
LTL Model-Checking for Communicating
Concurrent Programs

Adrien Pommellet1(B) and Tayssir Touili2

1 LIPN and Université Paris-Diderot, Paris, France
pommellet@irif.fr

2 LIPN, CNRS, and Université Paris 13, Villetaneuse, France

Abstract. Communicating Pushdown Systems (CPDSs) can be used to
model multi-threaded programs with recursive procedure calls and syn-
chronisation by rendez-vous between parallel threads. While the reacha-
bility problem for this particular class of automata is undecidable, it can
be tackled using an algebraic framework for computing abstractions of
context-free languages. In this paper, we combine this framework with
an automata-based approach in order to approximate an answer to the
model-checking problem for Linear Temporal Logic (LTL) on CPDSs: we
show that, given a single-indexed LTL formula, we can accurately tell if
a CPDS does not follow this formula. Finally, we show how this method
can be used to find race conditions in concurrent programs.

1 Introduction

The use of parallel programs has grown in popularity in the past fifteen years,
but these remain nonetheless fickle and vulnerable to specific issues such as
race conditions or deadlocks. Static analysis methods for this class of programs
remain therefore more relevant than ever.

The model-checking framework has proven to be a cornerstone of modern
static analysis techniques. The program is modelled as a simpler abstract mathe-
matical model. Desirable properties and forbidden behaviours are then expressed
using a well-defined logical framework, then checked against the abstract math-
ematical model of the program. The linear-time temporal logic (also known
as LTL) encodes properties about the future of execution paths, that is, the
sequence of configurations the model goes through. It can be used to express
safety and liveness properties.

Pushdown systems are a natural model for programs with sequential, recur-
sive procedure calls [6]. Thus, networks of pushdown systems can be used to
model multi-threaded programs, where each PDS in the network models a
sequential component of the whole program.

Communicating pushdown systems (CPDSs) were introduced by Bouajjani
et al. in [3] as a model for communicating multi-threaded programs. It is a
natural abstraction, as each thread is modelled as a PDS, and can synchronize
by rendez-vous with other threads. The reachability problem is undecidable for
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 150–165, 2018.
https://doi.org/10.1007/978-3-030-00359-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_10&domain=pdf

LTL Model-Checking for Communicating Concurrent Programs 151

CPDSs. Therefore, the set of execution paths cannot be computed in an exact
manner. To overcome this problem, Bouajjani et al. computed an abstraction of
the execution paths language, using a framework based on Kleene algebras.

Solving the model-checking problem of LTL for CPDSs would therefore be
a worthy addition to the existing verification techniques. However, this problem
is unfortunately undecidable. Our contributions in this paper are the following:

– we define the semantics of single-indexed LTL formulas for CPDS, that is,
formulas of the form ϕ = (ψ1, . . . , ψn), where each LTL sub-formula ψi must
hold for the i-th process with regards to the synchronized CPDS semantics;

– we abstract the set of accepting traces of a Büchi pushdown system; to do so,
we use the abstraction framework of [3] as well as the LTL model-checking
methods for PDS developed by Esparza et al. in [6];

– we use this abstraction on isolated pushdown components to compute an
over-approximation of the model-checking problem of single-indexed LTL for
CPDSs;

– we apply this abstraction framework to detect race conditions in a toy exam-
ple.

Related Work. Multi-Stack Pushdown Systems (MPDSs) are pushdown sys-
tems with two or more stacks that can be used to model synchronized parallel
programs. In [8] Qadeer et al. solve the model-checking problem of LTL given a
context-bounding constraint on runs, where context is an uninterrupted sequence
of actions by a single thread. This result still holds with a weaker phase-bounding
constraint, where only a single stack can be popped from during a phase, as
shown by La Torre et al. in [11]. Atig introduced in [1] Ordered Multi-Pushdown
Automata, a sub-class of MPDSs such that the stacks are ordered and only the
first-non empty stack can be popped from. Given this constraint, the model-
checking problem of LTL can be solved with an 2ETIME upper bound. These
models depend on a bounding constraints on runs; our abstraction framework,
while less accurate, does not.

Dynamic pushdown networks (DPNs) were introduced by Bouajjani et al.
in [4]. A DPN models a concurrent program as a network with an unbounded
number of pushdown systems that can spawn new threads, also modeled as
pushdown systems. Song et al. described in [10] a model-checking framework for
single-indexed LTL and CTL formulas. A DPN can spawn new threads according
to a finite number of patterns, since it has a finite number of rules. Hence, a
single-indexed formula on a DPN is of the form ϕ = (ψ1, . . . , ψn), where each
component ψi is a formula that must hold for the i-th thread pattern. While
CPDSs can’t model thread spawns, but DPNs do not feature synchronization
between threads, an important aspect of concurrent programs.

Synchronized dynamic pushdown networks (DPNs) were later introduced by
Pommellet et al. in [7]. The reachability problem for this class of automata is
undecidable but can be abstracted. Abstractions for the model-checking problem,
however, have yet to be defined.

