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Abstract. In this paper, we propose an automated compositional veri-
fication using implicit learning to verify Markov Decision Process (MDP)
against probabilistic safety properties. Our approach, denoted ACV uIL
(Automatic Compositional Verification using Implicit Learning), starts
by encoding implicitly the MDP components by using compact data
structures. Then, we use a sound and complete symbolic assume-
guarantee reasoning rule to establish the compositional verification pro-
cess. This rule uses the CDNF learning algorithm to generate automat-
ically the symbolic probabilistic assumptions. Experimental results sug-
gest promising outlooks for our approach.
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1 Introduction

An important feature of modern systems is their complexity. This characteristic
makes the design, implementation and verification of complex systems extremely
difficult. This difficulty is enhanced by the often critical role of these systems
(avionics control process, nuclear power plants, etc.). Probabilistic verification
is a set of techniques for formal modelling and analysis of such systems. Prob-
abilistic model checking [1–3] involves the construction of a finite-state model
augmented with probabilistic information, such as Markov chains or probabilis-
tic automaton [17,26]. This is then checked against properties specified in prob-
abilistic extensions of temporal logic, such as Probabilistic Computation Tree
Logic (PCTL) [18].

Formal methods, including the Probabilistic Model Checking [1–3] suffer from
the problem of state space explosion. This problem constitutes, even after sev-
eral years of research, the main obstacle of probabilistic model checking. Com-
positional verification [14,15,19,24] and Symbolic model checking [7,27] are two
promising approaches to cope with this problem. Compositional verification sug-
gests a divide and conquer strategy to reduce the verification task into simpler
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subtasks. A popular approach is the assume-guarantee paradigm [9,11,29], in
which individual system components are verified under assumptions about their
environment. Once it has been verified that the other system components do
indeed satisfy these assumptions, proof rules can be used to combine individual
verification results, establishing correctness properties of the overall system. The
success of assume-guarantee reasoning approach depends on discovering appro-
priate assumptions. The process of generating automatically assumptions can
be solved by using machine learning [9,14], such as CDNF learning algorithm
[6]. Symbolic model checking is also a useful technique to cope with the state
explosion problem. In symbolic model checking, system states are implicitly rep-
resented by Boolean functions, as well as the initial states and transition relation
of the system. To verify probabilistic systems encoded using Boolean function,
the Boolean function should be converted to another data structures such as
Binary Decision Diagrams(BDD) or Multi Terminal BDD(MTBDD) [16], this is
due to the absence of SAT-based model checking for probabilistic systems.

In this paper, we present a novel approach for the compositional verification
for probabilistic systems through implicit learning. Our aim is to reduce the size
of the state space. For that, we propose to encode the system components using
Boolean functions and Multi Terminal BDD. This encoding allows to store and
explore a large number of states efficiently [9]. We use the Boolean functions as
input of the CDNF learning algorithm. This algorithm generates an assumption
which simulates a set of MDP component. The idea is to use this assumption
for the verification instead of the real system components. Thus, if the size of
this assumption is much smaller than the size of the corresponding MDP com-
ponent, then we can expect significant gain of the verification performance. In
our work, Interval Markov Decision Processes (IMDP) are used to represent
assumptions. To establish the verification process and guarantee that the gener-
ated assumption simulates all the possible behaviour of the set of components,
we proposed a sound and complete symbolic assume-guarantee reasoning rule.
This rule defines and establish the compositional verification process. We have
illustrated our approach using a simple example, and we have applied our app-
roach in a several case studies derived from PRISM benchmarks. Experimental
results suggest promising outlooks for the implicit learning of the compositional
verification.

The remainder of this paper is organized as follows: In Sect. 2 we provide the
most relevant works to our work. Section 3 provides some background knowledge
about MDP, Interval MDP and the parallel composition MDP ‖ IMDP. In Sect. 4,
we present our approach, where we detail the process of encoding MDP using
Boolean function, our symbolic assume-guarantee reasoning proof rule and the
application of the CNDF learning algorithm to generate assumptions. Section 6
concludes the paper and talks about future works.

2 Related Works

In this section, we review some research works related to the symbolic probabilis-
tic model checking, compositional verification and assume-guarantee reasoning.
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Verification of probabilistic systems have been addressed by Vardi and Wolper
[32–34], and then by Pnueli and Zuck [30], and by Baier and Kwiatkowska [3].
The symbolic probabilistic model checking algorithms have been proposed by
[10,28]. These algorithms have been implemented in a symbolic probabilistic
model checker PRISM [22]. The main techniques used to generate counterexam-
ples was detailed in [21]. A recent work [12] proposed to use causality in order
to generate small counterexamples, the authors of this work propose to used the
tool DiPro to generate counterexamples, then they applied an aided-diagnostic
method to generate the most indicative counterexample. For the compositional
verification of non-probabilistic systems, several frameworks have been devel-
oped using the assume-guarantee reasoning approach [9,11,29]. The composi-
tional verification of probabilistic systems has been a significant progress in
these last years [14,15,19,23]. Our approach is inspired by the work of [14,15].
In this work, they consider the verification of Discrete Time Markov Chains, and
they proposed to use CDNF learning algorithm to infer assumptions. Another
work relevant to ours is [19]. This work proposed the first sound and complete
learning-based composition verification technique for probabilistic safety prop-
erties, where they used an adapted L∗ learning algorithm to learn weighted
automata as assumptions, then they transformed them into MTBDD.

