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Preface

Sound, devoid of meaning, would not matter to us. It is the information sound
conveys that helps the brain to understand its environment. Sound and its under-
lying meaning are always associated with time and space. There is no sound
without spatial properties, and the brain always organizes this information within a
temporal–spatial framework. This book is devoted to understanding the importance
of meaning for spatial and related further aspects of hearing, including cross-modal
inference.

People, when exposed to acoustic stimuli, do not react directly to what they
hear but rather to what they hear means to them.

This semiotic maxim may not always apply, for instance, when the reactions are
reflexive. But, where it does apply, it poses a major challenge to the builders of
models of the auditory system. Take, for example, an auditory model that is meant
to be implemented on a robotic agent for autonomous search-&-rescue actions. Or
think of a system that can perform judgments on the sound quality of
multimedia-reproduction systems. It becomes immediately clear that such a system
needs

• Cognitive capabilities, including substantial inherent knowledge
• The ability to integrate information across different sensory modalities

To realize these functions, the auditory system provides a pair of sensory organs,
the two ears, and the means to perform adequate preprocessing of the signals
provided by the ears. This is realized in the subcortical parts of the auditory system.
In the title of a prior book,1 the term Binaural Listening is used to indicate a focus
on sub-cortical functions. Psychoacoustics and auditory signal processing con-
tribute substantially to this area.

1The Technology of Binaural Listening, J. Blauert (ed.), Springer and ASA Press, 2013.
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The preprocessed signals are then forwarded to the cortical parts of the auditory
system where, among other things, recognition, classification, localization, scene
analysis, assignment of meaning, quality assessment, and action planning take
place. Also, information from different sensory modalities is integrated at this level.
Between sub-cortical and cortical regions of the auditory system, numerous feed-
back loops exist that ultimately support the high complexity and plasticity of the
auditory system.

The current book concentrates on these cognitive functions. Instead of pro-
cessing signals, processing symbols is now the predominant modeling task.
Substantial contributions to the field draw upon the knowledge acquired by cog-
nitive psychology. The keyword Binaural Understanding in the book title char-
acterizes this shift.

Both books, The Technology of Binaural Listening and the current one, have
been stimulated and supported by AABBA, an open research group devoted to the
development and application of models of binaural hearing.2

The current book is dedicated to technologies that help explain, facilitate, apply,
and support various aspects of binaural understanding. It is organized into five
parts, each containing three to six chapters in order to provide a comprehensive
overview of this emerging area. Each chapter was thoroughly reviewed by at least
two anonymous, external experts.

The first part deals with the psychophysical and physiological effects of Forming
and Interpreting Aural Objects as well as the underlying models. The fundamental
concepts of reflexive and reflective auditory feedback are introduced. Mechanisms
of binaural attention and attention switching are covered—as well as how auditory
Gestalt rules facilitate binaural understanding. A general blackboard architecture is
introduced as an example of how machines can learn to form and interpret aural
objects to simulate human cognitive listening.

The second part, Configuring and Understanding Aural Space, focuses on the
human understanding of complex three-dimensional environments—covering the
psychological and biological fundamentals of auditory space formation. This part
further addresses the human mechanisms used to process information and interact
in complex reverberant environments, such as concert halls and forests, and addi-
tionally examines how the auditory system can learn to understand and adapt to
these environments.

The third part is dedicated to Processing Cross-Modal Inference and highlights
the fundamental human mechanisms used to integrate auditory cues with cues from
other modalities to localize and form perceptual objects. This part also provides a
general framework for understanding how complex multimodal scenes can be
simulated and rendered.

2https://www.kfs.oeaw.ac.at/index.php?option=com_content&view=article&id=1072&Itemid=
920&lang=de [last access August 30, 2019].
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The fourth part, Evaluating Aural-scene Quality and Speech Understanding,
focuses on the object-forming aspects of binaural listening and understanding. It
addresses cognitive mechanisms involved in both the understanding of speech and
the processing of nonverbal information such as Sound Quality and Quality-of-
Experience. The aesthetic judgment of rooms is also discussed in this context.
Models that simulate underlying human processes and performance are covered in
addition to techniques for rendering virtual environments that can then be used to test
these models.

The fifth part deals with the Application of Cognitive Mechanisms to Audio
Technology. It highlights how cognitive mechanisms can be utilized to create
spatial auditory illusions using binaural and other 3D-audio technologies. Further, it
covers how cognitive binaural technologies can be applied to improve human
performance in auditory displays and to develop new auditory technologies for
interactive robots. The book concludes with the application of cognitive binaural
technologies to the next generation of hearing aids.

Bochum, Germany Jens Blauert
Troy, USA Jonas Braasch
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Forming and Interpreting Aural Objects:
Effects and Models



Reflexive and Reflective Auditory
Feedback

Jens Blauert and Guy J. Brown

Abstract Current models of binaural hearing go beyond bottom-up-driven process-
ing and, instead, use a hybrid approach by including top-down, hypothesis-driven
algorithms. Such hybrid models first identify and characterize auditory objects. Out
of these objects, the model infers an auditory scene, from which it can extrapolate
understanding, form judgments, and initiate actions. For example, when embedded
in a mobile robot, a binaural hearing system can provide the information needed to
carry out search-and-rescue tasks. Further, such systems are able to make judgments,
for instance, on the quality of experience in spaces for musical performances. As
with humans, such actions and judgments are based on sets of references built from
perceptual structures, inherent and acquired knowledge, and the intellectual capa-
bilities of the systems—in other words, on the “brains” of the model systems and
the knowledge contained in them. To achieve these goals, adequate feedback loops
must to be considered, evaluated, and implemented within technological models of
auditory systems. In this chapter, a number of such feedback loops are described and
discussed that have already been implemented and evaluated. A distinction is made
between reflexive and reflective feedbackmechanisms, the latter, including cognitive
activities.

1 Introduction

The structure and function of the human auditory system have long been the subject
of intensive scientific research.1 Yet, most investigations have looked at it in iso-
lation, disregarding that it is an embedded component of a much larger and more

1For overviews see, for example, Moore (1995, 1989), Yost (2007), Plack (2010), Celesia and
Hickok (2015) and Fay and Popper (1992–2017).
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4 J. Blauert and G. J. Brown

complex system, namely, the human body. Further, when considering the function
of the auditory system, there has been a tendency to focus on afferent (ascending)
neural pathways. This led to concepts that favored “bottom-up-processing” models
of the auditory system. Efferent (descending) pathways have often been neglected in
accounts of auditory function (He and Yu 2009).

In fact, it has become evident that efferent pathways are as common in the auditory
system as afferent ones (Schofield 2009). At some stages of the system, for example
in the cochlea, the efferent fibers considerably outnumber the afferent ones (Shamma
2013). Various efferent pathways have been identified, connecting all stages of the
system from the brain down to the cochlea and the middle ear. Some particularly
relevant ones are schematically plotted in Fig. 1. Accordingly, top-down processes
must be included in hypotheses regarding the function of the auditory system. Further,
the coexistence of bottom-up and top-down processing is a strong indication of the
existence of feedback loops.2 In contrast to linear time-invariant systems, the auditory
system thus turns out to be time-variant and nonlinear. In light of the presence of
feedback processes, one could thus actually apply the somewhat old-fashioned term
cybernetic system3 to it.

Feedback in biological systems is manifested in myriad, albeit occasionally
incomprehensible, ways. Yet, from a technological point of view, those functions
of feedback are of particular interest which may serve a purpose in given application
scenarios. From a systematic point of view, it is useful to group the feedback paths
roughly into two categories, namely, reflexive and reflective feedback as introduced
in Two!Ears (2014), pp. 46–47 as follows.

• “Reflexive feedback is triggered by primitive perceptual cues without cognitive
processing, that is, in a reflexive way. This kind of feedback reacts within a com-
paratively short time and will decay when the cues that trigger it have stopped.
This happens regardless of a specific task. Also, reflexive feedback does not need,
and most likely cannot even receive training. It has been supposed that the cues
that trigger reflexive feedback cannot be ignored”

• “Reflective feedback requires reflection in the mind, that is, it puts a cognitive
load on the modeling system. The feedback will be initiated with the goal of
supporting a given task. Due to the processes involved (e.g., attention), this kind
of feedback needs more time to react. Also, the cues that initiate the feedback may
be memorized and remain effective almost indefinitely, since reflective feedback
may not only react to sensory objects (such as auditory, visual, tactile, olfactory
or gustatory ones) but also to emotions (feelings), and thoughts (ideas, concepts,
notions)”

2That is, of loops where the output of a system or system element is routed back to its input with
the effect of modifying the output.
3Cybernetics: The scienceof communication and control amongbiological organisms andmachines.
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Fig. 1 Schematic of the auditory system with major afferent and efferent links

2 Modeling the Auditory System

This section explains how the research group “Aural Assessment By means of Bin-
aural Algorithms” (AabbA)4 and the Two!Ears project5 have developed a mobile
robot with binaural listening capabilities by applying an integratedmodel of the audi-
tory system. The robot has the ability to perceive, interpret, understand, and evaluate
its environment through a combination of signal-driven and hypothesis-driven algo-
rithms, and does so through exploratory movements. In order to exploit biological
processes for technological applications, it is a common approach to model them by

4AabbA: https://www.kfs.oeaw.ac.at/aabba [last accessed, August 18, 2019], see also Blauert et al.
(2010).
5Two!Ears: http://www.twoears.eu [last accessed, August 18, 2019], see also Blauert (2017).

https://www.kfs.oeaw.ac.at/aabba
http://www.twoears.eu


6 J. Blauert and G. J. Brown

Fig. 2 Block diagram for a model of the auditory system including feedback (Raake and Blauert
2013)

technological means, that is, in terms of hardware and software. Figure2 shows the
block diagram of the model. The project considered the auditory system as part of an
intelligent, multimodal artificial agent that actively explores the world. In the course
of this process, the agent interprets what it perceives, collects knowledge, and devel-
ops its own concepts accordingly. Such an approach required, among other features,
means for the exploration of the environment by situation-specific adaptations and
cognition-controlled head-and-torso movements. More details of the model structure
are reported in the following.
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2.1 Model Architecture

The model employs a head-and-torso simulator (HATS) with replicas of human pin-
nae and internal microphones. A motor is integrated into the collar of the HATS to
allow for rotational head movements (Bustamante et al. 2016). When mounted on
a cart, the unit is capable of motion with two further translational degrees of free-
dom. To include visual input, a stereoscopic pair of cameras is available to allow for
simulation of human binocular vision. The microphone signals are passed through
middle-ear modules to a signal-processing chain, the functionality of which includes
monaural and binaural processing in terms of masking, compression, modulation-
spectrum analysis, interaural time- and level-difference analysis, and interaural
coherence analysis. This results in a multidimensional auditory representation
(binaural-activity map) which serves as the basis for subsequent dynamic auditory-
scene analyses.

The scene-analysis components are organized as follows (Raake and Blauert
2013). One or multiple parallel processors carry out a presegmentation of the mul-
tidimensional feature representation, identifying key features for object and event
identification. Examples of features are onsets, modulation characteristics, harmonic
components or interaural time- and level-differences that are temporally collocated
across different spectral bands and may, thus, be associated with particular objects.
This stage can be seen as the lowest level at which primitive schemata are extracted,
applying rule sets as those of Gestalt formation (Bregman 1990). For examples of
Gestalt heuristics in the context of engineering applications, see Jekosch (2005) and
Sutojo et al. (2020), this volume. Subsequently, the primitive features are interpreted
in terms of auditory events.6

The next stages represent hypothesis generation, adaptation, and verification. To
this end, symbolic information rendered by the lower stages is forwarded to a so-
called “Blackboard system” Erman et al. (1980), Corkill (1991).7 This information
is then accessed by a multi-expert system—see Fig. 2. Each expert analyzes the
information in the Blackboard based on its respective expertise, identifying whether
this information corresponds to known information. Areas of expertise examples
include acoustics, psychoacoustics, object identification, psychology, spatial hearing,
cross-modal integration, proprioception, speech communication, music, and sound
quality.

The expert system is based on task- and context-specific information. It creates
the symbolic information that describes the auditory scene. Using top-down feed-
back mechanisms, the experts can exert modifications in the symbolic representa-
tion at Blackboard-level or modifications at lower levels, for example, in terms of
the respective feature-selection process (e.g., reflecting auditory attention), or the
acoustic front-end (e.g., for turning the head). Accordingly, the Blackboard and the

6The events are referred to as protoevents here, reflecting their still existing statistical uncertainty
at this processing stage.
7For more details on Blackboard systems see Schymura and Kolossa (2020), this volume.
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group of experts represent the world-knowledge of the modeling system, as well as
respective decision-units that can initiate actions.

It should be mentioned in passing that such a model system is not only useful as a
basis for technological applications but may also serve to predict potential effects of
presumed biological feedback loops. The Blackboard-system architecture has been
selected on purpose for this research-based model, as it provides more transparency
than data-driven end-to-end solutions such as Deep Neural Networks (DNNs)—see
Sect. 3.3.

2.2 Feasible Feedback Loops

The two most relevant purposes of comprehensive and versatile models of the audi-
tory system are, (a), to improve our understanding of how biological auditory system
function, and, (b), to explore application opportunities in technological systems.
In this context, two questions appear. Firstly, for which purposes would feedback
loops be useful? Secondly, where in the model-system structure could they be imple-
mented? Regarding the first question, feedback may be employed to increase the
precision of, and reduce ambiguities in perceiving, reasoning, and acting. For both
questions, the following systematic analysis provides general conceptions.

(a) Problems at the signal’s level: Variances too high
⇒ Approach: Follow causal links in the Blackboard system to identify relevant
sources of uncertainty. Attempt to minimize variance in these observables.

(b) Problems at the symbolic level: Logical inconsistencies
⇒ Approach: Identify causal links leading to competing hypotheses. Accord-
ing to the Blackboard-system structure, identify additional input necessary for
conflict resolution.

Table1 provides possible inputs to feedback loops, along with expected improve-
ments. Further, expectations are formulated regarding what might be achievable by
suitable feedback loops when using these inputs—see also Blauert and Obermayer
(2012) and Blauert et al. (2014).

Table2 provides a listing of possible entry ports for feedback loops and specifies
what could possibly be controlled by proper use of these ports. The entry ports have
been selected in view of modeling efforts rather than as a description of feedback
loops in biological systems.

The two tables are meant as road maps for further investigations in auditory-
feedback modeling. Only a few of the feedback loops mentioned here have been
implemented and tested in technological systems so far—see Sect. 3.
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Table 1 Points of origin of feedback-control information for respective feedback-loop entry ports,
and expected functional improvements

Source of feedback signals or symbolic
feedback information

Expected functional improvements

– Binaural-processing stage – Turning the acoustic sensors into an optimal
position

– Visual cues from the robot’s cameras – Advanced movements of the head-&-torso
platform (active exploration)

– Cues from the Blackboard system – Exploiting contents of the graphical models
and the knowledge sources

– Modules operating on the olivary system
SOC/MOC/LOC level

– Increasing the signal-to-noise ratio,
increasing spectral and temporal selectivity

– Presegmentation stage and Blackboard
system (graphical model, knowledge sources,
scheduler)

– Paying attention to specific signal features to
deliver specific additional information as
required by the cognitive stage

– Binaural-activity-mapping stage – Activation of specialized, task-specific
signal-processing procedures, such as echo
cancelling, dereverberation, precedence-effect
preprocessing

– Presegmentation stage and blackboard system – Re-evaluation (reconsideration) to solve
ambiguities

– Visual cues from the robot’s cameras – Optimal positioning of the head-&-torso
platform (task-specific)

– Sensorimotor cues from the head-&-torso
platform

– Improvement of object recognition, auditory
grouping, aural stream segregation, aural scene
analysis, attention focusing

– External knowledge sources
– Optical and acoustical information from the
microphones and cameras of the head-&-torso
platform

– Improvement of scene understanding,
assignment of meaning, quality judgements,
attention focusing

3 Selected Feedback Loops

Feedback in the auditory system has become a progressive item of research interest
since many facets of the system performance need the assumption of feedback to be
understood. It can thus be anticipated that modeling of auditory feedback and tech-
nological application of the respective models will increase. The following sections
present a selection of feedback loops which have been tackled for modeling so far.

3.1 Input-gain Control

The auditory system comprises various means for controlling the amplitude of the
signals and, hence, the rate of neural spikes that it processes. Two of them are placed
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Table 2 Examples of entry ports for feedback and possible actions induced

Entry ports for feedback Possible actions induced

Monaural and binaural processing stages
(OC-level modules)

– Adjustment of time-windows, time constants
and spectral regions

– Task-specific employment of additional
processing steps, e.g., lateral and contralateral
inhibition, precedence preprocessing,
dereverberation

Binaural-activity-mapping stage (IC-level
modules)

– Setting time constants for contralateral
inhibition

– Providing masks for dedicated analyses of
binaural-activity maps

– Focusing on specific spectral regions

– Adjustment of operation points and dynamic
ranges

– Provision of non-auditory sensory data, e.g.,
from vision, proprioception, sensorimotor cues

Blackboard architecture (graphical model,
knowledge sources, scheduler)

– Provision of external knowledge, e.g., salient
features, object-building schemata, rule
systems

– Knowledge of the situational history,
communicative intention of sound sources

– Task-specific expert knowledge, internal
references

– Provision of non-auditory knowledge, e.g.,
from visual scene analyses

fairly peripherally, namely, theMiddle-Ear-Muscle Reflex, also known as the acoustic
reflex or stapedius reflex, and theMedio-Olivocochlear Reflex. Both aremainly based
on reflexive feedback but also react reflectively to activities at higher stages of the
auditory system. There is potential for technological application because input-gain
control may help shift the point of operation of the auditory system into a region of
high discrimination of amplitude differences.

Yet, before discussing signal-amplitude and/or spike-rate control in more detail,
it should be recalled that the auditory system is not linear. The inner ears, for exam-
ple, perform a running spectral decomposition of the incoming signals and convert
the spectral components into a series of neural spikes (amplitude-to-rate-code con-
version). Thereby a specific compression takes place. Figure3 shows some of the
effects of amplitude variation in this context. The shape and bandwidth of the ear-
filter-transfer functions vary with the amplitude of the acoustic input signals. The
signal-to-spike-rate conversion is compressive. An obvious indication of these and
further nonlinear processes is the shape and spacing of the equal-loudness contours.
They become flatter, and their mutual distance gets larger with increasing sound-
pressure level, an effect that is most pronounced at low frequencies.
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Fig. 3 a Shape and bandwidth of the ear-filter transfer functions are level dependent. b The neural-
spike rate in the auditory nerve (AN) follows a compressive function with respect to the sound-
pressure level at the eardrum. c Consequently, shape and spacing of the equal-loudness contours
(isophones) are level dependent—compare ISO 226:2003 (ISO 2003)

3.1.1 The Middle-Ear-Muscle Reflex

TheMiddle-Ear-Muscle Reflex (MEMR) receives control signals from both the ipsi-
and contralateral cochleae. The reflex arches are depicted in Fig. 4. They ascend
through the Cochlear Nuclei (CN) up to the Olivary Complex (OC), and there mainly
to the twoMedial Olivary Complex (MOC) regions. Close to these regions, motoneu-
rons emanate that project to the twomiddle-earmuscles, namely, stapedius and tensor
tympani. Consequently, they can initiate the contraction of these. Due to such con-
tractions, the stiffness of the ossicular chain increases, and so does the tension of
the eardrum. This causes the middle-ear impedance to rise with the effect that more
sound is reflected back into the ear canal instead of proceeding into the inner ear
(cochlea). Consequently, the sensitivity of the auditory system declines temporarily.
More information about anatomical and functional detail can be found in Møller
(1962, 1974), Borg and Counter (1989), and Mukerji et al. (2010).

The MEMR can be triggered from each of the two ears and affects the ipsilateral
as well as the contralateral middle ear. It is, therefore, used as a diagnostic indicator
to, for example, discriminate hearing disorders in the middle ear and/or cochlea
from those that reside further up in the auditory system—in the olivary complex, for
instance. Activation of the MEMR can be detected by measuring variations of the
eardrum impedance (Kung and Willcox 2007). In humans, it is predominantly the
stapedius that is acoustically excitable, namely, by intense low-frequency sounds. As
to the tensor tympani, there is some indication that it may, besides acoustically, also
be triggered by crossmodal cues, such as visual ones (Mukerji et al. 2010; Djupesland
1964). It has further been shown that the MEMR can be activated from higher stages
of the auditory system involving cognition, for example, when speaking in a noisy
environment (deAndrade et al. 2011a, b). Some people can even activate their tensors
tympani intentionally—a striking example of reflective feedback.

Activationof theMEMRresults in an amplitude reductionof up to 10dB,mainly in
the low-frequency range. It has been suggested that the reflex plays the role of a hear-
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ing protector in conditions which would otherwise constitute harmful noise levels.
The reflex becomes active for sound-pressure levels from about 70dB upward. Yet,
one has to consider that the reaction-time amounts to roughly 25ms to 150ms—the
higher the sound pressure level, the shorter the latency interval. Thus, for protection
against harmful noise, it is necessary to predict its appearance before it actually starts.
An interesting application is reported inMercedes (2002). Lutman andMartin (1979)
and Longtin and Derome (1989) have developed models for the MEMR which are
useful for the specification of further technological applications.

3.1.2 The Medial-Olivocochlear Reflex

TheMedial-olivocochlear Reflex (MOCR) controls the gain of the output signals of
the inner ears (cochleae), namely, the rate of the neural spikes being transmitted from
the cochlea to higher stages of the auditory system. This is performed by damping
themovements of the basilar membrane via the outer hair cells. In addition, dendrites
of afferent auditory-nerve fibers are affected (Guinan 1996; Guinan jr 2010)—see
also Two!Ears (2014) pp. 75–66. The prominent reflex arch, shown in Fig. 4, is as
follows—compare Brown et al. (2003). The output of each cochlea passes through
the auditory nerve via the Cochlear Nucleus (CN) on to the Olivary Complex (OC).
Within the OC these outputs go to left and right subsystems calledMedial and Lateral
Olivary Complexes (MOC and LOC). While the MOCs project to the outer hair cells
in the cochlea, the LOCs do so to the inner ones. From the perspective of prospective
technological application, the MOC path is the more relevant one.

The MOCR can be excited ipsi-, contra-, or unilaterally. The necessary sound-
pressure level to activate it is lower than the one that is needed to excite the MEMR.

Fig. 4 Feedback loop of the middle-ear and the medio-olivocochlear reflexes
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Contralateral excitation is more pronounced than ipsilateral excitation. In most stud-
ies, levels on the order of 40–50dB have been shown to be sufficient to trigger the
effect significantly. This guarantees thatMOCReffects are notmixed upwithMEMR
effects experimentally. The action principle of the MOCR is, roughly speaking, as
follows. The outer hair-cell activity is reduced, and thus, cochlear amplification is also
diminished.Thebasilarmembrane is, therefore, damped so that its velocity decreases.
Consequently, the inner hair cells, which are, so to say, the acoustic sensors (micro-
phones) in the cochlea, reduce their sensitivity. This shifts the point of operation for
the acoustic inputs signals on the resulting sound-pressure-level-to-spike-rate func-
tion (compare Fig. 3a) to the section with a steeper slope. Consequently, a low-level
noise and a desired signal with at least a slightly higher level improve the perceptual
separation. It is widely understood that this increase of the perceptual signal-to-noise
ratio is the key physiological function of the MOCR. As to the reaction times of the
MOCR, there seems to be a fast one of 10–100ms and a slow one of up to 100s
(Zhao and Dhar 2011). They obviously represent different reaction principles, but
these are not yet convincingly identified.

A number of computer models of the MOCR have been proposed, for instance
by Ferry and Meddis (2007) and Ghitza et al. (2007). They model the amount of
reduction of the basilar-membrane velocity due to the MOCR by a network with two
parallel branches, one of them is linear and time invariant, the other one is nonlinear
and time-variant. Ferry andMeddis (2007) refer to this structure as aDual-Resonance
Nonlinear Model (DRNL). The nonlinearity is caused by a “broken-stick” input-
output characteristic with a steep middle part and shallow legs at the upper and lower
ends—see the box labelled b3 in Fig. 5. Both branches receive the same acoustic
input signals, and their two outputs are superimposed. The nonlinear branch includes
a controllable attenuator. If attenuation is set to maximum (i.e., the lower branch is
switched off), MOCR suppression is fully effective.When the attenuation is reduced,
suppression becomes smaller, but at the same time nonlinear distortions of the output
increase.

The MOCR provides reflexive feedback, but there is some indication that it can
also be controlled by top-down information fromhigher stages of the auditory system,

Fig. 5 Descending part of the Medio-Olivocochlear reflex arch—after Brown et al. (2010). Lin-
ear path a1, a2 with band-pass filter, and rectifier-&-low-pass filter. Nonlinear path b1 . . .b5 with
attenuator, band-pass filter, compressor, band-pass filter, and rectifier-&-low-pass filter
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that is, reflectively. Attention plays a role in this context—see, for example, Harkrider
and Bowers (2009) and Smith et al. (2012).

With regard to technological applications, a specific electronic model of the reflex
has recently been developed that improves speech perception in noise for cochlear
implantees, that is, for hearing impaired persons that rely on electric rather than
acoustic stimulation of their auditory nerves. Noise (or even undesired speech) is
fed to the cochlear-implant processor at one ear, and the gain of the contralateral
processor is then reduced by mimicking the MOCR reflex. The perceptibility of
speech delivered to the contralateral ear is then improved, even if the noise and
the speech sources are positioned in the same direction with respect to the listener
(Lopez-Poveda et al. 2016, 2017). The MOCR has also been used as the basis for
a hearing-aid algorithm that has been implemented by Meddis and colleagues on
low-cost smartphone hardware (Jurgens et al. 2016).

3.2 Simplified Cochlear Models for Technological Systems

The output of the two inner ears (cochleae) represents the prominent input to the
auditory nerves and, thus, to higher stages of the auditory system. As has been men-
tioned before, the cochleae decompose their acoustic input into neural-spike trains,
organized into spectral bands (Sect. 3.1). The cochleae are the effectors, that is, the
last element of the chain, for various feedback loops that originate at higher auditory
processing stages. Further, there are feedback loops in the inner ears themselves,
for instance, from the inner to the outer hair cells. Nevertheless, cochlea models, as
used in technological applications, are usually quite simplified as compared to the
biological complexity of the cochlea.

For technological purposes, a cochlea is usually modeled as a bank of band-pass
ear filters. These are commonly realized as so-called Gammatone filters, that is
filters with an impulse response consisting of a sinusoidal function with a gamma-
distribution-shaped envelope (Holdsworth et al. 1988). Gammatone filters can be
implemented efficiently and roughly mimic the impulse responses of biological ear-
filters. They are mathematically defined by the expression

g(t) = atn−1e−2π f bt + cos(2π f t + φ), (1)

where n is the filter order, f is the center frequency (in Hz), b is the bandwidth (in
Hz), t is time (in seconds), φ is the phase of the carrier, and a is the amplitude.

Usually, the output signal of each spectral band is rectified and fed through a
low-pass filter (cut-off frequency ≈600Hz, moderate slope). This results in ampli-
tude demodulation of the band-pass output signals. Thus, above the low-pass cut-off
frequency the envelope of the signals will be extracted. So far, such a model sys-
tem behaves linearly. For instance, the filter shape is not level dependent. Yet, for
better approximation of the biological case, some models weight the output sig-
nals according to the sound-pressure-level-to-spike-rate function—see Fig. 3b. This
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Fig. 6 Example: rate map and estimated weights for a 1.5-s target-speech sample interfered by
telephone ringing. The yellow regions depict target dominance

causes compression and, thus, level-dependency. As its output, the model thus per-
forms a frequency analysis similar to a running Fourier transform or weighted run-
ning Fourier transforms (magnitudes only) of the two acoustic cochlea-input signals.
The results can be visualized as plots with the coordinates frequency and running
time, and with the amplitudes or spike rates, respectively, coded in color or gray
scales. Such plots are commonly termed rate maps in the field (Brown and Cooke
1994)—see upper panel of Fig. 6 as an example.

The fact that the sensitivity of biological cochleae is controlled from higher stages
of the auditory system is usually not considered in technological cochlea models by
modifying the pressure-level-to-spike-rate function.Rather, it is realized by assigning
suitableweights to the output spike rates in the individual spectral band before further
processing steps are taken.

3.3 Auditory-Object Localization Assisted by Head
Movements

Perceptual objects are defined by their essential features, their position and spa-
tial extent in the perceptual space, and their relation to other objects. Objects are
spatially and temporally distinct. In other words, they exist at a certain time in a
certain position. Localization is thus a basic requirement of object formation—refer
to Blauert (1997) for fundamentals of auditory localization. Auditory localization
was traditionally discussed as a static phenomenon, not considering that the ears
are positioned on a head which is movable in six degrees of freedom. In fact, the
exploitation of additional cues as collected by head movements improves the local-
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ization capabilities considerably, for instance, in the course of exploring unknown
environments. For example, head movements are utilized to solve directional ambi-
guities such as front-back confusion (Perrett and Noble 1997) and to put the head
into a suitable position for segregation of desired signal components from undesired
ones, such as noise, reverberation, and/or concurrent talkers (Braasch et al. 2011;
Parks and Braasch 2013).

3.3.1 The “Turn-to-Reflex”

In the case that a sudden sound occurs in the vicinity of listeners, it is a common
reaction that they turn their heads towards the direction of the sound source. This
behavior is often called Turn-to-reflex. This action helps to put the sound-source into
the visual field and thus helps to identify the reason for the sound. The concept of
AttentionReorientation is noteworthy in this context (Corbetta et al. 2008)—compare
also Cohen-L’hyver et al. (2020), this volume.

Interestingly, blind people usually do not turn the head in a frontal position to
the source, but rather slightly to the side, namely, in the direction of best hearing.8

Whether this is still purely reflexive or also reflective is worthy of discussion; thus
the term turn-to-“reflex” is slightly misleading. It appears that there are different
neural streams involved, depending on the goal-driven or stimulus-driven attentional
behavior of the person considered (Petersen and Posner 2012).

In any case, appropriate head turning requires fast and reliable auditory source
localization, also in situations with concurrent sources. To model this behavior, dif-
ferent approaches have been implemented and tested. These algorithms typically
try to determine the directions of sound-wave incidence on the listeners, although
the directions are not necessarily spatially coincident with the directions in which
the auditory objects are actually heard. Evidently, the following two are particularly
effective.

(i) Deep-Neural-Network-Based Localization

Deep neural networks (DNNs) are neural networks with several hidden layers, which
contain representations of different degrees of abstraction. They are a versatile tool
for many classification tasks when working on large data sets (Goodfellow et al.
2016). In auditory localization, they have proven successful for the identification of
the directions of multiple sound sources, such as concurrent speakers, even in noisy
and reverberant environments.

An example is the systemofMaet al. (2015), see alsoMaandBrown (2015, 2016),
in which a DNN is used to learn the relationship between the source azimuth and
binaural cues, namely, the cross-correlation function and interaural level differences
of the signals arriving at the two ears. The DNN was trained using a multi-condition
approach; spatially diffuse noise was added to the training signals at different signal-
to-noise ratios in order to improve robustness to reverberation. The authors show that

8Personal observation (first author).
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their system is able to accurately localize a target source in challenging conditions,
that is where multiple talkers and room reverberation are present.

(ii) Null-Steering-Antenna-Based Localization

The null-steering-antenna approach is a method that is useful for foreground-
background separation. It is, for instance,widely used for beamformingof antennas—
see, for instance, Leng et al. (2008). In psychoacoustics the approach was introduced
in modified form by Durlach (1960) as equalization-cancellation theory. The basic
idea is explained here in its “cophase-and-subtract” version (Mi et al. 2017). Consider
two microphones spaced apart from each other by roughly the distance of the two
ears. If a sound-source is positioned perpendicular to this two-microphone array, the
signal components stemming from this source and arriving at the two microphones
will be identical. If now one microphone signal is subtracted from the other one, the
result will be null. This directional null indicates the source position.

Localization Enhancement by “Sharpening the Ears”

The following two examples of feedback in sound-source localization exploit the fact
that the pattern of acoustic events or characteristic features of them are contained in
the rate maps and can, for instance, be learned by machine-learning procedures. The
knowledge gained in this way enables better and/or faster performance in recognition
and localization tasks. It can, for example, be used by the system for attending to
situation-specific spectral regions, for dynamic sensor adjustment, for suitable path
planning in the context of scene exploration, or for active assessments of the quality
of experience, such as in spaces for musical performance. This kind of feedback is
knowledge-based and, consequently, reflective.

(i) Localizing Corrupted But Known Sounds

There is clear evidence for attentional effects in biological spatial hearing. It thus
makes sense to apply top-down information in technological systems for sound local-
ization as well. The experiment described in the following has addressed this issue
by proposing a framework for binaural localization that exploits top-down knowl-
edge about the spectral characteristics of different sources in acoustic scenes. A-
priori information from source models is used to improve the localization process
by selectively weighting interaural cues. The system, therefore, combines top-down
and bottom-up information flowswithin a single computational framework. In detail,
the following procedural steps have been taken in the experiments reported here
(Two!Ears 2016, pp. 11–16); see also Ma and Brown (2015).

In the first step, rate maps are computed by the system for an acoustic mix-
ture consisting of the target signal and interferer signals. Then those time-frequency
features are estimated that are dominated by the target signal. The target signal
was a 1.5-s speech sample, and the interferer signals were taken from the fol-
lowing set of sound samples: alarm, baby crying, drums, telephone
ring, symphony. “Clean” power spectra of the target signal and each of the
interferer signals were available from prior experiments. Then masks were built for
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the enhancement of those components in the rate maps that are dominated by the
target, and to penalize those that are dominated by the interferer. These steps were
accomplished by machine learning.9 Figure6 shows an example of the original rate
map of the target/interferer mixture (upper panel) and the mask for weighting this
rate map in a way that emphasizes the target signal (lower panel). Slight head rota-
tions have therefore been applied to avoid front-back confusion (Ma et al. 2015; Ma
and Brown 2016). The directional mapping was based on interaural level differences
(ILDs) and interaural cross-correlation, both as a function of frequency.

“Sharpening of the ears” in the context discussed here denotes the fact that the
auditory system has learned the relevant spectral pattern of predefined sound classes
from the according to generalized rate-maps and, consequently, puts a higher weight
on spectral components that fit these pattern while penalizing the remaining ones.
This can be interpreted as a focusing of attention of the system on pattern elements
that it has learned to be relevant in a particular situation—in other words, it is a case
of reflective feedback. The experiment reported above thus shows that by exploiting
learned rate-map-based sourcemodels sound-localization performancemay improve
substantially (Two!Ears 2016, pp. 11–15).

(ii) Optimizing the Head Position in Multiple-source Scenarios

As mentioned above, human beings tend to move their head into a direction where
they either see the sound source or, alternatively, hear it best. This behavior also
holds in situations with more than one sound source, for instance, in scenes with
concurrent talkers. The listeners will then make a choice as to which talker to attend
and concentrate on that one. This focusing results in a perceptual advantage for
the “desired” talker—the so-called Cocktail-party effect (Cherry 1957). By putting
the head in a favorable position for taking advantage of the cocktail-party effect, the
listeners localize the desired talker and then segregate their speech signals from those
of other talkers (Braasch et al. 2011; Parks and Braasch 2013). In the following, an
algorithm is described that allows this reflective feedback to be included in auditory-
system models. The algorithm requires three processing steps, namely, localization,
head positioning, and segregation.

Experiments have been performed for various settings of two concurrent talkers
in the horizontal plane. They revealed that best-positioning of the listener’s head with
respect to the two talkers results in a perceptual advantage equivalent to a signal-
to-noise ratio (SNR) of up to 30dB (Deshpande and Braasch 2017). For finding
the directions of the two talkers, the null-steering-antenna approach as described
in Sect. 3.3 was utilized. Possible front/back confusions were solved by small head
rotations. With the azimuth difference of the two talkers now known, the head was
turned to a position in which the highest SNR was expected. This was done by
looking-up in a table in which estimates of the SNR for all possible source positions
had been stored beforehand as a-priori knowledge. The SNR values in the table were

9Conventional machine-learning methods usually work well for specific situations and tasks that
they have been trained for, but they may unpredictably fail in situations that they are not prepared
for. This risk is reduced with advanced machine-learning methods, such as DNN-based ones. These
can refer to more abstract representations and are thus able to generalize to a certain extent.
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collectedwith pink-noise. In the last step, the concurrent talker was suppressed, again
by employing the null-steering-antenna method. All head rotations were simulated
by virtual head rotation (Braasch et al. 2013). The overall results of the experiment
support the hypothesis that turning the “better ear” toward the desired sound-source
is a reasonable approach in most cases.

As to localization and/or suppression of a sound-source with the null-steering-
antenna method, the following has to be noted. In environments with more than one
source, such as with concurrent talkers, noise, and/or reverberation, there will be
no complete null. Anyhow, if the signal components stemming from the identified
source position are subtracted from the complete microphone signals, what is left
stems from further sources, noise, or reverberation. Following this, the foreground
and background can be separated, and the desired signal stands out more clearly.
Consequently, in further processing steps, multiple sources can be identified, and
dereverberation and denoising can be accomplished (Two!Ears 2016, pp. 33–39). If
binaural signals are used as an input to the process, as was the case in the experi-
ment reported above, it is advantageous to cancel the influence of the external ears,
head, and torso by deconvolving the incoming signals with the adequate impulse
responses10 before applying the cophase-and-subtract step.

Auditory Localization Aided by Sensorimotor Feedback

In the very beginning of this chapter, in Sect. 1, it was stated that the auditory system
is an embedded component of the complete body and—due to communication of
the body with the environment—closely bound to the environmental scene that the
body is part of. Thus, any action of the body, such as auditory localization, can
only be fully understood when inputs from all sensory modalities—including the
coordinative ones with sensors for position, direction, and force—are taken into
account. This, furthermore, also holds for the “world knowledge” that the body
has incorporated. World knowledge requires intelligence within the body, yet, this
intelligence is not solely represented in the “brain” of the system. For example,
reflective motions of the system or of parts of it are triggered by the central nervous
system, but the exact course of action follows (reflexive) patterns that are “known”
at the stage where they are actually executed. Brooks (1991) has called this local
phenomenon intelligence without representation. In O’Regan and Noe (2001) these
ideas have been developed further in that these authors point to the tight integration
of motion and sensory stimulation, a notion that complies with recent developments
in embodied cognition. Namely, there it is postulated that our sensory experience
arises from mastering sensorimotor contingencies, so to say, on the task of learning
how stimuli vary as a function of bodily movement.

Along these lines of thinking a “sensorimotor-feedback” algorithmhas beendevel-
oped in Toulouse under the guidance of Patrick Danès. This algorithm exploits the
correlation between streams of directional cues as delivered by the two ears of listen-
ers and the accompanying motor actions that are attached to the sound-localization

10These impulse responses, also known as Head-Related Impulse Responses (HRIRs) vary with
the direction of sound incidence and source distance. Their Fourier transforms are usually called
Head-Related Transfer Functions (HRTFs).
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processes (Bustamante and Danés 2017; Bustamante et al. 2017). The algorithm
has been developed for use in robots. In principle, it can exploit world-knowledge,
although the current implementation is restricted to the reflexive part of the feedback
loop.

In the model architecture of the auditory system as depicted in Fig. 2, the sensori-
motor level constitutes the lowest computational layer both in the model architecture
at large and in the robot implementation. Since the respective processors in the robot
must run under severe time and communication constraints, the current implemen-
tation does not yet entail any reflective ability.

Sensorimotor-feedback-aided sound-source localization is an active process that
enables the disambiguation of front-back confusions, the determination of source
distances, and other tasks by incorporating motor information. The sensorimotor
localization strategy is organized into three layers (Bustamente et al. 2015)—as
depicted in Fig. 7.

• StageA performs instant estimates of the source azimuths and also detects the
source activities from rate-map-like representations of small sliding time windows
of the two ear-input signals. In thisway, an initial probability-density function (pdf)
of prospective source positions is formed

• StageB assimilates this azimuth-over-time information and combines it with
respective head-rotation motor commands in a stochastic filter. This filter gen-
erates a posterior probability-density function of the head-to-source directions

• StageC provides a feedback controller that can move the head to improve the
quality of localization based on suitable information-theoretic criteria. This leads
to an improvement of the output of StageB.

The stochastic filter in StageB was set up as a state-space equation uniting the
velocity-control vector of the headmotionwith the head-to-source directions, render-
ing a Gaussian-mixture approximation of the posterior pdf. The quality assessment
in StageC was performed via the entropy of the moment-matched approximation

Fig. 7 Sensorimotor feedback (schematic)—adapted from Two!Ears (2015)
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of the posterior pdf of the head-to-source directions. This three-stage sequence is
repeated continuously while the localization process is going on. The algorithm has
been formalized in statistical-signal-processing and information-theoretical terms.
More details of it are given in Two!Ears (2015, pp. 56–67) and Two!Ears (2016, pp.
52–62).

In the implementation reported here, the auditory-modeling systemwas integrated
into a robot which was designed to act as an agent that can explore its environment
actively and independently, thereby taking on tasks like saving persons in Search-
&-Rescue missions—see Blauert (2020), this volume, for an example performed in
a virtual test environment.

Head Movements Controlled by Perceptual Congruence

There is ample evidence that auditory perception and understanding are subject to
attention (Kaya and Elhilali 2016). Namely, auditory objects and scenes that human
beings attend to are perceived and interpreted differently when they are in the focus
of attention or not (Two!Ears 2014, pp. 43–55). These effects can be reflexive but
also reflective with varying amounts of involved cognition. To understand the extent
to which cognition may be involved, a functional hypothesis known as Reverse-
Hierarchy Theory (RHT) (Hochstein and Ahissar 2002) provides useful hints. The
idea of this hypothesis is as follows. As long as the relevance of a sound-source can
be assumed to be due to primitive (and salient) perceptual features, attention will
be paid to the source in a reflexive manner. However, if (and only if) cognition is
required to analyze an auditory scene in order to determine which source may be
relevant enough to attend to, reflective feedback will be employed. The RHT is thus
also a statement of the economic behavior of organisms. As a practical example of
this theory, the Head-Turning Modulation (HTM) model is introduced, which was
conceptualized and developed by Cohen-L’hyver et al. (2015, 2016, 2020). The
HTM algorithm comprises two major parts, namely,

1. A Dynamic Weighting model
2. A Multimodal-Fusion-&-Inference model.

TheDynamic-Weighting Model (DW) is able to control the movements of a head-
and-torso simulator depending on whether a sound-source is regarded as congruent
or not with respect to the current environment that the robot is about to explore.
The notion of congruence is defined by the authors as a form of Semantic Saliency
because it analyzes local singularities (Treisman and Gelade 1980) that represent
perceived objects with respect to the environment in which they occur. However, as
opposed to the traditional notion of saliency, which mainly relies on low-level cues
of the signals perceived, the DW processes higher-level data using audio (and visual)
classes the objects belong to. Dedicated classification experts provide this neces-
sary information—see Cohen-L’hyver et al. (2020). Thus, the DW offers advanced
reflective feedback regarding auditorily induced head rotation.

Congruence is computed on an environment-by-environment basis, relying on the
fact that the same sound can be interpreted as “odd” in a particular space (such as a
dog barking in a conference room) but completely “adequate” in another space (such
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as a dog barking in a kennel). In the latter case, the barking would be predictable in
a way. The DW algorithm now analyzes the pseudo-probability of inputs provided
by classification experts to occur in the current environment. Thereby this algorithm,
as well as the whole HTM model, does not rely on prior knowledge about the world
being explored. Actually, the less predictable an object is, the more important it is
rated. In this context, the amount of importance provides the reference for whether
a head movement toward this object is justified or not. This decision, conferred to a
robotic system together with the advantages listed above, enables the robot to direct
its visual sensors towards the dedicated object properly and, consequently, improve
the analysis of it.

The Multimodal-Fusion-&-Inference Model (MFI) also implements reflective
feedback through the notion of autonomous enhancement of the knowledge per-
ceived by the robot—the knowledge being the audiovisual classes brought by the
classification experts. Mainly rooted in the principle of intrinsic motivation (Berlyne
1950), the MFI is mainly constituted by a self-supervised online learning algorithm,
in charge with learning the link between the audio and visual information brought
by the classifiers during the exploration, coupled to the ability to assess by itself how
much the knowledge it gained from learning is of sufficient quality to be trusted by
the DW. Indeed, the DW relies on a robust audiovisual representation of the world
in order to compute the congruence of the objects detected in it in a meaningful and
relevant manner. As for the DW, the MFI extensively uses head movements to feed
its learning algorithm with complete audiovisual data. Also, as for the DW, the MFI
aims at inhibiting irrelevant or unnecessary head movements.

Both modules, DW andMFI, provide reflective feedback loops between the infor-
mation perceived by the different sensors of the robot and their respective elements
for analysis, namely, classification experts and the triggering of head movements.
These loops are highly adaptive since they are adjusted by the HTM system itself all
along with the life of the robot.

Figure8 illustrates an example where the notion of congruence versus incongru-
ence has been applied. The assigned weights are measures of the assumed urgency
for turning the head into the direction of the respective sound sources. The weighting
process in the depicted 4-source scenario with two persons, a car, and a fire, pro-
ceeds as follows. The car is started and then parked close to two persons. Its motor
stays running. At Timestep5, both persons begin yelling, but while Person1 stops
immediately, Person2 keeps on until about Step10 and only then stops. At Step20,
Person2 starts to yell again and does so until about Step25 to stay quiet from then
on. At about Timestep10, a fire breaks out and produces loud crackling noise. At
Step35, Person1 begins to yell again and stays on doing so.

The following effects can be observed from the trajectories of the weights. The
weight assigned to a source decreases when it falls silent or continues to emit the
same sound for a longer period. The decrease is not abrupt but follows a shallow
slope. The weight increases, however, when a source starts to send from scratch or
starts sending modified or new sounds. Incongruence has obviously something to do
with the information that a sound source provides. So far in the system reported here,
a cross-correlation criterion rated the amount of incongruence.
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Fig. 8 Example of
congruence-driven weight
assignment in a dynamic
4-source scenario—adapted
from Cohen-L’hyver (2017)

The semantic content of the emitted sound has not yet been considered. For
example, information of the following kind is not exploited in the current version of
the system. Is a sound human speech and, if yes, is it female or male speech? Does
it originate from a known or unknown person and, what does this person actually
express in terms of semantic content? Recent progress in speech-dialog systems—
see Sect. 4.2—will support further development. Further ideas along these lines,
including the use of visual cues, are discussed in the chapter by Cohen-L’hyver et al.
(2020), this volume.

4 Cognitive Feedback

4.1 Feedback Processes in the “Brain” of the Auditory System

The need for cognitive feedback is motivated by the following statement.

Human beings do not react according to what they perceive, but rather, they
react on the grounds of what the percepts mean to them in their current action-
specific, emotional and cognitive situation—a much more complex process
than just perception

Amodel of the auditory function that also includes cognitive processes and reflective
interaction with the world needs a component that incorporates world knowledge and
cognitive reasoning, among other capabilities. This component must, for instance,
be able to form objects from proto-events, analyze auditory scenes—thereby taking
cross-modal cues into account (e.g., visual and/or tactile ones)—and assign meaning
to objects. In other words, a component that represents, so to say, the “brain” of the
model system.Blackboard systems (Engelmore andMorgan 1988) are one possibility
to realize the functions laid out above. In the model architecture depicted in Fig. 2,
this component is composed from the actual blackboard together with the experts
and the scheduler. Architecture and functions of a specific system of this kind are
described inmore detail in Schymura andKolossa (2020), this volume. In that system,
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Fig. 9 Interaction of blackboard and experts under control of a Scheduler—adapted from Blauert
et al. (2014)

feedback from higher levels is integrated by using graphical models (Murphy 1998)
as the active blackboard architecture. Higher-level processes in application-specific
subsystems, such as a software expert on scene analysis, can set variables according
to their particular intentions. Then, after an inference in the graphical model has been
carried out accordingly, it becomes clear howhigher-level feedback correspondswith
the rules and observations of the system, and what implications can eventually be
drawn from it (Fig. 9).

The graphical models stem from multiple sources of information and are com-
posed on the blackboard to form one comprehensive description of a specific audi-
tory, audio-visual, or audio-visual-tactile scene. The model parameters are adjusted
in order to create a world model, namely, a description of the state of the environment
which optimally matches all observations, that is, all sensor data that have beenmade
available to the cognitive system.

This structure allows for many types of feedback, which can be initiated whenever
the output of the system is not sufficiently reliable. Insufficient reliability is detectable
within the graphical models, but care must be taken to distinguish continuous-valued
variables like locations or intensities from discrete-valued variables like spoken
words or source identities. If there is insufficient reliability in a continuous-valued
variable, this can be seen from large variances of the estimate. For instance, if
the system is tracking an acoustic source, high variances of the location estimate
are indicative of an unreliable interpretation, as has been successfully exploited in
Schymura et al. (2014). For discrete-valued variables, confusions are detected when
multiple interpretations are assigned high likelihoods.One examplewhere such prob-
lems can occur is given by situations with conflicting evidence, that is, when different
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subsystems assign two or more contradictory interpretations high likelihoods. For
example, one source may be interpreted as a human talker by the acoustic model but
as a speech-emitting radio by the visual model.

In both types of confusion, continuous-valued and discrete-valued, the graphical
model architecture of the blackboard helps trigger feedback and disambiguation.
More specifically, the blackboard system takes advantage of the connectivity of the
complete graphicalmodel for this purpose. That is, when a variable on the blackboard
is shown to have a high degree of uncertainty, the underlying causes of uncertainty
are traced by following the dependency relationships of the variable backwards. The
results of these processes are then communicated in a top-downmanner to other stages
of the auditory-system model, for instance, to initiate suitable adaption processes, or
to trigger motor actions, such as goal-oriented hand and body motions.

4.2 Understanding Auditory Agents

In order to be able to control and assess advanced auditory-system models, such as
the one sketched in Fig. 2, some kind of communication channel between the model
and the outside world has to be established. This way users can understand what is
happening inside the systems. For example, (a), what is the current world model that
a system is using and/or, (b), what are the action plans that it is pursuing and actually
carrying out?

(a) Answers to the first query require a way for reporting from inside the “brain” of
such a system. This communication can be achieved by applying advanced text-
or speech-dialog systems—see, for example, Jurafsky and Martin (2017), and
Möller (2010). Recently, these systems have enjoyed substantial progress, and
they are now successful items of consumer technology, among other usages.

(b) For answering the second query, an obvious method is to observe the actual
actions of the systemwhile in use and than to analyze and evaluate these actions—
for instance, with respect to intended purposes.

For observation and assessment of the behavior of robots that are controlled by
a model system as depicted in Fig. 2, a dedicated (virtual) test environment has
been developed—for details see Blauert (2020), this volume. This test environment
comprises, among further ones, the following functions11:

• Environment. This class provides the basis of the virtual test environment. Con-
trolled by computer commands, it is able to generate auditory scenarios of moder-
ate complexity. For example, the current version generates rectangular spaces in
which sound sources are placed, and in which a robot can move about freely

• Sound-sources. Here basic information is deposited regarding each sound-source
used in the scenario, such as source positions, identities (names) and test sounds

11These classes were originally programmed in Matlab®.
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Fig. 10 Schematic for the test environment for advanced binaural-system models

to be emitted. The positions of the sound sources, as well as their emission type
and timing, are communicated from here to the environment class

• Robot Control. In this class, the virtual representation of the robot is stored and
administered. It admits access of the test-environment system to the robot platform
and is in control of movements of this platform

• Artificial Head. On top of the robotic platform, an artificial head ismounted, which
is movable with respect to the platform. Control of head position and movement
is carried out via this class. Further, the head-related transfer functions (HRTFs)
as needed for auralization, are applied here.

The test environment connects seamlessly with its blackboard component and
the experts attached to it—see Fig. 10 for a schematic plot of the arrangement. This
enables the experts to commit motor orders to the robotic platform with its mov-
able head-and-torso simulator on top. Environmental information, as provided by
the experts, will be fed back to the test environment accordingly, also through this
interface. A dedicated synchronization expert provides synchrony between the test
environment and the blackboard. Because the auditory virtual-reality generator is
directly controlled by the test environment, this unit, among other sound signals,
also generates the ear signals for the (virtual) robots. These are then sent to the
peripheral components of the auditory-system model, namely, its “auditory front
end”. Here preprocessing of the ear signals is performed, and relevant auditory fea-
tures are extracted. These are consequently forwarded to the blackboard component
and thus also to the experts. The virtual test environment allows for quick and reliable
monitoring of basic feedback mechanisms in the auditory-system model.
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5 Concluding Remarks

While research efforts into the human auditory systemhave traditionally concentrated
on bottom-up processes, the focus has now broadened, and top-down processes have
caught the attention of researchers as well. Since bottom-up and top-down processes
are intimately linked, it is evident that they will form feedback loops within the
auditory system, and with regard to the communication of the auditory system with
other parts of the body, and with the environment. This fact makes auditory feedback
a relevant target also for applied research and engineering approaches, for instance, in
human/machine communication, and robotics. In this chapter, some basic problems
and research efforts regarding this area have been introduced and discussed. The
majority of the examples have been taken from the recent EU-Project Two!Ears.12
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Auditory Gestalt Rules and Their
Application

Sarinah Sutojo, Joachim Thiemann, Armin Kohlrausch
and Steven van de Par

Abstract The formation of auditory objects is of high interest for both the
understanding of human hearing as well as for computer-based analysis of sound
signals. Breaking down an acoustic scene into meaningful units facilitates the segre-
gation and recognition of sound-sources from a mixture. These are abilities that are
particularly challenging for machine listening as well as for hearing-impaired listen-
ers. An early approach to explaining object perception in the visual domainwasmade
by the Gestalt psychologists. They aimed at setting up specific rules according to
which sensory input is grouped into either one coherent or multiple separate objects.
Inspired by these Gestalt Rules and by exploiting physical and perceptual proper-
ties of sounds, different algorithms have been designed to segregate sound mixtures
into auditory objects. This chapter reviews some literature on such algorithms and
the underlying principles of auditory object formation with a special focus on the
connection between perceptual findings and their technical implementation.

1 Introduction

A single speaker, an instrument playing, or a passing car, each create a combina-
tion of different sound components that a listener may easily identify as emerging
from one specific object. Despite the different nature of the sound components and
their dispersion over time and frequency, the separate components share enough
evidence for the human auditory system to assign them to a common source of ori-
gin. In computer-based analysis of audio contents, organizing the sound components
that occur in an auditory scene into meaningful elements, remains one of the main
challenges.
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An auditory object describes such a meaningful element. It either relates to a
physical object or to the percept that goes with it. By means of object formation
and selection, the multitude of incoming sounds can be reduced to components
conveying relevant information about the environment, and eventually direct the
listener’s attention to thesemeaningful events. Not only does thismake the analysis of
inputs more purposeful and efficient, but considering limited processing capacities,
the restriction to relevant elements is also a necessary step to enable handling of
complex situations.

When gaining information from an auditory scene, both machines and human
listeners have access to physical cues that are inherent to the acoustic signal such as
frequency content or onset time across frequency bands. The challenge lies in the
extraction and interpretation of these attributes in order to determine whether spe-
cific sound components should be grouped or separated. While the human auditory
system exhibits a high degree of flexibility in unknown environments, the computer
algorithms still lack in terms of proper selection and interpretation of physical cues
in order to achieve the same extent of robustness in situations with an increasing
number and variety of sources or in reverberant environments. Despite the broad-
ened technical possibilities and the insight on human perception that has been gained
in recent years, a comprehensive understanding of the information processing as it
takes place in the auditory system is not yet available. However, there are multi-
ple applications for computational methods that allow to reliably segregate sound
sources. From automatic speech-recognition systems, which often require a front-
end that can robustly distinguish between target speech and background (Narayanan
and Wang 2013a; Wang and Wang 2016), to hearing aids, and music analysis, the
automatic formation of meaningful objects is of substantial interest.

In this chapter, the concept of the auditory objects and the principles that under-
lie their formation, are regarded from both the perceptual perspective, as well as
from an application-oriented view. The field of study that is concerned with the
understanding of the perceptual processes in complex auditory situations is termed
auditory-scene analysis (ASA) (Bregman 1990). Summarized under the term com-
putational auditory-scene analysis (CASA) (Wang and Brown 2006) is the research
field guided towards the technical implementation of scientific findings on ASA.

Figure1 outlines the two views on auditory objects and some of the essential
aspects that are addressed in this chapter. In the terminology of ASA, summarized
on the left-hand side of the diagram, an auditory object is referred to as a stream
(Bregman 1990) that defines the perception of different sound components as a
coherent whole. From the CASA perspective, represented on the right-hand side of
Fig. 1, the auditory object can be seen as a cluster of spectrotemporal units that are
dominated by the same acoustic source and can thus be used to reconstruct the per-
ceptual (auditory) components evoked by this source. A number of object-formation
principles and constraints in the auditory system were derived from empirical stud-
ies applying stimuli that allowed for manipulation of physical signal properties and
permitted the observation of their influence on stream perception. The Gestalt Rules
are a set of principles stemming originally from the visual domain and allowing the
definition of objects (cf. Binder et al. 2009). These principles have then also inspired
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Fig. 1 The Auditory Object and its formation principles and grouping cues, regarded from both
the perceptual (ASA) and application-oriented (CASA) perspective

ASA concepts. Although the original formulation of the Gestalt principles was rather
philosophically oriented, some of them have evolved into more specific ones in terms
of physical features (Jäkel et al. 2016) and thus became technically realizable with
recent signal-processing methods.

The rules behind auditory-stream perception can be divided into two stages—see
also the bottom half of the diagram. On the one hand, the inherent physical properties
of the input signal serve as a basis for object formation and are summarized under
primitive grouping cues (Bregman 1990). Regarding the auditory system, most of
these are already represented in the peripheral analysis and are considered to influence
the perception in a type of bottom-up process. On the other hand, the prior knowledge
and a more conscious decision by the listeners determine which signal components
the listeners attend to and how these components are assembled and recognized, for
example, as a familiar acoustic source. These processes are referred to as schema-
based cues and are considered to affect the perception in a top-down way. Rather
than being purely determined by the stimulus input, these cues are driven by higher
cognitive processes such as attention and prior knowledge. An essential part of ASA
is the design of physiologically plausible models that reconstruct known stages in
human auditory processing and attempt to precisely reproduce data from human-
performance studies (Beauvois andMeddis 1991, 1996;McCabe andDenham1997).

While the ASA field investigates which features humans use for stream segre-
gation and the perceptual consequences that go with it, the CASA research field
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(displayed on the right of the diagram), is more concerned with the question of
which physical properties are extractable from the acoustic input signals, and how
these can be put to use in algorithms for extracting information from an auditory
scene, or even reconstructing individual sources. The equivalent to the perceptual
stream in CASA is the clustering of signal fragments that are likely to be evoked by
the same source. Several findings and terminologies that are used in ASA are trans-
lated into physically and statistically manageable quantities to make them suitable
for technical implementations (Brown and Cooke 1994; Hu andWang 2006). Conse-
quently, the grouping cues are either obtained from an analysis of the acoustic input
signal (primitive cues), or they have to be provided by pre-trained statistical models
(schema-based cues). CASA algorithms do not necessarily need to be physiologi-
cally plausible or restricted to the limits of the auditory system but are often inspired
by human processing strategies. This chapter deals with systems that provide inputs
from only two microphones, similar to the two ears that humans use for ASA.

The intention of this chapter is to give an overview of recent findings on object
formation in human hearing and provides some examples of computational methods
that imitate these human abilities. In Sect. 2, the concept of an auditory stream is
described along with the basic ideas on decomposing auditory scenes with binary
masks such as used in CASA. In Sect. 2.1, feature types and grouping principles are
reviewed by looking separately at primitive and schema-based cues. In the conclu-
sion, an algorithm topology is suggested for the integration of various feature types
with the help of similarity estimations.

2 The Auditory Object

An object in the environment is experienced as a defined entity, exhibiting char-
acteristic features and standing in distinct relationships with other objects. For the
visual domain, so-called Gestalt Rules have been formulated, which provide a more
specific definition of what is perceived as a coherent object and what attempts are
useful to capture regularities between stimuli and the resulting percepts in an audi-
tory scene (cf. Jäkel et al. 2016). In the context of this chapter, these Gestalt Rules
are looked at with regard to auditory objects, for which they also apply in a slightly
modified form. From the viewpoint of auditory signal processing (e.g., in CASA),
the process of object formation is approached by the search for components which
are evoked by the same acoustic source. It is usually aimed at estimating an ideal
binary mask (IBM) (Wang and Brown 2006) which labels spectrotemporal units that
are dominated by the considered source.
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2.1 Auditory Streams

Objects in auditory perception are referred to as streams. A stream defines a group
of successive or simultaneous sound components as a coherent whole that appears to
originate from the same source. Streaming describes the processes which influence
howmany streams are heard in a specific sound scene. Bregman (1990) differentiates
between an acoustic source as the physical system that generates a characteristic
sound pattern, and an auditory stream. The latter denotes the perceptwhich correlated
with the said sound pattern in the perceptual world of the listener (Cooke and Ellis
2001).

It is the goal of scene analysis is to recover meaningful descriptions of each
separate sound source in the environment. This requires a detailed knowledge of
the relations between the physical world and the perceptual (auditory) world of the
listener (Bregman 1990). It is likely, that the experienced stream relates to an actual
physical object. However, a stream can also form in the case that there is no actual
physical object but a conglomerate of sounds which the listeners’ mind attempts to
organize (Cooke and Ellis 2001), indicating that the auditory system has a tendency
to associate each sound property with a certain physical object.

As mentioned above, the Gestalt Rules, which refer to object formation, have
originally been formulated for the visual domain. In this context it was considered
that the smallest units of perception are rather structured entities than atomistic
elements such as single sensory inputs. One of the guiding questions was, why out of
a multitude of possible percepts typically only one materializes (Binder et al. 2009),
and how the processing of certain cues gives rise to a specific kind of integrative
perception, namely, the so-called Gestalt perception. Thereby Gestalt perception
apparently happens in a pre-attentive manner.

Wertheimer (1923) was the first to formulate Gestalt rules using the terms prox-
imity, similarity, closure, and common fate as principal factors. Under proximity
he understood that the nearer the stimuli are to one another the more likely they
will be assigned to the same object. The same is assumed for similarity, meaning
that elements with common features such as size, shape, distance, or color, tend
to be grouped. Closure describes the tendency of the human perceptual system to
complete objects, causing closed entities to be formed. Furthermore, stimuli that
move simultaneously, for instance, in the same direction or at the same rate, tend to
be perceived as a group, as they share a common fate. These Gestalt factors were
considered mechanisms which are built into the sensory systems through the general
evolution of organisms during interaction with the environment, rather than as mech-
anisms that humans acquire individually. Interestingly, these principles also seem to
be effective in a variety of other species, considering that camouflage or concealment
mechanisms counteract the Gestalt principles.

The later formulated Prägnanz principle targets the question of why a certain
interpretation of a given scenery is preferred over other interpretations which are
physically possible and plausible as well. Prägnanz is thought of as a higher-order
concept compared to the principles as described by the Gestalt rules, but may include
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proximity, similarity, closure, and common fate. Prägnaz may roughly be described
as the tendency of a perceptual scene to become organized in the simplest most
homogeneous way possible (Binder et al. 2009) with a preference for concise repre-
sentations that convey a large informational content while maintaining a high degree
of simplicity.

However, the statement that the percept (i.e. the scene) that is perceived is the one
with the highest degree of Prägnanz can only be helpful for explaining perceptual
organization if a precise measure of Prägnanz is defined (cf. Jäkel et al. 2016). Two
such measures that have been suggested in information theory as measures related to
simplicity (Jäkel et al. 2016) are redundancy and code length. Some recent approaches
are based on Bayesian inference, which allows a formulation of the likelihood prin-
ciple in perception and suggests to choose the interpretation which is most likely to
be true. Based on the observed data (i.e. the input signals) several interpretations may
be possible, each having an associated likelihood function. The subjective belief in
a certain interpretation is then associated with its posterior probability—i.e. the con-
ditional probability of the hypothesis given the observed image. It has been shown
that under certain assumptions, maximizing the Bayesian posterior is consistent with
maximizing the simplicity (Feldman 2009). Froyen et al. (2015) present Bayesian
hierarchical grouping, a framework for perceptual grouping based on the assumption
that the configuration of the elements of a scene is generated by a mixture of objects
that can be described by a mixture model. The challenge of perceptual grouping
lies in estimating the generating sources. This causes a conflict between, on the one
hand, decomposing the scene into a large number of groups which allow a good fit
of the scene data and, on the other hand, decomposing the scene into fewer groups.
This would increases the simplicity but does not fit the scene data at the same time.
Froyen et al. (2015) suggest to apply Bayes’ rule to optimize this trade-off and allow
the best balance between simple grouping and a reasonable fit to the scene data.

With such approaches, it becomes theoretically possible to quantify the plausi-
bility of grouping interpretations (Froyen et al. 2015) and thus the degree of Präg-
nanz. Therefore, the elusive notion of Prägnanz may eventually become amenable
to precise measurement, even though it is still in question how the perceptual sys-
tem actually determines the relative likelihoods of different interpretations (Feldman
2009).

In modern neuroscience, the Gestalt principles still exist as concepts in the spatio-
temporal processing of perceptual features, thus motivating the search for neural cor-
relates of the Gestalt phenomena. One example is the investigation of synchronized
coupling of neuronal activity within and across cortical areas that may be interpreted
as a correlate of the common fate principle (Binder et al. 2009). As the stream plays
the same role in audition as the object in the visual domain, the Gestalt Rules can
help to solve the auditory-scene-analysis problem. There are a few analogies that
can be drawn. For example, the principle of closure, which is concerned with com-
pleting forms, closing gaps, etc., is useful when a visual object is partly occluded
and is likewise necessary when an acoustic signal is masked by an interfering noise
(Bregman 1990) (Fig. 2).
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Fig. 2 Schematic illustration of the three states of stream perception as a function of frequency
separation between two sinusoidal tones, A and B. In the underlying experiment as described by
Bregman (1990), repeating cycles of two sinusoidal tones (gray boxes) were used to illustrate
the importance of speed and frequency separation for the formation of streams. Small frequency
separations between A and B (see left side of the diagram) lead to the perception of one coherent
stream, in this case a galloping rhythm, thus characterizing the states of primitive fusion or obligatory
fusion, respectively. Sufficiently large frequency separations will lead to the perception of two
separate streams as shown on the far right side of the diagram, marking the states of primitive
fission or obligatory fission. Between both states, that is for frequency separations larger than the
temporal-coherence boundary and smaller than the fission boundary, the perception can switch
between one and two streams. In this bistabile state, the percept is influenced by various factors,
such as exposure time or schema-based cues, like expectations

There are three conditions that roughly describe the state of stream perception.
These conditions can be illustrated with the effect of frequency separation between
two alternating tones on streaming. For small frequency separations, the listener
perceives the tone sequence as one coherent stream, characterizing the state of fusion.
As the frequency separation is increased, the perception of one coherent stream is
changed to two. The threshold at which the segregation appears is referred to as the
fission boundary. Van Noorden (1975) already used the term temporal coherence, in
order to describe the impression that the perceived relation between successive tones
in a sequence forms a whole, which is ordered in time.

In the converging region of fission and fusion, the percept can alternate between
hearing one or multiple streams. Accordingly, the state in this ambiguity region is
termed bistability (Moore and Gockel 2012). Usually, listeners report not to hear
both percepts at the same time. However, one counter-example is documented by
Bendixen et al. (2010), who found that in some cases the listeners hear both an
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integrated stream of high and low tones along with a separate stream consisting of
only high or low tones.

Within the ambiguity region, different factors influence whether fission or fusion
occurs. One factor is the stimulus duration, as segregation of multiple streams tends
to build up over time. When a long sequence of sounds with intermediate frequency
separation is presented, the tendency to hear fission increases with exposure time
(Bregman 1990; Anstis and Saida 1985). A possible explanation is that the auditory
system begins with the assumption of only one single source, and fission is perceived
only after sufficient evidence was accumulated to support multiple sources. A fur-
ther influence on the occurrence of segregation is the kind of task that is given to
the listener, indicating that it plays a role whether the listener attempts to hear seg-
regated streams or not (Moore and Gockel 2012). In contrast to that, the fission that
occurs even when the listener is trying to hear fusion is also called primitive stream
segregation (Bregman 1990; Cusack and Roberts 2000) or obligatory segregation
(Vliegen et al. 1999).

When quantifying streaming phenomena, the transitions between the three states
are typically observed in dependency on variations of some physical property. The
tasks used for measuring streaming usually ask for subjective responses, meaning the
participants are asked to classify their perception into different categories—e.g., as
either several streams or just one. To control the effects of top-downmechanisms and
aim for the boundary to obligatory fusion or fission, the successful completion of the
task should depend on achieving either of the two states, for example, by requiring the
recognition of two interleaved melodies or recognizing a certain cue which can only
be done if the listener is able to segregate streams (compareDowling 1973; Hartmann
and Johnson 1991; Moore and Gockel 2012). Inferred from such experiments are
factors and feature types that promote or inhibit segregation, respectively shifting
the thresholds between the streaming states to different parameter values.

2.2 Decomposition of Acoustic Scenes with Binary Masks

When entering the ear and passing auditory periphery, the sound waves undergo dif-
ferent transformations during which the signal is decomposed into frequency bands
and eventually transduced as a pattern of nerve-firings. There is reason to believe
that the auditory periphery provides the brain with an internal representation that is
similar to a temporal sequence of short-term spectrograms. An auditory stream as
described in the previous section could then be regarded as the perceptual grouping of
the parts of this neural spectrogram that belong together (see Bregman 1990; Cooke
and Ellis 2001). In a similar manner, the CASA systems typically transform the
input signal into a time-frequency representation approximating the behavior of the
auditory periphery. An essential part of this transformation is the cochlear filtering
which is commonly modeled with a filter-bank or a cochlear model. The filter-bank
mimics the frequency-selective behavior of the basilar membrane by simulating the
frequency response of a point along the basilar membrane as a filter output. A typical
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Fig. 3 Cochleagrams and ideal binarymask of two single speakers and themixture of both speakers.
The cochleagrams are generated by passing the time signals through a Gammatone filter-bank
with center frequencies ranging from 100Hz to 6kHz that are equally spaced on the Equivalent
Rectangular Bandwidth (ERB) scale which is a perceptually motivated division of the frequency
axis (Glasberg and Moore 1990). The filter outputs are divided into 50ms time frames with 50%
overlap. a Cochleagram of the female speaker uttering the phrase “The legislature met to judge the
state of public education”. b Cochleagram of the male speaker uttering “The triumphant warrior
exhibited naive heroism”. c Cochleagram of the speaker mixture. dAn ideal binary mask indicating
the time-frequency units dominated by the male speaker–white pixels

output is presented in Fig. 3. Here, the time signals are passed through a Gamma-
tone filter-bank with center frequencies that are uniformly spaced on the equivalent
rectangular bandwidth (ERB) rate scale (Glasberg and Moore 1990). The filter-bank
output is then divided into time frames of 50ms length. By calculating the power
within each time-frequency unit, a cochleagram is generated as presented in panels
(a) to (c) of Fig. 3.

It should be considered that phase delays can be introduced by the filter-bank, and
for some applications, such as the comparison of onset and offset times, compensation
of the phase delay becomes necessary (Brown and Cooke 1994). Another option to
further process the filter-bank outputs is a model of auditory-nerve transduction such
as the Meddis model. It can be used to generate a representation of the firing rate
of a nerve fiber by simulating processes in the auditory nerve such as rectification,
saturation, and phase locking. The model computes the probability of spikes in the
auditory nerve (Meddis 1988).

Adapting the concept of a stream, the time-frequency units dominated by the same
source will form an auditory object. The aim of most CASA systems is to identify
the ideal binary mask (IBM) which labels the time-frequency units associated with
the target source. Consequently, after transforming the signal into a time-frequency
representation, each element of the representation is labeled “1” if dominated by the
target energy and “0” else. Narayanan and Wang (2013a) define the IBM as follows.
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IBM(t, f ) =
{
1, if SNR(t, f ) > LC

0, otherwise
(1)

where t and f label time frame and frequency channel. LC refers to the local SNR
criterion, above which a time-frequency unit is set to 1. The idea of this mask is to
retain the fragments where the target energy is relatively high and remove all other
fragments.

The IBM was originally inspired by the auditory masking phenomenon (Wang
and Brown 2006). Units that are labeled “1” correspond to unmasked time-frequency
units, whereas the “0”-labeled units correspond to masked fragments (Narayanan
and Wang 2013a; Li and Wang 2008). The concept is supported by studies which
show that within a critical band, the weaker signal is masked by the stronger one
(Moore 2012). An argument for the sufficiency of IBMs for the reconstruction of
speech can also be drawn from studies on glimpsing. The idea of glimpsing is that
the essential information for human speech perception is conveyed by the time-
frequency units with a favorable local SNR and, as such, they offer a glimpse of
the target (Cooke 2006). For a mixture of two speech signals, the regions of high
energy are sparsely distributed, that is, there is relatively little energetic masking in
terms of spectrotemporal overlap, and a large proportion of target speech is little
affected by the interfering speaker. Studies of speech intelligibility after spectral
filtering (Warren et al. 1995; Lippmann 1996) or with severely degraded information
regarding the distribution of spectral energy (Drullmann 1995; Shannon et al. 1995)
suggest, that much information contained in a speech signal is redundant for the
task of speech recognition. This redundancy allows speech to be identified based on
relatively sparse evidence. Cooke (2006) applied ASR to glimpses of target speech
to identify consonants in various masking conditions that offered differing glimpse
sizes. Outputs of this computational model were compared to listeners’ performance
on the same task (Simpson and Cooke 2005). The results suggest that the amount of
glimpses is a good predictor for speech intelligibility and not the global SNR on its
own (Cooke 2006). Furthermore, the recognition scores confirmed that the glimpses
are sufficient to support consonant identification.

Target speech which is reconstructed from IBMs can substantially improve the
intelligibility in different masking or reverberant conditions as compared to not using
any IBM prior to the reconstruction (Roman et al. 2003; Brungart et al. 2006; Li and
Loizou 2008; Roman and Woodruff 2011). A similar benefit from the application of
an IBM can be observed for the performance of automatic speech recognition (ASR)
(Srinivasan et al. 2006; Narayanan and Wang 2013a).

The construction of the IBM requires access to the cochleagrams of the premixed
signals in order to calculate the local SNR. Since these premixed signals are unknown
in most real-life scenarios, the computational goal of CASA is to estimate the IBM
blindly, that is, based only on observable physical features and without information
that would usually not be available to the listeners (Wang and Brown 2006). The
underlying assumption is that the dominant physical features that are available in
the given time-frequency representation provide enough evidence to determine the
locally dominant source.
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Once a binary mask has been estimated, it can be used for the reconstruction of a
single speaker or speech signal. InASR, themasks have beenmainly used inmissing-
data frameworks (Cooke and Ellis 2001; Raj et al. 2004). Some systems have applied
the binary masks to either marginalize the probability of masked features or to recon-
struct them by making use of prior distributions of speech and the reliable unmasked
features (Raj et al. 2004). It has also been shown that binary-masked signals can be
used based on missing-data methods without marginalization or reconstruction steps
(Hartmann and Fosler-Lussier 2011; Hartmann et al. 2013; Narayanan and Wang
2013b). Improvement of overall ASR performance and intelligibility can further be
gained by replacing the zeros in the binary mask with a low noise floor prior to
resynthesis (Cao et al. 2011).

Despite the observed benefits of IBMs, it is worthwhile to consider alternatives to
this approach. One required property of the IBM is that it is supposed to produce an
output with the highest global SNR gain among all binary masks, namely, the SNR
gain averaged across the entire time-frequency plane. Li andWang (2008) address the
global optimality of IBMs in terms of signal-to-noise ratio. They show that despite
the locally optimal SNR gain, the IBM is not necessarily globally optimal in the same
sense unless the time-frequency decomposition is orthonormal, which is not the case
for many types of commonly used time decompositions with overlapping frames.
Thus, the optimality in terms of global SNR gain is not generally given. Another
weakness is that non-dominant components of the target are neglected.

Phenomena such as the binaural masking-level-difference or the equalization-
cancellation model describe human listening phenomena that rely on non-dominant
physical features which are inevitably lost after the application of a binary mask,
because they appear in time-frequency units in which the target signal is non-
dominant. Furthermore, it seems that listeners make use of glimpses with moder-
ately negative local SNRs. Cooke (2006) and Narayanan and Wang (2013b) found
that the commonly used local SNR criterion of 0dB does not maximize the ASR
performance. Rather, ASR word accuracy as well as human speech intelligibility for
IBM-processed mixtures of speech and noise showed best performance with a local
criterion below 0dB.

Schoenmaker and van de Par (2016) investigated whether negative-SNR target-
speech components contribute to speech intelligibility in human listeners. To this
end, they locally removed such components from test sentences with multiple simul-
taneous talkers. They observed that in comparison to a reference condition in which
the criterion for removing target speech components was set to −∞dB SNR, only
the condition with −4dB SNR showed no significant difference in speech recog-
nition rate. Higher criteria led to a decrease in speech intelligibility, indicating that
essential information for speech recognition is still present in regions with slightly
negative SNR, that is, above −4dB. A conservative IBM estimation relying only on
the dominant features would probably discard these regions.

An alternative is the ideal-ratio mask (IRM) which considers the ratio of target
energy relative to the mixture energy within each time-frequency unit. In an ASR
experiment (Wang and Wang 2016) observed better recognition rates using direct
recognition of IRMs than using direct recognition of binary masks. Yet, according
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to Li and Wang (2008) the SNR gains due to IBMs with benefit due to IRMs and
SNR were similar. Estimation of IRMs requires estimation of the energy ratio of
two signals while the IBM estimation is facilitated by numerous classification and
clustering methods (Li and Wang 2008).

3 Object Formation

The different types of objects in our environment each encompass a characteristic
set of sound features, conveying information about size, material, distance and other
attributes of the object. Knowledge of these characteristic features lays the founda-
tion for tracing the features back to the object. Some features, such as pitch, offset
time, or spatial position, can be directly connected to the physically tractable signal
properties and are referred to as primitive cues. Other features are strongly influ-
enced by preconditions of the listener, for instance, attention, familiarity with certain
sounds, or knowledge of the spoken language. These are referred to as schema-based
cues.

In the following section, both principles will be presented, along with features
that underlie object formation in the human auditory system. Firstly, primitive cues
are dealt with by looking at findings from ASA, the physical background, limits of
feature detection, and implementation methods. Secondly, schema-based cues are
considered, that is, features that are not inferred from the physical stimulus alone
but rely heavily on previous knowledge and attentive mechanisms. Examples of both
feature types are presented along with some concepts on how the two processes
interact.

3.1 Primitive Grouping

Physics of Sound as the Basis of Grouping Cues

Primitive cues can be extracted directly from the acoustic input signals to the two
ears and are assumed to be represented in the periphery of the auditory system. In
data-driven approaches to ASA, these cues are treated as the basis for auditory object
formation. This type of processing is also referred to as bottom-up processing, due
to the direction in which information is passed from the lower-level representations
to higher cognitive processes. This already implies that interpretations of primitive
features are innate and do not rely on prior knowledge.

Primitive cues and acoustic events are linked via the mechanical processes of
sound generation and transmission. Alías et al. (2016) suggest a rough classifica-
tion of sound events into three groups, that is, speech, music and environmental
sounds. Speech is produced in the vocal tract with the help of vocal chords and res-
onant cavities to produce vowels, and with tongue, teeth, and lips to produce noisy
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components, such as consonants. The physical consequences of this process are fun-
damental frequencies within a limited range of frequencies as determined by the
vocal chords, a pattern of harmonics shaped by the resonant cavities and relatively
smooth transitions of these frequencies over time. In a similar manner, the sound
production with musical instruments is bound to an instrument-dependent range of
fundamental frequencies and the spectrum of harmonics produced by its resonator.
Both speech andmusic exhibit a high degree of periodicity in the time domain and are
composed of a limited dictionary of sound units (phonemes and notes). The category
“environmental sounds” comprises the remaining sound events, for instance, noise,
nature-based, machine-generated, and human-activity-based sounds. However, there
are fewer generalizations or common constraints about the sound properties in this
category than for speech and music.

The perceptual effects of physical sound properties have been studied in var-
ious psycho-acoustic experiments. These experiments have explored the correla-
tions between acoustic (physical) events and auditory (perceptual) events, eventually
allowing to draw conclusions about the grouping information that the auditory system
uses. Broadly speaking, the majority of grouping cues relies on or is derived from
either onsets and offsets, temporal modulations or spatial features of the acoustic
events—(compare Cooke and Ellis 2001).

On- and offsets refer to sudden changes of intensity in the time signal. If the
on- or offsets of the acoustic signals in different frequency bands occur at the same
time instants or temporally close instants, they are likely originating from the same
physical object—the sound source. In a similar fashion, the resemblance of temporal
modulations (which includes rhythm and frequency) indicates the same source of
origin. Vliegen et al. (1999) observed that fundamental frequency and spectral shape
influence the stream segregation. Remarkably enough, the effect of differences in
fundamental frequency alone varies as it seems to be stronger whenever segregation
would be advantageous but is weaker than spectral differences in producing obliga-
tory segregationwhenever fusion is advantageous (Grimault et al. 2000). Segregation
based on the estimated fundamental frequency is also referred to as pitch-based seg-
regation and especially used for the segregation of voiced speech. Also slower rates
of temporal modulations that would not be perceived as pitch but rather as a rhythm,
for example in the envelope of the signal, affect stream perception and can, in the
case of large differences in modulation rates of the envelopes, enhance segregation
(see Moore and Gockel 2012, for a review).

Spatial cues include interaural level differences (ILDs), interaural time differences
(ITDs), and monaural spectral cues as are mainly introduced by the pinna. In an
experiment with a sequence of consonant-vowel tokens, David et al. (2017) showed
that listeners use both interaural-difference cues and monaural spectral cues in order
to segregate syllable sequences. However, they found that only when all spatial cues
(ITDs, ILDs, and spectral cues) were present, obligatory stream segregation (i.e.
fission) was produced. Studies on the effect of perceived location on streaming by
manipulating ITDs found that the apparent spatial location of the auditory event
produced by ITD manipulation alone had a relatively weak effect on obligatory
stream segregation (Stainsby et al. 2011; Füllgrabe and Moore 2012). Nevertheless,
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differences in the apparent location produced by ITD differences between target
and masker still support stream segregation under conditions where segregation is
advantageous (Moore and Gockel 2012). A similar indication has been formulated
by Schwartz et al. (2012), namely, that the full complement of spatial cues along
with harmonicity and common on- and offsets, allows listeners the most accurate
segregation of a sound source and identification of its content. Consequently, none
of the above cues seem to be redundant despite a case-by-case dominance of certain
cues.

An important question with respect to the organization of sounds is the following:
Which features are employed for object formation and how are they integrated within
the auditory system in the formation process? The information originating from a
single source is not only distributed across time and frequency but also represented
in different feature types. With regard to neural processes, they are likely to be dis-
tributed across different brain centers aswell (compare Cooke and Ellis 2001). At this
stage, the Gestalt Rules provide some idea on how the disseminated information may
be collected and how the brain may form connections between the single elements
of the sensory input. The Gestalt Rules mainly refer to an automatic or innate orga-
nization associating them strongly with primitive grouping cues. When translating
the visual Gestalt Rules into the auditory domain, only proximity in space and time
are directly transferable. As for the other principles, it is necessary to find auditory
counterparts. For example, in addition to proximity in time and space, the proxim-
ity in frequency becomes more important in the auditory domain. While in visual
terms surface, texture, and color are features suitable for similarity estimations, in
the auditory domain timbre, amplitude and pitch, are useful features. Common fate
which strongly refers to spatial attributes or movements in the visual domain, has to
be interpreted rather in terms of spectrotemporal patterns. Pitch or harmonics, for
example, cause different regions of the spectrogram to be activated at the same time
and rate, or show similar amplitude or frequency modulations.

Application of the principles of similarity or proximity can be seen as grouping of
sound componentswith similar timbres or proximity in time and frequency (Bregman
1990). Since several features vary simultaneously if produced by a single source, it
is also sensible to group simultaneously changing features according to the common
fate principle.

Grouping information appears to be accumulated across time. This is observed
in the build-up of stream segregation or fission with increasing stimulus duration.
A similar effect is shown by Snyder et al. (2009), who present evidence that even
after a stimulus has already stopped, it has a persisting effect on stream segregation,
lasting from tens of seconds to seconds. Although this effect starts to decay after a few
seconds, it can take many seconds of silence to decay completely (Moore and Gockel
2012). Thus, it seems that a central process is integrating grouping information based
on different cue types. Partly, thismay be attributed to the possibility that certain cues,
such as accurate pitch estimation, require a sufficient signal duration or averaging
time before the temporal modulation can be reliably identified or even recognized
(Cooke and Ellis 2001). However, it should also be considered that the auditory
system puts certain constraints to feature perception, for instance, due to limited
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total bandwidth or limited resolution. Higher frequencies remain unresolved as they
fall in the relatively broader auditory filters than lower frequencies. Further, the
envelope of the output signal of the filters becomes perceptually more important
with increasing frequency. Effects of this kind within the auditory system modify
the feature perception in combination with the physics of sound generation and,
consequently, determine the cue types which can be exploited for ASA.

Limits of Feature Detection

The detection of features that are present in a complex signal is a process that is
inherently limited due to uncertainties about the exact properties of the features and
their distortion caused by the presence of interfering sources. The theoretical limit in
the accuracy with which features can be extracted is often difficult to determine. It is,
however, possible to examine the most simple feature extraction that can probably be
considered, that is, detecting a known signal in the presence of awhite noise interferer
and reflect the theoretical limitations in the accuracy of this feature. Feature detection
would in principle only entail a “yes” or “no” decision regarding the presence of the
known signal.

When detecting a known signal within white noise that is sampled at a certain
rate, it can be derived that the most optimal manner to detect the signal is to create
a so-called matched filter. This filter works on the assumption that the signal-to-be-
detected itself is buried in white noise and provides an optimal filter to detect it in
white noise. Yet, even with this detector performing optimally, its performance is
limited by the number of samples that represent the number of independent obser-
vations and by the signal-to-noise ratio. The more samples that are available, that is,
the more degrees of freedom in the noise signal, and the higher the signal-to-noise
ratio, the better the matched filter will perform.

If the bandwidth of the noise is limited, the assumption of independent sampling
is violated due to autocorrelation within the signal. This results in poorer perfor-
mance. Down-sampling and spectral whitening, such that the represented bandwidth
coincides with the noise bandwidth, would again ensure that samples are indepen-
dent. Nevertheless, it has to be concluded that for narrowband noises, optimal signal
detection yields poorer performance than for broadband noise. This notion of a
fundamentally-limited performance, even when the signal-to-be-detected is exactly
known, extends to general feature extraction. Typically, it can be expected that feature
extraction will become noisier, the shorter in time or the narrower in bandwidth the
signals are from which the features are extracted—in other words, the fewer degrees
of freedom there are in the signal.

This fundamental limitation in feature extraction, which requires the extraction
to be based on larger spectrotemporal intervals, provides a fundamental challenge in
devising CASA systems. On the one hand, reliable feature extraction requires larger
spectrotemporal regions to be used for the extraction, while at the same time, possibly
fine decisions need to be made about specific spectrotemporal regions belonging to
a particular source.
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Implementing Primitive Grouping in Algorithms

The formation of auditory objects under unknown conditions requires the exploita-
tion of intrinsic physical cues that allow a bottom-up type of processing. Thereby,
the initial build-up of a new auditory scene relies particularly on primitive cues.
Computational challenges concerning the implementation of primitive grouping lie
in the extraction of suitable cues, an estimate of their reliability, and the formation
of plausible connections between different types of evidence.

There exist a number of computational models that attempt to explain the use
of primitive grouping cues in human hearing. Beauvois and Meddis (1991, 1996)
present an early model to simulate aspects of stream perception for tone sequences
with alternating frequency. By manipulating the repetition time and frequency sep-
aration, they were able to explain grouping through proximity in frequency and
time as well as the temporal build-up of streaming, as had been shown earlier by
Anstis and Saida (1985). A model for vowel segregation by Meddis (1988) applies
auto-correlogram analysis to identify frequency channels which respond to the same
voice. This model was able to automatically recognize vowels with a performance
close to the results of listening tests with humans (Assmann and Summerfield 1994;
Cooke and Ellis 2001). CASA systems are not necessarily geared at being physio-
logically plausible but often apply similar computational methods as physiologically
motivated models.

A common method to retrieve pitch information is the analysis of the autocorre-
lation function. An example for calculating the normalized autocorrelation (NAC)
from a time-frequency representation is given as follows.

NAC(t, f, τ ) =
∑N−1−τ

n=0 [x(t, f, n) · x(t, f, n + τ )]√∑N−1−τ
n=0 x(t, f, n)2

√∑N−1−τ
n=0 x(t, f, n + τ )2

. (2)

where t and f are the time frame and the subband index. τ denotes the time lag in
samples.

Chen and Hohmann (2015) used this NAC calculation for a pitch estimation by
combining it with the calculation of the comb-filter ratio between time-frequency
units. In their algorithm, time lags in a range of 2.4–14.3ms were analyzed, which
correspond to fundamental frequencies between 70 and 420Hz. By subband averag-
ing the most salient pitch within one time frame is obtained. Cross-channel correla-
tion of the normalized autocorrelation response can also be used to estimate the pitch
strength in a frequency channel (Wang andBrown 2006).With L being themaximum
time lag of the correlogram in sampling steps and the normalized autocorrelation of
the filter output, Â( f, t, τ ), the cross-channel correlation can be calculated according
to the following equation.

C( f, t) = 1

L

∑L−1

τ=0
Â( f, t, τ ) · Â( f + 1, t, τ ). (3)
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Under the assumption that neighboring and partly overlapping frequency channels
respond to the same frequency component their correlation should be relatively high
if they are dominated by a periodic signal.

A representative system that makes use of pitch cues for speech segregation in
reverberant signal mixtures is presented by Roman and Wang (2006). Prior to the
pitch-based segregation, a filter is applied to the reverberant mixture which inverts
the impulse response of the target room. As a result of this stage, the periodicity of
the target is enhanced while the signals arriving from other directions are further
smeared. For the pitch-based segregation, a correlogram is computed based on the
time-frequency representation. To generate the correlogram, the autocorrelation is
computed at the output of each frequency channel. In high-frequency channels, the
envelope of the filter response is regarded instead of the fine structure of the time
signal. The extracted periodicities are compared with an estimated target pitch and
grouped if the underlying target is stronger than the interference. Eventually, the
segments likely to originate from the target are grouped in a binary mask. Hu and
Wang (2010) present an algorithm that jointly and iteratively performs the pitch esti-
mation of the target and the segregation of voiced portions. Periodicity is indicated
by peaks in the corresponding autocorrelation function, also considering neighbour-
ing time-frequency units to reduce errors. After an initial estimation of the target
pitch, the estimate is used to segregate target speech using harmonicity and temporal
continuity. A time-frequency unit is labeled “1”, if it exhibits a periodicity similar to
that of the target.

On- and offsets are specifically interesting for segregating components that are not
captured with periodicity analysis. Wang and Hu (2006) and Hu and Wang (2007)
suggest on- and offset analysis for the segregation of unvoiced speech. To detect
sudden intensity changes that correspond to the on- and offsets, the intensity of each
filter output is smoothed at a different degree. The higher the degree, the smoother the
output. This reduces random intensity fluctuations. The first-order derivatives of the
smoothed outputs are then calculated and the peaks or valleys are marked assuming
that these represent on- and offsets. By matching close peaks or valleys, the system
forms on- and offset fronts which are then used to assemble larger segments. By
considering different degrees of smoothing, the issue of under- or over-segmentation
is handled. Under- or over-segmentation is generally caused by a too sensitive or too
coarse on- and offset detection.

An exemplary implementation of binaural cues for scene analysis was suggested
by May et al. (2011). ITDs and ILDs are jointly analyzed to determine the azimuth
position of the source. The ITDs are calculated for each channel, f , and time frame,
t , using the normalized cross-correlation between the ears, C, for time lags in a range
of −1, 1ms.

C f (t, τ ) = ∑N−1
n=0

(
lf

(
t · N

2 − n
) − l̄f

) (
rf

(
t · N

2 − n − τ
) − r̄f

)
√∑N−1

n=0

(
lf

(
t − N

2 − n
) − l̄f

)2√∑N−1
n=0

(
rf

(
t − N

2 − n − τ
) − r̄f

)2 , (4)
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where l̄f and r̄f denote the mean values of the left and right auditory signals that
are estimated over the time frame, t . The time lag for which the cross-correlation
function exhibits a peak corresponds to the estimated ITD (in samples). To obtain
ILDs, the energy in each ear was integrated across a time interval, N , and compared
between left and right ear (expressed in dB).

ILDf(t) = 20 log10

(∑N−1
n=0 rf

(
t · N

2 − n
)2

∑N−1
n=0 lf

(
t · N

2 − n
)2

)
. (5)

The ITDs and ILDs are fed into pre-trainedGaussian-MixtureModels, which convert
the binaural cues to probabilities for different azimuth positions.

One of the intricate aspects in CASA is the combination of different feature
types. Brown and Cooke (1994) suggested an early CASA system which uses a
combination of periodicity, frequency transitions and on- and offsets in auditory
nerve firing patterns for the segregation. The different feature types are represented in
separate auditorymapswhich serve as intermediate representations between acoustic
input and a symbolic description of the input. In these time-frequency maps, the
values of the regarded feature type are represented on an orthogonal axis, such as
in an autocorrelation map, a frequency transition map, and an onset map. Elements
which simultaneously change in a similar way, for instance, common fundamental
frequency or on- and offset times, are grouped—similar to the common-fate principle.
A combination of monaural and binaural cue analysis is presented by Woodruff
and Wang (2010). For the simultaneous organization across frequency and short
continuous time intervals, monaural cues are used. The segments obtained from this
step are then sequentially organized by regarding the averaged binaural localization
cues. In the system presented in Woodruff and Wang (2013) pitch and localization
cues are jointly analyzed and both used for simultaneous organization.

Often, the use of primitive grouping cues is to some degree combined with pre-
viously trained statistical models such as Gaussian-Mixture Models in which ITDs
and ILDs are converted to azimuth positions. The localization model of Josupeit
et al. (2016) extracts instantaneous ITD information, which is then combined with
a type of schema-based organization by using a template-matching procedure based
on periodicity and spectral energy to select target-related ITD information. Mandel
et al. (2010) separate and localize sound sources based on interaural phase and level
differences. The system models each source probabilistically based on their interau-
ral parameters and evaluates each point in a spectrogram to identify regions which
best-fit each of the respective source models.

3.2 Schema-Based Organization

Although very important, primitive cues typically only group signal components on
a very local basis in the time-frequency plane. To link these local structures into
more global auditory objects, knowledge about the behavior of these objects must
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be incorporated into the process of ASA, for example, to identify moving sources,
or sources that change in timbre. In the following, it is discussed how the human
auditory systembuilds its rules for streaming, and howCASA streaming is performed
by applying rules that are encoded explicitly or learned from training data.

Schema-Based Processing in Human Listening

Cues for auditory organization that involve learned rules and attentional mechanisms
are referred to as schema-based features. Complementary to the bottom-up cues
these are also considered top-down cues, since high-level representations induce
information used to form the auditory object. These schemata that supplement the
primitive cues are assumed to be learned patterns of speech, music or environmental
sounds. Such schemata can add robustness to the auditory scene analysis since the
listeners exploit the familiarity with language or other sources to fill masked or
distorted parts of the signal. This enables the listeners to deal with very limited
information. One example for this completion is the phonemic restoration effect.
Listeners that were presented with sentences were unaware that short segments of
the sentences were removed when replaced by a louder noise like a cough. Instead
of detecting the gap, the speech was heard as complete (Warren et al. 1972). In
retrospective, the listeners were not able to specify the exact timing of the cough
or distinguish directly-heard speech sounds from restored ones. The phenomenon
demonstrates how the auditory system actively engages in the interpretation of inputs
and creates a structure or even an illusion based on the signal context—(see Cooke
and Ellis 2001). Linking this observation to the previously described Gestalt Rule
of closure, it may be concluded that both in the visual and the auditory domain, the
human perceptual system has a tendency to complete objects.

It appears that the time span across which schema-based processes operate is
longer than the span over which primitive grouping cues are important and that, while
local spectrotemporal cues influence the object formation on a syllable level, the
schemata are key to auditory stream formation (Bregman 1990; Shinn-Cunningham
et al. 2017). Kidd et al. (2014) studied the influence of syntax on speech identification
inmasked speech and found that the listeners’ performancewas significantly better in
cases of correct target-sentence syntax than with incorrect syntax. This indicates that
the predictability of elements through syntax supports the formation andmaintaining
of streams.

Another powerful strategy to efficiently deal with the sparse information is the
integration of constraints concerning what is known to be a plausible interpretation
of the sparse input. These restrictions of possible interpretations are considered to
be caused by expectations, that is, a bias towards a certain interpretation. The effect
of expectations becomes particularly evident when a source is perceived due to
expectations built up by the signal context, even in cases when physical cues of
the source are not present—(see Cooke and Ellis 2001, for a review). Besides the
previously described phonemic restoration, this can be illustrated by the continuity
illusion. A tone that is briefly masked by a noise burst is typically perceived as
continuing during the noise, despite the absence of physical cues during the masked
period.
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Strong bias toward such expectations seems to be the assumption of speech,
causing the auditory system to presume that signalswith any speech-like character are
indeed speech. Experiments with sine-wave speech (Remez et al. 1981), which lacks
the traditional speech cues, demonstrated that relatively little information, such as
the time-varying properties of speech, is sufficient to perceive the linguistic message
although the listeners judged the quality of the voice as unnatural. Hence, it seems
that the existence or absence of local cues can be invalidated if they are combined
with linguistic or other expectation-related constraints. As Cooke and Ellis (2001)
describe it, the perception exists as a compromise between direct physical evidence
of sources and the absence of contradictory cues.

Another aspect to be considered when regarding top-down mechanisms is volun-
tary attention. While primitive grouping is assumed to operate rather automatically
and pre-attentive, schema-based organization is assumed to partly involve voluntary
attention. Attention can be consciously experienced as the selection of an auditory
object for further analysis or can be involuntary, for example in situations when
attention is unintentionally drawn to a certain event. The extent to which attention
is necessary in order to build-up the tendency to hear stream segregation is not yet
defined (see Moore and Gockel 2012 for a review) but different studies (Thompson
et al. 2011; Carlyon et al. 2001, 2003) indicate that the build-up of stream segregation
is reduced when the attention to a sequence is absent or switched between ears.

Masking as attributed to these higher-level processes is commonly summarized
under the term informational masking complementary to energetic masking, the latter
being related to spectrotemporal overlap (Durlach et al. 2003). Studies on energetic
masking give an insight on the extent by which top-down processing enhances or
inhibits the organization of primitive cues. Arbogast et al. (2002) investigated the
effect of spatial separation on masking of speech for different types of maskers that
ranged from energetic to informational. Their results showed that speaker segregation
benefited most from the spatial separation in the condition with primarily informa-
tional masking as compared to primarily energetic masking. Specifically interesting
for multi-talker situations are also the voice characteristics and the number of talkers.
Brungart et al. (2009) investigated the effects of both factors inmulti-talker situations
and observed the portion of energetic masking by applying ideal time-frequency seg-
regation. Their results show that energetic masking increased systematically with the
number of competing talkers while the target-masker similarity had a small system-
atic impact on energetic masking. Their results suggest that non-energetic masking
due to a confusion of target and masking voices are assumed to play a more signifi-
cant role in this case. With regard to the implementation in CASA and the estimation
of the IBM, which reflects the amount of energetic masking, the IBM will become
smaller if energetic masking increases. As informational masking comes into play,
the identification of the ideal mask is aggravated. This is a challenge for both the
human listeners and machine-listening.



Auditory Gestalt Rules and Their Application 53

Knowledge-Driven Algorithms

In CASA, schema-based processing is generally implemented by specifying object
behavior by a combination of explicitly stated rules—curated by researchers and
developers—and parameters learned from carefully selected and processed training
data. In the case of speech signals, this could be in the form of N-Grams or Hidden
Markov Models (HMM), which are based on the idea that having observed a given
class of signals, for instance, specific speech sounds (phones), it is possible to estimate
the probability of observing the subsequent state of the model. These models can be
scaled to higher structures accounting for linguistic structures, such as the level of
sentences or paragraphs. While on the phoneme level the HMMs are trained using
large corpora of speech signals, for higher-level structure analysis it is not uncommon
to use explicitly-coded linguistic rules.

The framework FADE (simulation framework for auditory discrimination exper-
iments) (Schädler et al. 2016) uses an HMM-based automatic speech recognizer to
predict the outcome of auditory experiments such as speech intelligibility. In this
framework, the HMMs are used to model a number of states for each word of a
sentence test, supplemented by models of start, stop, pre-silence, and post-silence.
Further, a word network (that is, a representation of possible word successions) to
account for the grammatical structure of the test. These elements can be regarded
as an implementation of the knowledge of a trained listener who is familiar with
the limited vocabulary of the test as well as its syntax. Evaluations of FADE using
different feature types as input to the HMM training and recognizer showed that
a single set of general parameters can be found which allows the simulation of a
variety of different experiments. Furthermore, it was observed that while in some of
the tested noise conditions the simulated Speech Reception Thresholds (SRTs) were
dependent on the type of input features, in other conditions the SRTs were not depen-
dent on the difference in the tested feature types. A similar approach was taken by
Spille et al. (2017) who successfully predicted human SRTs using an ASR-system
that implements a deep neural network (DNN) to convert the acoustic input into
phoneme predictions and thereby allowed speech-intelligibility prediction of unseen
speech signals.

In the domain of music-source separation, another form of schema-based pro-
cessing can be found in the form of non-negative matrix factorization (NMF). Here,
the model of sources is represented by codebooks that are learned from training data
(e.g., the spectra of all the sounds an instrument is capable of producing Smaragdis
and Brown 2003). The designer can encode specific rules (e.g., restricting the code-
book to the notes of a western scale with a set range), all of which are then explicitly
learned in training. The schema can then be extended to higher levels using multi-
level NMF (Ozerov et al. 2011), where recurring temporal activations of codebook
elements can be encoded in higher-level dictionaries.



54 S. Sutojo et al.

3.3 Interaction of Bottom-Up and Top-Down Processes

The interplay between primitive and schema-based mechanisms needs to be consid-
ered when investigating the process of object formation in the auditory system. It
seems that while the primitive processes are mainly concerned with partitioning the
sensory input, the schema-based mechanisms select from the input (Bregman 1990).
Shinn-Cunningham et al. (2017) suggest that the two processes of object formation
and selection are what enables humans to deal with the Cocktail-Party Problem, that
is, understanding a specific talker in a auditory scene situation with multiple simul-
taneously active speech sources. Their approach is to not view this as a hierarchical
process in which objects are first formed and thereafter selected for further analysis.
Instead, the course of object formation should be treated as a heterarchical process
during which formation and selection influence each other. From a neuroscientific
perspective, it is not yet possible to determine the neural processing stages at which
object formation occurs, but it is unlikely that there is one specific stage at which
the object first appears. Rather, an object-based representation seems to gradually
develop along the auditory path while attentional selection can occur at every stage.

Research on object formation in the visual domain indicates that in the periphery
of the visual system, the representation is strongly determined by the pattern of the
entering light and less affected by what the perceiver is trying to process. However,
it seems that the influence of attention increases at each progressive processing stage
while the influence of the actual light input decreases. The common cases where
listeners fail to hear a sound component that is well represented in the auditory nerve,
support the role of central limitations on both detection and recognition (Shinn-
Cunningham et al. 2017). Their ability to override bottom-up ASA mechanisms
indicates that the segregation stage cannot merely be seen as the preliminary stage
for recognition, but that there seem to be mutual influences. Investigating the role of
top-down mechanisms in streaming, (Bey and MacAdams 2002) presented listeners
with two unfamiliarmelodies, ofwhich onewas interleavedwith distractor tones. The
listeners’ task was to indicate whether the two melodies were the same or different.
In one condition, the undistracted melody was presented first while in the other
condition the order was switched. They found, provided a sufficient difference of
mean frequency between target melody and distractor, that the performance was
better in the first condition. They interpreted this as an argument that schema-based
mechanisms can only operate after a certain amount of primitive segregation has
already taken place. The interpretationwas questioned byDevergie et al. (2010), who
applied a similar task with interleaved melodies but used highly familiar melodies.
The results showed that the performance was still above chance when the target and
distractor melodies were in the same frequency range and concluded that schema-
based mechanisms can indeed function without preliminary primitive segregation,
provided that the melodies are highly familiar (Devergie et al. 2010). Hence, it
seems that the primitive segregation is of higher importance whenever the input is
unfamiliar.
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The difficulty of putting primitive and schema-driven grouping into a fixed order
becomes obvious in Cocktail-Party situations. On one hand, there is evidence that
listeners are not actually able to divide attention between the different sources. A
certain degree of change deafness is observable depending on which auditory object
they are attending to, displaying a dominance of schema-driven processing. On the
other hand, certain primitive factors, referring to the statistical salience of the auditory
stimuli, such as unexpectedness and uniqueness, show that bottom-up mechanisms
can as well override attentional top-down processes—(compare Shinn-Cunningham
et al. 2017).

4 Conclusion

The intention of CASA algorithms is to reliably extract auditory objects from sound
mixtures, drawing inspiration from principles of human hearing. Current systems are
able to handle different feature types and dealwith noisy or reverberant environments.
However, the human auditory system still exhibits more flexibility and robustness
then current CASA algorithms when it comes to unfamiliar listening conditions with
unknown types or numbers of sources. Some technical implementations of CASA
principles have been presented in this chapter, yet many aspects remain that are fairly
complex and have not yet been realized in algorithms, for example, the modeling
of interactions between top-down and bottom-up mechanisms and the integration of
attentional mechanisms. Also, the estimation of binary masks relies on the extraction
of dominant features, while experiments show that both human listeners and ASR
systems benefit from moderately negative local SNRs.

An issue which is treated more commonly is the integration of different feature
types. Systems that rely on one feature type are prone to instability, not only because
the specific feature type could be masked but also due to the ambiguity of single
cues, which could be solved through integrating further evidence. There are results
from perceptual studies which indicate that listeners make use of certain cues to
compensate for changes in other cues, suggesting that at some level all cues are
mapped to a single perceptual attribute—(compare Cooke and Ellis 2001). In Sutojo
et al. (2017) a framework is presented that targets this issue but remains to be extended
in future work. The main idea is to combine different features to derive a similarity
value for neighboring time-frequency units and thereby obtain a single grouping
attribute. The weights with which each feature influences the similarity value are
obtained through prior training. Based on the estimated similarity value, a grouping
decision between direct neighbors is made. With regard to the auditory Gestalt rules,
this approach mainly exploits the principle of similarity according to which the
elements (which in this case are time-frequency units)with common auditory features
are grouped. Proximity is the basis for considering next-neighbor similarities and
forming glimpses (for instance, local clusters of time-frequency units) under the
assumption that elements which are located closely in time and frequency are likely
to be dominated by the same object. As the auditory system seems to prioritize certain
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cues in the case of inconsistent evidence, a crucial part of the grouping decision is to
also estimate the reliability of each cue and define the cases in which some features
may override others or should be given more weight.

The estimation of direct-neighbour similarities is supposed to facilitate the for-
mation of local segments which can then be joined to form auditory streams. This
tracking stage is yet to be implemented and requires a less local, but rather large-
scale processing, taking more information into account than just that of the next
neighbor. Grouping cues that come into play when taking a larger-scale perspective
on the audio signals are common fate and closure. According to these principles,
components that move at the same rate or into the same direction, whether it be
location-wise, spectral, or in the form of synchronized onsets, can be grouped, and
arrays of fragments that resemble a familiar template can be completed. Desirably,
the implementation of these grouping principles will make it possible to blindly form
clusters of similar elements and eventually assign them to physical sound sources.
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Selective Binaural Attention
and Attention Switching

Janina Fels, Josefa Oberem and Iring Koch

Abstract This chapter examines the cognitive control mechanisms underlying audi-
tory selective attention by considering the influence of variables that increase the
complexity of the auditory scene concerning technical aspects such as dynamic bin-
aural hearing, room acoustics, headmovements, and interfering noise sources as well
as those that influence the efficiency of cognitive processing. Classical research in
auditory selective attention does not represent realistic or close to real-life listening
experiences, of which room acoustics, distracting sources, as well as the dynamic
reproduction of an acoustic scene including head movements, are essential parts.
The chapter starts with an introduction to the subject of maintaining and switching
attention from the standpoint of cognitive psychology. A paradigm suitable for the
study of intentional switching of auditory selective attention is introduced through
dichotic stimulus representation with different single number words (1–9, excluding
5) uttered by speakers of different gender presented simultaneously, one to the partic-
ipant’s left ear and the other to the right ear. The listener is required to categorize, as
quickly as possible, the target number as being either smaller or larger than five, with
a visual cue indicating the listener’s task in each trial. This paradigm is gradually
extended from dichotic reproduction to a complex dynamic acoustic scene to study
the binaural effects in selective attention and attention switching, including different
room acoustic conditions. Various technical possibilities are evaluated to validate
the binaural reproduction of the spatial scene, minimizing errors on account of the
acoustic virtual reality. Additionally, the influence of different binaural reproduction
methods on the selective attention and attention switching model is carefully exam-
ined and compared to a natural listening condition using loudspeakers in an anechoic
setting. The application of the binaural listening paradigm in anechoic conditions
tests a listener’s ability to switch auditory attention in various setups intentionally.
According to the results, intentional switching of the attention focus is associated
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with higher reaction times compared to maintaining the focus of attention on a single
source. Also, particularly concerning the error rates, there is an observable effect of
the stimulus category (i.e., stimuli spoken by target and distractor may evoke the
same answer (congruent) or different answers (incongruent)). The congruency effect
may be construed as an implicit performance measure of the degree to which task-
irrelevant information is filtered out. The binaural paradigm has also been applied
to older (slightly hearing-impaired) participants, with the results of which have been
compared to experiments involving young normal-hearing participants, resulting in
higher error rates and reaction times. Scenarios involving even more complex envi-
ronments, including room acoustics (i.e., reverberation), have shown reaction times
and error rates that rely significantly on reverberation time. Switch costs, in partic-
ular, reaction time differences between switch trials and repetition trials, can highly
depend on the reverberation time.

1 Introduction and the Psychological Background

Many communicative situations involve multiple potentially competing sources of
acoustic information that are simultaneously available for auditory processing. At
a dinner party, for instance, a person can deliberately ignore the ambient noise and
other conversations in the background to be able to listen to a friend’s interesting
story. Someones ability to stay focused on what the friend is narrating will depend
on the capacity for attentional selection of the relevant acoustic information—see
Shinn-Cunningham (2008) for an in-depth review.

In fact, listening to an individual speaker in a busy, boisterous setting is one of the
best real-life examples of selective attention (Pashler 1998), which can be defined
behaviorally as context-sensitive preferential stimulus selection in the presence of
competing stimuli (i.e., voices). The cognitive mechanisms underlying selective lis-
tening entail a “bias” in auditory stimulus perception—either an “attentional set,” or
a “task set” as described in Logan and Gordon (2001)—so that the relevant source
of information can be filtered out while ignoring the irrelevant information.

1.1 How It All Began

Investigating selective auditory attention has had a long tradition in experimental psy-
chology. A classic experimental paradigm for examining auditory selective attention
is based on dichotic1 listening (Broadbent 1958; Cherry 1953), in which different

1In general, “binaural” refers to a presentation relating to two ears. The stimuli can either be
identical (diotic) or different (dichotic)—e.g. see Blauert and Braasch (2008). In this chapter, the
terms “binaural” and “dichotic” are used slightly differently from the standard definition. Here,
“binaural” only refers to the situation where stimuli are presented to both ears and also include
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information is presented simultaneously via headphones. Here, the instructions typi-
cally specify information presented to one ear as being task-relevant. In a pioneering
study, Cherry (1953) presented two separate continuous speechmessages to both ears
of the participants, who were required to listen selectively and repeat immediately
(“shadow”) the speech presented to one ear while ignoring the task-irrelevant speech
presented to the other ear. The speech on the irrelevant side (i.e., ear) always began
with an English utterance spoken by a male voice and ended with an English utter-
ance, while the middle portion of the speech differed across experimental conditions.
Following the shadowing task, participants were asked whether they could recall the
contents of the irrelevant information, or whether they had noticed anything unusual
about it. It was found that, while the subjects could identify the irrelevant informa-
tion as speech, their memory of the content was surprisingly poor. They often failed
to notice any changes in the middle, such as a switch from English to German, or
a switch to a backward-played speech condition. The changes in the gender of the
task-irrelevant speaker, however, had been largely noticed by the participants. Since
then, numerous studies have proved the existance of auditory selection capabilities
in healthy individuals, with task-relevant information processed successfully and
task-irrelevant information suppressed—e.g., see the reviews of Bronkhorst (2015),
Hugdahl (2011), and Pashler (1998).

Regarding the nature of this processing selectivity, a prominent theoretical account
on “early selection” or “filter theory” (Broadbent 1958) postulates that an attentional
filter operates on the perceptual level prior to semantic processing. Thus, while per-
ceptual “surface” features of the to-be-ignored speech, such as the gender of the
speaker, can be encoded in two concurrently available auditory streams, the atten-
tional filter enforces strictly serial processing of semantic information. Other views,
however, consider parallel processing of competing information all the way up to
post-perceptual, semantic processing levels (e.g., Treisman 1969)—for a review, see
Pashler (1998). This question has been extensively examined owing to its theoret-
ical relevance to the cognitive processes underlying attentional selection, and thus,
dichotic listening has become a preferred experimental paradigm.

1.2 Maintaining and Switching Attention

As described earlier, in a dichotic-listening experiment, participants are required
to attend to information presented to one ear while ignoring information presented
to the other ear. The question of how much nominally unattended information is
actually processed is important given the postulation of the early filter theory of
attention (e.g., Broadbent 1958)—for a review, see Holender (1986). According
to this theory, attentional selection occurs prior to any semantic processing of the

spatial information. The term “dichotic” only refers to two different stimuli presented monaurally
to the opposite ears.
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irrelevant information. Thus, any evidence of semantic processing of unattended
information would potentially refute the filter theory.

However, empirical evidence of simultaneous semantic processing of both sound
sources has been repeatedly reported—see Pashler (1998) for a historically oriented
review. One way to reconcile the notion of early selection with the evidence of
seemingly parallel processing of semantic information is to assume that rapid serial
attention switching can occur between sound sources. For instance, when instructed
to respond to the stimulus presented to the left ear, participants may inadvertently
process the stimulus at the irrelevant location by switching attention swiftly back
and forth between the two ears—see Lachter et al. (2004) and Lavie (2005) for
discussions.

Thus, the supposedly semantic processing of truly unattended information may
be due to attention switches. Substantial research effort has been invested to address
this methodological issue in the prevention of involuntary attention switches (Wood
and Cowan 1995a, b). Rivenez et al. (2008) provide a taxonomy of studies on this
topic. However, this view of the “structural inability” of human auditory information
processing to encode semantic information from disparate sound sources in parallel
has neglected the cognitive processes that give human information processing its
substantial flexibility.

The focus on involuntary switches (i.e., “capture”) of auditory attention has
resulted in a paucity of knowledge with respect to the mechanisms that actually
enable the listener to flexibly switch attention from one stream of information to
another, as in typical multi-speaker situations—for reviews, see Bronkhorst (2015)
and Shinn-Cunningham (2008). To examine the processes underlying intentional
switching of attention in selective listening situations, a novel version of the dichotic
listening paradigm has been developed by Koch et al. (2011) based on the cuing ver-
sion of task switching—for reviews, see Monsell (2003), Koch et al. (2018), Kiesel
et al. (2010), and Vandierendonck et al. (2010).

Unlikemany earlier studies of auditory selective attention,whichmeasured speech
perception and comprehension directly in terms of the accuracy of the report, the
model described here assesses auditory attention by requiring participants to cat-
egorize a target as quickly as possible while ignoring a simultaneously presented
distractor stimulus. This implicit speeded “online” reaction-time task helps measure
performance both in terms of reaction time and accuracy. This basic experimental
paradigm and recent behavioral findings are described in the next section, followed
by a discussion of the technical development of this paradigm to extend it to binaural
listening situations which may be auralized in virtual settings and validated using
performance measures developed in the basic dichotic setup of this study.
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2 The Dichotic Paradigm to Study Intentional Switching of
Auditory Attention

The basic paradigm employs the so-called task-cuing method. The specific task and
its associated cognitive processing operations can vary from trial to trial, with the
required task being indicated prior to each trial by an instruction cue as described by
Meiran (1996). Jost et al. (2013) provide a review of cue processing in task switching.
In our cued auditory attention-switching paradigm (Koch et al. 2011), two different
number words are presented simultaneously, one to the participants’ left ear and the
other to the right ear (i.e., dichotic listening), with the target number requiring to be
identified as quickly as possible as being either smaller or larger than five, using a
left and right response key, respectively. The cue indicates the listener’s task in each
trial (see Fig. 1). It must be noted, however, that the term “task” is not easy to define
given that tasks can be defined at different levels. Here, the attentional selection
criterion (i.e., left or right ear) is designated as a task, and therefore a switch to the
relevant ear would correspond to what is termed a “task switch” in the literature
on task switching—for reviews, see Kiesel et al. (2010) and Koch et al. (2018).
In the authors’ cuing paradigm, the ear, where the relevant speaker is presented, is
indicated prior to each trial by an explicit visual task cue. Thus, it may be described
as a task-switching paradigm, which helps isolate one particular task processing
component, namely the biasing of attention for (auditory) target selection—see, e.g.,
Logan (2005), and Logan and Gordon (2001). It has allowed examining essential
aspects of auditory attention in selective listening to a single voice in the presence of

Next Cue
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Fig. 1 Trial procedure in a dichotic setup with a visual cue indicating the target direction, a Cue-
Stimulus Interval (CSI) of 500 ms, the synchronous presentation of the stimuli, reaction time
between onset of stimulus and the response of the participant, and the Response-Cue Interval (RCI)
of 500 ms
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multiple speakers, as in the “cocktail party” situation (Bronkhorst 2015; Koch et al.
2011), while at the same time affording close experimental control.

While previous studies have indicated selective listening benefits of cuing with
respect to the spatial target position in complex multi-talker situations (Brungart
and Simpson 2004; Kidd et al. 2005a; Kitterick et al. 2010), there are significant
methodological differences between those studies and the cued auditory attention-
switching paradigm used here as described by Koch et al. (2011), and Lawo and
Koch (2014a). Most notably, previous studies used measures of perceptual accuracy
instead of reaction time measures, and, also, did not explicitly focus on the issue of
flexibly switching attentional settings.

2.1 Switch Costs, Congruency Effect, and Temporal
Dynamics

It was examined whether instructed, intended changes in the auditory selection (or
“filter”) criterion would incur performance costs using the cued auditory attention-
switching paradigm. The performance was found to be significantly worse in a task
switch thanduring a repetition, inwhich the target-defining feature remained the same
(Koch et al. 2011). This switch cost points to cognitive interference in information
processingwhen the selection criterion needs to be intentionally adjusted (see Fig. 2).

The current paradigm also helps examine whether the irrelevant auditory informa-
tion is nevertheless encoded, creating interference in the processing of task-relevant
information. This interference ismeasured as impaired performancewhen the numer-

Fig. 2 Reaction time (in ms) as a function of attention switch and congruency. Error bars indicate
standard errors. The main effect of attention switch is significant and amounts to switch costs of
126 ms. The main effect of congruency and the interaction was not significant. In error rates (not
shown in the graph), the congruency effect turned out to be highly significant. In further studies, the
congruency effect was also significant in reaction times. Note that in this experiment, the selection
cue was the speaker’s gender and not the ear of presentation. For more detailed information, see
Koch et al. (2011)
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ical category of the relevant auditory information (>5 or<5) is different (i.e., “incon-
gruent”; e.g., presenting acoustically the number “three” to the left ear and the number
“six” to the right ear) compared to when the categorization is the same (“congruent”;
e.g., playing the number “three” to the left ear and the number “four” to the right
ear) for both auditory inputs. This congruence effect (e.g., Kiesel et al. 2010) may
be construed as an “implicit” performance measure of attending to task-irrelevant
information (i.e., disobeying task instructions), and the switch costs as an explicit
measure of how well instructions were followed to switch attention. In fact, in pre-
vious studies, it was found the performance to be worse when the non-target number
was incongruent with the target number, thus requiring a different behavioral key-
press response relative to congruent numbers. This congruence effect represents the
influence of the processing of irrelevant information, whereas the attentional switch
costs supposedly index the cognitive control processes involving the reconfiguring
(“biasing”) of attention to process relevant information based on a new selection
criterion—see Koch et al. (2010), Koch and Lawo (2014), and Lawo et al. (2014).

In another study, Lawo et al. (2014) examined the role of the stimulus dimension
on which selection is required. Their participants selected the target either based
on the speaker’s gender (as in Koch et al. 2011) or by the ear of presentation. The
distinction between gender-based and ear-based auditory target selection could be
related to the difference between processing along the frequency dimension and
the spatial dimension. Selection by spatial location plays a primary role in visual
attention, but the neurophysiology of audition, which is characterized by tonotopic
coding (instead of retinotopic coding in visual processing), suggests that frequency
coding is likely more preponderant than spatial processing (e.g., see Woods et al.
2001; Shinn-Cunningham 2008). Hence, it is important to examine whether spatial
selection (by ear) would be beneficial relative to selection according to the speaker’s
gender. In fact, Lawo and Koch (2014a) found that switch costs were even greater for
ear-based selection than for gender-based selection. Notably, however, on repetition
trials, the performance was actually better with ear-based selection (particularly with
long cuing intervals, whereas there was no such benefit in switch trials, see below).
This observation suggests that ear-based selection can be highly efficient, although
situations requiring flexible attention shifting diminish this relative efficiency.

In addition to these basic findings with respect to the switch costs, the role of the
type of selection criterion (speaker’s gender vs. speaker’s location), and the process-
ing of irrelevant information (i.e., the congruency effect), we have also examined the
temporal dynamics of the cognitive control processes in such intentional auditory
attention switches. The use of a specific, explicit instruction cue made it possible
to examine the influence of the attentional processing time course. There are two
relevant temporal intervals in this paradigm.

First, there is the interval between the response in the last trial and the presentation
of the next task cue—the so-called Response Cue Interval, RCI. Because the identity
of the upcoming cue is not predictable, participants could not know whether the next
speaker to attend to would be male or female (or left or right ear, respectively). The
general observation, with respect to the switch costs in this situation, suggests that
participants stay “tuned” to the previously relevant speaker (or the speaker category,
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because different female and male voices are used). Thereby, they incur a perfor-
mance cost when this processing bias needs to be re-adjusted (i.e., a new selection
criterion to be implemented in the cognitive processing of the two competing auditory
signals). The RCI represents the period during which this bias gradually “dissipates”.
However, RCI variations do not affect performance, at least within relatively small
time frames (up to a 1,000 ms), suggesting that auditory attention settings persist to
a certain extent, facilitating the processing of auditory information that falls into the
previously relevant category (Koch and Lawo 2014). However, whether this facili-
tation would persist over somewhat longer time ranges of several seconds remains
to be tested.

Second, the interval between the cue and the subsequent auditory target stimulus
(Cue-Stimulus Interval, CSI) can be used to prepare for a switch in the selection
criterion.According to the authors’ observation in several studies,CSI variations have
little influence on performance costs due to attention switching (Koch et al. 2011;
Lawo and Koch 2015; Lawo et al. 2014), indicating the difficulty of preparing for a
new auditory target selection criterion prior to the onset of the auditory signal itself.
More recently, however, it was found that such a preparation can bemore successful if
the attention switch is not indicated by a cue in an otherwise unpredictable sequence
of attention switches but, instead, by a pre-instructed, memorized sequence. This
suggests that, instead of “exogenous” cues, endogenous prediction of the relevant
criterion for selecting the next auditory target may be more pertinent for auditory
attentional preparation (Seibold et al. 2018).

Taken together, the results of these studies using the task-switching version of
dichotic listening show several essential features of auditory attention in multi-talker
situations. First, although participants can easily follow the instruction to switch
auditory attention to a new target, this switching results in performance costs in
terms of increased reaction times and reduced response accuracy. Second, while the
participants mostly succeed in responding to a new auditory target and thus listen
selectively to the relevant information, they cannot avoid processing the irrelevant
information to the extent that the irrelevant distractor stimulus does not influence
their response (i.e., the congruency effects). Third, selecting the auditory target in
situations that require spatial target selection (i.e., left vs. right ear) does not decrease
the performance costs relative to attention switches based on the gender of the relevant
speaker. This occurs despite the greater benefit of attending to the same location
repeatedly compared to repeatedly attending to the same speaker gender (so that
the switch costs are even higher with spatial selection). Fourth, auditory attention
represents a temporally stable cognitive setting that does not either passively dissipate
quickly (within a second or so) or easily changes in preparation for an auditory target
switch, indicating some degree of “auditory attentional inertia”.
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Dichotic Binaural 

Fig. 3 Sketch of dichotic and binaural reproductions. In a dichotic reproduction, the represented
stimuli are not perceived spatially, but are located in or close to the head on the right and left sides.
In a binaural reproduction using head-related transfer functions (HRTFs), the presented stimuli are
mostly externalized and located in space. Grayed loudspeaker symbols represent possible locations
in space

2.2 Constraint of Dichotic Listening

In addition to being technically easy to handle, the described auditory attention-
switching version of the dichotic listening paradigm uses experimentally well-
controlled stimuli and is capable of exact performance measurement (with a high
resolution at the level of reaction time in milliseconds as well as error rates). How-
ever, despite these attractive methodological features, which help to isolate the influ-
ence of experimental variables, it is clear that dichotic listening represents a rather
unnatural situation, whereas ordinary selective listening situations (e.g., a conversa-
tion in a restaurant) also include a number of additional cues that are associated with
binaural hearing—see Fig. 3.

3 Exploring Auditory Selective Attention and Attention
Switching Through Binaural Reproduction

3.1 The Binaural Paradigm

Based on observations for the use of dichotic stimulus presentations, the authors have
recently developed a binaural paradigm to study attention switching in selective
listening situations (Oberem et al. 2017, 2014, 2018). In this context, the term
binaural refers not only to the situation in which sound reaches both ears but also to
spatial information.

The basic binaural paradigm consists of two simultaneously presented stimuli,
which are delivered by two speakers of the opposite gender. The speakers are located
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Median-Plane Frontal-Plane Diagonal-Plane 

Fig. 4 The paradigmoffers eight possible locations on the horizontal plane for target and distracting
speakers. To analyze the influence of these positions, they are arranged in three groups. The positions
in front and back are on the median plane, the ones to the left and right are on the frontal plane, and
the remaining four are on a diagonal plane

at two different positions, out of eight possible locations around the listener. These
positions are evenly distributed on the horizontal plane (see Fig. 4).

In each trial, the number word spoken by one speaker is the target, while the
other one represents the distractor. The participant is asked to focus on the target
speaker and ignore the distracting speaker. The target speaker’s location is indicated
in advance through a visual cue shown on a monitor to distinguish between target
and distractor. The visual cue consists of a sketch of all directions indicating the
target direction with a filled dot. The listener’s task is to categorize the stimulus of
the target speaker (i.e., the spoken number word) into less than vs. greater than five.
The two stimulus categories are mapped to two response buttons, held in hand, to be
pressed by the left or the right thumb.

Each trial starts with a visual cue presented on the monitor in front of the par-
ticipant. After a cue-stimulus interval of 500ms, the two acoustic stimuli (target
and distractor) are presented simultaneously, with the visual cue remaining on the
screen until the participant’s response to the acoustic target. The interval between the
response and the next cue is also set to 500ms. In case of an error, visual feedback
(“Fehler”, German for “error”) is displayed for 500ms, delaying the onset of the next
cue (see Fig. 5).

The stimuli, the number of distractors, the task, and the equipment are adjusted
according to the focus and requirements of the study (Oberem et al. 2017, 2014,
2018).

3.2 Authenticity and Plausibility in Binaural Reproduction

To simulate a real-life condition, the (binaural) reproduction of the spatial scene needs
to be adequately plausible, if not authentic. Blauert (1997) defines the perceptual
identity in a comparison between a real scene and a virtual scene as “authentic”.
A “plausible” reproduction, on the other hand, refers to a scenario in which the
perceptual identity is not essential, which, according to Lindau andWeinzierl (2012)
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Next Cue

Response 

Visual Cue
CSI = 500 ms

RT = ?

RCI = 500 ms

Stimulus 

8 2

Keypress:
<5 ? >5

Fig. 5 Procedure of a trial in a binaural setup with a visual cue indicating the target direction, a
Cue-Stimulus Interval (CSI) of 500 ms, the synchronous presentation of the stimuli, reaction time
between onset of stimulus and the response of the participant, and the Response-Cue Interval (RCI)
of 500 ms

can be understood by “a simulation in agreement with the listener’s expectation
towards a corresponding real event”.

Thus, it is crucially important to examine how spatial reproduction affects the
results in experiments involving auditory selective attention to determine whether
different conclusions may be reached with different spatial reproduction methods or
not. In this context, it may be pertinent to ask what qualitative difference, in terms of
results, is likely between “real-life” situations simulated with high accuracy (includ-
ing individual head-related transfer functions, etc.) and merely plausible rendering
methods.

Measurement paradigms for auditory selective attention may also serve as indices
of binaural reproduction quality, especially concerning the quality of acoustic virtual
reality situations such as a cocktail party.

In Oberem et al. (2016), different methods of reproducing binaural stimuli were
examined in terms of their authenticity and plausibility. Two different microphone
setups were tested. The miniature microphones were either placed in a small silicon
fixture to create an open dome or they were inserted in earplugs to block the ear
canals. These setups were then compared in a real-source scenario using individual
head-related transfer function (HRTF) and headphone transfer function (HpTF)mea-
surements. They were tested in an anechoic chamber using loudspeakers with the
quality of the binaural reproduction via headphones (compare Fig. 6). Using a robust
equalization paradigm, as in Masiero and Fels (2011) where headphones were repo-
sitioned by the participants after each of the eight HpTF measurements, equalization
curves were calculated using the mean of the HpTF measurements.

Two listening experiments involving 80 participants were conducted with a focus
on authenticity and plausibility (Oberem et al. 2016). In an indirect comparison
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Fig. 6 Real and virtual HRTF measured with a blocked meatus (upper graph) and an open meatus
(lower graph). The measurements of “real” HRTFs conformed to the usual approach of HRTF mea-
surements. The binaurally synthesized stimulus was presented via headphones and recorded with
the microphone positioned at the entrance of the ear canal to measure “virtual” HRTFs. The record-
ings were divided by the original excitation signal to obtain a transfer function. For perfect binaural
reproductions, the recorded signals were supposed to be identical. For more detailed information,
see Oberem et al. (2016)

(plausibility), participants were not able to identify the reproduction system (real
loudspeakers vs. binaural synthesis), although the stimulus was pulsed pink noise. In
a direct comparison concerning authenticity, the performance was found to be highly
dependent on the stimulus (speech, music, and pulsed pink noise). The coloration
could often distinguish pink noise in higher frequencies and relatively small differ-
ences in location. In this study, no significant difference was observed between the
HRTF/HpTF measurements with open dome and ear plug.

As the results of this investigation demonstrated, individual binaural reproduction
with state-of-the-art methods in HRTF andHpTFmeasurements are largely plausible
and, therefore, can be used in psycho-acoustic experiments or experiments seeking
to assess psychological effects like auditory attention in which HRTF and HpTF
measurements and the listening test are conducted separately.

The findings of this study are in line with those by Hartmann and Wittenberg
(1996), who reported that their participantswere not able to differentiate between real
sources and the binaural reproduction when a synthesized vowel was used as a stim-
ulus. Furthermore, Zahorik et al. (1996) described that listeners were unable to dis-
criminate between reproduction sources and noise bursts. Langendijk andBronkhorst
(2000) has also conducted studies in plausibility, Moore et al. (2010), and Schärer
and Lindau (2009).
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3.3 Validating Binaural Quality with Well-Established
Distance and Localization Tasks

It is possible to create and study complex acoustic scenarios using binaural reproduc-
tions, including the physically correct ear-canal input signals. The use of acoustic
virtual reality can easily manipulate the location of sources in the room, the dis-
tance to the listener, and the influence of room acoustics and maskers. Distance and
localization tasks can help validate the quality of a binaural reproduction.

Studies regarding the distance between sources as well as the distance between
sources and the listener have been conducted by Best et al. (2005, 2007, 2010),
Kidd et al. (2005b), Allen et al. (2009), and Mondor et al. (1998). In most of these
studies, non-individual head-related transfer functions (HRTFs) obtained with the
help of artificial heads were used to create the stimuli using binaural synthesis. It is
often overlooked, however, whether the results of an experiment using real sources
are significantly different from those of one that employs virtual sources.

Localization performance comparisons between real sources and individual bin-
aural syntheses presented with headphones were analyzed and rated as similar by
Bronkhorst (1995). While Wightman and Kistler (1989) found similar results, they
also reported challenges for the individual binaural synthesis in elevated positions,
which became apparent through an increased angle error. Several authors, namely
Searle et al. (1975), Butler and Belendiuk (1977), Wenzel et al. (1993), and Møller
et al. (1996), all of whom found that individual recordings had yielded better results
compared to non-individual recordings. Detailed results also revealed that, in local-
ization tasks, non-individual binaural stimuli caused difficulties for sources located
in the median plane, on cones of confusion, as well as elevated directions.

In real-life scenes, participants are usually required to process much more com-
plex information than in simple localization tasks. Hence, the aim was to find a new
measure to define the required accuracy of binaural syntheses in an everyday task that
would include localization, but the focus would be on a non-localizing component.
The application of the paradigm on intentional switching in auditory selective atten-
tion (Koch et al. 2011) describes a search and categorization task. To successfully
comply with the task, the participant needs to localize the target’s speakers position
correctly.Whether the task is performed correctly by the participant becomes observ-
able in error rates. Reaction times give further information about the complexity of
the task and therefore, indirectly about the localization performance.

3.4 The Role of Binaural Reproduction Methods in a
Paradigm for Investigating Intentional Switching in
Auditory Selective Attention

As described in Sect. 3.1, and in greater detail in Oberem et al. (2014), the previ-
ous paradigm is extended to a more natural and realistic setup by changing it to a
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Fig. 7 Sketch of four different binaural reproduction methods to obtain a spatial scene. Several
real sources (e.g., using loudspeakers in an anechoic chamber) can represent a spatial scene. A
spatial scene can also be reproduced via headphones. Therefore, individual HRTFs or HRTFs from
a binaural manikin need to bemeasured and convoluted with the stimulus to get a spatial impression.
Using CTC filters, a binaural scene can be reproduced with at least two loudspeakers. For more
detailed information, see Oberem et al. (2014)

binaural listening paradigm. The same experiment was repeated with four different
reproduction methods to obtain a spatial scene: real sources (i.e., loudspeakers) in an
anechoic environment, individual binaural synthesis reproduced with headphones,
non-individual binaural synthesis reproduced with headphones, and non-individual
binaural synthesis reproduced with two loudspeakers using Crosstalk Cancellation
Filters (CTC) as shown in Fig. 7.

Not only localization ability suffers from non-individual binaural reproduction,
but also reaction times and error rates in tasks of auditory selective attention. The
absolute values of reaction times and error rates obtained in this study of auditory
selective attention increase, significantly to an extent, with the individuality of the
reproduction method. Thus, the shortest reaction times and lowest error rates were
found for the real-source condition and the longest reaction times and highest error
rates for the CTC condition (Fig. 8).

As expected, the reaction times and error rates were found to be higher concern-
ing conditions using non-individual binaural synthesis. As studies by Searle et al.
(1975), Butler and Belendiuk (1977), andMøller et al. (1996) show, localization also
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Fig. 8 Reaction time (in ms) as a function of reproduction method, target’s spatial position, and
attention switch. Error bars indicate standard errors. The main effect of reproduction is significant,
yielding significant differences between the individual methods (Real Source, crosses connected by
blue lines, and individual HRTFs, dots connected by red line) and the non-individual methods using
HRTFs measured with a binaural manikin (squares connected by yellow lines) and CTC (diamonds
connected by green lines). The main effect of the target’s position is shown on the x-axis, describing
the target’s speaker position in space on the median, diagonal, or frontal planes (Fig. 4). Post-hoc
test shows significant differences between all three positions. The main effect of attention switch
can be seen in solid and dotted lines. Independent of the reproduction method, participants react
significantly faster when the target’s position is repeated and not switched. This graphic does not
show all observed effects (e.g., congruency), for more information, see Oberem et al. (2014)

suffers from non-individual binaural stimuli compared to stimulus material based on
individual HRTFs. Interestingly, the loss of individual information does not only
hinder correct mapping of the source position in space, but it also impedes, as the
error rates and reaction times prove, cognitive processing and attention tasks. The
differences between non-individual binaural syntheses reproduced with headphones
and those rendered via CTC occur due to higher degrees of freedom afforded by the
latter. In CTC evaluations concerning localization (Gardner 1997; Takeuchi et al.
2001; Lentz et al. 2005; Bai and Lee 2006) limited sweet spots raised a challenge
and affected performance negatively. The reproduction method with CTC resulted
in the longest reaction times and the highest error rates in this study.

While the reaction times in the reproductionmethodwith real loudspeakers did not
differ significantly from those in the method with individual HRTFs, an unexpected
but significant difference was found in the error rates. The difference between the
reproduction conditions with real loudspeakers and individual HRTFs was the static
presentation of the binaural synthesis. In both reproduction methods, participants
were allowed to perform small head movements (Freedman and Fisher 1968; Iwaya
et al. 2003; Jongkees and D. Veer 1958; Perrett and Noble 1997a, b; Thurlow et al.
1967; Wallach 1940; Young 1931; Toshima and Aoki 2006) within the area defined
by the tracker. While the participants listening to the real sources benefited from
the changes in interaural level difference (ILD) and interaural time difference (ITD)
due to the small head movements, those listening to the static binaural synthesis
missed this additional localization information. This lack of advantage concerning
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the additional localization information might have been partly responsible for the
latter group’s increased error rates. For greater detail see Oberem et al. (2014).

3.5 Switch Costs and Congruency Effect in Binaural
Experiment

Performance costs induced by attentional switches were observed in dichotic listen-
ing experiments by Lawo and Koch (2014a). Participants were also found to respond
more slowly when the target’s direction was switched in binaural listening, with
the switching cost providing an explicit measure of how well instructions to switch
attention could be followed. In general, the switch costs were found to be greater
in dichotic listening experiments compared to the binaural investigation (∼100 ms
vs. 55 ms)—see Fig. 8. A switch between only two possible directions (i.e., dichotic
listening) was expected to be easier to detect than a switch to one of eight possible
directions equally distributed on the horizontal plane. The angular distance between
the target’s positions could have been a reason for different switch complexities.
Besides the angular distance of the target’s positions, the visual cue (in ear-based
dichotic experiments, the visual cue was a letter (L/R) and therefore differed from
the cue design of this investigation) might have had an effect on the switch costs—for
more detail, see Oberem et al. (2014).

The effects of stimulus congruency showed the same patterns in binaural and
dichotic listening tasks (Koch et al. 2011; Lawo and Koch 2014a) and could be
construed as implicit performance measures of attending to task-relevant informa-
tion and filtering out the irrelevant information (Koch et al. 2011). In the binaural
paradigm, the congruency effect was found to be most distinct when real sources
were used. Thus, the distracting information was less effectively ignored when the
reproduction method was based on binaural synthesis relative to the real sources.
The loss of the additional localization information due to a static reproduction could
have been a reason for this effect.

A more complex binaural listening paradigm allows the analysis of additional
effects such as the spatial combination of target and distractor’s location. Target’s
and distractor’s positions may be wide apart, directly neighbored or within one cone
of confusion. Longer reaction times and higher error rates were found in the latter
conditions (cf., Oberem et al. 2014), and these effects have also been observed in
localization experiments. Using real sources, individual and non-individual repro-
ductions via headphones, Møller et al. (1996) found errors to accumulate within the
cone of confusion, especially the median plane. In the non-individual reproduction
cases, in particular, the percentage of errors in the median plane conditions was seen
to increase. The effect of spatial separation of sources in experiments focusing on
selective attention was studied by Best et al. (2006), who found that auditory selec-
tive attention was worse when sources were not (or only slightly) spatially separated.
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These observations, however, were based only on error rates as the paradigm by Best
et al. (2006) did not allow the measurement of reaction times.

According to this investigation, the extension of a dichotic paradigm to a binaural
one affords greater opportunities to analyze intentional switching in auditory atten-
tion. The comparison of reproduction methods showed that the differences between
absolute values of reaction time and error rates should not be neglected. In exper-
iments where the effects and interactions of different variables were compared, all
reproduction methods were found to yield almost identical results.

4 Exploring Age-Related Effects on Intentional Switching
of Auditory Selective Attention in a Spatial Setup

Using the binaural listening paradigm described in Sect. 3.1, age-related differences
in the ability to intentionally switch auditory selective attention between two speakers
defined by their spatial location were examined. The results of 20 young normal-
hearing (�24.8 years) and 20 older normal-hearing to slightly hearing-impaired
(�67.8 years) participants were compared. The spatial reproduction of stimuli was
achieved by headphones using non-individual head-related transfer functions of an
artificial head (Oberem et al. 2017).

Acomparisonbetween the twogroups of participants revealedgroupdifferences in
terms of absolute values of reaction times and error rates (Fig. 9). These (expected)
results were in line with the previous dichotic investigation of age-related effects
in intentionally switching auditory selective attention (Lawo and Koch 2014b).
Increased reaction times and error rates with respect to older participants have also
been found in other dichotic and binaural investigations involving attention (Abel
et al. 2000; Dobreva et al. 2011; Duquesnoy 1983; Getzmann et al. 2015; Helfer
et al. 2013; Humes et al. 2006; Kramer et al. 1999; Kray et al. 2008; Li et al. 2004;
Marrone et al. 2008; Singh et al. 2013; Tun et al. 2002).

A significant effect was seen for the endogenerous2 attention switch, indicat-
ing that participants responded faster when the target’s direction was repeated, was
observed in both age groups in the present study as well as in previous investi-
gations using dichotic and binaural listening (Koch et al. 2011; Lawo et al. 2014;
Oberem et al. 2014). Switch costs, which provided an explicit measure of how well
instructions to switch attention could be followed, did not differ significantly from
those of the previous binaural investigation (Oberem et al. 2014). The inhibition of
competing perceptual filter settings may be important for success in the attention
switching task. That there is an age-related decline in the ability to inhibit irrelevant
information has been predicted in several theories (Braver and Barch 2002; Hasher

2In contrast to exogenous cues, which are often used in detection tasks and lead to automatic (i.e.,
bottom up) target selection, we used endogenous cues (e.g., visual symbolic cue at screen center)
that need attention to “actively” select (i.e., top down) the target stimulus before the categorization
task could be performed.
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Fig. 9 Reaction time (in ms) as a function of age, target’s spatial position, and attention switch.
Error bars indicate standard errors. The main effect of age in reaction times between young (crosses
connected by blue lines) and old (dots connected by red lines) participants amounts to 580 ms. The
main effect of the target’s position is shown on the x-axis, describing the target’s speaker position
in space on the median, diagonal or frontal plane (Fig. 4). The post-hoc test shows significant
differences between all three positions. The main effect of attention switch can be seen in solid and
dotted lines. Older and younger participants react significantly faster when the target’s position is
repeated and not switched. For more information, see Oberem et al. (2017)

et al. 2001). In this investigation, however, the auditory switch costs in older partici-
pants proved to be similar to those in younger participants, indicating no age-related
differences in attention switching (Fig. 9). This observation corroborates the find-
ings of previous research using a simpler dichotic listening set-up (Lawo and Koch
2014b). Assuming that inhibitory processes contribute to auditory switch costs, the
results of this investigation deviated from the inhibitory deficit theory. In simple tasks
involving exogenous attention switches, Singh et al. (2013) also did not observe any
age-related deficits concerning word identification scores. However, significant age-
related attentional deficits have been detected in more complicated tasks involving
multiple attention switches. In terms of error rates, these findings agree with those
of the present study. While the observation of non-significant age-related differences
in switch costs in terms of reaction times (in addition to error rates) represents a
null effect, it nevertheless provides additional evidence that the performance of older
participants is similar to their younger counterparts in intentional attention switching
tasks, despite the general age-related slowing of responses.

The ability of younger and older participants to focus their attention on one speaker
and simultaneously ignore the distracting speaker was analyzed by examining the
congruency of number words. The most significant difference between the dichotic
investigation (Lawo and Koch 2014b) and the present binaural investigation was
found in the interaction of congruency and the age-related effect. The present inves-
tigation showed a significant variation in reaction times, indicating that older adults
performed comparatively worse when the stimuli were incongruent, which was not
seen in the dichotic investigation. The difference between congruent and incongruent
trials in reaction time was three times greater for older participants than for young
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adults. Itmay, therefore, be assumed that, in binaural listening situations, older people
have more difficulty ignoring a second speaker compared to their younger counter-
parts. Thus, the current results appear to be in line with the hypothesis that older
adults suffer from a deficit in inhibitory processes (Braver and Barch 2002; Hasher
et al. 2001). Considering that there was no age-related effect in attention switch costs,
it may be assumed that the ability to ignore concurrent speech is more dependent on
inhibition than on switching of attention.

4.1 Age-Related Decline in Inhibition of Irrelevant
Information and “General Slowing”

In a study of age-related inhibition of irrelevant speech by Li et al. (2004), the ability
of young and older participants to inhibit a masker’s speech was tested in a binau-
ral setting with two source positions and a shadowing task involving meaningless
sentences. As the older adults were not found to have more difficulty inhibiting the
irrelevant information masker in this examination, the results of Li and colleagues
opposed the inhibitory deficit theory. It must be noted, however, that the differences
in results may be due to the disparate complexities of the binaural conditions. For
instance, the setup used by Li and colleagues was simpler compared to the one
employed in this study, which involved eight sources around the listener. The differ-
ence in source setups may also help explain the disparity between the results of these
two studies. In the present study, the congruency effect interacted with the effect of
the target’s spatial position, indicating that the congruency effect was highest for the
target positioned on the median plane and smallest for the one positioned to the right
or the left of the participant. The interaction with age showed significantly higher
reaction time differences between source positions for older compared to younger
participants. The fact that the older participants were significantly more distracted by
the opposing speaker in target positions on the median plane compared to positions
on the diagonal plane or to the sides could not be explained adequately. It may be
assumed, however, that the applicability of the inhibitory deficit theory is confined
to dichotic or elementary spatial listening test conditions, which, for the most part,
have been used to support this theory (Braver and Barch 2002; Hasher et al. 2001;
Lawo and Koch 2014b). For instance, the congruency effect was found to be least
pronounced on the frontal plane (left and right), a situation most comparable to an
elementary spatial setup.

In the study by Oberem et al. (2014), young participants showed significantly
worse performance when performing the task of ignoring the distractors’ speech,
as was evident in the congruency effect when binaural stimuli were non-individual.
Therefore, it may be assumed that older people have greater difficulty attending to
a target speaker while ignoring the opposing speaker with non-individual binaural
stimuli. It is conceivable that older adults suffer more from the loss of individual
binaural information, which happens to be particularly crucial for sources located on
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the median plane or for competing sources in one cone of confusion (Blauert 1997).
The congruency effects seen between the target positions on the median plane and
other positions around the listener reinforce this hypothesis. The non-individual
HRTFs were measured with an artificial head modeled on the image of a young
person (Minnaar et al. 2001), and, therefore, the data might have a better match for
young participants as size and shape were age-related (Otte et al. 2013). Further
studies would be needed to clarify this issue.

The median plane proved to be most difficult for both young and old partici-
pants, with the effect even more pronounced for the latter group. In their localization
experiment with participants belonging to different age groups, Abel et al. (2000)
also observed greater difficulties with respect to sources positioned in front and back
compared to the lateral source positions. The localization performance from younger
(10–39years) to older (60–81 years) participants dropped about 8% for lateral posi-
tions and about 12.5% for positions on or close to the median plane. In summary,
the task of focusing attention on sources positioned on the median plane was found
to be most difficult, with an age-related effect on the horizontal plane compared to
other source positions.

The notion of a “general slowing” confirmed in a meta-analysis by Wasylyshyn
et al. (2011) using visual tasks has already been corroborated in relation to auditory
tasks through the authors’ earlier findings (Lawo and Koch 2014b). The present
results are in line with these findings, given the non-significant differences observed
in attention switch costs across age groups. The spatial and therefore more complex
arrangement of the target’s locations did not influence the participants’ ability to
switch attention. Congruency effects involving the categorization of number words
were found to increase for older participants contrary to previousfindings in a dichotic
presentation of auditory stimuli. Thus, the current results in terms of congruency
effects appear to be in line with the hypothesis of inhibitory process deficits in older
adults (Braver and Barch, 2002; Hasher et al., 2001). Furthermore, the age-related
congruency effect was found to depend on the spatial position of the target speaker,
with the effect of the deteriorated performance vis-a-vis the median plane compared
to other positions on the horizontal plane (Abel et al. 2000; Møller et al. 1996)
proving significant in age-related congruency effects.

5 Influence of Reverberation and Head-Movements on
Intentional Switching of Auditory Attention in the
Extended Binaural Paradigm

Until now, all the experiments described in this chapter are far removed from a real-
life scenario due to the anechoic condition. In real-life situations, especially in indoor
settings, room acoustics plays an important role, with the reverberation time being
an efficient means of characterizing different indoor scenarios. Reverberant energy
distorts the signal and increases reaction times and error rates (Nábělek andRobinson
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1982; Darwin and Hukin 2000a; Lavandier and Culling 2008), and, therefore, it is
of interest in experiments involving auditory selective attention.

In an attention task, Ruggles and Shinn-Cunningham (2011) varied the amount of
reverberant energy in three steps: no reverberation (RT60 = 0 s), low reverberation
(RT60 = 0.4 s, and high reverberation (RT60 = 3 s). The participants in this study
were asked to repeat four consecutive digits. The target speakerwas always positioned
in front with two other distracting speakers located to the sides. It was found that
the reverberation time interfered with selective spatial attention. Similar influences
were observed by Culling et al. (2003) and Lavandier and Culling (2007), who
found Speech Reception Thresholds (SRTs) to be significantly lower under anechoic
conditions. In addition, reverberant energy interacted with the location of target and
distractor, indicating no improvement in SRT for spatially separated speakers in the
reverberant condition. Kidd et al. (2005b), on the other hand, found the effect of
reverberation to be greater when target and masker were spatially separated, rather
than being collocated at the same position.

5.1 Extension of the Binaural Paradigm on Auditory
Selective Attention

The paradigm used in this study was once more further extended to study room
acoustic effects (cf., Oberem et al. 2018; Fels et al. 2016). In the previous versions
of the paradigm, the stimuli were 700 ms in duration, which is too short to study
the influence of reverberation and its interaction with indoor properties. In addition,
longer stimuli are more conducive to studying the influence of dynamic head move-
ment. To extend the stimulus duration to 1200 ms, a direction word—“up” (German:
“oben”) and “down” (German: “unten”)—was added to the digits (e.g., target speaker
said: “three up” while the distracting speaker articulated: “seven down”).

The congruency effect had to be redefined for the analysis of the responses, with
the categorization task now containing four response possibilities. Participants were
asked to use four buttons on a game-pad for responding. The categories smaller or
larger than 5 were mapped to the left- and right-hand buttons of a controller, with
the direction words, “up” and “down” to be categorized using the index and middle
fingers of either hand.

Investigating the new paradigm and comparing its results with those of the former
binaural paradigm, Fels et al. (2016) found the reaction times and error rates to be
generally higher than those seen in the former paradigm (reaction times increased by
approx. 100 ms and error rates increased by approx. 3%). This increase in reaction
time and error ratesmay be attributed to the increased number of response alternatives
and thus increased the difficulty of response selection of this paradigm (four vs. two
response alternatives). The new version of the paradigm is robust and is capable of
reproducing findings that are comparable to the ones elicited by the original version.
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This extended binaural paradigm was applied in three different rooms with
increasing reverberation time. For a room model (total volume of 137m3 with a
quadrangular ground area) with non-parallel walls, three reverberation conditions
were simulated including the anechoic case (RT60 = 0 s), a case with low rever-
beration time (RT60 = 0.8 s, comparable to an acoustically untreated classroom),
as well as a case with a high reverberation time (RT60 = 1.75 s, comparable to an
auditorium).

The listener positionwas placed off-center of the room to prevent unwanted acous-
tic effects such as roommodes (Hartmann 1983;Rakerd andHartmann 1985;Giguère
andAbel 1993). The absorption coefficients in the roommodelwere varied to achieve
three levels of reverberation. Binaural room impulse responses (BRIR) were calcu-
lated with the software package RAVEN, based on the simulated roommodel as well
as HRTFs of an artificial head measured in an anechoic chamber (Schröder 2012).
The dummy head is a mannequin produced at the Institute of Technical Acoustics,
RWTHAachen University, with a simple torso and a detailed ear geometry (Schmitz
1995; Minnaar 2001).

Our experiment yielded effects similar to those found by Kidd et al. (2005a), and
Darwin and Hukin (2000b). Reverberation time has been found to have a detrimental
effect on reaction time when attention is required to remain focused on one source
at a constant spatial location. Intentionally switching attention to a sound source at
a different spatial location requires much attention. Additional reverberant energy
does not have any further impact on the attention task (Fig. 10). Furthermore, the
human ability to ignore or avoid processing the content of a distracting source is
influenced significantly by reverberation.
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Fig. 10 Reaction time (in ms) as a function of reverberation time, the target’s spatial position,
and attention switch. Error bars indicate standard errors. The main effect of reverberation was not
significant. The main effect of the target’s position is shown on the x-axis, describing the target’s
speaker position in space on the median, diagonal, or frontal plane. The main effect of attention
switch can be seen in solid and dotted lines. Older and younger participants react significantly faster
when the target’s position is repeated and not switched. For more detailed information, see Oberem
et al. (2018)
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6 Conclusion and Future Directions

This chapter aimed to analyze the influences of variables that increase the complexity
of the auditory scene concerning reproduction methods on cognitive control mecha-
nisms underlying auditory selective attention. By comparing performance measures
(i.e., reaction time and error rates), reproductionmethods (e.g., individualHRTFs and
non-individual HRTFs) are validated, and room-acoustical influences (e.g., anechoic,
low reverberation time, and high reverberation time) are examined.

The use of dichotic reproduction enabled the observation that participants can eas-
ily follow an instruction to switch auditory attention to a new auditory target. How-
ever, this switching of attention results in performance costs in terms of increased
reaction time and reduced response accuracy. Even though participants succeed in
responding to a new auditory target and thus listen selectively to the relevant infor-
mation, they cannot avoid processing the irrelevant information, to an extent that it
can influence their response.

In addition, the dichotic listening paradigm was extended to a binaural listening
paradigm which shows great potential for successfully analyzing intentional switch-
ing of auditory attention. The extent of individualization of the binaural reproduction
method cannot be neglected in terms of absolute values of reaction time and error
rates, but the effects on switching auditory attention are not influenced appreciably
in an anechoic environment.

The binaural paradigm was also tested in simulated rooms with different rever-
beration times, because an anechoic reproduction fails to represent realistic listening
experiences. It was found that reverberation has a detrimental effect on reaction time
when attention is required to be focused on one source at a constant spatial loca-
tion. Intentionally switching attention to a sound source at a different spatial location
appears to require somuchmore attention that additional reverberant energy does not
have a further impact. There may be other variables, such as head and body move-
ments as well as additional distracting noise sources—e.g., cars, airplanes, barking
dogs, construction noises, etc.—that contribute to the complexity of an auditory
scene, influencing the efficiency of cognitive processing. It is essential to consider
both room acoustics and distracting sources when analyzing a natural acoustic scene
or creating a dynamic reproduction of an acoustic scenario. Further extensions of
the binaural paradigm are therefore necessary in order to examine auditory selective
attention in realistic, complex environments.

Auditory attention and processing capacities appear to be contingent on age, with
the results of this study in terms of congruency effects being consistent with the
hypothesis that older adults suffer from inhibitory deficits. The question of whether
there is an age-related decline of auditory attention in complex environments deserves
closer inspection. Finally, experiments involving children and hearing-impaired indi-
viduals, given their different abilities and challenges, are likely to provide further
insight into auditory selective attention in simple and complex acoustic environments.
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Blackboard Systems for Cognitive
Audition

Christopher Schymura and Dorothea Kolossa

Abstract An essential part of auditory scene understanding is building an inter-
nal model of the world surrounding the listener. This internal representation can
be mimicked computationally via a blackboard-system-based software architecture.
Blackboard systems allow efficient integration of different perceptual modalities,
algorithms, and data representations into a coherent and flexible computational
framework. The term “blackboard” in this context stands for a flexible and compo-
sitional internal data representation, allowing individual software modules to access
and process available information. This modular architecture also makes the sys-
tem adaptable to different application scenarios and provides interfaces to incorpo-
rate feedback paths, which allows the system to derive task-optimal active behavior
from the internal model. Extending conventional blackboard systems with mod-
ern machine-learning techniques, specifically probabilistic modeling and neural net-
works, enables the system to incorporate learning strategies into this computational
framework. Additionally, online learning and adaptation strategies can be integrated
into the data representation within the blackboard. This is particularly useful for
developing feedback approaches. This chapter gives a review of existing blackboard
systems for different applications and provides the necessary theoretical founda-
tions. Subsequently, novel extensions that were recently introduced in the context
of binaural scene analysis and understanding are presented and discussed. A special
focus is set on possibilities for incorporating feedback and learning strategies into
the framework.
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1 Introduction

Human listeners have a remarkable ability to assess complex acoustic scenes, even
under adverse conditions involving background noise and reverberation. This phe-
nomenon has been termed auditory scene analysis (ASA) by Bregman (1990) and
has since been extensively investigated with a focus on reproducing this ability by
computational models—see, for example, Wang and Brown (2006). In order to do
so, machine-hearing systems may achieve a perceptual organization of sound in a
similar way as human listeners do. This involves the integration of diverse sources
of knowledge, including primitive grouping heuristics, as well as schema-driven
grouping principles. Additionally, the interaction between bottom-up and top-down
processes through feedback loops plays an important role which allows the system
to adapt depending on higher-level control tasks.

Recent approaches to meet these requirements for a machine-hearing system are
based on blackboard problem-solving architectures, as for instance proposed by
Schymura et al. (2014). A blackboard system consists of a group of independent
experts called knowledge sources (KS), which communicate by reading and writing
data on a globally-accessible data structure—the blackboard. Typically, the black-
board is divided into layers that correspond to low-level sensory data, processed
auditory features, hypotheses and partial solutions at different levels of abstraction.
A third component, the scheduler, coordinates actions that individual knowledge
sources can perform, based on the current state of the blackboard.

Blackboard systems were initially proposed by Erman et al. (1980) in the context
of speech understanding and have since been applied to a variety of problems in dif-
ferent subject areas. Hayes-Roth (1985) introduced a general blackboard architecture
to solve planning and control tasks. Based on this initial line of research, blackboard
systems for specific technical applications have emerged. These include, for instance,
a framework for real-time mobile robot navigation proposed by Pang (1988) and an
expert system for controlling structure synthesis in chemical-processing plants—see
Song et al. (1991). Besides the domain of classical control, early research on black-
board systems also contributed to other technical fields. Exemplary applicationswere
technical diagnosis (Hong et al. 1997), the design of electrical components (Dirand
and Chevrier 1995) and knowledge systems (Hewett and Hewett 1993). Besides
the deployment in specific technical applications, the classical blackboard model
of problem-solving, as proposed by Erman et al. (1980), was subsequently refined
and extended. Weiss and Stetter (1992) proposed a hierarchical blackboard architec-
ture, specifically designed to solve problems that can be effectively decomposed into
individual subtasks. Furthermore, an initial formal description of the blackboard
problem-solving model was introduced by McManus and Bynum (1996). Herein,
the authors also present a set of tools for design, the simulation, and refinement of
blackboard architectures. Recent developments includemulti-agent and information-
fusion systems (Hou et al. 2000; Zhu et al. 2010), knowledge and information man-
agement (Barot et al. 2013; Rong 2014) and distributed systems like mobile sensor
networks (Wang et al. 2011).
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The blackboard architecture has specific characteristics that make it especially
suitable for machine hearing. Among other features, it provides a framework for
reasoning about acoustic scenes that is flexible, opportunistic, and integrates bottom-
up processing with top-down feedback. This chapter shall serve as an introduction to
the general framework of blackboard architectures and their applications. Herein, the
focus is set on their applicability towardsmachine hearing and related problems.After
shortly reviewing the historical development of blackboard systems and establishing
the theoretical foundations, exemplary architectural blackboard designs suited for
specific tasks are introduced and discussed. This includes conventional architectures
similar to the initially proposed systems, as well as recent extensions that combine
blackboard systems with modern machine-learning methodologies to solve complex
problems. The chapter concludes with a brief summary and provides an outlook on
possible research directions involving blackboard systems in the context of machine
hearing.

2 Blackboard Systems

Blackboard systems were introduced by Erman et al. (1980) as an architecture for
speech understanding, in their Hearsay-II system. Subsequently, a number of authors
described blackboard-based systems for machine-hearing applications, for example,
Cooke et al. (1993); Lesser et al. (1995); Ellis (1996); Godsmark and Brown (1999).
All of these systems were in most respects based on traditional approaches from the
area of artificial-intelligence research, especially focusing on rule-based heuristics.
Additionally, more recent developments have extended these approaches towards
modern machine-learning techniques like, for instance, Bayesian methods as intro-
duced by Sutton et al. (2004). These blackboard systems have been successfully
applied in different domains, such as musical-pitch estimation and analysis (Godsill
and Davy 2002) and robotics (Fox et al. 2012). In this section, the general architec-
ture and fundamental building blocks of blackboard systems are introduced and put
into context according to their historical developments.

2.1 The Blackboard Model of Problem Solving

The basic idea behind using blackboard systems for solving complex problems is
often presented using a metaphor, which is being quoted here from Corkill (1991).

Imagine a group of human specialists seated next to a large blackboard. The specialists are
working cooperatively to solve a problem, using the blackboard as the workplace for devel-
oping the solution.
Problem-solving begins when the problem and initial data are written onto the blackboard.
The specialists watch the blackboard, looking for an opportunity to apply their expertise to
the developing solution.
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Fig. 1 General architecture of a blackboard system, based on the framework proposed in Corkill
(1991). The arrow directions indicate data flow. This architecture deviates from the originally
proposed idea by Corkill (1991) in the sense that the knowledge sources are enabled to access
external data sources which are not associated with the blackboard. The ability to incorporate
external data sources introduces additional flexibility to the classical blackboard framework,making
it especially suitable to deal with time-series data and real-time processing

When a specialist finds sufficient information to make a contribution, she records the con-
tribution on the blackboard, hopefully enabling other specialists to apply their expertise.
This process of adding contributions to the blackboard continues until the problem has been
solved

This simple metaphor already captures the basic components and workflow of a
computational blackboard system. Following the initially proposed model of Erman
et al. (1980), the most general structure possible consists of three components, that
is, the blackboard itself, a set of knowledge sources and a scheduler. An overview
of the general blackboard architecture as assumed in this chapter is shown in Fig. 1.

The blackboard corresponds to the central data repository of the system, by pro-
viding a global database that maintains all input data and partial solutions. It not only
stores current data but also keeps track of the history of these data in order to enable
working with time series. Like the physical blackboard from the metaphor quoted
above, data can be added, removed andmodified at any time. In themost general case,
data representations can be arbitrary, that is, comprise numerical, probabilistic and/or
semantic data. However, specific implementations of blackboard architectures might
restrict data representation due to computational or problem-specific restrictions.

Knowledge sources are softwaremodules that define their own functionality, to be
executed in the organized frame of the system. They define which data they need for
execution and which data they produce. The blackboard system provides the tools
for requesting and storing these data but does not care about the actual contents,
while the knowledge sources need not care about where and how the data are stored.
These modules can work on different levels of abstraction, independently from each
other or in collaboration, in a bottom-up or in a top-down manner. From an abstract
viewpoint, knowledge sources can be seen as specialist or expert modules, similar
to human experts. Generally, each knowledge source is designed to solve a specific
subtask that contributes to the solution of the addressed problem at large.
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The scheduler is the component of the blackboard system that actually executes
the knowledge source. Most importantly, it determines the order in which knowl-
edge sources get executed, based on the current task, the data that are stored on the
blackboard, and of available computational resources. This order is rescheduled after
every execution of a knowledge source, since the conditions determining the order
may have changed, or new knowledge sources may be waiting for execution.

Despite the three basic components, the specific design and implementation of a
blackboard system always depends on the problem to be solved. Possible extensions
of the conventional structure discussed here are introduced in Sect. 4.

2.2 Blackboard Systems as Computational Frameworks

To implement a blackboard systemwithin a computational framework, amore formal
definition of the concepts introduced in Sect. 2.1 is required. Therefore, let S denote
the set of all possible blackboard states, which depend on the restrictions imposed
on possible data representations. If, for instance, only discrete data representations
are allowed to be stored on the blackboard (Nii 1986), S will comprise a finite-state
space. However, when using continuous data representations, S might also span an
infinite state space. By defining si ∈ S as the actual state of the blackboard at iteration
step i and further denoting xi ⊆ si as a subset of the blackboard state serving as input
to the m-th KS, the set of knowledge sources can be defined as

K =
{
f1(xi , yi , θ1), . . . , fM(xi , yi , θM)

}
, (1)

where yi represents external input data and θm are knowledge-source specific parame-
ters. It should be noted that both, yi and θm , are optional and not required for designing
a knowledge source. Hence, an individual knowledge source can be interpreted as
a mapping fm : xi → zi , where zi are new data produced by the m-th KS, which
subsequently is appended to the blackboard’s state according to si+1 ← si ∪ zi . The
internal parameterization, θm , introduces additional flexibility to the design of the
knowledge sources. This allows, for example, for the training of individual knowl-
edge sources by using supervised-learning techniques before deploying them on the
blackboard framework. An example in the context of auditory-scene understanding
is the classification of the acoustic environment that surrounds the listener—based
on the audio signals captured. An exemplary implementation of this specific task is
depicted and explained in Fig. 2. This example already provides a first impression
of the integration of feedback mechanisms with the blackboard framework. This
process is further discussed in Sect. 2.3.

Last but not least, the scheduler serves as a control instance that selects knowledge
sources according to the current state of the blackboard. The specific implementa-
tion of this mechanism may vary depending on the problem that has to be solved.
Generally, the scheduler is able to select an action, ai ∈ A, from a finite set of pos-
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Fig. 2 This example illustrates a knowledge source performing acoustic scene classification based
on captured audio data. A dedicated training dataset with labeled examples allows for training
parameters, θ̂, for a classifier. The classifier can be used to infer the acoustic scene from external
audio data, yt , as obtained during deployment. A refinement of the resulting hypothesis about the
acoustic scene, zt , can be performed by incorporating additional information from the blackboard,
xi . In the current example, it is assumed that a further knowledge source that is able to detect
acoustic events, has put up the hypothesis on the blackboard that the sound of a printer is present in
the acoustic signals. This additional information can then be used to prime the currently active scene-
classification knowledge source—for instance, by imposing a prior on a probabilistic-classification
result. The resulting hypothesis, zt , is subsequently added to the blackboard data repository and
serves as an additional input to other knowledge sources in the next iteration step

sible actions, A, at each iteration. In the most basic case, an action corresponds to
the selection of a knowledge source from the set specified in (1). Depending on the
current state of the blackboard, not all possible actions may be available at each
iteration—for instance, if certain knowledge sources cannot be executed due to a
lack of matching input data on the blackboard. The action-selection process of the
scheduler can be expressed via a policy, π(ai | si ), whichmight be either stochastic or
deterministic. This notion is inspired by reinforcement learning, a technique which
is mainly concerned with the learning of optimal policies for control problems—
compare Sutton and Barto (1998). To implement a functional blackboard system, at
least three different types of actions have to be defined, namely,

• An action that selects a knowledge source based on the available input data, exe-
cutes it, and writes the resulting new data back to the blackboard. This action is
termed SelectKS throughout this chapter and comprises two additional param-
eters, namely, the knowledge-source index, m, and the corresponding data subset,
xi . Both should be read from the blackboard.
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Algorithm 1 Canonical blackboard processing framework with time-series data as
an external input
Require: A set of knowledge sources K, a scheduling policy π(ai | si , yt ) and a

sequence of external input data y1, . . . , yT .
1: s0 = ∅ � Initialize blackboard as an empty set.
2: for t = 1 to T do
3: i = 1 � Initialize blackboard iteration counter.
4: repeat
5: ai ∼ π(ai | si , yt ) � Sample action from policy.
6: if ai = {SelectKS, m, xi } then
7: zi = fm(xi , yt , θm)

8: si+1 ← si ∪ zi � Execute KS and add result to blackboard.
9: else if ai = {DeleteData, xi } then
10: si+1 ← si ∩ xi � Remove data from blackboard.

11: i = i + 1
12: until ai = {Terminate}

• The ability to remove data from the blackboard that are not required anymore is
an important aspect of preventing unnecessary occupation of memory. Therefore,
an action DeleteData is introduced. This action has one additional parameter,
xi , which describes the subset of data that should be deleted from the blackboard.

• An action, Terminate, determines further processing on the blackboard which
is not required anymore, hence terminates the processing loop.

Additional actions may be defined during the design of a blackboard system, if
necessary or helpful. However, in its most basic form, a functional blackboard system
can be built using just these three types of actions described above.

The general concepts of a blackboard, namely, data repository, knowledge sources,
and scheduler, as introduced above, allow for expressing the overall blackboard archi-
tecture as a computational algorithm as outlined in Algorithm 1. This is a very basic
form of a possible blackboard-processing framework, which offers the flexibility to
be extended based on the specific requirements of the problem that should be solved
by the system. The framework presented here deviates from the original proposal
of, for instance, Erman et al. (1980) and Corkill (1991). This is because it explic-
itly incorporates the concept of a policy for the scheduler and allows knowledge
sources to have internal parameters. However, this general framework is already
flexible enough to be adaptable to a broad range of application domains. A graphical
illustration of the operations that are basically supported is depicted in Fig. 3.
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Fig. 3 Illustration of the blackboard-processing cycle.a, The scheduler selects the next knowledge
source to be executed based on the current state of the blackboard.b, The selected knowledge source
obtains data from the blackboard, processes it and writes the result black to the blackboard

2.3 Incorporation of Feedback Mechanisms

Thebasic blackboard processing framework introduced inSect. 2.2 provides opportu-
nities for possible extensions and adaptations. An important aspect that is of special
relevance in dynamic problem domains like auditory scene understanding, is the
incorporation of feedback mechanisms. Consider, as an example, an application in
robot audition,where a dynamic agent equippedwith acoustic sensors is able to freely
explore its environment. A reasonable task for the robotic agent to perform in such
an application is the localization and identification of all acoustic sources that are
present in the immediate environment of the agent. Designing a blackboard system
for this problem requires extensions of the model introduced in Sect. 2.2 as follows.
Incorporate the ability of the robot to move about and provide capabilities to refine
estimated source positions with identity estimates and vice versa. The blackboard
system would then serve as an internal world model for the robotic agent, which, for
instance, can be used for motion planning. These two exemplary extensions actu-
ally describe the following two different approaches to feedback loops that can be
integrated into the blackboard system,

• External feedback loops, which directly affect the agent’s interaction with the
environment, for example, themotion of a robotic agent or the rotation of a binaural
dummy head. The initiation of these feedback loops will be controlled by the
scheduler, implemented as additional actions that are available in the action space

• Internal feedback loops, describing incremental refinement processes within the
blackboard itself. Improvements of source-localization estimates when additional
information about source identities are available are examples that fit into this
category—compare Ma et al. (2018), or, more generally, the priming of classifiers
with additional information from the blackboard (Fig. 2).
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3 Implementation of a Blackboard System with
Hypothesis-Driven Feedback

To illustrate how an actual blackboard system can be implemented based on the
framework presented in Sect. 2.2, an example from the domain of binaural localiza-
tion based on the work proposed in Schymura et al. (2014) is given in current section.
The blackboard system proposed by Schymura is broadly based on the Hearsay-
II Speech-Understanding System proposed by Erman et al. (1980). It comprises a
blackboard data repository, a set of knowledge sources, and a scheduler, as intro-
duced in the previous section. Additionally, the architecture is event-driven, that is, a
change in the state of the blackboard, such as the arrival of new data, causes an event
to be broadcast. A blackboard monitor is responsible for monitoring and handling
these events. It maintains an event register that indicates which knowledge sources
should respond to a certain event. The possible actions that can be performed, given
the current state of the blackboard, are listed in an agenda. The scheduler is then
responsible for ranking possible actions and selecting one of them to be performed.
Completion of an action will most likely result in further changes in the state of the
blackboard, leading to broadcast of new events.

The design of this blackboard system allows for a fusion of statistical and expert
knowledge. The novel approach investigated here is the representation of knowledge
by designing the blackboard as a set of interconnected graphical models, yielding
a representation of the blackboard itself as a Bayesian network—see Pearl (1989).
Computationally, this is realized by designing the blackboard to be a space for cre-
ating, assembling, and evaluating graphical models.

3.1 Motivation for a Graphical-Model-Based Architecture

Graphical models have attracted great interest in the fields ofmachine learning and of
cognitive systems in general. Theydescribe relationships between statistical variables
in the form of simple graph structures. In these graphs, each node corresponds to a
variable, and each edge indicates a dependency relationship between variables—see
Bishop (2006). In thisway, graphicalmodels can be used to describe the dependencies
between all variables that are of interest, effectively providing an interpretable world
model.

Graphical models come in many different specific forms, such as hidden Markov
models (HMM), Markov random fields, or dynamic state-space models that are
suitable for creating precise descriptions of the constituent components of acoustic or
audiovisual scenes. Efficient algorithms have been developed, which allow inferring
latent variables of interest in an acoustic scene from observations taken available
acoustic sensors. Hence, based on a graphical model of the audiovisual objects in
an environment, the system will be able to find the best explanation of all available
information, optimally fusing prior knowledge, such as linguistic or acoustic one,
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with the currently available input from sensors. Taking graphical models as building
blocks further allows one to

• Consecutively build models of the audiovisual environment from smaller, well-
understoodmodels of environmental objects—including state-of-the-art statistical
models of auditory objects

• Understand sensory data as a composition of these source models and a model of
the system’s own “perception”

• Understand the system’s interpretation of the audiovisual environment by virtue of
the interpretability of each individual component and of their mutual connections.

Since the model is statistical in nature, the resulting interpretation of the envi-
ronment will not only denote the type, number, location and—if applicable—the
possible intention of all objects of interest, but also contain estimates of the corre-
sponding uncertainties of all of these quantities. This will endow the system with the
ability to judge the reliability of its own interpretation. This capability can ultimately
be used to design and optimize active-listening and active-exploration processes to
the end of ensuring that the most relevant variables are determined with sufficient
reliability.

3.2 Blackboard Architecture

Figure4 gives an overview on a general system architecture as proposed by Schy-
mura et al. (2014) for solving a single-source speaker-localization task. This rather
simple example has deliberately been chosen as a demonstration scenario with the
purpose of serving as a proof-of-concept for the proposed architecture. The black-
board workspace is arranged into a hierarchy of four layers that are described in the
following.

Acoustic-Cues Layer

The lowest layer, denoted as the acoustic-cues layer, contains observation vectors
modeled as continuous, multivariate and observable random variables. The obser-
vations take the form of estimated interaural arrival-time differences (ITDs) and
interaural level differences (ILDs) that can be added to the blackboard by the cor-
responding knowledge source, “Acoustic Cue KS”, that operates on this layer. The
knowledge source takes the monaural left and right ear signals, acquired via a heard-
and torso simulator, here a Kemar dummy head. These ear signals are processed by
an auditory front-end, composed of an M-channel gammatone filterbank followed
by an inner-hair-cell model—as proposed by Meddis (1986). This setup is used to
subsequently estimate ITDs and ILDs independently at each time step, similar to
the binaural-processing framework introduced by May et al. (2011). The resulting
observation vector

yk =
[
τ̂k,1, . . . , τ̂k,M , δ̂k,1, . . . , δ̂k,M

]T
(2)
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Fig. 4 Overview of the hierarchical blackboard architecture for active binaural localization intro-
duced by Schymura et al. (2014). Data flow between the different components is represented by
dotted arrows, whereas dashed arrows represent control commands. The different components
on the blackboard are divided into continuous random variables (ellipsoid nodes), discrete random
variables (rectangular nodes) and data segments (hexagonal nodes). The Gaussian mixture model
that is used in layers1 and2 is illustrated by a solid arrow that represents the statistical relationship
between the observation vectors ok and the discrete locations φ̂k
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has the dimensionality 2M , where τ̂k,m denotes the estimated ITD at the discrete
time step, k, and the frequency channel, m with m = 1, . . . , M . δ̂k,m , denotes the
estimated ILD, respectively.

Localization-Hypothesis Layer

The central element of this layer of the blackboard architecture, which is referred
to as the location-hypothesis layer, contains a discrete hidden random variable, φ̂k ,
that represents hypotheses about the possible locations of a sound source in terms
of azimuths. The variable φ̂k is statistically related to the corresponding observation
vector described in (2). Both variables are linked via a Gaussian-mixture (GMM)
model.

p( yk | λl) =
N∑
i=1

πi pi ( yk | λl) (3)

composed of N mixture components, with parameters λl = {π(l)
i , μ(l)

i , Σ
(l)
i }. Each

of the l = 1, . . . , L Gaussian mixtures corresponds to a specific azimuth, φl . The
mixture components in (3) are modeled as 2M-dimensional Gaussian distributions
pi ( yk | λl), with mean vectors μ(l)

i , covariance matrices Σ
(l)
i , and mixture weights

π(l)
i satisfying

∑N
i=1 π(l)

i = 1 ∀ l. In this specific implementation, the number of
Gaussian mixtures was limited to 72, yielding an angular resolution of 5◦ for the
localization estimates. Whenever new observations are added to the blackboard, the
Gaussian-mixture models are triggered to infer the posterior probability

p(φl | yk) = p( yk | λl)∑L
l ′=1 p( yk | λl ′)

(4)

of all possible azimuths. This process results in a categorical distribution over
azimuth, p(φ̂k | yk), that is added to the blackboard. It should be noted that the
utilized localization system is largely inspired by the work proposed by May et al.
(2011), which was subsequently extended and improved—compare Ma et al. (2015)
and May et al. (2015).

Confusion-Hypothesis Layer

To reduce localization errors caused by front-back confusion, a next layer is intro-
duced in the blackboard architecture by the name of confusion-hypothesis layer.
Front-back confusions are an inherent problem in binaural localization, which also
occurs in human hearing—see Blauert (1997). Initial research in this direction was
conducted by Wallach (1940), who found that humans exploit head rotations to
resolve front-back confusions—compare Pastore et al. (2019). These findings have
been adapted to machine-hearing systems in recent works of Ma et al. (2015) and
Schymura et al. (2015). The blackboard system of Schymura et al. (2014), which
is reviewed here, served as an initial step toward integrating the inherently active
process of confusion solving into the blackboard architecture via hypothesis-driven
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feedback. Confusion hypotheses are generated by the “Confusion KS”, which oper-
ates on the confusion hypothesis layer. This knowledge source examines whether
location hypotheses of the second layer contain potential confusions. This examina-
tion is based on a threshold, pmin ∈ [0, 1], that defines a probability of which one
of the posterior probabilities, p(φ̂l | yk), is considered as a location hypothesis. A
confusion is identified when there are multiple location hypotheses within the same
time step. When confusion is identified, a confusion hypothesis

ck = {φ̃k,1, . . . , φ̃k,Q} (5)

is created which includes all Q competing locations, φ̃k, j , j = 1, . . . , Q. If Q = 1.

Perceptual-hypotheses Layer

If no confusion is detected, a relative source-location hypothesis, φ̂r,k , is created
in this fourth layer of the blackboard, denoted as the perceptual hypotheses layer.
The perceptual-hypotheses layer contains two variables, ψk and φ̂r,k , corresponding
to the current look-direction of the dummy head and the estimated relative source
direction, respectively. As described before, if no front-back confusion was detected,
the estimated relative source position is directly computed by the “Confusion KS”
knowledge source from the posterior probabilities on the second layer. If there is a
remaining confusion hypothesis on the third layer according to (5) and the head has
not been rotated, the “Head Rotation KS” knowledge sources triggered. This halts
the listening process and activates the feedback path that triggers a change of the
current head orientation by 10◦ into the direction of the hypothesized sound source.
After the rotation is completed, it indicates that the system is ready for the next time
step and triggers the “Confusion Solving KS” knowledge source. This KS solves
localization confusions by predicting the posterior probability of the source azimuth
after a head rotation and by comparing it with new location hypotheses as have
been gathered within the next time step. If a hypothesized source position reflects
a “true” source location, then the predicted location distribution and the observed
distribution after head rotation should overlap at the same location. If this is the case,
the estimated position is considered a valid relative source location hypothesis, φ̂r,k ,
which is then put onto the blackboard. The corresponding confusion hypotheses on
the third layer are then discarded by the “Confusion Solving KS” knowledge source.
If the predicted and observed distributions do not match, the hypothesized location
is considered a ghost, and the system proceeds with the next frame to gather more
data before repeating the process. An example of the confusion solving process is
illustrated in Fig. 5.

