
Exploiting Local Persistency for Reduced
State Space Generation

Kamel Barkaoui1, Hanifa Boucheneb2(B), and Zhiwu Li3,4

1 Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,
192 rue Saint Martin, Paris Cedex 03, France

kamel.barkaoui@cnam.fr
2 Laboratoire VeriForm, Department of Computer Engineering and Software

Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville,
Montréal, Québec H3C 3A7, Canada

hanifa.boucheneb@polymtl.ca
3 Institute of Systems Engineering, Macau University of Science and Technology,

Taipa, Macau
zhwli@xidian.edu.cn

4 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China

Abstract. This paper deals with the partial order techniques of Petri
nets, based on persistent sets and step graphs. To take advantage of the
strengths of each method, it proposes the persistent step sets as a para-
metric combination of the both methods. The persistent step sets method
allows to fix, for each marking, the set of transitions to be covered by
the selected steps and then to control their maximal length and number.
Moreover, this persistent step selective search preserves, at least, dead-
locks of Petri nets.

This paper also provides two practical computation procedures of the
persistent step sets based on the strong-persistent sets [5,10] and the
persistent sets, respectively.

Keywords: Petri nets · Reachability analysis
State explosion problem · Persistent sets · Partial order techniques
Step graphs

1 Introduction

The state explosion problem is the main obstacle for the verification of concur-
rent systems, as they are generally based on an interleaving semantics, where
all possible firing orders of concurrent actions are exhaustively explored. Differ-
ent techniques for fighting this problem have been proposed such as structural
analysis, symmetries and partial orders.

The structural analysis attempts to find a relationship between the behaviour
of the net and its structure. Its results are of particular importance since initial
marking is considered as a parameter. The net structure can be studied through

c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 166–181, 2018.
https://doi.org/10.1007/978-3-030-00359-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_11&domain=pdf

Exploiting Local Persistency for Reduced State Space Generation 167

its associated incidence matrix and the corresponding net state equation leading
mainly to the concept of place invariants [4] or through topological properties of
the interplay between conflict and synchronisation of remarkable substructures
of the net such siphons and traps leading to necessary and/or sufficient structural
conditions to check general behavioural properties such as liveness [3,7] for large
subclasses of place/transition nets [1,2].

The second well-accepted technique to tackle combinatorial explosion in
model-checking consists into exploitation of symmetries over states and the tran-
sition relation [6] leading to the building of a quotient graph of equivalence classes
of states, that may be exponentially smaller than the full state graph and pre-
serving many behavioural properties of interest.

The partial order techniques have been proven to be the most successful in
practice. We distinguish two classes of partial order techniques: partial order
reduction [5,8,9,11–13] and step graph [14]. Partial order reduction techniques,
such as the ample sets [8,9], the stubborn sets [11–13] and the persistent sets [5],
deal with the state explosion problem by avoiding as much as possible to explore
firing sequences that are equivalent w.r.t. the properties of interest (deadlock
freeness, reachability, liveness, or linear properties)1. The step graph methods
explore all the transitions of the state space but some of them are fired together
in atomic steps. The common characteristics of all these methods is to reduce
the state space to be explored, by selecting the actions or sets of actions (steps)
to be executed from each state. The selection procedure of actions or steps relies
on the notion of independent actions. Two actions are said to be independent,
if whenever they are enabled, they can be fired in both orders and the firing of
one of them does not inhibit the occurrence of the other. Moreover, their firing
in both orders leads to the same state. Both of these conditions constitute the
well known diamond property.

Each of the partial order reduction methods above provides sufficient condi-
tions that ensure, at least, preservation of deadlocks. Thus, the set ST of the
selected transitions or steps is only empty for the deadlock markings (i.e., mark-
ings with no enabled transitions). The other sufficient conditions are generally
based on the structure of the model, the property to be verified and the current
marking. Their aim is to ensure independency between transitions of ST and the
others. Indeed, for the ample sets method [8,9], there is no transition outside ST
that is firable before all transitions of ST and, at the same time, is dependent of
at least a transition of ST . For the stubborn sets method [11–13], ST contains
at least an enabled transition that cannot be disabled by the transitions outside
ST and each of its transitions t is independent of all transitions outside ST that
are firable before t. The persistent sets method [5] is considered a particular case
of the stubborn sets method, where all transitions of ST are enabled. For the
covering-steps graph method [14], the set of steps to be fired from each marking
must cover the set of enabled transitions.

1 Two firing sequences are equivalent w.r.t. some property, if they cannot be distin-
guished by the property.

168 K. Barkaoui et al.

To achieve more reductions, in [10], the authors have combined this technique
with the persistent sets method. This combination consists to firstly compute
a persistent set for the current marking and then look for firing steps within
this persistent set. For these approaches, the transitions within the same step
are neither in weak-conflict nor in structural conflict with the partially enabled
transitions.