3 Preliminaries

In this section, we give some background knowledge about MDP and IMDP.
MDP are often used to describe and study systems exhibit non deterministic
and stochastic behaviour.

Definition 1. Markov Decision Process (MDP) is a tuple M = (StatesM , sM
0 ,

ΣM , δM ) where StatesM is a finite set of states, sM
0 ∈ StatesM is an initial state,

ΣM is a finite set of actions, δM ⊆ StatesM × (ΣM ∪{τ})×Dist(StatesM ) is a
probabilistic transition relation, where where τ denotes a “silent” (or “internal”)
action.

In a state s of MDP M , one or more transitions, denoted (s, a) → μ, are
available, where a ∈ ΣM is an action label, μ is a probability distribution over
states, where μ �= 0, and (s, a, μ) ∈ δM . A path through MDP is a (finite or
infinite) sequence (s0, a0, μ0) → (s1, a1, μ1) → .... An example of two MDP M0

and M1 is shown in Fig. 1.
Interval Markov Chains (IMDP) generalize ordinary MDP by having interval-

valued transition probabilities rather than just probability value. In this paper,
we use IMDP to represent the assumptions used in our compositional verification.

Definition 2. Interval Markov Chain (IMDP) is a tuple
I = (StatesI , i

I
0, ΣI , P

l, Pu) where StatesI , i
I
0 and ΣI are respectively the set of

states, initial state and the set of actions. P l, Pu : StatesI ×ΣI ×StatesI �→ [0, 1]
are matrices representing the lower/upper bounds of transition probabilities such
that: P l(i, a)(i′) ≤ Pu(i, a)(i′) for all states i, i′ ∈ StatesI and a ∈ ΣI .



Toward Implicit Learning for the Compositional Verification of MDP 203

s0start s1

s2 s3

o
p
e
n
M

0
sendM0 0.3

sendM0 0.7

checkM0 0.8

c
h
e
c
k
M

0
0.
2

done fail

t0start t1

t2 t3

o
p
e
n
M

1

sendM1 0.3

sendM1 0.7

checkM1 0.8

c
h
e
c
k
M

1
0.
2

done fail

Fig. 1. Example of two MDP, M0 (left) and M1 (right).

i0start i1

i2 i3

all [0,1]

all [0,1]

all [0,1]
all [0,1]

all [0,1]

all [0,1]
all [0,1]

all [0,1]

all [0,1]

all [0,1]

Fig. 2. Example of IMDP I.

An example of IMDP I is shown in Fig. 2, where all represents the set of
actions : {openM0 , sendM0 , checkM0 , done, fail} with the probability interval
value equal to [0, 1].

In Definition 3, we describe how MDP and IMDP are composed together. This
is done by using the asynchronous parallel operator (‖) defined by [31], where
MDP and IMDP synchronise over shared actions and interleave otherwise.

Definition 3. Parallel composition MDP ‖ IMDP
Let M and I be MDP and Interval MDP, respectively. Their parallel com-
position, denoted by M ‖ I, is an Interval MDP MI. MI = {StatesM ×
StatesI , (sM

0 , sI
0), ΣM ∪ ΣI , P

l, Pu}, where P l, Pu are defined such that: (si, sj)
a−→ [P l(si, a)(sj) × μi, P

u(si, a)(sj) × μi] if and only if one of the following
conditions holds: Let si, s′

i ∈ StatesM and sj, s′
j ∈ StatesI : (i) si

a,μi−−−→
s′

i, sj

P l(sj ,a)(s′
j),P

u(sj ,a)(s′
j)−−−−−−−−−−−−−−−−→ s′

j, where a ∈ ΣM ∩ ΣI , (ii) si
a,μi−−−→ s′

i, where

a ∈ ΣM \ ΣI , and (iii) sj

P l(sj ,a)(s′
j),P

u(sj ,a)(s′
j)−−−−−−−−−−−−−−−−→ s′

j, where a ∈ ΣM \ ΣI .
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In this work we use the symbolic model checking to verify if a system M0 ‖ I
satisfies a probabilistic safety property. The symbolic Model checking uses BDD
and MTBDD to encode the state space. It is straightforward to convert a Boolean
function to a BDD/MTBDD.

Definition 4. A Binary Decision Diagram (BDD) is a rooted, directed acyclic
graph with its vertex set partitioned into non-terminal and terminal vertices (also
called nodes). A non-terminal node d is labelled by a variable var(d) ∈ X, where
X is a finite ordered set of Boolean variables. Each non-terminal node has exactly
two children nodes, denoted then(d) and else(d). A terminal node d is labelled
by a Boolean value val(d) and has no children. The Boolean variable ordering <
is imposed onto the graph by requiring that a child d′ of a non-terminal node d
is either terminal, or is non-terminal and satisfies var(d) < var(d′).

Definition 5. A Multi-Terminal Binary Decision Diagram (MTBDD) is a
BDD where the terminal nodes are labelled by a real number.