The triggering of specific knowledge sources is attached to certain events that are
stored in an event register, which is part of the blackboard monitor. As described
before, events are generated if new data is available from the auditory front-end or
if specific KS have performed certain actions on the blackboard. The blackboard
monitor keeps track of the current state of the blackboard and generates an agenda
which contains all actions that could be performed according to this state.
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Fig. 5 Illustration of the front-back confusion solving mechanism—as proposed by Schymura
et al. (2014). The left panel shows the probability distribution for different positions for a source
located at an azimuth angle of 30◦. There clearly exists a “ghost” at an angle of 150◦. The right
panel shows the predicted location distribution in dotted lines and the actual distribution after head
rotation by 10◦. The two distributions overlap at an azimuth angle of 30◦ which suggests a “true”
source position

The agenda is then passed to the scheduler that decides which of the possible
actions would be best suited given the current state of the blackboard and the task
that should be accomplished. In the proposed system, a weight is attached to each
knowledge source (KS) represented as a numerical value between 0 and 100. This
weight corresponds to the importance of a specific KS for accomplishing the local-
ization task. Given the agenda, the scheduler executes the action that is linked to
the KS with the highest weight. This specific implementation of a blackboard sys-
tem, utilizing a dedicated blackboard monitor with an attached agenda was adopted
from Erman et al. (1980).

3.3 Experimental Evaluation

This section briefly reviews the results obtained in the experimental evaluation of the
described system by Schymura et al. (2014). The presented blackboard system had
the purpose to act a proof-of-concept. Therefore, a simple single-source localization
scenariowas chosen for the evaluation.Anextensionof the confusion-solvingprocess
to multi-source scenarios can be found in e.g., May et al. (2015). The position of
the dummy head was assumed to be static, but changes in head orientation were
possible. The target sound was a static speech source, located within the horizontal
plane at an arbitrary azimuth between [0◦, 360◦] with a 5◦ angular resolution. Since
the localization task was not restricted to the frontal plane, the localization system
also had to cope with potential front-back confusions.
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Fig. 6 Illustration of the
evaluation scenario utilized
in Schymura et al. (2014).
The azimuth, φa,60◦ , denotes
an exemplary absolute target
azimuth serving as the
ground-truth. The relative
angle between the look
direction, ψ, of the dummy
head and the target is
denoted as φr . The dummy
head can rotate within a
range of [−80◦, 80◦] in the
frontal hemisphere

Seven target source positionswere selected for the evaluation, namely, 270◦, 300◦,
330◦, 0◦, 30◦, 60◦, and 90◦. Although the evaluated target positions were located only
in the frontal sector of the horizontal plane, the localization system did not have this
prior knowledge and assumed an azimuth range of [0◦, 360◦] for potential target
positions. The principal setup of the evaluation scenario is depicted in Fig. 6.

Localization performance was evaluated in two acoustic conditions. The first
condition did not include any background noise, that is, only the clean target speech
source was presented to the dummy head. This condition was evaluated to obtain
an upper bound of performance, that is, where the best possible localization could
be achieved. Additionally, the second condition included a diffuse noise field with a
signal / noise ration (SNR) of 0dB to evaluate the noise robustness of the proposed
system. In both conditions, it was assumed that the listener and the sound source
were located in free-field conditions. The simulation was generated using head-
related transfer functions (HRTFs) of the dummy head, recorded at a distance of 3m
from theKemar. These data were taken from a database recorded byWierstorf et al.
(2011).

3.4 Experimental Setup

The target source was simulated using speech signals taken from the GRID corpus—
introduced in Cooke et al. (2006). This database consists of short utterances spoken
by 34 native English speakers (18male speakers and 16 female ones). The training set
utilized for estimating the Gaussian mixture included 340 randomly selected utter-
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ances with 10 utterances per speaker. These were then spatialized to produce training
data for each azimuthal position between [0◦, 360◦] in steps of 5◦. An additional set
of 170 utterances with five utterances per speaker were selected as the evaluation set
and were spatialized to simulate the seven target-source positions described above.

The diffuse noise field used in the second test condition was taken from the envi-
ronmental sounds (“busy street”) from the IEEE AASP CASA Challenge Dataset—
see Stowell et al. (2015). The noise was added to the binaural speech signals after
spatialization at an SNR of 0dB with respect to the averaged speech-signal power.

The peripheral processing of the auditory system was simulated by an auditory
front-end proposed by May et al. (2011). The simulated ear signals were decom-
posed into 32 gammatone-filterbank channels. The center frequencies of the filter-
bank were equally distributed on the equivalent-rectangular bandwidth (ERB) scale
between 80Hz and 8 kHz. The channel output was then halfwave-rectified and used
to extract channel-dependent binaural cues. A Hann window with a length of 20ms
was used for the analysis in each frame with an overlap between successive frames
of 10ms. The interaural arrival-time differences (ITDs) for each channel were esti-
mated by choosing the maximum lag of a cross-correlation function within the range
of [−1, 1]ms. The interaural level differences (ILDs) in each channels were esti-
mated by comparing the energy integrated across the window between the left and
right ears within each channel and expressed in dB.

Two localization systemswere evaluated, that is, aGaussian-mixture-model-based
localization baseline, which was unable to perform head rotations, and the proposed
blackboard system incorporating the confusion-solving mechanism. Both systems
used identical Gaussian-mixture models (GMMs) to model the azimuth-dependent
distribution of the binaural feature space consisting of ITDs and ILDs The GMM
baseline selected the azimuth with the maximum posterior given a binaural feature
observation as the target-source position, while the blackboard included top-down
feedback for head rotation in order to resolve front-back ambiguities as described
in Sect. 3.2. The GMMs were trained only on clean spatialized speech signals and
no noise was included during training. No prior knowledge of source positions was
used.

3.5 Results and Discussion

The localization performance of both systems was evaluated as utterance-level local-
ization errors, which were computed by averaging the minimum angular differences
between the reference target position and the estimated positions within each utter-
ance. Table1 shows the mean utterance-level localization errors based on the 170
test utterances for each evaluated target position.

Under clean conditions, both systems were able to localize the speech source at
all the evaluated positions with very little error. A t-test with p < 0.01 showed that
the performance of the blackboard system was significantly better than that of the
GMM baseline. It should be noted that under clean conditions the GMM baseline
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Table 1 Localization errors in degrees during the experimental evaluation in Schymura et al.
(2014). The blackboard system incorporating hypothesis-driven feedback clearly outperforms the
Gaussian-mixture (GMM) baseline in both clean and noisy conditions

Target azimuth −90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦ Avg.

GMM baseline (Clean) 0.07 0.15 0.27 0.23 0.14 0.60 0.16 0.23

Blackboard (Clean) 0.04 0.04 0.04 0.03 0.03 0.03 0.04 0.04

GMM baseline (Noisy) 8.32 17.63 29.94 0.73 6.87 11.41 7.94 11.84

Blackboard (Noisy) 0.13 0.80 1.43 0.04 0.41 0.42 0.25 0.50

was able to handle front-back ambiguities without head rotation. This is largely
because the GMMs captured the azimuth-dependent patterns of binaural cues across
all frequency channels. The subtle spectral difference between front and back was
realized by the Kemar HRTFs used in the simulation and thus implicitly modeled
by the system.

When diffuse noise was present, the localization errors of the GMM baseline
increased significantly across all target positions except for 0◦ azimuth. The perfor-
mance was particularly bad for the GMM baseline at azimuth positions where the
front-back confusion was strong, in particular, 30◦ and 60◦ at both sides. The per-
formance of the blackboard system, however, was generally robust in the presence
of the diffuse noise and was significantly better than the baseline. The top-down
feedback that allowed head rotation helped the system resolve most ambiguities and
the improvement over the baseline was consistent across all the target positions.

3.6 Summary

This chapter presented a review of the blackboard architecture proposed by Schy-
mura et al. (2014),which extended the conventional blackboard designwith graphical
models and hypothesis-driven feedback mechanisms. It serves as a proof-of-concept
for high-level auditory scene analysis frameworks,which, based on a graphicalmodel
representation, can iteratively develop an “understanding”—that is, an internal, inter-
pretable description—of an auditory scene. While results were shown for a small toy
example, namely the localization of a single acoustic source, the framework allows
inference in a wide range of dynamic Bayesian networks, supporting many types of
knowledge sources and inference strategies.

4 Current and Future Developments

In the previous section, a basic blackboard architecture designed for a simple
auditory-scene-analysis task was reviewed. This was intended to outline the core
components needed for implementing a functioning blackboard system for such
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tasks, serving as a basis for further extensions. The model of Schymura et al. (2014)
was extended within the Two!Ears project1 project, to create a flexible software
architecture for active auditory scene understanding utilizing a mobile robotic agent.
Notable extensions and improvements to the model presented in this chapter were
the incorporation of sound type-detection (Trowitzsch et al. 2017), the refinement
of source-localization estimates via spectral source models (Ma et al. 2018), as
well as approaches for active exploration of acoustic scenes—see Bustamante et al.
(2015, 2016a, b); Bustamante and Danès (2017); Schymura et al. (2017). A further
notable implementation of the blackboard paradigm that was developed within the
Two!Ears project consortium is the virtual test environment for intelligent binaural
models—compare Chap.17, this volume. Such extensions can be implemented as
additional knowledge sources which can then simply be added to the existing black-
board architecture. This allows for an adaptation of the blackboard system to specific
tasks by adding suitable knowledge sources to the pool of already available ones.
This is a clear advantage of blackboard systems over conventional machine-learning
techniques, which are mostly suited to solve a specific task and cannot that easily be
adapted to completely different tasks. However, recent developments in the field of
machine-learning have also considered flexible architectures, which do not strictly
follow the traditional blackboard paradigm but exhibit many similarities, especially
regarding the external-control mechanism that is realized by the scheduler.

A prominent example are neural Turing machines proposed by Graves et al.
(2014).Neural Turingmachines are a specific implementation of neural networks that
can access external memory. This memory access is controlled externally, in anal-
ogy to a conventional Turing machine. However, the proposed framework can be
optimized via standard gradient descent, as the memory access is designed to be dif-
ferentiable. A long short-termmemory (LSTM) network is used as a control instance
to focus the networks attention on specific areas in the external memory. Graves et al.
(2014) report that the proposed system is able to infer simple algorithms, for instance,
copying and sorting from examples. Even though neural Turing machines are fun-
damentally different from traditional blackboard architectures in most respects, the
external control (“scheduler”) of thememory access (“blackboard”) are conceptually
similar. This might also serve as a starting point for further research regarding black-
board architectures, where the scheduler might be represented by a neural network
instead of using rule-based heuristics.

An extension to neural Turing machines are differentiable neural computers as
proposed by Graves et al. (2016). In comparison to neural Turing machines, differ-
entiable neural computers have greater flexibility in handling memory access and
exploit a control mechanism that explicitly considers the order of memory read and
write events. The underlyingmodel is also fully differentiable, hence it can be trained
via gradient descent. Differentiable neural computers can solve challenging tasks
like processing complex data structures and symbolic-reasoning tasks—as were also
considered during the early development of blackboard systems.

1For detailed information, please refer to www.twoears.eu [last accessed August 24, 2019].

http://dx.doi.org/10.1007/978-3-030-00386-9_17
www.twoears.eu
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Recent developments in the field of machine learning, especially regarding
progress concerning deep learning and neural networks provide interesting start-
ing points for further investigations in the domain of blackboard architectures. Even
though the classicalmodels proposed in this field are not directly applicable to current
tasks inmachine learning, there aremany possibilities for further research. Especially
with the advent of emerging technologies in deep learning, probabilistic blackboard
systems might serve as a starting point for designing systems that combine the best
of both worlds.
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Formation of Three-Dimensional
Auditory Space

Piotr Majdak, Robert Baumgartner and Claudia Jenny

Abstract Human listeners need to permanently interactwith their three-dimensional
(3D) environment. To this end, spatial hearing requires efficient perceptual mecha-
nisms to form a sufficiently accurate 3D auditory space. This chapter discusses the
formation of the 3D auditory space from various perspectives. The aim is to show
links between cognition, acoustics, neurophysiology, and psychophysics. The first
part presents recent cognitive concepts for creating internal models of the complex
auditory environment. Second, the acoustic signals available at the ears are described
and the spatial information they convey is discussed. Third, neural substrates form-
ing the 3D auditory space in the brain are explored. Finally, the chapter elaborates
on psychophysical spatial tasks and percepts that are only possible because of the
formation of the auditory space.

1 Introduction

A loud roar—do you turn around? Decide quickly: fight or flight? This archaic
situation was typical for human ancestors still living in their natural habitats. Never-
theless, it still applies to the modern human: You hear the expression “Hi!” and turn
around—a good friend has just recognized you on the street, but before you change
your walking direction, a car honk lets you look back—you have just missed that
car crossing your path. Situations like this one make it obvious: In the jungle and
on the street, humans need a good understanding of the 3D world through auditory
perception. To this end, the human brain creates maps of the environment. Towards
this goal, the auditory system helps in answering the question: “What is where?”

This chapter reviews recent advances in understanding the formation and the
usage of the auditory space by human listeners—from the cognitive, acoustic, neuro-
physiological, and psychophysical perspectives. Section2 describes the problem and
elaborates on the potential solutions given by researchers from cognitive psychology.
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The perceptual outcome depends on the quality with which the acoustic spatial infor-
mation is conveyed, thus, Sect. 3 highlights how this information is encoded within
binaural signals. The solution to the problem is reflected in the neural processes
of the auditory system, and thus, in Sect. 4, the neural processing of the acoustic
signals is described briefly while focusing on the extraction of spatial information.
Finally, the results of these processes manifest in the variety of spatially oriented
tasks human listeners can complete. Hence, Sect. 5 reviews various psychophysical
spatial tasks demonstrating the human ability to utilize the understanding of the 3D
auditory world.

2 Cognition: Representing the World

From the cognitive perspective, understanding the world involves the formation of a
mental representation of the environment. Understanding here means answering the
question: “What is where?” However, sound is ephemeral, namely, it is happening
and short-lived; it is an effect of events, providing information on what happens
right now, instead of a long-lasting description of objects’ properties. Thus, the
information carried by the sound not only needs to be stored for its processing,
but it also requires consideration of various time scales. On a short time scale, a
creak might mean someone stepping on the floor. Many similar creaks, however,
would rather indicate someone opening a door. The ephemeral property of sound
requires the auditory system to address the question: “What is happening?” But even
answering this question can only help in understanding a static environment. The
world is dynamic and full of interaction. In order to decide on its actions, the auditory
system has to provide a basis for the prediction of “what will happen next?”

2.1 The Ill-Posed Problem

Auditory scenes consist of objects producing sounds, as illustrated in Fig. 1a. Per-
ception is a process of transforming sensory information to higher levels of repre-
sentation, as a means to represent these objects and their properties mentally. Here,
an auditory object can be thought of as a perceptual construct linking a sound with a
corresponding source (Griffiths and Warren 2004). Sitting in a park, hearing a honk,
a word, and a chirp would let people identify auditory objects representing a car,
a human, and a bird. Auditory objects have a spatial position as a property among
other non-spatial properties. Now, when the human starts to speak, and the bird starts
to sing, these two objects become sources of acoustic streams. Their mixture arrives
at a listener’s ears, and the job of the auditory system is to separate them into two
auditory streams, which can be defined as a series of coherent events grouped and
attributed to a single auditory object. Hence, the formation of the auditory space
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(a)

(b)

Fig. 1 a Perception as a mental representation of the environment based on sensation. The objects
(left) produce sounds that are perceived by a listener (center) and are represented in an internal
model (right). b Active inference. Sensations (top) of signals from the environment (left) are used
to update the internal model predictions (right) on the hidden states of the environment. The model
predictions drive actions (bottom) which allow the listener to interact with the environment

depends on the capabilities of the listener to form auditory objects and estimate their
spatial properties.

Most of the sound sources are usually located outside of the body, so the formation
of the auditory space can be seen as a perceptual task aiming at the reconstruction
of the external (or distal) state of affairs (Epstein and Rogers 1995). Unfortunately,
this is an ill-posed problem emerging from the fact that the information available at
the ears is insufficient to reconstruct a unique state exactly because a given binaural
signal, arriving at the ear drums, can originate from an infinite number of sound-
producing events, all of which have produced exactly that signal. As a consequence,
this ill-posed problem results in ambiguity when creating auditory objects.
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A famous example showing the difficulty of mapping a sound to the source pro-
ducing that sound is the estimation of a 2D surface based on the sound wave only.
This problem has been posed as: “Can we hear the shape of a drum?”, and it has
been formally shown that for many shapes, one cannot completely differentiate the
shape of the drum because a unique reconstruction of the plane geometry from the
waveform is impossible (Gordon et al. 1992). Fortunately, the acoustic environment
is full of redundancy and recent developments in mathematical tools show the variety
of tricks the auditory system may potentially use when it comes to utilizing acoustic
redundancy to better solve inverse problems. For example, with a knownmonophonic
signal, the shape of any convex room can be estimated just from the delays between
the early reflections in the room impulse response (Moore et al. 2013). With four
acoustic sensors, the room shape can be estimated by relying on the delay of just the
first reflections (Dokmanić et al. 2013), showing the benefit of increased redundancy
by using multiple sensors. Thus, it is not surprising that binaural as compared to
monaural hearing allows the auditory system to better retrieve the spatial properties
of the environment, helps to orient itself within the environment, and even improves
speech perception by providing interaural information —see Bronkhorst (2015) and
Clapp and Seeber (2020), this volume.

2.2 Predictive Coding and Active Inference

Despite the redundancy in the binaural signal, solving the ill-posed problem requires
certain assumptions in order to reduce the infinite number of potential solutions
(e.g., Friston 2012). Generally, these assumptions are driven by the goal of efficient
interaction with the environment sampled by the sensors. At the end of the cognitive
process, the solution needs to provide a basis for decisions that trigger the execution
of appropriate actions. If the vast amount of sensory informationwere processed from
scratch each time an action was required, most of the actions would happen too late.
Faster processing can be achieved with predictive coding by introducing an internal
model (Francis and Wonham 1976) that predicts the external state of affairs and is
continuously adapted based on incoming sensory data, as shown in Fig. 1b—for a
detailed review on predictive coding, see Aitchison and Lengyel (2017). Such mod-
els have been introduced in motor-control theory and robotics to describe reaching
movements, to plan movement trajectories, and to model imagery—Grush (2004)
reviews and discusses this topic extensively. In cognition, the term perceptual infer-
ence has been coined (Hinton and Ghahramani 1997).

In predictive coding, the more realistic the model predictions are, the more effi-
ciently actions can be performed. In other words, the objective of the internal model
is to minimize surprise that then requires only tiny corrections to be applied to the
performed actions. In that sense, the process of cognition can be considered as form-
ing a generator creating hypotheses that are tested against the pre-processed sensory
information (Gregory 1980). The free-energy principle has been proposed to explain
how the cognitive system can efficiently create a model predicting the environment
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while restricting itself to a limited number of states (Friston et al. 2006). Free energy,
a concept with a long tradition in thermodynamics (Helmholtz 1954), is the differ-
ence between the internal energy of a system and the energy required to describe
the actual states of that system. From a cognitive perspective, free energy scores
surprise and uncertainty about a belief. Hence, less free energy stands for a more cer-
tain and efficient system description. Based on the sensory information and model’s
beliefs about the environment, a cognitive model creates internal states that mini-
mize surprise and thus the free energy. The free energy acts as a prediction error
and is minimized by choosing the prediction that is most plausible and as such most
efficiently drives the motor system. The internal states of the model are then updated
based on the new sensory information about the hidden states of the environment.
This process has been termed active inference—see Friston et al. (2016) for more
details on this topic.

In active inference, a model’s beliefs represent rules describing plausible envi-
ronments. They can be learned throughout the development of an individual (Bhatt
and Quinn 2011). The learned rules limit the potential solutions to plausible sce-
narios, having several implications. First, they sometimes fail, yielding unrealistic
representations. Illusions, i.e., distortions of the perceived physical reality, are great
examples of the consequences of plausible but wrong assumptions while solving
the ill-posed problem (e.g., Carbon 2014). Understanding their origin can help to
uncover the underlying processes in auditory perception. Second, these limitations
reduce the vast amount of sensory information to a smaller number of informa-
tional units along the ascending pathways of processing. In this case, a small and
discrete number of auditory objects with a finite number of properties are created
from a continuous binaural signal. Thereby, the frame of reference is transformed
from the head-centered binaural information to world-centered information about
the environment (Schechtman et al. 2012).

Interestingly, this whole process can be seen as a nonlinear extension of com-
pressed sensing, a signal processing technique for efficiently acquiring and recon-
structing a signal by finding solutions to underdetermined linear systems (Donoho
2006). In compressed sensing, the constraint of sparsity is chosen in order to find
a solution to the underdetermined system. Compressed sensing is widely used in
signal processing, but it requires a linear relation between the observation and solu-
tion. Active inference, instead uses variational Bayesian statistics, to infer the unob-
served variables based on an analytical approximation of their posterior probability
(beliefs)—compare Friston et al. (2016).

2.3 Auditory Scene Analysis

In the end, it is all about reducing the amount of sensory information. A widely
accepted concept describing the reduction of auditory information to discrete infor-
mational units is termed auditory scene analysis (ASA, Bregman 1990, and van de
Par et al. 2020, this volume). ASA assumes that the auditory system partitions the
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acoustic signal into auditory streams that each refer to an auditory object.While good
separability between fore- and background streams was originally believed to con-
stitute the goal (Bregman 1990), more recent models consider their predictability as
the main motivation for grouping (Winkler et al. 2009). Grouping mechanisms seem
to rely on auditory features like onset, pitch, spectrum, and interaural disparity and
can act simultaneously and sequentially. Simultaneous grouping assumes that fea-
tures are integrated to a foreground property—for example, harmonics coming from
the same instrument are integrated to a single pitch—and features deviating from
the expected and learned patterns are segregated and form a background. Sequential
grouping integrates and segregates auditory objects and streams, depending on their
temporal properties. This grouping effect can even override the result of simultane-
ous grouping. For example, two sounds having different interaural disparities, when
presented simultaneously, can be grouped into a single auditory stream and can be
perceived as a single auditory object appearing at a single spatial location. But, the
same sounds, embedded in an acoustic stream having the interaural disparity corre-
sponding to one of these sounds, can be perceived as two auditory objects appearing
at two distinct spatial locations (Best et al. 2007).

Bregman’s ASA concept of the “old-plus-new” strategy for competitive processes
also determines how an auditory stream is formed (Bregman 1990). These processes
were originally derived with respect to the laws of theGestalt theory, which provides
a description of the ability to acquire plausible perceptions from the sensory input
(Koffka 1935). The main assumption of the Gestalt theory is that perception is based
on grouping the sensory information to perceptual units according to the laws of
proximity, similarity, closure, common fate, continuity, good form, and experience.
Even though the Gestalt theory has difficulties in providing insights into the neural
processes leading to perception (Schultz and Schultz 2015), the laws of the Gestalt
theory helped in constraining the ambiguity resulting from the ill-posed problem of
perception. These neural processes are based on heuristics acquired through learn-
ing and experience (Shinn-Cunningham2008). Further, these processes are top-down
mechanisms and can be modulated by other modalities like vision (yielding ventrilo-
quism or self-motion; Kondo et al. 2012) or by attention (Hill andMiller 2010; Deng
et al. 2019).

Depending on the relevance of top-down modulations, neural processes can be
distinguished as being reflexive or reflective—see Blauert and Brown (2020), this
volume, on their definitions and context.Reflexive processes result in speedy reactions
(with latencies below 100 ms), which can usually not be suppressed (Curtis and
D’Esposito 2003). They involve the startle reflex or orienting reflex (Sokolov 2001),
and do not require, but can be modulated by attention. They can be used to trigger
movements toward auditory sources or intensify the processing of cues that signal
approaching objects (Baumgartner et al. 2017). Thus, they are vital in protecting
humans from hazardous events. In contrast, reflective processes have longer latencies
and require top-down attention, namely, a controlled bias in the preference for and
processing of the information streams—see Knudsen (2007) for a review on this
topic. Attention is usually thought to be a single, unidirectional top-down process
representing task-specific goals and expectations (Awh et al. 2012). However, it
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can also be modulated through a bottom-up mechanism by various components of
a stimulus (Arnal et al. 2015). Reflective or attentional processes require working
memory to develop and test hypotheses based on the salience in a stimulus (Carlile
and Corkhill 2015). A similar distinction between reflexive and reflective processes
has also been proposed for speech category learning (Chandrasekaran et al. 2014)
and to describe social behavior (Strack and Deutsch 2004).

While the reflexive processes in auditory processing have been widely inves-
tigated, the actual reflective processes have not been completely understood yet.
Thus, it is not surprising that mechanisms underlying ASA have been widely dis-
cussed from different perspectives (e.g., Bizley and Cohen 2013; Szabó et al. 2016;
Micheyl et al. 2007; Nelken et al. 2014; Snyder and Elhilali 2017) and they build
a foundation for what is known as computational auditory scene analysis (CASA,
e.g., Wang and Brown 2006).

In summary, the free-energy principle provides a solid statistical framework for
deriving the external state of affairs, and ASA provides a valid conceptual framework
for the cognitive processing of auditory information. The particular result in terms of
a realistic representation of the world depends on the quality with which the binaural
signal conveys the spatial information about the auditory objects. Thus, the following
section describes the acoustic spatial information encoded in binaural signals.

3 Acoustics: Formation of Binaural Signals

The sounds arriving at the ear drums are acoustically filtered versions of the sounds
produced in the environment. The filtering results from the interaction of the sound
field with the reverberant space and the listener’s body parts such as the head, torso,
pinnae, and ear canals. This section focuses on the acoustic effects of that filtering.

In acoustics, sound fields are commonly described in Cartesian or spherical coor-
dinates. Aiming at disentangling the different cues contributing to the auditory local-
ization of a sound source, a special form of spherical coordinates was established,
the so-called interaural-polar coordinate system, as shown in Fig. 2a. In this system,
the coordinate origin is located midway between a listener’s ears. The poles of the
spherical system are aligned with the interaural axis connecting the two ears. The
lateral angle α describes the lateral position of a source. It ranges from −90◦ (right
side) to +90◦ (left side) and selects a sagittal plane, that is, a plane parallel to the
median plane. The lateral angle also corresponds to the azimuth angle of the frontal
half of the the horizontal plane. The polar angle β describes the position of the source
along the sagittal plane and ranges from −90◦ (bottom) via 0◦ (eye-level, front), 90◦
(top), and 180◦ (eye-level, back) to 270◦ (bottom again). Together with the distance
r , lateral and polar angles are used throughout this chapter to describe the spatial
position of sound sources.
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Fig. 2 a Interaural-polar coordinate system with the lateral angle α, polar angle β, and distance r ;
b Magnitude spectra of far-field left-ear HRTFs along the median plane as a function of the polar
angle; c Energy-time curves of far-field left-ear HRIRs along the lateral angle for the front and back
of the horizontal plane; dMagnitude spectra of near-field left-ear HRTFs for the rightmost direction
of the horizontal plane as a function of distance, compensated for the distance-related broadband
magnitude decrease of a point source approximating the sound source

3.1 Monaural Features

For a sound coming from a particular direction, its filtering can be captured by the
binaural pair of head-related transfer functions (HRTFs). While the filtering of the
sound happening in the ear canal does not depend on the incidence angle of the
sound within the normal hearing range, the filtering by the head, torso, and pinnae
creates direction-dependent changes to the received sound. Spectral changes are
especially apparent for a sound moving along the median plane of the listener, as
shown in Fig. 2b. There is a clear relationship between changes in polar angle and
the resulting spectrum; notches and peaks arise as a consequence of cancellation
and amplification, caused by various body parts. The reflections of the torso create
spatial frequency modulations up to 3kHz (Algazi et al. 2001a). The head shadows
frequencies above 1 kHz and above 6 kHz, the effect of the pinna is most prominent
(Blauert 1997) and reflections at the pinna create distinct peaks and notches. For
example, the directionality of the pinna towards the front causes high-frequency
attenuation for sounds coming from behind the listener. This manifests in increased
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energy above 8 kHz for the frontal sound positions. Further, an increase in sound
elevation changes the varying delay between the direct sound and its reflection along
the pinna concha. This manifests in an upward shift of the spectral notches usually
found between 6 and 10kHz.

In general, the individual shape of the pinna is the reason for a considerable
variation in theHRTFs among listeners, as the pinna’s geometry largely varies among
the human population (Algazi et al. 2001a).While HRTFs are similar across listeners
at frequencies up to 6 kHz, differences as large as 20 dB have been found at higher
frequencies (Møller et al. 1995).Listener-specificHRTFs canbe acquiredbyapplying
system identification approaches on acoustical measurements—see Majdak et al.
(2007) for a review on this topic. The acoustic measurement is a resource-demanding
procedure when it includes many positions in 3D space. It takes tens of minutes,
even when sophisticated measurement methods are applied. HRTFs can also be
calculated based on a geometric representation of the listener (Katz 2001; Kreuzer
et al. 2009); however, the demands on geometric accuracy and computational power
are high (Ziegelwanger et al. 2015). Recent developments in the acquisition of the 3D
geometry from photographs using photogrammetric reconstruction (Reichinger et al.
2013) and numeric algorithms (Ziegelwanger et al. 2016) seem promising in easing
the acquisition of listener-specific HRTFs in the future. While HRTFs have been
measured for a long time for research purposes, their exchangeability was limited
because of missing standards for their representation. The spatially oriented format
for acoustics (SOFA) was created (Majdak et al. 2013a) as a standard of the Audio
Engineering Society (AES69-2015 2015) in order to simplify their exchangibility
and promote their usage in consumer applications.

HRTFs can also be analyzed in the time domain by applying the inverse Fourier
transformation on each HRTF yielding head-related impulse responses (HRIRs), as
shown in Fig. 2c. While both terms, HRIRs and HRTFs, can be used to describe the
directional filtering interchangeably, the particular choice depends on the focus on
time and frequency domain, respectively. HRIRs usually decay within the first 4 ms
and show the direction-dependent delay between the sound source and the ear. The
temporal position of the first onset in an HRIR can be considered as the broadband
time-of-arrival (TOA). Based on the approximation of the listener’s head as a sphere
(Algazi et al. 2001b), the TOA can be described as a spatially-continuous function
requiring only a few parameters, such as the direction-independent TOA, the head
radius, and the ear position (Ziegelwanger and Majdak 2014). Even though HRTFs
show a nonlinear spectral phase depending on the sound direction, the HRTF phase
spectrum has been represented by a combination of the minimum phase derived from
the HRTF amplitude and the linear phase corresponding to the TOA (Kulkarni et al.
1999).

HRTFs also vary with distance, especially in the near field, as shown in Fig. 2d.
This is due to the contribution of the head shadow and changes of the pinna-reflection
paths (Brungart and Rabinowitz 1999). The nearer the source, the less diffraction
around the head occurs at lower frequencies, and the less intense are the reflection
patterns of the pinna. Low-frequency attenuation of up to 20 dB is a prominent spatial
feature encoding distance for near sounds.
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The sound source itself might be a source of spatial cues because the HRTF
filtering is commutative and the auditory system has no chance to distinguishwhether
the evaluated spectrum originates from the sound source or is an effect of filtering by
an HRTF. For example, a narrow band sound can have a spectral similarity to a signal
of a broadband source filtered by an HRTF, and a frequency sweep of notched noise
can be similar to a signal created by a source moving in elevation. Both observations
raised the hypothesis of directional frequency bands (Blauert 1969). Alternatively,
sounds with spectral ripples may overlap with the monaural spectral features of
HRTFs and interfere with the derivation of directional information from the binaural
signal (Macpherson and Middlebrooks 2003).

3.2 Interaural Cues

Having two ears allows listeners to probe the sound field at two different spatial
positions. Thus, listeners have access not only to monaural features but also to the
combination of the left- and right-ear features, the so-called interaural cues. The two
major interaural cues are the interaural time differences (ITDs) and interaural level
differences (ILDs). Their importance for sound localization was recognized very
early (Strutt alias Lord Rayleigh 1876). Later, the general dissimilarity of the signals
between the two ears expressed as binaural incoherence and spectral ILDs, has been
found to be important—see Blauert (1997) for more details on this topic.

3.2.1 Interaural Signal Similarity

The similarity between the signals of the listener’s two ears can be described by the
interaural cross-correlation function rLR of the two signals xL and xR as a function
of the interaural lag τ (Goupell and Hartmann 2006):

rLR(τ ) =
∫ T
−T xL(t)xR(t + τ ) dt

√∫ T
−T x2L(t1) dt1

∫ T
−T x2R(t2) dt2

. (1)

Also, other terms have been used to describe binaural similarity, for example, inter-
aural coherence function (the Fourier transform of the interaural cross-correlation
function), binaural incoherence, or interaural decorrelation. The interaural cross-
correlation function rLR(τ ) can be computedwith different integration timewindows
T ; often, a time window of about 1 ms is used to consider the naturally occurring
ITDs. The function rLR(τ ) varies between −1 and 1 and typically has a single peak.
The lag of that peak corresponds to the broadband ITD and is mostly determined by
the lateral position of a sound source. The height of that peak, namely, max(rLR),
is usually known as the interaural cross-correlation coefficient (IACC) and demon-
strates the best interaural similarity of the binaural signal, as shown in Fig. 3a. The



Formation of 3D Auditory Space 125

Fig. 3 a Interaural cross-correlation coefficients (IACCs) of a single listener’s HRTFs for various
directions when looking at the listener from the front. b IACCs along the median plane calculated
for a listener population. c IACCs along the horizontal front (gray) and rear (green) half-planes
calculated for a listener population. The population consisted of 97 listeners from the ARI database
(Majdak et al. 2010). The dots show the individual IACCs, the line and gray area shows the total
average and ±1 standard deviation, respectively, across the population

terms coherence and IACC are often used interchangeably, however, note the dif-
ference to the term correlation coefficient, that refers to rLR(0). Even in the median
plane, free-field IACCs are typically below one, as shown in Fig. 3b, because pinnae
are not perfectly symmetrical which yields tiny interaural differences even in the
median plane. In the horizontal plane, the IACC decreases with increasing lateral
angle of the sound source, with typical IACCs around 0.4 for the most-lateral direc-
tions, as shown in Fig. 3c. Note that this is a broadband consideration of the IACC
and the interaural dissimilarities may be different and contribute differently across
frequencies.

3.2.2 Interaural Time Differences

When dealing with ITDs, people usually refer to the broadband ITDs. However, the-
oretical considerations show that low-frequency ITDs are 50% larger than those at
higher frequencies (Kuhn 1977) with a transition frequency around 1.5kHz. Thus,
given the frequency dependence and thus the limited interaural coherence, a broad-
band ITD is only an approximation of spectral delays appearing between the two
ears. Consequently, various methods have been proposed for the estimation of ITDs.
Figure4a shows measured ITDs as a function of the lateral angle obtained from the
HRTFs of a listener by using various methods. In the time domain, methods either
evaluate the ITD between the first onsets (MAX in Fig. 4a), centroids (CTD), or the
lag of the coherence function peak of an HRIR compared to its minimum-phase ver-
sion (MCM). In the frequency domain, the ITD can be calculated from the spectral
average of the interaural group delay (AGD). The best estimationmethod depends on
the application. While ITDs between the onsets (30dB below the peak) of low-pass
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filtered HRIRs were found to best correspond with results from a psychoacoustic
method of adjustment (Andreopoulou and Katz 2017), the MCMmethod was shown
to provide highest geometrical consistency (Ziegelwanger and Majdak 2014). From
the geometrical perspective, there is a long history of various ITD models based on
representations of the head as a circle, sphere, ellipsoid, and polynomial function—
see Xie (2013) for a review on this topic. As an example, Fig. 4a also shows the ITDs
reconstructed by the spatially continuous 3Dmodel of TOAs using theMAXmethod
(Ziegelwanger and Majdak 2014).

The maximum ITD depends on the listener’s head diameter and the calculation
method and has a population average of around 850μs (Algazi et al. 2001a). ITDs in
that range imply that sounds with frequencies below 1.2kHz undergo an interaural
phase shift of less than 180◦ when traveling from one ear to the other, and the interau-
ral phase difference can uniquely encode the source direction. At higher frequencies,
sounds have wavelengths smaller than the head diameter yielding interaural phase
differences larger than 180◦ and thus ambiguous ITDs. Hence, ITDs in stationary
high-frequency tones do not provide unique information about the sound’s lateral
direction. However, in the case of amplitude-modulated and multi-tone sounds, the
timing of the envelopes may also be informative even at higher frequencies, yielding
envelope ITDs as a useful acoustic feature (Henning 1974).

Yet, broadband ITDs do not provide much information about the sound’s spatial
position other than its lateral direction. Figure4b shows iso-ITD contours derived
from an exemplary HRTF set. The contours approximate sagittal planes, demon-
strating that ITDs are not able to encode the sound’s direction on a sagittal plane
including the lack of discrimination between front and back. This finding is not
new: “The possibility of distinguishing a voice in front from a voice behind would
thus appear to depend on the compound character of the sound in the way that it
is not easy to understand, and for which the second ear would be of no advantage”
(Strutt alias Lord Rayleigh 1876). Nowadays, the spatial ambiguity based on the
ITD is called the cone of confusion, or torus of confusion if also distance is involved
(Shinn-Cunningham et al. 2000).

3.2.3 Interaural Level Differences

ILDs arise because of two effects. First, the head is an obstacle, creating a shadow for
the contralateral ear, and thus ILDs. Depending on the relation between the sound’s
wavelength and the listener’s head size, ILDs increasewith both frequency and lateral
angle, as shown in Fig. 5a. While low-frequency ILDs span a range of ±10dB and
increase smoothly for more lateral sounds, high-frequency ILDs exhibit a span of
±20dB, with a more complex relation to the lateral angle.

Second, the sound intensity decreases with the distance to the source, creating
for near-field sounds, an ILD even at frequencies for which the head is acoustically
transparent, as shown in Fig. 5c. Such low-frequency near-field ILDs become signif-
icant for distances below 0.5m (Brungart and Rabinowitz 1999) and can even reach
values beyond 20dB.
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Fig. 4 a ITDs for frontal directions at the horizontal plane, estimated by various ITD extraction
methods (see text). b Iso-ITD contours calculated with the MAX method; view at the left ear along
the interaural axis

Fig. 5 aFrequency-dependent ILDs for sounds along the frontal horizontal half-plane.bBroadband
iso-ILD contours; view at the left ear along the interaural axis. c Frequency-dependent ILDs for the
most-left direction in the horizontal plane as a function of distance. Frequency dependence shown
by filtering each HRTF by a typical Gammatone filter

Similar to the front-back ambiguity of the ITD, ILDs do not vary consistently
with the polar angle, as shown in Fig. 5b. Thus, ILDs do not encode source directions
along the sagittal planes well either, further contributing to the cone of confusion
based on interaural features.

3.3 Reverberation

So far, only the simplest case of binaural signals was addressed: signals originating
from a single sound source in the free field. However, most realistic binaural signals
originate from reverberant spaces like rooms. Due to reflections, the binaural signal
contains the direct signal overlapped with filtered versions of itself. The filtering
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consists of a broadband delay (because of the longer propagation path) and spectral
changes (because of the frequency-dependent absorption of the reflecting surfaces
and air propagation). Each reflection yields a comb filter in the frequency domain
with the spectral density of ripples depending on the delay between the direct and
reflected sound.

In realistic situations, often thousands of reflections are created by just a single
source. Beginning with the clearly distinguishable early reflections, their temporal
density increases such that after some time they become a diffuse field, namely, a
soundfieldwith a statistically constant directional distribution. In addition to specular
reflections, diffraction and diffusion contribute to the complexity of the reverberant
sound field. Acoustically, the effect of reverberation can be described by the binau-
ral room impulse response (BRIR), which is basically the binaural pair of HRIRs
measured in a room of interest. While a binaural pair of HRIRs are given for the
relative relation between the source and listener’s position, BRIRs further depend on
the absolute positions of the source and listener in the room. As a consequence, in
BRIRs, the source-position change is not equivalent to the orientation change of the
listener. Hence, a BRIR is a function of at least the source position, listener position,
listener orientation, room acoustics, and maybe even source orientation.

The position-dependent effect of reverberation produces binaural signals that
are more different than those in free field. Accordingly, the instantaneous inter-
aural similarity in the binaural signal and thus the interaural coherence decreases
(Hartmann et al. 2005). For frequencies above 500Hz, the IACC can even approach
zero, depending on the position of the source and listener in a room (Hartmann et al.
2005). The high-frequency envelopes seem to be less susceptible to the reduction of
the interaural coherence caused by reverberation as compared to the low-frequency
phase differences (Ruggles et al. 2012). Moreover, sound reflections that temporally
overlap with the direct sound create instantaneous interaural fluctuations over the
time course of the BRIRs, mostly manifesting as a time-dependent IACC. Hence,
IACCs calculated over various ranges of time (and frequencies) are widely used in
room acoustics (Mason et al. 2005).

3.4 Dynamic Acoustic Situations

Even though a sound is an ongoing temporal fluctuation of pressure, the spatial
properties of its source do not change unless the spatial configuration between the
listener, source, and their environment changes. In spatial hearing, this situation is
considered as a static one. A widely investigated case is listening to a static sound
source without any head movement. In this situation, the HRTFs do not change over
time. When the source or listener changes the spatial position and/or orientation, the
listening situation is becomes dynamic: the HRTFs change, creating a systematic
temporal change in spatial cues.

In order to describe spatial changes in dynamic listening situations, six degrees of
freedomneed to be considered for each object with a non-omnidirectional directivity:
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three for its orientation and three for its translation. For example, the listener’s head
orientation can be rotated along the horizontal plane (i.e., head yaw), along the
median plane (i.e., head pitch), and it can be tilted along the frontal plane (i.e., head
roll). Further, the listener can move along three spatial dimensions (i.e., translation).
The same applies to sound sources likemusical instruments, talkers, or loudspeakers.

Generally, head pitch changes the orientation of the pinnae relative to the source,
causing a change in monaural cues but not necessarily in binaural cues. In contrast,
head yaw changes the ears’ position in a diametrically opposed fashion, affecting
all interaural cues. Hence, horizontal rotations based on head yaw provide dynamic
acoustic cues allowing the listener to acoustically resolve the cone of confusion
(Perrett and Noble 1995).

The reasons for moving the head due to a sound are manifold. For example, the
reflexive orienting response, namely, gaze shift combined with head movements,
allows the listener to orient to the source for further inspection (Sokolov 2001).
While this reflexive mechanism has been investigated often in the past, not much is
known about intentional listeners’ head movements in acoustic environments (e.g.,
Leung et al. 2016). Nevertheless, head movements help in localizing (McAnally and
Martin 2014) and externalizing (Brimijoin et al. 2013) sounds as well as tracking
auditory targets (Leung et al. 2016)—tasks involved in the formation of 3D auditory
space.

4 Neurophysiology: Coding Auditory Space

Auditory spatial perception is formed via neural activities ascending from the audi-
tory nerve to the cortex and is modulated by descending projections, which are not
discussed here for simplicity up to the level of the cortex. The ascending auditory
pathway can be anatomically separated into the primary pathway and the non-primary
pathways (e.g., Straka et al. 2014). Neurons within the primary pathway process
mainly auditory information and project in a tonotopic organization to the auditory
cortex. The non-primary pathways link a wide constellation of the midbrain, corti-
cal, and limbic-related sites, integrating different types of sensory information and
providing information about environmental changes even during sleep. They are not
fully understood yet (e.g., Lee 2015). Following the ascending neural organization
of the brain, this section describes the contribution of both neural pathways to the
formation of the auditory space.

4.1 Subcortical Pathways: Reflexive Map of Auditory Space

Auditory processing begins in the cochlea where inner hair cells produce neural
activity, as shown in Fig. 6. The cochlea is not a simple passive sensor; it is an active
sensor whose properties are actively modified by the outer hair cells innervated by
efferent connections. The inner hair cells transmit the neural information to spiral
ganglion cells whose axons form the auditory nerve (AN, or cochlear nerve). Each
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Fig. 6 Ascending neural pathways of human auditory processing (see text for more details).
For simplicity, only the unilateral pathway relevant in the formation of spatial representation
of the environment, without hemispheric crossings is shown. Bold lines: the primary audi-
tory pathway. Dashed and dotted lines in the “Where?” section: efferent and afferent copies,
respectively. Bold text in balloons: correspondence to the cognitive model, as shown in Fig.1.

: link to the contralateral pathway (for more details on the binaural processing, see Pecka et al.
2020, this volume);

: link to the visual system;

: link to the somatosensory system;

: link to systems driving actions

of the bilateral ANs projects to the dorsal cochlear nucleus (DCN) and the ventral
cochlear nucleus (VCN) in the medulla of the brainstem. Both nuclei are specialized
in decoding certain features of the signal—see Fig. 1 of Dehmel et al. (2008) for
more details on this topic.
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VCN networks receive input from AN fibers tuned to similar (mostly low) fre-
quencies and comprise bushy and octopus cells, which provide the highest temporal
precision of any neuron in the brain. The VCN cells project to the contralateral (via
the trapezoid body, TB) and ipsilateral superior olivary complexes (SOCs). Given
its superior timing properties, the VCN provides solid a basis for ITD decoding.

The DCN is organized differently as compared to the VCN. Its cells receive inputs
not only from the high-frequency AN fibers but also from the VCN and various effer-
ent types of sensory circuits (somatosensory, reticular, vestibular;Muniak andRyugo
2014). They are similar to those found in the cerebellum, providing evidence for
their capability of complex information processing. Indeed, they form tonotopically
organized networks that perform nonlinear spectral analysis and separate spectral
features according to their expectancy (Singla et al. 2017). This analysis helps in
forming acoustic cues required for sound-source localization in sagittal planes (May
2000). Further, it may play a role in attenuating body-generated sounds such as vocal-
ization or respiration and thus may improve the signal-to-noise ratio of the received
signal (Shore 2005).

Interestingly, DCN cells also receive (mostly inhibitory) inputs from the contralat-
eral CN, indicating integration of binaural information already at this very early level
of neural processing. The projections of the DCN cells are manifold. Many of them
go directly to the inferior colliculus (IC), conveying auditory features including the
information required for sound localization based on monaural spectral cues. Other
projections are more spread and include a direct path to the thalamus, bypassing
the IC, allowing the cortex to prepare for rapid analysis (Anderson et al. 2006), and
a path to the nucleus reticularis pontis caudalis, critical for triggering the acoustic
startle reflex (Meloni and Davis 1998).

In the SOC, information is mostly processed in three primary nuclei: the medial
superior olive (MSO), the lateral superior olive (LSO), and the medial and lateral
nuclei of the TB. The MSO and LSO have a tonotopic organization with bilateral
inputs from the VCNs. While the MSO decodes the interaural phase differences
(IPDs), which represent the ITDs, the LSO is mostly associated with the decoding
of the ILDs (see Pecka et al. 2020, this volume). Combined with the DCN, basic
auditory spatial features like the ITD, ILD, and monaural spectral features are par-
tially decoded at this level of the neural pathway, forming spatial cues available for
processing in further neural structures relevant to auditory space.

In the midbrain, the IC is an obligatory relay for most of the ascending auditory
information, and it combines information from other modalities (Gruters and Groh
2012). Acoustic features are prepared for the formation of auditory objects happen-
ing at the next synaptic level. The IC is divided into at least three parts. The central
nucleus of the IC is exclusively for auditory tasks. It is organized in sheets of isofre-
quency laminae, each of which receives inputs from multiple different nuclei of the
brainstem that permit the decoding of parallel attributes like amplitude and frequency
modulation. Its binaural interactions appear to be quite complex and nonlinear. Nev-
ertheless, there is strong evidence for the processing of spatial information in all three
dimensions. Single neurons have been found showing ITD sensitivity similar to that
found in psychophysical experiments. These neurons enable the decoding of the lat-
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eral angle of a sound using a single neural path without the need for a population
code (Skottun et al. 2001). Single neurons have also been found to demonstrate bet-
ter temporal coding of reverberant stimuli than that of anechoic stimuli (Slama and
Delgutte 2015). This form of de-reverberation of the signals may not only improve
robustness in sound recognition but may also be used to estimate the distance of a
sound source by enabling comparisons between direct and reverberant sound energy.
Finally, neurons sensitive to simple analogs of HRTF-like spectral shapes have been
found (Davis et al. 2003), which show the presence of cells sensitive to the spectral
cues encoding the polar angle of the sound source. The pericentral and external parts
of the IC receive ascending inputs from the central IC as well as descending inputs
from the somatosensory system, auditory cortex, and other higher brain regions.
Many projections are bilateral and thus create numerous feedback loops enabling
the integration of the processed auditory information with that arriving from other
sensory systems.

From the IC, the information is transmitted via the brachiumof the inferior collicu-
lus (BIN) in parallel to the thalamus and superior colliculus (SC). The BIN seems to
be involved in processing the spatial auditory information where some neurons seem
to prefer the natural alignment of the interaural and spectral spatial cues provided by
a realistic sound of an acoustic source (Slee and Young 2014).

The SC integrates information from multiple modalities, in particular, auditory
spatial with visual and somatosensory information. In the SC, maps of the visual
space, body surface, and auditory space arise from spatially ordered projections from
the retina, skin, and acoustic features. Interestingly, ITDs do not seem to contribute
much to that spatial map. Instead, spatial tuning seems to mostly rely on spectral
ILDs (Slee and Young 2013). Already at this early neural level, the cooperation of
neurons combining multimodal afferent and efferent projections decreases reaction
time, increases stimulus detectability, and enhances perceptual reliabilitywhen infor-
mation from two modalities is required to accomplish behavioral tasks (Kayser and
Logothetis 2007). The SC projects to many motor-related parts of the brain and its
organization can be seen as a dynamic map of motor error (Middlebrooks 2009, pp.
745) with receptive fields reflecting the deviation between the angle of gaze (includ-
ing head and eye position) and the target defined by the sensory visual, auditory,
and somatic inputs. As a whole, the SC plays a critical role in the ability to direct
behaviors toward specific objects by orienting the head and eyes towards something
seen and heard (Klier 2003).

Interestingly, on the one hand, these neural and behavioral abilities seem to remain
active even in the absence of the cortex (Woods 1964). On the other hand, dark-reared
animals showed a lack of the SC auditory map while still being able to perform
auditory-based behavioral tasks (Blatt et al. 1998). Although, the SC demonstrates
the formation of a neural topographic map of the auditory space, the SC ismost likely
not responsible for the creation of the conscious auditory space. Instead, it is a quick
and reflexive way to react to the environment in the form of an orienting response
(Peck 1996). From this observation, one might conclude that the pathway from SOC
via IC to SC forms a reflexive map of the auditory space (see also Yao et al. 2015),
in parallel to the primary ascending path from the IC to the thalamus and cortex.
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4.2 Thalamus and Cortex: Cognition of Auditory Space

The cortex plays an important role in the formation of auditory space because it
groups and segregates spatial and non-spatial features of the sensory information
into streams referring to auditory objects with specific properties—seeMicheyl et al.
(2007) and van der Heijden et al. (2019) for a review. Before reaching the cortex, the
thalamus acts as a hub, relaying information between different subcortical areas and
the cerebral cortex.Also, the thalamus has been shown to provide a critical integration
of other modalities and the preparation of motor responses. Within the thalamus, the
auditory information is processed by themedial geniculate body (MGB) of the ventral
thalamus. The MGB is further split into dorsal, medial, and ventral sections.

The dorsal MGB is organized non-tonotopically. Its auditory responses can be
influenced strongly by non-auditory inputs, and its neurons project mainly to the belt
of the auditory cortex (Bartlett 2013). ThemedialMGB receives various inputs from
the BIN and projects broadly across many tonotopic, non-tonotopic, multimodal,
and limbic cortical areas, terminating in the cortex and amygdala—see Lee (2015)
for a review on this topic. In addition, a direct pathway from the DCN to the medial
MGB bypasses the IC (Anderson et al. 2006). This connection shows lower latencies
than those via the IC, which are advantageous for priming the auditory cortex to
be prepared for rapid analysis and for recruiting the amygdala for rapid emotional
responses such as fear. This rapid emotional analysis potentially triggers the startle
reflex and auditory looming bias (Bach et al. 2008). It is not clear yet how the dorsal
and medial parts of the MGB contribute to the process of forming auditory objects.

The ventral MGB has been investigated more thoroughly. It processes mostly
auditory information, it is driven by projections from the central IC, and it forms a
tonotopically organized relay of binaural (most) and contralateral-only (little) infor-
mation (Lee and Sherman 2010). Its outputs mostly project to the primary auditory
cortex and the rostral auditory area where the acoustic features are further processed
to build auditory objects.

Whenfinally reaching the cortex, the auditory information is spread amongvarious
regions. The most affected regions are the superior temporal gyrus (STG, including
the auditory cortex, AC), inferior frontal cortex (IFC), inferior parietal lobe (IPL),
and premotor cortex (PMC), as shown in Fig. 6. There is strong evidence for the exis-
tence of two largely segregated processing paths, forming the dual-pathway model
of auditory cortical processing, each of them subserving the two main functions of
hearing: “what”, the identification of auditory objects (e.g., recognition of talkers);
and “where”, the processing ofmotion and spatial properties of objects (Rauschecker
and Tian 2000).

The “what” pathway follows the anterolateral route of the AC, which includes the
primary auditory cortex (A1), a rostral area, the lateral and medial belt (including
the caudomedial area), and the parabelt. Moving along the ascending route within
the A1, a transition from the representation of acoustic features (e.g., response to
pure tones) via perceptual features (e.g., pitch and timbre) to category representation
(e.g., auditory objects) happens. Beginning in the A1, pure-tone sensitive neurons
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receive inputs from the ventralMBG and aremostly tonotopically organized. A topo-
graphic representation of the auditory space, like that found in the SC, is mostlymiss-
ing. In contrast, responses of some single A1 neurons result in a 360◦-like panoramic
representation of space (Middlebrooks 2009). The “what” pathway ascends further
to the IFC via other processing areas within the anterolateral STG. These and similar
connections enable further processing of non-spatial properties of auditory objects.
From the IFC, the auditory information is transformed into articulatory or motor
representations in the PMC.

In contrast, the “where” pathway is highly involved in processing the spatial
information retrieved from the auditory stream—see van der Heijden et al. (2019) for
a reviewon this topic.While its exact role is still beingdebated, its processing involves
the separation, location, trajectory, and temporal context of a sound (Ahveninen et al.
2014). The active regions of the “where” pathway are quite diverse; they seem to
follow a posterodorsal non-primary route, with projections from medial and dorsal
MGBvia the posterior STG(including theplanum temporale, i.e., the superior surface
of the STG) to the IPL and dorsal and ventral areas in the PMC (Rauschecker and
Tian 2000). The spatial information, including ITD and binaural coherence, can be
found encoded by a population code in various areas of the posterior STG (Miller and
Recanzone 2009). The spatial information is further processed by the IPL (Arnott
et al. 2004) where spatial features are integrated with information from other sensory
modalities and further projected to the PMC.

Hence, the PMC is activated by the “what” pathway via the IFC, as shown by the
bold lines in Fig. 6, and it is also modulated by the “where” pathway via the IPL, as
shown by the blueish section of Fig. 6. This modulation corresponds to a feedforward
system consisting of an internal predictive model of the environment (located in the
PMC) updated by the multimodal sensory information (ascending from the IPL).
This allows the motor system to quickly adapt to the new sensory situation.

The PMC’s ability to react to predictions based on sensory information is further
underlined by findings showing that the PMC is not only involved during acoustic
stimulation but also duringmusical imagery (Leaver et al. 2009). To this end, thePMC
assembles motor patterns for the potential production of sound sequences. Efferent
feedback from the PMCabout plannedmotor actions (efferent copy; dashed line from
the PMC in Fig. 6), together with the fast and temporally precise afferent projections
from the posterior STG (afferent copy; dotted line to the ILP in Fig. 6) allow the
IPL to compare the spatial auditory information with the predicted motor states, to
decide about the required adjustments of the internal model, and to minimize the
surprise—compare Sec. 2.2. Further efferent projections to the STG (dashed line
in Fig. 6) modulate the process of feature extraction in the STG according to the
changing feature demands—see Rauschecker (2011) for more details.

These considerations show that many cortical regions are involved in process-
ing features of the auditory space and there is no clear evidence for a single region
representing the auditory space in the cortex per se. The spatial information is repre-
sented via the firing rate of the neural population. This process is further modulated
by vision (e.g., Mendonça 2020, this volume), proprioception (Genzel et al. 2016),
and attention (e.g., Deng et al. 2019, and Fels et al. 2020, this volume), indicating
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its reflective nature in the formation of the auditory space. This is in contrast to the
well-localized but reflexive map of the auditory space found at the level of the SC.

The summary presented in this section is just a simplification of all the reflexive
and reflective processes involved. The human brain is an analog, high-dimensional,
recurrent, nonlinear, stochastic, and dynamic system (Dotov 2014). Together, these
processes form the perception that allows humans to complete various spatial tasks.
The following section describes psychophysical spatial tasks, all of them demon-
strating the ability to utilize the understanding of the 3D auditory space.

5 Psychophysics: Listener’s Abilities Given the Perceived
Auditory Space

Spatial auditory cues facilitate both reflexive and reflective behavior. Human psy-
choacoustic studies usually imply reflective behavioral tasks, while reflexive behav-
ior, if not targeted explicitly, is more commonly tested in populations with limited
cognitive abilities such as infants. This section reviews reflective spatial abilities,
ordered by their increasing cognitive complexity.

5.1 Sound Localization

Sound localization describes the (reflective) ability to estimate the spatial position
of the sound source (Middlebrooks 2015). Sound localization experiments are often
conducted in anechoic environments or in a virtual space simulating a free field.
Target sounds are typically presented via loudspeakers or headphones. For the latter,
the auditory space is often simulated by filtering the sounds with HRTFs. The cues
contributing to sound localization are conceptually different for each dimension of
the interaural-polar coordinate system.

Interaural cues facilitate sound localization within the lateral dimension. The
duplex theory describes ITD cues being most useful for low-frequency sounds and
ILD cues for high-frequency sounds, however, localization of broadband sounds is
dominated by low-frequency ITDs (Macpherson and Middlebrooks 2002). Sounds
can be accurately localized depending on their lateral angle. Horizontal minimum
audible angles (MAAs) between two successively presented sounds can be as small
as 1◦ for frontal sources but increase with lateral angles to approximately 10◦ (Per-
rott and Saberi 1990). These thresholds were obtained in free-field experiments using
natural combinations of ITD and ILD cues. Tested in isolation, discrimination thresh-
olds of IPDs (linked to ITDs) also increase by an order of magnitude with increasing
lateral reference angles (e.g., 2◦ at 0◦ reference increasing to 20◦ at 90◦ reference
for a 900Hz tone, Yost 1974), closely resembling the observed MAAs. ITD cues
result from the temporal fine structure at frequencies below approximately 1.4kHz
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and from the temporal envelopes at higher frequencies. Consistent with their small
perceptual weight in the duplex theory, just-noticeable differences (JNDs) for such
high-frequency envelope ITDs are at least twice as large as the JNDs at low fre-
quencies (Bernstein and Trahiotis 2002). ILD JNDs are in the range of 1 dB for
high-frequency sounds and depend on amplitude modulation rates. Effects of tem-
poral modulations on ILD JNDs can be explained based on the interaural difference
in neural discharge rates with no need for a particular binaural adaptation mecha-
nism (Laback et al. 2017). Computational models of lateral-angle localization have
a long history and diversity. Recently, a large-scale attempt to systematically inves-
tigate these approaches has been initiated (Dietz et al. 2017). The auditory system
is at least partly able to adapt to changes in ITD and ILD cues according to visual
and audiomotor feedback (e.g., Trapeau and Schönwiesner 2015). Adaptation after-
effects were only observed in short-term but not long-term studies (Trapeau and
Schönwiesner 2015), indicating that different mechanisms are involved.

Spectral-shape cues are crucial for sound localization within the sagittal dimen-
sion. For lateral-angle localization, they are important in monaural hearing only
(Macpherson and Middlebrooks 2002). Consequently, in order to achieve high spa-
tial acuity as indicated by verticalMAAs as small as 4◦, localization in sagittal planes
requires a bandwidth of 16 kHz (Perrott and Saberi 1990) and limitations down to
8kHz cause marked degradations (Best et al. 2005). Spectral degradations often
result in localization responses biased toward the horizon and led to the concept of
elevation gain in polar-angle localization (Hofman et al. 1998). Spectral-shape cues
are arguably processed within monaural pathways and thus are often referred to as
“monaural spectral cues” although information from both ears is combined follow-
ing a spatially systematic binaural weighting scheme (Macpherson and Sabin 2007):
The contralateral ear contributes less with increasing lateral eccentricity. Because of
monaural processing, localization performance can be affected by frequencymodula-
tions in the stimulus spectrum. Template-basedmodels can explain these interactions
and show how monaural spectral cues, when extracted based on tonotopic gradients,
are rather independent of naturally appearing low-frequency spectral modulations
in the source spectrum (Baumgartner et al. 2014). Localization performance along
sagittal planes is particularly listener-specific, but this variation is hardly explained
by only considering the acoustic factor of listener-specific HRTFs, suggesting large
inter-individual differences in how efficient the auditory system can utilize the acous-
tic information (Majdak et al. 2014; Baumgartner et al. 2016). Further, listeners are
able to learn new spectral-shape cues (Hofman et al. 1998; Majdak et al. 2013b) and
even use them simultaneously with previously acquired cues (Trapeau et al. 2016).

In order to estimate the distance of a source, listeners have access to a broad variety
of acoustic cues like sound intensity, reverberation characteristics (often quantified
by the direct-to-reverberant energy ratio), near-field ILDs, the shape of the stimulus
spectrum, and others—see Kolarik et al. (2016) for a review. The relative perceptual
relevance of these cues and their underlying neural codes are the subject of debate and
aremost probably dependent on the context—see Hládek et al. (2017) for a review on
this topic. Recent studies suggest that the amount of temporal ILD fluctuations and
amplitude modulation depth likely represent reverberation-related cues (Catic et al.
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2015). Moreover, modifications of spectral-shape cues can affect distance perception
(Baumgartner et al. 2017) and familiarization to non-individualized spectral-shape
cues can improve distance perception (Mendonça et al. 2013).

A special case of distance perception concerns distances closer than physically
plausible, namely, inside the listener’s head. Sounds are naturally perceived outside
the head (externalized) whereas sounds reproduced with headphones or hearing-
assistive devices are often perceived internally and appear to originate from inside
the head (Noble and Gatehouse 2006). Sound externalization is not directly related to
the playback device, as free-field signals can be internalized as well (Brimijoin et al.
2013). Sound externalization has been investigated by means of discrimination tasks
between real and virtual sources and/or distance ratings (Hartmann and Wittenberg
1996). Although perceived distance may be only one of many cues to discriminate
between virtual and real sources, the similarity of findings for both paradigms sug-
gests that distance perception is somehow linked with sound externalization. One
could think that the only reason for using the term “sound externalization” instead
of “distance” is that the percept of sound internalization is an available option. At
first glance, however, there seem to be some contradictions between studies focus-
ing on sound externalization and distance perception. For example, decreasing low-
frequency ILDs were associated with increasing distance (Brungart et al. 1999),
whereas ILDs gradually removed from the low-frequency partials of a harmonic
complex (Hartmann and Wittenberg 1996) or decreased from broadband speech
(Brimijoin et al. 2013) were associated with reduced sound externalization. One
might conclude that sound internalization is a default state for the case of missing (or
implausible) auditory cues, for which no plausible internal model of the environment
can be established.

In addition to the static sound localization, self motion introduces dynamic cues
to the binaural signal. This interaction is successfully compensated by mechanisms
responsible for building an allocentric frame of reference (Yost et al. 2015). Listeners
are able to create such allocentric spatial representations evenwithout visual informa-
tion (Viaud-Delmon and Warusfel 2014) and such representations help in resolving
front-back confusions (McAnally and Martin 2014). Source motion also modifies
the binaural signal, but, in contrary to self-motion, source motion does not require
active actions of the listener. Listeners are able to detect source-movement angles as
small as 2◦, depending on source velocity, stimulus duration, and bandwidth—see
Carlile and Leung (2016) for more details on this topic.

Finally, the contribution of the cues to the process of sound localization is not
static. Alterations of the acoustic environment may change the informative character
of a spatial cue and consequently affect its contribution to the process of localization
(Keating et al. 2015). Neural plasticity not only enables such context-dependent re-
weighting of the cues, but also enables adaptation to a new set of spatial cues—see
Mendonça (2014) for a detailed review.
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5.2 From Spatial Impression to Presence

In reverberant spaces like rooms or concert halls, the auditory perception becomes
multidimensional (Cerdá et al. 2009). Listeners are still able to localize the direct
sound even in the presence of early reflections, although such reflections technically
might represent separate auditory objects. The ability to suppress early reflections and
actually to not perceive them as echoes is referred to as the precedence effect—see
Clapp andSeeber (2020), this volume, for review. The delay of the reflections relevant
for the precedence effect depends on the stimulus; it is around5ms for short clicks and
can be up to 30 ms for complex stimuli like speech. The presence of reverberation,
however, introduces other spatial effects, which have been summarized as spatial
impression or spaciousness (Kuhl 1978). They consist of two main components:
apparent source width (ASW) and listener envelopment (LEV, Bradley and Soulodre
1995).

The ASW describes the spatial width of a sound event perceived by the listener.
In headphone experiments, the primary cue for the compactness of the perceived
sound is the IACC. If it decreases, the sound is perceived as a wider image (Blauert
and Lindemann 1986). Interestingly, for narrow-band sounds, listeners are extremely
sensitive to the deviation of a perfectly coherent signal; they can easily discriminate
between signals with an IACC of 1 and 0.99 (Gabriel and Colburn 1981). The current
explanation for such high sensitivity is that even in a slightly incoherent signal,
large instantaneous ITD and ILD fluctuations occur, which can easily be detected
by the auditory system. The perceptual consequence of the fluctuations depends on
their duration, bandwidth, center frequency, and stimulus sound level (Goupell and
Hartmann 2006). The ASW gradually declines with increasing IACC, but it is hardly
affected between IACCs of 1 and 0.99 (Whitmer et al. 2013). For the extreme case
of interaural decorrelation (IACC of zero), the perceived auditory image splits into
two objects appearing in the left and the right ears, respectively.

In reverberant environments where multiple reflections overlap the direct sound,
the ASW is determined by the mid-frequency lateral energy fraction and IACC of
the early arriving sound field, that is, within the first 80ms of the BRIR (Okano
et al. 1998). Deviations of that IACC from 1 contributes to the perceived quality of
concert halls and has been termed the binaural quality index (BQI) of room acoustics.
Interestingly, as the BQI increases, the low-frequency ITDs are more likely to be
disturbed. As a consequence, ITD-based spatial hearing in reverberant situations
seems to rely more on high-frequency ITD cues (transmitted in the signal envelope)
than on low-frequency ITD cues (Ruggles et al. 2012).

LEV describes how much the listener feels to be immersed in the sound field.
LEV depends on the level, direction of arrival, and temporal properties of later (after
80 ms) arriving reflections (Bradley and Soulodre 1995). Late sound arriving from
the side, overhead, and behind the listener correlates strongly with LEV. LEV can be
distinguished from the late sound having non-lateral components (Furuya et al. 2001)
and the late sound arriving from behind and above the listener seems to be important
as well (Morimoto et al. 2001), together suggesting the perception of rooms relies
on an accurate formation of 3D auditory space.
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The ASW and LEV can be predicted with a model based on the BRIRs and
JNDs of the IACC (Klockgether and van de Par 2014). In order to quantitatively
explain the overall perceived quality of concert halls, additional consideration of the
reverberation time is required (Cerdá et al. 2015).

While the ASW and LEV seem to be the major parameters describing the spatial
impression of a room, they can both be seen as parts of a broader concept widely
used in the context of virtual environments. Here, immersion, as a measure of the
psychological sensation of being surrounded (Begault et al. 1998), integrates the
objectively derived LEV and ASW, and further extends to “a psychological state
characterized by perceiving oneself to be enveloped by, included in, and interacting
with an environment that provides a continuous stream of stimuli and experiences”
(Witmer and Singer 1998). In that context, responses to a given level of immersion
have been defined as presence, a measure of the psychological sensation of being
elsewhere (e.g., Slater 2003). Both immersion and presence are essential for the
quality of experience in virtual environments (Möller and Raake 2014). For example,
in headphone-based virtual environments, immersion can be enhanced with the use
of listener-specific HRTFs (Wenzel et al. 1990; Blauert et al. 2000; Djelani et al.
2000; Vorländer and Shinn-Cunningham 2014), being in line with neurocognitive
and neurophysiological studies showing that the auditory system prefers the natural
combination of spatial cues (Deng et al. 2019; Salminen et al. 2015; Slee and Young
2014). Interestingly, immersion seems to be more easily conveyed via audio than
vision because audio operates all around the listener even outside the listener’s field
of view and without exploratory head movements. Immersion and presence seem to
be highly related attributes, and the underlying mechanisms are not fully understood
yet—see Gaggioli et al. (2003) for a review.

5.3 Other Spatially-Related Tasks

Spatial hearing also improves tasks not directly related to the formation of the 3D
space. A famous example is the cocktail-party effect that describes the ability to focus
on and thus to improve the intelligibility of a particular talker in a multi-talker envi-
ronment (Cherry 1953; Bronkhorst 2015). In such a task, the formation of the spatial
world is not required per se, however, the benefit of spatial separation of maskers
from the target, also called spatial unmasking or spatial release from masking, is
clear and has been considered in models predicting speech intelligibility from bin-
aural signals in many situations (e.g., Lavandier et al. 2012). Spatial unmasking can
further reduce cognitive load in conditions providing similar speech intelligibility
(e.g., Andéol et al. 2017). Spatial attention, that is, knowing “where” to focus, further
modulates the effect of spatial unmasking on a very listener-specific basis (Oberfeld
and Klöckner-Nowotny 2016).

Note that spatial unmasking is not only limited to spatially separated targets
and/or noise. Improved speech intelligibility has also been shown in listeners once
they have adapted to the acoustics of the listening room (Brandewie and Zahorik
2010) indicating that while the auditory system can adapt to reverberant spaces, the
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“masker” in spatial unmasking can be both an additional sound source and acoustic
reflections of the same source.

Spatial hearing contributes to other, less-known non-spatial tasks. For example,
spatial impression can increase the emotional impact of orchestramusic by enhancing
musical dynamics—see Pätynen and Lokki (2016) and Lokki and Pätynen (2020).
Looming bias, namely, the phenomenon that approaching sounds are more salient
than receding sounds, can be mediated significantly by sound externalization created
by the acoustic spatial pinna features alone (Baumgartner et al. 2017). These and
similar findings underline the relevance of the formation of 3D auditory space in
people’s everyday life.

6 Conclusions

The formation of the auditory space is one of the cognitive processes required to
understand and interact with the environment. In that process, the auditory system
has to cope with ephemeral acoustic information created by objects surrounding the
listener. Their spatial information, conveyed by the binaural signals, is encoded by
interaural and monaural features along various temporal ranges. The neural auditory
system then creates two representations of the auditory space: a topographically struc-
tured neural network in the superior colliculus, capable of triggering quick reflexive
reactions; and a reflective cortical representation, encoded by neural populations
capable of modulating other cognitive processes through attention. The reflective
representation allows humans to perceive the auditory space and consciously per-
form spatial tasks.

Many concepts have been proposed for cognitive processes involved in the for-
mation of the auditory space. The listener’s interaction with the environment can
be seen as a feedforward system with an internal model predicting the external (or
distal) state of affairs. Feedback coming from the auditory and other senses allows
the listener to compensate for any deviations to the predictions. Given the ambiguity
in the estimation of the external state of affairs from the limited binaural information,
the free-energy principle and the active inference seem to be promising approaches to
explain how cognition restricts itself to a limited number of plausible states. Further
progress in the development of mathematical methods for solving ill-posed prob-
lems and of experimental methods combining psychophysics with neurophysiology
will help to improve the understanding of the formation of the auditory space in the
future. This is a prerequisite for advances in many technical applications like hear-
ing aids driven by spatial attention, listener-specific virtual acoustics, and dynamic
sound reproduction systems.
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Biological Aspects of Perceptual Space
Formation

Michael Pecka, Christian Leibold and Benedikt Grothe

Abstract Traditional ideas of how auditory space is formed and represented in the
brain have been dominated by the concept of topographically arranged neuronalmaps
—similar to what is known from the visual system. Specifically, it had canonically
been assumed that the brain’s representation of the location of sound sources is
“hard-wired”, that is a specific location in space relative to the head is encoded by a
particular sub-set of neurons tuned to that head angle. However, recent experimental
findings strongly contradict this assumption for the computation of sound location
in mammals (including humans). These data rather suggest a “relative” spatial code
that favors the determination of changes in location over its absolute position. Here
we explain the mechanisms underlying neuronal spatial sensitivity in mammals and
summarize the data that led to this paradigm shift. We further explain that a consid-
eration of evolutionary constraints of spatial cue use and their processing strategies
is crucial for the understanding of the concepts underlying auditory spatial represen-
tation in mammals. Finally, we review recent neurophysiological and psychophysi-
cal findings demonstrating pronounced context-dependent plasticity in the neuronal
coding and perception. We conclude that mammalian spatial hearing is based on a
relative representation of auditory space, which has significant implications for how
we localize sound sources in complex environments.

1 Introduction

The human nervous system allows the perception of space via multiple modalities
including somato-sensation, vestibular inputs, motor efference copies, propriocep-
tion, vision and audition. The latter two stand out in that they allow us to also perceive
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distant components of space. Yet spatial processing is entirely dissimilar between the
visual and the auditory domain: the retina innately provides information about spa-
tial relationships between the sensory source(s), as photoreceptors are arranged on a
2-dimensional surface such that neighboring receptors encode neighboring stimulus
positions. In audition, the cochlea does not provide such an inherent space representa-
tion. In fact, neighboring cochlear locations encode adjacent sound frequencies, and
consequently, auditory space has to be computed by dedicated circuits downstream
of the receptor organ in the brain by exploiting spectral and temporal sound features.

2 Creating a Sense of Auditory Space

2.1 Cues for Spatial Hearing and Their Neural Processing

Sound localization in mammals is based on two complementary yet distinct neu-
ronal computations of analyzing the acoustic waveform (Fig. 1). The first constitutes
a spectral analysis in which the comparison of sound energy across different fre-
quency bands arriving at each ear provides for sound localization abilities in the
vertical dimension and distinctions between sources in the front and rear. Although
better performance based on frequency-spectra may be possible using both ears, it
represents an essentially monaural cue for sound localization, generated largely by
the direction-specific attenuation of particular frequencies by the pinna and concha
of the outer ear. The second neuronal mechanism for sound localization is based on
detecting and comparing differences in the signals between the two ears (or more
precisely, between the two cochleae). This binaural computation, which takes place
mainly within narrowband sound-frequency channels, underlies sound localization
in the horizontal plane, i.e. allows for determination of the lateral angle. Two inter-
aural differences are available to such binaural analysis. We will next introduce the
neuronal pathways andmechanism underlying thesemonaural and binaural means of
sound localization, as the remarkably high plasticity that characterizes mammalian
spatial hearing can be directly related to these mechanisms. It should be noted that
for reasons of comprehensibility, we here focus on mammalian sound localization
mechanisms and coding strategies only. For a comparative analysis of themammalian
and avian system, we refer the reader to Grothe and Pecka (2014).

Monaural Sound Localization

Neurons in the dorsal division of the Cochlear Nucleus (DCN) are particularly spe-
cialized for processing spectral cues. In this context, more recent investigations have
begun to examine neural coding of spectral cues for localization in the midbrain cen-
ter of the auditory pathway, the Inferior Colliculus (IC). A particular focus of many
investigations has been put on how coding of spectral cues is modified between the
lower brainstem and the IC (Fig. 1a2–a3). Responses of the so-calledType-IV neurons
of the DCN appear to be determined by a dedicated neural circuit within the DCN
itself (Oertel and Young 2004) (Fig. 1a2). When considering the response rates of
these cell type as a function of sound intensity and frequency, type-IV neurons show
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a small “island” (i.e. combination of frequency and intensity) of near-threshold acti-
vation around their characteristic frequency (CF; the frequency at which the thresh-
old for tone-evoked responses is lowest), with a prominent inhibitory input at higher
sound intensities (Imig et al. 2000; Davis et al. 2003). This inhibition is more broadly
tuned than the excitatory response area of Type-IV neurons through convergent input
from multiple (differently-tuned) Type-II DCN neurons. The convergence of excita-
tory inputs from primary auditory nerve fibres (ANFs) and inhibition derived from
Type-IIDCNrendersType-IVneurons particularly sensitive to notches in the acoustic
spectrum, presumably those generated by the interaction of sound with the head and
pinna (Imig et al. 2000; Young et al. 1992). How might neurons encode the potential
cues for sound source elevation that these notches provide? The answer lies in under-
standing the output neurons to which Type-IV neurons project (Fig. 1a3). Neurons
in the IC described as Type-O—they possess a circumscribed frequency-vs-intensity
response area—are the main target of DCN Type-IV neurons (Oertel and Young
2004). When stimulated with pure tones, Type-O neurons, like Type-IV neurons,
show a largely inhibitory receptive field with a small “island” of excitation at low
stimulus intensities. However, when stimulated with broadband sounds containing
a spectral notch, mimicking the effect of the direction-specific head-related transfer
function (HRTF), they respond with essentially the opposite characteristics as com-
pared to Type-IV neurons in the DCN. Actually, they show considerable excitatory
responses for a specific single-notch frequency, particularly at higher sound intensi-
ties, flanked by inhibitory regions generated by all other notch frequencies (Oertel
and Young 2004). Thus, IC neurons appear to show an essentially unambiguous
response to the frequency of a spectral notch, and the pathway from Type IV neu-
rons in the DCN to Type-O neurons in the IC seems to be uniquely specialized for
processing directionally-dependent spectral features generated by the HRTF.

Interestingly, experiments in humans and rodents have revealed remarkable per-
ceptual and neuronal plasticity in using spectral cues for localization even in the
horizontal plane (for review see (Mendonça 2014)). Monaural deprivation assays
in adult human listeners demonstrated that, given extensive training, subjects can
learn to use monaural cues to achieve respectable sound-localization performance
(Keating et al. 2016), and even to (re)interpret altered interaural cues—see below.
These remarkable findings mimic developmental mechanisms found in ferrets (Keat-
ing and King 2013; Keating et al. 2013; Keating and King 2015) and thus highlight
the adaptive nature of the spatial code in mammals. They also help explain why
human sound localization ability apparently tolerates acute (e.g., when wearing a
hat) and chronic (age-dependent changes in ear shape) alterations in the HRTFs.

The followingdiscussion elaborates on the importance of context-dependent adap-
tionof spatial coding (Mendonça2014;Keating andKing2015) andhow it constitutes
a dedicated mechanism for the processing of binaural cues.

Binaural Spatial Sensitivity via Coincidence Detection

The fundamental motive of binaural spatial processing is the neuronal comparison
of specific physical sound properties between the left and right ear by dedicated pop-
ulations in the auditory brainstem. Specifically, individual neurons in the lateral and
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Fig. 1 Cues and neuronal circuits for sound localization. a Spectral notches in broadband stimuli
can be used for localization in the vertical plane. a1 The notches are detected by complex micro-
circuits in the dorsal Cochlear Nucleus, a2, and Inferior Colliculus, a3, by integrating excitatory
and inhibitory inputs. b, c For localization in the horizontal plane, binaural cues are required. b1
Interaural level differences (ILD) are generated by the partial reflection and absorption of sound
waves by the head. Substantial ILDs are generated for frequencies approx.>2 kHz in humans. b2
ILDs are computed by neurons in the Lateral Superior Olive (LSO) by comparison of excitatory
and inhibitory inputs from the two ears. b3 Schematic ILD-response function of LSO neurons.
The response rate is determined both by the relative amplitude and timing of the two inputs. c1 For
low frequencies (<2 kHz), interaural time differences (ITDs), i.e. differences in the arrival time of
sound waves at the two ears in the range of ten to hundreds of microseconds, are used for sound
localization. c2 ITDs are detected by neurons in the Medial Superior Olive (MSO) by coincidence
detection of excitatory and inhibitory inputs from both ears. c3 Similar to ILDs in the LSO, the
coding of ITDs in the MSO is panoramic, that is, spans the entire range of physiological ITDs
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the medial superior olive (LSO andMSO, respectively) assess the relative amplitude
and coincidence between inputs from the two ears (Fig. 1b1–b3, c1–c3). The binaural
computation in both LSO andMSO is based on precise interactions of glutamatergic
excitation and glycinergic inhibition, and consequently the two circuits share the
ipsilateral excitatory as well as the prominent contralateral inhibitory pathway. MSO
and LSO are thought to analyze distinct binaural cues related to the frequency of
the incoming sound. That is, differences in the relative level of sounds between the
ears—interaural level differences (ILDs)—are processed in the LSO. The magnitude
of ILDs as a function of head angle is frequency dependent, where larger ILDs are
produced at higher frequencies. For low frequencies (approx. <2 kHz), a second
parameter is predominately used, namely the head-angle specific microsecond dif-
ferences in the time-of-arrival—interaural time difference (ITD)—of sounds at the
two ears. Processing of ITDs requires higher input-timing accuracy in the range of
only tens of microseconds and is mainly performed in the MSO.

Evolutionary Aspects Determine the Coding Strategy

To understand the nature ofmammalian auditory-space representation, it is important
to appreciate that the evolutionary starting point for spatial hearing and neuronal
processing in mammals was their anatomy/morphology, which dictated the use of
one particular interaural cue and, in turn, determined the processing and coding
design for mammalian binaural hearing.

The ancestors of mammals in the Late Triassic were animals smaller than labo-
ratory mice (Allin 1975; Clack 1997). Interestingly, during this phase the originally
much larger middle-ear bones shrank isometrically with the rest of the skull to a
size suitable for transmitting sounds, and they have allometrically remained in this
state despite the ensuing changes in overall body size (Hylander and Crompton
1986). For reasons of size-related resonance of the middle ear bones (Rosowski
1991), it follows that early mammals were high-frequency hearing animals. This
specialization of mammals to hear high frequencies tended to increase rather than
diminish during evolution. In fact, the audiograms of recent mammals of various
groups indicates that their hearing range almost exclusively extended into the high-
frequency range (Grothe and Pecka 2014). Notably, such extension of hearing range
to ever higher frequencies significantly improves the ability to use spectral cues for
localization in the vertical plane (given a co-evolution of asymmetric pinnae—see
paragraph above). Since localization in the vertical axis is of utmost importance for
small prey animals, reliable HRTF-based localization may well have been a crucial
evolutionary pressure on the hearing range of small early mammals. The second
advantage of mainly high-frequency hearing is that even the smallest mammals have
always experienced significant ILDs (Erulkar 1972; Harnischfeger et al. 1985). On
the other hand, their tiny heads produced ITDs of a few tens of microseconds at
best. Even today, most small mammals rely almost entirely on ILDs. The neuronal
structure responsible for the initial processing of ILDs, the LSO, is homogenous in
all terrestrial mammals investigated (Tollin 2003; Grothe et al. 2010). In contrast, the
MSO exhibits significant differences in shape and size, which are likely to be related
to the hearing range in the respective species—low- versus high-frequency sensitiv-
ity (Grothe 2000). Significant selection pressure to use ITDs existed only relatively
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late during the evolution of mammals, probably in relation to increasing body size,
which not only conditioned production of low-frequency communication calls but
also necessitated larger territories. Thus, it is of advantage that low-frequency sounds
travel long distances.

Early mammals, however, could most probably hear high-frequency sounds and
had relatively small heads. Hence, ILDs were the only binaural cues available to
them for azimuthal sound localization. This suggests that the ancestral neuronal
structure used to process interaural spatial information was devoted to ILD detec-
tion. As mentioned earlier, ILD sensitivity is generated by the LSO in the brainstem,
whose bipolar neurons are the initial site of binaural convergence (Fig. 1b2) (Galam-
bos et al. 1959; Boudreau and Tsuchitani 1968; Tsuchitani and Boudreau 1969).
They integrate excitatory (glutamatergic) inputs from the ipsilateral antero-ventral
cochlear nucleus (AVCN) with inhibitory (glycinergic) inputs coming from the ipsi-
lateral medial nucleus of the trapezoid body (MNTB) via highly myelinated and
rapidly conducting axons and the giant calyx of Held synapses. The MNTB itself is
innervated by the contralateral cochlear nucleus. Accordingly, LSO response rates
(i.e. the number of action potentials elicited per unit time) are highest for ipsilateral
sound source locations that create positive ILDs. In other words, a high sound level
at the ipsilateral ear allows the excitatory pathway to be fully activated, whereas the
sound level at the farther ear is greatly attenuated by the skull, and thus activation
of the contralateral inhibitory pathway is comparatively much smaller—Fig. 1b3.
More importantly, response rates are modulated as a function of the ILD. Most LSO
neurons are completely inhibited from spiking at ILDs favoring the contralateral ear
(negative ILDs), when the sound intensity at the inhibitory ear is highest and lowest
at the excitatory ear. For any ILDs in between, response functions typically take the
shape of a sigmoid, generating high sensitivity for small changes in ILD along the
slope of the function (Tollin 2003).

Crucially, beyond the gauging of input strength, the comparison of the relative
timing of the excitatory and inhibitory inputs in the LSO is an integral part of ILD
computation (Tollin 2003; Ashida et al. 2016). Because the latency of the input to the
auditory brainstem depends on the sound amplitude at the respective ear, any changes
in the ILD (i.e. the sound source position) consequently entail a change in the relative
arrival times of the respective inputs at the LSO (Park et al. 1996)—Fig. 1b3. Thus,
ILD processing by LSO neurons constitutes of the gauging of both the input levels
and the input timing. Accordingly, LSO neurons are also sensitive to ITDs (Fin-
layson and Caspary 1991; Tollin and Yin 2005). This suggests that the (ancestral)
circuit of the LSO for ILD processing was to some extent pre-adapted to also be sen-
sitive for microsecond-precise temporal (i.e. ITD) processing. Consequently, when
mammals—particularly their heads and thus the inter-ear-distance—increased dur-
ing evolution, and larger ITDs were experienced, this pre-adaptation might have
served beneficial to the development of the MSO circuit that is dedicated to ITD pro-
cessing (Grothe and Pecka 2014)—Fig. 2. Accordingly, the MSO circuit still shares
the two prominent inputs with the LSO circuit, namely, ipsilateral AVCN input and
contralateral driven inhibition via the MNTB, but additionally incorporates ipsilat-
eral inhibition from the lateral nucleus of the trapezoid body as well as contralateral
excitation—Fig. 1c2.
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Fig. 2 Mammalian evolution of binaural spatial processing is dictated by cue accessibility. Head
width (abscissa) and hearing range (ordinate) during the time of themiddle-ear development define
the interaural cue that is most easily exploitable for horizontal sound localization by mammals—
see the scale: white...ILD, gray...ITD). The interaural cues, in turn, shaped the emergence of a
distinct neuronal mechanism optimized for the processing and encoding of the particular cues. Early
mammals were very small and had a high-frequency hearing system. Therefore, they used ILDs
as the original interaural cue. Subsequent evolutionary changes in the head size and/or the audible
frequency range—such as in humans—allowed the use of ITDs. However, the neuronal mechanisms
underlying precise temporal integration of excitatory and inhibitory inputs remained similar to
early high-frequency-hearing mammals (as schematized by the black neuron receiving red and
blue inputs, respectively). Likewise, the coding principles are the same, that is, a hemispheric
population code (schematized by idealized tuning functions)—compare Fig. 1 for details

Biophysical Aspects of Neuronal Coincidence Detection

Since the MSO (in contrast to the LSO) receives bilateral excitation, it implements
a neural coincidence detection mechanism that on its own is already ITD sensi-
tive (Jeffress 1948). Excitatory inputs that arrive coincident in time evoke maximal
firing rates, and the firing rates decrease for increasing temporal disparities between
the two inputs. The ITD resolution that such a coincidence mechanism can achieve,
depends on, (1), the biophysical filtering properties of the neuronal elements (synaptic
transmission andmembrane integration) and, (2), the temporal structure of the synap-
tic input. The biophysical properties of MSO neurons indeed make them remark-
ably fast: Membrane voltage integration occurs with a leakage time constant of few
100 µs (for comparison: LSO neurons have time constants of about 1 ms;
Fischer et al. (2018)), and synaptic transmission of excitatory synapses is on the
same order of magnitude (Scott et al. 2005; Couchman et al. 2010). Conversely, the



158 M. Pecka et al.

time structure of the input is determined by the cochlear frequency channel, therefore
lower frequencies necessarily produce broader peaks in the ITD tuning functions. For
single neurons, Fisher-type information is largest at the slope (Harper andMcAlpine
2004) and therefore it is optimal to position the slopes of the tuning curves near
midline, i.e., shift the peaks outside the physiological range of ITDs (which is in
first approximation given by the inter-ear distance). Indeed, such alignment of peaks
and slopes is experimentally observed (see below), yet the mechanisms underlying
these peak shifts in particular the role of the prominent inhibitory inputs are highly
debated (Brand et al. 2002; Joris and Yin 2007; Pecka et al. 2008; van der Heijden
et al. 2013; Franken et al. 2014; Myoga et al. 2014).

Importantly, since it is derived fromLSOprocessing, the spatial code for ITDs that
is generated in theMSOmirrors that of the LSO, i.e. exhibits broad, linearmodulation
of spike rates across the physiological range of ITDs, while peak response rates are
typically achieved by ITDs that far exceed this range (Fig. 1c3).More specifically, the
preferred ITD of a cell depends on the best frequency (BF), irrespective of the head
size of the species studied, and on average preferred ITDs increase with decreasing
BF (Brand et al. 2002; Pecka et al. 2008; Middlebrooks et al. 1994; McAlpine et al.
2001; Hancock and Delgutte 2004; Werner-Reiss and Groh 2008). These data thus
refuted the long-standing idea of the MSO as a distributed labeled-line encoder of
azimuthal space in which preferred ITDs in each frequency band are distributed
within the physiological range (or even clustered around the midline).

2.2 Early Representation of Binaural Cues

The fact that ITD functions of MSO neurons show very broad spatial tuning (essen-
tially linear modulation between −90◦ and 90◦) that is stereotypical within a given
spectral band, stimulated the idea of hemispheric, oppositely coding channels on each
side of the brain that might be compared at later stages of the pathway (McAlpine
et al. 2001; Hancock and Delgutte 2004; Harper and McAlpine 2004; Stecker and
Middlebrooks 2003; Pulkki and Hirvonen 2009) (Fig. 3a). This concept relies on the
idea that similar activity levels in both channels should encode sound-source posi-
tion at the midline, such that a relative increase in activity in one of the two brain
hemisphereswould indicate a corresponding contralateral locationwith respect to the
more active brain hemisphere. This strategy might well optimize coding efficiency in
animals with small head sizes, butmight be sub-optimal for animals with larger heads
and high-frequency hearing, owing to the increasing ambiguity of spike-rate-to-ITD
mapping (Goodman et al. 2013; Harper et al. 2014). Such ambiguity could, how-
ever, be eliminated bymaking use of additional information from other ITD-sensitive
channels (such as the low-frequency neurons in the LSO) during the decoding (Lüling
et al. 2011; Day and Delgutte 2013; Goodman et al. 2013; Benichoux et al. 2015). In
this framework it is important to keep in mind that the primary function of the MSO
is the detection of ITDs. Consequently, the ITD-response tuning of MSO neurons to
isolated sounds in experimental settings primarily captures thismechanistic function.
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As we will see next, neuronal coding of space in the MSO and at downstream pro-
cessing stages is stronglymodulated by context, and thesemodulated representations
are likely to reflect decoding aspects of perceptual sound localization.

3 Context-Dependent Modulation of Neuronal and
Perceptual-Space Representation

3.1 Sub-Cortical Processing and Bottom-Up Modulation of
Spatial Coding

While themodels for possible ITD representation aremanifold, adaptation paradigms
with human subjects not only strongly imply that some sort of hemispheric popula-
tion code underlies sound localization in humans/primates, but have also highlighted
the fact that prior stimulation influences subsequent spatial perception (Phillips and
Hall 2005; Vigneault-MacLean et al. 2007). A number of studies have further demon-
strated a dependency of the perceived location of a sound source on the spectral and
spatial properties of the stimulus and their temporal profile (Kashino and Nishida
1998; Carlile et al. 2001; Getzmann 2004; Dahmen et al. 2010; Maier et al. 2012;
Kopco et al. 2017). We will next review sub-cortical mechanisms and pathways
for context-dependent sound localization that already correlated with perceptual
phenomena in human listeners. We will then turn to more complex phenomena of
context-dependent spatial hearing in real-world environments and discuss potential
mechanisms.

It has become apparent that dynamic adaptation mechanisms act on spatial pro-
cessing in the brainstem, including the MSO (Stange et al. 2013) and LSO (Magnus-
son et al. 2008). The response levels of individual neurons are negatively correlated
with their prior spiking activity, which is typical of the concept of gain modula-
tion, i.e. the dynamic adjustment of neuronal activity depending on its prior activity
level. Notably, this modulation can last for seconds, as it is mediated by the inhibitory
transmitter gamma-aminobutyric acid (GABA) and associated slow receptor-subtype
signaling (GABAB). The consequences of these activity-dependent rate adaptations
on binaural cue encoding have been studied in detail in the MSO (Fig. 3b): Here,
GABAergic inhibition leads to an overall decrease in firing, the degree of which
is indirectly proportional to the prior activity level of the cell. The ITD that elicits
relative peak response rates of a particular neuron is not altered (i.e. there is no shift
in the preferred ITD on the single cell level), but these modulations have significant
consequences at the level of hemispheric population coding because of the activity-
dependent nature of the adaptation. For example, a strongly lateralized sound source
will generate unequal adaptation in the two hemispheres, with pronounced rate adap-
tation only in the contralateral channel. Accordingly, this hemispheric asymmetry
should shift the perceived location of a subsequently presented sound source (Fig. 3c).
As noted above, Phillips and colleagues first directly tested this hypothesis in a num-
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ber of psychophysical paradigms, and were able to demonstrate a pronounced shift
in the perceived location of sound sources after prior presentation of a lateralized
adapter in human listeners (Phillips and Hall 2005; Vigneault-MacLean et al. 2007)
(Fig. 3d,e) (Lingner et al. 2018). Grothe and colleagues have demonstrated (Stange
et al. 2013) that GABAB-mediated rate adaptation in the MSO is already sufficient
to explain these shifts in human perception. The primary function of these perceptual
shifts seems to be the relative segregation of the adapting and the subsequent sound
source, as the reported shifts in location are directed away from the adapter loca-
tion, i.e. near the adapter location, the perceived distance between the sound sources
is increased relative to the actual distance (Kashino and Nishida 1998; Vigneault-
MacLean et al. 2007; Kopco et al. 2017) (Fig. 3f). This interpretation is supported by
the finding that the presence of adapting sound sources increases spatial resolution
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�Fig. 3 Context-dependent spatial-coding results in focal changes in separability. a Schematic of
the hemispheric population coding principle. b Firing rates of MSO populations are modulated by
recent stimulus history via a negative feedback loop , c resulting in hemispherically specific (i.e.
asymmetric) adaptation. Conventions as in (b). d Stimulus paradigm to determine the intracranial
perception of target tones without and with adapter. e Position scores (0...most left and 30...most
right without and with adapter (dashed and solid black line) as a function of test ITD for one
exemplary subject (mean± S.E.M.). The difference score (difference in position scores for each test
ITDbetween control and test condition) is plotted in grey. Deviations from zero indicate a perceptual
shift due to a preceding adapter (negative...shift to the left, positive...shift to the right). f Upper
panel:Distribution of reported location values for the 15 test ITDs during the control condition for a
representative subject. The resolvability of nearby test ITDs can be approximated by the difference in
the corresponding location values—indicated by horizontal bars. Lower panel: Location values
for the test condition for the same subject show pronounced shifts in the hemisphere ipsilateral
to the adapter ITD, yet only marginal shifts around midline. These non-uniform shifts result in a
compression, i.e. decreased differences between location values aroundmidline (compare horizontal
bar lengths near 0 µs ITD). Simultaneously the perception of auditory space close to the adapter
ITD is dilated, indicated by increased differences between location values for nearby test ITDs
(compare horizontal bar lengths near 635 µs ITD). g Median normalized resolution (re. control)
across 8 subjects—Colored bars: Grey lines display individual subjects. Positive values indicate
improved resolution, whereas negative values indicate deteriorated resolution due to the preceding
adapter. The listeners’ resolution increased significantly for locations closer to the adapter (p =
0.00019, Friedman test). Asterisks represent significantly altered resolution for ITD positions close
to the adapter position and at 0µs, respectively (p<0.05, two-sided Wilcoxon signed rank test).
Reproduced from Lingner et al. (2018), copyright with the authors

at the adapter position, and likewise decreases resolution at positions further away
from the adapter (Fig. 3g) (Getzmann 2004; Lingner et al. 2018).

Similar activity-dependent modulations have also been observed during ILD pro-
cessing both psychophysically as well as in the LSO (Magnusson et al. 2008; Park
et al. 2008) and midbrain (Dahmen et al. 2010). Together, these data strongly suggest
that mammalian spatial coding serves to encode the relative separation of concurrent
or subsequent sound sources already on the early levels of processing, which is in
contradiction to the long-standing idea of maps of absolute auditory space in the
brainstem.

While the present chapter emphasizes the implications of short-term plasticity on
auditory space processing, there is also a large literature on long-term plasticity of
spatial hearing investigating the effects of altered spectral and binaural cues aswell as
visual deprivation assays (Hofman et al. 1998; Zwiers et al. 2003; van Wanrooij and
van Opstal 2005, 2007; Keating and King 2015). These experiments demonstrated a
high capacity to relearn or form new associations between spatial cues and perceived
locations based on recent experience (weeks to days) and cue reliability. These asso-
ciations are likely to be formed at levels downstream to the detector neurons in the
brainstem.
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3.2 Spatial Representations During Auditory Scene Analysis

This emphasis on the relative separability of sound sources in mammalian neural
processing already on the interaural detector level could facilitate spatial coding in
complex listening environments with multiple sound sources. Particularly, dynamic
spatial coding appears to be advantageous for auditory scene analysis (ASA), that is,
the capacity of the brain to deconvolve the complex mixtures of sound waves stem-
ming from multiple sound sources and to group them into distinct streams of infor-
mation according to the origins. Traditionally, the primary Auditory Cortex (A1), the
downstream cortical areas, and their pathways, were the dominant sites of research
on neuronal correlates of cognitive effects in ASA (Micheyl et al. 2007; Tsunada
and Cohen 2014; Christison-Lagay et al. 2015). Yet, it has become clear in recent
years that ASA is not the product of the processing of only a small local population
of neurons in a specific region of the brain. Rather, many nuclei along the ascend-
ing auditory pathway are involved in the gradual transformation of low-level (i.e.
single-feature based) to perceptual representations of auditory events, see, Shamma
and Micheyl (2010); Nelken et al. (2014); Clarke and Geiser (2015); Osmanski and
Wang (2015) —Fig. 4. There is accumulating evidence for the significance of early
processing even upstream of A1 for the generation of many fundamental functions
of ASA such as feature grouping and contextual feature streaming (Snyder and Alain
2007; Pressnitzer et al. 2008; Shamma and Micheyl 2010).

For example, the afore-mentioned stimulus-history-dependent dynamic-range
adaptations in spatial tuning in the brainstem (Magnusson et al. 2008; Stange et al.
2013) and midbrain (Dahmen et al. 2010) can be regarded as initial mechanisms
for selective stream formation. Such early contribution might be the product of the
unique hierarchical processing structure along the auditory pathway, which—as has
been mentioned in the Introduction—is inherently different as compared to other
sensory systems such as the visual one. Since the cochlea decomposes all incoming
sounds into distinct frequency channels, so-called critical bands, downstream neu-
ronal feature analysis is performed independently for each of these bands. It follows
that any spatial correlations that could be directly exploited, are missing. Rather,
the perceptual grouping of sounds which (presumably) belong to the same auditory
objectmust be neuronally reconstructed based on common features across frequency
channels—so-called grouping cues. Next to a common harmonic structure of sounds,
a crucial grouping cue is the common position in space. Interestingly, activity asso-
ciated with stream segregation in the auditory cortex seems to be similar for spatial
and pitch related cues (Schadwinkel and Gutschalk 2010, 2011), and the role of
spatial cues for sound-identity encoding is crucial in the presence of multiple sound
sources—compare Maddox et al. (2012).
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3.3 Cortical Spatial Representations under Complex
Conditions

As explained above, spatial-cue analysis of an auditory stimulus is performed already
in the brainstem. It is then followed up in the IC, which is the “midbrain hub” where
information from various cues converges (Grothe et al. 2010) (Fig. 4). Spatial tuning
based on ITDs has been shown to be further transformed between IC and A1, poten-
tially to facilitate listening in complex scenarios (Belliveau et al. 2014; Yao et al.
2015). Yet the role of cortical processing in spatial hearing in complex settings and
duringASA is highlymultifaceted (Bizley andCohen 2013; Lewicki et al. 2014). The
following discussion will therefore be limited selectively to findings of early faculta-
tive representations and focus on how spatial information is neuronally represented
in A1 under dynamic conditions or in complex acoustic environments (e.g., multiple
sources). Most electrophysiological studies (Ahissar et al. 1992; Stecker et al. 2005;
Woods et al. 2006; Werner-Reiss and Groh 2008; Yao et al. 2015), including such
from humans (Salminen et al. 2010, 2018), indicated that neurons in A1 are broadly
tuned to sound-source location, where the spike rate is linearly modulated across
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the entire frontal field with maximal rates for contralateral positions. This represen-
tation is remarkably consistent with what can be found already at the level of the
IC and even the brainstem (differing only in additional information being present
in response timing in A1, (Stecker and Middlebrooks 2003)). This suggests a high
level of redundancy in the evaluation processes. However, the vast majority of rel-
evant studies was performed in anesthetized preparations and/or used rather simple
stimulation paradigms that lacked the complexity of natural environments.

Consequently, applying a multi-source environment as a simplistic approxima-
tion to a complex auditory scene already seems to invoke mechanisms that lead to
rather specific spatial representations, reminiscent of aspects ofASA.Multiple recent
studies point towards a progressive refinement of auditory information processing to
facilitate hearing in complex settings, that is, in scenes that involve multiple sound
sources or a noise background. Even in the anesthetized brain, signal-to-noise ratio
improves on the way from the auditory nerve via midbrain to cortical representa-
tions (Rabinowitz et al. 2013; Willmore et al. 2016). Similar improvement in the
separability of fore- and background, as well as level-tolerance, has been found with
regard to spatial information between the IC and the A1—Yao et al. (2015).

An interesting hypothesis about spatial coding has recently been put forward by
Town et al. (2017), suggesting that a minority of neurons in the A1 might represent
sound locations in an allocentric manner, that is, independent of the listeners own
position or head orientation. This is indeed what is indispensable for the orientation
of listeners in complex scenarios.

It is a defining motive of A1 that its spatial sensitivity can be modulated by behav-
ioral task requirements (Benson et al. 1981; Lee and Middlebrooks 2011; Salminen
et al. 2012). This could be interpreted as the reflectionof transient and context-specific
processingmotives in the ASA process—rather than universal representations of fea-
ture selectivity.

Lee andMiddlebrooks (2011) demonstrated that neuronal spatial tuning in the A1
of cats emerged during active localization but vanished in passive hearing settings or
during a spectral detection task. The behavioral relevance of spatial information is
often conveyed by visual signal, and it is known thatmany neurons inA1 are sensitive
to combinations of auditory and visual stimuli (Kayser et al. 2008; Yau et al. 2015).
Moreover, it has been shown that combined stimulation of both sensory modalities
can lead to an enhancement of auditory information, particularly about location, both
in the IC (Bizley and King 2008) and in the A1 (Kayser et al. 2010). Strikingly, in
A1 this enhancement is mediated by a reduction in spiking, hence resulting in a more
sparse and more efficient coding (Ghazanfar and Lemus 2010).

Multi-modal stimulation is generally crucial for goal- or relevance-driven analysis
of features, as it can provide valuable information for priming (Noppeney et al. 2008;
Diehl and Romanski 2014; Altieri et al. 2015) and inference (Beck et al. 2012). For
example, visual cues improve the conclusion about themost likely location of a sound
source. Accordingly, recent studies showed strong effects of visually induced rele-
vance regarding the response magnitude in both the A1 of awake gerbils (Kobayasi
et al. 2013) and the human auditory cortex (van Wassenhove and Grzeczkowski
2015).
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Interestingly, compared to othermodalities, efferent projections from the cortex to
the midbrain are very pronounced—see Bajo and Moore (2005); Suga (2008); Steb-
bings et al. (2014) and Fig. 4. These are involved in learning-induced auditory plastic-
ity of spatial cues aswell as in sound-induced innate behavior (Bajo et al. 2010;Xiong
et al. 2015). Inactivating this cortical feedback alters the patterns of representations
of concurrent stimuli in IC, which are thought to be involved in streaming (Nakamoto
et al. 2010, 2015). For these reasons, the recurring interactions between IC andA1 are
also associated with mechanisms of attention and/or expectation-based streaming of
sensory information (Middlebrooks and Bremen 2013; Malmierca et al. 2015). This
hypothesis is further supported by human functional-imaging data, showing time-
locked activity in the IC and the A1, synchronized with epochs of auditory-stream
formation (Schadwinkel and Gutschalk 2011).

4 Conclusion

In summary, spatial processing in the mammalian (including the human) auditory
system is characterized by a lack of topography as can be found in other sensory
systems and, further, by a high degree of contextual modulation. Together, these
motives suggest that not an absolute representation, but a focused separability of
the most relevant sources (i.e. perceptual objects) in complex environments is the
primary objective of auditory space perception.
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Auditory Spatial Impression in Concert
Halls

Tapio Lokki and Jukka Pätynen

Abstract This chapter discusses the acoustics of concert halls from the viewpoint
of binaural perception. It explains how early reflections have a crucial role in the
quality of sound, perceived dynamics, and timbre. In particular, the directions from
which these reflections reach the listener are important for human spatial hearing.
The chapter has strong links to psychoacoustical phenomena, such as the precedence
effect, binaural loudness, and spaciousness. The chapter discusses which aspects of a
concert hall give listeners the impression of intimacy and the perception of proximity
to the sound. Moreover, it is explained how a concert hall can change the perceived
dynamics of a music ensemble. Examples are presented using measured data from
real concert halls.

1 Introduction

Concert halls are buildings dedicated to performing and listening to non-amplified
music. Audiences gather to these venues to have the best possible acoustical condi-
tions to enjoy live music, but also to socialize. The acoustical conditions of concert
halls have been studied scientifically for more than a century, but the major part of
the literature ignores important aspects of human spatial hearing. Traditionally, the
halls are examined using impulse response measurements to collect objective data
that can be compared between different concert halls. Most of these data are mea-
sured with omnidirectional microphones, thus ignoring important information that
human spatial hearing benefits from. The reason for current approaches originate
from the idea that these measurements give technically accurate and reliably repro-
ducible results of the acoustical features. However, they do not describe accurately
how concert halls are perceived by human listeners.

The most natural way to study music perception in concert halls is to listen to
concerts in-situ and gather opinions from the audience as well as from the musicians
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and conductors. This method has been popular since Sabine (1900) published his
fundamental work. Beranek (1962, 2012) has authored numerous articles and a few
books, including comprehensive technical data, on the acoustics of concert halls.
Moreover, seminal work in the area has been published by Hawkes and Douglas
(1971), Barron (1988), and Kahle (1995). While in-situ listening with one’s own
ears is the most natural way to evaluate acoustics, the inherent problem is that the
performed music typically varies from hall to hall. Unfortunately, human auditory
memory hardly lasts 10 s (Sams et al. 1993), meaning that truly reliable comparison
of the acoustics of halls is practically impossible between concert sites.

A major step to more detailed comparison was taken when binaural technology
was adopted to room acoustics. Pioneering research was conducted in Germany by
the groups in Göttingen (Schroeder et al. 1974) and Berlin (Kürer et al. 1969). They
both involved dummy-head recordings, capturing the binaural sound in the studied
concert halls. Also, both groups understood that the musical stimuli have to be the
same in each hall to allow a valid comparison. To excite the hall with music, the Göt-
tingen group used two omnidirectional loudspeakers on the stage, and they emitted
an anechoic stereo recording of the 4th movement of Mozart’s Jupiter Symphony.
For laboratory listening tests, the binaural recordings were reproduced in an anechoic
room using two loudspeakers with a cross-talk cancellation technique to preserve the
binaural cues. In contrast, the Berlin group followed the Berlin Philharmonic Orches-
tra on their tour and recorded live music with a dummy-head, while the orchestra was
playing the same music program in dress rehearsals in unoccupied halls. The listen-
ing tests were later performed in the laboratory using headphones, again preserving
the binaural cues. Both of these teams found interesting results on the perceptual
aspects of concert hall acoustics, but neither of these really concentrated on auditory
spatial impressions or the benefits of spatial hearing.

The auditory spatial impression and other perceptual factors related to spatial
hearing have been investigated in several studies. Marshall (1967) introduced the
concept of spatial responsiveness as he proposed that narrow halls with high ceilings
have more of such quality. In contrast, a wide hall with a low ceiling lacks spatial
responsiveness. Based on these observations, it is clear that spatial responsiveness
involves directional effects and, thus, binaural listening. In a review article, Marshall
and Barron (2001) refer to the article by Kuhl (1978) (written in German), in which
the connection between sound pressure level, lateral early reflections, and the degree
of spatial impression is discussed. Keet (1968) showed earlier that an increased sound
level produces an impression of spatial widening of the sound source. However, since
then the level of the orchestral music has been mainly ignored in research. Instead,
concert hall acoustics research has concentrated on the analysis of impulse responses.
Some objective parameters of the ISO 3382-1 (2009) standard, such as jL F , L j or
IACC can be applied to predict binaural properties of sound.
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Fig. 1 The basic source—medium—receiver model in a concert hall

1.1 The Objective of This Chapter

The thorough review by Marshall and Barron (2001) describes the research in the
1900s on spatial impression in concert halls. This book chapter concentrates mainly
on the research performed in the last decade. The main objective lies in explaining
the room acoustical as well as psychoacoustical motivations, methods, and results
of groundbreaking research in this field. Therefore, spatial hearing, psychoacous-
tics, and sound propagation in concert halls are discussed from a holistic view-
point. Figure1 presents the connection of musical instruments to human spatial hear-
ing from the authors’ current perspective. In particular, to explain auditory spatial
impressions, both the frequency and level-dependent aspects ofmusic that propagates
through a hall to listener’s ears have to be linked together. Pätynen et al. (2014) were
among the first authors, who connected the well-known facts of dynamics-dependent
spectra of orchestral instruments and the directional sensitivity of the human hear-
ing to early reflections and their directions found in the room impulse responses.
This connection has been further discussed by Lokki and Pätynen (2015) and Lokki
(2016).

Most of the presented results are based on a state-of-the-art auralization system
that allows authentic reproduction of concert halls in laboratory conditions. The
auralization of the concert hall measurements are accomplished using the process
illustrated in Fig. 2. The symphony orchestra is simulated on stage with 33 calibrated
loudspeakers connected to 24 channels. The details of the loudspeaker orchestra
setup can be found in previous publications of the authors (Lokki et al. 2011a, 2012;
Pätynen 2011). The room impulse response from each of the loudspeaker channels is
measured with a type 50-VI 3D vector intensity probe (G.R.A.S., Denmark) consist-
ing of three co-centric phase-matched pairs of omnidirectionalmicrophones capsules
arranged on the x-, y-, and z-axes. The distance between the opposing capsules for
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Fig. 2 The block diagram of the auralization scheme with loudspeaker orchestra measurement
positions in the concert halls. The figure shows the method for a single source channel on the stage
and the process is repeated for all sources to auralize the entire orchestra (Lokki et al. 2016)

each pair is 100mm, and the impulse responses are measured with 48kHz sam-
pling rate using the logarithmic sine sweep technique (Farina 2000). The six impulse
responses measured at a time are analyzed with the Spatial Decomposition Method
(SDM; Tervo et al. 2013) that estimates the direction of incidence for each sample
in an impulse response in short time windows. Based on the spatial information, the
impulse response in the topmost omnidirectional microphone is distributed to repro-
duction loudspeakers as convolution reverberators. The distribution of samples is
performed with the nearest loudspeaker technique in order to emphasize the spectral
fidelity of the high frequencies (Pätynen et al. 2014) at the slight expense of spatial
accuracy. Such a choice is adopted based on the earlier results, which clearly shows
the importance of timbral fidelity over spatial fidelity (Rumsey et al. 2005). Finally,
the anechoic recordings (Pätynen et al. 2008) are convolved with all reproduction
channel responses. The distribution of the instruments to stage loudspeaker channels
is the same method as described in Lokki et al. (2011a). The end result is a realistic
reproduction of an orchestra in a concert hall, when the process is repeated for all
sources on the stage.

2 Background and Motivation

Before the perceptual aspects can be discussed, there needs to be a discussion on
the typical spatial room impulse responses measured in different concert halls. Two
well-known concert halls in Berlin, Germany, namely the Konzerthaus and the Phil-
harmonie serve here as examples. The former is an example of a classical rectangular
hall, which is often referred to as “shoe-box” hall. The latter is a prime example of
contemporary design inwhich the orchestra is located in the center of the hall, and the
audience is surrounding the stage on multiple terraces or blocks, hence the moniker
“vineyard” hall. Naturally, there exists also other general typologies, but these two
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fundamentally different architectural examples highlight the differences in the spatial
distribution of sound energy in a concert hall.

Figure3 illustrates the measured cumulative sound energy distribution, averaged
over 24 source positions on the stage, in the time-frequency-space domain (Pätynen
et al. 2013). The analysis shows typical acoustical conditions of a shoe-box and a
vineyard hall and highlights the differences across hall types. Although the illustra-
tions here show only one seat in each hall, the other seats have similar properties in
both halls. The bottom row shows the average cumulative frequency response at 5,
30, 200, and 2500ms after the initial direct sounds and the spatiotemporal energy
distributions use the same color coding for analyzed time windows.

Direct sounds and adjacent scattering, i.e., the initial 5ms of the acoustic response
arrives from each source on the stage in frontal directions. In a shoe-box hall, the
stage floor is typically on the ear level of the audience at main parterre. Thus the
listener does not receive the stage floor reflection, in contrast to halls with inclined
seating areas. In Fig. 3b, it is seen that the seating rows behind the receiver position
reflect soundwithin 5-ms timewindow. Figure3e shows that there are indeed no seats
behind the measurement position in the Philharmonie, as the response was measured
on the last row of one audience block. The frequency responses illustrate that in
the shoe-box hall, the direct sounds lack the low frequencies, but have considerably
strong high frequencies. In contrast, in the vineyard hall with a raked audience area,
the frequency response of the first 5ms is quite different due to stage floor reflections.

Early reflections until 30ms are visualized with dark blue color and they are
integrated into the direct sound by the human auditory system. Two main differences
between the example shoe-box and vineyard halls are the shape of the frequency
responses and the spatial distributions of early sound energy. First, the shoe-box hall
provides prominent lateral reflections inside the 30-ms time window, as illustrated
by the triangular shape of the dark blue area in Fig. 3a. In addition, reflections from
under the balconies are found in Fig. 3b, c. In the vineyard hall, the effect of the wall
behind the measurement position can be clearly seen in Fig. 3d, e, f. In addition, the
reflectors above the stage contribute to the cumulative energy. Nevertheless, there are
hardly any side reflections, resulting in a distinct oval-shaped distribution of early
energy in the lateral plane.

The second major difference lies in the frequency responses. As seen in Fig. 3g,
the early reflections (between 5 and 30ms) in the shoe-box hall strengthen the low fre-
quencies below 200Hz substantially, yet the middle frequencies up to 1kHz remain
at a relatively low level. The seat-dip effect causes such time-dependent filtering in
halls with a flat floor and open seats (Tahvanainen et al. 2015). In contrast, when the
sound cannot pass under the seats due to the chair construction and raked floor, the
frequencies below 125Hz are attenuated, and sound energy increases only slightly
between 5 and 30ms. At higher frequencies in this particular seat in the vineyard hall,
the cumulative energy increases mainly due to the strong reflections from the wall
behind the measurement position. It seems that when the reflection strengthens the
direct sound from the stage floor, relatively weaker early reflections have little contri-
bution to the cumulative sound energy after the strong direct sound. It could be argued
that the direct sound accompanied by the floor reflection may mask the perception
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of early reflections. Marshall (1967, 1968) suggested similar ideas on masking, but
hardly any research has been done on this complex perceptual phenomenon.

Later reflections between 30 and 200ms increase the overall sound energy in
both halls. In the shoe-box hall, the increase is particularly strong above 200Hz,
equalizing the frequency response to be more or less flat at 200ms after the direct
sound. Moreover, the energy in this time window reaches the measurement position
almost evenly from all directions, and the incident energy in the measured positions
has a round shape in all three visualization planes. In the vineyard hall, the energy
distribution is not as uniform, and visualizations reveal an array of reflections from the
ceiling and reflectors above the orchestra. Although the cumulative energy increases
the overall level, the frequency responses retain their shape along the same peaks
and dips as earlier. Sound arriving from the high elevation angle of the ceiling likely
interferes with the subsequent floor reflection at the microphone array.

Finally, the reverberation beyond 200ms increases the cumulative energy to
its final state. In the Konzerthaus, the increase is spatially more uniform than in
the Philharmonie. Notable differences between these halls can be observed in the
smoothness of the overall frequency responses, level of low frequencies, and spatial
distribution of sound energy. Figure3d reveals one distinct late reflection from the
right side of the measurement position. Such a reflection might be heard as an echo,
or it might disturb orchestral balance by highlighting instruments in certain areas on
the stage.

2.1 Auditory Impressions with a Real Orchestra in Example
Halls

Among the most recent works on the perceived room acoustic quality, a study by
Lachenmayr and Pätynen (2016) serves as a close counterpart to the early research
by the Berlin group. In this particular study, the authors recorded the Staatskapelle
Berlin at the dress rehearsals on the consecutive nights in the Konzerthaus and the
Philharmonie, as the orchestra performed Beethoven’s “Egmont Overture” in both
halls. The recordings were captured with a four-channel pseudo-binaural arrange-
ment with two channels on the sides of an absorbing sphere, and two additional rear
surround channels with cardioid microphones. The sound was recorded simultane-
ously in two equidistant positions from the orchestra, resulting in four soundtracks
to be compared. The reproduction utilized four loudspeakers of which two first were
at ±45◦ angles, and the other two at ±135◦. The auditory evaluation took place in
a relatively dry listening room with additional absorbing baffle immediately in front
of the listener’s head to reduce crosstalk across the front channels.

Although the technical approach was comparable to the preceding work of
Schroeder et al. (1974) and Kürer et al. (1969), the authors adopted a different
concept in the listening experiments. Instead of charting the acoustic quality in
the traditional sense, the authors experimented with the potential variation in the
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auditory impression during changes inmusic dynamics. As established earlier, music
is not a static signal, but in reality, it contains continuous changes in many expressive
aspects, such as instrumentation and dynamics. For this purpose, a 15-s excerpt with
a gradual crescendo as the dynamic variation was isolated from the recordings for a
listening test.

The listening test was a full paired comparison test with two repetitions, and
the subjects had to choose the sample, which had more “impact.” This “impact”
was defined as having more influence, being more interesting, or more effective
on oneself. The subjects were asked to initially listen to both crescendos entirely
instead of switching quickly back and forth. In addition to the paired comparison, the
subjects were asked to write down one or more descriptive adjectives that described
the perceived difference between the samples.

Two different listening tests were completed by 18 and 10 subjects, respectively.
The first test reproduced the recordings as such with the possible loudness differ-
ences, and for the second test, the samples were loudness-matched. With the original
stimuli, the result was clear; the subjects chose the Konzerthaus in both recorded
seats having more “impact” than the Philharmonie. When the pairs were loudness-
matched, listeners also reported greater impact in theKonzerthaus for the frontal seats
but found no difference between the seats in the back of the two halls. However, the
seat closer to the orchestra was always chosen over the farther seat, regardless of the
hall.

The elicited descriptive adjectives reveal more detailed information on the per-
ceived differences between the halls and the seats. There were three main differences
related to proximity, loudness (strength+dynamics+crescendo), and spatial impres-
sion (envelopment+spaciousness+width). The results were in-line with the earlier
research done with rudimentary simulations (Marshall and Barron 2001) and mea-
sured spatial impulse responses convolved with anechoic orchestral music (Pätynen
and Lokki 2016a, b). In the following sections, these three aspects of concert hall
acoustics are discussed in light of the recent research results. We also try to make
links tomore traditional psychoacoustics research in an effort to increase the common
understanding on binaural human perception.

Before concentrating on the perceptual phenomena, the results of Lachenmayr
and Pätynen (2016) are analyzed briefly in light of the objective measurements. The
measurement positions, shown in Fig. 4, are close to the ones used in the recordings
and are 8m closer to the orchestra than measurement positions in Fig. 3. The main
differences between the frequency responses (Fig. 4g, h) for different halls are found
below 1kHz. Here, the energy is accumulating quite differently as a function of
time. In addition, in the Konzerthaus, there are 5dB more low frequencies below
100Hz. Figure4c, f show clearly the spatial distribution of early sound energy. In
the Konzerthaus, there are four lateral reflections from side walls and under the
balconies. Moreover, the ceiling is quite high, resulting in later reflections from the
ceiling than in the Philharmonie. The Philharmonie has also some lateral reflections,
mainly on the left side, but also strong reflections from the reflectors above the
orchestra. Thus, there is a clear difference in the spatial distribution of early energy.
It is even possible that in the Philharmonie reflections in the median plane reach
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the listening position earlier than the (relatively weak) lateral reflections. Marshall
(1967) suggested that such order of reflections might result in less spatial impression,
which was also the result in this listening test. Based on the recent formulation
(Pätynen et al. 2014), the lateral early reflections in the Konzerthaus convey the high
frequencies, emphasized in fortissimo playing, to the ear drums of a listener, as found
in this listening test. In conclusion, when the orchestra makes a large crescendo from
pianissimo to fortissimo, the largest differences in sound pressure level occur at low
and high frequencies (Lokki 2016). Thus, the results by Lachenmayr and Pätynen
(2016), obtained with the recordings of a real orchestra, are well supported by the
time-frequency-space analysis of the measured impulse responses and the properties
of human spatial hearing.

3 Early Reflections That Affect to Proximity, Intimacy and
Engagement

One major purpose of music as an art form is to tell stories, evoke emotions, and
touch the feelings of a listener. Therefore, it is not surprising that concert halls that
sound intimate and engaging are often preferred. Over the years, researchers have
called this aural aspect of a concert hall with different attributes, such as intimacy,
proximity, presence, and engagement. As far as this is understood, they all address the
same perceived phenomena, which are suggested to have a major positive influence
on preference (Lokki et al. 2012; Kuusinen et al. 2014).

Intimacy is probably the most frequently used term (Beranek 1992). Beranek’s
description of intimacy characterizes the listening attribute as the closeness of com-
munication between the listener and the orchestra. Moreover, Beranek (1992) identi-
fied an objective parameter, initial-time-delay-gap (ITDG), as “the time between the
arrival of the direct sound from the stage to the arrival of the first reflection at a mea-
suring point” for intimacy. However, the current understanding is that ITDG does not
correspond well with intimacy, and ITDG has been misleading for many researchers
(Hyde 2019). For example, consider a typical shoe-box hall in which at front rows
the ITDG is much longer than in the last rows in the audience area. Everybody can
easily understand that a frontal seat feels much more intimate than the seat in the
back, although the ITDG suggests vice versa. In addition, ITDG ignores the overall
level (i.e., perceived loudness) and spatial location of first reflections, proposing that
both a ceiling reflection and a side wall reflection gives the same intimacy.

If ITDG does not explain intimacy, what is then the possible reason for a sound
source to sound proximate? Lokki (2014) showed in their listening tests that the
most intimate halls were preferred. Naturally, the sound pressure level is obvious
as the louder the sound, the closer it is perceived. But perceived loudness does not
explain everything; the loudest halls do not always sound the most proximate (Lokki
2014). The spatiotemporal analysis of measured impulse responses at the listening
positions revealed that sound is perceived more proximate if there are strong lateral
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reflections that reach the listener before the ceiling reflection. If the ceiling reflection,
or sound from reflectors above the orchestra, is heard before lateral reflections, the
sound is perceived more distant. The difference is seen in Fig. 3. In the Konzerthaus,
the lateral and under-balcony reflections fit into the 30-ms window after the direct
sounds, but in the Philharmonie, the situation is the opposite; the ceiling reflection
is earlier than (weak) lateral reflections. It is possible that early lateral reflections
reduce the interaural correlation, which could lead to the perception of a less distant
sound, as suggested by Kendall (1995) for the relation of correlation and distance
perception in stereo reproduction. Kuusinen et al. (2014) correlated many objective
parameters with listening test data and found out that the lateral early energy fraction,
jL F , at high frequencies is associated with the perception of proximity. The jL F is
defined as the ratio of sound energies between 5–80ms and 0–80ms captured with
figure-of-eight and omnidirectional microphones, respectively. This assumption is
reasonable as research on spatial hearing has shown. Lateral reflections are louder
than median plane reflections at the entrance of the ear canal because of directivity
properties of the human head, as illustrated in Fig. 5.

Beranek (1992) wrote that lateral reflections are crucial for intimacy. He indicated
repeatedly that intimacy in his terminology is the same perceptual phenomenon as
spatial impression for Barron andMarshall (1981), who demonstrated the importance
of early lateral reflections. Even though Barron and Marshall (1981) studied early
lateral reflections with different sound pressure levels, they used the same recording
with different levels missing the natural spectral change of music—see Sect. 4. Their
methodology was, therefore, limited, which might be one of the reasons that in their
studies the spatial impressionwas not affected by high frequencies over 1.5kHz. This
might have led to their simplistic conclusion that the most critical frequencies are
the four octaves from 125Hz to 1kHz octave bands. For some reason, concert hall
acoustics researchers still use only these mid frequency bands on many occasions.
Meanwhile, Blauert and Lindemann (1986) and others have shown that spaciousness
increases with increasing bandwidth of the later reflections. In fact, they concluded
that all sound fields with components in the spectral range above 3kHz produce a
larger horizontal width than those which lack these components.

Furthermore, low frequencies have an important role for intimacy, and perception
of strong bass is always connected to proximate sound (Lokki et al. 2012, 2016).
Here, low frequencies should be analyzed down to 30Hz, and not only in the 125Hz
octave band as usually done in concert hall acoustics research. The behavior of low
frequencies is discussed in detail in Sect. 4.5. It is worth emphasizing that lateral
reflections also render a stronger bass than ceiling reflections do, as seen in Figs. 3
and 4.

Finally, it has to be reiterated that intimacy is firmly amultimodal sensation. Hyde
(2003) wrote an excellent report considering vision in addition to aural intimacy. As
vision is the primary human sense, it could override aural intimacy in some cases.
Furthermore, vision could also provide a baseline for intimacy. For example, when
sitting in the first row of a balcony, visual cues suggest that orchestra is quite far
away, and it is not expected that the music is really loud. Nevertheless, if music
is loud, it might create the impression that this is a great hall as the orchestra can



184 T. Lokki and J. Pätynen

20 40 60 80 100 120 140 160
−30

−20

−10

0

10

20

30

40

50

60

Azimuth angle [degrees]

E
le

va
tio

n 
an

gl
e 

[d
eg

re
es

]

Mean binaural level between 0.8−10 kHz

R
el

at
iv

e 
bi

na
ur

al
 le

ve
l [

dB
]

−4

−3

−2

−1

0

1

2

3

Fig. 5 Binaural level from regions on one side of the head at the frequency band of 0.8–10kHz.
The results show the characteristics of the binaural magnitude responses averaged over a region of
±15◦ in azimuth and elevation angles centered at the nominal angle in relation to the mean response
at the frontal region (±10◦ azimuth/0–30◦ elevation). Thickest and thinnest bars denote a variation
range of 0.7 and 16dB, respectively

be heard so well at such a distance. Vice versa, when sitting parterre closer to the
orchestra, it is expected to hear music at a certain sound pressure level. However, in
many halls that lack early lateral reflections the sound is quite weak at frontal seats
and the impression is far from intimate. The sensation is more like watching the
orchestra playing in front, and the music is no longer optimally conveying emotions
(Pätynen and Lokki 2015). It is evident that more audiovisual studies are needed to
find out the multimodal perception of intimacy. Modern technology helps to bring
both immersive visuals and audio to the laboratory, as done in a very recent study
by Postma and Katz (2017). Interestingly, the authors found that subjects could be
categorized into three subgroups; (i) subjects who judged auralizations more acous-
tically distant with increased visual distance, (ii) subjects who judged auralizations
louder with increased visual distance, and (iii) subjects whose audio judgment was
uninfluenced by the visual stimulus.

Kuusinen and Lokki (2015) also discuss the combination of visual and aural
percepts for intimacy. Moreover, they focused on intimacy from an auditory and
psychological perspective and viewed it as a dynamic feature, which is heavily influ-
enced by the manner how musical expressions are translated and even enhanced by
the acoustics of the hall. If a hall can provide dynamically varying spatial cues, which
for instance can induce a perception of looming during crescendos, the experience
of intimacy would be elevated not only by a heightened emotional response to the
music, but also by a feeling of deeper involvement with the occupied space.
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3.1 The Quality of Early Reflections

Robinson et al. (2013b) studied the effect of one side reflection on listeners’ ability
to separate two speech sources on stage with measured and simulated venues. The
measurements were conducted in a 600-seat theater with a binaural headset worn by
a male subject. For simulations, a simple concert-hall model with 11 distinct reflec-
tions and late reverberation were used, and in both cases, the binaural auralizations
were presented via headphones. The listening tests were performed in two different
laboratories and the task of the subjects was to indicate which one of the speakers,
male or female, is on the left. In other words, the test investigated the spatial dis-
crimination of multiple acoustic sources in real and simulated rooms, in which the
properties of early reflections were modified.

The results of the listening tests were close to each other in both test conditions.
With the real hall, the results show that the test participants could no longer distinguish
which talker is on the left, when the proscenium splay surface—providing the first
lateral reflection—was covered with a diffusor. In the case of a lateral reflection
being even from a flat or from an absorptive surface, the task was easier. In other
words, the experiment revealed that discriminating the lateral arrangement of two
speech sources is possible at narrower separation angles when reflections come from
flat or absorptive rather than diffusive surfaces. In the simulated hall, all 11 early
reflections were rendered with measured or simulated diffusors. The results were
similar to those for a real hall’s results. It was easier to separate male and female
speakers when the reflections were from the flat surfaces and diffusors hinder the
subjects’ ability to hear which one of the speakers was on the left (Robinson et al.
2013a).

The studies above were accomplished with speech stimuli, but it can be assumed
that musical stimuli would have provided similar results. Diffusive architectural
surfaces are applied widely in concert halls, but their perceptual consequences are
not fully understood, and opinions in favor and against them exist (Oguchi et al.
2018; Kahle 2018; Marshall 2018). Robinson et al. (2013a, b) speculate that early
diffusive reflections make it harder to localize the sources, suggesting that diffuse
early reflections might blend sources better. According to Cremer and Müller (1982,
p. 113), Meyer and Kuhl (1952) found that a sound source appears to perceptually
expand laterally while still being localizable when placing large reflectors at both
sides of the proscenium in the opera house in Hamburg. Unfortunately, the authors
did not continue this line of research further.

Lokki et al. (2011b) investigated the perceptual consequences of the temporal
envelope of the reflections. Commonly used diffusers in concert halls change the
temporal envelopewhile reflections froma hard flat surface do not change the signals’
phases. The waveforms and their temporal envelopes of a harmonic signal at auditory
bands are illustrated inFig. 6. Lokki et al. (2011b) suggested thatwithmusical signals,
as well as speech, the temporal envelope of reflections affect howwell the precedence
effect works. They proposed that reflections from diffusors might partially break
down the precedence effect, resulting in less clarity. On the other hand, this also
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means that sound sources might be perceived wider and less defined, which is often
considered as a desirable sensation as the sound is then better blended. The effect
of high-frequency scattering was also discussed by Kirkegaard and Gulsrud (2011).
The authors reported that diffusers can produce a harsh sound. However, the sound
quality improved when the diffusers were covered with absorptive material or flat
panels.

3.2 Summary of Early Reflections

Early reflections are crucial for the quality of sound in a concert hall. Lateral reflec-
tions have been acknowledged for a long time to contribute positively to sound
quality. However, often they are referred to as increasing the auditory source width,
which is a misleading conclusion, as it is not always the desired property for a sound
source. Instead, a proximate and engaging connection to music is wanted and early
lateral reflections make sound louder and enable such connection.

Lateral reflections from flat or convex curved surfaces are integrated well to the
direct sound in the human hearing system as long as they preserve the temporal
envelope of signals. This is due to the precedence effect, which allows the auditory
system to localize the first wavefront. It is important to note that the precedence effect
does not render the early reflections inaudible. Early reflections increase the overall
loudness, color the sound, and might change the perceived width of the source. As
said, the temporal envelope preserving lateral reflections integrate to the direct sound
best, increasing its quality and preserving the ability to localize. If such a reflection is
coming from the median plane, i.e., from the ceiling or reflectors above an orchestra,
the sound quality might be reduced due to coloration, which is the same in both ears.
Moreover, such ceiling reflection might increase the interaural correlation, which
could increase the perceived distance of the source (Kendall 1995).

If the reflections are scrambling the phases of upper harmonics, i.e., reflections
from heavily diffusing surfaces, the precedence effect might partially break down,
and such early reflections are not fully integrated with the direct sound (Lokki et al.
2011b). Such reflections might increase the perceived width of the source to the
detriment of less defined location of the source. As a result, the instruments better
blend together, but some listeners associate that to reduced clarity.

4 Time Varying Spectrum of Music

The previous sections illustrated how the room acoustics function as a transmission
channel for the information expressed by the music signal. In particular, the role of
early reflections was discussed. Although music is much more abstract than speech,
music often aims to convey expressions or emotions. European-influenced classi-
cal music offers composers a variety of key elements for expressiveness, such as
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Fig. 6 From top to bottom: Illustration of a direct sound or a reflection, impulse response, frequency
response, impulse response convolved with the trumpet sound of A3 (220Hz), amplitude and enve-
lope of convolved trumpet sound at ERBwide bands, i.e., the waveforms (blue) and envelopes (red)
at the outputs of auditory filters on the basilar membrane. a Direct sound b Temporal envelope
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envelope destructing reflection at all frequencies



188 T. Lokki and J. Pätynen

100 1k 10k
Frequency [Hz]

5

10

15

20

25
Le

ve
l i

nc
re

as
e 

fr
om

 p
 to

 f
f [

dB
]

(Timpani)

Average of 29 orchestra recordings
Anechoic instrument measurement

Fig. 7 Spectral change of full orchestra dynamics based on two datasets

pitch, note duration, timbre, and dynamics (Owen 2000, p. 6). Without the intended
variations in the music dynamics and tone color, the expressiveness is often dimin-
ished. This, in turn, would impede the listeners’ experience and the possible emo-
tional impact sought from the performance. After all, experiencing the music is for
many listeners the foremost reason for visiting concerts.

With this background, the importance of transmitted expressiveness becomes evi-
dent. Still, a survey on the related literature on room acoustics perception reveals that
themusic ismostly represented through quasi-stationary excitation signals. As a con-
sequence, the time-varying properties related to the expressiveness—a key aspect of
music—are typically not considered. Of the several aspects of expressiveness, recent
research has concentrated on themusic dynamics due to its relatively straightforward
interpretation and simple measures. In order to include the aspect of music dynam-
ics into the overall concept of perception of acoustics, the properties of orchestra
instruments need to be discussed briefly.

The sound of most musical instruments is based on harmonic vibrations and
pressurewaves that are excited by themusician at a desired force and style.Depending
on the type of the instrument, the amplitudes of harmonic overtones can vary strongly
with the excitation. The higher harmonics are weakest at the minimum level of
excitation, and the overtones become richer as the dynamics is increased. This effect
applies to practically all instruments of a typical orchestra. The dynamic spectrum
of individual instruments have been reviewed by Luce (1975), Meyer (2009), and
others. These studies demonstrate that the most prominent dynamic spectrum effect
is present with the brass instruments, where the magnitude slope of the overtone
frequency envelope shows extreme variations between opposite playing dynamics.
For many instruments, the amplitude of high-frequency overtones varies more than
the amplitude of the fundamental. Consequently, the spectral content of the music
signal varies disproportionally more at the high frequencies if the same pitches are
played in different dynamic levels.
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Twoexamples of orchestra dynamics are illustrated inFig. 7. The diagram includes
the spectral analyses of two datasets on orchestra instrument signals. The dotted line
employs data collected from 29 commercially published recordings of Bruckner’s
Symphony No. 4, II. Movement, Bars 19–26. The particular passage includes a
notable crescendo from indicated pianissimo to fortissimo with full orchestra. The
excerpt is particularly useful for analyzing dynamics since the harmony and note
pitches remain unchanged during the entire passage with only small variation in the
rhythmic pattern. The played notes of the orchestral parts extend from B�

2 to F6,
which corresponds to the approximate frequency range of 120–1400Hz. The dashed
curve in Fig. 7 shows the level difference between softest and loudest dynamic levels.
As discussed above, the frequency range from 300Hz to the highest fundamental
of 1400Hz is increased by 5–10dB from pp to ff. In contrast, the frequency band
consisting only of overtones gains up to 20dB level increase during full-orchestra
crescendo. The low-frequency emphasis is attributed to the strongly emphasized
timpani tremolo near the crescendo peak.

The solid black line included in Fig. 7 presents the results from anechoic orchestra
instrument measurements by Pätynen et al. (2008). In this dataset, separate notes of
A-major triads were recorded with each instrument, spanning two octaves of the typ-
ical playing range of each instrument. All notes were recorded in indicated dynamics
of pianissimo and fortissimo, and the maximum spectra of all notes were estimated
from the signals. The number of each instrument in a typical orchestra complement of
83 players (without percussion instruments) was simulated in the overall spectrum.
The result yields a similar trend as the first example, as the lowest frequencies up to
300Hz show an average pp-to-ff level increase of 7dB, middle frequencies up to
2kHz gain around 10dB, and the region of overtones increases by up to 16dB.

While these examples illustrate the spectral effect of full-orchestra dynamics, they
provide limited insight, considering the overall variation of dynamics in orchestral
works. Contrasting dynamics with full orchestra occur relatively seldom, and more
often, expressiveness is realized with variations in instrumentation and the texture of
the instrument parts. For example, only some instruments or sections are performing
during quiet parts, while other instruments, such as brass or percussions, join in for
more powerful segments (Rimsky-Korsakov 1922). This effect strongly emphasizes
the contrast between soft and loud passages. Therefore, it is feasible to analyze the
distribution of frequency contents over a longer duration of music which contains a
larger variety of instrumentation. For this purpose, the authors analyzed an orchestral
recording of the entire first movement of Sibelius’ Lemminkäinen suite. The record-
ing was captured on a concert hall stage using closely positioned microphones for
a commercial music production. The mix-down of the fairly dry signals of different
sections give a representation of the orchestra sound over a 15-min piece.

The analysis in Fig. 8a presents the spectral variation as the distribution of occur-
rence for each frequency. In practice, the entire piece was segmented into one-second
frames with 50% overlap, and the magnitude spectrum of each non-silent frame was
stored. Naturally, each frame has a distinctive spectrum as different instruments
overlap in each frame. Therefore, all magnitude values at each frequency bin (256
bins on a logarithmic scale) were ordered to obtain a rough distribution of spectral
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magnitudes at different frequencies over the entire piece. The resulting graph, Fig. 8a,
shows the percentiles of each frequency bin, and thus the rough spectrum distribution
over time. It can be theorized that the lowest 5-percentile represents a particularly
quiet full orchestra pianissimo, or 25-percentile a typical soft piano played by part
of the orchestra. By comparing these percentile curves to the full orchestra fortis-
simo curves of (97.5%), the analysis provides a statistical estimate for the dynamic
spectrum change for the entire orchestra, including the typical orchestration. These
estimates are found in Fig. 8b. The general trend shows a distinct similarity to the
results shown in Fig. 7. In comparison to the 300–1000Hz range, the frequency
range of overtones is emphasized by up to 10dB. Since this approach also takes
into account the variation in music texture, the perceived low-frequency addition is
thought to be muchmore prominent than in the investigations shown above. It should
also be underlined that the largest level differences occur below 100Hz, even down
to 35Hz.

Together the presented examples demonstrate that the spectral content of natural
music signals is not constant, but it varies heavily with music dynamics. While the
varying sound waves, regardless of the level and spectrum, are propagated linearly
in rooms, the spectral sensitivity for level and direction of spatial hearing becomes
an essential non-linear part of the entire source-medium-receiver model in Fig. 1.

4.1 The Dynamic Variation at High Frequencies Combined
with Spatial Hearing

The acoustic effects of the head and outer ear are well-known through the research
on binaural technology. One of the earliest reports of directional sensitivity dates
back to the 1930’s (Wilska 2011), and the modern concept of head-related trans-
fer functions (HRTF) has been developed through several studies overviewed by



192 T. Lokki and J. Pätynen

Møller (1992) and others. Typically the mid- and high-frequency bands are per-
ceived more sensitively with the ipsilateral ear when incident sound arrives from
outside the frontal directions. Although the shadowing effect of the head can reduce
the level at the opposite ear, the perceived effect with both ears’ magnitude response
combined is stronger for lateral incidence than with frontal sound. The magnitude of
this effect is illustrated in Fig. 5, where the mid- and high-frequency binaural gains
are the most consistent around azimuth angles of 40–80◦.

The directional effect of spatial hearing plays a significant part when combined
with the propagation paths provided by the room geometry and dynamic spectrum
of the sound source. Given a frontal source, the room geometry yields the directions
for the reflected sound, which is accumulated by the respective binaural magnitude
response. Therefore, the reflection directions are instrumental in the binaural magni-
tude response of the room. Typical directions for early reflections in concert halls are
the lateral angles from the side walls and the median plane directions from the ceil-
ing or overhead reflectors. Detailed analysis of the binaural gain for such reflection
directions in concert halls is depicted in Fig. 9. By comparing the average binaural
gain between sets of lateral and median plane angles, it is evident that the lateral
reflections yield emphasis on frequency regions of 400–1000Hz and 1.7–10kHz.
Moreover, there are typically multiple lateral reflections, but usually only one ceil-
ing reflection, as shown in Figs. 3 and 4.

The dynamic variation of the signal spectrum brings in the decisive component in
the overall picture. Dynamic variation is emphasized at high frequencies, and lateral
reflections, within angles of 40–80◦, lead to binaural gain in the same high-frequency
bands. Therefore, lateral reflections may increase the perception of dynamic varia-
tion. That was indeed proposed byWettschureck (1976), who studiedwith speech the
sensitivity of hearing for one reflection at 70ms. The results showed that sensitivity
of hearing is lower for late reflections from the side than those from behind or front
of the listener when the listening level is high. At low listening levels, the sensitiv-
ities were more or less the same. Green and Kahle (2019) obtained similar results
with music stimuli. Thus, it might be that audibility of reflections is a function of
the listening level, and when the level is raised, the lateral reflections become more
audible, increasing the perceived dynamics. However, more psychoacoustic research
with real music at different dynamic levels is needed to understand level-dependent
aspects of human spatial hearing better.

The earlier analyses of measured concert hall acoustics serve as visual examples
of this concept. Figure3a, d demonstrate how in certain halls the early response
between 5 and 30ms provide substantially more energy through reflections from the
lateral angles. As illustrated in Fig. 9, lateral reflections emphasize frequencies in
the 700Hz to 1kHz range, and to some extent also high frequencies—more so than
frontal reflections due to the directional pinna distortions.

Another advantage in this respect lies in the second-order lateral reflections via
the bottom surfaces of side balconies. This effect can be observed in the early energy
along the transverse plane in Figs. 3c and 4c. When viewed from the listener position
toward the stage, the conventional lateral reflections from the side walls are joined by
an additional pair of reflections frommoderately elevated directions. Such reflections
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may also complement the overall timbre by providing additional early energy with
slightly different HRTF spectra.

The given examples of concert halls also show that in some cases, the raked
audience receives a direct sound which is amplified by the floor reflection (compare
Fig. 3b, e). Correspondingly, distinct early reflections can be observed from ceil-
ing, canopy, or reflectors (see Figs. 4e and 3e). In contrast to early lateral energy,
reflections from the median plane may even reduce the binaural dynamic effect as
the median plane incidence does not benefit from the directional emphasis of the
dynamic-related frequency bands.

4.2 Objective Metrics on the Dynamic Responsiveness with
Spatial Hearing

The proposed phenomenon of the sound field affecting the perceivedmusic dynamics
has been lately studied from objective and subjective viewpoints. Until recently, dif-
ferences in dynamic effects in concert hall acoustics were only anecdotal references.
For instance, Beranek has characterized this as the hall supporting both quiet and
powerful dynamics: “listening is enhanced immeasurably by the dynamic response
of the concert hall” (Beranek 2004, p. 509).Meyer, for one, has stated that the quality
of forte is a sign of an acoustically excellent hall, while sound in quiet dynamics can
also be acceptable in otherwise poorly rated halls (Meyer 2009, p. 199). Importantly,
these remarks not only suggest the existence of a non-linear effect but also con-
nect responsiveness of the hall to dynamics with subjective preference and increased
listening pleasure.

Pätynen et al. (2014) explored the degree of the responsiveness tomusic dynamics
by different concert hall acoustics in a study which combined the components of
source, medium, and receiver as illustrated in Fig. 1. The dependency of the music
signal spectrum was derived from anechoic orchestral-instrument measurements.
The dynamic spectra of different instruments were mapped to the source positions
respective to an orchestra layout in concert hall measurements. The spectra conveyed
through the direct sound, and the early reflected sound to a binaural receiver were
analyzed separately. The excitation of the left and right ears by the respective spectra
were estimated with the model by Moore and Glasberg (1987), and the total binaural
excitation was subsequently calculated with the binaural summation formula in the
manner of Sivonen and Ellermeier (2006). In short, the adopted approach provides
an objective metric for the auditory excitation by the orchestra sound in varying
dynamic levels in different parts of the spatial room impulse response. This method
was applied to ten European concert halls which were measured with the same
calibrated system.

The main results revealed that the two hall typologies (rectangular shoe-box,
or non-rectangular) varied prominently in the proportion of the binaural excitation
between the direct sound and the early reflections in contrasting music dynamics,
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hence the label “binaural dynamic responsiveness” (BDR). Expectedly, the effectwas
observed at the higher frequencies where the orchestra spectrum varies a lot between
dynamic levels. When compared to the direct sound, the auditory excitation of the
early reflections was greater in rectangular rooms than in non-rectangular rooms.
In essence, this outcome explains the dynamic effect of concert hall acoustics. As
discussed earlier, preceding studies have identified the perceptual effect of the spatial
responsiveness of the acoustic space (Kuhl 1978; Marshall and Barron 2001). Those
effects can also be easily connected to the recent results, as the rectangular rooms
are often characterized by the early reflections in the lateral plane. The latter become
proportionally more audible with increasing music dynamics. Further discussion on
the regular features and their effect on the sound field related to music dynamics
are presented by Pätynen and Lokki (2015) in an article which concentrates the
inspection on few halls with different designs.

4.3 Perceptual Attributes of Music Dynamics Variation in
Room Acoustics

While the objective approach has proposed means to quantify the dynamic respon-
siveness, controlled listening experiments have aimed to chart the perception ofmusic
dynamics in different acoustical conditions. A subjective listening test explored the
perceptual attributes for different music dynamics in concert hall acoustics using
a setting similar to the study with objective metrics. The presented music stimuli
consisted of a short full-orchestral excerpt containing a sudden, yet musically feasi-
ble increase in the music dynamics while the instrumentation and orchestral texture
were kept constant. The signal was created by concatenating Bars 41–43 (in piano)
and 53–55 (in fortissimo) from an anechoic recording of Bruckner’s 8th symphony,
II movement. Auralizations with room impulse responses from various concert hall
measurements were presented to the listeners via a spatial 24-channel loudspeaker
array in an acoustically treated listening space. The listening test employed a paired
comparison method augmented by simultaneous free attribute elicitation. Hence,
the subjects had first to decide which one of the presented two stimuli appeared
to have a wider overall contrast between the different music dynamics. Addition-
ally, the subjects gave short descriptions on which perceptual degrees the stimuli
changed differently. Together these data provide insight on the overall perceptual
dynamic responsiveness as well as the perceptual qualities of music dynamics in
concert halls.

The results reported by Pätynen and Lokki (2016b) suggest that the foremost
perceptual attribute differentiating the rooms’ responsiveness to music dynamics
is the dynamic range itself. Out of circa one-thousand trials, approximately one
fourth of the compared pairs demonstrated the dynamic range as the discriminating
perceptual attribute reported by subjects. Another substantial attribute describing
the effect of varied dynamics was the changing width of the auditory image. The
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comparisons between six halls revealed that traditional room geometries (i.e., shoe-
box halls) tend to provide a higher degree of perceived contrast between music
dynamics than non-rectangular halls. This effect becomes more emphasized with
increased receiver distances. These findings are consistent with earlier discover-
ies using objective metrics (Pätynen et al. 2014). Among individual rooms, Vienna
Musikverein and Berlin Konzerthaus appeared to exhibit particularly strong dynamic
loudness and spatial effects among the concert halls included in the experiment
(Pätynen and Lokki 2016b). Correlation analysis, to describe salient connections
between perceived dynamic responsiveness and traditional objective room-acoustic
parameters, showed that the strength (G) at high frequencies and the inverse of early
binaural coherence [1−IACC] predicted the high degree of dynamic effects best.
Contrary to expectations, the early lateral energy fraction did not show substantial
correlation with the perceptual effect.

4.4 Dynamic Responsiveness and Emotional Impact of
Listening

Earlier sections in this chapter presented the communication of dynamic variations
as one ingredient for the emotional impact in music listening. Another study by
Pätynen and Lokki (2016a) assumed a more general perspective on the concept of
music dynamics. While the study described above aimed to explore the perception
of music dynamics, the second set of experiments focused on the emotional impact
produced by listening to orchestral music for different acoustical conditions. The
employed listening test methodology departed from conventional experiments by
applying psychophysiological measurements during focused listening session with
participants. A multi-channel spatial sound reproduction system in a laboratory set-
ting proved to be a feasible environment to measure of electrodermal activity, i.e.,
variations of skin conductance due to autonomic nervous system activation. The sub-
jects were presented a sequence of 12 auralizations of a total of six concert halls via
convolutions of anechoic orchestra material and spatial room impulse responses. The
music signal was a positively looming passage from Beethoven’s 7th symphony, first
movement. Bars 11–18 of the piece begin softly with alternating woodwind chords
and ascending major scales with strings, and eventually culminates in a prominent
full-orchestra crescendo to the tonicA-major fortissimo.With its easily approachable
tonal development and texture, and as one of the principal works in the orchestral
literature, the passage was regarded a suitable excerpt for comparing the possible
emotional effects between orchestra performances. The duration of each auraliza-
tion was approximately 30s, and the excerpts were presented in randomized order
with 15-s silence in between without any listener interaction.

During the entire experiment of circa 12min, the Skin Conductance Response
(SCR) was recorded synchronously with the presented audio stimuli. Following
the conventions for analyzing this kind of measurement, the intensity of emotional
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responses in different acoustic conditions could be ranked according to the recorded
psychophysiological data. Similarly to the study on perceived music dynamics, the
acoustic characteristics of rectangular halls showed a distinct advantage also in elic-
iting stronger emotional responses. Of individual rooms, the two highest mean SCR
responses were found in the front positions at Vienna Musikverein and Berlin Konz-
erthaus. Listening to the performance in a non-rectangular hall instead of a shoebox
room appeared to have a negative effect on the emotional intensity comparable to
the approximate doubling of the listening position’s distance from the orchestra.

In order to gather more evidence for the emotional impact measured through
psychophysiological responses, the set of 12 auralizations were also presented to the
same subjects in a more traditional listening experiment with paired comparisons
(Pätynen and Lokki 2016a). Listeners were asked to choose the more impactful
stimulus, and these self-reported results show the same general pattern as the SCR
results.

To summarize, spatial hearing combined with non-linear spectral excitation of
musical instruments and different acoustic propagation paths and directions due to
concert hall designs yields a complex setting. The communication ofmusic dynamics
elicits a wide range of perceptual attributes linked to the constantly varying nature
of music. Therefore, the perception of room acoustics does not remain static for any
signal, but instead, the music itself influences it. With the recent experiments on
these topics, previously presented claims and impressions have found support from
the research findings.

4.5 Dynamic Variations at Low Frequencies Combined with
the Seat-Dip Effect

Figure8a illustrates a considerable amount of energy at low frequencies, even below
40Hz, in symphonic music. In addition, large dynamic changes are the strongest
at low frequencies (see Fig. 8b), often due to the orchestration as presented earlier.
Therefore, it is reasonable to briefly discuss the low frequencies in concert halls,
although, at low frequencies, the spatial hearing does not play any role for auditory
impression. Nevertheless, Marshall and Barron (2001) mention that the perceived
width of the sound source is wider if the music is loud and the bass is strong.

As the sound travels from the stage over the seats at near grazing angles below
15◦ at low frequencies an excess attenuation has been measured by Sessler and West
(1964), and Schultz and Watters (1964) already 50 years ago. The phenomenon
is called as the seat-dip effect, and it is observable for the direct sound and some
early reflections. The seat-dip effect is a combination of several phenomena, but
mainly results from diffractions from the seat rests and from floor reflections that
interfere destructively with the direct sound (Ishida 1995). Bradley (1991) suggested
that the main frequency of the attenuation depends on the dimensions of the seats.
Tahvanainen et al. (2015) confirmed Bradley’s results by analyzing measured data
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from 10 different concert halls, and they also found that the inclination of the floor
and the seat type affect the range of attenuated frequencies. Based on these measure-
ments, the seat-dip effect can be categorized into two cases, wide-band attenuation
centered around 150–300Hz, and narrow-band attenuation centered around 100Hz
(Tahvanainen et al. 2015). These two cases are indeed seen in Fig. 4g, h. In the
Konzerthaus, with flat audience floor and lightweight open seats, the main attenua-
tion occurs at frequencies of about 200Hz, and the attenuation spans up to 1kHz.
However, the frequency response is filled in by the later reflected energy so that the
attenuation due to the seat-dip effect has disappeared already 200ms after the direct
sound. In contrast, the Philharmonie, with a raked audience area and seats that do
now allow the underpass of sound, has a narrow seat-dip around 100Hz. This is not
corrected at all with the later reflected energy.

Together with the early reflected energy, the seat-dip in these two halls most
probably contributes to the frequency response below 100Hz as well. In both halls,
it can be seen as a positive interference at about one octave lower than the seat-dip
frequency. In the Konzerthaus, the seat-dip frequency is one octave higher than in the
Philharmonie, and therefore this positive interference is also at higher frequencies.
Also, the emphasis on frequencies below 100Hz ismuch stronger in theKonzerthaus,
and we assume that this boost is related to the seat-dip effect. Such low-frequency
behavior is very important for the dynamic variation inmusic, as illustrated in Fig. 8b,
the largest dynamic differences are between 35 and 100Hz. Therefore, it is reasonable
to assume that in the Konzerthaus the dynamics at low frequencies are larger than in
the Philharmonie (Lokki and Pätynen 2020).

5 Late Reverberation Contributes to Loudness,
Envelopment, Spaciousness, and Timbre

As discussed in Sect. 3, it is clear that early reflections have a crucial role in the
perceived acoustics of a concert hall. Indeed, Haapaniemi and Lokki (2014) found
that the characteristics of a hall are recognized within the first 80ms of an impulse
response. They investigated measured real concert halls with multichannel aural-
ization system so that while the late reverberation was the same in each rendering,
the first 80ms was from different halls. Subjects had to choose out of four different
renderings, which hall was the same as a reference, and the recognition rate was
close to 100%. If the first 80ms was kept constant (i.e., from one hall) and the late
reverberation tails were from different halls, the subjects considered the task much
harder, however the recognition rate was still about 80%. The main attributes that
subjects used in recognizing the halls were timbre and auditory width.

Regardless of the big role of early reflections, the characteristics of late rever-
beration, i.e., length of decay, spectral coloration, and spatial distribution, are
very important for the quality of music. Indeed, reverberation ties music segments
together and blends instruments, making music more enjoyable. When people are
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comparing different concert halls, they always pay attention to reverberance and
aspects that the reverberation causes, such as envelopment, loudness, and width to
some extent (Lokki et al. 2016). Reverberation also colors the sound, and, in partic-
ular, the strength of high frequencies in reverberation influences to perceived bright-
ness, dynamics, and brilliance (Pätynen and Lokki 2015). Moreover, listeners often
perceive a certain “warmth” if there are enough low frequencies (down to 20Hz) and
a reasonably long low-frequency decay.

From the binaural point of view, the major perceptual effect of late reverberation
is related to envelopment, i.e., how well a listener feels surrounded by music. Again,
in the authors’ studies (e.g., Lokki et al. 2016), it was found that the hall type has a
great influence on the envelopment. In shoe-box halls with flat-floor audience areas,
there is typically good envelopment, and late reverberation is uniformly distributed
around the listener, see Figs. 3 and 4. In contrast, in vineyard hallswith raked audience
areas, the envelopment is reduced, and late reverberation is less uniformly spread.
The perceptual impression is often that in the halls with highly raked audience areas
the listeners are “looking at the music” (Pätynen and Lokki 2015) while in the flat
floor halls the listeners feel “inside the music”.

There is not much research on the importance of the perceptual viewpoint on
the spatial distribution of the late reverberation. Recently, Lachenmayr et al. (2016)
studied the directional effect of reverberation for the perceived envelopment. The
results were not very clear, but they propose that when reverberation arriving from
the side or above is reduced, the feeling of envelopment decreases. The frontal or
rear reverberation hadminor, although important effects on envelopment. In a second
listening test, the listeners adjusted one late component of the sound field blindly
to the preference level. The results showed that when the hall lacks reverberant
energy from a certain direction, subjects raised energy at that particular direction to
a level so that reverberation is more or less uniform in the end. For example, in the
Philharmonie, the lacking reverberation behind the listener was compensated more
than in the Konzerthaus.

Another contribution to the late directional reverberation has been presented by
Kahle (2016). The author concluded that excessive reflections and reverberation from
frontal directions can have a negative influence on orchestral balance and on on-stage
hearing conditions for musicians. Kahle (2016) also describes several halls in which
the openness and quality of sound were increased when the back wall of the stage
and choir balcony was covered with absorptive material. Thus reducing the level of
frontal reflections and reverberation increased the quality of sound both on the stage
and in the audience area.

6 Conclusions

Concert halls are often studied by measuring impulse responses and computing
room acoustical parameters based on the measurements. By definition, the impulse
responses are linear and time-invariant, and the spatial aspects of the soundfield could
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be investigated using directional microphones or a dummy head as a measurement
device. However, they do not reveal anything about the level-dependent phenomena,
such as source broadening according to level or the effect of room acoustics to the
perceived dynamics of music.

This chapter describes in detail, why the traditional means of analyzing concert
hall acoustics are insufficient. It is explained how the level dependent spectra of
musical instruments and sensitivity of human hearing are important to understand to
room acoustics. In particular, the phenomena related to spatial hearing and perception
of music in concert halls are explained.
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Auditory Room Learning and
Adaptation to Sound Reflections

Bernhard U. Seeber and Samuel Clapp

Abstract Sound reflections are abundant in everyday listening spaces, but they are
rarely bothersome, and people are often not even aware of their presence. As shown in
several studies, this is partially due to adaptation of the human auditory system to the
spatiotemporal reflection pattern, namely, through an increase in the echo threshold
that follows repeated exposure to the same reflection pattern. This raises the question
of whether adaptation mechanisms to room reflections lead to improved localization
accuracy as well—a measure more tangible for everyday listening. Moreover, this
benefit would only be useful if it could be maintained through changes in the reflec-
tion pattern such as those produced by head turns or body movement within the
room, or from sources at different locations. Therefore, a particular mechanism is
hypothesized by the current authors based on learning a representation of the room
geometry, rather than learning of or adapting to a specific reflection pattern. This
chapter reviews and discusses the available literature on the build-up of the prece-
dence effect and related effects in speech understanding in reverberation. In light of
the hypothesis of room learning, it aims to trigger a discussion about the underlying
mechanisms.

1 Introduction

One of the most remarkable abilities of the human auditory system is how it can
function successfully in highly challenging acoustic environments. Nearly every
built environment—where humans spend most of their time—contains surfaces that
reflect acoustic energy. When a sound is emitted in such a space, listeners not only
receive a signal that is traveling directly from the sound source to the ears butmultiple
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delayed copies of the original signal superimposed upon it. The specific pattern of
these delays (in time and space) is determined by the geometry of the surfaces in
the environment and the positions and orientations of both the sound sources and the
listeners.

It would be extremely difficult to localize sound effectively in reverberant environ-
ments without any sort of mechanism to deal with reflected sound energy. However,
as most know from personal experience, normal-hearing human listeners are quite
good at this, even in the absence of other sensory cues (Hartmann 1983; Blauert
1997). The mechanisms underlying this ability are understood in the context of the
so-called “Precedence effect”, a name given to a group of related phenomena that are
briefly discussed in the following—compare Blauert (1997), Litovsky et al. (1999),
Brown et al. (2015). The precedence effect has been studied extensively with stimuli
played from both a single leading location and a single lagging location, separated
by some time interval on the order of milliseconds. Results from one listener in such
an experiment by Seeber and Hafter (2011) are depicted in Fig. 1. For short lead-lag
delays up to 12ms (here for a spoken word), a single sound location was reported
both in the localization responses (top) and in the fusion responses (bottom). Hence,
despite being played from loudspeakers separated by 60◦, at short delays the lead and
lag stimuli are perceptually fused into a single auditory event. This (fused) auditory
event is located between the loudspeakers for delays up to 2ms, an effect known
as “summing localization”, which is widely used in stereophony. For longer delays
the sound is perceived as coming from the leading loudspeaker, hence the name
“precedence effect” or “localization dominance” of the first incoming wavefront.
Above the “echo threshold”, here around 12–24ms, lead and lag are segregated into
two distinct auditory events, one perceived at the lead and one at the lag location.
“Lag discrimination suppression” is the third phenomenon besides localization dom-
inance and fusion subsumed under the term “precedence effect” (Yang andGrantham
1997; Litovsky et al. 1999; Brown et al. 2015). It indicates the listener’s difficulty to
determine binaural parameters of the lag stimulus at short lead-lag delays, with the
difficulty decreasing as the delay increases.

In such precedence effect experiments, stimuli are usually presented in isolation,
whereas in most listening situations, sources repeatedly emit sound, thereby giving
the auditory system the opportunity to reassess and integrate information about the
source and the room over time (Clifton and Freyman 1996; Hafter 1996). The focus
in the current chapter is on the role of the context, that is, on the question of how
signals that immediately precede the test stimulus affect the perception of that stimu-
lus. This is an important question in terms of understanding spatial hearing in rooms
because, in the course of a normal day, people spend minutes or hours at a time in
one place, and repeatedly in the same places from day to day. This gives our auditory
system the chance to collect information about the space via the acoustic signals
reaching the ears. There is much evidence, both in studies of the precedence effect
and in the articles discussed in this chapter, that the accumulation of this acoustic
information results in later reflections being suppressed in favor of the direct sound,
shown by significant increases in the echo threshold and lag discrimination suppres-
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Fig. 1 (Top) Localized positions in the precedence-effect paradigm. The same sound, a recording
of the spoken word shape, is played at equal level from both the lead loudspeaker (plotted at +30◦)
and the lag loudspeaker (at −30◦), separated by the lead-lag delay given on the abscissa. Plotted
are individual responses (small circles) as well as medians with quartiles. Medians are connected
by lines for readability. Results were obtained with a light-pointer method. Lead and lag locations
were randomized (from ±30◦) and the listener was in one run instructed to point to the leftmost
sound, if two locations were perceived, and in another run to point to the rightmost sound location.
The listener thus pointed in separate trials to the lead and lag locations. By knowledge of the actual
lead and lag location, data were analyzed into pointing to the lead (red squares) and the lag (blue
diamonds). (Bottom) Percentage of trials in whichmore than one sound event, that is, split images,
was perceived. All data stem from one normal-hearing listener. Replotted from Seeber and Hafter
(2011)

sion. This process is assumed to assist with localization and speech understanding
in reverberation.

One way to understand this phenomenon is to consider it as inhibition and adapta-
tion process. The auditory system, after having obtained sufficient information about
the acoustic environment, suppresses information from the directions of strong reflec-
tions. This view is grounded in discrimination suppression experiments that show
reduced access to binaural cues in the lagging sound. Starting with early views of
the precedence effect as inhibition (McFadden 1973), corresponding models use
inhibition of monaural and binaural information after the sound onset as a general
suppression process or suppress specific lead-lag delays or interaural time differ-
ences (ITDs), that is, time differences in the arrival of a signal at the closer ear and
the arrival at the farther ear—compare Hartung and Trahiotis (2001), Lindemann
(1986a). For example, in such models, inhibition equipped with a forgetting time
increases upon repeated presentation from the same direction, thus demonstrating
adaptation in terms of an increasing echo threshold. A model proposed by Djelani
and Blauert (2002) exhibits a direction-specific buildup of the precedence effect that
could be viewed as an adaptation of binaural neurons that signal particular directions,
namely, the echo threshold is increased for directions from which reflections were
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(a) (b) (c)

Fig. 2 A schematic diagram of the buildup of the precedence effect. In these plots, the radius
represents time, and the azimuth the direction of the sound stimulus. The sub-figures represent the
stages of the build-up of the precedence effect for the case of a leading click coming from the
right of the listener, followed by a lagging click from the left, separated in time by some interval
�t. (a) Initial exposure to the lead-lag pair, where both clicks are perceived. (b) Intermediate phase
after a few presentations of the lead-lag click pairs, where the lagging click is still perceived
but is beginning to be suppressed. (c) Complete build-up of the precedence effect after repeated
presentation of lead-lag click pairs, where the lag is still acoustically present but no longer perceived
as a discrete auditory event

repeatedly presented. Here the question comes up of whether such direction-specific
adaptation is ecologically useful, or even ecologically valid, given that real-world
acoustic environments are much more complex. Figure2 shows spatiotemporal dia-
grams that illustrate direction-specific adaptation.

The (direction-specific) adaptation observed in precedence effect experiments
and addressed in the present chapter should be considered separate from “binaural
adaptation”, a term coined by Hafter for phenomena related to the localization of
binaural click trains that do not contain reflections (Hafter 1996). Hafter and col-
leagues studied the relative weight given to individual clicks in a click train when
localizing the complete click train. For high-rate click trains, localization is deter-
mined almost exclusively by the first click, indicating onset dominance (Hafter and
Dye 1983; Stecker and Hafter 2002). A restart of the adapted binaural system, seen
by an increased weight of a click, occurs, for example, after a gap in the train (Hafter
and Buell 1990).

The common way of acoustically experiencing a room is not a static process
since listeners and sound sources almost never remain completely fixed in place. In
addition, listeners constantly make small adjustments to their head orientation and
posture. This strongly affects the interaural cues. Thus, listeners usually perceive a
specific space by experiencing its reflection pattern that varies in time. In a simple
“adaptation” process, any movement of sources or listeners would thus require an
ongoing re-adaptation to the current configuration. Of course, as long as the listener
remains within the same room, these changes in the reflection pattern will abide by
an underlying logic as dictated by the geometry of the room—a natural scenario
that listeners encounter daily. The current authors thus postulate another potential
way to understand this process, namely, through “room learning” or “abstraction”
as proposed in Seeber et al. (2016), Menzer and Seeber (2014). Rather than sim-
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ply suppressing information impinging on the listeners from specific directions as
in an adaptation process, in the “abstraction” process, the direct sound and early
reflections are used by the auditory system to develop an abstract representation of
the room geometry. The positions of reflecting surfaces (and thus the room bound-
aries) are inferred via the timings and locations of reflections. Based on such an
abstract room representation, signals arising from early reflections can be antici-
pated and, subsequently, their interaural binaural cues can be suppressed. While this
appears indistinguishable to an adaptation process for static sources, a room abstrac-
tion process can allow for suppression even after head turns or position changes in
the room. Thus, in such a process, the perception of a given roomwould not require a
new period of adaptation following source or listener movements, once the auditory
system has acquired the necessary information to develop a model of the geometry
of the space. A schematic diagram of the two proposed processes following head
rotation is depicted in Fig. 3. In this chapter, several studies will be examined in
light of these two proposed processes—adaptation and abstraction—with the aim of
exploring whether the results provide evidence of the existence of one or the other,
or even of both.

2 Context Effects with Simple Lead-Lag Stimuli

In seeking to understand how the auditory system dealswith reflections,many studies
have made use of the simplest case, with a leading stimulus from one horizontal
location and a lagging stimulus from another horizontal location, separated by a
time interval. In the real world, this would correspond to a room with a single
reflective surface, and all other surfaces being completely absorptive. The direct
sound would come from the lead location and the reflection from the lag location.
In the introduction, it was discussed how these lead-lag stimuli are perceived based
on the duration of the interval between the lead and the lag. Here we consider how
stimuli that immediately precede a test stimulus affect the perception of the latter.
This is particularly important with respect to everyday listening in rooms, where
longer periods of time are spent in specific spaces and thus, the acoustic context
plays an important role.

One of the first and best-known examples for the impact and build-up of context
is the “Clifton effect” (Clifton 1987). A lead-lag click pattern with an interstimulus
interval of 5ms was played in free field from loudspeakers located at ±90◦, that is,
from perpendicularly to the left and the right of the listener. First, a click train of
several secondswas played, with the right loudspeaker leading. Then, the positions of
the lead and lag were suddenly flipped, and listeners were asked whether they heard
clicks from the left loudspeaker, right loudspeaker, or from both. Immediately after
the locationswere switched, all listeners heard both the leading and the lagging clicks
distinctly. However, after a certain number of clicks in the new spatial orientation,
listeners returned to hearing clicks solely in the direction of the lead loudspeaker.
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Adaptation

Abstraction

Fig. 3 A schematic diagram illustrating predicted perception in a room (simplified to the direct
sound and four first-order reflections) following head-turning under the “adaptation” and “abstrac-
tion” processes. The left scheme represents perception after repeated exposure to the direct sound
with reflections, where only the direct sound is perceived distinctly and the reflections are sup-
pressed. Both schemes on the right show the new orientation of the direct sound and reflections
with respect to the listener following the listener turning the head 30◦ to the left. The expectation in
an “adaptation” process (top right) is that the precedence effect breaks down and needs to build back
up again because the head-turning results in a new spatial orientation of reflections with respect to
the listener. In an “abstraction” process (bottom right), however, the listener continues to suppress
the reflections in favor of the direct sound because the room is still the same

This experiment demonstrates the involvement of dynamic processes in the prece-
dence effect, with both fusion and the echo threshold increasing over time in response
to repeated exposure to the same stimulus. The Clifton effect wasmodeled byDjelani
and Blauert (2002) based on an approach by Lindemann (1986a, b) by using an inter-
aural cross-correlation function with a dynamic inhibition algorithm. Peaks in the
cross-correlation function (corresponding to the directions of sound events) inhib-
ited the function at other delay values (i.e. other directions). In addition, the strength
of the inhibition was increased when it was triggered regularly and repeatedly. The
model successfully reproduces the results of Clifton (1987). At the first presentation
of a lead-lag stimulus, two peaks in the binaural activity map appear, corresponding
to both the lead and lag locations and indicating a situation above the echo threshold,
where fusion has not yet taken place. However, after 3–4 presentations of the lead-
lag stimulus at regular intervals, the peak corresponding to the lag has disappeared,
indicating that fusion has now taken place. The Lindemann model assumes an adap-
tation process for replicating the Clifton effect and does not need to estimate the
room geometry, just the spatial locations of lead and lag sound sources as inferred
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from the binaural signals. The binaural features of the lag become suppressed over
time. Consequently, the lag auditory events cease to be spatially separate.

The psychoacoustic data by Rachel Keen (then Clifton) indicate that suppression
of the lag does not happen immediately. She examined different click pair rates
and found that at a rate of 1/s, the time required for lag suppression to build up
completely was 8–10s, while for faster click pair rates of (2–4)/s, the time was only
3–5s. Thus, it appears to require 8–12 click pairs for the lag to be suppressed rather
than a set length of exposure time to a given reflection pattern (Clifton and Freyman
1989, 1996). Freyman et al. (1991) confirmed the total number of click pairs in the
conditioning train to be the most salient quantity in predicting an increase in the
echo threshold, rather than the click pair rate or the total duration. An increase in the
echo threshold was observed when increasing the total number of click pairs from
3 to5 to9, with only a very small change when increasing from 9 to17 clicks. This
suggests that a plateau is reached with nine click pairs in the conditioning train. Note
that while click trains are an interesting stimulus since they provide a quantified
amount of information per click, build-up appears to occur faster for continuous
speech (Djelani and Blauert 2001).

It is interesting that it requires a number of click pairs (greater than one) to
increase the echo threshold, as a new click pair in a train does not actually contribute
any new information, as it is identical to the preceding ones. This is congruent with
an adaptation process, where an inhibitory process requires repeated stimulation to
build up over time. Likewise, it could also be explained by the room learning process,
which requires repeated presentation in order to extract reliable information, namely,
a sufficient number of observations.

In a controlled laboratory setting, the click pairs in the conditioning train and in
the test stimulus can be made exactly identical. However, it would be extremely rare
for this type of scenario to happen in a natural environment, so for these effects to
have any sort of validity outside of the laboratory, it is of interest to know whether
they can be observed for stimuli that have the same spatiotemporal arrangement, but
differ in other aspects.

In another experiment by Freyman et al. (1991), clicks were replaced with short
white noise bursts, using either the same or different noise tokens for every burst.
The echo threshold increased in both cases, indicating that the exact waveform of
the bursts is not critical. Clifton et al. (1994) went on to vary the frequency content
and intensity of the test click pair with respect to the conditioning train, but now
they measured the lag discrimination ability rather than the echo thresholds. There
was little to no difference in discrimination performance when changes in frequency
content or intensity were introduced between the conditioning click pairs and the
test click pair, versus when these parameters were held identical between the two
pairs. These results indicate that the spatiotemporal arrangement of the click pairs
is the salient feature that goes with increased echo thresholds and lag discrimination
suppression.

The results derived from different noise tokens and intensity changes between
conditioning train and test stimulus can be understood via either the adaptation
or the abstraction process. However, it is unclear whether a tonotopically operat-
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ing model would predict the psychoacoustic results of cases where the frequency
content differs between conditioning train and test stimulus, as might happen in
a real environment with a time-varying signal. The model of Djelani and Blauert
(2002) passes the ear signals through a band-pass filter bank before activating the
inhibition algorithm in its binaural processor. Thus, the build-up of inhibition in one
critical band should not necessarily cause build-up in another one, unless that band
receives the same reflection pattern. To fix this problem, binaural filters could be
made much wider than peripheral auditory filters. In contrast, a model employing
abstraction does not have a problem explaining this result. Room geometry is not
frequency-dependent, and so a given spatiotemporal reflection pattern holds for any
stimulus, regardless of its frequency content. Therefore, if the auditory system can
build an internal geometric model of a room, it does not matter if there is a difference
in the frequency content of the conditioning and test stimuli.

Another interesting question is whether conditioning trains that consist of clicks
at only the lead or only the lag location can affect the echo threshold. In an abstraction
process, one would not expect a single click to have an effect on echo thresholds, as
a single click implies an anechoic environment with no room geometry information.
In an adaptation process, it is, however, possible that a single click might reduce the
sensitivity to other locations. This holds when inhibition would be expected to build
up at locations other than the conditioning click location, albeit the Clifton effect
shows direction specificity in the build-up.

Freyman et al. (1991) found that when only the lead or only the lag click pairs
were presented in the conditioning train, it resulted in a reduced echo threshold
for the test click pair, as compared to the case where no conditioning train was
used. Thus, listeners were more attuned to reflections after hearing clicks at just
the lead or just the lag location in the conditioning train. Freyman and Keen (2006)
confirmed these findings and showed that the echo threshold even reduces to that of
the single click baseline. In their experiment 3, the build-up click train was followed
by a lead-only click train. Echo thresholds were reduced, but not to that without the
build-up click train, indicating a partial break-down. When only a single lead- or
lag-only click was inserted into the end of the build-up click train, echo thresholds
were unaffected—a certain number of lead-only or lag-only clicks seems needed
to disturb the build-up. A recent study by Bishop et al. (2014) also looked at the
effects of lead- and lag-only clicks in the conditioning train. After the conditioning
train, a 4-s test stimulus of click pairs (with time delays varying across trials) was
played, and listeners were asked how many clicks at the lag location they heard.
When a lead-alone conditioning train was used, approximately 9% more lag clicks
were heard as compared to the case of a silent conditioning stimulus, whereas a lag-
alone conditioning train resulted in approximately 7% fewer lag clicks being heard
(averaged across all listeners and lead-lag time delay values). Thus, in this study,
conditioning clicks at the lead location slightly increased the sensitivity to the lag
location, in agreement with Freyman et al. (1991). However, the conditioning clicks
at the lag location slightly decreased sensitivity to the lag location, in contrast to
the results of Freyman et al. (1991). None of these results directly support either the
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adaptation or the abstraction hypothesis, but the absence of strong effects without a
lag click pair being present agrees with the abstraction hypothesis.

One other question that might be asked is the following. Once an echo threshold
has been increased for a specific lead-lag orientation, how long does it persist in
periods of silence? In an abstraction process, it could persist indefinitely, as a period
of silence would not tell the auditory system that the listener has moved to a differ-
ent space unless one assumes a forgetting time constant for the surrounding room.
Similarly, in an adaptation process, it would depend on the forgetting time constant
of the inhibition algorithm. Keen and Freyman (2009) looked at the effect on echo
thresholds of a test click pair when the conditioning click pair train was followed by a
variable amount of silence. They found virtually no difference in echo threshold after
up to 3 s of silence following the conditioning train compared to when the test click
was presented immediately after the conditioning train. This finding could support
either process and in the future longer periods of silence could be investigated to
determine a value for the forgetting-time constant.

The underlying mechanisms of the precedence effect and its build-up with con-
tinuous stimuli are more difficult to ascertain. Various studies have shown that onsets
and offsets are weighted more heavily, as these periods in time are thought to give the
most unimpaired information about the locations of the direct sound and reflections
(e.g., Houtgast and Aoki 1994; Stecker and Hafter 2002). This onset dominance can
be used, for example, to improve spatial coding with cochlear implants (Monaghan
and Seeber 2016). However, it is also known that localization dominance is caused
by the temporally overlapping part of continuous noises (Dizon and Colburn 2006;
Seeber 2011), suggesting that, generally, information from temporal modulations is
used. How room abstraction and adaptation processes would function for ongoing
stimuli is difficult to judge without further study. Generally, identifying the locations
of individual reflections from ongoing stimuli either for spatially specific suppres-
sion of binaural cues of reflections in an adaptation process or for an abstraction of
room dimensions from individual reflections remains an issue which is not yet well
understood.

3 Break-Down

So far, the building up of room adaptation or abstraction through repeated exposure
to a given reflection pattern has been discussed, and it has been shown that, once it
has been built up, it can persist for several seconds. Several studies have investigated
the reverse process, namely, whether the build-up state breaks down when introduc-
ing new stimuli after an initial conditioning train. During a typical day, a listener
will move from space to space, and each new space will require an adjustment in
terms of which directions are suppressed. This raises the question of how long echo
suppression persists for the previous space. Does it disappear immediately, or does
it persist for some time following exposure to a new pattern?
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Djelani and Blauert (2001) investigated this idea by varying the spatial orientation
of the 30 lead-lag conditioning click pairs, followed by a test-click pair. When the
30 conditioning click pairs and the test click pair had the same orientation, the echo
thresholdswere large, indicating a strong build-up.When the test click pair pointed in
the mirrored orientation, echo thresholds were shorter. This is in agreement with the
idea that adaptation is direction specific. If, however, the 30th conditioning click pair
pointed to themirrored location of the previous 29 conditioning clicks, thus indicating
a new room configuration, the echo threshold for the test-click pair remained mostly
unchanged with respect to the case where all conditioning clicks have the same
orientation. In short, one click pair in a different orientation does not completely
destroy the adaptation built up by the previous 29, indicating that break-down is not
immediate (see also Freyman and Keen 2006).

Itmakes sense that, if the build-up of echo suppression is not immediate, the break-
down should not be immediate either. In the Djelani and Blauert (2002) model, the
inhibition algorithm builds up over time through regular and repeated triggering.
Therefore, it exhibits the behavior of an integrator or moving average that is affected
by past information. It will take a certain number of clicks (i.e. triggers) in the new
spatial orientation to flush out all of the information from the previous room. In
an abstraction process, it is also possible that information about a specific space
is integrated over time. If the auditory system has accumulated a lot of information
from one space, a new orientation of clicks could take time for the auditory system to
resolve and to indicate that the listener has moved to a new environment, particularly
in the absence of information from other senses such as vision or proprioception.

Flipping the orientation of the triangular test room in Djelani and Blauert (2001)
not only mirrored the direction of the reflections, it also changed the level of each
ear signal since individual head-related transfer functions were used which contain
interaural level and time differences (ILDs and ITDs). Krumbholz and Nobbe (2002)
showed that the ILD in a click pair is more potent for causing a break-down than the
ITD, a result confirmed by Brown and Stecker (2013).

Keen and Freyman (2009) investigated the break-down with combinations of a
“RoomA”, that is, a lead click on the left side followed by a lag click on the right
side, and a special “RoomB”, which was just the lead click from the left side without
the lag. A sequence of RoomA click trains increased the echo thresholds for a test
click in RoomA as expected. If these RoomA click trains were followed by an
increasing number of clicks from RoomB, the echo thresholds gradually decreased
with the increasing number of clicks from RoomB, eventually reaching the same
echo threshold as seen with presentations of RoomB clicks only. One interesting
point is that it took eleven clicks from RoomB to completely break down the build-
up caused by five clicks from RoomA, indicating the possibility of an asymmetry
between the break-down and build-up processes.