This paper is interested in the persistent sets and the step graphs. To take
advantage of the strengths of each method, it investigates their combination and
proposes persistent step sets method. Persistent-step sets method is a paramet-
ric combination of persistent sets with step graphs that allows to fix, for each
marking, the set of transitions to be covered by the selected steps and then to
control their maximal length and number.

The rest of the paper is organized as follows. Section 2 fixes some classi-
cal definitions and notations used throughout the paper. Section 3 presents the
strong-persistent sets [5,10], the persistent sets (a weaker version of the strong-
persistent sets) and the step graph methods, while pointing out their weaknesses.
Section 4 provides a formal definition of persistent step sets and proves that they
yield graphs preserving deadlocks of Petri nets. Section 5 establishes two com-
putation procedures of persistent step sets that are based on strong-persistent
sets and persistent sets, respectively. Conclusions are presented in Sect. 6.

2 Preliminaries

Let P be a nonempty set. A multi-set over P is a function M : P −→ N, N
being the set of natural numbers, defined also by the linear combination over
P :

∑

p∈P

M(p) × p. We denote by PMS and 0 the set of all multi-sets over P

and the empty multi-set, respectively. Operations on multi-sets are defined as
usual. Notice that any subset X ⊆ P can be defined as a multi-set over P :
X =

∑

p∈X

1 × p.

An ordinary Petri net (PN in short) is a tuple PN = (P, T, pre, post) where:

– P and T are finite and nonempty sets of places and transitions with P ∩ T = ∅,
– pre and post are the backward and forward incidence functions over the set

of transitions T (pre, post : T −→ 2P).

For t ∈ T, pre(t) and post(t) are the sets of input and output places of t,
denoted also by •t and t•, respectively. Similarly, the sets of input and output
transitions of a place p ∈ P are defined by •p = {t ∈ T | p ∈ t•} and p• = {t ∈
T | p ∈ •t}, respectively.

Two transitions t and t′ are in structural conflict, denoted by t ⊥ t′ iff
pre(t) ∩ pre(t′) �= ∅. We denote by CFS(t) = {t′ ∈ T |t ⊥ t′} = (•t)• the set
of transitions in structural conflict with t. They are in weak conflict iff t ⊥∗ t′,
where ⊥∗ is the transitive closure of ⊥. We denote by CFS∗(t) = {t′ ∈ T |t ⊥∗

t′} the set of transitions in weak conflict with t. Notice that t ∈ CFS(t) and
CFS(t) ⊆ CFS∗(t).

Exploiting Local Persistency for Reduced State Space Generation 169

A marking of an ordinary Petri net indicates the distribution of tokens over
its places. It is defined as a multi-set over places. A marked PN is a pair
N = (PN,M0), where PN is an ordinary Petri net and M0 ∈ PMS is its initial
marking. Starting from its initial marking, PN evolves by firing enabled tran-
sitions. For the following, we fix a marked PN N , a marking M ∈ PMS and a
transition t ∈ T of N .

The transition t is enabled at M , denoted M [t〉 iff all the required tokens for
firing t are present in M , i.e., M ≥ pre(t). The transition t is partially enabled in
M iff t is not enabled in M and, at least, one of its input places is marked. In case
t is enabled at M , its firing leads to the marking M ′ = M −pre(t)+post(t). The
notation M [t〉M ′ means that t is enabled at M and M ′ is the marking reached
from M by t. We denote by En(M) the set of transitions enabled at M , i.e.,
En(M) = {t ∈ T | M ≥ pre(t)}. The marking M is a deadlock iff En(M) = ∅.

For any sequence of transitions ω = t1t2...tn ∈ T+ of N , the usual notation
M [t1t2...tn〉 means that there exist markings M1, ...,Mn such that M1 = M and
Mi[ti〉Mi+1, for i ∈ [1, n − 1] and Mn[tn〉. The sequence ω is said to be a firing
sequence of M . The notation M [t1t2...tn〉M ′ gives, in addition, the marking
reached by the sequence (M ′ is reachable from M by ω). By convention, we
have M [ε〉M . We denote by

−→
M the set of markings reachable from M , i.e.,−→

M = {M ′ ∈ PMS |∃ω ∈ T ∗,M [ω〉M ′}.
A firing sequence ω of M is maximal iff it is infinite (i.e., ω ∈ T∞) or it is

finite and leads to a deadlock marking. The transition t is potentially firable from
M if there exists a sequence ω ∈ T ∗ s.t. M [ωt〉. Two sequences of transitions ω
and ω′ are equivalent, denoted by ω ≡ ω′ iff they are identical or each one can
be obtained from the other by a series of permutations of transitions. If ω ≡ ω′

then ∀M ′,M ′′ ∈ PMS , (M [ω〉M ′ ∧ M [ω′〉M ′′) ⇒ M ′ = M ′′. We denote by [ω]
the set of transitions in ω. The firing sequences of N are the firing sequences of
its initial marking.

The different possible evolutions of N are represented in a marking graph
MG defined by the structure MG = (

−→
M0, [〉,M0). Let n be a natural number.