4 ACVuIL Approach

Our approach, probabilistic symbolic compositional verification using implicit
learning (ACVuIL), aims to mitigate the state explosion problem. Figure 3 illus-
trates an overview of ACVuIL. The first step consists to encode the system
component M0 using Boolean functions β(M0). Different from the explicit rep-
resenting of the state space, the implicit representation using Boolean functions
allows to store and explore a large number of states efficiently. β(M0) will be
used as input of the CDNF learning algorithm as target language. The second
step aims to generate an appropriate assumption SIi , which needs to abstract
the behaviour of the original competent M0. In our approach, we use the CDNF
learning algorithm to generate automatically the assumptions. The second step
starts by calling the CDNF learning algorithm, with β(M0) as input. At each
iteration, the CDNF learns a new assumption β(Ii) represented as Boolean func-
tions. For the first iteration (i = 0), the CDNF generates true as assumption,
for that, we generate a special initial assumption SI0 . For (i ≥ 1) iterations,
we convert the generated assumption β(Ii) to MTBDD SIi , then we refine the
initial assumption SI0 using SIi . We use the symbolic probabilistic model check-
ing algorithm (SPMC) to verify if SI0 ‖ SM1 satisfies the probabilistic safety
property P≤P [ψ]. If SPMC(SI0 , SM1) returns true, then we can conclude that
M0 ‖ M1 |= P≤P [ψ] is true i.e. P≤P [ψ] satisfies M0 ‖ M1, otherwise, we gen-
erate a counterexample Ctx illustrated why P≤P [ψ] is violated. Ctx can be
a real counterexample of the system M0 ‖ M1 or a spurious counterexample
due to the generated assumption. Thus, at each iteration, we analyse if Ctx
is real or not. If Ctx is real, then we can conclude that M0 ‖ M1 � P≤P [ψ]
i.e. P≤P [ψ] does not satisfy the system M0 ‖ M1, otherwise, we return Ctx to
CDNF to generate a new assumption. Our compositional verification process is
sound and complete. The soundness and completeness is guaranteed by the use
of an assume-guarantee reasoning rule. All steps of our approach are described
in details in the next sections.
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Input: MDP M0 and M1 and a probabilistic safety property P≤P [ψ]

Step 1:
- Encode M0 using Boolean functions B(M0)
- Encode M1 using MTBDD SM1

Probabilistic Symbolic Compositional Verification using Implicit Learning (ACV uIL)

B(M0), SM1 and P≤P [ψ]

Step 2 :

CDNF Learning algorithm

Input: B(M0)

No + β(Ii)

Convert β(Ii) to MTBDD SIi

Refine SI0 using SIi

SIi

Use Symbolic probabilistic
to check if SI0 SM1

If (i = 0) Yes
Generate Initial assumption SI0

satisfies P≤P [ψ]
SI0 SM1 |= P≤P [ψ]

Generate counterexample

Analyse Cex

Ctx

is Ctx

real counter-
example

SI0

No

No

False + Counterexample Ctx

True (SI0 SM1 |= P≤P [ψ])

Output:

Yes

Yes

and Generate sub-MDP
subM0

Fig. 3. An overview of our approach (ACVuIL).

4.1 Encoding MDP Using Boolean Functions

MDP can be encoded implicitly as Boolean functions, we denote by β(M0)
the Boolean functions encoded MDP M0. The encoding process of MDP using
Boolean functions aims to reduce the size of the state space. Indeed, many works
such as [7,16,27,28] show that the implicit representation is often more efficient
than the explicit representation. In addition, this Boolean functions will be used
as input of the CDNF learning algorithm. In this section we describe the process
of encoding MDP using Boolean functions.

Definition 6. β(M0) = (InitM0 , fM0 (yxx′eleu)) is a pair of Boolean functions
encoded the MDP M0, where InitM0 is predicate encoding the initial state sM0

0

over the set X and fM (yxx′eleu) is a transition predicate over Y ∪ X ∪ X ′ ∪ E
where y, x, x′, el, eu are predicates of receptively Y,X,X ′ and E. Y , X, X ′ and
E are finite ordered set of Boolean variables with Y ∩ X ∩ X ′ ∩ E = ∅. The set
X encodes the states of M0, X ′ next states, Y encodes actions and E encodes
the probability values.
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More concretely, let M0 = (StatesM0 , s
M
0 , ΣM0 , δM0) be a MDP. Let n =

|StatesM0 |, m = |ΣM0 | and k = 
log2(n)�. We can see δM0 as a function
of the form StatesM0 × ΣM0 × {1, 2, ..., r} × StatesM0 → [0, 1], where r is
the number of non-deterministic choice of a transition. We use a function
enc : StatesM0 → {0, 1}k over X = 〈x1, x2, ..., xk〉 to encode states in
StatesM0 and X ′ = 〈x′

1, x
′
2, ..., x

′
k〉 to encode next states. We use also Y = 〈

y1, y2, ..., ym 〉 to encode actions and we represent the probability values using
E = 〈el

1, e
u
1 , el

2, e
u
2 , ..., el

t, e
t〉, where t is the number of distinct probability value

in δM0 . fM0 (yxx′eleu) encodes the probabilistic transition relation δM0 as a
disjunction over a set of transition formulae, where each formula encodes a tran-
sition between two states. Suppose a transition s

a,p−−→ s′, we encode the state s,
the next state s′ and the action a using respectively enc(s), enc(s′) and enc(a),
where enc is a function encodes: (i) states s over Boolean variable set X, (ii) next
states s′ over Boolean variable set X ′, and (iii) actions over Boolean variable
Y . In addition, to encode the probability value p, we use the Boolean vari-
ables el and eu, where el and eu encode predicates of the form p ≥ μ(s, s′) and
p ≤ μ(s, s′) respectively. Thus, a transition of the from s

a,p−−→ s′ can be encoded
as: enc(y) ∧ enc(s) ∧ enc(s′) ∧ el ∧ eu.

