
Modelling and Verification of Dynamic
Role-Based Access Control

Inna Vistbakka1(B) and Elena Troubitsyna1,2

1 Åbo Akademi University, Turku, Finland
inna.vistbakka@abo.fi

2 KTH, Stockholm, Sweden
elenatro@kth.se

Abstract. Controlling access to resources is essential for ensuring cor-
rectness of system functioning. Role-Based Access Control (RBAC) is a
popular authorisation model that regulates the user’s rights to manage
system resources based on the user’s role. In this paper, we extend the
traditional static approach to defining RBAC and propose as well as for-
malise a dynamic RBAC model. It allows a designer to explicitly define
the dependencies between the system states and permissions to access
and modify system resources. To facilitate a systematic description and
verification of the dynamic access rights, we propose a contract-based
approach and then we demonstrate how to model and verify dynamic
RBAC in Event-B. The approach is illustrated by a case study – a report-
ing management system.

1 Introduction

Modern software systems become increasingly resource-intensive. It is essential
to guarantee that the authorised users have an access to the eligible resources
and the resources are protected from an access by the unauthorised users. This
aspect of the system behaviour is addressed by the access control policy.

Role-Based Access Control (RBAC) [4] is a widely used access control model.
It regulates users’ access to computer resources based on their role in an organi-
sation. The standard RBAC framework adopts a static, state-independent app-
roach to define the access rights to the system resources. However, it is often
insufficient for correct implementation of the desired system functionality and
should be augmented with the dynamic, i.e., a state-dependant view on the
access control.

In this paper, we propose a dynamic RBAC model, which allows a designer
to explicitly define the rights to access a certain resource based on the resource
state and the system workflow. We formalise the dynamic RBAC and propose a
systematic contract-based approach to defining the rights to access the system
resources. We rely on the design-by-contract approach [8] to explicitly define
the dynamic access rights for each role over resource. Moreover, we propose an
approach that allow us to verify the consistency of the desired system workflow,

c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 48–63, 2018.
https://doi.org/10.1007/978-3-030-00359-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_4&domain=pdf


Modelling and Verification of Dynamic RBAC 49

described by the scenarios, with the static and dynamic RBAC constraints. The
workflow is described using UML use case and activity diagrams, which serve
as a middle-hand between the textual requirements description and their formal
Event-B model.

Event-B [2] is a state-based formalism for the correct-by-construction system
development. It allows us to specify both dynamic and static aspects of system
behaviour. The dynamic behaviour, defined by the events, models the workflow
scenarios, which we want to analyse. The static component of the specification
models the interdependencies between the roles, resources and the users. The
Rodin platform and Pro-B plug-in [10,14] allow us to automate the verification
of consistency between the dynamic RBAC and the desired system workflow.
The approach is illustrated by a case study – a reporting management system.

2 From Static to Dynamic RBAC

RBAC: Basic Concepts. Role-Based Access Control (RBAC) [4] is one of the
main mechanisms for ensuring data integrity in a wide range of computer-based
systems. The authorisation model defined by RBAC regulates users’ access to
computer resources based on their role in an organisation.

RBAC is built around the notions of users, roles, rights and protected system
resources. A resource is an entity, e.g., data, access to which should be controlled.
A user can access a resource based on an assigned role, where a role is usually
seen as a job function performed by a user within an organisation. In their turn,
rights define the specific actions that can be applied to the resources. RBAC can
be defined as a table that relates roles with the allowed rights over the resources.
RBAC (depicted in Fig. 1) has the following elements:

• USERS is a set of users;
• ROLES is a set of available user roles;
• RESOURSES is a set of protected system resources;
• RIGHTS is a set of all possible rights over the resources;
• PERMISSIONS is a set of permissions over the resources.

Moreover, US ASSIGN defines a user assignment to roles, while RO PERM is per-
mission assignment to roles. Next we discuss all these notions in details.

Let USERS = {u1, u2, ..., un} be a set of users. In general, a concept of a user
may stand for a person in the organisation, an administrative entity or a non-
person entity, such as a computing (sub)system. A user can access a resource
based on the assigned role.