152 A. Pommellet and T. Touili

Paper Outline. In Sect. 2 of this paper, we remind the reader of the definition
of communicating pushdown systems (CPDSs). In Sect. 3, we define the single-
indexed linear-time temporal logic for CPDSs. We describe in Sect. 4 the abstrac-
tion framework designed by Bouajjani et al. in [3] in order to over-approximate
the set of execution paths of a PDS. In Sect. 5, as a main contribution of this
paper, we introduce an abstract model-checking algorithm. We apply this algo-
rithm to an example in Sect. 6. Finally, we show our conclusion in Sect. 7.

2 Communicating Pushdown Systems

2.1 Pushdown Systems

Pushdown systems are a natural model for sequential programs with recursive
procedure calls.

Definition 1 (Pushdown system). A pushdown system (PDS) is a tuple P =
(P,Act, Γ,Δ, c0) where P is a finite set of control states, Act a finite input
alphabet, also called the set of actions, Γ a finite stack alphabet, Δ ⊆ P ×
Γ × Act × P × Γ ∗ a finite set of transition rules, and c0 ∈ P × Γ ∗ a starting
configuration.

If d = (p, γ, a, p′, w) ∈ Δ, we write d = (p, γ) a−→ (p′, w). We call a the label of
d. We can assume without loss of generality that Δ ⊆ P × Γ × Act × P × Γ≤2.

Configurations of PDSs. A configuration of P is a pair 〈p,w〉 where p ∈ P is
a control state and w ∈ Γ ∗ a stack content. Let ConfP = P × Γ ∗ be the set of
configurations of P. A set of configurations C of a PDS P is said to be regular
if ∀p ∈ P , there exists a finite-state automaton Ap on the alphabet Γ such that
L(Ap) = {w | 〈p,w〉 ∈ C}, where L(A) stands for the language recognized by an
automaton A.

In order to represent regular sets of configurations, we consider the following
structure:

Definition 2 (Bouajjani et al. [2]). Let P = (P,Act, Γ,Δ, c0) be a pushdown
system. A P-automaton A = (Q,Γ, δ, I, F) is a finite automaton on the stack
alphabet Γ of P where Q is a set of states such that P ⊆ Q, I = P the set of
initial states, F ⊆ Q the set of final states, and δ ⊆ Q × Γ ∪ {ε} × Q a set of
transitions.

Let →A be the transition relation inferred from δ. We say that A accepts
a configuration 〈p,w〉 if there is a path p

w−→∗
Af such that f ∈ F . Let L(A) ⊆

ConfP be the set of configurations accepted by A. Intuitively, a P-automaton
is a finite automaton whose edges are labelled by stack symbols of P and whose
initial states represent the states of P. The following lemma holds:

Lemma 1 (Bouajjani et al. [2]). A set of configurations C of a PDS P is
regular if and only if there exists a P-automaton A such that L(A) = C.

LTL Model-Checking for Communicating Concurrent Programs 153

The Reachability Relation. For each a ∈ Act, we define the transition rela-
tion a−→P on configurations as follows: if (p, γ) a−→ (p′, w) ∈ Δ, for each w′ ∈ Γ ∗,
〈p, γw′〉 a−→P 〈p′, ww′〉. From these relations, we can then infer the immediate
successor relation →P = ∪

a∈Act

a−→P . The reachability relation →∗
P is the reflex-

ive and transitive closure of the immediate successor relation →P .
A run r is a sequence of configurations r = (ri)i≥0 such that r0 = c0, and

∀i ≥ 0, ri
ai−→P ri+1. The sequence (ai)i≥0 of actions is then said to be the trace

of r. Traces and runs may be finite or infinite. Let Runsω(P) (resp. Runs(P))
be the set of all infinite (resp. finite) runs of P. We define Tracesω(P) and
Traces(P) in a similar manner.

If C is a set of configurations, we introduce its set of predecessors pre∗(P, C) =
{c ∈ P ×Γ ∗ | ∃c′ ∈ C, c ⇒P c′}. We may omit the variable P when only a single
PDS is being considered.

It has been shown in [2] that the set of predecessors pre∗(P, C) is regular and
can be computed by applying a saturation procedure:

Theorem 1 (Bouajjani et al. [2]). Given a PDS P and a regular set of con-
figurations C, there exists a P-automaton Apre∗ accepting pre∗ (C).

2.2 The Model and Its Semantics

We now model each thread in a concurrent program as a PDS:

Definition 3 (Bouajjani et al. [3]). A communicating pushdown system
(CPDS) is a tuple CP = (P1, . . . ,Pn) of pushdown systems sharing the same
input alphabet Act and the same stack alphabet Γ .

From then on, we assume that the set Act contains a special action τ that
represents internal actions, and that other letters in Lab = Act \ {τ} model
synchronization signals. We assume that each pair (Pi,Pj) of pushdown systems
in the network uses a dedicated set of signals Labi,j disjoint from the other sets
of signals.