While clicks are very useful stimuli in such studies, as they provide quantified
amounts of information, many of the stimuli that are encountered in everyday life are
more continuous in nature. Therefore, in order to claim that these effects can occur
in real-world scenarios, it would be beneficial to see evidence that they also arise
with non-transient stimuli. Adaptation and break-down effectswere demonstrated for
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the Clifton effect paradigm with continuous stimuli, including speech and noise. For
example, Djelani and Blauert (2001) presented listeners with a lead from 45◦ left and
a lag from 45◦ right. After an initial period of at least 3 s in this spatial orientation,
listeners pressed a button that caused lead and lag to switch sides immediately.
Listeners then reported whether they perceived a temporarily enhanced echo, defined
as an echo that either clearly diminishes or fuseswith the direct sound again over time.
For a train of 2-msnoise bursts at a rate of 4/s, themaximumpercentage of temporarily
enhanced echoes was reported at delays of 10–20ms for all listeners. Results were
very similar when a speech stimulus was used. However, for a continuous-noise
stimulus, only three out of six listeners showed similar results, while two reported
hardly any temporarily enhanced echoes and one listener was uncertain. Although
noise proved to be a more difficult stimulus for some listeners to detect echoes in
a break-down scenario, it is nonetheless clear that break-down does not only occur
with clicks.

A study by Clifton et al. (1994) shed further light on the underlying processes.
This study looked at discrimination suppression as a function of different lead-lag
delays. Listeners were presented with a conditioning train of lead-lag click pairs at
a given interstimulus interval, and then a test click pair whose interstimulus interval
was varied. For all listeners, discrimination performance for the test click pair with
the same lead-lag time delay as the conditioning train was worse, compared to the
conditionwhere the conditioning trainwas not played first, thus confirming the build-
up. However, discrimination performance followed roughly a V-shaped pattern, that
is, with the performance being worst when the lead-lag delay of the test click pair
was identical to that used for the clicks in the conditioning train. Yet, performance
improved again for both shorter and longer delays in the test click pair, indicating that
discrimination suppression is delay specific. Note that the lag location was mostly
unchanged in both situations. This is an interesting result in favor of the abstraction
process.When the time delay between lead and lag changes, this could only be caused
by a reflecting surface moving either towards or away from the listener, which would
be a large change in room geometry. The temporal change would indicate to a stored
room geometrymodel that a large room change has taken place, hence discrimination
suppression is shortly reduced. However, in an adaptation process, the location (as
implied by the interaural cues) of the lag is suppressed. Consequently, one would
assume that only a change in the interstimulus interval does not have such a large,
measurable effect on lag-discrimination suppression.

4 From Single Reflections to Room Reverberation

Most of the “rooms” discussed thus far consisted only of a direct sound and a single
reflection, whereas typical spaces encountered every day produce a much greater
number of reflections. While comparatively unexplored, recent work has begun to
investigate build-up and break-down in more complex and realistic room models.
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Djelani and Blauert (2001) mimicked the Clifton effect paradigm with a room
with a triangular floorplan, which was simulated using the image-source method
up to second order, yielding a room-impulse response with a direct sound and 12
reflections. The listeners scaled the size of the triangular room adaptively in order to
determine a minimum room size at which the reflections were just barely audible.
When the conditioning train and the test click both came from the triangular room in
the same orientation, the room needed to be 2–3 times larger in order for reflections
in the test click to be perceived, compared to situations where the conditioning room
had no reflections or was a left-right flipped room. In all conditions, the source was
always placed directly in front of the receiver, so that the leading stimulus was always
in the same direction and diotic, whereas the reflection pattern switched ears when
the room was flipped.

These results are readily explained by both an adaptation or an abstraction mech-
anism. While the flipped room will have the same timbral qualities and share the
same room acoustic parameters, the spatial locations of the reflections change from
the left to the right side and vice versa. This will swap reflections to previously
unadapted locations, thereby increasing their audibility in terms of the adaptation
model. If the auditory system is storing an abstract geometrical representation of the
room, it should likewise be able to identify that the room geometry has changed and,
consequently, trigger relearning. One other observation about this particular room is
that, in the test orientation, most of the reflections came from the left hemifield, and
in the flipped orientation from the right hemifield. Lag suppression could thus build
up to one side primarily.

The question remains as to whether the directions of all reflections are suppressed,
only some, or if perhaps suppression is weighted by relative amplitude or time after
the direct sound. Stecker and Hafter (2002) found that in a click-train stimulus with
short inter-click intervals (i.e. <5ms), the first click was the most strongly weighted
perceptually. For longer click intervals, clicks were weighted equally, and when
there was a gap in the click train, the first click following the gap was weighted
more strongly than those around it. As reflections in a room impulse response are
not equally spaced in time, the suppression of any one single reflection could be
influenced by the gap in time between itself and the one immediately before it, or by
deviation from periodicity.

Rather than looking just at the echo threshold, some recent studies have examined
potential benefits of the room-acoustic context on the localization of the direct sound.
In the dissertation by Sudirga (2014), localization accuracy was measured in “fixed”
rooms, where all trials within a block were simulated from different source locations
within the same virtual room, and in “mixed” rooms, where the simulated virtual
room varied from trial to trial. There was no significant difference in absolute local-
ization error between the mixed-room and fixed-room paradigms, but the variability
in responses was somewhat lower in the fixed-room paradigm—namely, by 1.2–2.4◦.
In other words, when listeners remained in the same (virtual) room from trial to trial,
their localization judgments did not necessarily match the true (i.e. physical) sound
source location any better, but localization was more consistent from trial to trial.
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Fig. 4 RMS localization errors, (left), and standard deviations (right), averaged across eight lis-
teners for localization of a click in virtual rooms (1, 2 or3) when preceded either by silence (con-
ditioning: none), or by a short or a long conditioning sequence of 2 or 14 clicks, respectively.
The conditioning clicks were played from random locations left and right of the listeners, while
the test clicks were restricted to the non-overlapping frontal region. The stimuli were played in
loudspeaker-auralized virtual rooms composed of reflections up to a mirror-image order of 100.
The three rooms varied in every trial to reduce across trial build-up. The results show a signifi-
cant reduction of RMS error and standard deviation when a conditioning sequence preceded the
test click. Since the conditioning clicks and the test clicks did not overlap in space, and since test
conditions were otherwise identical in all conditions, the observed benefit can be attributed to the
context built up by the conditioning clicks. Data replotted from Seeber et al. (2016)

Seeber et al. (2016) tested for direct evidence of room abstraction processes, again
through the lens of localization in reverberant environments. Their study examined
whether clicks from different source locations within a room improved localization
from other source directions in that same room while the listener’s location was kept
constant. Such an explicit test for a transfer from one location to another one in the
same room, if rendering positive results, could not be explained by an adaptation
process because source and reflection positions change with each conditioning click
and from the conditioning clicks to the test click. Instead, an improvement due to the
room context would support the idea that the auditory system uses interaural cues to
infer aspects of the geometry of the room.

In this experiment, a conditioning train of clicks was first played from random
locations left and right of the listener in a virtual room. Then, a test click came
from a location in the frontal region, and the listener had to indicate its perceived
direction. Thus, the conditioning train never contained a click that occurred from
the same location or even the region being tested. In this way, the listener has not
been exposed to it before completing the localization task—a transfer due to context
is required. Three different virtual rooms were used randomly from trial to trial to
avoid adaptation from simply hearing an identical room over a block of trials. The
test was performed in darkness, in an acoustically treated room.

Figure4 gives results from eight listeners. Both RMS localization errors and stan-
dard deviations of the localization responses were significantly reduced when a con-
ditioning train of clicks (either a short train of 2 clicks or a long train of 15 clicks)
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preceded the test click. These results suggest that the conditioning clicks and their
reflections create a context in which localization accuracy and precision of subse-
quent stimuli is improved. Unique to this study is the fact that the conditioning clicks
and the test clicks did not come from the same location, and thus a binaural adapta-
tion process cannot explain the improvement. The improvement, therefore, requires
a transfer which is in line with some kind of a room abstraction process, particularly
as it extends to new locations. Alternately, the context could also be built up by the
clicks irrespective of room reverberation, similar to audio-visual contextual effects
due to a “visual frame of reference”—compare Radeau and Bertelson (1976). While
more research remains to be done in this area, it has become clear that experiments
involving more spatiotemporally complex stimuli will be useful to probe the com-
plex processes involved in room adaptation and possibly abstraction in the auditory
system.

5 Room Adaptation and Speech Understanding

Understanding speech in reverberant environments is one of the most important
tasks performed by the auditory system and the focus of much research activity,
particularly for hearing-impaired listeners. Therefore, it is certainly of interest how
prolonged exposure to a specific spacemay improve speech understanding. Research
into speech understanding in reverberant spaces has often been studied with respect
to the amount of reverberant energy and the shape of the reverberation decay, rather
than the specific orientation of direct sound and reflections. Several studies discussed
here employ a paradigm with two spoken test words, [sir] and [stir], which differ
by the phoneme /t/. In recognition experiments, the amount of reverberation affects
the phoneme boundary. In fact, reverberation can make it difficult to differentiate
between two similar spoken words because it fills in the gaps that are perceivable in
non-reverberant listening conditions.

Watkins (2005) created a continuum of stimuli by interpolating the temporal
envelopes of [sir] and [stir] and embedded the respective test words into the context
of a sentence. To test the effect of reverberation, the amount of reverberation in the
context sentence and for the test words was varied independently. Listeners were
played the entire context sentence and then asked whether they heard either [sir] or
[stir]. Increasing the reverberationof the testword relative to the surrounding sentence
resulted in more [sir] identifications, as there was no opportunity to hear the short
glottal stop before the phoneme /t/. When the reverberation of the context sentence
was increased relative to the test word, [stir], the number of correct identifications
increased. This was interpreted as the reverberation context help uncover the silence
before the /t/.

In a subsequent study, Watkins and Makin (2007) used a similar experimental
paradigm, but with a noise context rather than a speech context. The same pattern of
[sir] versus [stir] identifications as in the previous study could be seen, provided that
the noise was broadband and contained temporal modulation in the envelope (i.e.
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pauses) that allowed the listener to judge the level of reverberation. Narrow-band
noise contexts outside of the relevant frequency bands for [sir]/[stir] identifications
did not induce reverberation compensation, even when they had the same temporal
envelopes as the broadband noise contexts that did induce compensation. In other
words, reverberation compensation appears to be specific with respect to the fre-
quency band.

These results thus help clarify which components of the context are used by the
listener to estimate reverberation. A study by Nielsen and Dau (2010) complicates
the interpretation since a non-reverberant speech context resulted in more [sir] iden-
tifications while other non-speech contexts (including white noise, speech-shaped
noise, and amplitude-modulated noise, in addition to silence) with no reverberation
to it resulted in more [stir] identifications. This suggests that the non-reverberant
speech context itself impedes the detection of the consonant /t/, and that changes
in the modulation spectrum of the context are critical for inducing reverberation
compensation.

Beeston (2014) has developed a peripheral auditory model to perform the [sir]/
[stir]-identification task. Themodel adjusts efferent suppression in a closed feedback
loop based on estimating the amount of reverberation in the pauses of the signal.
The model is able to emulate human performance in a [sir]/[stir]-identification task,
thereby giving evidence that simple adaptation of peripheral suppression is sufficient
for reverberation compensation of speech.

While these studies have investigated the effect of reverberation on a specific
phoneme boundary, Zahorik and collaborators have examined more generally how
speech understanding in reverberant environments is affected by repeated exposure to
the same room acoustics. Brandewie and Zahorik (2010) measured speech reception
thresholds (SRTs) in three versions of the same simulated rectangular room, but with
different surface materials, to yield strongly different reverberation times. Preceding
the target phrase with a sentence carrier and presenting it in the same room showed a
significant improvement in SRT by 2.7dB compared to a no-carrier condition. This
is an important result, as it shows that understanding of regular words in noise can
be improved by prior exposure to the room. Follow-up experiments with anechoic or
monaural stimuli showed a much smaller, non-significant improvement, equivalent
to a signal-to-noise improvement of only 0.8dB. This suggests that the underlying
mechanism is binaural and involves a spatial compensation of room reverberation.

Srinivasan andZahorik (2013) further investigated the time course of this improve-
ment with an open speech corpus and without the sentence carrier. Five different
simulated rooms, including an anechoic room, were used to generate the test stimuli,
which were presented in either a “blocked” (a block of stimuli all from the same
room) or “unblocked” condition (room varied from trial to trial). There was no sig-
nificant difference in performance between the blocked and unblocked conditions
for the anechoic room, while there was a significant improvement in the reverberant
rooms when presented in the blocked format. However, no significant improvement
was seen over the time course of a group of blocked trials. This suggests that the pro-
cesses resulting in improved performance operate on fairly short time scales, namely,
hundreds of milliseconds to seconds (i.e. within the length of one trial).
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It is difficult to tell from these results whether they suggest an adaptation or an
abstraction process. Despite their differences in wall absorption, all rooms shared the
same geometry, thus leading to the same binaural reflection pattern. An adaptation
process should thus suppress the binaural features of reflections similarly in all
rooms and show only small recognition differences across conditions, which is in
disagreement with present results. On the one hand, an adaptation process could
explain the results if one was to postulate that the reflection energy would affect
the amount of suppression, which does not easily agree with the above-discussed
results on echo thresholds and discrimination suppression, as these are somewhat
unaffected by reflection energy. On the other hand, an abstraction process could
readily estimate the room geometry in all conditions but would, likewise, have to
reset its room-configuration concept upon changes in the absorption characteristics.

6 Self-Motion

In natural settings, people are rarely completely motionless, as, for instance, with
their head on a chin-rest. At almost any time, when entering a new space, people
will move through a range of different positions within that space. In addition, they
are also making small head movements, which have been shown to be important for
spatial hearing, particularly with regard to resolving front-back confusions—see, for
example, Wightman and Kistler (1999), Thurlow and Runge (1967). Furthermore,
listeners often create their own sounds while exploring space, such as with speech or
footsteps. When listeners have some sort of input into the room exploration process,
this can have an effect on adapting to a new acoustic space versuswhat can be gleaned
from being passively presented with a given stimulus.

Self-motion also has interesting implications for the differentiation of adaptation
from abstraction processes. In particular, can the auditory system integrate proprio-
ceptive and vestibular information to update its echo suppression? For instance, if a
listener’s auditory system has built up suppression to a lead at −45◦ left and a lag
at 45◦ right, and they turn their head 15◦ to the left, will they then be adapted to a
lead at −30◦ left and a lag at 60◦ right (in head-centered, i.e. binaural coordinates)?
And if so, is this adaptation or abstraction, assuming that abstraction should be able
to deal with all source positions and orientations within a given space? Answers to
these specific questions have not yet been given in the literature, but related work on
self-motion provides some clues.

Wightman andKistler (1999) investigated the effect of headmovements on resolv-
ing front-back confusions and confirmed that they do so. Interestingly, even with a
fixed head, front-back confusions were resolved when listeners had control over the
movement of the virtual source position (controlled via arrow keys on a computer
keyboard), but not when the experimenter controlled source movements—despite
both situations being acoustically identical. This suggests that having control over
the position of the sound source must work in tandem with the acoustical signals
reaching the two ears to show the improvement in spatial hearing. In a similar vein,
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Perrett andNoble (1997) showed that headmovements also assistwith vertical sound-
source localization—compare Pastore et al. (2020), this volume.

Echolocation is most famously used by bats to navigate their physical surround-
ings, but blind and sighted humans can also utilize echolocation after some training.
Echolocation requires the listener to produce their own sound stimuli, whereby the
direct sound travels directly from the mouth to the ears, and the reflections return
from surfaces in the environment. Therefore, it follows that listeners need to have
low echo thresholds to echolocate, as the conscious perception of the echoes is what
allows echolocation to work. Adapting to a reflection location and having its position
suppressed would make it more difficult to echolocate. Thus it might not be surpris-
ing that training can affect the sensitivity to ITDs in the lagging sound (Saberi and
Perrott 1990).

Wallmeier andWiegrebe (2014) examined the role of self-motion and headmove-
ments in listeners trying to navigate a virtual corridor using only echolocation, with
no visual cues. The listeners generated sound stimuli with their own mouths and
heard the auralized response from a virtual corridor. They were then asked to orient
themselves along the axis of the corridor. Listeners could adjust the orientation of the
corridor virtually (like in a video game), adjust the physical orientation of the motor-
ized chair in which they were sitting with head fixed, or adjust the motorized chair
with head movements. The ability to move both the chair and one’s head resulted in
significantly better performance, indicating the importance of vestibular cues from
the motion of the chair as well as from head movements.

This is a scenario where listeners are actually trying to avoid adaptation taking
place since they need to be able to hear the echoes distinctly in order to complete the
task. An “abstraction” of the room is what the listeners need in order to determine
with some certainty where the walls are and in which direction the corridor leads.
So, echolocation may be a special case, wherein higher-level cognitive processes
attempt an abstraction process to learn the geometry of the space explicitly.

7 Conclusion

This chapter examined the literature for evidence of the processes involved in the
build-up and break-down of the precedence effect, starting with pairs of leading
and lagging clicks from different spatial locations. This literature overview was
then expanded to stimuli with higher numbers of reflections, speech understanding
in reverberant environments, and how self-motion can be incorporated into spatial
hearing.

The current authors proposed and discussed two possible mechanisms for under-
standing how the auditory system builds up information to suppress reflections. The
first and simpler mechanism has been termed “adaptation” and is affecting binaural
and possibly also relevant monaural processes. When determining the location of
leading and lagging signals in the binaural auditory system, binaural information
from the lagging direction is increasingly suppressed, so that after a matter of sev-



220 B. U. Seeber and S. Clapp

eral seconds, the listener only hears one sound event, rather than two, indicating a
rise in the echo threshold. This paradigm has been modeled by Djelani and Blauert
(2002) and been shown to predict the “Clifton Effect” (Clifton 1987). This binaural
adaptation process might be supported by monaural adaptation processes occurring
at the level of hair cells (Hartung and Trahiotis 2001), the cochlear nucleus (Buerck
and van Hemmen 2007; Hafter 1996) or through the MOC-feedback loop (Beeston
2014).

The secondmechanism, termed “abstraction”, is more complex, but has the poten-
tial of being applied to dynamic complex listening scenarios. It is postulated that the
auditory system can build up an abstract geometric model of an entire room and use
this model to control reflection suppression. This model is predicted to survive, for
instance, source and listener movements in the same room, wherein the reflection
pattern changes at the listener’s position, but in a way that is consistent with the room
geometry. Controlled by proprioceptive information, the use of an abstract room rep-
resentation avoids having the auditory system re-calibrate every time the reflection
pattern shifts, as would have to be assumed for a pure adaptation process. Evidence
for this mechanism comes from experiments showing improved localization ability
for test positions not part of the exposure sequence but located in the same room
(Seeber et al. 2016). A localization improvement of this kind would require a gen-
eralization or abstraction of information from the context given by the room rather
than by individual reflections.

The work discussed in this chapter provides evidence for both processes in differ-
ent scenarios. Some results could potentially be explained by either one. Generally
speaking, echo suppression and build-up effects can be well explained by an adap-
tation process while context effects in localization, echolocation and speech under-
standing in reverberation may suggest an abstraction process. As future work will
likely probe more complex and dynamic scenarios, it will help to disentangle the
contribution of these different processes or, hopefully, to understand how they might
work in tandem to aid listeners when exploring new acoustic environments.
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Room Effect on Musicians’ Performance

Malte Kob, Sebastià V. Amengual Garí and Zora Schärer Kalkandjiev

Abstract This chapter reviews the basics of music and room-acoustics perception,
an overview of auralization methods for the investigation of music performance and
a series of studies related to the impact of room acoustics on listeners and musicians.
The acoustics of the performance environment play a major role for musicians, both
during rehearsals and concerts. However, systematic investigations of music perfor-
mance are challenging due to the variety of conditions that determine the artists’
performance. Set-ups that allow controlled studies with variable but well-defined
acoustic conditions have been developed over the last decades with increasing nat-
uralness and applicability. Current auralization methods allow the reproduction of
measured or synthesized room acoustics in real-time, thus enabling the perceptual
assessment of room acoustics in laboratory conditions, isolating acoustics from other
potential impacting factors. Common methodologies, as well as advantages and lim-
itations of such virtual environments for the study of music and room acoustics per-
ception are discussed in the first section. The virtual environments enable studies that
help to explain why and how room acoustics can affect the listener subjective impact
of a musical performance and to what extent listeners can be classified depending
on their individual taste. Recent studies have shown that musicians systematically
adjust their musical performance and adapt to the room acoustical conditions. The
most important findings from these studies are presented in the second section.Meth-
ods and results from recent investigations of the impact of room acoustics on music
performance are discussed in the third section of this chapter.
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1 Introduction

1.1 Motivation

For the performanceofmusic, the roomacoustical properties of the space surrounding
themusicians and the audience play a vital role regarding the perception of the sound.
The direct sound from the instruments is reflected by the surrounding walls, reaching
the performers and listeners with unique reflection patterns and sound characteristics.
Musicians depend on the auditory feedback of their performance for expressive fine-
tuning (Repp 1999), as well as an internal representation of the sound they intend
to convey to the listener (Gabrielsson 1999). It can thus be expected that they adapt
their way of playing to the surrounding room acoustics, either the acoustics on stage
or the acoustics they assume in the auditorium. This is supported by some of the
well-known music treatises of the 18th and 19th centuries (Quantz 1752; Spohr
1833; Czerny 1839) as well as more recent works (Galamian 1962; Borciani 1973)
that suggest the use of certain playing techniques related to specific room acoustical
conditions. However, in practice, the concepts of how to deal with room acoustics
might be different from the theory; adjustments might take place unconsciously, or
they might even be entirely rejected (Flesch 1928; Blum 1987).

Beyond seeking empirical evidence of performance adjustments to room acous-
tics, there are more detailed questions to consider: Are there certain aspects of music
performance, such as tempo or dynamic strength, that are adjusted more than others?
Which are the room acoustical parameters that influence specific characteristics of
the playing technique? Does the way and extent of adjustment depend on factors
such as the piece of music that is played, the instrument that is used, or the number
of musicians involved?

These questions are interesting from the point of view of music cognition but
also of room acoustics. There is ongoing research in stage acoustics concerned with
the question of which aspects of the room acoustical environments are relevant for
musicians and which physical measures correlate with those venues. Several studies
in this field rely on an indirect evaluation of concert halls by using questionnaires
distributed to musicians (e.g., Gade 1989b; Sanders 2003; Chiang et al. 2003; Astolfi
et al. 2007; Dammerud 2009; Jeon et al. 2015; Panton et al. 2017). However, Gade
(2010) pointed out the difficulty musicians have in differentiating between subjec-
tive attributes when rating concert halls. This is due to the fact that performers are
involved in the production and perception of the music rather than in the analytical
evaluation of room acoustics. Furthermore, the vocabulary used to describe room
acoustics varies greatly among musicians (Schärer Kalkandjiev 2015, p. 151 ff.).
Thus, investigating the direct reaction of performers to room acoustical conditions
by observing their changes in playing technique is a promising approach that con-
tributes to stage acoustics research.
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1.2 Challenges

Empirical investigations into the influence of room acoustics on music performance
face several challenges, outlined in the following.

Music performance involves complex cognitive processes inmusicians. Preceding
the performance itself, musicians form a concept of how to play the music (Sloboda
1982; Gabrielsson 1999), which is like an overall guide for the sounding enactment.
Forming a performance concept involves the acquisition of a mental representation
of the music—structural features, emotions, associations, body movements, sound
patterns—as well as the practice aimed at attaining the required technical proficiency
(Gabrielsson 1999, p. 502 f.). During the actual performance, the sensory (kinaes-
thetic, tactile, visual, auditory) feedback from the musicians’ body movements, the
instrument, and the sound guide their playing in order to produce the intended sound.
Thereby, both mental and embodied cognitive processing help to activate and con-
trol the motor action of playing the instrument. Leman (2008, p. 51) states: “While
involved with music, the human body interacts with physical energy and the human
mind deals with interpretations that are built on top of that corporeal interaction.”
Besides this direct interplay of musicians with their instruments, there are several
external factors that may influence a music performance. These include the interac-
tion with other performers and the audience, the physical and emotional state of the
players, as well as environmental factors such as room size, lighting, room acoustics,
and climatic conditions (see Schärer Kalkandjiev 2015, p. 10 ff.). The complexity of
the cognitive load, as well as the presence of manifold influencing factors, make it
difficult to study the isolated effect of room acoustics on music performance.

Two different approaches exist that can be adopted to investigate the influence of
room acoustical surroundings on musicians: (i) conducting field studies in real con-
cert halls or (ii) running laboratory experiments with simulated environments. Both
have specific advantages and disadvantages, as pointed out by Gade (2010). Experi-
ments in real halls have a very high degree of external validity, but the experimental
variables are difficult to control, and usually, the variation of room acoustical con-
ditions is not large enough. Both problems can be more easily handled in laboratory
experiments, but here the realism of the virtual rooms is the major challenge—see
Sect. 2.

Empirically studying the performance of music usually involves physical mea-
surements, and in this context, its realization is an essential challenge. This includes
defining the most relevant aspects of music performance and selecting those audio
features that are most suitable to describe them. Seashore (1938) fundamentally con-
tributed to this issue by defining frequency, amplitude/intensity, duration, and form
as the four main physical characteristics of a sound wave with pitch, loudness, time
and timbre as their corresponding musical qualities. Many of the studies on music
performance that succeeded Seashore’s concentrated on specific aspects of these
qualities, and a large share of them dealt with piano performances (e.g., see Goebl
et al. 2008 for a review). A major impact in this respect can undoubtedly be ascribed
to the introduction of the MIDI standard, which immensely facilitated the measure-
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ment of piano music in a digital format. The Music Instruments Digital Interface
(MIDI) is a standard for a digital protocol and interface among musical instruments,
computers and other devices, maintained by the MIDI Manufacturer’s Association
(1996). Via MIDI, signals are transferred using a serial stream of data with informa-
tion about note events such as note index/pitch, note on/off, velocity/level and control
data. An advantage of MIDI data for music analysis is the immediate availability of
digital data describing basic musical events. A drawback of the MIDI standard from
1983 is the condensation of musical expression to a rather small and roughly discre-
tised set of parameters that only represent a part of the original music performance.
Enhancements are implemented in theMIDI 2.0 standard from 2019 (midi.org 2020).
The small number of studies concerned with other instruments, especially strings,
are often confronted with difficulties such as tone, on- and offset detection—see
McAdams et al. (2004).

Furthermore, when using either MIDI or audio measurements, careful considera-
tion must be given to the selection of perceptually meaningful physical parameters.
One example of this is that the perception of musical dynamics is not only charac-
terized by intensity but also depends on the musical context and timbre (Nakamura
1987). Thus, existing simple loudness measures must be viewed critically when used
to describe the dynamic strength of musical pieces—see Sect. 3.2. A further example
is that the perception of tempo in music is related to the microstructure of timing in
performances (Repp 1994). However, the tempo of performances is often described
bymerelymeasuring the duration of wholemusical phrases. Due to the lack of a stan-
dard operationalization method for music performances, the diversity of tools and
methods used in existing studies is huge—see Sect. 3.2—making the comparability
among investigations difficult.

It is in the nature of music that there are differences between the performances of
the same piece by several players or singers (Sloboda 2000; Gingras 2014; Devaney
2016). The use of certain aspects of performance such as articulation appears to be
piece-specific,while other interpretive choices are rather performer-specific (Gingras
et al. 2013). Furthermore, there seem to be unintentional and even inaudible, but
systematic timing deviations among pianists denoted as “pianistic fingerprint” by
Van Vugt et al. (2013). These points raise the questions whether at least certain
performative adjustments to room acoustics are performer-specific, as suggested by
Schärer Kalkandjiev andWeinzierl (2015), and whether the individual differences in
performances are even larger than the differences evoked by the influence of room
acoustical surroundings.

1.3 Stage-Acoustics Research

One main concern of room acoustical research is finding physical measures that
are suitable to describe the room acoustical perception of audience and musicians.
In this context, defining the subjective attributes that are relevant for listeners is
a substantial issue that is discussed in the chapter The Language of Rooms: From
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Perception to Cognition (Weinzierl et al. 2020), this volume. Regarding physical
measures, there is a well-established set of parameters that is commonly used to
evaluate the auditoria of concert halls (Beranek 2004; Kuttruff 2009; ISO 3382-1
2009) while current research involves new measurement techniques using spherical
arrays for sources and receivers and auditory models for the extraction of features
(Weinzierl and Vorländer 2015). Concerning the perspective of musicians, however,
there are only two standardized physical parameters to describe the acoustics of stage
areas, early and late support (STearly and STlate). The following section reviews the
progress that has been achieved in the last decades in this field.

Studying different stage configurations on the variable stage of the Gulbenkian
Grande Auditorio, Barron (1978) found that all performers of a small ensemble
preferred an overhead reflector. In addition, wind players were in favor of close
reflecting surfaces around themwhile strings preferred an open stage. Several authors
have studied the benefit of early reflections at certain time intervals, which were
judged positively if they arrived

• Between 17 and 35 ms for ensemble musicians (Marshall et al. 1978)
• Before 40 ms for singers (Marshall and Meyer 1985)
• Between 20 and 75 ms for ensemble musicians (Gade 1989a)

Regarding the strength of early reflections, there seems to be a certain limit above
which they are disliked by both soloists and ensemble players (Chiang et al. 2003;
Ueno and Tachibana 2003; Ueno et al. 2005). Furthermore, the reflection of high
frequencies is essential for both instrumentalists and vocalists (Marshall et al.
1978; Marshall and Meyer 1985), and most musicians are in favor of reverberation
(Marshall and Meyer 1985; Gade 1989a; Ueno and Tachibana 2003; Ueno et al.
2005).

Regarding specific parameters to characterize the acoustic conditions on stage,
Naylor (1988) suggested the measurement of a modulation transfer function with
source and receiver on stage, intended to quantify the amount of information con-
veyed among musicians. After determining the most important subjective proper-
ties of room acoustics in an interview study with musicians (Gade 1986), Gade
(1989a, b) conducted laboratory and field experiments with ensembles and orchestras
that yielded two acoustical stage measures. He found a positive correlation of these
measures with both the concepts hearing oneself and hearing others. After a slight
revision (Gade 1992), they are listed in ISO 3382-1 (2009) as STearly—predicting the
subjective impression of ensemble conditions,

STearly = 10 log10

⎛
⎜⎜⎜⎝

100ms∫
20ms

p2(t)dt

10ms∫
0ms

p2(t)dt

⎞
⎟⎟⎟⎠ , (1)

and STlate—predicting the subjective impression of perceived reverberance,
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STlate = 10 log10

⎛
⎜⎜⎜⎝

1000ms∫
100ms

p2(t)dt

10ms∫
0ms

p2(t)dt

⎞
⎟⎟⎟⎠ , (2)

with the sound pressure, p(t), measured at a distance of 1 m between source and
receiver. Both transducers aremounted at a height of 1m or 1.5m (ISO 3382-1 2009).

Low correlation values between perceptual properties of stage acoustics and the
support parameters were found in later studies (O’Keefe 1995; Chiang et al. 2003;
Berntson and Andersson 2007; van Luxemburg et al. 2009; Dammerud et al. 2010).
Therefore, there were suggestions for alternative measures (Chiang et al. 2003;
van den Braak and van Luxemburg 2008; Brunskog et al. 2009; Dammerud 2009;
Wenmaekers et al. 2012) of which two promising approaches shall be mentioned
here: The parameters Ge and G l are presumably less prone to effects of the source
directivity, the distance between source and receiver as well as the floor reflection.
They can be calculated from the in-situmeasurements of sound strength G and clarity
C80 (Dammerud 2009).

Ge = 10 log10

⎛
⎜⎜⎜⎝

80ms∫
0ms

p2(t)dt

∞∫
0ms

p2
10m(t)dt

⎞
⎟⎟⎟⎠ = 10 log10

(
10C80/10 · 10G/10

1 + 10C80/10

)
, (3)

G l = 10 log10

⎛
⎜⎜⎜⎝

∞∫
80ms

p2(t)dt

∞∫
0ms

p2
10m(t)dt

⎞
⎟⎟⎟⎠ = 10 log10

(
10G/10

1 + 10C80/10

)
, (4)

with the sound pressure, p(t), of the in-situmeasured impulse response and the sound
pressure of an impulse responsemeasured in the free fieldwith the same sound source
at a distance of 10 m to the receiver, p10m(t).

Wenmaekers et al. (2012) introduced an extension of STearly and STlate so that these
parameters can bemeasured with source-receiver distances larger than 1m. A greater
distance allows positioning the source and receiver at the location corresponding to
different instruments, and thus accounting for the benefit of early and late reflections
when it comes to hearing the sound of neighboured instruments on stage:
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STearly,d = 10 log10

⎛
⎜⎜⎜⎝

103ms−τ∫
10ms

p2
d(t)dt

10ms∫
0ms

p2
1m(t)dt

⎞
⎟⎟⎟⎠ , (5)

STlate,d = 10 log10

⎛
⎜⎜⎜⎝

∞∫
103ms−τ

p2
d(t)dt

10ms∫
0ms

p2
1m(t)dt

⎞
⎟⎟⎟⎠ , (6)

sound pressure measured with a distance of 1 m between source and receiver, p(t)1 m
the sound pressure measured with arbitrary distance d between source and receiver,
p(t)d and the delay between source and receiver, τ , in milliseconds.

As a perspective for future work, several authors have advocated the use of direc-
tional sources and receivers for the measurement of stage acoustical parameters
(Meyer and Biassoni de Serra 1980; O’Keefe 1995; Dammerud 2009; Wenmaek-
ers et al. 2017). In addition to monaural parameters, the use of microphone arrays
allows for the exploration of spatial properties of sound fields on stage (Guthrie et al.
2013; Panton et al. 2016). Because of the presumably large number of variables in
stage acoustical investigations, it was argued that especially in field experiments the
number of studied concert halls needs to be quite large to avoid the confounding
of variables (Gade 2010). Dammerud particularly notes occupied stage conditions
(chairs, people) as an element impacting realism (Dammerud et al. 2011). In order
to achieve more comparable results, there have been efforts to establish an absolute
uniformity regarding the measured acoustical and architectural parameters and the
questionnaires used for collecting subjective data (Gade 2013).

2 Auralization Applied to Music Performance

Auralization is the process of rendering and delivering audible soundfields to lis-
teners, recreating the acoustic impression of a real or simulated environment. Either
indoor (roomacoustics) or outdoor (soundscapes) environments can be auralized, and
a vast number of measurement, simulation, and reproduction techniques are avail-
able to this endeavour (Kleiner et al. 1993). This section provides an overview of
common techniques used to auralize room acoustics in real-time for their application
to the study of music performance.

The basic steps to auralize room acoustics consist of convolving anechoic live or
recorded sound with a set of filters generated from simulated or measured spatial
room impulse responses (SRIR) and reproducing the resulting signals using either
a loudspeaker set-up or a pair of headphones. A block diagram of the process is
depicted in Fig. 1. The star symbol denotes the convolution of anechoic signal and
spatial impulse response.
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Fig. 1 Basic steps to auralize room acoustics

2.1 Transfer Path

Room acoustics contributes to the perception of the musical performance of listen-
ers in the audience as well as of the players. Whereas the acoustic path from an
instrument to listeners is mostly unidirectional (with the exception of wanted or
unwanted reactions of the audience), musicians generally react to and even depend
on the acoustic perception of their own performance. In Fig. 2, four different sound
transmission paths are indicated for the case of a speaker or singer and a listener
in the audience. The direct sound between singer and listener corresponds to the
propagation under free field conditions, i.e., without any influence of bounding walls
or obstacles. This path is determined by the radiation characteristics of the musical
instrument and the hearing of the listener. The arrival time of early reflections follows
within 5–100ms after the direct sound. These components essentially contribute to
the perception of room properties, support the location of the musician but can also
amplify the direct sound (Barron 1974). The sound field components that are per-
ceived after these early reflections are attributed to the diffuse field in the room. They
do not support the localization of the musicians, nor do they support the direct sound.
Instead, these components add to the listeners’ feelings of envelopment and raise the
overall sound level of the performance (Kuttruff 2009; Griesinger 1997). The fourth
sound path is the self-perception of musicians. This path could be further divided
into an extraaural path via the air and room response and the sound path within the
musician’s (bone conduction) and instrument’s bodies. Whereas the internal sound
path can be very fast due to the high speed of sound within the human body or the
body of the instrument, the path through the air includes all three types of sound
paths between music instrument and listener and therefore extends over a large time
scale. Another difference between these paths is the wave type; while airborne sound
always travels as a longitudinal wave, bone conduction and sound propagation in
instruments can also use transversal and bending waves, resulting in more complex
phenomena such as dispersion and early vibratory or tactile perception of sound
(Sarvazyan et al. 2013).
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Fig. 2 Transfer paths from musician to listener, including self-perception and diffuse field due to
late reflections

2.2 Generation of Spatial Room-Impulse Responses

A Spatial Room Impulse Response (SRIR) can be regarded as the acoustical finger-
print of a room, describing its time-energy and spatiotemporal acoustical behavior.
Thus, in order to create plausible and/or realistic auralizations of rooms, it is crucial
to obtain an SRIR of the target room, describing the acoustical transfer path from
the source to the receiver position. In the specific case of musicians on stage, the
source position is located at the instrument position, and the receiver corresponds to
the musician’s ears.

Twomajor approaches are available in order to obtain an SRIR:measurements and
simulations.Measurements aremainly used to resynthesize the acoustic conditions of
real rooms in laboratory conditions.When geometry and sound absorption properties
of a room are known, simulations can be used as well to replicate the acoustics of real
rooms. In addition, simulations allow a high degree of flexibility, as the absorption
properties of the materials and the geometry of the room can be modified.

Standard acoustical measurements in performance rooms, as described in the ISO
standard (ISO 3382-1 2009), are typically conducted by using an omnidirectional
source and microphone. This results in the estimation of monaural room parameters,
such as Reverberation Time (RT60) or Clarity (C50, C80), among others. However,
these measurements are not suitable for auralization, since a monaural room impulse
response (captured by a single microphone) provides only time-energy information,
and spatiotemporal information is needed in order to create more realistic aural-
ized versions of measured rooms. Then, arrays composed of multiple microphones
are needed to capture SRIRs. The topology and dimensions of a microphone array
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are determined by the analysis technique used to extract spatiotemporal informa-
tion from SRIRs. Common techniques to encode measured sound-fields are Higher
OrderAmbisonics (Gerzon1973;MalhamandMyatt 1995;Daniel 2003),Directional
Audio Coding (Pulkki 2006), Spatial Decomposition Method (SDM) (Tervo et al.
2013), Wave-Field Analysis (Berkhout et al. 1997), or binaural technique (Blauert
2013), among others. A straightforward approach to generating a Binaural Room
Impulse Response (BRIR) consists of capturing a stereo room impulse response
using an artificial head with microphones placed inside the ear canal.

Room acoustic simulation techniques can be classified into two main groups:
geometrical acoustics (GA) techniques and wave-based methods. Geometrical tech-
niques assumewave propagation can be represented by rays, which is a valid approx-
imation for high and mid frequencies. For low frequencies, wave-based methods are
more appropriate, as they solve the discretized wave equation numerically and are
able to replicate wave phenomena such as room modes and diffraction. Using wave-
basedmethods is computationally very expensive. Therefore combinations ofGAand
wave-based techniques can be used to simulate the entire audible range. CommonGA
techniques are Ray Tracing (Ondet and Barbry 1989), Mirror-Image Source (Allen
and Berkley 1979; Borish 1984), or Beam Tracing. Savioja and Svensson (2015) pre-
sented an extensive review on state of the art regarding GA. Finite-Difference Time
Domain (FDTD; Botteldooren 1995) and Finite-Elements Method (FEM; Pietrzyk
and Kleiner 1997) are standard techniques to implement wave-based simulations.
Apart from the expensive computational costs, results from simulations do not typ-
ically match the realism of auralizations based upon measured impulse responses,
much due to the challenges of characterizingmaterial acoustic properties (Brinkmann
et al. 2017, Brinkmann et al. 2019).

2.3 Sound-Field Reproduction

To auralize ameasured or simulated SRIR, it is necessary to reproduce the spatialized
soundfield, by either loudspeaker set-ups or headphones. Themain operation consists
of generating appropriate auralization filters and convolving the SRIR with the live
or recorded sound generated by a musician.

A BRIR can be directly convolved with recordings and live sound, and then
reproduced using headphones. The use of individualized head-related transfer func-
tions (HRTF) provides benefits in localization, especially in the median plane
(Wenzel et al. 1993; Møller et al. 1996). However, the amount of individualiza-
tion required to achieve plausible auralization of room acoustics is a topic under
investigation (Begault et al. 2001). In addition, headphone equalization should be
considered (Schärer and Lindau 2009; Brinkmann and Lindau 2012). Moreover, the
case of dynamic binaural synthesis requires tracking the head movements of the
listener and updating the BRIR accordingly.

Reproducing 3D sound-fields using loudspeakers is usually computationallymore
demanding, and multichannel set-ups can be fairly expensive. However, listeners are
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freed from wearing headphones, and it is not necessary to track their movements to
reproduce the appropriate soundfield. Common techniques to reproduce 3D sound-
fields are Vector Base Amplitude Panning (VBAP) (Pulkki 1997), Ambisonics (Ger-
zon 1973), Wave-Field Synthesis (Berkhout et al. 1993)—although in practice it
is typically implemented in a 2D configuration, or Nearest Loudspeaker Synthe-
sis (Tervo et al. 2015), among others. A hybrid technique isDynamicCross-TalkCan-
cellation (CTC), where binaural signals are reproduced through loudspeakers (Lentz
2006).

2.4 Real-Time Auralization

Thecore operationof real-time auralization consists of real-time convolutionbetween
the live sound generated by a performingmusician and the auralization filters created
from a measured or simulated SRIR appropriately treated using a spatial reproduc-
tion method. Partitioned convolution schemes are efficient techniques for real-time
convolution (Gardner 1995).

The total system latency is defined from the moment of generating a sound using
a musical instrument until the corresponding room reflections are reproduced. Min-
imizing the latency is crucial to allow real-time interaction of musicians with the
system. In some cases, if the latency is too large, some reflections (e.g., first-order
floor reflection, arriving at approximately 6 or 9ms for seated or standing musicians,
respectively) may not be reproduced. If binaural reproduction is used, a hard floor
surface can be included to create a floor reflection physically.

The level difference between the direct sound of the instrument and the artificially
auralized reflections should be calibrated as well. However, given that instrument
directivity is a complex issue and in simulation or measurements source radiation is
commonly simplified, there is not a straightforward approach to perform this cali-
bration. Amengual Garí (2017) and Schärer Kalkandjiev (2015) describe approaches
for the calibration of loudspeaker and binaural auralizations, respectively.

2.5 Available Virtual-Acoustic Environments

This section presents an overview of virtual acoustic environments that have been
used over the last decades to study live music performance. Each of the reviewed
environment uses different techniques to generate and reproduce SRIR, showing that
multiple approaches can be combined. However, this results in a lack of standard-
ization in evaluating the performance of auralization techniques, thus difficulting the
comparison and experimental repeatability of research results in this field.

The first virtual acoustic environment used to conduct research related to a live
music performancewas implemented byMarshall et al. (1978). However, in this case,
the auralization consisted only of a limited number of reproduced early reflections,
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without late reverberation. Later on, Gade (1989a) implemented an environment
which reproduced early reflections and late reverberation. The live sound of the
musician was captured, and the early reflections were simply delayed versions of the
live sound. To reproduce late reverberation, the captured sound was reproduced in a
reverberant chamber to be then captured again and reproduced to themusician. These
environments represent simplified and limited approaches, and with the implemen-
tation of digital signal processing (DSP) techniques the capabilities and plausibility
of auralization environments improved substantially.

Ueno et al. (2001) implemented an auralization system based on the measurement
and loudspeaker reproduction of 6-channel measured SRIR. The measurement set-
up consists of an omnidirectional loudspeaker and a directional microphone placed
on a stage, obtaining 6 directional impulse responses by rotating the microphone
(2 for each orthogonal axis). Then, the sound of a musician performing in an ane-
choic chamber is captured by a microphone and convolved with the measurement
responses. Although only equalization and no spatial treatment of the measured
SRIRs are involved, the monaural characteristics of the real and auralized environ-
ments showed considerable agreement. However, the spatial properties of the aural-
ized sound-fields were not analyzed. Later, Ueno et al. (2005) extended the same
principle to simultaneously auralize soundfields in real-time corresponding to a duo
on stage.

The Virtual Singing Studio (Brereton et al. 2012) is an environment specifically
designed to study singing voice performance. The systemconsists of a 16 loudspeaker
set-up reproducing the result of convolving measured first-order Ambisonics SRIR
with the live sound of singers. The authors also studied the effect of different micro-
phone models and positions.

The Virtual Performance Studio (VPS) (Laird et al. 2011) is an acoustic virtual
environment based on simulation of room acoustic models and 12 channel loud-
speaker reproduction of first-order Ambisonics SRIR. The authors make particular
emphasis on the issues that musicians can encounter when performing in an acoustic
virtual environment, such as the proximity effect (increase of low-frequency con-
tent) caused by close-miking techniques, the PA-effect (amplification of non-musical
sounds and tonal distortion) or the restriction of musicians’ movements when per-
forming due to microphone and loudspeaker positioning.

Second-order ambisonics measurement and reproduction of SRIR is used
by Guthrie et al. (2013) to deliver real-time auralization of room acoustics to musi-
cians. The auralized soundfields are reproduced using a 3D set-up of 18 loudspeakers
and 4 subwoofers. The main application of this environment is the study of spatial
parameters influencing stage acoustic preferences.

In order to conduct music performance studies in controlled acoustic condi-
tions, Schärer Kalkandjiev (2015) implemented an auralization system based on bin-
aural reproduction of simulated room acoustics. The generation of SRIRs is produced
by a combination of an image-source model and ray tracing. In addition, multiple
simulations of each room are implemented using different source radiation models,
in order to fit the room excitation properties to those of different instruments. From
these simulations, a database of BRIRs corresponding to different head orientations
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Fig. 3 Musicians performing in a binaural environment using non-occluding headphones. Image
extracted from Schärer Kalkandjiev (2015)

Fig. 4 Trumpet players performing in the D3S environment. Image extracted from Amengual Garí
(2017)

is generated and used later for real-time convolution with the live sound of musicians
in an anechoic chamber. The reproduction is based on dynamic binaural resynthesis
using head tracking and thus allowing musicians to move during the performance
freely. In order to not block the path of the direct sound from the instrument to the
musicians’ ears, extra-aural (non-occluding) headphones are used (Fig. 3). The prob-
lem of needing multiple measurement or simulation sets to appropriately account for
source directivity can be solved by using a microphone array to capture the live sig-
nals. This was demonstrated in practice by Arend et al. (2019), using a microphone
array of 32 microphones in a similar binaural virtual environment.

The Detmold Surround Sound Sphere (D3S) is a loudspeaker based environment
for real-time auralization ofmeasured SRIR (AmengualGarí 2017). The process con-
sists of stage measurements using a directional sound source and a 3D microphone
array, positioned at the instrument andmusician’s head location in order approximate
the room excitation to a real performance situation. The captured SRIR are analyzed
using SDM, and auralization filters are synthesized using VBAP. The re-synthesized
SRIR are convolved in real-time with live sound captured by a close directional
microphone, and the result is played back using a 3D loudspeaker set-up composed
of 13 loudspeakers. Physical measurements have validated the auralization quality,
showing that the time-energy properties of the auralized sound-field agree within
±3dB with the original room in the range 200Hz–4kHz. Also, the directional prop-
erties of the auralized and the original sound-field present considerable agreement.
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The total round-trip delay from the live input to the musician’s ears is 8.7ms, allow-
ing the reproduction of the first order floor reflection. A proof of concept has been
tested with trumpet players, conducting systematic tests on music performance and
stage acoustic preferences (Fig. 4).

3 Impact of Room Acoustics on Music Performance

The previous sections have provided some fundamentals of methods for implemen-
tation of acoustically controlled environments for music performances. This section
shall elucidate approaches for the evaluation ofmusical performance and some results
obtained from their application.

3.1 Music-Performance Analysis (MPA)

Music Performance Analysis is a subfield of Music Information Retrieval (MIR)
(Downie 2003), which aims at extracting information from audio or symbolic (MIDI)
signals, in order to characterize musical aspects of a musical performance.

Similarly to a sound wave, musical aspects can be categorized in terms of ampli-
tude, time, pitch, and timbre. However, each of these groups is composed of multiple
individual aspects e.g., time is related to rhythm, speed, and articulation. Besides, the
modulation of each musical aspect leads to a musical result, which is interpreted in
a highly distinctive way by both musicians and listeners. For instance, the character-
istics of amplitude modulations in a performance (modulation frequency, minimum
and maximum level, micro and macro modulations) are part of musical dynamics
and, fromamusical perspective, the definition and quantification of dynamics acquire
a partially subjective significance.

Conventional approaches to MPA consist of extracting low-level audio or MIDI
features, which provide objective information about the analyzed performance. An
example of the simplest low-level descriptors for the previouslymentioned categories
could be root-mean-square sound level (amplitude), the total duration of a perfor-
mance (time), median fundamental frequency (pitch) or spectral centroid (timbre).
For the case of MIDI recordings, low-level features can be easily extracted from
the encoded data, given that the duration, pitch, and velocity parameters of each
recorded note are available. The extraction and combination of multiple features
allow the construction of more complex descriptors that aim at characterizing the
human perception of music in terms of musical and emotional aspects (Friberg et al.
2011).

Several tools allowing the extraction of performance features from audio and
MIDI recordings are currently publicly available. Some of these tools are the MIR
andMIDI toolboxes forMatlab (Lartillot and Toiviainen 2007; Eerola and Toiviainen
2004), the jMIR package (Mckay and Fujinaga 2009), the stand-alone software Sonic
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Visualiser with an extensive collection of plug-ins (Cannam et al. 2010), or the CUe
EXtraction (CUEX) algorithms (Friberg et al. 2007). By no means this list is meant
to be complete, but rather a starting point for the reader towards tools previously
used for research. In many cases, it is common to combine multiple tools into more
complex models or opt for a full custom implementation of several feature extraction
algorithms (Lerch 2008; Amengual Garí 2017).

3.2 Performance Adjustments of Musicians

Several musicians and music scholars have given specific recommendations regard-
ing the playing techniques to be used in certain room acoustical environments. They
can be summarised as follows:

• Avoid fast tempi in large, reverberant halls because tones are otherwise blurred
(Quantz 1752; Galamian 1962)

• Do not force the tone of the instrument (especially strings) in both large and dry
halls (Spohr 1833; Galamian 1962; Borciani 1973)

• Instead of forcing the tone (see above), increase the amount of sound by dividing
bow strokes in large, dry halls (strings; Borciani 1973; Galamian 1962)

• Use a wide vibrato in large, dry halls (strings; Borciani 1973)
• Prolong notes in dry halls (Blum 1987)
• Articulate clearly in reverberant halls (Blum 1987)

In the search for evidence showing the use of these or other adjustment strategies
by musicians, there have been a growing amount of empirical investigations on this
topic. Structured by the two basic approaches of field and laboratory studies, the
following section reviews the research and main findings in this field.

Field Studies

Winckel (1962) carried out an early field experiment with the Cleveland Orchestra
directed by George Szell, who performed 8 musical works in 15 concert halls in the
USA. To characterize the room acoustics, Winckel recorded the decay of a musical
chord in the occupied and unoccupied concert halls (RT between 1 and 2.1s). As
for performance properties, Winckel measured the maximum and minimum sound
pressure levels (SPL) of several musical phrases in the audience area as well as
the duration of each movement using a stopwatch. The SPL measurement revealed
a similar upper dynamic limit in most rooms. Assuming that the concert halls did
not have the same sound strength and given the fact that the measurement took
place in the audience area, a constant maximum SPL implies an adjustment of the
dynamic strength by the orchestra. Since the minimum SPL of the orchestra was
more variable across rooms, Winckel assumed that it was mostly influenced by the
background noise level of each space. The playing tempo of the musicians did not
correlate with RT as one might expect concerning the recommendations by music
scholars. However, Winckel concluded that the orchestra used the slowest tempi in
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those halls with very good hearing conditions and the fastest tempi in rooms that
were unsuitable for live music performances. This implies that the playing tempo is
linked to the perception of room acoustical quality.

A more recent investigation was conducted with a well-known cellist who was
recorded during his performances of the Six Suites for Violoncello Solo by J. S. Bach
in seven European concert venues (Schärer Kalkandjiev and Weinzierl 2013). These
halls were simulated in computer models in order to obtain room acoustical parame-
ters on each stage by using a source with the directivity of a cello. Technical features
were extracted from the audio recordings and then used as predictors in perceptually-
based regression functions to determine temporal, dynamic and timbral performance
properties (see Schärer Kalkandjiev 2015, p. 51 ff. for details). The statistical analy-
sis used to study the effect of four room acoustical parameters on seven performance
characteristics yielded an explained variance of more than 50%. Remarkably, such
a high share of the performance variance was due to the room acoustical condi-
tions since there are many other influencing factors in real-world concert situations
(see Sect. 1.2). An examination of specific interrelations showed that, as inWinckel’s
study, therewas no linear correlation betweenRT and the tempo of the cellist. Instead,
he played significantly slower in rooms with both short and long reverberation times,
and this effect was stronger for the fast movements of the cello suites. The dynamic
strength of the cello performances was also significantly reduced in rooms with
short and long reverberation times (Schärer Kalkandjiev 2015). This is interesting
because it partly contradicts the results of other studies that found a negative linear
correlation between RT and the dynamic strength of performers (von Békésy 1968;
Bolzinger et al. 1994). However, interviews conducted with the cellist shed some
light on this finding: Apparently, he had learned to play soft when encountering a
lack of acoustical liveliness instead of forcing the sound, thus complying with the
recommendations of music scholars (Spohr 1833; Galamian 1962; Borciani 1973).
At the same time, he felt the need to hold back with the increasing reverberation
time, which is in turn in line with the previous studies. In terms of timbral adjust-
ments, the results showed that the cellist played significantly harder and brighter in
rooms with high late support (STlate), a measure for the perceived reverberance on
stage (ISO 3382-1 2009). A hard and bright tonal rendition is likely to be related to
playing trenchant and to using a more defined attack in articulation, both reported
as strategies adopted in very diffuse environments by the cellist. It should further
be mentioned that the strongest effects in the statistical analysis were found for the
influence of the reverberation time and late support on timbral performance attributes
(Schärer Kalkandjiev 2015). This firstly emphasizes that it is important to consider
timbral attributes when studying the effect of room acoustics on music performance
and secondly it indicates that these two room acoustical parameters are relevant for
the perception of solo musicians on stage.

Laboratory Studies

In an early laboratory experiment with trained and untrained pianists von Békésy
(1968) asked the musicians to play pieces of varying difficulty and familiarity in
three rooms. He measured the reverberation time to represent the room acoustics
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(3.8, 1, and 0.6 s) and the vibration amplitude of the piano body as a measure for the
dynamic strength of the performances. In the case of one pianist, the vibration ampli-
tude negatively correlated with RT while the maximum dynamic range was found
in the intermediate reverberance condition. In addition, the least pronounced adjust-
ments were found for unprofessional pianists playing difficult and unfamiliar pieces.
Most likely in these cases, the musicians were cognitively absorbed by mastering the
technical difficulty of the pieces—part of forming a performance plan, as mentioned
in Sect. 1.2—so they could not concentrate on adapting to the room acoustical condi-
tions. Further experiments were conducted by Bolzinger et al. (Bolzinger and Risset
1992; Bolzinger et al. 1994) in a room treated with four different configurations of
absorbing material, featuring reverberation times ranging from 0.3 to 1.5 s. General
trends among pianists were observed: when playing in more reverberant conditions,
musicians tended to decrease the amount of sustain pedal and the overall performance
level. The extraction of performance data was done using a MIDI interface equipped
on a piano.

Pipe-Organ experiments conducted in a concert hall with electronically enhanced
acoustics concluded that also organists systematically adjust their performance to suit
acoustics (Amengual Garí 2017, Amengual Garí et al. 2015). Three reverberation
settings were implemented, increasing the reverberation time of the hall significantly,
in an attempt to replicate acousticsmore suited to those typically present during organ
performances. Five music students were asked to prepare a few musical excerpts
and recorded under different conditions using a MIDI interface. Given that organ
dynamics are constant and mostly depend on the registration, the analysis focused on
temporal aspects of the performance. As a general rule, musicians tended to decrease
the playing tempo in increased reverberation settings, but it was observed that the
degree of adaptation greatly depended on the nature of the piece. When playing
pieces with loud and full registrations, featuring strong chords and prominent breaks,
players were more inclined to systematically adapt their performance, decreasing the
overall tempo and increasing the length of long breaks. Contrarily, pieces with soft
registration and legato articulations were not significantly adapted.

Ueno et al. (2007) made use of the increasing naturalness and plausibility of room
acoustical auralization systems by simulating four performance spaces in an anechoic
chamberwith 6-channel loudspeaker reproduction. Five solomusicians (violin, oboe,
flute, vocals) were recorded while performing the same two phrases (excerpts of a
fast and a slow piece) in each room. Technical features were extracted from the audio
recordings, namely phrase duration, A-weighted SPL, fundamental frequency fluc-
tuations, SPL fluctuations and spectral features, in order to describe the performance
characteristics tempo, dynamic strength, vibrato and timbre/articulation. The tech-
nical features all varied with the room acoustical conditions, but in most cases, the
manner of adjustment depended on the instrument (Kato et al. 2007). However, the
players’ individuality likely accounted for the different adjustment strategies (see
Sect. 1.2), since except in one case there was only one musician for each instrument.
Similar to the results of Schärer Kalkandjiev and Weinzierl (2013), a consistent
reaction among the musicians was to reduce the tempo—especially when playing
the fast piece—in both the most reverberant and the anechoic room. The latter is
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supported by interviews conducted with the musicians in which they explained that
they tried to prolong notes in acoustically dry environments (Ueno et al. 2010), a
reaction that most probably reduces the overall tempo of a performance. Some per-
formers reduced their dynamic strength in both the anechoic and most reverberant
room (Kato et al. 2007), as it was reported for the cellist in the field study out-
lined above (Schärer Kalkandjiev 2015). At the same time, an investigation of the
effect of specific room acoustical parameters on the mean dynamic strength of the
performances revealed a significant negative correlation with the support parame-
ters STearly and STlate (Ueno et al. 2010). Regarding the timbre and articulation of
performances in reverberant rooms, the strategies found by Kato et al. (2015) were
suppressing higher harmonics, prolonging pauses between notes and using a more
pronounced staccato. Along similar lines, playing shorter notes in reverberant rooms
was a strategy described by many performers in the interviews (Ueno et al. 2010).

Schärer Kalkandjiev and Weinzierl (2015) carried out an experiment in an ane-
choic chamber with 12 professional solo musicians of 6 instruments (violin, cello,
clarinet, bassoon, trumpet, trombone) playing two pieces (slow and fast) in 14 virtual
concert spaces simulated with dynamic binaural synthesis (see Sect. 2.5). The meth-
ods for determining room acoustical measures and performance characteristics were
the same as in the field study described above (Schärer Kalkandjiev and Weinzierl
2013). The statistical analysis showed that five roomacoustical parameters accounted
for only 2% of the variance of eight performance attributes averaged over musi-
cians. However, if the individual adjustment strategies of the players were taken into
account, the explained variance increased to 13%. Firstly, this result demonstrates
how large the impact of musicians’ individuality can be (see Sect. 1.2). Secondly, it
is remarkable that the equally calculated explained variance in the field study was
almost four times higher than in the laboratory study, despite many other influential
factors. It seems that the absence of visual information about the concert halls in the
laboratory study did not aid the musicians’ concentration on adjusting to the room
acoustics. Instead, much attention was drawn by the effort to get a mental image
of the simulated rooms, as interviews revealed. Furthermore, visual and acoustical
properties of rooms usually covary so that they may have a stronger effect as an
entity. When conducting laboratory studies, it is thus not only the plausibility of
the acoustical simulation that needs to be taken into account (Gade 2010) but more
precisely the ability of musicians to engage with the simulation as a concert-like
situation, possibly including visual cues.

Turning to the specific interrelations revealed in this laboratory study, a significant
negative correlation was found between RT, and the tempo of the slow pieces aver-
aged over musicians. This effect was dominant for fast pieces in previous studies
(Kato et al. 2007; Schärer Kalkandjiev and Weinzierl 2013), and interviews con-
ducted with the performers explained this result: Most of the musicians mentioned
that they concentrated on a precise articulation instead of slowing down the tempo
when playing fast pieces. It can be concluded that there are different strategies on
how to react to reverberant room acoustical conditions. The choice of strategy seems
to depend on the basic tempo of the piece, but the musical character and the musi-
cian’s individuality also appear to influence the selection. In accordance with Spohr
(1833), Borciani (1973) and Galamian (1962) and just as musicians in other studies
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(Kato et al. 2007; Schärer Kalkandjiev and Weinzierl 2013), the players signifi-
cantly reduced their dynamic strength with decreasing reverberation time. The tonal
rendition of the performers was affected most strongly by room acoustical parame-
ters (Schärer Kalkandjiev 2015). At the same time, significant differences between
the performative adjustments of some instruments—especially regarding the timbre
characteristics—were revealed, so an awareness of the played instrument is nec-
essary when investigating the adjustment of timbre properties. Comparing the five
room acoustical predictors with respect to their impact on each individual musi-
cian’s performance showed that the stage parameters Ge and STlate had the greatest
influence.

A further point examined by Schärer Kalkandjiev (2015) was the influence of
perceived room acoustical quality on the performance of music. After collecting
individual quality ratings of the simulated concert halls from each musician, it was
shown that on average the musicians played significantly slower (seeWinckel 1962),
with more dynamic strength and with increased dynamic and timbral bandwidth in
rooms they liked. In the interviews, the performers referred to a reduction of tempo
and free use of dynamics under favorable conditions as well as fast playing in rooms
they did not like.

Systematic studies with 11 trumpet musicians were conducted by Amengual Garí
(2017) and Amengual Garí et al. (2019). In these studies, the D3S virtual acous-
tic environment was used to reproduce measured acoustics of different rooms at
the Detmold University of Music. These studies consisted of preference ratings of
stage acoustics and recording sessions, including personal interviews. The recorded
performances were then analyzed to extract performance features. Given the high
dimensionality of the extracted performance data, a Dual Multiple Factor Analy-
sis (DMFA) was conducted on the dataset, reducing the data dimensionality to 4
main dimensions: Overall level and timbre, dynamic variations, overall tempo, and
tempo variations. The results suggested that most of the players reduce the overall
level and produce a darker timbre when performing in more reverberant and ener-
getic environments. All the players adjusted their performance to a certain degree,
although some musicians were prone to implement greater adjustments. A cluster
analysis of the experimental results showed that classifying musicians depending on
their performance adjustments is not straightforward, due to the multidimensionality
of the performance analysis. However, musicians can be classified with regard to
single dimensions, and the adjustments can be partially categorized. Similar results
were found by Luizou et al. (2020) who investigated the impact of room acoustic
conditions on voice performance.

3.3 Perceptual Aspects of Listeners

One of the key questions regarding the influence of room acoustics on live perfor-
mance is whether listeners are able to perceive the adjustments implemented by
musicians to accommodate the acoustics of the room. Although only a few stud-
ies have been conducted, the preliminary results suggest that listeners can at least
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partially perceive the performance adjustments. Ueno et al. (2010) conducted an
experiment with six listeners comparing recordings in three different rooms, and
listeners were asked to judge the similarity and to provide a free description of the
differences. In the 54 and 44% of the judged recordings listeners were able to per-
ceive clear and subtle differences, respectively. Amengual Garí (2017) conducted an
online test with 24 subjects comparing four different versions (recorded in different
virtual rooms) of three trumpet pieces. The results suggest that listeners are able to
perceive the overall sound level and timbral changes to a great extent. However, other
parameters such as dynamic or tempo variations are likely multidimensional aspects
e.g., dynamic variations are the result of level variations over time—and thus each
listener could potentially have a more individual internal representation of those than
unidimensional aspects such as overall sound level.

4 Discussion and Outlook

4.1 Naturalness of Auralization Methods

Themostwanted feature of a virtual environment onmusicians performing in itwould
be the lackof any artifact or unnatural perception.Given the fact thatmost auralization
environments are built in anechoic chambers or force musicians to wear at least
headphones, this feature is hard to provide. As challenging as auralization is the
simulation of an adequate visual experience ofmusical performance. Oncemusicians
are willing to accept shortcomings of the auralization conditions concerning a visual
context or the need to wear technical equipment, a high degree of naturalness of a
purely acoustical environment can be realized today. Examples are the environments
provided using the SDM technique as implemented for investigation of acoustic
feedback on the performance ofmusicians.However, the implementation of details of
the acoustic environment such as reflections frommusic stands (Amengual and Kob,
2017), acoustic changes induced bymovements of themusicians during performance
(Ackermann et al., 2019) or the interaction with other musicians are beyond the
current scope of acoustic simulations.

Shortcomings of current implementations of virtual performance rooms are still
the interfaces between the instrument played by themusician and the perceived sound
field: The immediate perception of the instrument’s vibration and direct sound need to
match the sound processed through the virtual environment. Even fast algorithms on
high-performance computers will exhibit delays between these sound transmission
paths that might be perceived by the musicians.

Another challenge is the difficulty to test and quantify the realism of virtual
acoustic environments.Whereas a performance in a real acoustic environment would
be a kind of gold standard, most set-ups would only optimize the acoustic conditions,
whereas other boundary conditions such as the visual and atmospheric environment
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are not virtualized. The consequence of this auditory-visual incongruence for the
reliability of performance research is difficult to rate.

4.2 Classification of Musicians

An outcome of the studies of musicians’ performance in variable acoustic environ-
ments is a rather individual reaction: Some musicians tend to increase the tempo
with increased reverberation, some slow down. Some players are quite sensitive to
acoustic conditions, whereas others keep their style constant disregard the acous-
tic environment. However, these characteristics seem to be held constant for each
individual. Moreover, there seem to be certain categories of reaction patterns that
musicians might be clustered into. In addition, these individual adjustments seem
to be affected as well by musical character of the interpreted pieces. This clearly
calls for further research in order to evaluate which aspects of music performance
influence such a clustering.

4.3 Further Investigations

A challenge for future research could be the implementation of artifact-free virtual
environmentswith less invasive technical boundary conditions for themusicians.One
of the problems to be solved is the presence of direct sound due to structure-borne
sound transmission from the instrument to the musicians’ ears. Due to the need for
numerical calculations of the virtual environment, a delay between the direct sound
and the auralized sound reduces the naturalness of the generated sound field.
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Binaural Modeling from an
Evolving-Habitat Perspective

Jonas Braasch

Abstract Functional binaural models have been used since the mid-20th century to
simulate laboratory experiments. The goal of this chapter is to extend the capabilities
of a cross-correlationmodel so it can demonstrate human listening in complex scenar-
ios found in nature and human-built environments. A ray-tracingmodel is introduced
that simulates a number of environments for this study. This chapter discusses how
the auditory system is used to read and understand the environment and how tasks
that require binaural hearing may have evolved throughout human history. As use
cases, sound localization in a forest is examined, as well as the binaural analysis of
spatially diffuse and rectangular rooms. The model is also used to simulate binaural
hearing during a walk-through a simulated office-suite environment.

1 Introduction

The goal of this chapter is to examine binaural models from an evolving-habitat
perspective. While the evolution of the auditory system has been studied extensively
from a phylogenetic perspective to establish knowledge of how the auditory system
developed anatomically over time, the auditory system’s ability to adapt to chang-
ing habitats over tens of thousands of years has been hardly investigated. Since it is
impossible to travel back in time, the topic cannot be studied directly. This chapter
describes an attempt of an initial study examining this by simulating different envi-
ronments with a ray tracing model and using an extended binaural model for an
auditory-specific analysis. When studying how the auditory system can adapt to dif-
ferent habitats, one must keep in mind that the anatomical changes of the auditory
system took place over millions of years. While the structure of the auditory system
continues to change over time, these changes occur at a much slower pace than most
sociological changes. Thus, it can be assumed that our auditory system is basically

J. Braasch (B)
School of Architecture, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA
e-mail: braasj@rpi.edu

© Springer Nature Switzerland AG 2020
J. Blauert and J. Braasch (eds.), The Technology of Binaural Understanding,
Modern Acoustics and Signal Processing,
https://doi.org/10.1007/978-3-030-00386-9_10

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00386-9_10&domain=pdf
mailto:braasj@rpi.edu
https://doi.org/10.1007/978-3-030-00386-9_10


252 J. Braasch

structured the same way that it was during the beginning of modern civilization,
which started about 50,000 years ago (Peck 1994). Since the neurological struc-
ture of the brain is very flexible, mammals and other organisms can easily adapt to
new environments and situations—especially during the early post-natal phase (Peck
1995). This flexibility allows us to adjust to new sonic environments. Humans can,
for example, comprehend and appreciate classical music in modern concert halls
using an auditory system that primarily developed in natural habitats.

Traditionally, binaural models have been designed to simulate laboratory sce-
narios, for example, to predict the lateral position of a binaural stimulus presented
over headphones. In this chapter, it is attempted to extend this knowledge for bet-
ter understanding and predicting binaural-hearing tasks in natural environments and
other complex situations that arose as civilization evolved and the built environ-
ment changed. Also, a bridge will be created to the robotic community, which has
its own distinct way of designing sound-sensing systems. Experts in robotics often
attempt to solve tasks in complex environments, for example, acoustically navigat-
ing systems, but without the desire to understand how these tasks are accomplished
in biological systems. In the context of this chapter, understanding will be defined
as the ability to make judgments from perceived information. In some cases, the
understanding consists of the ability to accurately decode the intended meaning sent
by a communication partner, for example, a conversation partner, or the ability to
interpret unintended cues—such as the sounds of an approaching predator. In any
case, understanding allows us to infer something from the received acoustic signals,
and these signals then become information.

Evolutionary biologists agree that a biological organism needs to be successful
in this behavioral complex of four tasks to survive as a species, namely, (i), feeding,
(ii), fleeing, (iii), fighting, and (iv), flirting (reproduction)1—compare, for instance,
Graham (2014). Spatial awareness is essential to success in all these goals—to find
food, avoid predators and to communicate with tribe members for various reasons
ranging from cooperation to mating. As a starting point for the binaural analysis, the
need for spatial acoustic communication and sensing will now be examined in the
view of the main four survival tasks mentioned above.

1.1 Feeding

The early Homo Sapiens survived mainly as hunters and gatherers. Unlike other
vertebrates, such as barn owls or bats, who find their prey acoustically, humans
localize prey or gather objects using vision as their primary sense. Consequently,
the acoustic-localization performance does not need to be as accurate as is the case
for acoustical hunters, who must target their prey precisely. Most likely, acoustic
communication between tribe members played a big role when hunting animals, for
example,whenengaging in an attack. Studies have foundevidence that the early homo

1Also known as the four F’s: feeding, fleeing, fighting, fornication.
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sapiens lived in the plains and hunted large animals from a distance using spears and
other long-distance weapons—Villa and Soriano (2010). The ability to follow these
hunting patternswas a direct result of theCognitive Revolution—Wynn andCoolidge
(2004, 2008), Coolidge andWynn (2018). The rise of new cognitive abilities enabled
homo sapiens to plan ahead, conduct better-coordinated group hunting and also to
spatially navigate larger terrains—Baril (2012).

In contrast, Homo Neanderthalensis is believed to have been a hunter who killed
animals in close combat, based on the type of spear perforations found in deer
skeletons—Gaudzinski-Windheuser et al. (2018) and other evidence. In this context,
it is noteworthy that homo sapiens has a voice box that is very different from that
of Homo Neanderthalensis and other early human species. This results in a lower
fundamental pitch (Fitch 2000). The need for lowering the voice could have resulted
from the need to communicate acoustically over larger distances in the plain as the
homo sapiens started to specialize in hunting animals fromadistance. Thiswould also
explain why the frequency range is lower than it is the case of many other mammals.
The first mammals were small nocturnal animals who presumably lived in densely
vegetated areas—Gerkema et al. (2013). Their high-frequency hearing range is opti-
mal for localizing potential predators at a close distance (Joris and Trussell 2018).
However, high frequencies are not optimal for localizing sound sources from a larger
distance because of air absorption (dissipation), which increases with frequency.

1.2 Fleeing

In contrast to when hunting prey, the angular localization accuracy is not that critical
when fleeing from predators because one usually runs away from the them. However,
it is essential to detect the predators early on before they pose an imminent danger.
Auditory cues always become predominant when visual cues are not available. This
is the case when it is too dark to see, visual objects are occluded, or the acoustic
sources are outside the visual field. The auditory sense alsomonitors the environment
during sleep, and it can be shown that children are not yet disturbed by sounds at night
(Busby et al. 1994). One explanation for this observation is that, from an evolutionary
perspective, it is better for children at certain ages to have an undisturbed sleep and
rely on their parents for monitoring than to monitor the environment themselves. A
study on detecting fire alarms revealed that the sleep of children is often so deep that
children do not wake up when the alarm is set off (Bruck 1999).

In discussions it is usually emphasized that the ability to detect signals tomonitors
predators is of particular relevance. However, an absence of sound can be equally
important, because other animals will quiet down in a sector fromwhere a predator is
approaching. This might be one the reasons for enjoying immersive sounds, namely,
that they can serve as an inherent indicator that no predator is approaching.2 While
this hypothesis remains to be proven, several studies have shown that human subjects

2Personal communication with David Mountain, Boston University, April 5, 2013.
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do not feel comfortablewhen performing tasks in extremely quiet environments (Volf
2012; DeLoach et al. 2015). Alternative strategies are pursued where fleeing is not
an option. The females of the indigenous BaYaka group, for example, gather together
and shouted group calls to make themselves appear as a large and well-coordinated
group to scare away predators in lieu of fleeing (Knight and Lewis 2017, p. 442).

1.3 Fighting

Combat between humans is as nearly as old as the homo sapiens (Meller and Schefzik
2015; Ferrill 2018), and the remains of the oldest homicide victim found are 430,000
years old (Sala et al. 2015). The acoustic requirements for human combat against
other humans or predators are very similar to the acoustic communication in hunting
situations discussed above. Shouting calls are essential to coordinate attacks and
warn others from counter attacks, demanding excellent spatial-hearing skills.

1.4 Reproduction

Many animalsmostly rely on acoustic signaling and sound localization to findmating
partners.Althoughmany animals shout outmating calls over long distances, it ismore
likely human courting has always been an intimate social interaction, since humans
always lived together in groups. It is widely believed that the fundamental pitch
differences in human female and male voices have evolved to make each other more
attractive to the opposite sex (Jones et al. 2010). In the context of spatial hearing, it is
interesting though that homo sapiens engaged in artistic activities from early on that
appear to address both erotic and musical desires. For example, in the Hohle-Fels
cave, bone flutes were found next to venus figurines and phallus sculptures (Conard
and Wolf 2014; Conard et al. 2009). Since then, the flute has been a typical courting
instrument in indigenous cultures, see for example Conlon (2004). Adjacent to the
inhabited part of the Hohle-Fels cave, where the bone flute was excavated, a much
larger cavern exists with a reverberation time of about 2 s. It is not hard to imagine that
our ancestors would have played the flutes in this larger cavern to enjoy the acoustics.
At least, it known that early humans were very aware of their acoustic environment.
For instance, Reznikoff found that many prehistoric cave drawings were painted at
places with dominant acoustic resonances (Reznikoff 2004/2005).

1.5 Modality and Bandwidth

In order to understand how our auditory system developed and was utilized, one
needs to examine what cues and mechanisms are available to process these cues.



Binaural Modeling from an Evolving-Habitat Perspective 255

This way, situations can be determined in which acoustic cues supersede other cues.
Of the five major senses, touch, taste, smell, vision, and audition, only the last three
are useful to sense objects from a distance. Our olfactory sense is less developed
than that of other species, including dogs. Human beings only have a directional
sense of smell when they are moving, and even though it can be useful to detect the
presence of a predator or food, this sense lacks the spatial precision of the auditory
and visual systems. The early homo sapiens was primarily a diurnal hunter using
the visual sense to hunt animals from a distance with spears and to collect food
from plants. Most likely, the auditory sense had initially a support role until speech
communication became increasingly important. The visual sense is limited to the
binocular visual field and covers only about 214◦ in the horizontal plane (Rönne
1915). In contrast, the auditory sense is not spatially restricted, and it also helps us
monitor our environment at night. Sound localization has been important to detect
the direction of a predator quickly. It can also be assumed that it was important for
our ancestors to localize each others’ voice commands when tracking prey. Sound
localization has also always been important in environments where vision is partially
obstructed, for examplewhen hunting deer in a dense forest (Gaudzinski-Windheuser
et al. 2018; Roebroeks et al. 1992). Our first example deals with such a situation. A
virtual walk-through in a forest is presented and analyzed in the next section.

2 Simulating Sound Localization in a Forest with Partially
Obstructed Sight Using a Ray-Tracing Model

2.1 Introduction

To be able to better understand how the binaural system evolved over millions of
years to perform robustly in complex environments, several scenarioswere developed
in which auditory cues are particularly important. Obviously, sound localization
is always in demand when the source is out of sight. Aside from monitoring the
environment at night, forests are a good test case because trees and other vegetation
typically visually obstruct objects, and some of these objects might be looking for
dinner. The forest simulation was set up using a ray-tracing simulation program,
which is described in the next section. Circular boundaries are used as acoustic
objects to simulate the acoustic behavior of tree trunks. The forest is simulated by
randomly creating circles in an area of 100 × 100m2. The diameters of the tree trunks
are set by a stochastic process.
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Fig. 1 Demonstration of the ray-tracing algorithm for the Haydn-Saal in Eisenstadt, Austria, where
Joseph Haydn was active. (Left) Processed marked-up floor plan for visual inspection. (Center)
Assignment of wall-corner identification numbers. (Right) Geometric model with sound source
(red dot), receiver (blue dot), and calculated rays. The original floor plan was obtained from
Meyer (1978, p. 147)

2.2 Creating Geometric Models

The method presented here is confined to simulations in the horizontal plane
(two-dimensional rendering method) to allow fast calculations. This enables the sim-
ulation of completewalk-throughs using a batch process.3 The ray-tracing implemen-
tation was programmed in Matlab following common practice—details in Vorländer
(1989), Lehnert and Blauert (1992a, b), Blauert et al. (2000). Additional features
were added where needed, for example, an algorithm to create circular boundaries
to simulate tree trunks and a method to generate models from floor plans rapidly.

Coordinates of acoustic boundaries can be assigned to the ray-tracing algorithm
in three different ways, (i) line segments with start and end points representing
walls, (ii) squared pillars with the center coordinates and the pillar width, (iii) circles
represented by center and radius coordinates. Figure1 shows an example of the ray-
tracing software for a concert hall in Eisenstadt, Austria, that was recreated from a
floor plan. The software can work with annotated floor plans. For this purpose floor
plans are marked up within a standard bitmap editor (GIMP, Photoshop, etc.) using
red dots for room corners, green dots for squared pillars, and blue dots for circles—
see Fig. 1, left graph. In the next step, the program plots annotated points on top of

3Originally, the ray-tracing method was implemented to create auralizations for the horizontal array
of 128-channel loudspeakers at Rensselaer’s CRAIVE-Lab.
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the map providing a unique index for each annotated point—see Fig. 1, center graph.
The user then creates a list of how the red points connect to walls. The scale of the
floor plan needs to annotated, and the original dimensions need to be handed over
to the program as well (e.g., 1m and 10m for two scale points respectively). The
program then transforms these data points to an editable list of geometrical objects
that can be extended by the user, for example, by adding identifiers for wall materials.

The Ray-Tracing Algorithm

The program sends out rays from a user-specified source position. The program
computes the rays for equidistant azimuths covering the full 360◦ angular range.
Intersection points are computed for each ray and boundary object as shown in
Fig. 2, left graph. For each ray, the closest boundary intersection is determined. At
the intersections, the reflection angle is calculated using Snell’s law, which predicts
that the reflected angle measured from the normal of a plane surface equals the
incoming angle, that is, cos(αo) = cos(αi ). Consequently, the next-order ray is sent
out into the new direction until the maximum order (e.g., the number of reflections)
as specified by the user is reached. The outgoing rays are stored as a sequence of
ray elements containing the intersection points and the boundary-material identifiers.
Since the initial angles are stored with the rays, a source-specific directivity pattern
can be simulated after all rays have been traced.

Creating a Binaural Room Impulse Response

Next, the rays are collected by a receiver, which can be located anywhere in the
rendered room. For this purpose, a virtual circle with an adjustable diameter is posi-

(a) (b)

Fig. 2 (Left) Diagram to illustrate the ray-tracing method. (Right) Schematic of the simulated
forest environment (top view)
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Fig. 3 Ray-tracing signal flow

tioned at the receiver location. Then, the algorithm calculates which ray elements
intersect the circle, and for all positive cases, the total ray distance between sound
source and receiver is calculated. All listed values are stored together with the final
angle of incidence, that is, the angle that the ray was initially sent out, the reflection
order, and the sequence of identifiers of the walls that the ray has hit on its way to the
receiver. Based on these data, the impulse response is computed. The direct sound
and the reflection are computed as delta peak at the delay that corresponds to the
path length that the ray has traveled from the source to the receiver. In addition, each
impulse is transformed in the following way—see also Fig. 3.

1. The magnitude of the ray is reduced based on the inverse-square law.
2. The high frequencies are filtered out based on dissipation effects in the air.
3. The absorption coefficients of the walls and other boundaries are simulated using

a cascaded Finite Impulse Response (FIR) filter. Thesematerial-specific filters are
chosen from a publicly available database (DIN 1968). The number of cascaded
filters matches the order of the reflection.

4. In the final step, the incoming direct sound and the reflections are selected by
their close proximity passing the receiver position. These are then filtered with
HeadRelated Transfer Functions (HRTFs) that correspond to the closest available
HRTFmeasurement for the direction of incidence. At this point, the room impulse
response is transformed into a stereo signal. An overlap-method ensures that the
delayed reflections can partially overlap.

Simulation of Late Reverberation

Late diffuse reverberation is computed in addition to the early reflections that are
generated by the ray-tracing model. Since the late reverberation tail is formed by
a stochastic process with an underlying Gaussian distribution, the fine structure of
the simulated reverberation tail is constructed from a Gaussian noise sample. The
duration of the Gaussian noise sample is adjusted to twice the value of the maximum
reverberation time.Next, the noise sample is processed through a filter bankwith nine
adjacent octave-wide bandpass filters. An exponentially decaying time window, yk ,
adjusted to the frequency-specific reverberation time, is calculated for each octave
band, k:

yk = e
−t ·20·log(10)

Tk ·60 . (1)
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with the reverberation time, Tk , in the kth frequency band, and the time, t , in sec-
onds. Afterward, the total exponentially-decaying noise signal, xt , is reassembled by
summing up, sample-by-sample, the octave-filtered noise signals, multiplied with
the exponentially decaying time window:

xt =
K∑

k=1

xk · yk . (2)

This process is repeated for each channel, two for a binaural signal in each case,
using independent Gaussian noise samples for each channel while keeping all other
parameters constant. The frequency-specific reverberation times, T, is calculated
using the Eyring formula, which is based on a three-dimensional room model that
takes the room volume and the effective absorptive surface area into account, namely,

T60 = 0.161 · V/(A + 4m · V ) s, (3)

whereby, A is total effective absorption, defined as the sum of all surface elements,
Sk , multiplied with their specific absorption coefficients, αk :

A =
(

K∑

k=1

αk · Sk
)
. (4)

In order to estimate the room volume, V , the area of the floor plan is calculated and
then multiplied by the average room height, which has to be provided to the program.
The formula for this calculation is:

V = AF · h. (5)

The total effective absorption is calculated from the wall elements in the ray-
tracing model, each multiplied with the average height. The frequency-specific
absorption coefficients are determined with the values stored in the DIN database
(DIN 1968) via thewall material identifiers. A linear onset ramp is calculated to grad-
ually blend in the late reverberation tail with the direct sound and early reflections.
The starting and end points of the ramps can be adjusted by the user.

Two methods are available to calculate the direct-to-reverberant energy ratio.
The first method estimates the critical distance, the distance from the sound source at
which the sound-pressure levels of the direct sound matches the sound-pressure level
of the reverberant field. For an omnidirectional sound source, the critical distance
can be calculated using the following equation (Kuttruff 2000, p. 317),

rc = 0.057 ·
√

γV

T
, (6)
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with the volume, V , the reverberation time, T , and the directivity coefficient, γ. In
the subsequent calculation, omnidirectional sound sources are assumed to have a
directivity coefficient that equals to one.

In the next step, the impulse response is calculated at a receiver position at the
critical distance. The overall energy of the impulse response, ET , is the sum of the
direct sound energy, ED , the early reflection energy, EE , aswell as the late reverberant
energy, EL , as follows,

ET = ED + EE + EL . (7)

At the critical distance, the following condition has to be met for an omnidirectional
source and receiver pair,

ED = EE + EL . (8)

Consequently, the energy of the late reverberation has to be adjusted to

EL = ED − EE , (9)
2RT∑

t=0

p2L =
2RT∑

t=0

p2D −
2RT∑

t=0

p2E , (10)

with the sound pressure, p, which is, of course, proportional to the digital signal
amplitude.

In the second method, the exponentially-decaying amplitude of the reverberation
tail is fitted to the exponentially-decaying amplitudes of the reflection pattern. For
this purpose, both signals are logarithmized so that the decaying impulse response
can be fitted by a linear-regression curve. The amplitudes of the decaying slope are
then matched and a cross-fade method is used to blend out the early reflections while
gradually blending in the late reverberation.

2.3 The Forest Walk-Through

Coming back to the forest simulation example, the environment is depicted in Fig. 2b.
The red dot shows the sound source, which is located at the coordinate 40m/7m (x /y
coordinates in meters). In cases where two circles overlapped, one of the circles was
removed since two tree stems cannot occupy the same space. The absorption coef-
ficient was set to 5% based on measurement results for tree barks (Reethof et al.
1977). Diffuse reverberation that results from leaves and other objects was added.
The reverberation time was adjusted to 1.6 s and the reverberation ratio, adjusted
to the interaural coherence, was 0.4 at a source-to-receiver distance of 40m. Both
values were chosen based on forest-acoustics measurements by Sakai et al. (1998).
The rays are depicted through dashed lines that become lighter with increasing order.
Three walk pathways were computed at different y-coordinates that were held con-
stant for each condition, that is, 17m, 27m,and 47m, labeled as 10-m, 20-m and
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Fig. 4 Results of cue analysis of a simulated forest walk-through. The left panels show the results
for the pathway that is 10m behind the listener in the y-direction. The center panels show the
results for the 20-m condition, and the right panels for the 40-m condition. For each condition, the
order of the first arriving reflection is shown in the top graph as a function of the x-position. An
order of zero indicates that the direct signal passes to the listener position and is not obstructed by
the tree trunks. The panels 2nd from the top show the actual path lengths of the first wavefront
from the source to the receiver—indicated by the dots. The dashed line shows the direct distance
between the sound and the listener. The panels 3rd from top show the angles of incidence of the
first-arriving wavefront indicated by the dots. The dashed lines show the actual azimuths between
the sound source and the listener. The bottom graphs depict the coherence indicated by the solid
lines. All coherence values that correspond to cases where the direct signal was not obstructed are
emphasized by additional dots

40-m conditions—referring to the distance in the y-dimension between source and
receiver. Each walkway covers the distance from 15 to 100m along the x-coordinate.
Binaural impulse responses were computed in 1m increments along the x-axis and
then analyzed.

The analysis results are shown in Fig. 4. The three columns show the results for
the different distances along the y-coordinate. The top row shows the order of the
first arriving wave. For the 10-m condition, the unobstructed direct signal (0th order)
arrives at the listener position in 37% of the cases—see top-left graph of Fig. 4. In
those cases, where the receiver is further away from the sound source based on the
x-axis position (x-position > 60 m), the direct line of sight is obstructed in all cases
and the first ray that reaches the receiver is typically on the order of two or higher.
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For x > 80 m, the effective path length becomes much greater than in the other cases
with values of 100m and beyond—see graph second from the top in the left panel
of Fig. 4. This also greatly affects the azimuth of the first arriving wavefront, which
is not necessarily the direct signal—see graph second from the bottom in the left
panel of Fig. 4. With a few exceptions, the first wave front arrives from the azimuth
direction of the sound source or an angle close by if the receiver is located at an x-
position between 20 and 60m. Outside this range, the azimuth values differ greatly
from the actual sound-source angle.

Next, the interaural coherence is investigated. The interaural coherence estimates
how similar the left and the right ear signals are in the time domain after they have
been amplitude and time aligned. It is a measure of how reverberant the sound field
is at the listener position—knowing that the presence of reverberation decorrelates
both signals, thus making them more dissimilar. The interaural coherence can be
calculated as the absolute maximum of the normalized cross-correlation function,
which is defined as

Rl,r (n,m) =

N∑
n=n0

xl(n − m) · xr (n)
√

N∑
n=n0

x2l (n − m) ·
N∑

n=n0
x2r (n)

, (11)

with the time n, the internal delay, m, the left input signal, xl , and the right input
signal, xr .

The interaural coherence for the 10-m condition is shown in the bottom-left graph
of Fig. 4, solid line. It is noteworthy that the interaural coherence becomes noticeably
larger with the absolute distance from the source. Therefore the interaural coherence
is generally smaller in the 20-m–60-m x-position range than for the outside positions.
All values that correspond to cases that include the direct sound are emphasized
through dots.

The 20-m condition is shown in the center column of Fig. 4. The relative number
of x-positions, where the direct signal is not obstructed on the pathway to the listener
position is slightly lower than in the 10-m condition—33% versus 37%. The average
coherence, 0.17, is the same as found for the 10-m condition. Also, the coherence
is noticeably higher for most cases, where the direct signal reaches the listener’s
ears—as indicated by the dots.

The 40-m condition is shown in the right column of Fig. 4. Here, the direct path is
often obstructed and the direct signal reaches the listener only in 17% of the cases.
Consequently, only a fewazimuth values indicate the correct sound-source position—
see graph second from the bottom in the right panel of Fig. 4. The coherence values
are lower than for the other two conditions with an average of 0.13. However, also
in this case, the relative coherence values are higher when the direct signal is not
obstructed on its way to the listener.

In general, it can be concluded that in a dense forest environment the direct signal
is often obstructed, making it both acoustically and visually challenging to localize
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salient objects. By moving through the environment, the receiver can find locations
where the sound source arrives directlywithout obstructions. These positions are usu-
ally characterized by coherence values that are higher than those found for obstructed
sound sources. The forest scenario is a good example of where hearing and vision
canwork together to locate sound sources quickly because the sound source becomes
visible once it is no longer obstructed by objects.

3 Understanding the Fundamental Sound of Caves to
Concert Halls Using a Precedence-Effect Model

The next section investigates how binaural models can be used to extract room-
acoustic features from a running signal and compare the results to the first-known
type of concert venue—the cave. At the core of the human ability to extract infor-
mation from sound sources in reverberant spaces are auditory mechanisms related
to the precedence effect (Blauert 1997; Litovsky et al. 1999). The precedence effect,
formerly also called the law of the first wave front, describes the ability of the audi-
tory system to suppress information about secondary sound sources that are reflected
from walls and other objects. This enables the auditory system to localize the actual
position of a sound source by making the localization cues pertinent to the direct-
signal component available. This is a non-trivial task for the auditory system since the
direct signal and the reflected signal parts overlap in time and frequency. The primary
cues to localize a sound source are Interaural (arrival) Time Differences (ITDs) and
Interaural Level Differences (ILDs). ITDs occur because the path lengths between
a sound source and both ears differ depending on the incoming azimuth angle. The
cross-correlation algorithm, (11), is an adequate algorithm to simulate the processes
in the auditory system when extracting ITD cues. The lateral position of the cross-
correlation peak as a function of the internal delay, m, is used to determine the ITD.
ILDs occur because of shadowing effects of the head toward the contralateral ear.
For more details on ILDs, see, for instance, Breebaart et al. (2001), Braasch (2003,
2005).

The third type of spatial cues are called “monaural cues”. Monaural cues are
direction-dependent, pinna-induced spectral modifications that require only one ear
for analysis—Blauert (1969/1970, 1997), Zakarauskas and Cynader (1993). These
cues are especially important for judging the elevation and front / back orientation of a
sound source.Yet, it is shown in this chapter that these dimensions can also be handled
by ITD-based algorithms if head movements are considered—compare Pastore et al.
(2020, this volume). The focus of the chapter will, however, continues to focus on
sound-source localization and information extraction in reverberant environments.
Further, regards survival, the auditory system’s ability to segregate sound sources is
relevant as well—for details see, for instance, Bodden (1993), Roman et al. (2003),
Roman et al. (2006), Deshpande and Braasch (2017), Mi et al. (2017).
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When conducting room analyses, it should be kept in mind that modern concert
halls have not been around until very recently in the scheme of human history. It
will now be discussed how the auditory system can extract room-acoustic features
by using a system that does not have at its disposal auditory experience of millions
of years to adapt to rectangular-shaped rooms.

The first-known musical instrument at all is a 40,000-year-old rim flute made
from a vulture bone. Yet, in the context of the current paper is not so much the
instrument itself that is important but rather the cave where it was found. This is
the Hohle-Fels cave near Schelklingen, Germany—Conard et al. (2009). It is hard
to imagine that this instrument has not been played in the cave. In 2016, the current
author had the opportunity to visit the cave and to record some impulse-responses in
it. This allowed him to estimate the cave’s mid-frequency reverberation time, which
came out as about 2 s—Braasch (2019). It is remarkable that the reverberation time
of the Hohle-Fels cave is in the range of modern classical concert halls. For example,
the Haydn-Saal in Eisenstadt, as was shown in Fig. 1, also has a reverberation time
of about 2 s in the mid-frequency range when the hall is occupied—Meyer (1978),
p.147. However, what is important in the context of this paper, is the following.
Despite the similarities in reverberation times of the Hohle-Fels cave and a typical
concert hall, there is a fundamental acoustic difference between them. Concert halls
are typically rectangularly shaped or have at least large plane surfaces, while the
surface of a cave is very irregular. The latter leads to a very diffuse echogram while
the concert hall has a few very distinct reflections. While reverberation chambers
for technical acoustic measurements are often kept diffuse, there are very few music
facilities that build on this diffuseness notion. The most distinct two in the world
are probably StudioC at Blackbird Studios in Nashville, TN, (Bonzai 2018), and
the Studios1 and2 at Rensselaer Polytechnic Institute’s Experimental Media and
PerformingArts Center (EMPAC) in Troy, NY. StudioCwas conceived and designed
by George Massenburg, and its walls are treated with 40 ton of long wood beams
similar to the absorptive wedges in anechoic chambers but with an irregular pattern
and being sound-reflective. While the sound of the studio is reverberant, this unique
design avoids spectral colorations imposed by comb filtering. Concurrently, a lot
of spatial properties that would commonly originate from the pattern of specular
reflections are not present in this studio. An anecdote illustrates the acoustic features
of this space. According to George Massenburg, a session was booked with a blind
pianist. When the musician entered the studio, he walked around the music stand
and the piano with the help of his cane but then, without the usual direct reflections
of planar surfaces, walked straight into a wall that he did not perceive to be there.
Studio1and2 at EMPAC were conceived by EMPAC director Johannes Goebel with
the diffuse acoustics of a forest opening in mind.
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3.1 Precedence-Effect Model

Estimating the ITD of the Direct Signal

The precedence-effect model as reported here, has the task of analyzing the
reverberant conditions. It is on the Binaurally Integrated Cross-correlation Auto-
correlation Mechanism (BICAM)—Braasch (2016). Modifications were made to the
original algorithm to calculate more accurate binaural-activity maps. Unlike tradi-
tional precedence-effect models that suppress the energy or spatial information of
early reflections, the BICAM algorithm separates the auditory cues for the direct
signal and from the early reflections but does not remove or suppress the latter. This
is important for this section because the aural quality of the room that the sound
source is presented in can thus be evaluated. The model separates auditory features
for the direct signals and early reflections from a running signal using a dual-layer
spatiotemporal filter. Figure5 shows the architecture of the model. The incoming
signal ascends from bottom to top. The model separates the incoming binaural sig-
nal into auditory bands at the initial stage—as shown in the bottom row of boxes.
Then, themodel performs a set of auto-/cross-correlation analyzes within all auditory
bands as depicted in boxes, labeled “AC” and “CC”, that are shown in the 2nd row
from the bottom. During this process, the following autocorrelation/crosscorrelation
sequences are calculated from the left and right ear signals, x and y—depicted as
Steps1and2 in Fig. 6,

Rxx (m) = E[xn+mx
∗
n ] (12)

Rxy(m) = E[xn+m y
∗
n ] (13)

Ryx (m) = E[yn+mx
∗
n ] (14)

Ryy(m) = E[yn+m y
∗
n ], (15)

with the cross-correlation sequence, R, the expected-value operator, E{. . . }. The
regular, non-normalized cross correlation is defined as follows:

Bandpass
filter bank

Right Ear SignalLeft Ear Signal

Bandpass
filter bank

ACL CCLR CCRL ACR

2nd-Layer Cross-correlation

Binaural Activity Map

Fig. 5 System architecture and signal flow of the BICAM model—(AC)…autocorrelation,
(CC)…cross correlation
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Fig. 6 Autocorrelation/cross-correlation procedures that are performed using the BICAM archi-
tecture to estimate the binaural room impulse response. The variable Rxx is the autocorrelation for
the left channel, Ryy denotes the same for the right channel. Rxy represents the cross-correlation
function between the left and the right channels. The hats over the variable R indicates that only
the right side is considered. The gray window in Step2, is used to compare the left-ear channel, L ,
to the right-ear channel, R

Ri, j (n,m) =
N∑

n=n0

i(n − m) · j (n), (16)

with, the time, n, the internal delay, m, and the input signals i, j . The variable n0
is the start time of the analysis window and N the end time. The left and right
input signals are assigned to the variables i and j . For the case i = j , R denotes
the autocorrelation. For the BICAM model, the range of the internal delays, −M to
M , needs to exceed the duration of the reflection pattern of interest. Otherwise, the
impulse response is not shown in its entire duration. Alternatively, ±M can also be
set to just show the early part of an impulse response. The variable n typically ranges
from the beginning of the signal, n = 0, to the end of the signal, N . The calculation
can be performed as a running analysis over shorter, overlapping time segments.

In the next step,which is typically not found in traditional cross-correlationmodels
(Sayers and Cherry 1957; Blauert and Cobben 1978; Stern and Colburn 1978), a
cross-correlation algorithm is performed on top of the combined autocorrelation/
cross-correlation algorithm as shown in the second top box in Fig. 5 and also in Step3
of Fig. 6. The goal of this procedure was to develop a method that incorporates the
causality of the direct sound and its reflections, which is not provided by conventional
cross-correlation models. Using the second-layer cross-correlation analysis over the
autocorrelation signal (e.g., Rxx ) in one-channel and the cross-correlation signal
(e.g., Rxy) in the second channel, the spatial information in the direct signal and in
the individual reflections can be segregated.

A key to the function of the model is a comparison of the right side peaks of
both functions (autocorrelation function and cross-correlation function) as shown
in the gray box in Step2 of Fig. 6. These side peaks are correlated to each other
by windowing out the direct peaks and the left side of the (auto-)correlation func-
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tions. The temporal offset between both main peaks can be obtained by aligning the
side peaks in time to determine the interaural time difference (ITD) of the direct
sound. The alignment of the side peaks is accomplished by cross-correlating the two
autocorrelation/cross-correlation functions—(12) and (15)—over the segments of
both functions that contain the side peaks for positive internal delay values, m, (gray
areas in Step2 of Fig. 5). It is important to zero out all remaining segments so that
the main peaks and the side peaks for negative m values cannot affect the alignment
of the positive side peaks. Mathematically, this operation can be stated as

R̂i j = Ri j | ∀m > w ∧ R̂i j
!= 0 | ∀ −M ≤ m ≤ w. (17)

In the next step, the variables, i and j , are substituted with the left and right ear
signals, x and y, to compute the following four functions, R̂xx , R̂xy , R̂yx , and R̂yy .
The variable w is the length of the window to remove the main peak. The method
works if the cross terms (correlations between the reflections) are within certain
limits.

Using these functions, the 2nd-layer cross-correlation is calculated. The ITD for
the direct signal, kd̄ , can then be computed from the product of the 2nd-layer cross-
correlation terms—see Step3 in Fig. 5:

kd̄ = max arg
m

{√
|RR̂xy R̂xx

· RR̂yy R̂yx
|
}
. (18)

The solution for kd̄ represents the lateral position of the direct signal. In the next
step, this solution is used to further expand the algorithm to derive a binaural-activity
map that also contains information about the locations and delays of individual early
reflections—see top box in Fig. 5.

Binaural-Activity-Map Calculation

A binaural activity map is a three-dimensional plot of a binaural room impulse
response that depicts the temporal course of the reflections on the x-axis, the spatial
positions of the reflections on the y-axis and the amplitude of the reflections on the z-
axis—seeBraasch (2005) formore information. In order to create the binaural activity
map, the ITD of the direct signal, kd̄ , is used to shift one of the two autocorrelation
functions, Rxx or Ryy . The latter two functions are, in some form, a representation
the early reflection patterns for the left and right channels—see Step4 in Fig. 5. The
respective equations are

R̆xx (m) = Rxx (m), (19)

R̆yy(m) = Ryy(m − kd̄). (20)
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A series of cross-correlation functions is calculated overmoving segments of the time
aligned autocorrelation functions, R̆xx and R̆yy , for positive time values in order to
estimate the delays, ITDs and relative amplitudes of the reflections.

3.2 Acoustical Analysis

In order to demonstrate the effects of the two opposite sound environments, two
idealized environments were created, one with mostly diffuse reflections and the
other one with mostly specular reflections, using the ray-tracing model that was
introduced in Sect. 2.2. In the first case, simulating the cave, the impulse response
for the diffuse reverberation of the Hohle-Fels cave was simulated using decaying
Gaussian-noise burst roughly matching the RT of the cave, namely, 2 s, and an initial
time-delay gap of 12ms. The direct sound source was simulated using a delta peak
convolvedwith anHRTFpair corresponding to0◦ azimuth and0◦ elevation.AllHRTF
catalogs used for this chapter have been measured at the Institute of Communication
Acoustics of the Ruhr-University Bochum, Germany—for details see Braasch and
Hartung (2002). The direct-to-reverberant-energy ratio between the direct signal and
the late reverberation was set to 3dB. An anechoicmale voice sample of 12 s duration
was used as the sound signal for all examples in this section. For the simulation, the
auto- and cross-correlation terms, R̂xx , R̂xy , R̂yx , and R̂yy of the BICAM algorithm
were employed. The values for Eq. (17) are calculated in separate auditory bands
using the same gammatone-filter bank (Patterson et al. 1995) with 15 auditory bands
from 100 to 1600Hz. The beginning of the window w in (17) was set to 100samples
(2268µs). The length of the window equaled to 40ms. The ITD, kd̄ , for the direct
signalwas then estimated from the frequency-superposed 2nd-layer cross-correlation
functions according to (18).

Figure7a shows the binaural impulse response extracted from the running signal
using the BICAMmodel. One can clearly see that both the left and the right channels,
shown as blue and red lines, depict the direct sound but not the exponentially decaying
reverberation tail. Only some residual noise that results from the autocorrelation
process can be found due to the limited duration of the source signal. The binaural-
activity map that was computed using the estimated binaural impulse response is
shown in Fig. 8a. Based on the discussed features of the impulse response, it comes
as no surprise that the binaural-activity map only shows a single peak for the direct
signal but no trace of the reflections. With the exceptions of a few artifacts at the late
end of the binaural activity map, the outcome is very similar to the binaural-activity
map computed for an anechoic environment but an identical direct sound source—
see Fig. 7b and Fig. 8b. The results support the StudioC anecdote and are also in line
with a study by Teret et al. (2017) that demonstrates that listeners have no temporal
representation of a Gaussian reverberation tail independent of the sound stimuli that
are convolved with that reverberation tail.
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For the concert-hall example, the impulse response was composed of the same
direct signal and its reverberant tail as has already been used to simulate the cave.
In addition, four specular reflections were simulated at the following locations and
delays,

Azimuth Delay Reflection coefficient
−45◦ 16 ms 0.7
+45◦ 19 ms 0.7
−60◦ 22 ms 0.5
+60◦ 25 ms 0.4

(a) 0◦, source with diffuse reverberation (b) 0◦, source without reverb.
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(c) 0◦ source with specular reflections (d) 0◦, specular & diffuse reverb.
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(e) 30◦, specular & diffuse reverberation (f) −30◦, specular & diffuse reverb.
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Fig. 7 Binaural room impulse responses, estimated from running signals
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(a) 0◦, source with diffuse reverberation (b) 0◦, source without reverberation
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(c) 0◦, source with specular reflections (d) 0◦, specular & diffuse reverb.
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(e) 30◦, specular & diffuse reverberation (f) −30◦, specular & diffuse reverb.
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Fig. 8 Binaural-activity-map results of BICAM-model analyses for different conditions, including
diffuse and specular reflections as indicated in the individual graphs above
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The extracted impulse responses are shown in Fig. 7c,—impulse response direct
sound and specular reflections only—and in Fig. 7d,—impulse response with spec-
ular reflections and diffuse reverberation tail. The corresponding binaural-activity
maps are shown in Fig. 8c, d. In both cases, the map correctly identifies the lateral
positions and the delays of the direct sound and of most of the early reflections. In
order to demonstrate the ability of the model to provide an independent but joint
analysis of the direct sound and the early reflections, only the lateral position of
the direct sound source was moved while the lateral positions and delays of the
early reflections were maintained. Figure8e shows the same binaural-activity map
as Fig. 8d but for a direct signal that has been moved laterally to +30◦. The result
shows that the binaural-activitymap indicates the new lateral position correctly while
maintaining, in principle, the positions of the side peaks that indicate the delays and
lateral positions of the reflections. The positions of the side peaks are alsomaintained
when the direct-sound source is moved to −30◦—see Fig. 8f. Figure7e, f depict the
binaural room impulse responses that were extracted from the running signal for
the two conditions with a lateralized direct-sound source. In comparison with the
laterally centered direct-sound source, shown in Fig. 8d, one can see that the later
parts of the binaural room impulse responses are very similar while the onset delays
between left and right channels, shown in blue and red, are clearly visible.

Before concluding this section, the fundamental differences of the BICAM
algorithm when processing specular reflections and diffuse reflections should be
discussed. In this context it is worth noting that the binaural-activity map for the con-
dition with laterally centered direct signal and early specular reflections, as shown in
Fig. 8c, does not change much when a late, diffuse reverberation tail is added—see
Fig. 8d. Both maps are very similar indeed despite the fact that the stimulus of Fig. 8d
contains a diffuse reverberation tail in addition to the early specular reflections. The
similarity in both maps re-emphasizes that the BICAMmethod is “blind” toward dif-
fuse reverberation tails because these do not produce a distinct autocorrelation map.
Obviously, human listeners are aware of the presence of a late reverberant field,
otherwise acoustical designs like the Blackbird’s StudioC and the EMPAC’s Stu-
dios1and2 would not have a meaningful purpose. It has to be kept in mind, though,
that the proposed BICAM model is a localization model. Other types of psychoa-
cousticmodels, such as detectionmodels, are needed to extract further room-acoustic
features. Further standardmethods estimate, for instance, interaural coherence and/or
extract features of the (exponentially) decaying room impulse response from tran-
sients in the source signals, in particular, from impulses and abrupt stops.

While the interaural-coherence method is usually calculated from a measured
room impulse response, it can also be calculated from a running signal. This was
done for the forest walk-through—see (11). The drawback using the latter method
is that the type of source signal will influence the interaural coherence, and the
outcome is no longer solely based on the room parameters. However, also in real
life, the perceived reverberance is highly influenced by the source signal employed—
Teret et al. (2017). A further method is to estimate the reverberation time from the
exponential-decay rate—see, for instance, Huang et al. (1999).
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Among the three described methods, the binaural-activity-map analysis is the
only method that allows for the extraction of information about the location (angle
and distance) of reflective surfaces, for instance, of walls. Neither the interaural-
coherence method nor the exponential-decay method provides these cues. Without
them, the listener will not receive unambiguous information about the size of a room
and the location of walls and of further sound-reflecting or obscuring obstacles. This
is the reason why the blind pianist walked right into a wall in Blackbird’s StudioC—
the absence of salient cues.

4 Simulating an Office Walk-Through Using a Binaural
Model Capable of Utilizing Head Movements

An acoustic walk-through a building is inmanyways amodern-society version of the
forest walk-through. Also in this case, the direct sight to an object can be obstructed
and then one has to rely on the acoustic sense. However, obstructing objects have
very different acoustic qualities. While the forest is a leaky reverberation chamber
with diffusive character, office suites, and other small rooms are characterized by
specular reflections that arrive shortly after the direct sound. From an evolutionary
perspective, where anatomical changes occur over a span of several million years,
rectangular caverns with flat walls have only been introduced recently during our
early civilization and similar acoustic objects do not appear in nature. It is therefore
important to understand how the auditory system is able to adapt to built rooms given
that it has not specifically evolved to deal with such environments.

4.1 Head-Movement Algorithm

In order to simulate the office walk-through, an existing head-movement algorithm
(Braasch et al. 2013) is added to the binaural model, such that the model can resolve
back/front confusions and analyze the auditory scenes adequately. The model builds
on a theory proposed by Wallach (1939).

Auditory Periphery

The model takes a step back from the elaborate BICAM mechanism and uses a
traditional interaural-cross-correlation method as introduced by Sayers and Cherry
(1957) to estimate ITDs—see (17). The basic model structure, shown in Fig. 9, is
similar to the one proposed by Braasch (2002). The inputs signals are filtered with
HRTFs from desired directions. Basilar-membrane and hair-cell behavior are simu-
lated using a gammatone-filter bank with 36 bands and a simple half-wave rectifier
at a sampling frequency of 48kHz, as described by Patterson et al. (1995).
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Fig. 9 General model structure of the binaural-localization model utilizing head rotations.
HRTF…External-ear simulation/HRTF filtering. BM…Basilar membrane/bandpass filtering.
HC…Hair cell/halfwave rectification ITD&ILD analysis…Interaural time difference-cue (ITD)
extraction/interaural cross-correlation and interaural level-difference cue (ILD) analysis with
EI-cells, precedence effect algorithm, remapping to azimuths with head-rotation compensation,
binaural-activity-map analysis to the estimation the sound-source positions

Cross Correlation

After the half-wave rectification, the normalized interaural cross-correlation (11) is
computed for each frequency band over a short time segment. Only the Frequency
Bands 1 to16 (23–1559Hz) are analyzed, reflecting the inability of the human audi-
tory system to resolve the temporal fine structure at high frequencies, as well as the
fact that at low frequencies the interaural time differences in the fine structure are the
dominant cues—provided that they are available at all (Wightman and Kistler 1992).

Remapping and Decision Device

Next, the cross-correlation functions will be remapped from interaural time differ-
ences to azimuth positions. This is important for the model to be able to predict the
spatial position of the auditory event. In addition, this procedure helps to align the
estimates for the individual frequency bands as one cannot expect that the interaural
time differences are constant across frequency for a given angle of sound-source inci-
dence. AnHRTF catalog is analyzed to convert the cross-correlation function’s x-axis
from interaural time differences to the azimuth. The HRTF catalog was measured
at a resolution of 15◦ in the horizontal plane and then interpolated to 1◦ resolution
using the spherical-spline method—see Hartung et al. (1999). After filtering the
HRTFs with the gammatone-filter bank, the ITDs for each frequency band and angle
are estimated using the interaural-cross-correlation (ICC) algorithm of (16). This
frequency-dependent relationship between ITDs and azimuths are used to remap the
output of the cross-correlation stage (ICC curves) from a basis of ITDs m(α, fi ), to
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a basis of azimuth angles in every frequency band as follows:

m(α, fi ) = g(HRTFl ,HRTFr , fi ) (21)

= g(α, fi ), (22)

with azimuth, α, elevation, δ = 0◦, distance, r = 2m, HRTFl/r = HRTFl/r (α, δ, r),
center frequency of bandpass filter, fi .

Next, the ICC curves, (Rx,r (m, fi )), are remapped to a basis of azimuths using a
simple for-loop in Matlab using a step size of 1◦:

for alpha=1:1:360
R_rm(alpha,freq)=R(g(alpha,freq),freq);

end

Here, R(m,freq) is the original, frequency dependent, interaural-cross-
correlation function with the internal delay, m. The function g(alpha,freq)
provides the measured m-value for each azimuth and frequency. Inserting this func-
tion as input, m, to R transforms the R–function into a function of the azimuth, using
the specific Matlab syntax.

In thedecisiondevice, the averageof the remapped ICCfunctions,R_rm(alpha,
freq), over the frequency bands 1–16 is calculated and divided by the number of
frequency bands. The model estimates the sound sources at the positions of the local
peaks of the averaged ICC function.

Figure10 shows an example of a sound source in the horizontal plane with an
azimuth of 30◦ for the eighth frequency band. The top-left graph shows the original
ICC curve obtained using (16) as a function of ITD. The graph is rotated by 90 ◦ with
the ICC on the x-axis and ITD on the y-axis to demonstrate the remapping procedure.
The curve has only one peak at an ITD of 0.45 ms. The top-right graph depicts
the relationship between ITD and azimuth for this frequency band. As mentioned
previously, the data were obtained by analyzing HRTFs from a human subject. Now,
this curve will be used to project every data point of the ICC-versus-ITD function
to an ICC-versus-azimuth function, as shown for a few data points using the straight
dotted and dashed-dotted lines. The bottom panel shows the remapped ICC function,
which now contains two peaks, that is, one for the frontal hemisphere and one for
the rear hemisphere. The two peaks fall together with the points where the cone-of-
confusion hyperbolas intersect the horizontal plane for the ITDvalue of themaximum
peak that is shown in the top-left panel.

Integrating Head Rotation

In the following, it is assumed that the head rotates to the left while analyzing an
incoming sound source from the front. Related to the head, the sound source will
move toward the right. However, in the case that sound source was in the rear, the
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(a) (b)

Fig. 10 (Left) Remapping of the cross-correlation function from ITD to azimuth, shown for the
frequency band8, centered at 434Hz. The signal was presented at 30◦ azimuth, 0◦ elevation. (Right)
Sketch to illustrate the front/back confusion problem. If an ongoing sound source is located in front
of the listener who turns her head left, the sound source will move to the right from the perspective
of the listener’s head. But if the sound source is located in the back, the sound source appears to
move to the left for the same head rotation. The variable,αr , denotes the azimuth in the room-related
coordinate system, pointing here at 0◦. The variableαh is the azimuth in the head-related coordinate
system, also pointing at 0◦ but for this coordinate system. The third angle, αm , is the head-rotation
angle, which indicates by how much the head is turned from the reference head orientation that
coincides with the room-related-coordinate system

sound source hadmoved to the left. This phenomenonwill now be used to distinguish
between both options, that is, frontal and rear position. For this purpose, a different
coordinate system is introduced, namely, the room-related coordinate system. The
fact that human listeners maintain a good sense of the coordinates of a room as they
move through it, motivates this approach. If a stationary head position is considered,
the head-related coordinate system is fully sufficient. However, if the head rotates or
moves, the description of stationary sound-source positions can become challenging
because every sound source starts to move with alterations of the head position. An
easy way to introduce the room-related coordinate system is to define a reference
position and reference orientation of the human head, and then determine that the
room-related coordinate system coincides with the head-related coordinate system
for the chosen reference position—compare Pastore et al. (2020, this volume), for
details on this topic, involving multimodal cues.

Consequently, the room- and head-related coordinate systems are identical if the
head does not move. In this investigation, only head rotations within the horizontal
plane are considered, and for this case, the difference between the head-related coor-
dinate system and the room-related coordinate system can be expressed through the
head-rotation angle αi that converts the room-related azimuth αr to the head-related
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azimuth αh—see Fig. 10, right graph. That is,

αr = αi + αh . (23)

Given restricted head movement, the origin of both coordinate systems and the ele-
vation angles are always identical. While the sound-source position changes relative
to the head with head rotation, a static sound source will maintain its position in the
room-related coordinate system. Using this approach, another coordinate transfor-
mation of the ICC function is executed in the model, namely, a transformation from
of head-related to room-related azimuth. This can be accomplished by rotating the
remapping function when the head is moving by −αi to compensate for the head
rotation.

If a physical binaural manikin were used—with a motorized head in connection
with the binaural model—the HRTF would be automatically adjusted with the rota-
tion of the manikin’s head. In the model discussed here, where the manikin or human
head is simulated bymeans of HRTFs, the HRTFs have to be adjusted virtually. Also,
at every moment in time the HRTFs have to correspond to the sound-source angle
relative to the current head position. This can be achieved with the help of a running
window function, where the sound source is convolved with the current HRTF pair.
A Hanning window of 10ms duration and a step size of 5ms is used here for this
purpose. The smooth edges of this window will cross-fade the signal allowing a
smooth transition during the exchange of HRTFs. For each time segment, the model
processes the following sequence:

1. First, it updates the current head-rotation angle, αi

2. Then it calculates the current head-related azimuth angle, αh , for each sound
source located at its room-related azimuth, αm

3. Next, the model selects the HRTF pair that correspond closest to αh

4. Afterwards, it computes the normalized ICC, Rl,r , for each frequency as a function
of the ITD

5. It converts the ICC function to a function of head-related azimuth, αh , using the
remapping function shown in Fig. 10.

6. Next, the model circular-shifts the remapping function based on the head-rotation
angle by−αi to transform the ICC curve into the room-related coordinate system

7. Then, it computes the mean ICC output across all frequency bands
8. It averages the ICC outputs over time
9. It estimates the position of the auditory event the be at the azimuth where the ICC

peak has its maximum

Thefirst example is based on a bandpass-filteredwhite-noise signalwith a duration
of 70 ms. The signal is positioned at −45◦ azimuth in the room-related coordinate
system. At the beginning of the stimulus presentation, the head is oriented toward
the front, αh = 0◦, and then rotates with constant angular velocity to the left until
it reaches an angle of 30◦ at the time that stimulus is turned off. The ICC functions
are integrated over the whole stimulus duration. Figure11 shows the result of the
simulation. The initial ICC-versus-αr function the output of Step 6 for αm = 0◦ is
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Fig. 11 Interaural-cross-correlation pattern for a sound source at −45◦ which is presented during
a head rotation from αm = 0◦ to 45◦. The dashed line shows the ICC curve for the initial time
window, the solid gray curve for the last segment when the head is fully turned. Note that the ICC
pattern was shifted in the opposite direction of the head rotation to maintain the true peak position
at αr = −45◦. The black curve shows the time-averaged ICC curve for which the main ICC peak
remains and the secondary ICC partly dissolves

depicted by the solid, light gray curve. Here clearly two peaks can be observed,
one at αr=h = −45◦ and another one at αr=h = −135◦. At the end of the stimulus
presentation shown as the dashed, dark gray curve t = 70 ms, αm = 45◦—, only
the position of the rear peak is preserved. This peak indicates the “true”, that is,
the physical sound-source location, αr �=h = −45◦, because the head rotation was
compensated for by rotating the remapping function in opposite direction of the
head movement.

However, in the case of a front peak, that is, the front/back confused position,
the peak position was counter-compensated for and it rotates twice the value of the
head-rotation angle, αm = 30◦. The new peak location is shifted by −60◦ to a new
value of 165◦. The time-averaged curve (the solid black line which shows the output
of Step7) demonstrates the model’s ability to robustly discriminate between front
and rear angles. The secondary peak, the one representing the solution for a frontal
sound source, is now smeared out across the azimuth because of the head rotation.
Further, its peak height is reduced from 0.9 to 0.7 making it easy to discriminate
between front and rear.

4.2 Analysis of an Office Walk-Through

In the next example, it is investigated how the combined head-movement andBICAM
localization models can be applied to a real-world scenario, for example, to sound
localization in an office suite. For this purpose, a ray-tracingmodel was implemented
to generate binaural impulse responses for the binaural-model analysis. The left graph
of Fig. 12 depicts the floor plan together with the trajectory of the walk-through. The
encircled numbers indicate the positions of the binaural- analysis examples that
as are discussed below in this section. All binaural room impulse responses for
the simulations were rendered using the ray-tracing model that was discussed in
Sect. 2.2. A geometrical model was defined as shown in Fig. 12b, namely, based on
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(a) (b)

Fig. 12 aDiagram for the office walk-through with test positions for sources S1–S4, and receivers,
R1–R6. b Ray-tracing simulation in a computer-generated office suite with a non-occluded sound
source. The sound sources is depicted as a red dot, the binaural receiver as a blue dot. The gray
level of the rays lighten with decreasing distance and amplitude

sound-reflecting walls, a source (red dot) and a receiver (blue dot). A set of rays
is sent out from the sound source at a resolution of 1 ray per 5◦. Each ray is then
traced, and every time a ray meets a wall it is reflected back using Snell’s law,
that is, considering that the outgoing angle equals the incoming angle. The ray is
traced until the 20th reflection occurs unless the ray exits the geometrical model. At
every reflection, the sound level is attenuated by 2dB across frequency to simulate the
acoustic absorption of the walls. The sound intensity is also attenuated over distance,
based on the inverse-square law, assuming the sound source to be of omnidirectional
character. The collection of rays is shown in Fig. 12b as gray lines, such that the rays
become lighter in color with distance and decreasing sound pressure.

All rays are finally collected at the receiver position, assuming a spatial window of
0.6mwidth. Each calculated ray is tested for whether it intersects the spatial window
at the receiver position. How far each ray traveled from the source position to the
receiver is then calculated for each intersecting ray. Similarly, the azimuth of the
arriving ray and the order of reflection for the incoming ray is determined. Based on
these data, a binaural room impulse response is calculated in which a left/right HRTF
pair is inserted at the correct delay, further, the head orientation-based direction-of-
arrival angle of the respective ray. Each HRTF pair is calibrated to the amplitude that
the ray should have, based on the distance traveled and the number of wall reflections
that it has undergone. In addition, a late-reverberation tail is generated at a constant
level by assuming a statistically-evenly distributed diffuse-reverberation field, using
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Fig. 13 Binaural-activity map results for the BICAM model analysis utilizing head movements.
The top-left graph shows the results for Scenario1 (Fig. 12) right, with the sound source pointing
30◦ left to the sound source (including a 30◦ head-movement compensation). The top-right graph
shows the same condition but for the receiver pointing 30◦ to the right. The bottom-left graph
shows the combined analysis for removal of front/back confusions for a receiver pointing into the
direction of the sound source, 0◦. The bottom-right graph shows the same condition as depicted
in the bottom-left graph but for a receiver pointing away from the sound source, 180◦

an exponentially decaying Gaussian noise burst adjusted to a reverberation time of
0.7 s. At the position shown in the right graph of Fig. 12, the diffuse reverberation
level was about −10dB lower than the combined level of the direct sound and the
early reflections.

The results are then analyzed using theBICAMprecedence-effectmodel (Braasch
2016) and amale-speech sample (Bang&Olufsen 1992). TheBICAMalgorithmwas
modified to transform the model’s ITD estimates into azimuths using a remapping
function according to Braasch et al. (2013)—as shown in the binaural-activitymap of
Fig. 13 (top-left graph). The plot shows the scenario in which the virtual head of the
model is turned 30◦ away from the sound source, based on the scenario shown in the
right graph of Fig. 12. Note that the data are presented in a room-coordinate system
that faces the sound source directly. As can be easily seen, each time slice shows
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Fig. 14 Binaural-activity-map results for the BICAM model analysis utilizing head movements
for an occluded direct sound source—simulating a scenario as depicted in Fig. 12a—with source
position, S2, and receiver position, R6. The left graph shows the result for a single time interval,
the right graph depicts the outcome for an average over 10 time intervals

two ambiguous peaks, namely, one for the front and one for the corresponding rear
direction, a common problem that was discussed in detail in Braasch et al. (2013). In
order to resolve the ambiguous peaks, the virtual head of the model is shifted by 60◦
to the opposite side—see the top-right graph of Fig. 13. This graph also displays the
data in a room-related coordinate system. Now simply, the average is taken of the
two binaural activity maps and the ambiguous front/back-confusion peaks average
out—see the bottom-left graph in Fig. 13. To demonstrate the effectiveness of the
head-movement algorithm, the same scenario was simulated again, but this time
with the virtual head facing the rear at 180◦ with temporal head-movement shifts to
150◦ and 210◦ to resolve front/back directions. It should be noted that there are two
main differences between the model presented here and the model of Braasch et al.
(2013). Firstly, in the new model, the head-movement algorithm is now applied to
the estimated binaural-activity map and not to the binaural signal itself. This renders
to two advantages, that is, the direct-sound-source angle can be computed separately
from the early reflections, which yields in a higher localization accuracy, and the
algorithm can also estimate the front/back direction of the reflections. However, the
new model cannot yet calculate front/back directions from a continuously turning
head like it is the case for the Braasch et al. (2013) model. The reason for this is that
the time-alignment method for the two autocorrelation functions currently requires a
stable head orientation. Therefore, the newmodel calculates the front/back directions
based on two distinct head positions until a better solution is found for the time
alignment.

The analysis is concluded by computing a scenario in which the direct pathway
between the source and the received is occluded by a wall—as shown in Fig. 12a (S2,
R6). Figure14 shows the binaural-activity maps for this case. In the left graph, the



Binaural Modeling from an Evolving-Habitat Perspective 281

binaural activity map was calculated from a single time interval. Here, a prominent
peak is visible with a maximum correlation of 0.6 even though the direct signal was
occluded. However, if the binaural-activity map is calculated as an average over 10
estimates, computed over 10 time intervals, the coherence drops to 0.2—see the right
graph. The reason is that the prominent peak develops randomly at different positions
for each of the ten computations. It should be noted that each segment by itself leads
to a maximum coherence of one because the autocorrelation peaks always have a
main peak of one. However, in the occluded case, the outcome of the analysis is
heavily influenced by the diffuse-reverberant-signal component and the main peak
averages out since its lateral position moves from segment to segment. In the case of
Scenario1, the binaural-activity map is stable from segment to segment and hardly
influenced by the time-averaging method.

Following Wallach (1939, 1940), the head-movement model can also be used
to estimate the elevation of sound sources by utilizing the fact that the ITD range
is reduced with up- or downward elevation changes of the sound source from the
horizontal plane—compare Pastore et al. (2020, this volume). Ideally, the ITD range
is reduced monotonically with the elevation magnitude, minimizing to ITDs of zero
at the −90◦ and 90◦ elevation poles.

In order to enable sound-source-elevation estimates, the head-movement model
is slightly modified for processing different elevations from −70◦ to 80◦ in steps of
10◦. For each elevation, a new set of frequency-dependent remapping functions is
calculated according to (21). In principle, the model is an alternative implementation
to an existing localization model by Parks (2014), which also draws from Wallach’s
ideas to estimate elevation angles. The results of the model simulation are shown in
Fig. 15. Each horizontal color sequence corresponds to one elevation set as indicated
on the y-axis, The sequence depicted for the elevation of 0◦ basically shows the same
data as Fig. 11 but for different source and head-movement angles. The left graphs
indicates the start position of the head-movement angle, the right graphs presents an
averaged function over the head motion. The top row shows the results for a sound
source at 30◦ azimuth and 60◦ elevation. At the beginning of the head-movement
trajectory, the results are still ambiguous and the source could be at various elevations
at 30◦ or 150◦ azimuth. After the head-movement, the model accurately locates the
sound source at 30◦ azimuth and 60◦ elevation. Also in cases of a sound source
located at 0◦ azimuth/0◦ elevation or one located at −40◦ azimuth/−135◦ elevation,
the actual sound source can be determined through head movement—see Fig. 15
center and bottom rows.

5 Conclusion

The goal of this chapter was to examine how auditory systems utilize binaural mech-
anisms to extract useful information from the environment to be able to read and
understand a complex scene. Using idealized but complex simulated environments,
it is tested how the auditory system can adapt to different scenarios. Most of the
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(a) Sound source at 30◦ azimuth and 60◦ elevation
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(b) Sound source: 0◦ azimuth, 0◦ elevation
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(c) Sound source: −40◦ azimuth, −135◦ elevation
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Fig. 15 Demonstration of the head-movement algorithm to estimate elevation. All left graphs
depict the initial model performance before head movement, the right graphs the model per-
formance with integrated head movement. In all cases the head rotated from 0◦ to 60◦ azimuth,
maintaining the elevation at 0◦. Light areas indicate a high likelihood of estimated source position,
dark brown areas indicate a low probability of the source being present
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auditory system’s capabilities can be traced back to tasks that preceded human civ-
ilization, but a remaining mystery is how the auditory system can process specular
reflections. One explanation is that our precedence mechanism is an evolutionary
response to floor reflections and reflections from a cliff, where large plain surfaces
can be found.Yet, it, is still amazing that thismechanism can handle sound perception
in human-built rectangular rooms, which appeared very late during our evolutionary
process. An alternative explanation is that the precedence effect largely falls out of
the specific processing of the auditory system and is not necessarily the product of any
precedence-effect specific mechanisms at all. For other tasks, the current demands
are not that different from our pre-civilization experiences. Head movements, for
example, can help to resolve front/back ambiguities for sound sources. A future goal
is to extend the binaural analysis to actually measured environments and to support
the findings with psychoacoustic experiments. The study presented here hopefully
serves as an initial gateway to better understand how the binaural system reads the
world under complex conditions.
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Psychophysical Models of Sound
Localisation with Audiovisual
Interactions

Catarina Mendonça

Abstract Visual signals can have an important impact on the perceived location
of sound sources. Neurological mechanisms enable interactions between seeing and
hearing to form a sense of space. The effect of vision on auditory localisation percepts
is of fundamental importance. A sound source is either perceived at the location
of the visual source or it is perceptually shifted toward it’s direction. This bias is
one form of visual capture. The extent of the interactions depends on time and
space constraints beyond which visual and auditory cues do not necessarily interact.
These constraints and interactions vary for the localisation of sources along the
horizontal and vertical planes, as well as with distance. While the traditional models
of audiovisual interaction in space perception assume sensory integration, recent
models allow for sensory cues to either interact or not. Models of visual dominance,
modality appropriateness, andmaximum likelihood estimation predict one combined
percept. The newer models of causal inference allow for varied perceptual outcomes
depending on the relationship of the different sensory cues. Finally, visual spatial
cues can induce changes to how sounds are localised after the audiovisual experience.
This notorious effect, known as the ventriloquism aftereffect, is possibly the main
mechanism of auditory space learning and calibration. The ventriloquism aftereffect
has been described with a causal inference model and with an inverse model. The
current chapter discusses all of the above concepts, establishing a connection between
psychophysical data and available models.

1 Introduction

The understanding of auditory space perception mechanisms is incomplete with-
out considering audiovisual interactions. Very rarely, in daily life, does one localise
sounds without any source of visual information available. Vision is known to affect
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largely where in space sound is perceived. When conditions are met, vision can be
so powerful that sounds are perceived to be sourced in the same position as the
visual stimulus source. Throughout the years, the understanding of the psychophys-
ical interactions between sound and light stimuli developed, and so did the proposed
mechanisms and models. Most of the original models were not expressed mathemat-
ically, probably due to their simplicity. The newer models are formulated mathemat-
ically, and their complexity and comprehensiveness have expanded considerably.
Understanding and comparing these models is helpful to comprehend perceptual
mechanisms associated with the localisation of multisensory events.

Here, the evolution of these models throughout time is described, connecting
them to knownpsychophysical effects. First, a summary of psychophysical findings is
presented that describe sound localisation in the presence of audiovisual stimulation.
This section analyses under which conditions light and sound stimuli interact in the
formation of auditory space. Neural substrates and localisation in azimuth, elevation,
and distance are briefly described. The changes in localisation of sound sources after
exposure to audiovisual events are also summarised.

The remainder of this chapter highlights psychophysical localisation models that
include multisensory interactions. The chapter starts with models that assume cue
integration and later presentmodels that do not assume such integration.Here, assum-
ing integration refers to whether one or two percepts are formed. When there is a
multisensory event where sound and light sources do not match in space, the result-
ing percept can be of only one unified event, in which the source positions may be
wrongly localised in order to match each other; or there can be two independent
percepts, one for each sensory modality. As will be seen below, the original theories
of multisensory interaction in spatial perception tended to assume that there would
be integration. More recent models account for the fact that stimuli might or not be
integrated.

The final part of this chapter presents two attempts to model sound localisation
after audiovisual experience. Audiovisual experience is known to affect the sub-
sequent ability to localise sounds, and it is a prominent source of auditory-space
learning and calibration. Modelling these sensory learning processes remains an
open challenge.

All models presented in this chapter are psychophysically motivated. This means
that they establish amathematical relationship between external physical and internal
psychological quantities. In all cases, these models establish relationships between
the location of the external sources are and their perceived positions.

Themodels described in this chapter canbe applieddirectly tomultimedia technol-
ogy and sensor fusion. These models have been applied to automatically identifying
sources from combined video and audio data. When combining sensor data, quite
often information from different sensors will be incongruent. The task of identify-
ing the degree of compatibility, which signals to rely on most, and how to combine
the signals is not unlike the perceptual tasks humans face daily. As will be shown,
human perception is hugely optimised. Sensory processing seems to deal optimally
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with signal noise. Therefore, understanding the mechanisms of signal integration in
humans might provide a good starting point for the design of technology that merges
visual and audio signals.

2 Summary of Findings on Sound Localisation from
Audiovisual Stimulation

2.1 Neural Substracts

Several brain regions are known to be involved in the processing of multisensory
interactions. Among them, the Superior Colliculus (SC) in the midbrain seems to
have particular relevance. Signals from visual, auditory and somatosensory areas
converge in the SC (Meredith and Stein 1986). Along the auditory pathway, signals
reach the inferior colliculus before they reach the auditory cortex. Further, there
are bi-directional projections between the auditory cortex and inferior colliculus.
The relationship between the inferior and superior colliculi may drive processes of
spatial attention and spatial learning. It has been argued that the SC contains an
amodal representation of space, which might be responsible for most multisensory
interactions in source localisation (Hartline et al. 1995; Wallace et al. 1996). The
cells in the mammalian SC react according to rules that resemble common rules
of multisensory interaction. Given two stimuli from different sensory modalities,
these cells respond stronger when both stimuli are weaker than when one stimulus is
substantially stronger than the other. This effect is knownas inverse effectiveness. The
cells in the SC also respondmore stronglywhen stimuli from both sensorymodalities
are co-localised in space, and when they occur synchronously. Chapter6 discusses
in greater detail the biological aspects of perceptual auditory space formation.

2.2 Localisation in Azimuth

Throughout the years, research has revealed rules and constraints to describe the
interactions between light and sound processing in the perception of space. In the
presence of visual stimulation, the task of perceptually localising sounds in azimuth is
affected. If the audio-visual stimulation is matching, there are less errors and greater
precision in sound localisation. If audio-visual sources are not matching, there tend
to be errors in sound source localisation in order to match the visual stimulation. The
three main constraints to the degree of audio-visual match are congruence, temporal
matching, and spatial matching. These constraints have mostly been studied for
azimuthal sound-source estimation tasks.

http://dx.doi.org/10.1007/978-3-030-00386-9_6
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The constraint of congruence describes how the visual and the auditory signal
relate to each other semantically or in terms of context. This factor is critical for
multisensory integration, and some degree of congruence is required for interactions
to be observed (Laurienti et al. 2004). For instance, the sound of football playing pre-
sented synchronously with images of a falling tree might evoke weaker audiovisual
interactions than when it is presented with congruent images of a football player.

The constraint of temporalmatching relates to the timing of the audiovisual events.
When visual and auditory events occur synchronously orwithin a given timewindow,
they may interact in the formation of percepts. The visual stimulus can alter the
perceived sound source location if the delay between both stimuli is less than 100ms,
and the sound stimulus arrives after the visual stimulus. The temporal windowwithin
which there are multisensory interaction effects is also known as the “integration
window”. Note that this window of integration is somehow related to the window of
perceived simultaneity between visual and auditory signals. However, the window
of integration is narrower than the window of perceived simultaneity (Slutsky and
Recanzone 2001). This indicates that stimuli must be perceived as unambiguously
synchronised if they are to interact in the formation of the space percept. It must
be noted that the window of perceived audiovisual simultaneity varies across task,
stimuli, and even number of present spatial cues (Van Eijk et al. 2008; Silva et al.
2013).

The constraint of spatial matching relates to how close in space audiovisual events
occur. It has been suggested that a maximum of 15◦ of separation was needed for
sounds to be perceived in the same location as the image (Slutsky and Recanzone
2001). However, interactions between the signals can occur even if they are not per-
ceived as co-localised. There are biases in the localisation of sound sources with
spatial discrepancies between light and sound of up to 25◦ (Bertelson and Radeau
1981; Wozny and Shams 2011). This bias is observed in the form of a displacement
of the perceived sound source location, in magnitudes ranging between 4◦ and 8.2◦
for source separations from 7◦ to 25◦, respectively. The further away the stimuli are
from each other, the larger the average displacement of perceived sound location.
Mendonça et al. (2015) observed that the visual stimuli were usually perceived accu-
rately in space when visual and sound sources were separated by 12◦. The sound
source moved perceptually toward the visual source, although they were not co-
localised—see Fig. 1. As will be discussed further below, it is still uncertain in this
case if the subjects perceive the sound as displaced, or if they perceive it as alternating
between stemming from the sound source and from the visual source.

The interactions between light and sound in the perceived azimuthal source loca-
tion can be summarised as follows. The visual stimulus can attract the auditory
percept, but it is debatable whether there is an influence of the auditory input on the
visual percept. These interactions are better described, tested, and understood when
applying psychophysical models, as described in Sect. 3.
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Fig. 1 Data from a localisation experiment where visual and audio signals were presented 12◦
apart in discrepant trials (Mendonça et al. 2015). The visual stimulus was localised very accurately
in unimodal visual trials (Visual in V trials) and in the audiovisual discrepant trials (Visual in
AV trials), although with lower precision. The auditory stimulus was localised poorly in both the
unimodal (Auditory inA trials) and audiovisual trials (Auditory inAV trials). Therewas a noticeable
displacement of the auditory percept in the audiovisual trials that generalised to the unimodal trials

2.3 Localisation in Elevation

To date, there have been few contributions to the understanding of how visual and
audio signals interact in the perception of vertical auditory space. It cannot be
assumed that the multisensory effects will be similar to those of horizontal sound
localisation, as described in Sect. 2.2, since the auditory system uses different cues
to localise in elevation. There is also lower precision for vertical sound-source local-
isation, compared to horizontal localisation, and there are constraints to audiovisual
interactions, such as minimum stimulus duration and field of view.

Werner et al. (2013) created sounds changing in elevation by using individual
head-related-transfer-function measurements. They used these sounds, reproduced
through headphones, to test the influence of light on the perceived location of sound
sources. It was found that audiovisual sources must be positioned within 7◦ to 10◦
of each other in elevation so to be perceived as co-located. Furthermore, when dis-
placed, the visual stimulus is able to shift the perceived location of the sound source.
However, the observed shifts are only of a maximum magnitude of 3.2◦ to 3.6◦ with
audiovisual vertical displacements of up to 30◦. This effect is close to that observed in
azimuth, or smaller. This finding seems to contradict the assumptions of the models
discussed in Sect. 3, where greater uncertainty in sound localisation leads to greater
influence of the visual cue, and therefore to a larger displacement of the spatial
percept. Unfortunately, no model of audiovisual source localisation has ever been
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tested for the localisation of sources varying in elevation. Therefore, more studies are
needed to assert whether the models of audiovisual localisation apply to localisation
in the vertical plane.

2.4 Localisation in Distance

Mendonça et al. (2016) have recently studied how light and sound signals interact
in distance perception of external sources. They found that sound and light stimuli
are perceived to be co-localised if they are within 1m of each other, but no further.
There is a trend to be more tolerant to stimuli mismatch with increasing distance.
Stimuli that are several meters away from the observer can be more than 3m apart
from each other and still be perceived as co-localised—see Fig. 2.

The distance localisation of visual sources is more accurate than that of sound
sources. When presented together with varying degrees of spatial mismatch, the
visual percepts are not influenced by the presence of sound. Sound distance estimates
are affected by the presence of visual sources, but the magnitude of this effect is
small and requires both sources to be close in space—see Fig. 8. The spatial window
within which the visual cue may affect the auditory percept is presented in Fig. 3.
The interaction windows are larger than the co-localisation windows seen in Fig. 2,
but they too seem to grow with stimuli distance. Interestingly, distance perception

Fig. 2 The threshold of how large the distance between light and sound sources can be, in order to
be perceived as co-located. The threshold denotes the point where stimuli are co-localised in 50%
of the trials. The thresholds and respective 95% CI bars were determined through a bootstrapping
technique
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Fig. 3 Windows of interaction in the perception of auditory distance.Within this window, the visual
stimulus has a weight of 50% or more on the formation of the auditory-distance estimate. Sensory
weights are determined according to Eq.21

seems to be completely unaffected by the concurrent visual cue when both stimuli
are far apart. This is not the case when judging the azimuth for multimodal stimuli
(e.g., Wozny and Shams 2011; Mendonça et al. 2015).

2.5 Sound Localisation After Audiovisual Stimulation

It has been established that visual cues can affect the perceived sound source position.
This effect can lead to long-lasting changes. When consistently exposed to audio-
visual stimuli which are mismatched in space, a recalibration mechanism can be
observed whereby sound localisation is permanently shifted. This effect is thought
to be one of the main mechanisms through which sound localisation is learned (King
2009). Since sound localisation cues change throughout life, due to changes in pinna
shape, changes in head shape through growth, and changes in mechanical and in
sensorineural sound signal processing, adaptations must take place to ensure that the
ability to localise sound sources is preserved. Because of these changes, there are per-
manent shifts in auditory source localisation in the direction of the bias induced by the
visual cue. The first study to identify this spatial aftereffect was conducted by Held
(1955). The author used pseudophones. These devices function like a hearing-aid
and operate by shifting the perceived sound consistently horizontally. After wearing
the pseudophones in their daily lives, listeners experienced lasting changes in the
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Fig. 4 Degree shift at the point of subjective equality (PSE) between presented and perceived
sound-source locations. These shifts were observed during audiovisual trials (AV), auditory-only
trials immediately after the audiovisual trials (A), and in auditory trials in a subsequent test session
(Post-test). In the condition “Constant”, audiovisual stimuli occurred in random positions, but
visual events were always 6◦ away from the sound event. In the condition “Variable 1”, stimuli
were randomly displaced according to a Gaussian distribution with μ= 6◦. The condition “Variable
2” had a similar distribution, with a mean of 6◦, but it was skewed such that the peak of the function
(the mode) had a different value from the mean

perceived sound source positions. Other initial experimental studies on the ventril-
oquism aftereffect exposed subjects to audiovisual events that were always shifted
by a few degrees for a period of 20–30min. In after-test sessions, it was observed
that subjects had a shift of a few degrees for the perceived sound location, even in
absence of visual stimulation (Radeau and Bertelson 1974; Recanzone 1998).

The consistency of the stimulation is crucial in this effect. A fixed discrepancy
between light and sound source positioning will lead tomore pronounced subsequent
shifts in sound localisation, compared to presenting subjects with audiovisual pairs
of variable discrepancy levels (Mendonça et al. 2014). Figure4 shows the effect of
exposure to audiovisual stimulation with either fixed or variable discrepancy. It can
be observed that the impact of the visual stimulus during the audiovisual trials is
larger when the mismatch is constant, compared to the other conditions. In the post-
test, the magnitude of the aftereffect is twice as pronounced in the case of consistent
stimuli.

Recent research has shown that prolonged exposure is not required to obtain a
shift in auditory space. It was found that after a single, brief presentation of a spatially
discrepant audiovisual event, there was a measurable displacement of the perceived
sound source location in the subsequent trial (Wozny and Shams 2011; Mendonça
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et al. 2015). In the study by Wozny and Shams (2011) it was found that localisation
of the auditory image was affected by discrepant audiovisual events that happened in
the previous trial and up to three trials back. Mendonça et al. (2015) tested different
models of sequential effects and found that all recent audiovisual experience as a
whole has an influence on the auditory localisation estimate, but the last trial has a
far higher impact than any of the preceding audiovisual events. This model is further
described in Sect. 4.

3 Modelling Sound Localisation During Audiovisual
Stimulation

The models described in this section are not specific to the localisation of sound in
azimuth, elevation, or distance. All models have been applied to sound localisation,
but they could also be applied to other multisensory processes.

3.1 Models That Assume Cue Integration

Visual Capture, Dominance and the Ventriloquism Effect

The concept of visual capture was first proposed byRock andVictor (1964) in a study
about the visual capture of touch in the perceived size of objects. This concept, also
called visual dominance (Posner et al. 1976), was later found to describe well the
localisation of sound from audiovisual stimulation. When both visual and auditory
events are presented simultaneously and in proximity, the visual stimulus determines
where the auditory stimulus is perceived (Bertelson and Radeau 1981; Choe et al.
1975; Bertelson 1999). This perceptual effect is a form of ventriloquism effect.When
a ventriloquist actor speakswhilemoving their puppet’smouth, there is an impression
that the sound is originating from the puppet itself, rather than from the actor. This
represents well what is assumed to happen in the case of visual dominance for the
perceived sound source location. The mechanism of visual dominance is depicted in
Fig. 5.

For decades, this mechanism was assumed to describe well where sound sources
are perceived in the presence of visual stimuli (e.g., Vroomen et al. 2001). Sensory
dominance can be expressed conditionally, where the sensory estimate of the sound
location, ŝA, given the visual source location, xV , and the auditory source location,
xA, is the same as the sensory estimate of the visual location, ŝV :

ŝA|xV ,xA = ŝV |xV ,xA . (1)

In this theory, the estimate of the visual source location is unaffected by the auditory
modality,
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Fig. 5 Schematic of the
expected multisensory
interactions in the perceived
location of visual and
auditory sources for the
visual dominance model

ŝV |xV ,xA = ŝV |xV . (2)

In most statistical models of audiovisual perception, the internal sensation, si , is
a noisy sensory representation caused by a given stimulus, xi , which can be approxi-
mated by the observed sensory estimates, ŝi . Here, the index i stands for each individ-
ual sensory modality. These estimates can be approximated following the Bayesian
rule,

p(ŝi |xi ) = p(xi |ŝi ) p(ŝi )

p(xi )
. (3)

The sensory estimates ŝi |xi are the posterior likelihood, which is approximated by
the stimulus location, p(xi |ŝi ), the prior internal perceptual bias, p(ŝi ), and the prior
external likelihood of that stimulus being in that location, p(xi ). Most modellers
assume that the external world is unbiased, and therefore p(xi ) = 1. However, the
observer can use his or her knowledge about the world to form the percept, and,
therefore, sometimes p(ŝi ) assumes different values. In the remainder of this doc-
ument, p(ŝi ) is referred to as pi to conform with standard language in the field. In
the case of visual dominance, the perceived location of the auditory source can be
approximated as:

p(ŝA|xA, xV ) = p(ŝV |xV ) = p(xV |ŝV ) p(V ). (4)

Even though the concepts of visual dominance and ventriloquist effect remain
very popular in current literature, these concepts are outdated. The above model
will successfully predict human sound localisation in a large number of contexts.
However, it is considered that other, more comprehensive models, might better grasp
the interactions in audiovisual localisation.

Modality Appropriateness and Modality Precision

The concepts ofmodality appropriateness andmodality precisionwerefirst described
many decades ago (Welch and Warren 1980). These concepts vary in the proposed
mechanisms, but have the same practical implications. Modality appropriateness
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assumes that some sensorymodalities aremore suitable than others for the perception
of a given attribute, due to their different information-processing characteristics. It
was, therefore, hypothesised that, when having data from both senses available,
the brain would choose to use only the data from the most reliable sense. In the
presence of visual-spatial information, auditory spatial information would always
be neglected, because of the relatively weaker spatial resolution of the auditory
system. In modality precision, it is assumed that the data from the most reliable
source of sensory information will always be used. This is very similar to modality
appropriateness, but it does not assume that one sensory modality will always be
best, instead putting the focus on the quality of the sensory signal. Expressing this
mathematically, one can state that the auditory localisation estimates are the same
as the visual estimates, and what determines which sensory cue dominates is its
reliability, which can be defined as lower variance of the sensory information σ2

i ,

p(ŝA|xV ,xA) = p(ŝV |xV ,xA) =
{
p(xA|ŝA) p(A) if σ2

V > σ2
A

p(xV |ŝV ) p(V ) if σ2
V < σ2

A

. (5)

This model advances from the previous one by allowing the auditory stimulus to
dominate in the final estimate under sensory conditions where the visual information
is less precise or has a poor resolution. The model has been compared to other recent
models in estimating distance perception, and it was found to perform poorly for the
prediction of auditory distance, but worked well to predict perceptual visual distance
(Mendonça et al. 2016).

Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) model was developed by Yuille and
Bulthoff (1996), extended by Landy et al. (1995), and used in modelling of multi-
sensory interactions for the first time by Ernst and Banks (2002). For this model, the
sensory estimates, ŝi , and their variances, σ2

i , are assumed to be normally distributed
and independent. It is further assumed that the Bayesian prior is uniform (p(i) = 1).
According to the maximum likelihood approach, the sensory estimate can be given
by a linear weighted sum of the individual unimodal sensory estimates,

ŝ =
∑
i

wi ŝi . (6)

In is the case of audiovisual localisation this becomes

ŝAV = ŝA wA + ŝV wV , (7)

where wi are the weights of the individual sensory percepts. For the optimal estima-
tion, the weights correspond to the inverse of the estimate’s variance
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Fig. 6 Schematic of the
expected multisensory
interactions in the perceived
location of visual and
auditory sources in the MLE
model

wi = 1/σ2
i∑

j 1/σ
2
j

. (8)

Therefore, in the case of audiovisual localisation, the predicted combined variance
of the final estimate is

σ2
AV = σ2

Aσ
2
V

σ2
A + σ2

v

. (9)

This approach is compatible with previous findings supporting the ventriloquism
effect. This model suggests that visual cues tend to dominate sound source locali-
sation because they carry a higher sensory weight. The localisation of visual events
is indeed more precise and typically carries lower variances than the localisation
of auditory events. This imbalance of sensory cue reliability can lead to results
that resemble the visual dominance effect. Note that this model consistently merges
audiovisual cues. It always produces a united percept, even if visual and auditory
sources are separated in space. Figure6 shows the perceptual mechanisms predicted
by the MLE model. Spatially separated auditory and visual stimuli give rise to a
fused percept. The percept is more defined in space than for any of the original sig-
nals, because the variance of the percept is optimised through the combination of
information.

This model has been shown to accurately describe human audiovisual percep-
tion, in particular audiovisual localisation (Alais and Burr 2004; Binda et al. 2007).
The model is still considered to be accurate, however, multisensory integration only
occurs when certain conditions are met. Audiovisual interactions predicted by the
MLE break down when stimuli from the different sensory modalities are incongru-
ent or not co-localised (e.g., Mendonça et al. 2011). Therefore, there seems to be
a window of cue compatibility within which multisensory integration is observed.
However, the MLE model is no longer applicable beyond this window.
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3.2 Models That Do Not Assume Cue Integration

No Interaction

Sometimes, it can be found that there is no perceived spatial interaction between
visual and auditory cues, but this has never been proposed as a complete model
on its own. For instance, when the cues are unrelated or too far apart, it can be
observed that auditory localisation is unaffected by the presence of visual stimuli.
In the no-interactionmodel, the perceived sound source position is solely a function
of auditory cues and independent from visual cues. Therefore, the localisation of a
sound source can be approximated as

p(ŝA|xA, xV ) = p(xA|ŝA) p(A), (10)

like in (3).

Causal Inference with a Generative Model

As a response to the limitation of the MLE model, which fails to provide an accu-
rate prediction of the localisation of sound when visual and auditory cues are too
incongruent, a new kind of model emerged. This type of model predicts optimal
integration only in some instances. Among others, two approaches were proposed in
multisensory research to deal with the problem of different sensory cue interaction
rules according to different degrees of multisensory cue matching. In this context,
Roach et al. (2006) worked on audiovisual rate perception, while Bresciani et al.
(2006) focused on audiotactile integration. These models used a Gaussian ridge to
quantify the binding between the different sensory modalities. The first model of this
kind to predict audiovisual localisation specifically was the Bayesian causal infer-
ence model (Körding et al. 2007; Sato et al. 2007). This model specifies that there is
a sequence of steps to multisensory cue processing. Unimodal stimuli are processed
separately at an early stage. Then, sensory estimates are plotted against each other and
the degree of compatibility is computed. From that, the brain estimates the likelihood
that both estimates were caused by the same event. Figure7 illustrates the predicted
interactions between visual and auditory cues is space perception according to this
model.

As shown in Fig. 7, top graph, the model predicts that when cues are too far apart
theydonot interact and, therefore, the percepts are unbiasedby the concurrent sensory
stimulation. When stimuli are close enough in space, they are integrated, and the
percept becomes optimal, as predicted by the MLE model—see Fig. 7, center graph.
In intermediate situations there are variable results, where stimuli can be perceived
closer to each other, but are not necessarily co-localised—see Fig. 7, bottom graph.
The accuracy of these estimates may change. The causal inference model follows a
series of three steps. Firstly, causality is established through the Bayesian equation

p(C |xA, xV ) = p(xA, xV |C) p(C)

p(xA, xV )
. (11)



302 C. Mendonça

Fig. 7 Schematic of the
expected multisensory
interactions in the perceived
location of visual and
auditory sources in the
Causal Inference model
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Here, the bimodal stimulation, p(C), may be specified as p(C = 1) and p(C = 2),
where p(C = 1) stands for the probability that both visual and auditory events have
the same underlying external cause. The value p(C = 2) denotes the probability
that both events have two separate external causes. Here, both causal structures are
mutually exclusive and therefore must add up to one, namely,

p(C = 1) = 1 − p(C = 2). (12)

Once the probability of the causal structure is established, onemustmodel the percept
associated to each causal structure. Here, the sensory estimate will be given by the
MLE model, if a common cause is inferred (p(C = 1)):

ŝA|C = 1 = ŝV |C = 1 = xA/σ2
a + xV /σ2

V + pAV /σ
2
p

1/σ2
A + 1/σ2

V + 1/σ2
pAV

, (13)

where pAV represents the combined prior of xA, xV . If two causes are inferred, then
the sensory estimate is given by the no-interaction model:

p(ŝA|C = 2) = p(xA|ŝA) p(A). (14)

In the third and final step, the estimates from each underlying causality must be
combined to predict the observed probability functions. So far, three approaches
have been tested for audiovisual localisation. In one approach, it was hypothesised
that subjects would simply select the most likely estimate. They would form the
estimate associated to the most likely causal structure, that is,

ŝA|xV ,xA =
{
ŝA|C=1 if p(C = 1) > 0.5

ŝA|C=2 if p(C = 1) < 0.5
. (15)

In an alternative strategy, the observed estimates would correspond to the lin-
ear weighted sum of the two independent estimates, obtained for each underlying
possible causality

ŝA|xV ,xA = p(C = 1 | xV , xA) ŝA,C=1 + p(C = 2 | xV , xA) ŝA,C=2. (16)

A final strategy would be that subjects alternate responses, according to each
causal structure in a rate that matches the probability of that causal structure itself,

ŝA =
{
ŝA,C=1 if p(C = 1 | xV , xA) > ζ

ŝA,C=2 if p(C = 1 | xV , xA) < ζ
, (17)

where ζ is sampled randomly from a uniform distribution [0:1]. In practice, the
observed response distributions are composed of two Gaussian distributions, each
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with the relative size of each causal probability. There has been increasing evidence
to support the probability matching strategy outlined in (17) (Wozny et al. 2010;
Mendonça et al. 2016). This is counterintuitive, because it is not the optimal response
strategy. A linear weighted sumwould be the strategy with the least cost. Responding
in such a way that matches the causal probability itself may mean one of two things:

1. Sometimes subjects might infer one cause and other times infer two causes. They
may distribute their responses according to this pattern.

2. Alternatively, subjects might always access both possible percepts (ŝA|C = 1 and
ŝA|C = 2). Then they may distribute the answers across trials according to a
fluctuating internal criterion that accounts for the likelihood of a common source.

When the causal inference model was proposed (Körding et al. 2007; Sato et al.
2007; Beierholm et al. 2008; Wozny et al. 2010), it was solved using a generative
model. Equations13 and14were solvedby assuming that all elementswereGaussian.
To test the causal inference model, experiments on audiovisual localisation were
carried out. In these tests, subjects indicated where they perceived the visual and
auditory sources under unimodal and bimodal conditions. When testing the model,
several parameter values were considered unknown. The causal inference model was
fitted to experimental data, to find which model values fit the data best. The unknown
parameters were the probability of common cause, p(C = 1); the standard deviation
of the visual representation, σV ; auditory representation, σA; and of the prior (σp).
The prior itself can be assumed to be an unknown parameter too. The causal inference
model was found to be superior to other models of multisensory interaction in all of
the studies mentioned above.

Causal Inference Without a Generative Model

Mendonça et al. (2016) proposed a solution that avoided the use of a generative
model. Other multisensory integration models, like the MLE, have bypassed gener-
ative models by obtaining these parameters directly from experimental data—e.g.,
Ernst and Banks (2002); Alais and Burr (2004); Binda et al. (2007); Mendonça et al.
(2011). In the model by Mendonça et al. (2016), data from unisensory conditions
is collected and used to predict perception in multisensory conditions. In this case,
the independent auditory localisation estimate, ŝA, can be observed directly by com-
puting the mean of the experimentally obtained localisation responses (sA). The
standard deviation of the auditory localisation estimate, σA, is obtained as the stan-
dard deviation of that mean. The obtention of the internal estimates also spares from
having to calculate the priors, p(A) and p(V ). Any prior should affect the formation
of the internal localisation estimate, ŝi , from the external source localisation, xi—
see (3), (14). If the estimate ŝi is observed directly, no additional biases are expected
when the additional sensory cue is added to calculate the final multisensory estimate.
Therefore, in this version of the causal inference model, the conditional estimates
can be obtained as follows.
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ŝA,C=1 = ŝV,C=1 = sA/σ2
A + sV /σ2

V

1/σ2
A + 1/σ2

V

, (18)

ŝA,C=2 = sA ; ŝV,C=2 = sV . (19)

As learned from (13), when a common cause is observed, the visual and auditory
estimates will be identical. Therefore the following equation is used in this model to
observe the probability of common cause p(C = 1), that is,

p(C = 1 | xV , xA) = p(ŝA = ŝV )

and

p(C = 2 | xV , xA) = 1 − p(ŝA = ŝV ).

(20)

This model has been shown to simulate the perceived position of auditory image
in distance accurately, and it performs better than the traditional models of sensory
dominance, including the MLE and no-interaction models (Mendonça et al. 2016).
Figure8 shows the predictions of this model against data of sound distance estima-
tions.

3.3 Sensory Weights

The computation of the sensory weights is informative on its own. The weight
attributed to each sensory cue denotes how reliable each sensory cue is. The sen-
sory weights may also provide an indirect indication of how accurately the signal
is represented in the brain in a given context and task. In the case of spatial visual
and auditory representations, it is known that the visual representations are more
reliable than the auditory ones. In most of the models mentioned above, this is the
main reason why visual cues typically dominate over auditory space judgements.

According to the MLE theory, the sensory weights can be calculated following
(8). However, that theory has been shown to be incomplete. Mendonça et al. (2016)
proposed a newway of calculating sensoryweights that accounts for causal inference.
It calculates separately the weights of the sensory cues in each underlying causal
structure and sums them up accounting for the probability of that causal structure,

⎧⎪⎨
⎪⎩
wA = wA,C=2 p(C = 2|xA, xV ) + wA,C=1 p(C = 1|xA, xV ),
wV = wV,C=2 p(C = 2|xA, xV ) + wV,C=1 p(C = 1|xA, xV ),
wA + wV = 1.

(21)

Adepictionof sensoryweights calculated in thismanner is presented inFig. 9. This
figure describes the weights of the visual and auditory cues on the visual and auditory
distance estimates. Firstly, it can be observed that the sensory weights follow very
different patterns for the visual and auditory distance estimates. This may indicate
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Fig. 8 The predictions of the causal inference without generative model against sound localisation
data in distance perception—adopted from Mendonça et al. (2016). The top row and left column
display the distribution of localisation estimates in the visual and auditory unimodal conditions,
respectively. The blue line corresponds to the response distributions obtained in a distance estimation
experiment. The red areas correspond to the predicted distributions from the causal inference model
without a generative self-fitting approach

that, despite multisensory interactions, both estimates are processed separately. It
can also be seen that the visual cue only achieves a higher weight over the auditory
estimate if the stimuli are co-localised, or exist within a narrow window of space.
This area, where the concurrent cues gain higher weights, may be conceptualised as
the multisensory interaction window. The audiovisual interaction windows obtained
through this method for sound distance localisation can be seen in Fig. 3.
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Fig. 9 Weights of the visual and auditory cue on the visual and auditory distance estimates, as
obtained by Eq.21. The area where the weight of the visual cue over the auditory estimate rises can
be determined as the spatial window of multisensory interaction

4 Modelling Sound Localisation After Audiovisual
Stimulation

As discussed earlier in the chapter, after exposure to spatially discrepant audiovisual
stimulation, the auditory spatial map becomes shifted in the direction of the shift
observed during the audiovisual exposure. This effect is known as the ventriloquism
aftereffect. There have been two different approaches tomodelling sound localisation
that account for previous audiovisual experience. Thefirst approach applies the causal
inference model described above, and the second one analyses preceding sensory
experience and sequential effects.
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4.1 Causal Inference

Causal inference has been applied to simulate the ventriloquism aftereffect by Sato
et al. (2007). Thismodelwas also applied to the ventriloquism effect itself. The causal
inference model by Sato et al. (2007) is different from the models presented above
by further specifying that the probability of common cause, p(C), is affected by
spatial and temporal parameters. To model the ventriloquism aftereffect, the authors
applied a causal inference concept with a generative model that updates the spatial
percepts p(sA|xA) and p(sV |xV ) on a trial-by-trial basis including two additional free
parameters μA and μV . Note that this model did not include the priors p(A), p(V ),
or p(AV ). When the spatial estimate p(sA|xA) follows a normal distribution, the
probability distribution function can be computed following a Gaussian distribution,

p(sA|xA) = 1√
2π σ2

A

e
− (sA−xA−μA )

2

2σ2A , (22)

whereσ2
A is the standard deviation of p(sA|xA). A similar equation is used to compute

the perceived visual location. In this case, the generative model explicitly starts with
an unbiased aftereffect value, μA = 0. The model, therefore, assumes an unbiased
observer. After each audiovisual stimulation, the value of the parameterμA is updated
as follows,

μA → (1 − αA)μA + αA(sA − ŝA), (23)

where αA is the magnitude of the adaptation after each audiovisual stimulus. It
is observed from the biases in response to previous stimuli. In simulations, this
model was found to follow the results of the ventriloquism aftereffect obtained by
Recanzone (1998). As noted by the authors, thismodel is promising, but also presents
some limitations. One main limitation is that this model fails to predict any effect or
aftereffect when visual and auditory sources are too far apart. The causal inference
model requires the sources to be close enough so that they can be interpreted as
having one single external cause. When they are too far apart, they are perceived as
two separate events, and therefore there should be no aftereffect. In contrast to the
model performance, it has been shown that the ventriloquism aftereffect occurs even
when sources are separated by more than 20◦.

4.2 Inverse Model of Recent Experience

Mendonça et al. (2015) took an exploratory approach to findwhich audiovisual expe-
rience parameters primarily influence the auditory spatial shift. Varying sequences of
audiovisual events, which could be congruent or discrepant in space, were presented
to subjects. Their estimates of light and sound source localisation were used to model
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Table 1 Models tested in each P matrix. The parameter AICWi denotes the relative probability
of each model best describing the auditory shifts, according to Akaike’s Information Criterion

Model AICWi

(A) SH A = SQ1 w1 + SQ2 w2 + SQ3 w3 + SQ4 w4 + SQ5 w5 0.143

(B) SH A = SQ1 w1 + SQ2 w2 + SQ3 w3 + SQ4 w4 + SQ5 w5 + D wD 0.004

(C) SH A = SQ1 w1 + SQ2 w2 + SQ3 w3 + SQ4 w4 + SQ5 w5 + MaxD wMaxD 0.004

(D) SQ5 w5 + D wD 0.655

(E) SQ5 w5 + MaxD wMaxD 0.000

(F) SQ5 w5 + D wD + MaxD wMaxD 0.194

how recent experience affected the auditory localisation shifts. It was hypothesised
that the auditory shift could be predicted by

SHA =
n∑
i

wPi Pi , (24)

where SHA is the auditory localisation shift. It is observed as the difference between
a physical sound source position and its perceived location. The variable Pi stands
for each tested parameter, andwPi is the weight of this parameter. Several equations
were conceived, with a different number of parameters, to test which one would fit
the data best. The most successful models are presented in Table1. One model added
each of the last five audiovisual stimuli (SQ1, . . . , SQ5) as individual parameters.
Others included not only each of the previous trials, but also the total number of
discrepant trials experienced in that period, D; the maximum number of discrepant
trials in a row, MaxD; and all of the above. It was also tested whether the last trial
alone, SQ5, and the last trial combined with D and MaxD would fit the data better.

The weights were obtained through a least-squares fit. For each model, a matrix P
was created with each stimulation type as a column vector and each tested parameter
as a row vector. Therefore, P had as many columns as the number of parameters Pi
and as many rows as all the possible combinations of parameter values. For example,
to test Model A from Table1, the matrix P was configured as follows:

P =

⎡
⎢⎢⎢⎣
SQ1,0 SQ2,0 . . . SQ5,0

SQ1,1 SQ2,0 . . . SQ5,0
...

...
. . .

...

SQ1,1 SQ2,1 . . . SQ5,1

⎤
⎥⎥⎥⎦ .

The subsequent auditory localisation shifts were added to anothermatrix SH, with
a single column, where each row value contained the average auditory localisation
shift observed after the stimuli described in the corresponding row of P. The weights
of each parameter W are the multiplier of P with the product SH:
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SH = P ∗ W. (25)

The best fitting values of W are given by the pseudo inverse matrix, obtained by

W = (PT ∗ P)−1 ∗ PT ∗ SH. (26)

All models presented in Table1 were subsequently tested by fitting the model to
the data in a linear regression test. Since models with more parameters benefit from
having more degrees of freedom to fit the data, those models will always have an
advantage. They tend to overfit. Therefore, a correction has to be applied. Amodified
Akaike’s information criterion (AICC ) was used (Akaike 1974), allowing for the
number of parameters to be accounted for. Akaike’s model weights (AICWi ) are
presented in Table1. According to this criterion, the higher the weight, the better is
themodel. It was found thatModelD performed best using this criterion. Considering
only the last audiovisual trial and the overall number of discrepant trials in recent
sensory experience led to the best prediction, namely,

SHA = SQ5WSQ5 + DWD, (27)

whereWSQ5 = 0.88 andWD = 3.42. Therefore, the number of discrepant trials in the
recent sensory experience stands out as the highest weighted parameter in predicting
auditory space calibration following audiovisual experience.

5 Discussion, Future Directions and Conclusion

This book chapter presented an overview of psychophysical phenomena and psy-
chophysical models in sound localisation during and after audiovisual stimulation.
This topic has been the subject of research for several decades, but the field is more
dynamic than ever, with newer models being proposed more frequently over the last
decade.

Regarding psychophysical effects, it has been established that visual information
has the potential to impact the localisation of sound sources in azimuth, regardless
of how far apart the light and sound sources are in space. When presented within
close proximity, the sound source may be perceived as co-localised with the visual
source. If not, the sound source will still be perceived as closer to the visual source
than it was presented. In sound localisation in elevation, there is a surprising scarcity
of research. Current findings point to an influence of visual cues, which is similar
to the one found for horizontal localisation, but not higher for elevation. This is
surprising because most models attribute higher weight to cues with lower estimate
variability. In elevation, binaural cues provide little information for sound locali-
sation, and subjects must rely mostly on monaural cues. Therefore, there is greater
inaccuracy and higher uncertainty in identifying sound source elevation, as compared
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to azimuth. The effects of this uncertainty have never been carefully tested in regards
to multisensory integration.

Concerning distance perception, vision remains more accurate than hearing. Nev-
ertheless, there is a remarkable auditory robustness. Unlike for angular judgments,
concurrent visual information is unable to affect the perceived sound source distance
unless both sources are in close proximity to each other. Despite of these differ-
ences, the Bayesian causal inference model still performs best in describing those
multisensory interactions.

Psychophysical models of sound localisation during audiovisual stimulation are
not exclusive for localisation, and they can also be tested in other contexts of mul-
tisensory interaction. These models have evolved greatly over the last decades, and,
interestingly, they are mostly evolving cumulatively. For the most part, the newest
models include elements of the old models. The concept of visual dominance and
ventriloquism evolved from a winner-takes-all view to primarily represent the strong
impact of the visual cue over the auditory space estimate. The modality appropri-
ateness hypothesis suggested for the first time that the impact of the visual cue was
mostly related its reliability. The MLE model simulates multisensory interactions,
and it accounts for cue reliability by explicitly giving a weight to each sensory cue.
It is also the first model to assume an optimal observer, who maximises the model
performance in presence of sensory noise. This model proved to be robust in describ-
ing human perception. However, it did not account for situations where cues were
not integrated, where there was no mutual effect of the cues upon each other, or
when this effect was small. The Bayesian causal inference model accounts for the
multisensory integration predicted by the MLE and for the absence of interaction
in the no-interaction model. It also predicts the intermediate cases as a combination
of those two scenarios. Bayesian causal inference is the most commonly accepted
model to describe audiovisual interactions in localisation. This model has also been
applied to other contexts, not described here. For instance, a variation of this model
has been used under the framework of Bayesian networks to model the process of
the multisensory interactions in audiovisual localisation (Besson et al. 2010). There
is also some neurophysiological evidence to support the idea that the brain behaves
similar to the causal inference model (Kayser and Shams 2015).

Concerning the models, currently the main challenge is to find out which strat-
egy is used to estimate sound localisation when the probability of common cause
lies in between total-integration or no-interaction cases. Current data indicates that
subjects simply alternate between perceiving one or the other—the integration or the
no-interaction case—in a way that matches the underlying probability of each case.
Consciously alternating responses may explain varying perception during the exper-
iment. The two options should be differentiated. There are also reports of localisation
at intermediate positions between those predicted by each modality. This outcome
corresponds to a different mechanism of integrating the two modalities. Identifying
exactly which mechanisms take place, and the level of automation versus conscious
decision should be addressed in future research.

Another challenge is to model sound localisation after audiovisual exposure.
Bayesian causal inference fails to provide an actual prediction of the magnitude
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of the changes. This model can only be used to describe what happened after it has
been observed by looking into the changes in localisation. It does not account for tem-
poral adaptation or type of exposure. The inverse model of recent experience reveals
that a weighted linear sum of the overall amount of discrepant audiovisual experi-
ence, combined with the type of experience observed in the very last audiovisual
trial predict the amount of displacement accurately in subsequent sound localisation.
However, this model is dependent on the data itself, like the Bayesian causal infer-
ence with a generative model and other self-fitting models. Self-fitting models leave
model parameters unspecified, and they find the values for those parameters that will
provide the best fit for the data. Even after applying correction factors like Akaike’s
criterion, the generalisation of the findings is limited, and it is impossible to ascertain
how valid the model is. More research will be needed to validate these models and,
ideally, new models should emerge that provide independent predictions.
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Cross-Modal and Cognitive Processes
in Sound Localization

M. Torben Pastore, Yi Zhou and William A. Yost

Abstract To perceptually situate a sound source in the context of its surrounding
environment, a listener must integrate two spatial estimates, (1), the location, relative
to the listener’s head, of the auditory event associated with the sound-source and,
(2), the location of the listener’s head relative to the environment. This chapter intro-
duces the general background of auditory localization as a multi-sensory process
and reviews studies of cross-modal interactions with auditory localization for sta-
tionary/moving sound sources and listeners. Included are relevant results from recent
experiments at Arizona State University’s Spatial-Hearing and Auditory Computa-
tion andNeurophysiology Laboratories. Finally, a conceptual model of the integrated
multisensory/multi-system processes is described.

1 Introduction

Sound-source localization is a part of the larger perceptual process wherein trans-
duced sensation is analyzed to form an internal representation of the surrounding
environment, including the listener’s own position in it. The internal reference cre-
ated by this process is often called a spatial map. For a review of spatial maps, see
Stensola and Moser (2016). Localizing a sound source in relation to other perceived
objects requires mapping the first-level auditory spatial estimate, which only relates
sound-source position to the listener’s head, into the context of the surrounding local
environment.

Consider an attempt to localize a sound source without such context. Perceptually
salient sound stimulation must be parsed into individual perceptual objects, perhaps
in interaction with other sensory inputs such as vision. Having grouped a set of com-
ponents of the sound stimulation into a specific auditory object to be localized, the
listener must then extract auditory spatial cues by comparing the inputs at the two
ears across frequency as well as amplitude and phase patterns across frequency. The
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Fig. 1 A schematic illustration of the difference between head-centric and world-centric auditory
localization. The actual sound source, located in the local environment, is shown in red with its
angular displacement noted above in world-centric coordinates. In blue, the angular displacement
of the sound source vis-à-vis the listener’s head, that is, in head-centric coordinates, is shown.
Positive values indicate clockwise displacement. In the left panel, the sound source moves from
the midline to −x◦ in world-centric coordinates, resulting in a change in location relative to the
listener’s head from the midline (0◦) to−x◦. In the right column, the sound source is stationary at 0◦
in world-centric coordinates, but the listener rotates the head by +x◦, as shown by the gray arrow,
so the head-centric estimate of the sound-source location becomes −x◦, that is, the same as in the
left panel. The listener must know the position of the head in relation to the local environment to
localize the sound source in world-centric coordinates

result is some estimate of the location of the sound source relative to the listener’s
head. Without further information, the listener cannot utilize this perceptual output
for action, because there is, so far, no internal representation of the space around
the listener. Figure1 illustrates this concept. Without information about the listener’s
head position, the dynamic auditory spatial cues are the same for a sound source that
moves while the listener is stationary versus a stationary sound source while the lis-
tener moves (−x◦, printed in blue in Fig. 1). The two are therefore indistinguishable.
Even with information about the listener’s head position, the listener still only knows
the location of the sound source relative to the head. To determine the location of
the sound source relative to the surrounding environment, the listener must know the
orientation of the head relative to the body and the local environment.

It is precisely because creating a perceived spatial map requires an estimate of
one’s location in that internally constructed context that the senses must rely on each
other for reference, and that systems inputs—such as somatosensory, kinesthetic,
muscular efferents, and proprioception—will necessarily interact with auditory spa-
tial estimates at some level. Reduced to its simplest components, localizing a sound
source in relation to the local environment requires mapping the estimate of the loca-
tion of the sound source, relative to the listener’s head, onto an internal representation
of the local environment; this requires an internal representation of the listener’s head
position relative to the body and the surrounding environment. While this may seem
obvious, the process by which this occurs is not. Many questions arise. For example,
does mapping the auditory estimate into a spatial estimate of the local environment
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occur at peripheral, midbrain, auditory cortex, or higher levels associated with cogni-
tive processing—or all (some) of the above? What are the inputs to this process, and
how are they combined and compared with each other? Does this combination occur
according to a static rule or as a dynamic process that changes according to some
set of internal and external factors, perhaps based on estimates of the reliability of
the different inputs? What sort of auditory localization is possible when the internal
estimate of the listener’s location within the local environment is incomplete or the
surrounding environment is perceptually inscrutable? Much remains to be done to
address these types of questions.

This greater synthesis is likely to involve sensory, sensorimotor, and cognitive
inputs. In other words, auditory localization is ultimately not merely a sensory task—
it also engages non-sensory processes such as memory, attention, expectation, and
motor signals. All of these questions lead inexorably to the conclusion that to fully
understand spatial hearing, current inquiries must be expanded to include neural
processes that occur outside the auditory system. Wallach (1938, 1939, 1940) was
perhaps the first scientist in the modern era to enunciate and investigate these con-
siderations. For this reason, a considerable portion of this chapter is devoted to the
points he made in his seminal works on this subject. Most of the literature consid-
ered in this chapter attempts to extend findings from the laboratory toward the daily,
real-world task of localizing sound sources as listeners and/or sound sources move.

The concluding section of this chapter describes the scope of this greater inquiry
via a model that conceptually organizes the seemingly disparate investigations
that have been reported in the literature. The model may then be used to identify
future areas of study necessary to understanding auditory localization as a multi-
systems/multisensory process.

2 General Review

2.1 Theories of Sound-Source Localization Before the 20th
Century

The early study of sound-source localization in the mid-19th century was based
almost entirely on assumptions regarding the use of other sensory systems or experi-
ence in using sound to locate sound sources in the actual world—see Boring (1942).
The question of whether the mind is different to the body in kind or only in degree—
Cartesian Mind-Body Dualism—was a major topic in science and philosophy. Sev-
eral scholars argued that the mind represents properties of the external world through
sensations. These sensations had attributes, such as quality, intensity, duration, and
extension, and they could be used to formpercepts that themind could use to create an
internal representation of the external world. Scholars debated the exact definitions
and means of measuring sensations, attributes, and perception (the mind) for nearly a
half century. During this time, several scholars addressed sound-source localization.
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Originally, most argued that sound has no attributes of extension (size and shape)
when it impinges on the eardrum, so listeners could not use sound, on its own, to
locate a sound source. This, of course, flew in the face of what most could observe,
namely, that listeners can indeed localize sound sources using their hearing. Empiri-
cists like Wundt argued that sound-source location was mediated by other senses
that could sense extension, for instance, vision, touch, and the vestibular sense—see
Boring (1942). Early psychologists, for example, Berkeley (1709), argued that expe-
rience helped in sound-source localization—see Pierce (1901). For at least 25years,
scholars therefore believed that sound-source localization resulted from interactions
with other sensory systems and/or experience. As the 19th century ended, it became
more and more accepted that sound has attributes associated with spatial extension.
The question of cross-modal sound-source-localization processes became an item of
increasing interest. For instance, Boring (1942) posed the question, “Can the organ-
ism discriminate the relative positions of sounds, and, if so, how?” This approach,
exemplified in the work of Rayleigh (1876) and Thompson (1878), moved the view
of sound-source localization as a multi-system process to one based on the ability
of the mind (brain) to exploit differences in the inputs to the two ears to compute
cues that could be used to estimate a source’s location, entirely based on the sound
it produces.

2.2 Auditory Input for Stationary Listeners

The auditory spatial cues are well described and documented in the literature, espe-
cially those required for azimuthal localization, since the late 19th century (Boring
1942; Mills 1972; Blauert 1997; Yost 2017a). The auditory spatial cues are com-
monly described in terms of the three spatial dimensions (azimuth, elevation, and
distance/range)—these are discussed below.

Interaural Differences of Time and Intensity

At any given elevation, interaural differences of time (ITDs) and level (ILDs) serve as
the primary cues for estimating the azimuthal location of a sound source. In normal
soundfield listening conditions (i.e., excluding headphone listening) ITDs dominate
the localization of low-frequency sounds (�1300Hz, e.g., see Mills 1960; Macpher-
son andMiddlebrooks 2002). Note that listeners are sensitive to low-frequency ILDs
over headphones, and demonstrate roughly the same sensitivity to ILDs at all fre-
quencies within the range of hearing (Yost 1981). However, in a soundfield the
magnitude of low-frequency ILDs is typically small due to diffraction of long wave-
lengths around the head. The magnitude of high-frequency ILDs is considerably
larger, and fine-structure ITDs at high-frequencies are poorly encoded, if at all, so
ILDs are the dominant cue for localizing high-frequency sounds. ILDs of a deci-
bel or more, the ILD difference threshold, are generally measured for frequencies
greater than 2000Hz—see Goupell and Stakhovskaya (2018) (but compare Hart-
mann et al. 2016). For further details refer to Kuhn (1977, 1987). Envelope ITDs
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Fig. 2 The interaural double-pole coordinate system. The interaural axis is defined by that line
which goes through both the listener’s ears. The sound source is illustrated as a large yellow
asterisk. The lateral angle is the angle between the sound source and the interaural axis; it is thus
a combination of azimuth and elevation. The polar angle is the angle between the sound source
and the azimuth plane, along its sagittal plane, or “cone of confusion” The azimuthal angle, which
is complementary to the lateral angle, is the angle between the midline and the location where the
sagittal plane (in red) meets the azimuthal plane (in green). Note that the elevation angle in the
single-pole coordinate system (see, for example, Fig. 6), is not interchangeable with the polar angle.
Thus, it is important to specify which system is being used. Figure adapted from Morimoto (2001)

can affect perceived lateral position when sounds are presented over headphones
(e.g., Blauert 1997; Bernstein and Trahiotis 2011). However, recent studies present-
ing similar stimuli in a sound field (Macaulay et al. 2017; Yost 2017b) failed to find
a similar effect for envelope ITDs—it may be that the presence of a strong ILD cue
at these frequencies renders the envelope cue redundant.

Spectral-Shape Cues

Figure2 shows a sagittal plane (in red) intersecting with the azimuthal plane (in
green) in the interpolar coordinate system (also called the “two-pole” system, e.g.,
Letowski and Letowski 2011). At any angular location on the azimuthal plane, there
is a locus of possible sound-source positions that generate the same interaural dis-
parities, especially low-frequency ITDs. Note that the iso-contours for ILDs are
more complex, and the pattern of ILDs across frequency may, in itself, be useful for
specifying a unique sound-source location. These loci are the so-called cones of con-
fusion, (see Wallach 1938; Woodworth and Schlosberg 1938) defined by the sagittal
planes in the interaural polar coordinate system (see also Baumgartner et al. 2013).
Spectral-shape cues created by the filtering of sound as it passes over the torso, head,
and pinna on the way to the ear canal—the head-related transfer function (HRTF)—
allow listeners to determine the location of a stimulus on that locus—i.e., its polar
elevation, including whether it is in front of or behind the listener. Such HRTF cues
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are most useful for broadband, high-frequency (>3000Hz) sounds. For further infor-
mation, see Morimoto and Aokata (1984), Middlebrooks et al. (1989), Makous and
Middlebrooks (1990), Blauert (1997). HRTF cues can aid elevation estimations if
listeners have prior information about a sound’s spectrum (Wightman and Kistler
1997). It would seem possible that a listener might be able to use head movements to
gain familiarity with the spectrum of a stimulus by averaging across “looks” during a
head-turn, or simply noting the changes in the peaks and dips of the sound spectrum
as the head moves, though the authors are unaware of any such study in the literature.