Example 1. To illustrate how we encode MDP as Boolean functions, we consider
the MDP M0 (Fig. 1). M0 contains the set of states StatesM0 = {s0, s1, s2, s3}
and the set of actions ΣM0 = {openM0 , sendM0 , checkM0 , done, fail}. We use
X = 〈x0, x1〉 to encode the set of states in StatesM0 as: enc(s0) = ¬x0 ∧ ¬x1,
enc(s1) = ¬x0 ∧ x1, enc(s2) = x0 ∧ ¬x1, enc(s3) = x0 ∧ x1; and we use the set
Y = 〈o, s, c, d, f〉 to encode the actions {openM0 , sendM0 , checkM0 , done, fail},
respectively. Table 1 summarizes the process of encoding the transition function
δM0 . β(M0) = (InitM0 , fM0 (yxx′eleu)) encoded M0 is InitM0 = ¬x0 ∧¬x1 and

fM0(yxx′eleu) =

((s ∧ ¬x0 ∧ ¬x1 ∧ ¬x′
0 ∧ x′

1 ∧ el
3 ∧ eu

3 )
∨(s ∧ ¬x0 ∧ ¬x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

2 ∧ eu
2 )

∨(o ∧ ¬x0 ∧ ¬x1 ∧ x′
0 ∧ ¬x′

1 ∧ el
5 ∧ eu

5 )
∨(c ∧ ¬x0 ∧ x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

4 ∧ eu
4 )

∨(c ∧ ¬x0 ∧ x1 ∧ x′
0 ∧ x′

1 ∧ el
1 ∧ eu

1 )
∨(d ∧ x0 ∧ ¬x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

5 ∧ eu
5 )

∨(f ∧ x0 ∧ x1 ∧ x′
0 ∧ x′

1 ∧ el
5 ∧ eu

5 ))

4.2 Encoding MDP Using MTBDD

In this paper, we also consider the implicit representation using MTBDD.
MTBDD are used to encode components M1 and to perform the probabilis-
tic model checking. In Definition 7, we introduce Symbolic MDP (SMDP) and
we provide the different data structures used to encode MDP. We denoted by
SM1 the SMDP encoded the MDP M1.

Definition 7. Symbolic MDP (SMDP) is a tuple SM = (X, InitM , Y, fSM

(yxx′)) where X, X ′ and Y are finite ordered set of Boolean variables with
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Table 1. Encoding the set of states and the probability values of MDP M0 (Fig. 1).

ei ∈ E Predicate ei ∈ E Predicate si ∈ ΣM0 enc(si)

el0 ≥ 0 el2 ≥ 0.3 s0 ¬x0 ∧ ¬x1

eu0 ≤ 0 eu2 ≤ 0.3 s1 ¬x0 ∧ x1

el1 ≥ 0.2 el3 ≥ 0.7 s2 x0 ∧ ¬x1

eu1 ≤ 0.2 eu3 ≤ 0.7 s3 x0 ∧ x1

el4 ≥ 0.8 el5 ≥ 1

eu4 ≤ 0.8 eu5 ≤ 1

X ∩ X ′ ∩ Y = ∅. Init(X) is a BDD encoded the initial state and fSM
(yxx′) is

an MTBDD encoded the transition relation. The sets X, X ′ and Y are used to
encode respectively the set of states, next states and the set of actions of M , and
y, x, x′ are valuations of receptively, Y,X,X ′.

The encoding of MDP as SMDP follows the same process as the encoding
using Boolean functions.

Example 2. We consider the MDP M1 (Fig. 1) to illustrate the encoding of MDP
using SMDP. M1 contains the set of states StatesM1 = {t0, t1, t2, t3} and the
set of actions ΣM1 = {openM1 , sendM1 , checkM1 , done, fail}. We use the set
X = 〈x0, x1〉 to encode the set of states StatesM0 as: enc(t0) = (00), enc(t1)
= (01), enc(t2) = (10), enc(t3) = (11); and we use the set Y = 〈s, o, c, d, f〉 to
encode the actions {openM1 , sendM1 , checkM1 , done, fail}, respectively.

Following the same process to encode MDP implicitly as SMDP, we can
encode Interval MDP as SIMDP.

Definition 8. Symbolic Interval MDP (SIMDP) is a tuple SI = (X, InitI ,
Y, f l

SI
(yxx′), fu

SI
(yxx′)) where X, X ′ and Y are finite ordered set of Boolean

variables with X ∩ X ′ ∩ Y = ∅. InitI is a BDD encodes the initial state
and f l

SI
(yxx′) and fu

SI
(yxx′) are MTBDD encode the transition relation over

Y ∪ X ∪ X ′. The MTBDD f l
SI

(yxx′) encodes the lower probability bound and
fu

SI
(yxx′) encodes the lower. The sets X, X ′ and Y encode respectively, the

set of states, next states and the set of actions, and y, x, x′ are valuations of
receptively, Y,X,X ′.

4.3 Symbolic Assume-Guarantee Reasoning Rule

To establish the compositional verification process we propose an assume-
guarantee reasoning proof rule, where assumptions are represented using IMDP.
As described before, the compositional verification aims to generate a symbolic
assumption Ii represented using IMDP, where M0 is embedded in Ii (M0 � Ii).
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Definition 9. Let M0 = (StatesM0 , s
M0
0 , ΣM0 , δM0) and Ii = (StatesIi , s

Ii
0 , ΣIi ,

P l, Pu) be MDP and IMDP, respectively. We say M0 is embedded in Ii, written
M0 � Ii, if and only if: (1) StatesM0 = StatesIi , (2) sM0

0 = sIi
0 , (3) ΣMi

= ΣIi ,
and (4) P l(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′) for every s, s′ ∈ StatesM and
a ∈ ΣM .