A global configuration of CP is a tuple g = (c1, . . . , cn) of configurations of
P1, . . . ,Pn. Let ConfCP be the set of global configurations of the CPDS CP.
The global starting configuration of CP is the tuple g0 = (c10, . . . , c

n
0) where ci

0 is
the starting configuration of Pi. We define a transition relation a−→CP on global
configurations as follows:

– (c1, . . . , cn) τ−→CP (c′
1, . . . , c

′
n) if there is i such that ci

τ−→Pi
c′
i and cj = c′

j for
all j �= i; a single process applies a pushdown operation on its own stack;

– (c1, . . . , cn) a−→CP (c′
1, . . . , c

′
n) if there are i and j, i �= j such that ci

a−→Pi
c′
i,

cj
a−→Pj

c′
j and ck = c′

k for all k �= i �= j; two synchronized processes perform
a simultaneous action.

We define runs and traces with regards to this transition relation in a manner
similar to PDSs. Given a global run g, we define gi as its projection on its i-th
component ConfPi

.

154 A. Pommellet and T. Touili

2.3 From a Program to a CPDS Model

We can assume that the program is given by a n-tuple of control flow graphs,
whose nodes represent control points of threads or procedures and whose edges
are labelled by statements. These statements can be variable assignments, proce-
dure calls or returns, or communications between threads through unidirectional
point-to point channels, where a thread sends a value x through a channel ch
and another thread waits for this value then assigns it to a variable y.

Without loss of generality, we assume that threads share no global variables
and instead can only synchronize through unidirectional, point-to-point chan-
nels: for all 1 ≤ i, j ≤ n, i �= j, there is a channel chi,j that allows thread i to
send values to another thread j. With a send statement ch!(x), value x is sent
through channel ch. With a receive statement ch?(y), the value received through
channel ch is bound to variable y. We also consider that both local and global
variables may only take a finite number of values.

For each control flow graph, we will define a corresponding PDS P =
(P,Act, Γ,Δ). The whole program will be modelled by the tuple of these PDSs.
The set of states P is the set of all possible valuations of global variables of the
thread. The stack alphabet Γ is the set of all pairs (n, l) where n is a node of the
flow graph and l is a valuation of the local variables of the current procedure.

The set Act contains an internal action τ and an action ch(n) for each channel
ch and value n that can be carried through it. Lab is a disjoint union of sets Labi,j

corresponding to synchronization actions of the form chi,j(v) from a system Pi

to another system Pj .
For each statement s labelling an edge of the flow graph between nodes n1

and n2, we introduce the following transition rules in the corresponding PDS,
where g1 and g2 (resp. l1 and l2) are the valuations of global (resp. local) variables
before and after the execution of the statement:

– if s is an assignment, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, (n2, l2)); assigning new values to variables in g1 and l1 results in new
valuations g2 and l2;

– if s is a procedure call, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, (f0, l0)(n2, l2)), where f0 is the starting node of the called procedure and
l0 the initial valuation of its local variables;

– if s is a procedure return, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, ε); we simulate returns of values by introducing an additional global vari-
able and assigning the return value to it in the valuation g2;

– if s is an assignment ch?(y) of a value x carried through a channel c to a vari-

able y, it is represented by rules of the form (g1, (n1, l1))
ch(v)−−−→ (g2, (n2, l2))

where g1 and g2 (resp. l1 and l2) are such that assigning the value v to the
variable y in g1 (resp. l1) results in the new valuations g2 (resp. l2);

– if s is an output ch!(x) through a channel c of the value x of a variable y, it

is represented by rules of the form (g1, (n1, l1))
ch(v)−−−→ (g2, (n2, l2)) such that

the variable y has value x in either g1 or l1.

LTL Model-Checking for Communicating Concurrent Programs 155

Finally, we consider the starting configuration of each process
(ginit, (ninit, linit)) where ginit and linit are respectively the initial valuations
of the global and local variables of the thread, and ninit the starting node of its
initial procedure.

3 Model-Checking LTL on CPDSs

3.1 The Linear-Time Temporal Logic LTL

Let AP be a finite set of atomic propositions used to express facts about a
program. A path is an infinite word ρ = (ρi)≥0 in the set Paths = (2AP)ω.

Definition 4 (LTL). The set of LTL formulas is given by the following gram-
mar:

ϕ,ψ ::= ⊥ | p ∈ AP | ¬ϕ | ϕ ∨ ψ | X ϕ (Next) | ϕ U ψ (Until)

⊥ stands for the predicate ‘always true’. X and U are called the next and until
operators: the former means that a formula should happen at the next step, the
latter, that a formula should hold at least until another formula becomes true.
We consider the following semantics on paths:

Definition 5 (Semantics of LTL). Let ϕ be a LTL formula, ρ ∈ Paths, and
i ∈ N. We define inductively the semantics of the relation ρ, i |= ϕ:

ρ, i |= ρ where ρ ∈ AP ⇔ ρ ∈ ρi

ρ, i |= X ϕ ⇔ ρ, i + 1 |= ϕ

ρ, i |= ϕ U ψ ⇔ ∃j ≥ i such that ρ, j |= ψ and
∀k ∈ {i, . . . , j − 1} , ρ, k |= ϕ

as well as the obvious interpretation of the boolean operators.