An exact description of the HRTF spectral features which are responsible for
elevation judgments has not been agreed upon at this time. In light of the fact that
listeners do not localize elevation well with generic, Kemar1 HRTFs, and yet can
“learn” new HRTFs (e.g., Hofman et al. 1998; Zahorik et al. 2006; Carlile and
Blackman 2014) it appears likely that different listeners use different features of
their own, individual HRTFs (Wenzel et al. 1993). Therefore, it seems unlikely that
there is any pattern of specific spectral features, such as dips versus peaks, that
is used in the same way by all listeners (see Middlebrooks 1992; Langendijk and
Bronkhorst 2002). For a review on modeling of localization along sagittal planes,
see Baumgartner et al. (2013).

While spectral cues are often thought of as a monaural cue, the way the spectra of
the two ears are combined or weighted against each other is still not fully understood.
There is evidence that the spectral cues of the ear ipsilateral to the sound source are
weighted increasingly as the distance of the sound source from themidline increases.
Asymmetries of the head and ears may also provide an interaural spectral difference,
though it appears subservient to “monaural” spectral cues (for more information see
Searle 1973; Musicant and Butler 1984; Humanski and Butler 1988; Slattery and
Middlebrooks 1994; Morimoto 2001; Van Wanrooij and Van Opstal 2004; Jin et al.
2004).

When stimuli do not have sufficient high-frequency information, the acuity of
auditory localization in terms of azimuth is largely unaffected, but listeners’ esti-
mation of elevation is considerably degraded and front-back reversals occur quite
often. Good and Gilkey (1996) tested localization in noise, thereby disrupting high-
frequency spectral cues. They found that decreased signal-to-noise ratio negatively
affected listeners’ ability to distinguish front from back, had less impact on elevation
accuracy and affected horizontal localization the least.

Interaction of Interaural Differences and Spectral Cues

When sound stimuli do not have high-frequency information, or the pinnae are
occluded with ear molds to distort HRTF cues (e.g., Morimoto 2001), listeners often
tend to localize sounds in those portions of the azimuth plane that intersect with
the front and the back of the cone of confusion. This may result from learning that
most salient sound sources lie roughly near the azimuth plane. Spectral cues appear
to specify the location on the cone of confusion that corresponds to the location of
the sound source (e.g., Morimoto and Aokata 1984; Best et al. 2011; Letowski and

1Kemar�is an often-used head-and-torso simulator—a so-called “dummy head”.
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Letowski 2011). Such a conception is subtly different to the idea that spectral cues
encode elevation as it is specified in single-pole spherical coordinates, because the
elevation is along the cone of confusion (i.e., on a sagittal plane), instead of being
measured from the origin.

While Morimoto and Aokata (1984) and Makous and Middlebrooks (1990) have
shown evidence that interaural differences and spectral cues may be estimated inde-
pendently of each other, it is not clear how or at what point these two estimates
are combined into a unified estimate of sound-source location. Also, the literature
is somewhat mixed on whether interaural cues need to be correct for judgments of
elevation to be accurate. In other words, if a listener cannot determine which cone of
confusion the sound source is on, spectral cues may not be useful (for studies related
to this question see Van Wanrooij and Van Opstal 2004; Morimoto 2001; Jin et al.
2004; Martin et al. 2004). It is also worth noting that the pattern of ILDs across fre-
quency is not monotonic because of the acoustical bright spot that results from wave
diffraction around the head (Macaulay et al. 2010). Therefore, the pattern of ILDs
across frequency could conceivably also be used to specify where on a cone of con-
fusion the sound source lies (e.g., Macpherson and Middlebrooks 2002). Section4
discusses how listeners may, in the absence of spectral cues, use head movements to
specify where on a cone of confusion a sound source lies.

Distance and Range

Distance cues seem to be almost completely based on listener expectations, and
therefore require knowledge not only of how a sound source at a given distance
relates to the head, but also of learned changes in the quality of a sound as it moves
further away from, or closer to, a listener. There are several correlations between
the distance of a sound source and its acoustical qualities that can be learned. If a
sound source is in the near field (less than ≈0.3m from the listener, depending on
frequency), atypical ILDs result from the non-linear propagation of the sound around
the head—this could offer a cue for judging distance (e.g., Brungart et al. 1999). For
sound sources not in the near field, there are several other cues. Sounds from sources
at large distances can be affected by the atmosphere, which acts as a low-pass filter,
thereby providing a possible spectral cue for relative distance estimations that likely
requires experience and expectation on the part of the listener (Kolarik et al. 2016).
Sound intensity decreases with distance according to the inverse-square law—with
expectation/memory this cue could also be exploited. In reverberant spaces, the
direct-to-reverberant energy ratio decreases with increased distance, and provides
a cue for judging relative distance (Zahorik 2002; Bronkhorst and Houtgast 1999).
Note that this cue also relies on some expectation for the acoustics of the space.
Auditory motion parallax may, in some cases, provide a cue for discerning relative
sound-source distance (Genzel et al. 2018) and is discussed further below. SeeKolarik
et al. (2016) for a general review on auditory distance perception.

A Case for Multimodal Cues in Auditory Localization

The auditory spatial cues described above (excepting distance cues) are primarily
head-centric cues. Expectation and a priori information—analyses of acoustic cues
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that are based on experience—can provide indirect information to improve sound-
source location. Wallach (1940) appears to have been the first to point out that the
auditory spatial cues cannot, by themselves, specify the location of a sound source
in the context of the local environment. Wallach (1940) demonstrated that “two sets
of sensory data enter into the perceptual process of localization, (1), the changing
interaural cues and, (2), the data representing the changing position of the head”—see
Sect. 4 for further discussion.

While the spatial cues for sound-source localization (see above) have been well-
researched for nearly 150years, much less is known about how the cues used to
estimate head position relate to sound-source localization. The literature is clear
that vision is a vital cue for determining head position (Wallach 1940; Yost et al.
2015; Van Opstal 2016). The literature also suggests that additional auditory cues
and/or vestibular, somatosensory, kinesthetic, proprioceptive, and neuro-motor con-
trol systems could also provide head-position information. Experience, coupled with
memory as it manifests itself in spatial maps, might also provide head position infor-
mation. For an exploration of some of the complexities inherent to this issue, see
Buzsáki and Llinás (2017). Estimates of head (and body) position are therefore likely
to be the product of a combination of cues and estimates arising from a wide range
of sensory and systems inputs. The dynamic weighting of these head-position cues
in determining head position, and how this weighting interacts with sound-source
localization, is currently not well understood.

There is, however, a relatively rich literature on the integration of different spatial
cues, related to other aspects of sound-source localization, that might also account
for the integration of auditory spatial cues and head-position cues for world-centric
sound-source localization. The next two sections consider evidence for sound-source
localization as a multisensory/multi-systems process. Section3 considers experi-
ments probing audio-visual interactions under conditions where listeners and sound
sources are stationary, and Sect. 4 considers investigations in which listeners and/or
sound sources move.

3 Examples of Sound-Source Localization as a
Multisensory Process—Localization with Stationary
Listeners and Stationary Sound Sources

A great deal of study has been devoted to visual capture, in which visual stimuli
affect the perceived sound-source locations. Vision is clearly an important sensory
input for determining the location of the listener (body and head) with relation to
the surrounding environment. Vision can perceptually situate a head-related audi-
tory estimate of sound-source location into the spatial context of the surrounding
environment. As such, interactions between audition and vision can be thought of as
evidence forWallach’s 1939/1940 insight before head movement is even considered.
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When visual and auditory signals are both perceptually attributed to the same
source, vision improves the accuracy of sound localization. Vision often plays a
dominant role in spatial judgment. Spatial visual cues can override the spatial infor-
mation of a sound, causing errors in sound localization. Commonly known as the
ventriloquism effect or visual capture, the auditory event is localized to a seen source,
even though the sound source is positioned at a different location (Howard and Tem-
pleton 1966).

A bias towards vision-centered experiments has meant that most of what is
known about audio-visual interactions comes from localization results in the hor-
izontal frontal field. Limited evidence, however, reveals that vision can also enhance
auditory-distance estimation (Anderson et al. 2014). The role of vision (eyes open
vs. closed) is more limited in vertical localization (Shelton and Searle 1980), though
vision does appear important to the calibration of vertical localization—see, for
example, Zwiers et al. (2001). The horizontal and vertical difference is likely a result
of the different roles of eye and head movements in gaze orientation. Recently, Sol-
man et al. (2017) showed that eye movements preferentially exploit the horizontal
span of the visual field. Headmovements then shift this horizontal span up and down.
Nevertheless, the vertical gaze of a listener can have a strong effect on perceived audi-
tory elevation, as discussed in Sect. 3.2 below.

While vision is arguably involved in most everyday listening experiences, the
common bias of vision over audition is not simply a result of relatively poor auditory
spatial acuity. Indeed, when adequate localization cues (i.e. both ITDs and ILDs)
are available across a sufficient range of frequencies, spatial hearing is remarkably
accurate (Dorman et al. 2016; Yost 2016). The just-noticeable change in horizontal
angular displacement, the minimum audible angle, can be as small as 1–2 ◦ for sound
sources near midline (Mills 1972; Hartmann and Rakerd 1989). Nevertheless, most
of us rely primarily on vision when localizing objects around us, whether the objects
make sound or not. This is probably because the auditory spatial estimate, on its own,
only specifies the position of the sound source relative to the listener’s head (Yost
et al. 2015) whereas the spatiotopic encoding of vision is inherently world-centric.

Over the past decades, digital technology has greatly advanced the sophistication
and automationof stimulus delivery and experimental procedures, helping to uncover,
(1), the structural properties of auditory and visual stimuli that are conducive to
cross-modal interactions and, (2), the cognitive factors (e.g., attention, expectation
and experience) that affect listeners’ assumptions and awareness of the origin and
cause of the multisensory inputs (Radeau and Bertelson 1977; Welch and Warren
1980). The following sections summarize empirical evidence that addresses how
active vision affects auditory localization performance via frame-of-reference and
perceived target position. Also, how major differences between visual and auditory
spatial mechanismsmay affect estimates of the center, width, and front-back location
of a perceived sound source is discussed. Further, the general framework of spatial
audiovisual studies is dealt with and future directions for research relevant to real-life
activities are discussed.

Numerous studies have investigated how vision affects sound-source localization,
mostly in the horizontal plane. The general empirical findings related to several
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hypotheses of vision’s role are broadly summarized below. These hypotheses are not
mutually exclusive and are evolving concepts.

• The frame-of-reference hypothesis Sound localization is more accurate when a
listener can acquire, through free or voluntary eye movements, knowledge of the
spatial layout of a lighted environment (Thurlow and Kerr 1970; Warren 1970;
Platt and Warren 1972; Shelton and Searle 1980).

• The visual-dominance hypothesis Vision is a dominant sense in spatial tasks due
to its superior spatial acuity. Vision can bias the perceived direction of a source
of sound towards the direction of a visual cue (Jackson 1953; Choe et al. 1975;
Bertelson and Radeau 1981).

• The cue-reliability hypothesis The reliability of estimates for eachmodality deter-
mines which sense dominates perception before they are combined. Reducing the
saliency of visual cues weakens visual dominance (Battaglia et al. 2003; Alais and
Burr 2004; Ernst and Bülthoff 2004).

3.1 Relevance of the Frame of Reference

Boring (1926) suggested that listeners effectively map the perceived location of
sound sources onto a spatial reference provided by vision. This hypothesis predicts
that listeners will localize sound sources more accurately when their eyes are open,
even if they cannot see the sound source—this is called visual facilitation. Warren
(1970) demonstrated visual facilitation by hiding the spatial layout of a room and the
loudspeakers within using a khaki cloth, so that the cloth alone constituted the “tex-
tured” environment for the task. Subjects hand-pointed to the perceived direction of
a pulse-train auditory stimulus. The visual conditions were factorial combinations of
eye open/closed, environment light/dark and vision free/fixated. Analyses compared
the response error and response variability scores among various visual conditions.

Their results showed that active visual sensing of the physical layout of the envi-
ronment, and objects in it, enhanced the acuity of listeners’ auditory localization.
On their own, free vision, a lit environment, or simply having the eyes open did not
result in visual facilitation. The most favorable condition for visual facilitation was a
combination of a lighted environment with free, target-directed eye movement. Per-
formance under this condition was better than the lighted condition with a fixed gaze
and the unlit condition with free eye movement. Warren argued that eye movement
per se does not improve the accuracy of auditory localization, but that an illuminated
visual environment allows better visual-motor (eye-hand) coordination by providing
a spatial reference to guide action.

Shelton and Searle (1980) tested how vision affects the absolute identification of a
sound-source position in a sound field. Half the subjects wore goggles painted over in
black while the other half wore clear goggles. In all conditions, both sets of listeners
could see the loudspeaker positions before and between testing sessions, so vision
(together with memory for those listeners wearing the blacked-out goggles) could
provide estimates of both the frame of reference and the target-source location. No
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instructions were given to tell listeners where they could look. Listeners’ auditory
localization benefited most from vision with sound sources located in the frontal
field along the horizontal axis. Vision also improved localization for sound sources
located behind listeners and to their sides, but the improvement was far less than for
the frontal horizontal span. However, there was no significant benefit to localization
acuity along the vertical axis of the frontal field. These early data demonstrate that
the limitation of human vision to the frontal field may have significant consequences
on how auditory localization interacts with the knowledge of the frame-of-reference
and target locations acquired through vision.

3.2 Relevance of Visual Target Cues

Over the past decades, multisensory research has provided a broad understanding
of the spatial and temporal features of sensory stimuli that are conducive to cross-
modal bias. The general conclusion is that visual bias is greater when sound and light
stimuli come from sources positioned close to each other and/or are presented at the
same time (Jackson 1953; Pick et al. 1969; Thurlow and Jack 1973; Choe et al. 1975;
Jones and Kabanoff 1975; Slutsky and Recanzone 2001). This suggests that multi-
sensory processing follows Gestalt perceptual grouping principles—that is, spatial
and temporal proximity enhance fusion between audition and vision in establishing
a unitary percept. Attention appears to play a limited role in the ventriloquist effect
(Bertelson et al. 2000), suggesting that audio-visual interactions may occur at early
sensory stages. Studies also show that perceptual fusion between auditory and visual
events is not a necessary factor for visual bias. Partial or incomplete visual cap-
ture can occur even when the auditory and visual stimuli are not perceptually fused
together (Welch andWarren 1980; Bertelson and Radeau 1981; Hairston et al. 2003;
Wallace et al. 2004; Kording et al. 2007). Some degree of visual capture can also
occur for asynchronously presented auditory and visual stimuli (Jack and Thurlow
1973; Thurlow and Jack 1973; Radeau and Bertelson 1974; Shelton and Searle 1980;
Radeau and Bertelson 1987; Recanzone 2009). However, the strength of visual bias
does decrease as the spatial and temporal separation between auditory and visual
spatial estimates increases. Reviews include Welch and Warren (1980), Stein and
Meredith (1990) and King (2009).

While the majority of audio-visual studies have emphasized the spatial and tem-
poral conditions underlying multisensory interactions, separate lines of work reveal
that the reliability of estimates (the inverse of the variance) for each modality deter-
mines which sense dominates the fused percept. This suggests that the dominant role
of visual spatial information is scalable. Indeed, results have shown that reducing the
saliency of visual cues by blurring or adding corruptive noise can weaken or even
reverse visual capture (Ernst and Banks 2002; Battaglia et al. 2003; Alais and Burr
2004). These empirical results have been well described in a Bayesian framework,
which establishes the relationship between the stimulus, S, and response, R. See
Mendonça (2020), in this volume, and further, Sivia and Skilling (2006) for a review
of Bayesian analysis.
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The general principle of Bayesian estimates can be expressed in terms of the
relationship between two conditional probabilities of stimulus and response, that is,

p(S|R)p(R) = p(R|S)p(S) (1)

where p(S|R) is the posterior probability, p(R) is the marginal likelihood, p(R|S)

is the likelihood and p(S) is the prior probability. With the assumption that the
distribution of neural responses is constant and stable, the equation can be expressed
as the proportionality

p(S|R) α p(R|S)p(S). (2)

Equation (2) is the foundation of Bayesian-Inference theory. It states that the
internal reconstruction of an event (the posterior probability) is the result of the
likelihood estimate of whether this event leads to a neural response and an estimate
of the stimulus distribution (the prior probability).

In the Bayesian model of audio-visual localization, it is assumed that auditory, A,
and visual, V , cues are independently processed, p(RAV |S) = p(RA|S) p(RV |S).
The modality-specific, neural representations, the likelihood estimates p(RA|S) and
p(RV |S), typically consist of a one-to-one mapping of the auditory and visual cues
associated with the position variable, in the form of a Gaussian function,N (μA, σ

2
A)

and N (μV , σ 2
V ), where 1/σ 2

V and 1/σ 2
A describe the reliability of neural estimates

of the visual and auditory spatial cues, respectively. A large σ signals a greater
uncertainty in the neural estimate with weak responses from many spatial channels.
A small σ signals a reliable neural estimate with strong responses from selected
spatial channels.

One may, for the moment, assume that the combined A and V cues lead to a fused
percept (e.g., the ventriloquist effect) and that the prior distribution is flat (p(S) = 1).
Given these assumptions, Battaglia et al. (2003) and Alais and Burr (2004) showed
that the combined multisensory estimate (i.e., the mean of the posterior estimation)
is equal to the weighted sum of the individual, unitary A and V estimates,

μAV = σ 2
AV

(
1

σ 2
V

μV + 1

σ 2
A

μA

)
. (3)

The term σ 2
AV describes the variance of the combined estimate, which is always

smaller than the variances of the unisensory estimates, σ 2
A and σ 2

V , as follows,

σ 2
AV =

(
1

σ 2
V

+ 1

σ 2
A

)−1

= σ 2
Aσ

2
V

σ 2
A + σ 2

V

≤ min(σ 2
A, σ

2
V ). (4)

When experimentally manipulating σ 2
A and σ 2

V it is important to carefully con-
sider fundamental differences in the peripheral mechanisms of vision and audition.
The visual peripheral system is spatiotopically organized—thus, it encodes space
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directly. The receptive fields of ganglion cells cover different regions of space that
are mapped onto the retina, and the visual system retains this mapping throughout.
Therefore, manipulation of the width or quality of a visual image can directly affect
the population activity of visual neurons. The auditory periphery, however, is tono-
topically organized—hairs cells in the cochlea are organized according to the sound
frequencies they encode and do not directly encode sound-source location. There-
fore, the auditory system must estimate the location of sound sources on the basis
of interaural differences of arrival time and intensity (ITDs and ILDs) as well as
on the spectral characteristics imposed by the HRTFs—(see Knudsen and Brainard
1995; Middlebrooks et al. 2002, and also see Sect. 2 above). The auditory brainstem
extracts these localization cues in computations that involve multiple neural struc-
tures. The resulting localization cues do not always unambiguously correspond to a
single physical sound-source location but rather to a locus of possible locations—
the “cone of confusion”—see Sect. 2. The computational nature of auditory space
means that “blurring” an auditory image is not as straight forward as it is for a visual
stimulus. Perhaps as a result, multisensory research has only seldom manipulated
the reliability of auditory localization cues.

However, studies have shown that poorly localized auditory stimuli tend to facili-
tate visual dominance. Thurlow and Jack (1973) found that the relatively poor acuity
of auditory localization in the vertical plane resulted in a stronger ventriloquist effect
than in the horizontal plane. Similarly, Spence and Driver (2000) found that ventril-
oquism was more likely for sound stimuli that are difficult to localize (e.g., a 2-kHz
tone from multiple speakers) than for sound stimuli that are readily localized (such
as white noise from one loudspeaker). The reliability factor explored in these investi-
gations is related to the quality or width of an internal, neural estimate of the auditory
event, not the quality or width of the physical stimulus, as in vision. Therefore the
nature of the poor localizability is not straightforward to predict. Erroneous auditory
localization could be caused by reduced resolution of a wide excitation pattern across
many spatial channels or interaural-cue computation in a single spatial channel, or
both. To our knowledge, the neural mechanisms for the saliency of auditory spatial
perception remain largely untested.

Montagne and Zhou (2016) investigatedwhethermanipulations of the congruence
between ITD and ILD affects the reliability of auditory responses and the magnitude
of visual bias. Broadband noise bursts (15-ms duration) were presented from two
hidden loudspeakers at ±45◦ about the midline, with or without a simultaneously
presented light-emitting diode (LED) flash from −45◦, 0◦, or +45◦.

Two auditory conditions were contrasted, (1), timing-based stereophony with
incongruent ITDs and ILDs and, (2), level-based stereophony with congruent ITDs
and ILDs. Figure3 shows the relationship between the standard deviation (SD) of
auditory-alone responses and the change in auditory localization when the light stim-
ulus was present, that is, the visual bias, ΔAV . Listeners localized sound sources
with greater variability and stronger visual bias for the timing stimuli than for the
level stimuli. Also, the magnitude of visual bias for the timing signals correlated
stronglywith the variance (noise) of listeners’ auditory estimate, suggesting an intrin-
sic link between binaural ambiguity and localization uncertainty. In turn, the putative
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Fig. 3 Relationship of
response variability and
visual capture for individual
subjects. Symbols indicate
(average) responses of
individual subjects for
timing-based stereophony
(squares), level-based
stereophony (circles) and
single-speaker controls
(asterisks). Straight lines
show linear fits for each
condition. From Montagne
and Zhou (2016)
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uncertainty of auditory localization modulated the strength of visual bias on sound
localization.

3.3 Asymmetry of Perceptual Space

When the head and body are stationary, the visual and auditory systems do not encode
the same spatial range. Auditory space is broad and extends to both front and rear
space, whereas human vision is restricted to the frontal region, with visual acuity
declining towards peripheral locations away from the fovea (Curcio et al. 1990).
The resulting asymmetry between visual and auditory space is an important factor to
consider in addition to the differences between the peripheral mechanisms in vision
(spatiotopic encoding) and audition (computational space based on tonotopic encod-
ing). Despite these differences, our knowledge of cross-modal spatial bias is mostly
limited to audio-visual (AV ) interactions in the frontal hemifield. As mentioned ear-
lier, the symmetry of interaural cues along sagittal planes normal to the interaural
axis often leads to front-back reversals. Indeed, the question of whether frontal visual
cues can interact with the auditory events that are perceived in the rear, be they real
or illusory, remains an interesting and ecologically important research topic.

Montagne and Zhou (2018) investigated the influence of frontal LED flashes
on the perceived front-back, left-right location of a phantom sound source generated
using timing-based stereophony. Figure4 shows that therewas a considerable amount
of front-back confused responses to a center-position phantom source presented
either from front or back. The colored lines show that frontal visual cues increased
the percent of frontal responses. Left-right response shifts can be seen to follow
the direction of the light. Interestingly, the lateral visual bias is only observed for
the perceived frontal sound sources at 0◦. Very little lateral bias was found in the
perceived sound sources at 180◦. The study also revealed that increasing the stimulus
duration reduced both the rate of front-back reversals and the visual bias but not
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Fig. 4 Two-peakGaussian functions for AO , audio only, and AV , audiovisual, responses for 15-ms
duration Gaussian noise stimuli. The left and right figures show the results obtained using the two
frontal or rear speakers, respectively. Each curve was obtained by fitting the data from all trials and
all subjects using the Gaussian-mixture model. The delay between the two loudspeakers was 0ms
for both conditions shown. The speaker sign marks the expected position of the perceived “phantom
sound source.” The AO results (black dashed line) show that the responses were clustered on the
midline at 0◦ and ±180◦. The colored lines show changes in the left-right and front-back responses
after adding visual stimulation. From Montagne and Zhou (2018)

localization errors associated with left-right judgment. These findings show that
visual information separately interacts with left-right and front-back dimensions of a
perceived sound source, while stimulus duration mainly modulates front-back errors
in multisensory spatial processing.

The interactions between frontal vision and rear audition do not easily fit with
existing Bayesian statistical models (e.g., Ernst and Banks 2002; Battaglia et al.
2003; Alais and Burr 2004) because these models are primarily based on the results
of cross-modal perception of a seen target. In other words, the stimulus, S, in the
prior distribution, p(S), has an implicit frontal origin. Furthermore, the modality-
specific, sensory representation, likelihood estimate, p(RA/S) or p(RV /S), consists
of a one-to-one mapping of S in the form of a unimodal (single-peaked) likelihood
function. As shown in Fig. 4, this estimate is not adequate after considering the rear
sound field, where the front-back confused responses result in a bimodal likelihood
function, p(RA/S). These factors complicate the variance estimate and subsequently
the construction of the posterior probability using combined auditory and visual
estimates as shown in Eq. (3).

Montagne and Zhou (2018) suggested an alternative mode of AV interaction for
when the stimulus space extends outside the field of vision. They proposed that visual
processingmight affect the left-right and front-back auditory judgment independently
in two different stages, (1), an initial coarse and broad auditory detection to decide the
relative front vs. back direction of an event and, (2), if the perceived target location
is in front, visual analysis to refine the estimate using integrated auditory and visual
information. According to the causal-inference theory, the brain should limit the
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extent of integration between sensory events perceived to rise from different sources
(Kording et al. 2007). Montagne and Zhou (2018) argued that the causality test
likely occurs during the initial auditory detection stage, which includes front-back
discrimination.

4 Sound-Source Localization with Moving Listeners and/or
Moving Sound Sources

Section3 showed evidence for the integration of head-centric auditory spatial esti-
mateswithworld-centric visual estimates under conditionswhere listeners and sound
sources were stationary. This section considers evidence from scenarios where lis-
teners and/or sound sourcesmove, especially with sound stimuli that offer no spectral
cues to specify where a target sound source is on a given cone of confusion. Wal-
lach (1939, 1940) has been continuously cited in the literature with regard to the
role head motion plays in avoiding front-back reversals. However, Wallach’s foun-
dational insight that multisensory, multi-systems information about head position
must be integrated with interaural-difference cues in order to localize sound sources
to their position in the surrounding environment, has received little attention until
very recently.

This section, therefore, begins by reviewing some of Wallach’s experiments and
the logic that inspired them.Tobeginwith, the simplest case forWallach’s hypothesis,
that listeners could resolve spatial ambiguities in the azimuth plane by using head
movements to compare the change in head-related auditory cues to the change in
head position, is examined. The section then considers how Wallach extended this
insight to propose a possiblemechanism for estimating the elevation of sound sources
without using spectral cues. Current knowledge about the head-position cues that
might be integrated with the interaural cues in determining world-centric sound-
source location is then reviewed. Finally, there is a brief review of some current
investigations of the integration of interaural and head-motion cues.

4.1 The Wallach Azimuth Illusion

Wallach (1938, 1939, 1940) noted that interaural difference cues alone (especially
ITDs) specify not just a single location, but an entire locus of positions, a “cone of
confusion,” all with the same angular relation to the head—see Sect. 2.2 for further
details. As Wallach (1939) showed, head movements can be used to determine the
front/back location of a stationary sound source—see Fig. 5. Wallach hypothesized
that the relation between the change in interaural difference cues, relative to a given
change in head position, would allow listeners to reduce the cone of confusion to
a single point, thereby avoiding front-back reversals. An essential component of
this hypothesis is that the listener makes some assumption about the movement, or
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Fig. 5 Left (a, b, c) The basic idea of how head movements can be used to disambiguate front-back
confusions. For world-centric changes of sound-source position (red arrows) and head position
(gray arrows), clockwise rotation is notated as positive. For head-centric interaural differences,
changes (blue arrows) that favor the right ear are notated as positive. Column (a) shows that low-
frequency interaural differences, especially ITDs, are the same regardless of whether the sound
source is in front or in back of the listener. (b) For a sound source in front of the listener on the
azimuth plane at 0◦ elevation, a head turn of x◦ (grey arrow) results in a change in interaural
differences equivalent to a −x◦ (blue arrow) change in sound-source position. (c) The same head
turn results in a change in interaural cues equivalent to x◦ (blue arrow) for a sound source behind
the listener. (d) A visual explanation of Wallach’s Azimuth Illusion. By rotating a sound source
at twice the rate of the listener’s head turn of 2x◦ (red), the same change in interaural-difference
cues that would occur for a stationary sound source in the opposite front/back hemifield (front, in
this case: −x◦) is produced. Provided there are no spectral cues to disambiguate front from back,
the listener hears a stationary sound source in front, at the location of the green sound source, even
though the actual (red) sound source is moving behind the listener at twice the listener’s rate of
rotation. Note that the difference in sign between world-centric and head-centric angular rotation
highlights the disconnection between the two coordinate systems that must somehow be bridged

lack thereof, of the sound source during the head movement. Specifically, Wallach
assumed that “of all the directions which realize the given sequence of lateral angles,
that one is perceived which is covariant with the general content of the surrounding
space.” That is, assuming the sound source is stationary, there will only be one point
in space, at or above the height of the pinnae, that is common to all cones of confusion
that exist along the trajectory of the listener’s head rotation—the Selective Principle
of Rest.

To test this notion, Wallach (1939, 1940) created an experimental apparatus that
was coupled to the listener’s head. The device had electrical switches that activated,
as a function of the listener’s head movements, one of 20 equidistantly spaced loud-
speakers on a 120◦ circular arc. Wallach calculated the rate at which the head-centric
auditory spatial estimate, derived from interaural-difference cues, would change dur-
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ing a head turn for a sound source in front of the listener. He then produced the same
changes in sound-source location (relative to the listener’s head) that would occur
for a frontal sound source. However, he presented the sound from behind the lis-
tener, rotating at twice the rate of the listener’s head rotation. Figure5D offers a
graphical explanation of this basic concept—see Sect. 4.2 and Yost et al. (2019) for
more detailed, mathematical explanations. Given a stimulus conducive to front-back
reversals, the listener hears a stationary sound source in the front-back hemifield
opposite to the one from which the stimulus was initially presented, despite the fact
that the sound source is actually rotating around the listener in the same direction
but at twice the rate of the listener’s rotation. This suggests that the listener deter-
mines the front/back location of the sound source using the concomitant changes in
interaural-difference cues for a given head turn. Since the change in interaural cues
is commensurate with the magnitude of the head turn, the listener assumes the sound
source is static. This basic result was reported by Wallach (1940) for all five tested
listeners. For a review of perceived auditory motion, see Carlile and Leung (2016).

There are at least two possibilities for how the Wallach Illusion, and dynamic
world-centric localization in general, could occur. It is possible that the world-
centric location of auditory objects is updated at relatively sparse intervals, and
that localization is head-centric between these intervals. For example, localization
could be world-centric before and after a head turn, but head-centric during the turn
due to the increased complexity and reduced resolution of dynamic sound-source
localization. Following this notion, the change in interaural cues would be com-
pared with the change in head position. The result of this comparison would then be
mapped to world-centric coordinates for a “spatial update.” Under such conditions,
one might expect vestibular cues to provide useful information regarding the change
in head position in between spatial updates. Another, perhaps more computationally
intensive possibility, is that the auditory system continuously updates world-centric
coordinates of a perceived sound source. In this case, changes in the world-centric
estimate(s), which could be bimodal if the possibility for front-back reversals exists,
or even a locus of possible source positions in the form of a cone of confusion,
would be compared with the head position. The comparative trajectory of the sound
source and head position estimates would then determine the singular estimate of
the sound-source position in the local environment. Targeted experiments will be
required to reveal which of the two hypothesized processes is more appropriate—
(see also Brimijoin and Akeroyd 2014, reviewed below).

4.2 The Wallach Vertical Illusion

The direction-dependent filtering provided by the pinnae, head, and torso—the so-
called head-related tranfer function (HRTF)—may not be the only elevation/front-
back cue. Wallach (1938, 1939, 1940) extended his Azimuth Illusion—see
Sect. 4.1—to include the judgment of elevation, pointing out that the rate at which
interaural cues change relative to head motion could be used, assuming a stationary
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Fig. 6 a Visual description of Wallach’s basic concept. For a stationary stimulus on the azimuth
plane, that is, with 0◦ elevation, a listener’s head rotation, Δβ, results in the same but opposite
change in angular displacement of the sound source relative to the head as would occur if the sound
source had traveled the same angular distance in the opposite direction, ΔΨ0◦ . If the sound source
is at an elevation ν that is off the azimuth plane, for example, Ψ60◦ , then the change in interaural-
difference cues will be less for the same head movement, Δβ. For a sound source above the head
(green dot), there are no changes in interaural differences for a given head turn. b The lateral angle,
Ψ , as a function of head position, β, where the frontal midline is 0◦. c The ratio, �, of sound-source
rotation relative to listener head rotation required to induce the Wallach Illusion, is shown as a
function of the head position, β

sound source, to determine elevation of a sound source in the absence of spectral
HRTF cues.

Figure6a illustrates Wallach’s basic insight. The position of the head, β, is mea-
sured relative to the midline. Interaural differences are instead considered relative to
the interaural axis, which can be imagined as a line passing through both ears. This
is also the axis about which the cones of confusion are centered. Wallach called the
angle between the sound source and the interaural axis the lateral angle, Ψ . This
value corresponds to an interaural difference. Note that both azimuth and elevation
contribute to the lateral angle, Ψ , in the following way:

Ψ = 90◦ − (
cos−1(sin β cos ν)

)
. (5)

That is, despite the common conception that interaural disparities are used only
for encoding azimuth, a given interaural difference actually corresponds to a range
of positions at many elevations—see Sect. 2.2 for further details. If a sound source is
located anywhere on the sagittal plane corresponding to the midline, the interaural
differences are approximately zero. Note that, in Wallach (1940), this condition
would be notated as Ψ = 90◦. For this chapter, Ψ is reduced by 90◦, so that the
midline corresponds to Ψ = 0◦. Therefore, the “lateral angle” in this case is really
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the displacement of the sound source from the median plane instead of the interaural
axis.

Turning again to Fig. 6a, our listener makes a head turn of β. If the sound source
lies on the 0◦ elevation azimuth plane, the corresponding change in Ψ (indicated by
the black arrow) relative to β is ΔΨ

Δβ
= 1, the same as β. This is the maximal change

in Ψ for a given head turn. At the other extreme, a sound source directly above the
listener will elicit the smallest possible change, ΔΨ = 0.

Wallach realized that for a sound source at some intermediary elevation, say
ν = 60◦, the change in Ψ will also be intermediary, as indicated by the red arrow
in Fig. 6a. Figure6b shows how Ψ , the angular relation of the sound source to the
median plane, changes as a function of head rotation, β. Note that, at 0◦ elevation,
there is a unity gain between β and Ψ , whereas for 60◦ sound-source elevation a
change in β results in far less of a change in Ψ . The maximum value, |Ψ | can take
at any elevation is the complement of ν, for example, 30◦ for a sound source at 60◦
elevation—see Mills 1972 for a similar derivation.

Using this information, the ratio of sound-source rotation to head rotation which
is necessary to induce the Wallach Illusion, �, can be calculated for a sound source,
presented from the 0◦-azimuth plane, as

� = ΔΨ

Δβ
+ 1. (6)

For a signal without sufficient high-frequency information to allow a listener
to exploit pinna-based cues, a purely rotational head movement will not allow the
listener to determine if a sound source is above or below the 0◦ azimuth plane. If
even a small head tilt is included in the head movement, however, this ambiguity
could also be avoided.

To test this, Wallach could have asked rotating listeners to judge the elevation of
stationary sound sources. Instead, Wallach (1940) employed the same argument that
leads to the Wallach Azimuth Illusion to show how azimuthal head rotation, coupled
to azimuthally-rotating sound sources, could lead to the illusory perception of a
stationary sound source at an elevation specifiedby the speedof sound-source rotation
relative to the listener’s rotation, �. In his main experiment, Wallach simulated a
sound source at an elevation of 60◦, above the horizontal plane. He did so by rotating
a listener passively sitting in a chair (either blindfolded or not) with the sound source
rotated at 1.5 times the rate of head rotation from behind the listener. This rate
of rotation, an approximation to (6), was expected to induce a perceived elevation
angle of ν = 60◦, given that the listener only rotated within a relatively narrow
angular range. Fifteen listeners indicated that the musical sounds were perceived
above them in elevation, more so when their eyes were open than when they were
closed. However in many cases, the listeners’ judgments of elevation underestimated
the predicted elevation of 60◦.

Since Wallach’s (1940) calculations only indicate a change in elevation relative
to the horizontal plane and not whether the vertical angle is positive (above the pin-
nae) or negative (below the pinnae), a response below the horizontal plane would
be consistent with his calculations. In this regard, Wallach (1940) made two some-
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what inconsistent assumptions. First, he assumed that listeners’ experience naturally
biased them to perceive sounds above them rather than below them. Second,Wallach
argued that perceived sound-source locations below the listener may have influenced
listeners to underestimate elevation. It is worth noting that, at elevations other than
directly above/below the listener or on the 0◦-elevation azimuthal plane, the rate of
change in interaural cues for a given head rotation is not constant but rather essentially
a rectified sinusoidal function—see Fig. 6c. Thus, another possibility is that the linear
estimation of the rate of sound-source rotation was too coarse an approximation to
elicit the full illusion.

4.3 What Are the Cues for Head Position?

Both the horizontal and vertical illusions reported by Wallach (1940) suggest that
head motion is a crucial variable in sound-source localization. Wallach (1940)
assumed that “three types of sensory data represent a displacement of the head,
that is, proprioceptive stimulation from the muscles engaged in active motion, stim-
ulation of the eyes, and stimulation of the vestibular apparatus.” In this section, some
of the current knowledge regarding these and other possible head motion cues is
reviewed.

Clearly, vision provides an important estimate of head position—except when
our eyes are closed. Previous visual experience is nevertheless likely to be useful
even with eyes shut (Zwiers et al. 2001)—see Sect. 3. Head and eyes often move
independently, and nearly constant eye movements could make the formation of a
stabilized image of the outside world impossible. To cope with this, the visual system
employs an eye-centric reference system in addition to a head-centric reference
system. To stabilize perception of visual objects, the vestibulo-ocular reflex (VOR)
and the optokinetic reflex (OKR) work together to provide a means to correct the
retinal output for retinalmovement. There is some evidence that, in addition to a head-
centric reference system, an eye-centric reference system that involves eye motion
and sound-source localizationmay also play a role in sound-source localization—see
Van Opstal (2016).

The vision literature shows that head-position signals can be used to “correct” spa-
tial visual cues by use of efferent (efference) copies or corollary discharge signals—
see Van Opstal (2016). The general idea is that when a neural signal is generated
to control head position, a copy (efferent copy or corollary discharge) is also made.
This copy is then integrated with the retinal spatial signal to yield a stable perception
of the world. For instance, if there is a stationary light source and the head moves, the
retinal output would change. The efferent copy/corollary discharge would indicate
that it is the head that moved and not the light source. This efferent-copy signal could
be used to effectively cancel the retinal change signal, yielding a veridical estimate of
the location of the stationary visual source. In the visual literature, there are several
well-established examples of such a “cancellation” based on both eye movements
and head movements (Bridgeman and Stark 1991).
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Fig. 7 A simplified schematic model for a possible role of an efferent-copy process in auditory
localization

Figure7 offers a simplified schematic of how efferent copy might work with
auditory localization, based on an efferent-copy process in the visual system. Before
a listener rotates the head, an internal estimate of the head position already exists.
A motor command sends the signal to neck muscles and other involved systems
to turn the head. Another “copy” of this signal is sent elsewhere in the brain so
that a series of new, dynamic head position estimates can be made. Based on these
estimates, the change in auditory spatial cues and/or auditory spatial estimates can be
calculated. At approximately the same time, new afferent auditory activity offers a
new spatial estimate of sound-source position that can be compared to the predicted
auditory output, allowing the listener to determine whether the sound source has
remained stationary or, if not, the position to which it has moved. While there is no
direct physiological evidence for such efferent copy/corollary discharge processes
in the mammalian auditory system, several authors (e.g., Wallach 1940; Brimijoin
and Akeroyd 2012; Genzel et al. 2018; Freeman et al. 2017) have suggested such
processes for sound-source localization.

The vestibular system also offers cues for determining a change in the head posi-
tion. Vestibular cues result from the head’s angular acceleration, which triggers hair-
cell responses in the semi-circular canals that in turn elicit neural impulses to inform
an estimate of head-position (Lackner and DiZio 2005). Because the otoliths in the
vestibular system act as accelerometers, there is no vestibular output when the head is
kept still, nor is there any output when the head rotates at constant velocity. In most
experiments and most everyday experience, both passive and active listener rota-
tion include changes in velocity—self-rotation necessarily includes acceleration and
deceleration. Yost et al. (2015) appears to be the only study in which sound-source
localization judgments were partitioned according to whether listeners rotated in an
accelerating, decelerating, or constant manner—compare see Sect. 4.4 for details.

The arguments presented in this chapter imply that having access to the head-
position angle is important to establishing a head-position cue. It is worth noting that
the vestibular system provides information that the head is rotating, the direction of
rotation, and the relative velocity of rotation, but the vestibular system cannot by
itself indicate the world-centric position of the head since it directly encodes only
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the change of the position of the head. The absolute head angle could be computed
if the time over which the rotation had occurred and the starting head location were
known—this would, however, require memory and other sensory inputs. This idea, in
terms of establishing head-position cues for world-centric sound-source localization,
appears to be unexplored.

Several sound-source-localization studies either indirectly infer or directly impli-
cate proprioception and/or neural motor control of head rotation as ways to gain
information about the current head position. In most cases, ideas from the vision
literature are used to infer how proprioceptive outputs could inform head-position
cues. When listeners move, neural-motor control signals are required to initiate and
control the movement. These signals could indicate the angle of the head. In addi-
tion, it is possible that when listeners are rotated by some external means and must
keep their heads still, that resistance to the rotational motionwould stimulatemuscles
(e.g., neckmuscles) which would trigger neural signals as a means of indicating head
rotation. However, it isn’t clear how such resistance would inform the estimate of
head-position angle, nor is there much physiological evidence for how such proprio-
ceptive/neural control signals interact with physiological sound-source localization
processes.

The other three possible processes that might provide head-position cues, namely,
auditory cues from sound sources other than the “target” stimulus, somatosensory
cues, and cognitive processes (spatial maps) have not been studied as far as the
authors can tell. It seems logically possible that these cues could inform the spatial
system about head position and thereby contribute to sound-source localization—
they should thus be investigated.

4.4 Recent Studies of Sound-Source Localization as a
Multisensory Process

WhileWallach’s research is seminal in establishing amultisensory approach to under-
standing sound-source localization, there are several aspects of his work that need to
be considered in light of current relevant knowledge. First, Wallach (1940) presented
music played by a Victrola record player. Due to the constraints of the technology of
the time, this likely means that the sound stimuli were essentially low-pass filtered,
removing any useful HRTF/pinna cues (note that noise from scratches and dust on the
record would also be filtered in the same way). This resulted in listener performance
that led Wallach to believe the “pinna factor” was likely subservient to the integra-
tion of changing interaural cues with changing head position. Later experiments,
reviewed below, would show that HRTF cues can remediate front-back reversals so
that the listener hears the rotating sound source circling around the azimuth plane,
and the Wallach Illusion fails.

Second, Wallach manually rotated listeners in a swivel chair back and forth over
an arc of approximately 60◦, with the eyes closed and the head fixed in a head holder.
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Wallach also ran experiments with a rotating visual screen that induced the sen-
sation of listener motion in the direction opposite to the screen’s rotation to show
that the Wallach Illusion could also be induced without listener movement, provided
the listener received the same visual stimulation as would accompany a head move-
ment (c.f., McAnally andMartin 2008). Unfortunately, the relative weightings of the
different sensory and systems inputs were not measured in Wallach’s experiments.

Perrett and Noble (1997a, b) attempted to replicate Wallach’s elevation exper-
iments. However, they were only able to replicate Wallach’s findings for low-
frequency sounds, suggesting that when reliable HRTF cues are present in the stim-
ulus they override elevation cues derived from listener motion. For low-frequency
stimuli, the correspondence between the predicted elevation and the actually judged
elevations was only approximately 2/3 of the target elevation. Given the limited acu-
ity of dynamic sound-source localization together with “binaural sluggishness,” this
result is not altogether surprising. Indeed, auditory resolution of elevation along the
midline is also considerably poorer compared to localization on the azimuth plane.

Thus, until there are additional data, the current literature suggests that elevation
cues provided by head motion are subservient and considerably less useful than
HRTF spectral information for judging elevation. However, this may not be the case
for machine listening. Zhong et al. (2016) used the Wallach concept to show that
machine-learning algorithms (e.g., Kalman filters) could learn to use simulated head
motion to determine the location of up to three different simultaneously presented
sound sources located in different azimuthal and vertical locations.

Early work relating to head movement for the avoidance of front-back reversals
and judging elevation can also be found in the 1938 thesis of Alva Wilska—see
Kohlrausch and Altosaar (2011) and de Boer and van Urk (1941), also referenced in
Blauert (1997).

Macpherson (2011) was interested in the relative weighting of spectral cues ver-
sus dynamic interaural differences in resolving front-back reversals. He designed an
analogous version of the Wallach-Azimuth-Illusion experiment in a virtual auditory
space, whereby he presented stimuli with various center frequencies and bandwidths.
Data from only one listener have been reported. They indicate that when the stimulus
was a low-pass noise (0.5–1kHz), so that spectral cues were not available, listeners
perceived a static sound source, front-back reversed to where it had originally been
presented—as inWallach (1940). Macpherson (2011) also tested narrow-band, high-
frequency-noise stimuli and found that the Wallach Illusion failed. Macpherson thus
suggested that this result could indicate that ILDs may not provide a sufficient basis
for the dynamic auditory processing required for the Wallach Illusion. It should be
noted, however, that Macpherson (2011) presented stimuli from in front of the lis-
tener, so that listeners would have to confuse a frontally-presented stimulus for one
presented from behind. However, it has been repeatedly demonstrated that listeners
tend to localize narrow-band, high-frequency stimuli to the frontal hemifield, inde-
pendent of the actual location of presentation—e.g., Blauert 1969, 1997; Morimoto
and Aokata 1984; Middlebrooks et al. 1989; Middlebrooks 1992. It may therefore
be the case that the so-called “directional bands” are implicated in this result.
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Brimijoin and Akeroyd (2012, 2017) also investigated the Wallach Azimuth Illu-
sion. In their experiments, normal-hearing and hearing-impaired listeners moved
their heads back and forth between ±15◦ of the midline. A camera system recorded
the head motion and the system’s output controlled amplitude panning of the sound
such that the location of the phantom sound source was at twice the angle of the lis-
tener’s head angle, thereby generating the “2–1” rotation necessary for the Wallach
Azimuth Illusion. A low-pass filtered speech signal was presented and the filter cutoff
was raised from 500Hz to 16 kHz between conditions in octave steps. As listeners
started to rotate their heads, a moving speech soundwas either presented from a loud-
speaker directly in front, or from a loudspeaker directly behind the listener. Listener
responses indicated that they perceived a stationary sound source in the hemifield
opposite towhere the rotating soundwas first presented.However, listeners responses
were less robust in terms of replicating the Wallach Azimuth Illusion as the speech
sounds included more and more high-frequency information. The authors state that
“signals with the most high-frequency energy were often associated with an unstable
location percept that flickered from front to back as self-motion cues and spectral
cues for location came into conflict,” perhaps suggesting that the brief duration of
the presentations did not allow for the listeners to fully experience rotation.

Pastore andYost (2017) andYost et al. (2019, 2020) conducted an experiment that
was an approximate replication ofWallach’s (1940) study, but with a different means
of rotating the listener and sound sources. The rate of front-back reversals (FBRs)was
measured for noise stimuli under static listener/sound source conditions. Listeners
were then rotated via a computer-controlled chair at a constant velocity of 45◦/s. The
sound-source rotated at twice the rate of listener rotation by way of saltatory motion
from loudspeaker to loudspeaker around a circular array consisting of 24 equally
spaced (15◦ apart) loudspeakers. Five differently filtered 200-ms noise bursts were
tested, namely, three that generated more than 35% FBRs (FBR likely) and two that
generated fewer than 6% FBRs (FBR unlikely)—for further details, see Fig. 8.

After eight seconds of stimulus presentation, the listener indicated the direction
of rotation (clockwise or counterclockwise) for stimuli perceived as rotating, or the
loudspeaker (separated by 60◦, the same as in the first experiment) that most closely
corresponded with the perceived static sound-source location.

Figure8 depicts the effects of the stimulus spectrum and whether the listeners’
eyes were open or shut. The left two panels show results when seven listeners’ eyes
were open, giving them information about the head position. The right two panels are
the results from six of the same seven listeners when the listeners’ eyeswere closed—
in a dark room and wearing a blindfold. One might expect that, in the eyes-closed
condition, listeners have little or no access to information about the position of their
head, thereby restricting their localization to the angular relation of the sound source
to the head. In this case onewould expect listeners to perceive a rotating sound source
with their eyes closed, regardless of the stimulus frequency—see Yost et al. (2015)
for more details about the assumptions regarding head-centric versus world-centric
sound-source localization when attempts are made to eliminate head-position cues.

For the filtered noises that were prone to FBRs (FBR likely), listeners perceived
the sound as being stationary when the eyes were open (consistent with the Wallach
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Azimuth Illusion), but rotating when the eyes were closed. For the filtered noises that
are not prone to FBRs (FBR unlikely), listeners nearly always perceived the sound
as rotating in both the eyes-open and eyes-closed cases, indicating that the Wallach
Illusion fails for stimuli that are not prone to FBRs. In the eyes-open condition with
the listener facing forward, the perception of a stationary noise source was nearly
100% of the time at the rear loudspeaker when the sound was presented from the
front, and at the ‘frontal loudspeaker when the sound was presented from behind.
When listeners’ eyes were closed and the sounds were not likely to produce FBRs,
listeners always indicated that the sound rotated clockwise—as the actual sound did.
When the eyes were closed and the noise was likely to elicit FBRs, listeners indicated
that the soundwas rotating in a clockwise directionmost of the time, but occasionally
counterclockwise rotation was also indicated. However, one listener’s responses in
the eyes-closed condition when FBRs existed was not consistent with the other five
listeners’ responses. Thus, listeners’ perception with their eyes closed, needs further
investigation.

Brimijoin and Akeroyd (2014) studied the moving minimum-audible angle
(MMAA), that is, the minimum-perceivable angle between two sound sources when
the angular displacements of two sound sources change relative to a listener’s head.
They reported that, when listeners rotated their heads and the sound sources were
stationary, the MMAA was 1–2◦ smaller than when listeners kept their heads still
and the sound sources rotated around the listener with the same angular velocity and
displacement as the listeners’ previous head turns. Brimijoin and Akeroyd (2014)
concluded that “spatial processing involves an ongoing and highly accurate compar-
ison of spatial acoustic cues with self-motion cues.”

Brimijoin (2018) showed that the perceived motion of a moving sound source
differs depending on its angular displacement. Sounds to the sides of listeners needed
to be moved more than twice as far as sounds near midline for both sounds to
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appear to have moved the same amount. How this relative compression/expansion of
auditory space interacts with head position cues is unknown. One possibility is that
the comparison of the two rates of motion is not very precise. Another possibility is
that other inputs are employed, such as vision, to compensate for these distortions
of auditory space, as considered in Sect. 3.

Yost et al. (2015) investigated several aspects of sound-source location when
listeners were rotated in a chair and their eyes were either open or closed. They
argued that listeners had little or no information about the position of their head when
they rotated in the chair at constant velocity, and, with their eyes closed, there were
no visual cues. Under these conditions, listeners perceived stationary sound sources
as rotating. When sound sources and the listener rotated at the same rate, listeners
perceived a stationary sound source—entirely consistent with localization based
on a head-centric reference system. When these listeners’ eyes were closed and the
rotationwas accelerating or decelerating, the resultswere somewhatmixed.Yost et al.
(2015) point out that there were possible confounds in their procedures, making it
difficult to unambiguously determine the role of vestibular acceleration/deceleration
cues in judging head position. How these cues might thereby influence sound-source
localization is therefore also unclear.

Genzel et al. (2016) investigated “spatial updating,” the process of mapping the
head-centric auditory estimate of sound-source position to the listener’s spatial map
of the surrounding environment using successive estimates of head position. In three
different experimental conditions, blindfolded listeners were either, (1), asked to
move their head according to a trained rotational trajectory, (2), passively moved
along the same trajectory, or (3), counter-rotated as a function of head rotation,
such that a given head rotation resulted in no change in head position relative to the
surrounding environment. In a two-alternative forced-choice experiment, listeners
reported whether they heard a test sound to the right or left of a previously pre-
sented reference sound. Listeners were most accurate when passively rotated and
least accurate when they moved their own heads. Genzel et al. (2016) modeled the
integration of head-centric auditory spatial inputs and world-centric head position
information as a linear addition, dividing head-motion cues into vestibular cues and
proprioceptive/efference copy cues, with visual inputs zeroed out due to the lis-
tener being blindfolded. They determined that both proprioceptive/efference copy
and vestibular cues play a role in determining head position, but that vestibular cues
are weighted more heavily. While there are several untested assumptions underlying
their interpretations, their data clearly indicate support for the notion that sound-
source localization depends on the integration of head-motion and auditory spatial
cues, and that vestibular function and proprioception/efferent copy are possibly used
as indicators of head position.

Wightman andKistler (1999) investigatedwhether headmovements could be used
to disambiguate front/back sound-source localization along cones of confusion. The
authors tested this under four scenarios: (1), no head movement allowed, (2), the
listeners moved their heads, (3), the listeners did not move their heads, but the sound
source was moved by the experimenter, and (4), the listener did not move their heads,
but they themselvesmoved the sound source via key presses on a computer keyboard.
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Wightman and Kistler found that head movements reduced the front/back errors to
almost zero (see Braasch et al. 2013, for related modeling). Listeners also reduced
front/back reversals to aminimumwhen they themselvesmoved the sound source via
keyboard with no visual or vestibular feedback. No such benefit was found when the
experimenter moved the sound source. This important finding suggests that mapping
head-related sound-source localization to the local environment involves cognitive
processing that uses whatever information and spatial estimates that appear to be
useful.

Motion parallax is a powerful cue used in vision to judge relative distance (Stein-
man and Garzia 2000). Genzel et al. (2018) demonstrated the possibility that motion
parallax might play a similar role in judging the relative distance of sound sources.
Their main experiment used a virtual panning process to present two sounds (a low-
pitched and a high-pitched sound) at two different panned (virtual) distances. With
no motion of the sounds or the listeners, stationary listeners could not determine
whether one sound was further away from the other, since all known distance cues
were eliminated. When listeners moved, they were much better at discriminating the
differences in panned distances than when the sound source moved and the listener
was stationary. In other words, listeners could infer that one soundwas closer than the
other one by exploiting the perceptual effect that the near-panned source appeared
to move faster than the far-panned one while the head was moving. This is consis-
tent with the visual analogy. There was a small decrement in performance when the
listeners were moved on a platform rather than moving themselves. This suggests
that proprioceptive cues for self-motion are involved when judging sound-source
distance.

5 A Concept for a Model

This section offers a descriptive model of sound-source localization, based on Wal-
lach’s (1940) insight that auditory spatial informationmust be integratedwith an esti-
mate of the location of the listener’s head relative to the surrounding environment to
provide an estimate of the location of the sound source in that environment. Because
the range of possible inputs is large, and their respective temporal-processing speeds
and parameter spaces are potentially very different, the model offered here is not yet
actually implemented but rather of a conceptual kind. In particular, it does not yet
specify details of how the various inputs to the model are combined and compared.

Two crucial points should be mentioned at the outset. First, full development of
the model requires further studies of the multi-system/multisensory interactions that
are involved in auditory localization and in the generation of dynamic, multisensory
spatial maps. Second, the model is not yet available as a flowchart, because this
would be too complex. In fact, the overall process is not simply feed-forward, but
rather includes feedback and other interactions between system elements and sensory
input/output—compare Chap. 1, this volume.

http://dx.doi.org/https://doi.org/10.1007/978-3-030-00386-9_1
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Also, there is, as of yet, no controlled experiment available to test such a model
even if it were precisely specified. As the literature reviewed in this chapter shows,
only small parts of the overall process can be investigated at a time and subsequently
modeled. As such, the individual model structures may differ in kind. For example,
audio-visual interaction, considered in Sect. 3, may be adequately modeled within a
Bayesian framework. Whether interactions between memory, attention, motor pro-
cesses, etc., can also be modeled in this way is unclear. Also, the putative spatial map
may be a dynamic system of various spatial maps with different references along
many dimensions. In other words, the proposed model concept of auditory localiza-
tion as a multisensory/multi-system process is primarily intended to be a tool for
orientation in a yet largely unknown territory.

This section uses a notation where Θ ′
ab denotes an estimate (indicated by the

prime) of angular displacement in polar space, Θ , relative to the frame of reference,
a, and in terms of the type of input, b. It is worth noting that one cannot be entirely
sure what all the frames of reference might actually be. There appear to be head-
centric and world-centric frames of reference as illustrated in Fig. 1, but there may
be body-centric and other frames of reference as well. For example, a listener with
closed eyes may be able to point to the location of a sound source while not being
able to place that location into the context of other objects in the room, for instance,
for reaching out to grab a buzzing mosquito in the dark. Even this example still
requires some internal map of, at least, the body. Nevertheless, the basic argument of
the model concept is that the auditory estimate of the location of a perceived sound
source within the context of the local environment (world-centric localization,Θ ′

wA
),

is determined by the integration of an auditory estimate of the sound source’s location
relative to the head based on auditory spatial cues, Θ ′

Ah
, with a multisensory/multi-

systems estimate of the location of the head relative to the local environment, Θ ′
wh
.

This descriptive model does not specify how Θ ′
Ah

and Θ ′
wh

would be com-
bined, but rather suggests that sound-source localization requires the integration
of information—including, but not limited to, perceptual cues from several (per-
haps many) neural systems. This includes cognitive processes such as experience
and memory—compare Buzsáki and Llinás (2017). The model assumes that any
such integration also involves an assessment of the reliability of the cues employed
for each estimate. Furthermore, the model assumes that each cue estimate and each
estimate resulting from the integration of those estimates introduces error, (ξi ). For
example, Θ ′

hA
is determined by weighted integration of the auditory spatial cues,

and Θ ′
wh

is determined by a weighted sum of the multi-system head-position cues
mentioned above. The weight, wi , of any particular auditory spatial or head-position
estimate would be proportional to the external noise of the cue, due to variability in
the stimulus along the relevant dimension, together with an internal noise term, ξi ,
that arises from the variability inherent to neural processes in general. Combining
these estimates to arrive at Θ ′

wA
introduces further error, again due to internal noise.

The initial auditory estimateΘ ′
hA

relates sound-source position to the head as follows.

Θ ′
hA

∝ [wΨ ′Ψ ′, wν ′ν ′], (7)
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whereΨ ′ is an estimate of the angle of the sound source relative to the interaural axis,
the lateral angle in Wallach’s terminology—see Sect. 4.2. Ψ ′ is therefore a compo-
nent of Θ ′

hA
that is based on interaural differences of time, Ψ ′

I T D , and level, Ψ ′
I LD .

Note that Ψ ′ is not simply an estimate of azimuth—the same interaural differences
exist along a range of locations on the cones of confusion as discussed throughout
this chapter. ν ′ is a polar elevation estimate on a sagittal plane normal to the interaural
axis ofΘ ′

hA
, based on spectral HRTF cues. Therefore, both the component estimates,

Ψ ′ and ν ′, are required for a single-valued estimate of the sound-source location,
Θ ′

hA
. Furthermore, it is unclear whether elevation, ν ′, can be estimated without an

initial interaural-difference estimate, Ψ ′, to specify which sagittal plane will be the
basis for the elevation estimate,

Θ ′
wh

∝ [wV V, wΓ Γ,wB B, wA A, wCC], (8)

where V . . . vision, Γ . . . vestibular cues, B . . . body awareness (e.g., propriocep-
tive, somatosensory, kinesthetic, neuro-motor control), A . . . auditory, and C . . .

cognitive processes, which include expectation, memory, and attention. To deter-
mine an estimate of the sound-source position in the surrounding environment, the
head-centric estimate, Θ ′

hA
, must be combined with the estimate of head position,

Θ ′
wh
. This process could be analogous to simply adding the two estimates, or perhaps

one is mapped onto the other—the actual mechanism is not understood at this time
and, consequently, not specified in the following expression.

Θ ′
wA

∝ [Θ ′
hA

,Θ ′
hw

,C, χ ], (9)

where χ denotes interactions between various estimates of Θw, such as auditory,
Θ ′

wA
, and visual, Θ ′

wV
.

Several points are worth noting. First, although this model concept is expressed as
a series ofmathematical expressions, this formhas only been chosen for convenience.
The inputs and interactions between them for each of the spatial estimates are still
largely unspecified. For example, the model could further include head-position cues
that future researchmay suggest. Themodel is not expressed as addition of individual
estimates since they may interact in non-linear ways. The model concept is meant
to, hopefully, provide a structure to motivate experiments, the results of which could
alter this putative model considerably. Second, the relative weighting of different
sensory/systems input can be such that one or several are completely disregarded
in a given estimate. For example, when listeners’ eyes are closed, their visual input
is probably not considered in any internal head-position estimate. Third, it is worth
noting thatΘ ′

Aw
is only one spatial estimate of a perceived sound source in the context

of the surrounding environment among several other estimates from other sensory
modalities, aswell as fromcognition. For example, if an estimate,Θ ′

Vw
, of the location

of a visual object is perceptually grouped with the sound object associated withΘ ′
Aw
,

these estimates will likely interact, either reinforcing each other or leading to cross-
modal capture. Memory or expectation could play a similar role in this regard. This
possibility is denoted by χ .
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In summary, it is hoped that the contribution of the model concept is to point
out that the roles in auditory localization as being played by several components
of the assumed input, such as proprioceptive, somatosensory, kinesthetic, neuro-
motor control, cognitive processing, and spatial auditory input used to determine
head position, are still not clearly understood. Thus, the model primarily points to
what remains unknown rather than at what is known.
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Spatial Soundscape Superposition
and Multimodal Interaction

Michael Cohen and William L. Martens

Abstract Contemporary listeners are exposed to overlaid cacophonies of sonic
sources, both intentional and incidental. Such soundscape superposition can be use-
fully characterized by where such combination actually occurs: in the air, at the
ears of listeners, in the auditory imagery subjectively evoked by such events, or in
whatever audio equipment is used to mix, transmit, and display such signals. This
chapter regards superposition of spatial soundscapes: physically, perceptually, and
procedurally. Physical (acoustic) superposition describes such aspects as configura-
tion of personal sound transducers, panning among multiple sources, speaker arrays,
and the modern challenge of how to integrate and exploit mobile devices and “smart
speakers.” Perceptual (subjective and psychological) superposition describes such
aspects as binaural image formation, auditory objects and spaces, and multimodal
sensory interpretation. Procedural (logical and cognitive) superposition describes
higher-level relaxation of insistence upon literal auralization, leveraging idiom and
convention to enhance practical expressiveness, metaphorical mappings between
real objects and virtual position such as separation of direction and distance; range
-compression and -indifference; layering of soundscapes; audio windowing, narrow-
casting, and multipresence as strategies for managing privacy; and mixed reality
deployments.

1 Introduction: Stages of Composition

Auditory displays are broadly and richly embedded in modern life. We are positively
assailed by communication sounds, competing with each other for attention. Spatial
soundscape superposition can be usefully characterized by where the combination
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Table 1 Spatial soundscape superposition

Stage Domain Realm Practice Considerations

Sound Acoustics Physics Transmission: air
mixing plus
bone-conduction

personal and public
transducers, panning,
speaker arrays, smart
speakers,
mobile-ambient
interfaces

Transduction Biophysics,
biochemistry

Physiology Cochlear implants Critical bands and
erbs, auditory or
loudness recruitment

Sensation Psychology,
psychoacoustics

Perception:
sensorineural
processes

Apprehension:
subjective
composition,
vection

Auditory objects,
binaural imagery,
multimodal
stimulation

Signals Cognition Procedure:
central
auditory
process

Interpretation:
logical convention,
metaphorical
mapping and
mixing, culture
and semiotics

Parameterized
directionalization and
spatialization, layering
and audio windowing,
mental models,
practical interpretation

actually occurs. As anticipated by Table1, this chapter regards superposition of spa-
tial soundscapes: physically, perceptually, and procedurally—sound, sensation, and
signal, followingHartmann’s titular description (1999) of the auditory process (albeit
in rotated order).

2 Physical Superposition (Air Mixing): Sound

Normal circumstances combine sound in air, as when ordinary sources such as voices
naturally add. The air acts as a linear mixer, superposing respective pressure dis-
turbances. Modern instances of such superposition involve electroacoustics, using
speakers to display some organized diffusion, such as sound distribution and panning.
Physical combination leverages installed speakers as well as mobile devices such as
cell phones, laptop computers, and smart speakers. Stereo speakers, sound bars,
and home theater systems are common installations. In environments such as auto-
mobiles, ordinary loudspeakers can be replaced with novel actuator systems, such
as distributed mode actuators (dmas), distributed mode loudspeakers (dmls), and
multiactuator panels (maps). For example, the Ac2ated Sound (https://continental
-automotive.com/en-gl/Passenger-Cars/Information-Management/Multimedia-Sys
tems/Ac2ated-Sound) system attaches transducing drivers to car interior elements,
using the pillars and dashboard for high- and mid-frequency reproduction, and large
components—such as the ceiling, back covers of seats, and rear shelf—for low fre-
quencies.More specialized spaces have super-directional (sound beam) loudspeakers

https://continental-automotive.com/en-gl/Passenger-Cars/Information-Management/Multimedia-Systems/Ac2ated-Sound
https://continental-automotive.com/en-gl/Passenger-Cars/Information-Management/Multimedia-Systems/Ac2ated-Sound
https://continental-automotive.com/en-gl/Passenger-Cars/Information-Management/Multimedia-Systems/Ac2ated-Sound
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and phased arrays. Some speakers, such as the Nexo cdd (configurable directivity
device) (https://nexo-sa.com/systems/geo-s12/technology/), even feature adjustable
directivity.

Directly connecting speakers tomicrophones, as in simple channel-based telepres-
ence installations—dating back to the Théâtrophone exhibited at the Paris Electrical
Exhibition in 1881, and formalized byAlanBlumlein (https://en.wikipedia.org/wiki/
Alan_Blumlein) in the 1930s—can recreate sound fields. More active manipulations
process audio streams by time delay and filtering, which can be implemented in
digital signal processing (dsp) systems via recursive delay-and-add networks, or as
time-domain convolution or equivalent frequency-domain multiplication.

2.1 Speaker Arrays

Besides theatrical spatial sound systems and the sui generis Audium (http://www.
audium.org)—shown in Fig. 1—various institutions maintain polyphonic media art
centers and concert halls, including such high-density loudspeaker arrays (hdlas)
(Lyon 2016, 2017) as the AlloSphere in Santa Barbara, California (http://www.
allosphere.ucsb.edu), the BEAST (Birmingham ElectroAcoustic Sound Theatre)
(http://www.beast.bham.ac.uk) project (Birmingham, UK), CCRMA at Stanford
University (https://ccrma.stanford.edu) Stanford University, Palo Alto, California;
Espace de PROJECTION (“Espro”) (http://web4.ircam.fr/1039.html?&L=1) at
IRCAM (Paris), “The Cube” (http://icat.vt.edu/studios.html) at Virginia Tech’s Insti-
tute for Creativity, Arts, and Technology (ICAT), and the Spatial Sound Institute,
Budapest, Hungary (https://spatialsoundinstitute.com). Annual festivals highlight
multichannel sound, including Berlin’s Club Transmediale (https://transmediale.de),
Edmonton’s Sea of Sound (http://www.beams.ca/SeaofSound.htm), and Ontario’s
New Adventures in Sound Art (http://naisa.ca).

Audio diffusers such as sound field renderers can pantophonically (horizon-
tally) and periphonically (horizontally and vertically) distribute parallel inputs across
speaker arrays using a mixer as a crossbar directionalizer. Such architecture scales
up to arbitrary degrees of polyphony: multichannel songs, conference chat-spaces,
and immersive soundscapes can be dynamically displayed via such controllers. For
instance, a dynamic map interface, like that shown in Fig. 2a, can control distribution
of multiple channels across a ring of speakers, like that in Fig. 2b, panning signals
across an adjustable spread (or “aperture”) of speakers.

Spatial sound display is receptive to any number of modulations. Perception of
situated sources includes impression not only of position and emission character-
istics (relative location and orientation directivity), but also environmental effects,
such as reflection, occlusion, obstruction, echo, and reverberation, as measured by
such related metrics as Reverberation Time RT60, Definition D50, Clarity C80, and
interaural cross-correlation (IACC; http://asastandards.org/Terms/interaural-cross-
correlation/).

https://nexo-sa.com/systems/geo-s12/technology/
https://en.wikipedia.org/wiki/Alan_Blumlein
https://en.wikipedia.org/wiki/Alan_Blumlein
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Fig. 1 The Audium (San Francisco)

Adjustment of the virtual position of sources can be independent of the underly-
ing audio streams or somehow related. For simple example, a virtual musical source
might encode harmony bymoving around a space to signal chord progression (Herder
and Cohen 2002) as a pedagogical tool. Dynamic gestures, auditory vectors compris-
ing moving sources, can be used not only for spatial music but for “acoustic arrows,”
animated sonic beacons for way-finding and multimodal displays, accompanying
such verbal directions as “come hither and proceed thither.” Likewise, a simulated
environment can be adjusted and parameterized by such variables as spatial dimen-
sions, geometry, and liveness (absorption and diffusion material characteristics).

Besides articulated sound directionalization and spatialization, distributed display
allows extended diffusion. Spatial extent can be suggested bymultiple virtual sources
and/or loudspeakers driven together, which resultant auditory (or apparent) source
width (asw) is interpretable as line, area, or volume sources. Much the same way
that vibrato makes a note seem louder (Wolfe 2018), or aural exciters (which add
high-order harmonic extensions to a signal) enhance conspicuity, wiggling a source
or pulsating its size can make it “shimmer” to stand out. To draw attention to a
virtual source, an aware agent (a software component that monitors, confirms, and
sharpens user focus) can modulate various aspects, including perturbing its position,
and dilating and contracting it (adjusting its spatial volume). Such highlighting can
push a track to prominence in a mix, like a musical warble, trill or quaver.

Perceptual rivalry—such as contradictory iid (interaural intensity difference, or
head shadowing, a.k.a. ild, interaural level difference) and itd (interaural time delay)
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Fig. 2 Pantophonic perimeter
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cues—leads to diffuse source imagery, which a listener describes as a “fuzzy” region.
Such localization blur can be thought of as the resolution of spatial hearing.

Because of the horizontal arrangement of our ears, paralleling the gravity-oriented
arrangement of our limbs and eyes, iid and itdpanning affect virtual source azimuthal
direction (but not elevation or range); it is easier to create auditory “bokeh” (out-of-
focus blurring) laterally than vertically or longitudinally.

2.2 Panning

A panoramic potentiometer (or “pan-pot”) can control distribution of audio power
across multiple speakers. To avoid panned signal coherence from disturbing broad-
ened display (via such artifacts as the precedence or Haas effect), image dis-
persion and signal decorrelation (via such dsp techniques as all-pass filtering,
vibrato, and chorusing) can be used to scramble the phase of frequency compo-
nents (Kendall 2010). DBAP: Distance-based Amplitude Panning (Lossius et al.
2009), MIAP: Manifold-Interface Amplitude Panning (Seldess 2014), VBAP: Vec-
tor Base Amplitude Panning (http://legacy.spa.aalto.fi/research/cat/vbap/) (Pulkki
1997) and DirAC: Directional Audio Coding (Pulkki et al. 2011, http://legacy.spa.
aalto.fi/research/cat/DirAC/) can be considered generalizations of pan-pots. Phased
array and beam-forming soundfield synthesis (sfs) techniques—such as wavefield
(or wavefront) synthesis (wfs) and boundary surface control (bosc) or boundary ele-
ment methods (bems)—which modulate not only gain but also the delay and spectra
of multiple signals, require active signal-processing, more aggressive dsp than just
amplitude modulation and frequency filtering.

2.3 Personal Listening Systems, Psaps, Hearables, Hearing
Aids, and Xr (Extended Reality—Ar: Augmented
Reality, Mr: Mixed Reality, and Vr: Virtual Reality)

The contemporary panoply of personal listening devices is surveyed and summa-
rized by Fig. 3. Besides ordinary speakers, personal sound amplification products
(psaps) and hearing aids are increasingly popular and important, performing vigorous
dsp, including directional capture, filtering and active noise control (or cancellation,
anc), ameliorating sensorineural and conductive hearing loss such as presbycusis,
age-related hearing loss, as well as compensating for loudness recruitment, rapid
increase with amplitude of perceived loudness. By detecting characteristics of an
environment, audio processing can automatically changeparameters to accommodate
various situations (conversation, restaurant, tv, cinema, driving, telephone, concert,
etc.). Equalization can be done monaurally using ipsilaterally embedded processors,
but binaural processing can be performed on a smartphone, including “diminished

http://legacy.spa.aalto.fi/research/cat/vbap/
http://legacy.spa.aalto.fi/research/cat/DirAC/
http://legacy.spa.aalto.fi/research/cat/DirAC/
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Fig. 3 Personal sound displays: A variety of form factors for personal audition, arranged in order
of intimacy. The drivers, symbolized by rectangles, may be wireless, such as Bluetooth earbuds and
headsets. (Extended by Cohen 2016 from Streicher and Everest 2006 andMarui andMartens 2006.)
a By preconditioning stereo signals, speaker crosstalk can be controlled and significantly cancelled
or compensated for (cross-talk cancellation, ctc). A special implementation of this technique is
called “transaural” (Bauck and Cooper 1996; Choueiri 2018). b Pseudophonic arrangements allow
dramatic demonstration of the importance of active, head-turning directionalization, as front–back
and up–down disambiguations are subverted, even if a subject can see the source (Martens et al.
2011). c Ultrasonic displays (a.k.a. parametric loudspeakers), such as that described by Ochiai
et al. (2017), represent a special case: inaudible ultrasonic signals demodulate in the air, so the
audible source is the air itself, not the driver. Somewhat similarly, some new displays exploit the
photoacoustic effect (Sullenberger et al. 2019), by which sound is formed as a result of material
absorbing light, such as a laser beam

reality” off-axis rejection for focused hearing. Such architecture also supports dis-
intermediation, eliminating unnecessary dataflow stages: hearing assistance trans-
mission systems using induction looping (telecoils) or fm radio can be replaced
by beaming stereo streams directly to earphones, avoiding cumbersome reconstruc-
tion, transduction by external speakers, and recapture by hearing aid microphones
before resynthesis by in-ear drivers. Hearing aids feature “superhearing” processing
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(hyperacuity: hypersensitivity and hyperselectivity) informed by auditory scene anal-
ysis (Bregman 1990) and deep learning (Wang 2017), enhancing sound segregation
and isolating speech. “Human hacking”—bionic augmentation such as prostheses,
cochlear implants, and bone-anchored hearing aids—invites extended auditory dis-
plays.

Contemporary personal audition systems also include virtual reality (vr) and
augmented reality (ar) auditory displays, typically using head-mounted displays
(hmds). Vr and ar are generally considered mixed reality (mr), so the abstraction
of all of these in current parlance is xr, where the ‘x’ stands not only for “extended”
but also for “augmented,” “mixed,” and “virtual” (as at the end of this subsection’s
title).Xr can be applied to visualization of sound fields by overlaying visual intensity
indication upon actual acoustic spaces (Inoue et al. 2017), but more relevantly and
importantly, it can leverage environmental or ambient resources for richer sound-
scapes. This subject is revisited below in Sect. 2.5.

Some exotic headphones highlight innovative capability, calibrating for anatomy
or featuring head-tracking and multidriver arrays to emulate directional sources. For
example, the Sennheiser Ambeo headphones (https://en-us.sennheiser.com/in-ear-
headphones-3d-audio-ambeo-smart-headset) feature anc, “hear-through” acous-
tic transparency, and binaural recording. Bose Frames (https://www.bose.com/en_
us/products/frames.html) sunglasses have earstem-embedded, personal back-firing
speakers, a microphone for voice control and conferencing, Bluetooth connectiv-
ity, and head-tracking for ar applications such as audio tour guides. The Panasonic
Wear Space (https://panasonic.net/design/flf/works/wear-space/) featuresancwire-
less headphones extended with head-wrapping fabric, enhancing concentration by
blocking noise and peripheral visual distractions. Nura headphones (https://www.
nuraphone.com) have a circumaural body combined with earbuds; its set-up calibra-
tion analyzes otoacoustic emissions (oaes), weak sound generated by the cochlea,
to adjust equalization; and tactile bass is delivered through “immersion mode” ear-
cupdrivers. Sony360RealityAudio (https://www.sony.com/electronics/360-reality-
audio) headphones, calibrated by probe microphones, are part of a larger system
dedicated to flexible display of 3d audio. The “Aware” headphone (http://www.
unitedsciences.com/the-aware-kickstart-the-hearable-revolution/) or “hearable”
(https://www.everydayhearing.com/hearing-technology/articles/hearables/) has inte-
grated eeg (electroencepholography) sensors, allowing estimation of awearer’smen-
tal state (as reviewed below in Sect. 5.1).

2.4 Panic in the Anech: Extending Live Direct Sound with
Environmental Indirect Sound

Another type of physical superposition does not usually employ binaural technol-
ogy, but becomes very interesting when it does. If a violin is played under anechoic
conditions, or captured in a non-reverberant practice room, the performer will typ-
ically dislike the unnatural character of the sound—that is, “panic in the anech[oic

https://en-us.sennheiser.com/in-ear-headphones-3d-audio-ambeo-smart-headset
https://en-us.sennheiser.com/in-ear-headphones-3d-audio-ambeo-smart-headset
https://www.bose.com/en_us/products/frames.html
https://www.bose.com/en_us/products/frames.html
https://panasonic.net/design/flf/works/wear-space/
https://www.nuraphone.com
https://www.nuraphone.com
https://www.sony.com/electronics/360-reality-audio
https://www.sony.com/electronics/360-reality-audio
http://www.unitedsciences.com/the-aware-kickstart-the-hearable-revolution/
http://www.unitedsciences.com/the-aware-kickstart-the-hearable-revolution/
https://www.everydayhearing.com/hearing-technology/articles/hearables/
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chamber].” A commonplace non-binaural solution is to submit the ‘dry’ input source
to reverberation processing and loudspeaker reproduction to create the more musi-
cally familiar ‘wet’ sound signal, so that the performer can hear the sound of their
violin in a manner more typical of an acoustically live performance space. Now
imagine the binaural counterpart to this, where the direct sound of the violin is cap-
tured by a closely-placed, instrument-mounted (“spot”) microphone, and this signal
is processed for binaural display such that the indirect sound of a reverberant space
responding to the instrumental sound is realistically reproduced via ear-speakers
(drivers positioned near but not on the auricles, without circumaural cushions or
contact with the pinnae), deployed to allow direct sound from the violin to enter
the ears without interference. The performer hears the direct sound from the violin
as usual, but with plausibly realistic binaural information in the reproduced indirect
sound superposed upon it. This can be valuable for a performer during rehearsal,
as the enriched reproduction can mimic the acoustics of the performance space for
which they would like to be prepared.

Similarly, when speaking or singing, one’s voice returns to one’s ears with infor-
mation about the room and its interaction with the voice, yielding an impression of
the space. The room acoustical contribution to the sound of one’s voice can be repre-
sented via the Oral-Binaural Room Impulse Response (obrir), so that self-generated
‘direct’ sounds can be combined in the air (i.e., air-mixed, including the ever-present,
bone-conducted, vocal sound: the “human sidetone”) with environmental ‘indirect’
sound that has been electroacoustically introduced (Cabrera et al. 2009). In one such
deployment, indirect sound associated with a sound source was reproduced via a
pair of ear-speakers, so that binaurally recreated indirect sound could be added to
unobstructed ‘live’ sound propagating directly from mouth to ear.

A converse arrangement that also relies upon acoustically transparent ear-speakers
is that whichmight be used to superimpose virtual sound sources upon ‘live’ environ-
mental sound so as to minimize interference of the ear-speakers with natural spatial
hearing. For example, in augmented spatial auditory displays providing navigational
aid to visually challenged users, minimized interference from a binaural auditory
display system is required, since navigation by the blind can be enabled through use
of available sonic information, often with refined skills using sound alone. Remov-
ing this “open-ear” channel by covering the pinna or plugging the ear canal with
insert earphones would disable a needed sensory system, causing drastic reduction
in the considerable acuity such users exhibit with their own natural spatial hearing
for navigation.

Clear directional imagery was demonstrated for speech signals using such an
open-ear binaural superposition system, developed with the commercially avail-
able “TOPlay” Open Guided Sound (OGS) earphones (Pereira and Martens 2018;
http://www.toplay-ogs.com). Speech signal localization performance using OGS
earphones, featuring so-called “TrueOpen” technology to deliver sound directly to
the ear-canal entrance with minimal obstruction of the pinnae, was comparable to
that assessed using a 196-channel loudspeaker array. Additional “mobile-ambient”
systems are discussed in the following subsection.

http://www.toplay-ogs.com
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2.5 Mobile-Ambient Systems: Combination of Personal and
Public Displays

Table2 shows a variety of audio and visual output devices, ordered by intimacy.
In analogy to laptop and desktop computing, “eartop” and “eyetop” form factors
describe closely attached personal displays. Eartop transducers featuring sound dis-
plays for individuals can be integratedwith public loudspeaker systems. Even closed-
back or circumaural headphones are not completely acoustically opaque, leaking
sound in both directions. That is, ambient speakers can be used to complement
headphone-displayed soundscapes.

In situations where public and private resources are both available, combinations
can leverage advantages of each. As suggested by Fig. 4, hybrid configurations will
emerge, such as loudspeaker arrays in conjunction with eartop displays (Satongar
et al. 2015) and arrangements ofmobile phone speakers. A cinema could feature indi-
vidual binaural channels, like those served by SoundFi (http://soundfi.me), as well as
the theatricalmultichannel system, for personalized auditory display, including local-
ized dialog and multilingual narration. Bass management might route low-frequency
effects (lfes) to shared subwoofers whilst sending higher frequency bands to per-

Table 2 Audio and visual displays along private ↔ public continua

Proxemic context Architecture Display

Audio Visual

Intimate, Personal,
Private

Headset, xr, wearable
computer

Eartop (earwear), headphone,
earbud, earphone, hearing
aid, psap, hearable, in-ear
monitor, bone-conduction
(cheekbone, neckband,
collarbone, …)

Eyetop (eyewear), hwd
(head-worn display),
hmd (head-mounted
display)

Individual Chair Smartphone, nearphone,
ear-speaker, “sound shower”
isolation directional display

Smartphone, tablet,
laptop display, desktop
monitor

Interpersonal Couch or bench Loudspeaker (e.g., stereo
dipole, transauraltm)

hdtv, “fishtank vr”

Multipersonal,
Familiar

Home theater, vehicle,
spatially immersive
display (e.g., Cave,tm

Cabin)

Surround sound, soundbar,
ITU 5.1, 7.1.4, NHK 22.2,
etc.

Projection, 4k, 8k

Social Club, theater Speaker array (e.g., VBAP,
DirAC, DBAP, WFS)

Large-screen display
(e.g., IMAX)

Public
Stadium, concert arena Public address system,

(additional sound
reinforcement, with delay
towers for distant listeners),
siren, klaxon

Multiple screens
(additional image
display to reach distant
viewers)

http://soundfi.me
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Everyone

Social Diffusion

Virtuality (VR)Reality
Extended Reality (XR)

Location-based

Omnipresent (ubicomp)

Location

Augmented virtuality
Mixed reality (MR)

Mobile

Public: massively multiuser

Stationary

Social: multiuser

Personal

Diminished reality Diminished virtuality
Augmented reality (AR)

Fig. 4 Extended reality (XR), location, and social diffusion taxonomy—The horizontal Extended
Reality (xr) axis is the original ar–vr continuum (Milgram and Coquhoun, Jr. 1999); Location
(longitudinal axis) refers to where such xr systems are used; Social Diffusion (vertical axis) refers
to degree of concurrent usage. Adapted and extended from (Broll et al. 2008)

sonal transducers. The dichotomy between mobile computing and site-specific lbs
(location-based services) is resolved with “mobile-ambient” transmedial interfaces
that span both personal, mobile devices and public, shared resources (Cohen 2016).

2.6 Implications: IoT and Ubicomp

Global popularity of mobile computing creates opportunities for new kinds of
computer-human interaction, including democratized control and distributed dis-
play. For instance, even technophobes uncomfortable with personal computers can
enjoy rich interaction with smartphones. The social diffusion of wireless devices
has been paralleled by a separate development of networked appliances: internet of
things (“IoT”), ubicomp (ubiquitous computing), and pervasive computing. Sensors
and displays will increasingly find their way into everyday circumstances, allowing
exploitation by roomware media managers, software for smart buildings.

In computer graphics, “projection mapping” refers to adjusting presentation for
display on irregular surfaces, preconditioning contents to anticipate a physical space
into which a scene is projected. Auditorily, flexible sound renderers encourage such
display context-sensitivity. A simple example is a loudspeaker crossover circuit,
which frequency-band filtering matches spectral responses of a multidriver speaker.
Amore novel example is an opportunisticmixer that routes channels among available
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Table 3 Saturated: distributed and pervasive, continuous and networked, transparent or invisible—
spatial hierarchy of ubicomp or ambient intimacy

Smart spaces, smart cities, urban (or street) computing

Cooperative or intelligent buildings and smart homes

Roomware and reactive rooms

Spatially immersive displays

Information furniture

Networked appliances, smart displays

Handheld, mobile, nomadic, portable, and wireless (unplugged) devices

Wearable computers, smart watches, smart glasses, hearables, xr hmds

Computational clothing (smart clothes), hearing aids, psaps

resources, discovered and managed by smart homes, intelligent building controllers,
“urban (or street) computing,” and “smart city” infrastructure. As outlined by Table3,
displays should collaborate across all scales. (These ideas are revisited below in
Sects. 5.1 and 5.3.)

3 Perceptual Superposition (Subjective Compositing):
Sensation

Whereas the previous section of this chapter dealt with the great variety of physi-
cal soundscape superposition to which listeners are exposed, this section addresses
perceptual experiences associated with such exposure. The treatment recognizes
the complexity of binaural image formation when listeners move relative to sound
reproduction systems whilst simultaneously receiving sensory input through multi-
ple modalities, including not only auditory, but also visual and vestibular systems
(Martens and Cohen 2020).

Perceptual superposition depends, of course, upon binaural stimuli presented
via physical superposition (appearing as afferent signals), but spatial hearing also
depends on observers being aware of their ownmotion in the world (perhaps through
efferent signals associated with motor commands, but also though cognitive factors
that exert top-down influences on operations such as binaural image formation).

Because perception can be influenced as much by cognitive factors as by stimulus
parameters, purely bottom-up (signal-driven, or afferent)models of spatial perception
sometimes yield poor predictions of human experience. This is particularly evident
in results of studies that include listening conditions allowing listener movement,
such as listening while walking (Martens et al. 2011). Although it is difficult to
experimentally determine the role of binaural cognition, as scientific studies focus
predominantly upon overt behavior, it is reasonable to suppose that cognitive factors
(based, for example, upon expectations) operate during listener movement by disam-
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biguating raw sensations through implicit hypothesis testing, such as that associated
with “symbol processing” (Blauert et al. 2013; Blauert 2017). Auditory scenes are
mentally constructed in the context of potentially abstract thoughts and concepts
associated with procedural superposition, which is taken up in the next section of
this chapter. Before delving into that topic, the process of binaural image formation
shall be discussed, and the complexity of this process, appearing superficially simple,
will be revealed.

3.1 Binaural Image Formation: Perceptual Fusion
(Integrated Superposition) and Fission (Segregation)

Binaural image formation is the process by which acoustic events to which listeners
are exposed lead to the experience of associated auditory events. These auditory
events comprise auditory objects that are heard to be located in auditory spaces.
While this seems straightforward enough, the process of auditory image formation
is neither simple nor well understood. Indeed, there is not always a one-to-one rela-
tionship between acoustic events and auditory events. Single acoustic events may
give rise to multiple auditory events: perceptual fission (segregation) has occurred.
Multiple acoustic events may give rise to only one auditory event: perceptual fusion
(integrated superposition) of incoming energy into a coherent entity has occurred.
Superposition of sonic events that are presented with the intention of creating an
integrated unitary percept will not necessarily be successful, so principles of fusion
and fission are examined here. Under typical binaural listening conditions, when
the sounds of an external acoustic event impinge upon ears of a human listener, an
auditory image of a sounding object typically results. This auditory image may or
may not be heard as externalized, i.e., heard as occurring outside the listener’s head.
If externalized, the auditory image may be described as an auditory object, a mental
representation associated with an acoustic event resulting from perceptual fusion of
the incoming sound energy into a single, coherent entity. In discussion of binaural
image formation, this distinction between acoustical and auditory events should be
clearly defined: sounding objects associated with acoustic events have actual posi-
tions in the physical space surrounding the listener; associated auditory objects have
apparent positions in auditory space, a mentally constructed space in which auditory
events can occur. Acoustic events that occur in reverberant environments are usually
heard as occurring outside a listener’s head (i.e., as externalized auditory objects),
and yet it is important to recognize these auditory objects as mental projections into
psychological constructions of those reverberant environments as they are perceived.

In the context of this discussion on soundscape superposition, understanding prin-
ciples underlying binaural image formation is key to linking physical superposition
and perceptual superposition. This is not a new idea. Plenge (1974) proposed that a
sound stimulus should form a coherent auditory image if and only if natural processes



364 M. Cohen and W. L. Martens

Fig. 5 Examples of
temporal envelopes of
frequency components for
two types of marimba
performance, where the
dashed curves show the
envelope for the fundamental
frequency and the solid
curves show the sum of the
higher-frequency overtones

of spatial hearing are engaged. His model stressed that sound localization has as its
first condition…

[…] the ability, learned in early childhood, to classify [auditory] events as sound events.
This ability may comprise, besides the perception of direction and distance, the ontogenetic
earlier fusion of the information coming through both ears into one general acoustic image.

In free-field sound localization research, asking a listener to report the location
of a sound stimulus is reasonable, even when the sound stimulus is as simple as a
gated sinusoid. But when a listener uses headphones, such simple stimuli are often
heard as within the listener’s head (“IHL”: inside-the-head-locatedness (Wenzel et al.
2018)), under which conditions Plenge (1974) would term the task lateralization
rather than localization. Even when broadband binaural stimuli are employed, there
is no guarantee of externalization and coherent auditory imagery (Toole 1969).

Consider the auditory imagery associatedwith the binaural presentation of amusi-
cal note played on a marimba. Even when a high-quality microphone captures a dry
but realistic sounding marimba performance, and then that signal is transformed for
headphone presentation through a listener’s own measured head-related or anatomi-
cal transfer functions (hrtfs or atfs), the fundamental frequency component of the
marimba note typically segregates spatially from the higher-frequency partials of the
note which decay more rapidly (and correspond to the brief “strike tone,” rather than
the more slowly decaying resonance corresponding to the nominal pitch (Perrott et
al. 1987)).

For the “single hit” marimba performance shown in the upper panel of Fig. 5, it
is easy to see how there might be segregation based on the difference in the tem-
poral envelope of the fundamental frequency component versus that of the higher-
frequency partials, which are summed to produce the single solid curve. If, however,
a series of rapid marimba notes is performed as in the “roll” performance in the
lower panel, listeners have the opportunity to rotate their heads while listening.
The two temporal envelopes, while not strictly correlated, nonetheless rise and fall
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together, so that coordinated lateral shifts in the tone’s fundamental and higher par-
tials accompany head-turning or “idling” postural sway. Whether listeners use their
natural head acoustics, or use a headphone-based binaural display incorporating
active head-tracking, there is an increased likelihood of perceptual fusion of all these
frequency components in this dynamic case. Then, if the presentation includes an
effective (i.e., spatially realistic) binaural simulation of indirect sound, the binaural
image of the marimba tones will likely be heard as both unified and externalized. It
is tempting to propose that a Gestalt principle could be operating, where the funda-
mental frequency that normally segregates from the strike tone of each note might be
integrated based upon the ‘common fate’ of all partials as they shift in lateral angle
in response to head-turning.

Whereas in free-field conditions it would be reasonable to elicit a report of the
direction and distance of the marimba as a sounding object in physical space, without
head-tracking, headphone presentation of a spatially static and dry marimba tone
creates a complex percept that cannot be assigned a single direction or position in
space. For many years, much of the spatial hearing literature considering headphone
presentation has obscured this issue by using the term “localization judgments” to
identify such estimates of the position of auditory objects.

Decades ago, Shaw (1982) argued for the importance of a distinction between
performance in localizing sound objects and the ability to report the direction and
distance of an auditory object experienced during headphone listening. He proposed
that headphone studies of auditory spatial imagery be referred to as space percep-
tion rather than sound localization. If this sage advice had been heeded, consider-
able misunderstanding in the literature might have been avoided. Coupled with an
emphasis on spatially static sources and listeners, many reported research results
have contributed less to practical applications of binaural technology than desired.
Philosophical underpinnings of the above issues are well addressed in a paper by
Blauert (2012) that introduces into this discussion the concept of “Perceptionism.”
A perceptionist’s approach to psychoacoustics is also a perspective on methods used
in evaluating effectiveness of binaural technology, emphasizing methods that should
benefit those engaged in optimizing spatial auditory display technology for real-
world applications rather than artificial arrangements in research laboratories.

3.2 Moving Listeners: Dynamic Multimodal Sensory
Integration

Much recent research regarding multimodal sensory integration in spatial hearing
relates to the importance of voluntary motion in allowing listeners to understand
changes in binaural stimuli coupled with changes in the orientation and position of
those listeners (Pastore et al. 2020, this volume). Particularly telling in this regard
are the results of studies using pseudophonic displays that swap signals between the
left and right ears—as shown in this chapter’s Fig. 3 and described by its caption b.
For example, when listeners are fitted with pseudophonic displays that afford a “live”
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interchange between left and right ear signals, and are then instructed towalk through
an environment attempting to localize sources such as speech sounds, the naturally
occuring head-motion-coupled variation in interaural directional cues dominates
other localization cues (Martens et al. 2011). If, however, sources with emphasis
on higher-frequency content are presented from stable “world-centric” positions,
there is less dominance of head-motion-coupled changes in low-frequency interau-
ral cues over spectral cues associated with the pinna. In fact, directional ambiguities
can result from the cue conflict that results from such pseudophonic displays when
broadband noise bursts are localized (Martens et al. 2013). However, when speech
is the stimulus, continuous changes in orientation of the head during walking (such
as head-turning) contribute to the creation of strong auditory illusions that are hard
to suppress, even when the mouth of the talker is clearly visible. That so-called
“Phantom Walker” study showed that when listeners with swapped left and right
ear signals were asked to walk past a continuously viewed speech source emanating
from a fixed spatial position, the source was heard to be moving through space at
twice the listener’s rate, and arriving from a spatial region that was reversed with
regard to all three spatial axes: left for right, front for back, and above for below. For
example, despite having the stationary talker producing the speech sound in clear
view as listeners walked toward that talker (where the “ventriloquism” effect might
operate), the sound was invariably heard to be approaching from behind, and the
voice of this illusory PhantomWalker overtook listeners as they passed by the phys-
ically stationary source. These head-coupled interaural cues are so strong that they
defeat the contradictory “pinna-based” directional cues, as well as the visual cues
(anchored on the actual talker).

Such observations have also been made in studies in which listeners were asked
to turn their heads in a constrained fashion while dorsally located loudspeakers
presented sources that shifted laterally across the rear hemifield, creating illusions
of frontward incidence (Macpherson 2013), through a reversal of interaural cues
accompanying head-turning. While these results replicate those of the classic study
by Wallach (1940), a related, but possibly surprising result emerged when walking
listeners rolled their heads while listening to speech sounds arriving from elevated
loudspeakers in an analogous reversal of interaural cues accompanying head-rolling
(Martens et al. 2011). Just as front–back reversals are associated with pseudophonic
treatment during head-turning (Brimijoin and Akeroyd 2012), above–below rever-
sals were shown to be associated with pseudophonic treatment during head-rolling
(with cueing of source elevation depending on the resulting lateral shifts of source
images). As have results of other related studies, Kawaura et al. (1991) suggest
the dominance of dynamic interaural cues over spectral directional cues, at least
for speech sounds containing energy mostly below 5kHz. When sources containing
more high-frequency energy are presented, presumably allowing pinna-based spec-
tral cues greater influence on binaural image formation, the rate of these illusory
reversals is greatly reduced (Martens et al. 2013).

To be clear, such head-motion-coupled directional cues do not require or depend
upon gross listener movements. Indeed, even when listeners are asked to remain still
during a sound localization task, they still move their heads by small but measurable
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amounts (Wersényi andWilson 2015), and they seem tomove their heads just asmuch
when engaged in natural listening activities, such as watching movies (Kim et al.
2013). Again, these recent studies of vestibular and other motion-based influences on
binaural perception of auditory direction are preceded by important earlier studies. In
introducing the topic of such non-acoustic influences on binaural perception, Lackner
(1983) noted that studies of directional hearing conducted with a fixed head position
and orientation clarify only part of the human capacity for spatial hearing:

Ordinarily a person is freely moving about and his head and trunk position vary both respect
to each other and to external objects. Under these conditions the auditory cues at the ears
from a stationary sound source change continuously. [...] In localizing an external sound
source a person thus must monitor not only the auditory cues he receives from the sound
source, but also his own body movements and ongoing position.

Some classic papers on the role of head movement in the context of other non-
acoustic cues in sound localization provide a wealth of observations on this topic.
(The accompanying chapter by Suzuki et al. (2020) also explores such concerns.)
Most notable was early work by Wallach (1940), who observed that head-turning
during presentation of a sound stimulus made it possible to distinguish whether a
sound arrived from in front or in back of a listener. He noted that when the head was
turned to the left, the auditory image associated with a frontal sound source would
shift towards the right ear, whereas a dorsal source would shift towards the left. This
enables front/rearward distinctions to be made on the basis of head-motion-coupled
changes in interaural cues producing variation in the lateral angle of the auditory
image. Under conditions inwhich pinna cues andmovement cues indicated incidence
from contrasting hemifields, these dynamic interaural cues dominated pinna cues to
direction. Wallach also presented such dynamic sound stimuli under conditions in
which an illusion of self-rotation was induced by placing stationary subjects inside
a revolving screen that filled the visual field. Since their heads were not actually
rotating, vestibular cues were absent, and yet listeners experienced self-motion due
to these visual cues, and experienced front-to-back reversal when the lateral angle
of a frontal sound stimulus was made to shift with head movement as it would were
it arriving from the rear.

In another relatively early study, Thurlow and Runge (1967) also investigated
the influence of head-rotation on directional hearing, again manually inducing head
movements rather than allowing the listener to perform them actively. They examined
errors in both azimuth and elevation judgments for a number of types of angular
head movement. Without belaboring specifics of the experiments, general results
can be summarized as follows: Relative to a condition in which no head movement
was allowed, rotation of the head reduced errors in azimuth judgment as expected.
However, head-rotation did not significantly reduce errors in elevation judgments. If,
alternatively, a subject’s head was rolled from side to side while listening (which, in
the terminology of the original paper, was called ‘pivoted,’ as tabulated by Table4),
elevation errors were reduced and azimuth errors were not. This makes sense when
considering what happens to the lateral angle of an elevated stationary source when
first one ear is dropped closer to the ipsilateral shoulder, and then the other is dropped
towards its adjacent shoulder: the lateral shift is the opposite of what is experienced
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Table 4 Angular motions of the head (“cocking”)

Euler
rotation

Plane Active semicircular
canal

Informal
designation

Gesture Expression

Pitch Median Superior, anterior Tip Nod Affirmation,
concurrence: “yes”

Yaw Horizontal Horizontal, lateral Rotate Turn, shake Denial,
contradiction: “no”

Roll Frontal Posterior Pivot Roll, rock,
wag, tilt

Uncertainty,
questioning:
“maybe”

for stationary sources locatedwell below ear level.When the headwas tipped forward
and back (facing down then up), neither error rate was reduced significantly, as might
be expected from the above analysis, since no lateral shifts would occur.

A more recent study of the relative influence of tipping and pivoting considered
perceptual attributes associated with many simultaneous sources, rather than the sin-
gle source studied in (Thurlow et al. 1967). In a study of immersive spatial impression
by Martens and Han (2018), multichannel program material—presented via a 10-
channel array of loudspeakers distributed about a hemispherical array that included
‘height channels’)—produced a sense of auditory spatial diffuseness comparable to
more truly diffuse stimuli presented using twice as many loudspeakers. In contrast,
the spatial impression was noticeably less diffuse when the same 10-channel pro-
gram was reproduced via a more conventional “without-height” loudspeaker array
(i.e., employing loudspeakers located only on a single plane near the listener’s ear
level). However, this with- versus without-height discrimination in auditory spatial
diffuseness was possible in only one of the three head-movement conditions that
were tested, and that was the condition in which head-rolling was active.

Considering the geometry involved, it should be clear that above-below disam-
biguation is enabled by head-rolling-coupled lateral shifts of auditory images along
the interaural axis, as demonstrated by Martens et al. (2011). Head-pitching can-
not produce analogous disambiguating changes in lateralization for sources that are
stable from the world-centric standpoint. For example, if sources are stabilized to
remain within the median or even an offset sagittal plane, no lateral shifts occur with
head-pitching, but only variation in the hrtf (or atf) occurs at each ear. Studies
have also investigated whether vestibular sensations are strictly required for head-
rotation to disambiguate source incidence angles (whether head-turning or -rolling).
For example, Lackner (1977) found that illusory self-rotation could be induced by a
rotating sound field. He rotated six loudspeakers mounted on a circular frame around
the heads of subjects in the dark. Not only did the subjects report that they themselves
were rotating and that the sound field was stationary, but they also exhibited compen-
satory nystagmoid eye movements like those that would occur if they were actually
being rotated. More recent studies have examined the compression of auditory space
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during rapid head-turns (Leung et al. 2008), confirming that self-motion can have
strong effect on auditory scene analysis (Kondo et al. 2012).

3.3 Implications: Multisensory Interfaces

Results of these classic experiments indicate bidirectional interaction between per-
ception of head and body orientation and auditory spatial perception. Such charac-
teristics can be exploited by modern communication systems. For example, besides
smartphone-embedded imus (inertial measurement units), mobile devices feature
various techniques for position sensing. Slam (simultaneous localization and map-
ping) techniques—including depth perception, motion tracking, markerless feature
tracking, depth from stereo, structure from motion, and area learning—are used in
visual position sensing/systems (vps). Head- and eye-tracking can refine positional
awareness. Rich models of both internal and external spaces inform rendering of
multichannel, multimodal displays that leverage “sensor fusion” among various sen-
sory modalities. These observations are elaborated in the conclusion to this chapter,
which follows the survey of idiomatic soundscape conventions presented in the next
section.

4 Procedural Superposition (Logical and Cognitive
Conventions): Signals

Having reviewed in previous sections combinations of spatial soundscapes regard-
ing physical (sound) and perceptual (sensation) considerations, we finally consider
procedural models of signals that inform soundscape composition and cognitive
apprehension, higher-level metaphorical associations with which listeners decode
sound fields (Cohen and Martens 2020).

When interactingwith virtual displays, explicitmentalmodels aid in the conscious
reinterpretation of perceptual impressions. In graphics, non-photorealistic rendering
(npr) describes deliberately expressive distortion or remapping of imagery, for the
purposes of art or information visualization, subsuming realism to some superseding
goal, such as visual interest or perspicuity, ease in appreciation or understanding.
Analogously, auditory displays also admit such relaxation of literal, “sonorealistic”
renderings. Shared assumptions, social conventions, and learned idioms compress
communication expression. The following subsections describe some “nonsonoreal-
istic renderings” (nsr) used to enhance or enable designation, in the semiotic sense
of consensual understanding (Jekosch 2005; Sodnik and Tomažič 2015).
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4.1 Separation of Visual and Auditory Perspectives

Normally, personal audition and vision are thought of as concentric, the respective
sensory organs embodied together as they are in one’s head. For simple example,
movies, video games, and tv shows present audiovisual scenes that resemble what
one might plausibly see and hear if one were at the position of the camera and
its assumedly coincident microphone. Such conventions extend to spatial media,
as cameras might be binocular, visual displays stereographic, microphones stereo-
phonic, and auditory displays binaural. However, telesensory instrumentation allows
and encourages independence of modalities.

For architectural walk- (or fly-)through and auralizations (Kleiner et al. 1993),
visual and auditory perspectives should match, as if cameras and microphones were
integrally deployed. For a concert, an auditory display might be presented “with per-
spective” (i.e., aligned with visual display), either directly (acquired via coincident
microphone) or coherently simulated. However, performed electroacoustic music
can be captured by a variety of overhead, on-stage, and spot (accent) microphones,
mixed and distributed formonitoring (realtime self-audition by themusicians), sound
reinforcement (for live audience), and recording or transmission (for archive or dis-
tribution). Mediated concert experiences such as music videos separate visual and
auditory perspectives, not insisting that capture, rendering, or simulation of aural
perspective match optical position.

Cinematic and gaming idioms also relax literal associations, freely exercising lib-
erty to set aside assumptions of alignment of auditory and visual perspectives. For
example, background “score” music (bgm) is non-diegetic (conceptually outside a
story space, like narration) and accommodated by such independence. One audi-
tionally attends multiple spaces at once, apprehending not only a narrative scene,
but also, implicitly, its musical accompaniment. Displacement can reflect temporal
offset as well as spatial. For instance, in sort of the same way that a panning camera
leads amoving character by framing comfortably ahead, sound of a subsequent scene
is often introduced before corresponding visuals.

A viewing audience’s or gamer’s perspective is privileged, enjoying not only
extraordinary optical perspective (cinematography, montage, etc.), but also artificial
auditory access, with flexible correspondence among display modalities. The “2nd-
person perspective” popular in role-playing games (rpgs) is characterized by such
displacement, as the auditory perspective, through which one listens and speaks, is
that of an associated avatar, not that of its tetheredviewpoint. That is, the humangamer
is projected into a puppet or “vactor” (virtual actor), typically viewed from slightly
behind and above, through a loosely attached virtual camera. Likewise, projected
location of sound associated with such an avatar (generated by a game engine or
voice-chat captured from the human pilot) is that of the avatar, not the lagging virtual
camera.
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4.2 Separation of Orientation and
Location—Directionalization Versus Localization

Table5 juxtaposes location, orientation, and position as well as static posture versus
dynamic gesture. Space, at least at sensible levels of apprehension, is 3-dimensional,
and location is most simply represented numerically by Cartesian triplets (x , y, z).
For example, cadmodels are usually represented as vertices, edges, faces, and solids.
Such subject-independence is allocentric (Roginska and Geluso 2018) or exocentric,
independent of listeners or observers.

For subjective displays, parameterized explicitly or implicitly by standpoint and
egocentric direction, polar or spherical coordinates aremore convenient than rectilin-
ear coordinates since they are non-homogeneous, in that range (ρ) is dimensionally
different from azimuth (θ ) and elevation (φ). That is, representation or projection of
distance is different from horizontal and vertical direction, and can be decoupled.

For object-based encodings, monaural audio streams can be localized for binau-
ral display with itd, iid, and hrtf-based filtering. Sound objects are most simply
directionalized by intensity panning to loudspeakers near a phantom source, but
such amplitude- or gain-based techniques cannot realistically convey spatial effects
such as early reflections (echoes), modal resonances (standing waves), and late
reverberation.

Ordinary surround sound and 5.1 configurations, using channel-based encodings
such as those deployed in home theater arrangements, do not usually exploit ele-
vational cues, such as those deliverable via height or overhead (“voice of god”)
channels. However, preconditioning signals with atfs before display through loud-
speakers can simulate height cues (Jo et al. 2010; Tanno et al. 2014).

For scene-based encodings such asAmbisonics, each loudspeaker receives its own
weighted sum of all channels, spatially sampling spherical harmonic coefficients.
An Ambisonic microphone array captures a sound field and encodes a multichannel
signal for flexible re-directionalization.

Of the three affine transformations (scaling, rotation, and translation), Ambison-
ics accommodates only rotation, so such soundfield recordings can be thought of as
“prebaked,” forgoing “remixing” flexibility (such as standpoint excursion or inter-
aural baseline adjustability, which scales anatomical signals such as itd and iid and
changes binaural disparity) for optimized rendering.

4.3 Directionality Processing

Head motion, such as was discussed in the last subsection, is not only like “antenna
pointing,” but also “body language,” a kind of display. Situational context, voice into-
nation, facial expression, gaze and gesture all inform exquisite decoding of proxemic
cues. Head gestures as shown earlier in Table 4 are just 1st-order conventions; such
communication is rich and subtle. Eye-gaze, which can be approximated from head
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Fig. 6 Direction and
orientation: psychoacoustic
cues as proxemic social
signals. (By “direction” we
mean here the relative
bearing of a source with
respect to a sink, independent
of its egocentric rotation; by
“orientation” we mean the
direction a source is facing.)

source:
speaker

sink:
listener

direction, 
relative bearing

relative orientation

speech

orientation, is used for social signaling and can trigger computer-mediated events.
Individually apprehended spatial sound tells the eyes where to look, but “gaze indi-
rection” (understanding where someone else is looking), awareness of directed or
projected visual attention, alerts conversants about objects of regard. Mouth-emitted
sounds are anisotropic, and speech is directional.

As illustrated by Fig. 6, a listener estimates not only direction but also orientation
of a talker. Using hints such as ratio of direct-to-indirect intensity and darkening (via
low-pass filtering) of utterances, listeners recognize which way a talker is facing,
inferring targets of directed address. Symmetrically, talkers are aware of orientation
of listeners, and modulate their voices according to appreciation of the listening
difficulty of those facing away from them (akin to the Lombard effect, in which
talkers strengthen vocalizations in the presence of ambient noise). An aware renderer
such as a roomware auditory display is parameterized not only by direction but also
orientation of sources relative to sinks, modulating delivered audio streams to convey
such fine cues.1

Sink and source directivity can be modeled by emulating idealizations of
microphone receptivity patterns, combinations of omnidirectional (unipolar) and
directional (dipolar) radiation as well as sensitivity (Hugonnet and Walder 1998).
For typical instance, the Google VR Audio (https://developers.google.com/vr/ios/
spatial-audio) and Resonance Audio (https://resonance-audio.github.io/resonance-
audio/) Unity plug-ins model directionality by “alpha” (0 ≤ α ≤ 1) and
“sharpness” (1 ≤ sharpness). Normalized gain fields are calculated as
|(1 − α) + α cos(θ)|sharpness, where θ is the relative direction of (for projection or
emission) a sink with respect to a source or (for reception or sensitivity) a source
w.r.t. a sink, bilinear weighting coefficient α scales directionality, dipole power
sharpness exaggerates such non-isotropy, and the absolute value function rectifies

1A “sink” is the dual of a source, used instead of “listener” to distinguish it from an actual human,
including allowing designation of multiple sinks for a single user, as explained in Sect. 4.8 below.

https://developers.google.com/vr/ios/spatial-audio
https://developers.google.com/vr/ios/spatial-audio
https://resonance-audio.github.io/resonance-audio/
https://resonance-audio.github.io/resonance-audio/
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polarity inversion.2 When α is zero, the pattern is isotropic (and the sharpness is
irrelevant); as α approaches unity, directivity becomes increasingly lobed. “Earshot,”
combined radiation and reception, is the product of these for each source → sink
combination.

Such sensitivity directivity patterns are analogous to clipping frusta of computer
graphics rendering. Such hyper-acuity of apprehension or heightened directionality
of projection are best suited for ar applications embedded in real world contexts,
since purely virtual exposure and receptivity are not constrained by such coarse
models as lobed directivity. These are generalized by narrowcasting, described below
in Sect. 4.7.

4.4 Nonrealistic Range-Based Attenuation

Just as with computer graphics, it is common to introduce both approximate and
more complicated models for sound propagation (diffusion, reflection, reverbera-
tion, refraction, and diffraction in the presence of obstacles or occluders, dispersion,
absorption and scattering) to realize both improved performance and expressive con-
trol. Intensity of a point source spherically radiating sound waves naturally observes
an inverse square relation with distance, so amplitude gain, a root power quantity
proportional to rms pressure and the square root of intensity, observes a reciprocal
(inverse-proportional) relation with range. Distance modulation and estimation of
virtual sound sources becomes even sharper if volume control is driven by models
that roll-off more rapidly than this physical gain ∝ 1/ρ law, where ρ is the distance
between source and sink. In contrast, it is sometimes assumed that, in small spaces,
amplitude of a reverberant signal changes little with range, and that in large spaces
it is roughly proportional to 1/

√
ρ (Pulkki et al. 2011).

Excepting extreme circumstances in spatial sound teleconferencing, such as when
a virtual source approaches antipodal position, geotagged sources can be rendered
basically horizontally, but with elevation: ignoring spherical curvature of the earth,
but allowing relative altitude effects such as mountains and valleys. For many appli-
cations, such as conferencing and navigation, it is convenient to separate direction
and range, rendering the former faithfully but the later metaphorically or not at all.

For example, realistic display would attenuate most sources below audibility.
In everyday experience, even very loud sources are rarely heard beyond a few
kilometers, and conversational intensities are normally inaudible beyond tens of
meters. With the usual −6dB/range doubling attenuation, the level of a typi-
cal conversational human speaker, measuring, say, 60dBSPL at 1m, weakens a
millionfold at 1km to 0dB, a nominal auditory threshold, and practical inaudi-

2Similar plug-ins are also offered by other companies, including Facebook (https://
facebookincubator.github.io/facebook-360-spatial-workstation/), Microsoft (https://docs.
microsoft.com/en-us/azure/cognitive-services/acoustics/what-is-acoustics), and Yamaha (https://
research.yamaha.com/ja/technologies/vireal/).

https://facebookincubator.github.io/facebook-360-spatial-workstation/
https://facebookincubator.github.io/facebook-360-spatial-workstation/
https://docs.microsoft.com/en-us/azure/cognitive-services/acoustics/what-is-acoustics
https://docs.microsoft.com/en-us/azure/cognitive-services/acoustics/what-is-acoustics
https://research.yamaha.com/ja/technologies/vireal/
https://research.yamaha.com/ja/technologies/vireal/
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bility occurs even closer because of background noise. Fortunately, utilities for
way-finding (such as Microsoft Soundscape (https://www.microsoft.com/en-us/
research/product/soundscape/)), direction-giving, and conferencing do not need to
render sonorealistic range cues.

Besides intensity-controlled loudness, other cues to simulate or suggest distance
can be separately modulated (Jot 1999), including initial time-delay gap, the interval
between a direct sound and its first reflection; the previouslymentioneddirect:indirect
ratio of the power of direct sound to that of reverberation; motion parallax, subjective
shift of a source when the head is moved; and high-frequency attenuation. Nature,
including air, is a low-pass filter, and receding sources naturally manifest darkening,
thinning of higher frequency components. Direction is usually more important than
distance expression, but a fully featured display should allow localization into one’s
“whisper space” (Villegas and Cohen 2010) to convey such near-field intimacy, such
as that evoked by autonomous sensory meridian response (asmr) programs.

Relatedly, a rendering engine might perform “spotlight mixing,” exaggerating
loudness of frontal objects assumed to be foci of attention, analogous to foveal
rendering in computer graphics. Alternatively, as frontal objects could be assumed
to be visible and therefore already conspicuous, rearward objects might be par-
ticularly amplified (Bailey 2007), or their auditory position or timbre animated to
“catch one’s ear.” Such “gaze mixing” (https://docs.microsoft.com/en-us/windows/
mixed-reality/spatial-sound) is a sensory substitution kind of multimodal coordina-
tion, which also includes “audio haptics,” reactive sounds for touchless interactions,
compensating for a lack of force-feedback in virtual displays.

4.5 Extreme Dynamic Range Compression:
Location-Indifferent Intensity

Dynamic range is the ratio of the intensities of the strongest and weakest parts of
a signal, and range in the sense of source → sink distance can be used to attenu-
ate level, distance fall-off. In the limit, compression of dynamic range associated
with distance-dependent attenuation approaches range-insensitivity. Separation of
orientation and location, including distance independence, allows directionalization
without localization. In spatial user interfaces, compass bearings such as “North” are
obviously purely directional (like computer graphics directional lights, as opposed
to area-, point-, or spot-lights), but even grounded objects with specific locations
(such as one’s home or office) or characters (such as icons or avatars representing
conversants) can project as range-indifferent sources, by normalizing or compressing
range-dependent intensities. Sound spatialization can preserve direction but collapse
distance.

Affordable systems for immersive photospherical or volumetric visual and stereo-
phonic auditory display represent a popularization of vr-style interfaces. Google
Cardboard (https://arvr.google.com/cardboard/), the Merge Headset (https://merge

https://www.microsoft.com/en-us/research/product/soundscape/
https://www.microsoft.com/en-us/research/product/soundscape/
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-sound
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-sound
https://arvr.google.com/cardboard/
https://mergeedu.com/headset
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edu.com/headset), Oculus Quest (https://www.oculus.com/quest), and Samsung
Gear VR (https://www.samsung.com/global/galaxy/gear-vr/) use sensors for head-
tracked binocular display of stereoscopic contents and stereophonic display of spa-
tial audio. Orientation can be tracked by a micro-electro-mechanical system (mems)
imu—including gyroscope, accelerometer, and magnetometer—estimating bearing
via aggregating sensor fusion, but if location is not tracked (as via gps or optical
tracking), user virtual standpoint is not directly adjusted.

Some scene-based interfaces ignore location and use only orientation. Spatial
sound sources can be directionalized without range-parameterized gain modulation.
With head-tracking, a subjective soundscape can be counter-rotated, panned to stabi-
lize a scene, but not perturbed. Orientation sensitivity supports location-based sound
fields. For example, fields captured or encoded into Ambisonics B-format (with 4
channels) are easily rendered at runtime, down-mixed to a panned stereo pair heard
through head-tracked headphones or up-mixed to a real or virtual speaker array.

4.6 Layered Listening and Audio Windowing

Procedural mixing allows user interfaces to algorithmically combine and distribute
audio signals. Networked and object-based articulated sources invite audio-level (as
opposed to acoustic-level) modulation, and logical layers are a natural model for such
composition. Cinema and electronic gaming encourage richly textured soundscapes,
including music, sound effects (sfx), narration and dialog channels. Room effects
such as echo and reverb can be added by ambience processors.

Graphical compositing, à la Photoshop-style layers, allows various blending
modes, articulated effects applied at each phase of the “bit bucket brigade,” a chain
of filters like a sequence of guitar effects pedals or a composition of digital effects
to enrich expression. Such a cascade is equivalent to a tree of metamixers (Cohen
2015), a dataflow arrangement in which compositing operations are modeled as
routing matrix switches with effects applied at each crosspoint—“programmable
shaders” fanning-out into amplifiers for a combination of personal and public trans-
ducers, headphones and loudspeakers. Multichannel Audio Digital Interface (madi)
(http://www.aes.org/publications/standards/search.cfm?docID=17) and Dante
(https:www.//audinate.com) are popular standards formultichannel audio networking
and interfaces.Audiomiddleware and engines such asCSound (https://csound.com/),
Faust (http://faust.grame.fr/), FMOD (https://fmod.com), JUCE (https://juce.com),
Max/MSP (https://cycling74.com/products/max/), Pure Data (http://puredata.info),
Reaktor (https://www.native-instruments.com/en/products/komplete/synths/reaktor
-6/), SuperCollider (https://supercollider.github.io), and Wwise (https://www.audio
kinetic.com/products/wwise/) can render auditory scenes.

Audio windowing (Cohen 2016), in analogy to graphically windowing user inter-
faces (and not to be confused with signal-processing data sequence extraction), treats
soundscapes as articulated elements in a composite display (Begault 1994). Spatial
soundscapes, like layers in graphical applications or tracks in musical compositions,

https://mergeedu.com/headset
https://www.oculus.com/quest
https://www.samsung.com/global/galaxy/gear-vr/
http://www.aes.org/publications/standards/search.cfm?docID=17
https://csound.com/
http://faust.grame.fr/
https://fmod.com
https://juce.com
https://cycling74.com/products/max/
http://puredata.info
https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
https://supercollider.github.io
https://www.audiokinetic.com/products/wwise/
https://www.audiokinetic.com/products/wwise/
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can be combined simply by summing, although some scaling (amplification or atten-
uation), equalization, and other conditioning yields better results. For instance, inte-
rior soundscapes might be reverberated, to distinguish them from outdoor scenes.
To make a composited soundscape manageable, some sources might be muted or
muzzled and some sinks might be deafened or muffled.

As was illustrated by Fig. 4, mixed reality can not only add information to natu-
rally captured scenes, but can also remove information. Interpretation of “xr” can
include “diminished reality.” Diminished audio reality can be thought of as hiding
or masking otherwise apparent auditory scene components, such as engine sounds
(as in anc), objectionable ambient “room tone,” or an unwelcome voice (such as
that of a boring interloper). Such “unmixing” suppression of particular sources is
the opposite of the “cocktail party effect” (Middlebrooks et al. 2017), whereby par-
ticular objects are “heard out” of a cacophonous mix. The are generalized together
by auditory source separation, auditory scene analysis (Bregman 1990), and blind
source separation.

4.7 Narrowcasting: Privacy and Attention Management

“Privacy” has two interpretations. The first association is that of avoiding “leaks” of
confidential information, protecting secrets. The second association is “freedom from
disturbance,” not being bothered by interruption. Narrowcasting operations manage
privacy in both senses, filtering duplex information through an articulated commu-
nication model. In analogy to any-, broad-, multi-, and unicasting, narrowcasting is
an idiom for limiting and focusing media streams. Sources and sinks are symmetric
duals in virtual spaces. A human user might be represented by both a source and
a sink in a groupware environment, or perhaps by multiple instances of such dele-
gates, and both one’s own and others’ sources and sinks can be adjusted for privacy.
Sound sources can be explicitly “turned off” by being muted, or implicitly ignored
by selecting some others. Similarly, audibility of a soundscape is controlled by
embedded sinks, which can be explicitly deafened or implicitly desensitized if
other sinks are “attended” (Cohen 2000).

Formalized by the permission scheme expressions shown in Fig. 8, narrowcasting
(Alam et al. 2009; Cohen et al. 2009) exposure and distributes attention. Advanced
floor control symbology—for chat-spaces, concerts, and conferences—is outlined by
Table6.Modulation of source exposure or sink attention needn’t be “all or nothing”—
nimbus (projection) and focus (receptivity) can be respectively partially softenedwith
muzzling and muffling (Cohen 1993)—see Fig. 7.

That is, nuanced operations can soften state transition, allowing non-binary
control—not juston–offbut intermediate gains aswell—andalso signal-processing
filter cascades at each opportunity. Narrowcasting attributes can be integrated with
spatialization and used for “polite calling” or “awareware,” reflecting sensitivity to
one’s availability, like the “online–offline” switch of a conferencing service.
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Table 6 Narrowcasting for sOUrce
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CH0 CH4 CH5
CH2

CH1 CH2 CH0 CH3 CH4

Fig. 7 Dynamic map featuring display and control of spatial sound sources and sinks, includ-
ing narrowcasting, multipresence, and autofocus (Cohen and Kojima 2018), with contributions by
Akane Takeshige, Peter Larson, and Koki Tsuda with Rintarō Satō
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(x) = ¬ (x)∧
((∃ y ( (y) ∧ ( ( ) ⇔ ( )))) ⇒ (x)).

(sourcex) = ¬ (sourcex)∧
((∃ y ( (sourcey) ∧ ( ( ) ⇔ ( )))) ⇒ (sourcex)),

(sinkx) = ¬ (sinkx)∧
((∃ y ( (sinky) ∧ ( ( ) ⇔ ( )))) ⇒ (sinkx)).

Fig. 8 Formalization of narrowcasting functions in predicate calculus notation, where ‘¬’ means
“not,” ‘∧’ means conjunction (logical “and”), ‘∃’ means “there exists,” ‘⇒’ means “implies,” and
‘⇔’ means “is equal to” (mutual implication, “if and only if”). Duality between source and sink
operations is strong, and the semantics are analogous: an auditory object is inclusively enabled
by default unless, (i) it is explicitly excluded with mute (for sources) or deafened (for sinks),
or, (ii) peers in the same self/non-self class are explicitly included with solo/select (for
sources) or attend (for sinks) when the considered object is not

4.8 Multipresence and “Anyware”

Ordinary correspondence between inhabited bodily apprehension and consciousness
is one-to-one, but telexistence (Tachi 2015) can soften such rigidly focused subjec-
tivity, relaxing the singularity of human experience. Multitasking users want to have
presence in several locations at once. For instance, a telephone exemplifies auditory
telepresence, projecting conversants to other places besides their corporeal “meat-
space” base.

Enriched user interfaces, especially with position-tracking systems or real-time
locating systems, encourage multipresence, the inhabiting by representative sources
and sinks of multiple locations simultaneously, allowing a human user to desig-
nate doppelgänger delegates in distributed domains. Exocentric interfaces support-
ing “out-of-body” experience enable parallel spaces, across which can be designated
multiple instances of self-identified avatars (Cohen 1998; Ranaweera et al. 2015) as
shown in Fig. 7. “Anyware” multipresence models separate but combinable scenes,
allowing users to enjoy selectively distributed attendance.

Direct superposability of soundscapes makes audition especially open to multi-
presence—unlike vision, which cannot naturally overlay separate scenes. The appar-
ent paradoxes of auditorymultipresence can be resolved by an “autofocus” technique
that uses Helmholtz reciprocity (exchangeability of sources and sinks) and simulated
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precedence effect (perceptual fusion) to disambiguate soundscapes (Cohen and Fer-
nando 2009), like a “snap-to grid.” A soundscape interpreter can resolve source →
sink correspondences, directionalizing, localizing, or spatializing each source to its
best sink, a function of respective andmutual direction and orientation, directionality,
and range.

4.9 Implications: Nonsonorealistic Rendering and
Multimodal Cognition

Exploiting multimodal sensation and mental models of situations and environments,
convention and idiom can tighten apprehension of a scene, using metaphor and
relaxed expectationof sonorealism to enrich communication.Communication culture
is not innate but learned. Listening is not a one-off event, but continuous experience.
Sound displays use acquired associations, rather than direct emulation of natural
phenomena. An assumed sophistication of listeners decoding nonliteral displays
admits an acceptance of plausible but nonveridical cues.

Many situations do not call for an auralization-style re-creation of a particular
soundscape but instead are best served by some kind of metaphorical space. Practi-
cal auditory conventions such as those described by this section refine expression. For
instance, by using an audio windowing system as a mixing console, a multidimen-
sional pan-pot, users and applications determine rich parameters to compile source
and sink positions and their environments, rendering as a distributed diffuser or spa-
tial sound stager. Presence is more important than fidelity, audiophilic predilection
for “absolute sound” or perceived need for Master Quality Authenticated (MQA;
http://mqa.co.uk) streaming notwithstanding.

Purely auditory displays hardly exist. Normal physical environments ensure that
ordinary events are perceived multimodally. Spatial sound cues are aspects of a rich
ecology of environment-embedded signs. Almost always, “in the wild,” visual cues
and other context complement projected auditory scenes. Soundscapes are not appre-
hended “in a vacuum”: some map, conventional understanding, or at least situation
awareness aids decoding. Multimodal interfaces empower overlapping displays.

Cognitive processes can resolve otherwise confusing soundscapes. For instance,
a flashing light (as on an active smart speaker, or the “Lyric Speaker,” (https://lyric-
speaker.com) which animates words in karaoke-style sync with songs) can disam-
biguate conflicting cues. Listeners are inclined to be forgiving, suspending not only
disbelief but also insistence on sonorealism, so sonic situations can be efficiently
communicated. Mental models are used to interpret multimodal events, including
those generated by non-literal displays. For instance, independence of location and
orientation can flatter and “flatten” multipresent auditory localization. An advantage
of separating translation and rotation is that directionalizability can be preserved even
across multiple frames of reference. Such distributed presence can be coupled with
vehicle or position tracking. Moving can twist (but deliberately not shift) multiple

http://mqa.co.uk
https://lyric-speaker.com
https://lyric-speaker.com
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representations, maintaining consistent proprioceptive alignment of overlaid sound
sources.

5 Crowds and Clouds: Final Thoughts and Conclusions

5.1 Ubicomp and IoT: Extreme Sound Reinforcement

Ordinary rooms often host electronic appliances such as tvs, desktop and laptop
computers, game consoles and controllers, smart speakers, as well as tablets, and
smartphones of “second screening” (multitasking) occupants, who might also have
hmds or smart glasses for xr, wearable computers (such as smart watches and hear-
ables), psaps and hearing aids. These multitudes of speakers and microphones, dis-
plays and sensors, can be integrated by roomware.

In ubicompenvironments, generallymultiple usersmust be accommodated.Urban
computing offers even broader challenges and opportunities: public signage and
auditory displays can serve armessages to tracked users. A distributed ecosystem of
electronic devices defies top-down management but invites bottom-up coordination.
Privacy, attention, and sensitivity parameterize rendering of soundscapes. Delegated
by human users, software agents and intelligent assistants will negotiate private and
collective access to resources. Transducers of ai-infused networked appliances can
work in concert with personal “awareable” devices to optimize personal and public
experience. Syndicates of groupware interfaces will pool crowd-sourced data and
share displays: mediated social sensing and signaling.

In an “abc” (always best connected) world, persistent chat-spaces are expected:
selectively continual connectivity with one’s family, friends, and colleagues. Aware
interfaces infer user receptivity, tuning an environment by automatically adjusting
displays of all types to reward attention. Activity sensors, position trackers, and
monitors cooperate to optimize comfort, efficiency, and productivity. IoT-style smart
speakers should be situationally aware, using amalgamated sensing—microphones,
cameras (including thermal and infrared sensors), mo-cap, eeg, and fitness trackers
and biosensors (capturing microexpressions of voice, gaze, body language, pupil
dilation, heartbeat and pulse variability, galvanic skin response, body heat, etc.)—to
gauge mood, empathetically adjusting soundscapes to support users (Crum 2019).

Compiling a heterogeneous display, for listeners in arbitrary positions, across
speakers of various sizes, orientations, directivities, spectra, acoustic intensities, and
irregular and dynamic arrangement is endlessly challenging: extreme sound rein-
forcement.However, opportunistic networkedmanagers (Choi et al. 2016) can exploit
disparate devices for enriched presentation, carving out “sound zones.” Reflex-
ive display-and-capture systems can be used to calibrate diffusion in a “closed
loop,” like that used by structured light sensing. For instance, roomware might
arrange to ‘borrow’ or ‘lease’ nearby sensors and effectors to adjust parameters.
Representative contemporary applications demonstrate such cyberphysical cooper-
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ation between speakers and microphones and suggest the potential of such sym-
biosis: “Chirp” (https://chirp.io) and “Google Tone” (https://chrome.google.com/
webstore/detail/google-tone/nnckehldicaciogcbchegobnafnjkcne) distribute urls to
nearby computers audibly (“data-over-sound”); “Ultrasonic Recognition” (http://
www.lankasolution.com/ar365-usr-ultra-sonic-recognition/) embeds tags in audio
tracks; and “AmpMe” (http://ampme.com) and “Tune Mob” (https://itunes.apple.
com/developer/tunemob/id680664869) manage network-synchronized distributed
music display. Audio steganography can embed “side-channel” information as sub-
liminal, ultrasonic, or otherwise inaudible acoustic signals.

5.2 AI-Empowered Conversational Agents

Besides mobile telephony, so-called “smart speakers,” which also integrate micro-
phone arrays and often lights or fuller displays, feature internet services for con-
versational interfaces backed by ai for information or control. Emergent qualities
of networked sensors and the high bandwidth and low latency of wireless systems
such as that promised by 5g, 5th-generation cellular networks, recall the blending of
fixed-mobile convergence (fmc). As the processing is mostly on-line, intelligence
cannot be attributed to the loudspeaker itself: the network makes locality of compu-
tation seamless or “cloudy.” We extend ourselves with distributed systems, and the
network stretches to embrace us cyberspatially.

Such IoT devices represent an interpolation between robots and chatbots, trans-
actional and conversational virtual assistants. Appliances, even with wireless data
connections, are usually powered and fixed, but ambulatory electronic pets and
consumer robots—including socially assistive models and hospitality-service bots
(such as Sony Aibo (https://us.aibo.com), Honda Asimo (http://asimo.honda.com),
SoftBank Pepper (https://www.softbank.jp/en/robot/), and Sharp RoBoHon (https://
robohon.com/global/))—detecting and responding to human emotions, represent
self-locomotive loudspeaker platforms with telepresence capability.

Acoustic devices can be wireline or wireless, spanning continua of data- and
power-cordlessness: Fixed, as by normal loudspeakers;Tethered, as bymany hmds;
Bounded, as with zones for near field communication (nfc) and area networks such
wireless local area networks (Wlans) and near-me area networks (nans), including
those of Bluetooth, Wi-Fi and WiGig; and Free-roaming, as with cellular coverage.

Voice interfaces feature speech recognition (sr) and text-to-speech (tts), with
increasingly natural sounding synthesis, allow rendering of textual sources as audi-
tory sources, a synæsthetic transcoding. The renaissance of machine learning and ai
includes advances in big data and deep learning, for speech interpretation, machine
translation, conversational intelligence, and multilingual tts. “Vocal emotion recog-
nition” can characterizemood from speech, using suchmicroexpressive cues as voice
dynamics, tone, timing, and metalinguals. Ai can be applied to situation awareness,
estimating social conditions such as user sensitivity (distractibility, attention, fatigue,
multitasking, “flow”), including support functions such as face, speech and speaker

https://chirp.io
https://chrome.google.com/webstore/detail/google-tone/nnckehldicaciogcbchegobnafnjkcne
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http://www.lankasolution.com/ar365-usr-ultra-sonic-recognition/
http://www.lankasolution.com/ar365-usr-ultra-sonic-recognition/
http://ampme.com
https://itunes.apple.com/developer/tunemob/id680664869
https://itunes.apple.com/developer/tunemob/id680664869
https://us.aibo.com
http://asimo.honda.com
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recognition; optical character recognition (ocr); natural language processing (nlp);
and “kansei (affective) engineering” sentiment analysis.

Enabled by the confluence of sensing, connectivity, computation, and machine
intelligence, user recognition and characterization allow provision of personalized
media and listening zones. The “quantified self” domain includes audiometric cus-
tomization and individualization of atfs. Public loudspeakers are usually around
the periphery of a room—often at the walls, sometimes on the ceiling, rarely in the
floor—but smart speakers among and amidst people can complement traditional loud-
speakers, and along with personal displays, contribute to integrated mobile-ambient
interfaces for immersive experience, taking “theatre-in-the-round” and turning it
envelopeingly inside-out. Paralleling fmc, “glocal” interfaces can leverage both per-
sonal devices and shared resources. For control, smartphone-sensed orientation and
gps-like tracking can be combined with parameters such as layering and narrow-
casting attributes. For display, smartphone and tablet screens can be extended by
cooperative roomware lights and screens, and headphones and hearables can be aug-
mented by speaker arrays.

5.3 Late Binding of Soundscape Staging: Runtime
Determination of Synthesis, Filtering, Spatialization, and
Multimodal Rendering

Spatial sound systems handle three different kinds of audio encodings, namely,

Channel-based, associatedwith fixed (“bed”) display configurations (headphones,
stereo speakers, home theater layouts, theatrical arrangements, etc.) including
matrix encodings,
Scene-based, such as Ambisonics recordings and streams that capture sound fields
at particular locations
Object-based, associating streamswith particular objects in a scene (human speak-
ers, musical instruments, acoustic events), and assuming that an audio renderer
will directionalize or spatialize these tracks for a parameterized display.

Audio sources for games (Collins 2008) and simulations have historically been
associated with prerecorded files, but more richly parameterized applications and
social media drive a shift to dynamic media streams, including physical model-
ing, procedural audio, algorithmic music, voice-chat, and, inevitably and immi-
nently, “deepfake” photo- and sonorealistic multimedia. The parallel trend is away
from assumed fixed loudspeaker locations and towards expectation that material
will be rendered to whatever is available at the display end of the chain. As atten-
tion shifts away from prepared media towards online experiences, the process of
mixing changes: instead of aggregation into “stems,” raw audio tracks are pushed
into dynamic rendering, configured by metadata object positions and realtime track-
ing. Rather than baking virtual sources into transducer channels, which is a kind of
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rigid compilation, sources are rendered and diffused at runtime, accommodating cir-
cumstances and exploiting opportunities. Parameterization by “late binding” display
arrangement is a kind of dynamic projection mapping, configuring signal-processing
to match particular loudspeaker and headphone resources and configurations.

Such freestyle improvisation lacks the broad consistency of cinematic stan-
dards such as Auro-3D (https://www.auro-3d.com), DTS:X (https://dts.com/dtsx),
and Dolby Atmos (https://www.dolby.com/us/en/brands/dolby-atmos.html), but is
potentially richer and is inherently future-proof. Dolby AC-4 (https://www.dolby.
com/us/en/technologies/AC-4.html) combines channel- and object-based models,
andDTSMDA,MultiDimensionalAudio, is a kindof interpolation between channel-
and object-based encoding, with object-based channels mapped to theatrical speak-
ers at installation time. Encoding standards for channel-, scene-, and object-based
models were reviewed by Cohen and Villegas (2016). The MPEG-H (https://www.
mpegh.com/en/home/) 3d Audio (https://mpeg.chiariglione.org/standards/mpeg-h/
3d-audio) and the ITU ADM (Audio Definition Model; https://www.itu.int/dms_
pubrec/itu-r/rec/bs/R-REC-BS.2125-0-201901-I!!PDF-E.pdf) standards integrate
thesemodels. For typical instance, object-based foreground spatialization can be ren-
dered atop both channel-based stereo (non-diegetic)bgm and scene-basedAmbisonic
“sweetening” atmospheric background.

Synergies among components arise even for someone alone in a room. Such
mutual support includes ducking during voice chats to attenuate backgroundable
media; using smartphones and smart speakers to reinforce or articulate cinematic
soundtracks and conferencing channels; and using IoT addressability to integrate
distributed displays (such as speakers and lights) and sensors (such as microphones
and cameras).

Media device orchestration (Francombe et al. 2018) uses ad hoc arrays of appli-
ances to augment apprehension. In the parlance of media presentation, a responsive
framework serves dynamic content through an adaptive heterogeneous display.Artic-
ulation and comodulation of parameters can coordinate audio and visual displays to
accommodate attention, mood, and circumstances. Synchronicity of complemen-
tary cross-modal signals—such as moving lips or flashing light, or a map or Gestalt
mental model—can disambiguate otherwise indeterminate cues, or even override
preliminary interpretation. Confederation of information appliances, sharing data
and capabilities, can enhance awareness, expressiveness, and experience.

To recapitulate, conversation, lectures, phone calls, music, television, and
announcements inundate us with sonic signals—purely acoustic, electroacoustic,
These auditory stimuli comprise overlaid and attentionally oversaturated spatial
sound fields, engulfing listeners cacophonously. Sound is mixed acoustically, per-
ceptually, and cognitively—roughly and respectively associated with the air, ear,
and brain—corresponding to the three kinds of spatial soundscape superposition
described in this chapter, that is, physical transmission (sound), perceptual appre-
hension (sensation), and procedural interpretation (signal).

Together they span our anticipation for the future of auditory interfaces: hetero-
geneous, personal and public speakers awarely integrated into multimodal duplex
interfaces leveraging idiomatic and metaphorical conventions.
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Binaural Evaluation of Sound Quality
and Quality of Experience

Alexander Raake and Hagen Wierstorf

Abstract The chapter outlines the concepts of Sound Quality and Quality of Expe-
rience (QoE). Building on these, it describes a conceptual model of sound quality
perception and experience during active listening in a spatial-audio context. The pre-
sented model of sound quality perception considers both bottom-up (signal-driven)
as well as top-down (hypothesis-driven) perceptual functional processes. Different
studies by the authors and from the literature are discussed in light of their suitability
to help develop implementations of the conceptual model. As a key prerequisite, the
underlying perceptual ground-truth data required for model training and validation
are discussed, as well as means for deriving these from respective listening tests.
Both feature-based and more holistic modeling approaches are analyzed. Overall,
open research questions are summarized, deriving trajectories for future work on
spatial-audio Sound Quality and Quality of Experience modeling.

1 Introduction

Sound Quality evaluation1 has been a research topic since the early days of sound
generation and processing, including the evaluation ofmusical instruments, technical
systems such as the telephone, the gramophone or,more recently, audio coding, trans-
mission and large-scale spatial-audio systems. For example, theBell receiver of 1876,
used in the first telephone system, was succeeded by a carbon microphone invented
by Edison in 1877 that was reportedly much better sounding than its predecessor—

1The chapter is a synthesis and extension of the current authors’work presented inRaake andBlauert
(2013),Raake andEgger (2014),Raake et al. (2014b),Raake (2016) andRaake andWierstorf (2016).
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see Richards (1973)—Sound Quality continues to be the driving forces in the design
of audio technology for speech communication or audio systems.

When addressing Sound Quality, human listeners are considered who use the
received acoustic signals to extract features and assign meaning to interact with their
environment, in other words, to communicatewith it. In the audio-technology context
of the current chapter, it is assumed that the notion of Sound Quality includes any
kind of processing between the generation of a sound by its initial source(s) and its
recording via different audio-technology systems along the chain up to the listener.

In engineering contexts, instrumentalmeasurements are often used to evaluate and
possibly control certain processing steps or technology settings, such as sound pres-
sure levels, frequency responses, decay times, signal delays. They can also include
measures related to psychoacoustic features such as intelligibility (Houtgast and
Steeneken 1985), or apparent source width (Zacharov et al. 2016b). However, for
holistic system evaluation and optimization, Sound Quality is addressed as a more
integral feature.

Instrumental models of human perception can enable a computational assessment
and thus, in principle, in-the-loop control of Sound Quality. Such model-based qual-
ity optimization has successfully been applied for video-coding in streaming services
such as Netflix.2 Yet, when designing complex audio technology like spatial-audio
or audio-conferencing systems, automatic Sound Quality evaluation and respective
control mechanisms are still a challenging topic. Hence, especially for newly estab-
lished reproduction paradigms, listening tests may still be the best-suited approach
for some time to come.

This chapter focuses on audio systems at large, and in particular on their binaural
evaluation, that is, with two ears. A binaural evaluation of Sound Quality is generally
relevant, and especially when dedicated spatial attributes are evoked by the given
auditory scene, such as for spatial audio systems, room acoustics, or the evaluation
of sound sources that have a specific spatial extent. Further, certain features also
involved in a pure monaural listening may be affected by binaural listening, such
as binaural versus monaural loudness (Moore and Glasberg 2007) or binaural de-
coloration (Brüggen 2001a). Hence, of particular interest in this chapter are spatial
audio systems, where typically both of the above binaural-listening implications
are fulfilled. Here, besides monaural also binaural features are involved, evoking
respective spatial mechanisms of auditory scene analysis during quality evaluation
(e.g., see Raake et al. 2014b).

The concept of Sound Quality has been complemented by that of Quality of
Experience (QoE) during the past 10–15 years. In the literature, the terms Sound
Quality and Quality of Experience are often used interchangeably. However, in the
authors’ view, Quality of Experience represents a more holistic mental construct,
related to the entire process of experience of a person—see Sect. 2.

As a starting point, the two concepts of Sound Quality and Quality of Experience
are briefly revisited and related to more recent literature. Respective challenges and

2https://medium.com/netflix-techblog/dynamic-optimizer-a-perceptual-video-encoding-
optimization-framework-e19f1e3a277f [last accessed: August 30, 2019].

https://medium.com/netflix-techblog/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://medium.com/netflix-techblog/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
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recent developments in sensory evaluation of spatial-audio systems are discussed. In
a subsequent step, the chapter presents a conceptual model of binaural perception,
Sound Quality and Quality of Experience evaluation—see Sect. 5. The description
addresses the underlying model concept as well as more concrete aspects for its
implementation.3

2 Sound Quality and Quality of Experience

In this section, the concepts of Sound Quality and Quality of Experience are more
formally introduced and set into the context of auditory perception and evaluation.

2.1 Sound Quality

In her work on voice, speech and sound quality, Jekosch defines quality as (Jekosch
2005b, p. 15).

The result of the judgment of the perceived composition of an entity with respect to its
desired composition

The underlying concepts are related with the definitions of Quality of Service (QoS)
by the International Telecommunication Union (ITU-T) and the standardized defini-
tion ofQuality by the International Organization for Standardization (ISO 9000:2000
2000).

In this chapter it is assumed that the definition exclusively addresses percep-
tion that “involves sensory processing of external stimuli” (Raake and Egger 2014).
Hence, Sound Quality addresses the quality evaluation of auditory percepts. In the
context of audio-quality evaluation, the term Basic Audio Quality (BAQ) is often
used for Sound Quality (ITU–R BS.1534-3 2015; Thiede et al. 2000; Schoeffler and
Herre 2016).

In a technology-related context as in the present book, Sound Quality usually
addresses a mere technical or technology-related quality, in terms of some sort of
fidelity or excellence (Martens and Martens 2001). In Raake and Egger (2014), a
complimentary term, Assumed Quality, is proposed as follows.

Assumed Quality is the quality and quality features that users, developers, manufacturers
or service providers assume regarding a system, service or product that they intend to be

3The modeling concepts presented are related to the authors’ work in the Two!Ears project.
Evaluating sound quality for spatial-audio systems has been one of Two!Ears’ two proof-of-
concept applications (Raake and Blauert 2013; Raake and Wierstorf 2016; Wierstorf et al. 2018).
The Two!Ears-system architecture is open and modular. All documentation, code, data as well as
descriptions for hardware implementation are accessible open-source under www.twoears.eu [last
accessed: February 18, 2020].

www.twoears.eu
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using or will be producing, without, however, grounding these assumptions on an explicit
assessment of quality based on experience.

This term was introduced since often the evaluation or even choice of a multimedia
technology is made with regard to specifications or physical assessment criteria such
as amplitude spectra instead of perception or experience of resulting stimuli—see
also the discussion of the layer model in Sect. 2.3.

2.2 Quality of Experience

The term Quality of Experience was introduced to the ICT/multimedia field in the
early 2000s as a counterpart toQuality, and later standardized by ITU-T in Rec.P.10.
An improved definitionwas developed in the EuropeanCOSTActionQualinet (Qua-
linet 2012), andwas now adopted by the ITU-T in ITU–TRec. P.10/G.100 (2017). An
extended version has been proposed in Raake and Egger (2014). The same definition
of Quality of Experience underlies the current chapter.

Quality of Experience is the degree of delight or annoyance of a person whose experience
involves an application, service, or system. It results from the person’s evaluation of the
fulfillment of his/or her expectations and needs with respect to the utility and/or enjoyment
in the light of the person’s context, personality, and current state

According to this definition, Quality of Experience applies to a judgment of experi-
ence in terms of “[…] the individual stream of perceptions, that is, of feelings, sen-
sory percepts, and concepts that occurs in a particular situation of reference” (Raake
and Egger 2014). This definition reflects that the experience can have hedonic—that
is, pleasure or lack thereof—and pragmatic—that is, concept- or ergonomics-related
aspects (Hassenzahl 2001).

The concept of Quality of Experience as developed in a multimedia-technology
and telecommunications context bears remarkable similarity with the notion of expe-
rienced utility by Kahneman (1999). According to Kahneman, experienced utility
refers to a judgment in terms of good/bad of a given experience, related to individ-
ually perceived “pleasure and pain, point[ing] out what we ought to do, as well as
determinewhatwe shall do”—compareKahneman (2003)with reference toBentham
(1789).

Applied to sound or audio systems, Quality of Experience hence reflects the
holistic experience of a person when exposed to a scene that contains sound, and
in terms of technology assessment, reflects to which extent the integral experience
is influenced by the underlying audio technology. Accordingly, it is apparent that
Sound Quality and Quality of Experience are closely related, though not the same.
As the next step toward a comprehensive Sound Quality and sound-relatedQuality of
Experience model, their relation will be analyzed further in view of the layer model
of Blauert and Jekosch (2012), and Blauert (2013).
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Table 1 Quality layers and respective exemplary features applied by listeners for assessment—
adapted from Blauert and Jekosch (2012)

#1 Auditive #2 Aural Scene #3 Acoustic #4 Communication

Loudness Identification Sound pressure Product-sound quality

Roughness Localization Impulse response Comprehensibility

Sharpness Object formation Transmission function Usability

Pitch Intelligibility Reverberation time Content quality

Timbre Perspective Position Immersion

Spaciousness Arrangement Lateral-energy fraction Assignment of meaning

Tonal balance Cross-correlation Dialogue quality

Transparency

2.3 Layer Model

Blauert and Jekosch proposed a classification scheme of quality according to four
different layers of abstraction of the underlying references (Blauert and Jekosch
2012; Blauert 2013), see Table1, where different features applied for Sound Quality
evaluation at the different layers are summarized, too.

#1 The Auditive layer addresses psychoacoustics references, and relates to funda-
mental psychoacoustic concepts such as loudness, spectral balance, spacious-
ness, absence of artifacts. These features do not form aural objects as such but
are only components of them.

#2 The Aural Scene layer is related with perceptual-psychology references, and
refers to the aural-object-formation and scene-analysis step. Instead of ana-
lytic listening as for the psychoacoustic features, listeners now focus on object
properties and aspects such as their constancy and plausibility (for example in
terms of identity). According to Blauert and Jekosch the work of Tonmeisters
and sound-engineers is mainly happening at this level (Blauert 2013).

#3 The Acoustics layer incorporates references from physical acoustics. It com-
prises the acoustic-signal analysis, and addresses physical measurements by
experts. For these,mathematical abstraction is required. This classificationmay
appear counter-intuitive at first, since this physical level is typically assumed
to lie below any other level, that is, based on how persons process acoustically
(physically) presented information. The general motivation of including the
acoustics level here is that physical descriptors appear to be good correlates of
certain perceived features of sound quality.

#4 The Communication layer relates to references from communication sciences,
in terms of themeaning associatedwith a scene. Here, intra- and inter-personal,
cultural and social aspects come into play, and the received signs in terms
of a semiotic view according to Jekosch are interpreted as a whole (Jekosch
2005b, a). At this level, the process of experience is fully involved.
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In summary, it can be stated that SoundQuality as defined in this chapter encompasses
the Auditive and Aural-Scene layers, that is, #1 and #2. The Acoustic Layer#3 is
related to the aspect of Assumed (Sound) Quality of a system as discussed in Raake
andEgger (2014). Accordingly, theCommunicationLayer#4 is related to the concept
of Quality of Experience.

2.4 Temporal Considerations

For both, Sound Quality and Quality of Experience, the time or moment at which
the evaluation takes place is relevant (Kahneman 2003; Wältermann 2005). Three
time spans are differentiated here, (a) during the experience or instantaneous, (b)
just after the experience, that is, retrospective judgment on the remembered, as it is
often applied in listening tests, and (c) a more episodic view such as retrospective
evaluation of a certain event or episode lying further in the past. A corresponding
review of the literature can be found in Weiss et al. (2014).

2.5 Influencing Factors

To different extents, SoundQuality andQuality of Experience depend on a number of
influencing factors. According to Reiter et al. (2014), these can coarsely be divided
into three main classes, namely, human, system, and context. For this book, human is
the most important class and is discussed intrinsically in this chapter. The other two
classes, system and context, will mainly be addressed indirectly in the remainder of
the chapter, and are briefly discussed in the following.

Context
The perception process and the evoked references depend on the current context of
the specific person. The situation is depicted in Fig. 1. The context may influence
the role of the acoustic input signals by injecting specific contextual sounds or back-
ground noise, into the perception process, by triggering attentional processes, or
pre-conditioning peripheral processes, and by steering the expectations in the mind
of the listener.

The following example may help illustrate the different levels of contexts and
roles. A person is attending a musical performance in a concert hall with friends. The
person receives several inputs from different modalities (e.g., auditory and visual)
as indicated by the keyword signal(s) in Fig. 1. The person interacts with the other
persons and, possibly, with the concert hall, for example, by changing his/her position
(interactional context). The socio-cultural background of the group of friends, who
jointly attend the concert, forms the socio-cultural context. How the person under
consideration experiences the concert and evaluates Sound Quality or Quality of
Experiencedepends on the perceived signals andon the further contextual settings.As
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such, this information represents the reference-related inputs to the quality-formation
process and, thus, to any respective quality model.

Consideration of context also relates to the relevance of the technology and hence
some underlying, though not consciously addressed aspects ofQuality of Experience.
For example, during a dinner with friends, a certain level of background music may
be appreciated, though mainly the type, the specific content, and the loudness of the
music will be of relevance for most people. In contrast, during a Jazz concert or in
a “high-end”-audio listening situation, the listeners’ attention will be more strongly
focused on Sound Quality as an important contribution to the overall Quality of
Experience. Obviously, also the type of listener plays a key role here. An audiophile
listener will explicitly include aspects of Sound Quality in the overall experience,
even more so in a respective listening context—compare the aesthetics-related con-
siderations in Mourjopoulos (2020), this volume.

System
The goal of much of the sound quality-related research is to ultimately understand
the impact of technical choices during the implementation and/or configuration of
the end-to-end chain—see Fig. 2. This includes all steps from sound recording or
capture, mixing, post-production, coding, transmission to presentation (Spors et al.
2013).

Fig. 1 Contexts of use of an audio-related system (Raake and Egger 2014), adopted from ideas
by Geerts et al. (2010) and Moor (2012). The context-dependent roles of the persons, different
implications of the physical environment, and of the other actors present in the different types of
contexts determine their perception, as well as their evaluation of Sound Quality and Quality of
Experience
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Fig. 2 End-to-end chain (“system”) including sound recording, processing, transmission and repro-
duction in terms of the factors that ultimately determine Sound Quality andQuality of Experience—
adapted from Wierstorf et al. (2018)

It is important to consider the role of the involved audio technology at all steps.
The different characteristics and processing steps (source characteristics, recording,
post-production and mixing, transmission, reproduction, and perception) interact
with each other, ultimately determining the auditory events. For example, as shown
inWierstorf et al. (2018), the production process cannot be excludedwhen evaluating
Sound Quality and Quality of Experience of spatial-audio systems.

2.6 Internal References and Expertise

Internal references4 in the mind of the listeners are evoked and applied during Sound
Quality and Quality of Experience formation. According to Neisser (1978) and
Jekosch (2005b), these are related to the concept of schema originating from Piaget’s
early work of 1926 (English translation: Piaget 1962). Piaget proposed to consider
the schemata-formation processes in terms of accommodation (based on revision of
internal schemata to includenewpercepts) andassimilation (adjustment of perceptual
representation to complywith existing schemata)—Neisser (1978); Jekosch (2005b).
These concepts help to understand how internal references are formed—compare
Mourjopoulos (2020), this volume. In particular, when listeners encounter types of
auditory events that have so far been unknown to them, for example, when listening to
high-end spatial-audio systems, enabling 3D sound, assimilationmay happen first by
adapting to existing references. Only later, they accommodate to the new perception
by learning new references.

Further, it is important to note that different sets of references are likely to exist in
the listeners’ minds. These depend on different listening contexts, for example, the
type of acoustic scene (classical music or an audiobook), the characteristics of the
listening room (kitchen or concert hall), and/or the purpose of the listening situation
(dedicated listening or a social event).

The formation of internal references are influenced by the degrees of activity and
control involved in the reference-built-up, and the intrinsic motivation and interest

4The representations available in memory in abstracted form, and used at the different perceptual
and evaluation stages.
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Fig. 3 Top Quality perception in the context of creation/production—adapted from Raake and
Egger (2014). Perception and evaluation are represented in a simplified manner as two processing
components in the mind of a person. The person and creator may be identical and Quality of
Experience is used as target for optimization.BottomQuality perception during listening. In the case
of a listening test and hence controlled listening, the impression of Sound Quality will be encoded
into a description or a quality judgment. In the case of random perception, without a dedicated
listening-test context (Jekosch 2005b), no explicit “encoding” into sound quality judgments or a
description will be performed, and both Sound Quality and Quality of Experiencemay “happen” in
the mind of the persons, depending on the persons’ attention
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regarding audio systems. Hence, the reference formation represents aspects of prior
experience and expertise, which is highly related to the work of Kahneman (2011).
The different levels of activity and control during the reference formation can be
further specified as

Passive, indirect built-up of references by exposure to different systems during
consumption. Passive here means that there is no dedicated effort by the listener
to control specific system settings or to compare different systems. The rather
limited control may be due to little intrinsic interest or expertise regarding the
underlying audio technology, or simply due to a lack of opportunity for high-
quality-audio listening as a result of lacking availability of cultural resources
such as concerts, home-stereo systems, or professional systems. Indirect here
means that the build-up of references happens indirectly during usage.

Active selections from fixed system options or regarding basic reproduction set-
tings. For example, the listener may be able to make direct comparisons of audio
systems in a store or at home and, hence, learn about perceptual differences and
own preferences. Further, some degree of control may be available, such as place-
ment of loudspeakers, an adjustable equalizer, or pre-sets that enablemodifications
of spatial or timbral features.

Active control, where a person may be able to control certain system and media
settings so as to realize, based on expertise, the auditory event according to some
internal reference, resulting from her/his prior experience. Here, the reference
build-up may result from a dedicated training as it explicitly or implicitly happens
while learning to play an instrument or to become a professional audio engineer
or Tonmeister. It needs to be noted that, in this case, aspects such as talent, type,
and quality of training, intrinsic and extrinsic motivation, and availability of tech-
nology play important roles for the internal references and achievable degree of
control. This highest level of references in terms of the iterative build-up and
principal ability to control percepts may be referred to as realization references.

The respective process is illustrated in Fig. 3, comparing listening during creation
that enables substantial control of the source features to more passive situations, for
example, listening to a recording at home, to a live concert, or as part of a quality
test.

3 Sensory Evaluation of Sound Quality and Quality of
Experience

Aquestion at this point is, how can Sound Quality andQuality of Experience actually
be assessed.According to Jekosch (2005a), assessment is the“measurement of system
performance with respect to one or more criteria […], typically used to compare
like with like”, for instance, two alternative implementations of a technology or
successive realizations of the same implementation. The judgment criteria can then
be certain perceived features or constructs in relation to Sound Quality or Quality of
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Experience. Quality assessment methods can be classified into perception-based or
sensory5 and instrumental,6 in relation to whether humans or technical systems are
used for the assessment (Raake and Egger 2014; Raake 2006).

In the following, the focus will be on tests with human listeners using methods of
sensory evaluation. Sensory evaluation is not unique to sound-related quality, but is
of relevance in a number of other disciplines such as food quality (e.g. Lawless and
Heymann 2010) or service quality in a broader sense (e.g., Parasuraman et al. 1985;
Reeves and Bednar 1994)—for more details compare Raake and Egger (2014).

Since Sound Quality and Quality of Experience are constructs describing certain
percepts of humans, sensory evaluation is ultimately the most valid way of assess-
ment. Sensory evaluation tests are usually employed to collect ground-truth data for
the development of instrumental methods. For overviews of related test methods see
Bech and Zacharov (2006), Raake (2006), and Zacharov (2019).

Sensory evaluation methods can be divided into direct and indirect ones. With
direct methods, listeners are directly asked to judge the perceived quality of a pre-
sented stimulus or technical systemor to rate attributes that characterize the perceived
scene or system-related quality impact. Prominent examples of direct sound quality
assessment are the methods presented in standards from the International Telecom-
municationUnion (ITU). These include theAbsolute Category Rating (ACR), apply-
ing a rating scale with five or more categories (ITU–T Rec. P.800 1996). The most
prominent one of these is the five-point ACR scale, frequently referred to as MOS-
scale, where a Mean Opinion Score (MOS) is calculated as the average of ratings.7

The scale is mostly used for stronger degradation. For intermediate levels of degrada-
tion, the MUSHRA (MUltiple Stimuli with Hidden Reference and Anchors) method
is recommended, cf. ITU–R BS.1534-3 (2015). For small impairments, “BS-1116”
is recommended, cf. ITU–R BS.1116-1 (1997). An overview of the methods recom-
mended for assessing degraded audio is given in ITU–R BS.1283-1 (2003).

Methods that assess constructs related to Sound Quality or Quality of Experi-
ence without the usage of direct scaling or questionnaires are referred to as indirect
methods. Examples for indirect methods may involve physiological techniques such
as measuring skin conductance, heart rate, or EEG—see Engelke et al. (2017) for
an overview. Further, behavior-related measures can also be used, based on head
motion, facial reactions, task-performance and reaction times.

In short, direct methods guide the subjects’ attention toward the attributes being
measured, while indirect methods do not (Pike and Stenzel 2017). The differentiation
in terms of direct versus indirect methods is also related to the concepts of random
versus controlled perception (Jekosch 2005b). Random perception refers to percep-
tion in natural usage or listening contexts, without an extrinsic test task or laboratory

5Often referred to as subjective, a somewhat misleading term avoided here.
6Often referred to as objective, erroneously implying that instrumental measurements bear objec-
tivity, which they only do in case that they can be generalized.
7Note that this nomenclature is misleading in at least two ways. First, the ACR scale ideally should
be interpreted as an ordinal and not as an interval scale. This means that calculating averages may
be inappropriate. Second, any average of ratings may be called “MOS”, that is, not only using the
5-point ACR scale.
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environment—see also Fig. 3. In turn, controlled perception occurs for example in
a listening test with a concrete listening and judgment task. If done in a way that
controlled perception is evoked in the test-listeners’ minds, both direct and indirect
assessment techniques are likely to yield experimental biases (Zieliński et al. 2008).
An alternative is to observe listeners in a non-intrusive manner and to collect behav-
ioral data, such as listening durations, frequency of usage, and actions (for example,
play, stop, switch, or head-rotation for visual exploration) and analyze these together
with technical characteristics or signals—compare, for example, Raake et al. (2010),
Skowronek and Raake (2015), Rummukainen et al. (2018), for audio, and Dobrian
et al. (2013), Robitza and Raake (2016), Singla et al. (2017) for video. It should be
noted that the intrusiveness of the test method is a key aspect. For example, if such
indirect assessment is done in a way evoking controlled perception—as in laboratory
settings where the listeners are aware of the fact that they are in a test situation—the
behavior may significantly differ from random perception and natural usage—see
Robitza and Raake (2016).

3.1 Sound Quality Versus Quality of Experience Evaluation

Sound Quality according to its definitions in this chapter reflects the case where
the assessors are aware of the technical system or at least the form/carrier (Jekosch
2005a) of the sound and assess it directly. Respective listening scenarios are, for
instance, trying out different audio systems for purchase in a store, or taking part in
a sound quality listening test. In the case of Quality of Experience, the listener is not
necessarily aware of the extent to which the listening experience is influenced by the
technology used during any of the different steps from recording to reproduction.
Due to the associated general difficulty ofQuality of Experience assessment, most of
the literature from the audio-technology domain is restricted to dealing solely with
Sound Quality.

Assessors listening to sounds that result from the use of some kind of technical
system can typically take on two perspectives, namely, (a) focusing on the system
that is employed, for example, paying attention to the sound features related to the
audio system when reproducing a musical piece or, (b) focusing on the auditory
scene or musical piece presented, i.e. on the content. Mausfeld (2003) has described
this as the “dual nature” of perception. Research presented in Schoenenberg (2016)
has underlined the validity of this view when assessing Quality of Experience in
the context of mediated speech-communication applications. In the case of everyday
usage of audio technology, it may happen that degradations due to the technical
system are attributed to the audio scene or scene element such as a communication
partner (Schoenenberg et al. 2014). This often cannot be measured in a test asking
for Sound Quality, but represents an important contribution toQuality of Experience
with regard to the overall experience.

Obviously, for music and other types of audio similar considerations apply as for
speech communication. For example, in cases where processing steps such as mixing
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and reproduction alter the perceptual character of the initially recorded scene, these
may be attributed to the scene and not to the involved audio technology (Wierstorf
et al. 2018). For example, a singer may be perceived to sing with more passion, when
the degree of amplitude compression is increased, or an orchestra may be perceived
as spatially smaller or larger when the sound-pressure level is modified.

Hence, assessing Quality of Experience relates to the audio experience in a more
holistic manner, and implies that the listener is not explicitly aware of the fact that the
technology is assessed, thus ideally calling for amore indirect assessment. Respective
approaches have addressed preference ratings (Raake andWierstorf 2016; Wierstorf
et al. 2018) or rank-ordering (Rummukainen et al. 2018), the assessment of liking
(Schoeffler and Herre 2013; Wilson and Fazenda 2016) overall experience (Schoef-
fler and Herre 2013), emotional aspects (Lepa et al. 2013), task performance or
cognitive load (Skowronek and Raake 2015; Rees-Jones and Murphy 2018), as well
as behavioral data collection (Kim et al. 2013).

3.2 Multidimensional View of Sound Quality

Sound quality can be assumed to be a multidimensional percept. Hence, a systematic
approach to sensory evaluation in terms of multidimensional analysis of perceptual
features is appropriate. Such sensory evaluation represents a well-established prac-
tice in the food or beverage industry. The totality of perceived features describes
the perceived composition, perceived nature or character of a sound (respectively
Jekosch 2005b, 2004; Letowski 1989).

Specific terminology has been introduced by Jekosch in this regard, distinguishing
quality features from quality elements (Jekosch 2005b). Quality elements are, so to
speak, the knobs and screws that a designer of the technology, service, or system has
at hand to realize a certain level of Sound Quality or Quality of Experience. Quality
features are the relevant perceptual features as used by assessors for judging Sound
Quality or a more integral Quality of Experience formation.

The development of multidimensional sensory evaluation methods typically fol-
lows several of the steps illustrated in Fig. 4. In the figure, the development of the
sensory measurement system is illustrated, including both the listening panel and
the multidimensional-test and -analysis methods. The upper pathway indicates the
sensory evaluation approach with listeners. The lower pathway represents, how the
sensory ground-truth data can be used for quality-model development. Here, features
for dedicated predictions of quality dimensions and, further, a respective preference
mapping to underlying internal references “ideal points” are indicated as an approach
to dimension-based quality modeling

The literature on multidimensional analysis of Sound Quality includes work
on speech quality (Mattila 2002; Wältermann et al. 2010), concert-hall acoustics
(Lokki et al. 2011), spatial-audio quality (Rumsey et al. 2008; Wierstorf et al. 2013;
Lindau et al. 2014; Zacharov et al. 2016b, a), and audiovisual-quality evaluation
(Strohmeier et al. 2010; Olko et al. 2017). In these works, multidimensional analysis
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Table 2 Selection of auditory features that are of particular relevance for binaural evaluation. The
feature categories are mostly adapted from Zacharov et al. (2016b). They reflect a perceptually
motivated rather than a spatial-audio expert-related categorization. For the latter one refer to e.g.
Lindau et al. (2014)

Feature Manner of their specific implication in binaural listening

Loudness Perceived increase due to binaural listening, Moore and
Glasberg (2007)

Coloration Binaural decoloration using interaural correlation features
(Brüggen 2001a, b)

Reverberation Especially for early reflections, a binaural de-reverberation
occurs (Zacharov et al. 2016b; Lindau et al. 2014)

Localization: Distance Binaural features used in near-field for distance perception
(Blauert 1997; Zahorik et al. 2005)

Internality, externalization Different acoustic, auditory and multimodal effects that
determine the amount to which an auditory event is localized
either out-of-head or inside-the-head (Hartmann and
Wittenberg 1996; Blauert 1997; Brandenburg et al. 2020)

Localizability Lateral/horizontal-plane localization (Blauert 1997).
Related to spatial fidelity and respective modeling
approaches as discussed in Rumsey et al. (2008) and
Wierstorf et al. (2017a)

Depth, width, envelopment Interaction between source and playback-room properties in
conjunction with binaural hearing (Bradley and Soulodre
1995; Griesinger 1998; Blauert 1997)

techniques such as attribute scaling—with and without prior attribute elicitation—
multidimensional scaling, or mixed-methods are used to construct perceptual-feature
spaces associated with Sound Quality.

Fig. 4 Steps involved in the development of a sensory-evaluation-test method and, subsequently,
of a sound quality model based on multidimensional analysis



Binaural Evaluation of Sound Quality and Quality of Experience 407

Application to Spatial Audio and Sound Quality Modeling
A number of studies on spatial-audio Sound Quality have addressed the aspect of
attribute elicitation (for example, Francombe et al. 2017a; Reardon et al. 2018). It
turns out that specific features are particularly important when it comes to binaural
evaluation of sound quality. A selection of most prominent features in this context
is provided in Table2. Note that all perceptual features are typically affected in the
case of a binaural listening versus monaural or diotic listening.

To get from dimensions to Sound Quality, (external) preference mapping may
be applied (Carroll 1972), relating the multidimensional feature space to uni-scale
Sound Quality-ratings or preference scores. Frequently, a so-called “ideal point”
of the multidimensional feature space can be found that represents the statistically
best-possible Sound Quality (Mattila 2002; Zacharov et al. 2016b). In principle, the
search for an ideal-point marks an implicit way of determining the multidimensional
representation associatedwith the perceptually ideal reference in the listeners’minds.

It is important to note that the features comprised in existing vocabularies are—
according to theLayerModel presented earlier—restricted to psychoacoustics (Layer
#1) or perceptual psychology (Layer #2)—compare Wierstorf et al. (2013), Lindau
et al. (2014) and Zacharov et al. (2016a, b). In turn, also features of higher abstraction
may be applied to characterize differences between aural presentations. For example,
regarding their effect on themeaningof a given scene, relevant features are interpreted
as scene- or scene-object-related attributes. An example case may be when dynamic
compression applied to the voice of a singer alters the timbre in terms of basic
psychoacoustic features, yet, it may also alter the perceived nature of the singing
voice as initially driven by the creative intent of the singer. Similar effects have
been observed during informal listening to some of the stimuli used in Wierstorf
et al. (2018), and obviously are heavily used in today’s audio production to create
particular aesthetic effects—see also Mourjopoulos (2020), this volume.

Multidimensional analysis of Sound Quality represents a viable basis for the
implementation of larger-scale quality models. It enables the decomposition of the
modeling approach into, (1) a feature-analysis step and, (2) a subsequent preference-
mapping, in other words, a quality-integration step—see Fig. 4. For the prediction of
quality dimensions, feature-related model components such as proposed in Wälter-
mann (2013), Wierstorf et al. (2014), and Raake andWierstorf (2016) can be used. A
full sound quality model can be realized by appropriate weighting and integration or
mapping of the individually predicted features to an integral sound quality estimation
score (Mattila 2001; Skowronek et al. 2017).

A related approach was followed by Rumsey et al. (2008), who investigated the
intermediate constructs “timbral fidelity” and “spatial fidelity” for loudspeaker-based
systems, without an explicit step of multidimensional analysis. Their approach is
associated to findings as to which, for stereophonic systems, the variance in sound
quality tests is explained to 70% by timbral fidelity and by 30% by spatial fidelity.
This holds when no further artifacts such as noise or coding distortions are present
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(Rumsey et al. 2005).8 Similar findings as those of Rumsey were reported by
Schoeffler et al. (2017), confirming a higher contribution of timbral than of spa-
tial effects in MUSHRA-type tests on Basic Audio Quality (note that this depends
on the strengths of the related effects initially used in the underlying tests).

3.3 Spatial Audio Related Challenges

Obviously, evaluating spatial-audio technology is an application contextwhereSound
Quality and Quality of Experience are of primary relevance. However, this domain
is also intrinsically a quite difficult one for quality assessment. There are a number
of particular challenges, for example regarding,

1. The specific system instances under investigation. For example, the perceptual
effects resulting from real-life high-quality spatial-audio-reproduction set-ups are
rather small compared to degradations due to coding or low-cost electro-acoustic
interfaces. Actually, they may be characterized solely by differences in particular
features butwithout the system sounding degraded at large.As a consequence, test
subjects tend to give rather high quality scores overall, or they may not perceive
large quality differences even in multi-stimulus comparison tests. Hence, spatial-
audio quality can be difficult to assess in perceptual tests and, hence, as well by
means of instrumental models trained on respective data.

2. It is likely that there is no established reference in theminds of listeners especially
when it comes to commercially rather uncommon spatial-audio-reproduction
systems such as massive multi-channel Wave Field Synthesis (WFS) systems.
Besides the lack of familiarity with how spatial such systems should sound, this
may also be due to the lack of an established end-to-end production process
for such systems. These effects have more extensively been investigated in the
authors’ work—described in Wierstorf et al. (2018).

3. Consequently, the scenes most commonly addressed in spatial audio quality tests
are rather simplistic and do not play out all advantages and possibilities that such
systems may offer. For more realistic scenes, aspects of scene segregation and
auditory-scene analysis (Bregman 1990) play a larger role than for simpler audio
scenes (Raake et al. 2014b). The creation of appropriate and complex test scenes
that can be used for model development is a research task of its own.

4. Further, most recordings and productions with a specific focus on audio have,
in the past, addressed pure audio. Today, there is increasing usage of immersive
visual-media technology in combination with audio—not only in movie theatres.
As a consequence, multimodal interaction plays an even more important role for
perception than it does for more traditional, television-like audiovisual content
(Garcia et al. 2011). A variety of aspects have to be addressed in testing and,

8Note that findings that result in proportionality of relevant perceptual factors depend heavily on the
specific test conditions used. Compare Zieliński et al. (2008) for a discussion of biases in listening
tests.
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hence, also in the underlying scenes, such as, (i) audiovisual attention, (ii) cross-
modal feature- and quality-interactions including spatial congruency (e.g., van
Ee et al. 2009), or congruency between the visual impression of a room and
the perceived room acoustics (Werner et al. 2016; Brandenburg et al. 2020), and
congruency of the reaction of a virtual-reality scene with the motion behavior of
the viewers/listeners.

From the above challenges it becomes apparent that appropriate test methods are
required to collect the ground-truth data for developing models that predict binaural
Sound Quality or Quality of Experience for spatial audio systems, and even more so
in the case of dynamic or exploratory, active listening by the users.

3.4 New Approaches for Sensory Evaluation of Spatial Audio

Even for more traditional scenes that enable 3-DoF motion, asking for some sort of
quality represents a challenging task for test subjects. Besides scaling-related biases
described by Zieliński et al. (2008) and others, recent work on direct rating has shown
a bias towards timbral (audio) or signal-clarity (video) features—see, for instance,
Zacharov et al. (2016b), Benoit et al. (2008), and Lebreton et al. (2013) with a similar
study for video quality. This refers to the notion of excellence of sound quality as
discussed in Sect. 2.

Still, the widely used MUSHRA-type ratings of sound quality can be considered
as a viable approach as long as the focus is clearly restrained to Sound Quality or
basic audio quality (ITU–R BS.1534-3 2015). Related to the difficulty and often
absence of a dedicated reference in the context of spatial audio quality assessment,
reference-free variants of MUSHRA are clearly preferred in this context. Whether
both expert and less experienced listeners can validly directly rate a more holistic
overall listening experience using such a MUSHRA-type approach remains ques-
tionable to the authors of the current chapter—compare Woodcock et al. (2018). A
corresponding, MUSHRA-based method that addresses the relation between basic-
audio-quality scores and underlying attribute ratings from experts has been presented
by Zacharov et al. (2016b).

Paired Comparison
As an alternative to implicitly fidelity-focused, direct methods, comparative methods
such as Paired-Comparison (PC) preference tests can be used. They help to avoid
some of the possible biases and address the challenges of a generally high quality and
hence restricted sound quality range, and work also for complex scenes. Examples
of related work areWickelmaier et al. (2009), Li et al. (2012), Lebreton et al. (2013),
and Wierstorf et al. (2018). In a PC-type preference test, listeners are asked to rate
which presentation or version of a given pair of stimuli or systems they prefer. Hence,
the binary rating task for the listeners is a rather simple one.

A respective approach in-between Sound Quality and Quality of Experience
assessment has been taken in more recent work by the authors for spatial-audio eval-
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uation (Wierstorf et al. 2018). With such a PC-based approach, it can be assumed
that both technology-oriented and more hedonic aspects, related to the “meaning”
of the audio piece after interaction with technology, are used by the assessors when
deciding for preference. This is particularly the case for non-expert listeners who
have no deeper knowledge of the processing applied. The PC-test paradigm was
used for assessing preferences between pairs of spatial-audio processing and repro-
duction conditions, including different combinations of mixing/post-production
and spatial-audio presentation. Three spatial-audio-reproductionmethods were com-
pared, namely, stereo, 5.1 surround sound, and wave-field synthesis (WFS), with dif-
ferent variations of soundmixes produced specifically for each reproductionmethod.
In all three tests,WFS turned out to be themost-preferred reproductionmethod.How-
ever, the amount of preference was reduced to a large extent when a less preferred
mix was applied, almost neutralizing the reproduction-related advantage.

In Francombe et al. (2017a, b), a combination of sensory evaluation in terms
of attribute ratings with paired-comparison preference is reported. Different audio
excerpts were presented, using a number of spatial-audio reproduction methods,
namely, headphones, “low-quality mono”—that is, small computer loudspeakers,
further, mono, stereo, 5–channel, 9–channel, 22–channel, and ambisonic cuboid.
Both experienced and inexperienced listeners were recruited as assessors. Different
sets of attribute vocabulary and scales were developed, one for each listener group.
The attribute elicitation was part of a pair-wise preference test. By comparing across
all stimuli, a preference for 9– and 5–channel over 22–channel was found. However,
considering the results of Wierstorf et al. (2018), it remains questionable in how far
less adequate mixes or the underlying source material as such may have lead to the
lower preference for the 22-channel reproduction.

A further indirect alternative to fully-paired comparison is rank ordering. Such
tests aim at reducing the number of comparisons by iteratively eliminating the least
favored of different stimuli based on an intrinsically reduced number of paired com-
parisons (Wickelmaier et al. 2009; Rummukainen et al. 2018). These methods have
been shown to reduce the required testing time in comparison to PC-tests with full
pairs. Rummukainen et al. (2018) conducted a preference-based ranking test for dif-
ferent audio scenes both in an audiovisual VR and offline, evaluating the contribution
of different audio-rendering methods. In addition to the rank-ordering-test results,
different types of behavioral data were recorded, including 3-DoF head rotations—
that is, yaw, pitch, and roll. The rank-order results revealed significant differences
between audio-renderingmethods. The behavioral data, in turn, did not provide addi-
tional insight for the system comparisons.

Liking and Sound Quality
In both rank-ordering and direct paired-comparison tests, different versions of the
same audio piece are typically compared with each other, that is, differently mixed,
processed and/or rendered variants. However, other approaches formoreQoE-related
assessment—also comparing different audio pieces—have addressed the judgment of
liking (Wilson and Fazenda 2016; Schoeffler andHerre 2013) or of overall experience
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(Schoeffler andHerre 2013, 2016; Schoeffler et al. 2017), aswell as possible relations
to Sound Quality (i.e. Basic Audio Quality).

Schoeffler and Herre (2016) and Schoeffler et al. (2017) have conducted a number
of test runs with expert and non-expert listeners, using the following approach. In
a first session, the liking of individual pieces from a larger number of down-mixed
stereo sequences from different genres is judged, later referred to as the “basic-item
rating”.9 In a subsequent set of sessions, liking is assessed with the same approach
for a number of processed (such as band-pass filtered) and differently presented (such
as different spatial-audio techniques) sequences subsampled from the initial set of
sources. The resulting ratings are referred to asOverall Listening Experience (OLE).
As the last step, the Basic Audio Quality (BAQ) is assessed using the MUSHRA
technique (ITU–R BS.1534-3 2015). The obtained data indicate that OLE ratings
result from different weightings of the “basic item rating” (liking) of the pieces by
an individual assessor, and of the BAQ. While this approach represents a novel
approach to assess some cognitive constructs closer to QoE than in most other tests,
some systematic aspects may raise the question of how close this approach really
comes to it. In particular, directly asking for ratings after different presentations and
the small number of but still present repetitions of the same contents may cause
a higher focus on BAQ than on what really affects the QoE in cases of random-
perception (Jekosch 2005b) as under real-life listening conditions.

In another study by Wilson and Fazenda (2016), it was hypothesized that Sound
Quality and liking represent independent concepts, with Sound Quality referring to a
pragmatic and liking to a hedonic construct within the minds of listeners. However,
since the listeners were presented with liking and Sound Quality rating scales in
the same test run, the independence of the two rating results may also stem from a
test-inherent bias, where subjects may have intended to “de-correlate” their usage of
the scales—see also the considerations in Raake and Wierstorf (2016).

Emotional Aspects
A further way to approachQuality of Experiencemay be to assess emotional aspects
related to audio listening. For example, Lepa et al. (2013, 2014) conducted tests on
emotional expressiveness of music for pieces available both commercially on CD
and as multi-track versions. The pieces were processed and played back with three
different types of spatialization, using dynamic binaural re-synthesis for presenta-
tion, namely, (1) the original CD stereo version, (2) a stereo-loudspeaker simulation
using binaural room impulse responses (BRIRs) and, (3) a simulated live event with
respective placement of sources on some virtual stage. The listeners judged aspects of
the emotional expressiveness for one of the three presentation types using a between-
subject design. At the end of each trial, they gave ratings of sound quality attributes
using a semantic differential. It was found that spaciousness had a significant effect
on the emotional attributes ascribed to the musical performance. In turn, only the
sound quality attributes directly related to spaciousness were affected by the presen-
tation type. Lepa et al. (2014) argue that the increased feeling of being surrounded

9It may be argued that the specific down-mix may have affected the liking already, depending on
the piece and its original recording. It is difficult, though, to address this topic in a different way.
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by the sources in the case of a higher degree of spaciousness may be the reason for
perceiving a stronger emotional expressiveness. The finding that the three presenta-
tion types only affected spaciousness-related sound quality attributes can likely be
explained with the fact that the processing mainly differed in spaciousness-related
technical characteristics. The proposed approach can be considered as an interesting
step towards more QoE-type assessment. However, further research is required to
assess how different types of audio processing and presentation may affect not only
the perceived emotional expressiveness (i.e. related to musical intent) but also with
regard to the emotional state of the listeners.