Example 3. Consider the MDP M0 shown in Fig. 1 and IMDP I shown in Fig. 2.
They have the same number of states, identical initial state (s0, i0) and the same
set of actions ΣM1 = {openM1 , sendM1 , checkM1 , done, fail}. In addition, the
transition probability between any two states in M0 lies within the correspond-
ing transition probability interval in I by taking the same action in ΣM1 . For

example, the transition probability between s0 and s1 is s0
sendM0 ,0.7−−−−−−−→ s1, which

falls into the interval [0, 1] labelled the transition i0
sendM0 ,[0,1]−−−−−−−−→ i1 in I. Thus,

we have M0 � I; (M0 is embedded in I).

Theorem 1. Symbolic assume-guarantee reasoning rule
Let M0,M1 be MDP and P≤P [ψ] a probabilistic safety property, then the follow-
ing proof rule is sound and complete: if M0 � I and I ‖ M1 |= P≤P [ψ] then
M0 ‖ M1 |= P≤P [ψ]. This proof rule means, if we have a system composed of
two components M0 and M1, then we can check the correctness of a probabilistic
safety property P≤P [ψ] over M0 ‖ M1 without constructing and verifying the full
state space. Instead, we first generate an appropriate assumption I, where I is an
IMDP, then we check if this assumption could be used to verify M0 ‖ M1 by check-
ing the two promises: (i) Check if M0 is embedded in I, M0 � I, and (ii) Check
if I ‖ M1 satisfies the probabilistic safety property P≤P [ψ], I ‖ M1 |= P≤P [ψ].
If the two promises are satisfied then we can conclude that M0 ‖ M1 satisfies
P≤P [ψ].

Proof (Soundness). Consider M0 and M1 be MDP, where M0 = (StatesM0 ,
sM0
0 , ΣM0 , δM0), M1 = (StatesM1 , s

M1
0 , ΣM1 , δM1), and IMDP I, I =

(StatesI , s
I
0, ΣI , P

l, Pu). If M0 � I and based on Definition 9 we have
StatesM = StatesI , sM

0 = sI
0, ΣM = ΣI , and P l(s, a)(s′) ≤ μ(s, a)(s′) ≤

Pu(s, a)(s′) for every s, s′ ∈ StatesM0 and a ∈ ΣM0 . Based on Definitions 3
and 9, M0 ‖ M1 and I ‖ M1 have the same state space, initial state and
actions. Since P l(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′), and we suppose the tran-
sition probability of M0 ‖ M1 as: μM0‖M1((si, sj), a)(s′

i, s
′
j) = μM0((si), a)(s′

i)×
μM1((sj), a)(s′

j) for any state si, s
′
i ∈ StatesM0 and sj , s

′
j ∈ StatesM1 . Thus,

P l((si, sj), a)(s′
i, s

′
j) ≤ μM0‖M1((si, sj), a) (s′

i, s
′
j) ≤ Pu((si, sj), a)(s′

i, s
′
j) for the

probability between two states (si, s
′
i) and (sj , s

′
j). In I ‖ M1 the probability

interval between any two states (si, sj) and (s′
i, s

′
j) is restricted by the interval

[P l((si, a)(s′
i)×μM1(sj), a)(s′

j), Pu((si, a)(s′
i)×μM1(sj) , a)(s′

j)], this implies, if
M0 � I and I ‖ M1 |= P≤P [ψ] then M0 ‖ M1 |= P≤P [ψ] is guaranteed.
Proof (Completeness). The completeness of our approach is guarantee since
we always generate a new assumption to refine the initial one. In the worst case,
the CDNF will learn a final assumption equivalent to the original component.
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4.4 CDNF Learning Algorithm

The CDNF learning algorithm [6] is an exact learning algorithm for Boolean
functions. It learns a Boolean formula in conjunctive disjunctive normal form
(CDNF) for a target Boolean function over a fixed set of Boolean variables x.
In this paper, we use this algorithm to learn the symbolic assumptions I for
MDP represented by Boolean functions. During the learning process, the CDNF
learning algorithm interacts with a Teacher to make two types of queries: (i)
membership queries and (ii) equivalence queries. A membership queries are used
to check whether a valuation v over Boolean variables x satisfies the target
function. Equivalence queries are used to check whether a conjectured Boolean
function is equivalent to the target function.

4.5 ACVuIL: Automatic Compositional Verification Using Implicit
Learning Algorithm

Algorithm ACVuIL highlighted the main steps of our approach. ACVuIL accepts
the system components MDP M0, M1 and the probabilistic safety property ϕ =
P≤P [ψ] as input. ACVuIL starts by encoding M0 using Boolean functions and
M1 using SMDP. Then, it calls the CDNF learning algorithm to learn the initial
assumption I0. For the first iteration, CDNF learns true as initial assumption.
For that, ACVuIL calls the function GenerateInitialAssumption to generate
SI0 . The process of generating the SIMDP SI0 is described in the next section.