Intuitively, ρ, i |= ϕ means that the path ρ verifies φ from it’s i-th symbol
onward. We consider the language L(ϕ) = {w | w ∈ Paths and w, 0 |= ϕ} of a
LTL formula ϕ, that is, the set of all paths verifying ϕ according to the semantics
outlined previously.

3.2 LTL Model-Checking for PDSs

We recall in this Section the model-checking problem for PDSs and the
automata-theoretic framework introduced in [2,6].

Let ν : ConfP → 2AP be a valuation function on configurations of a PDS
P = (P,Act, Γ,Δ, c0). It is said to be simple if for all w,w′ ∈ Γ ∗, p ∈ P ,
and γ ∈ Γ , we have ν(〈p, γw〉) = ν(〈p, γw′〉). Intuitively, a simple valuation is
equivalent to a function ν : P ×Γ → 2AP that only depends on the control state
and the top stack symbol.

Let r = (ri)i≥0 be an infinite run of P. We define the image ν(r) = (ν(ri))i≥0

in Paths of r by the valuation function ν. We write that r |=ν ϕ if ν(r), 0 |= ϕ.
The model-checking problem is defined as follows:

156 A. Pommellet and T. Touili

Definition 6 (The model-checking problem). Given a LTL formula ϕ, a
PDS P with a starting configuration c0, and a simple valuation ν on con-
figurations of P, the model-checking problem consists in determining whether
∃r ∈ Runsω(P), r |=ν ϕ.

In order to solve this problem, we consider the following class of automata:

Definition 7 (Büchi pushdown system). A Büchi pushdown system is a
tuple BP = (P,Act, Γ,Δ, c0, G) such that (P,Act, Γ,Δ, c0) is a PDS and G ⊆ P
a set of final states.

An accepting run of BP is an infinite run of the PDS (P,Act, Γ,Δ, c0) that
visits infinitely often configurations whose control state is in G. To these runs,
we match accepting traces.

A BPDS can be seen as a product automaton between a PDS and Büchi
automaton. The use of this model is the following:

Theorem 2. Given a PDS P and a LTL formula ϕ, there exists a BPDS BP
such that t is an accepting trace of BP if and only if t is a trace of P matched
to a run r such that r |=ν ϕ.

A repeating head of BP is an element 〈p, γ〉 of G × Γ such that ∃w ∈ Γ ∗,
〈p, γ〉 →+

BP 〈p, γw〉. Let Rep(BP) be the finite set of repeating heads of BP. The
following lemma characterizes accepting runs with regards to repeating heads:

Lemma 2. r is an accepting run of a BPDS BP if and only if BP has a repeating
head 〈p, γ〉 such that r visits configurations in 〈p, γΓ∗〉 infinitely often.

3.3 Single-Indexed LTL for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS, ν a simple valuation function on ConfP1 ∪
. . . ∪ ConfPn

, and for i = 1, . . . , n, let ψi be a LTL formula. The formula ϕ =
(ψ1, . . . , ψn) is said to be a single-indexed LTL formula. We define the following
semantics for single-indexed LTL formula on CPDSs:

Definition 8 (Single-indexed LTL model-checking). Given a CPDS CP =
(P1, . . . ,Pn), a global run g of CP, and a single-indexed LTL formula ϕ =
(ψ1, . . . , ψn), g |=ν ϕ if and only if for each i = 1, . . . , n, gi |=ν ψi. Find-
ing such a global run g is called the model-checking problem.

Intuitively, each PDS Pi in the CPDS satisfies formula fi, but does so while
synchronizing with the others PDSs. If the model-checking problem for CPDSs
were decidable, so would be the reachability problem. However, since the latter
is obviously undecidable, the former is as well.

We therefore seek to get at least an approximate answer to this problem.
The issue with CPDSs is the following: for each i = 1, . . . , n, there may be a run
r of the PDS Pi satisfying a formula ψi, but a global, synchronized run on the
CPDS (P1, . . . ,Pn) satisfying ϕ = (ψ1, . . . , ψn) may not exist.

LTL Model-Checking for Communicating Concurrent Programs 157

4 An Abstraction Framework for Traces

We seek to approximate global runs of CPDSs. To do so, we want to abstract
traces of their pushdown components. We remind here the mathematical frame-
work presented by Bouajjani et al. in [3] in order to abstract the language
LP({c0}, C) = {t ∈ Traces(P)|∃c ∈ C, c0

t−→∗
Pc} of traces of a PDS P lead-

ing from the starting configuration c0 to a regular set of configurations C.

4.1 Abstractions and Galois Connections

Let L = (2Act∗
,⊆,∪,∩, ∅, Act∗) be the complete lattice of languages on Act.

Our abstraction of L requires a lattice E = (D,≤,�,�,⊥,�), from now on
called the abstract lattice, where D is a set called the abstract domain, as well
as a pair of mappings (α, β) called a Galois connection, where α : 2Act∗ → D
and β : D → 2Act∗

are such that ∀x ∈ 2Act∗
, ∀y ∈ D, α(x) ≤ y ⇔ x ⊆ β(y).