The marked PN N is n-bounded iff for every reachable marking of M0, the
number of tokens in each place does not exceed n. It is safe iff it is 1-bounded.
It is bounded iff it is k-bounded for some natural number k.

A firing step τ of N is a non-empty subset of transitions (τ ⊆ T) fired simul-
taneously and atomically from a marking of N . From an interleaving semantic
point of view, it represents an abstraction of all firing orders of its transitions.
For instance, τ = {t1, t2, t3} represents the following six sequences: t1t2t3, t1t3t2,
t2t1t3, t2t3t1, t3t1t2 and t3t2t1. The intermediate markings are abstracted to keep
only the markings before and after the firing step.

Let M ∈ PMS be a marking and τ a firing step of N . The firing step τ
is enabled in M , denoted by M [τ〉 iff M ≥ ∑

t∈τ
pre(t), which means that there

are enough tokens to fire concurrently all the transitions within the step. If τ is
enabled in M , its firing leads to the marking M ′ = M +

∑

t∈τ
(post(t) − pre(t)).

The notation M [τ〉M ′ means that τ is enabled at M and M ′ is the marking

170 K. Barkaoui et al.

reached from M by τ . We denote by EnS(M) the set of all enabled steps in M ,
i.e., EnS(M) = {τ ⊆ T | τ �= ∅ ∧ M ≥ ∑

t∈τ
pre(t)}. The firing step τ is maximal

in M iff it is maximal for the inclusion in EnS(M), i.e., M ≥ ∑

t∈τ
pre(t) and

∀t′ ∈ En(M) − τ,M �≥ pre(t′) +
∑

t∈τ
pre(t).

A step graph of N is a structure SG = (MM,R,M0), where MM ⊆ −→
M0 is a

subset of reachable markings, M0 is the initial marking and R ⊆ MM × 2T ×
MM is relation defined by (M, τ,M ′) ∈ R ⇒ M [τ〉M ′.

For the rest of paper, we fix an ordinary Petri net N = (P, T, pre, post,M0).

3 Persistent Sets and Step Graphs

3.1 Persistent Sets

Let M be a marking. Informally, a persistent set of M is a subset μ of enabled
transitions such that no transition of μ can be disabled, as long as no transition
of μ is fired [5,10]. A persistent graph is obtained by recursively firing from each
marking a persistent set. Persistent graphs preserve deadlocks of Petri nets [10].

However, this strong definition of persistent sets can be weakened while pre-
serving deadlocks of Petri nets. The idea comes from the stubborn sets [13]. But
unlike the stubborn sets, all the transitions inside a persistent set are enabled.
To distinguish between the two definitions of persistent sets, the persistent sets
of [5,10] are referred to as strong-persistent sets.

Definition 1. Let M be a marking and μ ⊆ En(M) a subset of enabled transi-
tions.
Formally, the subset μ is a strong-persistent set of M , if all the following condi-
tions are satisfied:

– En(M) �= ∅ ⇔ μ �= ∅.
– ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ω〉 ⇒ M [ωt〉.
– ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ωt〉 ⇒ M [tω〉.
The subset μ is a persistent set of M , if it satisfies all the following conditions:

– D0: En(M) �= ∅ ⇔ μ �= ∅.
– D1: ∃t ∈ μ,∀ω ∈ (T − μ)+,M [ω〉 ⇒ M [ωt〉.
– D2: ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ωt〉 ⇒ M [tω〉.

Intuitively, Condition D0 ensures that the persistent set of M is empty only
if M is a deadlock. Conditions D1 means that there is at least a transition inside
μ such that no transition outside μ can disable it. Condition D2 means that if
some sequence ω with no transition from μ is firable before any transition t of
μ, then it is also firable after t.

The transitions of μ that satisfy D1 are called the key-transitions of μ [13].
Note that in strong-persistent sets, all their transitions are key-transitions.

In the following, we investigate the combination of the persistent sets with
the step graphs, in order to achieve more reduction.

Exploiting Local Persistency for Reduced State Space Generation 171

p1 p2 p3

p4 p5 p6 p7 p8 p9

t1 t2 t3 t4 t5 t6

• • •

Fig. 1. Model PN1

M0

M7

M8 M9

M10

M11
M14

M12 M13

{t1, t3, t5}

{t1, t3, t6}

{t1, t4, t5}
{t1, t4, t6}

{t2, t3, t5}
{t2, t3, t6}

{t2, t4, t5}
{t2, t4, t6}

Fig. 2. Step graph of PN1

M0M1 M2M3 M6

M4 M5

M7

M8

M9 M10 M11 M12

M13

M14

t1

t2
t3

t4 t3

t4

t5

t6

t5
t6 t5

t6

t5 t6

Fig. 3. A persistent set graph of PN1

M0M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

{t1, t4}
{t2, t3}

{t2, t4}
{t5}
{t6}

{t5}
{t6}

{t5}
{t6}

{t5}{t6}
{t1, t3}

Fig. 4. A persistent step graph of PN1

3.2 Step Graphs

The aim of the step graph methods is to represent by a single path a largest
possible set of equivalent maximal firing sequences of the model, by choosing
appropriately, from each marking, the transitions to be fired together in steps.
All transitions of the equivalent sequences are represented in the path but the
concurrent ones are grouped together in steps. Step graphs allow to reduce the
path depths.