4.6 Generate Initial Assumption

The ACVuIL calls the function GenerateInitialAssumption to generate the
initial assumption SI0 . This function accepts MDP M0 and the Boolean functions
I0 as inputs, and returns SIMDP SI0 . The process of generating SI0 is described
in Algorithm 2.

GenerateInitialAssumption creates a new IMDP Initial I0 equivalent to
M0, with transitions equal to [0, 1] between all states, and the set of actions are
hold in each transition. Then it encodes the IMDP of Initial I0 as SIMDP. The
aim behind the generation of SI0 with transition equal to [0, 1] between all states
is to reduce the size of the implicit representation of the state space. Indeed, for
large probabilistic system, when we use uniform probabilities (0 and 1 in our
case) this will reduce the number of terminal nodes as well as non-terminal nodes.
Adding transition between all states, will keep our assume-guarantee verified for
the initial assumption, since M0 is embedded in Initial I0, in addition, this
process will help to reduce the size of the implicit representation of Initial I0
and this by combining any isomorphic sub-tree into a single tree, and eliminating
any nodes whose left and right children are isomorphic.

Example 4. To illustrate our approach, we consider the verification of M0 ‖ M1

(Fig. 1) against the probabilistic safety property P≤0.0195[♦“err”], where “err”
stands for the state (s3, t3). This property means that the maximum probabil-
ity that the system M0 ‖ M1 should never fails, over all possible adversaries,
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Algorithm 1. ACVuIL
1: Input: M0, M1 and ϕ = P≤P [ψ]
2: output: SIMDP Ii, set of counterexamples and a Boolean value
3: Begin
4: β(M0) ← Encode M0 as a Boolean functions;
5: SM1 ← Encode M1 as SMDP;
6: I0 ← CDNF (β(M0));
7: SI0 ← GenerateInitialAssumption(M0, I0);
8: result ← SPMC(SI0 , SM1 , ϕ);
9: while (result == false) do

10: i ← i + 1;
11: Ctx ← GenerateCounterexample (SIi−1 , SM1 , ϕ);

12: subM0 ← GenerateSub-MDP (M0,Ctx);
13: real ← AnalyseCounterexample (subM0,SM1 ,ϕ);
14: if (real == true) then
15: return (SIi−1 ,Ctx,false);

16: else
17: β(Ii) ← return false to CDNF to generate new assumption;
18: SIi ← Refine SIi(SI0 , β(Ii), β(M0)).
19: result ← SPMC(SIi , SM1 , ϕ);
20: end if
21: end while;
22: return (SIi ,NULL,true);
23: End

is less than 0.0195. ACVuIL starts by encoding M0 using Boolean functions
β(M0). β(M0) encoded M0 is illustrated in Sect. 4.1. In addition, The encod-
ing process of M1 as SMDP is illustrated in Sect. 4.2. After encoding the
system components using implicit representation, ACVuIL calls the function
GenerateInitialAssumption to generate the initial assumption. The explicit
representation of the initial assumption Initial I0 is illustrated in Fig. 2.

Symbolic Probabilistic Model Checking (SPCV). In line 8 and 19,
ACVuIL calls the function Symbolic probabilistic model checking (SPCV). To
model checking SIi ‖ SM1 � P≤P [ψ], SPCV computes the parallel composition
SIi ‖ SM1 , where the result is SIMDP, because SIi is SIMDP. Indeed, model
checking algorithm for IMDP was considered in [4,8], where it was demonstrated
that the verification of IMDP is often more consume, in time as well as in space,
than the verification of MDP. In this work, our ultimate goal is reducing the
size of the state space. Therefore, the verification of IMDP needs to be avoided.
Thus, we propose rather than verifying SIMDP SIi ‖ SM1 , we verify only a
restricted SMDP RI, which is an MTBDD contains the upper probability value
of the probability interval associate in each transition of SIi . This can be done by
taking the MTBDD fu

SIi
of SIi . Then, the verification of RI ‖ SM1 can be done

using the standard probabilistic model checking proposed in [19]. The symbolic
probabilistic model checking used in this work was proposed in [28].
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Algorithm 2. GenerateInitialAssumption

1: Input: MDP M0, Boolean functions I0
2: output: SIMDP SI0

3: BEGIN
4: Create a new IMDP Initial I0 equivalent to M0, with transitions equal to [0, 1]

between all states. The set of actions in M0 are hold in each transition of I0.
5: SI0 ← Encode Initial I0 as SIMDP;
6: return SI0 ;
7: End

Example 5. To analyse if SI0 could be used to establish the compositional
verification, ACVuIL calls the symbolic model cheeking (SPCV) to check if
SI0 ‖ SM1 |= P≤0.0195[♦“err”]. This latter returns false. In practice, to ver-
ify SI0 ‖ SM1 |= P≤0.0195[♦fail] we used the model PRISM with the engine
“MTBDD” [22].

Generate Probabilistic Counterexamples. The probabilistic counterexam-
ples are generated when a probabilistic property ϕ is not satisfied. They provide
a valuable feed back about the reason why ϕ is violated.

Definition 10. The probabilistic property ϕ = P≤ρ[ψ] is refuted when the prob-
ability mass of the path satisfying ϕ exceeds the bound ρ. Therefore, the coun-
terexample can be formed as a set of paths satisfying ϕ, whose combined measure
is greater than or equal to ρ.