∀L ∈ L, given a Galois connection (α, β), we have L ⊆ β(α(L)). Hence,
the Galois connection can be used to over-approximate a language such as
LP({c0}, C).

Moreover, it is easy to see that ∀L1,∀L2 ∈ L, α(L1) � α(L2) = ⊥ if and only
if β(α(L)) ∩ β(α(L)) = ∅. We can therefore check the emptiness of intersections
of over-approximations directly in the abstract domain.

4.2 Kleene Abstractions

As defined in [3], an abstract lattice E = (D,≤,�,�,⊥,�) is said to be com-
patible with a Kleene algebra K = (A,⊕,�, 0, 1) if D = A, x ≤ y ⇔ x ⊕ y = y,
⊥ = 0 and � = ⊕.

The Kleene algebra K is an Act-semiring if it can be generated by 0, 1, and
elements of the form va ∈ A, ∀a ∈ Act. A Kleene abstraction is an abstraction
such that the abstract lattice E is compatible with the Kleene algebra and the
Galois connection α : 2Act∗ → D and β : D → 2Act∗

is defined by:

α(L) =
⊕

a1...an∈L

va1 � . . . � van

β(x) =
{

a1 . . . an ∈ 2Act∗ | va1 � . . . � van
≤ x

}

Intuitively, a Kleene abstraction is such that the abstract operations ⊕, �,
and ∗ can be matched to the union, the concatenation, and the Kleene closure
of the languages of the lattice L, 0 and 1 to the empty language and {ε}, va to
the language {a}, the upper bound � ∈ K to Act∗, and the operation � to the
intersection of languages in the lattice L.

In order to compute α(L) for a given language L, each word a1 . . . an in L
is matched to its abstraction va1 � . . . � van

, and we consider the sum of these
abstractions. Moreover, we must have vτ = 1.

158 A. Pommellet and T. Touili

A finite-chain abstraction is such that the lattice (K,⊕) has no infinite
ascending chains. Prefix and suffix abstractions are such examples on the lattice
2W , where W (n) = {w ∈ Act∗ | |w| ≤ n} is the set of words of length smaller
than n.

4.3 The Set of K-Predecessors

Let P = (P,Act, Γ,Δ, c0) be a PDS and K = (A,⊕,�, 0, 1) a Kleene algebra
corresponding to a Kleene abstraction of the set Lab. We define inductively the
set ΠK of path expressions as the smallest subset of K such that:

– 1 ∈ ΠK ;
– if π ∈ ΠK , then ∀a ∈ Act, va � π ∈ ΠK .

For a given path expression π, we define its length |π| as the number of
occurrences of simple elements of the form va in π.

A K-configuration of P is a pair (c, π) in ConfK
P = P × Γ ∗ × ΠK . We

can extend the transition relation −→P to K-configurations with the following
semantics: ∀a ∈ Act, if c

a−→P c′, then ∀π ∈ ΠK , (c, va � π) −→P,K (c′, π);
(c, va � π) is said to be an immediate K-predecessor of (c′, π). The reachability
relation �P,K is the reflexive transitive closure of −→P,K .

Given a set of configurations C, we introduce the set pre∗
K(P, C) of K-

configurations (c, π) such that (c, π) �P,K (c′, 1) for c′ ∈ C:

pre∗
K(P, C) = {(c′, π) | c′ ∈ pre∗(P, C), π ≤ α(LP({c′}, C))}

As we will see later, the abstract path expression π is meant to be the abstrac-
tion of an actual trace from c′ to C.

4.4 K-automata

P-automata are used to represent regular sets of configurations. They can be
extended to K-automata in order to handle sets of K-configurations of a PDS P.

Definition 9 (K-automaton). A K-automaton is a tuple A = (Q,Γ, δ, I, F)
where Q is a finite set of control states, δ ⊆ Q × Γ × K × Q× a finite set of
transition rules, I = P the set of initial states, and F ⊆ Q the set of final states.

Intuitively, a P-automaton can be seen as K-automaton whose transitions are
all labelled by 1.

We define −→A⊆ Q × Γ ∗ × K × Q× as the smallest transition relation
satisfying:

– q
(ε,1)−−−→A q′ for every q ∈ Q;

– if (q, γ, e, q′) ∈ δ, then q
(γ,e)−−−→A q′;

– if q
(w,e)−−−→A q′ and q′ (w′,e′)−−−−→A q′′, then q

(ww′,e�e′)−−−−−−−→A q′′.

LTL Model-Checking for Communicating Concurrent Programs 159

We say that A accepts a K-configuration (< p,w >, π) if p
(w,e)−−−→A q for q ∈ F

and some e ∈ K such that π ≤ e. Let LK(A) be the set of all configurations
accepted by A, and PK(A) = {π | ∃c ∈ C, (c, π) ∈ LK(A)} the set of abstract
traces matched to these configurations.

By labelling the P-automaton Apre∗ accepting pre∗ (C) yielded by Theorem
1, the following theorem has been proven:

Theorem 3 (Bouajjani et al. [3]). Let P be a PDS and A a P-automaton
accepting a regular set of configurations C. Then we can compute a K-automaton
Apre∗

K
accepting the set pre∗

K(P,C).

