a gammatone-filter bank with 36 bands and a simple half-wave rectifier
at a sampling frequency of 48kHz, as described by Patterson et al. (1995).
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Fig. 9 General model structure of the binaural-localization model utilizing head rotations.
HRTF…External-ear simulation/HRTF filtering. BM…Basilar membrane/bandpass filtering.
HC…Hair cell/halfwave rectification ITD&ILD analysis…Interaural time difference-cue (ITD)
extraction/interaural cross-correlation and interaural level-difference cue (ILD) analysis with
EI-cells, precedence effect algorithm, remapping to azimuths with head-rotation compensation,
binaural-activity-map analysis to the estimation the sound-source positions

Cross Correlation

After the half-wave rectification, the normalized interaural cross-correlation (11) is
computed for each frequency band over a short time segment. Only the Frequency
Bands 1 to16 (23–1559Hz) are analyzed, reflecting the inability of the human audi-
tory system to resolve the temporal fine structure at high frequencies, as well as the
fact that at low frequencies the interaural time differences in the fine structure are the
dominant cues—provided that they are available at all (Wightman and Kistler 1992).

Remapping and Decision Device

Next, the cross-correlation functions will be remapped from interaural time differ-
ences to azimuth positions. This is important for the model to be able to predict the
spatial position of the auditory event. In addition, this procedure helps to align the
estimates for the individual frequency bands as one cannot expect that the interaural
time differences are constant across frequency for a given angle of sound-source inci-
dence. AnHRTF catalog is analyzed to convert the cross-correlation function’s x-axis
from interaural time differences to the azimuth. The HRTF catalog was measured
at a resolution of 15◦ in the horizontal plane and then interpolated to 1◦ resolution
using the spherical-spline method—see Hartung et al. (1999). After filtering the
HRTFs with the gammatone-filter bank, the ITDs for each frequency band and angle
are estimated using the interaural-cross-correlation (ICC) algorithm of (16). This
frequency-dependent relationship between ITDs and azimuths are used to remap the
output of the cross-correlation stage (ICC curves) from a basis of ITDs m(α, fi ), to
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a basis of azimuth angles in every frequency band as follows:

m(α, fi ) = g(HRTFl ,HRTFr , fi ) (21)

= g(α, fi ), (22)

with azimuth, α, elevation, δ = 0◦, distance, r = 2m, HRTFl/r = HRTFl/r (α, δ, r),
center frequency of bandpass filter, fi .

Next, the ICC curves, (Rx,r (m, fi )), are remapped to a basis of azimuths using a
simple for-loop in Matlab using a step size of 1◦:

for alpha=1:1:360
R_rm(alpha,freq)=R(g(alpha,freq),freq);

end

Here, R(m,freq) is the original, frequency dependent, interaural-cross-
correlation function with the internal delay, m. The function g(alpha,freq)
provides the measured m-value for each azimuth and frequency. Inserting this func-
tion as input, m, to R transforms the R–function into a function of the azimuth, using
the specific Matlab syntax.

In thedecisiondevice, the averageof the remapped ICCfunctions,R_rm(alpha,
freq), over the frequency bands 1–16 is calculated and divided by the number of
frequency bands. The model estimates the sound sources at the positions of the local
peaks of the averaged ICC function.

Figure10 shows an example of a sound source in the horizontal plane with an
azimuth of 30◦ for the eighth frequency band. The top-left graph shows the original
ICC curve obtained using (16) as a function of ITD. The graph is rotated by 90 ◦ with
the ICC on the x-axis and ITD on the y-axis to demonstrate the remapping procedure.
The curve has only one peak at an ITD of 0.45 ms. The top-right graph depicts
the relationship between ITD and azimuth for this frequency band. As mentioned
previously, the data were obtained by analyzing HRTFs from a human subject. Now,
this curve will be used to project every data point of the ICC-versus-ITD function
to an ICC-versus-azimuth function, as shown for a few data points using the straight
dotted and dashed-dotted lines. The bottom panel shows the remapped ICC function,
which now contains two peaks, that is, one for the frontal hemisphere and one for
the rear hemisphere. The two peaks fall together with the points where the cone-of-
confusion hyperbolas intersect the horizontal plane for the ITDvalue of themaximum
peak that is shown in the top-left panel.