Behavior and Physiological Assessment
Another indirect approach for evaluating spatial-audio technology includes the
assessment of listening behavior or respective task performance. For example, Rum-
mukainen et al. (2017) investigated the performance of persons in a 6-DoF naviga-
tion tasks in a VR environment for three different types of spatialization of the sound
sources used as targets of the navigation action (Rummukainen et al. 2017). In this
pilot experiment it was found that monaural presentation with intensity rendering
lead to significantly worse performance as compared to binaural presentation with
and without 3-dimensional rendering. Four performance measures were used, that is,
mean time to target,mean path length to target, error at the end, and aggregate rotation
angle applied. In a further experiment by Rummukainen et al., besides MUSHRA-
type reference-free ratings, also head-rotation-behavior data were collected for dif-
ferent binaural rendering engines. The experiment used 6-DoF-VR interactive audio
presentation (Rummukainen et al. 2018). While the quality ratings were well indica-
tive of the advantage of individual rendering algorithms, the collected behavior data
did not provide any additional information on quality.

Further examples for behavior- or, better, performance-related assessment of spa-
tial versus non-spatial audio are discussed in Rees-Jones andMurphy (2018). One of
the studies addressed the impact of spatial audio on the success of players in an audio
game. The general idea behind this study was in line with other work on performance
in VR-type environments—compare the work reviewed in Bowman and McMahan
(2007). However, the game used was very specific with regard to assessing the value
of audio. Hence, a transfer to more real-life game usage with complex scenes and a
gaming-situation-specific musical-score generation cannot readily be made.

In addition to perceptual and behavioral data, physiological signals can be
employed for quality evaluation. In the context of quality or QoE assessment, phys-
iological methods and measures so far employed have been pupillometry, heart
rate, skin conductance, brain imaging, EEG (electroencephalogram) including ERPs
(event-related potentials), MMN (mismatch negativity), and oscillation analysis—
see Engelke et al. (2017). Physiological measurements principally enable indirect
assessment of latent reactions. This is a suitable approach, especially when these
reactions cannot easily be controlled by the test listeners—such as certain emotional
responses. Up to now, physiological measurements cannot fully replace perception-
and/or behavior-scaling methods since physiological correlates of quality must still
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Table 3 Selection of perceptual studies on spatial-audio Sound Quality or Quality of Experience
and availability of data

Study Data collected Available?

Choisel and Wickelmaier (2007) Attributes, preference No

Zacharov et al. (2016b) Attributes, quality No

Reardon et al. (2018) Attributes, preference No

Woodcock et al. (2018) Experience Unclear

Francombe et al. (2017a, b) Attributes, preference Unclear

Raake and Wierstorf (2016) Localization, head-rotation, coloration,
preference

Yes

Wierstorf et al. (2018) Preference Partly

Schoeffler and Herre (2016) Quality, listening experience No

Schoeffler et al. (2017) Quality, listening experience No

Wilson and Fazenda (2016) Sound quality, liking No

Lepa et al. (2013, 2014) Emotional attributes No

Rees-Jones and Murphy (2018) Attributes, quality, performance No

Kim et al. (2013) Head-motion No

Rummukainen et al. (2017) Localization, head-motion, performance No

Rummukainen et al. (2018) Quality, head-rotation No

be related to direct quantitative analysis. For the case of speech quality, this link has
recently been investigated in Uhrig et al. (2017, 2018).

3.5 Data Availability and Reproducible Research

A main limitation for model development is the lack of available test material that
can be used for training the models. To be clear, this is not only a problem due to a
lack of appropriate test methods or the difficulty of running such tests. In addition
and possibly even worse, the majority of existing test data has not yet been made
available to the research community. In particular, in the domain of sound quality
assessment, the currently debated issues of reproducible research and open science
are well behind their potential (Spors et al. 2017). Particularly for Sound Quality and
Quality of Experience research, only little data have been made publicly available.
An example of reproducible research is the Two!Ears project, where most of the
results and data are freely available—see, for instance,Wierstorf et al. (2017b, 2018)
and Winter et al. (2017). Different studies referenced in the current chapter and the
possible usage of their test data for modeling are summarized in Table3.
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4 Instrumental Evaluation of Sound Quality and Quality
of Experience

Once appropriate ground-truth data are available, actual model development can be
addressed. In this section, different existingmodelswill brieflybe reviewed in relation
to the model outlined in Sect. 5. Raake et al. (2014b) distinguished two fundamental
types of methods in this context, namely,

1. Algorithms or metrics that are based on physical properties of the signal or sound
field, which may be put into relation with perceptual attributes or ratings.

2. Algorithms that implement specific parts of human auditory signal processing,
possibly including cognition-type mapping to quality dimensions, Sound Quality
or Quality of Experience.

An example of measures of Type1 for the case of sound field synthesis is a quan-
titative descriptor to characterize the deviation of the reproduced sound field from
the desired one (Wierstorf 2014). An example for room acoustics evaluation metrics
are reverberation-decay times (Kuttruff 2016). Such direct relation with physical
properties of the sound field may principally enable a more diagnostic control or
optimization based on system settings. However, respective measures do not well
capture the ground-truth data from sensory evaluation, resulting from human per-
ception and judgment, and certainly do not meet the criteria put forward for the
conceptual model proposed in Sect. 5.

To this aim, the explicit modeling of human signal processing—see Type-2 mea-
sures above—and mapping of perceptual features to sensory evaluation results has
to be performed. Various notable approaches of this type have been developed
in the past years, and have been standardized in bodies such as the International
TelecommunicationUnion.Examples includePerceptualEvaluationof SpeechQual-
ity (PESQ) (ITU–T Rec. P.862 2001) and Perceptual Objective Listening Quality
Analysis (POLQA) (ITU–T Rec. P.863 2011; Beerends et al. 2013) for assessing the
quality of speech transmission systems, and Perceptual Evaluation of Audio Quality
(PEAQ) (Thiede et al. 2000) for audio coding evaluation. Such signal-based, full-
reference (FR) models estimate quality by comparing the processed audio signal
with an unprocessed reference, on the basis of a transformation of both signals into
perceptual representations usingmodels of human audition. Further examples of FR-
type Sound Quality models for non-spatial audio have been presented in Harlander
et al. (2014), Biberger and Ewert (2016) and Biberger et al. (2018).

For the instrumental assessment of loudspeaker-based sound reproduction, initial
models were constructed on the basis of the notion of spatial and timbral fidelity
(Rumsey et al. 2005). To this aim, underlying technical or physical characteristics of
the acoustic scene weremapped to low-level attributes or perceptive constructs. In the
respective model named Quality Evaluation of Spatial Transmission and Reproduc-
tion Using an Artificial Listener (QESTRAL) (Rumsey et al. 2008), spatial fidelity
is predicted from perceptually relevant cues such as interaural time and level dif-
ferences. Some approaches have been proposed for timbral-fidelity prediction, too.
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Moore andTan (2004) describe amodel for coloration prediction of bandpass-filtered
speech and audio. Another coloration-prediction model for room acoustics is pre-
sented in Brüggen (2001b), and a simple speech-coloration model in Raake (2006).
For spatial audio, a model based on Moore and Tan (2004) has been implemented
within the Two!Ears framework (Raake and Wierstorf 2016).

As stated earlier in this chapter, Section 3.2, the approach of modeling Sound
Quality on the basis of individual quality dimensions is generalizable. Starting from
relevant predictors of individual quality dimensions, a kind of external preference
mapping can be applied and the SoundQuality can be predicted based on the individ-
ual dimensions (Mattila 2001; Wältermann 2013; Choisel and Wickelmaier 2007).

Full-reference models for spatial audio reproduction were under development in
ITU-R SG6 (Liebetrau et al. 2010), and different algorithms have more recently
been described in the literature (Seo et al. 2013; Härmä et al. 2014). Full-reference
models that deal with audio coding analyze first the processed and reference signals
in terms ofModel Output Variables (MOVs), for example, by models of the auditory
periphery. In subsequent steps, aspects of human cognition are applied, for example,
targeting a relevance-weighting of different MOVs (Thiede et al. 2000; Seo et al.
2013; Härmä et al. 2014).

The different modeling approaches presented up to now account only for some
of the targeted capabilities of the conceptual model presented in this chapter. In
particular, building up a representation of the world knowledge of listeners is a
complex problem. The team behind PEAQ have considered this problem (Thiede
et al. 2000), indicating that an explicit reference as in the case of such a full-reference
model is suboptimal, since, for example, a given processing may improve the signal
over the reference. Instead, the “ideal audio signal […]in the mind of the listener”
should be known.

The handling of the problem of an explicit versus internal reference has been
addressed in the full-reference, speech-quality model POLQA (ITU–T Rec. P.863
2011). As a new way ahead, it uses an idealization step when processing the refer-
ence signal, with the following two goals. (1) It reduces different types of non-speech
distortions before loudness spectra are calculated in the perceptual model. These are
later addressed in a separate processing step for both the reference and the transmitted
speech. Interestingly, this approach may be related to a kind of feature constancy tar-
geted by human auditory peripheral processing. (2) Using idealization, sub-optimal
reference signals that may be affected by noise or reverberation are transformed into
an improved version and thus better representation of the assumed internal reference.
This approach addresses the limitations of a fixed reference as the first step towards
an actual learning of internal references.

Another topic to be addressedwith regard to sound qualitymodels—especially for
spatial audio—is the aspect of scene analysis and respective adaptation of the evalua-
tion to specific objects in a scene. The need for a scene-specific evaluation schemehas
been addressed inRaake et al. (2014b). For non-spatial audio this issue has beenmen-
tioned in Thiede et al. (2000), indicating that certain spectral-temporal artifacts may
be processed as distinct streams by listeners and hence may require dedicated stream
segregation. The first implementation of a simple scene-analysis model for spatial
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fidelity was proposed in Rumsey et al. (2008), using some foreground-background
separation following the respective framework for scene-related evaluation as sug-
gested in Rumsey (2002).

In summary, it can be said that to date none of the available approaches comes
close to the conceptual model that will be outlined in the subsequent section.

5 A Proposal for a Conceptual Sound Quality Model

In the following, the basic architecture of an instrumental Sound Quality and Qual-
ity of Experience model is outlined. It provides an updated view on the modeling
concepts described in Raake and Blauert (2013) and Raake and Egger (2014), based
on work of the interest group Aural Assessment By means of Binaural Algorithms
(AabbA) (Blauert et al. 2009) and the Two!Ears projects, following the lines of
thinking also discussed in Blauert et al. (2013). The model can be considered as a
hybrid between, (a) the authors’ view of Sound Quality evaluation and Quality of
Experience formation as it occurs in a person’s mind, as described earlier in this
Chapter and in (Raake and Egger 2014) and, (b) as proposed implementation of
certain functional processes of perception and cognition as outlined in Raake and
Blauert (2013).

5.1 Model Overview

The model represents a listener who interactively explores the environment based
on binaural information, with some crossmodal information considered, too. The
model architecture is depicted in Fig. 5. Some of the functions and processes of
human perception and cognition are represented by blocks, according to a technical,
block-diagram-type processing perspective. For these components, rough concepts
or actual implementations do already exist, for example, in the Two!Ears model
framework,10 or as part of a number of other existing auditory-perception models
and toolboxes. Some types ofmemory or information stores and functional processes
are outlined as semi-transparent-surface blocks, highlighting that their inclusion into
an actually implemented technical model requires further research.

The non-auditory information as considered in the figure primarily addresses
the visual sense. As illustrated, Sound Quality and Quality of Experience evalua-
tion involve high-level cognitive processes, such as psychological and state-related
processes like memory, motivation, emotions, and cognitive reasoning. The model
combines bottom-up signal-driven processing with top-down hypothesis processing
(Blauert and Brown 2020, this volume), for feedback processes involved. The lis-
tener interacts with a scene that is represented by multimodal signals as input to
the human sensory organs (Raake and Egger 2014). The sensory organs perform a
transformation of the physical input signals into neural representations that include

10www.twoears.eu [last accessed, August 30, 2019].

www.twoears.eu
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Fig. 5 Architecture of a comprehensive model of auditory and multimodal perception, Sound
Quality and Quality of Experience formation. The picture is based on a conceptual drawing of a
specifically tailored blackboard system (Raake and Blauert 2013), later amended by G. J. Brown
and N. Ma in the course of the Two!Ears project (Brown et al. 2014)
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characteristic electric signals. The lower-level sensory representation is processed
further along the neural pathways to higher brain levels where more abstract, sym-
bolic representations are built (Brown et al. 2014).

It is obvious from the previous discussions in this chapter that dynamic auditory-
scene analysis forms the basis forSoundQuality andQuality ofExperience formation.
This involves an analysis of and possible adaptation to aspects of the room geometry
and the amount of reverberation, to the spatial positions, movements and spatial
extents of sound sources, the source identity and further auditory-event attributes,
and the assignment of meaning to speech and other types of sounds. Accordingly,
the objects of a perceived scene are characterized by different auditory and related
crossmodal features (Raake and Blauert 2013; Raake et al. 2014a). These features
together form the aural or multimodal character of the objects and scene at large.
The mental scene representation in terms of recognized objects of perception is
established as an interleaved process of top-down hypothesis generation and their
verification against bottom-up perceptual evidence (Blauert et al. 2013; Blauert and
Brown 2020).

As a precursor for object formation and scene analysis, the peripheral process-
ing delivers a multidimensional, topologically organized representation of the scene,
covering aspects of time, space, frequency, and activity (Raake and Blauert 2013;
Blauert et al. 2013; Raake et al. 2014a). The neural representation comprises auditory
and associated multimodal cues, such as on-/offsets, amplitude modulation, period-
icity, interaural time and level differences (ITDs, ILDs) across frequency bands,
and interaural coherence, all including their respective timing information, illus-
trated in Fig. 5 by different spectrogram-type pictograms. The neural representation
is assumed to precede the actual formation of perceptual objects (Raake and Egger
2014). The involved steps are performed at higher level by parallel and intertwined
processors addressing the bottom-up pre-segmentation of the multidimensional fea-
ture representation, essentially carrying out a Gestalt-related analysis (this volume,
Sotujo et al. 2020). The pre-segmented representation is further analyzed in terms
of objects in the specific modalities, such as visual objects or aural scene objects, or
words in an utterance.

Various kinds of memory are involved at all of these processing stages. For exam-
ple, certain representationsmay evoke remembered perceptual events and subsequent
feedback-based adaptation of the processing, such as, for example, noise suppression
once a human voice is sensed. At this stage, information from other modalities is
already integrated. The inclusion of top-down feedback paths reflects human mental
processing of sensory information, beyond the more traditional, bottom-up view of
auditory perception. In an implementation—see Sect. 5.2—their start- and end-points
at different levels of the model structure need to be specified, as well as the type of
information/action that is communicated to the respective lower level(s). Such feed-
back mechanisms include attention, comprising a selection of bottom-up features,
or commands such as exploratory head movements.

Not only the direct sensory signals that characterize a scene are processed by
the sensory organs. They also process the contextual and/or task-related informa-
tion given to a person. Contextual information either directly affects the perceptual
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process or does so via evoked higher-level concepts. By definition, perception is
determined by the person’s current state, that is, “situational or temporal changes in
feelings, thinking, or behavior […]” (Amelang et al. 2006, translated fromGerman).

Memory and Perceptual References
In Fig. 5, different parts of memory are illustrated. Research on human memory
has identified different levels, with respective roles in the perception process, and
respective storage durations.

Sensory memory Peripheral memory, stores sensory stimulus representations for
short durations between 150ms and 2s, made available to higher processing
stages. For auditory information, this storage is referred to as echoic memorywith
storage durations between 150 and 350ms. For visual information, it is referred
to as iconic memory with up to 1-s storage duration (Massaro 1975; Cowan 1984;
Baddeley 1997; Coltheart 1980).

Working memory Re-coded information at symbolic level for longer durations
from a few up to tens of seconds. It is assumed that there are three main storage
components involved with working memory, namely, the visuospatial sketchpad,
the episodic buffer, and the phonological loop (Baddeley 2003).

Long-term memory Covers longer time spans up to years or even a full lifetime,
involving multiple stages of encodings in terms of symbolic and perceptual rep-
resentations. Current theories assume that a central executive component controls
the linking between long-term memory and working memory via an episodic
buffer at working-memory level that integrates information into episodes, and
that this central component is associated with attention (Baddeley 1997, 2003).

Internal, perceptual references in the mind of a listener are assumed to be present
at or made available to different levels of memory, namely, in the working memory
for the perceptual integration of a scene and respective scene analysis, as well as
information in the form being retrieved from long-termmemory, for example, for the
identification of objects in a scene or words in an utterance. Similarly, the perceived
character or the respective perceptual event or flow of events can be situated in
working memory, and/or be stored in long-termmemory, for example, after verbal or
episodic re-coding has occurred as the result of a learning process (Raake and Egger
2014). Complementary considerations on categories of references can be found in
Neisser’s cognitive system theory (Neisser 1994). Neisser assumes that learning is
implicitly integrated into perceptual processes and related to aspects such as expertise
and know-how with the specific percepts.

5.2 Considerations Regarding Model Implementation

System-type implementations of the conceptual model require a multi-layered archi-
tecture with various different modules for bottom-up as well as top-down processing
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during interactive exploration—see Fig. 5. Further, the different layers implicitly
represent storage components in the system and are interconnected with long-term
memory related to the interleaved steps of scene analysis, the formation of Sound
Quality- or Quality of Experience features of individual perceptual objects as well
as for the scene at large—for instance underlying episodic statements such as, “The
singer’s voice sounds great”, “The guitar sounds bad” or, “This is really a very nice
concert”.

The listeners integrate various of the lower-level results in light of their current
emotional and cognitive state. Events at any of the processing levels may result in
intentions-for-action. For example, to re-listen to a certain passage of a stimulus in
an audio test, the listeners may press a replay button, change position to achieve a
better sound quality, or simply focus their attention on certain aspects of the presented
audio material. During learning from present and past episodes, the aural character is
transformed into internal references as part of long-term memory. The telephone or
stereo systems are examples where most listeners already have an internal reference
(Jekosch 2005b).

All perception and subsequent evaluation is done in relation to such internal
references—see also Sect. 2. Sets of reference features, references, are evoked by
the listeners expectations in a given listening context, and are related to perceived
features, for example, triggered by a sound quality evaluation task in a listening test,
or when listening to different Hi-Fi systems as part of a purchasing decision in a shop.
See references and expectations in the top left part of Fig. 5, and features underlying
the sound quality evaluation as listed in Table2.

While some of the perceived features may directly be nameable by a person—
direct features, indicated as “dir.” in Fig. 5—for some other features this may not be
the case and, hence, direct assessment will not be possible or at least quite difficult
for these.

Any implementation of such a complex model systemwill benefit from amodular
software architecture. In its most complete form, two types of realization of such a
model are conceivable, (i) a virtual agent that actively explores a virtual scene in
software, see for example the related work in Two!Ears, cf. Blauert (2020), for the
assessment of a spatial audio system during the design phase for different (virtual)
rooms, and (ii) a model being built into a physical robot system that enables usage
with real-life acoustic scenes, including human-like head-and-body displacements
within the scene.

The list below summarizes the respective modules, which are briefly outlined in
the following.

1. Physical front-end or acoustical simulation that provides ear signals.
2. Binaural bottom-up signal processing that extracts low level features.
3. Pre-segmentation based on low level features.
4. Cognitive processes to build hypothesis on the perceived scene.
5. Feedback mechanisms that can influence all underlying modules.
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Front-End and Acoustic Signal Processing
The bottom layer represents the physical front-end of a person or the model sys-
tem and the respective acoustic and multimodal signal processing involved during
the capture of sensory information about the scene. In the case of a human listener,
this front-end comprises two ears, head, and body as well as the subcortical, hence
peripheral auditory processing. For implementation purposes, the systemmay have a
real physical front-end such as the robotic system developed in Two!Ears.11 While
the Two!Ears physical-system implementation enabled 3-DoFmotion (1-DoF head
panning, 2-DoF lateral displacement), real-life interaction of a person with a scene
provides a 6-DoF-perspective, namely, 3D displacement in space as well as all three
axes of possible head turning (pitch, yaw, roll). With the latest developments of
audio reproduction systems with sound-field synthesis such as WFS or binaural-re-
synthesis, for example, for Virtual Reality (VR) applications with Head-Mounted
Displays (HMDs), 6-DoF has become a highly relevant topic, also with regard to
Sound Quality andQuality of Experience assessment. Alternatively, a virtual system
may be employed so as to assess quality based on recorded or synthetically created
acoustic and possibly multimodal scenes. As for real-life, interactive binaural lis-
tening using loudspeaker set-ups or binaural re-synthesis, respective sound fields or
binaural signals must be generated as model input so as to correctly represent the
acoustic scenes at the listeners’ two ears. For an interactive implementation, head-
position information needs to be provided from the model to the scene-generation
module to generate the appropriate aural signals.

Auditory Periphery and Pre-segmentation
The subsequent layer addresses the monaural and binaural subcortical bottom-up
processing. The input is the binaural ear signals from the bottom layer, represent-
ing different scenes with multiple active sources. From this information, primary
cues are extracted, (a) monaural cues, including onsets, offsets, amplitude modula-
tion, periodicity, across-channel synchrony, and others, (b) binaural cues, including
interaural time and level differences (ITDs, ILDs) across frequency bands, interaural
coherence (IC), and others.

Based on these cues, the pre-segmentation can be carried out. Here, features for
identification of active sources will be identified, to enable, for example, localization,
speech activity recognition, and the source identification. The output of this stage
is a multidimensional auditory representation in terms of activity maps. These are
organized in a topological manner, for example, in terms of time, frequency, and
activity. Based on this multidimensional representation, features for auditory scene
analysis are extracted, for instance, features temporally collocated across different
spectral bands. Moreover, for a sound quality- or QoE-model, respective dedicated
features or variations of the psychoacoustics and aural-scene-related features can be
extracted.

11Incorporating a head-and-torso-simulator (Kemar) with a motorized neck to enable horizontal-
plane panning, mounted on a carriage for lateral motion. See http://docs.twoears.eu/en/latest/ [last
accessed February 22, 2020].

http://docs.twoears.eu/en/latest/
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In an actual model implementation, lower-level peripheral processing could be
implemented as a collection of processormodules, as has been donewith theAuditory
Frond End (AFE) in the Two!Ears project.12 In a complete model, these processors
can be adjusted by feedback from higher model levels during run time. Feedback
could, for instance, lead to on-the-fly changes in parameter values of peripheral
modules, like the filter bandwidths of the basilar-membrane filters. To this aim,
an object-oriented framework is required, for example, to allow for direct switching
between alternativemoduleswhile keeping all other components unchanged. Further,
for an instantaneous evaluation of Sound Quality or Quality of Experience, online
processing of the two-channel ear signals is needed. In this way, different temporal
aspects of quality evaluation can be addressed—compare Sect. 2.2. The cuesmay also
represent the basis for quality integration based on estimates of underlying quality
dimensions. In previous work by the authors’ group, for example, the cues available
from the Two!Ears project were shown to enable the estimation of localization and
coloration, as well as estimation of preferences between stimuli pairs (Wierstorf et al.
2017a, 2014; Raake and Wierstorf 2016; Skowronek et al. 2017).

Cognitive Processes—Knowledge Sources and Blackboard System
The cognitive components of the system may be implemented using a blackboard
architecture—for details see Schymura and Kolossa (2020), this volume, and Brown
et al. (2014). The blackboard architecture includes expert modules, so-called knowl-
edge sources (KSs). These carry out specific analysis tasks, such as lower-level pre-
segmentation, source separation, visual-pattern detection and tracking, that is, the
involved knowledge sources act in terms of low-level experts for pre-segmentation
and Gestalt-type analysis. Higher-level KSs as experts for tasks such as detecting,
classifying and labeling sound events. At a higher level, knowledge sources need to
be implemented that assign meaning to perceptual objects and to the auditory events
they are associated with. The methods of each level pass their output information
on to the blackboard system. Higher-layer experts use this information and related
statistical uncertainty data to generate hypotheses. At the very highest layer, cog-
nitive processes need to be implemented, whereby their expertise includes world
knowledge (Brown et al. 2014).

At the intersection between blackboard events and knowledge sources, the focus-
ing of attention takes place (Brown et al. 2014; Schymura and Kolossa 2020), this
volume. This may comprise the selection of specific blackboard information by KSs,
or of specific types of input information from the sensory representation. It may
also involve top-down feedback, for example, adjusting the filter bandwidths of the
basilar membrane to a specific kind of input signal or triggering head-motion to
direct the head to a certain scene object. Across all layers, the expertise provided
by the different experts includes, among other fields of knowledge, psychoacoustics,
object-identification, cross-modal integration, proprioception with regard to head-
and general movements, speech communication-specific expertise such as speech-
versus noise-identification and word recognition, music identification and classifi-
cation, and sound quality evaluation.

12See http://docs.twoears.eu/en/1.5/afe/ [last accessed: February 22, 2020].

http://docs.twoears.eu/en/1.5/afe/


Binaural Evaluation of Sound Quality and Quality of Experience 423

Feedback Mechanisms
In human audition, as part of human perception and cognition, feedback serves to
improve certain performances, such as object recognition, auditory grouping, aural-
stream segregation, scene analysis, and hence improve the scene understanding,
assignment of meaning, attention focusing, and also the evaluation of Sound Quality
and Quality of Experience. Feedback mechanisms involve both a process that is
initiating feedback information and another process that receives and acts upon it—
for details refer to Blauert and Brown (2020), this volume.

5.3 Benefits of Holistic Hearing Model for Sound Quality
and Quality of Experience Models

Applied to Sound Quality and Quality of Experience estimation, such models may
provide the following functional capabilities (Raake and Blauert 2013; Raake et al.
2014b).

Learned internal references rather than explicit reference signals. With a corre-
sponding no-reference sound quality model, the quality can be directly estimated
based on the available ear-signals. Moreover, also for a model that uses a refer-
ence signal—that is, a so-called full-reference model—a functionally adequate
reference-adaptation may be addressed. Two different approaches are conceiv-
able, that is, (i) rule-based approaches with a restricted dataset available for model
and reference training—for example combining multidimensional analysis with
a preference-mapping-type relation to Sound Quality or QoE—see Sects. 3.2, 4—
and, (ii) data-based approaches, where some kind of learning of references is
involved or transfer learning is applied—see Spille et al. (2018) and Göring
et al. (2018). Larger datasets may be established for a direct training of Deep-
Neural-Network-(DNN)-typemodels instead of transfer-learning using, for exam-
ple, quality ratings as they are collected, e.g., by Skype in the field after selected
calls, or via crowd-sourcing13 (Hossfeld et al. 2014).

Identification of scene and source types and respective adjustment of low-level
processing as well as adjustment of the selected internal reference, in light of
the given evaluation task and acoustic scene. For example, music or speech may
be recognized as the primary input. Appropriate pre-trained machine-learning
models may then be used for genre recognition or speech intelligibility estima-
tion.

Scene-object-specific evaluation with multiple objects being present in an audi-
tory scene. Quality evaluation will then be scene- and object-specific (e.g., see,
Raake et al. 2014b). Such a scene-based quality-modeling paradigm is princi-
pally enabled by a model that includes a dedicated scene-analysis stage. Some

13Crowd-sourcing tests involving dedicated crowd-workers are distinguished from data collection
in the field with a more arbitrary and hence real-life sample of users, and with a less guided, more
natural usage behavior.
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first considerations along these lines for sound quality using scene foreground-
and background-related features have been proposed in Skowronek et al. (2017).

Implementation of attentional processes based on the scene- and object-oriented
paradigm. In this way, saliency and selective attention can be incorporated into the
model. First approaches along these lines for the existing Two!Ears framework
are described in Cohen l’Hyver (2017), and Cohen-L’Hyver et al. (2020), this
volume, but have not yet been applied to Sound Quality andQuality of Experience
modeling. An attention model for soundscapes has been presented in Oldoni et al.
(2013).

Integration with visual information, in terms of specific features of the scene
(Cohen l’Hyver 2017). In this way, the adaptation of lower-level processing as,
for example, related to the precedence effect, may be included (Braasch 2020, this
volume). Further, aspects such as the visual and auditory congruency of the room
and the respective role for externalization may be addressed, an effect referred to
as room divergence (Werner et al. 2016; Brandenburg et al. 2020, this volume).

Active exploration enabling the model to explore the auditory scene and include
the exploration for an improved or simply more human-like assessment such
as, (i) targeting a specific analysis of certain low-level features exploited during
interactive quality evaluation, for example, based on behavioral patterns, or (ii)
enabling the exploration of the scene, for example, to identify the sweet-spot of a
given sound reproduction system in a perceptual way. This is complementary to
the experimental work described in Kim et al. (2013) and informal experiments
performed by the authors during the TWO!EARS project (cf. www.twoears.eu).

With such an underlying active listening model, Sound Quality and Quality of Expe-
rience modeling can be based on a running sound quality-feature model, using a
combination of a set of cue-analysis components. Higher model layers could include
quality-feature integration, and additional high-level components that are able to
generate top-down events that includes other factors, such as the liking/disliking of a
given piece of music, the focus of attention of the listener, or the visual information
provided in addition to the auditory information.

It is clear that at this stage, such a model does not exist, and work reported so far
only implements parts of these concepts (e.g., Raake andWierstorf 2016; Skowronek
et al. 2017).

6 Conclusions and Future Directions

The current chapter discussed different concepts related to Sound Quality and the
more holistic, yet harder to assess, Quality of Experience. Respective assessment
methodswere summarized in light of these concepts. Based on thework conducted in
the Two!Ears project, a conceptual Sound Quality andQuality of Experiencemodel
was introduced. The model components were outlined, and it was analyzed how
different types of quality-related models can be implemented with these. Previously,

www.twoears.eu
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it has been shown that this approach enables the design of quality-feature models
for coloration and localization prediction (Raake et al. 2014b; Raake and Wierstorf
2016) as well as for preference prediction (Skowronek et al. 2017).

Open-source availability of algorithms and data is one of the key challenges
for audio-quality research and modeling. Most well-established existing model
approaches such as POLQA (ITU–T Rec. P.863 2011), QESTRAL (Rumsey et al.
2008), or PEMO-Q (Harlander et al. 2014) are proprietary, and no explicit source
code has been made available. Some few attempts for reverse-engineering exist, for
example, with the PEASS Perceptual Evaluation methods for Audio Source Sepa-
ration toolkit (Emiya et al. 2011) or via the code in the Github project Perceptual
coding in Python.14 The open-sourceAuditory Front End (AFE) of Two!Ears15 was
developed by applying elements from the open-source Auditory Modeling Toolbox
(AMT).16

An approach for an explicit collaborative model development could be enabled
by reproducible research around toolboxes such as the AMT that are worked on by a
larger community. Here, it will be helpful if public funding agencies foster activities
that emphasize such fundamental though practical inter-group collaborations. Fur-
ther, it should be more widely accepted in the scientific community that “toolboxes”
actually represent (even highly valuable) scientific work, too.

Auditory perception research—as part of Sound Quality and Quality of Experi-
ence evaluation—could certainly be advanced at large with the help of high-quality
toolboxes. Yet, to be sure, such endeavor must be based on a deep understanding
of auditory perception and requires profound software-development skills. The final
goal is to achieve a well documented, tested and ultimately widely adopted basis for
future scientific discoveries.

As was highlighted by an analysis of recent tests on Sound Quality andQuality of
Experience, in Sect. 3.5, very few databases are publicly available that could be used
for model training. Of course, the creation and sharing of databases could go hand
in hand with a collaborative model development project as it was advocated above.
To this aim, already the sharing of known proprietary databases (e.g., see the list in
Table3) would be a very welcome contribution to the domain of perceptual sound
quality and QoE modeling.

In the current chapter, it was discussed how actual model implementations can be
trained with listening-test data. Here, different approaches, especially for the training
of internal model knowledge and internal references, were considered. Limitations
were highlighted that currently reduce the feasibility of developing a full Sound
Quality and Quality of Experience model.

Besides the challenges involved when developing a basic-quality model, the ques-
tion arises of how the different contexts as discussed in Sect. 2.5 and, hence, also

14https://github.com/stephencwelch/Perceptual-Coding-In-Python [last accessed: August 30,
2019].
15 http://docs.twoears.eu/en/1.5/afe/ [last accessed: August 30, 2019].
16Søndergaard et al. (2011) and Søndergaard and Majdak (2013), http://amtoolbox.sourceforge.
net/ [last accessed: August 31, 2019].

https://github.com/stephencwelch/Perceptual-Coding-In-Python
http://docs.twoears.eu/en/1.5/afe/
http://amtoolbox.sourceforge.net/
http://amtoolbox.sourceforge.net/
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individual differences can be implemented in a perception model. This aspect is
a highly relevant issue to be solved since the context-specific evaluation of audio
and especially spatial audio is an important requirement for ecological validity. For
example, features such as envelopment (e.g., compare Rumsey 2002) will be differ-
ently desirable depending on the given context. In the current authors’ opinion, this
aspect is one of the biggest challenges in Sound Quality and Quality of Experience
modeling.

Reflecting listener-internal references and a system/scene-control as discussed
in Sect. 2.6 in a quality model, and this in a person- and expertise-specific manner,
appears to be still out of reach.Nevertheless, it represents a rewarding goal for a better
understanding of human perception and evaluation as well as for the application of
the resulting models for automatic audio-system adaptation and optimization.

Acknowledgements This research has partly been supported by EU-FET grant Two!Ears, ICT-
618075. The authors are grateful to Chris Hold, Marie-Neige Garcia, Werner Robitza, Sebastian
Egger, Sebastian Möller, John Mourjopoulos, Sascha Spors, Karlheinz Brandenburg, Janina Fels,
and Patrick Danès for fruitful discussions and conceptual contributions. Two external reviewer have
provided useful comments and advice for improving this chapter.

References

Amelang, M., D.G.S. Bartussek, and D. Hagemann. 2006. Differentielle Psychologie und Persön-
lichkeitsforschung (Differential Psychology and Personality Research). Stuttgart: W. Kohlham-
mer Verlag.

Baddeley, A. 1997. Human Memory—Theory and Practice. East Sussex, UK: Taylor & Francis,
Psychology Press.

Baddeley, A. 2003. Working memory: Looking back and looking forward. Nature Reviews Neuro-
science 4: 829–839. https://doi.org/10.1038/nrn1201.

Bech, S., and N. Zacharov. 2006. Perceptual Audio Evaluation. Chichester, UK: Wiley.
Beerends, J.G., C. Schmidmer, J. Berger, M. Obermann, R. Ullmann, J. Pomy, and M. Keyhl.
2013. Perceptual Objective Listening Quality Assessment (POLQA), The third generation ITU-
T standard for end-to-end speech quality measurement. Part II—Perceptual model. Journal of the
Audio Engineering Society 61 (6): 385–402. http://www.aes.org/e-lib/browse.cfm?elib=16829.
Accessed 9 Oct 2019.

Benoit, A., P. LeCallet, P. Campisi, and R. Cousseau. 2008. Quality assessment of stereoscopic
images. In IEEE International Conference Image Processing (ICIP) 1231–1234.

Bentham, J. 1789. An Introduction to the Principle of Morals and Legislations. Oxford, UK: Black-
well (Reprint 1948).

Biberger, T., and S.D. Ewert. 2016. Envelope and intensity based prediction of psychoacoustic
masking and speech intelligibility. The Journal of the Acoustical Society of America 140 (2):
1023–1038. https://doi.org/10.1121/1.4960574.

Biberger, T., J.-H. Fleßner, R. Huber, and S.D. Ewert. 2018. An objective audio quality measure
based on power and envelope power cues. Journal of the Audio Engineering Society 66 (7/8),
578–593. http://www.aes.org/e-lib/browse.cfm?elib=19707. Accessed 23 Sept 2019.

Blauert, J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge,
MA, USA: The MIT Press.

Blauert, J. 2013. Conceptual aspects regarding the qualification of spaces for aural performances.
Acta Acustica united with Acustica 99: 1–13. https://doi.org/10.3813/AAA.918582.

https://doi.org/10.1038/nrn1201
http://www.aes.org/e-lib/browse.cfm?elib=16829
https://doi.org/10.1121/1.4960574
http://www.aes.org/e-lib/browse.cfm?elib=19707
https://doi.org/10.3813/AAA.918582


Binaural Evaluation of Sound Quality and Quality of Experience 427

Blauert, J. 2020.A virtual testbed for binaural agents. InThe Technology of BinauralUnderstanding,
eds. J. Blauert, and J. Braasch, 491–510. Cham, Switzerland: Springer and ASA Press.

Blauert, J., J. Braasch, J. Buchholz, H.S. Colburn, U. Jekosch, A. Kohlrausch, J. Mourjopoulos, V.
Pulkki, and A. Raake. 2009. Aural assessment by means of binaural algorithms – the AabbA
project. InProceedings of the 2nd International SymposiumAuditory andAudiological Research–
ISAAR’09, 113–124.

Blauert, J., and G. Brown. 2020. Reflexive and reflective auditory feedback. In The Technology of
Binaural Understanding, eds. J. Blauert, and J. Braasch, 3–31, Cham, Switzerland: Springer and
ASA Press. This volume.

Blauert, J., and U. Jekosch. 2012. A layer model of sound quality. Journal of the Audio Engineer-
ing Society 60 (1/2): 4–12. http://www.aes.org/e-lib/browse.cfm?elib=16160. Accessed 19 Sept
2019.

Blauert, J., D. Kolossa, K. Obermayer, and K. Adiloglu. 2013. Further challenges—and the road
ahead. In The Technology of Binaural Listening, ed. J. Blauert. Berlin: Springer and ASA Press.
https://doi.org/10.1007/978-3-642-37762-4_18.

Bowman, D.A., and R.P. McMahan. 2007. Virtual reality: How much immersion is enough? Com-
puter 40 (7): 36–43.

Braasch, J. 2020. Binaural modeling from an evolving habitat perspective. In The Technology of
Binaural Understanding, eds. J. Blauert, and J. Braasch, 251–286, Cham, Switzerland: Springer
and ASA Press.

Bradley, J.S., and G.A. Soulodre. 1995. Objective measures of listener envelopment. Journal of the
Acoustical Society of America 98 (5): 2590–2597.

Brandenburg, K., F. Klein, A. Neidhardt, U. Sloma, and S.Werner. 2020. Creating auditory illusions
with binaural technology. In The Technology of Binaural Understanding, eds. J. Blauert, and J.
Braasch, 623–663, Cham, Switzerland: Springer and ASA Press.

Bregman, A.S. 1990. Auditory Scene Analysis. Cambridge, USA: The MIT Press.
Brown, G., R. Decorsière, D. Kolossa, N. Ma, T. May, C. Schymura, and I. Trowitzsch. 2014.
D3.1: TWO!EARS Software Architecture, Two!Ears FET-Open Project. https://doi.org/10.5281/
zenodo.2595254.

Brüggen, M. 2001a. Coloration and binaural decoloration in natural environments. Acta Acustica
united with Acustica 87: 400–406.

Brüggen, M. 2001b. Sound coloration due to reflections and its auditory and instrumental compen-
sation. PhD thesis, Ruhr-Universität Bochum.

Carroll, J.D. 1972. Individual preferences and multidimensional scaling. In Multidimensional Scal-
ing: Theory and Applications in the Behavioral Sciences, vol. I, ed. R.N. Shepard, A.K. Romney,
and S.B. Nerlove, 105–155.

Choisel, S., and F. Wickelmaier. 2007. Evaluation of multichannel reproduced sound: Scaling audi-
tory attributes underlying listener preference. The Journal of the Acoustical Society of America
121 (1): 388–400. https://doi.org/10.1121/1.2385043.

Cohen l’Hyver, B. 2017. Modulation de mouvements de tête pour l’analyse multimodale d’un envi-
ronnement inconnu (modulation of head movements for the multimodal analysis of an unknown
environment). PhD thesis, Université Pierre et Marie Curie, Ecole Doctorale SMAER, Sciences
Mécaniques, Acoustique, Electronique et Robotique de Paris, France.

Cohen-L’Hyver, B., S. Argentieri, and B. Gas. 2020. Audition as a trigger of head movements.
In The Technology of Binaural Understanding, eds. J. Blauert, and J. Braasch, 697–731, Cham,
Switzerland: Springer and ASA Press.

Coltheart, M. 1980. Iconic memory and visible persistence. Perception & Psychophysics 27 (3):
183–228. https://doi.org/10.3758/BF03204258.

Cowan, N. 1984. On short and long auditory stores. Psychol. Bulletin 96 (2): 341–370. https://doi.
org/10.1037/0033-2909.96.2.341.

Dobrian, F., A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stioca, and H. Zhang. 2013.
Understanding the impact of video quality on user engagement. Communications of the ACM 56
(3): 91–99. https://doi.org/10.1145/2043164.2018478.

http://www.aes.org/e-lib/browse.cfm?elib=16160
https://doi.org/10.1007/978-3-642-37762-4_18
https://doi.org/10.5281/zenodo.2595254
https://doi.org/10.5281/zenodo.2595254
https://doi.org/10.1121/1.2385043
https://doi.org/10.3758/BF03204258
https://doi.org/10.1037/0033-2909.96.2.341
https://doi.org/10.1037/0033-2909.96.2.341
https://doi.org/10.1145/2043164.2018478


428 A. Raake and H. Wierstorf

Emiya, V., E. Vincent, N. Harlander, and V. Hohmann. 2011. Subjective and objective quality
assessment of audio source separation. IEEE Transactions on Audio, Speech, and Language
Processing 19 (7): 2046–2057. https://doi.org/10.1109/TASL.2011.2109381.

Engelke, U., D.P. Darcy, G.H.Mulliken, S. Bosse, M.G.Martini, S. Arndt, J.-N. Antons, K.Y. Chan,
N. Ramzan, and K. Brunnström. 2017. Psychophysiology-based qoe assessment: A survey. IEEE
Journal of Selected Topics in Signal Processing 11 (1): 6–21. https://doi.org/10.1109/JSTSP.
2016.2609843.

Francombe, J., T. Brookes, and R. Mason. 2017a. Evaluation of spatial audio reproduction methods
(part 1): Elicitation of perceptual differences. Journal of the Audio Engineering Society 65 (3):
198–211. https://doi.org/10.17743/jaes.2016.0070.

Francombe, J., T.Brookes, R.Mason, and J.Woodcock. 2017b. Evaluation of spatial audio reproduc-
tion methods (part 2): Analysis of listener preference. Journal of the Audio Engineering Society
65 (3): 212–225. https://doi.org/10.17743/jaes.2016.0071.

Garcia, M.-N., R. Schleicher, and A. Raake. 2011. Impairment-factor-based audiovisual quality
model for iptv: Influence of video resolution, degradation type, and content type. EURASIP
Journal on Image and Video Processing 2011 (1): 1–14. https://doi.org/10.1155/2011/629284.

Geerts, D., K.D. Moor, I. Ketyko, A. Jacobs, J.V. den Bergh, W. Joseph, L. Martens, and L.D.
Marez. 2010. Linking an integrated framework with appropriate methods for measuring QoE.
In Proceedings of the International Workshop on Quality of Multimedia Experience (QoMEX).
https://doi.org/10.1109/QOMEX.2010.5516292.

Göring, S., J. Skowronek, and A. Raake. 2018. DeViQ - A deep no reference video quality model. In
Proceedings Human Vision and Electronic Imaging (HVEI) 1–6: https://doi.org/10.2352/ISSN.
2470-1173.2018.14.HVEI-518.

Griesinger, D. 1998. General overview of spatial impression, envelopment, localization, and exter-
nalization. In Audio Engineering Society Conference: 15th International Conference: Audio,
Acoustics & Small Spaces, Audio Engineering Society. http://www.aes.org/e-lib/browse.cfm?
elib=8095. Accessed 17 Sept 2019.

Harlander, N., R. Huber, and S.D. Ewert. 2014. Sound quality assessment using auditory models.
Journal of the Audio Engineering Society 62 (5): 324–336. https://doi.org/10.17743/jaes.2014.
0020.

Härmä, A., M. Park, and A. Kohlrausch. 2014. Data-driven modeling of the spatial sound expe-
rience. In Audio Engineering Society Convention 136. http://www.aes.org/e-lib/browse.cfm?
elib=17172. Accessed 18 Sept 2019.

Hartmann, W.M., and A. Wittenberg. 1996. On the externalization of sound images. Journal of the
Acoustical Society of America 99 (6): 3678–3688.

Hassenzahl, M. 2001. The effect of perceived hedonic quality on product appealingness. Inter-
national Journal of Human-Computer Interaction 13 (4): 481–499. https://doi.org/10.1207/
S15327590IJHC1304_07.

Hossfeld, T., C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and P. Tran-Gia. 2014. Best
practices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Transactions on
Multimedia 16 (2): 541–558. https://doi.org/10.1109/TMM.2013.2291663.

Houtgast, T., and H.J.M. Steeneken. 1985. A review of the mtf concept in room acoustics and its use
for estimating speech intelligibility in auditoria. The Journal of the Acoustical Society of America
77 (3): 1069–1077. https://doi.org/10.1121/1.392224.

ISO 9000:2000. 2000. Quality Management Systems: Fundamentals and Vocabular, International
Organization for Standardization.

ITU–R BS. 1116-1. 1997. Methods for the Subjective Assessment of Small Impairments in Audio
Systems Including Multichannel Sound Systems. Geneva, CH: International Telecommunication
Union.

ITU–R BS. 1283-1. 2003. A Guide to ITU-R Recommendations for Subjective Assessment of Sound
Quality. Geneva, CH: International Telecommunication Union.

ITU–R BS. 1534-3. 2015. Method for the Subjective Assessment of Intermediate Quality Level of
Coding Systems. Geneva, CH: International Telecommunication Union.

https://doi.org/10.1109/TASL.2011.2109381
https://doi.org/10.1109/JSTSP.2016.2609843
https://doi.org/10.1109/JSTSP.2016.2609843
https://doi.org/10.17743/jaes.2016.0070
https://doi.org/10.17743/jaes.2016.0071
https://doi.org/10.1155/2011/629284
https://doi.org/10.1109/QOMEX.2010.5516292
https://doi.org/10.2352/ISSN.2470-1173.2018.14.HVEI-518
https://doi.org/10.2352/ISSN.2470-1173.2018.14.HVEI-518
http://www.aes.org/e-lib/browse.cfm?elib=8095
http://www.aes.org/e-lib/browse.cfm?elib=8095
https://doi.org/10.17743/jaes.2014.0020
https://doi.org/10.17743/jaes.2014.0020
http://www.aes.org/e-lib/browse.cfm?elib=17172
http://www.aes.org/e-lib/browse.cfm?elib=17172
https://doi.org/10.1207/S15327590IJHC1304_07
https://doi.org/10.1207/S15327590IJHC1304_07
https://doi.org/10.1109/TMM.2013.2291663
https://doi.org/10.1121/1.392224


Binaural Evaluation of Sound Quality and Quality of Experience 429

ITU–T Rec. P.10/G.100. 2017. Vocabulary for Performance and Quality of Service. Geneva, CH:
International Telecommunication Union.

ITU–T Rec. P.800. 1996. Methods for Subjective Determination of Transmission Quality. Geneva,
CH: International Telecommunication Union.

ITU–T Rec. P.862. 2001. Perceptual Evaluation of Speech Quality (PESQ), International Telecom-
munication Union.

ITU–T Rec. P.863. 2011. Perceptual Objective Listening Quality Assessment (POLQA), Interna-
tional Telecommunication Union.

Jekosch, U. 2004. Basic concepts and terms of “quality”, reconsidered in the context of product
sound quality. Acta Acustica united with Acustica 90 (6): 999–1006.

Jekosch, U. 2005a. Assigningmeaning to sounds: Semiotics in the context of product-sound design.
In Communication Acoustics, ed. J. Blauert. Berlin: Springer. https://doi.org/10.1007/3-540-
27437-5_8.

Jekosch, U. 2005b. Voice and Speech Quality Perception—Assessment and Evaluation. D-Berlin:
Springer.

Kahneman, D. 1999. Objective happiness. InWell-Being: The Foundations of Hedonic Psychology,
ed. D. Kahneman, E. Diener, and N. Schwarz, 3–25. New York: Russell Sage Foundation.

Kahneman, D. 2003. Experienced utility and objective happiness: A moment-based approach. In
The Psychology of EconomicDecisions, ed. I. Brocas, and J.D. Carrillo, 187–208. Oxford: Oxford
University Press.

Kahneman, D. 2011. Thinking, Fast and Slow. New York, NY: Farrar, Straus and Giroux.
Kim, C., R. Mason, and T. Brookes. 2013. Head movements made by listeners in experimental and
real-life listening activities. Journal of the Audio Engineering Society 61 (6): 425–438. http://
www.aes.org/e-lib/browse.cfm?elib=16833. Accessed 18 Sept 2019.

Kuttruff, H. 2016. Room Acoustics. Boca Raton: CRC Press.
Lawless, H.T., and H. Heymann. 2010. Sensory Evaluation of Food: Principles and Practices, vol.
5999. Berlin: Springer.

Lebreton, P., A. Raake, M. Barkowsky, and P.L. Callet. 2013. Perceptual preference of S3D over
2D for HDTV in dependence of video quality and depth. In IVMSP Workshop: 3D Image/Video
Technologies and Applications, 10–12 June, 1–4. Korea, Seoul.

Lepa, S., E. Ungeheuer, H.-J. Maempel, and S. Weinzierl. 2013. When the medium is the message:
Anexperimental explorationofmediumeffects on the emotional expressivity ofmusic dating from
different forms of spatialization. In Proceedings of the 8th Conference of the Media Psychology
Division of Deutsche Gesellschaft für Psychologie (DGPs).

Lepa, S., S. Weinzierl, H.-J. Maempel, and E. Ungeheuer. 2014. Emotional impact of different
forms of spatialization in everyday mediatized music listening: Placebo or technology effects?
In Audio Engineering Society Convention 136, Audio Engineering Society. http://www.aes.org/
e-lib/browse.cfm?elib=17171. Accessed 18 Sept 2019.

Letowski, T. 1989. Sound quality assessment: Concepts and criteria. In Audio Engineering Society
Convention 87, 18–21 Oct, New York, USA. http://www.aes.org/e-lib/browse.cfm?elib=5869.
Accessed 18 Sept 2019.

Li, J., M. Barkowsky, and P. LeCallet. 2012. Analysis and improvement of a paired comparison
method in the application of 3DTV subjective experiment. In IEEE International Conference
Image Processing (ICIP), 30 Sept–03 Oct, Orlando, Florida, USA.

Liebetrau, J., T. Sporer, S. Kämpf, and S. Schneider. 2010. Standardization of PEAQ-MC: Exten-
sion of ITU-R BS.1387-1 to multichannel audio. In Audio Engineering Society, 40th Interna-
tional Conference: Spatial Audio, 8–10Oct, Tokyo, Japan. http://www.aes.org/e-lib/browse.cfm?
elib=15571. Accessed 23 Sept 2019.

Lindau, A., V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, and S. Weinzierl. 2014. A spatial audio
quality inventory (SAQI). Acta Acustica united with Acustica 100 (5): 984–994. https://doi.org/
10.3813/AAA.918778.

https://doi.org/10.1007/3-540-27437-5_8
https://doi.org/10.1007/3-540-27437-5_8
http://www.aes.org/e-lib/browse.cfm?elib=16833
http://www.aes.org/e-lib/browse.cfm?elib=16833
http://www.aes.org/e-lib/browse.cfm?elib=17171
http://www.aes.org/e-lib/browse.cfm?elib=17171
http://www.aes.org/e-lib/browse.cfm?elib=5869
http://www.aes.org/e-lib/browse.cfm?elib=15571
http://www.aes.org/e-lib/browse.cfm?elib=15571
https://doi.org/10.3813/AAA.918778
https://doi.org/10.3813/AAA.918778


430 A. Raake and H. Wierstorf

Lokki, T., J. Pätynen, A. Kuusinen, H. Vertanen, and S. Tervo. 2011. Concert hall acoustics assess-
ment with individually elicited attributes. The Journal of the Acoustical Society of America 130
(2): 835–849. https://doi.org/10.1121/1.3607422.

Martens, H., and M. Martens. 2001. Multivariate Analysis of Quality. Chichester: Wiley.
Massaro, D.W. 1975. Backward recognition masking. The Journal of the Acoustical Society of
America 58 (5): 1059–1065. https://doi.org/10.1121/1.380765.

Mattila, V. 2001. Perceptual Analysis of Speech Quality in Mobile Communications, vol. 340.
Doctoral Dissertation, Tampere University of Technology, FIN–Tampere.

Mattila, V. 2002. Ideal point modelling of speech quality in mobile communications based on
multidimensional scaling. Audio Engineering Society Convention, vol. 112. http://www.aes.org/
e-lib/browse.cfm?elib=11433. Accessed 23 Sept 2019.

Mausfeld, R. 2003. Conjoint representations and the mental capacity for multiple simultaneous
perspectives. In Looking into Pictures: An Interdisciplinary Approach to Pictorial Space, ed. H.
Hecht, R. Schwartz, and M. Atherton, 17–60. Cambridge: MIT Press.

Moor, K.D. 2012. Are engineers from mars and users from venus? Bridging the gaps in quality
of experience research: Reflections on and experiences from an interdisciplinary journey. PhD
thesis, Universiteit Gent.

Moore, B.C., and B.R. Glasberg. 2007. Modeling binaural loudness. The Journal of the Acoustical
Society of America 121 (3): 1604–1612. https://doi.org/10.1121/1.2431331.

Moore, B.C.J., and C.-T. Tan. 2004. Development and validation of a method for predicting the
perceived naturalness of sounds subjected to spectral distortion. Journal of the Audio Engineering
Society 52 (9): 900–914. http://www.aes.org/e-lib/browse.cfm?elib=13018. Accessed 23 Sept
2019.

Mourjopoulos, J. 2020. Aesthetics aspects regarding recorded binaural sounds. In The Technology of
Binaural Understanding, eds. J. Blauert, and J. Braasch, 455–490, Cham, Switzerland: Springer
and ASA Press.

Neisser, U. 1978. Perceiving, anticipating and imagining. Minnesota Studies in the Philosophy of
Science 9: 89–106.

Neisser, U. 1994. Multiple systems: A new approach to cognitive theory. European Journal of
Cognitive Psychology 6 (3): 225–241. https://doi.org/10.1080/09541449408520146.

Oldoni, D., B. De Coensel, M. Boes, M. Rademaker, B. De Baets, T. Van Renterghem, and D.
Botteldooren. 2013. A computational model of auditory attention for use in soundscape research.
The Journal of the Acoustical Society of America 134 (1): 852–861. https://doi.org/10.1121/1.
4807798.

Olko, M., D. Dembeck, Y.-H. Wu, A. Genovese, and A. Roginska. 2017. Identification of perceived
sound quality attributes of 360-degree audiovisual recordings in VR – Using a free verbalization
method. In Audio Engineering Society Convention 143, 18–21 Oct, New York, USA. Audio
Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=19227. Accessed 23 Sept 2019.

Parasuraman, A., V. Zeithaml, and L. Berry. 1985. A conceptual model of service quality and its
implications for future research. Journal of Marketing 49 (Fall 1985): 41–50. https://doi.org/10.
2307/1251430.

Piaget, J. 1962. The Child’s Conception of the World (La représentation du monde chez l’enfant).
London: Routledge & Kegan. Translated from the 1926 original.

Pike, C., and H. Stenzel. 2017. Direct and indirect listening test methods – A discussion based on
audio-visual spatial coherence experiments. InAudio Engineering Society Convention 143, Audio
Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=19226. Accessed 23 Sept 2019.

Qualinet. 2012.White Paper on Definitions of Quality of Experience, COST Action IC 1003, ed.
Möller, S., P. Le Callet, and A. Perkis, Lausanne, CH

Raake, A. 2006. Speech Quality of VoIP–Assessment and Prediction. Chichester, West Sussex, UK:
Wiley.

Raake, A. 2016. Views on sound quality. In Proceedings 22nd International Congress on Acoustics
(ICA), 5–9 Sept, 1–10, Buenos Aires, Argentina.

https://doi.org/10.1121/1.3607422
https://doi.org/10.1121/1.380765
http://www.aes.org/e-lib/browse.cfm?elib=11433
http://www.aes.org/e-lib/browse.cfm?elib=11433
https://doi.org/10.1121/1.2431331
http://www.aes.org/e-lib/browse.cfm?elib=13018
https://doi.org/10.1080/09541449408520146
https://doi.org/10.1121/1.4807798
https://doi.org/10.1121/1.4807798
http://www.aes.org/e-lib/browse.cfm?elib=19227
https://doi.org/10.2307/1251430
https://doi.org/10.2307/1251430
http://www.aes.org/e-lib/browse.cfm?elib=19226


Binaural Evaluation of Sound Quality and Quality of Experience 431

Raake, A., and J. Blauert. 2013. Comprehensive modeling of the formation process of sound-
quality. In Proceedings of the IEEE International Conference Quality of Multimedia Experience
(QoMEX), 3–5 July, Klagenfurt, Austria. https://doi.org/10.1109/QoMEX.2013.6603214.

Raake, A., J. Blauert, J. Braasch, G. Brown, P. Danes, T. Dau, B. Gas, S. Argentieri, A. Kohlrausch,
D. Kolossa, N. LeGoeff, T.May, K. Obermayer, C. Schymura, T.Walther, H.Wierstorf, F.Winter,
and S. Spors. 2014a. Two!ears – Integral interactive model of auditory perception and experience.
In 40th German Annual Conference on Acoustics (DAGA), 10–13 March, Oldenburg, Germany.

Raake, A., H. Wierstorf, and J. Blauert. 2014b. A case for Two!Ears in audio quality assessment.
Forum Acusticum, 7–12 Sept., Krakow, Poland.

Raake,A., andS.Egger. 2014.Quality and quality of experience. InQuality of Experience. Advanced
Concepts, Applications and Methods, ed. S. Möller, and A. Raake. Berlin: Springer. Chap. 2.
https://doi.org/10.1007/978-3-319-02681-7_2.

Raake, A., C. Schlegel, K. Hoeldtke, M. Geier, and J. Ahrens. 2010. Listening and conversational
quality of spatial audio conferencing. In40th InternationalConferenceonSpatialAudio: Sense the
Sound of Space, Audio Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=15567.
Accessed 23 Sept 2019.

Raake, A., and H. Wierstorf. 2016. Assessment of audio quality and experience using binaural-
hearing models. In Proceedings 22nd International Congress on Acoustics (ICA), 5–9 Sept.,
1–10. Buenos Aires, Argentina.

Reardon, G., A. Genovese, G. Zalles, P. Flanagan, and A. Roginska. 2018. Evaluation of binaural
renderers: Multidimensional sound quality assessment. In 2018 International Conference on
Audio for Virtual and Augmented Reality, Audio Engineering Society. http://www.aes.org/e-lib/
browse.cfm?elib=19694. Accessed 23 Sept 2019.

Rees-Jones, J., and D.T. Murphy. 2018. The impact of multichannel game audio on the quality and
enjoyment of player experience. In Emotion in Video Game Soundtracking, 143–163. Berlin:
Springer. https://doi.org/10.1007/978-3-319-72272-6_11.

Reeves, C.A., and D.A. Bednar. 1994. Defining quality: Alternatives and implications. Academy of
Management Review 19 (3): 419–445. https://doi.org/10.2307/258934.

Reiter, U., K. Brunnström, K. DeMoor,M.-C. Larabi,M. Pereira, A. Pinheiro, J. You, andA. Zgank.
2014. Factors influencing quality of experience. In Quality of Experience. Advanced Concepts,
Applications and Methods, ed. S. Möller, and A. Raake. Berlin: Springer. Chap. 4. https://doi.
org/10.1007/978-3-319-02681-7_4.

Richards, D.L. 1973. Telecommunication by Speech. London, UK: Butterworths.
Richards, D.L. 1973. Telecommunication by Speech. London, UK: Butterworths.
Rummukainen, O., T. Robotham, S.J. Schlecht, A. Plinge, J. Herre, and E.A. Habels. 2018. Audio
quality evaluation in virtual reality: Multiple stimulus ranking with behavior tracking. In 2018
AES International Conference on Audio for Virtual and Augmented Reality, Audio Engineering
Society. http://www.aes.org/e-lib/browse.cfm?elib=19678. Accessed 23 Sept 2019.

Rummukainen, O., S. Schlecht, A. Plinge, and E.A. Habets. 2017. Evaluation of binaural reproduc-
tion systems from behavioral patterns in a six-degrees-of-freedomwayfinding task. In 2017 Ninth
International Conference onQuality of Multimedia Experience (QoMEX), IEEE, 1–3. https://doi.
org/10.1109/QoMEX.2017.7965680.

Rumsey, F. 2002. Spatial quality evaluation for reproduced sound: Terminology, meaning, and a
scene-based paradigm. Journal of the Audio Engineering Society 50 (9): 651–666. http://www.
aes.org/e-lib/browse.cfm?elib=11067. Accessed 23 Sept 2019.
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The Language of Rooms: From
Perception to Cognition to Aesthetic
Judgment

Stefan Weinzierl, Steffen Lepa and Martin Thiering

Abstract Rooms are not perceptual objects themselves; they can only be perceived
through their effect on the presented signal, the sound source, and the human receiver.
An overview of different approaches to identify the qualities and the dimensions of
“room acoustical impression” will be provided, that have resulted in psychological
measuring instruments for room acoustical evaluation from the audience perspective.
It will be outlined how the psychoacoustic aspects of room acoustical perception are
embedded in a socio-cultural practice that leads to an aesthetic judgment on the
quality of performance venues for music and speech.

1 Language and Perception

The aim of this contribution is to highlight the relationship between the characteris-
tics of performance venues for music and speech and the language which is used to
describe them. On the one hand, an overview of different approaches to using lan-
guage as a “measuring instrument” for the qualities of these spaces will be provided.
On the other hand, there is an interest in what conclusions can be drawn from the
language used with respect to the characteristics of these spaces, the listeners using
this language, and the perceptual and cognitive processes involved.

These relationships will be looked at through the lens of a theoretical frame
describing the relationship between cultural artifacts (performance spaces), their
perception, and their linguistic encoding. This frame model, combining elements
of perceptual psychology and cognitive linguistics, assumes a perceptual front end,
where an external acoustical signal is transformed into neural activity by auditory
sensory organs. For hearing, this process takes place in the inner ear, where sound
pressure transmitted by the outer and middle ear is transduced into neural signals. In
a perceptual back end, these signals are integrated above different sensory modalities
and activate concepts, i.e. mental representations corresponding to abstract classes
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of objects, which “tie our past experiences to our present interactions with the world”
(Murphy 2004, p. 1) and allow us, for example, to classify an audiovisual experience
in a certain social setting as a “concert” and a spatial environment of a specific size,
design, and acoustical properties as a “concert hall”. The result of this comparison
of sensory information with preconfigured categories (concepts) is called percept.

The size and the structure of the concept repertoire as well as thematching process
with the sensory input depends onmanypersonal and situational factors, including the
knowledge, the experience, the expectations, the motivation, and the attention of the
listener. Accordingly, the percept, such as “a successful concert in an acoustically
appropriate environment”, depends as much on these situational factors and the
conceptual repertoire of the individual listener as it depends on the sensory input at
this specific moment.

The relevance of language in this process has two important aspects. First, lan-
guage is—not the only, but the most important—“metrological” access to human
perception. From paired comparisons, similarity judgments, sorting tasks, multidi-
mensional scaling, semantic scales, to vocabulary profiling and related qualitative and
quantitative analyses: most studies of the auditory properties of performance venues
and sound description in general (Susini et al. 2011) have relied on language-related
tasks borrowed from the repertoire ofmethods of experimental psychology and quan-
titative and qualitative social research. Second, the language used can itself provide
information about the speaker’s conceptual representation of the world (Evans and
Green 2007, p. 5), such as about the spatial environments where listeners’ perceive
music or speech. The taxonomic organization and the privileged level of catego-
rization that is used in everyday language about spatial concepts are the results of

Fig. 1 Musical events as a cultural, social, visual and acoustic experience. The language to describe
performance venues for music and speech reflects each of these domains. The image shows the
concept for a new concert hall, to be opened in Munich ( c©Cukrowicz Nachbaur Architekten)
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preceding experiences, and it also shapes the lens throughwhich new experiences are
observed. The preferred vocabulary about performance venues does not only reflect
the knowledge and the professional experience, e.g., of expert versus lay listeners;
it is also assumed to have a direct impact on their instantaneous perception and the
respective mental models—for an introduction on mental models see Johnson-Laird
(1983), for a description on frame-theory seeMinsky (1977). This kind of “linguistic
relativism”, which has been evidenced for the languages of different ethnic groups by
many empirical observations in cognitive linguistics (Dabrowska and Divjak 2020;
Dancygier 2017; Everett 2013; Levinson 2020; Thiering 2018), also occurs on a small
scale in lay versus expert language linguistics, or when the languages of groups with
different kinds of expertise are compared, such as music listeners versus musicians.

2 Linguistic Inventories as a Basis for Psychological
Measuring Instruments in Room Acoustics

Throughout thefirst half of the 20th century, the investigation of roomacoustical envi-
ronments was mainly focused on the effects of reverberation, with its dependence on
frequency, and with its control through volume and absorption according to Sabine’s
formula (Sabine 1900). Psychological experimentswere conducted alreadybySabine
himself. In 1902, he invited a number of musical experts to the then recently built
New England Conservatory of Music to judge the acoustic quality of piano instruc-
tion rooms while seat cushions were successively added to the rooms in order to
reduce their reverberation times. Sabine observed that the listeners judged all rooms
to be acoustically optimal if the reverberation time was within a quite narrow range
of tolerance, from which he concluded a common taste of “surprising accuracy”
for the acoustical conditions of musical performance venues (Sabine 1906). This
unexpected consensus on the appropriate acoustical conditions for classical concert
venues, which would hardly have been observed 100 years earlier (Weinzierl 2002),
can only be interpreted as the result of a cultural process which accompanied the
emergence of public concert life, and which was largely completed around 1900
(Tkaczyk and Weinzierl 2019).

While Sabine asked his subjects only whether the duration of reverberation was
appropriate, the British architect and acoustician Hope Bagenal carried out simi-
lar experiments with musicians as test participants, who were asked to assess the
effect of room acoustic conditions on different sound qualities including “reverbera-
tion” (too long/too short), “tone” (full/bright/rich/soft), “tone” (hard/thin/dead/dull),
“loudness” (sense of power, body of tone), “reinforcement of notes” (even/uneven)
and “conditions”, by which he asked his subjects to name specific halls which resem-
ble the conditions reached (Bagenal 1925). Even if this scheme was not consistently
adhered to by his subjects, it can be considered as the first attempt to have the acous-
tics of concert halls evaluated by a semantic differential, covering the room acoustical
effect on spatial, dynamic and timbral dimensions, and considering the effect of typ-
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icality with respect to prototypical reference halls. The first standard with guidelines
for auditorium acoustics, issued in 1926 by the American Bureau of Standards, how-
ever, was mainly focused on specifying an optimal range of reverberation times for
halls of different sizes, along with recommendations of how to reach these values
(Bureau of Standards 1926).

After 1950, an increasing awareness can be observed that an optimal reverberation
time alone is no guarantee for a successful room-acoustical design, and that “rever-
berance” should not form the only criterion for the perceptual assessment of halls.
TheBritishBroadcastingCorporation (BBC) and theAcousticsGroupof thePhysical
Society sponsored a number of experiments, where an identical repertoire (Don Juan
by R. Strauss) was performed and recorded in four different British concert halls.
Subjects listening to the different recordings were then asked to produce a ranking
of these halls concerning tonal quality, definition, and overall preference. Consis-
tent rankings, however, could not be observed, and practising musicians exhibited
preferences that were different from other skilled listeners (Somerville 1953).

In a further study, a glossary of 14 acoustic terms was collected, which were,
according to the authors, commonly used to describe the qualities of concert halls and
recording studios—see entry for Somerville and Gilford (1957) in Table1. A similar
list of 18 attributes was proposed by Beranek (1914–2016) in his landmark book on
Music, Acoustics and Architecture, along with relations between these perceptual
qualities and physical properties of the hall, which were based on his intuition and
experience (Beranek 1962).

The two lists of attributes, along with a third, originally German list described
below, demonstrate the grown awareness for the multidimensional impact of room
acoustical conditions on the perceived sound qualities in these halls. At the same
time, the studies reflect an awareness for the need to separate the physical and the
perceptual domainmore clearly. Somerville andGilford emphasized that the “subject
under investigation is purely aesthetic and therefore must begin and end with human
aesthetic judgments” (Somerville and Gilford 1957, p. 171). Nevertheless, their list
is a mix of perceptual and physical items, including aspects such as “scattering”
or “standing wave system” without an obvious equivalent in the perceptual domain.
Beranek’s features, on the other hand, are psychological throughout, at least if aspects
such as “ensemble” and “dynamic range” are understood as “perceived ensemble”
and “perceived dynamic range”.

The way to analyze the results of questionnaire studies constructed on the basis
of these terms was paved by the psychological fundamentals of the use of semantic
differentials (Osgood et al. 1957) and the statistical techniques of multidimensional
scaling (MDS, Torgerson 1952) and factor analysis (Spearman and Jones 1950), all
of which were introduced during the 1950s. One of the first applications of these new
tools was made in a study by Hawkes and Douglas (1971). Sixteen attributes inspired
by Beranek’s list, shown in Table1, were used for a questionnaire applied in four
different British Concert Halls (with different musical programs and performers), in
the Royal Festival Hall, London, with the newly installed Assisted Resonance system
in different technical settings, and in the Royal Festival Hall at 23 different positions.
With interest in identifying the different dimensions of acoustic experience (Hawkes



The Language of Rooms: From Perception to Cognition to Aesthetic Judgment 439

Table 1 Attributes addressed in early investigations on the differential qualities of room-acoustical
environments. The translation of the originally German attributes by Wilkens (1977) was adopted
from Kahle (1995)

Somerville and Gilford
(1957)

Beranek (1962) Wilkens (1977)

1 Balance Intimacy Small/large

2 Bass masking Liveness Pleasant/unpleasant

3 Coloration Warmth Unclear/clear

4 Deadness Loudness of the direct sound Soft/hard

5 Definition Loudness of the reverberant
sound

Brilliant/dull

6 Diffusion Definition/Clarity Rounded/pointed

7 Echoes Brilliance Vigorous/muted

8 Flutter echoes Diffusion Appealing/unappealing

9 Liveness Balance Blunt/sharp

10 Pitch changes Blend Diffuse/concentrated

11 Scattering Ensemble Overbearing/reticent

12 Singing tone Immediacy of response Light/dark

13 Slap back Texture Muddy/clear

14 Standing-wave system Freedom from echo Dry/reverberant

15 Freedom from noise Weak/strong

16 Dynamic range Treble emphasized/not
emphasized

17 Tonal quality Bass emphasized/not
emphasized

18 Uniformity throughout the
hall

Beautiful/ugly

19 Soft/loud

andDouglas 1971, p. 249), the authors applied bothMDS and factor analyses, finding
4–6 orthogonal factors. The solutions they obtained, however, were different both
for the different stimulus settings and for the different types of analyses, i.e., both
the number of factors and the relation of factors and items were different for each of
the sub-studies. This problem will be further addressed in Sect. 3.

While Hawkes and Douglas collected data in the field, i.e., by interviewing con-
certgoers, Lehmann and Wilkens (1980) used an experimental approach by present-
ing dummy-head recordings of the Berlin Philharmonic Orchestra in six different
halls and capturing the assessment of subjects on a semantic differential with 19
different attributes shown in Table1. These were selected from a list of originally
27 items by eliminating those with an excessive inter-rater variance, indicating an
inconsistent interpretation between subjects. The factor analysis of the ratings deliv-
ered three orthogonal factors, explaining 89% of the total variance. Considering the
weigths of the original attributes on these variables, thesewere interpreted as strength
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and extension of the sound source, definition and timbre of the overall sound (Wilkens
1977). In an attempt to overcome the limitations of the experimental approach lack-
ing the ecological validity of live concert situations, Sotiropoulou et al. (1995) used
a questionnaire to be rated at three concerts in two different concert halls in London.
Similar to Lehmann and Wilkens (1980), they started with a larger vocabulary of
about 100 labels, which was reduced to 54 bipolar attributes based on a relevance
rating collected in pretests. Analysing the ratings of about 80 participants by factor
analysis, the authors obtained four factors explaining roughly 66% of the total vari-
ance, which they interpreted as body, clarity, tonal quality, and proximity. In both
experiments it became obvious that linguistic descriptors are not necessarily suitable
as measuring instruments if their meaning is inconsistently interpreted by different
raters or if their immediate relationship to the perceptual object under consideration
is not assured.

The numerous investigations dedicated to finding suitable technical parameters
to predict specific perceptual categories are not the subject of this contribution. Only
some of them are also interesting here because they highlighted the importance of
specific perceptual aspects which did not appear in earlier studies (compare Table1).
Most importantly, a group of studies emphasized the importance of spatial aspects
of room acoustics, in particular of an increased perceived “source width” and the
perceived acoustic “envelopment” of the auditorium (Barron 1971; Barron and Mar-
shall 1981; Bradley and Soulodre 1995). All of these studies, however, employed
synthetic sound fields created by loudspeakers in the anechoic chamber, and asked
participants to evaluate these qualities as isolated items. Since they were not evalu-
ated as part of a multidimensional measuring instrument, it is not apparent to what
extent they form independent aspects of the room acoustical impression, or whether
they are physically or perceptually correlated to other aspects.

In this context, it is essential to bear in mind that the ratings of two objects can
be correlated because two labels refer to similar perceptual impressions (such as
“loudness” and “strength” of sound), or because different perceptual qualities co-
vary in the physical objects of the stimulus pool. For example, rooms providing more
“reverberance” could—for physical reasons—always provide more “envelopment”,
although the perceptual concepts are clearly different.

After 2000, the study of the perceptual space of room acoustic conditions as a
whole attracted a renewed interest directed to the individual vocabularies used to
describe room acoustic conditions. Several studies, first aiming at the evaluation of
spatial-audio reproduction systems (Berg and Rumsey 2006) and then also on the
perception of natural acoustical environments, included a qualitative part for the ver-
bal elicitation of the terminology and a quantitative part for the statistical analysis of
the generated terms, allowing to identify clusters of attributes with a similarmeaning.
An initial of two studies conducted at Aalto University, Helsinki, produced room-
acoustical stimuli by impulse-response measurements of a loudspeaker orchestra
in three different concert halls, encoded in Ambisonics B-Format, processed with
directional audio coding (DirAC, Pulkki 2007) and reproduced by a 16-channel
loudspeaker system. A second study used impulse responses of eight different con-
cert halls, encoded in Ambisonics B-Format, processed with the spatial impulse-
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Fig. 2 Wheel of concert hall acoustics (Kuusinen and Lokki 2017)

response-rendering algorithm (SIRR; Merimaa and Pulkki 2005) and reproduced by
a 14-channel loudspeaker system. Analysing the large set of about 100 individual
attributes generated and rated by 20 resp. 23 participants in the two studies, two resp.
three main components could be extracted explaining 66% resp. 67% of the total
variance. These were interpreted as loudness/distance and reverberance in the first
study (Lokki et al. 2011), and loudness, envelopment and reverberance, bassiness
and proximity and definition and clarity in the second study (Lokki et al. 2012).

As a summary of their own and other work, authors of the same group suggested
a “wheel of concert hall acoustics”, including eight main categories and 33 items
to visualize the main perceptual aspects of concert halls with unamplified musical
instrument sounds (Kuusinen and Lokki 2017). Thewheel format, which has a longer
tradition in the domain of food quality and sensory evaluation (compare Noble et al.
1987) is a structured and hierarchical form to present a lexicon of different sensory
characteristics. Pedersen and Zacharov (2015) used the wheel to present such a
lexicon for reproduced sound, with the selection of the items and the structure of
the wheel based on hierarchical cluster analysis and measures for discrimination,
reliability, and inter-rater agreement of the individual items—an empirical basis
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which was not provided in Kuusinen and Lokki’s original wheel for concert halls—
see Fig. 2.

3 Psychometrics and Scale Development in Room Acoustics

The studies summarized above have, in different ways, confirmed the multidimen-
sional character of room acoustical conditions as a mediator for the sound qualities
of music and speech, and they provided different lists of attributes to describe these
qualities. As underlying dimensions of the room acoustical impression, the loud-
ness or strength and the reverberance of rooms were consistently extracted from the
ratings of these attributes, as well as a factor for the timbre of the room. None of
these studies, however, attempted to construct a standardized measuring instrument
that can be used with different groups of listeners to describe the whole width of the
room-acoustic perception space. From today’s point of view, this was impossible due
to shortcomings in terms of the experimental stimuli, the participating subjects and
the statistical analysis techniques employed in these works. According to modern
standards in social research, any psychological measurement instrument has to meet
established quality criteria in terms of reliability, validity, and invariance concerning
a typical sample of users and stimuli. To establish perceptual dimensions, the investi-
gation has to take care of representativeness and breadth of stimuli, possible hidden
confounders and a proper sample selection in order to prevent bias concerning the
generalizability of results.

A first problem that pertains tomost of the early studies in acoustical room impres-
sion measurement is the lack of experimental control concerning the stimuli pre-
sented. Studies that collected ratings in physically existing rooms always risked the
influence of hidden confounders such as the audio content, the visual impression, or
the musical performance, all of which co-vary with the auditory impression of the
room. Presenting the whole breadth of possible room acoustical conditions while
keeping these confounding variables constant seems only possible with state-of-
the-art technologies for auralization. It is, of course, true that such an experimental
approach can not account for all visual, architectural, and social aspects that con-
stitute the multi-modal impression of a concert venue. To determine the acoustical
properties of a room, however, these influences act as confounders increasing the
measurement error of the test.

One may ask to what extent full control of all non-acoustic factors makes sense,
since, for example, an interaction between the room-acoustic conditions and the
playing style of musical performers is also present in the real situation and thus not
an experimental artifact in the narrower sense. However, incorporating such inter-
action into the experimental design might, on the one hand, conceal characteristics
of space if, for example, musicians were tempted to compensate for the effect of
space by adjusting their timbre and volume in the opposite direction. On the other
hand, the effect of space on the performer’s playing has proven to be quite individ-
ual. Different musicians react in very different ways to room-acoustic conditions
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(Schärer Kalkandjiev and Weinzierl 2013, 2015; Luizard et al. 2020). The consider-
ation of the interaction of space and performance would, therefore, face the problem
of which reaction pattern should be used as a basis here. Nevertheless, the final
question that must be taken into account regarding the overall aesthetic judgment
of space—“Is the room suitable for a musical content?”—cannot be conclusively
evaluated in the laboratory.

A second challenge lies in the sample of rooms presented in terms of represen-
tativeness. The identification of latent dimensions of room acoustical perception,
i.e., a stable factor-analytic solution of the measured data, which is valid beyond the
specific sample of rooms used in the test, cannot be expected for a too-small set of
stimuli. In order to identify five largely independent perceptual dimensions, a set of
at least 25 = 32 stimuli would be required so that all perceptual qualities can be var-
ied systematically and independently from each other and hence can be adequately
identified by factor analysis. Furthermore, only with a sufficiently large sample of
rooms, the results can be considered representative of the targeted population of room
acoustical conditions. Comparing these requirements with the sample sizes used in
the studies mentioned above, with typically less than ten rooms, it becomes evident
that neither the dimension of the perceptual space, i.e., the number of latent variables,
nor the structure and interpretation of the adopted factor solution could be reliably
determined.

A third challenge is the size of the sample of listeners. In order to reliably assess
the dimensionality of perceptual constructs represented by questionnaire item bat-
teries by factor analyses, it is recommended to use sample sizes of at least 100–200
subjects or at least a sample of three times the number of employed items, even
in the favorable case of a good fit of attributes and factors (high commonality). If
this requirement is not met—and it never was in the aforementioned studies, stable
solutions can be expected only for the most critical factors, i.e., those carrying most
of the variance, while all other factors, representing the more subtle aspects of room
acoustic impression, are affected by a large sampling error (MacCallum et al. 1999).

Finally, any psychological measuring instrument requires an analysis of the psy-
chometric qualities of the perceptual constructs and questionnaires based on them
in terms of validity, reliability, and measurement invariance. Techniques and crite-
ria for this purpose have been developed extensively in the social sciences (Vooris
and Clavio 2017). Typical requirements for psychological questionnaire instruments
comprise the use of latent measurement models, the demonstration of convergent and
discriminant validity (“Do the scale’s subdimensions actually measure what they
are supposed to measure and are sub-dimensions sufficiently different from each
other?”), as well as demonstrations of sufficient construct reliability (“How precise
does the scale measure?”) and measurement invariance (Millsap 2011) across time,
stimuli, and populations of interest (“Are the scale’s measurements independent of
the experimental factors employed?”).

In order to achieve and demonstrate an acceptable degree of validity, reliability,
andmeasurement invariance, and to deal with different sources of measurement error
(Schmidt and Hunter 1999), psychological scale development today typically relies
on latent-variable models (Loehlin 2004). In this approach, it is assumed that every
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manifestmeasurement of a questionnaire item is, in fact, the expression of underlying
latent psychological constructs. When at least three items are measured for any con-
struct exclusively (“simple structure”), it is possible to not only estimate the degree
of item-measurement error, construct loading and resulting construct reliability, but
also to calculate error-free construct scores andworkwith these in later analyses. The
latent-variable approach also allows checking for reliability across time (retest relia-
bility), which is considered the most important indicator of reliability for scales since
Cronbach (1947), and invariance across experimental conditions. Since past studies
on room acoustics predominantly drew on principal-component analyses (PCA) and
clustering techniques, where none of these tests is possible (Fabrigar et al. 1999),
only a minority of reliability-, validity-, and invariance-related questions could be
addressed systematically.

4 The Room-Acoustical-Quality Inventory (RAQI)

A multi-stage investigation was conducted by the Audio-Communication Group
at TU Berlin to develop a language-based measuring instrument for the different
qualities of room-acoustical environments for music and speech and to address the
methodological gaps described above (Weinzierl et al. 2018). In a first step, expert
knowledge from different professional domains in room acoustics was acquired by
help of a focus group in order to provide a comprehensive terminology covering
all aspects of the room-acoustical impact on music and speech performances. In a
second step, listening experiments with acoustical experts and non-specialists were
conducted using 35 rooms of different architectural types, different size, and different
average absorption values in order to address the most important types of acoustic
performance venues and their specifics. Different audio content was used, including
solo music, orchestral music, and dramatic speech. The goals of the subsequent
statistical analyses were to,

• Find an exhaustive list of verbal attributes that describes all relevant room acous-
tical properties

• Identify the best-suited items of this list to form a standardized measurement
instrument

• Analyze the underlying dimensions of room-acoustical impressions
• Construct ameasurement instrument based on these dimensions and corresponding
items

• Demonstrate the reliability of the new instrument across and within raters
• Demonstrate measurement invariance of the new instrument across experimental
conditions such as audio content type and subject samples

• Demonstrate sufficient discriminant validity of its subdimensions.

In order to realize this in an experimental setting that permitted controlling for any
possible confounders, the study drew on room-acoustical simulation and auralization
by dynamic binaural synthesis. The consensus vocabulary generated by the expert
focus group consisted of 50 perceptual qualities related to the timbre, geometry,
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reverberation, temporal behavior, and dynamic behavior of room-acoustical environ-
ments, as well as overall, holistic qualities. While some attributes reflect lower-order
qualities closely related to temporal or spectral properties of the audio signal (“loud-
ness”), (“treble/mid/bass range tone color”), perceived “size”, and “width” of sound
sources), other attributes reflect higher-order psychological constructs, supra-modal,
affective, cognitive, aesthetic, or attitudinal aspects such as “clarity”, “intimacy”,
“liveliness”, “speech intelligibility”, “spatial transparency”, or “ease of listening”
(Weinzierl et al. 2018, SuppPub 1). For the listening experiment, binaural room-
impulse response (BRIR) datasets were simulated for 35 rooms at 2 listening posi-
tions for solo music and speech. For the orchestral piece, 25 rooms at 2 listening
positions were selected, leaving off 10 rooms where the stage area would not be
large enough for an orchestra. Thus, in total, 190 room-acoustical conditions (rooms
× listening positions× source characteristics) were simulated for the listening exper-
iment. Fourteen of these 190 possible stimulus combinations were rated by each of
the 190 participants in a balanced incomplete block design, using 46 items selected
from the focus group terminology.

An exploratory factor analysis (EFA) based on the common factor approach was
conducted to estimate the number of independent latent dimensions contained in the
full-item data matrix. The scree- and Kaiser-criterion was used as a starting point
for constructing a multidimensional measurement model. For each of the possible
solutions, a series of confirmatory factor analyses (CFA) was conducted to consec-
utively remove single items from the measurement models up to a point where an
implied removal would have led to less than three items per factor, or otherwise, the
overall fit of the measurement model was already good. The latter was read from
Root-Mean-Square Errors of Approximation (RMSEA), Comparative Fit Indices
(CFIs), and Standardized Root-Mean-Square Residual (SRMR) coefficients, as well
as congeneric Construct Reliability (CR), indicating the internal consistency of a
factor construct, and Average Variance Extracted (AVE) indicating how well a factor
explains the scores of its underlying items (Fornell and Larcker 1981).

The factor analysis suggests possible solutions with 4, 6 or 9 factors. These can be
interpreted as a general room-acoustical quality factor, strength, reverberance, bril-
liance (4-factor solution), irregular decay and coloration (6-factor solution), clarity,
liveliness and intimacy (9-factor solution). The corresponding item batteries consist
of 14, 20, and 29 attributes as shown in Fig. 3. From a statistical point of view, the
6-factor RAQI scale with 20 items is the best compromise between a comprehensive
assessment of the full complexity of room-acoustical impressions while at the same
time ensuring sufficient statistical independence of the different factors.

With strength and reverberance, two of the sub-dimensions are omnipresent in the
room-acoustical literature. Also, clarity and intimacy as additional factors have been
frequently highlighted by previous studies (Hawkes and Douglas 1971; Lokki et al.
2012). With brilliance, coloration, and intimacy appearing as largely independent
factors, it seems that timbre-related qualities play a greater rolewithmore dimensions
than previously assumed. The importance of perceived irregularities in decay and of
liveliness as an independent construct has, however, hardly been considered so far.
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Fig. 3 The Room-Acoustical-Quality Inventory (RAQI). Four, six, and nine factors as possible
sub-dimensions of room acoustical impression can be measured with questionnaires containing 14,
20, and 29 items, which are given with corresponding poles. Weights (W) and Intercepts (I) should
be used to measure factors and for structural-equation analysis. Four additional single items with
high retest reliability, which could not be assigned to any of the factors, are given below

In terms of psychometric quality, the factors of the 6-factor RAQI exhibit good
across-rater consistency and within-rater stability. With regards to measurement
invariance, scalar measurement invariance across measurement occasions could be
demonstrated for a rather long distance of approximately 42 days. Scores from all
RAQI sub-dimensions can thus be directly compared across studies as long as exper-
imental conditions and test subject sample are identical. Similar results pertain to
changes in experimental listening position: Scores taken fromdifferent listening posi-
tions in the same room did not differ systematically. Although the acoustical transfer
functions might be quite different, as was demonstrated even for minor changes of
the listening position (de Vries et al. 2001), listeners are able to identify the room
and its acoustical properties as a consistent cognitive object.
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5 Low Retest Reliabilities of Experts versus Laymen:
A Problem of Language or a Problem of Perception?

As part of the RAQI development study, the listening test with 88 subjects of 190
in total was repeated six weeks later with identical stimuli. Based on these data, test-
retest reliabilities could be determined, calculated as the correlation ofmeasurements
within individuals across time, as a measure of the precision, with which certain
room-acoustical features could be evaluated. For a majority of the 46 items rated by
all participants, the reliabilities turned out to be rather low. Only three items related to
reverberation: “reverberance”, “strength”, and “durationof reverberation”, exceeded
values of r = 0.7, which is usually considered as a criterion of good reliability.
Many other items, including popular ones in room acoustics such as “sharpness”
or “transparency”, turned out to be based on somewhat unreliable judgements (r =
0.37/0.43), using the variation over time within subjects as an indicator.

The low stability of most single item scores indicates that room acoustical impres-
sions appear to be strongly influenced by time-varying situational factors, such as
variations in attention, mental efficiency and distraction (random response errors)
and variations in mood, feeling and mindset (transient errors, Schmidt and Hunter
1999). The extent of these psychological measurement errors, however, also depends
on the expertise of the listeners. Since the aforementioned subject sample consisted
of 60music-interested non-specialists and 28 individuals with professional education
in room acoustics, the relevance of this personal trait could be determined, showing
a mean retest reliability of 0.50 across all items for non-specialists versus 0.59 for
acoustical experts. Since there is no evidence for differences in the sensory perfor-
mance between the two groups, the reasons for this difference have to be sought in
the perceptual back-end, to pick up on a term from Sect. 1.

Laymen could assess properties, which are clearly room-related and accessible
to everyday experience such as the size of the room (r = 0.59 vs. 0.58 for experts
vs. non-experts), the occurrence of echoes (r = 0.67 vs. 0.68) and even the degree
of liking (r = 0.59 vs. 0.62) with the same, sometimes even better reliability than
experts. Whenever, however, the influence of the acoustical source and the influence
of the room on the same auditory qualities had to be separated, such as when rating
the “brightness” (r = 0.65 vs. 0.49) and the “bass-range characteristic” (r = 0.64
vs. 0.17), or the impact of the room on temporal clarity (r = 0.72 vs. 0.49) and
speech intelligibility (r = 0.70 vs. 0.58), experts were clearly in the advantage. In
these cases, the ability to judge this reliably depends on the extent to which the
performance and the room are separated cognitive objects attracting differentiated
attention. In addition, experts then also cultivate a specialized vocabulary, including
attributes such as comb-filter coloration (r =0.56vs. 0.44) or the spatial transparency
(r = 0.56 vs. 0.38), which are hardly required to describe everyday experiences with
music and speech.

Hence, the question of whether the higher precision of experts in evaluating the
acoustic properties of rooms is due to a better-trained perception or a more sophisti-
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cated vocabulary points to the same interwoven phenomenon: The cognitive perfor-
mance in the separation of source and space requires amore sophisticated vocabulary,
but the sophisticated vocabulary, in turn, can lead to a more differentiated perception.

6 The Perceived Quality of Performance Spaces

Most studies dedicated to room acoustic qualities have, in one way or another, also
examined what makes up the overall quality of performance spaces. To avoid termi-
nological confusion between the two concepts, Blauert has suggested distinguishing
between the “aural quality” of a room and a set of “quality features” making up the
“aural character” of the room (Blauert 2013). In the following, however, we will
stick to a distinction between “quality” and “qualities”, because these are fairly well
established terms in the psychological literature.

Quality, in the sense of liking or preference, was already an issue in early investi-
gations aiming at preferred values for the reverberation time of concert halls (Sabine
1906; Watson 1923; Bagenal 1925; Sabine 1928; Knudsen 1931). Multidimensional
approaches have often tried to find correlations between the rating of individual
attributes or factors and the overall pleasantness (Wilkens 1977), the degree of enjoy-
ment (Hawkes and Douglas 1971) or the preference (Soulodre and Bradley 1995;
Lokki et al. 2012) of the room acoustical impression. The relation between the rat-
ing of individual qualities and overall quality judgements, however, turned out to
be dependent on many factors beyond the room acoustical properties, such as the
musical repertoire, the musical performance, and the taste of individual listeners.
Some of the studies could even identify different preference groups, one of which
preferred more reverberance while the other preferred more clarity and definition
(Lehmann and Wilkens 1980; Lokki et al. 2012).

The proportion of the variance in overall quality judgmentswhich can be explained
only by acoustic qualities of the rooms themselves was estimated by the authors of
this chapter, based on the ratings of 190 participants, collected in the development of
the Room-Acoustical-Quality Inventory (Weinzierl et al. 2018). Since an unspecific
quali t y factor turned out to be one dimension in each factor solution, the relationship
of this general factor to the other dimensions could be estimated. For this purpose, the
measurement model of the RAQI was turned into an equivalent structural-equation
model regressing the scores of the quality factor on the other factors to estimate their
influence and the overall explained variance for the quality factor. Not only linear but
also quadratic influences were tested, since psychoacoustic influences on cognitive
percepts often show a u-formed (or inverse u-formed) relationship, for example,
between preference and reverberation, where an optimal range and a decrease in
quality on both sides is the most plausible relation. To account for this, the LMS
approach for non-linear effects in structural-equation models was used (Harring
et al. 2012).

In the 6-factor version of the RAQI shown in Fig. 3, the model was able to explain
about half of the variance in quality—see Fig. 4.While strength and brilliance scores
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Fig. 4 Structural-Equation Model estimating the influence of five dimensions in the 6-factor-
RAQI on the overall quality factor. Path coefficients are beta-weights/correlations. The parameters
indicating the fit of the model are explained in Sect. 4

exhibit the largest positive influence on quality judgements, a decrease in quality
arises with higher coloration and higher irregular decay values. Reverberance had
both a linear and an inverted-u relationship to quality.

One should be aware that the influence of the individual factors—indicated by
the beta weights—as well as the explanatory power of this qualitymodel—indicated
by the measure of determination, R2—depends significantly on the properties of the
stimulus pool from which it is derived. The less the presented rooms and the music-
and-speech content correspond acoustically to the expectations of the listeners, the
higher will be the proportion of the overall quality that can be explained solely by
acoustic properties. Also, the sign and the value of the linear beta weights initially
only indicate in which direction and to what extent parameters, for example, the
rooms’ reverberance, deviated on average from the perceived optimum as seen from
the listeners’ point of view. In order to obtain values for these relationships that
correspond to a certain cultural practice, it is therefore vital to work with a stimulus
pool that is an adequate representation of this practice.

With the stimulus pool used, fifty percent of the variance in quality could be
explained by perceptual attributes of the room in the presentedmodel. This part of the
variance can be considered as the context-independent part of the overall preference
judgements, not accounting for the musical repertoire, the musical performance, and
the individual taste of the listeners. To explain the preference of music listeners for
specific concert halls in a specific situation, a significantly extended model would
thus be required. Although various potential influencing factors related to the cultural
context of such an overall judgement have been proposed, for example, by Blauert
(2013), who pointed out the importance of the typicality of concert halls as a result
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of two hundred years of Western concert culture, a comprehensive model for the
overall aesthetic impression of performance venues, validated by empirical data, has
not yet been proposed.

A promising candidate for such a model could emerge when taking into account
that judgments about concert halls are always embedded in music-cultural practices
in which the music piece, its performance, the performance space and the predispo-
sition of listeners are intricately interwoven, and in their entirety shape the aesthetic
judgment of a musical event. Thus, when music psychology examines the factors
that influence the aesthetic judgment of a concert performance, the spatial and social
context under which that judgment is made will always form a part of that judgment.
Listeners can try to consider individual aspects and, for example, try to analytically
separate the contributions of the sound source and the performance space to the
perceived sound event (Traer and McDermott 2016). However, this separation will
always be incomplete. Hence a reasonable approach will possibly lie in applying
models that have already been proven empirically to explain the aesthetic judgment
of music and music performances also to the evaluation of the venues in which music
is performed.

Such an approach is exemplified by the model of Juslin et al. (2016), shown
schematically in Fig. 5. It assumes that listeners make aesthetic judgments in partic-
ular situations in which they adopt what the authors call an “aesthetic attitude”. It
is, not least, the concert ritual and the concert hall itself that encourages listeners to
adopt this attitude. Once this condition ismet, aesthetic processingmay be influenced
by several factors in the artwork, the perceiver, and the situation. These influences
are mediated through the perception, cognition, and emotion of the listener. For one
thing, a clear separation of these processes is difficult to draw, and the same musical
cues can be processed perceptually (i.e., as sensory impressions), cognitively (i.e.,
depending on conceptual knowledge) and emotionally (i.e., aroused by other psycho-
physiological mechanisms). However, even more important is the observation that
different listeners use different criteria that determine which of this information and
which of those channels have an impact on the resulting aesthetic judgment.

These criteria can be related to varying degrees both to the musical work, to a
performance, and to a performance space. One of these criteria is beauty. Concerning
the performance space, beauty could be understood as the sum of the room acoustical
qualities, for which a multidimensional measuring instrument has been developed
with the RAQI (Fig. 3). Beauty, however, should not be identifiedwith aesthetic value
in general. Other criteria such as the degree of originality of a musical event and the
related performance venue, the skill in its realization, the typicality with respect to
performance traditions, the degree of expression and emotional contagion, and the
message related to the socio-cultural connotations of the musical event, can play
a major role for many listeners. In the study of Juslin et al. (2016), most listeners
appeared to use a small number of three to five criteria in their judgments, and there
were significant individual differences among the listeners, both in how many and
which criteria were used.

It is tempting to assume that it is the individual choice of criteria which may
account not only for the different aesthetic judgments about music as an integrated
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Fig. 5 A model for the formation of aesthetic judgments about music, according to Juslin et al.
(2016). The analysis of amusical event is channelled through the perception, cognition, and emotion
of the listener. Whether these inputs will affect the resulting aesthetic judgment depends on the
listener’s criteria, which act as filters for the processed information

experience but also for the different judgments about musical performance venues.
Empirical verification of this assumption could be an essential contribution to a
problem that might have been considered for too long only from a psychoacoustic
perspective.
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Modeling the Aesthetics of Audio-Scene
Reproduction

John Mourjopoulos

Abstract Reviewing work from diverse scientific fields, this chapter approaches the
human aesthetic response to reproduced audio as a process of attraction and efficient
(“fluent”) processing for certain auditory stimuli that can be associated with listener
pleasure (valence) and attention (arousal), provided that they conform to specific
semantic and contextual principles, either derived from perceived signal features or
from top-down cognitive processes. Recent techniques for room-related loudspeaker-
based presentation of auditory scenes, especially via multichannel reproduction, fur-
ther extend the options for manipulating the source signals to allow the rendering of
virtual sources beyond the frontal azimuth angles and to enhance the listener envel-
opment. Hence, such methods increase arousal and valence and contribute additional
factors to the listeners’ aesthetic experience for reproduced natural or virtual scenes.
This chapter also examines the adaptation of existing models of aesthetic response to
include listeners’ aesthetic assessments of spatial-audio reproduction in conjunction
with present and evolving methods for evaluating the quality of such audio presen-
tations. Given that current sound-quality assessment methods are usually strongly
rooted in objective, instrumental measures and models, which intentionally exclude
the observers’ emotions, preferences and liking (hedonic response), the chapter also
proposes a computational model structure that can incorporate aesthetic functionality
beyond or in conjunction with quality assessment.

1 Introduction

1.1 Overview

This book chapter reviews material related to the aesthetics of recorded sounds, with
the emphasis on the spatial relationships of sound objects and scenes represented via
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current loudspeaker and room-related reproduction technologies. The review draws
evidence from many scientific disciples, such as audio technology, acoustics, neuro-
sciences, cognitive psychology, and philosophy, to highlight underlying convergent
trends in scientific research that are relevant to the aesthetic awareness of recorded-
reproduced sound. Note that in this chapter, as “recorded-reproduced sound” all
physical and man-made processes are considered that combine pre-recorded or syn-
thetic audio data into loudspeaker-based (“room-related”) presentations of auditory
scenes via such loudspeaker arrangements (Toole 2018; Blauert et al. 2013; Rumsey
2017; Breebaart and Faller 2007).

Human appreciation of sound qualities, auditory scenes, and music, must be con-
sidered as an unprecedented phenomenon of biological functionality of the auditory
periphery, the brain, and cognition, to the end of analyzing, organizing, classifying
and combining acoustic sensory stimuli. Such unique coding and recombination of
information are affecting numerous centers in the brain and, clearly, proper analysis of
these phenomena is beyond the scope of this chapter—compare Levitin (2011), Lund
and Mäkivirta (2017), McDermott (2012). Instead, here an engineering perspective
is followed, that is, such complex perceptual, cognitive, and biological processes are
approached via functional models that consider human aesthetic response as a medi-
ating mechanism between perception and interpretation. Such mediating mechanism
is considered to function in series, in parallel, or even independently from any related
quality judgment initiated by the same stimuli.

The complexity of modeling human aesthetic response is immense and interdis-
ciplinary, quoting Julien P. Renoult: “...Few topics can take pride in transcending
the traditional frontiers between disciplines from the humanities and the sciences as
much as aesthetics...” (Renoult 2016). Furthermore, it remains virtually unexplored
in the field of audio and acoustics. In contrast, the aesthetic analysis of various art
forms including music has been a well-established area of the fields of humani-
ties, philosophy and musicology (Wikipedia 2018; Brattico et al. 2017). Any such
analysis of musical aesthetics and aspects related to the music content will be care-
fully excluded from this book chapter following instead an engineering perspective
and drawing evidence from similar current research in representational aesthetics of
visual arts and images (Joshi et al. 2011; Deng et al. 2017).

The aesthetics of listening to recorded-reproduced music can be seen as a hierar-
chical representation of mental abstractions and emotional response to audio stimuli
exceeding a specific threshold of attention (Brattico et al. 2013, 2017). Cognitive
representations at this level of aesthetic and emotional response are not easily rep-
resented via verbal descriptors or objective classification and, hence, are not easily
analyzed via the established psychometric methods as usually applied to audio-
sound-quality assessment. Hence, the aesthetic response must be considered in con-
junction and beyond existing instrumental, descriptive or computational methods for
judging sound/audio qualities, even if, as will be noted later, there is often some
overlap between quality and aesthetic judgments. Given the significant body of engi-
neering methods in the field of audio-quality assessment (Bech and Zacharov 2006;
Raake and Wierstorf 2014; Zacharov et al. 2016; Pedersen and Zacharov 2015), this
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book chapter will also consider respective relationships between aesthetic models
and methods for evaluating sound quality.

Recent techniques for room-related (loudspeaker-based) or head-related
(headphone-based) presentation of auditory scenes, especially when optimized via
digital signal processing (Rumsey 2017; Breebaart and Faller 2007; Pulkki et al.
2018), further extend the options for manipulating the perceived spatial scenes often
aiming beyond authenticity and realism in their presentations. Such techniques often
intentionally enhance listener inhibition and envelopment hence affecting the lis-
tener interpretation of the recorded or synthesized auditory scenes. It is clear that
today, as for all periods since the inception of recording technology, there are diverse
approaches to the technical and aesthetic rules formodifying or synthesizing recorded
sounds, that is, the degree of the imposed illusion and impact designed into such rep-
resentations compared to natural listening.

Historically, such semi-autonomous reference system between reality and its vir-
tual representation as widely used for more than 100 years (Toole 2018; Hamilton
2003), must be considered as the “grandfather” of the more recent virtual-reality
(VR) technologies. Given the multiplicity of largely unexplored facets of the prob-
lem, this chapter specifically considers the aesthetic implications of the techniques
that allow the representation of spatially separated sound-music objects and their
relationships to a realistic or virtual sound field. In particular, this chapter presents

• A literature reviewof the functionalmodels of aesthetic response drawing evidence
from current research in the fields of computer vision, image analysis as well as
from cognitive psychology.

• An analysis of audio-technology developments relevant to the perceived qualities
and aesthetics of the reproduced auditory scenes.

• An analysis of signal and system features that affect aesthetic judgment beyond
or in conjunction to sound-quality evaluation of such recorded and reproduced
sounds also discussed in detail in Raake and Wierstorf (2020), this volume.

• A proposal for the structure of a functional engineering model combining per-
ceptual and cognitive mechanisms related to aesthetic judgments for recorded
sounds and music, focusing on the spatial parameters of the audio reproduction
technology.

1.2 Problem Formulation

This chapter focuses on the aesthetics of the technical medium of sound-reproduction
representation. As much as possible it is thereby avoided to consider the aesthetics
of music content, context, composition, form, performance, style, etc. A selection of
statements regarding current listening trends is listed in the following.

• Today almost allmusic reaching the listeners is produced, recorded and reproduced
electro-acoustically and, hence, such according listening experience has become
ubiquitous to everyone (Hamilton 2003; Rumsey 2008)
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• With the widespread exposition to recorded sounds for more than a century, audio-
engineering practices form an integral aspect of the experience of music appre-
ciation for most humans over a variety of situations, environments. The recorded
sound is delivered over highly diverse equipment and conditions

• Virtually all original music performances are manipulated in the electronic-digital
domain to achieve an acceptable level of technical and aesthetic perfection. As
Hamilton has pointed out (Hamilton 2003), recording has transformed the nature
of music as an art by reconfiguring the cognitive hierarchy of the aesthetics of
perfection and imperfection

• Due to the varying degree of signal manipulation, it is impossible for most musical
genres to use as reference an original source or auditory scene. Thus judgments
on reproduction authenticity and transparency can never be fully objective—
especially considering additional and case-dependent artifacts imposed during
reproduction (Brattico and Pearce 2013; Rumsey 2008)

• Listening impact, plausibility, realism, and arousal from recorded sounds can chal-
lenge the level of the emotional effect achieved via natural listening (Eerola 2014).
This is evident from the wide acceptance and viability of recorded-music media
in social, artistic, cultural and economic terms. Recorded music has thus gained
profound significance for each one of us (Brandenburg et al. 2020; Rumsey 2002)

• Recorded music has eventually established a novel global framework for aesthetic
representations of sound andmusical objects (Brattico et al. 2017;Hamilton 2003).
As Kahn writes “…Phonography challenges music’s hegemony as universal art
of sound…” (Kahn 2001)

• Thus, it is now accepted that any technical shortcomings in real-life events and
in performances is to be corrected to achieve listener acceptance via perceptual
plausibility and, therefore, also to be engineered via autonomous aesthetic rules
and concepts

• Such aesthetic aspects are highly significant to specialists such asmusicians,music
educators, audio engineers, experienced listeners/audiophiles. Functional model-
ing of these aesthetic aspects can be applied to enhance the scope of existing
sound-quality assessment methods

• Due to their lengthy exposure, listeners in modern societies tend to accept audio
production and audio reproduction as a common cultural artifact that obeys its
own semantic rules (Rumsey 2011)

• These rules are often stylized and “group-specific”.Consequently, cultural bonding
within listeners is highly active. This increases the dependence of the listeners’
judgments as regards the analysis of individual preferences or of cultural/social
biasing (Brattico and Pearce 2013; Zielinski et al. 2008)

• Current and emerging audio technologies provide extended control of the sound
field and the properties of natural or artificial sources, along with their spatial rep-
resentation to the listener. Hence, spatial aspects of the audio technology contribute
increasingly to current and future aesthetic experience (Rumsey 2002, 2017)

• “Head-related” (via headphones) and “room-related” (via loudspeakers) reproduc-
tion of auditory scenes often follow different technical solutions and suffer from
different constraints (Rumsey 2017).
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1.3 Encoding and Decoding

Focusing nowon room-related auditory-scene recording/reproduction via loudspeak-
ers, the well-established studio techniques that form the foundations of acoustically-
transparent encoding procedures will not be considered at this point. Instead, for
simplicity, the focus is laid on cases where the original material has been prerecorded
into discrete audio channels, and where, during the encoding, the components are
synthetically combined into an intended auditory scene. Given the ever-increasing
options for format encoding and reproduction (e.g., stereophonic, surround, holo-
phonic), (Rumsey 2015b, 2017), this simplification may exaggerate the aesthetic
options offered to contemporary sound engineers andmusicians via appropriate soft-
ware tools. As noted by Rumsey (2002), “…The computer music composer, along
with most studio audio engineers will be faced with novel and unknown practices
when attempting to explore the possibilities offered by the (new) multichannel audio
formats…”. Rumsey categorizes the aesthetic options offered for such encoding, as
allowing to

1. Create virtual space: Redefine the composition-parameter hierarchy to include
space, retain musical coherence and focus, control relationship between musical
substance and effect

2. Assign spatial roles: Define spatial roles for sources, decide for themes/sources
assigned to the central position, assignmusical significance to imagewidth and/or
movement, explore spatial aspects of timbre

3. Explore extra-musical aspects: Relate spatial audio imagery to visual action (if
visual data are also used), define listener perspective, explore plots in the extended
audio soundscape.

With respect to the options of audio reproduction, the current high-quality
room-related loudspeaker methods for the presentation of auditory scenes offer
a wide battery of software tool, in particular, when these scenes are synthesized
(Rumsey 2009). Briefly, two state-of-the-art methods aim at physically-authentic
3D-sound representation (“Holophony”), namely, Higher-Order Ambisonics (HOA)
andWave-Field Synthesis (WFS). Each of them achieves a different level of acoustic
3D-performance, especially with respect to scalability and the capability for adapta-
tions to the loudspeaker-room reproduction system, whereby each suffers from well-
known limitations (Rumsey 2009). The specific deficits of each of themethods can be
compensated up to certain a degree by additional encoding-preprocessing (e.g., via
amplitude panned or VBAP encoded channels, binaural parametric-cue selection,
system-response compensation)—compare Rumsey (2009), Pulkki (2001), Bertet
et al. (2006), Merimaa and Pulkki (2005), Faller (2004), Daniel et al. (2003).



460 J. Mourjopoulos

Fig. 1 Conceptual general representation of a complete transmission channel, incorporating record-
ing and room-related reproduction

1.4 The Transmission Channel

Irrespective of the encoding/decodingmethods, the listenerswill respond and provide
evaluations for sound-quality and aesthetics related to the reproduced sound event
and scene as is modified via the specific transmission channel (Toole 2018; Bech
and Zacharov 2006; Rumsey 2002, 2017). In general terms the complete end-to-end
chain from “input” to “output” may be approached conceptually as a transmission
system, incorporating the sound engineer’s choices for encoding and preprocessing,
the electroacoustic-loudspeaker reproduction, room acoustic response effects and,
finally, the listeners auditory, perceptual, and cognitive decoding.

A conceptually simplified representation of such a system, which comprises the
end-to-end chain from the source to the receiver, is shown in Fig. 1. For an extended
analysis of the end-to-end sound-processing chain compare (Raake and Wierstorf
2020), this volume. In such a system, it is evident that aesthetic judgements can be
affected, applied and related to each individual step and component of the chain
as well as to the global system response. On the left side of Fig. 1, the conceptual
abstraction in the brain of the sound engineer ormusician for synthesizing the original
acoustic scene is, typically realized by downmixing any number of source channels
(tracks) into, say here for simplicity, 2-channel stereomix, using appropriate choice of
processors and simple panning-lawparameters. For this discussion, such input signals
are not “real”, that is, recorded via microphones following established principles
for capturing sources within acoustic spaces, but instead are they are pre-recorded,
processed or electronically-generated signal tracks.

For the generation of the desired spatial relationships between the signals of the
individual tracks, the sound engineer relies mostly on panning, that is, adjusting
the relative amplitude in such a way that each track is assigned either to the left
or the right channel of the downmixed stereo signal. Such relative amplitudes of
the specific track-signals will be retained over to the reproduction stage. Thus, it
generates the desired perceived image of this source in the appropriate direction



Modeling the Aesthetics of Audio-Scene Reproduction 461

between the loudspeakers.Additional spatial cuesmaybe introduced to the individual
tracks, for example, regarding artificial reverberation, equalization anddelays, aiming
at synthesizing the impression of variable direct-reverberant ratios in the signalwithin
the stereo perspective. Such features are impressed on the stereo downmix signal.
Hence, they are presented as input to the transmission channels during room-related
reproduction—Fig. 1. Listening to any of the individual tracks of a musical piece in
isolation will typically not lead to the intended positive aesthetic evaluation and may
not correspond to the desired effect of scene abstraction. However, the combined
processed downmixed sum of these elements is capable of rendering an agreeable
aesthetic level (Rumsey 1998; Brattico et al. 2017).

The downmixed source material is usually further manipulated by a master-
ing engineer. This specialist imposes technical and aesthetic rules on the encoded
(e.g., stereo) data (Rumsey 1998; Katz 2015). Such processing is typically carried-
out under acoustically-controlled reproduction conditions via highly accurate audio
equipment—often with informal comparative listening over different systems. Irreg-
ularities or other factors reducing its aesthetic appeal are suppressed this way. Several
quality-relevant features have been found to statistically correlate with the manip-
ulated mastered signal, predominantly an increased loudness (Katz 2015; Vickers
2010).

The room-related reproduction of this material is taking place in a different space
than in themixing room, typically in the listener’s own room. For the case of listening
to stereo reproduction, each of two loudspeakers reproduces a 1-dimensional acoustic
signal into the listening space. Such signals spread via a complex 3D spatial pattern,
largely depending on the loudspeakers on-axis responses, their directivity, and their
placement. Broadly speaking, they generate the direct-path transmission plus multi-
ple reflections. In other words, they generate four-dimensional signals, received as
binaural 1-dimensional signals at each of the listener’s ear-canal entrances—Fig. 1.
In this section, it is avoided as much as possible to consider the aesthetics of musi-
cal content, context, composition, performance, style, form, performance, style, and
related items. The combined room-related effects of the transmission subsystems
are shown in Fig. 2. Any aesthetic assessment of non-auditory effects may be also

Fig. 2 Components of the room-related reproduction channel along with a conceptual model of
aesthetic assessment, eventually performed by a virtual assessor



462 J. Mourjopoulos

conceptually depicted in the model of Fig. 21—if available. For any specific source
(loudspeaker), room and listener position, the combined effects of the transmission
channel on the original signals up to the entrance of each left and right ear canal
can be represented via the corresponding binaural room-impulse responses (BRIR).
From these responses, perceptually-relevant parameters such as spectral alterations
(coloration), acoustic reverberation and interaural differences can be extracted. A
formal analysis of the relationship between the physically measurable BRIRs and
the resulting auditory-relevant functions is provided in Grosse and Par (2015).

For the cases discussed, the received signals are greatly modified, that is, dis-
torted in all physical domains by the complex interactions between the loudspeak-
ers’ on-axis/off-axis linear responses, by electroacoustic chain non-linearities, room
acoustics, the relative placement of listeners and loudspeakers within the space, and
so on (Toole 2018; Volk et al. 2017). Such distortions clearly affect the reproduced
spectral overall balance, namely, the signal timbre (i.e. coloration and phase delays)
(Toole 2018; Smith and Bocko 2017), the time-domain evolution (especially signal
attacks), and the dynamic range. Specifically-encoded source features are thus poten-
tially less distinct and hence the qualitative and aesthetic targets as intended by the
creators/engineers are affected in an unpredictable—in most cases negative way. As
is discussed in detail in Raake and Wierstorf (2020), this volume, “...beyond repro-
ducing the physically correct sound pressure at the ear drums, more effects play a sig-
nificant role in the quality of the auditory illusion. In some cases, those can dominate
the perception and even overcome physical deviations...”. Significant degradations
are also generated as regards the spatial accuracy of the reproduced signals. These
degradations cannot be accessed via typical acoustical in situ measurements since
they depend on many variables related to loudspeaker and listening-space interac-
tions (Volk et al. 2015, 2017). Such aspects are evenmore complex when holophonic
scene presentation is employed—compare Nicol (2020), this volume.

The most prominent qualitative aspects for such a spatial interpretation of the
intended scene are source-image localization, sweet-spot robustness (for varying
listener placement relative to loudspeakers), auditory spaciousness (listener envel-
opment and source width)—Toole (2018), Volk et al. (2017), Francombe et al. (2015,
2017, 2018), Mason (2017), Lepa et al. (2014). Given that acoustic evaluation of
spatial qualities is very difficult and it is strongly dependent on binaural perception,
methods have been proposed that employ a binaural-parameter extraction, analysis
and classification approach for typical stereo and surround sound (e.g., 5.1) setups
in different listening-room scenarios (Kamaris and Mourjopoulos 2018; Wierstorf
et al. 2013a) but also for assessing the accuracy of holophonic presentationsWierstorf
et al. (2013a), Grosse and Par (2015) and Nicol (2020), this volume.

An example of a spatial map for stereo image localization accuracy evaluated
by such a “virtual listener” binaural model is shown in Fig. 3. The model is driven
by source signals of short noise bursts, panned along all potential angles between
the stereo loudspeakers, and transmitted to any potential listener positions along a

1The listeners also receive cross-modal information, for instance, a visual one, and may draw from
prior knowledge of the scene, that is, they use cognition.
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plane grid. Such transmission is enabled by use of the corresponding BRIRs for
the reproduced signals before they reach the ear canal entrance at each listener grid
position. Thus, the BRIRs combine all effects of the specific loudspeaker frequency
response and directivity and the room reflectionswith respect to the listener positions.
The binaural virtual-listener model analyses the perceptually-relevant spatial cues
(e.g., ITDs and ILDs) for the evaluationof the perceiveddirections-of-arrival (DOAs)
of the reproduced signals. These directions are then compared to the intended DOAs
for the specific image panning with respect to the listener in the grid. The potentially
perceived errors in the DOAs due to channel distortions are color-mapped along the
grid, indicating the area of best localization.

The sweet spot should correspond to awell-defined symmetric strip along themid-
dle axis of the loudspeakers. As can be seen in Fig. 3, even small room asymmetry and
reverberation can blur the area of best localization accuracy. After perceptual decod-
ing in the listeners’ auditory system and brain, the two input signals to the ear canals
are transformed into a perceived abstraction of the original acoustic scene, that is, into
a perceived auditory event and auditory objects in the listeners’ perceptual world.
From an engineering perspective, a common goal is that acoustic sound sources
and the associated auditory events and spatial-scene abstractions, must be “identi-
cal”, that is, authentic reproductions. It is hypothesized that this can be achieved
with complete transmission channels that are distortion-free, that is, “transparent”
(Rumsey 2002). And indeed, this physicalistic hypothesis carries a long way when
engineering spatial-audio system.

However, the concept of transparent transmission has it limitations when per-
ceptual and cognitive effects are included in the discussion. Thus, the notion of
perceptually-viable ideal transmission needs to be extended from the mathematical
definition of ideal. This introduces a difficulty in specifying the ground truth or
transparency condition for any subsequent quality analysis of any specific listening
scenario. This problem will be discussed in more detail in Sect. 2.4. A broader def-
inition of “ideal” in this context refers mostly to plausibility judgements. Note that
for various reasons there is no direct reference to the original ground-truth refer-
ence. Furthermore, due to the complex loudspeaker-room spatial coupling with such
scenes, non-auditory-modality inputs, semantic and contextual factors, and even due
to differences in the source material and signal properties, the quality and aesthetic
appraisal lacks “any ground-truth” assessment—compare Rumsey (2002). At large,
sound-quality and aesthetic judgements must be regarded as the degree to which any
auditory event fulfills expectations. Such comparisons need to be performed against a
set of features and symbols provided by an internal reference or, possibly, via external
audio references assigned as such by the listeners (Rumsey 2002). Such references
can be the manifestation of top-down sets of prior knowledge (i.e. individual) fea-
tures. Ideally,mainly due to the short-termduration of auditorymemory employed for
comparison, any valid judgment of auditory quality has the tendency to be improved
bymeans of direct comparison to a reference template, that is, benchmarking. Amore
detailed exposition of the memory resources employed for internal references (sen-
sory, working, and long-term memory) is provided in Raake and Wierstorf (2014),
this volume.
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Fig. 3 Stereo image
localization accuracy maps
derived from a
“virtual-listener” binaural
perceptual model and
simulated reproduction
channel data corresponding
to a the ideal case of
omnidirectional
loudspeakers under anechoic
conditions, b 2-way
loudspeakers inside an ideal
shoebox-shaped control
room, c the same
loudspeakers inside a
slightly asymmetric control
room of similar dimensions
as the one in case b. The
dark blue area indicates
highly accurate localization
while the yellow areas
indicate large errors. Each
map area corresponds to a
2m × 2m grid, covering all
possible listener positions.
The two stereo loudspeakers
are depicted in red (Kamaris
and Mourjopoulos 2018)
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However, for practical reasons, this is rarely the case during less formal listening
scenarios as are usually performed according to the paradigm of Fig. 1. Inmost cases,
the listeners will then resort to abstract and possibly unreliable references formed
from past experience. Additional biasing in the reference set may be due to mul-
timodal stimuli, emotions, and other reference-moderating factors (Rumsey 2002;
Blauert 2013). Depending on the application, the listener may judge an individual
sound object or multiple sound objects (auditory scenes) at different layers of detail
and different layers of internal references. Such multilayer processes as occurring
in quality- and/or aesthetic-judgment formation have been described according to
the amount of intellectual abstraction involved (Blauert 2013). In ascending order of
abstraction, these layers may reflect

1. Auditive quality, e.g., assessing features such as loudness, timber (Layer1)
2. Aural-scene quality, e.g., assessing aural-scene transparency, object layout

(Layer2)
3. Acoustic quality, e.g., assessing audio and acoustic system response measure-

ments (Layer3)
4. Aural-communication quality, e.g., assessing immersion, functionality andmean-

ing (Layer4).

This framework particularly applies to judgments made by experienced listeners,
such as musicians or audio-mixing and mastering engineers, during the encoding
and/or decoding stages of Fig. 1. At the lower layers (Layers1 and 2), such listeners
are able to identify and judge primitive features in sound objects and scenes and can
isolate them perceptually with an often remarkable accuracy. As was described in
Mourjopoulos (2014), this fact may defy known theoretical laws. An actively per-
forming musician, a composer, or even an audiophile with genuine “golden ears”
may additionally utilize physical data for specific encoding/decoding procedures
(Layer3) and also audition at the highest abstraction layer (Layer4), such as inter-
relations between acoustic (physical) features of sounds and semiotic or aesthetic
features of the content (music), hence further judging the quality and/or aesthetics of
sound object or scenes with reference to more abstract cognitive percepts (internal
references).

The above approach for a layered framework for audio quality may also accom-
modate the ambiguous case of audiophile listeners, who often claim to perceive qual-
itative and/or aesthetic aspects of audio systems and components that may or may
not correspond to instrumentally (“objective”) measurable features, hence bypassing
some of the abstraction layers representing a manifestation of cognitive indetermi-
nacy in audio technology—compare also Sect. 2.4.
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2 Review of Past Work

2.1 Modeling the Aesthetic Concept and the Observers’
Responses

Aesthetic as a word is stemming from the ancient Greek aistheto (something per-
ceived by the senses) and since the 18th century is the branch of philosophy studying
beauty and taste, a branch being closely related to the philosophy of art, which is con-
cerned with the question of how individual works of art are interpreted and evaluated
(Munro and Scruton 2018). Traditionally, this universal human trait is defined as the
subjective experience elicited by beautiful stimuli. This experience can be evaluated
by observers on an individual (subjective) scale from “ugly” to “beautiful”. It can be
further compared to other stimuli and hence classified on a preference scale (Redies
2015). In everyday life, aesthetics cover a wide range of experiences (visual, literary,
musical, auditory, etc.) and perceptual phenomena (natural phenomena, functional
objects, aesthetic artifacts, works of art, etc.) (Consoli 2012). The aesthetic expe-
riences mostly relate to human reactions to non-instrumental qualities of an event
and address internal processes, multi-sensory properties, psychological aspects, the
sociocultural characteristics of its creator as well as of the observer.2

The foundations of experimental aesthetics can be traced toGustav Theodor Fech-
ner (1876) who, with his book Vorschule der Aesthetik (Introduction to Aesthetics),
introduced methods relating objective stimuli properties and the aesthetic response
(Wikipedia 2018; Graf and Landwehr 2015). Furthermore, since experiences in art
and judgments of beauty involve cognition, the cognitive sciences have been also
employed for analyzing aesthetic experiences (Stokes 2009; Consoli 2012). Via such
analyses, the aesthetic experience is now considered an organizational adaptation and
an activity that involves perceptual, cognitive, imaginative, affective and emotional
processes. It is based on a specific mental attitude and attentive state, which activated
prior to the aesthetic experiences. The attentive state remains active, and supports
the information processing dedicated to understanding and interpreting aesthetic
objects (Consoli 2012). More recently, contemporary experimental aesthetics have
been expanded by research tools, data, and theories from diverse scientific fields such
as neurophysiology, visual and auditory perception, psychology, social science, art,
brain imaging, semantics, and product design (Redies 2015). Due to such develop-
ments, functional models have emerged during the past decade that predict aesthetic
responses, emotions, and judgments that eliced by specified stimuli (Leder et al.
2004). Typically, such models incorporate stages that accommodate the previously-
mentioned perceptual, emotional, knowledge and cognitive stages. Hence, in contrast
to earlier theories of aesthetic preference that were mostly derived from psychology
and related fields, current models of aesthetic evaluation consider aesthetic response
as the combined effect of sensory processing and internal emotional response.

2Note: There exists an extensive body of literature in the philosophy of aesthetics.
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Recently, such models have led to the concept of processing-fluency in aesthetic
appreciation (Reber et al. 1998, 2004). The aspects of processing fluency are now
widely accepted as a basis of mental concepts in experimental aesthetics. This holds
in particular for the aesthetics of visual objects with the following propositions.

• Depending on an object’s (visual) properties and a beholder’s prior experience
with this object, the mental processing of the object will be experienced as more
or less fluent

• The experience of high processing fluency directly feels good on an affective level
• As long as the positive affect is not attributed to a different source, it infers the
aesthetic appreciation of the object, leading the observer to “like” the object in
terms of aesthetics (Reber et al. 2004).

The fluency theory has reached popularity in experimental research on aesthetics.
This is due to the fact that it allows for models that render predictions of aesthetic
judgment as induced by specific stimulus characteristics. It has also become evident
from past research that the human aesthetic functionality has evolved as a cogni-
tive adaptation process causing brain functions to be attracted, become attentive to,
process more efficiently—in other words, “fluently”—certain evolutionary benefi-
cial stimuli that are associated with pleasure, that is, support a hedonic state-of-mind
(Reber et al. 2004; Conrad 2010). Stimuli are classified as beautiful when they trigger
and amplify such attentive processes, provided that they conform to specific semantic
and contextual principles, either derived from evolutionary biological mechanisms
or from top-down cognitive processes. This new theoretical framework for aesthet-
ics has more recently led to functional aesthetic models. These are largely based
on analyses of visual images and related artwork (Redies 2015), but also provide a
useful groundwork for respective auditory models.

Models based on the notion of fluency or efficiency of processing attempt to explain
how processing of stimuli is hedonically marked and, consequently, experienced as
aesthetically pleasing (Reber et al. 2004). For example, aesthetically significant visual
stimuli are coded more efficiently, that is both more easily and more precisely than
non-aesthetical ones (Reber et al. 2004). Furthermore, such fluency theory indicates
that efficient coding of stimuli from low-level sensory mechanisms up to a cognitive
level, is largely implemented on neurobiological mechanisms leading to the psy-
chological phenomenon of fluent information processing. For example, for images
and visual art, the observer processes efficiently all physical object features (e.g.,
color, shape, texture) as well as its semantic, symbolic and narrative elements prior
to deriving at an aesthetic judgment (Redies 2015).

It is further suggested that at the biological level, aesthetic responses foster the
formation or utilization of neural pathways that support mediation between percep-
tion and interpretation. According to this model assumption, brain anatomy is not
only determined by genetic, but also by epigenetic mechanisms, thus allowing the
brain to respond to unforeseen events and tomake optimal sense out of the challenges
imposed by the world (Conrad 2010).

In order to look more closely to such functional models for aesthetics, it is nec-
essary to discuss the underlying mental processes that mediate between stimuli per-
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ception and their interpretative outcome. Clearly, all perception requires transfor-
mations, predominantly non-linear ones, that select useful features from the sensory
data, filter out unwanted information, monitor the fluency of internal processes, make
comparisons on the cognitive level, and so one. Such procedures are to a large extent
predictive and top-down controlled (hence largely individually variable) and learned
via exposure to the environment (hence culturally variable) (Conrad 2010).

Recent models for visual aesthetic experience combine the above formalistic and
contextual aspects of functional aesthetics into a Dual-Process model (Graf and
Landwehr 2015):

1. Process1 Aesthetics of perception implements a bottom-up universal mechanism
dealing with perceptual processing (e.g., based on the intrinsic form and features
of an artwork), which can be evaluated as being or not being beautiful activating
a beauty-related mechanism.

2. Process2 Aesthetics of cognition implements a partially top-downmechanism that
is variable between individuals according to their cultural experience and is based
on cognitive processing of contextual information, such as depicted content, the
intentions of the artist and/or the circumstances of the presentation of the artwork.

The processing in the two modes is usually considered as sequential, although
each of the processes can be applied independently. The combined outcomeof the two
perceptual processing stages, aesthetics of perception and of aesthetics of cognition
leads to an optimal resonance and maximum aesthetic appreciation by individual
observers as well as among a social group.

Considering such principles for the domain of aesthetic appreciation of sound and
music, it becomes immediately evident that the artists’ intents, aesthetic choices, and
methods provide an initial differentiation between natural sounds and engineered
(formalized) acoustic stimuli. Of course, natural sounds can directly be associated
with objects, events, scenes, and acoustic sources, but this procedure is not commonly
applied for music and its electro-acoustically-generated representation in auditory
scenes. Furthermore, there is the significant difference due to the dynamic time-
evolution and sequencing of music in contrast to the appreciation of static visual
images, which in most cases can be directly associated with natural and well-defined
forms appearing in the environment (McDermott 2012). Hence, music semantics and
symbols are temporarily evolving, abstract, non-representational and non-depictive.
Nevertheless, the effects ofmusic regarding emotional responses and aesthetic appre-
ciation are by nomeans less substantial than the response to visual-art objects (Eerola
2014).

Note that for any such analysis there is always the danger that the results may
be dominated by the aesthetics of musical content and context, composition, form,
performance, style, etc. This poses awell-known issue on the research inmusicology.
However, the aim of the current chapter is to examine how audio-engineering prac-
tices, systems and communication channels affect mechanisms that are associated
with the aesthetic experience when listening to recorded/reproduced music signals.
Hence, care is taken here to separate as much as possible the content (music) from
the carrier (audio), and thus de-contextualize the proposed aesthetic models.
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2.2 Annotation of the Emotional Responses to Sounds

To be sure, both music in its natural, live-performed form (e.g., when listening to
acoustic instruments and voices within real spaces) and their recorded/reproduced
representations, share comparable emotionally affecting and pleasure-inducing
effects in the listeners (Eerola 2014). As was discussed in the previous section,
such emotional responses constitute an important component of the aesthetic experi-
ence. In fact, our understanding of fluency and valence in association with functional
modeling of the aesthetic experience benefits from current approaches of annotating,
evaluating and modeling emotional responses to specified stimuli.

In the context of such functional models (Russel 1980; Posner et al. 2005; Bradley
and Lang 2007), the observers’ affective states can be defined in terms of a 2-
dimensional affective model, the results of which can be plotted in a Arousal versus
Valence (i.e. interest vs. enjoyment) plane. Such a model is suitable for annotat-
ing emotional response to sounds and music (Rumsey 2015a). In relevant work
related to spatial-sound reproduction by Drossos et al. (2015), the annotations were
performed using the Self-Assessment-Manikin (SAM) method, which is suitable
for affective-state depiction. Such a simplified but functional approach to cluster-
ing and mapping of emotional states is typically based on verbal descriptors as
depicted in Fig. 4 (Russel 1980; Posner et al. 2005; Bradley and Lang 2007). In
accordance with this model, the existence of the International Affective Digitized
Sounds (IADS) pre-annotated dataset is relevant—see Bradley and Lang (2007).
Emotions and attention labels are contained in this database. They can, for instance,
be employed for evaluating observer decisions that can be broadly classified as “
similar”. Note that in Williams (2016) a comparable 2D-annotation approach was
employed via a three-stage process, namely, for learning, generating, and transform-
ing newmusicalmaterial as created by analysis of seed pieces of pre-composedmusic
(Rumsey 2015a).

2.3 Quality and Aesthetics of Sounds

A first consideration shows that there are similarities between the concepts of Sound
Quality and Sound Character,3 in the context of aesthetic-appreciation assessment
of reproduced audio information. However, it is self-evident for sound and espe-
cially for music listening, that aesthetic judgment may be initiated irrespective of
any sound-quality judgment and also that judgment on sound quality can be gen-
erated independently or complimentary to the assessment of the sound character
(Zacharov et al. 2016; Pedersen and Zacharov 2015). Blauert and Jekosch (2012)
provide the descriptive definition of sound character as “the totality of measured
values of features that are associated with the sound sample under examination”. As
was also discussed earlier, these different aspects may include categories such as the

3For details refer, for example, to Raake and Wierstorf (2020), this volume.
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Fig. 4 Arousal/Valence
(VA) space for emotional
annotation clustering
(adapted from Bradley and
Lang 2007; Drossos et al.
2015)

acoustic and auditory profile, emotional and semantic features and cross-modal cues
(Blauert 2013; Blauert and Jekosch 2012; Jekosch 2005).

Althoughmeasurable features as the acoustic and auditory profile need assessment
by experts, the features generating valence and arousal which are also connected to
aesthetic assessment even for non-expert listeners can also function independently to
sound-character assessment and are not usually exposed to formalmeasurement. To a
large extent the discriminating ability and response of all listeners to sound andmusic
also relates to aesthetic appreciation, since aesthetics describe human reaction to the
non-instrumental qualities of a sound event, and the aesthetic experience addresses
the internal processes, the multi-sensory properties, the psychological aspects and
the sociocultural characteristics of its creator as well as the observer. In contrast, the
sound-quality assessment, especially from an engineering perspective, is strongly
rooted on objective, instrumental measures usually with respect to predefined refer-
ences. Furthermore, as noted in Blauert and Jekosch (2012), sound-quality judgment
from an engineering perspective can be formed in the context of the suitability of the
measured sound features to meet recognized and expected values, i.e. product sound
quality is assessed with respect to reference of the “sound of quality”.

2.4 Sound-Quality Assessment

A detailed description of the methods for sound-quality assessment is provided in
Raake and Wierstorf (2020), this volume. One of the most critical aspects of estab-
lished sound-quality-assessment methods relate to the evolution of sensory descrip-
tors, and profiles of listeners for the development of structured vocabularies (lexica)
that can be used to correspond to the sensory evaluation of the specific sound charac-
teristic. Pedersen and Zacharov (2015), Zacharov et al. (2016) provide an overview
of such earlier attempts also described in Bech and Zacharov (2006).

As is described in the above references, in building on such lexicon and indirect
sensory profiling methods such as multidimensional scaling (MDS), the assessors
provide scaled evaluation of pairs of stimuli without the necessity for an explicit
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definition of the technical or perceptual attributes. Direct sensory profiling methods
require exact definitions of attributes, either via consensus vocabulary or individual
vocabulary. A number of individual vocabulary techniques exist, such as Free Choice
Profiling (FCP), Flash Profiling (FP) and individual-vocabulary profiling (IVP). Ped-
ersen and Zacharov describe the methodology for developing a consensus-based lex-
icon (termed Sound Wheel for reproduced sound) from hierarchical cluster analysis
in the semantic space of sound, further validated via statistical correlations during lis-
tening tests (Pedersen and Zacharov 2015). The method for selecting such attributes
and terms is also conforming to a recent ITU-R recommendation (ITU-R 2017)
and significantly, in such lexicon, all pleasure-related (hedonic) descriptors have
been removed. Such a measure presents clearly an important differentiator between
sound-quality descriptors and aesthetic descriptors that, as was shown, are primar-
ily concerned with assessing hedonic response to sound events. Alternatively to
such sensory descriptor-based methods, explicit-reference-stimuli methods are used
in quality tests implemented by listeners. Methods of this type are the MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor, (Bech and Zacharov 2006;
ITU-R 2015) and Continuous-Quality Scales (CQS), which can address intermediate
quality differences. For sound-quality tests addressing a wide range of quality levels,
single-stimulus methods such as the 5- or 9-point absolute category rating (ACR)
tests are typically used (Bech and Zacharov 2006). Here, specific stimuli are often
presented as hidden references that are not identified as such by the test participants.

In Zacharov et al. (2017) references are provided for additional hedonic scales
that can be employed for sensory evaluation especially in conjunction with CQS such
as MUSHRA (ITU-R 2015). This study compared a range of different hedonic and
quality scales in several experiments for an audio codec with or without a declared
reference and audio anchors. The study confirmed a similarity between such different
methods (i.e. the labeled hedonic scales, LHS andCQS), but the authors acknowledge
that further work will be required especially for the impact of the declaration of
explicit reference in the respective scales. Furthermore, they stress the potential for
a future hedonic scale “spanning every possible hedonic auditory sensation for the
evaluation of all available auditory stimuli”.

Given the well-known practical difficulty in the implementation of tests with lis-
teners, it is also possible to substitute listeners by algorithms andmodels of perceptual
mechanisms and in such cases, the so-called instrumental methods are used instead.
Such methods implement specific parts of the auditory signal processing, possibly
even including some cognition-type mapping to quality dimensions or overall qual-
ity. Different elaborate approaches of this type have been developed in the past years,
and have been standardized in bodies such as the International Telecommunication
Union (ITU). Examples include PESQ and POLQA for speech transmission sys-
tems, and PEAQ for audio-coding evaluation (Thiede et al. 2000; ITU-T 2001, 2011;
Beerends et al. 2013). These so-called signal-based, full-reference models estimate
quality comparing the processed audio signal with an unprocessed reference.

There are many limitations in such quality models (see Bech and Zacharov 2006;
Raake and Wierstorf 2014 for more details) and more elaborate perceptual features
need to be incorporated along with active exploration and enhanced by top-down
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feedback (Blauert et al. 2010; Blauert and Brown 2020). Such recent elaborate mod-
els for sound quality utilise computational models of binaural hearing and percep-
tion, suitable for engineering applications (Raake andWierstorf 2014;Wierstorf et al.
2013b). For such model, the adoption of top-down, hypothesis-driven functionality
can be viewed as enabling the interaction between black-box cognitive functions
of experience, memory, and adaptation with the sensory binaural data derived from
established bottom-up perceptual attributes. These black-box cognitive functionali-
ties are trained via supervised or unsupervised procedures usually based on transfor-
mations from signal to symbolic features and utilizing established machine learning
and AI classification methods. Such architecture of binaural audition may be able to
accommodate the important stages of perceptual inference, knowledge and quality
assessment of events, scenes and sounds containing a “brain”, that is, expert compo-
nents which “interpret” the output of the lower, signal-driven sections of the model.
At some cases, this signal-driven (bottom-up) and hypothesis driven (top-down) pro-
cessing can proceed in an interleaved manner focusing on states which make sense
in a given specific situation. Additional top-down feedback paths describe human
mental processing such as attention and scene exploration. For a description and a
diagram refer to Raake and Wierstorf (2020), this volume.4

Hence, such an approach as largely founded on the general architecture for qual-
ity assignment, introduced by Blauert and Jekosch (2012) and modified later by
Raake and Blauert (2013), is also suitable for adaptation to specific target groups
and task-specific applications. This architecture, shown in Fig. 5, accommodates the
combined bottom-up and top-down abstraction discussed previously and is suitable
for audio/acoustic engineering applications by allowing input from expert measure-
ments/reference sets. In this figure, the “Item Character” box refers to the feature
profile of the aural scene, analyzed and assessed via an appropriate metric. The “Ref-
erence Set” box refers to the feature profile of the listeners’ expectations and prior
knowledge. The “Assessment” box illustrates the extent to which the expectations
have been met by the specific item (aural object or scene). As is also discussed in
Blauert and Jekosch (2012), Raake and Blauert (2013) this framework can accom-
modate adaptation of such computational models of binaural hearing and perception
to personalized user profiles—further referred to as model individualization.

Wierstorf et al. (2013a) discuss the results of two pilot experiments that examined
the usefulness of such model with two test cases related to qualitative aspects of
spatial-audio reproduction. In a paired-comparison preference test, a musical piece
with three sound sources (two guitars and a singer), reproduced over different audio-
reproduction systems, was assessed. Thereby, it was shown that the original source
scene, as normally used for reference in typical sound-quality tests, was not the
preferred choice. Instead, certain degradations of specific sources in the scene were
found to be preferred by the test listeners. This study highlights the significance of
scene-specific paradigms for sound-quality evaluation and the need for test methods
that enable holistic sound-quality evaluations.

4Further resources may be found in the project Two!Ears, www.twoears.eu, which addressed
binaural interactive exploration of auditory scenes.

www.twoears.eu


Modeling the Aesthetics of Audio-Scene Reproduction 473

Fig. 5 The “product sound”
quality-assignment process.
Figure adapted courtesy of
Blauert and Jekosch (2012)

The current section indicates that many aspects of sound-quality assessment
require enhancement bymodeling functionswhich relate to the aesthetic appreciation
of individual listeners.

2.5 Audiophile Aesthetics and Plausibility

A unique group of listeners—the “audiophiles”—usually adopt a “cost-no-issue”
approach for accessing “high-fidelity”-reproduced sound, thereby not always fol-
lowing properly defined descriptors or judging criteria. This not well-explored phe-
nomenon represents amost extreme example ofwhere the aesthetic and sound-quality
assessment of the technological medium takes precedence over the aesthetic appre-
ciation of the content (music) (Hales 2017). Although one would assume, at a first
glance, that the ultimate aim of such a dedicated and costly approach to reproduction
fidelity would directly correspond to sound-reproduction qualities, namely, utmost
authenticity of the reproduced sound with regard to the source material, more care-
ful consideration shows that this is only partially true. In fact, other aesthetic rules
are applied by audiophiles. As was briefly discussed in earlier sections, for the case
of recordings of “real” instruments and acoustic-scene performances, the authen-
ticity (transparency) requirement must also accommodate the results of technical
imperfection and casualness in capturing the event, along with potential mistakes
and emotionally-driven excesses from the creators and/or the performers. However,
these issues are rarely retained on commercial recordings. In respective commer-
cial products, authenticity and transparency are overruled by technical manipulation
and “corrections”’ of the generic aesthetic quality by engineering practice. Beyond
recordings of natural events in real acoustic spaces, synthetic digital sound sources
are likely to be involved in recorded music these day. This means, that there is no
original auditory event/scene to start with. Instead via the recording and subsequent
signal processing an artificial reality is imposed by the creator-engineer, so the final
result becomes plausible to him/her—and potentially to the listeners aimed at. In this
way, semi-empirical technical concepts regarding the conception of auditory scenes
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lead to the formation of an aesthetics of “hyperreal” scenes (Rumsey 2002, 2008;
Hales 2017).

With the reference to the multi-layered framework, as introduced above with
regard to the assessment of audio quality, respectively, the case of audiophile listeners
may ormay not correspond to instrumentally (“objective”) features in the lower layer
of the multilayer scale, but instead, the assessment is based on the aural-scene quality
layer (e.g., aural scene transparency, object layout, plausibility). As is also discussed
in Raake and Wierstorf (2020), this volume, sets of reference features are evoked by
the listeners’ expectations in a given listening context, and are related to perceived
features which are not always “nameable”. Bearing this in mind, it is necessary
to reconsider the principal differences between the cases where the listeners have
access to a “ground-truth” reference for direct comparisons of quality/aesthetics
of any simulated auditory scene. In the case that such reference is not available,
the aspect plausibility of the presentation is usually invoked by the listeners as a
substitute.

At a philosophical level encompassing all fields from science to art, these dif-
ferences are discussed in Dutton (1977). Yet, as explained in detail in Lindau and
Weinzierl (2011), a system-oriented criterion would differentiate the concepts of
authenticity and plausibility (of a virtual environment). Thus for such applications,
plausibility is defined as a simulation in agreement with the listeners’ expectation
towards a referencial “real” acoustic object or scene. Such internal references relate
to each listener’s personal experience and expectations rather than to exact perceptual
identities. In many cases this is taken as sufficient for evaluating the quality of a sim-
ulation. As will be discussed in Sect. 3.2, experienced observers following lengthy
exposure to specific stimuli, develop a level of cognitive mastering (Leder et al. 2004).
This process is also referred to as assimilation, representing the fitting of the percep-
tual representation to existing conceptual mental patterns (schemata) (Sotujo et al.
2020). With respect to the layered framework for audio quality/aesthetic assessment
discussed earlier, Raake discusses different levels of build-up mechanisms (Raake
and Wierstorf 2014), this volume. These can develop via

• Passive indirect build-up via exposure to different systems

• Action-selection build-up via system comparison

• Active-control build-up via modification of systems and events

Thus even when no direct external reference is provided for comparison, any crit-
icism or appraisal such as applied by experienced listeners, creators, or audiophiles,
largely relies on internal references accessed largely via cognitive “top-down” pro-
cesses. These are definitely involved in aesthetic judgment, since all these observers
invoke and project their personal experiences, expectations, plausibility precepts,
and affective interpretations into internal references. Limitations with respect to the
ground-truth criterion for audio aesthetics are discussed in Francombe et al. (2015),
where an elicitation experiment was performed to determine the qualitative differ-
ences between the experience of listening of real versus reproduced audio. The results
“... highlighted the many differences between real and reproduced audio in terms of
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timbral, spatial, and other factors ... For methodological reasons, it is difficult to
make direct comparisons between real and reproduced audio ...”. This outcome was
further elaborated with respect to the spatial-reproduction mode in Francombe et al.
(2017) where it is noted that such differences between reproduction methods may
be related to the level of listener experience. Further, for the experienced listeners
perceptual attributes that are associated with the presentation technology, such as
listener envelopment, turned out to be significant.

2.6 Spatial-Sound Aesthetics—Envelopment, Immersion and
Emotional Inhibition

As was already discussed in Sect. 1.3, recent encoding formats beyond stereo offer
an enhanced auditory representation of spatial source and scene properties. Thus
formats like discrete multichannel, WFS, HOA, binaural with headphones) offer
increased listening envelopment, and such the sense of immersion (Rumsey 2015b,
2016, 2017). At first consideration, envelopment, immersion by rendering virtual
sources in three dimensions (3D), in particular beyond the frontal-azimuth angles,
increases arousal and valence (Drossos et al. 2015) hence contributing additional
factors in the aesthetic experience. However, due to strong perceptual precedence
generated by sounds delivered at such angles employed by audio engineers, principal
or interrupting sonic events are not allocated at such periphery channels, except if
an intentionally extreme emotional response is required—for instance, for creating
special audiovisual, cinematic plots for “home theater”. Clearly, arousal is a vital
aspect of aesthetic experience both at the perceptual (“head turning”) level and at
the cognitive level of judging on such events. By the way, it is well known that
arousal can be also initiated at the sensory level, especially when spatial signal cues
are artificially modified, for instance, by applying artificial reverberation, delays, or
extreme stereo panning.

To validate such effects, tests reported in Drossos et al. (2012, 2014, 2015)
included a series of listening experiments using samples that form an emotionally
labeled sound-data base with 167 sounds havingmultiple semantic contents (Bradley
and Lang 2007). Binaural processing of the original sound data was realized for five
binaural versions, corresponding to azimuths of 0, 45, 90, 135, and 180◦. Finally, the
participants’ affective state was defined in terms of a 2Dmodel, while the annotations
were performed using the Self-Assessment Manikin (SAM) method (Russel 1980;
Posner et al. 2005), which is suitable for affective-state depiction.

This binaural sound corpus was emotionally annotated through a series of online
auditory-evaluation experiments using a custom web platform and headphone pre-
sentations, with the participation of listeners of different cultural background. For
the emotional rating tests, 215 participants responded with≈3000 valid annotations.

The results for the class of natural sounds revealed that sonic events impose a
systematic effect on the listeners’ emotional states when they move towards the
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lateral limits of the field of vision. This change is either an increased activation,
arousal, combinedwith a lowered pleasantness, valence. However, the exact opposite
has been also observed, that is, an increased pleasantness combined with a lowered
activation. The number of events assigned to either case was found to increase with
the angular horizontal position of the sound source. In addition, when the source
was located exactly at in the rear of the listeners, the number of auditory events that
caused increased arousal and lower valence was greater than the amount of those
that increased valence and decreased arousal.

For the specific class of presented music events (audio segments), the results
indicated that listeners feel more pleasure when the sound source moves from zero-
azimuth presentation towards a side position with a peak in valence at 45◦, indicating
the emotional advantage of an expanded spatial field in front of the listeners. This
effect is also achieved in a typical stereo set-up.However, auditory events beyond 90◦,
increase valence. This indicates a relative unpleasantness, for instance, for a singing
voice panned beyond the visual field. Especially for extreme azimuthal positions
such as straight behind at 180◦, valence was found to decrease, although arousal was
not systematically affected. These preliminary findings correlate with the amplitude-
panning practice employed in audio-mixing when utilizing typical multichannel set-
ups—such as, in 5.1 surround sound. It is well known that in audiovisual content
mixing for the “home theater” virtual sound events are panned to the rear channels
for increased arousal, emotional involvement and decreased valence, whereas music
events are mostly spatialized to appears in a frontal angular position. The arousal
emotion can be also linked to fear, as was demonstrated in Ekman and Kajastila
(2009), where tests were conducted to evaluate the emotional impact of sounds in
games.

Similar aspects were also discussed in Lepa et al. (2014). There it was found that
when listening to music pieces of different genres and valences in different spatial-
presentation modes the live-concert simulation was found to be the most intense with
regard to all four dimensions of perceived affective musical expression compared to
stereo reproduction over headphones leading to an increase in perceived emotional
expression of music—in addition to an increase in perceived spatial quality. Fur-
thermore, quality expectations seemed to leave the expressional dimension of music
unaffected, yet, leading to an increase in the attributed quality. Hence, it was con-
cluded that technology-related placebo effects apply for music, namely, with respect
of the perceived audio quality but not of the perceived emotional expressivity. Thus,
these placebo effects concern increased envelopment and immersion via spatializa-
tion and reproduction. In other words, the findings regarding the respective effects
were confirmed, namely, “ . . . to rely more on the additional phenomenal quality of
externalization itself, the playback technology allows . . . the feeling of being part of
an auditory scene surrounding one’s own body . . . than on improvement in spatial
auditory-scene detail . . . ”.

For object-based audio rendering, as has been adopted by the MPEG-H standard
(Herre et al. 2015), in Francombe et al. (2018) it is shown that envelopment is one of
the most important attributes for the listener preference of spatial audio, irrespective
of the complexity of the reproduction system used.
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Complex interactions between context, presentation and acoustics are described in
Herre et al. (2015). Such contextual bias-build-up was found to exist over the course
of minutes and, since sound localization is a dynamic process that depends on both
the context and the level of reverberation in the environment, interactions between
sequential sound sources occur on time scales of hundreds of milliseconds up to
minutes—Kopco et al. (2007). A later study showed a complex effect of the temporal
characteristics of the context on sound localization, probably driven by processes in
multiple stages of the auditory pathway. Such findings provide challenging tasks
for models of spatial auditory perception. Usually, current models do not consider
processing over a wide range of time scales or multiple forms of adaptation operating
at the same time. Additionally to the above considerations, the recent developments
in VR and immersive visual-media technologies introduce further open questions
with respect to audiovisual attention, cross-modal features and quality interactions—
Raake and Wierstorf (2020), this volume.

2.7 Functional Aesthetics in Images, Music and Sound
Technology

The previous sections highlighted the importance of evolvingmodels that incorporate
bottom-up modeling of peripheral auditory mechanisms along with modeling of top-
down cognitive functions in order to implement a realistic framework for sound
perception and the appreciation of quality and its aesthetic properties.

Enrichment by the aesthetic functionality may enhance existing sound-quality
evaluation methods and allow special kinds of experiences to be implemented for
the appreciation of objects of art, sounds, music, and their carrier media. In the
previous sections it has been shown that aesthetic appreciation at a functional level
can be considered as a complementary dimension in the quality-evaluation process
of any natural or man-made object, artifact, or work, both adding up to an integral
sum of its properties, but also including aspects of the cognitive functions of the
listeners.

In order to construct models of aesthetic judgments, it is paramount to consider
evidence stemming from empirical, clinical results as well as from computational
analysis of the dominant sensory modalities, namely, vision and hearing.

At first, it is useful to consider the relevant body of research as carried out on visual
aesthetics. This research has followed different approaches, ranging fromalgorithmic
modeling of aesthetics for the appreciation of images and pictures (Deng et al. 2017)
to EEG studies of brain response to conceptual art (Kontson et al. 2015; Renoult
et al. 2016).

An extensive overview of recent computer-vision techniques used in the assess-
ment of visual-image aesthetic qualities is provided in Deng et al. (2017). An aim
of this work was to survey experimental results of methods that can derive binary
classifications for quality judgment on photos, for example, to distinguish between
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Fig. 6 Typical flow of image-aesthetics assessment systems (adapted from Deng et al. 2017)

high- and low-quality data sets. Computer-vision researchers adopted a classifica-
tion/regression approach for such assessment, driven by a training stage that relies
on image-features extraction, manually or automatically, from high and low-quality
image datasets. The performance accuracy is judged on the basis of a metric that
assesses the classification outcome frommanually or data-driven annotated datasets.
As is shown in Fig. 6, different approaches can be adopted for image-feature extrac-
tion and representations as well as for the feature-classification stage.

Considering perceptual attributes that can be utilized for the global analysis of
images, Renoult et al. (2016) found out that the algorithmically modeled sparseness
of the activity of simple cells in the primary visual cortex (V1) correlates with
female face attractiveness when assessed by male participants. This suggests that
there might be general, non-face-recognition-specific neuronal properties that affect
facial aesthetic evaluation. Other candidates for global sensory properties that have
been studied recently include processing-fluency distribution of spectral-frequency
power, self-similarity, and fractal properties (Redies 2007, 2015; Reber et al. 2004;
Renoult et al. 2016; Kiebel and Friston 2001; Rao and Ballard 1999). Further related
work can be also found in Moon and Spencer (1944), Nishiyama et al. (2011),
Mavridaki and Mezaris (2015).

Moving on to relevant work in tomusic, a report by Tiihonen et al. (2017) provides
results of structured literature-reviews of past empirical studies in diverse scientific
fields that are related to pleasurable, hedonic, enjoyable, and rewarding experience
of music and the visual arts.

This literature review aimed at the understanding of how pleasure derived from
music and visual art had been understood conceptually, either directly or indirectly, in
empirical research during the past 20 years. The results indicate that in the visual-art
literature, pleasurewas employed vaguely, that is, many times it was not a clear object
of the investigation but rather a characterization of the researched phenomenon. In
contrast, music research conceptualized pleasure by identifying elements of core
hedonic response (valence and arousal, see Sect. 2.2) and intrinsic reward. Hence, it
has been confirmed that music is able to activate the reward center. This was accom-
plished by psychophysiological measures referring to the notion that the pleasure that
music induces is to a certain degree biologically based, rather than culture and context
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specific. This finding is in agreement with other research evidence that indicates that
biological mechanisms are associated to hedonic responses to music (Levitin 2011).
As has been demonstrated by Martínez-Molina et al. (2016) with tests of autonomic
nervous-system activities (e.g., skin-conductance response, heart ratemeasurements,
fMRI scanning and psychometric questionaires) applied to listeners with a specific
“musical anhedonia”, music enjoyment and pleasure is primarily associated with the
interplay between the auditory cortex and the subcortical reward network. This is an
indication of significant biological processes on the level of inhibition, specific for
each individual person.

Somedirections andguidancewith respect to potentialmethodological approaches
for common analysis and modeling approaches in the two sensory modalities (vision
andhearing)were providedbyBrattico et al. (2017). In thiswork, the authors state that
studies of visual aesthetics indicate that the experience of visual beauty is grounded
on global statistical and computational properties of the stimulus, for example, scale-
invariant Fourier spectra or self-similarity of image signals. For visual aesthetics, the
main contributing factors are assumed to be global across a visual object (i.e., they
concern the percept as a whole), formal or non-conceptual (i.e., concerning form
rather than content), computational and/or statistical, and based on relatively low-
level sensory properties. The authors suggest that studies of the aesthetic responses
tomusic could benefit from the same approach. Thus, alongwith local signal features
such as pitch, tuning, consonance/dissonance, harmony, timbre, or beat, additional
global sonic properties can seen as contributors to aesthetic musical experience. Such
approach calls for global-scale analyses in music aesthetics, in other words, to the
notion that the impression is mainly generated by the “whole sound”, as opposed to
the assumption that it is based on the evaluation of any of its individual components
such as specific instruments, harmony structures, intervals, melodies, tuning, rhythm.

Some recent work has analyzed musical stimuli in terms of their global sensory
properties. The investigations are based on experiments duringwhich the participants
were required to listen attentively to a whole piece of music while their brain-signal
activity was measured—for instance, with fMRI. The brain signals were analyzed
as time-series and compared to audio music-signal features obtained through music-
information retrieval (MIR) analysis (Alluri et al. 2012). During the tests, six per-
ceptual features, fullness, brightness, timbral complexity, key clarity, pulse clarity,
activity, and dissonance underwent a principal-component analysis (PCA).

3 Modeling Audio-Aesthetics

3.1 A Combined Model for Listener Quality and Aesthetic
Assessment

From Sects. 2.3 and 2.4 it becomes evident that there is strong complementarity in
sound-quality assessment and the aesthetic appreciation of recorded sounds. Current
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Fig. 7 General conceptual model for quality and aesthetic assessment of recorded and reproduced
sound, based on a proposal for parallel assessment for aesthetic and quality

sound- quality-evaluation methods require assessment of objective and non-hedonic
parameters of signals, removing personal preferences, affective response, emotions
or psychological biasing of the observer. In contrast, aesthetic appreciation relies on
personal preferences and emotional response (e.g., arousal andvalence), that is, on the
hedonic responses of the observers—often formed by social and cultural references.
Depending on the specific judgment case, both non-affective/non-hedonic/quality
assessment and the affective/hedonic/aesthetic assessment may be applied either
separately or in a complementary fashion by the observer. The outcome is thus
combinatorial in some way.

Examples of individual aesthetic and quality assessment for the reproduction of
the scenario in Figs. 1 and 2 can be recordings that have been re-issued in different
spatial/channel formats (e.g., original stereoCD-DA tomultichannel SACDformats).
Such an example is the recording of Pink Floyd, “The Dark Side Of The Moon,
EMI–7243 582136 2 1,and EMI–582 1362”. Comparing such different options, the
listenersmay apply a sound-quality assessment independently and/or relatively to the
source-scene presentation via 2 or 5.1 channels. They may also derive an aesthetic
assessment of the spatial merits of each presentation irrespective of any judgment of
the sound quality of the recording. In all cases, the technical merits of loudspeaker
response, that is, placement, room acoustics, etc., will also affect such assessments
and may even introduce additional factors for the assessment.

For any future model to accommodate both such functionalities, it is here sug-
gested to provide two parallel branches, one dealing with sound-quality assessment
and the other one with aesthetic appreciation—as is shown in Fig. 7.

Figure 7 illustrates the formation of the individualized aesthetic assessments,
modeled in terms of a “conceptual mixer”, providing both aesthetic and qualitative
judgments in parallel. For any subsequent modeling of such cognitive mixer for the
observer responses, the “blackboard” model employing individualized “experts” can
be used (Schymura and Kolossa 2020), this volume. In the left of the diagram, the
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signals/stimuli reproduced via the channel (see also Figs. 1 and 2) can be considered
as inputs to a human listener. This route is activated only when the human assess-
ment is elicited via explicit-reference-stimuli methods and Continuous Quality Scale
(CQS) methods following non-hedonic and hedonic descriptors—see Sect. 2.4 and
Bech and Zacharov (2006), ITU-R (2015, 2017). Such a stage can be bypassed when
the listener is substituted by a computational model. In such a case, the diagram can
accommodate the existing instrumental sound-quality-assessment methods such as
PEAQ—Sect. 2.4 and Thiede et al. (2000), ITU-T (2001, 2011), Beerends et al.
(2013) via model comparisons between source-input and channel-output signals.
When computational models of binaural hearing and perception are employed—see
Sect. 2.4 and Blauert et al. (2010), Raake andBlauert (2013),Wierstorf et al. (2013b),
the channel BRIRs and the source signals can drive the relevant model stage. In all
cases, the proposed approach for the listener model is subsequently split into two
parallel streams, one for the hedonic and the other one for the non-hedonic features,
driving assessors to provide complementary evaluations. The results are finally com-
bined in an expert-system module which renders the individual aesthetic-quality
assessment of a specific listener. This module can incorporate knowledge sources,
for instance, in a blackboard system or any other kind of a decision/classification
model—compare Fig. 6.

As depicted in Fig. 7, the listenermay respondwith themethods as discussed in the
previous section, namely, via psychometric/lexicon procedures driven from the audio
data (using original sources as reference, if required), and/or by analysis of such data
by a “virtual listener”, that is, a computer model of binaural hearing and perception
(Blauert et al. 2010, 2013; Raake and Blauert 2013). An open question relates to the
degree and functional description of the “cognitive-mixing” function of the observer,
in particular, regarding the degree and the way in which this model stage utilizes and
combines the output of each of the two parallel branches. As was discussed above,
such a “mixing” function may be controlled by internal plausibility references of
listeners. Additionally, the listeners’ individualized aspects of stimulus character
and suitability may be accommodated via the “product-quality” procedure described
by Fig. 5. A more complete model of individual observers may even incorporate
personalization in terms of an individual balance of “objective” and “subjective”
judgments.

3.2 Modeling the Aesthetic Responses to Audio-Scene
Presentations

For further analysis of the “aesthetic assessor” model, it is proposed to utilize a dual-
process approach after Graf and Landwehr (2015) with two distinct assessment
processes, namely, one for the assessment of the aesthetics of in terms of perception
and another one for the assessment of the aesthetics in terms of cognition.
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Such a preliminary model is in accordance with the distinction for the men-
tal processes adopted by the Dual-Process model for aesthetic appreciation as was
presented in Sect. 2 and is shown in Fig. 8. This technically functional model is
driven by binaural signal features and parameters extracted from the perceptual-
model module utilizing current methods for modeling the periphery of the auditory
system. From internal representation parameters provided by these periphery-model
stages, the sensory-assessor block, as depicted in Fig. 8, will extract metrics of sen-
sory fluency. As it is suggested in Graf and Landwehr (2015), the sensory assessor
accounts for the processing that is implemented automatically upon receiving the
stimulus and is occurring without the perceiver’s intention to do so, and without
requiring the perceiver to invest considerable amounts of cognitive capacity or mem-
ory resources (Zajonc 1980). An extreme case for activation of this stage during
listening to spatially reproduced sound, for instance, is the “head turning” reflex,
which helps to avoid front/back confusion in sound-source localization—compare
Blauert and Brown (2020).

When a stimulus receives sufficient attention from a listener, the second stage, that
is, the stage of top-down-controlled processing, may subsequently be activated and
potentially overwrites the automatic responses of the previous stage. Figure8 illus-
trates thiswith the fluency-assessor block. This block involves higher-order cognitive
processing associated with a detailed and deliberate stimulus analysis and the assign-
ment of meaning. This requires a high amount of cognitive capacity and demands
working-memory resources. This type of processing is associated with active and
reflective interaction, acquaintance with the stimulus, and potential adaptation or
updating of the observer’s cognitive structures. This leads to what Leder et al. (2004)
have termed “cognitive mastering”. This state may be attained by expert listeners
after lengthy exposure, for instance, by musicians, audio engineers, and audiophiles.
Overall, such processing translates into feelings of fluency due to an internal moni-
toring system that screens, integrates and summarizes the ongoing difficulty or ease
that goes along with the processing of aesthetic stimuli with respect to the references
of the individual listener references.

Hence, whereas perceptual fluency relates primarily to the physical identity of the
stimuli, conceptual fluency relates primarily to assigning meanings to stimuli and to
correlate these with the listeners’ knowledge-based references on a semantic level.
It has been proposed by Graf and Landwehr (2015) that, depending on the fluency
level, the outcome of perceptual aesthetic processing can be simplified as a binary
positive (pleasure) or negative (displeasure) decision, related with the emotional
annotation procedures described earlier in this chapter. Depending on the outcome
of this first stage and depending on the specific stimuli, the listeners will or won’t
be motivated to initiate cognitive evaluation processes as the second stage of their
aesthetic assessment.

To be sure, the preliminarymodel architecture in Fig. 8 presents a highly simplified
structure. It is also likely that the observers’ motivation to process stimuli in a top-
down-controlled way is determined by the interplay of the perceivers’ need for cog-
nitive enrichment and the fluency-based affective response to the stimuli. Potentially,
disfluency may be reduced by a need for cognitive enrichment and expectations—
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Fig. 8 Proposed functional model for assessment of the aural aesthetic experience. Adapted from
Graf and Landwehr (2015)

see Graf and Landwehr (2015). Hence, during both processing stages, the fluency
expectations of the listeners are compared to fluency properties of the stimuli.

Any outcome of frustration due to a failing of making progress in processing the
stimuli, that is, if no fluency differential appears although the perceiver was moti-
vated to invest cognitive effort, then this leads to a hedonically-negative connotation
of confusion, which is experienced as an aversive result. Like with confusion, the
nonexistence of a fluency differential during controlled processing can be related to
boredom, although in contrast to confusion, in the case of boredom due to a lack
of time-variability, fluency occurs at a constantly high level. This combination also
leads to a hedonically-negative connotation.

Although a detailed implementation of amodel of aesthetic evaluation and assess-
ment is a topic of future research, from the above it is evident that the output of such
a model can so far only provide limited—even binary—decisions. In contrast to the
assessment of static images, it is also clear that such output may be temporarily
varying due to the time-varying nature of audio signals and the resulting dynami-
cally varying cues. However, it is still unclear, how such individual assessments are
capable of providing an overall aesthetic rating, for example, of a complete piece
of music. Nevertheless, current methods for assessing the rate of change and the
adaptation of feature vectors, along with machine-learning techniques, offer options
for advanced algorithms to be included in such a model.

4 Summary and Concluding Remarks

Since the beginning of the 20th century, the audio-reproduction technology has
achieved wide acceptance. This is not least due to the generated impact, plausibil-
ity, realism and arousal that is matching and often exceeding the level of emotional
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involvement as achieved via natural listening to sounds and, in particular, to music.
Clearly, music, both in natural, live performed form, and its recorded-reproduced
presentation, shares comparable potential for emotionally affecting and inducing
pleasure to the listeners. Such an emotional response constitutes an important com-
ponent of the aesthetic experience.

With the emerging formats for holophonic and multichannel reproduction,
auditory-scene envelopment and rendering of virtual sources beyond the frontal
azimuth angles increases arousal and valence and, hence, contribute additional fac-
tors to the aesthetic experience. With traditional stereo reproduction, arousal can be
also enhanced at the sensory level, especially when spatial signal cues are artificially
modified, such as by artificial reverberation, delays, and extreme stereo-source pan-
ning. However, it was also found that binaural rendering can generate more intense
experiences compared to stereo reproduction, and that technology-related placebo
effects apply mainly to the perceived audio quality and less to the perceived emo-
tional expressivity of music. It is thus becoming clear that many aspects of sound-
quality assessment require additional components beyond classification and grading
by means of objective metrics. Consequently, this holds for the listeners as well.

From the literature in diverse scientific fields related to aesthetic appreciation, it
can be concluded that the human aesthetic functionality has evolved as a cognitive
adaptation process to allow brain functionalities to be attracted and process effi-
ciently. Fluency turns out to be a crucial factor in this regard. Certain evolutionary
beneficial stimuli can be also associated with pleasure—often referred to as hedo-
nic stimuli. Stimuli are classified as beautiful when they trigger and amplify such
attentive processes, provided that they conform to specific semantic and contextual
principles—either derived from evolutionary biological mechanisms or from top-
down cognitive processes. Current research indicates that biological mechanisms
are associated with hedonic response to music, as was demonstrated via tests on
autonomic nervous-system activity, for example, by employing skin-conductance
responses and heart-rate data, along with fMRI scans and psychometric question-
naires. These tests indicate that music enjoyment and pleasure is primarily associated
with an interplay between the auditory cortex and the subcortical reward network,
and is formed by biological mechanisms that control the level of inhibition in each
individual person.

Recent functional models that have evolved to describe how processing of stimuli
is hedonically marked and experienced as aesthetically pleasing are based on mea-
sures of the rate and the efficiency in coding and classifying the observers’ emotional
states.

Hence, potentially measurable aspects of adaptation and accuracy in fluency and
valence can be employed in functional modeling of aesthetic experience. Note that,
as was also described above, emotional response can be incorporated within such
functional models by defining the observers’ affective states in terms of a simplified
2D valence/arousal space. In highly simplified terms, the proposed fluency codec
provides decisions fluency—interest (valence, arousal)—or for non-fluency by pro-
cessing the specific stimuli derived from their internal representation. Positive affect
results only if progress occurs at an extent that is higher than the standard. The oppo-
site, leads to negative affect.When the progress occurs at a rate that was expected, for
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instance, as compared to predetermined thresholds, no affective reaction is elicited.
Anyfluencydiscrepancywith respect to expectations provides the individual cues that
inform the listener about their affective feeling. Failing to make progress in process-
ing the stimuli, irrespective of the observers’ motivation to invest cognitive effort,
leads to a hedonically negative connotation of confusion, namely, aversion. Like
confusion, high constant fluency with no variation indicates boredom and, hence,
generating hedonically negative connotation.

Driven by the notion of fluency, the literature proposes that functional aesthetic
modeling can be separated into two processing stages. The first one provides for
perceptual-aesthetic coding, being activated in real-time and autonomously by a
bottom-up response to the sensory features of the stimuli. The second one provides
for cognitive aesthetic coding. It comes into play after deliberate non-real-time anal-
ysis in a continuous, fluency-controlled adaptive fashion, mostly utilizing top-down
inferences, memory, preferences, and expectations. Apparently, the second process-
ing stage is activated when the initial assessment from the first process exceeds
specific thresholds of attention.

Although such broad framework for aesthetics has recently led to functional aes-
thetic models which were largely for the analysis of static visual images and related
artwork, it is believed that they can be adapted to the analysis of auditory stimuli—
complementary to predictors of sound quality for sound reproduction. Currently,
sound-quality assessment methods are strongly rooted in objective, instrumental
measures, usually with respect to predefined references that intentionally exclude
the observers’ emotions, preferences, and hedonic responses.

However, state-of-the-art binaural computational models for auditory scene anal-
ysis, as is discussed in detail in Schymura and Kolossa (2020), this volume, address
bottom-up perceptual and higher-level top-down cognitive mechanisms, thus provid-
ing for a structure that can also accommodate the aforementioned functional model
of aesthetic appraisal. Hence this chapter proposes that these computational models
could be extended to incorporate aesthetic functionality beyond or in conjunction
with qualitative assessment, thus enabling to include human emotional reaction to
the inhibition arousal, the pleasure-inducing (hedonic) biological mechanisms, and
those qualities of sound events that cannot be measured with instrumental methods.
It is likely that the overall listener evaluation of the quality, character and aesthetic
connotations of a reproduced sound source or auditory scene will be strongly medi-
ated by a plausibility precept, initiated via top-down individualized “ground truth”
references, which are driven by the listeners’ past experiences and expectations. Nev-
ertheless, the way in which these two aspects of aesthetics, that is, “objective” and
“subjective”, can be combined in computational models, remains a challenging topic
for future research.
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A Virtual Testbed for Binaural Agents

Jens Blauert

Abstract Current developments in modeling the auditory system lead to increas-
ing inclusion of cognitive functions, such as dynamic auditory scene analysis. This
qualifies these systems as auditory front-ends for autonomous agents. Such agents
can, for example, be mobile robotic systems, that is, they can move around in their
environments, explore them, and develop internal models of them. Thereby, they can
monitor their environments and become active in cases where potentially hazardous
things happen. For example, in a Search-&-Rescue scenario (SAR), the agents could
identify and save persons in dangerous situations. In this chapter, a virtual testbed for
such systems is described that was developed in the EU project Two!Ears (www.
twoears.eu) There, in simulated scenarios, the agents have to localize and identify
potential victims and, consequently, rescue them according to dynamic SAR plans.
The actions are predominantly based on binaural cues, derived from the two ear
signals of head-and-torso simulators (dummy heads) on carriages that can actively
move about in the scenes to be explored. Such a simulation system can provide a
tool to monitor and evaluate the cognitive processes of autonomous systems while
these are dynamically executing assigned tasks.

1 Introduction

To qualify as acoustic front ends for autonomous agents, models of the auditory
system need the capability of exploring and analyzing auditory scenes by using and
interpreting acoustic cues. Auditory scene analysis (ASA) is the process by which
the auditory system segregates the individual sounds in natural-world situations,
whereby these sounds are usually spectrally and temporally interleaved and overlap-
ping. Humans perform extremelywell in such situations; that is, they can localize and
comprehend multiple sound sources even in the presence of severe acoustic noise.
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For this kind of analysis, called auditory-stream segregation, the so-called Gestalt1

rules are of relevance—compare Bregman (1990) and Jekosch (2005). As Sutojo
et al. (2020), this volume, explain, human auditory systems use cognitive processes
such as attention and prior knowledge when performing auditory scene analysis,
rather than relying solely on the acoustic input to their two ears.

Transferring these human ASA skills to computer algorithms is the subject of
Computational Auditory Scene Analysis (CASA). For a comprehensive introduction
to CASA systems seeWang and Brown (2006). Many CASAmechanisms use multi-
microphone arrays—compare, for instance, Plinge et al. (2012) and Ears (2014).
However, this technological approach differs significantly from the algorithms that
are used in biological systems. Human beings did not developmulti-channel acoustic
sensors but have to rely on just their two ears. Nevertheless, human performance in
auditory scene analysis easily measures up to or even outperforms CASA systems
in complex environmental settings.

The current chapter reports an example of an intelligent CASA system that incor-
porates cognitive processes as central elements. The system was developed in the
context of the Two!Ears project (www.twoears.eu [last accessed: September 1,
2019]). A mobile robotic agent, equipped with a head-and-torso simulator mounted
on a mobile carriage, is controlled by a cognitive unit, the blackboard system (Schy-
mura and Kolossa 2020), this volume, to explore acoustic scenarios actively. The
resulting active listening or dynamic auditory-scene analysis comprises bottom-up
data processing as well as top-down mechanisms connected by feedback loops. The
architecture of this system is described in Blauert and Brown (2020), this volume.

The interleaving of bottom-up and top-down processes under the control of a
blackboard system also constitute the basis for attention-guidance mechanisms,
which are mandatory to cope with the vast amount of “information [that is] continu-
ously available in the surrounding world” (Fabre-Thorpe 2003), and to achieve “real-
time processing [performance] despite limited computational capacities” (Schauerte
andStiefelhagen2013).Given a scenewith significant auditory ambiguities, however,
the above techniques might not be sufficient to untangle equivocal input information.
Humans readily disambiguate such complex situations by resorting to visual infor-
mation. To be able to measure up to this human skill, the robotic agent employed in
Two!Ears is realized as a multimodal-sensor platform that can resort to additional
visual cues provided by an ego-centric camera system when necessary.

2 Audition in Cognitive Robotics

Robotic systems that rely on mobile agents for active exploration of the environ-
ment have recently caused significant research interest in robotics. While many of
these systems are still restricted to visual information, some advanced approaches

1The German term “Gestalt” describes an entity where the sum is perceived as more than the sum
of its parts.

www.twoears.eu


A Virtual Testbed for Binaural Agents 493

like the one of Two!Ears incorporate auditory cues to enhance the robot’s cog-
nitive performance in complex scenarios. Compare, for example, the “iCub” robot
(Metta et al. 2008; Ruesch et al. 2008) with saliency maps (Frintrop et al. 2010)
for visual and acoustic input. Visually salient features include intensity, color hue,
directional features, and motion. Auditory features are, among others, interaural
level differences (ILDs) and interaural arrival-time differences (ITDs) to determine
the azimuthal position of sound sources, and spectral notches to evaluate source
elevation—compare Hörnstein et al. (2006). Saliency maps of both modalities are
then combined by projecting them onto an ego-sphere (Ruesch et al. 2008), which
is head-centered and fixed in relation to the robot’s torso. In conjunction with a
“dynamic-inhibition-of-return mechanism”, the combined saliency maps allow the
iCub robot to demonstrate a “rich attentional behavior” (Ruesch et al. 2008) and to
autonomously explore multimodal stimuli in moderately complex environments.

Considering that purely visual exploration and attention-guidance systems fall
short of reacting to salient events outside the visual field of view, Kuehn et al. (2012)
learned from “Bayesian surprise techniques” (Itti and Baldi 2009) and introduced a
concept of “auditory surprise” (Schauerte and Stiefelhagen 2013). Thereupon unex-
pected sound events are identified, and corresponding sound sources are localized
using a “steered-response power […] with phase transform […] sound-source local-
ization” approach—seeSchauerte et al. (2011).Cue fusion then takes place based on a
Gaussian-mixture model that integrates visual and auditory information in the sensor
space. The proposed mechanism tries to generate exploration strategies to reduce the
amount of necessary ego-motion for saving energy and, also, reduce “wear-and-tear”
in the robotic device—see Kuehn et al. (2012).

Also, Okuno et al. (2001) emphasized the importance of audition in cognitive
robotics. They created a multimodal control framework to guide a humanoid robot
in service and assistance tasks (Kitano et al. 2000), based on a distributed archi-
tecture where vision, audition, motor control, and speech synthesis are realized as
single modules that all communicate through a dedicated cognitive processing unit,
the “association module” (Okuno et al. 2001). This module addresses tasks like asso-
ciating audio streams with the corresponding visual streams and controls the robot’s
focus-of-attention. The system’s audition component employs arrival-time and level
differences of the signals captured by two microphones to perform sound-source
localization in the horizontal plane (Nakadai et al. 2000).

In Walther and Cohen-L’hyver (2014), dynamic weighting methods after Cohen-
L’hyver et al. (2015, 2020), this volume, are applied to perform computational audi-
tory scene analysis in moderately complex acoustic scenarios. By continuously mon-
itoring a given scene for incoming sounds, the system evaluates the “congruency” of
a given stimulus. High weights are assigned to novel stimuli that seem to be incon-
gruent with the current environmental model and thus appear potentially interesting.
Lower weights are assigned to objects that have already been explored or are of
lesser interest for the robot’s actual task. In case of a novel sound signal with low
congruency, the machine might instantaneously turn to this stimulus. Alternatively,
it could deliberately suppress the turn-to-reflex in cases where the received acoustic
input is congruent and thus less interesting.



494 J. Blauert

3 The Concept of the Virtual Testbed

As mentioned above, advanced models of the auditory system embody elements
for cognitive processing and feedback loops that interlace bottom-up and top-down
processes. For the developer and applicants of such systems, it is mandatory to
understand what is going on inside the systems, in particular, when they perform
complex tasks autonomously. To this end, specialized tools are necessary which
enable continuous monitoring of the exploration, evaluation, decision, and task-
planning processes in the systems. In the Two!Ears project, a virtual testbed has
been implemented for this purpose, with a focus on testing of intelligent models of
the auditory system as prominent system components for autonomous robotic agents.
The basic idea of the testbed design is to provide a virtual environment in which an
(also virtual) mobile robotic agent can move about and perform tasks assigned to it.

A virtual testbed has the advantage that it can already be operational before the
respective hardware system has been assembled. As an example, the provision of
Search-&-Rescue (SAR) conditions for experimental tests is challenging in the real
world, as such conditions may endanger human beings or the robot. A virtual testbed,
however, can often avoid hardware expenses and significantly reduce testing-cycle
time. Moreover, the virtual test environment can be designed to behave flexibly
regarding new technologies, such as recent artificial-intelligence methods like deep
neural networks and reinforcement learning—compare Goodfellow et al. (2016),
Sutton (2018).

Following these lines of thinking, a demo scenario was modeled as a proof of
concept—see Fig. 1. There, in a Search-&-Rescue (SAR) situation in a (moderately)
complex environment, potential victims are localized, identified, and consequently
rescued. The processes and actions are predominantly based on binaural cues, derived

Fig. 1 Search-&-Rescue
(SAR) scenario used as an
example for demonstrating
the functionality of the
virtual testbed of the
Two!Ears project.
Rendered with Blender
3D–visualization software
(Blender Foundation 2014)
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Fig. 2 Interplay of the virtual testbed and the blackboard system in a virtual audio-visual scenario.
Arrows indicate the flow of information and symbolize issued control commands

from the ear signals of a virtual robotic platform that can actively move about in the
scene to be explored. Visual cues are employed for assistance only if necessary.
The action starts with a normal laboratory setting but suddenly evolves into a catas-
trophic situation, namely, after an explosion and fire breaking out in one corner of
the laboratory. Thus, the attending persons turn into either victims or rescuers. The
robotic agent enters the scenario and actively explores the terrain in order to infer
the positions of all persons and then saves them successively in the order of their
actual hazard score. The system newly assesses the individual hazard scores after
each action step.

Technical details and a description of the algorithms of the Two!Ears testbed are
publicly available from the technical reports Two!Ears (2015, 2016).

The virtual testbed is interleaved with a blackboard system which represents the
core of the Two!Ears system—compare, for example, Raake and Blauert (2013) or
Blauert and Brown (2020), this volume. The advantages of blackboard structures, in
general, are discussed in Schymura andKolossa (2020), this volume. The architecture
of the testbed /blackboard combination is depicted in Fig. 2 and explained below.

The left block of Fig. 2 symbolizes the blackboard. The blackboard incorporates
a number of knowledge sources (KSs) and a scheduler. The knowledge sources are
software modules with one specific functionality each. They define which data they
need for execution and which data they produce. The blackboard system provides
the tools for requesting and storing these data but does not care about their content.
Each of the knowledge sources is in charge of a specific subtask that contributes to
the solution of the general problem addressed. Knowledge sources are also called
“experts”, as they act in a way similar to what human specialists would do. The
scheduler is a software module that initiates knowledge sources to execute their
respective subtasks. Thereby, it determines the order in which knowledge sources
get executed, based on the current task and the data that are stored on the blackboard.
The order of execution is rescheduled after every execution of a knowledge source.
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Fig. 3 Schematic of the blackboard architecture employed to perform multi-source localization
based on a deep neural network (DNN). Blueish arrows indicate the flow of information and sym-
bolize issued control commands. Black arrows illustrate the activation sequences of the depicted
knowledge sources

The following sections provide short descriptions of knowledge sources and other
software modules which are of particular relevance for the virtual testbed.

4 Exploration of the Scenario

The virtual scenario for testing autonomous agents is set up using a binaural mix-
ing console. The mixing console has a data bank at its disposal with head-related
impulse responses (HRIRs)2 for various angles of sound incidence and sound-source
distances such as the chosen test scenario requires. It generates the acoustic ear
signals for the autonomous agents based on information of sound-source positions
and emitted sound signals.3 There is a knowledge source that continuingly updates
this information—the UpdateEnvironmentKS. The binaural mixing console inter-
faces with the next processing element, the auditory front-end via a special software
module—the SSRInterface. The following explanations follow the schema depicted
in Fig. 3.