From there, it is possible to compute the abstract trace language using the
product automaton A′ between Apre∗

K
and a P-automaton accepting 〈c0, Γ ∗〉.

5 Abstract Model-Checking of LTL for CPDSs

In this section, as a main contribution of this paper, we will introduce a semi-
decision procedure for model-checking LTL on CPDSs.

5.1 Abstracting Accepting Traces of a BPDS

By Lemma 2, each accepting run of a BPDS BP can be matched to a repeating
head it visits infinitely often, and any run visiting a repeating head infinitely
often is accepting. As a consequence, if we can for each repeating head compute
(resp. abstract) the set of traces visiting it infinitely often, we can compute (resp.
abstract) the set of accepting traces of the BPDS.

Let 〈p, γ〉 ∈ Rep(BP) be a repeating head. An accepting trace visiting
〈p, γΓ ∗〉 infinitely often can be split into two parts:

(1) first, it must reach the set 〈p, γΓ ∗〉 from the initial configuration c0;
(2) then, it must infinitely often move from 〈p, γΓ ∗〉 to 〈p, γΓ ∗〉, using a

sequence of transitions of length superior or equal to one.

In order to abstract the set of accepting traces visiting 〈p, γ〉 infinitely often,
we first compute the set pre∗

K(BP, 〈p, γΓ ∗〉) of K-predecessors of configura-
tions with this repeating head, using Theorem 3. Then, we consider the set
pre∗

K(BP, 〈p, γΓ ∗〉) ∩ (c0 × ΠK) and check its emptiness.
It will be empty if the repeating head is not reachable from the start-

ing configuration c0. Otherwise, it will be equal to the product of c0 with an
abstraction I〈p,γ〉 of the set of traces from c0 to C. Therefore, the abstraction
I〈p,γ〉 = PK(pre∗

K(BP, 〈p, γΓ ∗〉)∩ (ci
0 ×ΠK))) yields part (1) of our abstraction

of the set of accepting traces of the BDPS.
Next, we want to abstract the set of paths between two occurrences of

the repeating head. To do so, we use again the set pre∗
K(BP, 〈p, γΓ ∗〉) of K-

predecessors of configurations with a repeating head 〈p, γ〉. We consider its
intersection pre∗

K(BP, 〈p, γΓ ∗〉) ∩ 〈p, γΓ ∗〉 × ΠK with the product of the set
of configurations with a repeating head 〈p, γ〉 with all path expressions.

160 A. Pommellet and T. Touili

This set of K-configurations abstracts traces between two configurations
with the same repeating head 〈p, γΓ ∗〉. Therefore, the abstraction L〈p,γ〉 =
PK(pre∗

K(BP, 〈p, γΓ ∗〉) ∩ 〈p, γΓ ∗〉 × ΠK)) yields part (2) of our abstraction
of the set of accepting traces of the BDPS.

In an accepting run of a BPDS, part (1) happens once, then (2) occurs
infinitely often. Hence, R〈p,γ〉 = I〈p,γ〉 � (L〈p,γ〉)∗ is an abstraction of the set of
accepting traces using the repeating head 〈p, γ〉 infinitely often. This set can be
computed in a finite-chain abstraction framework.

We can finally compute an abstraction R =
⊕

〈p,γ〉∈Rep(BP)

R〈p,γ〉 of the set of

all accepting traces of BP by abstracting the set of accepting traces for each
repeating head, then considering the finite sum of these sets.

5.2 Abstracting the Model-Checking Problem for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS and ϕ = (ψ1, . . . , ψn) a single-indexed LTL
formula. We want to abstract the model-checking problem CP |= ϕ. Our intu-
ition is, for each component Pi, to abstract the set of paths verifying ψi, then
examine the emptiness of the intersection of these abstractions.

If n = 2, then for i = 1, 2, to each PDS Pi and formula ψi, we match a
BPDS BPi according to Theorem 2 and compute an abstraction of its sets of
paths Ri as outlined previously. R1 � R2 = ⊥ implies that we can’t find a trace
that is accepting for both BPDSs, hence, there is no synchronized global run
verifying ϕ.

However, in a global run of a CPDS, the execution paths of the pushdown
components are interleaved. If the CPDS has more than two threads, synchro-
nization signals with a third thread may occur in the global run but cannot be
computed by abstracting runs of each BPDS on its own. We cannot therefore
study the paths of a pushdown system Pi in isolation from the other compo-
nents. Without loss of generality, we assume that a partition of Lab such that
Lab =

⋃
k �=j

Lk,j and that transitions of the component Pi can only be labelled

by elements in Labi =
⋃

k �=i

Li,k. Intuitively, each pair (Pi,Pj) of pushdown com-

ponents can only synchronize by using its own set of symbols Labi.
For each component Pi, we then consider a new pushdown system P ′

i that
extends Pi with self-loops in each control state labelled by synchronization sig-
nals between pair of other processes in Labj,k, j �= k �= i. The following lemma
holds:

Lemma 3. If g is a global run of CP, then gi is a run of P ′
i.