USERS ROLES RIGHTS RESOURCES

User 
Assignment

Permission
Assignment

PERMISSIONS

Fig. 1. RBAC structure



50 I. Vistbakka and E. Troubitsyna

Let ROLES = {r1, r2, ..., rm} be a set of possible user roles within the system. A
role is usually seen as a job function performed by a user within an organisation.
For example, often, a role is used to indicate the job-related access rights to a
resource.

The protected system resources are denoted by the set RESOURCES =
{re1, re2, ..., rek}. The notion of the resource depends on the system, i.e., it
can denote OS files or directories; data base columns, rows or tables; disk space
or just simple lock mechanisms.

Let RIGHTS = {ri1, ri2, ..., ril} be a set of possible rights over the system
resource. Rights are defined as specific manipulations that can be performed
with the resources. For example, for a resource database, the access rights can
be Update, Insert, Append, Delete; for a resource file – Create, View, Print.

A user can access resources based on the assigned roles. A user authorisation
list – user assignment – can be defined as the mapping between users and roles:

US ASSIGN : USERS → P(ROLES),

which assigns to a given user a set of possible roles. A user can play (i.e., be
mapped to) a number of roles, and a role can have many users. The notation
P(ROLES) stands for the powerset (set of all subsets) type over elements of the
type ROLES.

Static RBAC. Access control in RBAC is realised in terms of (static) permis-
sions. A permission is an ability of a holder of a permission to perform some
action(s) in the system. To formally define all possible permissions, we introduce
the relation PERMISSIONS as follows:

PERMISSIONS : RESOURCES ↔ RIGHTS

It describes relationships between a certain system resource and the rights that
can be applied to it.

Permission assignments to a role are defined based on the job authority and
responsibilities within the job function. To formally define permissions that are
provided by the system to the different user roles, we define the function RO PERM
that maps each user role to a set of allowed rights over the resources:

RO PERM : ROLES → P(PERMISSIONS).

In the paper, we make a distinction between rights and operations. The
operations (or use cases) define the specific tasks, which a user may perform in
the system. Therefore, an “operation” is a more general concept than a “right”
and designates specific basic rights which are invoked by a user. Let us consider
a resource “personal profile page” – page, which is typically created for each
employee in an organisation. The set of the access rights for this resource includes
Create, Delete, Read, Write. An examples of user’s operation within a system
can be “View Personal Profile”, “Edit Personal Profile”, etc. To be successfully
executed, the operation “View Personal Profile” requires the Read right, while
the “Edit Personal Profile” operation requires both Read and Write rights.



Modelling and Verification of Dynamic RBAC 51

Usually RBAC gives a static view on the access rights associated with each
role, i.e., it defines the permissions to manipulate certain resources “in general”,
i.e., without referring to the system state. Therefore, rights define the neces-
sary conditions for an operation to be executed. However, we argue, that these
conditions are insufficient for a correct implementation of the intended system
functionality. For instance, assume that a user with a specific role User has Read
and Write rights to the personal profile page page, where a user with the role
Admin has Read, Write as well as Create and Delete rights to the resource page.
Even though User has rights to Read and Write the profile page, s/he cannot
use them if Admin has not created the web-page before using his/her right Create
or has already deleted it using Delete right.

It is easy to see that the access rights depend not only on the role but
also on the state of the resource. Therefore, the static view on RBAC should
be complemented with an explicit definition of the dynamic state-dependant
conditions.

Dynamic RBAC. Let us now discuss a formalisation of the dynamic view on
RBAC. Each resource can be characterised by its state, i.e., we can introduce
the set STATES = {st1, ..., stj} defining all possible states of the resources. Then
we can define dynamic (state-dependant) permissions as the following function:

DYN PERM : RESOURCES × STATES → P(RIGHTS).

For each resource and its specific state, DYN PERM returns access rights applicable
to the resource in each of its states. Let us note, that DYN PERM is defined for all
allowed access rights that can be applied to the resources. Then dynamic role
permissions can be defined as the function DYN RO PERM:

DYN RO PERM : ROLES → P(DYN PERM).

Essentially, it maps the assigned dynamic permissions to the roles.
Let us now return to our personal profile page example. Assume that the

resource page can be in three states: null (before it is created), locked (after it
is deleted) or unlocked. Then, when page is in the state null, User has no rights
over this resource. However, when page is in the state unlocked, User has Read
and Write rights, and when page is in the state locked, User role has Read right.