The auditory front-end is the earliest processing stage of the Two!Ears system.
It provides bottom-up auditory signal processing as performed in the sub-cortical

2Head-related impulse responses (HRIRs) are the Fourier transforms of head-related transfer func-
tions (HRTFs).
3In the current project the “SoundScape Renderer” (SSR) of Geier and Spors (2012) has been
chosen for this purpose—see www.spatialaudio.net/ssr/ [last accessed: August 18, 2019].

www.spatialaudio.net/ssr/
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stages of the human auditory systemwhere the ear-input signals are transformed into
multi-dimensional auditory representations. The output provided by this front-end
consists of several transformed versions of ear signals enriched by perception-based
descriptors, for example, interaural arrival-time differences (ITDs), interaural level
differences (ILDs), interaural cross-correlation (IACC), signal onsets and offsets,
loudness, pitch, rate maps, and binaural-activity maps.

An object-oriented approach is used throughout the system. This provides great
flexibility and allows modification of bottom-up processing in response to feedback
from higher levels of the system during run time. The auditory front-end supports
online processing of the two-channel ear signals, and this is why it is used for the
virtual testbed in the form of an AuditoryFrontEndKS.

4.1 Auditory-Object Localization

Perceptual objects are defined by their essential features, their position in space and
time, their spatial extent, and their relation to other objects. In other words, they
exist at a certain time at a certain locus. Sound-source localization or, to be more
specific, the determination of the positions of auditory objects in the perceptual space
is a basic requirement for any auditory-object formation—refer to Blauert (1997) for
fundamentals of auditory localization.

In the virtual testbed reported here, sound-source localization is accomplished
by a deep neural network (DNN). Networks of this kind have proven successful
for the determination of the directions of multiple sound sources, such as concur-
rent speakers—even in noisy and reverberant environments. The system of Ma et al.
(2015) is an example, in which a DNN is used to learn the relationship between the
source azimuth and binaural cues, namely, interaural cross-correlation and interaural
level differences of the signals arriving at the two ears. The DNN was trained using
a multi-condition approach, that is, spatially diffuse noise was added to the train-
ing signals at different signal-to-noise ratios to improve robustness to reverberation.
The authors show that their system can accurately localize target sources in chal-
lenging conditions—even when concurrent sound sources and room reverberation
are present.

However, there is one additional complication that had to be addressed, that is, the
following. Auditory localization was traditionally discussed as a static phenomenon,
not considering that the ears are positioned on the head which is movable in six
degrees of freedom. The exploitation of additional cues as collected by head move-
ments improves the localization capabilities considerably, for instance, in the course
of exploring unknown environments—compare Braasch et al. (2013) andBlauert and
Brown (2020), Pastore et al. (2020), both this volume. In particular, head movement
is needed to solve directional ambiguities such as front-back confusion and to move
the head into a suitable position for the segregation of desired signal components
fromundesired ones, such as noise, reverberation, and /or concurrent talkers (Braasch
et al. 2011, 2013). For this reason, the virtual agent in the current system is enabled to
execute slow rotations about its vertical axiswhen necessary—angular velocity 15◦/s.
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To evaluate the auditory localization capabilities of the virtual testbed, the fol-
lowing scenario was generated. From the “real” facility, the Adream apartment,
which was used for tests with the “real” autonomous agent, a virtual copy was set up
(Adream 2014). Up to seven virtual sound sources were placed at different positions
inside the apartment, namely, five human beings, a dog, and an open fire. The sound
sources emit signals that include human voices yelling for help, a siren, a barking
dog, and the fire. Each source displays intermitting activation with artificial silence
intervals of 0.5 s in addition to the natural silence intervals contained in each of the
sound signals anyhow. In this scenario, the virtual robot had to infer the azimuths of
all sound sources.

As ground-truth information, the robot was supplied with a floor plan of the apart-
ment with all sound-insulating walls charted.4 The motion behavior of the robotic
agent while localizing the sound sources is controlled by a dedicated planning mod-
ule. In the course of the localization experiment, the followingbehaviorwas observed.

To localize the auditory objects, the virtual agent roams the virtual scenario along a
path proposed by the planning module.While following this path, the robot performs
a localization attempt by listening for any emitted sounds and infers the azimuths
of all discriminable active sound sources by feeding data from the auditory front
end into the DnnLocationKS. This knowledge source, in turn, generates a discrete
distribution, that yields the probability of sound-source presence over head-centric
azimuth in each simulation frame.

Using the current head orientation of the agent, as provided by the virtual testbed,
the head-centric coordinates are transformed into world coordinates. In the trans-
formed probability distribution, p1(ϕ), peaks are popping up in the most likely posi-
tions of auditory objects. However, in a plot of this distribution, (mirror) peaks may
develop at positions roughly symmetric to the ear axis. This is the result of front-back
confusions. This problem is solved by head rotation. From a head position shifted in
azimuth concerning the initial head position, another probability distribution, p2(ϕ),
is generated. By adding up the two distributions, p1(ϕ) and p2(ϕ), one of each pair
of symmetric peaks, the “ghosts”, level out and eventual front-back-confusions are
thus disambiguated.

Figure4 depicts the floor plan of the test scenario with all seven estimated source
positions marked. Further plotted are a roaming path and the final position of the
autonomous agent. From the latter position, it monitors the scenario for any new
things to happen in idle mode.

4Sound-reflections from the walls were not considered, as this did not appear to be of importance
for the current localization task. If this became necessary for tests in more complex scenarios, a
precedence-effect processor had to be implemented—such as the one described by Braasch (2020),
this volume.
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Fig. 4 Floor plan of the test
scenario with the detected
positions of sound-sources, a
roaming path and the idle
position of the agent

4.2 Auditory-Object Identification

As mentioned above, perceptual objects are defined by more than their position in
space and time. Further essential features are, for example, psychoacoustics- and
sensory-psychology-related attributes and physical attributes. Further, most impor-
tantly, the meaning that the objects convey and the specific functionality that they
stand for. Autonomous agents must develop an idea of these object characteristics,
at least to the extent which is relevant for the tasks that are assigned to them. An
important process to this end is what is known as the “binding”—compare von der
Malsburg (1999). This is the mutual allocation of those features which constitute
the “identity” of a perceptual entity on the one hand and its location in time and
space on the other hand. In the virtual testbed described here, the binding process is
accomplished by a specific knowledge source—the BindingKS.

An important reason for building the virtual testbed at all was that it allowed
the testing of procedures that were not yet available with the physically “real”
autonomous agent in the course of the development of the Two!Ears project. For
instance, some data needed for performing the binding were still lacking at this time.
However, in the virtual testbed, they could be emulated by integrating ground-truth
information from the virtual scenario. As a positive side effect, experiments run
significantly faster in emulated scenarios, because auralization and auditory-feature
extraction are bypassed. Further, the emulation supports setting up complex exper-
iments easily and fast that could not readily be realized otherwise.5 The following
explanations follow the schema depicted in Fig. 5

5If at a later point in time a sufficient amount of experimental data from the “real” agent is available,
the emulated identity labels can be replaced by real ones. Identity classes could even be compiled
automatically from experimental data.
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Fig. 5 Processing sequence in the virtual testbed for auditory object identification and subsequent
action planning. Blueish arrows indicate the flow of information and symbolize issued control
commands. Black arrows mark the activation sequence of the knowledge sources. Note that the
sound-scape renderer, in curled brackets, is not active in the emulation mode of the testbed

Binding

As stated above, the “Wheres” and “Whats” of all perceived sound sources have
to be combined by appropriate binding mechanisms for successful auditory-object
formation. To that end, the BindingKS imports ground-truth-scenario information
from the core of the virtual testbed and generates, on a per-frame basis, a set of
binding hypotheses corresponding to all currently active sound sources. Given the
location estimates for all active sources in each frame, it becomes straightforward to
augment those estimates with the corresponding ground-truth labels. The BindingKS
then forwards the resulting structure to the blackboard, thus making it available to
downstream knowledge sources.

The basic concept of theBindingKS is explained in the following, for details of the
algorithm see Two!Ears (2016, pp. 92–93). The BindingKS builds on the following
data.

– Azimuthal-plane-based ground-truth positions of all sound sources in the given
scenario

– Ground-truth labels which represent the respective identities of all auditory per-
cepts in the scenario

– Head poses of the autonomous agent in any given frame—including head orien-
tation.

Object Formation

Binding is subsequently followed by the formation of auditory objects. TheAuditory-
Object-Formation Knowledge Source, AuditoryObjectFormationKS, is in charge of
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this step. Based on the source-position estimates of the DnnLocationKS, the robotic
agent infers and refines the x/y-plane position of each sound source in each frame.
The acuity of the position estimates gradually increases with increasing emulation
time, as information from more frames aggregates and cancels out uncertainties
in azimuth estimation for the robot’s self-localization mechanism. To that end, the
machine switches to patrol mode and roams the given scenario. In doing so, it uses a
simplistic path-planning scheme that integrates basic collision avoidance—modified
from Premakumar (2016). Patrolling is continued until all source positions are deter-
mined with sufficient precision. During a patrol, the robotic agent maintains a set
of auditory-object hypotheses. Each of them represents a self-contained, expandable
set of data that models the robot’s knowledge of each acoustically observed sound
source in each frame.

The information contained in auditory-object hypotheses grows and adapts while
the robot moves along the prescribed patrolling path. Simultaneously the localiza-
tion acuity increases, and the variance, ν, of the framewise collected positions in
the horizontal plane decreases. The averages of the variances—over ten simula-
tion frames and across all object hypotheses—is called the “average global-position
uncertainty”, ν̃. Once a preset threshold for this quantity, say ν̃ ≤ 0.01, is undercut,
patroling is stopped, and the next processing step is initiated.

Eventually, the AuditoryObjectFormationKS augments each auditory object
hypothesis with its individual position variance. In addition, this knowledge source
stores ν̃ in the blackboard for further processing by downstream system blocks.

Meta-tagging

Asmentioned above, the virtual testbed focuses on the cognitive domain and operates
on the symbolic level. Meta information required herein is provided by the Audito-
ryMetaTaggingKS. This knowledge source augments each auditory object hypothesis
with additional meta tags that define the abstract characteristics of the correspond-
ing sound sources in a given emulation frame. Note that the metadata used here are
purely emulated. The advantage of such a procedure is that it allows for performing
cognitive experiments of increased complexity, even if the requiredmeta information
is currently not yet available from lower stages of the Two!Ears framework. The
available meta tags as listed in Table1 are generated by the AuditoryMetaTaggingKS.

Table 1 Meta-tags assigned
to object hypotheses in the
virtual testbed

Meta class Meta subclass

Category Human, Animal, Threat,
Alert

Role Employee, Rescuer, Victim,
Fire, Siren, Dog

Gender Male, female, n.a.

Stress Categorized individually

Loudness Categorized individually

Age Categorized individually
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In this table, “n.a.” indicates that the corresponding meta tag may not be appli-
cable in the specific case. For instance, it would be pointless to assign stress values
to an auditory object of role “fire”, or supply an auditory object of role “siren” with
“age” information. Be reminded that the virtual testbed contains ground-truth meta-
information for all instantiated sound sources. Thus, each auditory-object hypothesis
can principally be supplied with perfect meta-knowledge of the emulated environ-
ment. This would never be possible in real-world scenarios, as meta information can
only be extracted via noisy sensors, consequently resulting in an imperfect assign-
ment of data to the corresponding auditory percepts.

To account for such sensor noise in the existing virtual testbed,membership scores
for all classes defined in Table1 are calculated by artificially degrading the ground-
truth information by adding noise to the acoustic signals.

Hazard Assessment

Given the above meta information, the virtual testbed calculates individual haz-
ardscores, H, for all the auditory objects. This is done in the HazardAssessmentKS
knowledge source. In a first step, a rescuescore, R, is appointed to each object, refer-
ring to the most probable meta-classes that the respective object belongs to in terms
of category, role, and gender—determined for each simulation frame.

High values of the rescue score may induce ambiguous cases. For instance, an
object that relates to a particular sound source is a rescuer itself. Thus it can be
assumed that only minor help from the robotic agent is needed, if at all. In a second
case, an observed object is positioned closely to another object that has taken on
the role of a “rescuer”. Then the system expects the nearby rescuer to look after the
observed object. The robot will instead focus its attentional resources on entities with
lower rescue scores. Note that in both cases, an increase of the rescue score causes
the hazard score to decrease.

The rescue score is countered by a threat score for the individual objects. This
takes on high values if the observed entity is expected to be positioned close to another
one that likely belongs to the “threat” category. In such a dangerous situation, the
attention of the robot has to focus on the threatened entity and thus increases its
hazard score. The hazard score will also increase if the observed entities belong to
the following classes.

– Is likely to be a victim
– Shows increased voice stress or loudness
– Is close to a threat, for example, a fire.

During rescue attempts, all animate beings have to be evacuated from the scenario.
However, as humans have to be rescued first, their individual threat score is post-
processed to confirm their priority to be rescued. It is further assumed that inanimate
entities cannot be threatened. Thus, their threat scores are set to zero.

The above-mentioned heuristic, relatively simple assessment rules for the indi-
vidual hazard scores resulted in a reasonable behavior of the robotic agent in the
SAR experiment, which has been set up as a proof of the basic concept of the virtual
testbed.
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The individual hazard scores, H, were derived from weighted algebraic sums
of the average global-position uncertainty, ν̃, the rescue score, R, and a loudness
index, L. The individual rescue and hazard scores were averaged over a sliding time
window of the last 30 frames where applicable, resulting in smoothed individual-
hazardscores. All individual rescue and hazard scores, as well as the global ones,
are communicated to the blackboard system for use in further knowledge sources, for
example, in the PlanningKS. The derivation of hazard scores can readily be extended
to suit the demands of more complex scenarios. For upcoming system versions, it
would also be possible to have human assessors judge on hazard scores in a variety
of emulated dynamic ASA situations. Data recorded from these trials would then be
used to train, for example, a neural network that infers the hazard score directly and
replaces the ad-hoc solution proposed above.

5 Action Planning

The knowledge sources defined above act together in order to allow for bottom-up
scenario analysis. However, without top-down active exploration, the AuditoryOb-
jectFormationKS would not be able to localize overheard sound sources. In turn,
computation of the hazard scores as provided by the HazardAssessmentKS would
be flawed. Consequently, it would be impossible to derive a meaningful action plan
for the robotic rescuer without adequate scenario understanding driven by top-down
mechanisms.

To account for these insights, the blackboard architecture is augmented with a
cognitive expert subsystem, the PlanningKS. This knowledge source enables mean-
ing assignment and scene understanding together with high-level planning as well
as active scenario exploration. The PlanningKS can, in a way, be seen as the “brain”
of the autonomous robotic agent.

Realized as a task stack, the PlanningKS employs a manually derived rule set
to issue new tasks and provide meaningful robotic behavior in moderately complex
scenarios.

To be sure, the internal architecture of thePlanningKS has to be adaptable to novel
situations. For instance, the understanding and handling of the demo SAR scenario
introduced in Sect. 3 is enabled through the rules and tasks encoded in Fig. 6. Only
the major tasks have been depicted in this figure; minor subtasks like actuator control
have been left out for clarity.

In future system versions, the manual adaptation of the PlanningKS could be
automatized as follows.On the one hand, neural-networkmethods could, for instance,
be used to infer purposeful robotic action plans directly from data collected in human
trials. On the other hand, application of reinforcement-learning techniques could be
employed to enable the robot to discover reasonable action patterns in a completely
autonomous manner.
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Fig. 6 Overview of thePlanningKS architecture described in Sect. 5. The flowplan on the right sub-
sumes the tasks (rectangles) and decision rules (diamonds) embodied in the framework for scene
understanding and active exploration. The hints on the left provide details of the corresponding dia-
gram blocks. ν̃…average global-position uncertainty, H …individual hazard score, M …average
global hazard score, nE…number of remaining victims

6 Multimodal Cue Integration

As stated above, the Two!Ears framework is aimed at multimodal augmentation
of auditory scene understanding. To this end, the physical robotic agent is equipped
with a binocular camera system that enables the capturing of video footage in given
scenarios. Visual cues extracted from the image streams that the cameras deliver
can be used to complement incoming auditory information, thereby enhancing the
robot’s comprehension of the explored environment. The virtual robotic agent is
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Table 2 Meta characteristics of the entities present in the cognitive experiment discussed in Sect. 7

Entity Category Pre-event role Post-event role Gender Age

S#1 Human Employee Victim Male 25

S#2 Animal Dog Victim Male 2

S#3 Human Employee Rescuer Female 30

S#4 Human Employee Victim Male 40

S#5 Alert Siren Siren n.a. n.a.

S#6 Threat Fire Fire n.a. n.a

S#7 Human Employee Victim Female 20

also equipped with a monocular camera to assess the benefits of audio-visual cue
integrationwithin the emulation framework. This camera allows capturing the robot’s
field of view.

The entities enrolled in the given scenario correspond to a subset, namely, sources
S#1, S#3, S#4, andS#7—compareFig. 4—embracing the sources defined inTable2,
with their individual roles switched to “‘victim”. All entities are in a panic, causing
nearly identical stress levels. The procumbent female victim, S#7, is supposed to be
severely injured, with her utterances significantly muffled. In contrast, the entities
related to S#1 and S#3 appear to be physically integer and are assumed to yell for
help actively. Thus one gets similar stress levels for all emulation frames.

Since there are no rescuers or threats present in the given scene, the initial hazard
scores computed for the entities are defined as directly proportional to their individual
loudness levels. As a consequence, the robot would at first evacuate the active, intact
entities corresponding to sound sources S#1 and S#3, disregarding the helpless
persons represented by S#4 and S#7. Such behavior, however, would be in contrast
to human intuition and thus clearly inadmissible.

Incoming visual information is exploited in the following way to suppress such
inadequate behavior. A histogram of oriented gradients (Dalal and Triggs 2005) from
the OpenCV library of WillowGarage (2014) is used to detect persons in upright
posture. With this additional information, the robot’s rescuing pattern as defined by
the PlanningKS is adapted. Once the robot has determined the positions of all sound
sources with sufficient reliability—solely based on acoustic cues—it activates its
camera and focuses sequentially on the estimated individual source locations. The
assumed physical integrity of the victim corresponding to sound source S#3 can thus
be checked based on visual cues—see Fig. 7.

As a result, if the robot’s heading is geared towards S#3, and the position detector
reports the visual presence of an upright person. It is concluded that the focused
victim is fully conscious and physically integer. On the contrary, if the detector
displayed a negative response, the victim at S#3 would be deemed severely injured
and probably dizzy. The computational load induced by the position detector is kept
at bay by shutting down the camera of the robot unless visual augmentation is actually
demanded.
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Fig. 7 Visual assessment of the physical integrity of emulated victimswith a position detector. a A
victim has been focused, the position detector reports the presence of an upright person (red box).
Consequently it is inferred that this person is fully conscious and physically integer. b Another
victim has been focused, yet the detector shows a negative response. Thus, this person is likely to
be injured and probably unconscious or dizzy

The virtual testbed memorizes the physical-integrity values for all assessed enti-
ties and uses them to update the characteristics of the corresponding sound sources.
In case of entities classified as injured, their hazard score is significantly increased,
causing helpless entities to become prioritized in the actual rescue plan. Accord-
ingly, the procumbent person corresponding to S#4 will be evacuated with priority,
resulting in the behavior of the robotic agent that matches human intuition.

7 Test-Run of the Virtual Testbed

As a demonstration of the basic functionality of the auditory virtual testbed in a
dynamic auditory scene, a test-run in the simplified scenario as depicted in Fig. 4
was performed. The emulation of the scenario in the virtual testbed has a duration
of 400s. It starts in normal lab conditions. Then, after T=60s, the situation evolves
into a catastrophic scenario. After an assumed explosion, the attending laboratory
employees turn into either victims or rescuers, and a fire starts in one corner of the
laboratory. Table2 subsumes the meta-characteristics of all entities present in the
proposed scenario, including their roles before and after the explosion.

Each of the entities in the table above corresponds to an emulated sound source,
distinguished by an individual utterance schedule that contains the emission pattern
and potential role changes for each entity. In the emulation mode, the virtual testbed
does not require the availability of physical stimuli connected to the utterances stored.
This allows defining entities of nearly arbitrary category and role without the need
for huge sound databases. Note further that emission and silence intervals in the
utterances are superposed by stochastic noise with preset levels.
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Assume that before the explosion all animate entities display a low stress level,
indicated by their vocal activities. The emulated sound sources corresponding to
the “fire” and “siren” entities remain inactive. After the explosion, the stress level
suddenly rises in all animate entities. S#1 is assumed to become unconscious, ceasing
its acoustic emission after a few seconds. S#4 is expected to be severely injured,
causing the loudness level of its utterances to decrease significantly. Note that a
fire-alarm siren is available, but its activation is deliberately postponed until the
autonomous agent triggers it by pressing the “trigger alert” button. The robotic agent
acts with respect to the schedule defined in Fig. 6 to sense upcoming catastrophic
conditions and, eventually, evacuate all animate entities from the scene.

The virtual testbed allows to automatically generate a range of different scenarios
with varying characteristics, thus allowing for quantitative assessment of the perfor-
mance of SAR schemes encoded in the PlanningKS. Focusing on the SAR strategy
discussed in Fig. 6, modified scenarios were generated by randomly altering the x/y–
positions of all animate entities. “Forbidden areas” were defined where no animate
entity was placed. In this way, the randomly positioned sources are kept away from
walls and become unlikely to stall the robot during scenario exploration completely.

In the scenario shown in Fig. 1, the time span for the emulation plus that required
for the evacuation of all animate entities from the scene was 300s on average, with
a standard deviation of 38s. In upcoming experiments, these values will have to
be compared to results from trials where human assessors guide the robotic agent
manually through numerous emulated rescue attempts. This would also set the pace
for perceptual evaluation in addition to the instrumental one applied so far.

8 Discussion and Conclusion

It is common practice in science and technology to provide virtual environments for
actions which are too expensive, too complex, too slow to realize, or too dangerous to
be performed in corresponding “real” environments. In this chapter a virtual testbed
is described in which a mobile virtual autonomous robotic agent acts in a virtual
scenario. The unique feature of the testbed is that the agent autonomously explores
its environment predominantly based on auditory cues, as are derived from the input
signals to the two ears of a head-and-torso simulatormounted on amobile platform—
all virtual! Complementary visual cues are only used in rare cases where auditory
information is not sufficient for the task assigned to the agent. The virtual testbed
has been developed in the course of an international research project to study the
scientific problems that the realization of such a system would involve. When the
virtual test reported herewas developed, the situation regarding relevant experimental
data was scarce. Therefore, in many knowledge sources, heuristic-rule sets had to
be employed. Once available data sets are capacious enough for automatic analysis,
the heuristic rules may be replaced by statistics-based end-to-end classifiers. In any
case, the basic feasibility of virtual auditory testbeds could be demonstrated.
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Binaural Technology for Machine Speech
Recognition and Understanding

Richard M. Stern and Anjali Menon

Abstract It is well known that binaural processing is very useful for separating
incoming sound sources as well as for improving speech intelligibility in reverberant
environments. This chapter describes and compares a number of ways in which
automatic-speech-recognition accuracy in difficult acoustical environments can be
improved through the use of signal processing techniques that are motivated by our
understanding of binaural perception and binaural technology. These approaches are
all based on the exploitation of interaural differences in arrival time and intensity
of the signals arriving at the two ears to separate signals according to direction of
arrival and to enhance the desired target signal. Their structure is motivated by classic
models of binaural hearing as well as the precedence effect.We describe the structure
and operation of a number of methods that use two or more microphones to improve
the accuracy of automatic-speech-recognition systems operating in cluttered, noisy,
and reverberant environments. The individual implementations differ in the methods
by which binaural principles are imposed on speech processing, and in the precise
mechanism used to extract interaural time and intensity differences. Algorithms that
exploit binaural information can provide substantially improved speech-recognition
accuracy in noisy, cluttered, and reverberant environments compared to baseline
delay-and-sum beamforming. The type of signal manipulation that is most effective
for improving performance in reverberation is different from what is most effective
for ameliorating the effects of degradation caused by spatially-separated interfering
sound sources.
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1 Introduction

Automatic speech recognition (ASR) is the key technology that enables natural inter-
action between humans and intelligent machines. Core speech-recognition technol-
ogy developed over the past several decades in domains such as office dictation and
interactive voice-response systems to the point that it is now commonplace for cus-
tomers to encounter automated speech-based intelligent agents that handle at least
the initial part of a user query for airline flight information, technical support, tick-
eting services, etc. As time goes by, we will come to expect the range of natural
human-machine dialog to grow to include seamless and productive interactions in
contexts such as humanoid robotic butlers in our living rooms, information kiosks in
large and reverberant public spaces, as well as intelligent agents in automobiles while
traveling at highway speeds in the presence of multiple sources of noise. Neverthe-
less, this vision cannot be fulfilled until we are able to overcome the shortcomings
of present speech-recognition technology that are observed when speech is recorded
at a distance from the speaker.

Two of themajor forms of environmental degradation are additive noise of various
forms and reverberation. Additive noise arises naturally from interfering speakers,
background music, or other sound sources that are present in the environment, and as
the signal-to-noise ratio (SNR) decreases, speech recognition becomesmore difficult.
In addition, the impact of noise on speech-recognition accuracy depends as much
on the type of noise source as on the SNR. For example, compensation becomes
much more difficult when the noise is highly transient in nature, as is the case with
many types of impulsive machine noise on factory floors and gunshots in military
environments. Interference by sources such as background music or background
speech is especially difficult to handle, as it is both highly transient in nature and easily
confused with the desired speech signal. Research directed toward compensating for
these problems has been in progress for more than three decades.

Reverberation is also a natural part of virtually all acoustical environments
indoors, and it is a factor in many outdoor settings with reflective surfaces as well.
The presence of even a relatively small amount of reverberation destroys the tempo-
ral structure of speech waveforms. This has a very adverse impact on the recognition
accuracy that is obtained from speech systems that are deployed in public spaces,
homes, and offices for virtually any application in which the user does not use a
head-mounted microphone. It is presently more difficult to ameliorate the effects of
common room reverberation than it has been to render speech systems robust to the
effects of additive noise, even at fairly low SNRs. Researchers have begun to make
meaningful progress on this problem only relatively recently.

In this chapter we discuss some of theways inwhich the characteristics of binaural
processing have been exploited in recent years to separate and enhance speech sig-
nals, and specifically to improve automatic-speech-recognition accuracy in difficult
acoustical environments. Like so many aspects of sensory processing, the binaural
system offers an existence proof of the possibility of extraordinary performance in
sound localization and signal separation, but as of yet we do not know how best to
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achieve this level of performance using the engineering tools available in contempo-
rary signal processing.

In the next section we restate very briefly the basic binaural phenomena that
have been exploited in contemporary signal enhancement and robustness algorithms
for ASR. In Sect. 3, we summarize for the lay person some of the basic principles
that underly contemporary ASR systems. We survey a number of computational
approaches to impove the accuracy of ASR systems that are motivated by binaural
processing in Sect. 4, and we discuss some extensions of these approaches to systems
based on deep learning in Sect. 5.

2 Binaural-Hearing Principles

The human binaural system is remarkable in its ability to localize single and multiple
sound sources, to separate and segregate signals coming frommultiple directions, and
to understand speech in noisy and reverberant environments. These capabilities have
motivated a great number of studies of binaural physiology and perception. Useful
comprehensive reviews of basic binaural perceptual phenomena may be found in
a number of sources including Durlach and Colburn (1978), Gilkey and Anderson
(1997), Stern et al. (2006), and Kohlrausch et al. (2013), among others, as well as in
basic texts on hearing such as Moore (2012) and Yost (2013).

2.1 Selected Binaural Phenomena

While the literature on binaural processing on both the physiological and perceptual
sides is vast, the application of binaural processing toASR is based on a small number
of principles:

1. The perceived laterality of sound sources depends on both the interaural time
difference (ITD) and interaural intensity difference (IID) of the signals arriving
to the two ears, although the relative salience of these cues depends on frequency
(e.g., Durlach and Colburn 1978; Domnitz and Colburn 1977; Yost 1981).

2. The auditory system is exquisitely sensitive to small changes of sound, and can
discriminate ITDs on the order of 10µs and IIDs on the order of 1 dB. Sensitivity
to small differences in interaural correlation of broadband noise sources is also
quite acute, as a decrease in interaural correlation from 1.00 to 0.96 is readily
discernible (e.g., Durlach and Colburn 1978; Domnitz and Colburn 1977). The
ITDs arise from differences in path length from a sound source to the two ears, and
the IIDs are a consequence of head shadowing, especially at higher frequencies.

3. The vertical position of sounds, aswell as front-to-back differentiation in location,
is affected by changes in the frequency response of sounds that are imparted by
the anatomy of the outer ear, and reinforced by head-motion cues (e.g., Mehrgardt
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and Mellert 1977; Wightman and Kistler 1989a, b, 1999). The transfer function
from the sound source to the ears is commonly referred to as the head-related
transfer function (HRTF). HRTFs generally depend on the azimuth and elevation
of the source relative to the head, as well as the anatomy of the head and outer
ear of the individual.

4. The intelligibility of speech in the presence of background noise or some other
interfering signal becomes greater as the spatial separation between the target and
masking signals increases. While some of the improvement in intelligibility with
greater spatial source separation may be attributed to monaural effects such as a
greater effective SNR at one of the two ears, binaural interaction also appears to
play a significant role (e.g., Zurek 1993; Hawley et al. 1999).

5. The auditory localization mechanisms typically pay greater attention to the first
component that arrives (which presumably comes directly from the sound source)
at the expense of later-arriving components (which presumably are reflected off
the room and/or objects in it). This phenomenon is referred to as the precedence
effect or the law of the first wavefront (e.g., Wallach et al. 1949; Blauert 1997;
Litovsky et al. 1999).

2.2 Models of Binaural Interaction

A number of models have been developed that attempt to identify and explain the
mechanisms that mediate the many interesting binaural phenomena that have been
observed. For the most part, the original goals of these models had been to describe
and predict binaural lateralization or localization, discrimination, and detection data,
rather than to improve ASR recognition accuracy. These models are typically eval-
uated on their ability to describe and predict the perceptual data, the generality of
their predictions, and the inherent plausibility of the models in terms of what is
known about the relevant physiology. Useful reviews of binaural models may be
found in Colburn and Durlach (1978), Stern and Trahiotis (1995, 1996), Trahiotis
et al. (2005), Braasch (2005), Colburn and Kulkarni (2005), and Dietz et al. (2017),
among other sources.

Most theories of binaural interaction (at least for signals that are presented through
headphones) include a model that describes the peripheral response to sound at the
level of the fibers of the auditory nerve, a mechanism for extracting ITDs, a mecha-
nism for extracting IIDs, amethod for combining the ITDs and IIDs, and amechanism
for developing predictions of lateral position from the combined representation.Mod-
els that describe sound localization in the free field typically incorporate information
from HRTFs.

Models of Auditory-Nerve Activity

Models of the response to the sounds at the auditory-nerve level typically include (1)
a bandpass frequency response, with a characteristic frequency (CF) that provides the
greatest response, (2) some sort of half-wave rectification that converts the output of
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the bandpass linear filters to a strictly positive number that represents rate of response,
and (3) synchrony or “phase locking” in the response to the fine structure of low-
frequency inputs and to the envelopes of higher-frequency inputs. Some auditory-
nerve models also include (4) enhanced response at the temporal onset of the input
and (less frequently) (5) an explicit mechanism for lateral suppression in fibers with
a given CF to signal components at adjacent frequencies. These models of auditory-
nerve activity can be as simple as the cascade of a bank of bandpass filters, half-
wave rectification, and lowpass filtering;more complex and physiologically-accurate
models are described in Zhang et al. (2001) and Zilany et al. (2009), among other
sources.

Cross-Correlation-Based Models

Most models of binaural interaction include some form of Jeffress’s (1948) descrip-
tion of a neural “place” mechanism as the basis for the extraction of interaural timing
information. Specifically, Jeffress postulated a mechanism that consisted of a num-
ber of central neural units that recorded coincidences in neural firings from two
peripheral auditory-nerve fibers, one from each ear, with the same CF. It was further
postulated that the neural signal coming from one of the two fibers is delayed by
a small amount that is fixed for a given fiber pair. Because of the synchrony in the
response of low-frequency auditory-nerve fibers to low-frequency signals, a given
binaural coincidence-counting unit at a particular frequency will produce maximal
output when the external stimulus ITD at that frequency is exactly compensated for
by the internal delay of the fiber pair. Hence, the external ITD of a simple stimulus
could be inferred by determining the internal delay that has the greatest response
over a range of frequencies. Colburn (1969, 1973) reformulated Jeffress’s hypoth-
esis quantitatively using a relatively simple model of the auditory-nerve response
to sound as Poisson processes, and a “binaural displayer” consisting of a matrix of
coincidence-counting units of the type postulated by Jeffress. These units are spec-
ified by the CF of the auditory-nerve fibers that they receive input from as well as
their intrinsic internal delay. The overall response of an ensemble of such units as
a function of internal delay is similar to the running interaural cross-correlation of
the signals to the two ears, after the peripheral cochlear analysis (e.g., Stern and
Trahiotis 1995). This general representation has been used in a number of compu-
tational models of binaural processing for speech recognition, with sound-source
locations identified by peaks of the interaural cross-correlation functions along the
internal-delay axis.

Figure1 illustrates how the Jeffress-Colburn mechanism can be used to localize
two signals according to ITD. The upper two panels of the figure show the magnitude
spectra in decibels of the vowels /AH/ and /IH/ spoken by amale and a female speaker,
respectively. The lower panel shows the relative response of the binaural coincidence-
counting units when these two vowels are presented simultaneously with ITDs of
0 and −0.5 ms, respectively. The 700-Hz first formant of the vowel /AH/ is clearly
visible at the 0-ms internal delay, and the 300-Hz first formant of the vowel /IH/ is
seen at the delay of −0.5 ms.
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Fig. 1 Upper and central panels: spectrum of the vowels /AH/ and /IH/ as recorded by a male and
female speaker, respectively. Lower panel: response of an implementation of the Jeffress-Colburn
model to the simultaneous presentation of the /AH/ presentedwith a 0-ms ITD and the /IH/ presented
with a −0.5 ms ITD

It should be noted that the interaural cross-correlation function does not describe
IIDs unambiguously, so some additional mechanism must be employed to repre-
sent the contributions of IID. For example, Stern and Colburn (1978) multiplied the
cross-correlation-based representation of ITD described above by a pulse-shaped
function with a location along the internal-delay axis that depends on IID. This
model, known as the “position-variable model,” predicts lateral position by comput-
ing the centroid of the product of these “timing” and “intensity” functions along the
internal-delay axis and then integrating this function over characteristic frequency.
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Shamma et al. (1989) proposed an alternative implementation of the Jeffress model,
called stereausis in which the internal delays are obtained implicitly by comparing
inputs of auditory-nerve fibers with slightly mismatched characteristic frequencies,
as previously suggested by Schroeder (1977).

Blauert and his colleagues proposed a similar representation (Blauert and Cobben
1978; Blauert 1980). This work was subsequently extended by Lindemann (1986a),
who added amechanism that (among other things) inhibits outputs of the coincidence
counters when there is activity produced by coincidence counters at adjacent inter-
nal delays. This contralateral inhibition mechanism enables the Lindemann model to
describe several interesting phenomena related to the precedence effect (Lindemann
1986b). Gaik (1993) extended the Lindemann mechanism further by adding a sec-
ond weighting to the coincidence-counter outputs that reinforces naturally-occurring
combinations of ITD and IID.

The Equalization-Cancellation Model

The Equalization-Cancellation (EC) model of Durlach and colleagues (e.g., Durlach
1963, 1972) is an additional important alternate model. The EC model was ini-
tially formulated to account for binaural detection phenomena, although it has been
applied to other psychoacoustical tasks as well (Colburn and Durlach 1978). The
model assumes that time-delay and amplitude-shift transformations are applied to
the incoming signal on one side in order to equali ze the masker components of
the signals to the two ears. The masker-equalized signals are then subtracted from
one another to cancel the masker components, leaving the target easily detectable.
Stochastic “jitter factors” are applied to the time and amplitude transformations,
which limits the completeness of the equalization and cancellation operations, in a
fashion that is fitted to the observed limits of human detection performance. The
EC model remains popular because of its simplicity and its ability to describe many
phenomena. It has been the inspiration for subsequent models (e.g., Breebaart et al.
2001a, b, c), and has also been applied to speech recognition, as will be discussed
below.

Detection of Target Presence Using Interaural Correlation

Many phenomena, especially in the area of binaural detection, can be interpreted
easily by considering the change in interaural correlation that occurs when a target
is added to the masker. The use of interaural correlation was formalized in one
binaural earlymodel (Osman 1971) and has been the focus ofmany experimental and
theoretical studies since that time, as reviewed by Trahiotis et al. (2005) among other
sources. While cross-correlation-based models that represent ITD, the EC model,
and correlation-based models differ in surface structure, it has been shown that under
many circumstances they function similarly for practical purposes (e.g.,Colburn and
Durlach 1978; Domnitz and Colburn 1976).
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3 Selected Robust Speech-Recognition Principles

The field of robust automatic speech recognition is similarly vast, and cannot be
dealt with in any depth in a review chapter of this scope. The purpose of this section
is to provide some insight into the principles of automatic speech recognition that
are needed to appreciate the role that binaural processing can play in reducing error
rates.

3.1 Basic Speech-Recognition Principles

Automatic speech recognition is essentially a special class of pattern classification
algorithms, that guess which of a number of possible “classes” of input is actually
present. All pattern classification systems operate on the same basic principles: an
initial analysis stage performs a physical measurement (of a sound pressure wave,
in our case) and transforms that measurement into a set of features, or numbers that
are believed to be most indicative of the classification task to be performed. These
features are typically a stochastic representation that depends on which input class is
present. A second decision-making component develops a hypothesis of which of the
possible inputs is most likely, based on the observed values of the features. Figure2
summarizes the major functional blocks of a generic ASR system with binaural pre-
processing for signal enhancement. While Fig. 2 depicts a binaural pre-processing
module that passes on to the ASR components a restored speech waveform, some
of the algorithms we describe produce a restored set of features directly. We briefly
discuss the components of the speech recognition system in this section and defer
our discussion of the numerous approaches to signal and feature enhancement based
on binaural processing to Sect. 4 below.

Feature Extraction

Features for pattern classification systems are generally selected with the goals of
being useful in distinguishing the classes to be identified, easy to compute, and not
very demanding in storage. With some exceptions, most speech recognition systems
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Fig. 2 Basic functional elements of a speech recognition system that includes binaural enhancement
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today extract features by first computing the short-time Fourier transform (STFT) of
the input signal (Allen and Rabiner 1977), typically windowing the incoming signal
by a succession ofHammingwindows of duration approximately 25ms, separated by
approximately 10 ms. A function related to the log of the magnitude of the spectrum
or its inverse transform, the real cepstrum, is subsequently computed in each of these
analysis frames. In principle, cepstral coefficients are useful because they are nearly
statistically independent of one another, and only a small number of them (about
12) are needed to characterize the envelope of the spectrum in each analysis frame.
In addition, the cepstral representation separates the effects of the vocal-tract filter
(which were believed to be most useful in the early days of the speech recognition)
from the effects of the periodic excitation produced by the vocal cords (which had
been believed not to be useful at that time).

Themost common representations used for feature vectors today are all motivated
by crude models of auditory processing. The earliest such representation, mel fre-
quency cepstral coefficients (MFCC features, Davis andMermelstein 1980),multiply
the energy spectrum extracted from each analysis frame by a series of triangularly-
shaped weighting functions with vertices spaced according to the Mel frequency
scale (Stevens et al. 1937) and then summing the product over frequency within
each weighting function. With 16-kHz sampling, about 40 Mel weighting functions
are typically used. The MFCC coefficients are obtained by computing the inverse
discrete cosine transform (DCT) of the summed products. A second set of popular
features are extracted using a process known as perceptual linear prediction (PLP
features, Hermansky 1990), which is based on a more detailed and accurate model
of the peripheral auditory system. A more recently-developed third set of features,
power-normalized cepstral coefficients (PNCC features, Kim and Stern 2016) are
more robust to certain types of additive noise and reverberation.

TheMFCC, PLP, or PNCC features are typically augmented by additional features
that represent the instantaneous power in each analysis frame, as “delta” and “delta–
delta” features that serve to represent crudely the first and second derivatives in the
power spectrum over time. The delta features are obtained by computing the differ-
ence between cepstral coefficients in frames after and before the nominal analysis
frame, and the delta-delta features are obtained by repeating this operation. Finally,
static effects of linear filtering to the signal are removed by applying either cep-
stral mean normalization (CMN), or relative spectral analysis (RASTA) processing
(Hermansky andMorgan 1994). CMN subtracts the mean of the cepstral coefficients
from each cepstral vector on a sentence-by-sentence basis while RASTA processing
passes the cepstral coefficients through a bandpass filter. Both RASTA and CMN
serve to emphasize temporal change in the cepstral coefficients and suppress slow
drift in their values over time.

Traditional HMM-GMM Decoding

The technologies for determining the most likely word sequence from a spoken
utterance have evolved greatly over the decades, and this section will discuss only the
most basic elements of speech recognition. From the early 1980s until very recently
the dominant speech recognition technology has been the hidden Markov model
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Fig. 3 The hidden Markov model for speech recognition for the word “sit.” See text for details

(HMM, e.g., Rabiner 1989; Rabiner and Juang 1993), and practical systems based on
HMMs remain in widespread use today. The HMM representation characterizes the
incoming speech waveform as a doubly stochastic process, as depicted in schematic
form in Fig. 3. First, the sequence of phonemes that are produced is characterized
as a set of five unobserved Markov states which presumably represent the various
configurations that the speech production mechanisms may take on and hence the
phonemes that are produced. As is the case for all Markov models, the transition
probabilities depend only on the current state that is being occupied. Each state
transition causes a feature vector to be emitted that is observable, with the probability
density of the components of the feature vector depending on the identity of the state
transition. Spectra representing a sequence of six observations are shown in thefigure.
The task of the decoder is to infer the identity of the unobserved state transitions (and
hence the sequence of phonemes) from the observed values of the features.

The technologies for implementing this model efficiently and accurately have
evolved greatly over decades, and a detailed description is well beyond the scope of
this chapter. Briefly, implementing anHMMrequires determining the probabilities of
the observations given themodel parameters, choosing themost likely state sequence
given the observations, and determining the model parameters that maximizes the
observation probabilities. Details of how to accomplish these tasks are described
in standard texts such as Rabiner and Juang (1993) and Gold et al. (2011), as well
as in many technical papers. It has been found that the performance of the system
depends more critically on the accuracy of the phonetic model (i.e., the probability
density function that describes the feature values given the state transitions) than on
the probabilities that characterize the state transitions. Gaussian mixture densities
are currently the form that is most commonly used for the phonetic models, in part
because the parameters of these densities can be estimated efficiently, typically using
a form of the expectation-maximation (EM) algorithm (e.g.,Dempster et al. 1977).
HMMs using Gaussian mixtures for the phonetic models are frequently referred to
as “HMM-GMM” systems.
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Speech Recognition Using Deep Learning

While the HMM-GMM paradigm has been the dominant speech recognition tech-
nology from the early 1980s through the mid-2000s, new approaches to speech
recognition based on deep learning are becoming more popular. The structures that
implement deep learning are frequently referred to as artificial neural networks or
computational neural networks. The general organization and function of computa-
tional neural networks was originally motivated by basic neural anatomy and physi-
ology, although the classifiers have evolved considerably over the years without any
necessary tie to neural processing by living beings.

While the basic approaches to pattern classification using computational neural
networks have been known for some time (e.g., Rosenblatt 1959; Lippmann 1987,
1989; Bourlard and Morgan 1994), these approaches have become more effective
and practical in recent years because of a better understanding of the capabilities of
the underlying mathematics, the widespread availability of much larger databases
for training, and much faster computing infrastructure, including the availability of
graphics processing units (GPUs), which are particularly well suited for many of the
core computations associated with neural networks.

Figure4 is a crude depiction of the simplest type of deep neural network (DNN)
known as the multilayer perceptron (MLP). The system consists of an input layer of
units, one or more “hidden layers,” and an output layer. Typically the units in a given
layer are a weighted linear combination of the values of the units of the previous
layer, with the values of the weights trained to minimize the mean square error of
the result, using a technique based on gradient descent known as back propagation
(e.g., Haykin 2018). In many cases DNN classifiers make use of observed values
of multiple feature sets (e.g., Mitra et al. 2017). In general, computational neural
networks have the advantage of being able to model probability density functions of
any form by learning their shape by observing large numbers of training examples.
They have the disadvantage of requiringmore training data than conventional HMM-
GMM systems, and they may not generalize as well as HMM-GMM-based systems.

Input Layer
(Features)

Hidden
Layer #2

Hidden
Layer #1

Hidden
Layer #3

Output
Layer

Fig. 4 Standard structure of a feedforward MLP. The network is considered to be “deep” if there
are two or more hidden layers
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While neural networks were initially used to produce better phonetic models in
a system that incorporated a traditional HMM for the decoding component (e.g.,
Hermansky et al. 2000), other architectures are becoming more popular in which
the entire end-to-end speech recognition process is performed using a chain of deep
neural networks (e.g., Miao and Metze 2017). Nevertheless, they are increasingly
popular because they provide consistently better acoustic-phonetic models than the
traditional Gaussian mixtures. The technologies of deep learning have undergone
explosive growth and development in recent years, and the reader is referred to
standard texts and tutorials such as Goodfellow et al. (2016) and Nielsen (2016) for
detailed explanations of the technology.

3.2 Signal Processing for Improved Robustness in ASR

We discuss briefly in this section some of the traditional approaches that have been
applied to signals to improve recognition accuracy in ASR systems. This field is vast,
and has been the object of very active research for decades. Excellent recent reviews
of a variety of techniques may be found in Virtanen et al. (2012). In this section we
focus on basic feature enhancement techniques, missing-feature approaches, and the
uses of multiple microphones.

Feature-Based Compensation for Noise and Filtering

Many successful approaches to robustness in ASR are direct descendants of
approaches that were first proposed to enhance speech for human listeners. For
example, spectral subtraction (Boll 1979), reduces the effects of additive noise by
estimating the magnitude of the noise spectrum and subtracting it on a frame-by-
frame basis from the spectrum of the signal, reconstructing the time-domain signal
with the original unmodified phase. This approach was the basis of dozens if not hun-
dreds of subsequent noise-mitigation algorithms. Stockham et al. (1975) proposed
the use of homomorphic deconvolution to mitigate the effects of linear filtering by,
in effect, subtracting the log magnitude spectrum (or its inverse transform, the real
cepstrum) of an estimate of the sample response of the unknown linear filter. A sim-
plified version of this approach is the basis for the cepstral mean normalization that
is widely used in ASR systems today.

Joint compensation for the effects of noise and filtering is complicated by the fact
that they combine nonlinearly: noise is additive in the time and frequency domains
while the effects of filtering are additive in the log spectral and cepstral domains. One
particularly successful approach has been the vector Taylor series (VTS) algorithm
(Moreno et al. 1996), which models the degraded speech as clean speech passed
through an unknown linear filter and subjected to unknown additive noise. The algo-
rithm estimates the parameter values that characterize the filtering and noise in a
fashion that maximizes the probability of the observations. A recent review of VTS
and a number of other techniques motivated by it may be found in Droppo (2013).
Algorithms like VTS can provide good improvements to recognition accuracy when
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the statistics characterizing the noise and filtering are quasi-stationary while param-
eters are being estimated, but they are less effective when disturbances are more
transitory as in the case of background music or a single interfering speaker. The use
of missing-feature approaches as described below has been more effective for these
signals.

Computational Auditory Scene Analysis and Missing-Feature Approaches

Modern missing-feature approaches to robust recognition are inspired by Bregman’s
seminal work (Bregman 1990) in auditory scene analysis. Bregman examined the
cues that people appear to use in order to segregate and cluster the various components
that belong to individual sound sources while perceiving multiple sources that are
presented simultaneously. Cues that have proved to be useful include commonalities
in onset, amplitude modulation, frequency modulation, and source location, along
with harmonicity of components, among others.

Computational auditory scene analysis (CASA) refers to a number of approaches
that attempt to emulate the perceptual segregation of sound sources using compu-
tational techniques (e.g., Brown and Cooke 1994; Cooke and Ellis 2001; Wang and
Brown 2006). The implementation of CASA to isolate the desired signal for an ASR
system typically begins by determiningwhich components of the incoming signal are
dominated by the target signal and hence not distorted or “missing.” InASR systems,
the initial representation is typically in the form of a spectro-temporal display such as
a spectrogram. Consideration of only those elements that are relevant or undistorted
can be thought of as a multiplication of the components of the spectrogram by a
“binary mask” (if “yes-no” decisions are made concerning the validity of a particu-
lar spectro-temporal component) or by a “ratio mask” (if probabilistic decisions are
made). Once a mask is developed, speech recognition is performed by considering
only the subset of components that are considered to be “present” (e.g., Cooke et al.
2001), or by inferring the values of the “missing” features (e.g., Raj et al. 2004) and
performing recognition using the reconstructed feature set.

While signal separation and subsequent ASR usingCASA techniques can be quite
effective if the binary or ratio mask is estimated correctly (e.g., Cooke et al. 2001;
Raj et al. 2004; Raj and Stern 2005), estimating the mask correctly is frequently
quite difficult in practice, especially when little is known a priori about the nature
of the target speech and the various sources of degradation. One singular exception
to this difficulty in estimating the masks correctly arises when signals are separated
in space and the target location is known, as components can be relatively easily
separated using ITD-based and IID-based information. For this reason, separation
strategies motivated by binaural hearing have been quite popular over the years for
speech recognition systems that make use of two microphones.

Figure5 shows sample spectrograms of signals separated according to ITD in
anechoic and reverberant rooms using two microphones. The speech sources were
placed 2m from the microphones, and at an angle of ±30◦ from the perpendicular
bisector of a line connecting the microphones. The microphones were 4cm apart
and the room impulse response (RIR) simulation package McGovern (2004) was
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Fig. 5 Sample spectrograms of two speech signals separated according to ITD. The original signals
in the left column are clean speech, while the signals in the right column were convolved with a
simulated room impulse response with a reverberation time of 800 ms. The spectrograms represent
a the signal on the left side, b the signal on the right side, c the two signals combined, d the signal
on the left side separated from the combined signal according to ITD, e the separated signal on the
right side. The horizontal axis is time in s and the vertical axis is frequency in kHz

used to develop the simulated impulse responses of the room. The rows of the figure
depict, in order, spectrograms of the left speech source, the right speech source, the
two sources combined, the separated left source, and the separated right source. By
comparing the spectrograms in rows (a) and (d), and (b) and (e), it can be seen that
the separation is much more effective when the speech is not reverberated.
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Conventional Signal Processing Using Multiple Microphones

The benefit provided by any approach that attempts to improve ASR accuracy using
binaural approaches must be compared to the improvement produced by a similar
configuration of microphones using conventional techniques. These conventional
approaches, frequently referred to as beamforming algorithms, attempt to develop
a response that is most sensitive to signals coming from a particular “look direc-
tion” while either being less sensitive to sources from other directions or actively
nulling the responses to these other sources. Classical multi-microphone signal
processing techniques are highly developed and discussed in texts including Johnson
andDudgeon (1993) andVan Trees (2004). Recent results concerning the application
of multi-microphone techniques to ASR are summarized in Kumatani et al. (2012).

The simplest multi-microphone technique is delay-and-sum beamforming in
which the path length differences from the target source to the various microphones
are compensated for by time delays imposed by the system to ensure that the tar-
get signal components from the various microphones always arrives at the same
time to the system, creating constructive interference. Signal components from other
directions will combine constructively or destructively across the microphones, and
hence they would be reinforced to a lesser degree, on average. Because the actual
directional sensitivity depends on an interaction between the wavelength at a given
frequency, the directivity pattern for delay-and-sum beamforming varies with fre-
quency. Generally the width of the main lobe decreases as frequency increases, and
eventually “spatial aliasing” will occur when an interfering signal component arrives
at a frequency and azimuth such that the distance between the microphones becomes
greater than half a wavelength. These frequency effects can be mitigated by the use
of nested arrays with different element spacings (e.g., Flanagan et al. 1985) and
by the use of filter-and-sum beamforming techniques in which the fixed delays in
delay-and-sum beamforming are replaced by discrete-time linear filters which can
in principle impose different delays at different frequencies for each microphone.

Modern techniques such as theminimumvariancedistortionless response (MVDR)
method use minimum-mean-square estimation (MMSE) techniques that seek to
maintain a fixed frequency response in the look direction while at the same time
suppressing the response from the directions of arrival of the most powerful interfer-
ing sources (e.g., Van Trees 2004). The performance of these optimum linear signal
processing approaches to multi-microphone beamforming also degrades in rever-
berant environments because the phase incoherence imposed by the reverberance
causes the estimation of important statistics such as the auto- and cross-correlations
of the signals across the microphones to become much less accurate. McDonough
and others have achieved some success with the use of objective functions based on
negative entropy or kurtosis as the basis for optimizing the filter-coefficient values
(e.g., Kumatani et al. 2012). These statistics drive the coefficients of the arrays to pro-
duce output amplitude histograms that are “heavier” in the tails, which corresponds
to output that is more speech-like than the Gaussian densities that characterize sums
of multiple noise sources.



526 R. M. Stern and A. Menon

4 Binaural Technology in Automatic Speech Recognition

In this section we describe and discuss selected methods by which ASR accuracy
can be improved by signal-processing approaches that are motivated by binaural
processing. Most of the systems considered improve ASR accuracy by some sort
of selective reconstruction of the target signal using CASA-motivated techniques,
which use differing approaches to identify the subset of spectro-temporal components
in the input that are dominated to the greatest extent by the target signal. The most
common approach makes this determination by comparing measured ITDs and IIDs
for each spectro-temporal component to the values of these parameters that would
be observed from a source arriving from the putative target direction, as described
below in Sect. 4.2. A second approach is based on the value of the overall normalized
interaural cross-correlation, as spectro-temporal components with high interaural
cross-correlation are more likely to be dominated by a single coherent target signal,
as described in Sect. 4.4. A third approach implements a modification to the EC
model, in which the two inputs are equalized according to the nature of the target
signal, and then subtracted from one another, as described in Sect. 4.5. This causes
the spectro-temporal components that are dominated the most by the target signal to
change by the greatest amount.

In addition to the three methods above used to identify the most relevant spectro-
temporal components of the input, the systems proposed also differ in other ways
including the following.

• The extent to which a particular system is intended to provide a complete auditory
scene analysis, including identification, localization, and classification of multiple
sources versus simply providing useful enhancement of a degraded primary target
signal for improved speech recognition accuracy.

• Whether the location of the desired target is expected to be estimated by the system
or is simply assumed to be known a priori.

• Whether a particular system is designed to receive its input from two ears on a
human or manikin head rather than two (or more) microphones in the free field.
The use of a real or simulated head provides IIDs and the opportunity to use them
to disambiguate the information provided by ITD analysis. In contrast, systems
that do not include an artificial head are typically easier to implement, and the
absence of a head facilitates the use of more than two microphones.

• Whether a particular system works by reconstructing a continuous-time enhanced
speech waveform that is processed by the normal front end of an ASR system
or whether it simply produces enhanced features representing the input such as
cepstral coefficients and inputs these enhanced features directly into the ASR
system.

• The nature of the acoustical environment, including the presence or absence of dif-
fuse background noise, coherent interfering sound sources, and/or reverberation,
etc. within which a particular system is designed to operate.
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It is worth noting that researchers at the University of Sheffield and Ohio State
University, working in collaboration or independently, have provided the greatest
number of contributions to this field over the years, both in terms of fundamen-
tal principles and system development. Interesting contributions over many years
have also been provided by groups at the universities at Bochum and Oldenburg in
Germany, as well as a number of other locations around the world including our own
university.

The representative systems considered do not sort themselves into convenient
mutually-exclusive categories, so we somewhat arbitrarily have sorted our discus-
sion according to how the most relevant spectro-temporal target components are
identified, as discussed above. We begin with a brief summary of some of the earliest
attempts to apply binaural processing to improve ASR accuracy. We then summarize
the organization of representative systems based on extraction of ITD and IID infor-
mation using CASA principles. We conclude with a discussion of the use of onset
enhancement to ameliorate the effects of reverberation, the development of systems
based on interaural coherence, and approaches based on the EC model.

4.1 Early Approaches

Lyon (1984) proposed one of the first systems applying binaural-hearing principles,
using a computational model of auditory-nerve activity from two sources as an input
to a Jeffress-like network of coincidence-counting units. He suggested that this struc-
ture could be applied to multiple applications including ASR. While Lyon’s system
was not evaluated quantitatively because the ASR systems of the day were mathe-
matically primitive and computationally costly, he noted that this approach appeared
to provide a stable spectral representation for vowels as well as source separation
according to ITD.

Most evaluations of ASR with binaural processing in the early period consisted
of the concatenation of an existing binaural model with a speech recognition sys-
tem. For example, Bodden (1993) described an early CASA-based system, called
the Cocktail-Party-Processor (CPP) that had many of the elements of later systems,
implementing a structure suggested by Blauert (1980). The CPP included HRTFs
that introduced frequency-dependent ITDs and IIDs based on angle of arrival, a rela-
tively simple auditory-nerve model that included bandpass filtering, half-wave recti-
fication, lowpass filtering, and saturation of the rate of response. Binaural processing
in the CPP incorporated the Lindemann (1986a) model with contralateral inhibition,
which predicted certain precedence-effect phenomena and appropriate interactions
between ITD and IID, and the additional contributions of Gaik (1993), which devel-
oped lateralization information from ITDs and IIDs in a fashion that was cognizant
of the natural combinations of these interaural differences as observed in HRTFs. In
later work, Bodden and Anderson (1995) used a simple speech recognizer, the self-
organizing feature map (SOFM) of Kohonen (1989), and demonstrated improved
ASR accuracy for simple phonemes in the presence of spatially-separated noise,
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especially at lower SNRs. DeSimio et al. (1996) obtained similar results with a dif-
ferent auditory-nerve model (Kates 1991) and Shamma’s stereausis model (Shamma
et al. 1989) to characterize the binaural interaction.

4.2 Systems Based on Direct Extraction of ITD and IID
Information

By far the most common application of binaural principles to ASR is through sys-
tems that implement computational auditory scene analysis using direct extraction
of ITDs and IIDs in some fashion, as depicted in Fig. 6. In general, these systems
attempt to estimate the extent to which each spectro-temporal component of the
input is dominated by the target signal based on ITDs and IIDs that are extracted.
We summarize in this section a few of the methods that are used to implement each
component in representative systems.

Extraction of Natural Interaural Differences

As noted above, a number of the systems develop their hypotheses from naturally-
extracted interaural differences (e.g., Roman et al. 2003; Palomäki et al. 2004;
Srinivasan et al. 2006; Brown et al. 2006; Harding et al. 2006;May et al. 2011, 2012).
While these systems typically made use of measured HRTFs (e.g., Gardner and
Martin 1994) obtained through the use of the KEMARmanikin (Burkhard and Sachs
1975), they could also have been obtained in principle using smallmicrophones in the
ear canals (e.g.,Wightman andKistler 1989a). Because the relationship between ITD
and the azimuth of the source location in HRTFs depends weakly on frequency, some
systems (e.g., Roman et al. 2003; Palomäki et al. 2004;May et al. 2011) incorporated
an explicit mapping table that converts ITD into putative arrival angle in a manner
that is consistent across all frequencies. The IIDs show significant dependencies
on both azimuth and frequency. For the most part, the various sound sources were
assumed to be at the same elevation as the microphones.

Peripheral
Analysis

Peripheral 
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Mask 
Estimation

Input
Signals

Source
Location

Enhanced
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 or Features

ITD
Estimation

IID 
Estimation

Fig. 6 Functional blocks of a CASA-based system that extracts ITDs and IIDs directly. The input
may be from free-field microphones or through a real or simulated head. The source location may
be known or estimated
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Other systems (e.g., Aarabi and Shi 2004; Park and Stern 2009; Kim et al. 2009)
work from free-field input without an artificial head or HRTFs and, consequently,
the masks that are produced cannot make use of IID information.

Peripheral Auditory Processing

All binaural processing systems incorporate some abstraction of the frequency-
dependent processing imparted by the peripheral auditory system. Themost common
approach (e.g., Roman et al. 2003; Palomäki et al. 2004; Harding et al. 2006) is to
use a bank of 40–128 Gammatone filters (Patterson et al. 1988), followed by half-
wave rectification, lowpass filtering (which provides envelope extraction at higher
frequencies), and in some cases nonlinear compression of the resulting signal. Other
systems (e.g., Kim et al. 2009) simply compute the short-time Fourier transforms
(STFTs) of the two input signals, from which ITDs and IIDs can be inferred by
comparison of the magnitudes and phases for each spectro-temporal component.

Estimation of ITDs and IIDs

There aremultiple ways of extracting ITDs from the results of the peripheral process-
ing. The most common approach is to compute a variant of the normalized interaural
cross-correlation function at each frequency:

R[m, k] =
∑N−1

n=0 xL ,k[n]xR,k[n − m]
√∑N−1

n=0 x2L ,k[n]
√∑N−1

n=0 x2R,k[n − m]

where R[m, k] is the normalized interaural cross-correlation as a function of lag m
and frequency index k, and xL ,k[n] and xR,k[n] are the left and right signals, respec-
tively, after peripheral processing at frequency k. The interaural cross-covariance
function is a very similar statistic in which the means are subtracted from xL ,k[n]
and xR,k[n] before further computation. In both cases, the ITD is typically inferred
by searching for the value of m that maximizes R[m, k] in each frequency channel
(e.g., Roman et al. 2003; Brown et al. 2006; Harding et al. 2006; May et al. 2011,
2012). Because this maximummay not occur at an integer value ofm, polynomial or
exponential interpolation is typically performed in the region of the maximum, with
the true maximum value determined either analytically or via a grid search. In some
systems (e.g., Roman et al. 2003; Palomäki et al. 2004) the cross-correlation function
is summed over frequency before the maximum is obtained. This is useful because
it reduces ambiguity in identifying the true ITD of a source, particularly for larger
ITDs and higher frequencies by emphasizing ITDs that are consistent over frequency
as in human auditory processing (Stern et al. 1988). In addition, the cross-correlation
function may be “skeletonized” by replacing the normalized cross-correlation func-
tion by Gaussians located at the values ofm that maximize R[m, k] at each frequency
(e.g., Roman et al. 2003; Palomäki et al. 2004). This can be helpful in interpreting
the responses to binaural signals that include multiple sound sources.

Systems that use STFTs as the initial stage of processing can infer ITD by calcu-
lating the phase of the product of one STFT multiplied by the complex conjugate of
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the other (which represents the instantaneous cross-power-spectral density function),
and dividing the phase by frequency to convert to ITD (e.g., Aarabi and Shi 2004;
Srinivasan et al. 2006; Kim et al. 2009). ITDs can also be estimated by comparing
the times at which zero crossings in the signals after peripheral processing appear
(Park and Stern 2009).

In contrast, IID estimation is relatively straightforward, and is almost always
estimated as the ratio of signal energies, expressed in decibels for each spectro-
temporal component of the two inputs.

Mask Estimation

As noted above, the masks developed by the systems are intended to represent the
extent to which a given spectro-temporal component is dominated by the target
component rather than the various interfering sources or maskers in the input. The
target location is either estimated by the system in initial processing (e.g., Roman
et al. 2003; Palomäki et al. 2004;May et al. 2011, 2012), or by assuming a location for
the target (typically directly to the front of a head or at zero ITD for twomicrophones).
The masks are obtained by evaluating (either explicitly or implicitly) the probability
of the observed ITDs and IIDs given the putative location of the sound source.
For many systems these probabilities are estimated from training data, although the
distributions of ITDs and especially IIDs are affected by the amount of reverberation
in the environment. As noted above, the masks are either binary masks (i.e. equal to
zero or one for each spectro-temporal component) or ratio masks (which typically
take on values equal to a real number between zero and one). Because the peripheral
filters are narrowband, the maxima of the interaural cross-correlation function repeat
periodically along the lag axis, and the IIDs provide information that is helpful in
disambiguating the cross-correlation patterns.

Another much more simple method approach is to compare the ITD estimated
for each spectro-temporal component to the ITD associated with the target location,
and to assign a value of one to those components that are sufficiently “close” to the
the target ITD using a binary or probabilistic decision (e.g., Kim et al., 2009).

System Evaluation and Results

Once the mask that identifies the undistorted target components is developed, some
systems use bounded marginalization (Cooke et al. 2001) to recognize the target
speech based on the components that are most likely to be informative (e.g., Roman
et al. 2003; Palomäki et al. 2004; May et al. 2012). Other systems (e.g., Kim et al.
2009, 2010, 2012) reconstruct the waveform from a subset of spectro-temporal
components that are deemed to be useful.

The motivations and goals of the systems considered in this subsection vary
widely, making it difficult to compare them (along with other similar systems)
directly. Nevertheless, a few generalizations can be made:

• Objective speech recognition and speaker identification accuracy obtained follow
trends that would normally be expected: recognition accuracy degrades as SNR
decreases, as the spatial separation between the target speaker and interfering
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sources decreases, and as the amount of reverberation increases. Recognition or
identification accuracy is invariably substantially better with binaural processing
compared to baseline systems that use only a single microphone.

• In situations where they can be compared directly, the use of ratio masks tends
to provide greater recognition accuracy than the use of binary masks. If binary
masks are used, we have found in our ownwork that accuracy is improvedwhen the
binarymasks are smoothed over time and over frequency. The temporal smoothing
can be accomplished by simply averaging the mask values at a given frequency
over a few adjacent frames. We have used “channel weighting” to accomplish
the frequency smoothing, which is in essence a multiplication of the Gammatone
frequency response representing each channel by the corresponding value of the
binary masks and summing over frequency (e.g., Kim et al. 2009).

• In the single case where zero-crossing-based ITD extraction was compared to
ITDs by searching for the maximum of the interaural cross-correlation function,
the zero-crossing approach provided better results (Park and Stern 2009).

• Source localization strategies in systems such as those by Roman et al. (2003),
Palomäki et al. (2004), and May et al. (2011) appear to be effective, and their
performance with multiple and moving sources should improve over time.

4.3 Robustness to Reverberation Using Onset Emphasis

As noted in Sect. 2.1, many classic psychoacoustical results indicate that the auditory
localization mechanism places greater emphasis on the first-arriving components of
a binaural signal (e.g., Wallach et al. 1949; Blauert 1997; Litovsky et al. 1999), a
phenomenon known as the “precedence effect.” More recent studies (e.g., Stecker
et al. 2013) confirm that the lateralization of brief steady-state sounds such as tones
and periodic click trains based on ITDs and IIDs appears to be strongly dominated by
binaural cues contained in the initial onset portion of the sounds. In addition, Dietz
et al. (2013) have shown that the fine-structure ITD in slow sinusoidal amplitude
modulation appears to be sampled briefly during the rising-envelope phases of each
modulation cycle, and is not accessed continuously over the duration of the sound.

The precedence effect is clearly valuable in maintaining a constant image location
in reverberant environments when the instantaneous ITDs and IIDs produced by a
sound source are likely to vary with time (Zurek et al. 2004). In addition, Blauert
(1983) and others have noted that the precedence effect is likely to play an important
role in increasing speech intelligibility in reverberant environments. While prece-
dence has historically been assumed to be a binaural phenomenon (e.g., Lindemann
1986a), it could also be mediated by monaural factors such as an enhancement of
the onsets of envelopes of the auditory response to sound on a channel-by-channel
basis at each ear (Hartung and Trahiotis 2001).

Motivated by the potential value of onset enhancement for improved recognition
accuracy in reverberation, several research groups have developed various meth-
ods of enhancing envelope onsets for improved recognition accuracy in reverberant
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Fig. 7 Comparison of ASR accuracy obtained using the PDCW algorithm (which separates signals
according to ITD) and the SSF algorithm (which enhances onsets of signal components) in the
presence of additive noise and reverberation, plotted as a function of SNR. See text for further
details

environments. Palomäki et al. (2004) described an early comprehensiveCASA-based
binaural model that included an explicit mechanism for onset enhancement for prece-
dence, along with other components including HRTFs, skeletonization of the cross-
correlation representation, and the use of IIDs at higher frequencies as a consistency
check on the estimated binary mask. More recent algorithms that incorporate onset
enhancement include the algorithm known as Suppression of Slowly-varying com-
ponents and the Falling edge of the power envelope (SSF) (Kim and Stern 2010), the
temporal enhancement component of the STM algorithm (Kim et al. 2011), and the
SHARP algorithm (Cho et al. 2016). All of these approaches incorporate nonlinear
processing of the energy in the spectral envelopes to enhance transients, and they
can be considered to be improved versions of the envelope enhancement approach
suggested by Martin (1997) that had been used by Palomäki et al. (2004) and others.
The temporal suppression components in Power-Normalized Cepstral Coefficients
(PNCC, Kim and Stern 2016) provide similar benefit in reverberation, but to a more
limited extent.

Figure7 compares selected sample recognition accuracies for the DARPA
Resource Managment (RM1) task using implementations at Carnegie Mellon Uni-
versity of two of the approaches described above. The phase-difference channel
weighting algorithm (PDCW) (Kim et al. 2009) improves ASR accuracy by separat-
ing the target speech signal from the interfering speaker according to ITD, as in other
algorithms discussed in Sect. 4.2. The SSF algorithm (Kim and Stern 2010) improves
ASR accuracy by enhancing the onsets and suppressing the steady-state portions of
subband components of the incoming signals, as described in this section. The data
in Fig. 7 consist of a target signal directly in front of a pair of microphones in the
presence of an interfering speech source at an angle of 30◦ as well as an uncorre-
lated broadband noise source. The figure plots recognition accuracy obtained using
delay-and-sum beamforming, PDCW, SSF, and the combination of PDCW and SSF.
Results are plotted as a function of SNR for simulated reverberation times of 0 (left
panel) and 500 ms (right panel). We note that the PDCW and SSF algorithms pro-
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vide complementary benefits in the presence of noise and reverberation: PDCW is
highly effective, even in the presence of substantial noise if there is no reverberation
present, but it provides no benefit when substantial reverberation is present in the
acoustical environment. SSF, on the other hand, provides substantial benefit in the
presence of reverberation for the reverberation depicted, but it is ineffective in the
presence of substantial additive noise. Remediation for the effects of noise is more
effective than for reverberation, at least for these two algorithms. We note that the
results in Fig. 7 were obtained using an HMM-GMM system that was trained on
clean speech. Training in multiple acoustical environments and/or using DNNs for
decoding reduces the magnitude of the differences of these results.

These results suggest that the choice of which robustness approach is best in a
given situation will depend on the spatial separation of target and masker compo-
nents as well as the degree of reverberation in a given acoustical environment. The
combination of SSF and PDCW almost always provides better performance than is
observed with either algorithm by itself. While we used data from our own group for
convenience in these comparisons, we believe that the use of information from ITDs
(and more generally IIDs as well) to provide robustness against spatially-separated
interfering sources and the use of onset enhancement to provide robustness against
reverberation are generally effective across a wide range of conditions.

Pilot results from our laboratory indicate that better recognition accuracy is
obtained when precedence-based onset emphasis is imposed on the input signals
monaurally before binaural interaction, rather than after the binaural interaction.

4.4 Robustness to Reverberation Based on Interaural
Coherence

A number of researchers have developed methods to enhance a target signal by
giving greater weight to spectro-temporal components that are more “coherent”
from microphone to microphone. The original motivation for much of this work was
the seminal paper byAllen et al. (1977)who proposed that the effects of reverberation
can be removed froma signal by performing a subband analysis, compensating for the
ITDs observed in each frequency band, and applying a weighting in each frequency
channel that is proportional to the normalized cross-correlation observed in each
frequency band.

In subsequent work, Faller and Merimaa (2004) proposed that the salience of
a spectro-temporal component representing a particular ITD and frequency can be
characterized by a running normalized interaural cross-correlation function similar to
the equation in Sect. 4.2 but updated using a moving exponential window in running
time. The value of this statistic at the lag that produces the maximum interaural
cross-correlation can be taken as a measure of the interaural coherence as a function
of frequency.
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In recent years a number of researchers have developed various models that
predict the coherent-to-diffuse energy ratio (CDR) or the closely-related direct-to-
reverberant energy ratio (DRR) in a given environment (e.g., Jeub et al. 2009, 2010,
2011a; Thiergart et al. 2012; Westermann et al. 2013; Zheng et al. 2015). In general,
the various authors use a measure similar to that proposed by Faller and Merimaa to
estimate the coherent energy of the target speech and a model of the room acoustics
to estimate the energy in the reverberant field. The papers differ in the assumptions
that they make about the acoustics of the room, and about the geometry of the head.
As a representative example we summarize the two-stage processing proposed by
Jeub et al. (2010), (2011b) for reducing the impact of reverberation. In the first stage,
steering delays are imposed in the input at each frequency to compensate for differ-
ences in the path lengths from the desired source to the various microphones, and
spectral subtraction is performed to suppress the effects of late reverberation. In the
second stage, the residual reverberation is attenuated by a dual-channel Wiener filter
derived from the coherence of the reverberant field, considering the effects of head
shadowing, with the objective being suppression of the spectro-temporal components
for which there is little correlation.

The systems described in the studies cited above had all been evaluated in terms
of subjective or objective measures of speech quality rather than speech recognition
accuracy.

We recently completed a series of experiments (Menon 2018) in which we com-
pared the speech recognition accuracy obtained using a local implementation of
the second stage of the algorithm of Jeub et al. (2011b), which enhances binaural
signals based on their CDR, to the performance of the SSF algorithm described in
Sect. 4.3. We refer to our implementation of spectro-temporal weighting based on
CDR as CDRW (for Coherent-to-Diffuse-Ratio Weighting). Some of these results
are summarized in Fig. 8, which uses similar signal sets and processing as in the data
depicted in Fig. 7, except that the acoustical models used to train the ASR system
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Fig. 8 Comparison of ASR accuracy obtained using the CDRW algorithm (which emphasizes
signal components based on their interaural coherence) and the SSF algorithm (which enhances
onsets of signal components) in the presence of additive noise and reverberation, plotted as a function
of SNR. Signal-to-noise ratios are 10 dB (left panel) and 20 dB (right panel). See text for further
details
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were obtained using deep neural networks (DNNs).We note that both the CDRWand
SSF algorithms are individually effective in reducing error rate in reverberant envi-
ronments in the presence of an interfering speaker, and that SSF becomesmore useful
as the reverberation time increases. Moreover, the impacts of the two approaches are
complementary in that best results are obtained when the two algorithms are used in
combination.

4.5 EC-Based Processing

The Equalization-Cancellation (EC)model of Durlach and colleagues (e.g., Durlach
1963, 1972) was summarized briefly in Sect. 2.2. In developing predictions for bin-
aural masking experiments, the ECmodel typically assumes that the auditory system
attempts to “equalize” the masker components to the two ears by inserting ITDs and
IIDs that compensate for the corresponding interaural differences that are present
in the signals, and then “cancel” the masker by subtracting the signals to the two
ears after equalization, leaving the target more detectable. Various investigators have
proposed extensions to EC processing to accommodate the rapidly-varying fluctua-
tions in overall ITD and IID imposed by speech-like maskers and have demonstrated
that this type of processing can predict speech intelligibility (e.g., Beutelmann and
Brand 2006; Beutelmann et al. 2010; Wan et al. 2010, 2014).

The current applications of EC-based processing to improve speech recognition
accuracy differ from the traditional application of the EC model to predict binaural
detection thresholds in that the equalization and cancellation operations are applied
to the target signal rather than themasking components. This is sensible both because
the SNRs tend to be greater in ASR applications than in speech threshold measure-
ments, and because in practical applications there tends to bemore useful information
available a priori about the nature of the target speech than about the nature of the
background noise and interfering signals. In the first application of this approach,
Roman et al. (2006) employed an adaptive filter to cancel the dominant correlated
signals in the two microphones, which are presumed to represent the coherent target
signal. A binary mask is developed by selecting those spectro-temporal components
that are the most affected by the cancellation, which are presumed to be the com-
ponents most dominated by the target speech. This approach provided better ASR
results for reverberated speech in the presence of multiple maskers than several other
types of fixed and adaptive beamformers. Brown and Palomäki (2011) described a
more sophisticated system that determines the ITD that provides maximum signal
cancellation, cancels the signals to the two mics using that ITD, and again uses
the absolute difference between the cancelled and uncancelled signal as an indica-
tor of the extent to which a spectro-temporal component is dominated by the target
speech. A complete signal was reconstructed using anASR system based on bounded
marginalization of the features (Cooke et al. 2001), although only SRT results were
provided in the paper. Mi and Colburn (2016), Mi et al. (2017), and Cantu (2018),
among others, have developedmore recent systems that enhance speech intelligibility
in the presence of interfering sources based on EC principles.
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5 Binaural Processing Using Deep Learning

As we noted in Sect. 3.1, systems based on deep learning techniques are rapidly
superseding conventional HMM-GMM ASR systems over the last decade, in part
because of the superior ability of deep learning approaches to develop more general
acoustic models. Most of the major current techniques that enable ASR using DNNs
are reviewed in Hinton et al. (2012) as well as in the more recent book edited by
Watanabe et al. (2017), among other resources.

Similarly, there has been great interest in the use of deep neural networks (DNNs)
to perform the classifications needed to develop the binary or ratio masks to enable
signal separation based on CASA principles. These approaches are reviewed com-
prehensively by Wang and Chen (2018), which considers (among other things) the
type of mask to be employed, the choice of “training target” that is optimized in
the process of training the mask classifier, the input features, the structure of the
DNN used for the separation, and the methods by which the signals are separated
and subsequently reconstructed.

The first system to use DNNs to separate binaural signals based on interaural
differences was described by Jiang et al. (2014) and has components that are found
in a number of similar systems. The system includes HRTFs from the KEMAR
manikin, and gammatone-frequency cepstral coefficient features (GFCCs, Shao and
Wang 2008), which include 64 gammatone filters whose outputs are half-wave rec-
tified and passed through square-root compression. ITDs are estimated using both
a complete representation of the normalized cross-covariance function and a sin-
gle number indicating the estimated correlation lag with maximum magnitude; IID
is estimated from the subband energy ratios. Monaural GFCC features were also
employed in the mask classification. A mask classifier was developed for each sub-
band, using DNNs with two hidden layers. To avoid convergence and generalization
issues with MLPs, the system was pre-trained using a restricted Boltzmann machine
(RBM) (Wang and Wang 2013). The performance of this DNN-based CASA sys-
tem was compared to that of the contemporary source-separation systems DUET
(Rickard 2007) and MESSL (Mandel et al. 2010), as well as systems proposed by
Roman et al. (2003) and Woodruff and Wang (2013). Compared to the other sys-
tems considered, The DNN-based CASA system of Jiang et al. (2014) was found
to produce substantially better approximations to the ideal binary mask that would
separate the sources correctly. This system also provided improved output SNR in
speech enhancement tasks. The use of the full normalized cross-correlation function
(as opposed to a single numerical estimate of ITD), and with the direct inclusion of
monaural features into the mask-classification process, were found to be valuable
contributors to best performance. The system maintained good accuracy, and gener-
alized to test conditions that were not included in the training for a variety of types
of interfering sources and reverberant environments.

Other approaches using DNNs have been suggested as well. For example, Araki
et al. (2015) have described the use of a denoising auto-encoder (DAE), which is
trained to convert a degraded representation of a speech signal into a clean version
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of it. The DAE is typically structured in a “bottleneck” configuration, with at least
one hidden layer that is smaller in dimensionality than the input and output layers.
Estimation of a ratio mask was based on information at each frequency that included
IID, ITD (as estimated from phase differences from the two inputs), and an enhanced
signal was reconstructed by filtering the input using the mask that was learned by the
DAE. Lowest error rates for keyword recognition in the PASCAL CHiME Speech
Separation Challenge were obtained when the DNNwas trained using a combination
of monaural information and a location-based mask, although IID information was
not useful in this particular study. Fan et al. (2016) described a similar system that uses
a DNN with RBM-based pre-training to develop a binary mask using features that
represented monaural information and IID. They observed better enhanced speech
intelligibility when IIDs were extracted on a subband basis, but this system did not
make use of ITD information.

Two more sophisticated binaural-based systems that separate speech using DNNs
were described by Yu et al. (2016) and by Zhang and Wang (2017). The system of
Yu et al. estimated ITD and IID by comparing the magnitudes and phases of the
STFT components from the two microphones, along with “mixing vectors” that are
obtained by combining the two monaural STFT values for each spectro-temporal
component. The DNNs used to estimate the mask were in the form of sparse autoen-
coders, which were initially trained in unsupervised fashion and later stacked to esti-
mate the probability that each component belongs to one of several possible source
directions. The system of Zhang and Wang uses both spectral and spatial features,
with the spectral features obtained from the output of an MVDR beamformer with a
known target location. The spatial features include ITDs represented by the complete
normalized cross-correlation function along with its estimated maximum and IIDs
calculated energy ratios in each frequency band. The two systems provided dramatic
improvements in SNR and/or speech intelligibility for speech enhancement tasks.

The representative examples above provide merely a superficial characterization
of the ever-growing body of work devoted to the development of CASA systems
usingDNNs that aremotivated by binaural processing to improve speech-recognition
accuracy. It is clear that the use of DNNs to develop the masks for speech separation
systems can provide sharply improved performance compared to conventional clas-
sification techniques. This is particularly valuable because determining the spectro-
temporal components of a complex input that most clearly represent the target is
known to be extremely difficult, even using binaural ITD and IID information. The
use of DNNs to segregate and enhance the desired target also provides impressive
improvements to source-localization accuracy, and to speech intelligibility, both for
normal-hearing and hearing-impaired listeners. Nevertheless, this area of research is
still in its infancy. For example, there is not yet a clear sense of what type of DNN
architecture is best suited formask estimation, nor is there yet a clear understanding of
which monaural and binaural features are the best inputs to the DNN. Furthermore,
most of the systems developed have been evaluated only in terms of measures of
speech intelligibility or statistics for speech enhancement such as putative improve-
ment in SNR. So far there have been relatively few applications of these approaches
to objective tasks such as speech recognition or speaker verification. Assuming that
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the most effective ASR or verification systems use a DNN recognizer, it is not yet
clear what is the best architecture for the purpose, nor the extent to which the form
of the recognizer should be modified to accommodate missing-feature input, nor the
extent to which the complete mask-estimation/recognizer-system architecture could
be made more efficient or more effective by merging the two systems.

6 Summary

We have described a number of methods by which the principles of binaural pro-
cessing can be exploited to provide substantial improvements in automatic speech
recognition accuracy, particularly when the target speech and interfering sources are
spatially separated and the degree of reverberation is moderate. In general, most of
these approaches implement aspects of computational auditory scene analysis, using
one of four different approaches to determine the mask which identifies the spectro-
temporal components that are believed to be dominated by the target signal: direct
extraction of ITDs and IIDs, onset emphasis for reverberation, exploitation of the
coherent-to-diffuse ratio or related statistics, and exploitation of principles based on
the EC model. This is a particularly exciting time to be working in the application of
binaural technology to automatic speech recognition because our rapidly-advancing
understanding of how to develop classification techniques based on the principles
of deep learning is likely to enable the realization of systems that serve their users
increasingly effectively in cluttered and reverberant acoustical environments.
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Modeling Binaural Speech
Understanding in Complex Situations

Mathieu Lavandier and Virginia Best

Abstract This chapter reviews binaural models available to predict speech intelli-
gibility for different kinds of interference and in the presence of reverberation. A
particular effort is made to quantify their performances and to highlight the a priori
knowledge they require in order to make a prediction. In addition, cognitive factors
that are not included in current models are considered. The lack of these factors
may limit the ability of current models to predict speech understanding in real-world
listening situations fully.

1 Introduction

In order to understand speech in a noisy environment orwhenmany people are talking
at the same time, a listener must hear out the target speech from the background noise
and segregate the target talker from competing talkers. This challenging task becomes
even more complicated in built environments, where the auditory system also has to
cope with the effects of reverberation.

The following section reviews some behavioral data that describe the masking of
speech in listeners with normal hearing, cues that can alleviate masking, and some
relevant effects of reverberation. Then an overview of several models that have been
proposed to predict speech understanding in complex binaural listening situations
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is given. One of the main factors determining speech intelligibility in noise is the
Signal-to-Noise Ratio (SNR) at which sounds are presented to the listener. The bin-
aural models presented below fall under the broad categories of SNR-based models,
modulation-based models, correlation-based models, and segregation-based models.
Finally, some issues with the practical application of these models are discussed, and
several cognitive factors are considered that are currently unaccounted for.

2 Overview of Relevant Behavioral Data

2.1 Masking of Speech

Several distinct kinds of interference can degrade speech intelligibility in situations
containing competing sounds. Energetic Masking (EM) describes interference that
occurs when the competing sounds overlap1 acoustically with the target and render it
inaudible. EM is typically studied using broadband maskers that exert their masking
effect relatively uniformly across time and frequency. Many acoustical cues can
reduce the EM caused by a competing sound, as described in a recent review chapter
by Culling and Stone (2017). For example, modulations in the temporal envelope of
a noise masker can reduce its effectiveness by providing improvements in SNR in
moments when the masker envelope is low (Bronkhorst and Plomp 1992; Festen and
Plomp 1990). This ability to exploit temporal fluctuations in the level of the masker
is called dip listening, listening in the gaps, or glimpsing (Cooke 2006). In addition,
differences in the source location or harmonic structure of competing sounds can
reduce EM.

Informational Masking (IM) describes interference that cannot be explained in
energetic terms and is thought to occur more centrally (see the recent review by Kidd
and Colburn 2017). In the context of speech intelligibility, it describes the additional
interference that occurs when similar competing talkers mask a speech target. IM
can refer to both difficulties in segregating speech mixtures (i.e., determining which
parts belong to the target) and difficulties in attending to the desired source in the
mixture (i.e., overcoming confusion or distraction).

1The term “overlap” is used loosely here, because both forward masking and upward spread of
masking are still considered a form of EM. Forward masking refers to the masking of a sound by
a preceding sound. In this case, there is no temporal overlap between the target and the competing
sound that can precede the target by up to 200 ms. Upward spread of masking refers to the masking
of a high-frequency sound by a low-frequency sound. In this case, there is no spectral overlap
between target and masker.
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2.2 Spatial Release from Masking

Possessing two ears is useful for understanding speech in noise: a competing sound
source causes less masking when it is separated spatially from the target speech
(Plomp 1976; Hawley et al. 2004). Spatial Release from Masking (SRM) is often
measured by subtracting Speech Reception Thresholds (SRTs) measured in a co-
located condition from SRTs measured in a separated condition.

For situations dominated by EM, SRM is thought to be based on two main mech-
anisms (Bronkhorst and Plomp 1988): better-ear listening and binaural unmasking.
Better-ear listening results from differences in the power level of the sound at the
two ears (Interaural Level Differences, ILDs). For sources located to one side of a
listener, the sound level is reduced at the far ear—the ear for which the head throws an
acoustic shadow—creating an ILD. Target and interferers at different locations often
produce different ILDs, so one ear will usually offer a better SNR than the other, and
listeners can simply use the information coming from whichever ear offers the better
SNR. Binaural unmasking relies on differences in the timing of the sound at the two
ears (Interaural Time Differences, ITDs). For lateral sources the sound arrives later
at the contralateral ear, because the sound must travel farther from the source to this
ear, thus generating an ITD between both ears. Differences in the ITDs generated by
the target and an interferer facilitate binaural unmasking, a condition in which the
central auditory nervous system can “cancel” sounds generated by the interferer to
some extent (Equalization-Cancellation (E-C) theory; Durlach 1972). This way the
E-C mechanism can improve the internal SNR. Binaural unmasking is also some-
times called binaural interaction or binaural squelch. Licklider (1948) showed that
speech intelligibility in noise diminishes when the interaural coherence of the noise
is reduced. This effect can be explained by the E-C theory, which predicts that a less
correlated masker cannot be fully equalized at the two ears, and hence cannot be
fully canceled, resulting in more masking and lower speech intelligibility.

Recent work suggests that in complex listening situations where the interference
comes from multiple fluctuating interferers, a more sophisticated definition of the
better-ear advantage might be required. For example, Schoenmaker et al. (2017)
suggested that the better ear can be defined based on the number of good target
“glimpses” available at each ear, and the better-ear advantage can be estimated based
on pooled local SNRs (i.e., calculated within relatively narrow frequency channels
and short time windows) rather than the global SNR. In a related study, Brungart
and Iyer (2012) suggested that the better ear could even be chosen on a moment-
by-moment basis, independently in each frequency channel. They showed that the
benefit estimated from such a mechanism could predict performance in binaural
mixtures with two symmetrically placed maskers. Later work, however, showed that
this approach underestimates the SRM that is observed for mixtures that include
many more maskers (Lingner et al. 2016) or maskers that cause a lot of IM (Glyde
et al. 2013a). It is not established yet whether there is a “true” binaural mechanism
that involves switching across ears to get the most relevant information (best SNRs),
or whether two monaural mechanisms provide the SNRs simultaneously at both



550 M. Lavandier and V. Best

ears. Culling and Mansell (2013) showed that the use of a better ear that alternated
between the ears was highly dependent on the switching rate, suggesting a rather
sluggish mechanism.

Differences in spatial location between a target and interferers can largely reduce
the effect of IM, but likely via different mechanisms than those driving spatial release
from EM. Spatial separation reduces the uncertainty about how to disentangle the
different sources in amixture and provides a substrate for selective attention. Perhaps
the best illustration of spatial release from IM comes from studies that have found
large amounts of SRM for stimuli inwhich there is no change in the EM. For example,
Arbogast et al. (2002) presented target and masker speech that were restricted to
mutually exclusive narrow frequency bands, thus minimizing the spectral overlap.
For these stimuli, an SRM of around 13dBwas observed. In a similar paradigm, Best
et al. (2011) presented target and masker sentences that were temporally interleaved
on a word-by-word basis, so that no simultaneous masking could occur. For these
stimuli, a robust SRM of around 30% points was observed. Freyman et al. (1999,
2001) used the precedence effect to create the illusion of spatial separation between
competing talkers and found a large SRM despite a small increase in EM. For natural
speech mixtures, the primary benefit of spatial separation could come from grouping
based on binaural cues, rather than binaural unmasking as described above for speech
in noise (Schoenmaker et al. 2016). Consistent with this notion, it appears that any
cue that provides the perception of spatial separation is sufficient to provide an SRM
for speech mixtures: ITDs and ILDs alone (Best et al. 2013; Glyde et al. 2013b),
and even monaural spectral cues associated with separation in distance and elevation
(Martin et al. 2012; Brungart and Simpson 2002).

2.3 Influence of Non-spatial Cues

In addition to spatial separation, there are several other (non-spatial) cues that can
provide a release from masking of speech. For example, differences in voice char-
acteristics between the competing talkers can greatly reduce masking and improve
target intelligibility. While voices can differ along many dimensions, much experi-
mental work has focused on differences in fundamental frequency (F0). Brokx and
Nooteboom (1982) used monotonized speech to demonstrate that intelligibility of a
target (F0=100Hz) systematically improved as the F0 of the masker was increased
from 100 to 200Hz.

The energetic component of this effect has been explored in experiments using
harmonic complex maskers. Speech intelligibility is improved when the difference
in F0 between the speech target and a harmonic masker is increased (Deroche and
Culling 2011). This benefit can be influenced greatly by F0 fluctuations across time,
which are found in intonated speech. Deroche and Culling (2011) observed a detri-
mental effect of sinusoidally modulating the F0 of a harmonic complex masker;
in contrast, the same F0 modulation applied to the target voice had no impact on
its intelligibility. For natural F0 fluctuations like those found in intonated speech,
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Leclère et al. (2017) showed that, when a harmonic complex masker was intonated,
the benefit of a difference in mean F0 between target and masker was abolished.
When only the target was intonated, this benefit was also largely reduced. However,
this probably had a very different cause: in addition to providing prosodic cues that
facilitate intelligibility regardless of masking (Binns and Culling 2007), natural F0
fluctuations in the target provided instantaneous F0 differences which cause a release
from masking that subsequently reduces the benefit of a difference in mean F0 (the
F0-segregation mechanism being potentially at ceiling). This suggests that for situa-
tions involving primarily EM, there is a differential role for natural F0 fluctuations:
those of the target voice are beneficial whereas those of the masker are detrimental.

Several mechanisms have been proposed for the release frommasking afforded by
differences in F0 (see review by Culling and Stone 2017). One mechanism involves
“spectral glimpsing” or the accessing of target information in between the resolved
harmonics of the masker (Deroche et al. 2014). Another mechanism invokes the
harmonic cancellation theory (de Cheveigné et al. 1995): The auditory system may
identify the harmonic structure of the masker in order to cancel it and improve the
SNR when the target and masker differ in F0.

Although difficult to isolate fromEMeffects, there are several indications that dif-
ferences in voice between competing talkers can also provide a release from IM. For
example, voice differences have been examined using tasks designed to maximize
IM, in which listeners must attend to one of two or more highly similar and synchro-
nized sentences. Substantial improvements in performance are observed when the
masker talkers are different talkers than the target talker, especially if they differ in
sex from the target (e.g., Brungart 2001; Brungart et al. 2001). Further evidence for
non-energetic influences of voice cues comes from studies that have reported particu-
lar benefits of familiar talkers in speech-on-speech tasks (e.g., Johnsrude et al. 2013;
Souza et al. 2013). Finally, it is worth noting that release from IM afforded by voice
cues (and other non-spatial cues) can interact with the release afforded by spatial
cues. For instance, there are examples in the literature showing that spatial separa-
tion provides a much-reduced benefit for different-sex or time-reversed maskers in
which IM is already greatly reduced (e.g., Best et al. 2013; Xia et al. 2015).

2.4 Effects of Reverberation

When communicating in noisy rooms, reverberation has several effects on speech
intelligibility. First, reverberation exerts a well-known temporal smearing effect on
the target speech, which occurs even in quiet. Having two ears may ameliorate
this smearing effect on target intelligibility. This binaural de-reverberation has been
shown to slightly improve intelligibility for reverberant speech in quiet (Moncur and
Dirks 1967; Nábĕlek and Robinson 1982) and in the presence of a noise interferer
(Lavandier and Culling 2008).

Sound reflections in rooms can also reduce the possibility for dip listening
(Bronkhorst and Plomp 1990; George et al. 2008; Beutelmann et al. 2010; Collin and
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Lavandier 2013). They will tend to reduce the envelope modulations of the masker,
thus increasing the masking by filling in the gaps through which the target could be
heard. Another effect of reverberation that influences speech intelligibility in noise
is the modification of source spectra at the ears of the listener by room “coloration”,
which results from both the constructive/destructive interferences of sound reflec-
tions and the frequency-dependent absorption characteristics of room materials. The
spectrum produced by each source at each ear depends on the ear and source posi-
tions within the room. Thus, coloration influences intelligibility by determining the
frequency-dependent SNR at the ears.

Several studies have shown that reverberation reduces SRM (Plomp 1976; Culling
et al. 2003; Beutelmann and Brand 2006). Sound reflections traveling around the
listener reduce ILDs, thus critically impairing better-ear listening (Plomp 1976).
Moreover, because these reflections are typically not identical at the two ears, they
impair binaural unmasking by decorrelating the interfering sound at the two ears
(Lavandier and Culling 2008). Room reflections also modify the signal ITDs, further
affecting binaural unmasking, which depends on the ITD differences between target
and interferer (Lavandier and Culling 2010). Although there are only limited data on
the issue, spatial release from IM appears to be more robust to reverberation than is
spatial release from EM (Kidd et al. 2005b). This probably reflects the fact that it is
the perception of spatial separation, rather than a specific acoustical cue, that drives
release from IM.

Reverberation can also be detrimental to the segregation of voices based on F0
(Culling et al. 1994, 2003; Deroche and Culling 2011). When a harmonic masker
has a fluctuating F0, then the delayed versions of the masker associated with room
reflections have a different F0 than the masker version carried by the direct sound.
As a result, reverberation makes the masker less harmonic and fills in the spectral
gaps in between its resolved frequency components. Room reflections should impair
both spectral glimpsing and harmonic cancellation.

3 Review of Binaural Intelligibility Models

Several models have been proposed to predict speech understanding in binaural
listening situations. They are presented below along with, whenever available, a
quantitative evaluation of their performances. This evaluation generally relies on the
correlation between measured and predicted SRTs (corr), the mean absolute pre-
diction error (absolute differences between measured and predicted SRTs averaged
across conditions/data points,mean err), the root-mean-square prediction error (rms
err) or the maximum absolute prediction error (max err).

The models are gathered here into broad categories, based on the information they
are considering in the signals (e.g., energy, modulations, glimpses) that is assumed to
be the key information regarding intelligibility, and based on their required inputs. For
example, the SNR-basedmodels will require the target/signal (S) and interferer/noise
(N) available separately at the ears in order to compute SNRs. The different model
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categories were developed rather independently from each other, as researchers tried
to evaluate the potential of each method/type of information. The different versions
of a model within each category were generally proposed to extend the scope of
the original model (e.g., the situations or types of interferer it can deal with), or to
resolve limitations of the previous model versions.

3.1 SNR-Based Models

The Speech Intelligibility Index (SII; ANSI S3.5 1997)—a successor of the
Articulation Index (AI; Kryter 1962)—is a widely used (monaural) indicator to
predict intelligibility in noise. It is calculated by computing the SNRs in different
frequency bands covering the speech spectrum (below 10kHz), applying a simple
weighting to these ratios to give more importance to the frequency bands that are the
most important for understanding speech (400–4400Hz), and summing the weighted
ratios across frequency. The SII can also take into account upward spread of masking
(see Footnote 1) and hearing threshold. It predicts the proportion of the total speech
information that is audible and available to the listener on a range between 0 and
1 (Rhebergen and Versfeld 2005). When considering intelligibility in the presence
of non-stationary noises, dip listening needs to be taken into account. To predict
the monaural advantage of dip listening, Rhebergen and Versfeld (2005) proposed a
short-time version of the SII. This extended SII decomposes the signals using short-
time frames, computes the SII within each frame, and averages the SII predictions
across frames. In order to consider the pauses/envelope modulations in the target
speech as relevant information for its intelligibility, the model considers the average
level of the target across time rather than its instantaneous level within short-time
frames. Computing the SNR with the actual speech waveform would mistakenly
lead to a reduced effective SNR within the target pauses; thus implicitly considering
these pauses as an absence of information. Peaks in the interferer signal induce an
increase of masking, whereas pauses induce a decrease of masking. Therefore, the
model needs to consider interfering energy as a function of time, and target speech
energy averaged across time—see also Collin and Lavandier (2013).

The approach of Rhebergen and Versfeld predicted monaural SRTs measured
with stationary noise, speech-modulated noises, and interrupted noise reasonably
well. The model’s agreement with data was taken to postulate that “average speech
intelligibility in fluctuating noise can be modeled by averaging the amount of speech
information across time” (Rhebergen and Versfeld 2005). The evaluation of model
performance in terms of prediction errors between measured and predicted SRTs
was not always explicit. For speech-modulated noises, the maximum prediction error
max err seemed to be at least 2.3dB, while prediction performance was worse for
sinusoidally-modulated noises (max err of 3.9dB). This monaural model was later
refined to take into account forward masking (Rhebergen et al. 2006). This addition
proved useful to better predict the effect of dip listening for noise maskers with large
silent gaps and abrupt offsets, but it did not improve prediction for sinusoidally-
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modulated noises without silent periods, and its relevance for maskers containing
speechmodulations is not completely clear. Overall, across nineteen noise conditions
including various interrupted, saw-tooth and sinusoidally-modulated noises, max
err was 2.9dB for the extension with forward masking (excluding a condition with
interrupted noise modulated at 4Hz, which increased max err to 12dB), while max
err was up to 10.7dB for the non-extended version of the model.

Computational SNR Models

One kind of binaural SNR-based model, referred to here as “computational”, uses a
direct implementation of anE-Cprocess as described byDurlach (1972). Beutelmann
and Brand (2006) developed a model predicting the intelligibility of a speech target
in the presence of a stationary-noise interferer in rooms (Fig. 1). Simulated stimuli
at the ears are first processed through a gammatone filterbank and an E-C stage, then
re-synthesized with the binaurally-enhanced SNR, and then the SII is computed to
evaluate intelligibility. For each frequency band of the filterbank, an E-C mechanism
is implemented: the left- and right-ear signals are attenuated and delayedwith respect
to each other (equalization), and then cancellation is simulated by subtracting the
right channel from the left channel. Different delays and attenuations are tested in
the equalization step, and those maximizing the effective SNR after cancellation
are selected. Cancellation is then applied to the signals before re-synthesis. If the
effective SNR after E-C processing is lower than the SNR at the left or right ear,
the signals at the ear having the best SNR are selected for re-synthesis and SII
calculation. Beutelmann and Brand (2006) obtained very good agreement between
model predictions and listening test data involving single noise interferers in three
different rooms (overall corr of 0.95, mean err of 1.6dB in anechoic conditions,
0.5dB in an office, 0.3dB in a cafeteria).

Beutelmann et al. (2010) applied the method of Rhebergen and Versfeld (2005)
to extend their binaural model to predict SRM for a non-stationary noise. The model
is then used within short-time frames before averaging the resulting predictions. The
latter were compared to SRTs measured with stationary, 1-voice modulated and 20-
voice modulated noises, simulated in four virtual rooms (one being anechoic) and
three configurations (varying the source distance to the listener and the azimuthal
separation of sources). Depending on the noise type, corr values ranging from 0.80 to
0.93 were obtained, with an overallmean err of 3dB. In another recent study (Ewert
et al. 2017), results from this model were compared to empirical data collected using
a range of masking sounds that varied in their spectro-temporal properties and the
amount of IM they were expected to produce. The binaural cues available to the
listeners were also manipulated during the experiment. While the model was able to
capture the pattern of SRTs across masker types rather well, it systematically under-
estimated SRTs (overestimated performance) by about 7–10dB for speech maskers,
reflecting the influence of IM that is not captured by the model. This resulted in
rather large rms err values across masker types that were between 7 and 7.6dB for
co-located sources depending on the cues available, and between 4.8 and 7.9dB for
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spatially separated sources. The rms err values computed with the measured and
predicted SRMs rather than the SRTs were smaller (between 0.5 and 3.2dB).

The model of Wan et al. (2010) is conceptually very similar to the model of
Beutelmann and Brand (2006), except that the direct implementation of the E-C
process uses time-varying jitters in time and amplitude. This model gave accurate
predictions for SRTs measured with up to three (noise) interferers at different posi-
tions (Hawley et al. 2004). It was only tested in anechoic conditions, but for four
types of interferers: stationary and speech-modulated noises, speech and reversed
speech. When the free parameter of the model (SII criterion) was fitted only once to
the whole data set, rms err was 3.6dB.When the parameter was fitted independently
for each interferer type (thus resulting in a different model each time), the rms err
was 0.7dB (noise), 1.4dB (modulated noise), 4.1dB (speech), and 3.3dB (reversed
speech). Because predicted SRTs were presented only for the scenario using mul-
tiple model versions (model parameter changed each time the number and type of
interferers varied), it is difficult to tell if a single version of the model could explic-
itly predict the differences across interferer types. This issue remained for a revised
version of the model (Wan et al. 2014), which uses E-C parameters varying across
short-time frames along the duration of the stimuli, thus improving the possibility
for the model to cancel the dominant masker over time when the direction of the
dominant masker varies in time. However, it also uses long-term SNRs calculated
over the whole stimulus duration, so that short-time variations in SNR are not explic-
itly considered, preventing the effect of masker envelope modulations from being
explicitly predicted.
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Analytical SNR Models

“Analytical”models are binauralmodels inwhich the direct implementation of equal-
ization and cancellation is replaced by a predictive equation and the resulting pre-
diction of binaural unmasking is added to a better-ear SNR. One of the differences
across analytical models is the equation used for predicting binaural unmasking. In
the model proposed by Levitt and Rabiner (1967b), speech intelligibility in noise is
predicted from the computation of the AI. Binaural unmasking is taken into account
by assuming that the effective SNR in each frequency band is increased by the bin-
aural masking level difference (BMLD) for pure tone detection in noise at the center
frequency of the band, using BMLD predictions from Durlach (1963). Predictions
based on this model were fairly consistent with previous binaural unmasking data
collected by the same authors (Levitt and Rabiner 1967a), in which portions of either
the speech or broadband noise spectrum (with varying cutoff frequencies) were sub-
jected to an interaural phase reversal. The maximum absolute difference between the
measured and predicted binaural intelligibility level differences produced by phase
inversion was 4.1dB.

Extending this approach, Zurek (1993) proposed a model describing SRM in
anechoic situations. Better-ear listening is simulated by computing the SNRs at the
two ears by frequency band and taking the better of the left and right SNRs in
each band. Binaural unmasking is then taken into account by increasing the better
ear SNR by the size of the BMLD in each band, this BMLD being estimated for
the given set of interaural parameters using a simplified expression proposed by
Colburn (1977). The broadband prediction is computed as theAI-weighted sumof the
resulting SNRs. The model predictions were compared with measured SRMs taken
from three studies involving a single stationary noise interferer and a frontal target.
Across thirteen tested noise azimuths, the maximum absolute difference between
measured and predicted SRMs was 4dB. The comparison of measured and predicted
SRMs in six conditions for speech with a 0.5-ms ITD or a phase inversion against
a diotic white noise led to a maximum and a mean difference of 3.3dB and 1.5dB,
respectively. Predictions of the head-shadow advantage were generally larger than
the measured effects, whereas binaural-unmasking advantages were predicted fairly
well. Themodels proposed byLevitt andRabiner (1967b) andZurek (1993) cannot be
applied to reverberant situations, because they do not take into account the interaural
coherence of the interferer, which mediates the effect of reverberation on binaural
unmasking. Moreover, these models were not tested with non-stationary interferers.

Lavandier and Culling (2010) proposed a model that can be used in reverberant
conditions (Fig. 2). Better-ear listening is estimated from the SNR computed as a
function of frequency at each ear, selecting band-by-band the ear for which the
ratio is the highest. Ratios are weighted according to the SII, and integrated across
frequency to provide a broadband better-ear SNR. Binaural unmasking is modeled
by increasing the SNR by the size of the BMLD for pure tone detection in noise in
each frequency band. BMLDs are estimated from the interaural phase differences of
target and interferer and the interaural coherence of the interferer, using an equation
proposed byCulling et al. (2004, 2005). Unlike theBMLDestimations used byLevitt
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andRabiner (1967b) andZurek (1993), this equation can describe the decorrelation of
the interferer at the listener’s ears by reverberation and the corresponding impairment
of binaural unmasking, allowing predictions in reverberant situations. The BMLD
values are then integrated across frequency using the SII weightings to provide a
broadbandbinaural unmasking advantage. The “effective”SNR is obtained by adding
the binaural unmasking advantage to the better-ear ratio to predict the overall effect
of binaural hearing. For this procedure, it is assumed that the contributions of the
two mechanisms are additive.

This model was first used to describe SRTsmeasured with a single noise interferer
simulated at different distances from the listener in virtual rooms varying in size
and absorption (Lavandier and Culling 2010). A 0.95–0.97 corr was obtained, with
max err and mean err measured below 0.8dB and 0.3dB, respectively. Because no
head shadow was simulated in this study, the latter essentially validated the binaural
unmasking component of the model. In a following investigation, the effect of head
shadow was simulated (Lavandier et al. 2012). In addition, stimuli without ITDs but
preserved spectral envelope were also used to test the better-ear component of the
model specifically. This further validation considered five real rooms and between
one to three simultaneous stationary noise interferers, as well as the prediction of the
data from Beutelmann and Brand (2006) that involved different rooms, bearings, and
distances. Corr values ranging from 0.95 to 0.99 were obtained. Across these two
studies, the model components were tested both in combination and isolation. They
were also validated across a wide range of anechoic conditions (Jelfs et al. 2011;
Culling et al. 2013), in situations involving from one to six noise interferers, using
SRTs obtained in different laboratories, using different measurement procedures and
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different languages (Dutch, English, German). The evaluation produced corr values
ranging from 0.86 to 0.99.

Following Rhebergen and Versfeld (2005), and Beutelmann et al. (2010), the
binauralmodel of Lavandier andCulling (2010)was adapted to handle non-stationary
noises by considering the signals within short-time frames, applying the stationary
model within each frame, and averaging the resulting predictions over all frames
(Collin and Lavandier 2013). This revised model was used to predict binaural speech
intelligibility in the presence ofmultiple non-stationary noises, varying inmodulation
depth and spatial location in rooms. Across three experiments, corr values between
0.84 and 0.90 were obtained. Themax err andmean err values were measured below
1.6dB and 0.7dB, respectively.

3.2 Modulation-Based Models

In contrast to SNR-basedmodels, modulation-basedmodels predict the intelligibility
of speech based on the intactness of its temporal modulations. Consequently, these
models view speech modulations, rather than speech energy, as the critical factor for
intelligibility.

The loss of intelligibility associated with the temporal smearing of target speech
by reverberation can be predicted by the Speech Transmission Index (STI; Houtgast
and Steeneken 1985). The STI evaluates the loss of amplitude modulation in the
speech when it is mixed with multiple delayed versions of itself reflected by room
boundaries. The STI also considers the effect of background noise. Wijngaarden
and Drullman (2008) developed a binaural version of the STI to predict consonant-
vowel-consonant scores in about forty conditions, including speech in quiet and in the
presence of a stationary-noise source at different SNRs. The forty conditions included
four listening environments: an anechoic room, a listening room, a classroom, and
a cathedral. This model offers the advantage of predicting the smearing effect of
reverberation on the target speech. However, it also makes the initial assumption that
the target is the only source of modulation in the signals reaching the listener’s ears.
The aim is to look for modulation to identify the position/interaural parameters of the
target. This approach does not offer any opportunity for extension to more realistic
cases where interferers are modulated noise or speech. Unfortunately, in these cases,
modulations are present in both target and interferer, and this cue can no longer be
used to distinguish the sound sources. Moreover, since model predictions were only
compared to the STI reference curve instead of measuring the goodness of fit to the
data, a direct evaluation of performance and comparison with other models is not
possible.

Jørgensen and Dau (2011) proposed a monaural model predicting intelligibil-
ity based on the modulation spectrum of the sources. The Signal-plus-Noise-to-
Noise Ratio, (S+N)NR, is computed from the normalized variance of the enve-
lope fluctuations of the noisy-speech and noise-alone signal inputs within audio-
frequency and modulation-frequency bands. An ideal observer fitted to the speech
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Fig. 3 Schematic of the modulation-based model proposed by Chabot-Leclerc et al. (2016). S:
signal/target; N: noise/interferer; (S+N)NR: signal-plus-noise-to-noise ratio; E-C: equalization-
cancellation. Note: the model also decomposes the signals in the time domain, using a time-frame
duration dependent on the modulation frequency. This decomposition is omitted here for the sake
of clarity

material is then used to derive the predicted SRT from the (S+N)NR integrated
across audio and modulation frequencies. This model was shown to describe the
effects of additive stationary noise, reverberation (temporal smearing), as well as
nonlinear speech processing with spectral subtraction (noise reduction). A multi-
resolution version of the model was then proposed to predict the increased intel-
ligibility due to dip listening in the presence of fluctuating noise (Jørgensen et al.
2013). Following the idea of applying the stationary model within short-time frames
(Rhebergen andVersfeld 2005), the (S+N)NR is computedwithin frameswhose dura-
tion depends on the modulation-filter frequency. Accurate predictions were obtained
in two conditions with stationary noises (rms err of 0.5dB), five conditions with
fluctuating noises (rms err of 0.8dB), five conditions with reverberation (rms err of
0.6dB) and six conditions with spectral subtraction (rms err of 1.3dB vs. 0.5dB for
the stationary model). On the other hand, the model was not able to describe the loss
of intelligibility observed for target speech with amplified modulation content (Jør-
gensen et al. 2015), pointing to a limitation of the model framework that considers
any modulation of the speech to be important for intelligibility.

Abinaural version of themulti-resolutionmodel has been recently tested to predict
SRM (Chabot-Leclerc et al. 2016). It takes the noisy-speech and noise-alone signals
at each ear as inputs (Fig. 3). Themonauralmodel of Jørgensen et al. (2013) is applied
to the envelopes at the left ear, those at the right ear, and those resulting from the E-C
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mechanism proposed byWan et al. (2014) but applied to the signal envelopes2 rather
than to the signals themselves. The highest (S+N)NR of the three is selected in each
time frame for each modulation and audio frequency, before integration across time
and frequencies. Model predictions were compared to anechoic SRTs measured by
Hawley et al. (2004) with one to three stationary or fluctuating noises (corr of 0.91,
rms err of 3dB) and to SRTs measured by Beutelmann et al. (2010) with a single
stationary or fluctuating noise and a speech target both placed at various azimuths
and distances in three rooms (corr of 0.91 and rms err of 6.5dB, vs. 0.89 and 3.6 dB,
respectively, for the model of Beutelmann et al. 2010). Themodel was also applied to
a situation in which a varying broadband ITDwas applied to the sources (so that only
binaural unmasking was involved), and the observed 4-dB SRM was only predicted
partially by the model (2-dB SRM). Predictions were on average well-correlated to
the data (overall corr of 0.91), but this does not reflect the rather large prediction
errors occurring in many conditions (with max err sometimes reaching 7–10dB),
resulting in large rms err values compared to those obtained with the model of
Beutelmann and colleagues or during the validation of the monaural version of the
model (Jørgensen et al. 2013).

3.3 Correlation-Based Models

The correlation-based models predict intelligibility by looking at the correlation
between a clean version of the target speech used as a reference and the noisy and/or
processed speech. This type of model was developed in particular to describe the
deleterious effect of non-linear speech processing.

The Short-Time Objective Intelligibility (STOI) index is a monaural indicator
proposed for predicting the intelligibility of noisy and non-linearly processed speech
(Taal et al. 2011). It is computed in two steps. First, a time-frequency decomposition
is applied to both the clean and noisy speech, which are assumed to be time-aligned.
The frames where the target is silent are removed. These silent moments are detected
on the clean speech, but frames are removed from both signals. The correlations
between the envelopes of the clean and noisy speech are computed within each
time-frequency unit, and then averaged across units; the assumption being that the
intelligibility of the noisy/processed speech is related to this average correlation.
STOI rates intelligibility on a scale from −1 to 1. This rating can be mapped to
intelligibility ratings in percent correct, or a reference SRT can be chosen to compute
predicted SRTs in different conditions.

Andersen et al. (2016) recently proposed a binaural extension of a slightly modi-
fied version of STOI (DBSTOI for Deterministic Binaural STOI). The model inputs
are the left and right ear signals for the clean and noisy/processed speech (Fig. 4),

2Note that envelopes are extracted here by low-pass filtering the signals below 770Hz. At low
frequencies, where the E-C mechanism is mostly assumed to work, these envelopes still contain a
significant amount of the fine structure information required for E-C to take place.
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assumed to be time-aligned at each ear. During the time-frequency decomposition,
the frames where the target is silent at both ears are removed. A modified E-C stage
is introduced before the computation of correlations, to combine the left and right
signals into a single clean signal and a single noisy/processed signal, while modeling
binaural E-C processing. This stage follows the principle of Beutelmann et al. (2010),
in which a direct implementation of an E-C process is used, applying interaural time
shifts and gains to the signals and subtracting one from the other. The time-shifts and
gains are chosen to maximize the model output, independently for each time frame
and frequency band.Here, themodifiedE-C stage does notmaximize the SNR (which
cannot be computed because target and interferer are not available individually to the
model), but instead it maximizes the correlation between the squared envelopes of
the clean and noisy speech. This correlation is also estimated for the signals at each
ear individually, as a “better-ear option” corresponding to an infinite gain included in
the optimization process. STOI is then calculated on the E-C processed “monaural”
clean and noisy speech. For diotic signals, DBSTOI is equivalent to STOI.

Andersen et al. (2016) showed that DBSTOI could predict the effect of nonlinear
(diotic) speech processing with the same accuracy as STOI (0.96 correlation between
measured and predicted percent correct in the presence of different stationary and
non-stationary noises). It predicted the SRM for a frontal target masked by a single
stationary noise simulated at different azimuths in anechoic space with the same
accuracy as two existing binaural models. A corr value of 0.99 was obtained for the
three models. The prediction errors were measured at 0.5dB versus 0.4dB for the
model of Beutelmann et al. (2010) and 0.5dB for the model of Jelfs et al. (2011). A
metric very close to rms err was used for this measurement. DBSTOI could also pre-
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dict the effects of nonlinear speech processing and SRM taking place simultaneously
in the presence of a stationary noise, but underestimated SRTs (overestimated intel-
ligibility) by 2–3dB for non-stationary noise. Still in anechoic conditions, the model
could predict the effect of beamforming, but generally failed in the presence of two
noises. This could indicate that the model might require a different mapping between
correlation and intelligibility (or reference SRT) depending on the complexity of the
situation (e.g., type or number of interferers).

3.4 Combination Models

Some models have been proposed that combine two existing models in order to
benefit from the advantages of each original model while overcoming some of their
limitations to extend their scope of application.

Apart from the STI, another monaural indicator that can be used to take into
account the temporal smearing of target speech by reverberation is the Useful-to-
Detrimental (U/D) ratio. This SNR-based indicator regards the early reflections of the
target as useful and as the “signal” because they reinforce the direct sound (Bradley
et al. 2003), whereas the late reflections are regarded as detrimental and effectively a
part of the noise (Lochner and Burger 1964; Bradley 1986; Bradley et al. 1999). This
indicator has been combinedwith binauralmodels, as described below. It is important
tomention that the separation of the reflections into useful and detrimental often used
the equivalent of a rectangular temporal windowwith the early/late limit as the single
parameter and its value changed quite significantly across studies. An early/late limit
of 50ms has been used very commonly (Roman and Woodruff 2013; Arweiler and
Buchholz 2011; Bradley et al. 2003; Soulodre et al. 1989), but other studies also
used a limit of 35ms (Bradley 1986), 80ms (Bradley 1986), and 100ms (Lochner
and Burger 1964; Rennies et al. 2011, 2014).

To be able to make SRM predictions also for reverberated targets (more or less
smeared by reverberation), Rennies et al. (2011) extended the binaural model of
Beutelmann and Brand (2006) using three alternatives: the modulation transfer func-
tion (MTF) also used in the STI, the definition (D50, ratio of early-to-total impulse
response energy; ISO 3382 1997), and the U/D ratio. In the first two approaches,
SRM and temporal smearing are processed separately: the SNRs obtained with the
binaural model applied to the entire speech and noise signals are corrected a poste-
riori by either measuring the MTF or D50 of the Binaural Room Impulse Response
(BRIR) corresponding to the target. In the third approach, this impulse response is
split into early and late parts that are convolved with the speech signal to create
an “early speech” signal and a “late speech” signal. The prediction process is then
similar to that of Beutelmann and Brand (2006) except that the original target signal
is replaced by the early speech and the late speech is added to the interferer, so that
the detrimental influence of late reflections is taken into account before the binaural
process.
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Using data measured in a virtual room with a stationary noise interferer and a
target tested at four distances from the listener and three azimuth separations, the
D50 and U/D versions proved to be equivalent (corr of 0.98 and rms err below
1.4dB) and better than the MTF version (corr of 0.93 and rms err of 3dB). Rennies
et al. (2014) further tested the three modeling approaches on the data of Warzybok
et al. (2013) that involved a frontal target smeared by a single reflection (varying in
delay and azimuth) in the presence of an anechoic frontal, diffuse, or lateral noise
interferer. On this particular data set, the U/D approach proved to be themost suitable
to describe SRM and temporal smearing of speech simultaneously, providing a corr
value of 0.97 and an rms err of 0.9dB across sixty-two conditions.

Leclère et al. (2015) proposed a different model to simultaneously account for
temporal smearing, SRM, and binaural de-reverberation in reverberant environments.
It combines the binaural model of Lavandier and Culling (2010) predicting SRM of a
near-field target from multiple stationary noise interferers and a U/D decomposition
taking into account the temporal smearing effect of reverberation on speech trans-
mission. The target BRIR is first separated into an early and a late part. The early part
constitutes the useful component. The late part is combined with the BRIRs of the
interferers to form the detrimental component. These BRIRs are concatenated rather
than added to preserve phase information and avoid constructive/destructive interfer-
ence (Jelfs et al. 2011; Lavandier et al. 2012). The binaural model is then applied to
the useful and detrimental components in the sameway as it was previously applied to
the target and interferer BRIRs. The influence of the early/late separation (temporal
window shape and limit values) used in the model was investigated systematically.

Model predictions were compared to SRTs measured in three experiments from
the literature (Rennies et al. 2011; Lavandier and Culling 2008), involving realistic
reverberation from different rooms, SRM from a stationary noise interferer, target
smearing, and binaural de-reverberation. Two versions of the model were tested: a
room-dependent model for which the parameters were adjusted in each room and a
room-independentmodelwithfixedparameters across rooms.The room-independent
model was tested on a fourth data set that involved four rooms not used to define its
parameters (Wijngaarden and Drullman 2008). Predictions obtained with the room-
dependent model accurately fitted the experimental data (corr above 0.90, max err
and mean err below 1.2dB and 0.7dB, respectively). The room-independent model
was less accurate even though it predicted all trends in the data (corr above 0.86,
max err and mean err below 2.1dB and 1dB, respectively). In particular, the room-
independentmodelwas less accurate to predict the data ofWijngaarden andDrullman
(corr of 0.96, max err of 4.9dB and mean err of 1.8dB). The room dependence of
the model parameters might indicate an inherent limitation of the approach and could
partially explain the wide range of early/late limits encountered in the literature.

Despite its limitations, the model by Leclère et al. (2015) proposes a unified inter-
pretation of perceptual mechanisms usually considered separately in the literature.
Temporal smearing and binaural de-reverberation can be interpreted simply in the
framework of SRM. Temporal smearing during speech transmission is just masking
of the early target (useful) from a particular interferer: the late target (detrimen-
tal). The late target is just an additional masker, treated like any other interfering
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source by the model. Its effect appears at high levels of reverberation (Lavandier and
Culling 2008) because the late target needs to be sufficiently energetic to become
a non-negligible new source of interference. According to the model, binaural de-
reverberation can be understood simply in terms of SRM of the early target from this
particular interferer.

In order to propose SRMpredictionswhen the target speech and/or noise interferer
are not available separately, Cosentino et al. (2014) developed a different combina-
tionmodel—a binaural extension of the Speech-to-ReverberationModulation energy
Ratio (SRMR; Falk et al. 2010)—that predicts the SRM in anechoic and reverberant
conditions for a frontal speech target and a single stationary noise source. The model
takes as inputs the noisy speech mixture at each ear. The SRMR aims to capture
alterations in the modulation spectrum produced by noise and reverberation. A ratio
is computed between the energy in the low modulation frequencies (below 20Hz),
attributed mostly to speech, to that of high modulation frequencies (between 20 and
128Hz), mostly attributed to noise and reverberation. The better-ear component is
estimated by taking the best of the left and right ear monaural SRMRs. The mapping
of the SRMR to a better-ear advantage in decibel is obtained byfitting themodel to the
anechoic SRM data. The binaural unmasking component is evaluated using the same
BMLD equation as the model of Lavandier and Culling (2010). The interaural phase
of the frontal target is known. The interaural cross-correlation function of the noisy
speech is computed, and the highest coherence value having a phase different from
that of the target is assigned to the noise with its corresponding phase. The twomodel
components are computed across time frames (using two different temporal resolu-
tions) and audio-frequency bands, then averaged across time and integrated across
frequency using the SII weightings. The model was evaluated using SRTs measured
in anechoic space and in a classroom for a noise placed at nine azimuth angles in the
frontal hemisphere. SRTs were not directly predicted, so that the temporal smearing
of the target in the classroom could not be described, but the correlation between
measured and predicted SRMs was 0.93, with a maximum absolute difference of
2.5dB. It is not apparent how this model could be extended to a speech-modulated
interferer or multiple interferers.

3.5 Segregation-Based/Glimpsing Models

Another class of models was developed specifically to deal with speech masked by
speech. There have been several attempts over the years to explain various aspects
of masked speech perception in terms of local spectro-temporal “glimpses” (e.g.,
Cooke 2006). The idea here is that speech is spectro-temporally quite sparse, and in
manymixtures of sounds, there are epochs in which the local SNR is high (a criterion
needs to be defined) and a rather clean representation of the target sound is available,
even if the overall SNR is disadvantageous. Intelligibility is then assumed to be
correlated with the proportion of target glimpses among the time-frequency units.
One much-discussed aspect of this idea is that the listener needs a way to identify
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where in the spectro-temporal plane these high-SNR target glimpses are located
and to distinguish them from glimpses that are dominated by competing sounds.
Recently, a family of models has appeared in the literature that demonstrates how
this problem might be solved for binaural mixtures that contain spatial information
relating to the competing talkers. To the extent that the spatial cues enable a listener
to sort the acoustic mixture appropriately, they can be viewed as releasing IM. Thus,
unlike the energy-based models described above, these models can account for at
least some effects of IM. It is worth noting that this general approach also appears
in the field of computational scene analysis (e.g., Roman et al. 2003; Srinivasan and
Wang 2008) with the primary goal of improving automatic speech recognition rather
than predicting human behavior.

The model proposed by Mi and Colburn (2016) applies E-C processing to each
time-frequency unit in the stimulus, with the equalization parameters set according
to the known direction of the target. In a twist on the usual E-C process, energy from
the target direction is canceled, and the amount of canceled energy is used as an indi-
cator of how dominant the target was in that unit. This provides a means for selecting
time-frequency units that are dominated by the target. Segregation is then imple-
mented by retaining these target-dominated tiles and eliminating the complementary
masker-dominated tiles according to a binary mask. The model is combined with
the coherence-based SII (Kates and Arehart 2005) to predict SRM for a given set of
stimuli. The model was evaluated using data from an experiment in which a frontal
speech target was masked by two speech maskers located symmetrically to either
side (Marrone et al. 2008). The model was able to predict measured SRTs reasonably
well, albeit with over-predictions of around 3–4dB that were interpreted in terms of
the lack of noise in the E-C process or the optimal selection of time-frequency units.

Josupeit and Hohmann (2017) proposed a model for analyzing multitalker mix-
tures based on glimpses, motivated by the idea that the glimpses contain useful and
robust information for localization, talker identification, and word identification.
Their model first identifies robust glimpses in the mixture (which could belong to
the target or the maskers) based on the strength of periodicity, and then classifies
the glimpses as target or masker based on comparisons to templates. The model was
evaluated on stimuli from the study by Brungart and Simpson (2007), who measured
word recognition in a closed-set listening task using spatialized competing talkers.
The task was to recognize the color and number words of the talker who uttered a
specific call-sign. The model was able to identify keywords at a comparable rate to
human subjects correctly. However, the model requires extensive a priori knowledge
in the form of a precise set of clean templates for all possible talkers, locations, and
keywords.

Tang et al. (2016) developed a binaural distortion-weighted glimpse proportion
metric, which can be correlated with intelligibility scores in anechoic conditions
(Fig. 5). It can be computed from two alternative input forms: either individual bin-
aural recordings of target andmasker at the ears or monophonic recordings from each
sound source along with their locations (azimuth and distance) used to estimate the
binaural recordings. The metric evaluates the proportion of target glimpses among
the time-frequency units constituting themixture. This proportion isweighted in each
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Fig. 5 Schematic of the glimpsing model proposed by Tang et al. (2016). S: signal/target; N:
noise/interferer; SNR: signal-to-noise ratio; BMLD: binaural masking level difference; SII: speech
intelligibility index

frequency band by the masker-induced distortion of the speech envelope (obtained
by computing the cross-correlation between the envelopes of the clean speech and
of the speech+masker mixture) and then integrated across frequency using the SII
weightings. A glimpse is defined as a unit in which the target level plus the BMLD
is 3dB above the masker level so that binaural unmasking is taken into account
at this stage. The BMLD is estimated using the same equation as in the model of
Lavandier and Culling (2010). To take into account better-ear listening, glimpses are
computed separately for the left and right ears and combined to produce binaural
glimpses for all time-frequency units where either or both individual ears produce a
glimpse. The resulting metric was correlated to intelligibility scores measured with
noise and speech maskers mixed with the target at two SNRs. In a first experiment,
the frontal target was presented with a single masker simulated at different azimuths
and distances. In a second experiment, the target and two or three maskers were pre-
sented at different azimuths in twelve spatial configurations. Overall, the metric was
well-correlated to the listener scores, with correlations of 0.95 and 0.91 for single-
and multi-masker conditions, respectively; indicating that the metric followed the
trends in the data well, even if the magnitude of the effects was smaller in the metric
predictions, particularly for the multi-masker experiment. The mapping between the
metric and intelligibility scores remains to be estimated. It could be dependent on
the specific conditions and masker types considered.
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3.6 Multiple Regression Models

Following on a descriptivemodel proposed byBronkhorst (2000), Jones andLitovsky
(2011) predicted the amount of SRM in several two-interferer configurations from
five different studies, using multiple regression models based on two contributions,
namely the asymmetry of the two-interferer configuration and the angular separation
of target and interferers. Although only a frontal target can be considered, separate
model versions could be used for speech and noise interferers. Good fits between
measured and predicted SRMs were reported for both noise maskers (corr of 0.93,
max err of 2.5dB and mean err of 0.8dB) and speech maskers (corr of 0.94, max
err of 2.4dB and mean err of 0.7dB). However, these performance statistics are
misleading because they do not reflect the performance of a single model. They were
computed by aggregating the predictions obtainedwith several versions of themodel,
corresponding to multiple regressions fitted independently for each data set, and in
the case of the speechmodels, for each number of maskers within each data set. Also,
the model versions were tested only on the data sets used to define their fitted param-
eters, resulting in descriptive models whose predictive power outside these data sets
is unknown. Since the models are designed to predict SRMs between spatial configu-
rations rather than the SRTs in these configurations for different types of interferers,
they cannot predict the effect of envelope modulations across interferer types. For
example, the noise model cannot directly predict the dip-listening advantages asso-
ciated with noises having different depths of modulation in a given configuration.
The models were tested on data measured with all sources at the same distance in
a small sound-treated room. This room was not anechoic, but reverberation was not
varied during the experiment.

4 Usability of the Models in Practice

4.1 Model Inputs

As highlighted above, the available binaural models use different inputs to make
intelligibility predictions. The availability of amodel’s specific inputs will, of course,
determine its usability in practice for any given application. The nature of these inputs
can be seen as a priori information/knowledge required by the models. Any model
computing an SNR (e.g., SNR-based models, but also glimpsing models) needs to
access the target (S) and masker (N) signals independently at each ear (Lavandier
and Culling 2010; Beutelmann and Brand 2006; Wan et al. 2010). The modulation-
based model uses the noise+speech (S+N) and noise-alone (N) signals at the ears
(Chabot-Leclerc et al. 2016), but it is not clear whether the realization of the noise
needs to be identical for N and S+N, in which case it would be equivalent to requiring
S and N separately at the ears.
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The model proposed by Cosentino et al. (2014) uses the S+N mixtures directly,
without requiring one or the two signals individually at the ears, which could gener-
alize its usability. However, in return, it needs to assume that the target is in front and
that there is a single interferer so that in practice, the use of the model is limited to
these configurations. The metric developed by Tang et al. (2016) operates with either
the target and masker signals independently at each ear or single-channel versions
of these signals together with the source locations that need to be known. In the
latter case, the signals and locations are used to estimate the binaural recordings,
assuming anechoic conditions to estimate ITDs and ILDs. This method cannot be
easily generalized to reverberant conditions.

The correlation-basedmodel requires time-alignednoise+speech and clean speech
signals as inputs (Andersen et al. 2016). Time alignment is not always available,
except with dedicated recordings, and it might not be easy to obtain a posteriori
using non-synchronized signals—especially in reverberation or at low SNRs when
realizing this alignment is not trivial. The output of the model could well be very
dependent on potential errors in the time alignment, which would restrict the appli-
cability of the model.

In terms of other a priori information required, the combination models based
on the U/D approach need access to the target BRIR so that useful and detrimental
room reflections can be separated (Rennies et al. 2011; Leclère et al. 2015). The
segregation-based model of Mi and Colburn (2016) requires knowledge of the direc-
tion of the target signal. Finally, while the segregation-based model of Josupeit and
Hohmann (2017) does not require specific information about the target or maskers,
it does require detailed knowledge about the set of possible utterances, talkers, and
locations, and thus, is only suitable for a closed-set task that involves some limited
number of these possibilities.

Most of these models do not need the same signal/sentences as used to collect the
data. They can use generic signals as long as those signals have precisely the same
statistics (in terms of frequency spectrum levels, modulation spectrum, interaural
statistics, etc.) as those involved in the listening test to be described or in the new
situations to be predicted. Some segregation-based models, however, have only been
evaluated using specific speech mixtures and their associated data sets; it is not yet
clear whether they can be generalized to other signals and data sets.

4.2 Speech Material Used for the Target

The models involving SII calculations (e.g., Beutelmann and Brand 2006; Wan et al.
2010) or STOI (Andersen et al. 2016) require a form of a priori knowledge regarding
the speechmaterial for which intelligibility needs to be predicted. This might include
the language, the syntactic and linguistic contents, and predictability. Speech mate-
rial varying in these dimensions will require a different mapping function between
the SII/STOI and percent word correct (Kryter 1962; ANSI S3.5 1997) in order to
generate absolute predictions of behavioral performance in human listeners. In the-
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ory, the mapping could be changed to predict data for other kinds of material, but
this has rarely been explored for the models described above. It is also worth noting
that many models can only provide relative predictions, using a reference condi-
tion to fit data and predictions—e.g., the SRT in a co-located condition as in Zurek
(1993) and Andersen et al. (2016), or the average SRT across tested conditions as
in Lavandier and Culling (2010) and Jelfs et al. (2011), or predicting SRMs rather
than SRTs (Cosentino et al. 2014). The modulation-based model of Chabot-Leclerc
et al. (2016) involves an ideal observer fitted to the speech material using the SRT
obtained in a reference condition.

4.3 Structure of the Competing Maskers

With fluctuatingmaskers, Collin and Lavandier (2013) showed that listeners can take
advantage of the predictability of the timing of the gaps in themaskers. This indicates
that the dip-listening advantage might have been overestimated in studies using pre-
dictable modulations such as periodic modulations or “frozen” speech modulations
across the adaptive SRTmeasurement. In situations where the interferer gaps are less
predictable, such as with competing talkers, then the listener might not be able to use
glimpsing optimally, due to the uncertainty in the gap position within the masking
sound. This effect of predictability/uncertainty is not explicitly taken into account in
current models.

To the authors’ knowledge, none of the binaural models presented above were
tested for periodic interferers, or they were tested for speech and noise interferers
but predictions across interferer types could not be made because the model was
changed. Given that the magnitude of SRM might be reduced when there is the
possibility for F0-based release from masking, this seems to be an important test of
the models if they are intended to explain performance in realistic speech mixtures
where multiple cues will often be available.

4.4 Room Adaptation for the U/D Models

In the binaural U/D model proposed by Leclère et al. (2015), the best model perfor-
mance was achieved by adjusting the early/late separation of the room reflections for
each tested room (e.g., room dependency of the distinction between the early/useful
and late/detrimental reflections for the target). Room-independent parameters did not
lead to similar performances, suggesting that a fixed early/late separation might not
be sufficient to predict speech intelligibility in rooms, jeopardizing the generaliza-
tion of the U/D approach to making a priori predictions in any room. Alternatively,
the value of the early/late limit in a given room could be seen as additional a priori
information required by the models. One might be able to overcome this limitation
by modeling other perceptual mechanisms and/or cognitive factors so that predic-
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tions can be made in arbitrary rooms—without this a priori knowledge. For instance,
previous studies showed that listeners are able to adapt to room acoustics given prior
exposure (Watkins 2005; Brandewie and Zahorik 2010). The determination of the
early/late parameters in a particular room might be dependent on such adaptation.

5 Incorporating Cognitive Factors

5.1 Informational Masking and Effects of Attention

Themodels discussed above that only take the energy—or themodulation energy—of
the incoming target and masker signals into account cannot account for any masking
effects that are driven by non-energetic factors. As a result, these models tend to
fail when tested with speech maskers that generate substantial IM. However, by
quantifying the EM component precisely for various configurations, these models
could allow one to estimate the “residual”masking that can be attributed to IM. These
estimates are useful for demonstrating the limitations of energy-based models, and
also may trigger and inform extensions to existing models in the future. Segregation-
based models, on the other hand, explicitly deal with the problem of segregating the
target from the maskers, which is one of the key components of IM. As a result, these
models do quite well at predicting performance for speech-on-speech tasks (e.g., Mi
and Colburn 2016; Josupeit and Hohmann 2017).

Even when competing sounds are spatially separated so that both EM and IM
are reduced, the state of a listener’s attention can influence speech understanding.
For example, knowledge about the location or timing of an upcoming target, which
reduces uncertainty about how to direct one’s attention, can improve intelligibility
(Kidd et al. 2005a; Best et al. 2007). In related experiments, Brungart and colleagues
showed that randomizing the target voice or location across trials—versus keeping it
fixedwithin a block—can reduce intelligibility scores (Brungart et al. 2001; Brungart
and Simpson 2007). It has also been shown that continuity of the location of a
target from word to word within a trial is essential for optimal intelligibility in the
presence of competitors (Best et al. 2008). These attentional aspects of IM cannot be
accounted for by current models of speech intelligibility that only take into account
the properties of the stimuli. Extensions of the models might include adding in
a “noise” term to deal with failures of attention. However, there is evidence that
susceptibility to attentional aspects of IM is highly individualized, being influenced
by listener-related factors such as age and musical ability (e.g., Neher et al. 2011;
Swaminathan et al. 2015; Clayton et al. 2016).

In situations where uncertainty is relatively low, and attention is focused selec-
tively on the location or voice of a target talker, several studies have demonstrated
steady improvements in performance over time, indicative of refinements in selec-
tive attention (e.g., Best et al. 2008; Ezzatian et al. 2012). These across-time effects,
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which occur in the absence of any change in the stimulus, are certainly not captured
by any of the current binaural models, all of which are stimulus-driven.

5.2 Intelligibility Versus Comprehension

Speechunderstanding is generallymeasuredbywayof awordor sentence recognition
test in which a single utterance is presented and followed by a silent period in which
listeners are required to recall the utterance, for example, by speaking it out loud,
typing it on a keyboard, selectingwords on a touchscreen.However,many researchers
over the years have pointed out the many ways in which the requirements of this
task differ from those encountered in real-world speech communication. Typically,
during a conversation, a listener must follow ongoing speech, rather than discrete,
and they must not only recognize the words but comprehend their meaning, and try
to determine the intention of their partner. Moreover, they often do other tasks in
parallel, such as filling in words that were missed, making predictions about what
someone is going to say, or formulating replies. This extra layer of processing means
that true speech comprehension, especially in the context of two-way communication,
is much more cognitively demanding than word or sentence recall.

Several speech-comprehension tests have been developed to try to capture some
of these real-world aspects (e.g., Best et al. 2018; Xia et al. 2017). The test proposed
by Best et al. (2018) was closely compared to a sentence test, and it was found that
cognitive factorsweremore strongly associatedwith comprehension scores thanwith
sentence scores. Specifically, comprehension scores were better than sentence scores
for listeners with strong cognitive skills, but the opposite was true for listeners with
weak cognitive skills. Thus sentence scores may not adequately capture the real-
world communication abilities of a given listener. If binaural speech intelligibility
models are to predict speech understanding in realistic situations for specific listeners
or groups of listeners, it seems that cognitive factors would need to be accounted
for. Comprehension scores also appear to be less sensitive to changes in SNR than
are sentence scores, which is an issue for current models. Almost nothing is cur-
rently known about the interaction between task (sentence recognition vs. speech
comprehension) and spatial separation, which would have particular implications
for binaural speech intelligibility models. This is an avenue that deserves further
attention.

6 Conclusion

The successive versions of the given model were developed to deal with more and
more complex situations and overcome the limitations of the previous versions.
Different, independent model categories have been proposed to address different
types of key information for intelligibility, e.g., modulation or energy. It could also
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be sometimes the case that a different model is developed because its inputs better fit
the researchers’ needs—e.g., the case that ‘S’ and ‘N’ are not available separately.
Some approaches could also be particularly suited to a given type of application (e.g.,
non-linear speech processing). One clear benefit of relying on different assumptions
is that these modeling approaches are complementary.

SNR-based models can accurately predict SRM and can deal with modulated
noises or reverberated targets. The SNR approach is also very suitable for modeling
audibility in terms of internal noise so that predictions can be proposed for hearing-
impaired listeners (Beutelmann and Brand 2006; Lavandier et al. 2018). On the other
hand, computing the SNR requires access to the target and masker signals indepen-
dently. The modulation models offer an interesting framework and can predict some
effects of non-linear speech processing; however, they have not been fully explored
in binaural conditions. The correlation model of Andersen et al. (2016) predicted
very well the anechoic SRM for a single stationary noise as well as some effects
of non-linear speech processing. However, the requirement for time-aligned sig-
nals might compromise its use in reverberation. It is not clear whether the mapping
between correlation (STOI) and intelligibility could be dependent on the specific
conditions tested, such as the type or number of maskers. The glimpsing model of
Tang et al. (2016) is interesting in that it incorporates some aspects of three modeling
approaches: SNR, modulation, and correlation.

All these models have common limitations that will pave the way for further
research. None can predict SRM for speech maskers in a way that accounts for the
strength of IM present. None can describe the release from EM and IM afforded
by differences in F0. Only two models have been extended for hearing-impaired
listeners (Beutelmann and Brand 2006; Lavandier et al. 2018), whereas two different
models can describe the effect of non-linear speech processing as found in hearing
aids (Jørgensen et al. 2013; Andersen et al. 2016). It seems that a combination of
approaches is needed in order to predict binaural speech intelligibility in the real
world for all kinds of listeners and situations.
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Technology



Creating Auditory Illusions with
Spatial-Audio Technologies

Rozenn Nicol

Abstract Perception of sound fields reproduced by loudspeaker arrays which are
driven by spatial-audio technologies, such as Wave-Field Synthesis or Higher-Order
Ambisonics, is examined in the light of “Spatial Auditory Illusions”. The spatial-
audio technologies are based on illusions as to which real sound-sources vanish
perceptually in favor of virtual sources. Furthermore, spatial-audio technologies are
able to synthesize sound fields which are very similar to sound fields as created by
real sources. In this chapter, these illusions are first explored as a function of the
acoustic (physical) properties of the synthesized sound fields. Then, the perceptual
dimensions are reviewed of what is actually heard when being exposed to these
synthesized sound fields.

1 Introduction

What is meant by “Spatial Audio”? This term denotes any technology of sound repro-
duction based on loudspeaker arrays, in particular the following ones: stereophony,
quadraphony, multichannel audio as, for example, defined by the surround-sound
standards 5.1, 7.1, 9.1, 10.2 and 22.2 (Rumsey 2018), further 1st-order Ambisonic,
Auro3D®, and sound-field synthesis (SFS) methods such as wave-field synthesis
(WFS), higher-order Ambisonics (HOA) and near-field-compensated higher-order
Ambisonics (NFC-HOA)—and,more generally, all othermethods of sound-field con-
trol (Spors et al. 2013; Zhang et al. 2017).

In all of these technologies, the goal is to create a sound scene with spatialized
audio components. Usually they are separated into two categories, namely, on the one
hand, technologies for achieving physical reconstruction of the soundfield and, on the
other hand, technologies that take advantage of psychoacoustic effects to alleviate
the effort of the reconstruction of perceived sound fields. The latter technologies
rely clearly on auditory illusions—in the sense that the listeners’ perceptions are
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manipulated andmisled. However, the former technologies are not free from illusions
either—as will discussed below.

The objective of this chapter is to go deeper into the understanding of the per-
ception of sound fields as created by spatial-audio technologies. The concept of
auditory illusions, which originates from studies of Auditory Scene Analysis in pure
laboratory experiments (Deutsch 1983), will be revisited for the specific case of
spatial-sound reproduction. In a first step, the concept of Spatial Auditory Illusion
(SAI) is introduced.

2 Perception of Spatial-Sound Reproduction: More or Less
Nothing But Illusions

2.1 Sound Scene versus Auditory Scene

At this point, it is important to distinguish the sound scene from the auditory scene.
As defined by Blauert (1996), the former corresponds to the acoustical (physical)
phenomena (i.e., the sound waves), whereas the latter is the perceptual interpretation
of the sound events by the listeners. Stereophonic reproduction can be taken as an
illustration here. Two loudspeakers create two sound events which are, however, gen-
erally perceived as one single auditory event—colloquially called “phantom source”
in the field. This auditory event is localized at an intermediate position between
the two loudspeakers. As pointed out by Linkwitz (2007), this is “a rather amazing
phenomenon that has no precedence in the gradual evolution of natural hearing. For
example, not sufficiently often have the sounds from two roaring lions been similar
enough to locate as one lion somewhere between the two.” This observation holds
for all the other technologies of spatial audio. Each loudspeaker generates a sound
event which is generally not perceived as such. At the entrance of the listeners’ ears,
the contributions of all loudspeakers are combined with various amplitude and delay
relationships. All this information is processed by the listeners to elaborate auditory
scenes. The extraction of single auditory events1 from the eardrum signals is referred
to as Auditory Scene Analysis (ASA) (Bregman 1990; Deutsch 1983). The psychoa-
coustic and cognitive mechanisms involved in this step are complex and remain not
well understood.

Modeling of these processes is proposed by Computational Auditory Scene Anal-
ysis (CASA) (Wang and Brown 2006). Analysis of auditory scenes (Fig. 1) is a
combination of both bottom-up (i.e., signal driven) and top-down (i.e., hypothesis
driven) processes (Blauert 1999). Bottom-up algorithms perform well for localiz-
ing and tracking multiple sources if reverberation is low. As soon as reverberation
increases, top-down processing is needed, namely, a-priori knowledge (i.e., rules

1Auditory events must be distinguished from auditory objects. The latter result from a higher level
of analysis and integrate potential cross-modal information (Wierstorf 2014).
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Fig. 1 Elaboration of the auditory scene from acoustic input. Reproduced courtesy of Jens Blauert
(Blauert 1999)

or databases) is included from which hypotheses are generated. Each hypothesis is
tested and finally accepted or rejected. As a result, an interpretation of the sound
scene is provided.

2.2 Unconscious Inferences

Starting from the assumption that the physical model of the world represents the
“real” world which “causes” the perceptual world, the following interpretation is
commonly accepted. Humans do not sense physical objects directly but rather the
signals that they emit (like light or sound). Thus, any percept in natural hearing or
sound reproduction is a construct, that is, a specific representation of the physical
reality, which is elaborated (or imagined) from the output of sensory receptors. As
pointed out by Helmholtz in his “sign” theory of perception, sensations symbolize
physical stimuli and are not a direct copy of them (Patton 2016). The correspondence
between sensation and physical object is learned through experience. This process
of interpretation was called “unconscious inferences” by Helmholtz. Consequently,
the representation should not be mistaken for the physical world.

In natural perception, sensory illusions occur when this process of construction
defaults. In this case, information from the physical world is misinterpreted,2 which

2Illusions may also be caused by ambiguous sensory input.
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leads to potentially strong discrepancies between the perceptual and the physical
scene. The origin of this confusion relies on the process of “unconscious inferences”
described by Helmholtz, and which can improve the efficiency of perception in most
situations, but may fail in some cases as soon as the assumptions of inferences are not
valid, as illustrated by auditory illusions, such as, for example, identified by Deutsch
(Deutsch 1983; Warren 1983).

Moreover, the perceived result may depend on the specific listener, since the
mechanisms involved in its construction partly rely on individual cognition. For
instance, when investigating auditory illusions, Deutsch showed that the illusion
may strongly vary from one listener to another (Deutsch 1983). Handedness, that
is, individual preference for using the right or left hand is one important factor—
potentially in relation to brain dominance.

2.3 The Concept of “Spatial Auditory Illusions”

To begin with, the following fact should be realized. In spatial-sound reproduction
the perceived sound scene is fundamentally and exclusively an illusion. Indeed, a
set of acoustic sources (i.e., loudspeakers) is used to create sound events, but it is
clearly intended that, in the listeners’ minds, these physical sources vanish in favor of
the auditory scene as expected by semantic or artistic intention. For example, in the
case of stereophony, Lipshitz states that “One sign of a good recording/reproduction
system [...] is that the loudspeakers are not audible as sources of the sound” (Lipshitz
1986). Instead of loudspeakers, the auditory scene is composed of virtual sources
which have no physical support and are totally dissociated from the electroacoustic
sources. Producing Spatial Auditory Illusions (SAI), that is, illusions of auditory
scenes with audio components spatially distributed around the listener, is thus inher-
ent to the spatial-audio technologies.

Not only does the localization of sources matter, but also the acoustic interaction
with their environment, that is, with the acoustic space, including reflection, diffusion
or diffraction phenomena in relation with the source directivity. The illusion involves
both the creation of virtual sound-sources and spaces, and the manipulation of their
perceived properties, for instance, positions and spatial extents of sources, attributes
of room effects.

The following sections will investigate the properties of SAI, both acoustically
and perceptually. Firstly, the acoustic signals are examined which are produced at the
entrances to the listeners’ ears, and fromwhich the illusion is generated. The objective
is to better understand the relationships between the sound fields and the illusions. In
other words, it is a question of identifying the features of the acoustic signals that can
affect the illusions, and the type of auditory processes involved in the formation of
the illusion. Secondly, leaving acoustic stimuli aside, SAI will be considered on their
own, focusing on their perceptual properties. One fundamental issue in this context
is the effectiveness of the illusions, in other words, the questions of to what extent
do they function in an intended way, and what are the most effective technologies
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for this purpose? As a prerequisite for observing and characterizing the perceptual
properties of illusions, tools, and methods used for the perceptual assessment of
spatial-audio technologies will be briefly described.

3 Illusion Versus Holophonic Reconstruction: Is Exact
Reconstruction of the Sound Field Achievable?

As previously explained, an auditory illusion is a perceptual phenomenon that orig-
inates in the interpretation of the acoustic signals that are delivered to the entrance
of the listeners’ ears. Before going deeper into the perceptual mechanisms, the cur-
rent section will focus on the acoustic properties of the sound fields as generated by
spatial-audio technologies to the end of analyzing the links between the sound fields
and the associated illusions. Intuitively, the most straightforward way to create effec-
tive illusions consists in reproducing the sound field exactly as it would be apparent
in natural listening. This is avowedly the goal of SFS, such as aimed at in WFS or
HOA installations. This idea is discussed in the following.

3.1 Stereophony and Surround-Sound Systems

In the early stage of spatial audio, two opposite strategies were investigated with the
pioneering work of Blumlein and Fletcher (Lipshitz 1986). One, followed by Blum-
lein at E.M.I. (Electric and Musical Industries), was based on a pair of coincident
microphones and a two-loudspeaker system, providing the basis of stereophony. The
other, studied by Fletcher at Bell Telephone Laboratories, was using a “curtain of
microphones” to record the sound sources. For the reproduction step, the micro-
phones were connected to a “curtain of loudspeakers”. The superposition of the
wavelets emitted by each loudspeaker restored the original wavefront, in a way close
to that which will later be formalized as “holophony” by Jessel (Jessel and Vogel
1973). Fletcher’s aim was to re-create “the original macroscopic acoustic wavefront
within the listening environment.”

With only two loudspeakers, this is clearly out of the reach of stereophony, the
goal of which is rather to “re-create the wavefront on a microscopic scale”, that
is, in a limited area around the listener’s head. This area is known as the so-called
sweet spot. Because of these limitations, any design of stereophony needs to include
sound perception to achieve its purpose. Besides, it can be stated that stereophony
is fundamentally based on an illusion. It was referred to as the auditory perspective
by Bell’s researchers. In other words, “the best that stereo can do is to provide a
credible illusion that between andbeyond the pair of loudspeakers there exists another
acoustic environment within which the musicians are located and performing. [...]
The only major question is how to produce at the listener’s ears from the two source
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loudspeakers such differences as will be interpreted by the hearing mechanism as
representing a credible image between the loudspeakers” (Lipshitz 1986).

Surround sound systems were motivated by the need to reproduce spatial audio
for large audiences, such as in movie theaters, for which two loudspeakers were no
longer sufficient (Rumsey 2018). Adding a central loudspeaker stabilizes the central
image, whereas adding loudspeakers at the back and sides of the listener allows
the system to reproduce sound ambiance, for example, isolated sound effects and
reverberation. This can be seen as a first attempt to immerse the listener in a “sound
field resulting from direct and reflected waves arriving from all directions”, and thus
to get closer to “true realism” (Woodward 1977). However, inmost surround systems,
the loudspeaker layout is not regular, such as in the 5.1 surround setup. Consequently,
not all directions are reproduced with equal accuracy. In general, frontal sources are
privileged to the detriment of rear and side sources. One exception is quadraphony.

The localization of phantom sources is controlled by laws derived from two-
channel stereophony, namely, by acting on interchannel differences of arrival time
and level (Rumsey 2018). Finding the appropriate way to drive the loudspeakers was
not straightforward, however. Pairwise panning is the simplest solution to generalize
stereophony to a multi-loudspeaker configuration, but localization is altered as soon
as the listener moves away from the central position. Furthermore, experiments have
shown that the creation of phantom sources by pairwise panning works best between
the left and right front loudspeakers. Performances are noticeably degraded for rear
loudspeakers, and even more so for side loudspeakers (Cabot 1977). More optimal
methods make use of all the loudspeakers, such as the “Cooper-and-Shiga” law for
quadraphony (Woodward 1977). It quickly became clear that localization theories of
stereophony cannot directly be applied to multiple-loudspeaker systems. The risk of
creating a “confusion-phonic system” instead of stereophonic sound (Willcocks and
Badger 1983) was pointed out.

3.2 Spatial Aliasing

Today, holophonic reconstruction for spatial-audio reproduction is effective with
technologies such as WFS, HOA, and general methods of sound field control. How-
ever, an exact reconstruction of wavefronts for the whole audible range is still illu-
sory (Spors et al. 2013; Spors and Ahrens 2008; Wierstorf 2014). Spors and Ahrens
(2008) proposed a unified formulation of WFS and HOA sound-field reproduction
showing that, in both approaches, sound-field reconstruction theory is based on a
continuous distribution of loudspeakers. In practice, discretized loudspeaker arrays
are used which, however, causes spatial aliasing. Consequently, the sound reproduc-
tion is altered for frequencies higher than the aliasing frequency, fal . This frequency
depends on the loudspeaker spacing. For the typical spacing in the range of 10 to
20cm, the aliasing frequency lies between 1 and 2kHz (Ahrens andWierstorf 2015).
The consequences of spatial aliasing are different for WFS and HOA. A reason for
this is that the spatial spectrum of the sound field is band-limited in the case of
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Fig. 2 Illustration of sound-field reconstruction by HOA (left column) and WFS (right column).
Impulse responses of the loudspeaker system in the horizontal plane (amplitudes expressed in dB
SPL). Reproduction of a plane wave propagating downwards by a circular array composed of 56
equi-angularly spaced loudspeakers. Reproduced courtesy of Jens Ahrens, with permission of the
Audio Engineering Society, www.aes.org (Ahrens et al. 2010)

HOA (Spors and Ahrens 2008), thus preventing spatial aliasing. Nevertheless there
remains a reconstruction error that is associated with spatial aliasing (Ahrens et al.
2010).

www.aes.org
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For instance, if the reproduction of a plane wave byWFS (anechoic environment)
is examined, a first broadbandwavefront is observed, the shape of which is accurately
synthesized over the whole listening area, but which is initially followed by a dense
sequence of broadband “wavelets” within a temporal range of 0–0.2ms, and then by
a slightly sparser sequence of high-frequencies wavelets within a range of 0.2–6ms.
These wavelets, resulting from spatial aliasing, come from various directions and
spread over the entire area behind the wavefront—see Fig. 2. They originate from
the individual contribution of each loudspeaker. Therefore their time distribution
depends on the size of the array. For small arrays the last wavelet arrives a few ms
after the first wavefront, for instance, 5ms for a linear array of 3.1m length, and
25ms for a linear array of 12.7m length (Ahrens and Wierstorf 2015).

In contrast, in the case of HOA, the first wavefront is accurately reproduced over
a smaller area in the vicinity of the center of the listening area. It should be noticed
that this wavefront conveys only the low-frequency components. It is followed by a
short sequence of high-frequency wavelets, which are concentrated on its immediate
neighborhood (Fig. 2). Thus, the major difference to WFS reproduction is that there
is a temporal separation between the low- and high-frequency content3 which, more-
over, are coming from different directions. The low-frequency wavefront propagates
well in the desired direction, whereas the high-frequency wavelets arrive from the
directions of the loudspeakers.

In the frequency domain, the consequence of spatial aliasing is that the transfer
function of the system, as observed at a given listening point, is strongly altered above
the aliasing frequency, exhibiting many ripples similar to comb-filtering (Ahrens and
Wierstorf 2015). Furthermore, the spectrum distortions depend highly on the listen-
ing position. In addition, it should be remarked that, below the aliasing frequency,
the frequency response is not flat due to approximations introduced by WFS. This
deviation can be compensated by pre-filtering the signals that drive the loudspeakers,
but the correction will only be effective over a restricted part of the listening area.
Generally, near-field reconstruction is favored over far-field reproduction.

3.3 Properties of the Accurate Reconstruction Area

When observing the reproduction of a monochromatic plane wave as a function of
frequency (Spors and Ahrens 2008), it is observed that the wave is accurately synthe-
sized at low frequencies. As the frequency increases, artifacts similar to interferences
occur for both WFS and HOA. The consequence is that the area of accurate recon-
struction shrinks as a function of frequency for both WFS and HOA. However, as
noted above, the properties of the reconstruction errors differ remarkably between
the two technologies. In the case of HOA, the area of accurate reproduction remains
in the center of the loudspeaker array, which is thus free of artifacts whatever the

3This separation is probably related to the spatial-bandwidth limitation.
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frequency, whereas, in the case of WFS, it moves towards the direction opposite of
the most active loudspeakers.

3.4 Additional Errors

Spatial sampling is not the sole deviation from the ideal holophonic reconstruction.
Instead of planar arrays, linear arrays (i.e., 2.5D reproduction) are generally used.
This leads to an incorrect amplitude decay as a function of distance (Sonke et al.
1998; Wierstorf 2014). Further, with linear arrays of loudspeakers, truncation effects
occur since the size of the array is necessarily limited. The consequence is a reduc-
tion of the area of accurate reproduction and the creation of additional sources at
the edges, resulting in diffracted wavelets (Spors and Ahrens 2009). In addition, it
should be remarked that accurate reproduction of very low frequencies is not possi-
ble. Tominimize the spacing between loudspeakers, small loudspeakers are preferred
to the detriment of their low-frequency response. To overcome this limitation, one
or several subwoofers may be used, but the sound field reproduction can still only be
corrected at one specific position that is defined as the reference point (Ahrens and
Wierstorf 2015). Finally, approximations that are introduced in practical implemen-
tations of WFS or HOA are another cause of deviations from an ideal reconstruction
of the sound field. One example is the fact that it is assumed that loudspeakers are
omnidirectional, which real sources are not.

3.5 Reproduction of Focused Sources

Synthesis of focused sources is a specific case of sound-field reproduction (Spors
et al. 2009; Ahrens and Spors 2009; Ahrens and Wierstorf 2015). A focused source
is a virtual source which is located downstream of the loudspeaker array. The sound
field first converges to the source location (i.e., the focus point), and then diverges as
if it were created by a source at this position. In the area between the loudspeakers
and the source location, the reconstruction of the sound field is erroneous, in the sense
that the reconstructed wave propagates in the opposite direction to the expected one,
that is, from the focus point to the loudspeakers. On the contrary, the wavefront
synthesized downstream of the focus point is well reconstructed, with the exception
of spatial aliasing. However, the temporal properties of the artifacts differ from those
observed for non-focused sources. Actually, they precede thewavefront and thus lead
to pre-wavelets—as illustrated in Fig. 3. It should be noticed that the time distribution
of these pre-wavelets strongly varies as a function of the lateral position (i.e., the
x-coordinate) of the listener. Furthermore, the longer the array, themore pre-wavelets
there are. It has therefore been suggested to decrease the length of the loudspeaker
array to minimize the artifacts when synthesizing focused sources.
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Fig. 3 Illustration of sound-field reproduction of focused sources by a linear array with a loud-
speaker spacing of 10cm. Impulse response of the loudspeaker system in the horizontal plane.
Reproduced courtesy of Jens Ahrens, with permission of the Audio Engineering society, www.aes.
org (Ahrens and Wierstorf 2015)

3.6 Room Reverberation

So far, the focus of the discussion has been put on the reproduction of direct sounds.
The accuracy of the reproduction of room reverberation was not yet examined. In
the case of HOA, there are two main ways to create HOA signals to drive the loud-
speakers. One of them is to record natural sound scenes by 1st-order Ambisonics or
HOA microphones (e.g., Soundfield® or Eigenmike® microphones). The other one
is to derive synthetic HOA signals by processing pre-existing recordings of sound
sources. In contrast to Ambisonics,WFS is exclusively based on virtual sound scenes
represented by synthetic signals. In natural recordings, direct and reflected waves
are naturally mixed, reverberation is therefore present. In synthetic signals, artificial
reverberation is generally added, unless the reproduction space itself provides a per-
ceptually satisfactory reverberation. Accurate reproduction of sound fields requires
the introduction and fine control of artificial reverberation. The problem of creating
early reflections is similar to synthesizing sound sources, that is, early reflections can
be modeled as waves emitted by mirror images of the primary source (de Vries et al.
1994). All the limitations as were pointed out previously for non-focused sources
apply for the reproduction of early reflections as well. In addition, potential inter-
ferences between early reflections and the wavelets resulting from spatial aliasing
should be emphasized (Ahrens 2014; Ahrens and Wierstorf 2015). The fine time
pattern of reflections is not only blurred by these wavelets (which follow both direct
and reflected waves), but also preserving a pre-delay between the direct sound and
early reflections is difficult.

www.aes.org
www.aes.org
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Generally speaking, accurate reproduction of late reverberation has not yet been
implemented. Rough modeling is preferred. One solution consists in synthesizing
late reverberation by superimposing plane waves coming from directions equally
distributed around the listener (Sonke 2000). A limitation of this method is that it
does not allow the relative time of plane waves to be varied as a function of the
listeners’ positions. Yet, the method has been successfully applied for synthesizing
room modes (Ahrens 2014).

Garí et al. (2016) present an interesting comparison between real sources (more
precisely, an orchestra of loudspeakers) and their WFS reproduction as focused
sources in a concert hall (Detmold Concert Hall). The physical properties of sound
fields have been carefully examined both in terms of frequency response and spa-
tial distribution as a function of time. Parameters of room acoustics have also been
computed. It was concluded that for all these criteria, large deviations are observed
between the target sound field and its WFS copy. In addition, listening tests showed
that the differences are clearly perceptible.

3.7 Conclusion

It is now clear that spatial-audio technologies fail to perfectly reproduce the sound
field of a given real-world scenario, at least in the current state of their development.
Nevertheless, one may wonder whether this prevents them from creating SAIs. As
stated above, perception is based on an interpretation of sensory input. Thus, as
perception is able to resolve sensory ambiguities, it may as well overcome part of
the errors in sound-field reconstruction.

4 Interaction Across Sensory Modalities

Sound-field reconstruction is not the only aspect that matters in natural hearing.
Another one among others is, for instance, the listeners’ ability to interact with the
sound field, for instance via head movement or modification of the listening point.
Moreover, real-life listening is generally a multi-sensory experience. However, most
of the time, spatial-sound reproduction provides only auditory information, so that
information from other modalities is potentially in conflict with the auditory scene.
The fact, that the listener may be disturbed by this cross-modal mismatch, is con-
firmed by a study by Francombe et al. (2015) who investigated the attributes govern-
ing the perceptual differences between real and reproduced sound fields. Attributes
related to the visual and tactilemodalities are pointed out. Despite all this, the illusion
may still be effective. This raises several questions.

A first issue is to what extent and in what way auditory illusions are affected by
other sensory modalities, such as the visual, tactile, proprioceptive ones. Two cases
should be distinguished. On the one hand, when information from other modalities is
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congruent with the auditory scene, and on the other hand, when there is a mismatch
between auditory stimuli and other modalities. For the case of mismatch, it was
already shown that the perception of auditory stimuli can be influenced by visual
stimuli, and vice-versa.A famous example is the “ventriloquism effect”,which occurs
when an audio stimulus and a visual stimulus are presented at the same time, but
spatially separated (Howard and Templeton 1966; Thurlow and Jack 1973). The
perceived localization of the sound-source is modified, because the visual stimuli
interfere with the acoustic ones. More precisely, the sound localization is captured
by the visual modality. This illusion highly depends on the temporal and spatial
disparities between the audio and visual stimuli (Slutsky and Recanzone 2001). In
some rare cases, the sound may capture the vision, for instance, when the visual
stimulus is blurred (Alais and Burr 2004).

Another example of cross-modal interaction between hearing and vision is the
“McGurk effect”, by which the combination of a visual stimulus (lip movements
corresponding to the syllable [ga]) and an audio stimulus (corresponding to the sound
[ba]) results in an audiovisual percept which is neither [ga] nor [ba], but [da] (Mcgurk
and Macdonald 1976). There are many other illustrations of such perceptual biases
induced by acoustical or visual stimuli, such as the audiovisual bounce-inducing
effect (Sekuler et al. 1997; Grassi and Casco 2010), and the illusory flash (Shams
et al. 2000; McCormick and Mamassian 2008).

It should be noticed in the current context that hearing, as well as vision, can
capture perception.Welch andWarren (1980) suggested that such capture is governed
by the predominant modality associated to the task. For instance, for localization
seeing is predominant with regard to hearing. Further, it should be borne in mind that
situations with discrepancies between stimuli presented from the different sensory
modalities do not necessarily lead to one single unified percept. In other words, the
different sensory stimuli are only aggregated into one multi-sensory percept, if the
conditions of perceptual fusion are met (Lewald and Guski 2003). These conditions
are defined by a window-of-integration, the length of which depends specifically on
the temporal and spatial disparities of the stimuli.

A further question concerns the possibility of auditory illusions to be sufficiently
effective to infer an illusion in other modalities, that is, a kind of transfer of the
illusion from one modality to another—compare, for example, Suzuki et al. (2020),
this volume. All these issues deserve a deeper investigation to better comprehend the
mechanisms of multi-sensory illusions.

5 Sound-Field Reconstruction in Light of Perception

When assessing the performances of a spatial-audio system, the observation of the
reproduced sound field provides some information, but it is not sufficient to arrive
at a comprehensive assessment (Spors et al. 2013). Perceptual evaluation is needed
in addition, namely, not only to validate the physical results but also to provide new
insights into the properties of spatial-audio reproduction. Furthermore, results from
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physical and perceptual observation may be contradictory. Careful insight into these
contradictions raises at least the following two questions.

– If exact reconstruction of sound fields were achievable, would it ensure perfect
illusions, namely, an auditory scene free of artifacts and in full congruence with
the expected result?

– Otherwise, would inaccurate reconstruction systematically lead to poor illusions?

These issues are now discussed in light of selected examples.

5.1 Is Perfect Reconstruction Desirable?

As has been explained above, exact reproduction of sound fields over both the whole
audible bandwidth and over a wide listening area is still out of reach of current
spatial-audio technologies. Perceptual assessment of perfectly reconstructed sound
fields is therefore difficult. However, a study by Tucker et al. (2013) provides some
surprising initial answers. A listening test was performed to evaluate the influence
of spatial dithering (i.e., time misalignment of loudspeaker signals) on preference
judgment of HOA reproduction (4th-order HOA reproduction by a 12-loudspeaker
hemispherical array). Delays within a range of 0–8ms or 0–15ms were randomly
applied to the set of loudspeakers. Four audio samples (busy restaurant, train sta-
tion, public park, and church choir), recorded by an EigenMike® microphone, were
assessed by pairwise comparison based on a preference judgment (forced choice).
24 participants (12 experts and 12 non-experts) took part in the experiment. The
results suggest a tendency to prefer the dithered versions. By expert listeners, the
misaligned version is preferred by around 73% of the 16 trials. Non-expert listeners
do not exhibit a clear preference.

The paradoxical consequence is that perfectly accurate reconstruction of the sound
field may not be a proper solution. However, this experiment is a pilot study, and the
results deserve further investigation before drawing conclusions. It would have been
interesting to ask the participants about the perceptual attributes that motivated their
preference judgment. Moreover, one may wonder whether the authors of the study
really succeeded in achieving a perfect temporal alignment of the loudspeakers. Small
delays between the loudspeakers4 in the aligned version could then cause artifacts
(e.g., coloration or phasiness), which are potentially more perceptible than in the
misaligned version in which random delays tend to blur the artifacts. It has indeed
been shown by Start (1997) that introducing random delays between loudspeakers
can help to lower the perceptibility of spatial aliasing.

4Even though perfect temporal alignment of loudspeakers has been achieved, it is almost impossible
to guarantee this alignment for the signals at the entrance of the listeners’ ears, unless the listeners’
heads are fixed.



594 R. Nicol

Fig. 4 MasahiroMori’s “UncannyValley”.Reproduced courtesy ofGlennDickins,with permission
of the Audio Engineering Society, www.aes.org (Dickins et al. 2013)

5.2 The “Uncanny Valley” of Spatial-Audio Technologies

Instead of wondering whether perfectly reconstructed sound fields can reveal audi-
ble artifacts, a better question may be whether listeners become more sensitive to
small deviations when sound field reproduction comes close to perfect reconstruc-
tion but without fully achieving it. Indeed, perceptual assessment of virtual-reality
technologies suggests that people seem to be more tolerant of reproduction impair-
ments when the quality is low or medium. On the contrary, when the rendering
becomes very close to realism, the Quality-of-Experience (QoE) scores badly as
soon as small defects are perceived. This phenomenon is referred to as the “Uncanny
Valley”, namely, “the point where attempts to artificially reproduce human action
and interaction come uncomfortably close to realism” (Dickins et al. 2013)—see
Fig. 4. It should be remarked that this effect is potentially influenced by the rating
paradigm for QoE. One may wonder whether direct comparison between the same
impairments would lead to the same conclusions. Nevertheless, it is probable that
the technologies of sound-field reconstruction, such as WFS or HOA, have reached
the point of the uncanny valley.

In their article, Dickins et al. (2013) list up the factors which potentially cause
an uncanny sensation in spatial-sound reproduction for interactive communication.
(i), A first aspect is the rendering of space (spatial fidelity). Spatial distortion may
be a “road into the uncanny valley”. (ii), Latency is another factor, namely when
the congruence between close and far sources is lost, for instance, when the latter
appear with too low a temporal lag. (iii), Time invariance contributes to the uncanny
sensation as well. In natural experience, small movements of sources and listener
cannot be avoided, leading to fine temporal variations of timbre or localization. It is

www.aes.org
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therefore recommended to add varying textures to overcome artificiality. (iv), The
dynamic range, possibly reduced because of a low signal-to-noise ratio, may also
have an impact. In particular, the lack of low-level signals (i.e., very fine sounds
that are hardly audible) is a critical cue. (v), Eventually, perceptual continuity and
situational congruence are mentioned. It should be highlighted in this context that
the background components of the sound scene can be almost as important as the
foreground ones.

5.3 Illusions Despite Imperfect Reconstruction

Another question of interest concerns poorly reconstructed sound fields, which may
sound both pleasant and convincing in terms of spatial-audio imaging. Stereophony
is exemplary for such situations. The sound field recreated by a stereophonic system
over the whole listening area (i.e., the area encompassing the listeners’ ears) departs
noticeably from the one as induced by real sound sources. More exactly, contrary
to binaural technology, in stereophony, it is not intended to reconstruct the acoustic
signals at the entrance to the listeners’ ears. Yet, the sound information delivered
to the listeners is sufficient to convey the illusion of a sound scene in front of them
(Leakey 1959; Lipshitz 1986).

Early work suggests that stereophony and, thus, the stereophonic illusion were
rapidly accepted by the public (Leakey 1959). The principle of stereophony can be
summarized as an appropriate manipulation of the relationships between the loud-
speaker signals to the end of creating stereophonic illusions. As explained in Leakey
(1959), Lipshitz (1986), amplitude differences between the loudspeaker signals pro-
duce Interaural Arrival-Time Differences (ITDs) between the left and right ears of
the listeners in the sweet-spot area, particularly in the low-frequency range. Leakey
observed that the interpretation of stereophonic scenes (i.e., the localization of the
phantom sources) is mainly governed by ITDs.5 He also highlighted the importance
of small movements of the listeners’ heads, which provide variations of ITDs and
allow the listeners to solve localization ambiguities.

Similarly, it has been shown in Sect. 3 that sound fields synthesized by WFS or
HOA reveal inaccurate reconstruction of both time and frequency properties of the
sound scenes (Spors and Ahrens 2008; Wierstorf et al. 2012; Spors et al. 2009; Geier
et al. 2010; Ahrens and Wierstorf 2015), potentially leading to audible artifacts.
Furthermore, the comparison of sound fields synthesized by WFS and HOA shows
that the spatial and temporal properties of their aliased sound fields differ noticeably
(Spors and Ahrens 2008).

In the case of WFS, wavelets resulting from spatial aliasing spread over the entire
area behind the wavefront, whereas in HOA the aliased sound field is concentrated
in the immediate vicinity of the main wavefront, suggesting that the effects of spatial

5Since ITDs are particularly effective in the low-frequency range, it is not a good idea to replace
the two stereo loudspeakers by a common sub-woofer.



596 R. Nicol

aliasing may be more perceptible for WFS than for HOA. However, in the case of
HOA, there is both a temporal and a spectral separation between the low and high
frequencies in reproduced sound fields. Perceptual merging of the low frequencies
and high frequencies components is thus not guaranteed. Another potential conse-
quence of spatial aliasing is that the reconstructed sound field may exhibit more or
less variations as a function of the listening position, which may affect, for instance,
the sound level or the spectral content of the virtual source. This leads to audible
artifacts when the listener moves. It is therefore difficult to predict which technology
will induce the most perceptible defects.

The question of the perceptibility of the wavelets and pre-wavelets resulting from
spatial aliasing was examined by Ahrens and Wierstorf (2015) for the case of WFS.
Although the wavelets are clearly detectable in visualizations of the reproduced
sound fields, they are still likely to be inaudible. At least they are assumed not
to affect the perceived location because of the phenomenon of summing localiza-
tion (Blauert 1996), as long as the time delay between the main wavefront and the
wavelets is smaller than about 1ms. However, when the delay is in the range of 1–
20ms, the precedence effect (Blauert 1996) is acting, provided that the amplitude of
the wavelets is low enough in comparison with the first wavefront. Under these con-
ditions, wavelets are not perceptible. Yet, such components are probably associated
with reflections and, consequently, contribute to room perception.

In the case of focused sources, pre-wavelets are observed. Contrary to wavelets,
they are potentially highly perceptible. One reason is that they are unnatural. Another
one is that they precede themain wavefront. Thus, their audibility is hardly decreased
by the precedence effect and/or summing localization. Perceptual studies further
show that strong colorations appear (Ahrens and Wierstorf 2015). In addition, the
auditory event is split into two components, one localized at the focal point of the
focused source and the other one (a high-passed version) at the nearest edge of the
loudspeaker array. Click-like artifacts are also reported for long loudspeaker arrays.
These artifacts depend on the nature of the signals, thereby signals with transients
increase the perceived effects.

Surprisingly, localization accuracy is preserved (Wierstorf et al. 2012, 2017).
The mean localization error measured for a WFS array with a loudspeaker spacing
of 17 and 34cm (corresponding to an aliasing frequency around 1kHz and 500Hz)
is 1◦ and 3◦, respectively, in the case of non-focused sources—Fig.5. Moreover,
localization accuracy remains good within the whole listening area delimited by the
loudspeaker array. To explain these results, Ahrens and Wierstorf (2015) highlight
the fact that a significant part of the information relevant for spatial perception is
contained in the frequency range that is synthesized correctly.

NFC-HOA exhibits lower localization accuracy with mean errors of 3.8◦ and
7.4◦ for loudspeaker spacings of 17 and 34cm, respectively. As for stereophony,
estimation of interaural cues, that is, interaural arrival-time differences (ITDs) and
interaural level differences (ILDs), brings further insight into these results (Fig. 6).
Indeed WFS performs better in reconstructing a valid ITD for the low-frequency
range (up to 1.3 kHz). Furthermore, in the case of 7th-order NFC-HOA reproduction,
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Fig. 5 Localization results measured for WFS and NFC-HOA sound field synthesis. The circular
array of loudspeakers is depicted by small circles. The virtual source is depicted by a large circle
(point source) or three parallel lines (plane wave). For each listening position, an arrow is pointing
in the direction fromwhich the listener perceives the auditory event. The color of the arrow displays
the absolute localization error. The average error is indicated beside the arrows for every row of
positions.M refers to the encoding order of HOA synthesis. Reproduced courtesy ofWierstorf et al.
(2017)
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Fig. 6 ITD and ILD estimates for WFS and NFC-HOA sound field synthesis of one noise pulse.
The ITDs were calculated up to 1.3kHz, ILDs above 1.3kHz. Each line displays the ITD or ILD
histogram for one frequency band (vertical axis). Results are given for one listening position (–1m,
–0.75m) in different sound fields. Reference source refers to the target sound field (point source,
plane wave or focused source). ITDs and ILDs for these reference sources are compared with those
obtained for the sound fields synthesized by WFS or NFC-HOA. Reproduced courtesy of Hagen
Wierstorf (Wierstorf et al. 2017)
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ITD values are spread out, causing a splitting-up of the virtual source into two
components (Ahrens et al. 2010).

A recent study by Frank and Zotter (2017) revisits the definition of the sweet spot
in the light of perception. The sweet-spot area can be physically defined as being
delimited by a given threshold of the error of sound-field reconstruction. Frank and
Zotter (2017), however, propose a new definition based on a perceptual criterion as
follows. “The sweet-spot area is measured as the area within which the reproduced
sound scene is perceived as plausible”. They designed an experiment in which the
listener had to explore the listening area in order to identify the boundaries of the
sweet-spot area. In the case of a dry audio scene, plausible means that localization
of auditory events is preserved in front of the listener. In the case of a reverberant
scene, plausibility judgment is based on both frontal localization of direct sound
and envelopment of reverberation (Frank and Zotter 2017). For the experiment, a
2D-HOAI system composed of 24 loudspeakers was considered. 1st-, 2nd and 5th-
order Ambisonics were compared. The result is that the sweet-spot area based on
the plausibility criterion appears to be larger than the one based on the threshold
of the physical error. As expected, its size increases with HOA order. The authors
explain that HOA is more of an amplitude-panning method rather than a sound-field
synthesis method. The consequence is that, as for stereophony, level differences
between loudspeakers create interaural arrival-time differences at low frequencies.
The localization of auditory events is determined by summing localization.

Further perceptual assessment of sound fields reproduced by spatial-audio tech-
nologies revealed another uncanny result. Garí et al. (2016) describe a listening test
in which the perception of real loudspeakers and focused sources, synthesized by
WFS in a concert hall, was compared. Preference judgments were collected. They
show a significant tendency of preferringWFS, suggesting that illusions can be even
better than reality. However, preference is a multi-factorial construct. A comprehen-
sive evaluation including further perceptual attributes has to be performed before
detailed conclusions can be drawn.

All these examples illustrate that the link between physical and perceptual prop-
erties of the sound field is not straightforward. Particularly, it appears that the various
inaccuracies of sound-field reconstruction are not equivalent from a perceptual point
of view. Actually, some of them are rated as strongly unpleasant, whereas others are
not even noticed.

6 Spatial Audio in the Light of Auditory Scene Analysis

To better understand why there may be such a discrepancy between physical mea-
surement and perception, the sound field created by a spatial-audio system must
be examined more carefully. When a sound field is reproduced by a loudspeaker
array, the acoustic pressure at any location is the result of the superposition of all the
sound events emitted from all loudspeakers. Even when the resulting sound field is
identical to a sound field produced by real sound sources, the situation is strongly



600 R. Nicol

different in terms of auditory scene analysis (Bregman 1990). Furthermore, in natu-
ral hearing, most sound scenes are composed of many acoustical events, including
reverberation. The auditory systemhas developed efficient processes to extractmean-
ing6 from this complex situation. In other words, the auditory system has the ability
to separate sound components or to reorganize them into streams. Consequently,
our brain is potentially able to discriminate the contributions of individual auditory
streams, which may lead to unexpected illusions. This is, for example, illustrated by
the auditory illusions that Deutsch (1983) has reported.

6.1 Summing Localization versus Association Model

Theile suggested that such streaming phenomena also happen in stereophonic repro-
duction (Theile 1980, 1991; Wittek et al. 2007). He opposed the conventional theory
of summing localization, as described by Blauert (1996), with a new model: the
“Association Model”—(Fig. 7). The acoustic pressure observed at each ear of the
listener is the sum of the two waves emitted by the left and right loudspeaker. The
main idea of summing localization is that, instead of perceiving two sound events
corresponding to the two loudspeakers, the listener perceives one single auditory
event, i.e., the “phantom” source, which is localized as a function of the interaural
relations of the resulting waves at the listener’s ears. The detailed computation of
the time/phase and amplitude differences between the left- and right-ear signals as a
function of the stereophonic signals driving the loudspeakers is, for example, given
in Lipshitz (1986). These interaural differences are then interpreted in terms of local-
ization cues, which leads to a direct relationship with the perceived localization of
the phantom source (Blauert 1996). This theory relies on the assumption that the two
sound components induced by the left and right loudspeakers at each ear are merged
into a sole event and further analyzed as such, which is allowed by the fact that the
signals of the two loudspeakers are coherent and differ only by small time and/or
amplitude shifts.