We then want abstract the set of paths of P ′
i verifying ψi for each i and

consider the intersection of these abstractions. If it is indeed empty, the same
property holds for the intersection of the actual sets of paths, and no global run
satisfying ϕ exists in CP.

LTL Model-Checking for Communicating Concurrent Programs 161

To do so, to each PDS P ′
i and formula ψi, we match a BPDS BPi according

to Theorem 2. We then compute an abstraction Ri of the set of traces of the
BPDS BPi, as outlined in Sect. 5.1. The following theorem then holds:

Theorem 4. If R1 � . . . � Rn = ⊥, then there is no global run of CP accepting
the single-indexed LTL formula ϕ.

We can therefore over-approximate the model-checking problem for CPDSs.

5.3 Using Our Framework in a CEGAR Scheme

In a manner similar to the work of Chaki et al. in [5], we propose a semi-decision
procedure that, in case of termination, answers exactly whether there exists a
global run of a CPDS CP = (P1, . . . ,Pn) satisfies a single-indexed LTL formula
ϕ = (ψ1, . . . , ψn).

We introduce the following Counter-Example Guided Abstraction Refine-
ment (CEGAR) scheme based on the finite-domain abstraction framework
detailed previously, starting from n = 1.

Abstraction: for each PDS P ′
i, we compute an abstraction of the set of all

accepting traces Ri of BPi (the product between P ′
i and the Büchi automa-

ton representing ψi), using either the prefix or suffix abstraction of rank n
introduced in [3];

Verification: we then check if R1 � . . . � Rn = ⊥; if it is indeed true, then we
conclude that no global run of CP can satisfy ϕ;

Counter-Example Validation: if there is such a global run, we then check
if our abstraction introduced a spurious counter-example; if the counter-
example is not spurious, then we conclude that there exists a global run
of CP satisfying ϕ;

Refinement: if the counter-example was spurious, we go back to the first step,
but use this time prefix and suffix abstractions of order n + 1.

If this procedure ends, we can decide the model-checking problem.

6 Application to Race Conditions

A race condition is an issue peculiar to multi-threaded programs that happens
when events do not occur in the order the programmer intended, such concurrent
operations on a shared memory location. In this section, we show a toy example
of a race condition in a CPDS that can be detected thanks to our abstraction.

6.1 The CPDS Model

We consider a network composed of three processes: one of these handles memory
allocation, and the two others processes can synchronize with it in order to use
memory to fulfil requests. These processes are the following:

162 A. Pommellet and T. Touili

MEMORY: handles the amount of free memory available; this amount
decreases when another process uses memory; the process will send differ-
ent signals depending on whether there is free memory left or not;

CONSUME: can arbitrarily use the free memory handled by the previous pro-
cess;

REQUEST: has a stack of requests to fulfil, and will use memory to do so.

If MEMORY runs out of free memory and another process try to use some
nonetheless, MEMORY will reach an error state.

Each process can be modelled by a PDS as follows:

The Process MEMORY. Let m and me be its two states. Its stack alphabet
is {γ,⊥}. The number of γ’s in the stack corresponds to the amount of memory
available to other threads, a single γ being enough to handle a single request.
This process will pop a γ from its stack if it receives a signal use. As an internal
action, it can also push a γ on its stack (allocating memory) if there is no free
memory left. It can send a signal on to other threads if there is at least one γ
on the stack, and will send off otherwise. If it receive a use signal but there is
no γ on the stack, it will instead move to the error state me.

MEMORY is represented by the following PDS rules:

(r1) (m, γ) on−→ (m, γ); the process signals that there is still free memory left;

(r2) (m,⊥)
off−−→ (m,⊥); the process signals that there is no free memory left;

(r3) (m,⊥) τ−→ (m, γ⊥); the process allocates memory;
(r4) (m, γ) use−−→ (m, ε); the amount of free memory available decreases;
(r5) (m,⊥) use−−→ (me,⊥); the process reaches its error state.

The Process CONSUME. Let c, ccheck, and cdone be its three states and ⊥
its only stack symbol. This process can check if there is any free memory left
by exchanging a signal on with MEMORY, then consume one unit by sending a
signal use.

CONSUME is represented by the following PDS rules:

(r6) (c,⊥) on−→ (ccheck,⊥); the process checks if there is any memory left;
(r7) (ccheck,⊥) use−−→ (cdone,⊥); the process uses one unit of memory;
(r8) (cdone,⊥) τ−→ (c,⊥); the process goes back to its initial waiting state.

The Process REQUEST. Let r and rcheck be its two states. Its stack alphabet
is {γ,⊥}. The number of γ’s in the stack corresponds to the number of requests
it must handle. As an internal action, it can receive a new request and push a γ
symbol on its stack. This process can check if there is any free memory left by
exchanging a signal on with MEMORY, then handle a request and consume one
unit by sending a signal use, popping a symbol γ from its own stack.

LTL Model-Checking for Communicating Concurrent Programs 163

REQUEST is represented by the following PDS rules:

(r9a) (r, γ) τ−→ (r, γγ); the process adds a new request;
(r9b) (r,⊥) τ−→ (r,⊥γ); the process adds a new request;
(r10) (r, γ) on−→ (rcheck, γ); the process checks if there is any free memory left;
(r11) (rcheck, γ) use−−→ (r, ε); the process handles a request while using one unit of

memory.