The dynamic and static views on RBAC are intrinsically interdependent.
The permissions defined by the static and dynamic constraints constitute the
necessary and sufficient constraints the user has over the operations execution.
In the next section, we discuss how to verifying these conditions using the design-
by-contract approach.

3 Reasoning About Dynamic RBAC Using Contracts

The dynamic view on RBAC, advocated in this paper, aims at defining con-
ditions enabling a successful execution of an operation with respect to both –



52 I. Vistbakka and E. Troubitsyna

static access rights defined by RBAC and system dynamics defined by its work-
flow. Typically, the workflow is described by the scenarios. A scenario defines a
sequence of operations – use cases – that should be performed over the resources
to implement the desired functionality. A scenario consists of individual steps
that combine the operations executed over the resources in a certain order.

Usually a scenario involves a single or multiple actors (users) that perform
the operations over the resources. The users performing the operations in a
scenario must have all the permissions required to complete every single step of
a given scenario. Thus we should verify consistency between the defined RBAC
and the control flow implemented by the desired scenarios. For each operation in
the scenario, we define the correctness conditions as the contract for operation.
We follow the design-by-contract approach [8], i.e., define each contract as a
combination of a precondition (the conditions on the operational input) and a
postcondition (conditions to be satisfied as a result of the operation execution).

A Concept of an Operation Contract. Let OPERATIONS be a set repre-
senting all possible operations within a system execution. Each operation rep-
resents an interaction of a user with the system. We assume that the state of a
system is represented by a collection of variables denoted as v. Then the user
operations result in changing the system state.

For each operation we define a pre- and post-condition pair. Figure 2 presents
a generic from of an operation structure definition. An operation operi might
have parameters pi that are defined in the params clause. The pre-clause defines
the assumptions about the state of the system before the execution of the oper-
ation. The post-clause defines the state of the system after the completion of
the operation. Here postconditions describe the actual changes in the state of
the resource. The operation as such is a state transition resulting in the change
of the variables values from v to v′.

A precondition represents the static and dynamic constraints that should be
satisfied by each operation. If precondition of an operation is not satisfied then
the scenario containing it is deadlocked indicating an inconsistency between the
formulated constrains and the desired workflow.

Defining Consistency Conditions. Let us now investigate how to use con-
tracts to derive consistency conditions. We start by introducing the function
ScenarioSeq such that

ScenarioSeq ∈ SCENARIOS → seq(OPERATIONS),

Fig. 2. General structure of an operation contract



Modelling and Verification of Dynamic RBAC 53

where seq is a sequence constructor to represent composite steps within a sce-
nario. Here SCENARIOS is a set of scenario ids.

Lets consider a scenario S, where S ∈ SCENARIOS. We say that a scenario
S is executable if the final state of a scenario S is reachable from its initial state.
Since a scenario is defined as a sequence of the corresponding operations, and
the operations, in their turn, are defined as state transitions, we can define a
scenario execution as follows:

σS
init �S σS

fin, (1)

where σS
init and σS

fin denote the initial and final states of a scenario S respectively.
Let a scenario S be a sequence consisting of m operations:

ScenarioSeq(S) = [oper1, oper2, ..., operm], (2)

We use the definition of an operation contract to explicitly formulate the con-
sistency property of a scenario control flow. A scenario S is executable (i.e., a
scenario control flow is consistent) if the following properties are hold:

Pre(operi+1) ⊆ Post(operi), i = 1...m − 1, (3)

Pre(oper1) ⊆ σS
init, (4)

σS
fin ⊆ Post(operm) (5)

Essentially, these properties require that all sequences of the scenario steps are
enabled. Property (3) requires that any next operation should be enabled by the
previously executed operation. Property (4) describes the consistency conditions
imposed on the initial state of a scenario, i.e., verifies that the first operation is
enabled. Property (5) requires for the final state of the scenario to be a subset
of the states in which the last operation in the scenario terminates.

The above definitions formalise the constraints that should be verified to
ensure that the operations of a given scenario can be executed in the desired
order. If any of the conditions is violated then an inconsistency is detected, which
should be eradicated either by inspecting the requirements or their formalisation.
Next we will discuss how to use the proposed formalisation in the context of
dynamic RBAC.