This assumption is reconsidered by the association model. In this model, it is
argued that the auditory system is able to separate the components of the left and
right loudspeakers at each ear. The subsequent auditory processing is then decom-
posed into two steps. (i), The left and right ear signals are individually spatially
decoded (i.e., inverse binaural filtered), thus allowing for extraction and localiza-
tion of the contributions of the left and right loudspeakers—location association.
(ii), The similarity of the loudspeaker signals leads to a merger that results in one
single auditory event, namely, the phantom source. The latter process is based on
high-level auditory scene analysis—Gestalt association. The time/phase and ampli-
tude relations between the loudspeaker signals are extracted independently of the
crosstalk between the loudspeakers and the ears, thanks to their spatial separation
achieved during the first stage, the location association. One consequence is that the

6Meaning is what the auditory percepts mean to the listeners in their current situation.
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Fig. 7 Association model proposed by Theile. Reproduced courtesy of Günther Theile, with per-
mission of the Audio Engineering Society, www.aes.org (Theile 1986)

perceived direction of the phantom source is no longer interpreted as a function of the
interaural differences, but as a function of the relationships of primary stereophonic
signals emitted by the loudspeakers. Another consequence is that, since the loud-
speaker signals are properly separated and localized, comb-filter coloration, which
would occur when summing up the delayed versions of the same signal at each ear,
is suppressed (Wittek et al. 2007).

The association model suggests that the analysis of stereophonic signals combine
both segregation and fusion of the elementary components of each loudspeaker.
Segregation acts in the sense that the loudspeakers are identified as two sources
localized at separate positions, thanks to the binaural differences associated with
each source. Localization means that spatial decoding of the loudspeaker signals is
performed, in that the Head-Related Transfer Functions (HRTFs) from the left and
right loudspeaker to each ear are inverted. As a result, the differences introduced by
the wave propagation between the loudspeakers and the listener’s ears are canceled,
which increases the coherence between the two auditory streams and, consequently,
leads to fusion. In other words, segregation is linked to spatial information, whereas
fusion concerns the signal content itself—mainly spectral information. This model
supports a distinctionbetween an auditory “where” subsystemand an auditory “what”
subsystem, as described in Kubovy and Van Valkenburg (2001). What is new in this
theory is that the acoustic signal at one of the listener’s ear is not processed as awhole.
Despite the fact that one single auditory event is finally perceived, an underlying
separation is presumed to be effective during the process of perception.

Assuming that the association model is valid, the question arises of whether this
observation also holds for multi-loudspeaker reproduction such as WFS or HOA. In

www.aes.org
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a more general sense, the question is what happens when the number of loudspeakers
becomes greater than two? The issue of the auditory fusion of signals coming from
multiple loudspeakers has already been raised byWillcocks andBadger (1983), when
investigating the localization of phantom sources in early surround systems. This
situation is similar but not equivalent to the perception of a sound source in a room,
where plenty of sources are added in terms of reverberation. Binaural decoloration of
the primary source is then observed despite the high number of coherent additional
sources. However, as remarked by Wierstorf (2014), the association model cannot
explain this phenomenon.

Indeed, Wierstorf observed that separation is also effective for WFS and HOA
reproduction, suggesting that the auditory system is aware of the “superposed” nature
of the acoustic input (i.e., the fact that it is composed of several elementary wave-
fronts), which is then interpreted accordingly. This result questions the validity of
the binaural assessment of multi-loudspeaker reproduction of sound fields (Wiestorf
et al. 2013). Indeed there may be a perceptual difference between the natural and the
synthetic superposition of elementary waves. The method was validated in terms of
localization, but the perception of other perceptual attributes was not yet assessed.
A second question is whether there is a maximum number7 of loudspeakers beyond
which separation is no longer possible? It is likely that, as the number of sources
becomes too high, separation is made difficult, if not impossible.

This is a plausible explanation ofwhy coloration or phasiness artifacts are reported
for WFS reproduction, whereas coloration is judged less annoying in stereophony
(Wittek et al. 2007). The aforementioned study ofTucker et al. (2013),which suggests
a preference for dithered versions of HOA sound reproduction, supports the idea that
the interpretation of sound fields reproduced by spatial-audio technologies would
need increased separation—which is provided by intentional time misalignment in
this case—between the individual contributions of the loudspeakers. Yet, a better
understanding of the underlying mechanisms is required. Particularly, a thorough
investigation of the factors (e.g., the number of loudspeakers, their interspacing and
signal relations) that govern the separation or merging of loudspeaker contributions
is necessary. Further, the influence of the current tasks and/or the cognitive states of
the listeners should be evaluated (Wierstorf 2014).

6.2 Spatial Re-Organisation of Auditory Streams

The previous section provided a first insight into auditory scene analysis. It was
realized that the interpretation of sound scenes may involve segregation or fusion
of audio components. An important consequence is that these components are then
spatially re-organized into streams, meaning that the perceived direction of one given
component may be co-determined by other features than the location of the sound

7From speech recognition, it is known that humans can segregate up to 6 speakers in multi-speaker
scenarios, i.e., in cocktail-party situations (May et al. 2013).
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event, for example, by the spectral content. This is illustrated by the auditory illusions
as studied by Deutsch (1983).

Auditory illusions are revealed in experiments on the perception of complex sound
scenes. A complex sound scene is composed of at least two streams. Contrary to
experiments based on isolated sound stimuli, perception of complex scenes shows
the existence of powerful high-level mechanisms that may strongly modify the audi-
tory percept in a way that has little to do with the sound event. Complex stimuli are
more representative of natural hearing. In real-life listening, the interpretation of a
sound scene may be ambiguous. To solve these ambiguities, additional information
(i.e., assumptions, or top-down information) are employed. Moreover, in real-life
situations, sound alterations are naturally interpreted as information, since these
alterations reflect events related to the sound wave propagation, such as movement
of sources, presence of obstacles. In Deutsch’s experiments, the sound stimuli were
artificially modified, leading to the distortion of the associated percept. This distor-
tion provides some insight into the mechanisms of auditory scene analysis. Some
examples are discussed in the following.

Deutsch (1983) studied the perception of two streams, emanating from two dif-
ferent locations. In practice, the experiments were based on headphone listening.
This allowed precise control of the signals perceived by the left and right ears. The
“Octave Illusion” was observed in presence of two sinusoid signals, one at 400Hz
and the other one at 800Hz. These signals were presented alternately to the left and
the right ear—Fig. 8a. Most listeners perceived two streams, namely, a sequence of
higher tones on the right ear, alternating with a sequence of the lower tones on the
left ear—see Fig. 8b. This percept is a clear distortion of the sound stimulus.

Fig. 8 The octave illusion—(a), sound stimuli presented to the listeners’ ears, (b), most commonly
observed associated percept. Adapted courtesy of Diana Deutsch, with permission of the Audio
Engineering society, www.aes.org (Deutsch 1983)

www.aes.org
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Fig. 9 The octave illusion—Model describing the two mechanisms involved, one of them deter-
mining the pitch and the other one the perceived location. Adapted courtesy of Diana Deutsch, with
permission of the Audio Engineering Society, www.aes.org (Deutsch 1983)

The illusion depended on the individual listener. Alternative perceived patterns
were reported. Individual differences have been found to correlate with handedness,
that is, complex patterns were most often observed among left-handers. Indeed,
these results can be partly explained by left/right hemisphere dominance. Even more
troubling is that the illusion was generally not modified if the left and right sig-
nals were reversed, confirming that the perceived location depended very little if at
all on the location of the sound events. Furthermore, the octave illusion was also
observed despite crosstalk, that is, with the sound stimuli being presented over two
loudspeakers, separated or arranged side-by-side in an anechoic environment. When
the listeners turned their heads, the illusion was maintained, except when facing
one loudspeaker. An analog illusion was achieved with complex tones. However,
reverberant environments reduced the effect. Parameters potentially influencing the
percept, such as frequency interval, time delay, and relative amplitude, were carefully
examined by Deutsch.

The model proposed by Deutsch explains the octave illusion as the combination
of two separate mechanisms (Fig. 9). One of them is responsible for pitch determi-
nation (i.e., to determine “what” pitch is heard). The other one takes care of sound
localization (i.e., to determine “where” the auditory event is positioned in the per-
ceptual space—compare (Kubovy and Van Valkenburg 2001)). The perceived pitch
results from a mechanism of side dominance, by which the listener focuses on the
information in one ear, for instance, the right one. Any information presented to the
other ear is then suppressed. The mechanism responsible for localization is governed
by frequency, that is, the auditory event appears in the ear that perceives the highest
frequency. Further investigation suggested that the ear dominance effect is useful
to counteract interferences by reflections and reverberation, as in the case of the
precedence effect. As regards the frequency effect on sound localization, it may be
due to acoustic shadowing by the listeners’ heads, which low-pass filters the sig-
nals perceived by the contralateral ear. Therefore, in natural listening, the ear which
receives the highest frequencies is naturally associatedwith the source direction.New

www.aes.org
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evidence of these two separate processing steps for the identification of the sound
stimuli and for the spatial location of the auditory events has been contributed by
observations by means of functional Magnetic Resonance Imaging (fMRI)—Zatorre
et al. (2002), Wang and Kuriki (2012).

A second example of spatial re-organization is the Scale Illusion. A sequence of
ascending frequency tones is presented to the listener, with successive tones alter-
nating from one ear to the other. A second sequence of descending frequency tones
is presented simultaneously in the same way but to the opposite ear. The most often
reported pattern consists of two separate melodies, one of them composed of the
highest tones and localized in the right ear, and the other one composed of the lowest
tones and localized in the left ear. In this illusion, localization is exclusively governed
by frequency, resulting in merging if the frequency is similar, and in segregation oth-
erwise. The usefulness of thismechanism is justified to prevent room reflections from
blurring localization. First-order cues of localization are thus discarded in favor of
secondary cues, such as content similarity. Eventually, Deutsch (1983) studied the
influence of the temporal relationships between the signals presented to the left and
the right ear. One example is the situation where the melody is accompanied by a
drone (i.e., low-frequency musical accompaniment). She showed that the ability to
identify the melody, meaning that the listener separates the melody from the drone
(i.e., the “drone effect”) depends on the temporal relationships between the left and
right signal. This illustrates that temporal separation helps to segregate sound com-
ponents. Indeed, in natural listening, sources that are spatially separated create strong
temporal separation in the signals perceived by the listener.

Themain lesson that can be learned from these observations is that, in certain situ-
ations, primary cues of localization can be overwritten due to high-level processes of
auditory scene analysis (segregation or fusion), leading to a perceptual remapping of
sound components (Moore 2007). As illustrated by the octave and the scale illusions,
the similarity of the frequency content has been shown to act as a very powerful cue
for grouping, despite the spatial separation of the acoustic sources. These auditory
illusions have several potential implications for spatial-audio technologies. Repro-
duction of primary cues of sound localization appears less essential than at first sight.
For instance, reproduction inaccuracies of spatial information can be overcome by
perceptual-grouping laws (e.g., spectral similarity). A better knowledge of auditory
scene analysis could, therefore, help to improve spatial sound reproduction. The
major limitation is the dependency on the individual listener, which is more or less
unavoidable whenever perception is involved.

The predominance of spectral content over spatial cues questions the relevance of
studies that examine the benefit of spatial-audio reproduction, such asWFS or HOA,
to provide or enhance source unmasking, either with or without the visual modality
being involved (Sanson 2011; Palacino et al. 2016; Vilkaitis and Wiggins 2017).
Spatial parameters must be assessed in comparison with the spectral content and
other parameters that may govern the auditory scene analysis. The laws governing
the fusion or the segregation of loudspeaker signals as a function of their inter-
relationships (e.g., similarities in the spectral contents and arrival-time or amplitude
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differences) should also be investigated for a better understanding of the perception
of spatial position and timbre.

7 Perceptual Assessment of Spatial-Audio Technologies

In the previous section, auditory illusions were examined on the basis of the sound
field present at the entrance of the listeners’ ears, more precisely in the light of the
various processes (both bottom-up and top-down) in which the percept is elaborated
from acoustic inputs. Now the focus of the discussion will be put on the percept by
investigating the perceptual properties of the auditory scenes generated by spatial-
audio technologies. But, to do this properly, tools are needed to observe and describe
SAIs. A straightforward way is perceptual assessment of the results of spatial-audio
reproduction. This section will present an inventory of the various methods and tools
that are dedicated to measure the perceived features of reproduced spatial-sound
scenes. Further details can be found in Raake and Wierstorf (2020), this volume.

7.1 Experimental Parameters

A preliminary remark is necessary regarding the experimental conditions of percep-
tual assessment.When reviewing studies on the perception of spatial-sound reproduc-
tion, it is seen that the material under assessment is strongly heterogeneous (Rumsey
2002). Often a single sound source is considered rather than a complex scene with
many audio components. The audio content can be realistic (i.e., representative of
signals in everyday life) or of laboratory style (such as random noise or sinusoidal
signals). The reproduction system can also be real or simulated. For instance, multi-
channel audio systems based on complex reproduction setups, e.g. with an excessive
number of loudspeakers, are sometimes emulated by binaural synthesis (preferably
dynamic binaural synthesis, i.e., in combination with head-tracking) (Wittek et al.
2007; Wiestorf et al. 2013). Most of the time, pure audio stimuli are used, but the
influence of other sensory modalities is also be considered in some cases. All these
parameters noticeably influence the character of the perceived auditory scene.

7.2 Perceptual Attributes

The perception of spatial-audio reproduction is multidimensional, which means that
it is governed by many attributes. Identifying these attributes is a key question,
investigated by many studies for more than 40years. Although a wide and some-
times confusing variety of attributes has been proposed, some general trends can be
observed. At least, attributes can be grouped into a limited number of categories,
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which are quite similar from one study to another. Berg and Rumsey (2003) point
out three main perceptual dimensions: (i), timbral attributes (relating to the tone
color), (ii), spatial attributes (relating to the three-dimensional nature of the sound
sources and their environments) and (iii), technical attributes (relating to distortion,
hiss, hum, etc.). However, it has been suggested that timbral attributes dominate the
rating of basic audio quality over spatial attributes by 70 over 30% (Rumsey et al.
2005).

In an attempt of standardization, the Spatial-Audio-Quality Inventory (SAQI) pro-
poses a consensus list of 48 attributes for the perceptual assessment of virtual sound
environments (Lindau et al. 2014; Lindau 2014). The verbal descriptors were gath-
ered by a focus group of 20 German-speaking experts. The vocabulary was then
also translated into English and French. One year later, in Zacharov and Pedersen
(2015), 401 attributeswere collected from 22 studies. Amethod of semantic textmin-
ing was applied to identify common meanings among attributes. These were then
classified into five main clusters, namely, (i), spatial (distance and depth, presence,
spatial impression, clarity, reverberance, width), (ii), timbre (coloration, tone color,
sharpness, hardness, warmth), (iii), loudness, (iv), artifacts, and (v), hedonic (appeal-
ingness, naturalness, pleasantness, beautiful/ugly, subjective preference, degree of
liking, realism).

Alternatively, twomain categories can be distinguished, namely, (i), attributes that
are related to a physical property of either the sound source, the acoustic space or the
sound reproduction system (e.g., timbre, source location, source width, room effect),
and (ii), affective attributes that concern theway inwhich the listeners’ psychological
or emotional state is modified by sounds (Nicol et al. 2014).

All these perceptual attributes are used in psychoacoustic experiments. Listeners
are asked to rate a selection of audio samples with a subset of attributes. Ratings
based on these attributes lead to both a qualitative and a quantitative representation
of auditory scenes. Perceptual attributes thus provide an evaluation grid allowing to
describe the perceived features of SAIs.

7.3 Models

Instead of running perceptual-assessment experiments for collecting listeners’ judg-
ments, models can be used to predict attribute ratings from acoustic signals. The input
are either the signals that drive the loudspeakers, or the acoustic pressure measured
at the entrance to the listeners’ ears. For spatial-audio reproduction, models focus on
spatial attributes, in most reported experiments the spatial positions of virtual sound
sources. One of the early models was proposed by Makita (1962) for the estimation
of the perceived direction of the phantom source created by a stereophonic system. In
his general meta-theory of localization, Gerzon (1992) extended Makita’s model to
the case of multichannel sound reproduction. He introduced two criteria, namely, the
velocity vector and the energy vector. These can be interpreted as spatial barycen-
ters of incoming acoustic waves at the listening position. The vector direction points
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to the perceived direction of the virtual source. Its magnitude measures the spatial
spread of the reproduced sound field, namely, if its norm is close to one, it means
that the sound energy is focused on a few loudspeakers.

The velocity vector is computed from the amplitude and phase signals of loud-
speakers and is therefore similar to a low-frequency criterium, whereas the energy
vector can be seen as its high-frequency version, in which the energy of loudspeaker
signals is considered instead and the phase relationships are discarded. The velocity
and energy vectors are commonly used to assess HOA reproduction. These localiza-
tion criteria were reformulated by Kearney (2013) for off-center listening positions
and used to assess the perceived height achieved by HOA sound-field reproduction
(Kearney and Doyle 2015).

Binaural auditory models have also been developed to reproduce bottom-up and
top-down processing of the auditory system (Kohlrausch et al. 2013; Søndergaard
and Majdak 2013). One category of models focuses on the prediction of perceived
localization. For instance, the binaural-activitymap (Takanen et al. 2014a) represents
the instantaneous activation as a function of time and frequency on a left-right 1D-
map. Takanen et al. (2014b) showed that binaural-activity maps can be exploited for
an estimation of the localization error at various listening positions (both center and
off-center) in WFS and NFC-HOA reproduction. Moreover, binaural-activity maps
allow visualizing coloration artifacts. Further modeling has been proposed in the
Two!Ears project (http://twoears.eu) for both localization and coloration prediction
(Raake et al. 2014; Raake and Wierstorf 2016).

7.4 Indirect Assessment

Rating perceptual attributes is a direct assessment, that is, the listeners are fully
aware that they are performing an evaluation of an auditory scene. The alternative
is indirect assessment, in which no evaluation tasks are formally assigned to the
participant. Information about the perceived features of the auditory scene is inferred
by observing reactions and behavior of the test listeners (Faure 2005; Gonot 2008;
Guillon 2009). For instance, the listeners can be asked to perform a given task in
relation to the sound scene (e.g., to count the sound components, or to memorize
some information). Their success rate is then interpreted in terms of the auditory-
scene features. In such experiments, it has, for instance, been shown that the response
time to localize virtual sources in binaural synthesis is a measure of the quality of
the HRTF set (Guillon 2009).

Furthermore, neurophysiological measurements (e.g., electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS), and Peripheral Autonomic
Nervous System (PANS) signal acquisition) have been used to obtain insight into
brain activity or physiological parameters such as heart rate, blood pressure, eye
movement, skin conductance, respiration features. EEG/MEG is based on measur-
ing the electrical/magnetic activity along a scalp, whereas fMRI and fNRIS observe

http://twoears.eu
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blood flows that accompany neuronal activity. EEG and MEG provide data with a
high time resolution in the millisecond range, but with poor spatial resolution. By
contrast, high spatial but low time resolutions are achieved by fMRI and fNRIS. All
these methods have a high potential for investigating the perception of reproduced
sound fields. It should be remarked that fMRI measurement is not compatible with
multi-loudspeaker reproduction because of its operating noise and the risk of mag-
netic interferences with the loudspeakers, but this limitation can be overcome with
sound-field reproduction simulated by binaural synthesis (Wiestorf et al. 2013), in
combination with appropriate headphones.

Neurophysiological methods are considered as a promising way of investigating
auditory perception, for instance, in the field of quality-of-experience (QoE) assess-
ment (Akhtar and Falk 2017; Laghari et al. 2013). Brain activity was observed with
EEG during an evaluation of speech degradation (Antons et al. 2010). Their results
provided evidence that noise that is not perceived on a conscious level (i.e., behav-
ioral data do not indicate that the stimulus is perceived as degraded) is nevertheless
processed subconsciously in a certain percentage of the trials. This suggests that EEG
can be used to detect minimal differences in audio assessment. A study by Gupta
et al. (2016) showed that some EEG features are correlated with emotion primitives
(i.e., valence and arousal). They were successfully used to predict the influence of
human factors (i.e., users’ perception, emotional and mental state) on a QoE score
for a comparison of text-to-speech and natural speech. In a similar study, prefer-
ence judgments were related to fNRIS features. More specifically, activation of OFC
(orbitofrontal cortex) signals was observed in a case of valuation-based decision
making (Laghari et al. 2014).

However, so far there have only been a few studies that implemented thesemethods
to assess spatial-audio technologies. A first study compared spatial-response fields
of the primary auditory cortex to virtual sound sources synthesized with individual
and non-individual HRTFs in ferrets (Mrsic-Flogel et al. 2001). It was shown that
the responses obtained with an animal’s own ears differed significantly in shape and
position from those obtained with another ferret’s morphology. More recent studies
have confirmed a positive correlation between various levels of accuracy of spatial
sound reproduction (e.g., individual HRTF vs. generic HRTF vs. impoverished local-
ization cues (Palomäki et al. 2005; Wisniewski et al. 2016), natural versus artificial
cues of auditory motion (Getzmann and Lewald 2010), individual binaural versus
stereo recordings for sound externalization (Callan et al. 2013)) and the activity of
the auditory cortexmeasured either byMEG, by EEG or by fMRI.Most of the results
reported above were obtained by using binaural synthesis. Sound-field reproduction
by multi-loudspeaker systems has not yet been investigated in this context.

Future studies of this kind might be used in two ways, that is, either to observe
the activity of the auditory cortex or to measure the affective state of the listener (i.e.,
emotion, preference). Beyond the comparison of neurophysiological responses with
auditory illusions and real sound sources, all these methods are of particular interest
for a deeper understanding of the perceptual mechanisms of auditory illusions.
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8 Perceptual Properties of Spatial-Audio Illusions

In the following, the properties of auditory percepts created by spatial-audio repro-
duction are investigated by analyzing the results of perceptual studies. Firstly, those
perceptual attributes are considered that have been shown to govern our perception of
auditory scenes rendered by spatial-audio technologies—see Sect. 7.2. Many dimen-
sions are involved here, such as the sound sources on their own (identity, spectral
content and semantics of the signal radiated, etc.), the spatial properties of these
sources (location, movement, directivity, size, etc.), and the acoustic environment
as conveyed by reflected sound (size and type of the room, presence of absorbing,
reflecting or diffracting surfaces, etc.).

It is now discussed how these perceptual attributes are rendered and controlled
in SAIs, with a particular focus on spatial-related attributes. However, an additional
question arises at this point of the discussion, that is, to what extent is the listener
fooled? Controlling the localization of virtual sources is one issue, but another issue
is to check whether the listener is aware of the “artificiality” of the illusion. Since
auditory illusion means that sensory data are manipulated to infer a given percept
that is more or less distinct from the physical reality,8 it is necessary to evaluate to
what extent the listener is aware of this manipulation. In other words, one should
ask whether the illusion is successful. Some perceptual attributes are correlated to
this question, for instance, the authenticity or the plausibility of the auditory scene,
also its naturalness, and its presence (Lindau et al. 2014). This issue is examined in
a second step.

8.1 Spatial and Timbral Attributes of Spatial-Audio Illusions

The method of Repertory-Grid Technique (RGT) has been used to identify per-
ceptual attributes relevant for multichannel sound (Berg and Rumsey 1999). From
6–17 attributes were collected for each individual listener. The predominant cate-
gories concern artifacts (e.g., clean sound vs. chirpy, squeaky, unnatural sound) and
localization. Other attributes were associated with coloration (original vs. filtered,
balanced vs. unbalanced frequency response), distance (far vs. close) and reverber-
ance (dry vs. reverberant). Principal-components analysis (PCA) of attribute ratings
suggested that the perceptual space is governed by two main dimensions, one of
them being related to a combination of artifacts and distance, the other one related to
source localization. Perceptual dimensions of WFS reproduction were also explored
in the particular case of focused sources (Geier et al. 2010; Wierstorf et al. 2013).

8A kind of “trompe-l’oeil” that is, cheating, yet, here not of the eyes but of the ears.
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Azimuth

Evaluations of spatial-audio reproduction often concern the source localization, that
is, most studies focus on the perceived azimuth of virtual sources. The accuracy of
azimuth localization has been extensively investigated in sound fields reproduced
by both WFS and NFC-HOA (linear and circular arrays)—Wierstorf et al. (2017,
2012). The localization error was measured for virtual point sources, plane waves,
and focused sources. The influence of the listening position was also examined.WFS
reproduction achieves perceptibly lower errors than HOA. The mean errors are less
than 2◦ for a loudspeaker spacing of around 20cm and 3◦ for a 40cm spacing. This is
close to the localization accuracy observed for real sound sources. The localization
accuracy in WFS remains good within the whole listening area, but it decreases
significantly for focused sources, where the mean error is generally greater than 10◦.
For most of the conditions, NFC-HOA reproduction exhibits larger errors thanWFS.
That is, in NFC-HOA the mean error is 3.8◦ for a 17cm loudspeaker spacing and
7.4◦ for a 34cm spacing). Furthermore, localization accuracy depends on the listener
position.

In addition, as it is known that higher-order Ambisonics components improve
the accuracy of sound-field reproduction, one may then wonder to what extent the
accuracy of localization is also enhanced. Several studies have examined this question
(Braun and Frank 2011; Bertet et al. 2013), comparing 1st-order to 4th-order HOA
systems, and showing a significant increase of localization accuracy as a function of
the maximum order of Ambisonics components. However, the order of the highest
components that are required to ensure an accuracy equivalent to the localization of
real sources is still an open issue.

Elevation

Localization in the vertical plane was also assessed for WFS (de Bruijn 2004; Rohr
et al. 2013) and HOA (Pieleanu 2004). The height of virtual sources is effectively
reproduced by both systems.

Distance

Although earlier work questions the ability of WFS to reproduce sound distance in
the specific case of focused sources (Wittek et al. 2004),more recent studies assessing
the perceived distance of sound sources synthesized byWFS (Moulin et al. 2013a, b;
Rébillat et al. 2011, 2012) and HOA (Kearney et al. 2012) have shown that distance
perception is effective in both technologies. Lopez et al. (2014) compared distance
rendering of WFS and Vector-Base Amplitude Panning (VBAP) and confirmed that
WFS is more efficient than VBAP for the simulation of a sense of distance. As with
azimuth, localization performances for both height and distance are close to what is
achieved with real sources.
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Width

Besides, it has been shown that the perceived width of a virtual source created
by a 2nd-order HOA system can be controlled by appropriate filtering, namely,
by introducing wave dispersion (Zotter et al. 2014). In the case of sound fields
synthesized by WFS, Nowak et al. (2013) assessed the perception of two attributes,
namely,ASW(Apparent SourceWidth), that is the spatial extent of the auditory event,
and LEV (Listener Envelopment). These attributes are related to the perceived quality
of rooms and, consequently, that of spatial sound fields. It was observed that their
perception in virtual sound fields is similar to that in real sound fields as produced in
concert halls, in particular, regarding the influence of early and late reflected sounds.

Timbre

In addition to the spatial properties of auditory scenes, timbre is another attribute
receiving a lot of attention in perceptual assessments of spatial-audio technologies.
Indeed, since the sound field reproduced results from the delayed superposition of
several elementary waves associated to the different loudspeakers, comb-filtering is
likely to occur and may lead to timbre distortion (i.e., coloration). This applies to
stereophony as well toWFS or HOA, but the perceived effect depends on the number
of loudspeakers. As illustrated byWittek et al. (2007), who compared the perception
of coloration in stereophonic and WFS reproduction, timbre distortion is stronger
for WFS than for stereophony. A solution was proposed by the authors with the
Optimized Phantom Source Imaging method, in which high frequencies (i.e., above
the aliasing frequency) are reproduced by a subset of the WFS array. This allows for
a reduction of the perceived coloration. Nevertheless, as noticed in Wierstorf et al.
(2014), the perception of coloration is relative, that is, coloration is always evaluated
in comparison with a reference. If no direct comparison is available, it may not be
perceptible and the timbre is judged plausible.

In the same way, coloration is more audible if the listener or the source moves.
Wierstorf et al. (2014) measured the perceived coloration (rating of perceived tim-
bral differences based on a MUSHRA paradigm) of a WFS system as a function of
the loudspeaker spacing within the range of 0.3–67cm, and of the listening posi-
tion. The experiment revealed that coloration was highly perceptible for most of the
experimental conditions. For a noise stimulus, coloration was always audible, even
for the smallest spacing, and it increased dramatically as soon as the loudspeaker
spacing exceeded 4cm. For speech stimuli, coloration only disappeared when the
inter-loudspeaker distance was as low as 0.3cm, but became strongly perceptible
when the spacing was larger than 17cm. The perceived coloration was lowest in the
center of the listening area and remained homogeneous elsewhere.
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8.2 Effectiveness of Illusion into Question(s)

The primary goal of spatial-sound reproduction is to create or recreate a sound scene,
but the actual goal is to provide the listeners with the illusion that they are immersed
in a sound scene. Among all the perceptual attributes that govern the perception
of SAIs, one dimension that is particularly relevant for the illusion is whether and
to what extent SAIs are effective. The term effective is used here in the sense that
the listeners are fooled in such a way that they truly believe that the auditory scene
is an exact representation of the physical reality which is presented to them. This
dimension can be described in terms of “credibility”, or “effectiveness”, or “success”
of the SAI.

An associated issue concerns the rating scale of this dimension. Is it a binary one—
“yes”, if the SAI is successful, or “no”, if it is not—or a polar, gradual scale between
the judgements “poor illusion” and “strong illusion”? This problem is probably not
so simple as it looks at a first glance since the effectiveness of SAIs cannot be
summarized in one single dimension. As Francombe et al. (2015) have stated, the
perceptual differences between real and reproduced sound fields are clearly multi-
dimensional. Responses of experienced listeners reveal more than 20 categories of
perceptual attributes. Surprising as this may seem, this issue has so far been poorly
addressed. The main reason is methodological because it is difficult to implement
a direct comparison between natural and synthetic sound fields. Nevertheless, the
results of the aforementioned study open promising insight into this issue. First
attempts to connect the question of illusion effectiveness to existing attributes are
proposed in the following.

8.3 The Illusion of Completeness

It should be realized that sound fields as created by WFS or HOA are highly het-
erogeneous. As has already been noticed above, they result from the superposition
of many more or less different elementary waves. Therefore, the primary challenge
of SAI is to create an illusion of completeness (Martens and Woszczyk 2007). For
instance, despite the fact that the sound field is reproduced by a discontinuous array
of loudspeakers, the auditory scene has to be perceived as continuous, which is
achieved most of the time. But notice, for example, that in the case of stereophony,
the sound scene does not fill all the space but is limited to the area between the two
loudspeakers and behind them.
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8.4 Authenticity versus Plausibility versus Familiarity

Another issue to be questioned is whether an illusion must conform to a reference to
be rated as successful. In other words, is it required that the auditory scene matches
a given scene to ensure the effectiveness of the illusion? For instance, in the case
of the reproduction of an existing scene, the illusion is considered fully effective
if the listeners’ experience is identical to their experience in the corresponding real
situation. To measure the effectiveness of the illusion, a straightforward method is
to compare the reproduced scene with the reference as defined by the real scene. It
turns out that a crucial concern in this context is the question of what denotes the
term “authenticity” of the reproduced sound scene (Spors et al. 2013). If no explicit
reference is available, the plausibility of the reproduced scenewill be assessed instead
(Spors et al. 2013). Such a reference-free assessment relies on implicit references,
which depend on related past experiences of the listeners, andmay also be affected by
their expectations in general. Even for the same individual listener, the judgment can
change over time because expectations may change. In other words, these (internal)
references are not easily controllable, if at all. Thus, the judgment of plausibility as
a substitute of authenticity may come out as strongly individual.

To repeat the above arguments in different wording, natural listening may provide
an explicit reference (i.e., the “illusion of reality”), but implicit references can be
based both on real or reproduced sound fields, which means that reality is not the sole
reference. Specifically, spatial-sound reproduction (e.g., stereophonic reproduction),
which include noticeable discrepancies from reality, may be used by the listeners as
their references. As suggested by Rumsey (2002), the fundamental property of the
references governing our judgment of plausibility (e.g., naturalness) is that there is
“something” that the listeners have heard before.

As a consequence, unfamiliar sounds may be judged as “non-plausible”, even
though they were taken from real scenes. For instance, since most of our listening
experience stems from reverberant scenes, an anechoic sound field may be perceived
as unnatural. Multi-loudspeaker systems that are able to surround the listener with
sounds coming from various different directions at the same time, which is rarely
experienced in real life, create an auditory situation that potentially leads to unfamil-
iarity, and thus to uneasiness. Plausibility is affected whenever something is missing
in the auditory scene, such as room effects, or something is in excess of everyday
listening—“hyper-reality”, such as a sound space saturated in all directions.

8.5 “You Are There” versus “They Are There”

In addition to the question of authenticity or plausibility, the attribute presence is
relevant when investigating the effectiveness of SAIs. Rumsey (2001) distinguishes
two categories of auditory illusions, that is, (i), the illusion of “You are there”,
meaning that the listeners feel as if they are in the place where the sound scene was
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recorded (e.g., in a specific concert hall) and, (ii), the illusion of “They are there”,
in which case they have the feeling that the sound sources are in their individual
acoustic space, for instance, in their living room. From the point of view of sound
engineering, this distinction is only relevant as an aesthetic choice. Yet, in terms of
illusion effectiveness, this distinction clearly matters. The illusion of “You are there”
implies that the listeners consciously and actively feel transferred into an illusionary
scene that is in total contradiction to their knowledge and the information from
sensory modalities other than hearing. This illusion requires that they accept to be
virtuallymoved to another place.On the contrary, the illusion of “They are there” does
not require any conscious cooperation of the listener. At any time, unexpected sound
events may occur in their personal environment, which makes the occurrence of new
sound sources plausible without extra cognitive effort.9 For this reason, the illusion
of “They are there” is stronger than the illusion of “You are there”. Consequently, the
former is more difficult to achieve. Early reflections and reverberation, as well as the
interaction between the source directivity and the environment, need to be properly
reproduced to create the illusion that virtual sources share the same acoustic space
as the listener.

9 Conclusion

In this chapter, SAIs have been examined both in terms of acoustic wave recon-
struction and perception. Although an exact copy of natural sound fields is still out
of reach of even the most accurate technology of spatial audio, successful illusions
may be achieved. Indeed natural perception is also a reconstruction, as even if the
acoustic information is degraded, the auditory scene may sound convincing. A crit-
ical issue remains the lack of cross-modal information in pure audio reproduction.
Further assessment of SAIs is also needed for a better comprehension of the overall
effectiveness of illusions, which has received little attention so far in comparison
to what is already known about spatial or timbral attributes. Future progress in the
understanding of how the brain works, and, particularly, of the complex processes
leading to the construction of the auditory percept by the brain, will certainly provide
new insights into this issue.

Besides, it is definitely worthwhile to consider whether perfect auditory illusions
are always desirable. For virtual-reality applications, an exact copy of the sound
scene is usually expected, for instance for learning (e.g., in a flight-, driving- or
sports-simulator) or for gaming purposes. However, spatial-audio technologies are
also used for artistic purposes (e.g., music, cinema, entertainment). In these contexts,
a reasonable level of accuracy is often sufficient rather than authenticity to create
the intended illusions. Thus, what has to be kept in mind is the following. Artistic

9However with the input from other sensory modalities (e.g., visual cues), the plausibility of these
new sources may collapse. It can, therefore, be assumed that the listeners focus exclusively on
auditory information, for instance by closing their eyes.
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work is motivated by the desire to create sensations and to convey emotions into the
observers’ minds. So above all, please note that

What actually matters is the illusion and not the accuracy of reproduction
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Creating Auditory Illusions with
Binaural Technology

Karlheinz Brandenburg, Florian Klein, Annika Neidhardt, Ulrike Sloma
and Stephan Werner

Abstract It is pointed out that beyond reproducing the physically correct sound
pressure at the eardrums, more effects play a significant role in the quality of the
auditory illusion. In some cases, these can dominate perception and even overcome
physical deviations. Perceptual effects like the room-divergence effect, additional
visual influences, personalization, pose and position tracking as well as adaptation
processes are discussed. These effects are described individually, and the intercon-
nections between them are highlighted.With the results from experiments performed
by the authors, the perceptual effects can be quantified. Furthermore, concepts are
proposed to optimize reproduction systems with regard to those effects. One exam-
ple could be a system that adapts to varying listening situations as well as individual
listening habits, experience and preference.

1 Introduction

The desire to create a perfect auditory illusion for listeners has been voiced since
the invention of technical devices for recording and reproducing sound. Thereby
the audio system itself should meet the requirements and expectations of the users
regarding immersion (Heeter 1992) and plausibility (Lindau and Weinzierl 2011;
Kuhn-Rahloff 2011), or even authenticity (Brinkmann et al. 2017). In other words,
the technical system is intended to create an auditory illusion suitable for certain
requirements and expectations. In fact, binaural technology has the capability to do
so.

As is also addressed in other chapters of this volume (Nicol 2020; Mourjopoulos
2020), creating auditory illusions depends on a variety of cues for the brain. Linear
and time-invariant models are not sufficient to model the behavior of the ears and the
brain. Auditory illusion can be created via either loudspeaker or headphone repro-
duction. This chapter concentrates on dynamic binaural synthesis via headphones
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for this purpose. This is the creation of an auditory illusion in a possibly changing
environment, such as via tracking the position and orientation of a listener in a room.

It has been shown that with individual binaural recording at the same position in
the same room, the majority of the participants could not distinguish between real
and simulated sound fields (Brinkmann et al. 2017). Thus, an authentic reproduction
can be achieved under special conditions.

Questions: Is this only possible under exactly these conditions? Which role might
context dependent effects have played in this experiment?
Earlier systems have tried to recreate the exact sound pressure at the ear drums. This
is clearly not sufficient, and in some cases not even necessary. Different cues that
help or inhibit plausible auditory illusions are

• Correct sound pressure at the ear drum, for example, via measured HRTF or BRIR
• Individual HRTF or BRIR
• Enabling head rotation
• Enable interactive exploration in dynamic orientation and position with tracked
self-motion

• Room convergence
• Audiovisual congruence
• Training of listeners to the system (experience).

Questions and related ideas along these lines of thinking have been discussed and
validated at several places in this book. The current chapter adds further experimental
data on the room-divergence effect, the influence of movements of the listeners in a
listening area compared to just sitting, and data on training and adaptation effects.

1.1 Context Dependencies of Binaural Understanding

In previous investigations, many cognitive effects influencing the impression of audi-
tory illusions have been determined and named. Some of these effects are mentioned
in the following as examples for context dependencies that need to be considered in
the context of plausible binaural understanding.

The well known Cocktail-Party effect (Cherry 1953; Bronkhorst 2000) describes
attention-based listening. Namely, among a number of concurrent sound sources,
persons are able to draw their attention to a specific one, for instance, to a conver-
sation partner or speaker in a crowded room. Perception is always a multimodal
process, therefore the visual sense has a high impact on scene understanding. The
Ventriloquism effect is an example for this (Bertelson and Radeau 1981; Seeber and
Fastl 2004). It describes that the perceived location of a sound (the auditory event) is
influenced by the visual position of the sound source. A further effect to bementioned
is the McGurk effect, (McGurk and MacDonald 1976), which states that the sounds
that are perceived can be modified by what is concurrently seen. Further influences
towards the perceptive impression are the motivation for listening to a sound source,
the individual experiences and expectations regarding how an auditory event sounds.
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The following concentrates on selected context dependencies that support the
creation of auditory illusion. These dependencies are congruence of the current
listening room and the reproduced room, the ability of a listener to adapt to rooms and
binaural-synthesis systems, further, the interaction of auditory perception and self
motion. These effects are actually hard tomeasure because they are highly individual,
dynamic in time, and the interactions are rather complex. An investigation into them
is thus challenging, among other issues, since these effects cannot easily be separated
and isolated.

1.2 Outline of This Chapter

Following the introduction in a first section the room-divergence effect (RDE) is
described from different points of view. Conclusions for room-related binaural
synthesis are drawn and evaluated with several experiments using the direct-to-
reverberant energy ratio (DRR) and externalization, a quality feature, as instruments.

The next section then deals with auditory adaptation and training effects. It is
shown, that listeners are able to learn to listen and localize with different head-
related transfer functions (HRTFs). Subsequently, the adaptation to room acoustics
is assessed. For this reason, the room-divergence effect is exploited.

Auditory-scene exploration by interactive changes in the listening perspective is
addressed in the subsequent section. These changes may provide additional infor-
mation with regard to the interpretation of the sound-pressure as captured by the
ears. It is discussed which additional acoustical cues are available and potentially
have an influence on the interpretation of sounds when listening during walking.
This is analyzed for several examples like distance perception or source-directivity
estimation.

In a concluding section it is demonstrated how the previous results can be used and
implemented for synthesis of binaural room-impulse responses. Already realized and
prospective applications are presented. Finally, an outlook points out further analysis
tasks and questions that are relevant for the creation of auditory illusions by mean
of binaural synthesis.

2 Room-Divergence Effect

The room-divergence effect (RDE) describes what happens in terms of auditory
illusion when the room acoustics of the recording room and the room acoustics of the
synthesized room differ in terms of spatial auditory perception. If such divergence
exists, the perceived externalization of the auditory event is reduced. The reason
for this effect lies in a cognitive dissonance between an expected and a currently
perceived auditory event.
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A fundamental approach to explain this effect is based on the auditory precedence
effect (Wallach et al. 1949). This effect describes that the first wavefront arriving from
a sound source at a listener’ ears is prioritizedwhen forming the position of the result-
ing auditory event. Sound waves arriving after the first wavefront are perceptually
assigned to this position as long as the time difference of the first wavefront and
succeeding ones is shorter than a specific echo threshold. For delays larger then this
threshold, distinct echoes are perceived after the initial auditory event—possibly in
different directions. Significant extensions of the precedence effect are those from
Clifton (1987) and Litovsky et al. (1999). In their experiments, the pattern of direct
sound and reflected sound were spatially modified. A change of the pattern leads to
a reduction of the echo threshold—commonly referred to as the Clifton effect—and
the precedence effect breaks down. The change sets a new precedence, yet, when
the old situation is recovered, the old precedence effect is still apparent for some
seconds—compare (Blauert 1997) and, in particular, the effect of room learning, as
has been investigated in detail by Seeber and Clapp (2020), this volume.

The schemata—for the term schema compare Sutojo et al. (2020), this volume—as
stored in the auditory system for recognizing space and audio scenes may not match
those derived from the synthesis. If in such a case the deviations are sufficiently
large, the cognitive system is no longer able to reach a perceptive fusion between
the synthesized room and the listening room. The assimilation of what is currently
perceived onto a stored schema/pattern then fails. As is explained in the following,
this effect is hypothesized to be triggered by room-acoustic divergences between
synthesized rooms and the listening room. An auditory-visual divergence seems to
intensify this effect but is, in itself, not sufficient for a conclusive explanation.

2.1 Effect on Externalization

The term Externalization describes the perception of the location of an auditory
event outside the head. The counterpart to this is the In-Head-Localization (IHL).
By definition, IHL takes place when the auditory event is positioned within the head.
The boundary surface of the head is thus clearly defined as the boundary between IHL
and externalization. The quality characteristic externalization is assigned a bipolar
characteristic value. The perception of auditory events outside the head is seen as an
essential quality feature of a binaural headphone system to create a plausible spatial
auditory illusion.

From investigations by Toole (1970) and Plenge (1972) it is known that the effect
of the IHL is not necessarily dependent on the use of a headphone system. Toole was
able to show in his experiments that IHL also takes place when using loudspeakers in
anechoic environments (Toole 1970). The test subjects listen to audio signals from
single loudspeakers in front of and behind the person as well as from up to four
loudspeakers around the test subject. There is simultaneous sound from one, two or
four loudspeakers with noise signals of different bandwidth. It shows that when the
audio signals are presented via two and four loudspeakers, a relative probability of
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externalization of the auditory events of less than 20% is achieved. When presenting
audio signals from a speaker behind the subject, externalization values of ≈80% are
achieved for broadband white noise. The presentation of audio signals from a frontal
loudspeaker leads to values of ≈65% for broadband white noise.

Toole also investigated the influence of minor head movements to identify the
type of auditory event. For this purpose, he minimized the possible head movements
of the test listeners (Toole 1970). Excluding relative changes in the direction of
sound incidence reveals similar assessments of externalization as in the previous
experiment. Toole concludes that large searching head deflections lead to a correct
localization of the sound events. On the other hand, small deflections do not seem to
be sufficient for an increase in the externalization of auditory events (Toole 1970).

In a further study on the emergence of IHL by Plenge (1972) the hypothesis is
raised of that the IHL arises from a lack of assimilation or an inadequate learning
process. The learning process includes instant learning of characteristics of the sound
source and the listening room. Experiments were conducted (a), “[…] to create a
smooth transition between out-of-head localization and IHL […]” (Plenge 1972),
(b), to perform a comparison of head-related electroacoustic storage with the orig-
inal signal (Plenge 1972). In the experiments, the above mentioned disturbances in
localization were artificially caused by preventing the learning of sound source and
room characteristics (Plenge 1972).

Experiment (a) showed that a smooth transition between externalization and an
IHL cannot clearly be established in a low-reflection room (Plenge 1972). Even
small changes in the test signals lead either to IHL or to the perception of external-
ization. Based on the results of this experiment, the externalization can be seen as
a bipolar quality feature. Experiment (b) dealt with the comparison of loudspeaker
reproduction with the binaural synthesis of the same loudspeaker configuration, but
simulated via headphones. Results show that occurrence of IHL is “independent of
headphone reproduction” (Plenge 1972). As a conclusion, Plenge states that the IHL
arises when the ear signals “cannot and must not be assigned to a real source outside
the head—they must not be confusable with any real source—must be accommodated
in the only remaining place where no sound source can occur, namely in the head”
(Plenge 1972).

In the first part of experiment (c), a synthetic sound field of a concert hall was
generated in a low-reflection room. Direct sound, early reflections, and diffuse
reverberation are approximated by loudspeaker reproduction. As a test signal, the
reverberation-free reproduction of a talker via a loudspeaker in the direction of view
in the room is used. The test listeners were supposed to assess whether the auditory
event is inside the head, at the surface of the head, or out of the head. In only one
out of 68 evaluations, the talker was assessed as being external (Plenge 1972). In the
second part of the experiment, a sound field of a concert hall or an outdoor recording
(such as street noise) recorded over a dummy head is binaurally presented to the test
persons via headphones. The test signal is then reproduced unchanged via a loud-
speaker, but now contains either reverberation-free or reverberant speech or music
signals. Plenge states that an inside-the-head or at-the-head localization occurs when
there is a “missing, inadequate or incorrect sound source and field knowledge and/or
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the signals and, thus, the stimuli are such that they cannot be assigned to any stimulus
pattern contained in the long-term memory” (Plenge 1972). These results suggest
that the quality feature externalization is influenced by the context of the playback
and the listening situations. This is indeed the room-divergence effect (RDE).

2.2 Room Divergence as a Visual Effect

A possible approach to understand the RDE is that the reduction of externalization
of auditory events is due, among other things, to a mismatch of the visual impression
of the listening room and the binaurally synthesized room. Further influences as
having been identified are individual listener characteristics and the direction of
sound incidence.

Udesen et al. (2015) present an experiment where a room, similar to a living
room with loudspeakers in it, is binaurally auralized. The test conditions include a
visual variation of the listening room. The (virtual) audio signal of the living room
is kept constant. This results in the conditions for real living rooms (RLR) with
audio presentation via real speakers in the room and virtual living rooms (VLR)
with binaural-synthesized speakers. A hall is used as a second room. In this hall,
the positions of the speakers to be synthesized are visible as dummies (VHWS,
virtual hall with speakers) or not visible (VHWOS, virtual hall without speakers).
The audio signal is identical to the condition VLR. According to the definition of
the room divergence effect, the conditions RLR and VLR represent room-convergent
situations. The conditions VHWS and VHWOS are room-divergent situations.

The assessments of the externalization of auditory events show that the room-
convergent conditions RLR and VLR achieve high externalization values. The room-
divergent conditions VHWS and VHWOS each achieve significantly lower values
than the condition VLR. It is concluded that “The only parameter that was changed
between the virtual test environments was the visual stimuli during the tests. In the
VLR test environment, the reverberation corresponded to the visual impression of the
room, while in the VHWS environment there was a discrepancy between the virtual
reverberance and the visual impression of the room” (Udesen et al. 2015). No sig-
nificant difference is determined between conditions VHWS and VHWOS. Thus the
conclusion is “[…] that the visual impression of space influences the externalization
of sound more than visual presence of the speakers” (Udesen et al. 2015).

In the view of the notion of the current authors with regard to the room-divergence
effect, this statement must be put into perspective. Rather than the claim that the dif-
ference in externalization is due to the audio synthesis, namely, as a result ofmismatch
of the learned in the cognitive system and the currently experienced room acoustics.
The presence of appropriate visual stimuli increases the degree of externalization but
does not explain the room-divergence effect. To confirm this statement the current
authors have performed experiments of their own (Werner and Klein 2014; Werner
et al. 2016). The studies of Udesen et al. (2015) also found an influence of the indi-
vidual listener and the direction of sound incidence. Sound sources from the azimuth
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0◦ externalize significantly worse than sources from 180◦ and 90◦. This effect is
also addressed and confirmed in the current authors’ own investigations (Werner and
Klein 2014; Werner et al. 2016).

2.3 Room-Divergence as a Combined Auditory and Visual
Effect

A further study on the room divergence effect has been published by Gil-Carvajal
et al. (2016). In this investigation loudspeaker positions from different rooms and
directions are binaurally synthesized. The test conditions included the separate and
common visual and auditory presentation of different rooms. A reference room
(T 60 = 0.4s, V = 99m3), a small and reverberant room (T 60 = 2.8s, V = 43m3)
and a large and nearly anechoic room (T 60 < 0.01s, V = 330m3) was used. Sound
sources to be synthesized were located at 1.5m distance in the azimuth 0◦, 60◦, 90◦,
180◦, 210◦, and 270◦. Individual BRIRs from the reference room were used for bin-
aural synthesis. The listening room was always the reference room. This allowed
for visual and/or acoustic room-divergent and room-convergent test conditions. The
evaluation of the externalization is rated on a 6-point distance scale from 0…in-head,
to 4…listening event at the speaker distance and, 5…listening-event distance larger
than speaker distance.

The results show that an effect according to room convergence or divergence
occurs for the evaluations of conditions with visual and auditory room characteris-
tics. In the case of room-divergent conditions, the auditory events are rated as been
closer to the room-convergent reference condition (Gil-Carvajal et al. 2016). The
largest effects are found between the reference condition and the small reverberant
room. There are also significant differences between room-convergent and room-
divergent conditions in distance evaluations of test conditions with purely auditory
characteristics. However, the observation of purely visual characteristics and the
resulting room convergence or divergence does not result in any significant differ-
ences (Gil-Carvajal et al. 2016).

Gil-Carvajal et al. (2016) conclude that auditory characteristics have a greater
influence on the externalization of auditory events than visual characteristics. They
note that visual characteristics should be differentiated between room-related char-
acteristics and sound-source-related characteristics. Gil-Carvajal et al. also find that
the room divergence effect is stronger for front and rear sound-source positions than
for side positions.
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2.4 Room-Divergence from the Current Authors’ Point of
View

In our own investigations, in particular, sound source related visual characteristics
(visibility of the loudspeakers and the room) and the influence of the individual-
ization of binaural synthesis, is examined in relation to the room-divergence effect.
Furthermore, a direct measurement of the externalization of auditory events without
using a distance evaluation was used. The room-divergence effect was investigated
for two rooms as synthesized room and listening room. This resulted in a complete
test design with all four possibilities of room divergence and room convergence. A
variety of experiments investigated the RDE in different ways and with different
emphases (Werner and Siegel 2011; Werner et al. 2013, 2016; Werner and Klein
2014). The results show a high agreement regarding the RDE.

The object of investigation for the experiments is an acoustic divergence between
the resynthesized room and the listening room. A listening laboratory (abbr. LL; Rec.
ITU-RBS.1116-1, V=179m3, RT60=0.34 s) and an empty seminar room (abbr. SR;
V=182m3, RT60=2.0 s) were used for the listening test and the measurements of
the BRIRs. The experiment was conducted at the same recording positions in each
room to evaluate the influence of the listening situation.

Discrete sound source directions were considered in the tests. Loudspeakers were
used to measure the BRIRs for each position. The investigated azimuths are 0◦, 90◦,
120◦, 180◦, and 330◦ (clockwise orientation). The distance from the loudspeakers to
the listening point was ≈2.2m. The height of the source position was ≈1.3m (ear
position of a sitting person). The BRIRs for each position and for each test person
were recorded individually in the two rooms. The recording position was the same
as the listening position in the tests.

The individual BRIRs and Headphone Transfer Functions (HPTFs) of the test
persons for both rooms and sound-source directions were recorded. Furthermore, the
BRIRs and HPTFs of a KEMAR head-and-torso simulator (45BA) were recorded.
Both the individual and artificial BRIRs were then used to create the binaural test
stimuli. The panel of test persons was randomly divided into two groups with or
without the presence of visual cues during the experiment. For the first group, the
illumination of the listening rooms was minimized to nearly complete darkness, such
that the test persons should not have any visual impression or additional visual cues
regarding the listening rooms. In contrast, the test persons in the second group were
placed in the illuminated listening rooms to provide additional visual cues.

The experiment thus assessed the perceived externalization at different synthesis
conditions. An individualized and artificial binaural synthesis of a single loudspeaker
with different source directions was used. The test conditions were the four combi-
nations of synthesized room and listening room, that is, LL in LL, LL in SR, SR in
LL, SR in SR. After the individual and artificial BRIRs, a set of free-field KEMAR
head-related impulse responses was used to synthesize test stimuli. Free-field stim-
uli were used as anchors with a low spatial quality. Prior to the test, the test persons
were familiarized with the listening conditions and the user interface by listening
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to individualized and artificial synthesized sounds in divergent and congruent room
conditions, to the anchor signals, and to the playback of the real loudspeakers in the
listening room. It was intended that the internal reference of the test persons should
not shift explicitly to a congruent or divergent room condition. Twenty-three test
persons participated in the evaluation. Dummy loudspeakers were placed around the
listeners in steps of 30◦ to provide additional visual cues for the group in the illumi-
nated conditions. The test persons rated externalization on a scale with the categories
1, …in-head, 2, …external, but close to the head, and 3,…external, in the room. The
data analysis was based on an externalization index, namely, the ratio between the
number of ratings for external, in the room and the overall number of ratings. Amore
detailed discussion regarding the used scale can be found in (Werner et al. 2016).

The context parameters room divergence, visual influences, and individualization
were analyzed. To analyze the statistical independence of the context parameters, a
Chi2-test was performed on each of the context parameters. No significant correla-
tion between the parameters was found (p< 0.05; Chi2-test on independence). This
remains valid for room divergence and additional visual cues for the synthesized
room as well as for the listening room, the personalization, and additional visual
cues.

Figure1 shows an excerpt of the rating results. The perceived externalization
is dependent on the presented source direction. Less externalization is measured
for virtual audio objects placed at directions with expected localization inaccu-
racies. These directions are 0◦ with front-back-confusions and 180◦ with back-
front-confusion. The lowest externalization is observed for the anchors (free-field).
Significant increases of externalization (Fisher’s exact test) is observed for room
congruence compared with divergent listening conditions. This effect is, for exam-
ple, visible for the 0◦-direction and for the individualized synthesis of the seminar
room, that is, SR(I) in SR compared to SR(I) in LL (p< 0.01 with an effect size
as indicated by an odds ratio of 4.0). A similar increase of externalization is also
visible for individualized synthesis, that is, LL(I) in LL compared to LL(I) in SR
(p< 0.01 and effect size as indicated by an odds ratio of 3.0). An odds ratio higher
than one indicates a positive impact of the convergent room condition in relation to
the divergent condition. A similar tendency but at a lower probability value (p-value)
is visible for synthesis using artificial BRIRs and the other directions.

The analysis of externalization between the groups with and without visual cues
shows significant increases, especially for the 0◦ and 180◦ directions (Fisher’s exact
test). No clear tendencies with respect to the personalization method and combi-
nation of the listening room and synthesized room are detectable. An increase of
externalization of 16% is measured as the mean value across all source directions,
personalization methods and room conditions. A higher increase of perceived exter-
nalization of 26% is observed for the 180◦ direction, independent of the other test
conditions—with a probability value of difference of at least p< 0.1 in six of eight
test conditions. This is an unexpected effect because the test persons were instructed
to keep still during the experiment and were not able to see the rear positions.

The externalization increases when individualized binaural synthesis is used as
compared to using artificial BRIRs. Highly significant differences are visible for the
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Fig. 1 Externalization indices with a 95% confidence interval for combinations of listening room
and synthesized room, individualization of binaural synthesis, and for summarized ratings with and
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of difference at p< 0.05, * probability value of difference at p< 0.1. Numbers in brackets note the
effect sizes in terms of odds ratio. Figure after Werner et al. (2016)

0◦ and 180◦ directions (p< 0.01) with effect sizes in odds ratio from 34 up to 10;
(Fishers exact test). The effect size of the increase of externalization seems to be
higher for the personalization method compared to the room-divergence effect. As
an example, an effect size of ≈5 is observed for the synthesis of the seminar room
using individual BRIRs and for the 180◦ direction. An effect size of 10 is reached for
the synthesis SR in SR for the same direction, dependent on personalization. Similar
tendencies are also observable for the 0◦ direction and other room combinations.
Furthermore, higher effect sizes are seen for congruent room conditions compared
to divergent room conditions, especially for the 0◦ and 180◦ directions. This gives a
hint on a negative correlation between perceived externalization and the occurrence
of localization errors, such as front-back or back-front confusions. Room divergence
can cause localization errors and therefore less externalization. A more detailed
analysis of this effect can be found inWerner et al. (2016). Yet, further investigations
into this correlation are obviously needed.

Overall, there is some evidence that the observed effect of the different room com-
binations is an audition-based context-dependent quality parameter. This parameter
has an influence on the quality feature externalization. The influence is a result of
adaptation to and expectation of the room acoustics of the listening room.
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3 Auditory Adaptation Effects

Auditory adaptation effects are well-known in a broad range of research areas. In
neuroscience, sound-localization experiments are studied to obtain information on
the neural processes related to adaptation. A recent overview is given by Keating
and King (2015). In the field of hearing-aid treatment auditory adaptation effects are
utilized for training of speech intelligibility and for the identification of everyday
sounds. In hearing research, processes of auditory adaptation are observed for fre-
quency discrimination tasks. In listening tests on audio quality, listeners typically get
trained in order to rate specific quality attributes more reliably or to detect specific
coding errors.

It is well-known that the ability for spatial hearing is not only based on signal-
driven processing but also on listener experience and expectations. Expectations
about sound sources or room characteristics serve as an internal reference for the
listener in order to rate the perceived quality—compare Raake andWierstorf (2020),
this volume. These expectations can change depending on prior sound exposure.
When these mechanisms apply to spatial hearing, it means that listeners are probably
able to learn how to interpret spatial cues such as head-related transfer functions or
room reflections.

Such adaptation effects are rarely taken into account during the development of
binaural-synthesis systems or other spatial-audio-reproduction techniques. A more
detailed understanding is necessary to determine the relevance of adaptation pro-
cesses regarding the plausibility of a virtual acoustic scene. Furthermore, research on
auditory-adaptation effects enables new technology advances by identifying weak-
nesses of technical components that could be compensated or exaggerated by these
effects. The following sections briefly describe two cases, where auditory adaptation
effects have an influence on the quality rating.

3.1 Adaptation to Artificial Localization Cues

To investigate the process of auditory adaptation, ear signals are artificially distorted
to introduce perceptual errors like increased localization errors or degradation of
externalization. In earlier studies, ear molds were inserted monaurally or binaurally
as described, for example, by Hofman et al. (1998). In more recent publications,
researchers have distorted the ear signals by altering the head-related transfer function
(HRTF) in binaural-synthesis systems. Depending on the method, alteration of the
spatial cues were realized, for instance, by frequency warping (Majdak and Labak
2013), using HRTFs with a different degree of personalization (Parseihian and Katz
2012) or by applying HRTFs measured with an artificial head (Zahorik et al. 2006;
Mendonça et al. 2013; Mendonça 2014). In the next step, participants are trained to
a new set of spatial cues employed by the altered HRTFs. When it comes to training
methods, a wide variety of possibilities can be found in literature.
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Fig. 2 Results for the post training tests of the azimuth experiment. a Shows the average azimuth
localization error, and b the respective standard deviations (SD) for both stimuli (Mendonça et al.
2013)—reproduced courtesy of C. Mendonça

Basically, there are two common types of training, that is, sound exposure and
training with feedback. The type of feedback defines which reference information is
provided for training. Acoustical, visual, verbal or tactile information about the real
sound direction can serve as feedback. A proprioceptive detailed overview of publi-
cations related to auditory training recently has been published byMendonça (2014).
Different types of training, auditory stimuli, types of cue changes, and durations of
training are considered for comparison.

The training procedure of Mendonça et al. (2013) consisted of an azimuth and an
elevation experiment. In both experiments the listeners actively learned to identify
the position of several sound sources at first. Consequently, they conducted a training
sessionwith visual positional feedback. Listenerswere trained to listenwith anechoic
non-individual HRTFs with an overall training time of about 10–20min. Afterwards,
post-tests were conducted at different time intervals. The results showed a decrease
of localization error for azimuth and elevation angle. Figure2 shows the training
effect for the azimuth-localization error. The error was reduced immediately after
training and remained low in subsequent tests.

Parseihian and Katz (2012) trained listeners in a virtual game-like scenario where
they could navigate using a trackball. During the training, positional feedback was
given acoustically and by proprioceptive information. The training took 36min and
was split into three sessions. Participants were trained group-wise according to the
degree of individualization used—individual HRTF, good fitting HRTF, and bad
fitting HRTF. The training mainly decreased the polar-angle error which is related
to the spectral cues. Additionally, they found hints that the adaptation time depends
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on the degree of cue change. In an experiment by Klein and Werner (2016), visual
feedback was provided for the training on artificial localization cues—binaural room
impulse response recorded with a KEMAR artificial head. Similar to the results of
Parseihian and Katz (2012), an improvement was mainly found for polar angles.
The training environment in Majdak and Labak (2013) consisted of a head-mounted
display that places the listener in a spatial virtual visual environment and provides
visual positional feedback. HRTFs for the auditory stimuli were either band-limited
or spectrally warped. In comparison to other studies, the training time was long with
training sessions of 2 hours per day for 21days. Their results showed a decrease
of quadrant errors, that is, including front-back or up-down confusions, depending
on the amount of training. Similar to Parseihian and Katz (2012) they found an
interconnection between the amount of cue change and the duration of the adaptation
process. In general, experiments with visual feedback during training show a faster
adaptation process than experiments with other feedback information.

3.2 Adaptations to Room Acoustics

As outlined in Seeber and Clapp (2020), this volume, mechanisms of adaptation
(or abstraction) also apply for reflections in a room or even perceptual models of a
room geometry. The re-calibration to different reflection patterns or rooms has shown
to affect localization and speech understanding. The “break-down” of a perceptual
roommodelmay also be the reason for the described room-divergence effect, namely,
the perceptual model of the actual listening room conflict with the room presented
over headphones. This obviously influences the perceived externalization negatively.
Further research should investigate the possibility of increasing the externalization
by controlling the listeners’ expectations in suitable training sessions. Similar to the
build-up mechanisms of the precedence effect, this could also be the case for more
complex room scenarios.

To provoke the room-divergence effect in a current listening test (Klein et al.
2017b), two rooms of similar size but strongly differing reverberation time and direct-
to-reverberant ratios were chosen. The basic concept of the listening test was to
randomly separate the participants into two groups, each trained to different room
acousticswith individually tailored stimuli.After the training, both groupswere faced
with a familiar and unfamiliar room condition to measure how the training sessions
would influence the externalization ratings. Individual BRIRs were measured in both
rooms for 31 participants. The training was designed as a simple localization task
accompanied with a judgment on the perceived level of externalization. Next to the
rating task, visual feedback was provided at the correct source position by visually
highlighting a loudspeaker model. The test task was different to the training task. The
participants were asked to rate their personal level of perceived externalization in a
single-stimulus test design on a three-level scale of 1,…in-head, 2,…near-the-head,
and, 3, …outside-the head.
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Fig. 3 Results for the externalization ratings of left, the convergent group and, right, the divergent
group. Ratings are separated according to the direction of the presented sound. Synth SR, synthesis
of the actual listening room, LS, real loudspeakers in the listening room, Synth LL, synthesis of
acoustically dry listening room (Klein et al. 2017b)

Figure3 shows an excerpt of the test results. The listening tests were conducted in
the SR room. The “convergent group”was trained to the SR room (reverberation time
at 1kHz: 2 s) and the “divergent group” to a less reverberant LL room (reverberation
time at 1kHz: 0.339s). The stimuli “LS” corresponded to actual loudspeakers in the
SR room. The low-quality anchorwasmeasuredwith an omnidirectionalmicrophone
in both rooms and aimed to provoke in-head localization. Both groups rated the
actual room (LS and Synth SR) high regarding to the externalization, but the rating
of room LL is different for each group. Former listening tests have shown that the
room-divergence effect is particularly strong when the synthesis of an acoustically
dry room is presented in a reverberant room. This was confirmed by the difference
between the signals Synth LL and Synth SR of both groups. Additionally, the result
of this listening test showed, that the perceived externalization can shift according
to the previous listening experience, that is, the particular training session. In other
words, the room-divergence effect highly depends on the listeners’ experience in the
listening rooms.

For practical application, this means on the one hand that physically correct ear
signals cannot guarantee perfect externalization because the basic principle of cre-
ating virtual rooms in real rooms may violate the expectations about the room. On
the other hand, adaptation to new acoustic environments is obviously possible and
Keen and Freyman (2009) state that this process is probably very fast. Therefore, it is
likely that the impact of the room-divergence effect depends on the actual application.
Video games or movies that immerse the listener in a virtual acoustic environment
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provide the possibility to adapt to this environment. However, augmented acoustic
applications always present virtual acoustics on top of the real acoustic environment.
Any acoustical mismatch is likely to produce confusion and will lead to in-head-
localization. Future research has to further investigate the role of adaptation in such
acoustic scenarios.

4 Listener Movement and Exploration

Humans use head movements to localize sound sources with a higher accuracy
(Blauert 1997; Thurlow and Runge 1967; Thurlow et al. 1967). In the past it was
shown, that providing the option of interactive head rotation to the listener in a bin-
aural reproduction improves externalization (Brimijoin et al. 2013; Stitt et al. 2016;
Hendrickx et al. 2017), reduces front-back-confusion (Begault andWenzel 2001) and
supports the localization accuracy (McAnally and Martin 2014; Mackensen 2004).
Furthermore, when listeners evaluated the timbre of the sound of a source, the range
of head motion was relatively small compared to the movements that happen when
listener envelopment and source width (Kim et al. 2007) are evaluated. This indicates
that head movements are beneficial when judging the spatial impression of virtual
auditory scenes.

Schymura et al. (2016) proposed an extension of a binaural listening model, that
considers head rotation. The model was investigated by use of a machine-hearing
system that makes use of different head motion strategies. The consideration of
dynamic acoustic information led to results much closer to real-world observations.
This indicates the relevance of dynamic acoustical cues in binaural understanding.
Also, it suggests an interaction of self-motion and auditory understanding.

In this section, an overview is provided of research conducted with regard to
interactive listener translation. As a consequence of our literature review in combi-
nation with observations from own experiments of the current authors, the following
hypothesis has been set up.

Hypothesis: When listening to a scene without movements, after an exploration
phase the brain interprets the heard sound in a different way than before the explo-
ration
The following questions may be raised at this point.

• Is there a benefit from additional information provided by different listening per-
spectives?

• Is there a useful contribution from an interaction between human listening and
self-motion?

• Are there further cues that could be helpful?
• Are there also disadvantages or distortions of the auditory perception that occur
in the case of active self-translation?

In the following, aspects of active listener-translation are discussed that may have
the potency of affecting the interpretation of the sound-pressure signals—and the
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question of how this interpretation might finally contribute to an understanding of
the auditory scene.

Carlile and Leung (2016) reviewed a selection of studies on the perception of
auditorymotion with regard to translation. This includes themotion of sound sources
observed by a static listener as well as movements of the listener, for instance,
by walking or moving in a wheelchair. The authors point out that, probably, in
everyday life, themajority ofmotions that are experienced are caused by self-motion.
Nevertheless, prior studies focusedmainly on the perception of auditorymotionwhile
listening from a fixed position. Actually, in contrast to auditory perception, much
more research has been conducted with regard to the interaction of self-motion and
visual cues on motion. The following subsection provides some insight into this
topic.

4.1 Interaction of Vision and Self-motion

People who are sitting on a train while watching another train moving often have the
impression that their own train is moving. Obviously, visual information can induce
a perception of motion (vection). The interaction between visual sensory input and
the sense of self-motion has been subject to research for more than a century. Durgin
(2009) provides a review. Here, only a short summary is given.

The results of a series of experiments suggest that there is a relationship between
the visual flow during walking, the vestibular stimulation, and the actions involved
in walking, which enables the listener to predict one of them from the other two
running 20 s long on a treadmill, a case of self-motion without the expected visual
flow, temporarily affects the perception of the distance traveled during blind walking.
As a result, people walk too far, when approaching an object seen before moving
(Durgin et al. 2005). In contrast, without running on a treadmill, people are quite
accurate in this task.

Furthermore, Durgin (2009) examined the theory, that “in the control of action,
perceptual precision (the fineness of discrimination among actual values of a vari-
able) is more important than the perceptual accuracy (direct correspondence between
the perceived and actual value of a variable)”. An example is that looking through a
prism that causes a localization offset (Harris 1980). Yet, after adaptation to the prism
glasses, a person can hammer a nail despite the given offset. It is only necessary to
align the position of the hand holding the hammer with that of the nail. In another
study, it was observed that the perception of visual flow is distorted during walking.
It appears to be slower than without walking.

In contrast to vision, the interaction between auditory perception and self-motion
has not received much attention yet. Vection induced by auditory input only is usu-
ally much weaker than vection caused by visual input (Väljamäe 2009; Väljamäe
et al. 2005). This suggests that the interaction is not as strong in audition as it is in
vision. Nevertheless, there is still some impact of self-motion on auditory perception.
For vision, Durgin (2009) developed the hypothesis, that “rather than emphasizing
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the need for accurate absolute metrics for action […] the precision of the relative
metrics of perception and motor action are much more important”. Could this apply
to auditory perception as well? Actually, it might provide an explanation for sponta-
neous exploration movements like walking around. The following section discusses
this issue in more detail.

4.2 Relevance of Position Changes for Auditory Perception

Martens and Kim (2009) conducted a study with a special binaural listening instru-
ment that interchanges the ear signals between left and right. This also reversed the
listeners’ impression of back and front as well as up and down for a moving lis-
tener. In an additional experiment, Martens et al. (2009) compared the interchanged
mode with the non-interchanged mode in a standing still and a walking condition.
In the standing still condition, both listening modes resulted in similar results in an
up-down-discrimination task. In contrast, in the walking condition, the participant
had a reversed up-and-down perception in the interchanged mode, but not in the
normal-hearing mode. This suggests that the dynamic cues resulting from walking
dominate the spectral directional cues when estimating the source height.

In the case of walking, the reversal of the localization of left and right as well as
front and back led to a “Phantom Walker illusion” (Martens et al. 2011). In other
words, the sound source was not perceived as stationary during an approaching
motion. Instead, “the sound was invariably heard to be approaching [them] from
behind and the voice of the illusory ‘Phantom Walker’ overtook listeners as they
passed by the physically stationary source”.

In contrast,Macpherson (2011) observed that spectral cues dominated thedynamic
cues in cases of head rotation only in virtual auditory space. In this study, flat-
spectrum noise of various bandwidth was used, while Martens et al. (2011) used
speech, where the energy is usually higher at low frequencies. This might explain
the different observations.

Martinson and Schultz (2006) studied the localization of a static sound source
in a noisy environment with a moving robot equipped with a microphone array. An
approach based on evidence grids made use of the additional information provided
by the changes of the recording perspective. This shows that the consideration of
dynamic acoustical cues due to position changes can be beneficial in algorithmic
analysis. Does the brain make use of those cues as well? The following paragraphs
discuss selected aspects of auditory scene perception, which may be understood
better when considering that listeners make use of active position changes while
exploring the scene.

Distance Perception

No effect of head rotation on distance perception was found in the real environment
(Simpson and Stanton 1973). Kearney et al. (2015) studied the same question in
a virtual acoustic environment but found no significant impact either. In vision,
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however, motion-parallax effects and the time-to-contact are known to support the
perception of depth and the estimation of the distance to objects in the scene (Wexler
and van Boxtel 2005; Rogers andGraham 1979). Tomake use of those dynamic cues,
certain conditions need to be fulfilled, for example, an efficient velocity (Hayashibe
1996). Shaw et al. (1991) and Guski (1992) proposed the theory that the momentary
change of intensity can serve as a dynamic cue and provide additional information.
This effect is known as Acoustic τ , in analogy to the optical τ . The variable τ denotes
the time-to-contact or the time-to-collision when moving towards an object.

Ashmead et al. (1995) observed, that an approaching motion towards a loud-
speaker affected the estimated egocentric distance. The participants were blindfolded
and had to report the distance bywalking to the perceived location.Distances between
5m and 19m were tested. Significant differences could be found between listening
from a static position, listening from two different static positions and listening
during walking. The authors explain their observation with the acoustic τ . Speigle
and Loomis (1993) conducted a similar experiment but with distances of 2, 4, and
6m. Furthermore, sources at different azimuths (0◦, 30◦, 60◦, 90◦) with respect to
the “origin” (listening position in the static listening condition) and to the direction
of movement were added. Thus, in those cases (30◦, 60◦, 90◦), additionally to the
acoustic τ , motion parallax effects may provide dynamic acoustical cues. In this
experiment, the sound level of the source was not varied, in contrast to Ashmead
et al. (1995). The case of listening from a fixed position was compared with two
dynamic conditions in which the participants had to walk 2 or 4m towards the 0◦
source position to arrive at the position of static listening.

In both dynamic conditions, a tendency could be observed that the overestimation
of close distances is smaller, suggesting a higher accuracy of the perceived distances.
However, it remains open, whether this applies to the expected underestimation of
farther distances as well. Yet, these cases had not been tested in the experiment.
Furthermore, the perception of direction was obviously affected in the two dynamic
conditions. The authors explained the effect with a practical issue in the blind walk-
ing condition, namely, overshooting the “origin” after walking by 62 and 76cm in
average. No significant differences between the distance estimation for the 0◦ direc-
tion and the other directions were found. Thus, this experiment does not show any
impact of a motion parallax effect.

Rosenblum et al. (2000) studied the distance perception of a wall in an echoloca-
tion scenario. In the moving condition, the estimations were slightly more accurate
than in the standing still condition. The authors assume, that the acoustic τ could be
the explanation.

Genzel et al. (2018) claim to provide psychophysical evidence for the auditory
motion-parallax effect. Listeners had to distinguish whether a high-pitched sound
source was closer or farther away than a low-pitched source. When the difference in
distancewas only 16cm the participants could not solve the taskwithoutmotion.Also
for higher differences, the results with motion were significantly better. Thus it may
be concluded that the participants made use of “time-variant binaural perceptual cues
associated with motion” in a distance segregation task. The authors put lots of effort
into the minimization and elimination of the known acoustical cues for distance
estimation, such as sound level or spectral cues. However, the potential motion-
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parallax effects were not separated from disparity. Thus, it is not clear, whether the
observed difference is caused by dynamic effects or only by listening from additional
perspectives.

However, besides those few experiments, there is a lack of further studies con-
firming the effects of the acoustic τ or of auditory-motion parallax. Zahorik et al.
(2005) summarize that dynamic cues play a minor role in auditory distance estima-
tion. For the case of listener translation, one explanation might be the relatively low
speed of walking. During fast position changes, potential effects of dynamic cues
may be stronger and cause clearly measurable differences—compare, for instance,
Störig and Pörschmann (2013).

Estimation of Source Directivity

The directivity of a sound source describes the frequency-dependent propagation
of radiated sound beams as a function of the direction of radiation. This parameter
is important to understand the characteristics of the sound source and of resulting
reflections in a room. In a real environment, a person is able to walk through the room
and around the sound source. The characteristics of the heard sound vary according
to the source directivity. For the creation of a plausible virtual environment over
headphones with changes of the listening position being allowed, these differences
need to be considered. However, the required level of detail is not understood. Is
source directivity, potentially only approximated, noticed at all?

The influences of different sound-source directivities on the perception of real
and virtual environments have been addressed in several studies. Martin et al. (2007)
showed that a variation of the source directivity leads to differences in the mea-
surements of room acoustic parameters. There is a significant influence, especially
in the high frequencies. Wang and Vigeant (2008) compared objective and subjec-
tive measures of an omnidirectional, a realistic, and an extremely focussed sound
source. They used just noticeable differences (JNDs) of the room acoustics param-
eters clarity and reverberation time to predict whether listeners are able to perceive
a difference when listening from a static position. Audio stimuli were generated
with room acoustics modeling software. The listeners had to compare two audio
samples and tell whether they perceived a difference and, additionally, which of the
two samples sounded more reverberant, clearer, and more realistic. As expected, the
perceptual evaluation exhibited significant individual differences when the values
exceeded the JNDs. Hoare et al. (2010) assessed the perceptive discrimination abil-
ity for varying sound-source directivities in a virtual free field. Discriminative tests
with direct comparison were used to evaluate the dissimilarity on a 10–point Likert
scale. The listeners clearly perceived differences between the auralized sound-source
directivities. Zotter et al. (2014) found that listeners are able to rotate directional
sound sources towards them. Without this rotation movement, it were hardly pos-
sible to estimate the static orientation. Furthermore, the distance perception could
be influenced by variations in the source directivity, since they directly affected the
direct-to-reverberant energy ratio (DRR).Wendt et al. (2017) addressed this question
in a virtual and a real environment.
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Results of Zotter et al. (2014) let assume that listeners are able to perceive and
distinguish different directivities of sound sources when being allowed to explore the
area by moving past or around it. If the motion causes a change of the relative angle
between the source and the listener, direction-dependent differences of the source
properties may become audible. In a pilot listening test, this assumption was verified
(Sloma and Neidhardt 2018) as follows.

For the assessment, sound sources with different directivities were modeled in
rooms with differing room acoustics properties using MCRoomSim (Wabnitz et al.
2010). Binaural Room Impulse Responses were generated and auralized with PyBin-
Sim (Neidhardt et al. 2017). The listeners had to state which directivity the presented
sound source had, firstly when listening from a fixed position with head rotation,
and secondly when listening after exploration of the room on a pre-defined walk-
ing path with head rotation allowed. The listening test was conducted in a listening
laboratory according to ITU-R BS.1116. Twenty listeners participated in the experi-
ment. The results show that listening from a fixed position did not provide sufficient
information to decide whether a sound source is omnidirectional or oriented towards
a specific direction. In the static listening scenario, the reverberation in the room
had an influence on the decision. Walking past or around the sound source enabled
the listeners to distinguish sound source directivities clearly. The relative-position
changes between source and listener led to audible changes in timbre and loudness.
Contrary to the static case, the room acoustic properties did not show an influence.

Further research should investigate which cues become available due to move-
ments of the listeners, and which are actually exploited when discriminating between
sound sources and their directional characteristics (Sloma and Neidhardt 2018).

Positional Disparity and the Theory of Cognitive Maps

When listening to an acoustic scene from two different static positions, the listener
can benefit from the positional disparity between those two listening perspectives. For
example, if the first listening position is in line with two sources and the listener has
difficulties distinguishing which one is in front, a step to the side will bring a relative
angular difference. In this second listening position, the listener may have fewer
problems in distinguishing the sources. When walking through a scene, multiple
listening perspectives add up and the sum of the information may be used for the
interpretation of the acoustical cues and the understanding of the scene.

Epstein et al. (2017) assumes that humans may create a cognitive map for spatial
navigation. In this way, it would become possible that interactive exploration of the
acoustics is used to establish a map of the surrounding environment. However, as has
been pointed out, for example, by Weisberg and Newcombe (2018), this assumption
is discussed controversially. Nevertheless, Seeber and Clapp (2020) present a theory
as to which listeners collect information on room geometry whenever entering a new
room and build an abstract cognitivemodel of the room for themselves. This informa-
tion helps to reduce the required adaption to room-acoustical changes while walking
through the room. The adaptation to room acoustics influences, among other things,
localization accuracy and speech intelligibility. In this context, it may be assumed
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that extracting spatial information is easier if an exploration via interactive changes
in the listening position is possible. Furthermore, it opens up further questions like

• How accurately does the adaptation of the early reflections to different positions
have to be realized in a reproduction setup?

• How sensitive are listeners to simplifications in the progressive modifications of
the virtual sound field while walking through a simulated environment?

4.3 Types of Interaction and Relevance of Authentic
Self-motion

A person can listen passively to the motion of the sound source without having any
control of this motion. In this case, no interaction is possible. A different case is
given when the movements of the sound source can be controlled by the user. Then
a further distinction has to be made of authentic interaction, where the listeners
carry out an equivalent motion with parts of their bodies, for instance, tracking the
source movement with their hands, and non-authentic interaction, where the source
movement is controlled via a keyboard or equivalent simple devices.

It is of interest to consider different types of interaction with the avatar that
represents the user in the virtual acoustic scene. Again, there is the option of passively
listening to the moving avatar without having control or influence. If this type of
interaction is used in virtual acoustic environments, it is likely that the users get
confused and high concentration and listening effort are consequently required. Such
cases occur in audio books or when watching videos of an avatar moving through a
virtual world. Though the video at least provides some visual scene context, it will
probably still be difficult to achieve the impression of immersion or to perceive the
perspective of the avatar.

Furthermore, there are again the options of authentic and non-authentic interac-
tion. Non-authentic interaction means controlling the avatar with movements and
actions that are different from the motion of the avatar, such as, for instance, chang-
ing the listening position via keyboard, touchpad, or joystick. In cases of authentic
interaction, the listeners control the avatar representing themselves by equivalent
movements of their own body, which are tracked by a motion-capture system. For
the reproduction, perceptual requirements regarding real-time interaction have then
to be met, among other things, regarding latency or temporal-resolution.

Wallmeier and Wiegrebe (2014) compared three types of rotation with different
degrees of interaction while the audio signal at the listeners’ ears remained the same
in all conditions. The participants had to rotate until being aligned as parallel as
possible to a long virtual corridor. In one case, the non-moving listeners could rotate
the acoustic scene around them by controlling the angular-rotation with a joystick. In
the second test condition, the listeners controlled with the joystick the rotation of the
chair that they were sitting in. The third condition included tracked rotation of the
head in addition to the rotation of the chair. From the results of these experiments,
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it may be concluded that authentic self-rotation provides additional cues compared
to being moved passively. In both cases, the same audio signal is presented to the
users. However, obviously, the proprioceptive information from self-motion provides
additional cues that are useful for the interpretation of the auditory information
received.

Genzel et al. (2018) studied the influence of a relative lateral-position change
between two sound sources and the listeners in a distance-discrimination task. In
one condition, the listener moved actively, in the second, the listeners were moved,
and in a third, the sourcesmoved but the listeners remained in the sameposition. In the
case of listeners active self-motion, the smallest just-noticeable distance differences
were found and for the source motion, the results were the worst. This confirms the
role of self-motion also for the case of translational movements.

4.4 Effect of Exploration on Room Perception, Adaptation,
and Room Divergence

The direct-to-reverberant energy ratio (DRR) is a relevant cue in auditory-distance
estimation (Zahorik et al. 2005). However, identical DRRs in different rooms may
correspond to different distances. Hence, our hearing needs to adapt to the particular
room to enable accurate judgment of the distance—as discussed, for example, by
Shinn-Cunningham (2000). This means that, when entering an unknown room, it
is necessary to find out which DRR corresponds best to a specific distance. An
exploration phase is thus likely to be beneficial for this purpose.

In conclusion, one might set up the hypothesis that an exploration phase supports
the process of adaptation to a room and the abstraction of basic information about
the room—compare Seeber and Clapp (2020), this volume. If this hypothesis holds,
this aspect needs to be considered in connection with the room-divergence effect. It
may well be that effect is strong before adapting to the new room but decreases after
adaptation.

However, these thoughts are still at a hypothetical stage. Experimental evidence
has not been established so far. Furthermore, the individual strategy of exploration
certainly plays a significant role. Further studies are needed for clarification.

4.5 Summary of Potential Influences by Active Self-motion

In this section, potential influences of active listener translation on the interpretation
of the sound-pressure signals at the ears are discussed. They can be summarized as
follows.

• Interaction of self-motion and the auditory sense (effects of self-motion on the
interpretation of the sound pressure at the ears)

• Benefit of positional disparity and the potential of creating a cognitive map of the
environment
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• Dynamic acoustical cues like current changes of intensity (acoustic τ ), of the
azimuth to a sound source or azimuth difference between two sources (motion
parallax) or of the direct-to-reverberant ratio, may be exploited

So far, only a few studies were conducted to investigate those potential influences
qualitatively and quantitatively. However, in this chapter we formulated the hypoth-
esis that active listening may help to overcome certain deviations in localization due
to non-individual HRTFs, for instance, an increased elevation angle. The listeners
may perceive slight source movements during their own motion enabling them to
understand and to assign the position of the source in the scene more accurately. The
effect might be even stronger when the listeners change their position interactively.
As yet, no studies have investigated into this question.

5 Implications for System Development

5.1 Challenges in the Realization of an Interactive
Exploration of the Virtual Acoustic Scene

As regards technological application, both authentic and non-authentic interaction
are challenging in different ways. For non-authentic movement, it is often difficult to
achieve the perception of self-motion (vection; Larsson et al. 2004), especially if no
visual representation of the virtual scene is provided. Authentic interaction is partic-
ularly demanding in terms of accurately capturing of the users’ movements as well
as keeping the system delay and temporal resolution (e.g., update rate) below the just
noticeable differences—for data compare, for example, Lentz (2007). Furthermore,
in technological systems, the motion capture may be restricted to certain degrees of
freedom, for example, head rotation solely in the horizontal plane or position track-
ing only in the horizontal plane without considering height. Also, the area of action
is often limited to a rather small spatial section. The restrictions are likely to affect
the perceptual plausibility. However, these effects may be minimized by a system
design that considers these restrictions by creating a context that communicates the
reasons for the limitations and makes sense to the listeners.

Sensitivity for Auditory Motion

Perrott and Saberi (1990) determined that the minimum-audible angle (MAA) of the
sound-source position relative to the listener is 1◦ in the horizontal plane and 3.6◦
in the vertical plane. These results are in line with observations reported by Blauert
(1997) but only hold for static listeners as well as static sound sources.

In contrast, the minimum-audible-movement angle (MAMA) is the azimuthal
displacement of a moving sound source relative to a static one that a listener can
just detect (Lundbeck et al. 2017). The MAMA increases with velocity and also
depends on the bandwidth and the spectrumof the acoustic signals (Carlile andLeung
2016). Results of experiments with broadband stimuli suggest that in the case of low
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velocities the performance is similar to that obtained with static sources (Saberi and
Perrott 1990). For angle changes in the horizontal plane, Saberi and Perrott (1990)
determined MAMAs of 1.7◦ for a low velocity of 1.8◦/s and about 10◦ at for high
velocity of 320◦/s. For angular velocities of at least 25–100◦/s, reverberation appears
to have no impact.

There are no reports yet regarding the minimum-audible-movement distance
(MAMD). However, just-noticeable differences have been determined for the direct-
to-reverberant ratio by Zahorik (2002b), Larsen et al. (2008) and for the sound level,
for example, by Florentine and Buus (1981).

5.2 Room-Related Binaural Synthesis

The processes and effects of auditory adaptation confirm the assumption that the
construction of spatial auditory events does not depend exclusively on the synthesis
technology for ear signals but also on various context-dependent quality parameters.
Section3 of the current chapter discusses auditory adaptation effects in detail. A
conclusion that is drawn there is that the acoustic properties of the transfer functions
used in binaural synthesis can be modified in such a way that the divergences as
generated by different scene contexts can be reduced or even resolved.

Binaural Room Impulse Responses (BRIRs) can be used to reproduce sound
sources in a room. The BRIRs can result from room-acoustic simulations or from
measurements of real sound sources in real rooms. A comprehensive synthesis of
an auditory scene with a variety of sound sources, room acoustics, and movements
of the sources and receiver requires a high number of BRIRs. Minimization of the
number while maintaining high perceived quality is desirable. Furthermore, it is a
challenge to adjust the binaural synthesis to the prevailing listening conditions and
thus to the context-dependent quality parameters.

Simplified approaches are presentedwhich adjust single acoustic parameters of the
(re-)synthesis to the acoustic parameters of the listening situation.Methods have been
developed that, for example, adjust energy-based parameters, time-based parameters,
or combinations of both. Driven by the goal of a perceptive fit between the perceived
synthesized audio scene and its expected internal representation, the acoustic param-
eters of the binaural-synthesis system that are suitable for creating plausible auditory
illusions are examined in the following. The objective is the development of methods
for

Adjustments in accordance with the listening room The room-acoustic properties
of the BRIRs measured in a room should be adjusted in accordance with the
listening room. The adjustments are made by changing single or several room-
acoustic parameters of the recorded BRIRs until they correspond to the listening
room. The direct-to- reverberant-energy ratio (DRR) is selected as one prominent
acoustic parameter for distance and room perception—compare Bronkhorst and
Houtgast (1999) andZahorik (2002a). Following the investigation on the influence
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of reverberation on the externalization of auditory events (Begault and Wenzel
2001), a study is now presented that investigates the reliability of DRR adjustment
for room congruence and its influence on externalization at room divergence.

Synthesis of new BRIRs New BRIRs are to be synthesized at different positions in
space from measured BRIRs from other positions. The aim of the methods is to
generate a large number of BRIRs from spatially sparse measurement positions
and, thus, a small number of BRIRs (Brandenburg et al. 2018a). The approach
focuses on the adjustment of the initial time-delay gap (ITDG) as themain distance
cue. For other approaches to synthesize new BRIRs based on interpolations using
dynamic time warping it is referred to the literature—for example to Sass (2012)
and Pachatz (2017).

Several approaches have beenmade in the last years to reduce the number ofmeasure-
ments for the collection of data to be used for binaural synthesis. Savioja et al. (1999)
describe methods to merge calculations of head-related transfer functions, acoustic
room simulations, amount of reverberation, and/or source directivities. Algazi et al.
(2004) developed a technique called motion-tracked binaural (MTB) sound for cap-
turing, recording, and reproducing spatial sound. The authors use a circular array of
microphones on a sphere with the diameter of an average head to capture the sound.
When playing the sound back via headphones the movement of the listeners’ head is
tracked and the headphone signals are interpolated from the microphone recordings
at positions close to that of the listeners’ ears. This procedure, in modified form, can
also be applied for interpolation between measured BRIRs. Kearney et al. (2009)
simulate changes in source movement by interpolation of BRIRs. Pörschmann and
Wiefling (2015), and Pörschmann et al. (2017) developed an approach that creates
BRIRs by using HRTFs and omnidirectional representation of the room reverbera-
tion.

Adjustment of the Direct-to-Reverberant Energy Ratio for better externalization

Experiments are presented that investigated the reliability of DRR-adjustment to the
synthesis of listening rooms in the event of convergence or divergence between the
synthesized room and the listening room. The test listeners had the task of adjusting
theDRRof the synthesized sounduntil perceptive congruencebetween the simulation
and the individual expectation was achieved. The reference formation of the setting
was based on previous training in the listening room with real loudspeakers. In
addition to setting the DRR, the focus was put on the evaluation of the perceived
externalization in case of room divergence after appropriate adjustment. Here are
results for different settings,

• Binaural Synthesis The system uses measurements of individual and dummy head
BRIRs for two selected rooms, sound sources, and positions. A non-dynamic sys-
tem without head tracking is used to prevent dynamic cues from resolving percep-
tual ambiguities, such as quadrant errors and in-head localization, thus masking
the effects of the DRR setting if necessary. A customizable binaural system is used
to increase the fidelity of the simulation compared to real speakers. In-ear micro-
phones are used to measure individual BRIRs and headphone transfer functions
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Fig. 4 Congruence of the direct sound to reverberation energy ratio (DRR) between the DRR of
the adjusted synthesized room and the listening room for different room combinations. Room name
in brackets denotes the DRR setting for this room; SR…seminar room, LL…listening laboratory;
example: SR(LL)_LL is the synthesis of the seminar room (SR) in the listening lab (LL) with a
DRR adaptation of the synthesis on the listening lab (LL)

(HPTFs) at the entrance of each test person’s blocked ear canal. The inversion of
an HPTF is calculated according to a least-square method. Extra-aural headphones
(TYPEBK211; Erbes et al. 2012) are used for playback that meet the requirements
for open headphones. This allows a test design with listening to the real room and
resynthesis of these speakers through headphones

• Room Divergence A listening laboratory (abbr. LL; Rec. ITU-R BS.1116-1,
V=179m3, RT60=0.34 s) and an empty seminar room (abbr. SR; V=182m3,
RT60=2.0 s) were selected to take different room acoustic characteristics into
account. The used combinations of listening rooms and synthesized rooms were
as follows: (a), synthesis of the seminar room in the seminar room, (b), synthesis
of the seminar room in the listening laboratory, (c), synthesis of the listening lab-
oratory in the listening laboratory, and (d), synthesis of the listening laboratory in
the seminar room. The adjustment of the DRRs of the synthesis by the test listen-
ers led to further combinations of listening room and synthesized room. The used
rooms were identical to those used in the experiments on the room-divergence
effect reported in Sect. 2.1

Figure4 schematically illustrates the room combinations used in the test and the
congruence of the DRR between the adjusted synthesized room and the listening
room. The synthesized sound sources are located at six positions around the listener.
To create the binaural synthesis, the BRIRs are measured from the directions 0◦, 30◦,
60◦, 180◦, 240◦, and 300◦ in the listening laboratory and in the seminar room. The
distance of themeasured speakers to the recording location is 2.2m. The loudspeaker
is directed horizontally to the recording location and is located in the median plane
with an angle of 0◦ with respect to an assumed test listener.
Testing was performed as follows. The test listeners adjusted the DRR of the syn-
thesis until perceptive congruence between the synthesis and the listening room
was perceived. Room congruence describes the perception of auditory correspon-
dence between the synthesized scene and the expectation on the listening room. The
expectations are based on the knowledge of the listening room and are assumed
as an internal reference for the comparison. The amount of room congruence was
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described along the judgments fitting accuracy, naturalness given, well sounding, or
pleasant. These terms are literally translated from German (Zabel 2012).

The various DRR-scaled BRIRs were changed by amplifying or attenuating the
reverberation component relative to the direct-sound component of the measured
individual BRIRs. The reverberation component was determined 3ms after the direct
sound. The BRIRs with different DRR-levels were calculated stepwise in a range
from zero reverberation (reverberant part set to zero) up to a maximum amount
of reverberation. The maximum was fixed at a reverberation level of +30% of the
original measured BRIR. Seventy steps were used in between. Figure5 shows the
DRR levels as adjusted by the test listeners.

The test persons succeeded quite well in adjusting the DRR level for room con-
vergent scenarios. The averaged deviation of the medians across all directions for
the condition “LL in LL” results in a deviation of ≈1dB from the measured level.
The interquartile distances (IQD) averaged over all directions are at 3.8dB. For the
convergent condition (SR in SR) the median of the adjusted levels for all directions
is on average 1.3dB above the levels of measured ones. However, the adjusted DRR
levels lie within the just noticeable differences (JNDs) in DRR perception (Larsen
et al. 2008; Reichard and Schmidt 1966; Zahorik 2002a). The IQDs of adjustments
for the condition SR in SR are on average for all directions at ≈5dB. The IQDs
determined in this experiment at large are ≈1dB higher than the IQDs determined
in a similar experiment but with experienced test listeners (Werner and Liebetrau
2014).

For the room-divergent synthesis of the listening laboratory in the seminar room
(LL in SR) the median of the adjusted DRR levels across all directions 4.4dB is on
average above the DRR level of the measured ones. The test listeners’ DRR settings
differ significantly from those for the resynthesis of the seminar room. The reason
for this is the limited range of DRR levels used in the synthesis of the listening
laboratory. The selectable DRR levels do not reach the low DRR levels as measured
in the seminar room. However, the determined IQDs of the settings lie, averaged
over all directions, at ≈2.8dB and are therefore in the same range as for the room
convergent scenarios. For the second room, for the divergent condition (SR in LL),
an averaged deviation of the adjusted median over all directions from the measured
DRR level of 9dBwas found. The test listeners thus chose a less reverberant synthesis
than that of listening room. The IQDs averaged over all directions are at 17.5dB.
The IQD is thus significantly higher than the JNDs reported in the literature (Larsen
et al. 2008; Reichard and Schmidt 1966; Zahorik 2002a). A similar test with well-
experienced test persons showsmuch smaller IQDs ofmax. 8.2dB for the same room
combination (Werner and Liebetrau 2014).

The externalization results are plotted in Figs. 6 and7 reporting the ratings of the
test listeners in the quality tests for the evaluation of externalization. The results are
presented as externalization indices with associated 95% confidence interval for two
frontal directions and spatial combinations. The indices for the other directions show
comparable behavior—not plotted.

Figure6 shows the indices during playback in the seminar room. The highest
values were achieved for the synthesis of the seminar room in the seminar room
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Fig. 5 Adjusted DRRs for different directions and room conditions. The upper panel shows the
settings for the room divergent synthesis of the listening laboratory in the seminar room while the
lower one depicts the settings for a room convergent synthesis. The adjustments for the two other
room combinations show a similar behavior—not included in the figure. The DRR levels of the
listening rooms are plotted as dashed lines
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and by DRR congruence (SR(SR)_SR). On average over all directions the index is
about 0.9, while lower indices of about 0.7 can be found at 0◦ and 180◦, that is, for
directions with expected localization errors. A similar effect occurs for the synthesis
of the seminar room in the seminar room but with DRR divergence (SR(LL)_SR).
For this room condition, the indices for the 0◦ and 180◦ directions are ≈0.1. The
averaged index across all directions is 0.3. For the synthesis of audio sources at
lateral directions the average index is ≈0.4. For the directions 30◦ and 60◦, the
indices are in the range of the probability of guessing for the dichotomous feature
externalization.

The room condition with room divergence and DRR divergence between the
synthesized room and the listening room (LL(LL)_SR) reaches an index of ≈0.4 on
average over all directions. The indices for the directions 30◦ and 300◦ are in the
range of the rate probability. For the room condition with a divergence between the
synthesized room and the listening room but DRR convergence with the listening
room (LL(SR)_SR), an index of≈0.5 is achieved on average over all directions. The
indices for the directions of 0◦ and 180◦ are also lower here compared to the lateral
directions, namely, ≈0.2. For the directions of 30◦ and 60◦, the highest indices with
≈0.7 and≈ 0.8 are reached. The indices for the room condition LL(SR)_SR are thus
above the indices for the room condition LL(LL)_SR for all directions for which no
DRR adjustment to the listening room was made.

Figure7 shows the assessments of the test persons for the synthesis of the seminar
room or the listening laboratory in the listening laboratory with DRR convergence
and DRR divergence of the synthesis with the listening room. Compared to the
ratings in the seminar room, higher indices are achieved for all room conditions. As
expected, the lowest indices are visible for the directions of 0◦ and 180◦. For the
synthesis of the seminar room in the listening laboratory and for DRR divergence
(SR(LL)_LL), the average index over all directions is ≈0.5. For the directions 0◦
and 180◦ the index drops to 0.25 and 0.2. There are no significant differences in
the other room conditions. The synthesis of the listening laboratory in the listening
laboratory at DRR Convergence (LL(LL)_LL) reaches high indices of over 0.9 for
lateral directions.
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Similar values can also be observed for the synthesis of the listening laboratory
and DRR adjustment to the seminar room (LL(SR)_LL) and synthesis of the seminar
room (SR(SR)_LL)with no change of theDRR. In comparison to Fig. 6 it can be seen
that the synthesis of a reverberant room in a less reverberant room leads to higher
indices and thus to increased externalization. The room divergence effect occurs
mainly during the synthesis of a less reverberant room in a reverberant listening
room.

In conclusion, the assessments of the DRR settings from the first experiment
show that trained test listeners are able to reliably adjust the DRR of the synthesized
listening room. The adjustment is an absolute one, made on the basis of the expected
congruence of the reverberation. There is no comparison or relative alignment process
between the listening room and the synthesized room. At the beginning of the test,
the listeners hear the real room via loudspeakers and then, subsequently, adjust the
binaurally synthesized one.

The achieved IQDs of evaluations are comparable to the JNDs at 50% detection
rate found in the literature for DRR perception (Larsen et al. 2008; Reichard and
Schmidt 1966; Zahorik 2002a). The IQD contains 50% of the ratings between the
1st and 3rd quantile. The low IQDs shows high reliability among the test listeners
which is an indication for a suitable controllable acoustic-quality element of the
synthesis. The setting of the DRR also seems to be a valid method for adjusting
binaural synthesis to the reverberation of the listening room as a context-dependent
quality parameter. The IQD of the DRR settings can be taken as an indication of the
JND of DRR perception via the relationship JND≤IQA. With the synthesized room
and the listening room being in congruence, test listeners adjust a by 2dB to 3.5dB
higher DRR for the synthesized room compared to the real listening room. The test
listeners reliably choose a less reverberant synthesis. This effect is also detectable as
anecdotal evidence for loudspeaker and headphone reproduction without the use of
binaural synthesis.

The listening test in the second experiment investigates the effect of a DRR
adjusted synthesis on the perception of externalizationwhen there is roomdivergence
with the listening room. The test listeners, who were not trained in this auditory test,
achieved slightly larger IQDs in the DRR setting than in the first experiment. Higher
DRR values (less reverberant synthesis) also tend to be set.

The ratings regarding the externalization of auditory events in case of room diver-
gence butwith theDRRof the synthesized rooms adjusted to the listening roomdonot
provide the expected increase. Although the test stimuli adjusted to DRR-congruent
signals tend to achieve higher externalization indices than those-adjusted to room-
divergent ones, but these increases are generally very small with probability value
of difference (p< 0.05). The DRR has proven to be a very reliable and adjustable
room-acoustic feature in the sense of an internal reference. However, it has only a
minor effect on externalization if the the room-divergence effect take effect.

Thus, it seems that the adjustment of a pure energy-based room-acoustic parameter
does not lead to the desired correspondence of the stimulation patterns or schemata
of the synthesis with the stored stimulation patterns or schemata and expectations.
This can be explained with the Clifton effect, in which the temporal structure of
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Fig. 8 Approach for synthesis of newBRIRs based onmeasurement of one BRIR using adjustment
of the Initial Time-Delay Gap (ITDG). Figure after Mittag (2016)

the reflections is the decisive characteristic carrier. Only higher reverberation of the
signals on its own does not necessarily leads to an increase of externalization.

Modifying the Initial Time-Delay Gap

The following method computes new binaural room-impulse responses (BRIRs) for
desired positions in a room from a single measured BRIR dataset. The measured
BRIR is adjusted to the desired new position in the room by changing the initial
time-delay gap (ITDG) as one of the most prominent absolute distance cues. Figure8
illustrates the approach. The method described is based on works of Füg (2012), Füg
et al. (2012), and was further developed and evaluated byMittag (2016), Mittag et al.
(2017).

To create the new BRIRs, the position and pose data of the measured position and
the new position to be synthesized are required. At the measuring position, there is
a set of BRIRs for the different posing directions available. The angular resolution
corresponds to the desired resolution. An interpolation of the direct sound component
to increase the resolution is also conceivable. Then the distance between the position
to be synthesized and the measuring position is calculated. Starting from the desired
pose direction at the synthesis position, the corresponding angle at the measuring
position is determined.

Based on the calculated distance change between a measured position and the
position to be synthesized, the ITDG was adjusted in accordance with the measured
BRIR. For this, a method was used that was developed and evaluated by Füg (2012),
Füg et al. (2012), and Werner and Fueg (2012). In brief, the direct sound and the
first reflection were detected. An endpoint in time within the early reflections was
determined by applying the perceptual mixing time. The new ITDG was applied,
and the time range of the early reflections were stretched or compressed according to
the new desired distance. Finally, according to the synthesized distance, the energy
of the new BRIR was adjusted. Here the direct sound was adjusted according to an
energy drop of 6dB and reverberation with a drop of 1.5dB per doubling of distance.
This also achieved an implicit distance-dependent adjustment of the DRR.

Two followingdrawbacks of thismethodhave to bekept inmind. First, The applied
energy adjustment achieved that the energy curve over time (EDC) corresponds as
far as possible to that of the measured position. The EDC was only changed by the
ITDG adjustment and the associated compression or stretching of the course of the
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first reflections. However, this change did not necessarily correspond to the EDC
process at the synthesis position. Second, The stretching or compression of the time
course of the first reflections caused a change in the spectral composition and thus
a coloration compared to an assumed original BRIR. In studies by Hassager et al.
(2016) it has been proven that a spectral smoothing and thus a change of the spectral
composition of the reverberation has little or no influence on the externalization of
auditory events.

The relevance of acoustically incorrect adaptation to spatial auditory perception
can be estimated on the basis of studies regarding the identification of the listening
positions in the room. Shinn-Cunningham (2003) concluded from her investigation
that it was possible for trained listeners to distinguishwhether theywere in themiddle
of the room or close to a wall. Yet, a further differentiation between identification of
more than one position was not easily possible.

Based on these findings, Neidhardt (2016) and Klein et al. (2017a) investi-
gated the influence of head movements and training on the performance in position-
identification tasks in a room. It was shown that targeted head movements had no
significant effect on this kind of tasks. The studies on the influence of training con-
firm that without training the listeners cannot distinguish between different positions
in a room. A training led to a significant improvement of the segregation of positions
in space for 6 out of 21 (29%) listeners. However, there was also a clear depen-
dence on the positions in the room (e.g., close to a wall or and in the middle of the
room)—compare Shinn-Cunningham (2003).

Studies of Pörschmann and Wiefling (2015) and Neidhardt et al. (2016) showed
that it was difficult for listeners to correctly classify themselves on the basis of
acoustic characteristics. However, it remains open to what extent, for example, in
augmented audio environments, a comparison of acoustic characteristics between
real sound sources in the room and synthesized virtual sound sources leads to an
increased discriminatory capacity. It is also still open to what extent a real sound
source, but at different positions and with different acoustic properties, can serve as
a reference for virtual sound sources.

5.3 Application Scenarios

Binaural technology has a broad field of possible commercial applications. For exam-
ple, virtualization of loudspeaker-based home entertainment systems, mobile mixing
and mastering studios, spatial sound in conjecture with head-mounted displays and
360◦ videos, applications in wearables/hearables, gaming, and many more. In these
applications, binaural sound used to be perceived as a nice-to-have additional feature.
However, this situation has substantially changed with the advent of augmented-
reality. Binaural audio processing is necessary to complement visual augmented
reality or the (real) reality itself with adequate acoustics or augmented audio objects.
The technical demand for this application is high. Context-dependent effects have
thus to be considered.
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The innovation potential of augmented acoustic reality is about to trigger relevant
research, for instance, in the fields of room-acoustic estimation and modeling, Xiong
et al. (2018), Kim et al. (2019), rapid HRTF acquisition or estimation, Nagel et al.
(2018), He et al. (2018), source separation and audio scene classification, Cano
et al. (2019), tracking as well as rendering on mobile devices and quality evaluation,
Stecker et al. (2018), Cano et al. (2018), alongwith research on perceptual thresholds
(e.g., room-discrimination thresholds Larsen et al. (2008).

Among all well known scenarios where plausible or even authentic playback of
sound via headphones is required, two examples in the field of augmented reality
with regard to consumer electronics are presented in the following. Both require
progress towards realistic auditory illusion as compared to the current state of the
art. The next two paragraphs provide more details.

Walkable Virtual Loudspeaker Setups

The first example of an application scenario deals with an auditory augmented reality
scenario inwhich a listener explores a scenewith several virtual audio objects in a real
room.Experimental setups to investigateBRIR synthesismethods for this purpose are
used in the current authors’ laboratory. Furthermore, the behavior of the listeners in a
virtual and/or augmented-reality scene is an item of interest. The observation and the
proper interpretation of this behavior, hopefully, will lead to a deeper understanding
of plausibility and help to improve current quality-evaluation methods. Also, open
and very relevant fields of interest are spatial mixing techniques and audio production
tools for explorable sound and music installations. Beyond being used for research
and test purposes, this type of setup has potential application for home use. Rendering
of TV sound via headphone could become possible in a way that the listener feels
like being in the real room and not having all the sound localized within the head.

Personalized Auditory Realities

Another application scenario for better binaural rendering has been introduced
recently in Brandenburg et al. (2018a, b). The respective technology was termed
Personalized Auditory Reality (PARty) and includes an analysis of the acoustic envi-
ronment, source separation, modification of audio elements, and rendering in such a
way that the acoustic impression is a slight modification of the actual environment.
To describe the basic idea, think of the acoustic equivalent to glasses in vision. Usu-
ally, there is a transparent rendering of the audio world around. When needed, for
example, when there is too much noise around at a party, the system could separate
wanted and unwanted signals, that is, for instance, people you are talking to ver-
sus background noise, and then add in, for instance, a virtual person that you are
speaking to on the phone. Rendering of the signals to the two ears of the listener will
be accomplished by taking advantage of all supporting conditions that have been
described in the current chapter. Obviously, PARty needs nearly perfect—at least
perceptually plausible—rendering of audio sources.
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6 Summary and Outlook

In this chapter experimental results have been presented that solidify the criteria
needed to achieve auditory illusion over headphones. As has been known for some
time, in addition to the physical reproduction of a sound field, a number of cognitive
effects play a role. In fact, even when applying exactly the same sound-pressure
signals to listeners’ eardrums as have been presents in the recording situation, there
are still a number of additional cues in the game that govern the plausibility and
authenticity of the ensuing audio illusion. This includes, for example, whether the
situation is known to the listeners or whether it is new, whether the listeners are
experienced in listening with the corresponding head-related cues, and whether they
had a chance to explore the scene by active (self-)motion.

The practical relevance of these cognitive influences has been discussed in this
chapterwith the aimof employing technical systems that consider the actual acoustics
of the room to the end of, hopefully, delivering convincing auditory illusion.

However, research on this topic is far from being complete. While it is realized
that there is a complex interaction between all the auditory cues, including, for
instance, BRIRs, personalizedHRTFs, reflection patterns in the actual room, learning
to know the room by moving around and listening, there is still no complete model
available that can reliably predict whether a desired auditory illusionwill work orwill
break down. The modeling effort becomes even more complex since the prediction
results are highly personal and, to be sure, people have widely varying individual
personal experiences. In addition, the results depend on the actual audio material to
be rendered.
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Abstract Based on acoustic input to their two ears, humans are able to collect rich
spatial information.To explore their acoustic environment inmore detail, they thereby
move their bodies and heads to resolve ambiguities as might appear in static spa-
tial hearing. This process is termed “active listening.” This chapter introduces new
research regarding two specific aspects of active listening, namely, (i), facilitation
of sound localization in the median plane and, (ii), augmentation of the discrimi-
nation angle for frontal auditory object. As active listening affects spatial hearing
significantly, the design of systems for spatial-sound presentation requires substan-
tial expertise in this field. In this context, a dynamic binaural display was developed
that supports active listening. The display was applied to edutainment applications
such as training the spatial-perception competence of visually impaired persons. Two
exampleswere specifically investigated for this purpose, namely, amaze game and an
action game. The former facilitates players’ ability to draw cognitivemaps. The latter
improves the sound-localization performance of players, their eye-contact frequency
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1 Introduction

We humans are active creatures. It is therefore quite natural for us to explore envi-
ronments by moving through them to collect accurate spatial information. These
inherent movements are also true for spatial hearing (Blauert 1997). The process is
not restricted to audition, but may include crossmodal cues, such as from the vestibu-
lar system. The process of gathering auditory information during exploratory head
and body movements is known as “active listening” (Suzuki et al. 2012). Numer-
ous studies show that active listening facilitates auditory spatial perception. Wallach
(1939) demonstrated that these movements provide cues for elevation-angle assess-
ment. Also, Thurlow and Runge (1967) showed that among horizontal head turning,
nodding, and pivoting, horizontal head turning is critical for proper sound-source
localization. Similar findings were obtained in virtual auditory spaces. For instance,
Kawaura et al. (1989, 1991) examined sound localization of a virtual sound source,
spatialized at a distance of 1.5m from the center of listener’s heads by convolving
acoustic signals with head-related impulse responses (Hrirs), the time domain rep-
resentation of head-related transfer functions (Hrtfs). They reported that front-back
and distance judgments were markedly improved when horizontal head rotations
were properly reflected in the binaural signals. Indeed, numerous reports describe the
facilitation of sound localization by head movement—see Perrett and Noble (1997),
Iwaya et al. (2003), Toshima and Aoki (2009), Brimijoin et al. (2013). Furthermore,
active listening facilitates affective cognition (Iwaya et al. 2011). The latter authors
demonstrated that head rotation enhances the sense of presence of listeners in virtual
auditory spaces.

Moreover, in the last decade, a few studies have shown that sound-image-
localization accuracy is reduced by head movement. For example, Cooper et al.
(2008) presented a test sound while listeners were rotating their heads. Results
showed reduction of sound-localization accuracy for sound stimuli presented during
head rotation, compared with that of a static condition. Leung et al. (2008) examined
auditory spatial perception during rapid head motion and reported that the perceived
auditory space was compressed. Honda et al. (2016) measured movement detection
for a virtual sound source during listener’s horizontal head rotation. Results showed
that detection thresholds were higher (i.e. worse) when listeners rotated their heads.
These results urge us to further investigate the active-listening process to draw a
more complete picture.

Either way, since humans must take advantage of active listening to appropriately
understand sound environments, knowledge of active listening is relevant and indis-
pensable for optimal and effective design of three-dimensional (3d) sound-rendering
systems. In this context, the authors are particularly interested in so-called binau-
ral displays. These displays are a type of 3d auditory displays that render auditory
spaces by controlling the sound signals directly at the ears of the listeners. Thereby
it is important to consider the listeners’ movements in order to deliver appropriate
signals to the two ears. This requires taking into account the actual listener posi-
tions with respect to the sound sources. This head-related rendering of sound signals
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is in contrast to other types of 3d auditory displays, such as wave-field synthesis
(WFS) (Berkhout et al. 1993), boundary-surface control (Bosc), (Ise 1997; Enomoto
and Ise 2005), and high-order Ambisonics (Hoa) (Poletti 2005), for which listeners’
rotational and translational movements both are naturally reflected to their ear inputs
if they remain inside the listening zone.

Following the notion of head-related sound-field rendering, a middleware module
for binaural display, called Simulation Environment for 3d Audio Software (Sifaso)
(Iwaya et al. 2005, 2011)was developed in the authors’ laboratory.With Sifaso, edu-
tainment1 applications have been built for the purpose of training spatial-perception
competence, particularly that of visually impaired people (Honda et al. 2007, 2009,
2013; Ohuchi et al. 2006).

Binaural displays are generally applicable to virtual reality applications as assis-
tive technology. Specifically, for visually impaired persons they are of relevance for
enhancing the quality of life—compare (Afonso et al. 2005; Iwaya et al. 2009; Pic-
inali et al. 2014; Seki et al. 2011; Seki 2016). Experiments in which the effect of
the Sifaso system was assessed reveal promising potential of binaural displays to
improve spatial perception and to take advantage of some transfer effects that are
useful in daily life.

2 Head Turning and Sound-Source Localization
in the Median Plane

Many studies, including those described in this chapter, indicate that headmovements
facilitate sound localization, including front-back discrimination. One of these stud-
ies used a robot, the TeleHead (Toshima et al. 2003). “TeleHead” is an avatar robot
that follows the head movements of a human in the following way. A listener in
a location different from that of the robot listens to sound signals delivered from
two microphones on the robot at ear positions. Listening with TeleHead improves
horizontal-plane sound localization (Toshima and Aoki 2009). However, head turn-
ing improves sound localization in the median plane as well (Perrett and Noble
1997). Previous studies with the robot (Suzuki et al. 2012) revealed that it facilitates
median-plane sound localization even if the rotation angles of the robot are smaller
than those of human listeners.

However, it has not yet been clarified how horizontal head rotation of human
listeners should be reflected to generate virtual auditory space by means of binau-
ral displays. To clarify this issue, the effects of horizontal head rotation on sound
localization were studied by the authors in greater detail. In this context the effects
of horizontal rotation of the robot were investigated, whereby the turning was either
in phase or in anti-phase compared to the turning of the human listener.

1A portmanteau word composed from “education” and “entertainment”.



668 Y. Suzuki et al.

2.1 Experimental Procedure

Three young male adults with normal hearing participated as listeners. They were
all well trained for sound-localization experiments.

The robot used was the same as that used by Suzuki et al. (2012), namely, a
simplified TeleHead that follows only horizontal head turns.2 This simplification
was applied because horizontal head rotation (head turning) plays by far the most
important role among the three possible rotational head movements (Thurlow and
Runge 1967). A head simulator (dummyhead) cast after each listeners’ own headwas
set atop the robot. The dummy head can follow head turning up to 200◦/s. The average
system latency during operation was about 50ms. This is slightly shorter than the
detection threshold in binaural displays, and much shorter than the acceptable limit
in listening tests (Yairi et al. 2007, 2008b).

Figure1 shows a schema of the experimental setup. The TeleHead was positioned
in an anechoic chamber at the center of a circular loudspeaker array set-up in the
median plane. The distance between the center of the set-up and the surface of
the loudspeakers was 1.5m. The sound stimulus was a pink noise of 10 s duration
including 6ms rise and decay times using a raised cosine function, and was pre-
sented through one of the 16 loudspeakers in the median plane. The loudspeaker
array was arranged with an elevation of −60◦ in front, climbing up to the zenith
(elevation of 90◦), and continuing to −60◦ in the rear, with 20◦ separation between
the loudspeakers. Sound signals received at the TeleHead’s two ears were reproduced
by headphones (Sennheiser HDA-200) in real-time. The listeners were seated in a
soundproof room next to the anechoic chamber. The sound pressure level of the stim-
ulus was set to 70dB for frontal sound incidence. The sound pressure levels were
calibrated with an artificial ear conforming to the IEC 60318-1: 2009 (B&K4153)
standard, with an adapter for circumaural earphones specified in the same IEC stan-
dard (B&KDB0843). The force added to the adapter was set to 8 ± 1N.

The experiment consisted of seven conditions. In one, the robot kept still, with the
virtual sound source in front, that is, the static condition. In the other conditions, the
robot moved in-phase or anti-phase with respect to the remote listener’s horizontal
head rotation. The amount of head turning of the robot with respect to the listener’s
head rotation was modified. The rotation ratio was selected among±0.05,±0.1, and
±1.0. Here, plus and minus signs respectively mean in-phase and anti-phase rotation
in relation to that of the remote listener. Listeners were asked to move their heads
freely, at least once during each trial, and to identify the loudspeaker direction from
the 16 alternatives. The number of repetitions was five, and the total number of trials
for each condition was 80 (16 directions × 5 repetitions each).

2This simplified version is based on TeleHead’s fourth version (Hirahara et al. 2011).
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Fig. 1 Median-plane-localization setup with TeleHead

2.2 Results and Consideration

Figures2, 3, and 4, respectively, show the localized direction as a function of physical
direction in static, in-phase, and anti-phase conditions. Figure5 shows the front-back
error rate as a function of the rotation ratio for three in-phase and three anti-phase
conditions compared with the static condition. Two one-way analyses of variance
(Anova) were applied. However, Mauchly’s sphericity tests indicated that both
data shown in Fig. 5a, b exhibited significant departures from sphericity (p < 0.01).
Therefore, the Greenhouse–Geisser correction factor was applied to the degrees of
freedom of the Anova analysis. Results for in-phase rotation indicate that the effect
of the rotation ratio is statistically significant (F(1.42, 2.85) = 18.03, p < 0.05).
Multiple comparisons (Tukey’s HSD, p < 0.05) indicate significant differences
between the static and+0.1, static and+1.0, and+0.05 and+1.0 conditions. Results
for anti-phase rotation indicate no significant effect (F(1.56, 3.13) = 3.20, n.s.).

Figure2 shows that frequent front-back errors occurred in the static condition
where TeleHead did not respond to the listener’s head rotation. In contrast, Fig. 3
shows that front-back confusions were suppressed when the robot rotated in-phase
to listeners’ rotation, irrespective of the rotation ratio. The results of Anova confirm
that the suppression is significant, not only when the ratio of TeleHead’s rotation is
100%, but also when it is 10% of the listener’s head rotation. Although the multiple
comparison does not show any significant difference between the static and +0.05
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Fig. 2 Relationship between presented and localized elevation angles for the static condition (r =
0.44)
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Fig. 3 Relationship between presented and localized elevation angles when TeleHead rotates in-
phase

conditions, the differences in correlation coefficients between the static condition
and those of the +0.05, +0.10, and +1.0 conditions are all statistically significant
(ps < 0.001). This signifies that the in-phase feedback to the listeners results in
significantly “sharper” distributions, which may imply fewer localization errors,
including front-back confusions, even when the ratio is +0.05.

These results mean that an avatar robot can provide effective dynamic sound-
localization cues when it rotates in-phase with the listener’s rotation, even with head
turnings of the robot are as low as 5% that of the active listener.
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Fig. 4 Relationship between presented and localized elevation angles when TeleHead rotates anti-
phase
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Fig. 5 Front-back error rates as a function of rotation ratio

It is noteworthy that all listeners reported that the dynamic control to reflect head
rotation was unnoticeable when the ratio of the in-phase rotation was less than or
equal to 10%, while they noticed the dynamic control when the ratio was 100%.
Hirahara et al. (2013) showed similar results for horizontal sound localization in an
experiment also using TeleHead. These results suggest that head movements can be
implicitly utilized to stabilize sound localization, and that the direction of rotation is
important, not just the head rotation itself.

Figure4 shows that perceived elevation angles hardly correlate with physical
sound-source direction when the rotation ratio is −1.0 (Fig. 4c). Anti-phase rotation
with a ratio of 1.0 provides reversal dynamic cues in terms of front-back confu-
sion. In fact, all three listeners reported that they often experienced such reversals,
resulting in small correlation of perceived and physical directions. In contrast, local-
ization seems hardly affected by anti-phase rotation with rotation ratios of −0.05
and −0.1 (Fig. 4a, b). This may result in robustness against unusual disturbances of
static spectral cues in median-plane localization. The results of this study confirm
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that horizontal rotation of the heads of listeners provides dynamic cues for proper
elevation-angle localization. This suggests that this kind of rotation should be taken
into account in when designing high-definition dynamic binaural displays.

3 Localization Accuracy of the Subjective-Straight-Ahead
During Active Head Rotation

In most of the studies that show facilitation of sound localization by listener move-
ments, listeners were asked to estimate over-all sound image positions after presen-
tation of sounds and listener movements had ended. However, localization accu-
racy can be defined as a measure of the deviation of the position of a perceived
auditory object from the physical position of the respective sound source. Follow-
ing this notion, there have been a few studies that observed deteriorated sound-
localization accuracy during listeners’ head rotations when dealing with real sound
sources (Cooper et al. 2008; Leung et al. 2008) as well as virtual sound sources as
rendered by a binaural display (Honda et al. 2016).

There is obviously a need for more knowledge regarding sound-localization
accuracy during listener motion. Thus, sound-localization accuracy regarding the
subjective-straight-ahead was investigated in the horizontal plane precisely at the
moment when listeners actively rotated their heads. The findings were compared
with the static case (static condition).

3.1 Auditory Subjective-Straight-Ahead in Static Condition

In the static condition, the listeners were sitting still on a chair, but their heads were
not mechanically fixed.

Experimental Procedures

Eight males and one female with normal hearing (22–40years of age) participated.
The sound stimuli consisted of 1/3-octave-noise bursts ( fc = 1kHz,Spl: 65dBwhen
presented continuously) of 15, 30, 80, 150, and 300ms, including 5-ms rise and decay
times. An arc array of 35 loudspeakers arranged with 2.5◦ separation at a distance
of 1.1m from the listener (see Fig. 6) was set up. A sound stimulus was presented
from one of seven loudspeakers located within ±7.5◦. An Led was mounted on the
loudspeaker at 0◦. For each trial, the Led lit first for 1 s, and then a sound stimulus
followed. The experiment was conducted in an anechoic chamber which was kept
dark during sessions, so that loudspeaker positions were not visible. Listeners were
asked to judge whether a test stimulus was located to left or right of their subjective
straight ahead exactly at the time of presentation (two-alternative forced choice).
The method of constant stimuli was used, and the number of repetitions for each
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Fig. 6 Experimental setup

direction was 20. Thus, the total number of trials was 700 (5 durations× 7 directions
× 20 repetitions).

Results

The cumulative normal distribution function was fitted to the ratios of the right-of-
subjective-straight-ahead judgments as a function of stimulus direction for determin-
ing the point of subjective-straight-ahead (Pssa), and its just-noticeable difference
(Jnd). Here, Pssa is the direction of the subjective-straight-ahead relative to the
physical front.

The Pssa and its Jnd were respectively estimated as the mean and 0.675 σ 3 of
the fitted cumulative normal distribution function. Figure7a, b respectively show
Pssas and Jnds as a function of the stimulus duration. One-way analysis of variance
(Anova) indicates no significant difference for the direction, while the effect of the
duration on Jnds are significant (F(4, 32) = 5.29, p < 0.05). Multiple comparisons
(Tukey’sHsd test, p < 0.05) indicate significant differences between 15 and 150ms,
and between 15 and 300ms.

3The value of 0.675 corresponds to the z score where the cumulative normal distribution reaches
0.75, meaning an estimated correct answer rate of 75%.
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3.2 Auditory Subjective-Straight-Ahead During Active Head
Rotation

Sound-localization accuracy of the subjective-straight-ahead in the horizontal plane
was determined with listeners sitting on a chair rotating their heads by themselves,
both slowly and rapidly—that is, in active slow and active fast conditions.

Experimental Procedures

Eight of the previously tested nine listeners (sevenmales and one female) participated
in this experiment. Examining the results of the static condition (Fig. 7), the duration
of sound stimuli was set to 30ms. This was determined because 15ms seemed to
be too short, since the Jnd is significantly larger for the short duration than for the
longer one. However, the length should be as short as possible tominimize directional
deviation during stimulus presentation. Otherwise, the experimental setup was the
same as used for the static condition. Also, the method of constant stimuli was used
as well. However, the method of stimulus presentation was modified to match the
listeners’ rotations as follows. For each trial, a guiding sound was presented from
a loudspeaker located at either −45 or +45◦ for 100ms to indicate the direction
towards which the listener should rotate the head. Listeners were instructed to rotate
their heads either quickly or slowly toward the direction of the guidance sound. The
actual speed of rotation was observed with a motion sensors on the listeners’ heads
(Polhemus, Fastrak). A sound stimulus was presented when the listeners rotated their
head by at least 15◦. For clockwise or counterclockwise rotation, the stimulus was
presented via one out of of 13 loudspeakers ranging from 0 to +30 or −30◦. The
total number of trials was 520 (2 rotational directions × 13 stimulus directions ×
20 repetitions each).
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Fig. 7 Direction and JND of subjective-straight-ahead as a function of sound duration for the static
condition
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Fig. 8 Direction and JND of subjective-straight-ahead for static, active slow, and active fast con-
ditions

Results

Themeans,m, and standard deviations, σ , for “slow” and “fast” head rotation speeds
are m = 12.2, σ = 4.0◦/s and m = 166.9, σ = 69.5 ◦/s, respectively. Paired t-test
shows a significant difference between the two conditions (t (7) = 6.07, p < 0.01).
This shows that the listeners could well control the two speeds. In the calculation
of the Pssa and its Jnd, the data for clockwise and counterclockwise rotations were
pooled by treating the sign of the direction toward rotation as positive, considering
the symmetry of the experimental scheme.

Figure8 depicts the Pssas and their Jnds for the active fast and slow condi-
tions, along with the results for the eight participants in the static condition. One-
way Anova indicates no significance for Pssa. Alternatively, the effect of Jnd was
significant (F(2, 14) = 19.80, p < 0.01). Multiple comparisons (Tukey’s Hsd test,
p < 0.05) indicate significant differences between the static condition and the two
conditions with rotation.

3.3 Discussion

Figure7 shows that auditory Jnds of the subjective-straight-ahead for the static con-
dition are well below 1◦ when the sound duration is at least 30ms, and are almost
0.5◦ when it is 150ms or longer. This value is smaller than the minimum audible
angle (Maa) in front (Mills 1958). WhileMaa is the difference limen of two sound
images at a certain incident angle, this Jnd is the detection threshold for the deviation
of a perceived sound object from a reference defined as directly in front. Considering
this difference, the auditory subjective-straight-ahead can be regarded as very stable.

The experimental results plotted in Fig. 8b indicate that the auditory Jnd of the
subjective-straight-ahead is significantly larger during head rotation than when lis-
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teners are sitting still, irrespective of the rotation speed. Since the stimulus duration
was 30ms, the head rotated 0.36 and 5.0◦, respectively, for the observedmean rotation
speeds of 12 and 167◦/s).

The relative drift of the direction of the sound sources, and thus that of the per-
ceived auditory objects, can account for the increase of the Jnds of the fast condition
to some extent, but this is not sufficient to also explain those of the slow condition.
This may imply that the degradation is not only attributable to ambiguities of the
ear-input signals induced by themovement but also to possible change of the binaural
information processing in the brain for static and dynamic binaural inputs. To exam-
ine this possible difference in the mechanism of spatial hearing, further experiments
for lower rotation speeds and with passive rotation should be performed.

The fact that the effects of listener’s movement are not uniform is puzzling. Head
motion often facilitates sound localization but may deteriorate in its accuracy, as
shown here and in Sect. 2. A phenomenological explanation might be the difference
in the way localization judgments occur. That is, facilitation seems to occur when
overall sound localization is requested after presentation of sound stimuli and listener
movements have ended, whereas deterioration is observedwhen instantaneous sound
localization is reported during presentation while the listeners are in the course of
moving. In other words, the formerwould resolve ambiguity in this ill-posed problem
caused by scarcity of hearing inputs in only two channels (i.e. two ears), while the
latter would stabilize auditory spatial perception during ear-input changes. Thus,
this phenomenon can be compared to saccadic suppression in vision. Moreover,
this phenomenon may be useful to design efficient 3d auditory displays, including
dynamic binaural displays, because fewer computational resources can be assigned
while listeners (or sound sources) are in motion.

4 A Binaural-Display Middleware, SiFASo

4.1 Binaural Displays

A binaural display is an architecture for 3d auditory display that synthesizes or
reproduces the input sound signals at the listeners’ ears. To realize this, sound-source
signals are typically convolved with the impulse responses of the sound propagation
paths from a sound source to listeners’ ears. The frequency domain representation
of the impulse responses of the paths can be expressed as a cascade of Hrtfs and
the room transfer functions (Rtfs).

Psychoacoustic performance is generally good despite the simple signal process-
ing. Moreover, as described earlier, rendering performance of binaural displays can
be greatly improved by appropriately reflecting listener movements in the ear-input
signals. Following the approach used in head-mounted displays (Hmds), such pro-
cessing is indispensable for high-performance binaural displays to properly support
active listening.
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Since Morimoto and Ando (1980) first realized basic binaural displays digitally,
special hardware such as digital signal processors (Dsps) had been necessary for
many years to implement them (Takane et al. 1997; Blauert et al. 2000; Suzuki
et al. 2002; Iwaya et al. 2002; Begault et al. 2010). However, by the 21st century
it became possible to build simple binaural displays with Cpus of ordinary per-
sonal computers (Savioja et al. 1999; Wenzel et al. 2000; Miller 2001; Lokki and
Järveläinen 2001; Yairi et al. 2006; Zhang and Xie 2013). In the authors’ laboratory
a high-performance dynamic binaural display supporting active listening as middle-
ware, named Sifaso (Iwaya et al. 2005, 2011), has been developed. Note that so
far binaural displays supporting active listening, including Sifaso, are compatible
with active listening in terms of taking advantage of facilitation by listeners’ move-
ments. Designs of future dynamic binaural displays will certainly leverage current
knowledge such as the suppression of sound-localization accuracy during listener
movements, as discussed in Sect. 3.

4.2 Outline of SiFASo

Sifasowas developed based on experiencewith simple but low-latency (i.e.<12ms)
implementations, including the latency of position sensors (see also Yairi et al. 2006,
2008a). Sifaso can render a 3d auditory space including presentation of multiple
sound sources by convolving source signals with proper individualized head-related
impulse responses (Hrirs). Further, Doppler-effect (Iwaya and Suzuki 2007), 1st-
order reflections, and reverberation processing are implemented. TheHrirs are inter-
polated to achieve smooth head and sound-source movements. Total system latency
of Sifaso is about 30ms, including the head-tracker latency (Iwaya et al. 2011).
Exploiting these advantages, Sifaso realizes stable, precise, and natural positioning
of rendered sound images, even for moving sounds. The class diagram of the main
part of Sifaso is presented in Fig. 9. Sifaso was developed as a dynamic-link library
(Dll), so that it can be easily invoked from various applications. Sifaso runs under
MS Windows on the Cpu of a personal computer.

4.3 Edutainment Welfare Applications for the Visually
Impaired

Sifaso was primarily developed for welfare systems to train spatial perception, par-
ticularly for visually impaired people, that is, those who must recognize spaces
without having visual cues at their disposal. They are known to have better spatial
hearing capabilities than sighted people. However, this sensory compensation varies
with the etiology and extent of vision impairment (Paré et al. 1998), and with the
age at which blindness occurs (Gougoux et al. 2004). Therefore, early support to
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Fig. 9 Class diagram of the main part of Sifaso

improve auditory skills is extremely important, especially for people with low vision
or late blindness (Afonso et al. 2005).

Three edutainment applications have been developed with Sifaso in the form
of auditory virtual reality games (Iwaya et al. 2011), based on the experience of
developing a similar but simpler edutainment application with dynamic binaural
display using aDsp (Ohuchi et al. 2005). It is expected that theywill not only be useful
for training purposes but also for improving the quality of life of visually impaired
people, who can scarcely enjoyTv games. The three edutainment applications, which
are all played only by auditory information, are as follows.

– BBBeat An action-game-type application, where players knock out bees like a
whack-a-mole game by locating their position based on a humming sound.

– Mentalmapper A maze-game-type application with a maze editor. Players nav-
igate mazes rendered by spatial sounds to reach sounding landmarks assigned
within the mazes.

– SoundFormular A racing-game-type application. Players drive vehicles and
compete with a computer-controlled vehicle. Both vehicles and the motor course
are rendered by spatial sounds.

All three applications were very well accepted by pupils of amunicipal special-needs
education school for the visually impaired. They found them to be great fun to play.
Sighted pupils enjoyed SoundFormular less than Bbbeat and Mentalmapper. The
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courses, as rendered by SoundFormular, may have been too simple to elicit fun for
those who are familiar with commercial driving games, featuring complex courses
and competitors.

5 Cognitive-Map Forming in an Auditory-Maze Game

MentalMapper, an auditory-maze game (see above), was specifically developed for
training and evaluating the performance of visually impaired people regarding for-
mation of environmental cognitive maps. This section provides an outline of the
game and reviews experimental results collected with it (Ohuchi et al. 2006).

5.1 Outline of the MentalMapper

TheMentalMapper consists of two subsystems, namely, amaze editor and an auditory
maze navigator. With the editor, mazes are drawn by connecting 1-m cube cells.4

For each cell, eight types of different absorption coefficients can be specified for
walls, ceiling, and floor (e.g., concrete, wood, fully absorptive, and solid). Acoustic
landmarks can be assigned to specified cells. These landmarks involve animal cries
and environmental sounds from cars, railway crossings, etc.

With the navigator, users navigate through mazes rendered with virtual spatial
sound. Navigation is performed with a game controller to move forward or back-
ward (Fig. 10). Alternatively, users employ body rotation to turn. Further, verbal
confirmations are given after each movement, such as “You have faced north.” Users
hear footsteps when they move one cell forward or backward. Direct sounds and
1st-order reflections are rendered. Both auditory and tactile (vibrational) feedback
are given when a user accidentally hits a wall.

5.2 Experiment1: Evaluation of Cognitive Maps Formed via
Tactile Maps

This experiment aims at examining the MentalMapper as an assistive technology
for the formation of cognitive maps. Participants produce tactile maps after having
navigated through virtual auditory sound mazes.

4This dimension was determined by technical limitations of Sifaso.
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Fig. 10 Navigating a maze
rendered with virtual spatial
sound

Fig. 11 Whiteboard, bar
magnets, and magnetic
figures used in Experiment1

Participants

Four congenitally blind adults (CMR,CSM,CTH,CKR) and four blindfolded sighted
adults (SYN, SGK, SMS, SOM) participated in this experiment. Among them, one
blind and all sighted participants were female.

Tactile Map

Soft and thin bar magnets were placed on a whiteboard on a desk for drawing tactile
maps. Additionally, small magnetic figures (1–2cm × 1–2cm × 1–2cm) were used
to represent acoustic landmarks such as animals or cars in mazes (Fig. 11).

Pilot Experiment

Prior to Experiment1, participants joined a pilot experiment. Participants were asked
to navigate two auditory virtual mazes and then locate the landmarks on a blank



Toward Cognitive Usage of Binaural Displays 681

Fig. 12 An example of the
mazes used in the pilot
experiment. The cell with a
star indicates the start
position, and cells with
circles denote landmarks

Fig. 13 Tactile-map
drawing by a participant

tactile map. An example maze and a scene where a participant was drawing its map
are respectively shown in Figs. 12 and 13. This was the very first experience for all of
participants ofmoving through virtual auditory spaces bymeans of a game controller.
While one sighted participant confused the locations of two landmarks, the others
made no mistakes at all. Some of the congenitally blind participants reported that
they had difficulties in creating a mental spatial image of the route, probably due to
a lack of experience with such tasks.

Tasks

In Experiment1, participants were first asked to navigate virtual auditory mazes with
several landmarks and to then draw the map of the auditory maze as a tactile map.
Figure14 shows two mazes used in the task. The participants freely traversed the
virtual auditory maze back and forth and then drew the tactile map. The time for the
task was unrestricted. The landmark sounds were set to audible only when the user
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(a) Maze 1 (b) Maze 2

Fig. 14 Two mazes used in Experiment1

entered the respective cell. The absorption coefficient of concrete was used for all
cell boundaries.

Results and Consideration

The times required to complete the task are shown in Table1. The blind participants
spent 9’53” and 24’03” on average to complete Mazes1 and2, respectively, while
the blindfolded sighted participants spent 15’33” and 28’01” on average. A two-way
Anovawas performed on the times to complete the task considering the group (blind
or blindfolded sighted) and the maze (Maze 1 or 2) as factors. The results indicate
no significant differences between blind and sighted participants (F(1, 6) = 0.53),
although the blind group spent less time on average than the blindfolded sighted
group for both mazes.

Moreover, both groups took significantly longer time on Maze2 than on Maze1
(F(1, 6) = 11.61, p < 0.05). This is probably due to the redundant structure of
Route2, namely that the passage of this maze causes some confusion because it
forms a square walking path. Figure15 shows examples of the maps drawn by con-
genitally blind and blindfolded sighted participants. All except CTH and SYN drew
geometrically accurate maps. CTH and SYN could not draw complete maze shapes,
but the geometry of the drawn parts was accurate. The drawn maps were then evalu-
ated quantitatively by calculating bi-dimensional correlation coefficients between the
shapes of the virtual mazes and digitized shapes drawn by participants (Tobler 1977).
For the incomplete mazes of CTH and SYN, only the completed parts were analyzed.
Table2 shows the correlation coefficient for each participant on each route. All par-
ticipants showed correlation coefficients greater than 0.85, suggesting that virtual
auditory navigation of mazes is indeed effective in assisting formation of cognitive
maps.
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Table 1 Time required to complete task of Experiment1

Congenitally blind Blindfolded sighted

CMR CSM CTH CKR Av. SYN SGK SMS SCM Av.

Maze1 7’32” 15’37” 9’50” 6’32” 9’53” 18’23” 20’55” 10’55” 11’58” 15’33”

Maze2 12’27” 45’34” 24’40” 13’32” 24’03” 23’59” 47’31” 25’51” 14’43” 28’01”

(a) blindfolded sighted participant (b) congenitally blind participant

Fig. 15 Example of the maps drawn by two participants (Maze2)

Table 2 Bidimensional correlation coefficient for each participant in each maze

Congenitally blind Blindfolded sighted

CMR CSM CTH CKR SYN SGK SMS SCM

Maze1 0.861 0.948 0.927 0.997 0.994 0.990 0.982 0.981

Maze2 0.944 0.983 0.947 0.995 0.966 0.985 0.974 0.967

5.3 Experiment2: Forming a Cognitive Map of an Actual
Building

The results of Experiment1 indicate that cognitive maps seem to be shaped cor-
rectly after navigation through auditory virtual environments. Experiment2 exam-
ined whether training with auditory virtual maps is beneficial for navigating the real
world.

Tasks

The maze used in this experiment was a replica of the corridor structure of an actual
university building (Fig. 16). This experiment used the same four congenitally blind
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Fig. 16 Visual
representation of an auditory
maze based on the floor
structure of an actual
corridor

adult subjects of Experiment 1. The sound assigned to landmarks was made audible
only when the user was virtually present in the respective cell.

Participants first navigated freely through the auditory virtualmaze up to 20min to
explore the maze. Then, immediately following navigation, they were asked to walk
through the actual maze (i.e. a real corridor structure). To start, they were guided to
the position of the landmark clock, which is different from the start position for the
virtual navigation (Fig. 16). Then, the following four sequential tasks were assigned.
During the tasks, for safety reasons, participants walked with a sighted guide and
were asked to indicate vocally whenever changing their heading.

– Task2-1 Go to the landmark “dog.”
– Task2-2 Go to the landmark “sheep” without encountering the cat.
– Task2-3 Go to the landmark “dog,” taking the shortest route.
– Task2-4 Go back to the landmark “clock,” taking the shortest route.

Results and Discussion

This experiment aimed at examining whether participants were able to generate cog-
nitive maps after navigating the virtual auditory maze. Task2-2 requires participants
to develop a good mental representation of the floor plan, including landscape loca-
tions. Therefore, if all these tasks are successfully completed, the cognitive maps can
be regarded as well formed.

Table3 shows the evaluation of Task2-2 walking tasks by the experimenter for
each participant. The rating scale is defined as follows:

4 Participants found the most direct route to the destination without wandering
astray

3 Participants wandered but finally reached the destination
2 Participants reached the destination with some verbal assistance after wandering

for some time or going off course
1 Participants could not find a way to the destination.

CSM, in Tasks2-1 and 2-2, and CKR, in Task2-1, wandered around before reach-
ing the destinations. CTH became disoriented in Task2-2. After asking for verbal
assistance, CTH reached the destination and completed Tasks2-3 and 2-4. CMR did
not reach the correct destinations in Tasks2-1 through 2-3. In Task2-4, CMR reached
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Table 3 Evaluation of Experiment2

Task

2-1 2-2 2-3 2-4

Participant CSM 3 3 4 3

CTH 4 2 4 4

CKR 3 4 4 4

CMR 1 1 1 2

the clock via an incorrect route. After the experiment, CSM and CKR were asked
about their reasons for wandering back and forth in Task2-1. CSM reported being
confused because the starting point of the real environment (i.e. the clock) was not
provided for the free navigation in the virtual environment. CKR reported that he
walked from one end of the corridor to the other one to find out the map scale, which
was not divulged to the participants.

Why could CMR not complete these experimental tasks after showing good per-
formance in Experiment1? A salient difference between these two experiments is
the tactile maps. In Experiment1, participants drew tactile maps after navigating
through the mazes. This procedure might have reinforced the formation of cogni-
tive mapping. If so, it suggests that the combination of navigation of virtual spaces
and map-drawing is very effective in forming suitable and robust cognitive maps.
Another reason could be differences in walking style. After the experiment, CMR
reported difficulty in walking with a sighted guide, since she was used to walking
with a guide dog in daily life. CMR was the only person having such a dog. This
suggests a possible influence of the use of a guide dog on the acuity of spatial cog-
nition in orientation and mobility, including the formation of cognitive maps. This
observation raises interesting questions for future research.

Other participants mentioned that they became disoriented by physically turning
right and left repeatedly in the virtual environment. This disorientation might be
attributable to mental rotation in incomplete maps under formation. Typically, the
physical experiencewhilewalking is key to the formation of cognitivemaps (Herman
et al. 1982). In contrast, repeated rotation without any real physical walking might
have induced such confusion. Exploring optimal procedures for the formation of
cognitive maps of virtual auditory environments is certainly a further interesting
area for future research.

Overall, the experimental results show that blind participants are able to form
dependable cognitive maps via virtual navigation of unfamiliar environments. Fur-
thermore, the results show that the experience to navigate virtual auditory mazes
can transfer to the ability of navigating real environments with similar geometries.
These results mean that dynamic 3d auditory displays, including binaural ones, are
an effective assistive tool to improve orientation and mobility of visually-impaired
people by adequate training.
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In this context, Seki et al. (2011) made important contributions. Among other
things, they provide a training system with more realistic virtual worlds, namely,
with authentic traffic sounds. These are important cues that give blind people better
mobility. This system, theWide-Range Auditory Orientation Training System, (Wr-
aots), is described in Seki (2016).

6 Transfer Effects from Playing the Auditory Action Game

Asmentioned in Sect. 4,Bbbeat is an action-game edutainment software for training
sound-localization skills. In this section, transfer effects5 as a result of playing this
auditory game are described and discussed (Honda et al. 2007, 2009).

6.1 Transfer Effects and Spatial-Hearing Training

Transfer effects are commonly observed for various motor- or verbal-learning tasks.
For instance, previous studies reported transfer effects of playing visual-action video
games (Castel et al. 2005; Fery and Ponserre 2001; Green and Bavelier 2003). How-
ever, few studies have examined transfer effects of playing auditory-action games.
Bbbeat is an auditory action-game-type edutainment application resembling the
“whack-a-mole.” The players virtually hear the hum of honeybees instead of see-
ing annoying moles. They are then prompted to localize the honeybee position and
to hit it with a hammer as quickly and accurately as possible (Fig. 17). It has been
observed that players move their heads frequently to detect the position of the hum.
When hitting a bee, vibration feedback is given, and another honeybee is spawned.
Honda et al. examined the various transfer effects from playing Bbbeat using pre-
and post-test performance results of blindfolded individuals. In the experiments, par-
ticipants were separated into two groups, maintaining the same proportion of males
to females. Participants of the training group were asked to play the game for seven
days (30min per day) within a two-week period. In contrast, the control group did
not play the game at all during this period.

Based on the results of this experiment, transfer effect with regard to sound-
localization performance for real sound sources were examined (Honda et al. 2007),
and a follow-up test was conducted to investigate the persistence of the transfer
effects. The task was to identify a sound source among 36 loudspeakers distributed
around the listener. Results revealed that the hit rate of the training group increased
by approximately 20%, which is around twice that of the control group (statistically
significant). Interestingly, a follow-up test, which was conducted one month later,
showed that transfer effects persisted.

5Transfer effect This is defined as the ability to extend what has been learned in one context to
new contexts. This is also called “transfer of learning.”
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Fig. 17 Participant putting on attachments to play Bbbeat

Readers may think that the above results are quite intuitive, since sound-
localization performance was improved by the previous sound-localization train-
ing with Bbbeat. However, the findings indicate a further interesting aspect, that
the results show clear effects in the real world even though they were cultivated by
training in a virtual environment. It must be admitted, however, that this transfer
effect occurred between very similar tasks. Therefore, even better examples of trans-
fer effects regarding skills that are useful in daily life are described in the following
subsections (Honda et al. 2009).

6.2 Transfer Effects on Face Contacts

Normally sighted people devote attention to nonverbal information in interpersonal
communication. For example, eye contact in face-to-face situations plays a regulatory
function in everyday conversation (Kendon 1967). Eye contact is a relevant critical
component of rewarding social exchange for sighted people (Ellsworth and Ludwig
1972). In contrast, visually impaired people use more non-visual cues for social
interaction (Fichten et al. 1991). The difference in communication cues affects the
impressions of visually impaired people.

Several researchers attempted to find effective training methods for the commu-
nication skills of visually impaired people (Erin et al. 1991; Sanders and Goldberg
1977; Raver 1987). For example, Sanders and Goldberg (1977) proposed a training
program using auditory feedback for correct eye/face contacts to increase the rate of
eye contact. These findings suggest that the communication skills could be enhanced
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by training sound-localization skills. They reported that the eye contacts of clients,
consisting of almost totally blindmen, increased to over 80%, and the effect remained
at the 74% level after 10months.

These findings suggest that communication skills can be improved by training
sound-localization skills. Therefore, Honda et al. (2009) examined whether sound-
localization training is transferred to the rate of face contacts.

Experimental Conditions

In this experiment, all blindfolded participants conducted the task in a soundproof
room. Participants sat on a chair allowing free head and body movement. They
were asked to discuss some topics with two interviewers (pre-test). Two trained
female experimenters assisted as interviewers to ensure uniformity of tasks. Two
video cameras recorded the scenes from the interviewers’ positions. The interview-
ers provided scripted questions for the participants. Each interviewer was asked to
confirm whether the participants showed face-contact behaviors on each topic with
four phases, namely, (i) the start-phase of listening, (ii) the end-phase of listening, (iii)
the start-phase of speaking, and (iv) the end-phase of speaking. Another interviewer
confirmed whether the participants showed face-contact behavior to the querying
interviewer during question-and-answer communication. Reliability obtained using
the corresponding rate between the interviewers was 83%. All participants were
asked to perform the same task again two weeks later (post-test). In the post-test,
several topics were altered and the position of the interviewers was exchanged.

Results and Discussion

Figure18 shows the results of the experiment. A three-way Anova was performed
on the number of face-contacts in the communication task, considering the group
(training or control), the test phase (pre-test or post-test), and the interview phase
(start phase of listening, end phase of listening, start phase of speaking, or end phase
of speaking) as factors. Results indicate that interaction between the group and the test
phase is significant (F(1, 37) = 5.71, p < 0.05). The interaction can be observed in
the results shown in Fig. 18. Post-hoc analysis (Ryan method, p < 0.05) reveals that
the face-contact of the training condition (m = 14.71) increased significantly after
playing the bee-hitting virtual auditory game (m = 18.67, p < 0.01). Additionally,
the training group in the post-test showed more face-contact than the control group
in the post-test (m = 11.13, p < 0.05). However, interaction between the group and
the interview phase and interaction between the test and the interview phase are not
significant. Furthermore, no significant three-way interaction was found.

These results indicate that, by playing the bee-hitting virtual auditory game ren-
dered by a dynamic binaural display, face-contacts in social interaction increased
significantly. This indicates that skills acquired while playing the auditory virtual
game transferred to participants’ communication skills during social interaction.



Toward Cognitive Usage of Binaural Displays 689

Fig. 18 Number of face
contacts in the
communication task for the
training group in comparison
to those of the control group
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6.3 Transfer Effects on Collision-Avoidance Behavior

In order to avoid looming objects, the generation of an appropriate response includes
five tasks, that is, (i), detection of a looming stimulus, (ii), localization of the stimulus
position, (iii), computation of the direction of the stimulus movement, (iv), deter-
mination of an escape direction and, (v), selection of proper motor actions (Liaw
and Arbib 1993). Previous studies revealed that visual information tends to be used
more efficiently than auditory information regarding accuracy of estimating time-to-
arrival (Schiff and Oldak 1990). However, visually impaired people are obviously
restricted in their use of visual cues. Consequently, it is very important for them to for-
mulate and execute avoidance behaviors using acoustical information for the correct
location of approaching objects (i.e. perceived sound sources). Furthermore, when
an object is on a collision course toward persons, they must move aside with minimal
distance from their own position to that of the object, because avoidance with greater
distances might cause another collision with surrounding obstacles. Therefore, when
visually impaired people try to conduct appropriate avoidance behaviors, it is crucial
that they perceive sound-source positions accurately. Appropriate avoidance behav-
ior thus relies on good sound-localization skills. Consequently, Honda et al. (2009)
was interested in whether sound-localization training with virtual auditory games are
transferred to avoidance behaviors in response to approaching auditory objects.

Experimental Conditions

Figure19 illustrates the collision-avoidance task. In this scene, all blindfolded par-
ticipants were asked to avoid an approaching object when they felt that it was mov-
ing on a collision course (relevant path). Furthermore, they were asked to perform
avoidance maneuver with minimal displacement from their position. They were fur-
ther instructed not to avoid an approaching object when they felt it was moving on
an irrelevant path. The distance between the relevant path and the two irrelevant
paths was 80cm. The colliding object was a toy car (width: 30cm, weight: 2.5kg).
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Fig. 19 Illustration of a collision-avoidance task

The approaching stimulus was presented randomly and repeatedly to participants
from either relevant or irrelevant paths. The A-weighted sound pressure level of
the approaching sound was 75dB, and the background noise level in the room was
35dB. The toy car was placed at 50cm height on lanes (initial velocity: 0m/s) and
slid along the lane slopes at 2m/s. Three lanes were used. The center lane was used
for the relevant (i.e. collision) path, and lanes of both sides were for irrelevant paths.
The distance between the participants and the lanes was 4.0m. The task of the par-
ticipants was to localize the approaching object solely based on auditory cues and
to decide their behaviors within 2 s. The trials numbered 36 in all. The approaching
object was sent on one of the three lanes, selected randomly, 12 times for each course.
The body direction of the participants was changed for each trial. Consequently, the
toy car approached from either front, back, left, or right. The experimenter then
checked whether participants had completed the avoidance behaviors for each trial.
Additionally, the distances from the participants’ start position to the end point of
their actions was measured. All participants were asked to perform the same task
again two weeks later (post-test).

Results and Discussion

Figure20 shows the results of the experiment. A three-wayAnovawas performed on
the mean avoidance distances from the original position for the object approaching
from irrelevant paths considering the group (training or control), the test phase (pre-
test or post-test), and the direction to the approaching object (front, back, left, or
right) as factors. Results show that a two-way (group× test) interaction is significant
(F(1, 25) = 6.93, p < 0.05). Post hoc analysis (Ryan method, p < 0.05) reveals
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Fig. 20 Mean avoidance distances in the avoidance task

that avoidance distances of the training group (m = 24.51) decreased significantly
by playing the bee-hitting virtual auditory game, Bbbeat (m = 14.19, p < 0.01).

The results indicate that the avoidance distance after sound-localization training
in the virtual auditory game decreased for objects approaching from the irrelevant
path.

These findings indicate that auditory training using the bee-hitting virtual auditory
game with binaural display modified the detailed manners of executed avoidance
behaviors, which relate to sound-localization skills.

7 Concluding Remarks

In this chapter some interesting aspects of human active listening have been
described. The question raised is, how can active listening be defined when consider-
ing these aspects? Listener movements induce dynamic ear inputs. As an operational
definition, the following is proposed:

Active listening is a mode of multisensory spatial hearing that takes advantage
of dynamic information induced by listeners’ movements, irrespective of being
intentional, conscious, or unconscious.

In fact, as shown in Sect. 2, even unconscious dynamic change of ear inputs may
significantly change listener experience during spatial hearing.

While evidence has accumulated confirming that active listening facilitates sound-
localization performances, a few recent studies have revealed that it may suppress
sound-localization accuracies (see Sects. 1 and 3). However, these examples should
not be regarded as an inconsistency, but rather an indication of the diversity of the
roles of active listening.
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Facilitation of sound-localization performance seems to occur when overall sound
localization is requested after presentation of sound stimuli, and the listeners have ter-
minated their direction-finding movements, whereas deterioration is observed when
instantaneous sound-image positions are reported while listeners are moving during
the sound presentation. In other words, the former would resolve ambiguities in the
ill-posed problem caused by the scarcity of acoustic input to only two channels (i.e.
the two ears), while the latter helps stabilize the perceptual auditory space during
variation of the ear-inputs signals. This is in a way similar to saccadic suppres-
sion in vision. Knowledge of active listening and the psychoacoustic effects going
with it are key to advancing binaural technologies. For instance, knowledge of how
sound localization in dynamic scenarios can be enhanced can be directly applied to
performance enhancement of, for example, dynamic 3d auditory displays, includ-
ing binaural ones. In this context, knowledge of suppression and masking effects
supports the economic use of computational resources during listener movements.

In Sects. 5 and 6, two edutainment applications of dynamic binaural displays
were introduced. These are applied to support active listening for the training of
auditory spatial-perception acuity, particularly of visually impaired people. One of
the applications is a maze game and the other is an action game. The maze game
facilitates users’ ability to draw cognitivemaps, as well as the evaluation of this capa-
bility. Moreover, a transfer effect was found to the navigation of real environments
having a similar geometry as the virtually experienced maze. Playing the action
game improved players’ sound localization performances. Again, the experience at
virtual sound localization in playing the action game transferred to improve play-
ers’ sound-localization performances of real sound sources. Moreover, clear transfer
effects to skills useful in daily life were observed, including increased eye-contact
frequency during conversation and improved ability to avoid an approaching object.
These results indicate good potential for application of dynamic binaural displays to
improve spatial-hearing abilities and, hopefully, other skills that have the potential
to enhance quality of life.

In summary, active listening plays an important role in making human spatial
hearing more reliable and richer. Binaural technologies that support active listening
are key to high-definition communication. Dynamic binaural displays that support
active listening are universally applicable to enhance quality of experience in virtual
and real auditory dynamic scenes.
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Audition as a Trigger of HeadMovements

Benjamin Cohen-Lhyver, Sylvain Argentieri and Bruno Gas

Abstract In multimodal realistic environments, audition and vision are the promi-
nent two sensorymodalities thatwork together to provide humanswith a best possible
perceptual understanding of the environment. Yet, when designing artificial binaural
systems, this collaboration is often not honored. Instead, substantial effort is made to
construct best performing purely auditory-scene-analysis systems, sometimes with
goals and ambitions that reach beyond human capabilities. It is often not considered
that, what enables us to perform so well in complex environments, is the ability of:
(i) usingmore than one source of information, for instance, visual in addition to audi-
tory one and, (ii) making assumptions about the objects to be perceived on the basis
of a priori knowledge. In fact, the human capability of inferring information from
one modality to another one helps substantially to efficiently analyze the complex
environments that humans face everyday. Along this line of thinking, this chapter
addresses the effects of attention reorientation triggered by audition. Accordingly, it
discusses mechanisms that lead to appropriate motor reactions, such as head move-
ments for putting our visual sensors toward an audiovisual object of interest. After
presenting some of the neuronal foundations of multimodal integration and motor
reactions linked to auditory-visual perception, some ideas and issues from the field of
a robotics are tackled. This is accomplished by referring to computational modeling.
Thereby some biological bases are discussed as underlie active multimodal percep-
tion, and it is demonstrated how these can be taken into account when designing
artificial agents endowed with human-like perception.
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1 Introduction

Assume the following situation: a listener in a lecture hall attends a talk of a fellow
researcher. The conference room is almost full, and everyone has reached a seat. Yet,
people keep sparingly moving in all along the talks, trying to make as little noise
as possible while they thread their way through the rows to find an available chair.
While the talk is still going on, the sound of a small glass breaking on the floor of
the lecture hall reaches the listener from the right. The sound is sharp and vivid, but
muffled due to the distance. A first observable reaction, will very likely to be the
turn-to reflex, namely, listeners quickly turn their heads towards the object that has
caused the sound.

The reason for this reflex is that such head movements are an attempt to guide
the optical sensors (eyes) to spatial areas of interest, namely, to enable an analysis
complementary to the one that has alreadybeenperformedbeforehandby the auditory
modality. This primary analysis is indeed responsible for the alerting mechanism.
Reactions triggered in such a way are generally termed attention reorienting. In the
case discussed here, the reaction was initiated by auditory cues—see Fig. 1. Turning
our head in a case like this is a manifestation of the need to focus on a particular
object of interest that occurs in an environment.

Attention reorienting is an observable consequence of the integration of mul-
tiple complex mechanisms giving humans the ability to react quickly to complex
environments. In particular, head movements are triggered by various signals and
situations, for instance, by danger signals, but also by unexpected perceptual objects
such as stimuli requiring our attention or carrying an interest with respect to a task
to accomplish.

In the situation described above—besides the notion of danger signal—the main
characteristics of the “falling glass” object is its obvious rareness in the context given
and, consequently, its low predictability. In other words, neither any perceptual clue

Fig. 1 Attention reorientation caused by the occurrence of an unpredictable stimulus leading to
head movement towards the audiovisual source. This motor reaction enables the visual sensors to
acquire supplemental data about the object of interest—after Corbetta et al. (2008)
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nor any prior information has supported anticipation of this event. However, whatever
the origins of the head movements are, they resulted in putting the optical sensors
towards an area that required more in-depth analyses of the perceptual information.

It has to be asked: “What does actually ‘cause’ head-turn reactions?” As stated
above, audition is a modality capable of triggering movements of the head towards
an unexpected object. However, will that reaction also occur in a situation were
glasses are falling constantly and breaking on the ground? In other words, how
important is the context in which an object is occurring, and how does this context
matters for relevant consequent motor reactions? The same object can thus either
trigger motor reactions in a specific environment or remain utterly unnoticed in a
different environment. A dog barking in a kennel would undoubtedly provoke a
different reaction in a persona than if barking in a person’s bedroom, given that
it is not the person’s own dog. The difference between these two environments
is the predictability of the object to occur. Thus, it has to be concluded that the
occurrence of an auditory, visual, or audiovisual object is not an inherent attribute
of the corresponding signals. It is the context that determines consequent motor
reactions. Predictability is thus a key in understanding the mechanism of attention
reorienting.

In particular, all these considerations are of importance when it comes to the
design of artificial agents endowed with human-like multimodal perception capabil-
ities. Such agents aim at understanding complex environments similarly as humans
do. Thus, they have to be able to process the different kinds of signals as perceived
by their dedicated sensors, artificial ears, and eyes for instance, but also to know
how to combine them appropriately to form a multimodal perceptual world. The
technologies of both sound processing and image processing, that is, a multimodal
approach are needed to provide these robots with adequate comprehension of the
world. However, at least in the robot community, audition and vision are often con-
sidered as two separate senses with distinct information channels, each used to form
perceptual worlds in their particular way.

In order to provide more evidence of the relevance of a thorough multimodal
understanding of the world, the question will be addressed of “How can audition be
utilized as a trigger for head movements towards objects of interest?” that is, how
can one modality, for example audition, be used for requisition of another modality,
for instance vision, to the end of gaining a better understanding of a multimodal envi-
ronment? Three key neuronal phenomena are being discussed in Sect. 2 to address
this question. They all form together a solid basis of the comprehension of multi-
modal integration, motor reactions, and prediction abilities of the human sensory
cortical areas. Understanding these mechanisms provide helpful hints for designing
artificial intelligence aimed at being integrated into robots that are to be furnished
with human-like perception. As an example, a computational model of the head-turn
reflex driven by auditory information, called the Head-Turning Modulation (HTM)
model, will be described in Sect. 3. A short conclusion ends this chapter.
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2 Neuroscientific Foundations

There is extensive literature available concerning the relevant phenomena mentioned
above. It includes binaural audition and sound processing by dedicated cortical areas,
binocular vision, and image processing by other dedicated cortical areas, multimodal
integration, attention computing, and motor reactions—both in reflexive as well as
in reflective behavior—compare Blauert and Brown (2020), this volume.

Consequently, the following descriptions are restricted to biological foundations
of attention reorientation caused by audition. Four neuronal mechanisms are dealt
with in this context. These are mechanisms that represent primary biological com-
ponents to be understood and considered when designing artificial agents with atten-
tional capabilities driven by multimodal perception.

2.1 Superior Colliculus

The Superior Colliculus (SC), is an excellent example for illustrating how vital
multimodal integration is in the brain’s analysis of sensory information. It is now
widely accepted that multimodal integration is crucial even for unimodal perceptual
flow analysis (Atilgan et al. 2018), in particular when it comes to designing artificial
systems that use auditory, visual, or any other sensory modality. Taking, for example,
the cocktail party effect (Cherry 1953; Cherry and Taylor 1954) and the detailed
analysis of auditory and visual information, the following two approaches to cross-
modal interaction are conceivable.

• One may consider auditory and vision as two distinct modalities being processed
separately through different and well-characterized channels, and only the results
of these analyses in each perceptual modality being used for further analyses and
integration

• Onemay, alternatively, consider that cross-modal integration is already performed
at low levels of the participating modal pathways, thus benefiting as early as
possible from each available source of information.

Thefirst approach is guidedby a commonmisconception, namely, the assumption that
sensory cortical areas process information solely from the sensors they are directly
connected to. In this scheme, the auditory cortex would only process auditory input
sounds from the ears, while the visual cortical areas would only process visual inputs
from the eyes. However, there is ample evidence nowadays that a strict separation of
different modalities and the accompanying neural areas does not exist. For instance,
various studies have shown the ability of the visual cortex also to process sounds
(Shams et al. 2005; Iurilli et al. 2012; Vetter et al. 2014). Others have found in return
that the auditory cortex can also process visual input (Sharma et al. 2000; Belin et al.
2000; Finney et al. 2001). Of course, the auditory cortex has the major role in sound
processing, and the visual cortex is far from contributing as much as the former one
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in sound processing. However, in the context discussed here, the question is not how
important the cross-modal contribution is, but rather the fact that it does exist at all.

The SC is a suitable candidate for the location where cross-modal integration
actually happens in the central nervous system. Perhaps nowhere is the convergence
ofmodalitiesmore evident than there, as asserted byMeredith and Stein (1986) based
on an extensive review of research works on multimodal integration in mammal
brains. Located in the brainstem, the SC is organized in seven layers, split into two
functional units. One of these receives sensory inputs (mainly from vision, audition,
and proprioception), the other one generates motor commands based on this sensory
input. These motor commands can, for instance, be eye saccades (Moschovakis
1996), or body movements (Stein et al. 2004)—in particular head movements (May
2006).

By binding quick motor reactions to sensory inputs, the SC is thought to play an
important role in attentional reactions, in particular, exogeneous ones.1 Two major
phenomena have been observed in attentional reactions in which the SC is involved:

• If two cross-modal stimuli are sufficiently overlapping in space and time, a syner-
gistic effect will be observed in themultimodal neurons of the SC—a phenomenon
called multimodal enhancement;

• This effect will be more pronounced for the stimulus of the weaker modality—a
phenomenon called inverse effectiveness (Anastasio et al. 2000).

Moreover, multimodal integration is dependent on the congruence of the perceived
stimuli. When two or more stimuli arise from the same perceptual entity, like an
audiovisual object for instance, or when they share perceptual attributes, like an
audiovisual click.2 Interestingly, when there is a conflict, that is an incongruence
between auditory and visual information supposedly belonging to the same percep-
tual object, vision usually takes over the other modalities, a phenomenon named
visual capture (Hay et al. 1965). For instance, Pick et al. (1969) showed that the
visual-spatial position of an object is not alterable by incongruent auditory stimuli.
According to the review on visual capture by Posner et al. (1976), the reason why
vision takes the lead on other modalities might be explained by the “relatively weak
capacity of visual inputs to alert the organism to their occurrence.” Thus, attention
is preferably put on visual analysis to counterbalance the relative inherent lack of
saliency of visual stimuli. However, it has to be kept in mind that the relative impor-
tance of visual dominance has been reconsidered by Spence and Driver (1994, 1996,
1997a, 1997b), and later by Turatto et al. (2002). These findings are crucial for the
understanding of how multimodal information is gathered and integrated. In fact,
visual and auditory information are not considered equal in multimodal object for-
mation and, consequently, concerning potential reactions to their appearance in an
environment.

1That is, reactions caused by the stimuli themselves, in opposition to endogeneous ones as are
caused in a goal-driven way.
2An audiovisual click is a quick and simple sound, such as a pure tone section, presented together
with a visual object, such as a dot or a cross of equal duration.
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As compared to visual scenes, auditory scenes are inherentlymore prone to salient
objects. Nevertheless, some particular cases of auditory capture over vision have
been observed and reported—see Gebhard and Mowbray (1959), for instance. A
later hypothesis byWelch andWarren (1980) provides a plausible explanation of the
underlying mechanisms of visual or auditory capture. Obviously, vision is particu-
larly adapted to spatial analysiswhereas auditory fits particularly temporal analysis.
This hypothesis, called modality appropriateness, is based on the specifics of the
sensors.

More recently, Fendrich andCorballis (2001) used an experimental paradigm after
Welch and Warren (1980) that led to the observation of a more pronounced effect
of auditory capture versus visual capture. The authors of this paper have introduced
the notion of Intersensory Temporal Locking (ITL), thus providing a more com-
prehensive explanation of the different observed phenomena of modal capture. The
ITL, supported by a prior study of Scheier et al. (1999), is defined as a mechanism
allowing the sensory cortical areas to solve potential temporal ambiguities in the
perception of multimodal stimuli and offers a reasonable basis for the understanding
of when either auditory or vision lead perception, and what kind of stimuli triggers
such modal capture.

In addition, both the experiments in Shams et al. (2001, 2002) leading to the
observation of auditory capture over visual capture, combined with the different
results obtained a decade before bySaldana andRosenblum (1993), conductedShams
et al. (2002, p. 151) to state:

The discontinuous stimulus in one modality alters the percept of the continuous stimulus in
the other modality and not as strongly vice versa.

In summing up, all the studies mentioned above lead to the conclusion that multi-
modal perception consists of more than the sole concatenation of auditory and visual
data for forming the representation of multimodal objects in higher cerebral areas.
The phenomena of auditory capture, visual capture, modality appropriateness, or dis-
continuity versus continuity of perceived signals, indicate that audition and vision
are working together closely, whereby both modalities of the two mutually benefit
from this advantage.

2.2 The Reverse-Hierarchy Theory

Consider the cases of the voice of somebody talking in a completely silent room
in contrast to talking in a very crowded and noisy place such as in a cocktail party
situation. The comparison raises the following question: “Are identical stimuli in
different surroundings processed in the same way?”

A recent model of perceptual information analysis, the Reverse-Hierarchy Theory
(RHT), puts the following insight to the fore. The informational context in which
stimuli are perceived has an impact on the deepness and thoroughness of their anal-
ysis. RHT has been introduced and put into a formalized algorithm by Hochstein
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Fig. 2 Schematic of the Reverse Hierarchy Theory—after Shamma (2008)

and Ahissar (2002), Ahissar and Hochstein (2004), Nelken and Ahissar (2006), and
recently Nahum et al. (2008). The core of this theory is to make the bridge between
high-level representations of perceived signals, such as auditory objects, and cor-
related low-level cues, such as frequency spectrum, ITD, or ILD. As to the latter
ones, it is of interest whether these cues are necessary or not for making high-level
decisions, such as to initiate adequate motor actions. On the one hand, as low-level
attributes gain in relevance for refining auditory stream analysis, the more difficult
a discrimination task is, for example, for solving ambiguities. On the other hand,
if the informational context is simple, the high-level representation of the percep-
tual streams—i.e., objects—will be directly usable, thus making deeper and more
thorough analyses of the streams dispensable (Fig. 2).

The RHT is thus also linked to internal representations of the world, specifically
to how perceptual streams are combined to achieve a unified and robust perception
of multimodal entities, and perceptual objects. Indeed, as Shamma (2008) sums up:

If the high “objects” and their “low-levels cues” are congruent, the feed-forward process is
rapid, and the use of all available salient cues is effective and comprehensive.

Thus, in addition to the capabilities of perceptual streams analysis due to powerful
features extraction, the ability to rapidly provide access to high-level representations
of the perceptual world is quite astonishing as well. This is due to the fact that
high-level representations include temporal integration and prior assumptions about
incoming sensory information—see Sect. 2.3.

Further, theRHThelps to understand attentional processes. In cases of incongruent
perceptual streams such as twomales speaking fromclose spatial positions, the theory
postulates that competing cues will easily disrupt the mechanisms that require low-
level cues to disambiguate the two streams. The way the sensory areas of the brain
process perceptual information streams, in particular, those dealing with vision and
audition, has for long been interpreted as almost exclusively being dominated by
bottom-up processing. With the RHT however, there is now an innovative attempt
for explaining the links between the traditional sensor-to-cortex pathway and the
cortex-to-sensor one, showing that they are activated depending on the complexity
of the information to be processed. Consequently, RHT is of help when constructing
artificial agents equipped with human-like perception. It suggests processing the data
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that such agents acquire concerning the context in which they have been collected.
In particular, it shows that making assumptions about what is coming up next in
a scene can be useful for accelerating and simplifying the processing of sensory
information. To be sure, the existence of such processes in humans implies that
their brain has prediction abilities. To illustrate these, the next section introduces
theMismatch Negativity phenomenon, a physiological reaction to deviant incoming
sensory information with respect to the prediction made by these cortical areas.

2.3 Mismatch Negativity

This section addresses the following question: “Can the apparition of stimuli be
anticipated?” Anticipation, or prediction, is the ability to have a strong belief about
what is coming up next. This ability has the potency of considerably accelerating
processing of perceptual data. Further, it enables the sensory cortical areas to detect
inconsistent, salient and/or incongruent, objects. “Inconsistent, salient or incongru-
ent” objects are such that somehow do not fit prior predictions. Consequently, they
may require special reactions, such as motor commands to redirect the sensors in
order to get additional data that would help understand the origin of the observed
unpredictability. As an example, imagine a strong male person with an angry face
uttering with high pitch and very calm voice: “Yesterphinge, I was in the elephant”.
The following list highlights three cases in which anticipation is initiated. Yet, it may
turn out to be wrong in the end.

1. The characteristics of the voice (an angry facewould anticipate a loud, low-pitched
voice)

2. The semantic content of the speech, that is, certainwords have a higher probability
of occurring in the given context (“…in the elephant”)

3. The words themselves, given the context and the initial syllables (“Yester-phinge”
instead of “Yesterday”).

For all three cases the following holds. If what is perceived does not match prior
expectation, a quick reaction is triggered. One of the first reactions to these unex-
pected perceptual objects occurring in a predictable stream of information can be
observed in the sensory areas, such as the auditory or visual cortical areas, in terms
of a particular neuronal response, the Mismatch Negativity (MMN).

This effect, when elicited, signals a quick attentional response to objects that do
notmatch the expectations of the sensory areas.Discovered byNäätänen et al. (1978),
the MMN can thus be described as a quick, specific reaction to the incongruence of
an auditory or visual object concerning the short-term context in which it appears.
MMN is mainly present in the auditory areas (Molholm et al. 2005), specifically in
the temporal superior cortex and the frontal cortex (Alho 1995). It occurs at around
100–200ms after the deviant stimulus. For instance, when in a repeated sequence
of sounds of a center-frequency of 1000Hz, unexpectedly a sound at 1032Hz is
presented, it will be recognized as deviant from the predictable sequence perceived
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Difference

1004 HzDeviant 1008 Hz 1016 Hz 1032 Hz

Neuronal 
responses

Fig. 3 Mismatch negativity. Upper curve: Neural responses recorded in 80% of the occurrences
of randomly presented sounds of 1000Hz center frequency (black dotted lines), of deviant sounds
at different center frequencies in 20% of the occurrences (green lines). Lower curve: Differences
of the responses to deviant sounds as compared to the 1000Hz reference—after Näätänen et al.
(2007)

so far. The neuronal reaction to this deviant sound will show up as the MMN—see
Fig. 3. MMN has also been observed when there are amplitude or timbre variations
(Näätänen and Alho 1995). It is thus an effect linked either to the apparition of new
percepts or to variations in the perceptual attributes of ongoing ones.

Mismatch negativity is undoubtedly an indication of a reaction to an unpredictable
stimulus. Yet, its role in the formation of a perceptual world model has also to be seen
under the following aspects. By being able based on only three or four occurrences of
a stimulus, to infer a rule that enables the prediction of the next stimulus to appear, the
sensory cortical areas can speed up the processing of the incoming stream of stimuli
by just checking if the perceived stimulus matches the prediction. If it does match,
there is no need to process the stimulus fully, and computation time is saved (behavior
to be linked to the RHT, see above). However, if it does, a warning signal, the MMN,
is generated to potentially initiate a motor reaction such as a head movement. This
reaction is a way to motivate a more in-depth analysis of the unpredictable stimulus,
for instance, by bringing other available and relevant sensors into play that gather
additional information for the analysis.

Friston (2005) has highlighted the fact that the brain’s internal representations
of the world can be utilized to predict what most probably happens next in the
environment. Along this line of thinking, Lochmann and Deneve (2011) introduced
the notion of predictive coding for causing inference of sensory objects that are not
directly recognizable from sensory cues. Arnal and Giraud (2012), in their review
of cortical oscillations and sensory predictions, listed several mechanisms that allow
the auditory cortex to predict the point in time when a stimulus is most likely to
happen in the given context. In fact, MMN accompanies all prediction processes in
the brain. Yet, for two reasons these processes are more than just pure anticipation:
(i) it analyzes the perceptual scene faster and, (ii) it represents a powerful way of
revealing unpredictable changes in the perceptual stream of information, especially
in the auditory one.

Mismatch Negativity teaches us that when auditory (and visual) stimuli are pro-
cessed, the sensory cortical areas are able to form a predictable sequence quickly,
thus enabling instant detection of perceptual irregularities. Already at this stage of
sensory information processing, the MMN reveals that there is no stimulus standing
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out per se: a stimulus can be detected as deviant, or incongruent, in a certain sequence
of perceptual objects, but would be rated as “normal” in another sequence where this
stimulus would be surrounded by similar ones. Consequently, the likelihood of a
stimulus to trigger an attentional reaction has to be defined in relation to its envi-
ronmental surroundings. For sure, these surrounding can be variable. Thus, stimuli
may change their perceptual role accordingly. They will elicit a different behavioral
response from one situation to another one, from one context to another, from one
place to another, and/or from one point in time to another one. Whereas the MMN
has not yet been linked directly to any direct motor reaction, its strong involvement
in attentional reactions (Escera et al. 1998, 2003) makes it a solid candidate for
triggering eye, body, or head movement in the presence of incongruent stimuli or
perceptual objects, especially through the notion of saliency.

2.4 Saliency

Saliency is a measure of how much a stimulus, such as a sound wave or the pixel
of an image, differs from its surroundings, be it temporally or spatially. In human
perception, saliency has mainly been studied in vision. In particular, following the
definition of Treisman and Gelade (1980), saliency stems from local singularities
that are exhibited within a stream of perceived data. For instance, within an image
composed of numerous red circles, the presence of a unique green one would present
a local singularity in terms of color: the green circle would then be considered as
salient. From this analysis of the perceptual streams, and mainly exhibited by the
auditory and visual cortical areas, attentional reactions can be elicited, such as eyes
movements towards visual stimuli of high intensity (Wolfe 1994; Nothdurft 2006).
Moreover, saliency is shaped and influenced by learning and experience. For instance,
while a musician can detect a false note instantly without even having to focus on
listening, it could remain unnoticed by an untrained person. In the visual system, the
primary visual cortex (V1) already has a map of visual saliency (Li 2002). Mazer and
Gallant (2003) have shown that the activity of neurons of the extrastriate visual area
(V4), a structure placed higher in the hierarchy of visual signals analysis, can predict
towards which particular area in space an eye saccade will be directed an ongoing
visual exploration task. This observation supports the assumption of the presence
of a topographical map of saliency in V4. Further, the intra-parietal lateral area
(Bisley and Goldberg 2006) and the frontal eye field (Thompson and Bichot 2005)
have been associated with the phenomenon of visual saliency as well. The human
auditory system also responds well to saliency, and potentially also triggering motor
reactions, in particular, head and body movements. However, the attributes that the
auditory sense is sensitive to, and on which it bases its interpretation of the auditory
scene, are different from those used in vision.

As concerns saliency, the auditory systemmainly processes spectral and temporal
modulations (Yost 1992; Alain et al. 2001) and, based on these, it can extract auditory
entities of relevance even in noisy environments (Hall et al. 1984). Addressed acous-
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Fig. 4 Building an auditory-saliency map after Kayser et al. (2005), inspired by the work of Koch
and Ullman (1985). An acoustic wave is received and then converted into a spectro-temporal repre-
sentation allowing the extraction of attributes such as intensity, spectral and temporal contrasts. The
resultingmaps are combined into a comprehensive auditory-saliencymap following a normalization
step

tic attributes are predominately spectral contrast, temporal contrast, and intensity.
These are then exploited in parallel by neurons of the auditory areas, consequently
leading the formation of saliency maps dedicated to specific attributes. Then, these
maps are merged in order to create a global map of auditory saliency of the actual
acoustical environment—compare Fig. 4. Be it for the visual or the auditory system,
the creation of saliency maps within dedicated sensory areas is an important step
toward understanding the internal world representations of each of these systems.
Indeed, these maps provide potential candidates for a reorientation of attention. For
instance, a person speaking from a specific position outside the visual field of a lis-
tener requires head movement, or a suddenly moving target demands an eye saccade.
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Saliency, be it visual, auditory, or multimodal, has intensively been discussed,
modeled and implemented in the robotics, artificial intelligence, and computational
neurosciences communities—see for instance Koch and Ullman (1985), Itti et al.
(1998), Oliva et al. (2003), Kayser et al. (2005), Duangudom and Anderson (2007),
Ruesch et al. (2008).While saliency is a key component to demonstrate how low-level
attributes shape motor reactions, current concepts are not sufficient for a comprehen-
sive understanding of attention reorientation. Indeed, by solely considering low-level
attributes of the perceived stimuli, the means for including feedback from higher lev-
els of the central nervous system are rather limited, though not impossible—compare
Blauert and Brown (2020), this volume.