Integrating Head Rotation

In the following, it is assumed that the head rotates to the left while analyzing an
incoming sound source from the front. Related to the head, the sound source will
move toward the right. However, in the case that sound source was in the rear, the
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(a) (b)

Fig. 10 (Left) Remapping of the cross-correlation function from ITD to azimuth, shown for the
frequency band8, centered at 434Hz. The signal was presented at 30◦ azimuth, 0◦ elevation. (Right)
Sketch to illustrate the front/back confusion problem. If an ongoing sound source is located in front
of the listener who turns her head left, the sound source will move to the right from the perspective
of the listener’s head. But if the sound source is located in the back, the sound source appears to
move to the left for the same head rotation. The variable,αr , denotes the azimuth in the room-related
coordinate system, pointing here at 0◦. The variableαh is the azimuth in the head-related coordinate
system, also pointing at 0◦ but for this coordinate system. The third angle, αm , is the head-rotation
angle, which indicates by how much the head is turned from the reference head orientation that
coincides with the room-related-coordinate system

sound source hadmoved to the left. This phenomenonwill now be used to distinguish
between both options, that is, frontal and rear position. For this purpose, a different
coordinate system is introduced, namely, the room-related coordinate system. The
fact that human listeners maintain a good sense of the coordinates of a room as they
move through it, motivates this approach. If a stationary head position is considered,
the head-related coordinate system is fully sufficient. However, if the head rotates or
moves, the description of stationary sound-source positions can become challenging
because every sound source starts to move with alterations of the head position. An
easy way to introduce the room-related coordinate system is to define a reference
position and reference orientation of the human head, and then determine that the
room-related coordinate system coincides with the head-related coordinate system
for the chosen reference position—compare Pastore et al. (2020, this volume), for
details on this topic, involving multimodal cues.

Consequently, the room- and head-related coordinate systems are identical if the
head does not move. In this investigation, only head rotations within the horizontal
plane are considered, and for this case, the difference between the head-related coor-
dinate system and the room-related coordinate system can be expressed through the
head-rotation angle αi that converts the room-related azimuth αr to the head-related
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azimuth αh—see Fig. 10, right graph. That is,

αr = αi + αh . (23)

Given restricted head movement, the origin of both coordinate systems and the ele-
vation angles are always identical. While the sound-source position changes relative
to the head with head rotation, a static sound source will maintain its position in the
room-related coordinate system. Using this approach, another coordinate transfor-
mation of the ICC function is executed in the model, namely, a transformation from
of head-related to room-related azimuth. This can be accomplished by rotating the
remapping function when the head is moving by −αi to compensate for the head
rotation.

If a physical binaural manikin were used—with a motorized head in connection
with the binaural model—the HRTF would be automatically adjusted with the rota-
tion of the manikin’s head. In the model discussed here, where the manikin or human
head is simulated bymeans of HRTFs, the HRTFs have to be adjusted virtually. Also,
at every moment in time the HRTFs have to correspond to the sound-source angle
relative to the current head position. This can be achieved with the help of a running
window function, where the sound source is convolved with the current HRTF pair.
A Hanning window of 10ms duration and a step size of 5ms is used here for this
purpose. The smooth edges of this window will cross-fade the signal allowing a
smooth transition during the exchange of HRTFs. For each time segment, the model
processes the following sequence:

1. First, it updates the current head-rotation angle, αi

2. Then it calculates the current head-related azimuth angle, αh , for each sound
source located at its room-related azimuth, αm

3. Next, the model selects the HRTF pair that correspond closest to αh

4. Afterwards, it computes the normalized ICC, Rl,r , for each frequency as a function
of the ITD

5. It converts the ICC function to a function of head-related azimuth, αh , using the
remapping function shown in Fig. 10.