However, in case there are several sets of transitions that are independent
from each other, the number of steps and their lengths may be very large. For
example, consider the model PN1 at Fig. 1. Its marking graph consists of 27
nodes and 54 arcs. Its initial marking M0 has 3 persistent sets that are indepen-
dent from each other: {t1, t2}, {t3, t4} and {t5, t6}. A persistent graph of PN1
is shown in Fig. 3. Note that there are different persistent graphs but they have
all the same size (24 − 1 = 15 nodes and 15 − 1 = 14 arcs). Using the 3 indepen-
dent persistent sets of M0, steps can be built by picking a transition from each
persistent set. Its step graph is shown in Fig. 2 and consists of 9 = 23 + 1 nodes,

172 K. Barkaoui et al.

8 = 23 arcs and 23 maximal steps. It is a covering-step graph, as the set of steps
selected from each marking covers all its enabled transitions. But, the number
of successors of the initial marking exceeds the number of enabled transitions
and is exponential with the number of independent persistent sets. Even if the
covering-step graph is smaller than the persistent graph, the number of maximal
steps and their lengths may be very large, which limits the usefulness of the step
graph method.

To take advantage of the strengths of each method, the persistent sets and
step graphs are combined in [10]. The idea is to compute a strong-persistent
set and then determine the transitions within this set to be fired together in
steps. As an example, for the strong-persistent set {t1, t2, t3, t4} of the initial
marking M0, we can build 4 steps: {t1, t3}, {t1, t4}, {t2, t3} and {t2, t4}. The
resulting reduced graph is reported in Fig. 4 and consists of 13 nodes and 12
arcs. This combination allows to control the number and the length of the steps
to be considered from each marking, while yielding a graph that is larger than
the step graph but smaller than the persistent graph.

4 Persistent Step Sets

We first define the notion of persistent step sets. Then, we show that the resulting
graphs preserve deadlock markings of Petri nets.

Definition 2. Let M be a marking and SS = {τ1, ..., τn} a set of n enabled
steps in M with n > 0. The set SS is a persistent step set in M if it satisfies
all the following conditions: Let μ =

⋃

i∈[1,n]

τi.

– DS0: En(M) �= ∅ ⇔ μ �= ∅.
– DS1: ∀(t1, ...tn) ∈ τ1 × ... × τn,∀ω ∈ (T − ⋃

j∈[1,n]

{tj})+,

(M [ω〉 ⇒ ∃i ∈ [1, n],∃t ∈ τi,M [ωt〉)∧ (∀i ∈ [1, n],M [ωti〉 ⇒ M [tiω〉)
Condition DS0 is identical to D0. Intuitively, Condition DS1 means that

as long as a sequence does not contain all transitions of, at least, a step (even
scattered), there is always a possibility to extend this sequence with a missed
transition of a step. Moreover, if a missed transition is firable after ω then it can
be shifted to the front of the sequence of ω to, at the end, constitute a firing
step. Note that if SS is a persistent step set of M such that all its steps are
singletons, then μ is a persistent set of M . Indeed, in this case μ = {t1, ..., tn}
and then DS0 ∧ DS1 implies D0 ∧ D1 ∧ D2.

Example 1. Consider the model PN1 at Fig. 1.

– The set μ = {t1, t2, t3} is a persistent set but is not a strong-persistent set of
the initial marking M0 = p1 + p2 + p3, as it satisfies conditions D0 and D1
(for only t1 and t2). There are two key-transitions in μ: t1 and t2.

– The step set SS = {{t1, t3}, {t2, t3}} is not a persistent step set of M0, as it
does not satisfy Condition DS1. Indeed, we have M0[t4t1〉 and ¬M0[t4t1t3}〉.

Exploiting Local Persistency for Reduced State Space Generation 173

Theorem 1. Let M be a marking reached in a persistent step selective search
from M0 and D a deadlock marking reachable from M in the Petri net. Then D
will also be reached by the persistent step selective search from M0.

Proof. The marking M is reachable in the Petri net. Let ω be a firing sequence
leading to the marking D from M in the Petri net. The proof is by induction on
the length of ω.

(a) If ω = ε then M = D.
(b) If ω = t and {t} ∈ SS then D is reached by the persistent step selective

search.
(c) If ω = t and {t} /∈ SS then, by DS1, D is not a deadlock marking as there is,

at least, a transition from μ that is firable after t, which is in contradiction
with the fact that D is a deadlock.