6.2 Using a Single-Indexed LTL Formula

Let P be the set of all states of the CPDS. We define AP = P and a simple
valuation ν such that for each stack symbol x and p ∈ P , ν(〈p, x〉) = {p}. We
express the desirable behaviour of the CPDS as the conjunction of the three
following LTL formulas:

– ψMEMORY = G(¬me); the process MEMORY can’t reach its error state;
– ψCONSUME = GF (c); the process CONSUME will always go back to its

waiting state c;
– ψREQUEST = G(rcheck) ⇒ F (r); the process REQUEST, when it starts

handling a request, must complete it and go back to its default state.

We then use a CEGAR scheme to check if there is a global run g such that
the single-indexed formula (ψMEMORY , ψCONSUME , ψREQUEST) does not hold
for g. Our algorithm finds such a counter-example in seven steps.

Intuitively, a race condition happens when both CONSUME and REQUEST
try to use memory while MEMORY only has a single unit available.

6.3 An Erroneous Trace

We write (ri) ↔ (rj) if we apply two rules that synchronize. We start from the
initial configuration:

(〈m,⊥〉, 〈c,⊥〉, 〈r,⊥〉)
(r3) MEMORY allocates memory:

(〈m, γ⊥〉, 〈c,⊥〉, 〈r,⊥〉)
(r6) ↔ (r1) MEMORY sends on to CONSUME:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈r,⊥〉)
(r9b) REQUEST adds a new request:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈r, γ⊥〉)
(r10) ↔ (r1) MEMORY sends on to REQUEST:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈rcheck, γ⊥〉)

164 A. Pommellet and T. Touili

(r7) ↔ (r4) CONSUME sends use to MEMORY and the latter process uses
one unit of memory:

(〈m,⊥〉, 〈cdone,⊥〉, 〈rcheck, γ⊥〉)
(r8) CONSUME goes back to default mode:

(〈m,⊥〉, 〈c,⊥〉, 〈rcheck, γ⊥〉)
(r11) ↔ (r5): REQUEST sends use to MEMORY and the latter process

reaches an error mode, violating ψMEMORY :

(〈me,⊥〉, 〈c,⊥〉, 〈r,⊥〉)
This an erroneous execution path in 7 steps. We can find it using a prefix

abstraction of order 7.

7 Conclusion and Future Works

In this paper, we study the model-checking problem of single-indexed LTL prop-
erties for CPDSs, which is unfortunately undecidable. We design an algorithm
to abstract the model-checking problem that relies on the automata-theoretic
approach of [2,6] and the Kleene abstraction framework of [3]. We then apply
this technique to a toy example and find a race condition.

An automata-theoretic approach to the CTL model-checking problem for
PDSs has been introduced in [9]. It remains to be seen if the CTL model-checking
problem for CPDSs can be abstracted in a similar manner to LTL.

References

1. Atig, M.F.: Model-checking of ordered multi-pushdown automata. Log. Methods
Comput. Sci. 8(3), (2012)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2003, pp.
62–73, New York. ACM (2003)

4. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 36

5. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691372 22

https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11691372_22
https://doi.org/10.1007/11691372_22

LTL Model-Checking for Communicating Concurrent Programs 165

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

7. Pommellet, A., Touili, T.: Static analysis of multithreaded recursive programs com-
municating via Rendez-Vous. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol.
10695, pp. 235–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71237-6 12

8. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

9. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theor.
Comput. Sci. 549, 127–145 (2014)

10. Song, F., Touili, T.: Model-checking dynamic pushdown networks. Form. Asp.
Comput. 27(2), 397–421 (2015)

11. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 161–170, July 2007

https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/978-3-319-71237-6_12
https://doi.org/10.1007/978-3-319-71237-6_12
https://doi.org/10.1007/978-3-540-31980-1_7

	LTL Model-Checking for Communicating Concurrent Programs
	1 Introduction
	2 Communicating Pushdown Systems
	2.1 Pushdown Systems
	2.2 The Model and Its Semantics
	2.3 From a Program to a CPDS Model

	3 Model-Checking LTL on CPDSs
	3.1 The Linear-Time Temporal Logic LTL
	3.2 LTL Model-Checking for PDSs
	3.3 Single-Indexed LTL for CPDSs

	4 An Abstraction Framework for Traces
	4.1 Abstractions and Galois Connections
	4.2 Kleene Abstractions
	4.3 The Set of K-Predecessors
	4.4 K-automata

	5 Abstract Model-Checking of LTL for CPDSs
	5.1 Abstracting Accepting Traces of a BPDS
	5.2 Abstracting the Model-Checking Problem for CPDSs
	5.3 Using Our Framework in a CEGAR Scheme

	6 Application to Race Conditions
	6.1 The CPDS Model
	6.2 Using a Single-Indexed LTL Formula
	6.3 An Erroneous Trace

	7 Conclusion and Future Works
	References