Operation Implementation Under RBAC. The generic structure of an
operation description is given in Fig. 2. In the RBAC context, an operation
defines user action over a system resource. Upon an operation execution, the
state of the resource might be changed. Consequently, it might result in chang-
ing the (dynamic) access rights for a particular role over resources. Thus, in the
context of RBAC, we can define an operation as shown in Fig. 3.

Below we give an explanation of each clause:

– params clause. The user operation over the system resource has following
parameters: a user us , a user role ro and a resource res .

– pre clause. Predicates over



54 I. Vistbakka and E. Troubitsyna

Fig. 3. A generic operation implementation for RBAC

• a current state of the resource res ;
• required access rights of the role ro over the resource res to perform the

operation.
– post clause. Predicates over

• modified state of a resource res ;
• revised access rights for all roles over the resource res .

The precondition aims at verifying that the resource is in the correct state
before the operation execution, the user has a role that makes him/her eligible
for executing this operation, and the operation can be executed with respect to
the current resource state and the role. The postcondition postulates that the
state of the resource might change as well as the dynamic rights for the system
roles. Let us observe, that the input parameter role ro does not change as a
result of the operation execution. However, it should be defined since the same
operation would typically have different contracts for different roles.

In this section, we have defined the conditions which should be verified to
ensure consistency of desired scenarios and static and dynamic RBAC con-
straints. To automate the proposed approach, we propose to use Event-B frame-
work. In the next section, we give its brief overview.

4 Background: Event-B and ProB

The Event-B formalism [2] is a state-based formal approach that promotes the
correct-by-construction system development and formal verification by theorem
proving. In Event-B, a system model is specified as an abstract state machine [2].
An abstract state machine encapsulates the model state, represented as a col-
lection of variables, and defines state operations, i.e., it describes the dynamic
system behaviour. Types of variables and other properties are defined in the
Invariants clause. A machine also has an accompanying component, called con-
text, which includes user-defined sets, constants and their properties given as
model axioms.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,



Modelling and Verification of Dynamic RBAC 55

where e is the event’s name, a is the list of local variables, Ge is the event guard,
and Re is the event action. The guard Ge is a predicate over the local variables of
the event and the state variables of the system. The body of an event is defined
by a multiple (possibly nondeterministic) assignment over the system variables.
The guard defines the conditions under which the event is enabled, i.e., its body
can be executed. If several events are enabled at the same time, any of them can
be chosen for execution nondeterministically.

The system behaviour in Event-B is modelled by a set of events. We can
transform this representation into the pre- postcondition format, as we did in [16]
and then establish the correspondence between the definitions of an operation
contract and an Event-B event. To perform it we can rely on our previous work
presented, e.g., in [6].

Refinement in Event-B. Event-B employs a top-down refinement-based app-
roach to system development. Development typically starts from an abstract
specification that nondeterministically models most essential functional require-
ments. In a sequence of refinement steps, we gradually reduce nondeterminism
and introduce detailed design decisions. The consistency of Event-B models, i.e.,
verification of well-formedness, invariant preservation as well as correctness of
refinement steps, is demonstrated by proving the relevant verification theorems
– proof obligations [2].

Tool Support for Development and Model Checking. Modelling, refine-
ment and verification in Event-B is supported by an automated tool – Rodin
platform [14]. The platform provides the designers with an integrated modelling
environment, supporting automatic generation and proving of the proof obli-
gations. Moreover, various Rodin extensions allow the modeller to transform
models from one representation to another. They also give access to various
verification engines (theorem provers, model checkers, SMT solvers).

For instance, the ProB extension [10] of Rodin supports automated consis-
tency checking of Event-B machines via model checking, constraint based check-
ing, and animation. ProB supports analysis of liveness properties (expressed in
linear or computational tree logic (LTL/CTL)), invariant violations as well as the
absence of deadlocks. A model checker systematically explores the state space,
looking for various errors in the model under consideration [7].

In this paper, we argue that modelling with Event-B provides us with a
suitable verification dynamic policies of RBAC.