Suppose that Theorem 1 holds for any marking M ′ (reachable in a persistent
step set selective search) and D reachable from M ′ by a sequence ω′ such that
|ω′| < |ω|.
– If there is no step of SS (scattered or not) in ω, then, by DS1, there is, at

least, a missed transition of a step that is firable after ω. It means that D
has, at least, a successor, which is in contradiction with the fact that D is a
deadlock.

– If there is, at least a step τ of SS, scattered or not, in ω, then these transitions
of this step can be shifted to the front to constitute a step firable from M .
Firing this step from M leads to some marking M ′ that is reachable by the
persistent step selective search. Moreover, D is reachable from M ′, in the
Petri net, by a sequence ω′ s.t. |ω′| < |ω|. Therefore, D is reachable by the
persistent step selective search from M0. ��

5 Parametric Combination of Persistent Sets with Step
Graphs

From a practical point of view, the above definition of persistent step sets is not
useful. We propose, in the following, two parametric selection algorithms of per-
sistent step sets, based on strong-persistent sets and persistent sets, respectively.

For a given marking M and a subset S of transitions enabled in M (S ⊆
En(M)), the idea is to compute a persistent step set that covers, at least, the
transitions of S. Unlike, the approach proposed in [10], the set S is not necessarily
a strong-persistent set. As we will show, according to the parameter S, the
provided persistent step set is either a (strong) persistent set, a covering-step
set or a set of steps that covers partially the enabled transitions in M .

We suppose that there are two available computation procedures PS and
PS+ of strong-persistent sets and persistent sets, respectively. For a given mark-
ing M and a transition t enabled in M , PS(t,M) returns a persistent set of M ,
where at least t is a key-transition. This set can be computed from {t} by adding

174 K. Barkaoui et al.

recursively the enabled transitions that prevent it to satisfy D1 and D2, until
reaching a fixed point. For PS+(t,M), the set returned is a strong-persistent set
of M calculated from PS(t,M) by adding recursively PS(t′,M), for each non
key-transition t′ within the set, until reaching a fixed point. Thus, the transitions
of PS+(t,M) are all key-transitions.

5.1 Computing Strong-Persistent Step Sets

A computation procedure of strong-persistent step sets is provided in Algo-
rithm 1. For a given marking M and a set of enabled transitions S ⊆ En(M),
Algorithm 1 returns a set of steps firable from M . The parameter S allows to
specify the set of enabled transitions that must be, at least, covered by the set
of steps. The computed set of steps is a sort of product of some disjoint strong-
persistent sets (PS+(t,M), for t chosen from the input set S). The first term of
the product is R = PS+(t,M), where t is chosen randomly in S′ (a copy of S).
Then, the transitions of R are deleted from S′, to ensure that the next terms
are disjoints from those computed so far. If the resulting S′ is not empty, then
the same process is repeated to compute the next term of the product, and so
on. Theorem 2 establishes that the returned set of steps is a persistent step set.

Algorithm 1. Strong-persistent step set of a marking M covering the transitions
of S
1: Input : A marking M and a subset S of enabled transitions such that S �= ∅;
2: Output : A strong-persistent step set SS of M w.r.t. S;
3: SS = ∅; S′ = S;
4: while (S′ �= ∅) do
5: Choose t ∈ S′;
6: R = PS+(t, M);
7: S′ = S′ − R;
8: SS = SS ⊗ R;
9: end while
10: return SS;
11: [For X ∈ 2T and a set Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y }. By convention,

∅ ⊗ Y = {{y} |y ∈ Y }]

Example 2. Consider the initial marking M0 of the model PN1 at Fig. 1.

– For S = {t1, t2, t3}, Algorithm 1 computes SS as follows. It starts by setting
SS and S′ to ∅ and {t1, t2, t3}, respectively. If t1 of S′ is the first transition
selected in the loop while, then R = {t1, t2}, S′ = {t3} and SS = ∅ ⊗ R =
{{t1}, {t2}}. For the second iteration, t3 is selected, then R = {t3, t4}, S′ = ∅
and SS = SS ⊗ {t3, t4} = {{t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}}. Algorithm 1
returns SS.

– For M0 and S = En(M0), Algorithm 1 returns the set:
SS = ({{t1}, {t2}} ⊗ {{t3, t4}}) ⊗ {{t5, t6}}.
Indeed, initially, we have S′ = S = En(M0). The loop while will perform

Exploiting Local Persistency for Reduced State Space Generation 175

successively the following updates of R, S′ and SS, for the case where the
selected transitions are successively t1, t3 and t5:
For t1: R = {t1, t2}, S′ = {t3, t4, t5, t6} and SS = {{t1}, {t2}}.
For t3: R = {t3, t4}, S′ = {t5, t6} and SS = SS × R.
For t5: R = {t5, t6}, S′ = ∅ and then
Then, SS = ({{t1}, {t2}} ⊗ {t3, t4}) ⊗ {t5, t6}. Note that in this case, SS is
a covering-step set.

– For M0 and S = {t1, t2}, Algorithm 1 returns SS = {{t1}, {t2}}, as the
transitions of S are all key-transitions. If t1 (or t2) is selected first then R = S′,
S′ = ∅ and SS = {{t1}, {t2}}.