As denoted in Definition 10, the probabilistic counterexample is a set of finite
paths, for example, the verification of the property “a fail state is reached with
probability at most 0.01” is refused by a set of paths whose total probability
exceeds 0.01. The main techniques used for the generation of counterexamples
are described in [21]. The probabilistic counterexamples are a crucial ingredient
in our approach, since they are used to analyse and refine the conjecture symbolic
assumptions. Thus, our need consist to find the most indicative counterexample.
A most indicative counterexample is the minimal counterexample (which has the
least number of paths). A recent work [12] proposed to use causality in order to
generate small counterexamples.

Example 6. Since PSCV (SI0 ‖ SM1 |= P≤0.0195[♦“err”]) returns false, the
ACVuIL calls the function GenerateCounterexample to generate Ctx, which
shows the reason why P≤0.0195[♦“err”]) is violated. In addition Ctx will be
used to check if it is a real counterexample or not. In practice, we used the

tool DiPro to generate counterexamples. This returns Ctx = {(s0, t0)
openM1 ,1−−−−−−→

(s3, t0)
sendM2 ,0.7−−−−−−−→ (s3, t1)

checkM2 ,0.2−−−−−−−−→ (s3, t3)}.
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Generate Sub-MDP and Analyse the Probabilistic Counterexamples.
To analyse if the counterexample Ctx is real or not, ACVuIL generates a sub-
MDP, where this latter represents a fragment of the MDP M0 based on the prob-
abilistic counterexample Ctx, where the MDP fragment SubM0 contains only
transitions present in Ctx. Thus, the fragment SubM0 is obtained by removing
from M0 all states and transitions not appearing in any path of the set Ctx. Since
we use symbolic data structures to encode the state space, we encode the MDP
fragment SubM0 using SMDP (following the same process to encode MDP). The
function GenerateSubMDP is described in Algorithm 3.

Algorithm 3. GenerateSub − MDP

1: Input: MDP M0 and a set of counterexample Ctx
2: output: SMDP subM0

3: Begin
4: Sub-MDP MCtx

0 = remove from M0 all states and transitions not appearing in any
path of the set Ctx;

5: SMDP SubM0 = Encode MCtx
0 as SMDP;

6: return SubM0;
7: End

Then ACVuIL calls the function AnalyseCounterexample. This function
aims to check whether the probabilistic counterexample Ctx is real or not. Ctx
is a real counterexample of the system M0 ‖ M1 |= P≤P [ψ] if and only if SubM0 ‖
SM1 |= P≤ρ[ψ] does not hold i.e. AnalyseCounterexample returns true if and
only if the symbolic probabilistic model cheeking of SubM0 ‖ SM1 |= P≤ρ[ψ]
returns false, or false otherwise.

Example 7. To analyse the counterexamples, ACVuIL generates a sub − MDP
containing only states and transitions exist in Ctx. For our example, the set Ctx

contains transition s0
openM1 ,1−−−−−−→ s3, where this transition is not present in M0.

Thus, AnalyseCounterexample returns false, since no sub-MDP was generated
for this counterexample. After a few iterations, ACVuIL returns the final assump-
tion SIf equivalent to the original component M0. In this example, ACVuIL was
not able to generate a final assumption more compact than the original com-
ponent. Indeed, in the worst case, ACVuIL returns the original component as a
final assumption.

If the probabilistic counterexample Ctx is not real, then ACVuIL returns
false to the CDNF learning algorithm. When ACVuIL returns false to CDNF,
this means that the generated assumption is not equivalent to the target Boolean
functions. Thus, CDNF generates a new assumption β(Ii) (i ≥ 1). In line 18,
the ACVuIL calls the functions Refine SIi to refine the initial assumption. The
function Refine SIi is described in the next section (Sect. 4.6).
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Refinement Process of the Conjecture Symbolic Assumption SIi . At
each iteration of the ACVuIL, the generated assumption SIi converges to the
target Boolean functions (β(M0)). The function Refine SIi aims to refine the
initial assumption SI0 using the new generated assumption. This is done by
removing from the initial assumption all transitions between two states, if these
states are present in the new generated assumption, and add transitions from
the original component between these states.

Algorithm 4. Refine SIi

1: Input: SI0 , β(Ii), β(M0)
2: output: SIi

3: Begin
4: SIMDP SItmp ← convert β(Ii) to SIMDP.
5: We consider fu

SItmp
(yxx′) the MTBDD encoding the lower probability values of

SItmp and fu
SI0

the MTBDD encoding the lower probability values of SI0 ;

6: Let vItmp = (yItmp , xItmp , x′
Itmp

), vI0 = (yI0 , xI0 , x′
I0);

7: Let vM0 = (yM0 , xM0 , x′
M0 , euM0);

8: for each valuation vItmp ∈ fu
SItmp

do

9: remove from SI0 all valuations vI0 if (xItmp = xI0 & x′
Itmp

= x′
I0);

10: add all valuations vM0 ∈ β(M0) to fu
SIi

if (xItmp = xM0 & x′
Itmp

= x′
M0);

11: end for
12: optimise fu

SI0
;

13: return SI0 ;
14: End

5 Implementation and Experimental Results

We have implemented a prototype tool to evaluate our approach. Our tool
accepts MDP specified using PRISM code and a probabilistic safety property
as input, and returns either true if the MDP satisfies the probabilistic safety
property, or false and a counterexample otherwise. To implement our tool, we
have used the library BULL1, which impelements the CDNF learning algorithm
and the tool Dipro2 to generate counterexamples. In this section, we give the
results obtained for the application of our approach in a several case studies
derived from the PRISM benchmark3. For each case study, we check the model
against a probabilistic safety property using: (i) symbolic monolithic probabilis-
tic model checking and (ii) compositional verification (our approach). The tests
1 https://sourceforge.net/projects/bull/.
2 https://se.uni-konstanz.de/research1/tools/dipro/.
3 http://www.prismmodelchecker.org/casestudies/index.php.

https://sourceforge.net/projects/bull/
https://se.uni-konstanz.de/research1/tools/dipro/
http://www.prismmodelchecker.org/casestudies/index.php


214 R. Bouchekir and M. C. Boukala

were carried on a personal computer with Linux as operating system, 2.30 GHz
I5 CPU and 4 GB RAM.