6. Next, the model circular-shifts the remapping function based on the head-rotation
angle by−αi to transform the ICC curve into the room-related coordinate system

7. Then, it computes the mean ICC output across all frequency bands
8. It averages the ICC outputs over time
9. It estimates the position of the auditory event the be at the azimuth where the ICC

peak has its maximum

Thefirst example is based on a bandpass-filteredwhite-noise signalwith a duration
of 70 ms. The signal is positioned at −45◦ azimuth in the room-related coordinate
system. At the beginning of the stimulus presentation, the head is oriented toward
the front, αh = 0◦, and then rotates with constant angular velocity to the left until
it reaches an angle of 30◦ at the time that stimulus is turned off. The ICC functions
are integrated over the whole stimulus duration. Figure11 shows the result of the
simulation. The initial ICC-versus-αr function the output of Step 6 for αm = 0◦ is
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Fig. 11 Interaural-cross-correlation pattern for a sound source at −45◦ which is presented during
a head rotation from αm = 0◦ to 45◦. The dashed line shows the ICC curve for the initial time
window, the solid gray curve for the last segment when the head is fully turned. Note that the ICC
pattern was shifted in the opposite direction of the head rotation to maintain the true peak position
at αr = −45◦. The black curve shows the time-averaged ICC curve for which the main ICC peak
remains and the secondary ICC partly dissolves

depicted by the solid, light gray curve. Here clearly two peaks can be observed,
one at αr=h = −45◦ and another one at αr=h = −135◦. At the end of the stimulus
presentation shown as the dashed, dark gray curve t = 70 ms, αm = 45◦—, only
the position of the rear peak is preserved. This peak indicates the “true”, that is,
the physical sound-source location, αr �=h = −45◦, because the head rotation was
compensated for by rotating the remapping function in opposite direction of the
head movement.

However, in the case of a front peak, that is, the front/back confused position,
the peak position was counter-compensated for and it rotates twice the value of the
head-rotation angle, αm = 30◦. The new peak location is shifted by −60◦ to a new
value of 165◦. The time-averaged curve (the solid black line which shows the output
of Step7) demonstrates the model’s ability to robustly discriminate between front
and rear angles. The secondary peak, the one representing the solution for a frontal
sound source, is now smeared out across the azimuth because of the head rotation.
Further, its peak height is reduced from 0.9 to 0.7 making it easy to discriminate
between front and rear.

4.2 Analysis of an Office Walk-Through

In the next example, it is investigated how the combined head-movement andBICAM
localization models can be applied to a real-world scenario, for example, to sound
localization in an office suite. For this purpose, a ray-tracingmodel was implemented
to generate binaural impulse responses for the binaural-model analysis. The left graph
of Fig. 12 depicts the floor plan together with the trajectory of the walk-through. The
encircled numbers indicate the positions of the binaural- analysis examples that
as are discussed below in this section. All binaural room impulse responses for
the simulations were rendered using the ray-tracing model that was discussed in
Sect. 2.2. A geometrical model was defined as shown in Fig. 12b, namely, based on
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(a) (b)

Fig. 12 aDiagram for the office walk-through with test positions for sources S1–S4, and receivers,
R1–R6. b Ray-tracing simulation in a computer-generated office suite with a non-occluded sound
source. The sound sources is depicted as a red dot, the binaural receiver as a blue dot. The gray
level of the rays lighten with decreasing distance and amplitude

sound-reflecting walls, a source (red dot) and a receiver (blue dot). A set of rays
is sent out from the sound source at a resolution of 1 ray per 5◦. Each ray is then
traced, and every time a ray meets a wall it is reflected back using Snell’s law,
that is, considering that the outgoing angle equals the incoming angle. The ray is
traced until the 20th reflection occurs unless the ray exits the geometrical model. At
every reflection, the sound level is attenuated by 2dB across frequency to simulate the
acoustic absorption of the walls. The sound intensity is also attenuated over distance,
based on the inverse-square law, assuming the sound source to be of omnidirectional
character. The collection of rays is shown in Fig. 12b as gray lines, such that the rays
become lighter in color with distance and decreasing sound pressure.