Theorem 2. Algorithm 1 returns a persistent step set of M .

Proof. It suffices to show that the returned set SS by Algorithm 1 satisfies DS0
and DS1 (presented in Definition 2). It is obvious that SS satisfies DS0.
DS1? Suppose that n (n > 0) iterations are needed to complete the loop while
of the algorithm. During the ith iteration (i ∈ [1, n], a transition ti is selected
from S′i and Ri = PS+(ti,M). The set Ri is a strong-persistent set where all
its transitions are keys. Therefore, it holds that:

∀i ∈ [1, n],∀ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ω〉 ⇒ M [ωti〉 ∧ M [tiω〉.

Each step of SS contains one and only one transition from each Ri, for i ∈ [1, n].
Therefore, all sequences where, at least, a transition from each step is missing,
is given by the union of sets (T − Ri)+, for i ∈ [1, n]. Consequently, SS satisfies
DS1. ��

5.2 Computing Persistent Step Sets

The set of steps returned by Algorithm 1 is a product of some pairwise dis-
junct strong-persistent sets of the marking M . To achieve further reductions,
Algorithm 2 computes, in SS, a product of some pairwise disjunct persistent
sets, instead of strong-persistent sets. However, unlike disjunct strong-persistent
sets, the product of disjunct persistent sets may contain some non enabled steps.
These steps must be deleted from SS to keep only the enabled ones. According
to Theorem 3, SS is a persistent step set.

Example 3. Consider the model PN2 at Fig. 5 and its initial marking M0.
For S = {t0, t1, t2, t3}, Algorithm 2 first sets SS, S′ and R′ to ∅, {t0, t1, t2, t3}
and ∅, respectively. Then, if t0 of S′ is the first transition selected in the loop
while on S′, then R = {t0, t1}, S′ = {t2, t3}, SS = ∅ ⊗ R = {{t0}, {t1}} and
R′ = {t0, t1}. For the second iteration, t3 is selected, as: PS(t2,M0) ∩ R′ = {t1}
and PS(t3,M0) ∩ R′ = ∅. Therefore, R = {t2, t3}, S′ = ∅ and

SS = SS ⊗ {t2, t3} = {{t0, t2}, {t0, t3}, {t1, t2}, {t1, t3}}.

Finally, Algorithm 2 returns SS ∩ EnS(M0), i.e., {{t0, t2}, {t0, t3}, {t1, t3}}.

176 K. Barkaoui et al.

Algorithm 2. Persistent-step set of a marking M covering the transitions of S

1: Input : A marking M and a subset S of enabled transitions such that S �= ∅;
2: Output : A persistent step set SS of M w.r.t. S;
3: SS = ∅; S′ = S; R′ = ∅;
4: while (∃t ∈ S′ s.t. PS(t, M) ∩ R′ = ∅) do
5: Choose t ∈ S′ s.t. PS(t, M) ∩ R′ = ∅;
6: R = PS(t, M);
7: S′ = S′ − R;
8: R′ = R′ ∪ R;
9: SS = SS ⊗ R;
10: end while
11: return SS ∩ EnS(M);
12: [For X ∈ 2T and a set Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y }. By convention,

∅ ⊗ Y = {{y} |y ∈ Y }]

p0 p1 p2

p3 p4 p5 p6

p7

t0 t1 t2 t3

t4 t5 t6 t7

Fig. 5. Model PN2

M0

M1 M2 M3

M4 M5

t1t3
t0t2

t0t3

t5t7
t4t6

t4t7

Fig. 6. CSG of PN2

Theorem 3. Algorithm 2 returns a persistent step set of M .

Proof. It is obvious that the set SS returned by Algorithm 2 satisfies DS0.
DS1? SS is a product of some pairwise disjunct persistent sets. Suppose that
SS = R1 ⊗ R2.... ⊗ Rn with (n > 0).
Then, (i) ∀i ∈ [1, n],∃ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ω〉 ⇒ M [ωti〉 and
(ii) ∀i ∈ [1, n],∀ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ωti〉 ⇒ M [tiω〉.
By construction, sets Ri, for i ∈ [1, n] are pairwise disjunct and each step of SS
contains one and only one transition from each Ri, for i ∈ [1, n]. Condition (i)
states that there is at least a transition ti in Ri that is firable after each firable
sequence of (T − Ri)+. As the sets Ri, for i ∈ [1, n], are pairwise disjunct, it
follows that Rj ⊆ (T − Ri) for i, j ∈ [1, n] s.t. i �= j.
Condition (ii) means that whenever a first transition from Ri is fired (after some
sequence), it can be shifted to the front without disabling the sequence.
Let ω ∈ T+ be a sequence firable from M . We distinguish 3 main cases (a) ω
contains no transition from R1 ∪ ... ∪ Rn, (b) ω contains at least a transition
from R1 ∪ ...∪Rn and ω contains at least a transition from each Ri for i ∈ [1, n].