5 Verification of System Scenarios Under Dynamic
RBAC

In Sects. 2 and 3 we discussed the dynamic extension of RBAC and defined the
conditions for verifying scenario consistency. In this section, we propose a formal
Event-B based approach that implements these ideas to identify possible scenar-
ios violating consistency. Our approach uses the graphical modelling in UML
as the front-end. Graphical models are used to describe the general structure



56 I. Vistbakka and E. Troubitsyna

of the system and its scenarios. They serve as a middle-hand between the tex-
tual requirements description and formal specification. The proposed approach
is shown in Fig. 4. It consists of the following six steps:

Step 1: Define RBAC model. Define the system roles and operations over the
system resources for each role. Represent the actors as roles, the operations as
use cases and create the UML use case diagram of a system. Create an activity
diagram representing the intended system workflow.

Step 2: Define/modify operation implementations. Define all possible states of
the system resources and create a state diagram representing how execution
of each actor’s operation changes the state of the resources. Then using the
created state diagram, create an abstract specification in Event-B that defines
the resource states and the corresponding state transitions. Each defined state
transition should correspond to a realisation of the user operation.

Next, for each operation, define (or modify) its contract. Represent all the
required elements: resource state, a role, required basic access rights for a role to
perform an operation and the id of the accessed resource. Incorporate into the
Event-B model the defined contracts by specifying the Event-B events.

Step 3: Compose a scenario and check it for consistency. Compose/modify a
scenario over the operations defined in the Step 2. All the dynamic characteris-
tics of a system are formulated in terms of the model variables and the required
properties as the model invariants. All the static system properties are defined
in the model context (e.g., a sequence of evolved scenario steps). Then simu-
late execution of a chosen scenario in Event-B and model check this model in
ProB looking for inconsistencies in its execution. Any violations of the control
flow consistency conditions (3)–(5) lead to deadlocking the model, which in turn
indicate such inconsistencies in the operation definitions.

Step 4: Scenario analysis. If a deadlock in the previous Step 3 is found for a
certain scenario, then analyse the operations involved in the scenario execution.
The purpose of a such analysis is to come up with one or several recommenda-
tions for modification of the operation implementation. Then return to the Step
2 for necessary modifications of one or several operations.

Step 5: Storing a valid scenario. A checked valid scenario is stored as the cor-
responding command sequence in the Event-B context. Return back to Step 3
until a scenario model is complete.

The resulting Event-B model (specification) can be used as an input for the
next system development steps. Event-B specification can be refined further to
introduce detailed requirements representation. Since the consequent refinement
steps depend on the nature of the system to be developed, we omit their consid-
eration in this paper.

In the next section, we illustrate the proposed approach by an example.



Modelling and Verification of Dynamic RBAC 57

Step 1
Define RBAC 
model for the 

system

Step 3
Compose a scenario and 

check for control flow 
consistency

Step 4
Analyse an invalid 

scenario

Step 5
Add the checked 

scenario into the pool

[is scenario 
model 

complete?][valid][invalid]

[incomplete]

[complete]

Step 2
Define/modify 

operation 
implementation

Fig. 4. Steps of the approach

6 Formal Modelling of a Reporting Management System

The Reporting Management System (RMS) is used by different employees in an
organisation to send periodic (e.g., monthly) work reports. Below we summarise
the access control-related requirements:

– There are three roles in the system – employee, controller and administrator;
– Functionality associated with the roles:

• An employee can create a new report, modify an existing one or delete a
non-approved report, as well as submit a report to its controller;

• A controller can read the submitted report received from one of the asso-
ciated employees, and can either approve or disapprove it;

• An administrator has an access to all the reports of all her/his associated
controllers, and it is her/his responsibility to register the reports approved
by the controllers.

– Report access policies:
• Until a report is submitted, the employee can modify or delete it.
• As soon as a report is submitted, it cannot be altered or deleted by the

employee any longer.
• Upon the controller’s approval, the report is registered by the adminis-

trator.
• In case of disapproval, the report is returned back to the employee and

can be further modified or deleted.

Let us note that each actor operation requires certain basic access rights. For
instance, an employee, to execute Modify Report operation, should have Read
and Write access rights to the report file. In its turn, the employee’s supervisor –
controller – should have Read and Write access rights to the same file to execute
Approve Report operation. However, as soon as an employee submits a report
to a controller, she/he can have only Read access right to the report file.