All rays are finally collected at the receiver position, assuming a spatial window of
0.6mwidth. Each calculated ray is tested for whether it intersects the spatial window
at the receiver position. How far each ray traveled from the source position to the
receiver is then calculated for each intersecting ray. Similarly, the azimuth of the
arriving ray and the order of reflection for the incoming ray is determined. Based on
these data, a binaural room impulse response is calculated in which a left/right HRTF
pair is inserted at the correct delay, further, the head orientation-based direction-of-
arrival angle of the respective ray. Each HRTF pair is calibrated to the amplitude that
the ray should have, based on the distance traveled and the number of wall reflections
that it has undergone. In addition, a late-reverberation tail is generated at a constant
level by assuming a statistically-evenly distributed diffuse-reverberation field, using
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Fig. 13 Binaural-activity map results for the BICAM model analysis utilizing head movements.
The top-left graph shows the results for Scenario1 (Fig. 12) right, with the sound source pointing
30◦ left to the sound source (including a 30◦ head-movement compensation). The top-right graph
shows the same condition but for the receiver pointing 30◦ to the right. The bottom-left graph
shows the combined analysis for removal of front/back confusions for a receiver pointing into the
direction of the sound source, 0◦. The bottom-right graph shows the same condition as depicted
in the bottom-left graph but for a receiver pointing away from the sound source, 180◦

an exponentially decaying Gaussian noise burst adjusted to a reverberation time of
0.7 s. At the position shown in the right graph of Fig. 12, the diffuse reverberation
level was about −10dB lower than the combined level of the direct sound and the
early reflections.

The results are then analyzed using theBICAMprecedence-effectmodel (Braasch
2016) and amale-speech sample (Bang&Olufsen 1992). TheBICAMalgorithmwas
modified to transform the model’s ITD estimates into azimuths using a remapping
function according to Braasch et al. (2013)—as shown in the binaural-activitymap of
Fig. 13 (top-left graph). The plot shows the scenario in which the virtual head of the
model is turned 30◦ away from the sound source, based on the scenario shown in the
right graph of Fig. 12. Note that the data are presented in a room-coordinate system
that faces the sound source directly. As can be easily seen, each time slice shows
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Fig. 14 Binaural-activity-map results for the BICAM model analysis utilizing head movements
for an occluded direct sound source—simulating a scenario as depicted in Fig. 12a—with source
position, S2, and receiver position, R6. The left graph shows the result for a single time interval,
the right graph depicts the outcome for an average over 10 time intervals

two ambiguous peaks, namely, one for the front and one for the corresponding rear
direction, a common problem that was discussed in detail in Braasch et al. (2013). In
order to resolve the ambiguous peaks, the virtual head of the model is shifted by 60◦
to the opposite side—see the top-right graph of Fig. 13. This graph also displays the
data in a room-related coordinate system. Now simply, the average is taken of the
two binaural activity maps and the ambiguous front/back-confusion peaks average
out—see the bottom-left graph in Fig. 13. To demonstrate the effectiveness of the
head-movement algorithm, the same scenario was simulated again, but this time
with the virtual head facing the rear at 180◦ with temporal head-movement shifts to
150◦ and 210◦ to resolve front/back directions. It should be noted that there are two
main differences between the model presented here and the model of Braasch et al.
(2013). Firstly, in the new model, the head-movement algorithm is now applied to
the estimated binaural-activity map and not to the binaural signal itself. This renders
to two advantages, that is, the direct-sound-source angle can be computed separately
from the early reflections, which yields in a higher localization accuracy, and the
algorithm can also estimate the front/back direction of the reflections. However, the
new model cannot yet calculate front/back directions from a continuously turning
head like it is the case for the Braasch et al. (2013) model. The reason for this is that
the time-alignment method for the two autocorrelation functions currently requires a
stable head orientation. Therefore, the newmodel calculates the front/back directions
based on two distinct head positions until a better solution is found for the time
alignment.