2.5 Conclusion of Sect. 2

This section discusses how the sensory areas of the brain deal with information com-
ing from different sensors, each one having its own very particular characteristics,
to trigger relevant behavioral reactions to the incoming perceptual streams. This
question was addressed by presenting four phenomena that are a small part of the
global and complex mechanism of attention: (i) the Superior Colliculus as a brain
structure responsible for multimodal integration and consequent motor reactions, (ii)
the Reverse Hierarchy Theory as an attempt to explain how the sensory areas com-
pute stimuli differently given their level of ambiguity and the specific surroundings,
(iii) Mismatch Negativity as a quick neuronal response to localize unpredictable
perceptual objects, and (iv) Saliency, as a reaction to local singularities low-level
characteristics of perceived signals are susceptible to exhibit. Each of these phenom-
ena represents an important part of attention in multimodal perception. Integration,
prediction abilities, detection of incongruences, selective in-depth analyses of the
perceptual streams, and motor reactions are directly bound to each of these neuronal
phenomena. The active component of perception is particularly relevant in this con-
text. Indeed, whenever there are ambiguities in the understanding of an environment,
motor reactions will enable the brain to access new information for refining its pre-
vious representation of the scene. In doing so, this additional information will help
to solve the previous ambiguities. At the same time, learning mechanisms will con-
tinuously increase the system’s knowledge, and thus prepare the system for similar
future tasks. For instance, when the position of an auditory object seems to be odd,
that is, incongruent or unexpected, turning the head toward this object will initiate
the redirection of visual sensors to an adequate position for better localization.

The next section will introduce a computational model rooted in the biological
phenomena described here. It provides attentional behavior for a mobile robot.
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3 Modulating the Head Movement—The HTM Model

The previous section listed and described important mechanisms playing a role in
attention, perception, and motor reactions to either incongruent, salient, or unpre-
dictable events. From a technological point of view, several attentional systems have
already been implemented. Most of them, however, share an important feature: they
heavily rely on data that have been gathered before the robot even started its life,
data for which dedicated learning systems have been trained to solve very specific
problems that the robot has not even encountered yet.When considering the phenom-
ena presented above, none of them rely on prior learning of specific skills. Saliency
is a property of the signals, MMN is a very short-term reaction and is profoundly
adaptable, so as the RHT. The SC computes a quick multimodal integration directly
followed by a motor reaction depending on the content of the incoming multimodal
information. Consequently, it should be possible to design an artificial system that
implements the key features of human auditory (and visual) attention without having
to gather a vast amount of training data in advance that could help solve only one or
few specific problems.

This sectionwill thus describe theHead-Turning-Modulationmodel, amodel aim-
ing at providing an answer to the central question of this chapter, which asks: How
can audition be used as a trigger for head movements towards objects of interest? In
this context, three important aspects were presented with regard to the global phe-
nomenon, attention reorientation, inwhich the questionmentioned above is included.
In the following, an attempt is described to provide a binaural and binocular humanoid
robot with the ability to learn how to identify unexpected auditory objects and, when
appropriate, trigger head movements toward these objects for collecting supporting
visual information. This model of high-level attention, recently introduced by the
authors in Cohen-L’hyver et al. (2015, 2016), Cohen-L’hyver (2017), Cohen-L’hyver
et al. (2018) is mainly based on the four biological phenomena already discussed.
The main contributions of the HTM model are outlined here with a specific idea in
mind, i.e. the characteristical behavior of artificial agents can be achieved without
having to deal with overly complex algorithms.

The section is organized as follows. The first part is dedicated to the description
of the concepts that the HTM relies on, that is, especially the two modules that
constitute it: (i) the Dynamic Weighting model, and (ii) the Multimodal Fusion &
Interferencemodule. The second part introduces aspects of algorithmic formalization
of the two differentmodules. Finally, a third part presents some of the results obtained
in simulations and on a real robot.
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3.1 Concepts and Global Architecture

The Head-TurningModulation acts similarly to a Blackboard system (Schymura and
Kolossa 2020, this volume) and contains two primary modules3:

• The Dynamic Weighting module (DW) is deciding whether an audiovisual object
appearing in the environment is incongruent, given the other audiovisual objects
already detected in the past in this environment,

• The Multimodal Fusion & Inference module (MFI) is in charge of providing the
DW module with corrected and completed audiovisual classes as a basis for the
computation of congruence.

As shown on Fig. 5, the HTM exploits auditory and visual labels provided by dedi-
cated classification experts for emitting hypotheses (i) on the audiovisual class the
detected sources belong to and, (ii) on which of these sources the robot should
focus. Each computational expert is dedicated to the detection and the recognition
of particular auditory labels or visual labels (Two!Ears et al. 2012). For instance,
one expert deals with the detection and recognition of the sound speech. Another
one is assigned to the sound barking, and still another one addresses the visual
entity male, and so on. On this basis, each hypothesis might potentially lead to the
triggering of head movements towards audiovisual sources of interest.

Importantly, these audiovisual sources appear randomly in the environment—that
is, by not following any pattern the robot either understands or not and, consequently,
can predict or not. By the way, triggering head movements towards any audiovisual
source would not require any form of particular intelligence. The low-level attributes
of the signals are often sufficient to localize the objects for sendingmeaningful motor
commands. Here, however, the goal is tomodulate head movements, that is, to either
trigger and inhibit them. Indeed, not all of these head movements are relevant. For
instance, turning the head toward the tenth barking dog in a room populated
with only barking dogs, is very likely redundant such as not providing any useful
additional information. Thus, by inhibiting some head movements, the head of the
robot can be used for other kinds of movements, as may be requested by other tasks.
The twomodules constituting theHTMmodule have been designed and implemented
in a way that they can understand the environment being explored by the robot in
terms of audiovisual objects of importance. Thereby, the attribute of importance is
assigned to objects in the following ways.

• The DW module implements the notion of importance through the concept of
congruence. Congruence is defined here as semantic saliency since it is not applied
to the low-level attributes of the perceived signals, such as spectral composition,
ILD, or ITD, but rather on high-level representations of these signals, namely
audiovisual classes. The audiovisual classes c(a, v) are made by the concatenation
of an auditory label, a, and a visual label, v. On this basis, and without any prior
knowledge of the actual environment, the DW aims at determining whether an

3These are called “Knowledge Sources” in the integrated Two!Ears software.



Audition as a Trigger of Head Movements 711

Fig. 5 Schematic architecture of the HTMmodel and its two main components: a TheMultimodal
Fusion& Inferencemodule is in charge of providing to theDWmodule corrected audiovisual classes
from classification experts outputs. b The Dynamic Weighting module estimates the congruency
of an audiovisual object, in its current environment. Each of the two modules can trigger head
movements separately. The red box depicts the computational component that integrates different
motor commands and puts them into an order to prioritize one of them, depending on the actual
situation

audiovisual source is incongruent or not in the environment being explored. If it
is, a motor reaction is triggered toward this audiovisual object. This motor reaction
can be compared to those triggered by the Superior Colliculus (see Sect. 2.1) or
the MMN (see Sect. 2.3).

• TheMFImodule implements the notion of importance through the prism of reduc-
tion of uncertainty of the auditory and visual labels received from the classification
experts. More precisely, the MFI module analyzes the uncertainty that it senses
with regard to the combination of auditory and visual information, in particular,
regarding the assignment of audiovisual labels, a combination that contributes to
the multimodal representation of objects as used within the HTM. The MFI mod-
ule is primarily inspired by the Reverse Hierarchy Theory (see Sect. 2.2). A further
aspect originates from the principle of intrinsic motivation of a person or an arti-
ficial agent to accomplish a particular action for the sake of an internal rewarding
system, such as the one Berlyne (1950, 1954) has first described and theorized.
Compare alsoMacedo andCardoso (2001), Baranes andOudeyer (2009, 2010) for
examples of artificial systems furnished with such kind of motivations. In practice,
the classification experts mentioned above are not unlikely to provide erroneous
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labels due to classification errors or even missing labels due to occlusions, such as
happens when objects are placed outside the field of view of the robot. Thus, the
MFI module, being directly coupled with DW module, is in charge of providing
the estimated audiovisual classes, ĉ(o j ), the perceived objects o j might belong to.
This analysis consists of a fusion of auditory and visual information as acquired by
an active unsupervised learning algorithm, linked to the usage of headmovements.

One potential issue arises here; that is, bothmodules have the ability to trigger head
movements for their respective task. The MFI generates motor commands to acquire
itsmultimodal representation,while theDWgenerates its commands for an attention-
driven behavior directed to incongruent objects. Both head movements must then be
assigned priorities—see the red box in Fig. 5. Since the DW makes decision based
on congruence of perceived audiovisual objects, this information must be exempted
from any classification or fusion errors. Thus, the motor commands triggered byMFI
are prioritized against the ones triggered by DW. The following subsection provides
details about the two modules constituting the HTM.

3.2 Algorithmic Formalization

This section provides details of the algorithmic formalization of the two modules
constituting the HTM, modules that respectively rely on congruence and intrinsic
motivation through reduction of uncertainty. Asmentioned before, theHTM relies on
the notion of multimodal object populating the environments the robot will explore.
However, this notion of an object is not objective: it is already an interpretated notion
arising from the convergence of different streams of information into a unified and
coherent internal representation. Thus, considering that the environments are objec-
tively populated with audiovisual sources emitting auditory, visual or audiovisual
events Ψk , one of the first task of the HTM is to emerge the notion of object, such as

Ψk = {θk,c(Ψk)} −→ o j = {θ̂ j , ĉ(o j )}, with ĉ(o j ) = {̂ca(o j ), ĉ
v(o j )}, (1)

where c represents the real audiovisual class of the event Ψk , ĉ depicts the estimated
classes (audio, visual or both) the object o j belongs to, θk the real angular position of
the event, and θ̂ j the estimated one by the localization expert. The estimated classes
ĉ come from the analysis performed by the MFI (see Sect. 3.2.2) of the data brought
by the audio and visual classification experts that have been trained beforehand to
identify particular sounds and images. Also, it is these audiovisual classes that will be
utilized by the DW to compute the congruence of the concerned object. The raw data
the HTM will retrieve at time step t from the Blackboard system will be organized
as follows:

V[t] = (P[t],Θ[t]), with P[t] = (Pa[t],Pv[t]) and Θ[t] = (Θa[t],Θv[t]), (2)
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where on the one hand Pa[t] = (pa1 [t], . . . , paNa
[t]) and Pv[t] = (pv

1[t], . . . , pv
Nv

[t])
are the vectors of probabilities from the auditory and the visual classification experts,
and Θa[t] = (θa

1 [t], . . . , θa
Nθ

[t]) and Θv[t] = (θv
1 [t], . . . , θv

Nθ
[t]) are the vectors of

probabilities from the auditory and visual localization experts, respectively. These
are precisely the vectors Pa and Pv that the MFI will try to correct or, whenever one
of them is missing, to infer.

The following section introduces the DW corresponding to the highest level, that
is the closest to the cognitive abilities of the HTM.

3.2.1 Congruence—The DW Module

Within the DW, the emphasis has been put on dealing only with high-level represen-
tations of the perceived multimodal data, namely the auditory classes they belong
to. Following this idea, the aim of a reactive robot—in terms of head movements as
driven by the concept of congruency—is the detection of incongruent audiovisual
objects in an unknown environment in comparison to prior observations. The sys-
tem has neither access to the content of the multimodal objects that populate this
environment nor to their time of appearance. The only tool that the HTM has when
entering a new room is a set of classification experts that have been trained before-
hand.4 Further, the DW is designed to exploit additionally available knowledge for
future use in unknown environments.

Congruence is based on conditional pseudo-probabilities where the probability of
observing a certain audiovisual class depends on the environment in which it occurs.
In other words, the less often an audiovisual object has been observed in the past, the
less likely it is to occur again in the future.5 On the contrary, the more frequently an
audiovisual object has been observed in the past, the more likely it is to occur again
in the future.

This has been formalized by means of the posterior probability of an object oi to
belong to a class c(l)(ai , vk) in the lth environment e(l):

p
(

o j ∈ c(l)(ai , vk) | e(l)
) = p

(

c(l)(ai , vk) | e(l)
) = |c(l)(ai , vk)|

Nl
, (3)

where |c(l)(ai , vk)| depicts the number of objects that have already been associated
to the audiovisual class c(l)(ai , vk), and Nl is the total number of objects detected
so far. Since no information is available about what class is more likely to occur in
a given environment, the probability p

(

o j ∈ c(l)(ai , vk) | e(l)
)

will be compared to
the equiprobability Kl = 1/|C(l)| of observing any class detected so far. Thus, it is
possible to take a decision on the congruence of the considered object by

4These have been provided by the Two!Ears project software freely available from
www.twoears.eu.
5Obviously, this indicates a link to Bayesian theory.

www.twoears.eu
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o j ∈ c(l)(ai , vk) is incongruent ⇔ p(c(l)(ai , vk)) ≤ Kl . (4)

Following that, and to render the notion of importance of the emitting objects, two
functions have been designed to assign their weights wo j with respect to their con-
gruence

wo j [n] =
{

f •
ω [n] = 1/(1 + 100 e−2n) if p

(

c(l)(ai , vk)
) ≤ Kl

f ◦
ω [n] = (1/1 + 0.01 e2n) − 1 else

, (5)

where f •
ω is an increasing positive function converging to 1 anddedicated to incongru-

ent objects (high weight equals high importance), f ◦
ω is its symmetrically decreasing

negative function converging to −1 and dedicated to congruent objects, and where
n is a temporal index that is systematically reset to zero whenever the congruence
state of the object changes. To trigger a head movement, the object with the highest
weight, that is, the most incongruent, will be considered as the target of the motor
reaction. Also, if two objects share the same weight, the one that appeared the latest
would be prioritized, thus applying a form of motivation by novelty. Note that the
computation of the motor orders, not detailed here—see Cohen-L’hyver (2017), and
Cohen-L’hyver et al. (2018) for complete description, is conceptually andmathemat-
ically formalized by the use of a GPR model—developed by Gurney et al. (2001a, b)
and inspired by the basal ganglia-thalamus-cortex loop present in humans and playing
an essential role in motor command selection.

All of this leads to the very definition of environment. The robotics community
defines an environment most often by its physical existence, or its topographical
characteristics: size of the rooms, number of access points, usable paths, zones of
danger, lighting conditions, e.g., seeMakarenko et al. (2002), Durrant-Whyte and
Bailey (2006), Cuperlier et al. (2007), and Baranes and Oudeyer (2010). In the
context of the DW, and thus of the whole HTM, an environment is also defined
through a semantic approach, namely, by the audiovisual objects, or entities, that are
present in it. Going even a bit further, a refined definition reads as follows:

An environment is defined by the relative congruence of all the audiovisual classes that have
been perceived in it.

In the vein of this definition, two very different rooms, such as two conference rooms
at different universities, will be considered as being identical, if and only they share
the same set of audiovisual classes congruence values. Consequently, the respective
status of congruence of the audiovisual classes detected in all the already explored
environments consequently constitute the knowledge of the world the DW creates.
This knowledge is used by the DW whenever it detects that the current explored
environment is similar enough to one the robot already explored in the past. Being
able to transfer acquired knowledge to new unknown environments quickens the
understanding of it by taking advantage of the experience of the robot.

However, taken that congruence relies on a multimodal representation of the
objects perceived in the explored environments, what happens when an object is
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placed behind the robot, thus hindering it from acquiring adequate visual informa-
tion? Turning the head toward the object to get the full data in order to accurately
compute congruence would definitely be absurd, if this object would be thereafter
considered as congruent, a head turn would have already been triggered. Such con-
flicting situation motivated the creation of aMultimodal Fusion & Inference module,
as described in the following section.

3.2.2 Reduction of Uncertainty—The MFI Module

A second module with the ability of inferring missing data has been developed to
circumvent a deadlock situation of the mentioned kind. The Multimodal Fusion &
Inference (MFI) module also constitutes a reflective feedback loop that uses auditory
and visual data coming from the sensors (after the dedicated classification experts
have processed them) to send back a motor command, as illustrated in Fig. 6. This
motor command will give the robot access to new data that might redefine the best
motor action for the robot. Since the system relies solely upon a high-level represen-
tation of the perceived data, namely, audiovisual classes, the inference made by the
MFI module will be about auditory labels given known visual ones, or about visual
labels given known auditory ones.
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Fig. 6 Multimodal Fusion & Inference module architecture
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It is necessary to learn the relationships between auditory and visual labels to
achieve this—such as barking dog or a speaking male. In other words, every
time the robot faces an object which emits sound, the MFI module will take the
chance to learn the audiovisual pair that is perceived. Once this learning has been
accomplished, the MFI can offer an inference of a missing modality. However, it
has to be kept in mind that classification experts are prone to errors—particularly
the auditory experts when the acoustic conditions become challenging, such as in
reverberant and noisy surroundings, or when the explored environment differs too
much from the one used for the prior experts training. Thus, relying too much on the
output of these classifiers would lead to erroneous learning of the audiovisual pairs.

TheMFI has been designed around a Self-OrganizingMap (SOM), after Kohonen
(1982). Such learning algorithm performs a vector quantization of high-dimensional
input data into a lower dimensional map (in our case, two-dimensional). Indeed, a
SOM is a map composed of a certain number of nodes (or neurons) that represent the
constituting vectors of the matrix of data to be processed. A SOM organizes these
vectors in space by assigning them a particular node within the map. What results
from this procedure is a modified representation of the input data as a map that has
a lower dimension than the initial set of vectors, making it easier to process while
also enabling the categorization of the input data. The SOM map is tonotopically
organized. This means that when two regions of the SOM map are spatially close,
the data that they represent are also close. The purposes of an SOM are organizing
the existing data in clusters, then determining the class that a new input belongs to
by localizing the node within the map which is most similar to the new vector, and
finally, identifying the cluster that this node belongs to. However, while the SOM
algorithm provides a powerful unsupervised learning paradigm, it had to be adapted
to the particular conditions in which the HTM, and theMFI in particular, have access
to the data it has to process.6

The first major change comes from the use of not only one SOM to learn the data,
but of one SOM per modality used to define an object, thus creating theMultimodal
Self-Organizing Map (M-SOM), as depicted in Fig. 7. Here, auditory and visual
data have been used to define an object. The overall M-SOM used in the MFI thus
includes two interconnected subnetworks that will jointly participate in the creation
of the internal representation of the robot’s world, in terms of the audiovisual classes
that have been observed during its exploration, as Fig. 8 illustrates.

The second major change consists of modifying the learning process. Indeed,
while the SOM is built, and usually used, to process full matrix of data, and since, as
already stated before, the HTM does not have access to prior knowledge about the
objects appearing in the environments, the M-SOM will only be fed with one vector
of data at a time. That is, whenever a vector of data is available, the MFI has to be
capable to integrate it in the M-SOM so that a learning iteration can happen. Since
the goal of the MFI is to learn the relationship between the two modalities, a vector

6It will only be presented in this chapter what has been changed conceptually. See Cohen-L’hyver
(2017), Cohen-L’hyver et al. (2018) for a thorough description of all the contributions of the
M-SOM.
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Fig. 7 Illustration of the
Multimodal Self-Organizing
Map (M-SOM) which
embeds two subnetworks,
each of them being dedicated
to coding the information
from each modality used to
define an object—audition
and vision in this case
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of data is sent to the M-SOM if and only if these data come from both visual and
auditory sensors and are about the same object, that is, whenever the robot faces an
object emitting sound.Moreover, it is important here that the reflective feedback loop
is present, through the triggering of head movements towards audiovisual sources of
interest, in order for the robot to face these sources belonging to audiovisual classes
that might need further learning.

Third, while in a traditional SOM the proofs of convergence are numerous, the
problem the MFI has to solve does not simply imply one, or several, good solutions.
Since the robot is being always designed to explore unknown environments, there
is no possibility to know what are all the audiovisual classes that will be present.
Consequently, the MFI implements the notion of local convergence of the M-SOM.
In particular, the quality of learning will be assessed by the MFI on a class-by-class
manner: if the estimation of the audiovisual class an object is supposed to belong to
is not trustworthy enough, more audiovisual data will be required in order to enhance
the quality of the knowledge about this class. Such additional data is obtained by
triggering a head movement towards the concerned source. Local convergence is
formalized by the implementation of an inference ratio of q(c(l)(ai , vk)) to determine
whether an audiovisual class, c(l)(ai , vk), needs to be further learned by the M-
SOM in an environment, e(l), or whether it has converged already to a trustworthy
representation, according to:

q
(

c(l)(ai , vk)
) =

∑n=t
n=1 δmiss

i,k [n − 1] δalli,k[n]
∑n=t

n=1 δmiss
i,k [n] ,

with δall/miss
i,k =

{

1 if ĉall/miss(o j ) = {ai , vk},
0 else.

(6)

Equation (6) describes the behavior of the MFI when it comes to setting up a
hypothesis about a missing modality, and this hypothesis constitutes the reflective
core of the feedback loop the MFI represents. If the ratio is too low, a command
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Fig. 8 Multimodal Self-Organizing Map (M-SOM). Each square represents a node (or a neuron)
that codes a particular distribution of the input data to be analyzed. The figure shows the evolution
of such a map during 500 time steps in an experiment in simulated conditions. In the beginning,
the map is unorganized, and gradually, with the amount of data it is fed with, it creates clusters of
neurons that represent similar categories of data. This M-SOM embeds two interconnected SOMs
dedicated to each modality used to define the notion of an object (audition and vision here). Four
audiovisual classes have been created here, as the four highest regions of this map depict. The
M-SOM is used after that to find the class of a new vector of classification experts data—after
Cohen-L’hyver (2017), and Cohen-L’hyver et al. (2018)

will be requested for turning the head toward the sound source in order to acquire
visual data. By doing so at time t + 1, the inference ratio q

(

c(l)(ai , vk)
)

will be
updated with the new information and used to feed the M-SOM thus refining the
learning—given that the data from the missing modality is now available. This ratio
will then be compared to a dynamically changeable threshold Kq ∈ R+ = [0, 1] to
decide whether it is now high enough to accept the inference as trustworthy. If the
answer is “yes”, no head movement will be initiated. If the outcome is “no”, a head
movement will be triggered. The threshold affects how quickly the MFI trusts its
inference abilities.
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For instance, a threshold of 0.2 would allow for eight out of ten wrong inferences
on a particular class before stipulating that the inference is not trustworthy. Likewise,
a threshold of 0.9would require at least nine on ten useful inferences before inhibiting
head movements. The presence of such a threshold may suggest that it is solely
responsible for the global performances of the MFI, but this not the case as it is
explained later in this section. Extensive evaluation of the impact of the threshold
value on the quality of MFI knowledge has revealed that variations are low for
threshold values in the range of 0.5–0.9 (Cohen-L’hyver 2017).

For this reason, the option of setting different threshold values matters. The lower
the threshold, the fewer headmovementswill be triggered, but potentiallymore errors
will be made. On the other hand, the higher the threshold, the more head movements
will be triggered. Consequently, a suitable adaptation of the threshold canmake sense
when considering the specific situation that a robot is exposed to. For example, in a
search-and-rescue scenario the priority would be put on the search for victims, thus
not requiring a full understanding of all audiovisual entities that are present in the
current environment (low threshold), while in a room without any high priority task
to accomplish, the robot has all the time needed for a complete exploration (high
threshold).

Concerning the computation of motor orders potentially triggered by the MFI,
it has been formalized similarly to the DW (see Sect. 3.2.1), that is through a GPR
model enabling the selection of which object needs to be focused on.

To sum up, the main purpose of the MFI is the reduction of uncertainty by using
motor reactions, hence implementing a reflective feedback loop that links informa-
tion from classification experts to a motor command that will in return provoke the
perception of new data, and so on. Therefore, two hypotheses are set up concerning
whether an audiovisual object belongs to a specific class, in particular, to one that is
based on the incoming stream of auditory labels and to another one addressing the
stream of visual labels. As an example, if the robot faces a person and perceives a
barking sound originating from the same location: how confident would the MFI be
that this audiovisual source belongs to the audiovisual class barking person? The
possible behavior of the MFI in such a case may alternatively be as follows:

1. The robot has encountered several (barking person) in the past, and theMFI is
now confident that it is not a classification error. The DWmodule can thus rely on
this audiovisual fusion for computing the congruence of this audiovisual object.

2. The robot has never encountered such an audiovisual class and will thus need to
gather further auditory and visual data before potentially creating a new audiovi-
sual class.

3. The robot has already encountered this class but is still not confident enough to
determine that the source does indeed belongs to it. In this case, the MFI will
initiate a head movement to gather more auditory and visual information.
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3.2.3 Combination of the Two Modules

The combination of the DW and MFI modules consisted mainly in dealing with
which module should take the lead whenever both are triggering a head movement.
Still staying within the paradigm of the GPR implementation of motor commands
(see Sect. 3.2.1), the computation of the motor orders triggered by the DW has been
slightly modified in order to take into account the activity of the MFI, so that, in fine,
the MFI is prioritized over the DW. Indeed, the former being dedicated to providing
the latter with clean data, it has to take over the DWuntil theMFI is confident enough
in its knowledge (see 3.2.2). Combining the two modules leads to a global behavior
of the HTM in three phases, as depicted in Fig. 9, in a simulated environment (the
time here thus corresponds to discrete time steps). At first the MFI is prioritized until
t = 135 time steps, since it is gathering information and creating knowledge. Then,
from t = 135 to t = 310 time steps, both modules trigger head movements: the MFI
is confident in its knowledge about certain audiovisual classes (speech male for
instance) but not about others (crying female). Finally, from t = 310 time steps
to the end of the simulation, the MFI does not trigger any head movement letting the
DW in sole charge of deciding of the importance of the audiovisual objects present
in the environment.

Time index t (in step)

Fig. 9 Three-phase behavior resulting from the combination of the DW and the MFI in an explo-
ration task. The x-axis depicts time steps (simulated scenario). Top: Head movements triggered by
the DW (up, red) or the MFI (down, blue). Bottom: Time course of the scenario depicting which
and when audiovisual objects are appearing in the environment. The black line denotes the object
to which the robot drives its attention
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3.3 Experiments and Results

In order to evaluate the HTM and its two modules, experiments in simulated and in
realistic environments have been conducted. Simulations allow to modify the com-
plexity of an environment and to focus only on the results of the analyses performed
by the computational modules without taking into account any hardware issues.
Realistic environments are suitable to assessing performances of artificial systems in
the real world, that is classification and localization experts working with data from
real objects in real-time, using physical robots with their mechanical limitations and
imperfections.

This section briefly presents major results achieved with the HTM, firstly in sim-
ulated conditions and, secondly in a testing room where different environments are
available. However, before presenting these results, it is necessary to describe what
will be evaluated, in both the simulations and in the real world.

3.3.1 The Naive Robot

The HTM model covers several fields of AI and robotic behavior, such as attention,
learning, and perception. Moreover, robots endowed with head-movement capabil-
ities are rather rare and, as explained before, there is no correct way for a robot to
operate—only something that could be qualified as relevant as compared to how
human beings would behave. Thus, it was necessary to find a reference system to
assess whether an HTM-driven robot exhibits a “better” behavior than other sys-
tems. In the current study, a “naive” robot Rn was employed for this purpose—also
referred to as naive system. It is similar to the system that Girard et al. (2002) has
used and has the following two main characteristics:

1. The naive robot does not perform any further analysis of the data that it gets from
the classification experts than concatenating them, that is, the auditory and visual
labels are taken from the experts as is without any temporal integration or deeper
processing.

2. The naive system triggers head movements whenever there is a new audiovisual
source appearing in the environment being explored. This behavior could be
comparable to a simpler version of the motivation by saliency or novelty. In fact,
every time a new object enters the scene, the naive system will guide the robot to
focus on it.

A robot driven by the HTM will thus be compared to this naive robot in terms
of the quality of the classification and fusion of audiovisual data by the dedicated
experts on the one hand, and the number of head movements triggered during the
exploration of several environments on the other hand. Since the HTM is a system
thatmodulates the head movements by either triggering or inhibiting them as a result
of HTM deployment, a significant improvement of the quality of the data from the
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experts and a lower number of movements of the head is expected, while maintaining
reasonable behavior in terms of the choices as to which objects in the scene should
be focused on.

3.3.2 Simulations

Firstly, the simulations mimicked the behavior of the classification and localization
experts. The output of the simulated auditory and visual classification experts was
emulated, with a specific error rate per frame included in the data generation process
in order to reflect the real behavior of the real classifiers. The simulation tool generates
probabilities of an auditory/visual frame to belong to a specific auditory/visual class,
in addition to a whole virtual environment the robot explores. Thus, one vector per
modality, made of as many components as there are experts implemented, will be
rendered at every time step. The simulated environments included different numbers
of audiovisual sources which can appear anywhere and at any time for durations
unknown to the system—see Fig. 10. Two different general cases have been tested;
namely, single-source scenarios with no concurring sound sources and multi-source
scenarios but only the results from multisource scenarios are presented here. These
simulated environments were populated with three to ten overlapping audiovisual
sources. All numbers presented are the result of averaging over five runs for each
scenario.

male 
speech

baby 
screaming

male 
speech

dog 
barking

dog 
barking

female 
piano

Fig. 10 Illustration of a simulated environment. The environments are populated with various
audiovisual sources belonging to a certain audiovisual class that the robot does not knowbeforehand.
Some of them are emitting sound (blue), others are silent, (red). The ability of the robot to acquire
“correct” knowledge about the semantic content of the scene is assessed based on congruence of the
perceived objects, either via the quality of audiovisual fusion or via the quality of head movements
triggering or inhibition
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Fig. 11 Number of head movements generated in multisource scenarios. Movements generated by
the HTM, (blue), and by the naive robot, (red). The arrows point to the positions of audiovisual
sources, their length representing the number of movements toward the considered source. The
histograms depict the total sum of generated movements, by the MFI, (dark purple), by the DW,
(light purple), and by the naive robot, (red). The (white) numbers correspond to the number of
movements by module, averaged over five trials, and their sum (black)

Figure11 depicts the results obtained under multisource conditions. The his-
tograms are the most interesting data to look at. They depict how many movements
were triggered by the DW &MFI modules versus the naive robot. Interestingly, the
more complex the environment gets, the more impact the HTM system has on the
number of head movements. Indeed, in the scenario with ten audiovisual sources all
emitting at the same time, the naive robot triggers up to 93.8 head movements while
the HTM triggers only 45.6, that is less than half of them.

3.3.3 Realistic Environments

The experiments performed in realistic environments were conducted with the real
robot in a pseudo-anechoic roomwhere several audiovisual sources were placed. The
auditory data were emitted by different loudspeakers with QR codes attached to them
to identify them as visual objects. Three environments were tested as listed in Table1.
The following audiovisual sources were employed: barking dog, screaming
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Table 1 Specification of three scenarios created under real conditions for evaluating the HTM on
a real robot

Test-scenario characteristics

e(i) nS nmax
sim Present audiovisual classes Angular position θ(a|v)

1 3 1 barking dog #1 320◦

barking dog #2 35◦

speaking male 70◦

2 3 1 crying baby #1 70◦

crying baby #2 35◦

piano female 320◦

3 3 1 crying baby #1 70◦

crying baby #2 35◦

barking dog 320◦

speaking male 280◦

baby, piano female, speaking male. Moreover, the scenarios did not include
any whole-body movements because the model addresses head movements only.

Importantly, one of the major roles of the MFI is to clean up the data coming
from the experts for they exhibit a certain amount of error per frame. To quantify
this clean up step, a correct audiovisual classification rate �(o j )[t] has been set. It
is defined by comparing the estimated audio and visual classes (associated to all the
sources detected by the system) with the ground truth, according to

�(o j )[t] = a ×
t

∑

k=ti

γ (o j )[k] with γ (o j )[k] =
{

1 if ĉ(o j )[k] = c(Ψ j )[k],
0 else,

(7)

with c(Ψ j )[k] representing, at time k, the ground truth audiovisual class of event
Ψ j captured as the object o j in the internal representation of the robot, and
a = 1/[1, . . . , (t − ti ) + 1] as the elapsed time between ti , the first time step the
MFI provided a classification of object o j , and t the current time. The overall cor-
rect classification rate is then given by applying a sliding window on all the �(o j )

calculated since the exploration has began, according to

�̄mfi[t] = 1

Nc
obj [t]

Nc
obj [t]
∑

j=1

�(o j )[t], (8)

where Nc
obj [t] is the number of objects processed so far by the MFI at time t . In

parallel, the same process is made for the naive robot Rn , along
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Γ̄mfi[t]
Γ̄

n
[t]

Γ̄mfi[t = T ] = 0.696

Γ̄
n
[t = T ] = 0.379

Fig. 12 Average correct audiovisual classification rate computed on a sliding window for the MFI
(�̄mfi), (blue), and the naive robot (�̄Rn ), (red), that is directly at the classifiers output. The two
numbers denote the final results at the end of exploration

�̄Rn [t] = 1

Nobj [t]
Nobj [t]
∑

j=1

�(o j )[t]. (9)

At the endof the exploration, theMFIprovides an improvement of about 183.6%in
terms of correct audiovisual classification rate, raising from 37.9% for �̄Rn to 69.6%
for �̄mfi. Taking only the labels as assigned by the classification experts would lead
to the creation of multiple different audiovisual classes—as illustrated by Fig. 13.
This figure illustrates how the MFI considerably narrows the ensemble of possible
audiovisual classes: from 22 detected by the experts, the MFI converges to only 5,
that is a ≈78% diminution. If the DW module had worked directly on the expert’s
output, the results of congruence analysis would thus be seriously corrupted. The
usefulness of the MFI for the DW module and the robot’s internal representation at
large is thus convincingly demonstrated (Fig. 12).

3.3.4 Discussion and Conclusions of Sect. 3

The results presented here for simulated and realistic environments show that the
HTM can drastically lower the number of head movements toward unpredictable
audiovisual sources based on congruence and reduction of uncertainty as determined
by theDWand theMFImodules.Modulating the generation of such headmovements
is of importance for achieving suitable means of behavior to separate important from
unimportant events. These two modules enable mobile robots endowed with human-
like audiovisual perception to explore unknown environments and to react quickly
andwithout prior knowledge to incoming audiovisual objects. The“How”,“Where”,
and “When” of the objects need to be determined as they appear in the environment.
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Fig. 13 Audiovisual classes created by the naive robot, (red), and by the MFI, (blue). The height
of histograms depicts the number of frames for which the corresponding audiovisual class has been
assigned. The light blue rectangles highlight the audiovisual classes that are common amongst the
two fusion systems

These are first unknown to the system—and thus to the robot. In combination, these
two modules form the Head-Turning-Modulation model and constitute a complete
system, which is working closely together with several experts—classification and
localization—in order to establish a form of endogenous attentional behavior in
humanoid robots.

4 Final Discussion and Conclusion

Audition and vision are two major senses used by most mammals and humans. Both
senses exhibit incredible performances in perceiving and processing the world in
their own way. The data that they use are often very complex, be it spatially or
temporally, and can change dynamically. The system of very sensitive sensors (eyes
and ears) coupled to incredibly powerfulmeans of analysis, such as dedicated sensory
areas in the auditory and visual cortical areas, make us understand the real world
without too much of an effort. However, when trying to “simulate” such systems,
as human-like robotics aim to do, audition and vision are often considered as two
separate information channels.
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Moreover, it is rather rare to see artificial systems with an additional “cognitive”
layer of multimodal integration, allowing the robot to build a deeper internal repre-
sentation of the world than just a collection of object labels. Also, behavioral rules
are often pre-determined by the experimenter leading to “if-else”-statement kind of
reactions, such as this one: “If a baby is crying, go to the baby”. These kinds of rules
might be useful in simple scenarios and for robots with a short lifespan but whenever
the robotic agent is put in more complex and varying environments, which have to be
explored for extended periods of time (weeks, months, years, …) the binary priorly
defined rules cannot anticipate all the different objects prone to occur. In particular,
relevant and comprehensive behavioral rules for properly guiding the exploration
will not be available readily.

Thus, the idea of letting the robot create its own behavioral rules was central to the
HTMmodel that is proposed and described here. Inspired by several biological phe-
nomena that are involved in the understanding of the audiovisual perceptual world,
theHTMmodel is an example of how audition can be used as a trigger for headmove-
ments towards particular audiovisual sources of interest, thus enabling requisition
of data from the visual modality for refining the perception of audiovisual sources
of importance. In particular, the results presented in Sect. 3.3.3 provide evidence for
the usefulness of multimodal integration of auditory and visual information for a
humanoid robot to explore unknown environments when prior knowledge of their
audiovisual content is sparse. Moreover, the time needed for the robot to behave
adequately and meaningful in unknown environments becomes significantly shorter
in this way. Actually, only a few examples are enough for the robot to create its
first behavioral rules, thus undermining the widespread misconception that real-time
learning and the inability to quickly react in unknown conditions come in couples.

Indeed, the HTM model is far from being the only computational model that
integrates several modalities in order to enrich the representation of the worldmodels
of robots—seeNoda et al. (2014), for instance. However, most currentmodels rely on
strong apriori knowledgegained fromoff-line learning in controlled environments, or
on rules available in the form of pre-established “if-else” statements. Such paradigms
often prohibit the robots from either learning more from what they experience, or
from quickly adapting to situations that have not been encountered before. Yet, the
ability to do so is one of themost powerful competencies that human brains have, that
is, to quickly adapt to odd situations, be they odd because of their unpredictability
or because of their novelty.
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Intelligent Hearing Instruments—Trends
and Challenges

Eleftheria Georganti, Gilles Courtois, Peter Derleth and Stefan Launer

Abstract Hearing instruments (HIs) aim at helping people with hearing impairment
who often have difficulties to understand speech in noisy environments. This chapter
provides an overview of the current technological trends and challenges in the field
of HI applications. It covers the state-of-the-art of signal-processing algorithms used
in modern digital HIs. Focus is given on the extensions of such algorithms for appli-
cations, where microphone signals are employed from both the left and right HIs
(binaural case). Furthermore, the chapter refers to the challenges for the optimal
parametrization and steering of the HI algorithms. The concepts of environment
classification for automatically controlling the settings of an HI in different listening
situations are discussed and a brief summary of sound-source-localizationmethods is
given. Finally, this chapter discusses the current trends of adding sensors in HIs that
can potentially further enhance the hearing performance of the devices and improve
the life of hearing-impaired people.

1 Introduction

Hearing impairment is defined as a partial or total inability to hear (Britannica 2017).
It may occur in one or both ears and is one of most common physical conditions
affecting elderly adults. The World-Health Organization (WHO 2017) reports that
over 5% of the world’s population (360 million people) has a disabling hearing loss
and among them32million are children.Hearing loss is nearly always associatedwith
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Fig. 1 Different types of state-of-the-art hearing aids. a BTE, b RIC, c ITE, d ITC, e CIC

poor speech perception and some areas of greatest difficulty for hearing-impaired
include communication in background noise, difficulty to understand talkerswith soft
voices, hearing speech at a distance, or talking over the phone (Popelka and Moore
2016). Some of these deficits can be addressed with hearing instruments (HIs), as
listed below.

• Hearing aids are electronic devices that primarily aim at amplifying, filtering and
delivering adequate sound signals to the ears. Hearing aids are themost widespread
solution to improve the hearing performance of hearing-impaired people. There
are different types of them, namely, (a), behind the ear (BTE), (b), receiver in the
ear canal (RIC), (c), in the ear (ITE), (d), in the canal (ITC), (e), completely in the
canal (CIC)—see Fig. 1.

• Cochlear implants (CI) consist of two different units: (i), the speech proces-
sor and, (ii), the implant. The speech processor is worn behind the ear and it is
composed of a microphone and a microprocessor. The implant includes an elec-
trode array that is implanted in the cochlea and directly stimulates the auditory
nerve. The communication between both parts is performed through a wireless
connection through the skull.

• Further HIs exist, such as bone-anchored hearing systems,middle-ear implants
and auditory-brainstem implants, but it is beyond the scope of this chapter to
address the specific details of these systems.

Nowadays, all the aforementioned devices include one or more microphone sen-
sors for capturing the audio signal and employ digital signal processing (DSP) meth-
ods in order to enhance the input signal accordingly, before delivering it to the listener.
The employed signal processing methods are continuously evolving in terms of per-
formance and speed, and they rely on technological advancements in the fields of
microelectronics and DSP. This will allow future hearing devices to turn into more
intelligent systems offering a range of specific algorithms and algorithmic settings
for addressing the specific listening and communication needs of users in different
acoustic environments.

This chapter provides a survey of current trends and challenges in the field of
HI applications with emphasis on hearing aids and cochlear implants. Section2
describes state-of-the-art signal-processing algorithms for HIs and discusses cur-
rent trends regarding the extensions of these algorithms to their binaural versions,
that is, employing microphone signals from both the left and right HIs. Section3
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gives an overview of methods for the analysis of the auditory environment, which
is essential for optimal parametrization and steering of the HI algorithms. It also
describes several recently developed sound-localization methods based on binaural
input signals and their extensions when an additional remote microphone is avail-
able. Section4 focuses on the current trends in sensors for HIs and their potential
applications. Finally, Sect. 5 summarizes the contents of this chapter.

2 Signal-Processing Algorithms in Hearing Instruments

Over the last decades, the upswing in digital-hearing devices has led to the develop-
ment of new signal-processing algorithms. The aim of these algorithms is to com-
pensate for the hearing loss of hearing-impaired listeners. Table1 reports typical
signal-processing features as incorporated in HIs and specific issues and hearing
deficits that they address (Kollmeier et al. 1993; Courtois 2016; Launer et al. 2016;
Souza 2016).

Figure2 provides an overview of the signal-processing blocks found in HIs—see
also Launer et al. (2016). The signals are typically picked up by one or multiple
omnidirectional microphones that are placed within the devices. In the case where
two devices, left and right, are available and wirelessly connected, the microphone
signals from both devices may be utilized—binaural HIs. Moreover, alternate audio-
source signals may also be present and can be captured with an external microphone
and wirelessly streamed. The signals are then processed accordingly and delivered to
the listeners by either loudspeakers, electrical signals (cochlear implants), or vibra-
tions (bone-anchored hearing systems). The subsequent algorithms can be broadly
classified, according to their delivered functionality as follows, (i), environment anal-
ysis, (ii), sound “cleaning”, (iii), audibility and loudness restoration. For general
information regarding typically employed DSP algorithms in HIs, see, for example,
Kates (2008), Launer et al. (2016), Holube and Pudder (2014), Dillon (2012), further
Hamacher et al. (2005, 2006) and Edwards (2007).

Table 1 Typical signal processing features available in HIs and the deficits they address

DSP features Addressed deficits related to hearing impairment

Amplification Decreased audibility of sounds

Compression Abnormal perception of loudness (recruitment)

Frequency lowering Loss of high-frequency audibility

Beamforming Deteriorated speech understanding in complex conditions

Noise reduction Listening discomfort in noisy situations

Dereverberation Listening discomfort in reverberant environments

Feedback cancellation Listening discomfort related to the occurrence of feedback
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Fig. 2 Generic signal-processing scheme, as typically incorporated in modern HIs equipped with
two microphones (front and rear). The subsequent algorithms can be classified in three categories,
namely, sound “cleaning” (orange box), environment analysis (yellow box), and audibility and
loudness restoration (blue box). An additional wireless-audio input is displayed, providing a signal,
for instance, from a remote microphone or a TV stream. Figure based on Launer et al. (2016)

Over the past few years, there has been a growing interest in the extension of
widely used DSP features in the so-called binaural HIs. These are devices that are
capable of exchanging data ear-to-ear (e.g., by awireless link). This section discusses
these aspects and gives an overview of the potential improvements that they could
bring. Section2.1 provides some general information with respect to binaural HIs,
and Sects. 2.2–2.4 refer to binaural extensions of typically used DSP algorithms,
such as beamforming, wide dynamic-range compression (WDRC), noise reduction,
and dereverberation.
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2.1 From Bilateral to Binaural Processing

The concept of binaural HIs was introduced in the 1990s, when the idea of transmit-
ting the audio signal from one device to the other emerged (Kollmeier et al. 1993;
Kollmeier and Koch 1994; Wittkop et al. 1996). The main objective was to estimate
the binaural cues, in order to discriminate between the sub-bands dominated by the
target speaker and the sub-bands dominated by the undesired components (e.g., com-
peting speakers, diffuse noise, late reverberation). Assuming that the position of the
speaker of interest was known, the strategy was to let those frequency bands pass
that yield interaural time differences (ITD) and interaural level differences (ILD) that
correspond to the direction of arrival (DOA) of the desired speech. Simultaneously,
the other bands are attenuated because they presumably are degraded by noise and
reverberation (Kollmeier et al. 1993).

It is common to distinguish between two types of binaural HIs, that is, the ones
that provide a synchronization-based processing, and the ones that offer a streaming-
based approach (Moore 2007a). The first type denotes HIs that share local features
parameters between the two devices, such as volume-control levels, program selec-
tions or WDRC settings. The second type refers to HIs that exchange complete
audio streams. It has been shown that synchronization-based HIs can preserve the
original binaural cues, and thus improve sound-localization performance of the lis-
tener. However, they fail to enhance speech understanding. Also, they are not always
judged by HI users as being more attractive than unlinked devices (Smith et al. 2008;
Sockalingam et al. 2009; Ibrahim et al. 2013). The second category of binaural
instruments, allowing for full or partial audio streaming between both devices, can
potentially lead to considerable improvements in the performance of certain signal-
processing algorithms as implemented inHIs, such as beamforming, noise cancelling
(Timmer 2013). These algorithms will be discussed in the next sections.

2.2 Beamforming

HIs often have at least two omni-directional microphones; typically one located on
top of the device (frontmicrophone) and one behind (backmicrophone), both looking
to the front. The most basic process of beamforming can be achieved by delaying
the signal from one microphone and adding or subtracting the outputs of the two
microphones. With this approach, one can create a “beam pattern” that points to a
specific, usually frontal, direction. In this way, target signals from the direction of
the beam are picked up well, while sounds from the sides or rear are attenuated. By
varying how the outputs of the twomicrophones are delayed and combined, different
beam patterns can be generated (Soede et al. 1993; Stadler and Rabinowitz 1993;
Widrow and Luo 2003; Elko and Meyer 2008). Beamforming can be performed
independently in the left and right HIs (bilateral beamformer) or the microphone
signals from both devices may be used in an appropriate combination—binaural
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beamformer. Here it should be stated that beamforming leads to signal-to-noise ratio
(SNR) improvements, however some distortions of the spatial cues and a reduction
of the overall speech quality may occur (Keidser et al. 2006, 2009; Van den Bogaert
et al. 2011).

Advanced designs of beamforming include the minimum-variance distortionless
response (MVDR;Capon 1969), the linearly constrainedminimumvariance (LCMV;
Frost 1972), the multi-channel Wiener filter (MWF; Widrow et al. 1975), and the
generalized sidelobe canceler (GSC;Griffiths and Jim 1982). TheMVDR constraints
the beamformer response to capture the sound source in the desired look direction
without distortion, while attenuating signals in the other directions. The LCMV
is similar to a MVDR, but employs different constraints (linear expressions). The
MWF uses the second-order statistical properties of the signal to estimate the desired
speech component in a minimum mean-square-error (MMSE) sense in one of the
received microphones. Several extensions of the MWF have been proposed, such
as the speech-distortion weighted MWF (SDW-MWF) that introduces a trade-off
coefficient between noise reduction and speech distortion (Doclo andMoonen 2002),
or theMWFwith partial-noise estimation (MWF-N) (Klasen et al. 2007), inwhich the
constraint of spatial-cue preservation is introduced. Finally, the GSC is an extension
of theMVDR in which the constraints are split into two simultaneous and orthogonal
operations. It is beyond the scope of this chapter to detail the various algorithms that
have been proposed to achieve bilateral beamforming so far—see Doclo et al. (2010)
for a thorough review.

The introduction of streaming capabilities between the left and right hearing
devices led to the extension of the aforementioned bilateral beamforming approaches
(MVDR, LCMV, MWF) to their binaural versions. From HIs embedding N micro-
phones, the ear-to-ear communication gave access to a network of 2N microphones—
see Fig. 3. This enabled the development of optimal tuning approaches for the various
beamforming algorithms, so that they take into account the trade-off between the
maximization of the directivity and the preservation of the binaural cues (Widrow
and Luo 2003). The preservation of the cues has been addressed by, (i), inserting
additional constraints to preserve the ITD in the GSC beamformer (Desloge et al.

Fig. 3 Two binaural HIs with two microphones each forming a four-microphone network. Repro-
duced courtesy of Timmer (2013)
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1997), (ii), performing beamforming in the high frequencies only and leaving the
low-frequency binaural cues unchanged (Welker et al. 1997), (iii), ensuring an accu-
rate reproduction of the ITD and ILD in the frontal areas (Nishimura et al. 2002), (iv),
introducing the binaural MWF (BMWF) beamformer that was shown to preserve the
ITD of the targeted speech cues (Klasen et al. 2005; Doclo et al. 2006), and (v),
introducing the binaural MVDR (BMVDR) beamformer (Doclo et al. 2010).

Research activities in the field of binaural beamforming are continuously growing
since the improvement of speech intelligibility in complex (noisy) acoustic environ-
ments is one of the primary challenges for HIs. Latzel (2013) describes a binaural
beamformer that first computes a standard monaural beamformer at both sides, then
processes the beamformed outputs at the ipsilateral device with a predefined weight-
ing function. Hadad et al. (2012) andMarquardt et al. (2014) introduced the binaural
LCMV (BLCMV) beamformer with additional constraints related to the preservation
of the interaural transfer function (ITF), the magnitude and phase of which repre-
sent the ILD and ITD respectively. The interaural cues of the target and interference
sources are preserved, but the cues associated with the stationary noise are trans-
posed to the ones of the target (Hadad et al. 2016). Cornelis et al. (2014) proposed an
extension of the binaural SDW-MWF and MWF-N beamformers in which a combi-
nation of a spatial filter and a common spectral post-filter is applied to both devices.
In this way, the speech ILD distortions are suppressed without reducing the noise
reduction performance. Their algorithmswere designed toworkwith a reduced band-
width of the ear-to-ear wireless link, that is, without exchanging every microphone
signal available in each hearing device. Liao et al. (2015b, a) revisited the BMWF
beamformer, incorporating the a-priori knowledge of a database of acoustic transfer
functions (ATFs) measured in an anechoic chamber for various known DOAs. ATFs
encapsulate the head-related transfer function (HRTF), the transducer-related, and
room-related effects. The technical constraints related to HIs (computational cost,
real-time framework, power consumption) were also taken into account in the design
of the algorithms.

While several solutions have been reported to preserve the spatial cues of the tar-
geted speech, the question of distortions of the binaural cues related to undesired noise
remains. Marquardt et al. (2015) addressed this issue and introduced an extension
of the BMWF that includes a criterion for the preservation of the interaural coher-
ence (IC) of the noise components in a diffuse noise field. Thiemann et al. (2016)
proposed to preserve the spatial information from those noise in the time-frequency
units where the SNR is low. They coupled the binaural MVDR beamformer with an
SNR-dependent binary classifier that states whether the signal must be processed by
the binaural beamformer (when speech is dominant) or be attenuated (when noise is
dominant). With the same objective of preserving the binaural noise cues, Szurley
et al. (2016) investigated the binauralMWF-N beamformer and used the contribution
of an additional remote microphone worn by the speaker of interest, a configuration
typically encountered with the use of frequency modulation (FM) systems—see
Sect. 4.1. It has theoretically been proven that the integration of this high-SNR signal
in the beamformer increases the output SNR and better preserves the noise-related
spatial cues (ITD and ILD). This was indeed confirmed in a simulation. The use of



740 E. Georganti et al.

Table 2 Frombilateral to binaural beamformer algorithms.MVDR:MinimumVarianceDistortion-
less Response; LCMV: Linearly ConstrainedMinimumVariance;MWF:Multi-channelWiener Fil-
ter; GSC: Generalized Sidelobe Canceler; BMVDR: Binaural MVDR; BLCMV: Binaural LCMV;
BMWF: Binaural MWF

Description Beamformers

Bilateral
beamformers

MVDR
Capon (1969)

LCMV
Frost (1972)

MWF
Widrow et al.
(1975)

GSC
Griffiths and Jim
(1982)

Binaural
beamformers

BMVDR
Doclo et al.
(2010)

BLCMV
Hadad et al.
(2012)

BMWF
Klasen et al.
(2005)

Improvements
and preservation
of the binaural
cues of speech

Marquardt et al.
(2014)

Cornelis et al.
(2014) and Liao
et al. (2015a)

Improvements
and preservation
of the binaural
cues of speech
and noise

Thiemann et al.
(2016)

Marquardt et al.
(2015) and
Szurley et al.
(2016)

an external microphone can also be found in the study by Yee et al. (2017), where
ITE HIs are considered, that is, devices that incorporate only one microphone. Bin-
aural beamforming can be performed with an ear-to-ear wireless link, as previously
reported by Srinivasan et al. (2008), but, due to the symmetrical arrangement and the
inherent front/back ambiguity, it is restricted to lateral noise reduction. The authors
in the aforementioned publication show that the presence of an additional micro-
phone, located at a distance of 30cm from the HI user and in an optimal azimuth
range between 10◦ and 30◦ in front, can yield significant improvement of the SNR
for both stationary and non-stationary noise sources positioned at 180◦ in the rear.

Ongoing research activities regarding binaural beamforming, combining strong
noise reduction, limited speech distortion, and spatial-hearing preservation, have
been reviewed in this section. The evolution of the various bilateral to binaural
beamformer approaches is summarized in Table2. It is evident that the challenges
related to the determination of an optimal trade-off between noise reduction and
speech quality, and the preservation of the binaural cues, still remain. Other aspects,
such as computational complexity and continuous ear-to-ear communication, should
also be taken into account.

Clinical Investigation

Over the past few years, numerous clinical investigations in order to determine the
benefits provided by the use of binaural against bilateral beamformers and the deter-
minant factors supporting both approaches, have been conducted. Picou et al. (2014)
investigated the effect of three types of beamformers (mild, moderate, or strong)
in eighteen hearing-impaired listeners with regard to speech intelligibility, subjec-
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tive preference, and listening effort. The first beamformer in this test provided fixed
bilateral directional filtering in high frequencies only. The second one was a bilat-
eral adaptive beamformer, where the maximum attenuation occurred at the main
location of the noise sources, and the third was a cue-preserving binaural beam-
former. It was evidenced that cue-preserving processing significantly enhanced the
speech intelligibility in a realistic listening scenario as compared to the two other
types—including reverberation and diffuse background noise. However, there was
no significant difference in subjective preference and listening effort between the
three beamformers. Appleton and König (2014) compared four beamformer set-
tings, namely, omnidirectional (i.e. no beamformer), bilateral adaptive beamformer,
binaural static beamformer, and binaural adaptive beamformer. By testing twenty
hearing-impaired listeners and presenting noise either diffused or located on the
sides only, they showed that the binaural beamformers outperformed the bilateral
one for speech understanding as well as in subjective rating tasks for both noise
presentations. When the noise was played back on the sides only, the results revealed
better performance of the binaural adaptive beamformer when compared to the static
one in both objective and subjective outcomes. Froehlich et al. (2015) conducted
a multicentric clinical study on 29 normal-hearing and 43 hearing-impaired listen-
ers in order to compare speech-intelligibility performance obtained with a bilateral
omnidirectional directivity pattern and a binaural beamformer. A decrease of the
speech-reception threshold (SRT) by 5dB was observed in the hearing-impaired lis-
teners when using the binaural beamformer in a configuration with diffused babble
noise. The speech-intelligibility gain was more pronounced in the hearing-impaired
group than in the normal-hearing group.

In a comprehensive study aiming at finding correlations between the individual
factors of 60 hearing-impaired listeners (hearing loss, noise sensitivity, personality
etc.) and their preferences for signal-processing features (including beamforming),
Neher et al. (2016), noticed that the tested binaural beamformerwasmore appreciated
by listeners with a high degree of hearing loss compared to the ones having a moder-
ate hearing impairment. It also appeared that the binaural approach was preferred in
a single-talker paradigm (speaker located at 0◦), whereas the bilateral beamformer
was more attractive in a two-talker scenario (speakers at ±30◦). In a further clinical
research, Neher et al. (2017) exposed 39 hearing-disabled listeners to different beam-
former settings that represented various trade-offs between SNR improvement and
binaural cue preservation. They found that subjects exhibiting a binaural intelligibil-
ity level difference (BILD) higher than 2dB benefited more from the preservation of
the low-frequency binaural cues (<800Hz) in terms of speech intelligibility, despite
the smaller SNR improvements. The oppositewas observed in the listeners presenting
lower BILD, where the spatial-hearing preservation was of less importance. Geetha
et al. (2017) tested various configurations of HI fittings, including beamforming off
or on. Speech intelligibility in noise and sound-localization experiments were con-
ducted on a panel of 25 hearing-impaired subjects. The authors found a significant
improvement in speech understanding with beamforming, whatever the DOA of the
babble noise.
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The present review shows that binaural beamformers yield significant enhance-
ments of speech intelligibility in noisy situations. However, clinical studies have also
pointed out the strong influence of individual factors and acoustic configurations on
the efficiency of such beamformers. Here it should be noted that one of themost dom-
inating factors in practical applications affecting the performance of beamformers is
the acoustic coupling to the ear. This refers to the fact that various types of fittings are
used when fitting an HI, mainly depending on the type of hearing loss (open domes,
closed domes, ear tips etc.). The type of fitting together with the hearing loss of the HI
user in the low frequencies determines the direct sound dominance and the resulting
listening benefit for the HI user. Therefore, it is of great importance to always take
into account the variability of acoustic couplings to the ear before extracting general
conclusions about the performance of specific beamforming modes.

2.3 Noise Reduction

Noise reduction systems incorporated in HIs are primarily intended to increase the
comfort and diminish the listening effort of the listener in noisy environments. The
majority of current bilateral noise cancellers do not provide substantial SNR improve-
ment, and thus fail to improve speech intelligibility—seeMoore (2007b) for a review.
For the past few years, binaural processing has been introduced in noise reduction
algorithms and has shown to provide promising performance. Yang et al. (2013) sug-
gested to compute the ITD and IC between both devices in the low frequencies and
the ILD and IC in the high frequencies. Assuming a target speech at 0◦, the estimated
cues drive a binary classifier that discriminates between the time-frequency regions
dominated by the desired speech (corresponding to low ILD/ITD values and high IC
values) and the regions where the noise is dominant. Yousefian et al. (2014) reported
a noise-reduction algorithm that relies on the calculation of the IC between both
devices. A coherence-based gain function is applied similarly on the left and right
signals so that the time-frequency components characterized by a low (estimated)
SNR are attenuated, while the binaural cues are left unchanged. The algorithm was
assessed with coherent noise sources (competing speaker or speech-shaped noise),
spatially separated from the target speech located at 0◦. An average SRT increase by
6.5dB was found in eight normal-hearing listeners, but this improvement tends to
diminish with increasing reverberation time.

Another common noise type present in HI application is the wind noise, which is
mainly caused by the airflow around the head. Hiruma et al. (2016) addressed this
issue and proposed a binaural approach for the cancellation of wind noise. Since such
a type of noise has typically low-frequency components, the authors implemented
a frequency-warping technique to ensure high resolution in the low frequencies and
a limited computational delay. The algorithm assumes that the DOA of the target
speech is known, and computes the frequency-dependent error between the expected
binaural cues obtained from a HRTF database and the real-time estimated cues. That
error constitutes a wind-occurrence detector and monitors the wind noise canceller.
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2.4 Dereverberation

Dereverberation algorithms are used to reduce the undesired effects of reverberation.
In general, approaches similar to noise reduction can be adopted for dereverberation.
An overview of binaural dereverberation algorithms can be found in Tsilfidis et al.
(2013). In the dereverberation algorithm proposed by Westermann et al. (2013), the
short-term IC is computed between the left and right HIs microphone signals. A non-
linear sigmoid mapping associates some gain values to the computed coherence. The
parameters of this mapping are updated online, based on the time-frequency behav-
ior of the IC. Ten listeners went through a subjective assessment of the processing,
which allowed to determine the best parameters and the optimal range of speaker-
to-listener distances for which the algorithm provides the best results. Marquardt
et al. (2013) and Braun et al. (2014) proposed an application of the BMWF including
the preservation of the IC of a stationary diffuse noise field (BMWF-IC) to process
dereverberation in binaural hearing devices. They considered a time-varying diffuse
sound field and resorted to a spherical model of the head to determine the optimal
Wiener filter. Schwartz et al. (2015) addressed the dereverberation by introducing a
recursive expectation-maximization algorithm. Their goal was to develop a derever-
beration method that offers a direct control of the trade-off between dereverberation
performance and ITF preservation, which they theoretically demonstrated. With the
implementation of a Kalman filter, their algorithm estimates the desired early signal
and the short-term room impulse responses modeled by an exponential decay.

2.5 Wide Dynamic-Range Compression

Most people with sensorineural hearing loss experience loudness recruitment, that
is, once the level of a sound exceeds the elevated absolute threshold, the loudness
grows more rapidly than normal with increasing sound level (Fowler, 1936; Moore
2007a, b). In general, the greater the hearing loss, the greater is the rate of the growth
of loudness (Miskolczy-Fodor, 1960). However, individual variabilities can be con-
siderable. Typically, HIs process sounds in 5–20 frequency channels, whereby the
bandwidth of the channels increaseswith increasing center frequency. In each of these
channels, a level-dependent gain is applied. To compensate for loudness recruitment,
the gain should decrease progressively with increasing input level, meaning that the
input-output function is compressive. This function is called wide dynamic-range
compression, WDRC (Killion 1979), and is widely used in HIs. WDRC may be
applied either independently in the left and right HIs (unlinked) or by using the same
compression settings on both sides (linked).

Wiggins and Seeber (2012) investigated the effect of unlinked fast-acting WDRC
on spatial perception. WDRC is known to reduce the range of ILD and introduces
undesired fluctuations of this cue when operating independently in both devices.
This yields conflicts between the (unaffected) ITD and the distorted ILD, which
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can impair sound localization. Eleven normal-hearing listeners took part in their
study and rated various spatial attributes. It was shown that unsynchronized WDRC
might increase diffuseness, create potential image splits, and reduce externaliza-
tion of sound sources. Schwartz and Shinn-Cunningham (2013) compared the effect
of independent and linked compressions on 39 normal-hearing subjects. With the
unlinked fast-acting compression, the listeners needed a higher spatial separation
between target and masker to maintain their spatial selective auditory attention than
with synchronized compression. This could be an indication that independent com-
pression might potentially demand a stronger listening effort in noisy situations.
However, this observation requires further investigations.

Korhonen et al. (2015) evaluated the effect of linked compression on the local-
ization performance of ten hearing-impaired listeners in the horizontal plane. In
this configuration, the gain at the two ears is set to the gain computed at the side
with the louder sound source. Although the linked compression was found to pre-
serve the ILD cues, its positive effect on the localization abilities of subjects was
rather small and not statistically significant. Hassager et al. (2017b) tested twelve
normal-hearing and twelve hearing-impaired listeners in an experiment where they
were asked to describe their spatial impression (position and width of sound images)
for three types of WDRC, namely, independent compression, linked compression,
and spatially ideal compression. In the latter case, the WDRC was applied first,
and then the stimuli were spatialized with a pair of head-related impulse response
(ideal configuration). It was found that both independent and linked fast-acting com-
pressions yielded wider sound images and could cause internalization and image
splits in both normal-hearing and hearing-impaired listeners. Only the ideal com-
pression preserved the spatial impression found with linear amplification. Measure-
ments of the ITD, ILD, the interaural coherence (IC), and direct-to-reverberant ratio
(DRR) indicated that IC and DRRwere distorted with the linked compression. These
results evidence that the preservation of the ILD with synchronized compression is
not sufficient to guarantee an accurate spatial perception. In a further publication,
Hassager et al. (2017a) proposed a compression scheme based on a binary classifier
that determines the time segments dominated by direct sound or by reverberation.
When direct sound is dominant, the linked compression is left unchanged, while
in areas dominated by reverberation, the gain model is linearized in order to avoid
excessive amplification of the sound reflections. This processing was shown to better
preserve the IC than conventional linked compression. Also, subjective ratings on 18
normal-hearing listeners indicated that the resulting spatial experience was similar
to the one obtained with linear amplification. More details about this approach can
be found in May et al. (2020), this volume.

2.6 Summary

Sections2.3–2.5 have shown that most of the DSP algorithms currently implemented
in HIs may take advantage of binaural extensions, in order to improve the spatial
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Table 3 Binaural DSP algorithms for HI applications

DSP features Studies Method Objectives

Dynamic-range
compression

Schwartz and
Shinn-Cunningham
(2013)

Linked Compression Improve spatial
perception and reduce
listening effort

Korhonen et al. (2015) Linked compression Improve sound
localization

Hassager et al. (2017a) Direct-sound driven
linked compression

Preserve spatial
perception

Noise reduction Yang et al. (2013) ITD, ILD, and
IC-based speech/noise
classifier

Improve speech
intelligibility and
reduce speech
distortion

Yousefian et al. (2014) IC-based gain
mapping

Improve speech
intelligibility

Hiruma et al. (2016) IC-based gain
mapping (wind noise
application)

Improve speech
intelligibility and
spatial perception

Dereverberation Westermann et al.
(2013)

IC-based gain
mapping

Improve speech
intelligibility

Braun et al. (2014) BMWF including IC
preservation of the
noise

Improve speech
intelligibility and
spatial perception

Schwartz et al. (2015) Expectation-
maximization method
Kalman filter
implementation

Improve speech
intelligibility and
spatial perception

experience and increase their beneficial effect. Table3 provides a summary of the
binaural realizations that have been reviewed for dynamic-range compression, noise
reduction, and dereverberation. A promising outcome is that many algorithms that
were previously known to increase solely the listening comfort may also be able to
significantly enhance speech understanding in complex acoustic environments.

3 Auditory-Environment Analysis

The analysis of the auditory environment surrounding the HI user is essential for the
optimal parametrization and steering of the DSP algorithms that were discussed in
Sect. 2. Here, an overview of methods for the analysis of the auditory environment is
provided. Section3.1 discusses standard approaches implemented in modern HIs for
the classification of the auditory scene. Section3.2 describes state-of-the art sound-
localization methods that take into advantage the wireless link between the left and
right hearing devices and, potentially, an additional remote microphone.
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3.1 Auditory Scene Classification

HIs contain a broad range of signal processing strategies designed to provide
good speech-intelligibility performance in different listening and acoustic condi-
tions. Algorithms such as noise reduction or acoustic feedback-management sys-
tems should be switched on and off or tuned accordingly to deal with different
listening situations—see Sect. 2. A classic example is when the HI user moves from
a quiet listening environment to a noisy restaurant. In the quiet condition, the micro-
phone characteristic could be omni-directional to allow the detection of sounds from
all directions, while in the noisy restaurant a directional microphone characteristic
would provide better speech intelligibility. Listening to music might require settings
different from those for listening to speech—and the optimal music settings might
even depend on the type of music. The monitoring of the acoustic environment can
also be used to tune the parameters of the compression and the amplification in real
time, as detailed in May et al. (2020), this volume.

In order to tackle the variation of the listening environments and to tune accord-
ingly the various algorithms, many modern HIs contain multiple scene-classification
“programs” to be set up for different listening situations. Current programs incor-
porated in many HIs are, for example, calm situation, speech in noise, speech in loud
noise, speech in car, music. These programs are customized for specific listening
environments. Switching from one to another causes alterations of the time constants
that control the speed of the compressor, the amplification and compression settings,
the noise-reduction parametrization or the beamforming settings. These programs
can be selected manually, such as by pressing a button on the device, or switched
from one to another automatically. The need for an automatic program selection is
evident, given the fact that many HIs users may be unsuccessful at changing the man-
ual programs appropriately (Ricketts et al. 2017). For this reason, some automatic
“environment-control” algorithms have been introduced into modern HIs. These
algorithms are based on the extraction of various acoustic features for classifying a
listening environment by comparing the observed values of the features with a pre-
stored map of values (Kates 1995; Nordqvist and Leijon 2004; Büchler et al. 2005).
Such systems have their roots in the early work of Bregman (1990).

In HI applications, typically supervised machine-learning approaches are
employed, where the system is trained using labeled examples of sounds from each
of target-sound class (Bishop 2006). In Fig. 4, a schematic block diagram of an
automatic classification algorithm is shown. During the development stage of such
algorithms, the system takes as an input audio recordings that are labeled according
to the class that they belong to, for example, speech in quiet, music, or speech in
noise. Then, several acoustic features are computed and acousticmodels are extracted
based on machine-learning approaches—such as hidden Markov models, maximum
likelihood, Bayesian estimators or neural networks. Typically, features like sound
level, spectral centroid, spectral flux, short-time energy, level differences across dif-
ferent frequency bands, or spectral shapes are used—see also Chap.4 in Popelka and
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Fig. 4 Schematic block diagram of an automatic classification algorithm for auditory environment
classification

Moore (2016). Based on these features, acoustic models are extracted for each class
and the auditory scene is classified accordingly.

3.2 Localization of Sound Sources

For many HI applications, it could be useful to know not only the class of the
auditory scene, for instance speech, in quiet, music, or speech in noise, but also the
position(s) of the sound source(s) relative to the listener. This allows for “smarter”
signal-processing and enhancement schemes, for example, for automatic adjustment
of the look direction of the beamformer towards the target source location.

In the last decades, a new research field termed computational auditory scene
analysis (CASA) has emerged that aims at reproducing the capabilities of the human
auditory systemwith machines on the basis of sensory input (Wang and Brown 2007;
Ellis et al. 2018). These methods aim at achieving human performance as regards
sound-source localization, recognition, and separation, by using one or two micro-
phone recordings of the acoustic scenes. Inspired by the robustness of the human audi-
tory system, several studies have incorporated stages of human auditory processing
to improve sound-source localization in adverse acoustic conditions (Bodden 1993;
Faller and Merimaa 2004; Wilson and Darrell 2005). A comprehensive overview of
CASA and its relevance for applications in the field of automatic speaker recognition
(ASR), speaker localization, and speech segregation can be found inWang andBrown
(2007) and Courtois et al. (2014). Some other examples of recently developed meth-
ods may be found in Merks et al. (2013), May et al. (2013), Courtois et al. (2015b)
and Anemüller and Kayser (2017). It is beyond the scope of this chapter to provide
an overview of all existing sound-source localization methods. The interested reader
is referred to the aforementioned studies—for a more general view on algorithms
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that rest on biological paradigms compare, for example, Blauert and Brown (2020),
this volume.

In this section, emphasis is put on recent methods that were developed and take
the limitations of HIs into account, such as constraints in terms of computational
capability andmemory. HI processors have towork at low clock rates tominimize the
power consumption and thus maximize the battery life. Additionally, the restrictions
become stronger since a considerable part of the computational capabilities of the
processor is already being used for the audio processing aiming to compensate for
hearing loss in an “environment-specific” way, as reported in Sect. 2. When it comes
to sound-source localization, another challenge is that such algorithms should act very
fast, that is, in a few milliseconds, and take account head movements and should be
able to recognize the auditory environment even when the sound sources are moving
in complex auditory scenes.

In the following, some examples of recently developed localization methods for
HIs are given. Braun et al. (2015) proposed an algorithm that relies on the online esti-
mation of the direct-sound-relative transfer function (RTF) between both HI micro-
phones. This estimate is compared to a database of reference RTFs, measured in
anechoic conditions, to find the azimuth angle of the present sound source. The
localization is performed in the full horizontal plane via the use of HIs having multi-
ple microphones. Courtois et al. (2015b) developed a binaural localization algorithm
that computes the short-term interaural phase differences (IPD) and compares them
with reference IPD values derived from a spherical model of the head for various
azimuths. The algorithm assumes the presence of an additional remote microphone
worn by the speaker. This configuration is typically encountered in the context of
FM systems. The IPD-based localization is combined with the calculation of the
ILD and the received-signal-strength-indication difference (RSSID), to determine
the position of the speaker in the frontal horizontal plane. The localization algorithm
of Farmani et al. (2015) is further based on the accessibility of a clean version of
the target signal, as delivered by a remote microphone. This clean signal enables
online estimation of the HRTFs at the microphones of a pair of binaural HIs. The
inferred DOA is found by looking for the most resembling associated (reference)
HRTF in a maximum-likelihood sense. A database of anechoic HRTFs is therefore
required. This procedure is repeated for each microphone of the HIs, which increases
the reliability of the algorithm results. Zohourian and Martin (2016) addressed the
topic of binaural localization by proposing aMMSE-based approach that uses a joint
ITD and ILD model. The current observations of the ITD and ILD are computed in
each time-frequency unit, and the DOA is the azimuth angle that minimizes the error
between the theoretical binaural-cue values and the observation. The localization
algorithm is then used to control an adaptive GSC beamformer.

The aforementioned methods are summarized in Table4. The approaches sug-
gested by Courtois et al. (2014) and Farmani et al. (2015) allow to avoid ear-to-ear
audio streaming, however they require an extra remote microphone. In this context,
the ability to localize the microphone wearer in real-time offers interesting possibil-
ities for more effective parametrization of the HI algorithm as discussed in Sect. 4.1.
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Table 4 Reported binaural localization algorithms for HIs. RTF: Relative Transfer Function;
RSSID: Received Signal Strength Indication Difference

Binaural localization algorithms

Authors Braun et al. (2015) Courtois et al.
(2015b)

Farmani et al.
(2015)

Zohourian and
Martin (2016)

Extracted
features

Direct sound RTF and
coherent-to-diffuse ratio

IPD, ILD, and
RSSID

HRTF ITD and ILD

Reference Anechoic RTFs Spherical
model of head

Anechoic
HRTFs

HRTF model

Extra
microphones

No Yes Yes No

Binaural
streaming

Yes No No Yes

3.3 Prognostication

In the future, the fast evolving CASAmethods could potentially serve as the basis for
the development of novel features for improving the performance of hearing devices.
Keeping in mind the continuous evolution of microelectronics with regard to, for
example, processing speed, memory capacity, sensors, and size (Mollick 2006). The
interest in approaches based on neural networks is growing for various HI function-
alities, such as sound-source localization (Ma et al. 2017) or noise and reverberation
reduction (May 2018). This, together with the continuous efforts to better under-
stand the importance of visual cues (Varghese et al. 2012; Moradi et al. 2017; Wu
and Bentler 2010), human cognitive functions in fields such as selective auditory
attention (Shinn-Cunningham and Best 2008) and the introduction of novel intelli-
gent sensors for tracking cognitive functions (Lorenz et al. 2017), could open up a
new era in the field of HI processing and performance.

4 Sensors in Hearing Instruments—Present and Future

In this section, an overview of the current trends with respect to sensors and HIs
is given. Most of the current HIs rely on a number of microphones placed on the
hearing devices to capture the acoustic signal. A typical pair of HIs consists of four
microphones, with two microphones on each side. However, several products exists
on the market that incorporate a higher or lower number of microphones. Remote
microphones are also often used in order to stream distant sound sources to the HIs.
Nowadays, microphones are the core sensors employed by the HIs to capture the
sound. The technology behind them is relatively mature, being able to eliminate
and overcome limitations of the past (Killion et al. 2016). Current microphones
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are robust and are available in extremely small packages, especially in the case of
micro-electrical-mechanical systems (MEMS) microphones.

In the future, more information about the acoustic environment might be retrieved
by the use of remote microphones that are placed in the same space as the listener,
such as microphones in laptops, mobile phones, TV sets and/or smart electronic
appliances. The already existing wireless connectivity technologies of HIs can be
employed for this purpose. This, together with audio-sharing networks will initiate a
new era in audio signal processing and recognition, potentially enabling smarter and
even more effective signal-processing schemes for the hearing impaired —but not
only for them. Apart from smarter signal-processing schemes as are continuously
evolving using additional microphones, information from other types of sensors may
be exploited. In the next sections, an overview of some potential sensor applications
is given.

4.1 Streaming Sound from Remote Sensors

Wireless systems are assistive listening devices that improve speech understanding
achieved by the use of HIs. They can be used in various listening conditions, such as
when the distance between the speaker and the listener is large, or when the hearing
aids cannot provide sufficient speech-intelligibility enhancement—for instance, due
to complex listening environments or severe hearing loss. The objective of wireless
systems is to transmit a speech signal as clean as possible, without the undesired
effects of noise and reverberation. The four major technologies driving assistive
listening devices are infrared, induction, frequency of digital modulation systems,
and Bluetooth (Staab 2013). In this section, two remote-microphone systems, known
as FM systems, or digital modulation (DM) systems, are mainly considered.

A typical remote-microphone system consists of a small transmitter microphone
that picks up the voice of a speaker, and sends the speech signal wirelessly to a RF
receiver plugged or integrated into the HIs of a listener. The principle is shown on
Fig. 5. The common use cases of such systems include classrooms, lecture halls, audi-
toria or restaurants (Staab 2013). The objective is to ensure a high-quality reproduc-
tion of the sound,whatever the distance between the speaker and the hearing-impaired
listeners is. With a pure acoustic transmission, the sound intensity diminishes when
the distance increases. The consequence is that both the SNR and DRR decrease—
see Fig. 5. Remote microphones systems pick up the voice of the speaker close to
their mouth, so that only the direct sound is recorded at a high SNR. Many studies
have shown a strong intelligibility enhancement obtained with these systems when
used with hearing aids (Hawkins 1984; Crandell and Smaldino 1999; Lewis et al.
2004; Thibodeau 2010; Schafer et al. 2013; Thibodeau 2014) or CIs (Wolfe et al.
2015; Vroegop et al. 2017).

Current remote-microphone systems provide a monophonic speech signal that is
delivered to both ears. Although this is useful for speech intelligibility, the downside
is that no spatial cues are reproduced. This may give rise to a feeling of isolation,
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Fig. 5 Typical application of a remote-microphone system in a classroom

and is also prejudicial for speaker identification, for instance, in a multi-talker sce-
nario with multiple remote microphones, or when the speaker is moving about in
the room. The lack of spatial information can be partially solved in a reproduction
mode where the clean transmitted speech is a mix of the monophonic clean speech
and the degraded signal from the HI microphone(s)—however, at the cost of lower
intelligibility (Thibodeau 2010).

The aforementioned issues may be solved with a different approach that consists
in localizing the speaker in real time, as reported in Sect. 3.2, and then reproducing
the transmitted speech after re-inserting the corresponding spatial cues (Courtois
et al. 2015a). Another approach could be to generate a suitable ILD between the
left and right streamed speech (Edwards 2016) and create a binaural signal using
HRTFs stored in the devices (Aldaz et al. 2015; Courtois et al. 2016; Pontoppidan
2017). The HRTFs can be estimated online by examining the correlation between
the remote microphone and the HI-microphone signals (Gran and Udesen 2017).
Further, the spatialization can be combined with artificial reverberation according
to the specific acoustical environment (Recker and Durant 2017)—thus generating
kind of an auditory virtual environment for the HI user. Courtois et al. (2018) report
a clinical study that assessed such a processing with 40 listeners. The results are in
support of the integration of such solutions in future remote-microphone systems.

4.2 Gyroscopes, Accelerometers and Eye Trackers

Using sensors like gyroscopes and accelerometers, the head movements of the HI
user can be tracked. Moreover, eye trackers based on electrooculography (EOG)
sensors or on electrodes placed in the ear canal (Favre-Félix et al. 2017) can be used
to detect where the listener is looking at. This information is useful for optimal tuning
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of the sound-cleaning algorithms, since the target and noise signals may be localized
more accurately (Boyd et al. 2013; Favre-Félix et al. 2018). Another aspect that could
be improved by the use of such sensors is the spatial perception of streamed sound
sources, which usually lack position information—compare Sect. 4.1. Furthermore,
accelerometers and eye trackers can help recognizing the sound sources that HI users
are currently attending to (Hadar et al. 1985; Tessendorf et al. 2011a) or to detect
the current activities of the user, such as reading, walking, running. In addition,
this information is useful for improving the parametrization of the algorithms and to
control the switching between the variousHI programs. By the use of accelerometers,
further information related to themedical condition of the usermay also get tracked—
such as fall detection (Bagala et al. 2012; Thammasat and Chaicharn 2012; Wu et al.
2015) and/or gait abnormalities (Yang et al. 2009), to the end of potentially activating
an emergency signal or triggering a real-time call for help.

4.3 Location-Detection (GPS) Sensors

Location-aware sensors, such as GPS sensors, may be also employed to capture user
locations in order to enhance the automatic hearing-program selection (Tessendorf
et al. 2011b). For example, the automatic-switching algorithm can consider whether
the users are listening to an open air concert or they are just walking in the park.
Personalized settings for specific environments may be remembered in this context.
The GPS signals can also be used for keeping track of the location of the hearing
instruments and prevent the loss of a device.

4.4 Electroencephalogram (EEG)

Capturing the users’ auditory selective attention helps to recognize their current
attended target. A practical problem in this context is that HIs do not know which
source the user wants to attend to at a specific time. There is evidence that brain activ-
ity and the corresponding evoked electrical responses change as a function of which
sound source the person is currently attending (Shinn-Cunningham and Best 2008;
Mandic et al. 2010; Mesgarani and Chang 2012). Fuglsang et al. (2017) suggested
that the tracking of an attended speech signal is performed in the cortex in a way that
is invariant to acoustic distortions encountered in real-life sound environments. Thus,
in theory, it should be possible to control the steering of the algorithms based on the
tracked brain activity. This could be potentially achieved using electroencephalogram
sensors placed in the ear canal (earEEG). EEGmethods may also be used for fatigue
monitoring, hearing-threshold detection or to monitor the physical condition of the
user, for instance, respiratory and cardiovascular activity or sleeping (Looney et al.
2014, 2016). There are currently various ongoing research activities to explore the
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feasibility of such approaches and of cognitively controlled HIs (Rodriguez-Villegas
et al. 2010; Looney et al. 2014; Bleichner and Debener 2017; Lorenz et al. 2017).

4.5 Further Sensors

Other sensors that could be potentially integrated in HIs could be ear-worn ballis-
tocardiogram sensors for monitoring the cardiac system’s condition or stress levels,
for example, by measuring heart rates and cardiac contractility (He et al. 2012).
Also, body-temperature, skin-conductance or blood-pressure sensors can provide
information on the health status of the user.

4.6 Prognostication

It is challenging to predict the future with respect to the sensor availability within
the applications of HIs. A list of potential sensor types and their application is given
in Table5. The information from additional sensors can enhance the processing per-
formance of the instruments and could, potentially, allow for further functionality

Table 5 Sensor types and potential future applications

Sensor types Potential applications

Gyroscope/accelerometer HI user hearing wish detection

Noise source localization

Fall detection/gait abnormalities

Automatic program selection

Eye-tracker Target sound source detection

GPS sensor Automatic program selection

Lost device detection

Retrieval of personalized settings

Electroencephalogram
(EEG)

Intention

Auditory attention

Fatigue monitoring

Hearing threshold detection

Health condition monitoring

Heart-rate sensor Stress

Health condition monitoring

Temperature sensor Health condition monitoring
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related to the physical or the medical condition of the user, thus complementing the
devices with health-monitoring applications (Tessendorf et al. 2013).

5 Conclusion

This chapter provided an overview of the current trends and challenges in the field
of HI applications. It is evident that HIs of today have become intelligent systems,
which offer processing strategies that are tailored to the individual patient and to
specific environments. For this purpose, current HI algorithmic approaches have to
take cognitive aspects into account, such as the listener intention, auditory attention,
and the cognitive load. By appropriate parametrization and combined activation of
existing hearing systems it is tried to deliver a sound that does not contradict the
aforementioned cognitive functions. There are continuous research efforts going
on to amend the knowledge base necessary for achieving optimal system settings,
tailored to the current listening tasks of the HI users.

In fact, over the last years, there has been a growing interest within the research
community in cognitive aspects related to hearing impairment and auditory attention.
For instance, there are many efforts in trying to better understand the cognitive mech-
anisms of auditory perception and speech understanding. Moreover, technological
advances related to wearables and the miniaturization of sensors will allow future
HIs to be connected to the Internet and to other electronic devices. This progress will
include the use of additional sensors, such as support microphones, accelerometers,
head-trackers, pulse-rate meters, and EEG. Deeper knowledge in cognitive mecha-
nisms and the additional information obtained from additional sensors will lead to
improved parametrization of the signal-processing algorithms. Also, novel biologi-
cally inspired algorithms will, hopefully, be exploited for a further improvement of
the daily-life situations of hearing-impaired people.
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Scene-Aware Dynamic-Range
Compression in Hearing Aids

Tobias May, Borys Kowalewski and Torsten Dau

Abstract Wide dynamic-range compression (WDRC) is one of the essential build-
ing blocks in hearing aids and aims at improving audibility whilemaintaining accept-
able loudness at high sound pressure levels for hearing-impaired (HI) listeners.While
fast-acting compression with a short release time allows amplifying low-intensity
speech sounds on short time scales corresponding to syllables or phonemes, such pro-
cessing also typically amplifies noise components in speech gaps. The latter reduces
the output signal-to-noise ratio (SNR) and disrupts the acoustic properties of the
background noise. Moreover, the use of fast-acting compression distorts auditory
cues involved in the spatial perception of sounds in rooms by amplifying low-level
reverberant energy portions of the sound relative to the direct sound. Some of these
shortcomings can be avoided by choosing a longer release time, but such a slow-
acting compression system fails to amplify soft speech components on short time
scales and compromises on the ability to restore loudness perception. This chapter
investigates the benefit of a new scene-aware dynamic-range compression strategy,
which attempts to combine the advantages of both fast- and slow-acting compression.
Specifically, the release time of the compressor is adaptively changed to provide fast-
and slow-acting compression depending on whether the target was present or absent.
The benefit of this scene-aware compression strategy was evaluated instrumentally
in acoustic scenarios where speech and noise were present simultaneously. More-
over, a subjective listening test was conducted to assess the impact of scene-aware
compression on reverberant speech signals by measuring the perceived location and
spatial distribution of virtualized speech in normal-hearing (NH) listeners.
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1 Introduction

Awell-functioning cochlea acts like a frequency-selective, level-dependent amplifier.
The passive mechanical tuning is enhanced due to the action of the outer hair cells
(Robles and Ruggero 2001). As the stimulus intensity decreases, the outer hair cells
provide increasing gain. This means that each region of the basilar membrane of the
cochlea elicits a nonlinear compressive input/output function (Oxenham and Bacon
2004). Sensorineural hearing loss is in many cases associated with an impairment of
this active cochlear mechanism due to, e.g., exposure to noise, the use of ototoxic
drugs, aging, or a disease (Kramer 2008). As a consequence, hearing loss inevitably
leads to an incomplete, distorted internal representation of the sound (Lopez-Poveda
2014). HI listeners often have difficulties with speech recognition, especially in noisy
or reverberant conditions or when many talkers are involved. Even with hearing-
aid amplification, they might not achieve the same performance as NH listeners
(Souza 2016). Spatial (or directional) hearing abilities may also become impaired
in listeners with a hearing loss, which may further contribute to their poor speech
recognition performance in adverse conditions (e.g., Noble et al. 1995, 1997;Keidser
et al. 2006). Age-related central processing deficits and cognitive impairments may
also contribute to poor speech intelligibility performance. Nevertheless, impairments
stemming from the auditory periphery are often considered a primary source of the
difficulties experienced by HI listeners (Humes 2002).

Modern hearing aids provide a range of signal-processing algorithms, such as
directional filtering (beamforming), noise reduction, and dynamic-range compres-
sion (see, e.g.,Dillon 2008). The purpose of such hearing-aid algorithms is to improve
speech intelligibility and listening comfort (Neher et al. 2014). However, since the
primary consequence of a hearing loss is reduced audibility, amplification represents
the most basic function of a hearing instrument (Souza et al. 2007). Early hearing
aids were usually linear and provided constant gain independently of the input signal
level. Since the individual sensitivity of hearing typically varies across frequency, the
amount of gain would be adjusted individually for several frequency channels. How-
ever, the elevation of the threshold in quiet does not correlate with an equal increase
of the uncomfortable level (UCL; Dillon and Storey 1998). As a result, many HI
listeners’ experience loudness recruitment and a reduced dynamic range of levels.
To ensure a comfortable loudness perception of amplified speech, the gain profile as
a function of frequency does not “mirror” the audiogram. In fact, most linear ratio-
nales prescribe a gain of 0.5 dB (or below) per 1 dB of hearing loss, reflecting the
so-called half-gain rule (see Dillon 2008, for a review). Linear amplification would
represent a compromise between audibility and loudness comfort (Villchur 1973;
Edwards 2004). Therefore, nonlinear, level-dependent circuits have been proposed
to avoid excessive loudness and compensate for the limited dynamic range (Villchur
1973; Barfod 1978; Kuk 1996; Souza 2002; Moore 2008). WDRC systems typi-
cally do that by providing a constant gain for input signals below a predefined level,
known as the compression threshold (CT), and by reducing the gain for signal com-
ponents above the CT. Such processing allows reducing the output dynamic range
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on short time scales corresponding to syllables or phonemes, thus “squeezing” the
speech information through the informational “bottleneck” created by the impaired
auditory system (Kuk 1996).

It is widely accepted that compression can provide increased audibility of soft
sound components while maintaining comfortable loudness (Kates 2010; Holube
et al. 2016). This requires a level detection circuit that can follow fast level fluctu-
ations in the input signal in several frequency channels, which justifies the use of
multi-channel compression with short attack and release times. Such an approach,
however, might also lead to distortions of the spectral and temporal envelopes of
speech. Moreover, as demonstrated by Naylor and Johannesson (2009) and Has-
sager et al. (2017b), the fast gain fluctuations can cyclically amplify the background
noise and/or reverberation, decreasing the SNR and the direct-to-reverberant energy
ratio (DRR). Bilateral compression, operating independently in each ear, may also
introduce unnatural fluctuations of the interaural level differences (ILDs) as shown
by Musa-Shufani et al. (2006) and others. These types of distortions can severely
disrupt the spatial perception of an acoustic scene. To avoid such compression-
induced distortions, less aggressive parameters, such as longer time constants or
lower compression ratios (CRs) could be used, but this effectively linearizes the sys-
tem. Slow-acting compression can still adjust the long-term signal level to achieve
desirable loudness, but it cannot follow fluctuations on time scales corresponding to
phonemes or syllables.

Instead of using WDRC with a fixed set of parameters, it has been suggested that
compression parameters should be adjusted dynamically depending on the current
acoustic scenario (Gatehouse et al. 2006a; Souza et al. 2012a). Moreover, due to the
dynamic nature of real-world signals, where the SNR can vary substantially across
time, such adjustments should probably be made on relatively short time scales.
Several adaptive compression strategies have been proposed that adjust the time
constants according to changes in the input level or based on the current dynamic
range (Killion et al. 1992; Lai et al. 2013). Moreover, based on the results from
Hassager et al. (2017b), it seems beneficial to adjust the time constants depending
on the estimated short-term SNR or the DRR in a manner similar to noise reduction
and de-reverberation systems currently implemented in hearing aids.

This chapter provides an overview of state-of-the-art WDRC systems for hearing
aid applications. First, the main building blocks of a conventional WDRC system are
reviewed in Sect. 2. Then, the perceptual consequences of different WDRC system
configurations are discussed in Sect. 3. Motivated by the limitations of a fixed set
of WDRC parameters, the concept of scene-aware dynamic-range compression is
presented in Sect. 4, where the characteristics of the compressor are adjusted in
individual time-frequency (T-F) units depending on the presence of the target signal.
Section 5 provides an overview of perceptually-relevant instrumental metrics, which
can be used to evaluate the effects of WDRC processing on the speech signal and the
background. In Sect. 6, two application scenarios of scene-aware compression are
presented. First, a monaural SNR-aware WDRC system is described and evaluated
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in a speech-in-noise scenario using a set of instrumental metrics. Second, results
of a spatial-perception experiment are presented, in which a binaural DRR-aware
compressor is compared to a conventional WDRC system using speech signals in a
reverberant environment. Finally, the chapter is summarized in Sect. 7.

2 Dynamic-Range Compression

The major building blocks of a conventional WDRC system are shown in Fig. 1.
The input signal is typically analyzed by a short-time discrete Fourier transform
(STFT). Afterwards, a filterbank can be applied to group the individual discrete
Fourier transform (DFT) bins into a predefined number of frequency channels, in
which the short-term level is subsequently estimated. Based on this level estima-
tion, a frequency-specific gain function is computed. Then, the channel-specific gain
function is interpolated to individual DFT bins and applied to the STFT represen-
tation of the input signal. Finally, the processed output signal is reconstructed from
the modified STFT representation by applying an inverse short-time discrete Fourier
transform (ISTFT). All individual building blocks are described in the following
subsections.

2.1 STFT Analysis

The input signal is divided into successive, overlapping segments. Each segment
is then weighted by an analysis window and zero-padded to a length that typically
corresponds to a next-higher power of two. Afterwards, the DFT is computed for
each frame, producing the STFT representation of the input signal (Allen 1977). A
short window duration between 8 and 16ms with 50 or 75% overlap is typically
used to avoid a clearly audible delay, which would be disturbing (Stone and Moore
1999, 2002).

Level 
estimation dB Gain Inter-

polationFilterbank lin

STFT ISTFT

Fig. 1 Block diagram of a conventional WDRC system consisting of two processing layers: (1)
analysis and synthesis stage based on the STFT and (2) dynamic range compression in individual
frequency channels
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2.2 Filterbank

Compression is more effective when operating in independent, narrow frequency
channels (Henning and Bentler 2008; Naylor and Johannesson 2009). Moreover,
frequency-dependent compression allows to better accommodate the variation of the
hearing thresholds and the residual dynamic range across frequency in individual
listeners and provides better speech audibility (Kuk 1996; Souza and Turner 1998;
Souza 2002; Dillon 2008). Commercially-available hearing aids often offer up to 20
processing channels (Souza 2002; Cox et al. 2016). However, Woods et al. (2006)
demonstrated that four channels are usually sufficient to obtain a good fit to the
gain prescription targets. Woods et al. also suggested that considering the speech
intelligibility index (SII), no more than five compression channels are necessary for
a mild-to-moderate hearing loss and no more than nine channels for a more severe
impairment. Studies of Yund and Buckles (1995b) and Alexander and Masterson
(2014) suggested eight as an optimal number of channels for speech intelligibility,
regardless of the SNR and the release time of the compressor. Further increasing the
resolution of the filterbank seems to disrupt the spectral contrast of speech, which
can be detrimental to speech intelligibility (De Gennaro et al. 1986; Bustamante and
Braida 1987; Souza et al. 2005; Bor et al. 2008; Holube et al. 2016) and sound quality
(van Buuren et al. 1999).

The STFT representation of the signal is used to create a number of frequency
channels. This can be achieved by grouping the individual DFT bins and, option-
ally, by applying different weights to the bins within one group, in order to achieve
a desired filter shape and bandwidth. In the example shown in Fig. 2 and in the
experiments discussed in Sect. 6, the DFT bins are grouped together to create rect-
angular, octave-wide filters. An overview of alternative filterbanks with emphasis on
low-delay implementations can be found in Kates (2005).

2.3 Level Estimation

The gain function of a WDRC system depends on the estimated level of the signal at
the input to the system. To avoid rapid fluctuations of the gain function across time,
typically some form of smoothing is applied. To achieve this, the short-term level
which is estimated for each frame is usually smoothed across time by a first-order
infinite impulse response (IIR) low-pass filterwith different time constants associated
with the attack and the release (Kates 1993). Alternatively, an instantaneous level
estimator could be used and the smoothing with different attack and release time
constants could be applied after the gain calculation stage (Giannoulis et al. 2012).
The nominal time constants of the smoothing filter are usually referred to as the RC
time constants. More often, however, effective time constants are reported, measured
in response to a well-defined test signal of varying level. One such measurement
procedure is described in the ANSI S3.22-1996 standard.
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Fig. 2 Illustration of themain building blocks of aWDRC system: Input signal and level estimation
for a frequency channel centered at 1 kHz using a 5ms attack time and either a fast (40ms) or a slow
(2000ms) release time (top left), static input/output function with a compression ratio of CR = 3
along with a make-up gain of M = 10 dB and a compression threshold of CT = 40 dB (top right),
gain and respective output signal of a fast-acting compressor (bottom left), gain and respective
output signal of a slow-acting compressor (bottom right)

To ensure that the compressor is able to respond to sudden level increases, a fast
attack time between 1 and 5ms is typically used while the choice of the release
time determines whether the resulting system provides fast-acting (<200 ms) or
slow-acting (>200 ms) WDRC compression (Souza 2002, time constants defined
according to the ANSI standard). The influence of the release time on the level
estimation is illustrated in Fig. 2, where a simplified WDRC system with channel-
independent CTs and CRs was used. The perceptual effects of fast- and slow-acting
WDRC are discussed in detail in Sect. 3.
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2.4 Gain Calculation

In the gain calculation stage, a broken-stick gain function is typically used to map the
estimated input level in decibels in individual frequency channels to a corresponding
output level in decibels. As illustrated in the top right panel of Fig. 2, this mapping
provides linear amplification for low-level inputs below the CT. This linear gain will
be referred to as make-up gain M . Above the CT, this gain is reduced according to
a constant CR. The CR and the make-up gain depend on the individual listener’s
audiogram and are usually determined by a nonlinear gain prescription rule, such as
NAL-NL1/NL2 (Dillon 1999; Keidser et al. 2011), CAM2 (Moore and Sek 2013)
or DSL [i/o] (Scollie et al. 2005). These prescription rules are typically optimized
for speech intelligibility, using a metric such as the SII (ANSI S3.5 1997), while
attempting to restore normal loudness perception and not exceeding the listener’s
uncomfortable level (UCL) at a given frequency. The CT for each frequency channel
can be derived by averaging the short-term levels across time that were estimated
in response to stationary speech-shaped noise at a predefined overall sound pressure
level (SPL), typically around 40–50 dB SPL. However, even lower thresholds can be
encountered in commercial hearing aids (Souza 2002).

2.5 Interpolation

The linear gain that was calculated for individual frequency channels has to be inter-
polated fromchannel center frequencies toDFTbin frequencies. Such amapping can,
for example, be accomplished by employing a piecewise cubic interpolation (Has-
sager et al. 2017a; May et al. 2018). The interpolated gain function can be applied
subsequently to the STFT representation of the input signal. Ensuring that the fre-
quency response of the compressor changes smoothly across frequency helps to avoid
aliasing artifacts (Kates 2005).

2.6 STFT Synthesis

The output signal of the modified STFT representation can be obtained by applying
the ISTFT. After calculating the inverse discrete Fourier transform (IDFT) for each
frame, a synthesis window is usually applied to reduce discontinuities at the frame
boundaries which can occur due to the application of the gain function. Afterward,
the time domain signal can be reconstructed by the overlap-add (OLA)method (Allen
1977). A raised cosine window is typically used as a synthesis window (Grimm et al.
2006; Strelcyk et al. 2012).
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2.7 Illustration of WDRC

The processing of a conventional WDRC system is illustrated in Fig. 2 for the first
segment of the TIMIT sentence: “Materials: ceramic modeling clay ...”. TheWDRC
system used a window duration of 10ms with 75% overlap and operated in seven
octave-wide frequency channels with center frequencies spaced between 125Hz and
8 kHz. The input signal is shown in the top left panel of Fig. 2 along with estimated
levels for a frequency channel centered at 1 kHz using the frame-based energy and
a first-order low-pass filter with an attack time of 5ms and either a short (40ms) or
a long (2000ms) release time. As illustrated in the top right panel, the CT was set to
40 dBSPL and aCRof 3:1was used for all seven frequency channels.Given these fast
and slow level estimates, the resulting gain functions, excluding the make-up gain of
M = 10 dB are shown in the bottom left and right panels, along with the processed
output signals at the bottom. It can be seen that the contrast between the peaks and
valleys is substantially reduced when a short release time is used, because the level
estimate can quickly follow the decrease in the level of the input signal. In contrast,
the long release time does not detect soft signal components on a short time scale
and only follows the overall signal level. As a consequence, the contrast between soft
and loud signal components is not changed, which can lead to under-amplification
of low-intensity sounds.

3 Perceptual Effects of Compression

3.1 Audibility

Good speech reception in quiet seems to mainly rely on audibility (French and Stein-
berg 1947; Fletcher and Galt 1950; Kryter 1962a, b; Pavlovic and Studebaker 1984).
Therefore, limited audibility is a crucial factor contributing to speech recognition
problems in HI listeners (Souza and Turner 1999; Sherbecoe and Studebaker 2003;
Edwards 2004; Souza et al. 2007; Humes and Dubno 2010). It has been proposed that
dynamic range compression can provide an improvement over linear amplification
in terms of audibility of short, low-energy speech components without compromis-
ing loudness comfort (Stelmachowicz et al. 1995; Hickson and Byrne 1997; Souza
and Turner 1998; Jenstad and Souza 2005; Alexander and Rallapalli 2017). This, in
turn, should translate to an improvement in recognition performance in quiet (Souza
et al. 2007). This claim has been supported by results from, e.g., Souza and Turner
(1998, 1999) and Davies-Venn et al. (2009), who demonstrated superior audibility
due to compression that translated to improved speech recognition performance in
HI listeners when the input level of speech was moderate.

In acoustic scenarios with background noise present, speech audibility also
appears to be an important contributor to speech recognition. Several studies have
compared the performance of HI listeners to NH listeners for whom the hearing loss
was simulated by the addition of background noise, resulting in similar audibility.
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For example, Zurek and Delhorne (1987) concluded that the loss of audibility is “the
primary source of difficulty in listening in noise for listeners with moderate or milder
hearing impairments”. Furthermore, the results from Desloge et al. (2010) suggest
that impaired audibility accounts for the reduced release frommasking in fluctuating
noise experienced by HI listeners. Similarly, spatial release from masking (SRM)
seems to depend strongly on stimulus audibility (Best et al. 2017) and appropri-
ate compensation leads to an improved SRM in HI listeners (Rana and Buchholz
2018). Yet, the relationship between audibility and speech intelligibility of WDRC-
amplified speech in noise remains uncertain. It depends on many factors, some of
which might also vary with time (Souza et al. 2007). These include: the SNR, tem-
poral characteristics of the noise (e.g., modulation rate and depth, the presence of
temporal dips in the noise waveform and their duration), as well as the compression
time constants. It has been suggested that the effects of compression would be most
prominent in backgrounds that elicit strong fluctuations of the temporal envelope. In
such situations, glimpses of the signal can be observed in the temporal dips of the
noise. If the system is fast-acting, the applied gain closely follows the fluctuations
of the noise, providing increased amplification to the speech glimpses (Gatehouse
et al. 2003; Edwards 2004). This effect has been demonstrated, e.g., by Moore et al.
(1999) and more recently by Desloge et al. (2017) and Kowalewski et al. (2018).
Also, other studies suggested that compression using a short release time and a rel-
atively large number of channels increases the audibility of speech in noise (Moore
2008; Kates 2010; Alexander and Masterson 2014). In contrast, if the compression
is too slow, the gain might lag behind the fluctuations in the input signal, resulting
in an underamplification of certain speech components (Jerlvall and Lindblad 1978;
Stone and Moore 1992; Verschuure et al. 1996; Kuk 1996).

3.2 Distortions of the Temporal Envelope

While fast-acting, level-dependent amplification can improve short-term audibility,
such processing also changes the internal dynamics of the signal. This includes the
reduction in the natural spectral and temporal contrasts (Van Tasell 1993; Gatehouse
et al. 2006b), which provides cues for correct speech recognition. The temporal enve-
lope carries important speech information, such as voicing, manner, and prosody
(Rosen 1992; Souza and Turner 1996; Davies-Venn and Souza 2014). Preserving
the temporal modulation depth, and more specifically, the modulation spectra, has
been suggested to be crucial for speech recognition (Plomp 1988; Gallun and Souza
2008; Jørgensen and Dau 2011; Zaar and Dau 2016; Alexander and Rallapalli 2017).
Plomp (1988) hypothesized that fast-acting compression diminishes the modulation
transfer function, leading to reduced intelligibility scores. Results of numerous stud-
ies suggest that altering temporal cues may have more pronounced consequences for
speech perception of HI compared to NH listeners (Boothroyd et al. 1988; Plomp
1988; Souza and Turner 1996, 1998; van Buuren et al. 1999; Souza and Turner 1999;
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Souza and Kitch 2001; Stone and Moore 2003; Souza et al. 2005; Davies-Venn et al.
2009; Souza et al. 2012a, b; Davies-Venn and Souza 2014).

Jenstad and Souza (2005, 2007) and Walaszek (2008) found that temporal enve-
lope fidelity was reduced when using compression with a shorter release time, a
higher CR, or a combination of both. This, in turn, led to a decrease in speech recog-
nition performance. In a series of studies, Stone andMoore (2003, 2004, 2007, 2008)
showed that multi-channel fast-acting compression not only reduces the modulation
depth but also decreases the coherence of modulations across frequency within the
speech signal. Moreover, when speech and background noise are processed together
in a compressor, they acquire common modulation components which might hinder
the target-background separation. Stone andMoore demonstrated that the alterations
of the natural temporal structure of the signal mentioned above decrease speech intel-
ligibility. Furthermore, Souza and Gallun (2010) showed that recognition errors of
WDRC-amplified consonants could, to a large extent, be accounted for by an alter-
ation of the modulation spectrum of speech, as measured by the spectral correlation
index.

The optimal audibility-distortion trade-off remains a topic of ongoing discussion.
Villchur (1989) argued that while the reduction in modulation depth does indeed
occur with fast-acting compression, the concurrent improvement in audibility may
be more important for speech perception in HI listeners than the disrupted temporal
cues.On the other hand, Souza et al. (2012a) pointed out that the improvement in audi-
bility was a necessary but not sufficient condition for improved speech recognition
of WDRC-processed speech. According to Souza et al., the benefit of compression
would be observed only if the natural fluctuations of the temporal envelope are pre-
served. They also suggested that no single recommendation for compression settings
should bemade. Instead for a given listener and set of acoustic conditions, one should
seek a “balance point” where the audibility-distortion trade-off is optimal. Recently,
Alexander and Rallapalli (2017) studied the effects of linear amplification, slow-
and fast-acting compression on HI listeners’ recognition of fricatives in quiet. They
also used various instrumental outcome measures to quantify the effects of com-
pression on the speech dynamic range, audibility, and modulation transfer function.
They found that, overall, the fast-acting systems led to an increase in audibility and a
decrease of themodulation transfer function. Slow-acting systems, on the other hand,
elicited nearly linear behavior and, hence, produced much less detrimental effects
on amplitude modulations, at the expense of poorer audibility.

The presence of reverberationmight have a complementary effect on the distortion
introduced byWDRC. Shi andDoherty (2008) investigated the joint effects of ampli-
fication and reverberation on speech recognition and perceived clarity. They consid-
ered speech in different reverberation conditions (without noise interferer), combined
with linear amplification versus slow- and fast-acting compression. Increasing the
reverberation time had a detrimental effect on speech recognition and clarity.WDRC
had an overall positive effect on recognition of speech in reverberation, regardless of
the compression release time. Slow-, rather than fast-acting compression, however,
was rated better for speech clarity. Reinhart et al. (2016) observed that both rever-
beration and compression distort the temporal envelope. Similarly to the study of
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Shi and Doherty (2008), both increasing the amount of reverberation and decreasing
the compression release time were detrimental to aided speech recognition. The two
effects seem to be additive, as no interaction was observed between compression
speed and the amount of reverberation.

3.3 Effects of Compression on the SNR

When a speech-in-noise mixture at a positive SNR is processed by a fast-acting
compressor, the target signal components become underamplified in relation to the
noise, effectively reducing the long-term, broadband SNR at the output (Yund et al.
1987). In contrast, speech components that occur in temporal dips of the noise, or
in frequency channels with relatively little noise power, receive a higher gain (rela-
tive to the noise) leading to an improvement in the broadband SNR. For speech and
noise components falling into the same processing channels, the instantaneous sub-
band SNR is not affected by WDRC. The effects discussed in this section are linked
to changes in the long-term broadband SNR, unless explicitly stated otherwise. It
has been hypothesized by Hagerman and Olofsson (2004) that if speech and the
interfering noise have similar spectro-temporal properties, fast-acting compression
would reduce the output SNR at positive input SNRs, and improve the output SNR at
negative input SNRs, with a “pivotal point” at 0 dB SNR. Furthermore, if the back-
ground noise deviates from speech-like spectro-temporal properties, the relationship
should remain, but the “pivotal point” would change. An SNR reduction of up to
4 dB was observed in the study of Souza et al. (2006) over a range of input SNRs
from −2 to 10 dB. A greater reduction was observed with single-channel rather than
two-channel compression. This effect coincided with a deterioration of the tempo-
ral envelope fidelity. Naylor and Johannesson (2009) and Rhebergen et al. (2009)
conducted systematic studies of the effects of compression parameters on the out-
put SNR and confirmed the previous findings regarding the phenomenon of “SNR
compression”. It was also shown that the effect is most prominent for high CRs and
short release time constants.

The perceptual consequences of the reduction in SNR due to compression have
been studied, e.g., by Souza et al. (2007). It was found that the conditions resulting
in an SNR reduction also led to a decrease in speech intelligibility. More recently,
Alexander and Masterson (2014) investigated the effects of the compression release
time and the number of channels on speech recognition aswell as instrumentalmetrics
of output SNR and envelope fidelity. The compression release time interacted with
the number of channels in such a way that fewer channels were favorable in a faster
compressor, and vice versa. WDRC was found to lead to a reduction of the SNR and
more aggressive parameters resulted in a greater reduction, which also coincided
with a decreased envelope fidelity. This is in line with studies of Rhebergen et al.
(2017) and Desloge et al. (2017). Rhebergen et al. (2017) investigated the acoustical
and perceptual effects of conventional WDRC and showed that the output SNR is a
reasonably good predictor of the compression benefit for speech in noise. If the output
SNR is reduced at the output of the compressor, speech recognition performance will
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also decrease. Desloge et al. (2017) proposed a novel energy equalizing (EEQ) signal
processing scheme similar to fast-acting compression, which attempts to equalize
the power of the signal calculated in short time windows to the estimated long-
term power. In fluctuating backgrounds, the system has been shown to enhance the
short-term SNR. This SNR enhancement was linked to an improvement in consonant
recognition and sentence reception thresholds in HI listeners.

3.4 Binaural Compression

As described above, WDRC affects the variations in signal level across time and
frequency, which can constitute important cues for speech intelligibility. Apart from
these monaural cues, level differences across the two ears (ILDs; Middlebrooks and
Green 1991) are utilized for the localization of sounds, while the interaural coherence
(IC) and the DRR constitute important cues for certain aspects of spatial perception,
such as apparent source width and externalization (Catic et al. 2013; Hassager et al.
2017b). Compression amplification applied independently to the two ear signals can
reduce the natural ILDs, potentially affecting sound source localization (Byrne and
Noble 1998). Since hearing-aid users’ localization abilities are often already affected
by hearing loss, it is important to develop compensation strategies that preserve the
binaural cues. Keidser et al. (2006) studied the effect of independent binauralWDRC
on interaural cues and localizationof virtualized sound sources in anechoic conditions
in HI listeners. Compression led to a substantial distortion of the ILDs. However, this
distortion did not significantly affect listeners’ localization of sound sources in the
horizontal plane. It is possible that experienced hearing-aid users are able to adapt to
the modified spatial cues provided by the hearing-aid processing. On the other hand,
Musa-Shufani et al. (2006) showed considerable perceptual consequences of ILD
compression for both NH and HI listeners. Compression was found to increase the
just noticeable differences (JNDs) of the ILD and to affect the lateralization of high-
frequency stimuli. Musa-Shufani et al. reported that the perceived source location
was much closer to the mid-line when listening through a binaural WDRC system
as compared to a linear reference condition. Similar effects of WDRC in anechoic
conditions were reported by Wiggins and Seeber (2011). An increase in apparent
source width thereby accompanied the shift in the apparent source position, percep-
tion of motion and auditory image splits. Moreover, in a follow-up study (Wiggins
and Seeber 2012), the binaurally-compressed stimuli were rated as more diffuse—
as opposed to “more focused” with respect to location—and poorly externalized.
It has been hypothesized that these effects occur due to relatively slow temporal
fluctuations of the ILDs introduced by independent WDRC processing.

To minimize ILD distortion, it has been proposed to link the two compressors.
In such a system, the same gain would be applied to the left- and the right-ear sig-
nal, removing the ILD fluctuations. A wireless binaural link has already become
an industry-standard in state-of-the-art hearing aids and, compared to conventional
systems, has been shown to reduce localization errors (Sockalingam et al. 2009).
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Moreover, improvements in other outcome measures, such as the rating of natural-
ness (Sockalingamet al. 2009) or speech intelligibility in relatively spatially-complex
scenarios (Kreisman et al. 2010) suggest that the distortions of the spatial scene were
decreased with binaurally-linked compression. On the other hand, it has been shown
by Hassager et al. (2017b) that certain aspects of spatial perception are still dis-
rupted by WDRC processing despite applying a binaural link. Hassager et al. tested
how different types of binaural WDRC affected the abilities of NH and HI listeners
to externalize and localize virtualized sound sources in a reverberant environment.
They considered four conditions: (i) unprocessed (linear), (ii) independent (unlinked)
compression (iii) linked compression and (iv) “ideal” processing, in which the dry
signalwas compressed prior to convolving itwith the binaural room impulse response
(BRIR). Both independent and linked binaural compression led to reduced source
compactness, an increased diffuseness, image splits and, in some cases, a loss of
externalization, as compared to the unprocessed condition. This was due to compres-
sion that affects the natural relationship between the direct sound and the reverberant
tail. The DRR was decreased by compression, which affected the IC, an important
cue for sound externalization (Catic et al. 2013, 2015). Compressing the dry signal
maintained the natural DRR and helped to alleviate most of the spatial distortions.

3.5 Towards Scene-Aware Compression

Studies by Yund et al. (1987), Yund and Buckles (1995a), Hornsby and Ricketts
(2001), and Rhebergen et al. (2017) reported that the relative speech-intelligibility
benefits of different degrees of compression compared to linear amplification depend
on factors like the overall input level and the broadband SNR. These results suggest
that amplification parameters (e.g., CRs and time constants) should not be chosen
with a “one size fits all” concept. Rather, the acoustic scenario should be carefully
considered. For example, in a modeling study, Kates (2010) investigated the effects
of the number of processing channels and the release time on predicted speech
intelligibility and quality. At higher input levels, longer release times resulted in
higher intelligibility predictions. At lower intensities, the predicted intelligibility
was better in the case of compression than in the case of linear amplification and the
effect of the release time was weaker. Based on these results, Kates suggested that
compression settings should be adapted according to the listening conditions. Similar
ideas were provided by Gatehouse et al. (2003, 2006a), who used the term auditory
ecology to describe the entirety of conditions that the listeners might encounter and
to which the hearing-aid should adapt to.

The signal processing chain ofWDRC presented in Sect. 2 is a specific realization
of an automatic regulation system, as proposed by Barfod (1978). In his early work
on hearing-aid compression, Barfod suggested that such a system could be schemat-
ically broken down into several stages, in which signal parameters are measured,
the control signal is computed and finally applied to the incoming signal. Barfod
acknowledged that the computation stage could follow a simple static rule, as is the
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Fig. 3 Application of scene-aware processing, where the target signal is processed with fast-acting
compression while the processing of interfering noise (left panel) and room reverberation (middle
panel) is effectively linearized via longer time constants

case for conventional WDRC, but the proposed system structure could be a foun-
dation of more complex realizations, in which compression parameters are adjusted
in real-time according to some characteristics of the signal. Such adaptive solutions
have already become part of commercial hearing aids. They usually adapt the time
constants according to the changes in the overall signal level. Examples include
the K-AMP (Killion et al. 1992), the dual-front-end automatic gain control (Moore
and Glasberg 1988; Stone et al. 1999) and, more recently, the guided level esti-
mator (Neumann 2008), which has been successfully implemented in a commercial
product (Simonsen andBehrens 2009).Moreover, Lai et al. (2013) proposed an adap-
tiveWDRC system that adjusted the CR in individual frequency channels depending
on the estimated short-term dynamic range. These systems, however, are only sensi-
tive to changes in the overall signal level but do not utilize information related to the
presence of the target signal versus the background noise, for example, as reflected
by the short-term SNR.

4 Scene-Aware Compression Strategies

As discussed in the previous section, fast-acting WDRC can improve short-term
audibility of speech but can also negatively affect the temporal envelope of the signal,
introduce undesired across-signal modulations, decrease the output SNR as well as
the DRR and introduce ILD fluctuations, thus disrupting spatial cues. Therefore it
seems desirable to dynamically change the compression parameters depending on
short-term characteristics of the input signal.

Themain idea of scene-aware dynamic range compression is to adjust key param-
eters of the WDRC system for a given environment by extracting knowledge about
the target signal from the acoustic input. It goes beyond automated program selection
(i.e., based on acoustic scene classification), because it utilizes short-term estimates
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Fig. 4 SNR-aware dynamic range compression consisting of three layers: (1) STFT-based analysis
and synthesis stage, (2) short-term SNR estimation and (3) dynamic range compression

reflecting target activity. As illustrated in Fig. 3, the target is assumed to be a speaker,
which could be distracted by interfering noise or room reverberation. Thus, the detec-
tion of speech activity depends on the acoustic scenario and can be either based on the
short-term signal-to-noise ratio (SNR) or the short-term direct-to-reverberant energy
ratio (DRR) in different frequency channels. Given an estimation of speech activity,
the general idea is to adjust the release time of the compressor for each individual
T-F unit. Specifically, fast-acting compression with a short release time is applied
to speech-dominated T-F units while the processing of interfering noise or room
reverberation is effectively linearized by a longer release time. This target-specific
adaptation of the WDRC system aims at combining the advantages of both fast-
and slow-acting compression by maximizing the audibility of the target signal while
avoiding the majority of artifacts and distortion related to the interference.

In the following, the concept of scene-aware WDRC is applied to two different
acoustic scenarios, where the target signal is either processed in the presence of
noise or room reverberation. Accordingly, two different estimators for detecting the
presence of the target signal are presented, leading to SNR-aware and DRR-aware
WDRC systems (May et al. 2018; Hassager et al. 2017a).

4.1 SNR-Aware Dynamic Range Compression

The main building blocks of the SNR-aware WDRC system are illustrated in Fig. 4.
Compared to a conventionalWDRCsystemas shown inFig. 1, theSNR-aware system
contains an additional acoustic scene analysis (ASA) layer in which the short-term
SNR is estimated for each frequency channel. This short-term SNR is then used
to select a short release time of 40ms for speech-dominated T-F units, while the
processing of noise-dominated T-F units is effectively linearized by using a longer
release time of 2000ms.

Short-Term SNR Estimation

Given the STFT representation of the noisy speech signal, the speech power spectral
density (PSD) in each individual DFT bin is first obtained using the minimummean-
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Fig. 5 Speech mixed with ICRA-1 noise at 6 dB SNR (top panel) along with the estimated speech
activity and gain functions (excluding the make-up gain M) of four compression systems (fast-
acting, slow-acting, SNR-aware and ideal SNR-aware compression) for a frequency channel cen-
tered at 2 kHz. The lower two panels show the output of the fast-acting and the SNR-aware com-
pressor, respectively

square error (MMSE) estimator proposed by Erkelens et al. (2007). This MMSE
estimator requires knowledge about the noise PSD which is estimated with the noise
tracking algorithm proposed by Hendriks et al. (2010). Afterwards, both the PSDs
of the noisy speech and the clean speech are passed through the same filterbank
employed in the dynamic range compression layer and are subsequently used to
estimate the short-term SNR in individual frequency channels (Eaton et al. 2013;
May et al. 2017). Finally, the estimated short-term SNR is compared to a predefined
threshold in order to detect speech-dominated T-F units (May et al. 2018).

Illustration of SNR-Aware Processing

The principle of SNR-aware dynamic range compression is demonstrated in Fig. 5
for a speech signalmixedwith the stationary speech-shaped ICRA-1 noise (Dreschler
et al. 2001) at an SNR of 6 dB. Based on the noisy speech signal, the corresponding
gain functions of four different approaches are shown for a frequency channel cen-
tered at 2 kHz. Conventional fast-acting compression displays fast gain fluctuations.
As the level estimator is driven mostly by the speech signal, the gain increases during
speech pauses leading to elevation of noise glimpses. This effect can be avoided by
using a long release time. However, in such a slow-acting WDRC system, the gain
changes slowly and remains relatively low over the entire duration of the stimulus
(linearized processing), which might lead to under-amplification of speech compo-
nents. The SNR-aware system adaptively switches between fast and slow processing
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Fig. 6 DRR-aware dynamic range compression consisting of three layers: (1) STFT-based analysis
and synthesis stage, (2) short-term DRR estimation and (3) dynamic range compression with a
binaural link between both ear signals

depending on the estimated speech activity. Thus, in speech-active time segments,
the SNR-aware system can follow rapid intensity changes due to the short release
time, while the use of a longer release time for noise-dominated time segments effec-
tively linearizes the processing, which avoids rapid fluctuations in the gain function
in response to noise-only segments.

4.2 DRR-Aware Dynamic-Range Compression

The block diagramof theDRR-awareWDRCsystem is shown in Fig. 6. Similar to the
SNR-aware system, information about the presence of the target signal is extracted
in the ASA layer. Specifically, a monaural variance-based estimator is used to detect
T-F units that are dominated by the direct sound. This classification is subsequently
used to selectively apply fast-acting compression to T-F units dominated by the
direct sound,while reverberation-dominatedT-F units are processedwith slow-acting
compression. Although the gains were computed independently for the left and the
right ear signals, the final gain was linked by taking the minima of the left and right
gain values to preserve the natural ILDs.
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Short-Term DRR Estimation

The input signal is passed through a bank of seven octave-spaced band-pass filters
that matched the frequency resolution of the dynamic range compression layer. Then,
a variance-based feature was computed across short time windows of 10-ms duration
with 75% overlap (Hazrati et al. 2013). The rationale behind this monaural estimator
proposed byHazrati et al. (2013) is that the variance-based feature is higher for signal
components dominated by the direct sound and reduces if the signal is dominated by
reverberation. An adaptive threshold is used to incorporate some temporal context
and to ensure that the decision threshold is adjusted to the overall feature level in a
given acoustic condition. This was found to be important when dealing with different
rooms and sound sources directions. More details concerning the detection of direct-
sound components can be found in Hassager et al. (2017a).

5 Instrumental Metrics

A wide range of instrumental metrics have been proposed to analyze the acoustical
signal at the output of compression systems. Many of them are good predictors
of recognition of compressed speech or the perceived sound quality. Some of the
perceptually-relevant metrics are discussed below.

5.1 Separation of Speech and Noise Components

In order to compute objective metrics, such as the SNR at the output of a compres-
sion system, special techniques are required to separate the influence of the signal-
dependent and time-varying gain function on the speech and the noise components.

The phase-inversion technique proposed by Hagerman and Olofsson (2004) is
probably themost widely-used approach. In thismethod, twomixtures are generated,
with identical target speech but noise in positive and negative polarity. Afterwards,
both mixtures are processed by the nonlinear system and the speech- and noise-alone
signals can be estimated by adding or subtracting both processed mixtures. This
technique assumes that the nonlinear terms introduced by the system are negligible.
However, it was shown by Rhebergen (2006) and Rhebergen et al. (2008) that this
assumption is often invalid, leading to estimation errors. Nonetheless, the phase
inversion technique is still the only available solution if the systemunder investigation
is a “black box”.

Alternatively, if details about the gain function are available, one can employ a
technique known as shadow filtering (Gustafsson et al. 1996; Fredelake et al. 2012).
This technique has been successfully utilized, for example, by Rhebergen et al.
(2009), Kowalewski et al. (2018) and May et al. (2018). The general principle of
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Fig. 7 Principle of shadow filtering: The gain function of the compressor is estimated based on the
noisy speech signal and then applied separately to the clean speech, the noise, and the noisy speech
signals

shadow filtering is illustrated in Fig. 7, where the signal-dependent gain function of
the compressor is estimated based on the noisy speech signal. In order to investigate
the impact on speech and noise components, the same gain function can be applied
separately to the speech and the noise signals. This method will be used in Sect. 6.1
to analyze how a set of objective metrics reflect changes in speech, noise, and noisy
speech before and after processing.

5.2 Broadband Input/Output SNR Analysis

Asmentioned in Sect. 3.3, the long-term output SNR is a valuable metric for predict-
ing intelligibility ofWDRC-processed speech (Rhebergen et al. 2009). Depending on
the characteristics of the speech and the interferer as well as their relative input levels,
compression can either increase or decrease the output SNR (Souza et al. 2006; Nay-
lor and Johannesson 2009). To investigate these effects, noisy speech mixtures can
be generated and processed at various input SNRs and shadow-filtering can be used
to calculate the long-term SNR before and after processing. An example of such an
“input/output” function is shown in Fig. 10 for four different compression systems.

5.3 Effective Compression Ratio

The degree towhich compression affects the distribution of the short-term signal level
depends on many factors beyond the nominal CR. These include the compression
time constants as well as the characteristics of the input signal, such as the amount of
background fluctuations and the input SNR. The effective compression ratio (ECR)
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Fig. 8 Contours of effective compression ratios (ECRs) for the fast-acting (first row), slow-acting
(second row), SNR-aware (third row), and ideal SNR-aware compressors (fourth row) as a function
of the input SNR and the channel center frequency. Results were averaged across all four noise types,
which are described in Sect. 6.1. The left, middle, and right columns show results for shadow-filtered
speech, shadow-filtered noise, and noisy speech

can be defined as the ratio of the dynamic range at the input and the output of a
WDRC system (Souza et al. 2006; Croghan et al. 2014). Previous literature focused
on the dynamic range analysis of compressed speech in quiet. Hence, the upper
limit used to define the dynamic range was typically based on the 98th or the 99th
percentile of the short-term level distribution, while the lower limit could be as low
as the 5th percentile. However, when considering noisy speech, it might be possible
that HI listeners are not able to utilize such low dips in the signal. Therefore, the
dynamic range (and the resulting ECRs) can alternatively be defined as the difference
between the 99th and the 50th percentiles. This analysis can be performed in different
frequency bands and across a wide range of input and output SNRs. With the use of
shadow-filtering, the effective compression of speech and noise components can be
studied in isolation, as shown in Fig. 8.

5.4 Modulation-Spectrum Analysis

As mentioned in Sect. 3.2, preserving the modulation spectrum of speech is impor-
tant for speech recognition. Moreover, introducing additional modulations of the
background could lead to an overall decrease in the SNR—affecting both quality
and intelligibility. It is therefore valuable to analyze the effects ofWDRC processing



Scene-Aware Dynamic-Range Compression in Hearing Aids 783

Fig. 9 Relative change in the modulation spectrum (ΔMS) due to fast-acting (first row), slow-
acting (second row), SNR-aware (third row), and ideal SNR-aware compressors (fourth row) as a
function of the modulation frequency and input SNR. Results were averaged across all four noise
types, which are described in Sect. 6.1. The black dashed line indicates the zero line while the left,
middle, and right columns show results for shadow-filtered speech, shadow-filtered noise, and noisy
speech

Fig. 10 Input/output SNR
of four different WDRC
systems (fast-acting,
slow-acting, SNR-aware and
ideal SNR-aware
compression) and a linear
reference. Results were
averaged across all four
noise types, which are
described in Sect. 6.1
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Fig. 11 ΔSNRenv metric in dB for the fast-acting (top left), slow-acting (top right), SNR-aware
(bottom left) and ideal SNR-aware compressor (bottom right) as a function of the peripheral and the
modulation center frequency. Results were averaged across all four noise types, which are described
in Sect. 6.1

on the modulation spectra of the compressed speech, the noise and the noisy speech
mixture. They can be obtained with the aid of shadow-filtering, by computing the
DFT of the Hilbert envelope of each signal and relating the root mean square (RMS)
in octave-spaced modulation-frequency bands to the DC component of the envelope,
ranging from 1 to 32Hz (Dreschler et al. 2001). The relative change in the mod-
ulation spectrum due to compression (ΔMS) can be calculated by comparing the
modulation spectrum before and after processing. Examples of ΔMS patterns are
shown in Fig. 9.

5.5 SNR in the Envelope Domain

Changes in the modulation spectrum of speech and noise may affect the broadband
SNR as well as the SNR in the envelope domain, as discussed in Sect. 3.2. Ewert and
Dau (2000) proposed a model which accounts for modulation detection and masking
data using the ratio of target-to-masker power at the output of a modulation filterbank
(SNRenv). Themetric has been successfully used to predict speech recognition perfor-
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mance ofNH listeners in a variety of processing conditions, including the influence of
background noise, the presence of reverberation, spectral subtraction and phase jitter
that modified the modulation content of the stimuli (Jørgensen and Dau 2011; Jør-
gensen et al. 2013). The calculation of the SNRenv requires a priori knowledge of the
speech and noise signals. Both signals are processed through a bank of peripheral fil-
ters. Then, the Hilbert envelope is extracted in each peripheral channel and processed
by amodulation filterbank. The ratio of the envelope power of the signal and the noise
at the output of each modulation filter is calculated, yielding the SNRenv. The effects
of compression can be evaluated by computing a difference in the SNRenv between the
processed and unprocessed signals. Examples ofΔSNRenv across peripheral channel
frequencies and modulation channel frequencies are shown in Fig. 11.

5.6 Analysis of Spatial Cues

Hassager et al. (2017b) proposed a set of instrumental metrics to analyze the effect
of compression on spatial perception in a reverberant environment. These metrics
included the ILD distribution, the IC, and the DRR. The distribution of the ILDs was
calculated in auditory subbands by analyzing the input signal with a gammatone fil-
terbank. The envelopes of the filterbank outputs were segmented using a rectangular
window of 20-ms duration with 50% overlap. The power in each window was con-
verted to decibels (dB SPL), and the differences between the left- and right-ear levels
were then used to compute an ILD histogram. The IC was computed in each sub-
band using the normalized cross-correlation between the left- and right-ear signals,
considering lag values, τ , between −1 and 1ms. The maximum absolute value of
the cross-correlation was found across the lag value dimension, τ , and subsequently
used to create an IC histogram. Finally, the DRR was calculated in the frequency
domain. The direct part was defined as the part of the signal occurring prior to the
first reflection (2.5ms in case of Hassager et al. 2017b) and the later part was treated
as reverberation. The PSDs of the direct and reverberant parts were normalized by
the power of the corresponding dry signal. Subsequently, a ratio of the normalized
PSDs was converted to decibels.

Measuring the shift in the ILD distribution can be used to predict potentially
disruptive effects of WDRC on sound-source localization abilities, as discussed in
Sect. 3.4. Moreover, if substantial changes in the DRR and the IC are observed, this
can be indicative of potential distortions of spatial perception, such as the increase in
apparent source width, the occurrence of image splits or the loss of externalization.



786 T. May et al.

6 Results Obtained with Scene-Aware Compression
Systems

In this section, results from two studies on scene-aware dynamic range compression
are summarized. May et al. (2018) conducted an instrumental evaluation of con-
ventional fast-acting, slow-acting and SNR-aware compression. This evaluation is
presented in Sect. 6.1 and includes the analysis of ECRs, changes in the modula-
tion spectrum and the input/output SNR as described in Sect. 5. Moreover, Hassager
et al. (2017a) evaluated the spatial perception of NH listeners with conventional
fast-acting, slow-acting, and DRR-aware compression. In Sect. 6.2, the listeners’
responses in terms of the perceived source position and apparent source width are
presented.

6.1 Speech in Noise

Stimuli

Noisy speech sampled at a rate of 16 kHzwas created bymixing clean speech from the
Danish hearing in noise test (HINT) corpus with four different types of background
noise at seven broadband input SNRs: −6, −3, 0, 3, 6, 9 and 12 dB. The following
noise types were considered: the stationary ICRA-1 noise and the non-stationary
ICRA-7 noise based on a six-talker babble (Dreschler et al. 2001), as well as car
noise and factory noise from the NOISEX database (Varga and Steeneken 1993).
Following Naylor and Johannesson (2009), all noise types were spectrally matched
to the long-term average spectrum of the Danish HINT corpus.

Compression Parameters

The CTs of seven octave-wide frequency channels were calibrated using a stationary
noise that was spectrally matched to the long-term average spectrum of the HINT
speechmaterial. The nominal CRs and themake-up gainwere derived from theNAL-
NL2 (Keidser et al. 2011) gain prescription for the N4 standard audiogram (sloping,
moderate-to-severe hearing loss following Bisgaard et al. (2010)) using the settings
slow and unilateral. All parameters are summarized in Table 1. The nominal attack
time was set to 5ms in all cases while the fast-acting and slow-acting compressors
used nominal release times of 40 and 2000ms. As explained in Sect. 4.1, the SNR-
aware approach used an estimation of the short-term SNR to switch between fast- and
slow-acting compression depending on whether individual T-F units were dominated
by speech (high SNR) or background noise (low SNR). The ideal SNR-aware system
used the a priori SNR, which was calculated from the individual speech and noise
signals.
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Results

Figure 8 shows the ECRs obtained with conventional fast-acting (first row), slow-
acting (second row), SNR-aware (third row) and ideal SNR-aware compression
(fourth row). The ECRs based on the shadow-filtered speech, shadow-filtered noise
and the noisy speech mixture, are shown in the left, middle, and right columns,
respectively. Within each panel, the ECRs are shown as a function of frequency
and input SNR. Overall, the ECRs were significantly lower than the nominal ratios
shown in Table 1. However, the highest compression ratios were still observed in
the high-frequency channels, reflecting the frequency-dependent characteristic of
the ratios prescribed by the NAL-NL2 procedure. The ECRs for the shadow-filtered
speech obtained with the conventional fast-acting system ranged from 1.1 to 1.6. The
noise signal was less compressed than speech, with the highest ECR of 1.3 occurring
in the low-frequency channels. In the higher frequency channels, the noise became
effectively expanded, as the computed ratios were below 1.0. The ECRs obtained
for speech with slow-acting compression were close to 1.0, regardless of the input
SNR and frequency. The noise was also not compressed, with ratios smaller or equal
to 1.0. The contour plots for the speech processed with SNR-aware and ideal SNR-
aware systems were very similar to each other, with ECRs ranging from 1.1 to 1.4.
Small amounts of compression were observed in the noise signal (ECRs up to 1.1),
but again in most channels, the effective ratios were smaller or equal to 1.0.

Figure 9 shows the relative change in themodulation spectrum (ΔMS, seeSect. 5.4
formore details) for the different signals and processing types.Within each panel, the
ΔMS values are plotted as a function of the modulation frequency and color coded
according to the input SNR. Negative values indicate a reduction, while positive
values indicate an increase in the modulation depth. All processing types led to some
degree of reduction of speech modulations, at least for the modulation frequencies
from 0.5 to 16Hz. The amount of reduction increased (more negative ΔMS) with
increasing SNR. The noise modulation depth was also decreased at smaller SNRs
but as the SNR became larger, an enhancement was observed. Conventional fast-
acting compression led to a maximum reduction of speech modulations of around
0.15 at the SNR of 12 dB. At the same time, noise modulations were enhanced
with ΔMS up to 0.15 centered around a prominent 4-Hz peak. The changes in the
modulation spectrum introduced by the conventional slow-acting compression were
much smaller inmagnitude. The values ofΔMS for the shadow-filtered speech signal
were between 0 and−0.075 and were less dependent on the input SNR. For the noise

Table 1 Compression thresholds (CTs) in decibels, nominal compression ratios (CRs) andmake-up
gain M in decibels for individual channel center frequencies used by the SNR-aware compression
system

Channel center frequency (Hz)

125 250 500 1000 2000 4000 8000

CT (dB) 43 43 41 41 37 31 28

CR 2.2:1 2.2:1 2.2:1 3.0:1 3.5:1 3.3:1 2.5:1

M (dB) 22.1 22.1 24.4 34.5 39.4 43.5 42.5
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signal, the increase in ΔMS did not exceed 0.075, and the pattern was overall flatter
than for fast-acting compression. The two SNR-aware systems exhibited similar
ΔMS-patterns. The patterns of modulation-depth reduction for speech resembled
those observed with the conventional fast-acting system, but smaller in magnitude
(the maximum reduction lied between 0.075 and 0.15). The patterns for noise, on the
other hand, more closely resembled slow-acting compression, with an enhancement
that did not exceed the value of 0.075 and a lack of a prominent peak.

The input/output SNR functions for each system are shown in Fig. 10 (see Sect. 5.2
for more details). The dashed line indicates the linear reference. All compression
systems led to a varying degree of SNR reduction, which became more pronounced
at higher input SNRs. The greatest amount of SNR reduction, up to 4.8 dB, was
observed for the conventional fast-acting compression. The slow-acting system was
much closer to linear, with the reduction of the SNR not exceeding 2 dB. Both SNR-
aware systems introduced a similar amount of reduction, which did not exceed 3 dB.

Figure 11 shows the relative change in the SNRenv metric in dB before and after
processing (see Sect. 5.5 for more details) as a function of the peripheral and mod-
ulation center frequency for the four different compression systems. A reduction
in the SNRenv was observed for all four systems. The greatest amount of reduction
was introduced by fast-acting compression, with up to 25 dB in the peripheral chan-
nels above 1000Hz and for low modulation frequencies. Slow-acting compression
led to a less drastic change in the SNRenv. The maximum reduction was 20 dB but
this occurred only around 6000 to 8000Hz and in the lowest modulation filter. The
ΔSNRenv metric of both SNR-aware systems elicited similar patterns and the amount
of SNR reduction was much more similar to the one obtained with the slow-acting
system.

6.2 Speech in a Reverberant Environment

Stimuli

Clean speech from the Danish HINT corpus was sampled at a rate of 48 kHz and
convolved with BRIRs. Individual BRIRs for each listener were measured using
a maximum length sequence (MLS) signal played from the loudspeaker at 300◦
azimuth (equivalent to 60◦ to the right with respect to the frontal direction, see
Fig. 12) and recorded using two DPA high sensitivity microphones placed at the
ear-canal entrances.

Compression Parameters

The compression system operated in seven octave-wide frequency channels with
center frequencies spaced between 125 and 8000Hz. The nominal CRs ranged from
3.4 to 4.0. The attack and release times were 10 and 60ms in the fast mode and
both 2000ms in the slow mode (time constants defined according to ANSI S3.22-
1996). As discussed in Sect. 4.2, the DRR-aware WDRC system switched between
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Fig. 12 Listeners’ responses for the four tested compression systems: linear (top left), fast-
acting (top right), DRR-aware (bottom left) and ideal DRR-aware compression (bottom right).
The response of each listener is indicated as a transparent filled circle with a center and width
corresponding to the associated perceived sound image. The main sound images are shown by the
different colors while image splits are indicated in gray

fast- and slow-acting compression depending on whether individual T-F units were
dominated by the direct sound (high DRR) or room reverberation (low DRR). The
ideal DRR-aware system used a priori information about the BRIRs to detect direct
sound activity.

Listeners and Experimental Setup

Eighteen NH listeners aged between 19 and 35 years participated in the study. The
experiment took place in a reverberant listening room designed in accordance with
the IEC 60268-13 (1985) standard. The reverberation time T30 was approximately
500ms, representing a typical living room environment. The listeners were seated
in a chair equipped with a headrest and a response touchscreen. Twelve Dynaudio
BM6 loudspeakers surrounded the listening position in a circular arrangement with
a radius of 150 cm. A graphical representation of the loudspeaker arrangement was
displayed on the touchscreen. The NH listeners were asked to place circles on the
screen, according to the perceived position and width of the sound sources. Multiple
circles could be positioned, in case of image splits were perceived. The test sound
was always presented from the loudspeaker at 300◦ azimuth (equivalent to 60◦ to the
right with respect to the frontal direction, see Fig. 12).
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Results

The graphical representations of the listeners’ responses are shown in Fig. 12. All
responses are overlaid in each panel. The circles indicate the position and width of
the perceived sources, while gray circles indicate image splits. The top left panel
shows the responses in the linear (unprocessed) condition. The perceived sources
were externalized, correctly localized and relatively compact, with no image splits.
The right top panel shows the responses obtained with conventional binaurally-
linked fast-acting compression. For several listeners, the perception of the source
position deviated from the target.Many image splitswere reported, and some listeners
perceived internalized sources moving between the ears. The apparent source width
was also far greater than it was the case in the linear condition. The responses for
the linked ideal DRR-aware system based on a priori knowledge are shown in the
bottom right panel. There were still a few cases of incorrect localization. However,
compared to the conventional fast-acting compression system, the perceived sources
were much more compact, and there were no image splits. The response pattern for
the linked DRR-aware system (bottom left panel) was similar, but a limited number
of image splits were reported.

7 Discussion and Conclusion

This chapter provided an overview of hearing-aid compression strategies. A novel
scene-aware dynamic range compression strategy was presented that adjusts the
release time of the compressor depending on short-term estimates reflecting target
activity. The proposed strategy aims at combining the advantages of both fast- and
slow-acting compression and has been evaluated for two acoustic scenarios reflecting
speech in noise and speech in a reverberant environment. TheSNR-aware strategy has
been evaluated in terms of instrumental metrics and compared to conventional fast-
and slow-acting compression. Consistent with previous studies (e.g., Alexander and
Rallapalli 2017), it has been demonstrated that fast-acting compression introduces a
relatively high effective compression of the speech signal. However, at the same time,
it significantly reduces the speech modulation depth and introduces modulations to
the background noise. This effect is most pronounced at high input SNRs, where
fluctuations of the speech-signal envelope drive the compression gain. The peaks of
the speech signal become flattened while the compressor gain rapidly increases in
the pauses, cyclically amplifying portions of the noise. This results in a pronounced
reduction in the energetic, broadband SNR, as well as in the SNR in the envelope
domain (SNRenv). The reduction of the broadband SNR may be linked to decreased
speech audibility and recognition, as suggested by recent studies of Rhebergen et al.
(2017) and Alexander and Rallapalli (2017). The decreased SNRenv might indicate
that speech envelope cues are degraded and that the target and the background attain
common components in the modulation domain after applying fast-acting compres-
sion. This makes them perceptually more similar and more difficult to separate.
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Moreover, fast-acting compression may lead to a sensation of “pumping” and an
increased perceived noisiness (e.g., Kuk 1996; Neuman et al. 1998; Kates and Are-
hart 2014).

The use of slow-acting compression helps avoid most of those distortions. As
seen in Fig. 8, slow-acting compression behaves almost linearly in terms of the
input/output SNR. It also does not cause drastic changes in the modulation spectrum
(ΔMS) of speech and noise and introduces only a minimal reduction of the SNRenv.
However, the ECRs obtained with slow-acting compression are close to 1.0, which
indicates that the system behaves essentially linearly, i.e., it does not provide com-
pression of the speech target and is, therefore, less effective in restoring audibility.

The proposed SNR-aware compression strategy has similar effects on the speech
signal as the conventional fast-acting system in terms of ECR and ΔMS. The reduc-
tion of the speech modulation depth is unavoidable if an effective compression of
the signal is desired. However, the SNR-aware system minimizes the interaction
between speech and noise within the compressor, improving the noise modulation
fidelity and providing better broadband SNR and SNRenv compared to the conven-
tional fast-acting strategy. The perceptual effect of the SNR-aware systems are yet
to be evaluated. The potential perceptual assessment would include not only speech
intelligibility, but also aspects related to sound quality and cognitive effort.

In terms of spatial perception, conventional fast-acting compression has been
shown to introduce substantial distortions of the acoustic scene. Even though the
use of a binaural link avoided the ILD fluctuations, the fast gain fluctuations led to
a disruption of the DRR, which resulted in a loss of externalization, image splits,
and an increased apparent source width. The DRR-aware compression system seems
to avoid most of the spatial distortions introduced by conventional fast-acting com-
pression. It improves listeners’ spatial perception, which was evaluated in aided NH
listeners. It is likely that the improvements in the spatial fidelity will not only improve
the perceived quality of the acoustic scene, but that theymay also enable better source
separation. This, in turn, might be manifested in improved intelligibility of speech
in noise and a lower cognitive effort required for speech understanding.

The accuracy of the SNR and DRR estimators could be improved by the use of
supervised-learning techniques, which have been utilized, for example, byWang and
Chen (2018) andMay (2018). Using a joint estimator—e.g., such as the one proposed
by Kuklasiński et al. (2016)—the DRR-aware and SNR-aware approaches could
be combined and applied in complex scenarios where both background noise and
room reverberation are present simultaneously. However, many challenging acous-
tical scenarios involve speech-on-speech masking. In such conditions, conventional
SNR-based estimators would likely fail to reliably detect the presence of the target
speaker, rendering SNR-aware compression impractical. In such conditions, spatial
cues could be exploited to identify individual T-F units dominated by the target. Then,
similar principles as employed by the SNR-aware system could be applied, namely
fast-acting compression of the target and linearization of the interfering sources. For
example, the spatial separation of sound sources could be exploited by using adap-
tive spatial filtering (Doclo et al. 2015) or robust spatial localization techniques (May
et al. 2013; Ma et al. 2017). Thanks to the recent technological developments, such
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spatial filters could be additionally driven by eye-gaze (Favre-Félix et al. 2017) or
attention (Wong et al. 2018). These developments open new possibilities for target-
aware compression.
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A
Absolute category rating (ACR), 403
Absorption

effective surface area, 259
total, 259, 278

Abstraction, 206, 209, 213–215
Accuracy, 64, 81, 83
Acoustic τ , 640
Acoustic reverberation, 462
Acoustics, 397
Acoustic scene, 33
Active inference, 119
Active listening, 365, 666, 677, 691
Active noise cancellation or control (anc),

356, 358
Activity map binaural, 265
Adaptation, 159, 203, 205, 207, 209, 214,

218
binaural, 206
restart, 206

Aesthetics
awareness, 456
musical, 456
of recorded sounds, 455

Affective cognition, 384, 666
Afferent (ascending), 4
Agent

multimodal, 6
robotic, 98

Age-related effect, 77, 79, 83
Aibo, Sony, 383
Akaike’s criterion, 310
Algorithmic music, 384
AlloSphere, 353

Ambisonics, 233, 360, 376, 384, 440, 581
energy vector, 607
higher-order (HOA), 581, 585, 586, 588–
590, 593–595, 599, 601, 608, 611–613

near-field-compensated higher-order
(NFC-HOA), 581, 596, 608, 611

velocity vector, 607
American Bureau of Standards, 438
Amplification, 376, 378

linear, 764
nonlinenar, 764

Amplitude-to-rate-code conversion, 10
AmpMe, 383
Anatomical transfer function (ATF), 364,

368, 371, 384
Anechoic, 74, 80, 83, 739, 748, 749
Anechoic orchestra recordings, 189
Anyware, 380
Apparent source width (ASW), 138, 612,

774, 790
Applications, 654
Arousal, 458
Arousal-Valence plane, 469
Arrangement, 397
Artificial intelligence (ai), 382, 383
Asimo, Honda, 383
ASMR. See autonomous sensory meridian

response (ASMR)
Assistive technology, 356, 383, 667
Association model, 600, 601
Association module, 493
Attend, 377–380
Attention, 17, 409, 418, 419, 424, 570
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elicitation, 406
focus of, 493
focusing of, 18

Attentional selection, 54
Attention reorienting, 698–700, 708
Attention switch, 64, 67–69, 83

intentional , 73
paradigm, 65, 66
involuntary , 64

Attenuation, 374–376, 378, 385
Attribute elicitation, 407
Audio definition model (ADM), 385
Audio engineering, 458
Audiophile, 465
Audio steganography, 383
Audio windowing, 351, 352, 376, 381
Audiovisual localisation, 291
Audiovisual object, 699, 701, 710–714, 719,

720, 725
Auditory

front-end, 496
maps, 50
objects, 33

Auditory adaptation, 633, 646, 654
HRTF, 633
localization, 633
room acoustics, 633, 635, 642, 644

Auditory cortex (AC), 133, 161, 479, 700,
705

Auditory cues
dynamic, 637, 639
spectral, 639

Auditory display, 666
3D, 667, 676, 692
dynamic, 692

Auditory effects, 629
Auditory illusion, 582, 584, 591, 600, 603,

609, 615
drone effect, 605
octave illusion, 603
scale illusion, 605
spatial (SAI), 582, 584, 606, 610, 613–
615

Auditory information processing, 64
Auditory localization, 596, 607, 608, 611
Auditory modeling, 217

binaural, 212
Auditory nerve (AN), 129
Auditory object, 116
Auditory perception, 638, 639, 644, 654
Auditory periphery, 272
Auditory scene, 692, 745, 747, 748

analysis (ASA), 34, 92, 119, 161, 377,
408, 418, 491, 582, 600, 602, 605

analysis, computational (CASA), 34
analysis, computational (CASA), 492,
493

Auditory scene presentation, 455
Auditory scene reproduction

head-related, 458
room-related, 458
stereophonic, 459
surround, 459

Auditory selective attention, 62, 64, 71, 74,
81, 83

Auditory source width (ASW), 354, 355
Auditory stream, 116

segregation, 492
Audium, 353
Augmented acoustic reality, 655
Augmented reality (AR), 358, 361, 382, 654
Auralization, 175, 229, 381
Auro-3D, 385
Authentic reproduction, 624
Authenticity, 70, 71, 614
Autocorrelation, 268
Auto-correlogram analysis, 48
Autofocus, 379, 380
Automatic speech recognition (ASR), 512,

518
basic principles, 518
deep learning approaches, 521
feature extraction, 518
hidden Markov models, 519
impact of additive noise, 512
impact of reverberation, 512
technology, 512

Autonomous sensory meridian response
(ASMR), 375

Average variance extracted (AVE), 445
Avoidance

behavior, 689
collision, 689

B
Background noise, 398, 734, 741
Bassiness, 441
Bayesian

estimation, 325
inference theory, 326
method, 93
model, 326
network, 99

Bayesian causal inference, 301



Index 803

Bayesian inference, 38
Bayesian rule, 298
BBBeat, 678, 686
Beamforming, 352, 356, 735–742, 746
Beamforming algorithms, 525

delay-and-sum beamforming, 525
minimum-variance distortionless re-
sponse (MVDR), 525

spatial aliasing, 525
Behavior, 403–405, 424
Berlin philharmonic orchestra, 439
Better-ear

approach, 19
listening, 549

Big data, 383
Binaural, 62, 69, 152

listening paradigm, 81, 83
activity map, 267, 268, 279
manikin, 276
mixing console, 496
room impulse response, 257, 266, 271

Binaural cues, 737–742
Binaural de-reverberation, 551
Binaural display, 351, 356, 358, 359, 362–

365, 367, 371, 666, 692
class diagram, 677
dynamic, 676, 692
latency, 677

Binaural hearing
application to ASR, 513

Binaural incoherence, 124
Binaural intelligibility level difference

(BILD), 741
Binaural level, 184
Binaurally-integrated cross-correlation au-

tocorrelation mechanism (BICAM),
265, 268

Binaural modeling, 208
Binaural quality index (BQI), 138
Binaural reproduction

individual, 72
methods, 74
non-individual, 74
quality, 71

Binaural room impulse response (BRIR),
128, 232, 445, 462, 646

artificial, 630, 647
individual, 629, 635, 647
synthesis, 653

Binaural signal, 666
Binaural synthesis, 444, 646

auditory scene, 646
dynamic, via headphones, 623, 627, 641

room-related, 646
Binaural technology, 692
Binaural technology for robust ASR, 526

approaches based on deep learning, 536
complementarity of additive interference
and reverberation, 532

early approaches, 527
mask estimation based onECprocessing,
535

mask estimation based on interaural co-
herence, 533

mask estimation based on ITD and IID,
530

mask estimation based on onset empha-
sis, 531

Binaural unmasking, 549
Binding, 499

hypotheses, 500
Birmingham electroacoustic sound theatre

(BEAST), 353
Blackbird StudioC, 264
Blackboard system, 7, 23, 92

acoustic-cues layer, 100
architecture, 94, 100
computational framework, 95
confusion-hypothesis layer, 102
for solving complex problems, 93
localization-hypothesis layer, 102
perceptual-hypothesis layer, 103

Blindness, 677
congenitally, 680

Blind source separation (bss), 377
Bluetooth, 750
Blumlein, 585
Bokeh, 356
Bone conduction, 352, 360
Bose Frames. See Frames, Bose
Bottom-up

information, 17
processing, 4

Bottom-up processing, 44
Boundary element method (BEM), 356
Boundary surface control (BoSC), 356, 667
Boundary-surface control. See BoSC
Brachium of the inferior colliculus, 132
Brainstem, 152
Brilliance, 445
British broadcasting corporation (BBC), 438
BS.1116, 403

C
Cardboard, Google, 375
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Causal inference
after audiovisual stimulation, 308
with a generative model, 301
without a generative model, 304

Cave acoustics, 254, 263, 264
Cepstral mean normalization (CMN), 519
Change deafness, 55
Channel-based encoding, 384, 385
Chirp, 383
Clarity, 228, 231, 353
Classical concert venues, 437
Cleveland Orchestra, 237
Clifton effect, 207, 213
Club Transmediale, 353
Cochlea, 764
Cochlear implants (CI), 352, 358, 734, 750
Cocktail party, 66, 71

effect, 18, 139, 624
situations, 55

Code
spatial, 151

Coding channels, 158
Cognition, 415, 416
Cognitive control mechanisms, 62, 65, 83
Cognitive factors, 571
Cognitive map, 381, 385, 642, 679
Coherence, 739, 742–744

interaural, 260
temporal, 39

Coherent-to-diffuse energy ratio (CDR), 534
Coherent-to-diffuse ratio weighting

(CDRW), 534
Coincidence detection, 154
Coloration, 413, 415, 425
Combination models, 562
Communication, 397, 404, 687

high-definition, 692
interpersonal, 687

Comparative fit indices (CFIs), 445
Completeness, 613
Composer, 465
Comprehensibility, 397
Compression, 10

ratio (CR), 769
threshold (CT), 769

Compress sensing, 119
Computational auditory scene analysis

(CASA), 121, 523
approaches using deep learning, 536
traditional approaches, 528, 531, 533,
535

Computational SNR models, 554
Concepts, 435

Conceptual representation, 436
Concert hall, 173

binaural dynamic responsiveness, 194
diffuse reflection, 185
direct sound, 177
dynamic responsiveness, 194
early reflections, 177, 182
lateral reflections, 181
late reverberation, 180, 197
rankings, 438
spatial responsiveness, 174

Cone of confusion, 73, 126, 274, 319
Confirmatory factor analyses (CFA), 445
Congruence, 291, 701, 710, 712–714, 719,

722, 725
Congruence, perceptual, 21
Congruency, 493
Congruency effect, 67, 68, 79, 81
Congruent, 67
Consistence of stimulation, 296
Construct reliability (CR), 445
Context, 207, 214, 216, 398, 425

context-specific, 164
listening, 400, 403, 420
parameters, 624, 631, 646, 654

Contextual modulation, 165
Continuity illusion, 51
Continuous quality scales (CQS), 471
Controlled listening experiment, 462
Convolution, 353
Coordinate system

head-related, 275
room-related, 275

Cophase and subtract, 17
Corollary discharge, 335
Correlation-based models, 560
Correlation coefficient, 670

bi-dimensional, 682
CR

effective (ECR), 781, 787
nominal, 781, 786, 788

Critical band, 352
Critical distance, 259
Cross-channel correlation, 48
Cross correlation, 251, 268, 397

interaural (ICC), 262, 272
Cross-modal bias, 325
Crossmodal cue, 351, 352, 354, 369, 381,

384, 385
Crosstalk cancellation, 74, 357
Crosstalk compensation. See crosstalk can-

cellation
Crowdsourcing, 423
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Cue
auditory, 690
communication, 687
crossmodal, 666
dynamic, 670
mobility, 686
primitive grouping cues, 35
schema-based, 35
sound localization, 670
top-down, 51
visual, 677, 687, 689

Cue-reliability hypothesis, 324
Cue-stimulus interval, 68
Cultural artifacts, 435
Cyberphysical system, 382

D
Data-over-sound, 383
Deafen, 377–380
Decay rate

exponential, 271
Decision device, 273
Deepfake, 384
Deep learning, 383

for ASR, 521, 536
Deep neural network (DNN), 16, 494, 497
Definition D50, 353
Delay, 394
Depth perception, 639
Dereverberation, 735, 736, 743, 745
Dichotic, 62, 65, 69

listening paradigm, 83
Differences

interaural, 152
Diffraction, 374
Diffusion, 352, 354, 355, 374, 382
Digital signal processing (DSP), 234, 677
Diminished reality, 356, 377
Dip listening, 548
Directional audio coding (DirAC) , 356, 360,

440
Direction of arrival (DOA), 463
Directivity coefficient, 260
Direct methods, 403
Direct-to-reverberant ratio (DRR), 534, 635,

641, 644, 646, 744, 750, 775
estimation, 780
reduction, 775

Distance, 406
Distance-based amplitude panning (DBAP),

356
Distance perception, 639, 644

Distractor, 64, 70
Distributed mode actuator (DMA), 352
Distributed mode loudspeaker (DML), 352
Dolby Atmos, 385
Dominance, 297
Doppler effect, 677
Dorsal cochlear nucleus (DCN), 130, 152
DTS:X, 385
Dual multiple factor analysis (DMFA), 241
Dual-process model of aesthetic experience,

468
Dual-resonance nonlinear model (DRNL),

13
Dynamic

binaural display, 692
cross-talk cancellation (CTC), 233
dynamic-range, 438
dynamic-weighting model, 21
ear input, 691
time warping, 646
weighting, 493

Dynamic-range compression, 351, 375

E
Eardrum impedance

middle-ear impedance, 11
Ear-filter bank, 14
Ear plug, 72
Eartop display, 360
Echo, 353, 371, 376

threshold, 203, 204, 214, 626
Echolocation, 219, 640
Edutainment, 667, 677, 692
Efferent, 4, 335
Ego-sphere, 493
Electroencephalography (EEG), 403, 608
Elevation, 263, 268
Emotion, 411
Emotional response

annotation, 469
inhibition, 475

Empathetic computing, 382, 383
Empathic computing. See empathetic com-

puting
Endogenous, 68, 77
Energetic masking, 548
Energy decay curve (EDC), 653
Energy-time curve (ETC), 122
Engagement, 182
Ensemble conditions, 227
Envelope

distortion, 771
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temporal, 771
Envelopment, 198, 440, 475
Environment

reverberant, 204, 213, 215, 216
Environment classification

acoustic, 95
Equalization, 461
Equalization-cancellation, 17, 517, 549, 535
Evolution, 155
Exogenous, 68, 77
Expectation, 396, 398, 420, 633, 648
Experience, 396, 398, 404, 413, 633

prior, 402
Experimental aesthetics, 466
Experimental Media and Performing Arts

Center (EMPAC), 264
Experimental paradigm, 63
Expert, 397, 406
Exploration, 637, 645
Exploratory factor analysis (EFA), 445
Exploratory movement, 5
Extended reality (xr), 356, 358, 360–362,

377, 382
Externalization, 626, 630, 633, 635, 637,

646, 649 774, 785
Eye contact, 687, 692
Eye tracker, 751–753

F
F0 segregation, 551
Face contact, 687
Factor analysis, 438
Features, 405, 407, 418, 735–737, 741, 745–

747, 749
auditory, 406
schema-based, 51

Feedback, 423, 634
cognitive, 23
loops, 4, 161
mechanism, 98
reflective, 21
reflexive, 4
sensory-motor, 19

Feelings, 396, 419
Field studies, 225
Filterbank

gammatone, 785
STFT, 767

Filter theory, 63
Finite difference time domain (FDTD), 232
Finite elements method (FEM), 232
Finite impulse-response (FIR) filter, 258

Fission
boundary, 39
obligatory, 40
streaming, 39

Fixed-mobile convergence (fmc), 383, 384
Flash profiling (FP), 471
Fletcher, 585
Floor reflection, 228, 233
Flow, 383
Fluency

conceptual, 482
perceptual, 482

Fluency assessor, 482
Focused source, 589, 596, 599
Focus group, 444
Frame-of-reference hypothesis, 324
Frames, Bose, 358
Frame-theory, 437
Free choice profiling (FCP), 471
Free-energy principle, 118
Frontal (coronal) plane, 372
Front/back confusion, 16, 20, 218, 275, 279,

497
Front-back reversal, 339, 357, 366, 367
Functional magnetic resonance imaging

(fMRI), 605, 608
Functional model, 456
Functional near-infrared spectroscopy

(fNIRS), 608
Fundamental frequency (F0), 550
Fusion, 204, 208, 213

obligatory, 40
streaming, 39

G
Gain

calculation, 769
make-up, 769, 786
prescription rule, 769

Game
action, 678, 686, 692
auditory, 679, 686
maze, 678, 679, 692
racing, 678

Gammatone
filter, 14
filterbank, 268

Gammatone-frequency cepstral coefficients
(GFCC), 536

Gaussian-mixture models, 50
General slowing, 78, 80
Geometrical acoustics (GA), 232
Geometric model, 256, 277
Geotagging, 374
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Gestalt, 7, 33
perception, 37
rules, 33, 492
theory, 120

Gestalt rules
closure, 37
common fate, 37
proximity, 37
similarity, 37

Glimpse proportion, 565
Glimpses, 549
Glimpsing, 42, 548

models, 564
spectral, 551

Global positioning system (GPS), 376, 384,
752

Google Cardboard. See Cardboard, Google
Google Tone, 383
Graphical models, 24
Ground truth, 474, 498
Grouping, 162
Groupware, 382
Guide dog, 685
Gulbenkian Grande Auditorio, 227

H
Harmonic cancellation, 551
Haydn Saal, 256, 264
Hazard score, 502
Head

cues, 335
head-tracking, 358, 376
motion, 403, 413, 418
turning, 666, 667

Head-and-torso simulator (HATS), 7, 100
Head-mounted displays (HMD), 358, 360,

362, 382, 383, 676
Head movements, 206, 218, 263, 272, 330,

666, 717–725, 727
Headphone

equalization, 71
extra-aural, 647
transfer function (HPTF), 71, 630, 647

Head-related
impulse responses (HRIRs), 123, 496,
666, 677

individual, 71, 83
non-individual, 73, 77, 83, 634
transfer function (HRTF), 71, 122, 191,
258, 319, 364, 368, 371, 496, 514, 601,
633, 666, 676, 739, 742, 748, 749, 751

Head rotation, 273, 274, 366–369, 372, 404,
410, 413, 666

active, 674
angle, 275
anti-phase, 668
in-phase, 668

Head-turning modulation (HTM), 21
Hearable, 356, 360
Hearing, 33

impaired-listeners, 33
impairment, 733–735, 740, 741, 744,
750, 754

instruments, 733
loss, 733, 764, 786

Hearing aid, 356, 360, 382, 764
behind the ear (BTE), 734
completely in the canal (CIC), 734
in the canal (ITC), 734
in the ear (ITE), 734, 740
programs, 737, 746, 752, 753
receiver in the ear canal (RIC), 734
wireless, 735, 736, 739, 740, 745

Hearsay-II system, 99
Heart rate, 403, 753
Hedonic response, 478
Helmholtz, 583
Helmholtz reciprocity, 380
Hemispheric population coding, 159
Heuristics

rule-based, 93
Hidden Markov model (HMM), 53, 519
High-density loudspeaker array (hdla), 353
High-order ambisonics (HOA), 667
Hohle-Fels cave, 254, 264, 268
Holophony, 585, 586

higher-order ambisonics (HOA), 459
wave-field synthesis (WFS), 459

Homo
neandertalis, 253
sapiens, 252

Honda Asimo. See Asimo, Honda
Horizontal plane, 70, 372
Hypothesis driven, 5

I
IC histogram, 785
Identification, 397, 419, 423
Ill-posed problem, 676, 692
Illusion

auditory, 623, 625, 655
Image

splitting, 205
Image split, 774, 785, 789
IMAX, 360
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Immersion, 397, 475, 623
Importance, 710, 711, 714, 720, 725, 727
Impulse response, 397
Incongruence, perceptual, 21
Incongruency, 67, 493
Indirect methods, 403
Individualization, 631
Individual vocabulary profiling (IVP), 471
Inertial measurement unit (IMU), 369, 375
Inferior colliculus (IC), 131, 152
Inferior frontal cortex (IFC), 133
Inferior parietal lobe (IPL), 133
Information

auditory, 666, 678, 689
nonverbal, 687
visual, 689

Informational masking, 548
In-head-localization (IHL), 626, 636
Inhibition, 155

of irrelevant information, 63, 67, 77, 79,
83

of return dynamic, 493
Inhibitory deficit theory, 78
Initial time-delay gap (ITDG), 375, 646

modification, 653
Input-gain control, 10
Input/output function, 769, 788
Inside-the-head localization or locatedness

(IHL), 364
In-situ measurements, 228
Integration, 698–701, 703
Integration window, 292
Intelligibility, 394, 397, 423
Intelligibility, short-time objective, 560
Interaural cross-correlation (IACC), 353
Interaction

active, 643
authentic, 643, 645
non-authentic, 643, 645
passive, 643

Interaural
arrival-time difference (ITD), 100
coherence (IC), 774
level difference (ILD), 75, 100, 774
time difference, 75

Interaural coherence, 124, 556
Interaural cross-correlation coefficient

(IACC), 124
Interaural cross-correlation function, 124
Interaural intensity difference (IID), 354,

371

Interaural level difference (ILD), 124, 155,
318, 549, 737, 739, 742–745, 748,
749, 751

distortion, 774
histogram, 785

Interaural phase differences (IPDs), 126
Interaural-polar coordinate system, 121
Interaural time difference (ITD), 124, 155,

263, 267, 318, 354, 371, 549, 737–
739, 742–745, 748, 749

Interferer, periodic, 569
Internal model, 118
Internal reference, 463
Internet of things (IoT), 361, 382, 383, 385
Interpolation, 653
Interquartile distance (IQD), 649
Intimacy, 182, 445
Inverse effectiveness, 291
Inverse model of recent experience, 308
Isophones

equal-loudness contours, 10
ITU audio definition model (ADM). See au-

dio definition model (ADM)

J
Just noticeable difference (JND), 136, 641,

649

K
Kansei engineering, 384
Knowledge source (KS), 92, 94, 95, 481, 495

L
Labeled hedonic scale (LHS), 471
Laboratory experiments, 225
Latency, 668, 677
Latent measurement models, 443
Lateral angle, 333
Lateral-energy fraction, 397
Lateral superior olive (LSO), 131, 153
Layer model, 397
Learning

reinforcement, 494
reinforment, 96
supervised, 95

Learning processes, 627
Least squares fitting, 309
Level estimation, 767
Linguistic,

encoding, 435
relativism, 437
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Listener, 399, 411
Listener envelopment (LEV), 138, 612
Listening

active, 666, 677, 691
Listening test, 394, 401, 404
Listening zone. See sound zone
Liveliness, 445
Localization, 73, 75, 397, 406, 413, 425, 635,

637, 733, 735, 737, 741, 744, 745,
747–749, 753

auditory, 15, 497
dominance, 204
error, 631, 633
in azimuth, 291
in distance, 294
in elevation, 293
in reverberation, 204

Location-based service (lbs), 361
Lombard effect, 373
Loudness, 397, 406, 415, 437, 440, 442, 445
Loudspeaker orchestra, 175
Loudspeaker response, 480
Lyric Speaker, 381

M
Machine hearing, 93
Machine learning. See artificial intelligence

(AI)
Machine listening, 33
Machine translation, 383
Magnetoencephalography (MEG), 608
Mammals, 151
Map, neuronal, 151
Markov

hidden models, 99
random fields, 99

Mask
binary, 36
ideal binaural (IBM), 41
ideal-ratio mask (IRM), 43

Masking
energetic, 52
informational, 52

Master quality authenticated (MQA), 381
Mastering, 461
Matched filter, 47
Maximum likelihood estimation, 299
McGurk effect, 624
Meaning

allocation, 499
assignment of, 397, 418

Measurement invariance, 443

Medial geniculate body (MGB), 133
Medial-olivocochlear reflex (MOCR), 12
Medial superior olive (MSO), 131, 153
Median plane, 73, 80
Median (sagittal) plane, 368, 372
Mel frequency cepstral coefficients

(MFCC), 519
MEMS. Seemicroelectromechanical system

(MEMS)
Mentalmapper, 678, 679
Merge AR/VR Headset, 375
Micro-electrical-mechanical-systems

(MEMS) microphones, 750
Microelectromechanical system (mems),

375
Microsoft Soundscape, 374
Middle-ear-muscle reflex (MEMR), 11
Minimum audible angle (MAA), 135, 645,

675
Minimum-audible-movement angle

(MAMA), 645
Minimum-audible-movement distance

(MAMD), 646
Missing data, 712, 713, 715–717
Mixed reality (mr), 351, 358, 377
Mo-cap (motion capture), 381, 382
Mobile-ambient interface, 352, 360, 361,

384
Modality appropriateness, 298
Modality precision, 298
Mode

emulation, 500
idle, 498
patrol, 501

Modelling
sound localisation, 297
sound localisation after audiovisual stim-
ulation, 307

sound localisation during audiovisual
stimulation, 297

Models
of binaural interaction, 514
cross-correlation-based models, 515
equalization-cancellation (EC) model,
517

Gaussian-mixture, 102
graphical, 99
Lindemann model, 517
position-variable model, 517
stereausis model, 517
that assume cue integration, 297
that do not assume cue integration, 301

Modulation-based models, 558
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Modulation spectrum, 558, 782, 787
Monaural parameters, 229
Motion

capture. See mo-cap (motion capture)
motion-parallax effect, 640
motion-tracked binaural (MTB), 647
parallax, 342
sensor, 674

Motivation, 711, 712, 714, 721
Motor reactions, 699–701, 703, 705, 706,

708, 709, 711, 714
Moving

listeners, 330
sound sources, 330

Moving minimum-audible angle, 340
MPEG-H, 385
Multiactuator panel (MAP), 352
Multi-channel Wiener filter (MWF), 738–

740
Multidimensional, 405–407, 418, 421

scaling (MDS), 436, 438, 470
Multilayer perceptron (MLP), 521
Multimodal, 699–703, 708, 709, 711–714,

727
interaction, 351, 352, 354, 365, 369, 375,
381, 384, 385

Multimodal-fusion-&-inference model, 21
Multiple stimuli with hidden reference and

anchor (MUSHRA), 471, 612
Multipresence, 351, 352, 379, 380
Multisensory

integration, 292
perception, 591

Multi-talker situation, 68
MUSHRA, 403, 408, 409
Music

dynamics, 186
spectrum, 189

Musician, 465
Music information retrieval (MIR), 236
Music performance analysis, 236
Music-source separation, 53
Mute, 377–380

N
Narrowcasting, 351, 352, 377, 379, 380, 384
Natural language processing (NLP), 384
Naturalness of auralization methods, 242
Nearest loudspeaker synthesis, 233
Nearphone, 360
Neural-motor control, 337
Neural substracts, 291

Neurophysiology, 466
New Adventures in Sound Art, 353
No interaction, 301
Noise reduction, 736, 738–740, 742, 743,

745, 746
Non-auditory modality, 463
Non-diegetic music, 370
Nonsonorealistic rendering, 369
Non-verbal information, 371
Null-steering antenna, 17, 18

O
Object

assigning meaning to an, 23
auditory, 15
auditory identification, 499
auditory localization, 497
formation, 15, 34, 497, 500
hypotheses, 501
object-based representation, 54
perceptual, 15, 497
selection, 34

Object-based encoding, 371, 376, 384, 385
Object formation, 397, 418
Obstruction, 353, 374
Occlusion, 280, 353, 374
Oculus Quest, 375
Olivary complex, 11
Omnidirectional sound source, 259, 260, 278
On-/offset analysis, 49
Open dome, 71
Open guided sound (OGS) earphones, 359
Open science, 413
Oriented-gradients detector, 505
Otoacoustic emission (oae), 358
Overhead reflector, 227
Overlap-add (OLA), 769

P
Paired comparisons, 409, 436
Panasonic Wear Space. See Wear Space,

Panasonic
Panoramic potentiometer (Pan-pot), 356,

381
Pantophonic speaker array, 353, 355
Pepper, SoftBank, 383
Percept, 436
Perception, 151, 352, 353, 362, 364, 365,

367, 369
dual nature of, 404

Perceptionism, 365
Perceptual
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assessment, 585, 592–594, 606
inference, 118
linear prediction (PLP), 519
mixing time, 653
model, 635

Performance, 403, 405, 412, 413
cost, 66, 68, 76, 83
venues, 436

Peripheral autonomic nervous system
(PANS), 608

Periphonic speaker array, 353
Personalized auditory reality (PARty), 655
Personal sound amplification product

(psap), 356, 360, 382
Perspective, 397
Phantom source, 328, 582, 586, 607
Phantom-walker illusion, 639
Phase-difference channel weighting algo-

rithm (PDCW), 532
Phase inversion technique, 780
Phonemic restoration, 51
Physical modeling, 384
Pinna factor, 337
Pipe organ, 239
Pitch, 397
Plane

horizontal, 255
Plasticity, 151

context-dependent, 151
Plausibility, 70, 71, 458, 614, 623, 626, 633,

645
Point of operation, 10, 13
Point of subjective straight ahead (PSSA),

673
Polar coordinate system, 319
Position, 397, 398, 420
Positional disparity, 642
Position detector

visual, 506
Power-normalized cepstral coefficients

(PNCC), 519
Prägnanz, 37
Precedence effect, 10, 185, 203–205, 263,

265, 381, 596, 604, 626, 635
break-down, 212
build-up, 207, 211
dynamic, 208

Prediction, 699, 704, 705, 708
error, 552

Predictive coding, 118
Preference mapping, 405, 407, 415
Premotor cortex (PMC), 133
Presence, 614

Primary auditory cortex (A1), 133
Principal-components analysis (PCA), 610
Procedural audio, 384
Process

dynamic, 208
Projection mapping, 361, 385
Proprioception, 218, 337, 382
Proto-event, 23
Proximity, 182, 441
Pseudo inverse matrix, 310
Pseudophones, 295
Pseudophony, 357, 365, 366
Public address (pa), 360

Q
Quadraphony, 581, 586
Quality

assumed, 398
basic audio, 408, 409, 411
content, 397
dialogue, 397
perceived, 633
product-sound, 397
sound, 393, 395, 426

Quality and aesthetic judgment, 456
Quality-of-experience (QoE), 393, 396, 400,

426, 594, 609
Quality-of-service (QoS), 395
Quantified self, 384

R
Radiation, 373, 378
Rate map, 15
Ray tracing, 251, 255, 256

signal flow, 258
software, 256

Reaction time, 64, 81, 83
Realism, 458
Real-time auralization, 233
Recorded-reproduced sound, 456
Rectification

halfwave, 273
Reference, 397–400, 405
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Reflection, 353, 371, 374, 375

coefficient, 269
diffuse, 251, 258, 264
specular, 264

Reflective feedback, 4, 21
Reflective processes, 120
Reflexive feedback, 4
Reflexive processes, 120
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Refraction, 374
Reinforcement of notes, 437
Relative spectral analysis (RASTA), 519
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Remote microphone, 735, 736, 739, 745,
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Repertory-grid technique (RGT), 610
Representation, 151
Reproducible research, 413, 425
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via loudspeaker, 627

Response-cue interval, 67
Reverberance, 227, 438, 440, 442, 445, 449
Reverberant tail, 260, 268, 278
Reverberation, 353, 359, 371, 374–376, 406,
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time (RT), 80, 81, 83, 231, 254, 258, 397,
414, 438
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Room adaptation, 569
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Room transfer function (RFT), 676
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Sagittal plane, 333
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map, 493
semantic, 21
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Scene, 408, 415, 418, 423

acoustic, 400, 414
auditory, 7
aural, 397

Scene-based encoding, 384, 385
Scheduler, 94, 495
Schemata, primitive, 7
Sea of Sound, 353
Segmentation, 418, 420, 421
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pitch-based, 49
primitive stream, 40
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Self rotation, 336
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compensation, 677
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memory, 419
weights, 305
weights with causal inference, 305

Shadow filtering, 780
Shadowing task, 63
Sharpening the ears, 17
Sharpness, 373, 397
Sharp RoBoHon. See RoBoHon, Sharp
Short-time discrete Fourier transform

(STFT)
analysis, 766
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synthesis, 769
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direct, 261
direct-reverberant ratio, 461
driven, 5
dynamic range, 462
running, 263, 265, 268
spectral balance, 462
timbre, 462
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computational auditory scene analysis
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homomorphic deconvolution, 522
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spectral subtraction, 522
vector Taylor series (VTS), 522
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broadband, 773, 786
estimation, 777
in the envelope power domain, 784, 788
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Similarity judgments, 436
Simultaneous localization and mapping
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Skill
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Skin conductance, 403
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SoftBank Pepper. See Pepper, SoftBank
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Sony Aibo. See Aibo, Sony
Sound
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pressure, 394, 397, 405

Sound/audio quality
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Soundfield synthesis (sfs), 356
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Sound localization, 135, 152, 203, 214, 215,
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front-back error, 669
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model of, 342
performance, 691
training, 688, 689

Sound location, 151
Sound qualities, 437
Sound reinforcement (sr), 360, 370, 382
Sound rendering, 666
Soundscape, 351–353, 358, 360, 362, 363,

369, 376, 377, 379, 381, 382, 384,
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Sound source
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directivity, 641
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moving, 645
rotation, 641
stationary, 639, 641, 645

Sound-source localization. See auditory-
object localization

Sound strength, 228
Sound zone, 382, 384
Source-image localization, 462
Space
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Spaciousness, 138, 183, 397
Spatial aliasing, 586, 590, 593
Spatial audio, 393, 400, 408, 413, 581, 582,

584, 591, 599, 605–607, 609, 610,
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Spatial cues, 738, 739, 750, 751
Spatial decomposition method (SDM), 176,

232
Spatial hearing, 183, 191, 666, 691
Spatial impression, 138
Spatial location, 67
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(SOFA), 123
Spatial maps

multisensory, 342
Spatial matching, 291
Spatial perception, 666, 676, 677
Spatial release from masking (SRM), 139,
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Spatial resolution, 160
Spatial room impulse response (SRIR), 229
Spatial separation, 550
Spatial transparency, 445
Spatial unmasking, 139, 605
Spatial updating, 332, 341
Spatiotemporal information, 231
Spatiotopically organized, 326
Speaker array, 351–353, 384
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Spectral-shape cues, 319
Speech, 404, 423

audibility, 770
automatic (ASR), 512
comprehension, 571
context, 216
formant transition, 216
in reverberation, 203, 216
intelligibility, 445, 548, 764
material, 568
reception threshold (SRT), 741, 742
recognition (SR), 383
speech-intelligibility index, 553
speech-transmission index, 558

Spike rates, 158
Stage acoustics, 228
Standardized root-mean-square residual

(SRMR), 445
Stapedius, 11
Stereophony, 581, 582, 584, 585, 595, 600,
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Stereotelephony, 374
Stimulation pattern, 652
Stream, 34

perception, 34
Streaming, 737, 738, 748, 749
Strength, 440, 442
Subjective impression, 227
Subjective straight ahead, 672

point of, 673
Summing localization, 204, 596, 599, 600
Superior colliculus, 132, 291
Superior olivary complex (SOC), 131
Superior temporal gyrus (STG), 133
Support parameters, 228
Suppression of slowly-varying components

and the falling edge of the power en-
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Surprise
auditory, 493
Bayesian, 493

Surround sound, 360, 371, 581, 586
Sweet spot, 585, 599
Switch cost, 67, 76, 77
System latency. See latency

T
Target, 67, 70, 83
Task-cuing method, 65
Task switching, 65
Taxonomic organization, 436
Technologies, 458

TeleHead, 667
Telepresence, 353, 380, 383
Telexistence. See telepresence
Temporal, 398, 419

matching, 291
smearing, 551

Tensor tympani, 11
Test-retest reliability, 447
Text-to-speech (tts), 383
Thalamus, 133
Theory of processing fluency, 467
360 Reality Audio, Sony, 358
Timbral adjustments, 238
Timbral performance attributes, 238
Timbre, 397, 407, 442
Time constant

ANSI, 767, 788
attack, 767, 786
nominal, 767, 786
release, 767, 775, 786

Time-energy information, 231
Time-to-contact, 639
Tonal balance, 397
Tone, 437
Tonotopically organized, 327
Top-down

information, 17
processing, 4

Torus of confusion, 126
Training, 634, 652, 654

cognitive map, 679
sound localization, 686, 688, 689

Transfer effect, 686, 692
Transfer learning, 423
Transfer of learning. See transfer effect
Translation

head, 637, 641
listener, 637, 641
positional changes, 639

Transmission channel, 460
Transmission function, 397
Transparency, 397
Trapezoid body (TB), 131
Tune Mob, 383
Turn-to-reflex, 16, 493, 698
Two-channel stereo mix, 460

U
Ubicomp (ubiquitous computing), 361, 362,

382
Ubiquitous computing. See ubicomp
Ultrasonic, 357, 383
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Uncanny valley, 594
Uncertainty, 570
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Useful-to-detrimental ratio, 562

V
Validity, 443
Variable

continuous-valued, 24
discrete-valued, 24

Vection, 638
Vector base amplitude panning (VBAP),

233, 356, 360, 611
Vector Taylor series (VTS), 522
Ventral cochlear nucleus (VCN), 130
Ventriloquism

aftereffect, 296
effect, 297, 322, 323, 366, 624

Vestibular
cues, 218
system, 336, 362, 367, 368

Virtual
acoustic scene, 633, 637, 645
environments, 139
performance studio (VPS), 234

Virtual reality (VR), 358, 360, 361, 375, 409,
412, 667

auditory, 678
game, 678
generator, 26

Virtual Singing Studio, 234
Vision, 699–703, 706, 717, 718, 726
Visual

bias, 325
capture, 297, 322
dominance hypothesis, 324
vs. auditory space, 328

Visual cortex, 700, 706

Visual cue, 70
Visual effects, 628, 629, 631
Visually impaired, 359, 667, 677, 679, 687,

692
Vocabulary profiling, 436
Voice-chat, 384

W
Walkable virtual loudspeaker setup, 655
Walk-through, 255

forest, 260, 261, 272
office, 251, 272

Wallach azimuth illusion, 330
Wallach vertical illusion, 332
Wave-field synthesis (WFS), 233, 356, 360,

581, 585, 586, 588–591, 594–596,
599, 601, 608, 610–613

optimized phantom source imaging, 612
Way-finding, 354, 374
Wearable, 754

computing, 360, 362, 382
Wear Space, Panasonic, 358
Welfare system, 677
Wheel of concert hall acoustics, 441
Wide dynamic range compression

binaural, 774, 790
conventional, 766, 787
DRR-aware, 779, 790
SNR-aware, 777, 787

Window of cue compatibility, 300
World knowledge, 19
World model, 24

internal, 98

X
XR (extended reality). See extended reality

(XR)
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