For each case study, we compare the size of the original component M0

and the final assumption If and this by considering the number of clauses
(#Clauses) and the number of nodes (MTBDD nodes). In addition, we compare
the symbolic non-compositional verification (SMV) with our approach ACVuIL.
For SMV, we report the size (number of MTBDD nodes) and the time for model
construction (T4MC) for the model SM0 ‖ SM1 . For ACVuIL, we report the
number of iterations for ACVuIL algorithm to learn the final assumption SIf

(#ite.), total time to generate SIf (T. Gen. SIf ), as well as the size and T4MC
to model checking SIf ‖ SM1 .

The results are reported in Table 2. The case studies considered in our exper-
imental results are:

(i) Randomized dining philosophers [13,25], for this case study we check the prop-
erty ϕ1 = the probability that philosophers do not obtain their shared resource
simultaneously is at most 0.1, formally: P≤0.1[♦“err”], where label “err” sands
for every states satisfy: [(sN ≥ 8)&(sN ≤ 9)], and N is the component number,
(ii) The second case study is Israeli and Jalfon [20] solution for the randomized
Self stabilising algorithm, we check the system against property: ϕ2 = the prob-
ability to reach a stable configuration for all algorithms is at most 0.999, (iii)
The third case study is a variant of the client-server model from [29]. It models
a server and N clients. The server can grant or deny a client’s request for using a
common resource, once a client receives permission to access the resource, it can
either use it or cancel the reservation. Failures might occur with certain prob-
ability in one or multiple clients, causing the violation of the mutual exclusion
property (i.e. conflict in using resources between clients). In this case study, we
consider the property: ϕ3 =the probability a failure state is reached is at most
0.98.

The overall results show that ACVuIL successfully generates assumptions
for all case studies. As shown in Table 2, CDNF learns assumption β(If ) smaller
than the original component β(M0). For the case studies R.D. Philos and Client-
Server, the implicit representation of the final assumption using MTBDD is
more compact than the implicit representation of the original components. How-
ever, for R.S. Stab. is the same size, this is due to the fact that ACVuIL had
refined all transitions of the initial assumption, therefore, the final assumption is
equal to the original component. For the verification time, the symbolic mono-
lithic verification (non-compositional) verifies the system faster than our app-
roach ACVuIL. Indeed, our approach takes more time to generate and refine the
assumptions, as well as, the time necessary to generate counterexamples at each
iteration.
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Table 2. Experimental results for the case studies randomized dining philosophers,
randomized Self stabilising algorithm and Client-server

Case

study

N. P. # Clauses MTBDD

nodes

SMV ACVuIL

SM0 SM1 #Ite. T. gen

SIf

SIf
SM1

β(M0) β(If ) SM0 SIf
T4MC Size T4MC Size

R.D.

Philos

6 ϕ1 3696 467 910 340 0.883 5008 237 30.57 0.110 1816

8 48656 3486 1958 670 2.573 9215 308 67.28 0.128 3711

10 599600 24677 3335 1062 7.353 14570 381 103.62 0.259 6164

R.S.

Stab.

6 ϕ2 21 12 7 7 0.001 63 12 2.14 0.001 63

10 140 80 31 31 0.007 1023 29 7.05 0.007 1023

14 784 448 127 127 0.016 16383 59 17.25 0.016 16383

18 4032 2304 511 511 0.034 262143 102 39.52 0.034 262143

Client

Server

5 ϕ3 3348 3122 917 911 0.114 5962 12 17.02 0.091 5855

6 12069 11052 1282 1274 0.146 7439 19 25.08 0.139 7129

7 42282 38947 1707 1697 0.130 10684 28 41.06 0.181 8433

6 Conclusion and Future Works

In this paper, we proposed a fully-automated probabilistic symbolic composi-
tional verification to verify probabilistic systems, where each component is an
MDP. Our approach ACVuIL is based on complete and sound symbolic assume-
guarantee reasoning rule. The first step aims to encode the system components
using compact data structures such as Boolean functions and MTBDD, then
we use the compositional verification to model checking the system against the
probabilistic safety property. In addition, we proposed to use the CDNF to learn
automatically assumptions used in the verification process. We evaluated our
approach using three case studies derived from PRISM benchmark, that are
R.D. Philos, R.S. Stab. and Client-Server. The overall results show that our
approach successfully generates assumptions. For two of the listed case stud-
ies, the CDNF learns assumption with implicit representation smaller than the
original competent. For the future works, we plan to proposed other assume-
guarantee reasoning rule such as asymmetric rule or circular rule to handle more
large and complex systems. In addition, the research present in this paper can be
extended to verify other probabilistic properties such as liveness. Furthermore,
we plan to evaluate our approach using real-life complex systems such as the
verification of the composition of inter-organisational Workflows [5].
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