The analysis is concluded by computing a scenario in which the direct pathway
between the source and the received is occluded by a wall—as shown in Fig. 12a (S2,
R6). Figure14 shows the binaural-activity maps for this case. In the left graph, the
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binaural activity map was calculated from a single time interval. Here, a prominent
peak is visible with a maximum correlation of 0.6 even though the direct signal was
occluded. However, if the binaural-activity map is calculated as an average over 10
estimates, computed over 10 time intervals, the coherence drops to 0.2—see the right
graph. The reason is that the prominent peak develops randomly at different positions
for each of the ten computations. It should be noted that each segment by itself leads
to a maximum coherence of one because the autocorrelation peaks always have a
main peak of one. However, in the occluded case, the outcome of the analysis is
heavily influenced by the diffuse-reverberant-signal component and the main peak
averages out since its lateral position moves from segment to segment. In the case of
Scenario1, the binaural-activity map is stable from segment to segment and hardly
influenced by the time-averaging method.

Following Wallach (1939, 1940), the head-movement model can also be used
to estimate the elevation of sound sources by utilizing the fact that the ITD range
is reduced with up- or downward elevation changes of the sound source from the
horizontal plane—compare Pastore et al. (2020, this volume). Ideally, the ITD range
is reduced monotonically with the elevation magnitude, minimizing to ITDs of zero
at the −90◦ and 90◦ elevation poles.

In order to enable sound-source-elevation estimates, the head-movement model
is slightly modified for processing different elevations from −70◦ to 80◦ in steps of
10◦. For each elevation, a new set of frequency-dependent remapping functions is
calculated according to (21). In principle, the model is an alternative implementation
to an existing localization model by Parks (2014), which also draws from Wallach’s
ideas to estimate elevation angles. The results of the model simulation are shown in
Fig. 15. Each horizontal color sequence corresponds to one elevation set as indicated
on the y-axis, The sequence depicted for the elevation of 0◦ basically shows the same
data as Fig. 11 but for different source and head-movement angles. The left graphs
indicates the start position of the head-movement angle, the right graphs presents an
averaged function over the head motion. The top row shows the results for a sound
source at 30◦ azimuth and 60◦ elevation. At the beginning of the head-movement
trajectory, the results are still ambiguous and the source could be at various elevations
at 30◦ or 150◦ azimuth. After the head-movement, the model accurately locates the
sound source at 30◦ azimuth and 60◦ elevation. Also in cases of a sound source
located at 0◦ azimuth/0◦ elevation or one located at −40◦ azimuth/−135◦ elevation,
the actual sound source can be determined through head movement—see Fig. 15
center and bottom rows.

5 Conclusion

The goal of this chapter was to examine how auditory systems utilize binaural mech-
anisms to extract useful information from the environment to be able to read and
understand a complex scene. Using idealized but complex simulated environments,
it is tested how the auditory system can adapt to different scenarios. Most of the
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(a) Sound source at 30◦ azimuth and 60◦ elevation
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(b) Sound source: 0◦ azimuth, 0◦ elevation
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(c) Sound source: −40◦ azimuth, −135◦ elevation
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Fig. 15 Demonstration of the head-movement algorithm to estimate elevation. All left graphs
depict the initial model performance before head movement, the right graphs the model per-
formance with integrated head movement. In all cases the head rotated from 0◦ to 60◦ azimuth,
maintaining the elevation at 0◦. Light areas indicate a high likelihood of estimated source position,
dark brown areas indicate a low probability of the source being present
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auditory system’s capabilities can be traced back to tasks that preceded human civ-
ilization, but a remaining mystery is how the auditory system can process specular
reflections. One explanation is that our precedence mechanism is an evolutionary
response to floor reflections and reflections from a cliff, where large plain surfaces
can be found.Yet, it, is still amazing that thismechanism can handle sound perception
in human-built rectangular rooms, which appeared very late during our evolutionary
process. An alternative explanation is that the precedence effect largely falls out of
the specific processing of the auditory system and is not necessarily the product of any
precedence-effect specific mechanisms at all. For other tasks, the current demands
are not that different from our pre-civilization experiences. Head movements, for
example, can help to resolve front/back ambiguities for sound sources. A future goal
is to extend the binaural analysis to actually measured environments and to support
the findings with psychoacoustic experiments. The study presented here hopefully
serves as an initial gateway to better understand how the binaural system reads the
world under complex conditions.
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