System Modelling and Verification. To specify and verify RMS, we follow
the steps described in Sect. 5:



58 I. Vistbakka and E. Troubitsyna

Step 1. We identify the main roles and their operations and create the use case
diagram as shown in Fig. 5(a). It shows the actors, their roles in the system and
also their possible interactions with the system. Also we create the activity dia-
gram presented in Fig. 5(b) to describe the workflow associated with the defined
functions.

Fig. 5. Reporting management system: (a) Use case diagram, (b) Activity diagram

Step 2. Each actor’s function changes the state of a certain report. Hence, the
overall behaviour of the system, for each particular report, can be considered as a
set of transitions between all the possible states of the report. The corresponding
state diagram is represented in Fig. 6.

Fig. 6. State diagram – reporting management system

Then, we use the state diagram and create an abstract specification in Event-
B that defines the state of reports and the corresponding state transitions. To
represent a current state for each report we define a function report state:

report state ∈ REPORTS → STATES.



Modelling and Verification of Dynamic RBAC 59

Initially each report has the state VOID. The actual report creation is modelled
by the event CreateReport that changes the state of a single report rp to CRE-
ATED. Then the events ModifyReport, DeleteReport and SubmitReport become
enabled. When the report is submitted, its state changes to SUBMITTED. Upon
report approval, its state is changed to APPROVED, otherwise, if the report is
rejected, it returns back to the state CREATED. Finally, once the administrator
registers already approved report, the report goes to its final state ARCHIVED.

Next we link each role with the set of operations that correspond to it.
Moreover, for each role, we will define the required basic access rights – Create,
Read, Write, Delete – modelled as C, R, W, D values, respectively.

To specify dynamic permissions for the introduced roles, we define a variable
dPerm with the following properties:

dPerm ∈ ROLES × REPORTS → P(RIGHTS),
∀ r ∈ REPORTS · dPerm(Employee, r) ⊆ {C,R,W,D}∧

dPerm(Controller, r) ⊆ {R,W} ∧ dPerm(Administrator, r) ⊆ {R,W}.

The variable dPerm is a function that assigns to each role and a report a set of
possible access rights that can be associated with the role.

Obviously, for each role, the set of available access rights to a report depends
on the current state of this report. For instance, a controller can have Read
(R) and Write (W ) rights only over the submitted reports. Moreover, when the
report that has been submitted for approval, it cannot be further modified by the
employee until the end of the approval period. Therefore, during the approval
period, the employee has only Read right to this particular report. Hence, we
should restrict the set of enabled rights depending on the report’s state. In the
corresponding Event-B events which model the change of a report state, the
values of role permissions will be updated. For brevity, we omit showing the
whole Event-B specification – its excerpt is presented in Fig. 7. For more details,
please see our previous work [20].

Let us note that the variables dPerm and report state together represent
the dynamic role permissions RO DYN PERM discussed in Sect. 2. We use these
two variables instead of one just to avoid nested data structures (function of
function) in Event-B specification.

Step 3: Scenario Verification. In this step, we analyse the desired system
scenarios associated with RMS. For example, we consider a simple scenario as
the following chain of operations performed by an employee and a controller:

CreateReport → ModifyReport → SubmitReport → ReturnReport → ModifyReport

We represent this chain as the corresponding command sequence and define
it in the context. Then, in the machine part of the Event-B specification of RMS,
we simulate the scenario execution by accumulating the information about the
sequence of the corresponding scenario steps in Scenario. To implement it, we
define a number of events – Start, Next, Finish – that simulate the scenario exe-
cution (see Fig. 8). The sequence of operations is built by starting from the first
operation and simulating the execution sequenceleading to the last operation.



60 I. Vistbakka and E. Troubitsyna

The scenario execution process is completed when the last command of the sce-
nario is executed.

We formulate the invariant property finish=TRUE⇒CurScenario=Scenario
stating that if the scenario execution has been completed then the scenario con-
tains all the steps (i.e., is equal to the executed steps). In the case, when the
resulting command sequence does not match to the required sequence (CurSce-
nario), a violation is found by model checking. Consequently, a found scenario
sequence becomes an input for Step 4.