Exploiting Local Persistency for Reduced State Space Generation 177

M0

M5

M1 M2 M3 M4

M10 M11

M18M15

M6 M7 M8 M9 M5 M6 M8

M14

M19M12 M12 M13M12 M13

M12 M13 M12 M12 M13M12

M12

M17M16

t3 t2
t1 t0

t1 t0
t7 t0

t6 t3
t5 t3

t2 t4

t5t7 t4t7 t1
t0 t4t6 t0 t5t7 t3 t4t7 t4t6

t3t2

t5 t4 t7t6t4 t7

Fig. 7. MSPG of PN2 (using Algorithm 2)

For n = 2, the different cases are shown in Fig. 8: (a) ω has no transition from
R1 ∪ R2; (b1) ω has at least a transition from R1 but no transition from R2;
(b2) ω has at least a transition from R2 but no transition from R1, and (c) ω
has at least a transition from R1 and from R2.

– Case a: According to Condition (i) above, ∀i ∈ [1, n],∃ti ∈ Ri,M [ω{t1, ..., tn}〉
and by Condition (ii), M [{t1, ..., tn}ω〉. Note that {t1, ..., tn} is eventually a
firing step of M as each ti is a key-transition of Ri and Ri for i ∈ [1, n] are
pairwise disjunct.

– Case b: If ω contains no transition from Rj1 ∪ ... ∪ Rjk but contains some
transitions of Rl1 , ..., and Rlm , for some m and n such that 0 < m, 0 < k
and m + k = n, then according to Condition (i), ∃tj1 ∈ Rj1 , ...,∃tjk ∈
Rjk ,M [ω{tj1 , ..., tjk}〉 and by Condition (ii), M [{tj1 , ..., tjk}ω〉.
Let tl1 , ..., tlm be the first transitions of Rl1 , ..., Rlm , respectively, appear-
ing in ω. By Condition (ii), all these transitions can be shifted to the front
of ω without disabling the other transitions of ω. Therefore, there is a
firable sequence from M equivalent to ωtj1 ...tjk that starts with a sequence
of the step {tj1 , ..., tjk , tl1 , ..., tlm}. Note that this case is not possible, if
{tj1 , ..., tjk , tl1 , ..., tlm} is not a firable step of M .

– Case c: Let tl1 , ..., tln be the first transitions of Rl1 , ..., Rln , respectively,
appearing in ω. By Condition (ii), all these transitions can be shifted to
the front of ω without disabling the other transitions of ω. Therefore, there
is a firable sequence from M equivalent to ω that starts with a sequence of
the step {tl1 , ..., tln}. Note that this case is not possible, if {tl1 , ..., tln} is not
a firable step of M .

Consequently, SS ∩ EnS(M) satisfies DS1. ��

178 K. Barkaoui et al.

Fig. 8. Proof of DS1, case n = 2 and M [ω〉
p0,1 p1,1 p2,1

p3,1 p4,1 p5,1 p6,1

p7,1

t0,1 t1,1 t2,1 t3,1

t4,1 t5,1 t6,1 t7,1

• • •

• • •

p0,n p1,n p2,n

p3,n p4,n p5,n p6,n

p7,n

t0,n t1,n t2,n t3,n

t4,n t5,n t6,n t7,n

Fig. 9. Model PN3: Parallel composition of n instances of PN2 (‖n PN2)

Example 4. For the model PN2 at Fig. 5, the graphs depicted at Figs. 6 and 7
are obtained using the selection Algorithms 1 and 2, respectively, for the case
where all the enabled transitions are covered from each marking. Let us apply,
Algorithm 1 to the initial marking M0 for S = En(M0). It starts by SS =
∅, S′ = S = {t0, t1, t2, t3}. If t0 of S′ is the first transition selected in the loop
while on S′, then R is set to PS+(t0,M0) = {t0, t1, t2, t3} and S′ to ∅. Then,
Algorithm 1 returns SS = ∅ ⊗ R = {{t0}, {t1}, {t2}, {t3}}. Note that for M0

and S = En(M0), Algorithm 2 returns SS = {{t0, t2}, {t0, t3}, {t1, t3}} (see
Example 3).

Unlike the method in [14], which is based, as Algorithm 1, on the strong-
persistent sets, the firing steps obtained by Algorithm 2 may contain some tran-
sitions that are in weak-conflict. Indeed, for the previous example, the transitions
within each step of SS, returned by Algorithm 2, are not in conflict but they are
in weak-conflict. The following examples shows the effectiveness of Algorithm 2
over Algorithm 1 for models where concurrency and weak-conflicts are combined.