Step 4: Analysis and Operation modifications. In our example, we have
found a deadlock – the scenario execution deadlocks on the execution of the event
ReturnReport. We analysed the operation and discovered that in the implementa-
tion of ReturnReport the access rights for Employee upon the operation execution
are set to R (Read right). However, the operation ModifyReport requires for a
role Employee to have R, W, D access rights (Read, Write and Delete, respec-
tively) to the report file. As a result, we modify the operation ReturnReport and
check again this scenario for consistency.

Step 5: Storing a scenario. The checked scenario from CurScenario is then
added to the set of checked scenarios CheckedScenarios. Then we repeat phases
Step 3–5 until we verify all the scenarios in the desired system workflow repre-
sented in the activity diagram.

As a result of the described process, we arrive at an Event-B model of RMS.
We specify and verify dynamic access control via allowed rights over the resources
according to the system policies.

7 Related Work and Conclusions

Recently the problem of modelling and analysing the access control policies
has attracted a significant research attention. Milhau et al. [9] have proposed

Fig. 7. Event-B specification of RMS (with possible inconsistencies)



Modelling and Verification of Dynamic RBAC 61

Fig. 8. Step 3: some events of the formalisation

a methodology for specifying access control policies using a family of graphical
frameworks and translating them into the B. The main aim of the work has been
to formally specify an access control filter that actually regulates access control
to the data. In this work, the dynamics is mainly considered with respect to the
operation execution order, while, in our work, the dynamic view on the access
policies depends on the system state, in particular, on the state of a resource.

The basic RBAC model has been extended in a variety of ways [1,5,13]. The
problem of spatio-temporal RBAC model is discussed in [1]. The authors consid-
ered role-based access control policies under time and location constraints. More-
over, they demonstrated how the proposed model can be represented and anal-
ysed using UML and OCL. Ray et al. [13] proposed location-aware RBAC model
that incorporates location constraints in user-role activation. In our work we con-
sider dynamic, state-dependent constraints within the access control model.

A number of works uses UML and OCL based domain specific language to
design and validate the access control model. For instance, in the work [15]
UML is used to describe security properties. In contrast to our work, here the
authors transform UML models to Alloy for analysis purpose. A domain-specific
language for modelling RBAC and translating graphical models in Event-B was
proposed in [19].

Verification of behaviour aspects of software models defined using the design-
by-contract approach has been discussed, e.g., in [3]. The goal of this work has
been to detect the defects in the definition of the operations. Formal verification
has been performed over the declarations of the operations in the UML/OCL
models. In contrast, in our work, the defined operational contracts are used to
model the scenario execution sequences and formulate the consistency properties.
A contract-based approach to modelling and verification of RBAC for cloud was
proposed in [11]. An approach to integrating UML modelling and Event-B to
reason about behaviour and properties of web-services was proposed in [12].

A data-flow oriented approach to graphical and formal modelling has been
proposed in [17,18,21]. These works use the graphical modelling to represent
system architecture and the data flow. The diagrams are translated into Event-
B, to verify the impact of security attacks on the invariant system properties.



62 I. Vistbakka and E. Troubitsyna

In this paper, we have done two main research contributions. Firstly, we
have defined a formal model of dynamic RBAC and proposed a contract-based
approach to verification of consistency of scenarios with respect to the static and
dynamic RBAC constraints. Secondly, we have proposed an integrated approach
incorporating verification of dynamic RBAC into Event-B. In our approach,
graphical models are used as a middle hand between the textual requirements
description and a formal model. They help a designer to identify the scenarios
and define the system workflow.

In this paper, we have used a combination of proving and model checking to
verify consistency between the scenarios and the constraints of dynamic RBAC.
Event-B and the Rodin platform have offered us a suitable basis for the formal-
isation and automation of our approach. The provers have been used to verify
correctness of the data structure definitions and the Pro-B model checker to find
violations in the scenario models. Moreover, model animation has facilitated
analysis of the scenarios as well as identifying the recommendations for opera-
tion implementation specifications. We have validated our approach by a case
study – Reporting Management System. We believe that the proposed approach
facilitates an analysis of complex access control policies.

As a future work, we are planing to consider more complex variants of
dynamic RBAC. For instance, we will model the situations when several users
can get simultaneous or partial access to some parts of a data resource depend-
ing on their roles and resource states. Moreover, we are planing to work on an
extension of the proposed approach for modelling and verification of dynamic
RBAC and formalise it as Event-B specification patterns.

References

1. Abdunabi, R., Al-Lail, M., Ray, I., France, R.B.: Specification, validation, and
enforcement of a generalized spatio-temporal role-based access control model. IEEE
Syst. J. 7(3), 501–515 (2013)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
3. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:

Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 4

4. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.
4(3), 224–274 (2001)

5. Fuchs, L., Pernul, G., Sandhu, R.S.: Roles in information security - a aurvey and
classification of the research area. Comput. Secur. 30(8), 748–769 (2011)

6. Laibinis, L., Troubitsyna, E.: A contract-based approach to ensuring component
interoperability in Event-B. In: Petre, L., Sekerinski, E. (eds.) From Action Systems
to Distributed Systems - The Refinement Approach, pp. 81–96. Chapman and
Hall/CRC (2016)

7. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

8. Meyer, B.: Design by contract: the Eiffel method. Proc. Tools 26, 446 (1998)

https://doi.org/10.1007/978-3-642-00255-7_4


Modelling and Verification of Dynamic RBAC 63

9. Milhau, J., Idani, A., Laleau, R., Labiadh, M., Ledru, Y., Frappier, M.: Combining
UML, ASTD and B for the formal specification of an access control filter. ISSE
7(4), 303–313 (2011)

10. ProB: Animator and Model Checker. https://www3.hhu.de/stups/prob/index.
php/. Accessed 06 June 2018

11. Rauf, I., Troubitsyna, E.: Generating cloud monitors from models to secure clouds.
In: DSN 2018. IEEE Computer Society (2018, in print)

12. Rauf, I., Vistbakka, I., Troubitsyna, E.: Formal verification of stateful services with
REST APIs using Event-B. In: IEEE ICWS 2018. IEEE (2018, in print)

13. Ray, I., Kumar, M., Yu, L.: LRBAC: a location-aware role-based access control
model. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161.
Springer, Heidelberg (2006). https://doi.org/10.1007/11961635 10

14. Rodin: Event-B platform. http://www.event-b.org/. Accessed 06 June 2018
15. Sun, W., France, R.B., Ray, I.: Rigorous analysis of UML access control policy

models. In: POLICY 2011, pp. 9–16. IEEE Computer Society (2011)
16. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into

Event-B development. Formal Asp. Comput. 27(1), 53–77 (2015)
17. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.:

Towards security-explicit formal modelling of safety-critical systems. In: Skavhaug,
A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 213–
225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 17

18. Troubitsyna, E., Vistbakka, I.: Deriving and formalising safety and security require-
ments for control systems. In: SAFECOMP 2018. LNCS. Springer, Cham (2018,
in print)

19. Vistbakka, I., Barash, M., Troubitsyna, E.: Towards creating a DSL facilitating
modelling of dynamic access control in Event-B. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 386–391. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 28

20. Vistbakka, I., Troubitsyna, E.: Towards integrated modelling of dynamic access
control with UML and Event-B. In: IMPEX/FM&MDD 2017. EPTCS, vol. 271,
pp. 105–116 (2018)

21. Vistbakka, I., Troubitsyna, E., Kuismin, T., Latvala, T.: Co-engineering safety
and security in industrial control systems: a formal outlook. In: Romanovsky, A.,
Troubitsyna, E.A. (eds.) SERENE 2017. LNCS, vol. 10479, pp. 96–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65948-0 7

https://www3.hhu.de/stups/prob/index.php/
https://www3.hhu.de/stups/prob/index.php/
https://doi.org/10.1007/11961635_10
http://www.event-b.org/
https://doi.org/10.1007/978-3-319-45477-1_17
https://doi.org/10.1007/978-3-319-91271-4_28
https://doi.org/10.1007/978-3-319-65948-0_7

	Modelling and Verification of Dynamic Role-Based Access Control
	1 Introduction
	2 From Static to Dynamic RBAC
	3 Reasoning About Dynamic RBAC Using Contracts
	4 Background: Event-B and ProB
	5 Verification of System Scenarios Under Dynamic RBAC
	6 Formal Modelling of a Reporting Management System
	7 Related Work and Conclusions
	References