Example 5. Consider now the model PN3 at Fig. 9 a parallel composition of PN2.
We report in Table 1 for the model in Fig. 9, sizes of MG, CSG, PO, PO combined

Exploiting Local Persistency for Reduced State Space Generation 179

Table 1. Parallel composition of instances of PN2

PN MG CSG PO CSG+PO MPSG

‖2 PN2

Markings 400 194 133 125 14

Edges 1280 401 184 176 18

CPU (s) 0 0 0 0 0

‖3 PN2

Markings 8000 2072 969 929 36

Edges 38400 5393 1464 1425 54

CPU (s) 0 0 0 0 0

‖4 PN2

Markings 160000 23138 6905 6737 98

Edges 1024000 71801 11048 10880 162

CPU (s) 1.45 0 0 0 0

‖5 PN2

Markings 3200000 265640 48361 47681 276

Edges 25600000 952997 80488 79808 486

CPU (s) 50 0 0 0 0

with CSG, and MPSG. The CSG, PO, PO combined with CSG are provided by
the tool TINA2. The MPSG is computed based on Algorithm 2 for the case
where all the enabled transitions are covered from each marking. For this model,
PO provides better results than CSG. Also, even if it is combined with CSG, it
never gives better reduction than MPSG. One can easily check that the number
of markings of the state space is of order of 3n for MPSG while it is of order
of 4n+1 for PO, CSG, and their combination. It stems from the fact that the
selection Algorithm 2 handles in better way the weak-conflicts. For this model,
the application of the selection Algorithm 2 shows an effectiveness relatively to
the selection Algorithm 1, which is based, as the approach developed in [14], on
the strong-persistent sets. Thus, it is not exaggerated to say that the persistent
step sets method, based on persistent sets, is very promising to fight the state
explosion and to address the verification of very large asynchronous concurrent
systems, where the interplay between concurrency and conflict is expanded.

6 Conclusion

Although, partial order methods gained some success in coping with the state
space explosion in concurrent systems with asynchronous components, the appli-
cability of verification by state-space exploration of large systems remains as a
challenge.
2 http://projects.laas.fr/tina//home.php.

http://projects.laas.fr/tina//home.php

180 K. Barkaoui et al.

In this work, we have proposed a new parametric combination of the persis-
tent sets with step graphs, based on a better understanding of the intricacy of
the interplay between concurrency and conflict, revealing local persistency and
leading to a significant reduction. The proposed approach takes into account, in
a finer way, the structure of the net, while preserving deadlocks of Petri Nets.
Indeed, unlike the method in [14], persistent steps may contain some transitions
that are in weak-conflict. Moreover, it allows choosing the transitions to be cov-
ered while controlling the length and the number of steps to be selected from
each marking.

Finally, the performed tests show the effectiveness of the proposed approach
in terms of state space reduction and time execution, relatively to the covering-
steps, strong-persistent sets methods or their combination implemented in the
tool TINA. They also suggest that combining step graphs with any partial order
technique is of very great interest for model-checking.

References

1. Barkaoui, K., Couvreur, J.-M., Klai, K.: On the equivalence between liveness and
deadlock-freeness in Petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 90–107. Springer, Heidelberg (2005). https://doi.org/10.1007/
11494744 7

2. Barkaoui, K., Pradat-Peyre, J.-F.: On liveness and controlled siphons in Petri nets.
In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 57–72.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61363-3 4

3. Chen, Y.F., Li, Z.W., Barkaoui, K.: New Petri net structure and its application
to optimal supervisory control: Interval inhibitor arcs. IEEE Trans. Syst. Man
Cybern. 44(10), 1384–1400 (2014)

4. Desel, J., Juhás, G.: “What is a Petri net?” Informal answers for the informed
reader. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri
Nets. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45541-8 1

5. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

6. Junttila, T.: On the symmetry reduction method for Petri nets and similar for-
malisms. Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland
(2005)

7. Li, Z.W., Zhao, M.: On controllability of dependent siphons for deadlock prevention
in generalized Petri nets. IEEE Trans. Syst. Man Cybern. 38(2), 369–384 (2008)

8. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

9. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)

10. Ribet, P.-O., çois, F., Berthomieu, B.: On combining the persistent sets method
with the covering steps graph method. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 344–359. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9 22

https://doi.org/10.1007/11494744_7
https://doi.org/10.1007/11494744_7
https://doi.org/10.1007/3-540-61363-3_4
https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-36135-9_22
https://doi.org/10.1007/3-540-36135-9_22

Exploiting Local Persistency for Reduced State Space Generation 181

11. Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4),
297–322 (1992)

12. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

13. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Inform. 113(3–
4), 377–397 (2011)

14. Vernadat, F., Azéma, P., Michel, F.: Covering step graph. In: Billington, J., Reisig,
W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 516–535. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61363-3 28

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-61363-3_28

	Exploiting Local Persistency for Reduced State Space Generation
	1 Introduction
	2 Preliminaries
	3 Persistent Sets and Step Graphs
	3.1 Persistent Sets
	3.2 Step Graphs

	4 Persistent Step Sets
	5 Parametric Combination of Persistent Sets with Step Graphs
	5.1 Computing Strong-Persistent Step Sets
	5.2 Computing Persistent Step Sets

	6 Conclusion
	References

